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Preface

This book forms the basis of a one-semester introductory course in fluid mechan-
ics for engineers and scientists. Students working with this text are expected
to have a background in multivariable calculus, linear algebra, and differential
equations; review of these topics as applied to fluid mechanics is provided in
Chapter 1. Problem solving is taught by example throughout the text. We include
numerous solved examples and end-of-chapter problems, and a complete solution
manual is available for instructors.

Fluid mechanics can be a difficult subject. Nonlinear physics governs flow,
and thus we often resort to a variety of simplifications to obtain solutions. Differ-
ent simplifications are used under different conditions, making fluid mechanics
intimidating, at least to a beginner. An Introduction to Fluid Mechanics presents
the topic through a discovery process, as described in this preface, that mimics
engineering practice. The process used seeks solutions by answering the following
questions:

1. What is the problem?
2. What do we need to know, and do, to address the problem?
3. What is the solution to the problem?
4. What other problems/opportunities may be addressed now that we have

solved this problem?

This organizational choice builds critical thinking skills by emphasizing the
thought processes that lead to model development. The book is divided into four
parts that answer these four questions for the study of fluid mechanics.

1. What is the problem? [Part I: Preparing to Study Flow]
Chapter 1: Why Study Fluid Mechanics
Chapter 2: How Fluids Behave

The problem addressed in this book is how to bring readers to an understanding
of flow behavior and to mastery of flow-modeling calculations. To accomplish
this objective, students must come to the task with skills in mathematics and
simple flow calculations. In Chapter 1 we introduce the problem, cover needed
background calculations (i.e., the macroscopic mass balance and the mechanical
engineering balance), and review mathematics that is prerequisite to the study
of fluid mechanics (i.e., calculus and differential equations). In Chapter 2, we
showcase the diversity and complexity of fluid behaviors—showing readers that
the mechanical energy balance is insufficient to explain flow patterns and making

xiii
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xiv Preface

the case that effort spent learning fluid mechanics is worth it. The presentation
in Chapter 2 is at the survey level and spans from the introduction of viscosity
to discussions of magnetohydrodynamics and vorticity. Overall, the text follows
a path inspired by the spiral learning curve [Bruner, 1966], with the topics of
Chapter 2 revisited at the end of the book (Chapter 10: How Fluids Behave
(Redux)). That final chapter demonstrates how the intervening presentation leads
to the ability to solve complex flow problems.

2. What do we need to know, and do, to address the problem? [Part II:
The Physics of Flow]
Chapter 3: Modeling Fluids
Chapter 4: Molecular Fluid Stresses
Chapter 5: Stress-Velocity Relationships

Having clarified our objectives in Part I, we seek methods to address the
objectives in Part II. The continuum and the control volume are introduced
in Chapter 3, and the stress components, fluid statics, and surface tension are
presented in Chapter 4. To apply momentum conservation to a continuum,
we need the stress constitutive equations, developed in Chapter 5 (Newtonian
and non-Newtonian). These three chapters introduce the complete continuum
model.

It can be a challenge to maintain student focus when covering background
material, and we address this issue in a unique way: we provide a storyline.
At the end of Chapter 3 we introduce two flow calculations and follow them
longitudinally throughout Part II. These two problems (flow down an incline plane
and flow in a 90-degree bend) are addressed in a just-in-time format, beginning
before readers know enough fluid mechanics to be able to solve them. The
solution develops gradually, incorporating new model pieces as they are covered.
The repeated appearance of the two highlighted problems focuses readers on new
developments, demonstrating the utility of the most recent step. Both highlighted
problems are completed in Chapter 5, and Part II closes with the continuum
model in place.

3. What is the solution to the problem? [Part III: Flow Field Calculations]
Chapter 6: Microscopic Balance Equations
Chapter 7: Internal Flows
Chapter 8: External Flows

Model in hand, we turn to flows of interest. In Chapter 6 we develop the micro-
scopic momentum balance (i.e., the Navier-Stokes equation), which represents
an adaptation of the methods of Part II to the general case. We introduce the
expressions for flow rates, fluid forces on walls, and fluid torques and show how
to use these. In Chapter 7 a range of internal flows is discussed (pipes and ducts);
in Chapter 8 external flows and boundary-layer flows are presented in detail (drag
and lift).

The reader’s path through Chapters 7 and 8 follows once again a storyline of a
pair of highlighted flow problems. Chapter 7 begins with the quest to determine
the extent of a home flood. Although not transparently related to the continuum
model, the home flood problem is readily associated with pipe flow and motivates
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xv Preface

the examination of pressure drop/flow rate relationships, laminar and turbulent
flow, and other internal-flow topics. We repeat this structure in Chapter 8, asking
about a skydiver, which raises the question of flow past an obstacle in general,
leading to discussion of drag, lift, and boundary layers.

Throughout Part III we employ dimensional analysis when the models we
develop are too difficult to solve. Dimensional analysis is presented as a natural
step in a problem-solving methodology that begins with addressing simplified
versions of a real problem (because those are the problems we can solve and they
give us insight), progresses to solving mathematically complex models, and turns
ultimately to obtaining practical data correlations.

4. What other problems/opportunities may be addressed now that we
have solved this problem? [Part IV: Advanced Flow Calculations]
Chapter 9: Macroscopic Balance Equations
Chapter 10: How Fluids Behave (Redux)

The final two chapters of An Introduction to Fluid Mechanics guide readers
through advanced modeling calculations on a variety of flows. In Chapter 9
the macroscopic balances, including the mechanical energy balance and the
macroscopic momentum balance, are derived and applied. Although simple uses
of the mechanical energy balance are covered in Chapter 1, in Chapter 9 the
applications are more involved, including pump sizing and open-channel flow.
Applying the macroscopic momentum balance is generally considered to be
a difficult topic; we systemize macroscopic momentum solutions, making them
more accessible. In Chapter 10, the learning spiral returns us to the more complex
flows introduced in Chapter 2, and we apply the now-familiar continuum model
to begin to understand these flows. Chapter 10 discusses numerical solutions,
statistical aspects of turbulence, lift, circulation, vorticity, and supersonic flow.

The text includes reference materials provided to aid the student. The appen-
dices contain a glossary of terms and mathematical tables. There is additional
mathematical assistance available on the Internet in the Web Appendix. Finally,
key equations are presented on the inside covers as an aid to problem solving.

REFERENCE

Bruner, Jerome S., The Process of Education (Harvard University Press: Cambridge,
MA, 1966).
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1 Why Study Fluid Mechanics?

1.1 Getting motivated

Flows are beautiful and complex. A swollen creek tumbles over rocks and through
crevasses, swirling and foaming. A child plays with sticky taffy, stretching and
reshaping the candy as she pulls and twists it in various ways. Both the water and
the taffy are fluids, and their motions are governed by the laws of nature. Our goal
is to introduce readers to the analysis of flows using the laws of physics and the
language of mathematics. On mastering this material, readers can harness flow
to practical ends or create beauty through fluid design.

In this text we delve into the mathematical analysis of flows; however, before
beginning, it is reasonable to ask if it is necessary to make this significant math-
ematical effort. After all, we can appreciate a flowing stream without under-
standing why it behaves as it does. We also can operate machines that rely
on fluid behavior—drive a car, for example—without understanding the fluid
dynamics of the engine. We can even repair and maintain engines, piping net-
works, and other complex systems without having studied the mathematics of
flow. What is the purpose, then, of learning to mathematically describe fluid
behavior?

The answer is quite practical: Knowing the patterns that fluids form and why
they are formed, and knowing the stresses that fluids generate and why they are
generated, is essential to designing and optimizing modern systems and devices.
The ancients designed wells and irrigation systems without calculations, but we
can avoid the waste and tedium of the trial-and-error process by using mathemat-
ical models. Some inventions, such as helicopters and lab-on-a-chip reactors, are
sufficiently complex that they never would have been designed without mathe-
matical models. Once a system is modeled accurately, it is then straightforward
to calculate operating variables such as flow rates and pressures or to evaluate
proposed design or operating changes. A mathematical understanding of fluids
is important in fields such as airplane and space flight, biomedicine, plastics
processing, volcanology, enhanced oil recovery, pharmaceuticals, environmental
remediation, green energy, and astrophysics. Although a trial-and-error approach
can get us started in fluids-related problems, significant progress requires formal
mathematical analysis.

We seek, then, to understand and model flows. As we begin, one advantage
we have is that we already know much about flow: We interact daily with fluids,
from throwing balls through the air to watering the lawn (Figure 1.1). We can

3
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4 An Introduction to Fluid Mechanics

Figure 1.1 Reducing the cross-sectional area of the nozzle of a garden hose increases the fluid velocity, causing the water to
travel farther before gravity pulls the stream to the ground. The upstream pressure is approximately constant at
the pressure supplied by the municipal water system.

build on this familiarity (Chapter 2) and add tools from calculus and physics
(Chapters 3–6) to arrive at sensible modeling and engineering results and insights
(Chapters 7–10).

We cover the basics, one of which is the use of the continuum model to
describe flow. The continuum model treats fluids not as molecules but rather as a
deformable whole with properties that can be described by continuous functions
of space and time (Chapter 3). Another basic we must master is understanding how
molecular stress is generated and diffused in flowing materials. This is a complex
topic, and we use two chapters to discuss it (Chapters 4 and 5). We will see that
a systematic approach to fluid-stress modeling can make this challenging topic
accessible. The stress constitutive equation (Chapter 5) connects fluid stress and
motion in a way that leads directly to predictions of flow behavior in subsequent
chapters.

We ultimately solve flow problems with momentum balances, which we intro-
duce in Chapter 3 and learn to apply to flows in subsequent chapters. The flows
we consider are divided into internal and external flows (Chapters 7 and 8). In
both internal and external flows, we consider two regimes of flow: laminar and
turbulent. As shown in a water jet in Figure 1.2, in the slow-flow regime, called
laminar flow, small pieces of fluid move in an orderly fashion in smooth and
more-or-less straight lines. At higher flow rates (or at other times when con-
ditions are right), the flow becomes disordered and fluid particles move along
seemingly random paths, causing substantial mixing; this is called turbulent flow.
Another classic behavior exhibited by fluids is the formation of boundary layers
in rapid flows (Figure 1.3). Boundary layers, both laminar and turbulent (Chap-
ter 8), form in rapid flows as a result of the interaction of fluid momentum with
solid boundaries. Knowledge of the mechanisms of laminar flow, turbulent flow,
and boundary layers provides the background we need to understand the intricate
momentum exchanges in complex flows.

Once the basics are established, we move to a more advanced study of flu-
ids (Chapters 9 and 10). The purpose of advanced study varies among indi-
viduals, but the ability to innovate and invent new technologies rests on hav-
ing an advanced understanding of physical systems, including flowing systems
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5 Why Study Fluid Mechanics?

Figure 1.2 There are two basic flow regimes: a smooth slow flow-rate regime (i.e., laminar flow) and a rough, rapid flow-rate
regime (i.e., turbulent flow).

(Figures 1.4 and 1.5). Advanced study may take the form of exploring: hemo-
dynamics (i.e., the study of blood flow) [53]; non-Newtonian fluid mechanics,
also called rheology [12, 104]; aeronautics [11, 76]; magnetohydrodynamics,
which is important in astrophysics and metallurgy [35]; and microfluidics, a new
field that explores the behavior of liquids confined in small spaces (Figure 1.5)

Figure 1.3 Schematic of an attached boundary layer flowing over a streamlined vehicle versus a detached boundary layer
flowing over a blunt object such as a van.
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6 An Introduction to Fluid Mechanics

Figure 1.4 The human body relies on fluid flow to provide the necessary functions of life. The circulatory system, with blood as
the transport medium, keeps nutrients and oxygen flowing to every part of the body as needed and also transports
waste back to the lungs and kidneys for disposal. Blood responds as a Newtonian fluid when flowing in arteries and
larger veins but, in smaller regions, it displays non-Newtonian behavior [53]. Different flow behaviors are covered
in Chapter 4. Shown here is an artificial heart. Detailed knowledge of blood-flow dynamics (i.e., hemodynamics) is
required to contribute to the design and manufacture of such devices. Photo courtesy of Abiomed.

[2, 51, 75]. The last of these, microfluidics, is contributing to the development
of new biological processing devices (e.g., sensors or lab-on-a-chip devices) that
carry out molecular separations in microscopic channels. In this text we touch
briefly on some advanced topics of fluid mechanics but, more important, we lay
the groundwork needed for the study of such subjects.

The equations that govern flow are nonlinear, second-order, partial differ-
ential equations (PDEs); thus, they are complex. In this text we study solu-
tions of PDEs, but we also study simple algebraic equations based on mass,
energy, and momentum conservation that tell us a great deal about flows. In
fact, the first step in a detailed system analysis usually is to perform algebraic
macroscopic balances. In the next section, we introduce the macroscopic mass
and energy balances for flow; we use these balances throughout the text, espe-
cially in the analysis of pumps and other fluid-driven machinery (Figure 1.6 and
Chapter 9).

For detailed flow analysis, we must set up and solve partial differential equa-
tions (Chapters 6–8). For complex flows, although we know the PDEs that govern
the flow, we cannot always solve them, even with modern methods and computers.
When the complete solution of flow equations is not possible, an effective
approach is to divide the flow domain into separate regions, where the equations
may be simplified and therefore solved. This “divide-and-conquer” approach to

www.20file.org

http://www.semeng.ir


7 Why Study Fluid Mechanics?

Figure 1.5 Deterministic lateral displacement (DLD) is a fluid-mechanics based mechanism for separating blood cells (RBC,
see (B)) by (A) size, (C) deformability, or (D) by shape. In (A) particles with effective size Ref f smaller than a critical
size Rc follow the flow streamlines which pass close to the obstacle, while larger particles cannot approach the
obstacle and are forced onto a new path. In (C) shear forces deform particles, and flow at various shear rates is
used to measure deformability. In (D) variation of the channel geometry allows researchers to investigate particle
shape since different shapes respond to the geometry in specific ways. In (E), (F), and (G) cells are shown in the
DLD device. From J. P. Beech et al. Lab on a Chip, vol. 12, 1048 (2012). Reproduced by permission of the authors
and The Royal Society of Chemistry.

fluid mechanics includes the boundary-layer approach, in which regions close to
solid boundaries are handled separately from the main flow (Chapter 8). Dimen-
sional analysis, discussed throughout the text, helps to quantify which forces
dominate in which regions of complex flow, thereby helping to address such
problems. At the end of the book, we introduce vorticity, a physical quantity
associated with a flow field that helps track momentum exchange in rapid, curl-
ing, twisting flows.

In this book, we explain fluid mechanics. The subjects and type of discussion
presented here have been chosen to bring you to a real understanding of how
fluids work. We explain the techniques that experts have discovered to model
flows. More than just teaching students to pass a fluids course, our goal is to
produce a competency with fluid-mechanics modeling that will allow students to
contribute to the field and to apply their knowledge to engineering applications.
We present many examples that build this understanding as well as competence
and confidence in solving problems in fluid mechanics. End-of-chapter problems
are provided, and we also direct readers to several published volumes of solved
problems to supplement their efforts with this text [46, 56].

We proceed now to the study of elementary fluid mechanics. We begin with
a quick-start section in which we show what type of fluid mechanics can be
understood with a simple energy balance, without the detailed understanding
of momentum exchange that is the primary topic of this text. We introduce
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8 An Introduction to Fluid Mechanics
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Figure 1.6 The performance of a centrifugal pump may be understood through pumping-head curves (see Section 9.2.4.1).
These curves of head (i.e., mechanical energy per unit weight) versus capacity (i.e., flow rate) give the operating
point of a pump as the intersection between the curve that is characteristic of the pump and the curve that is
characteristic of the system through which the fluid is moving. When the system changes (e.g., a valve is closed
somewhat), the system curve shifts as does the operating point. Both system and pump curves are derived from
the mechanical energy balance.

the mechanical energy balance (MEB) and its no-friction, no-work version—
the macroscopic Bernoulli equation—and we solve some basic problems. To
proceed beyond the mechanical energy balance to an understanding of the pat-
terns that fluids create and the stresses that fluids generate, we must consider
momentum balances. Momentum balances concern us for the majority of this
book.

The last section of this chapter discusses mathematical methods used in fluid
mechanics. This overview connects mathematics in the abstract to the specific
topic of fluid mechanics.

1.2 Quick start: The mechanical energy balance

In flowing systems, the laws of conservation of mass, momentum, and energy
allow us to calculate how systems behave. For a detailed understanding of flows,
we study the versions of conservation laws that apply to microscopic systems
called control volumes (Figure 1.7, top). The equations that result from micro-
scopic balances are nonlinear partial differential equations. It is an involved
process to develop these equations and to learn to apply them; we start this task
in Chapter 2.
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9 Why Study Fluid Mechanics?

PUMP

microscopic 

macroscopic 

control 
volumes 

Figure 1.7 Conservation equations applied to small regions in a flow
result in partial differential equations that can provide
detailed information about the flow field. Conservation
equations applied to entire devices or piping systems
result in algebraic equations that give relationships among
process variables such as average velocity, pressure, and
frictional losses.

If a detailed understanding is
not required, the conservation laws
can be applied to larger-scaled sys-
tems rather than microscopic control
volumes. Flow systems studied with
macroscopic equations can be an
entire pumping flow loop, for exam-
ple (Figure 1.6; Figure 1.7, bottom),
or a power station generating elec-
tricity at a waterfall. The balance
equations in these cases are alge-
braic rather than differential equa-
tions, making them easier to apply
and to solve. The drawback to macro-
scopic analysis is that we must make
many assumptions and, because the
assumptions sacrifice accuracy, we
must supplement theoretical calcu-
lations with experiments. Another
drawback of macroscopic analysis is
that many of the flow details are not
determined using such methods. Both
microscopic and macroscopic analy-
ses are useful, depending on the infor-
mation that is sought.

We derive the macroscopic conservation laws later in the book (Chapter 9).
In this quick-start section, we present the macroscopic conservation equations
without derivation, and we show how they sometimes may be used to calculate
and relate flow rates, pressure drops, frictional losses, and work. Practice with
these elementary macroscopic calculations is good background for our primary
task, which is the detailed study of fluid patterns and fluid stresses in complex
flows.

The topic of this section is the mechanical energy balance (MEB), an energy
balance applicable to a narrow class of flows that nevertheless are common and
practical. We consider the special case of a single-input, single-output flow system
such as a liquid pushed through a piping system by a pump (Figure 1.8). The
fluid moves through the system at a mass flow rate, m, which corresponds to a
particular volumetric flow rate Q and average velocity 〈v〉

Volumetric flow rate: Q = m

ρ
(1.1)

Average fluid velocity: 〈v〉 = Q

A
(1.2)

where ρ is the density and A is the cross-sectional area of the pipe (see following
discussion). There are pressure changes along the flow path as well as velocity
and elevation changes. In addition, friction due to fluid contact with the wall or
jumbled flow through fittings or other apparatuses causes energy to be converted
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m

2

1

RXR TANK 

PUMP 

m

Figure 1.8 A very common system is one with a single-input stream (1), a single-output stream (2), and in which an
incompressible (ρ = constant), nonreacting, nearly isothermal fluid is flowing.

to heat and essentially lost. Finally, mechanical devices put energy into or extract
energy from the system in the form of shaft work, which refers to work associated
with devices such as pumps, turbines, and mixers that interact with the fluid
through a rotating shaft (see Chapter 9).

A macroscopic energy balance that may be applied to a single-input, single-
output system with no reaction, no phase change, and little heat loss or heat
generation is the mechanical energy balance, which is derived in Chapter 9
(Figure 1.9).

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m
(1.3)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.4)

Δ

Definition of Terms in the
Mechanical Energy Balance

out–in

friction in system (always positive)

shaft work done, by fluid (negative for pumps
and mixers; positive for turbines)

F

s,byW

(velocity profile
shape parameter)

α
2
1=α laminar flow

1≈α turbulent flow

Figure 1.9 The mechanical energy balance relates changes in key energy properties to the friction and work associated with
the fluid in the system.
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Table 1.1. Requirements for using the MEB

• Single-input, single-output (no
branching)

• Steady state
• Constant density (incompressible

fluid)
• Temperature approximately constant
• No phase changes or other chemical

changes occur
• Only insignificant amounts of heat

transferred

where p is pressure in the fluid, 〈v〉 is the
average velocity in the pipe, z is the ele-
vation, 1 and 2 refer to two locations in
the flow, g is the acceleration due to grav-
ity, ρ is fluid density, and m is the mass
flow rate of fluid. The � in the MEB refers
to the difference between the value of a
quantity (p, 〈v〉, or z) at an outlet posi-
tion minus the value of that quantity at an
inlet position (out−in). The term F = F2,1

accounts for all frictional losses in the sys-
tem between the chosen outlet (2) and inlet

(1) positions, and Ws,by = Ws,by,21 accounts for all the shaft work done by
the fluid in the system between the chosen outlet and inlet positions. The
quantity Ws,by is positive for devices such as turbines, in which the fluid
works on the surroundings, and Ws,by is negative for pumps and mixers. The
work done by the fluid equals the negative of the work done on the fluid,
Wby = −Won .

The quantity α in Equation 1.3 is a constant that depends on the type of flow
pattern—that is, laminar or turbulent. We discuss the differences between laminar
and turbulent flow in Section 2.4 and throughout the text. Here, we simply recall
the discussion around Figure 1.2: Laminar flow is an organized flow with straight
flow lines, and turbulent flow is a more rapid, disorganized flow with a jumbled
structure. The quantity α in Equation 1.3 is approximately equal to 1 for turbulent
flow and is exactly equal to 1/2 for laminar flow (see Chapter 9 for a derivation
of α).

We provide no detailed justification of Equation 1.3 here because our pur-
pose is to dive in and attempt some basic flow calculations. It is important,
however, to know the assumptions involved in deriving Equation 1.3 so that
we apply this result appropriately. The mechanical energy balance is limited to
systems for which all of the following requirements hold: single-input, single-
output, steady state, constant density and temperature, no reaction, no phase
change, and negligible heat transferred (Table 1.1). The mechanical energy
balance may be used only on systems that meet the requirements listed in
Table 1.1.

To apply the mechanical energy balance to a flow system (e.g., the system
shown in Figure 1.8), we first choose locations to designate as the inflow (1) and
the outflow (2) locations. Strategically, they should be chosen so that some of
the quantities in the MEB (e.g., pressure, average fluid velocity, and elevation)
are measured easily at the chosen points. Shaft work often is the quantity to be
calculated with the MEB. The friction term sometimes may be neglected; when
it cannot be neglected, it must be calculated from experimental results—that is,
from data correlations (see Section 1.2.3 and the Glossary). Care must be taken
when using the MEB because the natural units of each term are not automatically
the same and unit conversions are necessary. In the sections that follow, we show
how to apply the MEB to situations of interest.
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12 An Introduction to Fluid Mechanics

One relationship that we will need for the mechanical-engineering-balance
calculations is the one between volumetric flow rate Q or V̇ 1 and average velocity
in the pipe 〈v〉. We already mentioned this relationship and we discuss it in detail
later (see Equations 3.71 and 6.255). To obtain average velocity from volumetric
flow rate, we proceed as follows:

Average velocity
through pipe of
cross section A

〈v〉 = Q

A
(1.5)

where A is the pipe cross-sectional area and Q is the volumetric flow rate. For a
circular pipe of diameter D = 2R, this becomes:

Average velocity
through circular pipe

of diameter D
〈v〉 = Q

π R2
= 4Q

π D2
(1.6)

The mass flow rate is just the volumetric flow rate multiplied by fluid density ρ:(
mass
time

)
=
(

mass
volume

)(
volume

time

)
(1.7)

Mass flow rate
through pipe of
cross section A

m = ρQ = ρ A〈v〉 (1.8)

Mass flow rate
through circular pipe of

inner diameter D
m = ρQ = ρπ R2〈v〉 = ρπ D2

4
〈v〉 (1.9)

Thus, a measurement of mass flow rate can be converted to average velocity in a
circular pipe as:

Average velocity
through circular pipe

of diameter D
〈v〉 = 4m

ρπ D2
(1.10)

We will have numerous occasions to use the relationships given in Equations 1.5–
1.10.

In the sections that follow, we show how to use the mechanical energy balance
(Equation 1.3) to solve for flow variables. The method that we discuss follows
the steps listed in Table 1.2. We conclude this section with examples of flow
calculations employing the relationships previously introduced. Note how the
units are converted in these examples. In Section 1.2.1, we begin our work with
the MEB using the simplest applications: those in which friction and shaft work
are both zero.

1The symbol Q is used conventionally for both volumetric flow rate and a quantity of heat (see the
energy-balance discussion in Chapter 6). Because of this dual use, we sometimes use the symbol
V̇ for volumetric flow rate, especially when the use of Q for flow rate would cause confusion.
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13 Why Study Fluid Mechanics?

Table 1.2. Method for applying the MEB

1. Choose inlet (1) and outlet (2) points (choose points where much is known).
2. Evaluate the pressure, average velocity, and elevation at these chosen points, if

possible.
3. Calculate the frictional losses F or neglect them, if appropriate.
4. If there are no moving parts, Ws ,by = 0 and the missing pressures, velocities,

or elevations may be calculated or related.
5. If there are moving parts, the shaft work Ws ,by may be calculated from the MEB.

EXAMPLE 1.1. Water is flowing in a 1/2 = in. Schedule 40 pipe at 3.0 gallons
per minute (gpm). What is the average velocity in the pipe?

SOLUTION. The average velocity in a pipe is equal to the volumetric flow rate,
Q, divided by the cross-sectional area, A. We are given the flow rate and the rating
of the pipe, from which we can find the cross-sectional area. Using Equation 1.5,
we therefore can find the average velocity 〈v〉.

The nomenclature “Schedule 40 pipe” refers to a standard-size steel pipe as
rated by the American National Standards Institute (ANSI). The true dimen-
sions of this piping is found in tables published in the literature; a useful
reference is Perry’s Chemical Engineers’ Handbook [132], which is available
online. Consulting the literature, we find that the inner diameter of Schedule
40 1/2-in. pipe is 0.620 in., which corresponds to a cross-sectional area of
A = π D2/4 = 0.3019 in.2. Using Equation 1.5 and performing the necessary
unit conversions, we arrive at the average fluid velocity in the pipe. A link to
a table of common unit conversions and physical property data is on the inside
front cover of this book.

〈v〉 = Q

A
(1.11)

=
(

3.0 gpm

0.3019 in.2

)(
35.3145 ft3/s

15, 850.2 gpm

)(
144 in.2

ft2

)
(1.12)

= 3.1882 ft/s (1.13)

= 3.2 ft/s = 0.97 m/s (1.14)

A flow rate of 3 gpm is a typical household-water flow rate. It is worth memorizing
the order of magnitude of these numbers:

Typical household flows:
Q ≈ 3 gpm
〈v〉 ≈ 3 ft/s (nominal half-inch pipe)
〈v〉 ≈ 1 m/s (nominal half-inch pipe)
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14 An Introduction to Fluid Mechanics

EXAMPLE 1.2. Water flows steadily through a converging section of piping
shown in Figure 1.10. The pipe diameter at the inlet to the contraction is D1 and
the pipe diameter at the exit of the contraction is D2. What is the relationship
between the average velocity at the inlet 〈v〉1 and the average velocity at the exit
〈v〉2?

Q

ρ

Q
D1 D2

ρ

Figure 1.10 Steady flow through a converging section of pipe causes the flow to accelerate. With a mass balance, we can relate
inlet and outlet average velocities.

SOLUTION. The flow we consider here is through a contraction (Figure 1.10).
The flow through the contraction is steady; thus, the mass flow rate is the same
everywhere throughout the device. The mass balance between Points 1 and 2 may
be written as:

Macroscopic mass balance
(steady state)

(
mass

in

)
=
(

mass
out

)
(1.15)

m1 = m2

where m1 is the mass flow rate at Point 1 and m2 is the mass flow rate at Point
2. Using Equation 1.9, we write mass flow rate in terms of average velocity and
solve for the relationship between the average velocities in the contraction. Note
that the density of water ρ is a constant:

m1 = m2

ρQ1 = ρQ2

Q1 = Q2

〈v〉1
π D2

1

4
= 〈v〉2

π D2
2

4

〈v〉1 =
(

D2

D1

)2

〈v〉2 (1.16)

At a constant flow rate, the average velocity depends inversely on the square
of the pipe diameter.
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15 Why Study Fluid Mechanics?

1.2.1 MEB with no friction, no work: Macroscopic Bernoulli equation

When the friction term and the shaft work are zero, the mechanical energy balance
simplifies to a form known as the macroscopic Bernoulli equation:

�p

ρ
+ �〈v〉2

2α
+ g�z = 0

Macroscopic Bernoulli equation
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction,
no friction, no shaft work)

(1.17)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.18)

Recall that � refers to the change in the property from the inlet to the outlet
(out–in). Although the Bernoulli equation seems constrained, it has proven useful
because the assumptions listed in Equation 1.17 are met in certain important
flows. The Bernoulli equation is one of the most widely used equations in fluid
mechanics (for advanced uses, see Chapters 8–10); unfortunately, it also is one
of the most widely misused equations. To show how the Bernoulli equation may
be used properly, we present three examples. Note that the assumptions listed in
Equation 1.17 must be met to permit the use of the Bernoulli equation.

EXAMPLE 1.3. A Venturi meter is a flow-rate measuring device in which a
pressure drop is measured and flow rate is inferred (Figure 1.11). For flow through
a Venturi meter, what is the relationship between measured pressure change and
flow rate?

2p1p

1

2

throat

Figure 1.11 The relationship between the measured pressures and the fluid velocity in Venturi meters may be deduced from
the mechanical energy balance (for systems in which friction may be neglected) or from the mechanical energy
balance and a calibration specific to the device (if friction effects are considered).

SOLUTION. The device in Figure 1.11 is a flow meter. We begin our solution
with some background on flow measurement.

In a piping system, we often want to know the average flow rate of a fluid in a
pipe. One sure way to measure this flow is the pail-and-scale method (Figure 1.12),
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time = 0 
mass = 0

(tare) 

time = 2.0 min 
mass = 5.214 kg
m = 0.043 kg/s

PUMP 

MIX 
TANK 

break

Figure 1.12 An accurate way to measure flow rate is the pail-and-scale method, in which we break into the flow loop and
measure the amount of fluid that accumulates in a pail over a set time interval. For an operating chemical plant,
this is not a convenient method.

in which we break into the flow loop and measure the time it takes for an amount
of fluid to fill a pail or another container. From these data, we can calculate the
mass flow rate and, subsequently, the average fluid velocity (Equation 1.10):

m ≡ (mass collected)

(collection time)
(1.19)

〈v〉 = 4m

ρπ D2
(1.20)

where m is the mass flow rate, ρ is the fluid density, 〈v〉 is the average fluid velocity
in the pipe, and D is the pipe diameter. The pail-and-scale method is accurate
for measuring time-averaged flow rate, but it is highly undesirable to break into
flow streams in functioning chemical plants or in many other operations. Also,
the pail-and-scale method takes some time and therefore does not provide an
instantaneous value of flow rate. Thus, engineers invented a wide variety of
devices with which the flow rate may be inferred from measurement of a process
variable such as pressure [118]; the Venturi meter is one of these devices.
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17 Why Study Fluid Mechanics?

A Venturi meter allows for the calculation of flow rate in pipes from a mea-
surement of a particular pressure difference (see Figure 1.11). The design of a
Venturi meter is of a converging section of pipe followed by a diverging section;
the changes in the cross-sectional area are gradual to minimize the frictional
losses within the device. Pressure measurements are taken at the points indi-
cated in Figure 1.11; through application of the macroscopic mass and energy
balances, we can relate this pressure difference to the instantaneous flow rate in
the tube. Venturi meters allow for an accurate measurement of flow rate without
significantly disturbing the flow.

Because the flow in a Venturi meter is a steady, single-input, single-output
system with no reaction or phase change occurring and little heat generated or
lost, we analyze this flow using the mechanical energy balance, neglecting at first
the frictional contribution (F = 0). There are no moving parts and no shafts;
therefore, Ws,by = 0, and we can use the macroscopic Bernoulli equation, as
follows:

�p

ρ
+ �〈v〉2

2α
+ g�z = 0

Macroscopic Bernoulli equation
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction,
no friction, no shaft work)

(1.21)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.22)

where Subscript 1 indicates the value of that variable at the inlet position and
Subscript 2 indicates the value of that variable at the outlet position.

If we carefully choose Points 1 and 2 for our problem, it is straightforward
to relate pressure and average velocity with the MEB. In the Venturi meter, we
choose Point 1 as the point of the upstream pressure measurement and Point 2
is at the throat, the location of the other pressure measurement. Venturi meters
are installed horizontally; thus, z2 − z1 = 0. The Bernoulli equation simplifies in
this case to:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.23)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
= 0 (1.24)

In an example in the previous section, we related 〈v〉1 and 〈v〉2 through the mass
balance over a converging section of pipe. The result was as follows:

From the mass balance:
(Equation 1.16):

〈v〉1 =
(

D2

D1

)2

〈v〉2 (1.25)

where D1 is the pipe diameter at Point 1 and D2 is the pipe diameter at Point 2.
Substituting this result into the macroscopic Bernoulli equation (Equation 1.24),
we obtain the final relationship between the volumetric flow rate through the
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Venturi meter and the measured pressure drop (p1 − p2):

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
= 0

p2 − p1

ρ
+ 1

2α

[
〈v〉2

2 −
(

D2

D1

)4

〈v〉2
2

]
= 0

〈v〉2 =
√√√√√√√√

2α(p1−p2)
ρ[

1 −
(

D2
D1

)4
]

Q =
(

cross-sectional
area

)(
average
velocity

)
= π D2

2

4
〈v〉2

Q = π D2
2

4

√√√√√√√√
2α(p1−p2)

ρ[
1 −

(
D2
D1

)4
]

Flow rate
measured by a
Venturi meter
(no friction)

(1.26)

When the flow is sufficiently rapid as measured by a quantity called the
Reynolds number (Re) (Re = (ρ〈v〉D)/μ > 104; see Equation 1.62) where μ is
fluid viscosity, the no-friction relationship in Equation 1.26 accurately describes
the pressure-drop/flow-rate relationship for many Venturi meters. For slower
flows, friction is more important to the total energy, and experiments should be
conducted to determine the neglected friction. In the experiments needed to cali-
brate a Venturi meter for frictional losses, we measure the time-averaged flow rate
Q by an independent method (e.g., pail-and-scale) and we measure the pressure
drop p1 − p2; finally, we deduce an empirical friction correction factor CV that
makes Equation 1.27 correct according to the measured data:

Q = CV

(
π D2

2

4

)√√√√√√√√
2α(p1−p2)

ρ[
1 −

(
D2
D1

)4
]

Flow rate
measured by a
Venturi meter
(with friction)

(1.27)

CV must be determined experimentally by either the user or the manufacturer of
the Venturi meter. Venturi meters typically are used in turbulent flow for which
α = 1.

With only the Bernoulli equation and a simple mass balance, we can com-
pletely describe the operation of a Venturi meter. The complexities of the flow
are swept up into the friction coefficient CV , which is determined experimen-
tally. The strategy of the mechanical energy balance and other macroscopic
balances is: Perform balances on macroscopically sized control volumes, make
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reasonable assumptions, improve accuracy by making experimental measure-
ments, and adjust the equations to match the experiments. The examples that
follow discuss additional situations in which the macroscopic Bernoulli equation
may be applied.

EXAMPLE 1.4. Water drains from a tank as shown in Figure 1.13. The level of
water in the tank is maintained at a constant height through control of flow in
the overhead pipe. What is the drain flow rate in terms of the height of the fluid
in the tank?

tank
h

V
.

1

2

Figure 1.13 Water drains from a tank that is maintained at a constant level. This type of arrangement is known as a constant-head
tank.

SOLUTION. The system of water in the tank flowing out the bottom drain is a
single-input, single-output, steady flow of an incompressible fluid. There is no
heat transfer and no chemical reaction or phase change; therefore, all requirements
of the mechanical energy balance are met.

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

(1.28)

We choose as our two points (1) the surface of the fluid in the tank and (2) the
point at the lower exit where the fluid emerges into the air. These are good choices
because we know much about the pressure, average velocity, and elevation at these
points, as we now discuss.

There are no moving parts in the chosen system and therefore no shaft work.
The flow in the tank is tranquil and little friction is generated. The flow through
the exit pipe may have a frictional contribution, but the exit pipe is short; thus, it
seems reasonable to entirely neglect friction. The prediction from this frictionless
calculation can be checked experimentally to see if this last assumption is valid.
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The mechanical energy balance thus simplifies to the Bernoulli equation:

�p

ρ
+ �〈v〉2

2α
+ g�z = 0

Macroscopic Bernoulli equation
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction,
no friction, no shaft work)

(1.29)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.30)

At Point 1, the surface of the water in the tank, the pressure is atmospheric.
At Point 2, the discharge of the pipe, the pressure also is atmospheric; therefore,
p2 − p1 = 0. The expression 〈v〉1 refers to the velocity of the tank water surface,
which is zero. The average velocity of the water at the exit 〈v〉2 is the quantity
in which we are interested. Finally, z1 and z2 refer to the elevations of the two
chosen points. We may choose the elevation of the discharge as the reference
level for measuring elevation; thus, z2 = 0 and z1 = h. The mechanical energy
balance becomes:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.31)

〈v〉2
2

2α
− gh = 0 (1.32)

The value of α to use depends on whether the flow is laminar or turbulent (see
Figure 1.9), and the established way to infer this is discussed in the next section.
For now, we assume a turbulent flow; thus, α = 1.

We now can solve for 〈v〉2 and the volumetric flow rate Q:

〈v〉2
2

2
− gh = 0 (1.33)

Torricelli’s law:
discharge velocity from

a constant-head tank
(no friction)

〈v〉2 =√2gh (1.34)

Q = A〈v〉2 = π D2
2

4
〈v〉2 (1.35)

Discharge flow rate from
a constant-head tank

(no friction)
Q = π D2

2

4

√
2gh (1.36)

Equation 1.34 is known as Torricelli’s law, named for Evangelista Torricelli,
who invented the barometer and discovered in 1643 the equation for discharge
velocity from a constant-head tank. Experiments verify Torricelli’s law for tanks
with short exit pipes.
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EXAMPLE 1.5. Water is siphoned from a tank as shown in Figure 1.14. What is
the flow rate of water in the siphon tube (inner diameter =1.5 cm)? What is the
limit in the wall height that the siphon can overcome?

1

h1 = 22 cm

V
.

2

1.5 cm

Figure 1.14 A siphon works because liquids prefer to form unbroken streams, and the weight of the fluid below the tank level
is sufficient to draw the trailing stream over a barrier. The siphon breaks when the pressure in the stream is low
enough to allow the fluid to boil, breaking the liquid stream.

SOLUTION. The system of water flowing in the siphon is a single-input, single-
output, steady flow of an incompressible fluid. There is no heat transfer and no
chemical reaction or phase change; therefore, all requirements of the mechanical
energy balance are met.

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

(1.37)

We choose our two points as locations for which we know a great deal: (1) the
free surface in the tank, and (2) the exit point of the siphon. There are no moving
parts in the chosen system and therefore no shaft work. The flow in the tank and
siphon is tranquil and little friction is generated. The mechanical energy balance
simplifies to the Bernoulli equation:

�p

ρ
+ �〈v〉2

2α
+ g�z = 0

Macroscopic Bernoulli equation
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction,
no friction, no shaft work)

(1.38)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.39)
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At Point 1, the surface of water in the tank, the pressure is atmospheric. At
Point 2, the discharge of the tube, the pressure also is atmospheric; therefore,
p2 − p1 = 0. The expression 〈v〉1 refers to the velocity of the tank water surface,
which is approximately zero if we confine our analysis to the initial stages of
the flow. The average velocity of water at the exit 〈v〉2 is the quantity in which
we are interested. Finally, z1 and z2 refer to the elevations of the two chosen
points. We may choose the elevation of the discharge as our reference level for
measuring elevation; thus, z2 = 0 and z1 = h1. In all important ways, this calcu-
lation is identical to the previous example. The mechanical energy balance thus
becomes:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.40)

〈v〉2
2

2α
− gh1 = 0 (1.41)

Again, we assume a turbulent flow and α = 1. We now solve for 〈v〉2 and the
volumetric flow rate Q:

〈v〉2
2

2
− gh1 = 0 (1.42)

Discharge velocity from
a siphon

(no friction)
〈v〉2 =√2gh1 (1.43)

Q = A〈v〉2 = π D2
2

4
〈v〉2 (1.44)

Discharge flow rate from
a siphon

(no friction)
Q = π D2

2

4

√
2gh1 (1.45)

For the dimensions shown in the water siphon in Figure 1.14, the initial discharge
flow rate is:

Q = π (0.015 m)2

4

√
(2)(9.8066 m/s2)(0.22 m)

= 3.6708 × 10−4 m3/s
(

15, 850.2 gpm

m3/s

)

= 5.8183 gpm

= 5.8 gpm (1.46)

This is the fluid volumetric flow rate as the siphon starts up and little water has
drained from the tank and for which no friction is accounted.
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1

V
.

2

1.5 cm

h

22 cm

10 cm
h

h1

Figure 1.15 The height of the barrier in a siphon is limited by the
creation of subatmospheric pressures near the top of the
barrier. When the pressure at the top is low enough, vapor
forms and the continuity of the fluid is interrupted. This
interruption causes the siphon to break.

The second part of the problem
asks for the maximum height of the
barrier at which the siphon stops
working. To determine this height,
we consider the status of the fluid
within the siphon (Figure 1.15). The
siphon functions well as long as fluid
pressure never drops below its vapor
pressure. At the vapor pressure, fluid
boils, and the vapor produced causes
the liquid stream to break. We can
determine the pressure at any point
in the siphon using the mechanical
energy balance (MEB).

To calculate pressure in the siphon,
we perform a mechanical energy bal-
ance between Point 1 at the tank sur-
face and a second point somewhere in
the pipe flow. We call the second point
h, which indicates the elevation of our
chosen point above the water level in
the tank. A mechanical energy bal-
ance between Points 1 and h (assum-

ing no friction, no shaft work, and a turbulent flow) indicates the pressure at h,
and we can compare that pressure to the vapor pressure to determine the value of
h at which the liquid boils.

�p

ρ
+ �〈v〉2

2α
+ g�z = 0

Macroscopic Bernoulli equation
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction,
no friction, no shaft work)

(1.47)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) = 0 (1.48)

Recall that � means out–in.
The pressure at the tank surface is atmospheric, p1 = patm, and the velocity of

the tank surface is approximately zero. We choose the reference elevation as the
water surface in the tank; thus, z1 = 0. The height zh is h.

ph − p1

ρ
+ 〈v〉2

h − 〈v〉2
1

2
+ g(zh − z1) = 0 (1.49)

ph − patm

ρ
+ 〈v〉2

h

2
+ gh = 0 (1.50)
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We previously solved the siphon-discharge velocity for this problem as 〈v〉2 =√
2gh1. Because the cross-sectional area of the tube is constant, the average

velocity of the fluid throughout the tube is the same as at the discharge 〈v〉2 = 〈v〉h

(from a mass balance). Substituting the previous solution for discharge velocity,
Equation 1.43, into the MEB, Equation 1.50, we now obtain an expression for
the pressure at point h as a function of h:

ph − patm

ρ
+ 〈v〉2

h

2
+ gh = 0 (1.51)

ph − patm

ρ
+ gh1 + gh = 0 (1.52)

Pressure within a
working siphon

at a point elevated
a distance h above

the tank fluid surface

ph = patm − ρg (h1 + h) (1.53)

Readers may verify that if we had written a mechanical energy balance between
Points h and the discharge Point 2, we would have arrived at the same
result.

Equation 1.53 indicates the pressure in the siphon and shows that it may be
less than atmospheric. At a point elevated by an amount h above the tank water
level, the pressure in the siphon is less than patm by an amount ρg(h1 + h).
Recall that h1 reflects the height of the section of siphon that drops below
the tank water level (see Figure 1.15), which is constant. Note that the pres-
sure is lowest when h is large, such as when h is at the highest point in the
siphon.

With Equation 1.53 we can calculate when the pressure in the siphon becomes
so low that the fluid boils and vapor fills the tube. This is called vapor-lock
(Figure 1.16). We obtain the maximum height to which an intermediate point of
the siphon may be raised by equating the pressure at height h, ph , to the vapor
pressure of the liquid being siphoned, p∗

v .

Vapor-lock occurs
when ph drops

to fluid vapor pressure
p∗

v = ph (1.54)

p∗
v = patm − ρg (h1 + hmax) (1.55)

Maximum siphon
height above

tank fluid level
hmax = patm − p∗

v

ρg
− h1 (1.56)

Vapor pressures p∗
v for various fluids are found in the literature. From Perry’s

Handbook [132], we find that water at 25◦C has a vapor pressure of 23.756 mmHg,
or 3.167206 × 103 N/m2, and a density of 997.08 kg/m3. For the dimensions in
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Figure 1.16 Schematic of the formation of a vapor gap in a siphon. This occurs when the barrier over which the fluid travels
rises above a critical height; the critical height may be calculated as shown in the example.

the water siphon in Figure 1.15, the maximum height over which the siphon can
operate is:

hmax = patm − p∗
v

ρg
− h1

=

(
1.01325 × 105 − 3.167206 × 103

)
N/m2

(
kg m/s2

1 N

)
(

997.08 kg

m3

)(
9.80066 m

s2

) − (0.22 m)

= 9.825 m

hmax = 9.8 m

This large value for hmax becomes smaller as the temperature increases because
the vapor pressure increases. Also, if the flow exit elevation is lowered (i.e., h1

increases), Equation 1.56 indicates that hmax decreases.

For the systems described in this section, the macroscopic Bernoulli equation
applies because there is no friction and no shaft work. In the next section, we
consider systems that are slightly more complicated: those that include shaft
work.
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1.2.2 MEB with shaft work

The Bernoulli equation does not apply to systems that include turbines, pumps, or
other devices that produce or consume shaft work; such systems must be analyzed
using the full mechanical energy balance (MEB). In this section, we first analyze
a pumping loop with the MEB and calculate the shaft work necessary to move
fluid at a given flow rate. Second, we analyze the conversion of flow energy to
electrical energy in a hydroelectric power plant. We do not yet consider the effect
of frictional losses on the required work in these systems; frictional losses in fluid
networks are addressed in Section 1.2.3.

EXAMPLE 1.6. What is the work required to pump 6.0 gpm of water in the
piping network shown in Figure 1.17? You may neglect the effect of friction.

SOLUTION. When a flow problem involves the amount of shaft work required
to bring about a flow, the mechanical energy balance is the place to start. The
system of water in the flow loop is a single-input, single-output, steady flow of
an incompressible fluid. There is no heat transfer and no chemical reaction or
phase change; therefore, all requirements of the mechanical energy balance are
met.

We choose Points 2 and 1 to be where we know the most about the problem.
We choose Location 2 to be where the fluid exits the pipe; Location 1 is the liquid
free-surface in the tank. For both locations, we know the pressure, the velocity of

75 ft

PUMP 

ID = 3.0 in ID = 2.0 in

50 ft

8 ft

20 ft

40 ft

tank

1

2

Figure 1.17 A common problem in engineering involves pumping a fluid from a tank at atmospheric pressure through a piping
system. The amount of work required to pump at a chosen flow rate may be calculated using the mechanical
energy balance.
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the fluid, and the elevation, which is all of the information we need to calculate
Ws,by from the friction-free MEB.

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.57)

At Position 1, p1 = 1.0 atm, z1 = 0 (Position 1 is chosen as the reference
elevation), and 〈v〉1 ≈ 0. At Position 2, p2 = 1.0 atm, z2 = 75 ft, and the velocity
〈v〉2 may be calculated from the volumetric flow rate and the cross-sectional area
of the pipe. The density of water at 25◦C is 62.25 lbm/ft3 (from Perry’s Handbook
[132]). The frictional term F = F2,1 is assumed to be zero, as indicated in the
problem statement. A table of unit-conversion factors is available at the link
provided on the inside cover of this text.

Q =
(

6.0 gal

min

)(
1ft3

7.4805 gal

)(
min

60 s

)

= 0.013368 ft3/s = 1.3 × 10−2 ft3/s

m = Qρ = 0.013368 ft3

s

(
62.25 lbm

ft3

)

= 0.83216 lbm/s = 8.3 × 10−1 lbm/s

〈v〉2 = Q

π R2
= 0.013368 ft3

s

(
1

π (1.0 in.)2

)
(12 in.)2

(1 ft)2

= 0.612744 ft/s = 6.1 × 10−1 ft/s

Note that significant figures should be considered when reporting values for
Ws,by,21, Q, m, and 〈v〉2 (e.g., 〈v〉2 = 6.1 × 10−1 ft/s). However, when the num-
bers are needed to carry forward the calculation, the complete number (i.e.,
all digits; e.g., 〈v〉2 = 0.612744 ft/s) should be used to minimize calculator or
computer roundoff error (see the Glossary).
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The average velocity of fluid in the 3-inch inner-diameter (ID) pipe may be
calculated from the macroscopic mass balance:

Steady-state
macroscopic
mass balance

(
mass flow

2-inch pipe

)
=
(

mass flow
3-inch pipe

)
(1.58)

ρ〈v〉2
π D2

2

4
= ρ〈v〉1

π D2
1

4

〈v〉1 =
(

D2

D1

)2

〈v〉2 (1.59)

〈v〉1 = (0.612744 ft/s)
(

2.0 in.

3.0 in.

)2

(1.60)

= 0.272331 ft/s (1.61)

= 2.7 × 10−1 ft/s

To choose α in the mechanical energy balance, we need to determine if the
flow is laminar or turbulent. As discussed in Chapter 2 and derived in detail in
Chapter 7, we can determine if the flow is laminar or turbulent based on a quantity
known as the Reynolds number:

Reynolds number
(dimensionless flow rate,

ratio of inertial
to viscous forces)

Re ≡ ρ〈v〉D

μ
(1.62)

where ρ is the fluid density, 〈v〉 is the fluid average velocity, D is the pipe diameter,
and μ is the fluid viscosity. Viscosity is the property of a fluid that quantifies how
easily it flows; we discuss viscosity from many angles in this text. From Perry’s
Handbook [132], we find that the viscosity of water at 25◦C is 0.8937 centipoise
(abbreviated cp), where 1 poise = 1 g/(cm · s). In American engineering units,
the viscosity of water is 6.005 × 10−4 lbm/(ft · s). The Reynolds number indicates
whether the flow in the pipe is laminar (Re < 2,100) or turbulent (Re > 4,000).

Observed transition
from laminar flow to

turbulent flow in pipes
(see Chapters 2 and 7)

laminar tube flow: Re < 2,100
turbulent tube flow: Re > 4,000

(1.63)

The Reynolds number indicates the ratio of inertial to viscous forces in the flow.
The Reynolds number is discussed later in the text.

For the flow in our system, the Reynolds number depends on whether the flow
is in the 2-inch or 3-inch pipe because average velocity and D differ for those
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two pipe sections. The Reynolds number is calculated as:

Re2 in pipe = ρ〈v〉D

μ

∣∣∣∣∣∣
2 in pipe

=
(

62.25 lbm
ft3

0.612744 ft
s

2.0 in.
12 in./ft

)
(0.8937 cp)

(
6.7197×10−4 lbm

ft·s·cp

)

= 10,586 = 1.1 × 104 > 4,000 ⇒ turbulent

Re3 in pipe = ρ〈v〉D

μ

∣∣∣∣∣∣
3 in pipe

=
(

62.25 lbm

ft3
0.272331 ft

s
3.0 in.

12 in./ft

)
(0.8937 cp)

(
6.7197×10−4 lbm

ft·s·cp

)

= 7,057 = 7.1 × 103 > 4,000 ⇒ turbulent

Note that the Reynolds number is dimensionless. From the values of Re, we
conclude that the flow in both pipe sections is turbulent; therefore, α = 1 for our
calculations.

Now we assemble the mechanical energy balance and calculate the shaft work.
Warning: It is always important to carefully consider the units in engineering cal-
culations. Problems using the mechanical energy balance are particularly tricky
because fundamentally different properties are being related (e.g., pressure, veloc-
ity, and work). The units of the American engineering system (both pounds-mass
and pounds-force are used) cause initial confusion.2 The best approach is to work
carefully when using numbers and explicitly show all unit conversions. Note that
there are 32.174 ft lbm/s2 per lbf .

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.64)

〈v〉2
2

2α
+ gz2 = −Ws,by,21

m
(1.65)[

(0.612744 ft/s)2

2(1)
+ 32.174 ft

s2
(75 ft)

]
s2 · lbf

32.174 ft · lbm
= −Ws,by,21

0.83216 lbm/s
(1.66)

− Ws,by,21 = (5.83484 × 10−3 + 75)
ft lbf

lbm

(
0.83216

lbm

s

)
(1.67)

= 62.417 ft · lbf/s

(
1.341 × 10−3 hp

0.7376 ft · lbf/s

)

−Ws,by,21 = 0.1135 hp = 1.1 × 10−1 hp = Ws,pump (1.68)

2The unit conversion 32.174 ft lbm/(s lbf ) is given the symbol gc. For more on gc, see the Glossary.
In any equation from the literature with the symbol gc included, the gc can be omitted safely with
no effect on the equation, provided that all units are reconciled with appropriate unit conversions.
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The work done by the fluid Ws,by,21 is negative, which is correct because the fluid
is not producing work but instead is experiencing the effects of work done on it
by the pump. The work done by the pump, Ws,pump, is the negative of the work
done by the fluid, Ws,pump = −Ws,by,21.

It is interesting that the kinetic-energy contribution (i.e., the velocity term)
in this problem (5.8 × 10−3 ft lbf /lbm; Equation 1.67) is small compared to the
potential energy contribution (i.e., the gravity term, 75 ft lbf /lbm).

Fluids are worked on by pumps, and performing the mechanical energy balance
on the fluid yields a calculation of a negative amount of work done by the fluid. An
example of the fluid doing positive work on a piece of machinery is water flowing
through the turbine in a hydroelectric power plant. Following is an example on
this topic.

EXAMPLE 1.7. A tropical town is located next to a 40.0-m waterfall in a river
that has a 1,000.0 m3/s average volumetric flow rate during the rainy season
and an average flow rate of 300.0 m3/s during the dry season. What is the
maximum amount of hydroelectric power that can be produced by this waterfall?
If operating a laptop computer consumes approximately 30.0 W , estimate the
number of computers that could be run by the waterfall.

SOLUTION. Hydroelectric power is produced by channeling falling water
through large turbines in a hydroelectric power plant (Figure 1.18). The spin-
ning water vanes inside the turbines turn electromagnets through a wire coil
and generate electricity through electromagnetic induction [167]. The turbine
thereby creates usable electrical power from shaft work performed by the water
(Ws,by > 0). A typical commercial hydroelectric plant produces between 1 and
1,300 megawatts (MW) of electrical power. The system of water flowing through
the turbine is a single-input, single-output, steady flow of an incompressible
fluid. There is no heat transfer and no chemical reaction or phase change; there-
fore, all requirements of the mechanical energy balance are met, and we can

Generator 

gate

turbine 

gate

generator 

turbine 

40 m

Figure 1.18 The potential energy of water at the top of a waterfall can be used to generate electricity by channeling gravity-driven
flow through a turbine. The rushing water rotates the turbine, which in turn rotates an electromagnet through a
coil, producing electricity by induction.
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1

2

turbine 

Figure 1.19 Schematic of the hydroelectric power plant analyzed in Example 1.7.

calculate the shaft work produced by water passing through the hydroelectric
plant.

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

(1.69)

The operations of a hydroelectric plant are illustrated in Figure 1.19. We choose
Input Point 1 as the slow-moving water above the falls and Output Point 2 as the
slow-moving water below the falls. Our choice is driven, as usual, by our ability
to evaluate terms in the mechanical energy balance at these locations. At both
points, the pressure is atmospheric and the velocity is negligible. Thus, the MEB
becomes:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.70)

g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.71)

The shaft work is work done by the water on the turbine, and this is the quantity
that we seek to calculate (i.e., Ws,by,21 > 0 for fluid in a turbine). The term F2,1

is the friction between Points 2 and 1 and includes the friction in the turbine and
the frictional losses associated with the flow before and just after the turbine.

Reflecting on the likely flow pattern in the hydroelectric plant, we surmise that
the largest frictional loss in the system is inside the turbine. We therefore split the
2,1-system friction F2,1 into the friction in the turbine and all other losses. Then,
as a first calculation, we neglect all of the frictional losses outside of the turbine:

g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.72)

g(z2 − z1) + Fturbine + Fother = −Ws,by,21

m
(1.73)

Neglecting the losses other than those in the turbine and grouping the turbine
losses with the turbine shaft work, we arrive at an expression for work performed
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by the fluid on the turbine:

g(z2 − z1) + Fturbine = −Ws,by,21

m
(1.74)

Ws,by,21

m
+ Fturbine = g(z1 − z2) > 0 (1.75)

We define η as the turbine efficiency. The turbine efficiency reflects the fraction
of the fluid energy delivered to the turbine that is actually extracted as shaft work,
omitting energy being dissipated as frictional losses:

Turbine
efficiency

η =

(
useful energy

mass fluid

)
(

total fluid energy
mass fluid

) (1.76)

η ≡
Ws,by,21

m(
Ws,by,21

m + Fturbine

) (1.77)

Substituting turbine efficiency η from Equation 1.77 into Equation 1.75, we
obtain:

Ws,by,21

m
+ Fturbine = g(z1 − z2) (1.78)

1

η

Ws,by,21

m
= g(z1 − z2) (1.79)

For the 40-m waterfall under consideration and for a turbine that is 80 percent
efficient (an estimate derived from a literature search), we calculate the amount
of electricity that can be generated:

1

η

Ws,by,21

m
= g(z1 − z2) (1.80)

Ws,by,21

m
= ηg(z1 − z2) (1.81)

= (0.80)(9.8066 m/s2)(40 m) =
(

313.8112
m2

s2

)(
1 N

kg m/s2

)

Ws,by,21

m
= 313.8112

J

kg
= 310

J

kg
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We now calculate the power produced under low-flow-rate (300 m3/s) and high-
flow-rate (1,000 m3/s) conditions. The density we need comes from the literature
(see Perry’s Handbook [132]):

Power generated
by turbine

= Ws,by,21 (1.82)

=
(

Ws,by,21

m

)
(m) =

(
Ws,by,21

m

)
(ρQ) (1.83)

Low-flow
power:

Ws,by,21 =
(

313.8112
J

kg

)(
997.08

kg

m3

)(
300

m3

s

)(
W

J/s

)

Ws,by,21(low flow) = 9.4 × 107 W = 94 MW

High-flow
power:

Ws,by,21 =
(

313.8112
J

kg

)(
997.08

kg

m3

)(
1,000

m3

s

)(
W

J/s

)

Ws,by,21(high flow) = 3.1 × 108 W = 310 MW

The actual amount of electricity generated by the turbine is less than either of these
results because there are frictional losses other than those in the turbine. Turbine
efficiency is a number that must be measured (by independently measuring the
amount of electrical power produced by the turbine; see Chapter 9). Manufacturers
of turbines supply experimental data on their products’ efficiencies.

For computers consuming power at a rate of 30 W, our calculations indicate
that 3 million computers could be powered during the dry season and 10 million
during the rainy season. Hydroelectric power is an economic and renewable
resource because the rainfall cycle replenishes the upstream water supply. Care
must be taken in designing and operating hydroelectric power plants, however,
because fish and other species in a river are disrupted by the diversion of water
through the turbine.

For fluid systems with rotating machinery such as pumps and turbines, the
mechanical energy balance is an essential tool in quantifying shaft work. To
apply the MEB to problems, we must learn to be strategic in choosing inlet
(Point 1) and outlet (Point 2) points. As in the previous examples, the free
surface of an open tank is a good location to choose as an inlet or outlet because
we know the pressure (i.e., atmospheric) and the velocity (i.e., approximately
zero). Another location about which we know much is the discharge point of a
pipe (〈v〉 = Q/π R2, p = patm). When we seek information about the operating
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capabilities of a device, the points immediately before and after the device are
appropriate choices for the mechanical energy balance. Remember that the steady-
state macroscopic mass balance (i.e., mass in =mass out) provides an essential
relationship between flows at different points in an apparatus.

We turn now to using the mechanical energy balance in systems in which
friction is important.

1.2.3 MEB with friction

The friction term often makes an important contribution to the mechanical energy
balance (MEB). In piping systems, this is true when there are changes in pipe
diameter, twists and turns in the pipe, flow obstructions such as an orifice plate,
or when there are long runs of piping. When friction is important, the F term
in the MEB must be determined experimentally—just as the friction coefficient
CV for Venturi meters and turbine efficiency η are determined experimentally, as
discussed previously. To quantify the friction, we first apply the MEB to the system
to determine which measurable quantities are of interest; we subsequently conduct
experiments to obtain those quantities. In practice, the experiments already have
been performed for common devices, and we use published experimental results
to calculate F . The study of friction begins by considering frictional losses in the
steady flow in a long, straight run of horizontal pipe.

EXAMPLE 1.8. For household water in steady flow in a 1/2-inch Schedule 40
horizontal pipe at 3.0 gpm (Figure 1.20), what are the frictional losses over a
100.0-foot run of pipe? The flow may be laminar or turbulent.

L

m

(1) (2) 

1p 2p

m

Figure 1.20 A mechanical energy balance on a pipe section yields the expression for the frictional losses in a straight pipe.

SOLUTION. The system of water flowing in a tube is a single-input, single-
output, steady flow of an incompressible fluid. There is no heat transfer and no
chemical reaction or phase change. Therefore, all requirements of the mechanical
energy balance are met.

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m
(1.84)

We choose as our two points (1) a point upstream where the pressure p1 is
measured and (2) a point downstream where the pressure p2 is measured. There
are no pumps or moving parts in the chosen system, which means Ws,by = 0. The
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pipe has a constant flow rate and a constant cross-sectional area; therefore, from
the mass balance, ρ A〈v〉2 − ρ A〈v〉1 = 0; and, therefore, 〈v〉 does not change
between Points 1 and 2. The pipe is horizontal; therefore, z2 − z1 = 0. The MEB
becomes:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.85)

p2 − p1

ρ
+ F2,1 = 0

The frictional term is found to be:

Fstraight pipe = F2,1 = p1 − p2

ρ

Friction
in steady flow

in pipes
(1.86)

Thus, to characterize friction in straight pipes, data can be obtained about pressure
drop for a variety of flow rates and tube geometries (e.g., length and diameter)
and for a variety of fluids (e.g., with different densities ρ and viscosities μ), and
the data can be tabulated and published. The published data are then used to
calculate frictional losses in future MEB analyses of straight lengths of pipe.

Data needed: �p(Q) for various ρ, μ, D, L (1.87)

With these data, we can use Equation 1.86 to calculate frictional losses in the
pipe. The needed data correlations for �p(Q) are discussed next.

As discussed previously, to determine F for flows in pipes, we need data on
pressure drop as a function of velocity or volumetric flow rate, �p(Q). The
problem of pressure drop as a function of flow rate in pipe flow has been studied
in depth and, with the help of momentum balance, it largely has been solved
(discussed in subsequent chapters). To keep moving forward with this quick-start
section, we summarize the practical results of the analyses. These equations are
derived in Chapter 7.

From an in-depth analysis of pipe flow, we find that a useful defined quantity
in pipe flow is the Fanning friction factor, f , which is a dimensionless wall force
that may be used to correlate friction in pipe flows with the Reynolds number (i.e.,
the dimensionless flow rate introduced in Equation 1.62). The Fanning friction
factor f is defined as:

Fanning friction factor
(dimensionless

fluid force on pipe wall)
f ≡ Wall force

(area) (kinetic energy)
(1.88)

f = Fdrag

(2π RL)
[ 1

2ρ〈v〉2
] (1.89)
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where R is pipe radius, ρ is fluid density, 〈v〉 is average fluid velocity, and L is
the length of the pipe. For flows in straight pipes, Fdrag may be shown as given
by Fdrag = (p1 − p2)π R2 (see Chapter 9); thus, from Equation 1.89, the Fanning
friction factor for straight pipes is:

Wall drag
in straight pipes

(see Equation 9.236)
Fdrag = (p1 − p2)π R2 (1.90)

f = (p1 − p2)D

2Lρ〈v〉2

Fanning friction factor
in terms of

experimental variables
(straight pipes)

(1.91)

where D = 2R is the pipe inner diameter.
The methods used in this text allow us to show that for steady flow of any

Newtonian fluid in any smooth tube, the Fanning friction factor is a function of
only the Reynolds number (see Chapter 7).

f = f (Re) only; Re ≡ ρ〈v〉D

μ

Dimensional analysis result
for Fanning friction factor

in pipe flow
(see Chapter 7)

(1.92)

This powerful result simplifies data reporting for frictional losses in pipes. The
literature for flow in tubes reports a single plot of f (Re), which determines f for
smooth pipes of all sizes, in all flow regimes, and for normal fluids of all densities
and viscosities. Once we have f for our flow, we can use Equations 1.91 and 1.86
to obtain friction loss for straight pipes.

Fstraight pipe = p1 − p2

ρ
= 2 f L

D
〈v〉2

MEB friction term
in steady flow in a

straight section of pipe
(1.93)

Alternatively, the friction loss in straight pipes may be expressed in terms of head
loss, h f :

Head loss
(

energy

unit weight

)
: h f ≡ Fstraight pipe

g
= 2 f L

gD
〈v〉2

This equation is known as the Darcy-Weisbach equation [178].
This discussion illustrates the power of the analytical methods that we are

studying. From general considerations (see Chapter 7), we can deduce simple
equations that allow us to make practical calculations of pressure drop and shaft
work in flows (see Equations 1.84 and 1.86). Engineers who master the fluid-
mechanics methods in this text have a distinct advantage in designing, optimizing,
and inventing devices that employ fluids.

The data correlations for f are well established; they are developed in Chap-
ter 7. For laminar flow, we can use direct theoretical calculations to determine f
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Table 1.3. Surface roughness for various materials

Material ε (mm)

Drawn tubing (e.g., brass, lead, glass) 1.5 × 10−3

Commercial steel or wrought iron 0.05

Asphalted cast iron 0.12

Galvanized iron 0.15

Cast iron 0.46

Wood stave 0.2–0.9

Concrete 0.3–3.0

Riveted steel 0.9–9.0

Source: Perry’s Handbook [132]

as a function of the Reynolds number.

flaminar flow = 16

Re

Fanning friction factor
in steady laminar flow in pipes

(analytical result;
see Equation 7.155)

(1.94)

Experiments show that laminar flow takes place in straight pipes with a circular
cross section for Re < 2,100 and that a fully turbulent flow occurs for Re > 4,000.
Between Re = 2,100 and Re = 4,000, the flow is called transitional flow, which
is neither stable laminar flow nor fully turbulent flow. Operating devices in the
transitional-flow regime generally is avoided for stability reasons.

For turbulent flow, the correlations of friction factor as a function of the
Reynolds number cannot be obtained analytically but have been found through
careful experiments (see Chapter 7). A useful empirical equation that fits the data
for turbulent flow is the Colebrook formula [43], which gives f as a function of the
Reynolds number and ε, a surface roughness parameter relevant for commercial
pipe.

1√
f

= −4.0 log
(

ε

D
+ 4.67

Re
√

f

)
+ 2.28

Colebrook formula
Fanning friction factor

in steady turbulent
flow in pipes

(See equation 7.161)

(1.95)

where D is pipe diameter. Values of ε for various materials are listed in Table 1.3
and the Colebrook correlation is graphed in Figure 1.21 on a log-log plot. Because
the friction factor appears twice in Equation 1.95, the Colebrook equation requires
an iterative solution. For smooth pipes, an explicit correlation that works for all
Reynolds numbers is given in Equation 7.158.

In the following example, we use the data correlations in Equations 1.94
and 1.95 to predict losses in long straight pipes. The household pipe-flow problem
in Example 1.8 also can be solved now that we have f (Re) (see Problem 8).
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0.001

0.01

0.1
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Re

f

0.05
0.03
0.02

0.0

0.005

0.002
0.001
0.0005
0.0002
0.0001
0.00005
0.00001
< 0.000001

Commercial Rough Pipe

D

ε

Figure 1.21 Fanning friction factor versus Reynolds number from the Colebrook formula; see Equation 1.95. For Re < 2,100,
f = 16/Re, which on a log-log graph is a line of slope −1. This is the Moody plot [103].

EXAMPLE 1.9. An oil pipeline carries crude oil from Northern Alaska to the
year-round port in Valdez, Alaska, for shipment to refineries for processing. For
one horizontal section of straight pipe that is 10.0 miles long (16.1 km) and
4.0 feet (1.22 m) ID, what is the pressure drop for oil traveling at 7.0 × 105

barrels per day (42 U.S. gallons per barrel) (Figure 1.22)? The pipe walls may
be assumed to be smooth (ε = 0). The kinematic viscosity (i.e., ratio of viscosity
to density) of the crude oil at the flow temperature is μ/ρ = ν = 7.0 centistokes
(1 stoke = 1 cm2/s) and the density of the crude oil is 800.0 kg/m3.

SOLUTION. The system of oil in the pipeline is a single-input, single-output,
steady flow of an incompressible fluid. There is no heat transfer and no chemical
reaction or phase change. Therefore, all requirements of the mechanical energy
balance are met.

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

(1.96)

4.0 ft 

10 miles 

21

of pipeline 

Figure 1.22 A long pipeline generates frictional losses that cannot be ignored in the design of a pumping system.
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We choose Points 1 and 2 to be two points separated by 10 miles of straight
horizontal pipe (see Figure 1.22). There are no moving parts in the chosen system
and therefore no shaft work. The pipe is horizontal (�z = 0) and, because the
pipe cross section is constant, there is no change in velocity from one end to the
other (�〈v〉2 = 0). The mechanical energy balance simplifies to:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.97)

p2 − p1

ρ
+ F2,1 = 0 (1.98)

p1 − p2 = ρF2,1 (1.99)

To calculate the pressure drop p1 − p2, we need F2,1 friction loss in straight pipe.
As discussed previously in this section, we can calculate F2,1 for straight pipes
using Equation 1.93:

Friction in straight pipe F2,1 = 2 f L

D
〈v〉2 (1.100)

where f is the Fanning friction factor. We know the pipe ID (4.0 feet) and the
pipe length (10 miles); we can calculate the average velocity from the volumetric
flow rate (106 barrels/day [bpd]), and we obtain f from Re, ε, and the Cole-
brook equation (see Equation 1.95). We show the calculation here; as always
when performing MEB calculations, we must be mindful of the unit conver-
sions.

Flow rate: Q =
(

700,000 barrels

day

)(
42 US gal

barrel

)(
day

24 h

)(
h

60 min

)

= 20,416 gal/min

(
m3/s

15,850 gpm

)

= 1.288 m3/s = 1.3 m3/s (1.101)

Average
velocity:

〈v〉 = 4Q

π D2

= 4(1.288 m3/s)

π
(
(4.0 ft)(0.3048 m

ft )
)2

= 1.10336 m/s = 1.1 m/s (1.102)
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Reynolds
number:

Re = ρ〈v〉D

μ
= 〈v〉D

μ/ρ
(1.103)

= (1.10336 m/s) ((4.0 ft)(0.3048 m/ft))

0.070 cm2/s
(

m2

10,000 cm2

)

= 192,174 = 190,000 ⇒ turbulent (1.104)

Colebrook correlation
(smooth pipe, ε = 0)

1√
f

= −4.0 log
(

4.67

Re
√

f

)
+ 2.28 (1.105)

To solve Equation 1.105 for f , we consult Figure 1.21 for Re = 190,000 to
estimate a first guess of f(1) = 0.004 and use that in an iterative solution:

1√
f(2)

= −4.0 log

(
4.67

Re
√

f(1)

)
+ 2.28 (1.106)

1√
f(2)

= −4.0 log
(

4.67

192,174
√

0.004

)
+ 2.28 (1.107)

f(2) = 0.003935 (1.108)

Substituting this next guess into the righthand side of Equation 1.109, we iterate
as shown here until the final solution is found. We stop our calculations when
there is no change within the accuracy of the calculation:

1√
f(n)

= −4.0 log

(
4.67

Re
√

f(n−1)

)
+ 2.28 (1.109)

f(1) = 0.004

f(2) = 0.003935

f(3) = 0.003942

Final result: f = 0.0039 (1.110)

Substituting the appropriate values into Equation 1.100, we now calculate the
friction and then the pressure drop p1 − p2 in the oil pipeline. To reduce the
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impact of roundoff error in intermediate calculations, we use all of the digits we
have for f , 〈v〉, L , and D and all unit conversions.

F2,1 = 2 f L

D
〈v〉2 (1.111)

= (2)(0.003941)(10 miles)(1609.344 m
mile )(1.10336 m

s )2

(4.0 ft)(0.3048 m/ft)

(
1 N

kg m/s2

)
(1.112)

= 126.657
N m

kg
= 130 J/kg (1.113)

p1 − p2 = ρF2,1 (1.114)

=
(

800 kg

m3

)(
126.657 N m

kg

)(
Pa

N/m2

)
(1.115)

= 101,326 Pa (1.116)

= 100 kPa = 1.0 atm = 15 psi (1.117)

As introduced previously, we often report friction results in terms of head
loss, which is defined as h f = F2,1/g—that is, energy per unit fluid weight (see
Equation 1.93 and Section 9.2.2). The units of head loss are feet or meters. In
units of head loss, the friction result is:

Head loss: h f = F2,1

g
=

126.657 N m
kg

9.8066 m/s2 (1.118)

= 13 m = 42 ft (1.119)

The frictional loss in the 10-mile pipe is the equivalent of the energy per unit
weight that a pump needs to expend in order to raise the fluid 13 m (see Chapter 9).

In addition to wall drag in straight pipes, many other sources of friction exist
in piping systems: valves, fittings, pumps, expansions, and contractions (Fig-
ure 1.23). To quantify the amount of fluid friction generated in these devices
as a function of fluid velocity, we use the same procedure as for deducing the
result for straight pipes: We apply the mechanical energy balance to the valve,
fitting, or other friction-generating segment of the piping system; we simplify the
resulting equation by using mass and momentum balances as appropriate; and
we conduct experiments to find any needed data correlations. For valves, fittings,
expansions, and contractions, the data correlations that result from such analyses
(for derivation, see the steps leading to Equation 9.318) may be written in the
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90° Elbow

Tee

Return bend

Union

Gate valve
(shut-off)

Ball valve
(shut-off)

Globe valve
(metering)

Check valve
(prevent reversal)

Swing
check

Plug

Open

Flow into
page

Closed

Figure 1.23 Sketches of common pipe fittings and valves. Ball valves and gate valves are two-position valves—open and
closed—and are designed for minimum frictional loss during continuous flow. Globe valves are designed to vary
the flow through the valve (i.e., metering valves). The ability to meter the flow, however, introduces frictional losses
as the flow moves around the obstruction of the valve’s moving parts [132]. The design differences in the valves
are reflected in the frictional-loss coefficients.

following form:

Ffitting = K f
〈v〉2

2
Friction from

fittings
(1.120)

where K f is friction coefficient for the valve or fitting. The empirical friction
coefficients K f are different for each type of valve or fitting, and they are different
for laminar and turbulent flows. Values of K f are listed in Tables 1.4 and 1.5.

The values of K f for expansions and contractions are listed in Tables 1.4
and 1.5 and as follows for both laminar (α = 0.5) and turbulent (α = 1) flows:

Expansion loss Kexp = 1

α

(
1 − A1

A2

)2

(1.121)

Contraction loss Kcont = 0.55

α

(
1 − A2

A1

)
(1.122)

where A1 is the upstream cross-sectional area and A2 is the downstream cross-
sectional area. These expressions are derived in Chapter 9. The 〈v〉 to be used
in Equations 1.121 and 1.122 for expansions and contractions, by convention, is
the faster average velocity (i.e., the upstream velocity for an expansion and the
downstream velocity for a contraction). Frictional coefficients in the literature
sometimes also are given in terms of equivalent pipe lengths [132].
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Table 1.4. Published friction-loss factors for turbulent flow
through valves, fittings, expansions, and contractions

Fitting Friction-loss factor, K f

Standard elbow, 45◦ 0.35

Standard elbow, 90◦ 0.75

Tee used as ell 1.0

Tee, branch blanked off 0.4

Return bend 1.5

Coupling 0.04

Union 0.04

Gate valve, wide open 0.17

Gate valve, half open 4.5

Globe valve, bevel seat, wide open 6.0

Globe valve, bevel seat, half open 9.5

Check valve, ball 70.0

Check valve, swing 2.0

Water meter, disk 7.0

Expansion from A1 to A2

(
1 − A1

A2

)2

Contraction from A1 to A2 0.55
(

1 − A2

A1

)

Source: Perry’s Handbook [132]

Table 1.5. Friction-loss factors Kf for laminar flow through selected valves, fittings, expansions
and contractions

K f

Fitting Rei = 50 100 200 400 1,000 Turbulent

Elbow, 90◦ 17 7 2.5 1.2 0.85 0.75

Tee 9 4.8 3.0 2.0 1.4 1.0

Globe valve 28 22 17 14 10 6.0

Check valve, swing 55 17 9 5.8 3.2 2.0

Expansion from A1 to A2 2
(

1 − A1

A2

)2 (
1 − A1

A2

)2

Contraction from A1 to A2
0.55
0.5

(
1 − A2

A1

)
0.55

(
1 − A2

A1

)

Source: Perry’s Handbook [132]
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Table 1.6. Calculating piping friction from published correlations

1. Count and identify valves, bends, and couplings in the system.
2. Find the published friction coefficients Kf in the literature (e.g., Tables 1.4 and 1.5).
3. Measure lengths of all straight-pipe segments and total them (separate different diameters).
4. Calculate f for each pipe section using f (Re) (i.e., Colebrook formula or another correlation).
5. Calculate friction Fpiping from Equation 1.124. Use Fpiping as needed in the mechanical energy

balance to calculate quantities of interest.

The friction for a complete piping system is equal to the friction caused by
the straight-pipe sections (see Equation 1.93) plus the friction caused by each
of the valves, fittings, expansions, and contractions present in the flow loop (see
Equation 1.120).

Fpiping =
∑(

friction of
straight-pipe sections

)
+
∑(

friction of
fittings and valves

)
(1.123)

Friction
in a

piping
system

Fpiping =
∑

j, straight
pipe

segments

[
4 f j

L j

D j

〈v〉2
j

2

]
+
∑

i, fittings

[
ni K f,i

〈v〉2
i

2

]
(1.124)

where ni is the number of each type of fitting or valve. Note that in the correlations
there are different values of K f depending on whether the flow is laminar or
turbulent. Also, the 〈v〉 j used in the summation over the straight-pipe segments
is the average velocity in the straight pipe, which is different for different values
of D j .

With the development of Equation 1.124 for the friction term in piping sys-
tems, we now are ready to calculate a mechanical energy balance with friction.
The procedure for using published correlations to calculate the friction term
for piping systems is outlined in Table 1.6. The following example uses this
procedure.

EXAMPLE 1.10. What is the work required to pump 6.0 gpm of water in the
piping network shown in Figure 1.17? Do not neglect the effect of friction. The
piping may be considered to be smooth pipe.

SOLUTION. We previously solved this problem without friction. Now we per-
form the same calculation with the addition of the frictional contribution F2,1.
We begin with the mechanical energy balance (Equation 1.57):

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction)

(1.125)
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As before, we choose Point 2 as the exit of the pipe and Point 1 as the free surface
of the tank.

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2α
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(1.126)

In the previous example, we obtained Equation 1.65 for the current system
without friction; going back one step in the previous solution to Equation 1.64,
the mechanical energy balance for this problem with friction included is:

〈v〉2
2

2
+ gz2 + F2,1 = −Ws,by,21

m
(1.127)

Substituting values for this problem, we obtain:[
(0.612744 ft/s)2

2(1)
+ 32.174 ft

s2
(75 ft) + F2,1

]
s2 · lbf

32.174 ft · lbm
= −Ws,by,21

0.83216 lbm/s

(1.128)

To make the units consistent on both sides of the equation, we converted the
lefthand units (ft2/s2) to ft · lbf /lbm.To calculate F2,1, we use Equation 1.124:

F2,1 = Fpiping =
∑

j, straight
pipe

segments

[
4 f j

L j

D j

〈v〉2
j

2

]
+
∑

i, fittings

[
K f,i

〈v〉2
i

2

]

We have two types of straight-pipe segments: one that is 50 feet long with an ID
of 3.0 inches, and one that is a total of 40 + 8 + 75 + 20 = 143 feet long with
an ID of 2.0 inches. The average velocities in the pipes were calculated in the
previous example to be as follows (all digits included):

〈v〉2in pipe = 0.612744 ft/s

〈v〉3in pipe = 0.272331 ft/s

We retain all digits because this is an intermediate calculation.
The Fanning friction factors f for each of the two types of straight-pipe

segments are different. The Fanning friction factor is a function of the Reynolds
number, which depends on 〈v〉. The friction factor may be obtained from the
appropriate correlations—that is, f = 16/Re (see Equation 1.94) for laminar
flow and the Colebrook formula (see Equation 1.95) for turbulent flow. We
previously calculated the Reynolds numbers for the two pipe sizes:

Re2in pipe = ρ〈v〉D

μ

∣∣∣∣∣∣
2in pipe

= 10,586 = 1.1 × 104 (1.129)

Re3in pipe = ρ〈v〉D

μ

∣∣∣∣∣∣
3in pipe

= 7,077 = 7.1 × 103 (1.130)

and the flow is everywhere turbulent (Re > 4,000). The Fanning friction factors
are found from an iterative solution of the Colebrook formula (see the tech-
nique in Example 1.9), and the results are f = 0.007603 for the 2-inch pipe and
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f = 0.00848 for the 3-inch pipe. Again, we retain extra digits for these interme-
diate calculations to avoid roundoff error in subsequent calculations.

The fittings for our flow loop are two 90◦ elbows and two contractions—one
from the tank to the inlet of the 3-inch pipe and one immediately upstream of
the pump. For the contraction from the tank to the 3-inch pipe, the velocity is
the same as in the 3-inch pipe (i.e., the larger velocity). For the contraction to
2 inches and for the two elbows, the velocity is the same as in the 2-inch pipe. For
the fittings in our system, the friction-loss factors K f obtained from Table 1.4
are listed here:

Fitting K f

Contraction (tank to 3-inch pipe, A1/A2 = ∞) 0.55
Contraction (3 inches to 2 inches), A2/A1 = 4/9 0.305556

90◦ elbow 0.75

We now calculate the friction contribution to the mechanical energy balance for
this system:

F(2,1) =

⎡
⎢⎢⎢⎢⎣
∑

j, straight
pipe

segments

4 f j
L j

D j

〈v〉2
j

2

⎤
⎥⎥⎥⎥⎦+

[∑
i, fittings

K f,i
〈v〉2

i

2

]

=
[

(4) (0.00848)
(

50 ft

3.0 in

12 in

ft

)
(0.272331 ft/s)2

2

+ (4) (0.007603)
(

143 ft

2.0 in

12 in

ft

)
(0.612744 ft/s)2

2

]

+
[

0.55
(0.272331 ft/s)2

2

+ (0.305556 + (2)0.75)
(0.612744 ft/s)2

2

]

= (0.252 + 4.899 + 0.020 + 0.057 + 0.282) ft2/s2

= 5.50946
ft2

s2

(
1 lbf

32.172 ft lb2
m/s

)

= 0.17124
ft lbf

lbm
(1.131)

= 0.2
ft lbf

lbm
(1.132)

Note that the dominant term is the friction from the flow in the 2-inch pipe (i.e.,
the smaller pipe). Finally, we combine this result with Equation 1.66 from the
previous example to arrive at the value for the shaft work. For the final answer,
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we convert all terms from ft lbf/s to horsepower (hp).

−Ws,by,21

0.83216 lbm/s
=
[

(0.612744 ft/s)2

2
+ 32.174 ft

s2
(75 ft) + F2,1

ft2

s2

]
s2 · lbf

32.174 ft · lbm

Ws,by,21 = −62.55935 ft · lbf /s

(
1.341 × 10−3 hp

0.7376 ft · lbf /s

)
= −0.1137366 hp

Ws,pump = −Ws,by,21 = 1.1 hp (1.133)

The work done by the fluid is negative because it receives an infusion of energy
from the pump (i.e., the pump works on the fluid, not the other way around). This
is the final answer.

To separate individual contributions to the total friction, we calculate the
friction for each fitting separately. The answers in the following table are expressed
as both energy per unit mass (both units ft lbf /lbm and ft2/s2 are shown) and energy
per unit weight (ft), also called fluid-head units.

Energy/Mass Energy/Weight

K f
〈v〉2

i
2 K f

〈v〉2
i

2 K f
〈v〉2

i
2g Percent of Total

Fitting ft2

s2
ft lbf
lbm

ft Friction Losses

50 ft of 3-in. pipe 0.252 0.0078 0.0078 4.6
43 ft of 2-in. pipe 4.899 0.1520 0.1520 88.9

contraction, tank to 3 in. 0.020 0.0006 0.0006 0.4
contraction, 3 to 2 in. 0.057 0.0017 0.0017 1.0

2 90◦ elbows 0.282 0.0087 0.0087 5.1
Total 5.509 0.1712 0.1712 100.0

Note that the numerical values are the same in the second and third columns;
however, the second column is energy per unit mass, K f 〈v〉2/2, whereas the
third column is energy per unit weight, K f 〈v〉2/2g (see Section 9.2.2). The
major frictional loss is the turbulent flow in a small-diameter, long pipe, followed
by the two 90◦ elbows and the bigger pipe. In this example, however, friction
losses in the fittings are small compared to the �z term (i.e., potential energy,
also called elevation head). In a problem with a less significant elevation rise
(e.g., less than 10 feet) or for a system with longer runs of a narrower pipe, the
frictional losses comprise a more important part of the problem.

The result calculated in the previous example was the same—to two significant
figures—as the calculation without friction (compare Equations 1.133 and 1.68).
If we examine the contributions to the shaft work, we see that in this flow loop, the
�z = 75-foot elevation rise (i.e., potential energy) dominates the kinetic-energy
change �〈v〉2/2 and the frictional losses F . If we convert the kinetic energy and
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frictional contributions into energy per weight (i.e., fluid head) in units of feet,
we start to intuit how the various types of energy contribute to the load on a
pump. We write each contribution in terms of equivalent feet of elevation change
by dividing the terms of the mechanical energy balance by the acceleration due
to gravity (g = 32.174 ft/s2 = 980 cm/s2), as follows:

− Ws,by

m
= �p

ρ
+ �〈v〉2

2α
+ g�z + F (1.134)

−Ws,by,21

m
= (1 − 1) atm

ρ
+ (0.612744 ft/s)2 − 02

2
+ 32.174 ft

s2
(75 ft − 0 ft)

+ 5.50946
ft2

s2

−Ws,by,21

mg
= 0 + (0.612744 ft/s)2

(2)(32.174 ft/s2)
+ 75 ft + (5.50946 ft2/s2)

(32.174 ft/s2)

−Ws,by,21

mg
= 0 ft + 0.006 ft + 75 ft + 0.17 ft (1.135)

−Ws,by,21

mg
=
(

pressure
head

)
+
(

velocity
head

)
+
(

elevation
head

)
+
(

friction
head

)
(1.136)

The four contributions on the right hand side of Equation 1.135 are called pres-
sure head, velocity head, elevation head, and friction head. The elevation head
dominates in this example. Because head has units of length, it is intuitive to
compare the various quantities in Equation 1.136 using head. Each contribution
(in feet or meters) is the same amount of energy per unit weight as is stored in
a column of fluid of height given by the head. Because we can visualize these
heights, it is convenient to use these units rather than less intuitive units such as
ft2/s2 or ft lbf /lbm or their metric equivalents. We discuss the concept and utility
of fluid head (i.e., energy per unit weight) in more detail in Chapter 9, which also
discusses pumps and the shaft work of pumps as well as pumping efficiency.

Thus far in this chapter we present reasons to study fluid mechanics and we
describe the strategy used in this book. We also discuss algebraic energy-balance
techniques based on the mechanical energy balance (MEB), and we find them
to be useful for several flow situations. Advanced mathematics are not needed
for the MEB, but it is applicable only in single-input, single-output systems that
meet the criteria listed in Equation 1.3 and Table 1.1. Also, to complete MEB
calculations, we need additional empirical data in the form of the device coeffi-
cient CV , pump or turbine efficiency η, friction factor f (Re), or fitting friction
coefficient K f .

We are now ready to proceed to the detailed analyses that lead to both the
equations used in this chapter and more complex equations and calculations that
deepen our understanding of fluid systems. The more intensive study of fluid
mechanics begins in Chapter 2 with a quantitative discussion of observed fluid
behaviors. A continuing discussion of the mechanical energy balance, includ-
ing the derivation of the balance equations, is in Chapter 9. The final section
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of this chapter describes the mathematical techniques used throughout this
text.

1.3 Connecting mathematics to fluid mechanics

In mathematics classes, students comment that they cannot see how their studies
can be applied. In engineering classes, students comment that they cannot make
the connection between the abstract mathematics they study and the concrete
problems they face. The difficulty for engineering professors is that we cannot
teach an engineering subject (e.g., fluid-mechanics modeling) until the students
know sufficient mathematics (e.g., manipulating vectors and matrices; and dif-
ferentiating, integrating, and solving differential equations). Students thus spend
years studying mathematics outside the engineering context, not knowing how
it relates to engineering. When the mathematics is finally needed in engineering
courses, students find it hard to recall and apply.

Our goal as engineers is to be able to design, build, operate, and optimize
equipment and systems in modern society, and mathematics is essential to these
engineering tasks. The era of trial-and-error is fading fast—high-tech fields are
not amenable to random tinkering, and the financial, environmental, and safety
risks involved in unproven designs are too high for most applications to support.
We must learn to use modeling tools and our knowledge of how the physical
world operates to carry out engineering tasks.

The physical world, however, is complex, and this is why mathematics is
important to engineers. It has taken centuries to organize scientific observations of
how the world works into the body of knowledge that we know as the engineering
curriculum. One breakthrough that allowed this to happen was the development
of calculus in the 1600s (Figure 1.24). Calculus is the field of mathematics that
deals with rates of change, and the flows of fluids, heat, and mass (i.e., the so-
called transport phenomena) are governed by transport laws that involve rates
of change. Thus, when transport phenomena are important, rates of change are
important, and we need calculus.

We need calculus not only in the sense that integrations and differentiations
appear in the problems we solve; we also need the concepts of calculus to develop
the governing equations of fluid mechanics, which involve rates of change and
summations over infinitesimal regions of space. Studying fluid mechanics, there-
fore, requires students to reexamine the concepts of calculus—having already
mastered the mechanics of integration and differentiation—and to deepen their
understanding of the rate-of-change processes presented abstractly in calculus
class. With a physical system to consider—liquid flow—those rates of change
have a concrete name and a physical situation. Rates of change and integration
also may make more sense when studying flow than when first studied abstractly
in a mathematics course.

In this section, we review aspects of calculus that are directly applicable to
fluid mechanics, including the calculus of tensors. Tensor mathematics is not
a standard component of the undergraduate introduction to calculus, and here
we cover those aspects that are useful for the study of fluid mechanics. The

www.20file.org

http://www.semeng.ir


50 An Introduction to Fluid Mechanics

Date Field Contributors
1666–84 Calculus Newton, Leibniz
1656–1859 Thermodynamics Boyle, Hooke, Joule, Thompson
1687 Laws of motion Newton
1704 Optics Newton
1738 Bernoulli equation Bernoulli
1750 Coordinate systems Euler
1751 Electricity Franklin
1769 Steam engine Watt
1822–50 Motion of liquids, solids Navier, Stokes
1839–40 Tube flow Hagen, Poiseuille
1855 Diffusion Fick
1873 Electricity and magnetism Maxwell
1870–95 Laminar and turbulent flow Reynolds
1903 Controlled flight Wright and Wright
1904 Boundary layers Prandtl
1920–50 Rocketry Goddard, von Braun
1951 Heart bypass surgery Dennis
1958 Integrated circuit Kilby
1965 Moore’s law Moore
1969 Supersonic commercial aviation Several
1978 Commercial mobile phones Several
1981 Personal computer
2007 Human geonome sequenced Levy,Venter

Figure 1.24 The development of fluid mechanics and the other transport fields depended on the invention of calculus.

use of tensors may be avoided in an elementary study of fluid mechanics; since
tensors make that study easier, we include and use them for readers who find
them helpful. Studying the mathematics review in this chapter prepares students
to learn fluid-mechanics modeling [17, 179, 184].

1.3.1 Calculus of continuous functions

Calculus is the mathematics that allows us to quantify concepts that deal with
rates of change (i.e., derivatives) and summations over infinitesimal regions of
space (i.e., integrals). We will use the defining equations of derivatives and inte-
grals in our fluid-mechanics discussions, and they are presented here. We also
use derivatives and integrals to calculate engineering quantities of interest (see
Section 6.2.3); therefore, examples of these types of calculations are presented
here. Problems at the end of the chapter are provided so that students can prac-
tice working with these mathematics tools. A rigorous and general treatment of
calculus is found in standard textbooks [166].

1.3.1.1 DERIVATIVES
When differentiation is introduced in first-semester calculus courses, it is in the
context of finding the slope of a line tangent to a curve. An arbitrary curve is
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)(xf

x

)(xf

x

tangent line
at x

Figure 1.25 A line tangent to a one-dimensional function f (x )
may be drawn at any point x .

shown in Figure 1.25. At position x , a tan-
gent line is drawn, and we write an expres-
sion for the slope of this tangent line.

Slope of a line is defined as rise over
run but, for the tangent line, which only
touches f (x) at one point, we can write
neither rise nor run in terms of the function
f (x). A secant line (see the topmost line in
Figure 1.26) intersects the function f (x) in
two places; for such a line, it is easy to write
an expression for slope in terms of rise over

run and the values of the function f (x):

Slope of a
secant line

(from geometry)
= f (x + �x) − f (x)

�x
(1.137)

If the interval �x is made smaller, the secant lines approach the tangent line
and Equation 1.137 becomes a better approximation for the slope of the tangent
line at x . In the limit that �x goes to zero, the ratio in Equation 1.137 becomes
arbitrarily close to the slope of the tangent line at x ; this limit serves as the
definition of a derivative:

Derivative defined
d f

dx
≡ lim

�x−→0

[
f (x + �x) − f (x)

�x

]
(1.138)

Shown here is an alternative notation for the same quantity:

Derivative defined
d f

dx
≡ lim

�x−→0

[
f |x+�x − f |x

�x

]
(1.139)

)(xf

x xx Δ+

f (x)

tangent line at x 
0

lim
→Δx

x

xfxxf
slope

Δ
−Δ+= )()(

)( xxf Δ+

x

Figure 1.26 For a simple one-dimensional function f (x ), the limit in the definition of the derivative (see Equation 1.138)
represents the slope of the tangent to the curve at a point. This expresses the instantaneous rate of change of the
function f (x ) with respect to the variable x [166].

www.20file.org

http://www.semeng.ir


52 An Introduction to Fluid Mechanics

The expression f |x+�x is read as “ f evaluated at x + �x .” Because the definition
of a derivative requires the limit as �x goes to zero, the function f must be
continuous for a derivative to be meaningful. Calculus is well suited for making
calculations in fluid mechanics since we use the continuous variables ρ (density),
v (velocity), and τ̃ (molecular stress) to describe systems.

Although the derivative d f/dx usually is discussed in terms of being the slope
of the tangent line of the curve f (x), that is only one visualization of this quantity.
The expression in Equation 1.138 is the fundamental definition of a derivative;
thus, in any analysis when such a limit of a ratio appears, that limit may be
replaced with a derivative, and all of the properties of derivatives as sorted out by
mathematicians may be invoked in subsequent calculations. In Chapter 3, we use
a formulation like Equation 1.138 to keep track of momentum transfers in fluids.
The basic physics allows us to write the property of interest, and calculus allows
us to write this physics in differential form and to proceed to the solution.

An engineering task for which differentiation is useful is calculating the max-
imum value of a function. Following is an example of such a calculation.

EXAMPLE 1.11. The function in Equation 1.140 represents the z-direction
velocity of a flow between two vertical parallel plates. At what position in the
flow does the velocity reach a maximum?

vz(y) = ρ̄gβ̄(T2 − T1)b2

12μ

[(
y

b

)3

−
(

y

b

)]
(1.140)

SOLUTION. The flow between two vertical plates shown in Figure 1.27 is the
result of fluid-density differences driven by a temperature difference in the y-
direction. All of the following quantities are constant: ρ̄, average density; β̄,
average coefficient of thermal expansion; T2 − T1, temperature difference; b,
gap; and μ, viscosity. The methods in this text lead to the ability to obtain
Equation 1.140. Here, we have the simpler task of determining from the solution
the location and magnitude of the maximum and minimum in velocity.

T2 T1

y
z

(warm) (cool)b

Figure 1.27 Temperature difference generates a flow between two long wide plates (i.e., hot air rises). We obtain the velocity
profile in Equation 1.140 by using the methods in this book in conjunction with energy-balance equations (see
Problem 40 in Chapter 7).
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-1.0

-0.5

0

0.5

1.0

1.00.50-0.5-1.0
b

y

V

vz

Figure 1.28 The velocity profile that develops when a fluid is trapped between two plates held at two different temperatures is
given by the cubic equation in Equation 1.140. We use calculus to find the maximum and minimum values of the
function.

The equation provided has many different quantities in it; for now, all of those
different constants are simply confusing. Note that the combination of quantities
in front of the square brackets must have units of velocity (m/s); thus, for simplic-
ity, we call that combination of variables V . Our equation to work with is then:

vz(y) = V

[(
y

b

)3

−
(

y

b

)]
(1.141)

which is plotted in Figure 1.28 in dimensionless form as vz/V versus y/b.
The location of the maximum value of a function can be determined from the

slope of the tangent line as a function of position, which can be calculated from
the derivative (Figure 1.29). When the value of a function at a point is increasing,
the slope of the tangent line at that point is positive. When the value of a function
at a point is decreasing, the slope of the tangent line at that point is negative. When
the slope of the tangent line at a point is zero, the value of the function is neither
increasing nor decreasing but rather has reached a maximum or a minimum. To
find the location of the maximum (or minimum) of a function, we calculate the

slope increases to 
zero at minimum

tangent slope 
decreases to zero  

at maximum

)(xf

x

Figure 1.29 The locations of extrema are found using the derivative. For both maxima and minima, the slope of the tangent line
(i.e., the derivative at that point) is zero.
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derivative of the function, set the derivative equal to zero, and solve for the values
of location that satisfy the resulting equation:

Location of extrema:
dvz

dy
= 0 (1.142)

d

dy

(
V y3

b3
− V y

b

)
= 0 (1.143)

3V y2

b3
− V

b
= 0 (1.144)

y = ± b√
3

(1.145)

Location of extrema:
y

b
= ±0.577 (1.146)

Substituting these two values into the function for velocity (Equation 1.141),
we obtain the maximum and minimum values of velocity, which are located at
y/b = ±0.577:

vz

(
b√
3

)
= V

[(
y

b

)3

−
(

y

b

)]
(1.147)

= V

[(
1√
3

)3

−
(

1√
3

)]
= −2V

3
√

3
= −0.39V (minimum)

(1.148)

vz

(−b√
3

)
= V

[(−1√
3

)3

−
(−1√

3

)]
= 2V

3
√

3
= 0.39V (maximum)

(1.149)

Analogous derivatives on multivariable functions—partial derivatives—are
useful in calculations on continuous functions of two, three, or more variables
(see the Web appendix [108] for a review). The fluid-mechanics variables ρ, v,
and τ̃ are all multivariable, continuous functions.

1.3.1.2 INTEGRALS
We turn now to the other key concept of calculus: the integral. When integration
is introduced in calculus courses, it is usually in the context of finding areas.
The area under the positive function f (x) between x = a and x = b, depicted
in Figure 1.30, may be approximated by the sum of the areas of appropriately
chosen rectangles. First, the interval between a and b is divided into N equally
sized intervals. Second, the areas of the N rectangles are summed to approximate
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)(af

a b

)(xf

)(bf

x
xΔ

)2( xaf Δ+

)( xaf Δ+
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a b

)(xf

)(bf

x
xΔ

)6( xaf Δ+
smaller

→Δx

Figure 1.30 For a simple one-dimensional function f (x ), the limit in the definition of the integral (Equation 1.151) represents
the area under the curve between the chosen limits.

the total area under the curve. The interval size �x is arbitrary:

Area between f (x)
and x-axis

(from geometry)
≈

N∑
i=1

f (a + i�x)�x (1.150)

�x ≡ b − a

N

If the interval �x is made smaller, Equation 1.150 becomes a better approxi-
mation for the area under f (x). In the limit that �x goes to zero, the summation
in Equation 1.150 becomes arbitrarily close to the area under f (x), and this limit
serves as the definition of an integral:

Integral defined I =
∫ b

a
f (x)dx ≡ lim

N−→∞

[
N∑

i=1

f (a + i�x)�x

]
(1.151)

�x = b − a

N

Because the definition requires the limit as �x goes to zero, the function f must
be continuous for an integral to be meaningful. Many properties of interest in
fluid mechanics are calculated from limits of summations.

Integrals may be used whenever a calculation can be put into the form of
Equation 1.151.3 In Chapter 3, we use a form of Equation 1.151 to sum various
mass and momentum transfer effects in deforming liquids. Another task for
which integration is useful is calculating the average of a function, discussed in
the following example (see also Section 6.2.3).

EXAMPLE 1.12. The shape of the velocity profile for a steady flow in a narrow
slit between two plates is given by f (y) (see Section 7.1.1 and Figure 1.31),
where f = vx/vmax is dimensionless and y and the number 10 have units of mm.

3There are rigorous mathematical rules that restrict which types of functions are integratable. See
the mathematical literature for more on this subject [166].
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Figure 1.31 Methods in this book allow us to calculate the velocity profile for laminar flow in a narrow slit.

Over the range 0 ≤ y ≤ 10 mm, what is the average value of the velocity in the
slit? (See Figure 1.32.)

vx

vmax
= f (y) =

[
1 −

(
y

10

)2
]

(1.152)

SOLUTION. As discussed here, we can calculate the average value of a function
over a range by integrating the function between the endpoints of the range and
dividing by the range:

Average of f (y) = 〈 f 〉 =

∫ ymax

ymin

f (y) dy

(ymax − ymin)
(1.153)

0

0.2

0.4

0.6

0.8

1.0

0 5 10

f

f (y)

y

Figure 1.32 This example requests the average of the function f (y ) over the range 0 ≤ y ≤ 10.
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For the current problem, we obtain:

〈 f 〉 = 1

(10 − 0)

∫ 10

0

[
1 −

(
y

10

)2
]

dy

= 1

10

[
y − y3

300

]∣∣∣∣∣∣∣
10

0

= 2

3

Equation 1.153 may be shown rigorously to hold by breaking up the interval
ymin ≤ y ≤ ymax into smaller intervals, averaging the values of the function at
each position, and taking the limit of this average as the size of the interval
between values goes to zero. We demonstrate this calculation for a function of a
single variable.

Consider the function f (y); we seek to derive the expression for the average
of a function, Equation 1.153. To calculate 〈 f 〉, the average of the function
between limits ymin and ymax, we choose a sampling of N evenly spaced points
and assemble the average of these values. Later, we take the limit as N goes to
infinity:

Average
of a function
(definition of

arithmetic
mean)

≈ 1

N

(
f (y1) + f (y2) + . . . + f (yk) + . . . + f (yN−1) + f (yN )

)

= 1

N

N∑
k=1

f (ymin + k�y) (1.154)

�y = ymax − ymin

N
(1.155)

We now solve Equation 1.155 for N and substitute this into Equation 1.154.
Finally, we take the limit as N goes to infinity:

N = ymax − ymin

�y

Average
of a function

≈
[

�y

ymax − ymin

] N∑
k=1

f (ymin + k�y)

Average
of a function

=
lim

N−→∞

[
N∑

k=1

f (ymin + k�y)�y

]

ymax − ymin
(1.156)
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Comparing the limit in Equation 1.156 to the definition of a single integral (see
Equation 1.151), we obtain the expression we seek:

Average of f (y) = 〈 f 〉 =

∫ ymax

ymin

f (y) dy

(ymax − ymin)
(1.157)

We will see limits of sums in fluid mechanics being equated to integrals in
Chapter 2. Analogous double and triple integrals are useful in calculations on
continuous functions of two, three, or more variables (see the Web appendix
[108]).

1.3.2 Vector calculus

The mathematics of fluid mechanics is vector calculus, which is a calculation
system that allows us to keep track of not only the magnitude of interactions but
also the character of the interactions: how forces are applied to a body, for exam-
ple, or how bodies move in space. In fluid mechanics, important vectors include
velocity and force. Vector calculus relies on fundamental definitions such as for
scalars and vectors. We begin with these definitions; once this background is
established, we introduce tensors, a more complex entity related to scalars and
vectors. In this section we also review how to express vectors and tensors in coor-
dinate systems, both Cartesian and curvilinear (i.e., cylindrical and spherical). In
addition, we cover differential operations as applied to vectors and tensors. The
core equations of fluid mechanics are partial differential equations that express
vectors and tensors in those coordinate systems. The mathematics in this section
is relied upon throughout this text.

The term scalar refers to a constant or variable function that conveys magnitude.
Numbers in the usual sense are scalars. Examples of scalars are fluid density, the
speed of a bullet, or the number of molecules in a vessel. Scalar variables can be
manipulated through the usual mathematical methods. We summarize here the
rules of algebra for scalars (e.g., α, β, and γ ):

Rules of algebra
for scalars

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

commutative law αβ = βα

associative law (αβ)γ = α(βγ )

distributive law α(β + γ ) = αβ + αγ

A vector is a constant or variable function that conveys magnitude and direc-
tion. The directional property of vectors is what separates them from scalars.
Examples of vectors are the velocity of a baseball (i.e., not just its speed, but
also its direction of travel), the force due to gravity, and the momentum of a fluid
particle. Two vectors that have the same magnitude can have drastically different

www.20file.org

http://www.semeng.ir


59 Why Study Fluid Mechanics?

f
~

f

Figure 1.33 Schematic representation of forces acting on a
table. If the same magnitude of force, f , is applied
in different directions, the vectors describing
those forces are different in the two cases.

effects. For example, a downward force on
a table will not move it, while a force to
the side will cause the table to slide (Fig-
ure 1.33).

The two characteristics of a vector, mag-
nitude and direction, can be written sepa-
rately. For a vector f , the magnitude is writ-
ten f = | f | and the direction is expressed
by using a unit vector in the direction of
f . In this text we write vectors with an bar
under the symbol and unit vectors with a
caret (ˆ) over the symbol.

Vector magnitude: | f | = f (1.158)

Vector direction: f̂ = f

f
(1.159)

| f̂ | = 1 (1.160)

When adding or subtracting vectors we line up the vectors head to tail and
calculate the sum as the new vector that joins the first tail with the last head
(Figure 1.34). When multiplying a vector by a scalar, the rules of algebra are the
same as the rules for multiplying scalars.

Rules of algebra for
scalars with vectors

⎧⎨
⎩

commutative law αa = aα

associative law (αa)β = α(aβ)
distributive law α(a + b) = αa + αb

When multiplying two vectors, there are two different operations defined, the
scalar product (also called the dot product or inner product) and the vector
product (i.e., cross product or outer product). They are defined as follows

Scalar product: a · b = ab cos ψ (1.161)

Vector product: a × b = ab sin ψ n̂ (1.162)

a

b

ba +

a

b
( )ba −+

b− ( )baba −+=−

Figure 1.34 Pictorial representation of the addition and subtraction of two vectors.
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1

2

3

2 = y

1 = x

3 = z

a

ba ×

b

Figure 1.35 Definition of a righthanded coordinate system and the righthand rule for cross products.

where ψ is the angle between the vectors and n̂ is a unit vector perpendicular to
both a and b subject to the righthand rule (Figure 1.35). From geometry (Figure
1.36) we see that the dot product of a vector with a unit vector results in a quantity
that equals the projection of the first vector in the direction of the unit vector.

Projection of b
in the direction n̂

b · n̂ = (b)(1) cos ψ = b cos ψ (1.163)

This is an important operation in determining the quantity of flow through a
surface.

The rules of algebra for the dot and cross products are summarized here:

Rules of algebra for
the vector dot product:

⎧⎨
⎩

commutative a · c = c · a
associative not possible
distributive a · (c + w) = a · c + a · w

Rules of algebra for
the vector cross product:

⎧⎨
⎩

NOT commutative a × c �= c × a
NOT associative (a × c) × w �= a × (c × w)

distributive a × (c + w) = a × c + a × w

The dot product provides a way to calculate the magnitude of a vector.

a · a = (a)(a) cos(0) = a2 (1.164)

|a| = +√
a · a (1.165)

ψ

b

â

abb ˆcos ⋅=ψ

Figure 1.36 The projection of a vector in a chosen direction is equal to the dot product of the vector with a unit vector in the
chosen direction.
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â

z x

y

ĵ

k̂ î

ˆ

ˆ
Figure 1.37 Schematic of the Cartesian coordinate system (x yz) and the Cartesian basis vectors (i , ĵ , k̂), also called êx , ê y ,

ez or ê1, ê2, ê3. The vector â is in the x y-plane and may be written as the sum of its x - and y-components:
ax î + a y ĵ or ax êx + a y ê y . The z-component of â is zero.

By convention, the magnitude of a vector is taken to be positive; any negative
signs are associated with the vector direction.

1.3.2.1 COORDINATE SYSTEMS
Making calculations with vectors requires us to choose a coordinate system
for reference. The most familiar coordinate system is the Cartesian coordinate
system (xyz), but we begin with general considerations first, because we use
non-Cartesian coordinate systems as well.

A coordinate system is composed of three non-coplanar basis vectors. Any
vector may be expressed as the linear combination of any three basis vectors. If
a, b, and c form a basis, then any vector v may be written as

v expressed in terms
of basis vectors a,b,c

v = va a + vb b + vc c (1.166)

ˆ

where va , vb, and vc are the coefficients of v with respect to the coordinate
system a b c. For the Cartesian coordinate system, the basis vectors are î , ĵ ,
and k̂ or êx , êy , and êz (this is our preferred nomenclature). We may also use
e1, ê2, and ê3 for a Cartesian coordinate system (Figure 1.37). In the Cartesian
system the basis vectors are unit vectors, and î = êx = ê1 points parallel to the
x-axis, ĵ = êy = ê2 points parallel to the y-axis, and k̂ = êz = ê3 points parallel
to the z-axis. At every point in space î is parallel to the x-axis and points in the
direction of increasing x , and likewise ĵ is parallel to the y-axis and k̂ is parallel
to the z-axis, and they point in the directions of increasing y and z, respectively.
The Cartesian basis vectors are constant. This is an advantage when integrating
vectors, as we see in this text. In fluid mechanics we often use coordinate systems
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ˆ ˆ ˆ

that vary with position in order to simplify boundary conditions, for example.
We discuss the non-Cartesian coordinate systems in Section 1.3.2.4.

We indicate at the beginning of this discussion that it is desirable to express
vectors in a common coordinate system so that we can manipulate them. To see
how this works, we write an arbitrary vector in the Cartesian coordinate system
and apply the rules of algebra for vectors to simplify the results.

u = u1e1 + u2e2 + u3e3 (1.167)

ˆ ˆ ˆv = v1e1 + v2e2 + v3e3 (1.168)

ˆ ˆ ˆw = w1e1 + w2e2 + w3e3 (1.169)

ˆ ˆ ˆ

Adding u and v together and factoring out the basis vectors yields

w = u + v = (u1 + v1)e1 + (u2 + v2)e2 + (u3 + v3)e3 (1.170)

Comparing Equations 1.170 and 1.169 we find:

w1 = u1 + v1 (1.171)

w2 = u2 + v2 (1.172)

w3 = u3 + v3 (1.173)

This is easy to remember: when adding two vectors expressed in the same coor-
dinate system, add the coefficients of each basis vector to obtain the coefficients
of the sum.

We find it convenient in this text to use matrix representation for vectors; It is
arbitrary whether to write a vector as a column vector or a row vector.

v =
⎛
⎝v1

v2

v3

⎞
⎠

123

= (v1 v2 v3 )123 (1.174)

ˆ ˆ
Note that in this text we write the subscript 123 on the matrix version of v to
remind us that the coordinate system ê1e2e3 was used to define v1, v2, and v3. We
can write equation 1.170 in matrix form as follows:⎛

⎝w1

w2

w3

⎞
⎠

123

=
⎛
⎝u1

u2

u3

⎞
⎠

123

+
⎛
⎝v1

v2

v3

⎞
⎠

123

=
⎛
⎝u1 + v1

u2 + v2

u3 + v3

⎞
⎠

123

(1.175)

ˆ ˆ ˆ ˆ ˆ ˆ

To express a dot product between two vectors using basis-vector notation, we
write each vector with respect to the basis and apply the distributive law of the
dot product.

v · u = (v1e1 + v2e2 + v3e3) · (u1e1 + u2e2 + u3e3) (1.176)

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

= v1u1e1 · ê1 + v2u1e2 · ê1 + v3u1e3 · ê1 + v1u2e1 · ê2

+ v2u2e2 · ê2 + v3u2e3 · ê2 + v1u3e1 · ê3 + v2u3e2 · ê3 + v3u3e3 · ê3

(1.177)

The basis vectors of the Cartesian coordinate system are orthonormal, and there-
fore the dot products of unlike vectors are 0, while the dot products of a vector
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with itself yields 1. Equation 1.177 therefore simplifies to

v · u = v1u1 + v2u2 + v3u3 (1.178)

We obtain the same result by using matrix notation and linear algebra:

(
v1 v2 v3

)
123

·
⎛
⎝u1

u2

u3

⎞
⎠

123

= v1u1 + v2u2 + v3u3 (1.179)

ˆ ˆ ˆ ˆ ˆ ˆ

Likewise, we can write the cross product of two vectors in terms of their
coefficients in an orthonormal coordinate system. For vectors u and v:

u × v = (u1e1 + u2e2 + u3e3) × (v1e1 + v2e2 + v3e3) (1.180)

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

= u1v1e1 × ê1 + u1v2e1 × ê2 + u1v3e1 × ê3 + u2v1e2× ê1 + u2v2e2× ê2

+ u2v3e2 × ê3 + u3v1e3 × ê1 + u3v2e3 × ê2 + u3v3e3 × ê3

Because the basis vectors are orthonormal, each cross product is either 1, −1, or
0 (see Equation 1.162) and several of these terms are zero. Therefore, we write:

u × v = u1v2e3 − u1v3e2 − u2v1e3 + u2v3e1 + u3v1e2 − u3v2e1 (1.181)

=
⎛
⎝u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

⎞
⎠

123

(1.182)

This result is equivalent to the calculation implicit in the following determinate:

u × v = det

∣∣∣∣∣∣∣∣∣
ê1 ê2 ê3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ (1.183)

We provide practice with coordinate-system–based vector calculations in the
following several examples.

EXAMPLE 1.13. What is u · v for the following vectors?

u =
⎛
⎝1

1
2

⎞
⎠

123

v =
⎛
⎝1

3
0

⎞
⎠

123

(1.184)

ˆ ˆ
SOLUTION. We can calculate u · v by matrix multiplying the coefficients of u
and v in the orthonormal coordinate system ê1e2e3.

u · v = (1 1 2
)

123
·
⎛
⎝1

3
0

⎞
⎠

123

= 4 (1.185)

Alternatively, we can use the formula in Equation 1.179:

v1u1 + v2u2 + v3u3 = (1)(1) + (1)(3) + (2)(0) = 4 (1.186)

Both methods are correct when the two vectors are expressed in the same orthonor-
mal coordinate system.

www.20file.org

http://www.semeng.ir


64 An Introduction to Fluid Mechanics

EXAMPLE 1.14. What is the component of the velocity vector v in the ê1

direction? (See the inside cover for equations employing the dot product.)

SOLUTION. When introducing the dot product of two vectors, we noted that
the projection of a vector in a certain direction can be found by dotting the vector
with a unit vector in the desired direction. For an orthonormal basis, the basis
vectors are the unit vectors, and we can solve for the components of a vector with
respect to the orthonormal basis by taking the following dot products:

v · ê1 = v1 (1.187)

v · ê2 = v2 (1.188)

v · ê3 = v3 (1.189)

ˆ ˆ ˆ ˆ

This also may be confirmed by dotting Equation 1.168 with each of the unit
vectors in turn and remembering that we are assuming the three basis vectors êi

(i = 1, 2, 3) to be mutually perpendicular and of unit length. For example:

e1 · v = ê1 · (v1e1 + v2e2 + v3e3) (1.190)

ˆ ˆ ˆ= ê1 · v1e1 + ê1 · v2e2 + ê1 · v3e3 (1.191)

= v1 (1.192)

EXAMPLE 1.15. What is the component of the force vector u in the a direction for
u and a given here? (Finding components of vectors appears in drag calculations.)

u =
⎛
⎝ 1

5
−1

⎞
⎠

123

a =
⎛
⎝ 1

0
−1

⎞
⎠

123

(1.193)

SOLUTION. The solution method for this example is the same as for the previous
example. We dot the vector (this time it is u) with a unit vector in the direction
of a.

ua = u · a

|a| (1.194)

To calculate |a|, we dot a with itself and take the square root:

|a| = √
a · a (1.195)

=

√√√√√√(1 0 −1
)

123
·
⎛
⎝ 1

0
−1

⎞
⎠

123

=
√

2 (1.196)
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Our final answer is calculated as:

ua = u · a

|a| (1.197)

=

(
1 5 −1

)
123

·
⎛
⎝ 1

0
−1

⎞
⎠

123√
2

(1.198)

= 2√
2

=
√

2 (1.199)

EXAMPLE 1.16. What is u × v for the two vectors given here? (Cross products
appear in torque calculations; see Example 1.17.):

u =
⎛
⎝3

0
0

⎞
⎠

123

ˆ= 3e1 (1.200)

v =
⎛
⎝ 1

−2
0

⎞
⎠

123

ˆ= ê1 − 2e2 (1.201)

ˆ ˆ ˆ

SOLUTION. To solve for u × v, we write the expression in a Cartesian coordi-
nate system and follow the rules of algebra for the cross product:

u × v = 3e1 × (e1 − 2e2) (1.202)

ˆ ˆ= 3(e1 × ê1) − 6(e1 × ê2) (1.203)

ˆ= −6e3 =
⎛
⎝ 0

0
−6

⎞
⎠

123

(1.204)

Alternatively, we can use Equation 1.182:

u × v =
⎛
⎝u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

⎞
⎠

123

(1.205)

=
⎛
⎝ (0)(0) − (0)(−2)

(0)(1) − (3)(0)
(3)(−2) − (0)(1)

⎞
⎠

123

(1.206)

=
⎛
⎝ 0

0
−6

⎞
⎠

123

(1.207)
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Another method of solving for this cross product is to carry out the determinant
in Equation 1.183.

u × v = det

∣∣∣∣∣∣∣∣∣
ê1 ê2 ê3

3 0 0
1 −2 0

∣∣∣∣∣∣∣∣∣ (1.208)

= −6e3 (1.209)

All three methods arrive at the same answer.

EXAMPLE 1.17. What is the torque on a lever attached to the shaft shown in
Figure 1.38?

Figure 1.38 A shaft is turned by application of a torque a distance R from the axis of the shaft. The vector from the axis of
rotation to the point of application of force is the lever arm. Force is applied at the circumference of an imaginary
circle made by the projected rotation of the shaft and lever.

SOLUTION. Torque is the amount of effort to produce a rotation in a body; the
definition of torque is the cross product of the lever arm and the force [167] (see
Section 6.2.3.2). The lever arm is the distance from the point of application of
the force to the axis of rotation:

T = (lever arm) × (force) (1.210)

= R × f (1.211)
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Writing f and R in the coordinate system shown, we use Equation 1.182 to carry
out the cross product:

R =
⎛
⎝4

0
0

⎞
⎠

xyz

f =
⎛
⎝ 0

2.5
0

⎞
⎠

xyz

(1.212)

T = R × f =
⎛
⎝ R2 f3 − R3 f2

R3 f1 − R1 f3

R1 f2 − R2 f1

⎞
⎠

123

(1.213)

=
⎛
⎝ 0

0
10

⎞
⎠

123

(1.214)

In Chapter 6, we discuss the many engineering quantities of interest that may be
calculated from the modeling described in this text. For example, in machinery
that employs axles lubricated by fluids or mixing shafts turning in fluids, the
torque on the shaft is a quantity of interest.

1.3.2.2 TENSORS
Molecular stress in a moving fluid is best described as a tensor, defined as a math-
ematical entity related to vectors and scalars but somewhat more complicated.
It is possible to skirt most details of tensor analysis and still understand fluid
mechanics. It is sufficient for our purposes to think of tensors as 3 × 3 matrices
that hold the information about fluid stresses (see Equation 1.223). For those who
want to understand tensors more fully, we provide a brief overview; many texts
are available in the literature for comprehensive covereage [6, 13, 14].

A tensor is a mathematical entity related to vectors, but it is not easy to
graphically represent a tensor. For our purposes, a tensor is a mathematical
machine that works through the dot product to transform vectors in a convenient
way. To make tensors work, we write them as 3 × 3 matrices, as we discuss here.

The simplest tensor is the dyad or dyadic product. The dyadic product is
formed by writing two vectors side by side.

Tensor: A = a b (1.215)

There is no dot or cross symbol in the dyadic product; this type of product is
called the indeterminate vector product. When we write a tensor with a single
symbol we use two underlines as shown for A in Equation 1.215.

The indeterminate vector product has its rules of algebra, and these are listed
here. We draw the reader’s attention to the first rule of the indeterminate vector
product: this type of product is not commutative.

Laws of algebra
for the indeterminate

vector product:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NOT commutative a b �= b a
associative (a b)c = a(b c)
distributive a(b + c) = a b + a c

(a + b)(c + d) = a c + a d + b c + b d
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Scalars may be placed anywhere within an expression containing the indetermi-
nate vector product:

γ c d = cγ d = c dγ (1.216)

where γ is a scalar and c and d are vectors.
To use tensors in fluid-mechanics calculations we write them relative to a

coordinate system. For the Cartesian coordinate system and using the rules of
tensor algebra, we obtain:

A = a b (1.217)

ˆ ˆ ˆ ˆ ˆ ˆ= (a1e1 + a2e2 + a3e3)(b1e1 + b2e2 + b3e3) (1.218)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

= a1b1e1e1 + a1b2e1e2 + a1b3e1e3 + a2b1e2e1

+ a2b2e2e2 + a2b3e2e3 + a3b1e3e1 + a3b2e3e2 + a3b3e3e3 (1.219)

ˆ ˆ ˆ
The indeterminate vector product does not commute, and therefore terms with
e2e1, for example, are not equivalent to terms with ê1e2. There are 9 distinct dyads
of the coordinate-system basis. The scalar pre-factors of each term are called the
coefficients of the tensor. We can write the tensor coefficients of A as a 3 × 3
matrix.

A = a b (1.220)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

= a1b1e1e1 + a1b2e1e2 + a1b3e1e3 + a2b1e2e1

+ a2b2e2e2 + a2b3e2e3 + a3b1e3e1 + a3b2e3e2

+ a3b3e3e3 (1.221)

=
⎛
⎝a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞
⎠

123

(1.222)

A =
⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

123

(1.223)

The first index on the coefficient Ai j indicates the row number of the term and
the second index indicates the column number.

There is a dot product between two tensors. For tensors expressed with respect
to an orthonormal coordinate system, the tensor dot product works exactly like
3 × 3 matrix multiplication:

C = A · B =
⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

123

·
⎛
⎝ B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠

123

(1.224)
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C11 = A11 B11 + A12 B21 + A13 B31

C12 = A11 B12 + A12 B22 + A13 B32

C13 = A11 B13 + A12 B23 + A13 B33

C21 = A21 B11 + A22 B21 + A23 B31

C22 = A21 B12 + A22 B22 + A23 B32

C23 = A21 B13 + A22 B23 + A23 B33

C31 = A31 B11 + A32 B21 + A33 B31

C32 = A31 B12 + A32 B22 + A33 B32

C33 = A31 B13 + A32 B23 + A33 B33

Ci j =
3∑

k=1

Aik Bkj (1.225)

The Equation 1.225 is a compact way of writing all nine relationships. Dot mul-
tiplication of a vector and a tensor written with respect to the same orthonormal
basis works like the matrix multiplication of a 1 × 3 matrix with a 3 × 3 matrix.
The result is a vector:

w = v · A (1.226)

= (v1 v2 v3 )123 ·
⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

123

(1.227)

= (w1 w2 w3 )123 (1.228)

where:

w1 = v1 A11 + v2 A21 + v3 A31 (1.229)

w2 = v1 A12 + v2 A22 + v3 A32 (1.230)

w3 = v1 A13 + v2 A23 + v3 A33 (1.231)

We use matrix algebra to carry out the dot product on components of vectors with
tensors written with respect to orthonormal bases. The inside cover shows some
fluid-mechanics equations involving the dot product of vectors and tensors.

EXAMPLE 1.18. For the vectors given here, what are the coefficients in the
123-coordinate system of the tensor B =u v?

u =
⎛
⎝1

1
2

⎞
⎠

123

v =
⎛
⎝1

3
0

⎞
⎠

123

(1.232)

SOLUTION. We can form B by following the rules of algebra. We begin by
writing u and v explicitly in terms of the basis vectors. The final result is obtained
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by distributing the indeterminate vector product:

B = u v (1.233)

ˆ ˆ ˆ ˆ= (e1 + ê2 + 2e3) (e1 + 3e2) (1.234)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= ê1e1 + 3e1e2 + ê2e1 + 3e2e2 + 2e3e1 + 6e3e2 (1.235)

We write this result in matrix form as follows:

B =
⎛
⎝1 3 0

1 3 0
2 6 0

⎞
⎠

123

(1.236)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

EXAMPLE 1.19. For the tensor B = 2e1e1 + ê1e2 − ê1e3 + 2e2e2 + 1e3e1 −
2e3e2, what is B · B?

SOLUTION. We can calculate B · B by matrix multiplying the coefficients of B
in the orthonormal coordinate system 123:

B · B =
⎛
⎝2 1 −1

0 2 0
1 −2 0

⎞
⎠

123

·
⎛
⎝2 1 −1

0 2 0
1 −2 0

⎞
⎠

123

(1.237)

=
⎛
⎝3 6 −2

0 4 0
2 −3 −1

⎞
⎠

123

(1.238)

In fluid-mechanics modeling, molecular stress in a fluid is a tensor. Tremendous
simplification is achieved when matrix–tensor calculations are used to keep track
of fluid motion and force transmission. Molecular stress is discussed in detail in
Chapter 4.

1.3.2.3 DIFFERENTIAL OPERATIONS
Three of the most important equations in fluid mechanics are those of conservation
of mass, momentum, and energy. They are differential equations and they are
derived in Chapter 6:

Mass conservation
(

∂ρ

∂t
+ v · ∇ρ

)
= −ρ (∇ · v) (1.239)

Momentum conservation ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + ∇ · τ̃ + ρg (1.240)

Energy conservation ρ

(
∂ Ê

∂t
+ v · ∇ Ê

)
= −∇ · q − ∇ · (pv)

+ ∇ · τ̃ · v + Se (1.241)

(Chapter 6 defines the variables in these equations.) These equations contain
both time derivatives (∂/∂t) and spatial derivatives (∂/∂x1, ∂/∂x2, and ∂/∂x3);
the spatial derivatives are hidden in the symbol ∇, as we now discuss. Chapters 6
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through 8 describe how to apply these differential conservation equations to
situations of interest.

In the previous equations, the vector differential operator, ∇ (called del or
nabla), expresses differentiation operations in physical space (i.e., three dimen-
sions). Equations written with vectors in terms of a letter with an underbar (a) and
spatial differentiation written with the symbol ∇ are said to be written in Gibbs
notation (see Glossary). Nabla is an operator that operates on scalars, vectors, or
tensors. For example, the term ∇ p, which appears in Equation 1.240, is a vector
and may be defined in Cartesian coordinates as follows (see [146] for a more
physical treatment):

∇ p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x
∂p

∂y
∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x1

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.242)

To use the conservation equations, we also must evaluate the expressions ∇ · v,
∇ · τ̃ , v · ∇ρ, and v · ∇v. The details of differential operations on vectors and
tensors are discussed in Appendix B.1. Differential operations in the Cartesian
coordinate system are carried out in Table B.2. In our study of fluid mechanics,
we rely on the tables in Appendix B.1 to translate expressions in Gibbs notation to
the equivalent matrix or component notation with respect to a chosen coordinate
system. Some vector identities that apply to operations with del are provided in
the inside front cover of this book and in Appendix B.

EXAMPLE 1.20. If the pressure p in a fluid varies with position (x, y, z) accord-
ing to the following equation, what is the gradient field of the pressure, ∇ p? The
answer is a vector. Note that ∇ p appears in the microscopic momentum balance,
the central equation of fluid mechanics.

p(x, y, z) = 16x2 + 4y (1.243)

SOLUTION. To calculate ∇ p for the given pressure distribution, we follow
Equation 1.242:

∇ p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x
∂p

∂y
∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂(16x2 + 4y)

∂x

∂(16x2 + 4y)

∂y

∂(16x2 + 4y)

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

(1.244)

∇ p =
⎛
⎝32x

4
0

⎞
⎠

xyz

(1.245)
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Note that pressure is a scalar field (i.e., varies with position), and ∇ p is a vector
field.

EXAMPLE 1.21. For the following fluid velocity field, what is ∇ · v? Note that
the term ∇ · v appears in the mass conservation equation, Equation 1.239.

v =
⎛
⎝−0.06x1

0
0.06x3

⎞
⎠

123

(1.246)

SOLUTION. The expression for ∇ · v in Cartesian coordinates 123 is given in
Table B.2 and repeated here:

∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(1.247)

For the velocity field given, we obtain:

∇ · v = ∂

∂x1
(−0.06x1) + ∂

∂x2
(0) + ∂

∂x3
(0.06x3) (1.248)

= −0.06 + 0 + 0.06 (1.249)

∇ · v = 0 (1.250)

Note that v is a vector field and ∇ · v is a scalar.

EXAMPLE 1.22. Using Table B.2 to write ∇w, what is v · ∇w? Note that a term
like this appears in the momentum conservation equation, Equation 1.240.

SOLUTION. We calculate the result of the dot product of v and ∇w using
matrix multiplication when both expressions are written in the same Cartesian
coordinate system. From Table B.2, we write:

v =
⎛
⎝v1

v2

v3

⎞
⎠

123

(1.251)

∇w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂w1

∂x1

∂w2

∂x1

∂w3

∂x1

∂w1

∂x2

∂w2

∂x2

∂w3

∂x2

∂w1

∂x3

∂w2

∂x3

∂w3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.252)
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Now, taking the dot product of the two:

v · ∇w = (v1 v2 v3
)

123
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂w1

∂x1

∂w2

∂x1

∂w3

∂x1

∂w1

∂x2

∂w2

∂x2

∂w3

∂x2

∂w1

∂x3

∂w2

∂x3

∂w3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.253)

=
([

v1
∂w1
∂x1

+ v2
∂w1
∂x2

+ v3
∂w1
∂x3

] [
v1

∂w2
∂x1

+ v2
∂w2
∂x2

+ v3
∂w2
∂x3

] [
v1

∂w3
∂x1

+ v2
∂w3
∂x2

+ v3
∂w3
∂x3

])
123

(1.254)

which is a 1 × 3 matrix. We can introduce summation signs to write this result
more compactly. The ability to use summation notation is facilitated by the use
of ê1, ê2, ê3 notation instead of êx , êy , êz or î , ĵ , k̂ notation.

v · ∇w =
(

3∑
k=1

∂w1

∂xk
vk

3∑
k=1

∂w2

∂xk
vk

3∑
k=1

∂w3

∂xk
vk

)
123

(1.255)

v · ∇w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3∑
k=1

∂w1

∂xk
vk

3∑
k=1

∂w2

∂xk
vk

3∑
k=1

∂w3

∂xk
vk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.256)

Notice that the answer is a vector and we change from row to column notation
when convenient.

EXAMPLE 1.23. Using Table B.2 to write ∇v, what is v · ∇v for the velocity
vector v given here?

ˆ ˆv = −6.0x1e1 + 6.0x3e3 (1.257)

SOLUTION. We calculate the result of the dot product using matrix multiplica-
tion when both expressions are written in the same Cartesian coordinate system.
From Table B.2, we write:

v =
⎛
⎝−6.0x1

0
6.0x3

⎞
⎠

123

(1.258)
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∇v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v1

∂x1

∂v2

∂x1

∂v3

∂x1

∂v1

∂x2

∂v2

∂x2

∂v3

∂x2

∂v1

∂x3

∂v2

∂x3

∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

=
⎛
⎝−6.0 0 0

0 0 0
0 0 6.0

⎞
⎠

123

(1.259)

Now, taking the dot product of the two:

v · ∇w = (−6.0x1 0 6.0x3
)

123
·
⎛
⎝−6.0 0 0

0 0 0
0 0 6.0

⎞
⎠

123

(1.260)

=
⎛
⎝36x1

0
36x3

⎞
⎠

123

(1.261)

1.3.2.4 CURVILINEAR COORDINATES
So far, we use the Cartesian coordinate system to express vectors and tensors in
terms of scalar coefficients. Because vector and tensor quantities are independent
of the coordinate system, we also use the convenient Cartesian system to express
vector–tensor relations. The goal of this text is to show how to mathematically
model flows. In flow modeling, the Cartesian system is a natural choice for solv-
ing problems if the flow boundaries are straight lines. This is the case for straight
flows in rectangular ducts or in wide straight-line flows. In both cases, the flow
boundaries coincide with coordinate surfaces (e.g., at x2 = H , v1 = 0, for all
x1 and x3; Figure 1.39a). It is convenient to choose a coordinate system that
makes the boundaries easy to specify because we must mathematically specify
the boundaries in the solutions. When the coordinate system makes the bound-
aries easy to specify, the entire problem is easier to solve. However, when the
boundaries are curved—for example, flow in a pipe or around a falling sphere or
rising bubble—it is mathematically awkward to use the Cartesian system (Fig-
ure 1.39b). To solve problems with cylindrical and spherical symmetry, we use
coordinate systems that share these symmetries.

The cylindrical and spherical coordinate systems are shown in Figures 1.40
and 1.41. The position of a point in space may be specified by its Cartesian
coordinate position (x, y, z) or by its location in terms of cylindrical coordinates
(r, θ, z), as shown in Figure 1.40. The cylindrical coordinate variables, r , θ , and
z, may be written in terms the Cartesian coordinate variables, x , y, and z, as
follows:

x = r cos θ (1.262)
Cylindrical coordinate variables:

(from geometry)
y = r sin θ (1.263)

z = z (1.264)

Also associated with each point are three basis vectors. In the Cartesian system,
these basis vectors are êx , êy , and êz , as discussed previously. The directions of êx ,
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z

r

p=p0 p=pL

R

x1

x2
W

2H

p=p0 p=pL

(a)

(b)

Figure 1.39 When the important surfaces of a flow are rectangular (a), Cartesian coordinates are convenient. When the
important surfaces of a flow are cylindrical or spherical, one of the curvilinear coordinate systems is more con-
venient (b).

êy , and êz are the same no matter which Point P is considered: If, for example, êz

points upward toward the sky from any one point, then êz points upward toward
the sky at every point considered. In the cylindrical coordinate system, the three
basis vectors associated with a Point P are êr , êθ , and êz (see Figure 1.41).
The vector êz at P is the same as the vector of the same name in the Cartesian
coordinate system. The vector êr at P is a vector that points radially outward
from the nearest point on the z-axis in the direction of increasing r ; thus, êr is
perpendicular to the z-axis. Furthermore, êr is defined to make an angle θ with
the positive x-axis of the Cartesian system. The last cylindrical basis vector, êθ , is
defined as perpendicular to êr and êz and points in the direction counterclockwise
to the x-axis—that is, in the direction of increasing θ . Both êr and êθ vary
with position (see Figure 1.41). For an arbitrary point at coordinates (x, y, z) or
(r, θ, z), the cylindrical basis vectors are related to the constant Cartesian basis

z

y

P

r

θ 

x

.z

z

y

P

r

θ

φ 

x

.

Figure 1.40 Schematic of the geometries of the cylindrical and spherical coordinate systems.
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2P
. .

θê
zê

rê

yx

z

rê

zê

θê
1P

rê

y

x

z

eθ̂eθ̂

eφ̂

rê

1θ

1φ
2φ

2θ

eφ̂

Figure 1.41 Pictorial representation of the basis vectors associated with the cylindrical (top) and spherical (bottom) coordinate
systems. The directions of the curvilinear basis vectors at two positions are highlighted above, demonstrating that
the directions of the basis vectors vary with position.

vectors, as follows:

ˆ ˆ ˆer = cos θex + sin θey (1.265)
Cylindrical basis vectors:

(from geometry)
ˆ ˆ ˆeθ = − sin θex + cos θey (1.266)

êz = êz (1.267)

These relationships result from careful consideration of the geometry in Fig-
ures 1.40 and 1.41. The cylindrical coordinate system is an orthonormal basis
system, which means that at any chosen position, the basis vectors are mutually
perpendicular and of unit length.

The cylindrical basis vectors vary with position, and this affects how spa-
tial derivatives are written in the cylindrical coordinate system. To perform
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operations with the spatial derivative operator ∇, we write del and the other
quantities in Cartesian coordinates, subsequently converting the result to cylin-
drical coordinates. Differential operations expressed in cylindrical coordinates
are summarized in Table B.3 in Appendix B. (We refer to Appendix B when we
need components in cylindrical coordinates.)

For systems with spherical symmetry, we use a spherical coordinate system.
The position of a point in space may be specified by its spherical coordinates
(r, θ, φ), as shown in Figure 1.40. The spherical coordinate variables (r , θ , φ)
may be written in terms of the Cartesian coordinates as follows:

x = r sin θ cos φ (1.268)
Spherical coordinate variables:

(from geometry)
y = r sin θ sin φ (1.269)

z = r cos θ (1.270)

ˆ

ˆ ˆ ˆ
ˆ

In the spherical coordinate system, all three basis vectors associated with a
Point P vary with position (see Figure 1.41). The three unit vectors are êr , êθ ,
and êφ . The vector êr points radially from the origin toward a point of inter-
est in the direction of increasing r . The vector êθ is perpendicular to êr and
points in the direction that rotates away from the positive z-axis; this is the
direction of increasing θ . The vector êφ is perpendicular to êr and êθ and points
counterclockwise from the x-axis. The definitions of r and θ and êr and êθ

are different in the cylindrical and spherical coordinate systems. The spherical
basis vectors (er , êθ , êφ) may be written in terms of the Cartesian coordinates as
follows:

er = (sin θ cos φ)ex + (sin θ sin φ)ey

+ (cos θ)ez (1.271)
Spherical basis vectors:

(from geometry)
ˆ ˆ ˆeθ = (cos θ cos φ)ex + (cos θ sin φ)ey

ˆ+ (− sin θ)ez (1.272)

ˆ ˆ ˆeφ = (− sin φ)ex + (cos φ)ey (1.273)

Operating with the spatial derivative operator ∇ in spherical coordinates has
the same difficulties described for cylindrical coordinates: Because the basis vec-
tors vary with position in space, spatial derivatives must be carefully evaluated
when this coordinate system is used. The solution to this problem when working
in spherical coordinates is the same as the solution when using cylindrical coor-
dinates: Write ∇ and the vectors in the Cartesian system and carefully carry out
the operations. This already has been done with the results shown in Table B.4
in Appendix B. The extra difficulty caused by definitions in the curvilinear coor-
dinate systems is offset by the mathematical simplifications that result when
cylindrically or spherically symmetric flow problems are expressed in these coor-
dinate systems (see Chapters 7–10). Several examples are presented for practice
with curvilinear coordinates and vectors.
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EXAMPLE 1.24. For the following vectors, what is a · m? Note that the two
vectors are not written in the same coordinate system.

a =
⎛
⎝ 2

−1
1

⎞
⎠

xyz

m =
⎛
⎝1

1
3

⎞
⎠

rθ z

(1.274)

SOLUTION. Because the two vectors are not written in the same coordinate
system, we must convert them before carrying out the dot product. Alternatively,
we can write the vectors with the basis vectors explicitly shown and use the
distributive law:

a · m = ( ˆ2ex − êy + êz
)

ˆ ˆ· (er + êθ + 3ez) (1.275)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ= 2ex · (er + êθ + 3ez) − êy · (er + êθ + 3ez) + êz · (er + êθ + 3ez)

(1.276)

ˆ ˆ ˆ ˆ

ˆ ˆ

To evaluate the individual dot products, we use Equations 1.265–1.267:

a · m = 2ex · êr + 2ex · êθ + 2ex · 3ez − êy · êr

− êy · êθ − êy · 3ez + êz · êr + êz · êθ + êz · 3ez (1.277)

= 2 cos θ − 2 sin θ − sin θ − cos θ + 3 (1.278)

a · m = cos θ − 3 sin θ + 3 (1.279)

Alternatively, we convert m from the cylindrical to the Cartesian coordinate
system first:

m =
⎛
⎝1

1
3

⎞
⎠

rθ z

ˆ ˆ ˆ= 1er + 1eθ + 3ez (1.280)

= 1
(

ˆ ˆcos θex + sin θey
)+ 1

(
ˆ ˆ− sin θex + cos θey

)
ˆ+ 3 (ez) (1.281)

=
⎛
⎝ cos θ − sin θ

sin θ + cos θ

3

⎞
⎠

xyz

(1.282)

and the dot product is formed by summing the products of the x-, y-, and z-
coefficients. (Matrix multiplication of coefficients is allowed when the vectors or
tensors are written with respect to the same orthonormal basis.)

a · m = (2 −1 1
)

xyz
·
⎛
⎝ cos θ − sin θ

sin θ + cos θ

3

⎞
⎠

xyz

(1.283)

= cos θ − 3 sin θ + 3 (1.284)

We obtain the same result with both methods.
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EXAMPLE 1.25. A flow is produced in the gap between two cylinders by turning
the inner cylinder. The device is tall and the gap between the cylinders is small;
thus, the effect of the flow at the bottom of the device is negligible. For the flow
in the gap, the velocity field is v. If v is expressed in Cartesian coordinates, what
are the nonzero components of the velocity vector? If the cylindrical coordinate
system is used, what are the nonzero components? Comment on the solution.

R2

R1

r

z

axis of
rotation

θ

Ω

Ω

Figure 1.42 A flow is produced in the gap between two cylinders by turning the inner cylinder. The device is tall and the gap
between the cylinders is small.

SOLUTION. The flow shown in Figure 1.42 is in the azimuthal direction, and the
paths followed by fluid particles are circular. In Cartesian coordinates, there would
be no z-component of the velocity but there would be both x- and y-components.

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝vx

vy

0

⎞
⎠

xyz

ˆ= vx êx + vyey (1.285)

The vector v is a vector in a plane with unit normal êz .
If we describe the flow using cylindrical coordinates, the three components

we seek are vr , vθ , and vz . The component vr is the component in the direction
of increasing r ; this component is zero. The component vθ is the component of
velocity in the direction of increasing θ ; this is the component that we are seeking.
The component vz is the component of velocity in the direction of increasing z;
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this component is zero. Thus, there would be only one nonzero component, vθ .

v =
⎛
⎝ vr

vθ

vz

⎞
⎠

rθ z

=
⎛
⎝ 0

vθ

0

⎞
⎠

rθ z

= vθ êθ (1.286)

If we use Equations 1.262, 1.263, and 1.266, we can convert between these two
coordinate systems (remember that v is independent of the coordinate system).
Beginning with v in the cylindrical coordinate system and using Equation 1.266
for êθ and Equations 1.262–1.264 to convert sin θ , we obtain:

v = vθ êθ = vθ

(
ˆ ˆ− sin θex + cos θey

)
(1.287)

=
⎛
⎝−vθ sin θ

vθ cos θ

0

⎞
⎠

xyz

=

⎛
⎜⎜⎜⎝

−vθ
y√

x2+y2

vθ
x√

x2+y2

0

⎞
⎟⎟⎟⎠

xyz

=
⎛
⎝vx

vy

0

⎞
⎠

xyz

(1.288)

Equation 1.286 for v in the rθ z coordinate system is much simpler than
Equation 1.288 for v written in the xyz coordinate system. By choosing the
cylindrical coordinate system, we reduce the number and complexity of the
velocity coefficients that we must solve for. In addition, the boundary conditions
are simpler in the cylindrical coordinate system. The boundary conditions are
no-slip at the two cylindrical surfaces (see Chapter 6). The no-slip conditions
require the velocity of the fluid at the surface to be the same as the velocity of
the surface:

Boundary conditions:
(cylindrical coordinates)

{
r = R2 vθ = 0
r = R1 vθ = R1�

(1.289)

If we use a Cartesian coordinate system, the same boundary conditions are written
as:

Boundary conditions:
(Cartesian coordinates)

{
x2 + y2 = R2

2 v2
x + v2

y = 0

x2 + y2 = R2
1 v2

x + v2
y = R2

1�
2 (1.290)

The boundary conditions written in this way are more difficult to work with than
those written in the cylindrical coordinate system.

ˆ

ˆ ˆ ˆ

EXAMPLE 1.26. Water flows in a horizontal pipe. We want to calculate the
flow in the cylindrical coordinate system centered along the pipe axis. In the
cylindrical coordinate system, what is the vector expression for the acceleration
due to gravity?

SOLUTION. The two coordinate systems of interest are shown in Figure 1.43.
The acceleration due to gravity is given most naturally by the Cartesian vector
g = −ge2. To convert this expression to the cylindrical coordinate system, we
must relate the two sets of basis vectors and then use algebra to convert g. From
Figure 1.43, we see that:

e1 = cos θer − sin θeθ (1.291)
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end view:

Figure 1.43 Two coordinate systems are of interest for flow in a horizontal pipe: (1) the cylindrical coordinate system centered
along the axis of the tube, and (2) the Cartesian coordinate system containing the axis of the tube as ê3 and the
vertical direction as ê2.

ˆ

We also can obtain this result from solving Equations 1.265–1.266 for êx = ê1.
Thus, g becomes:

g = −ge2 =
⎛
⎝ 0

−g
0

⎞
⎠

123

(1.292)

=
⎛
⎝−g cos θ

g sin θ

0

⎞
⎠

rθ z

(1.293)

These two ways of expressing g are completely equivalent; a vector is independent
of the coordinate system in which we express it. When using matrix notation we
identify the coordinate system we are using by writing a subscript on the vector
or tensor.

EXAMPLE 1.27. In a liquid of density ρ, what is the net fluid force on a
submerged sphere (i.e., a ball or a balloon) (Figure 1.44)? What is the direction
of the force and how does the magnitude of the fluid force vary with fluid density?

SOLUTION. We are not ready to solve this problem at this stage in the text, but
when it is solved in Chapter 4, we arrive at the following expression for f in
terms of an integral in the spherical coordinates (see Figure 4.23):

f = −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ) êr sin θdθdφ (1.294)

= −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ)

⎛
⎝1

0
0

⎞
⎠

rθφ

sin θdθdφ (1.295)
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Figure 1.44 Fluid exerts a net force on a submerged sphere. If the sphere is light, the force from the fluid pressure acts to float
the sphere. If the sphere is heavy, the fluid sinks in the fluid but is decelerated by the fluid force.

ˆ

ˆ ˆ ˆ ˆ

The basis vector êr varies with θ and φ and therefore must be treated as a
variable in the integration. The simplest way to proceed is to convert êr to
constant Cartesian coordinates before attempting to integrate. The basis vector
er is expressed in Cartesian coordinates in Equation 1.271:

er = sin θ cos φex + sin θ sin φey + cos θez (1.296)

Substituting this into Equation 1.294, we obtain:

f = −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ) êr sin θdθdφ (1.297)

= −ρgR2
∫ 2π

0

∫
ˆ

ˆ ˆ

π

0
(H0 − R cos θ) sin θ [sin θ cos φex

+ sin θ sin φey + cos θez
]

dθdφ (1.298)

The equation for f is a vector equation, and there are three Cartesian components
in Equation 1.298, as emphasized here:

f = −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ) sin θ

⎛
⎝ sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠

xyz

dθdφ (1.299)

Each vector component is integrated separately.
For the x-component φ-integration, we integrate cos φ from zero to 2π . The

result of this definite integral is zero.

∫ 2π

0

[
(H0 − R cos θ) sin2 θ

]
cos φdφ =

∫ 2π

0
[function of θ] cos φdφ (1.300)

= [function of θ ] sin φ|2π
0 = 0 (1.301)
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For the y-component φ-integration, we integrate sin φ from zero to 2π . The result
of this definite integral also is zero.∫ 2π

0

[
(H0 − R cos θ) sin2 θ

]
sin φdφ =

∫ 2π

0
[function of θ ] sin φdφ (1.302)

= [function of θ] (− cos φ)|2π
0 = 0

(1.303)

For the z-component φ-integration, we integrate an expression independent of φ

from zero to 2π . This integral is 2π times the expression.∫ 2π

0
[(H0 − R cos θ) sin θ cos θ] dφ =

∫ 2π

0
[function of θ] dφ (1.304)

= [function of θ ] 2π (1.305)

Substituting these results into Equation 1.299, we obtain:

f = −ρgR2
∫ π

0

⎛
⎝ 0

0
2π (H0 − R cos θ) sin θ cos θ

⎞
⎠

xyz

dθ (1.306)

The last step is to carry out the remaining θ-integral. For the x- and y-
components, the θ-integral is the integral of zero, which is zero; the θ-integral
for the z-component is straightforward:

f = −ρgR2
∫ π

0

⎛
⎝ 0

0
2π (H0 − R cos θ) sin θ cos θ

⎞
⎠

xyz

dθ (1.307)

fz

−2π R2ρg
= H0

∫ π

0
sin θ cos θdθ − R

∫ π

0
sin θ cos2 θdθ (1.308)

The first definite integral is zero (confirm for yourself), indicating that the absolute
depth of the sphere, H0, has no effect on the magnitude of the force. The second
definite integral gives a nonzero result that carries forward. The final result is:

fz = 4π R3

3
ρg (1.309)

f =

⎛
⎜⎝ 0

0
4π R3

3 ρg

⎞
⎟⎠

xyz

(1.310)

ˆThe net fluid force on the sphere is an upward force f = fzez equal in magnitude
to the weight of a sphere-shaped quantity of fluid. Thus, the fluid exerts an upward
force (i.e., a force in the +z-direction) on the sphere equal in magnitude to the
weight of the fluid displaced by the sphere (i.e., Archimedes’ principle). This
is the buoyancy effect, which is why objects float. When the weight of the fluid
displaced by an object is higher than the weight of the object itself, the object
floats. When the weight of the fluid displaced is less than the weight of the object,
the object sinks. Chapter 4 discusses these forces in fluids in more detail.

www.20file.org

http://www.semeng.ir


84 An Introduction to Fluid Mechanics

ˆ ˆ

ˆ ˆ

EXAMPLE 1.28. For the tensor A = 2e1e1, what is A written in the cylindrical
coordinate system?

A = 2e1e1 =
⎛
⎝2 0 0

0 0 0
0 0 0

⎞
⎠

123

(1.311)

ˆ ˆ

SOLUTION. To translate A written in the 123-coordinate system to the same
tensor written in the rθ z-coordinate system, we begin with the tensor written
explicitly in terms of the basis vectors ê1, ê2, ê3. We use the expressions in
Equations 1.265–1.267 to algebraically convert the basis vectors:

A = 2e1e1 (1.312)

ˆ ˆ ˆ

To write ê1 in terms of êr , êθ , and êz , we explicitly solve Equations 1.265 and
1.266 for ê1:

er = cos θe1 + sin θe2 (1.313)

ˆ ˆ ˆeθ = − sin θe1 + cos θe2 (1.314)

Solving for ê1:

ˆ ˆ ˆe1 = cos θer − sin θeθ (1.315)

ˆ ˆ

Substituting this result into Equation 1.312 twice and carrying out the distributive
law, we obtain:

A = 2e1e1 (1.316)

ˆ ˆ ˆ ˆ= (cos θer − sin θeθ ) (cos θer − sin θeθ ) (1.317)

ˆ ˆ ˆ ˆ= cos2 θer êr − sin θ cos θer êθ − sin θ cos θeθ êr + sin2 θeθ êθ (1.318)

A =

⎛
⎜⎜⎜⎝

cos2 θ − sin θ cos θ 0

− sin θ cos θ sin2 θ 0

0 0 0

⎞
⎟⎟⎟⎠

rθ z

(1.319)

The same tensor A is expressed in Equations 1.311 and 1.319—the two versions
are expressed with respect to different coordinate systems.

1.3.3 Substantial derivative

The mass, momentum, and energy conservation equations introduced in Sec-
tion 1.3.2 are written in Equations 1.239–1.241 in a way that emphasizes the
similarity of the lefthand terms. Notice that on the lefthand side of those equa-
tions, the following pattern recurs:

∂ f

∂t
+ v · ∇ f (1.320)
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where, depending on which equation we look at, f is density, velocity, or energy.
This pattern is called the substantial derivative. The notation for a substantial
derivative is a derivative written with a capital D:

Substantial
derivative

(Gibbs notation)

D f

Dt
≡ ∂ f

∂t
+ v · ∇ f (1.321)

Cartesian coordinates
(see Table B.2)

D f

Dt
≡ ∂ f

∂t
+ ∂ f

∂x1
v1 + ∂ f

∂x2
v2 + ∂ f

∂x3
v3 (1.322)

The substantial derivative has a physical meaning: the rate of change of a quantity
(i.e., mass, energy, or momentum) as experienced by an observer that is moving
along with the flow. The observations made by a moving observer are affected
by the stationary time rate of change of the property (∂ f/∂t); however, what is
observed also depends on where the observer goes as it floats along with the
flow (v · ∇ f ). If the flow takes the observer into a region where, for example, the
local energy is higher, then the observed amount of energy will be higher due to
this change in location. The rate of change from the perspective of an observer
floating along with a flow appears naturally in the equations of change.

The physical meaning of the substantial derivative is discussed more com-
pletely in the sidebar and in National Committee for Fluid Mechanics Films
(NCFMF) available on the Internet [120]. This chapter concludes with practical
mathematical advice in Section 1.3.4. Chapter 2 describes fluid behavior as a first
step to fluid-mechanics modeling.

Substantial Derivative in Fluid Mechanics

In fluid mechanics and other branches of physics, we often deal with properties that vary in
space and change with time. Thus, we must consider the differentials of multivariable functions.
Consider a multivariable function, f (t, x1, x2, x3), associated with a particle of fluid, where t is
time and x1, x2, and x3 are the three spatial coordinates. The function f might be, for example,
the density of flowing material as a function of time and position. The expression � f is the
change in f when comparing the value of the function f at two nearby points, (t, x1, x2, x3) and
(t + �t, x1 + �x1, x2 + �x2, x3 + �x3).

f = f (t, x1, x2, x3) (1.323)

� f = f (t + �t, x1 + �x1, x2 + �x2, x3 + �x3) − f (t, x1, x2, x3) (1.324)

In the limit that the two points are close together, � f becomes the differential d f :

d f = lim
�x1 −→ 0
�x2 −→ 0
�x3 −→ 0
�t −→ 0

� f (1.325)

(continued)
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Substantial Derivative in Fluid Mechanics (continued)

We can write � f in terms of partial derivatives, which are functions that give the rates of change
of f (i.e., slopes) in the three coordinate directions x1, x2, and x3 (see Web appendix [108] for a
review):

� f = ∂ f

∂t
�t + ∂ f

∂x1
�x1 + ∂ f

∂x2
�x2 + ∂ f

∂x3
�x3 (1.326)

Because the differential d f is the limit of � f as all changes of variable go to zero, we can take
the limit of Equation 1.326 to obtain d f in terms of dx1, dx2, and dx3:

d f = lim
�x1 −→ 0
�x2 −→ 0
�x3 −→ 0
�t −→ 0

� f (1.327)

d f = lim
�x1 −→ 0
�x2 −→ 0
�x3 −→ 0
�t −→ 0

∂ f

∂t
�t + ∂ f

∂x1
�x1 + ∂ f

∂x2
�x2 + ∂ f

∂x3
�x3 (1.328)

d f = ∂ f

∂t
dt + ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + ∂ f

∂x3
dx3 (1.329)

This is the familiar chain rule. The direction in going from (t, x1, x2, x3) to (t + �t, x1 +
�x1, x2 + �x2, x3 + �x3, t + �t) is not specified in the definition of d f ; Equation 1.329 applies
to any path between any two nearby points.

There is a particular path and set of neighboring particles that are of recurring interest in fluid
mechanics: the path that fluid particles take. Fluid particles are discussed in detail in Chapter 3
but, briefly, a fluid particle is an infinitesimally small amount of fluid. For a chosen particle, its
motion describes a path through three-dimensional space (Figure 1.45). These paths are called
pathlines of the flow.

Consider variation in the function f along a particular path—that is, the path that a fluid
particle traces out as it travels through a flow. The function f might be density as a function of
position and time for example, or temperature as a function of position and time. Beginning at
an arbitrary point in the flow, we compare the value of f at the original point and at the nearby
point f + � f . For an arbitrary path as just discussed, � f is given by Equation 1.328 repeated
below:

� f |along ANY path = ∂ f

∂t
�t + ∂ f

∂x1
�x1 + ∂ f

∂x2
�x2 + ∂ f

∂x3
�x3 (1.330)

fluid
particle

particle 
pathline

Figure 1.45 A fluid particle consists of the same molecules at all times. The path that a particle follows through a flow is
called a pathline.
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Substantial Derivative in Fluid Mechanics (continued)

If we now follow fluid particles along a particular path, the particle pathline, then we can relate
the directions �x1,�x2, and �x3 to the local fluid velocity components v1, v2, and v3:

Along a
flow pathline:

⎧⎨
⎩

�x1 = v1�t
�x2 = v2�t
�x3 = v3�t

(1.331)

Substituting these expressions into Equation 1.330, we obtain:

� f |along particle pathline = ∂ f

∂t
�t + ∂ f

∂x1
v1�t + ∂ f

∂x1
v2�t + ∂ f

∂x1
v3�t (1.332)

= �t

(
∂ f

∂t
+ ∂ f

∂x1
v1 + ∂ f

∂x1
v2 + ∂ f

∂x1
v3

)
(1.333)

Dividing through by �t and taking the limit as �t goes to zero, we arrive at the following
expression, which is the substantial derivative:

� f

�t

∣∣∣∣∣∣
along particle pathline

= ∂ f

∂t
+ ∂ f

∂x1
v1 + ∂ f

∂x1
v2 + ∂ f

∂x1
v3 (1.334)

D f

Dt
≡ d f

dt

∣∣∣∣∣∣
along particle pathline

= lim
�t−→0

� f

�t

∣∣∣∣∣∣
along particle pathline

(1.335)

Substantial derivative or
rate of change of f

along a particle pathline

D f

Dt
= ∂ f

∂t
+ ∂ f

∂x1
v1 + ∂ f

∂x2
v2 + ∂ f

∂x3
v3 (1.336)

Thus, the substantial derivative gives the time rate of change of a function f as an observer
floats along a pathline in a flow, attached to a fluid particle. Why does this matter in fluid
mechanics? One reason is that sometimes measurements are made in just this way, by floating
an instrument in a flow—for example, a weather balloon (Figure 1.46). The density, velocity,
or temperature as a function of time recorded this way is the substantial derivative along the
pathline traveled. In meteorology and oceanography, it is common to take measurements of the
substantial derivative.

However, the main reason that the substantial derivative is important is that it appears in the
mass, momentum, and energy-conservation equations (Equations 1.239–1.241):

Mass conservation
Dρ

Dt
= −ρ (∇ · v) (1.337)

Momentum conservation ρ
Dv

Dt
= −∇ p + μ∇2v + ρg (1.338)

ˆ
Energy conservation ρ

DE

Dt
= −∇ · q − ∇ · (pv) + ∇ · τ̃ · v + Se (1.339)

The substantial derivative appears because each equation is written in terms of the properties of
a field (written in terms of the field variables ρ, v, and Ê) rather than of a single isolated body
(Figure 1.47). To understand the difference, consider mass, momentum, and energy conservation

(continued)
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Substantial Derivative in Fluid Mechanics (continued)

Figure 1.46 Weather balloons float along at the average velocity of the fluid and measure velocity, temperature, and
other variables of interest to weather forecasters. This is an example of a measurement of properties along
a pathline. (Meteorologist Jeff DeRosa launches a weather balloon. c© Russ Durkee, 2005, NSF, USAP Photo
Library)

( )

( )

( )
dt

Ed
dt

vmd
dt

md

body

body

body

Dt

ED

Dt

vD
Dt

D

ˆ
ρ

ρ

ρ

rate of change 
associated with a 

body 

rate of change  
of a field variable  

as recorded by an observer 
moving with the flow

mass 

momentum 

energy 

Figure 1.47 The balance equations for mass, momentum, and energy may be written for a body or a position in space—that
is, for a field.
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Substantial Derivative in Fluid Mechanics (continued)

of a body. The mass of a body is conserved in the sense that if the mass changes—if a piece is
shaved off, for example—it is not the same body. The momentum of a body is conserved (i.e.,
Newton’s second law; see Chapter 3), and the energy of a body is conserved (i.e., first law of
thermodynamics; see Chapter 6). For a body, the conservation laws contain the usual time rates
of change of mass (dm/dt), momentum (d(mv)/dt), and energy (d E/dt).

When we are concerned with the properties characteristic of a location in a field rather
than of a chosen body, the correct expression for the rate of change of the field variable at
a fixed point is shown to be the substantial derivative (see Chapters 3 and 6). The rate of
change of a property—mass, momentum, and energy—for a given position in a field depends
on the instantaneous rate of change of the property at that location (∂/∂t) as well as the rate
at which the property is convected to that location by the fluid motion (v · ∇). In Chapter 6,
we derive the mass, momentum, and energy balances for a position in a field, and the sub-
stantial derivative appears naturally. The concepts outlined here are discussed fully in Chap-
ters 3 and 6. We present two examples to build familiarity with the substantial derivative.

EXAMPLE 1.29. Using Equation 1.242 to write ∇ f , use matrix multiplication to verify the
equality of the following two expressions for the substantial derivative:

Substantial
derivative

(Gibbs notation)

D f

Dt
≡ ∂ f

∂t
+ v · ∇ f (1.340)

Cartesian coordinates
(see Table B.2)

D f

Dt
≡ ∂ f

∂t
+ ∂ f

∂x1
v1 + ∂ f

∂x2
v2 + ∂ f

∂x3
v3 (1.341)

SOLUTION. To show the equality of these two equations, we write the Gibbs notation
expressions v and ∇ f in Cartesian coordinates and matrix multiply:

v =
⎛
⎝ v1

v2

v3

⎞
⎠

123

(1.342)

∇ f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f

∂x1

∂ f

∂x2

∂ f

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.343)

v · ∇ f = ( v1 v2 v3

)
123

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f

∂x1

∂ f

∂x2

∂ f

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.344)

= v1
∂ f

∂x1
+ v2

∂ f

∂x2
+ v3

∂ f

∂x3
(1.345)

(continued)
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Substantial Derivative in Fluid Mechanics (continued)

Thus:

D f

Dt
≡ ∂ f

∂t
+ v · ∇ f = ∂ f

∂t
+ ∂ f

∂x1
v1 + ∂ f

∂x2
v2 + ∂ f

∂x3
v3 (1.346)

EXAMPLE 1.30. What is the substantial derivative Dv/Dt of the steady-state velocity field
represented by the following velocity vector? Note that the answer is a vector.

v(x, y, z, t) =
⎛
⎝−3.0x

−3.0y
6z

⎞
⎠

xyz

(1.347)

SOLUTION. We begin with the definition of the substantial derivative in Equation 1.321 and
substitute v for f :

Dv

Dt
= ∂v

∂t
+ v · ∇v (1.348)

We now consult Table B.2 to determine the components of v · ∇v in Cartesian coordinates, and
we construct the Cartesian expression for Dv/Dt :

v · ∇v =

⎛
⎜⎜⎜⎝

vx
∂vx
∂x + vy

∂vx
∂y + vz

∂vx
∂z

vx
∂vy

∂x + vy
∂vy

∂y + vz
∂vy

∂z

vx
∂vz
∂x + vy

∂vz
∂y + vz

∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

(1.349)

Dv

Dt
= ∂v

∂t
+ v · ∇v (1.350)

=

⎛
⎜⎝

∂vx
∂t
∂vy

∂t
∂vz
∂t

⎞
⎟⎠

xyz

+

⎛
⎜⎜⎜⎝

∂vx
∂t + vx

∂vx
∂x + vy

∂vx
∂y + vz

∂vx
∂z

∂vx
∂t + vx

∂vy

∂x + vy
∂vy

∂y + vz
∂vy

∂z
∂vx
∂t + vx

∂vz
∂x + vy

∂vz
∂y + vz

∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

(1.351)

Finally, we carry out the partial derivatives on the various terms of the velocity field and substitute
them into equation 1.351:

Dv

Dt
=

⎛
⎜⎝

0 + (−3)(−3x) + 0 + 0

0 + 0 + (−3)(−3y) + 0

0 + 0 + 0 + 6(6z)

⎞
⎟⎠

xyz

(1.352)

Dv

Dt
=
⎛
⎝ 9x

9y
36z

⎞
⎠

xyz

(1.353)
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1.3.4 Practical advice

The analysis of flows often means solving for density, velocity, and stress fields.
The equations that we encounter in these analyses are ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs) [17]. The solutions of
differential equations give the complete density, velocity, and stress fields for
a problem, from which many engineering quantities can be calculated. In this
text, it is assumed that students have taken multivariable calculus, linear algebra,
and a first course in solving differential equations; we apply these and other
mathematics skills in our study of fluid mechanics.

To prepare students to study fluid mechanics, the Web appendix [108] contains
a review of solution methods for differential equations. Also, several exercises
provide problem-solving practice that may be helpful. For instructional videos on
mathematics through differential equations, see [73]. For more on solving ODEs
and PDEs, see the Web appendix [108] and [61]. We move on to modeling flows
in general in Chapter 2.

EXAMPLE 1.31. In fluid mechanics, we encounter the following equation:

pL − p0

L
= μ

r

d

dr

(
r

dvz

dr

)
− ρg sin α (1.354)

This equation appears in the analysis of pressure-driven flow in a tilted tube in
cylindrical coordinates. Solve the differential equation for vz(r ); note that pL ,
p0, L, μ, ρ, g, and α are all constants.

SOLUTION. In this example and the one that follows, we show the details
of integration for problems related to fluid mechanics. At first, the differential
equations to solve appear to be complex; in this case, however, only the most
elementary integrations are required. Strategies for recognizing and carrying out
the solution are discussed.

The first step in solving an equation—once it has been derived from the
physics—is to take careful stock of it. Is it an algebraic or a differential equation?
If it is a differential equation, is it an ODE (i.e., function of a single independent
variable) or a PDE (i.e., function of two or more independent variables)? Which
expressions in the equation are constant and which are variable?

To clarify the structure of Equation 1.354, we group the constants together and
rename that group:

1

r

d

dr

(
r

dvz

dr

)
=
[

pL − p0

μL
+ ρg sin α

μ

]
≡ B (1.355)

d

dr

(
r

dvz

dr

)
= B r (1.356)

where B is a constant equal to the quantity in the square brackets of Equa-
tion 1.355. Equation 1.356 is a cleaner representation of Equation 1.355 and
therefore is easier to solve. This is further clarified when we recognize that the
lefthand side of Equation 1.356 is written as the derivative of a grouped quantity.
We can simplify the appearance of Equation 1.356 if we define the quantity in
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parentheses as a new variable �:

Define �: � ≡
(

r
dvz

dr

)
(1.357)

Substitute � into the
differential equation:

d

dr

(
r

dvz

dr

)
= B r (1.358)

d�

dr
= B r (1.359)

Equation 1.359 is clear and simple to solve. Integrating once:∫
d� =

∫
B r dr (1.360)

� = B
r2

2
+ C1 (1.361)

where C1 is an integration constant. Substituting the definition of �, we now
rearrange and integrate:

� =
(

r
dvz

dr

)
= B

r2

2
+ C1 (1.362)

dvz

dr
= B

2
r + C1

r
(1.363)

∫
dvz =

∫ (
B

2
r + C1

r

)
dr (1.364)

vz = B

4
r2 + C1 ln r + C2 (1.365)

where C2 is a second integration constant. This is as far as we can go. Because
Equation 1.354 is a second-order ODE, we need two boundary conditions on r
to determine the two integration constants, C1 and C2.

EXAMPLE 1.32. In pressure-driven flow in a tube (Poiseuille flow; see Sec-
tion 7.1), the z-component of the momentum balance simplifies to the equation
shown here (see also Equation 7.16). Solve for vz(r ) and p(z).

∂p(z)

∂z
= μ

r

∂

∂r

(
r
∂vz(r )

∂r

)
+ ρg (1.366)

SOLUTION. Although Equation 1.366 is a PDE, it is among the simplest PDEs
to solve because it is separable. A separable PDE of two variables is one that
can be completely separated into two independent equations to solve, as we now
demonstrate.

The pressure p(z) in Equation 1.366 is given as only a function of z and the
velocity vz(r ) is given as only a function of r . Gravity (g), density (ρ), and
viscosity (μ) are constant. If we rearrange Equation 1.366, we can collect all of
the z-dependent terms on the left and all of the r -dependent terms on the right.
The constant terms can go on either side; we arbitrarily group the constant terms
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with the pressure:

∂p

∂z
− ρg = μ

r

∂

∂r

(
r
∂vz

∂r

)
(1.367)

The lefthand side is only a function of z and the righthand side is only a function
of r . We have succeeded in separating the two variables, r and z. Thus, both sides
must be equal to the same constant, which we call λ [58]:

∂p

∂z
− ρg = μ

r

∂

∂r

(
r
∂vz

∂r

)
= λ (1.368)

We separated the z and r parts of Equation 1.367 into two independent equations
that we can solve directly:

∂p

∂z
− ρg = λ (1.369)

μ

r

∂

∂r

(
r
∂vz

∂r

)
= λ (1.370)

Because Equations 1.369 and 1.370 are now ODEs, we change the differentiation
from partial differentiation ∂/∂r , ∂/∂z to total differentiation d/dr , d/dz. The
remaining steps are straightforward:

Pressure ODE:
dp

dz
− ρg = λ (1.371)

dp

dz
= (λ + ρg) (1.372)∫

dp =
∫

(λ + ρg) dz (1.373)

p = (λ + ρg) z + C3 (1.374)

where C3 is an integration constant.

z-velocity ODE:
μ

r

d

dr

(
r

dvz

dr

)
= λ (1.375)

d

dr

(
r

dvz

dr

)
=
(

λ

μ

)
r (1.376)

The solution of Equation 1.376 is discussed in the previous example (compare to
Equation 1.356).

1.4 Problems

1. Create a list of five real engineering problems or societal challenges that can
be addressed with the modeling introduced in this chapter and studied in
fluid mechanics.
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2. The green hose fills a swimming pool in 4 hours, the red hose fills the same
pool in 6 hours, and the yellow hose fills it in 8 hours. With all three hoses
running at those rates, how long will it take to fill the pool?

3. What is a typical volumetric flow rate (in gpm and lpm (liters per minute) for
household plumbing? What is a typical value of average velocity in a pipe?
Assume half-inch type-K copper tubing (see Perry’s Chemical Engineering
Handbook [132] for dimensions).

4. Compare typical values of velocity head, pressure head, elevation head, and
friction head. What is a good rule of thumb for velocity differences that
are significant in the flow of household water? Assume that the relevant
piping is half-inch type K copper tubing (see Perry’s Chemical Engineering
Handbook [132] for dimensions).

5. What are the viscosity and density of glycerin at room temperature? A
useful reference for physical-property data is Perry’s Chemical Engineering
Handbook [132].

6. How do the viscosity of sugar–water solutions vary with concentration and
temperature? (Find the answer in the literature.) Provide a plot that shows
how the data vary; consider carefully how to plot the data so that the trend is
displayed meaningfully.

7. Examine the friction factor/Reynolds number relationship for turbulent flow
in pipes (see Figure 1.21). Calculate the pressure drop versus the flow rate
for turbulent flow in a rough pipe in an existing apparatus at a chemical plant.
List the information needed about the pipe to make the calculation. Which
factors are the most critical?

8. For household water in steady flow in a half-inch Schedule 40 horizontal pipe
at 3.0 gpm (see Figure 1.20), what are the frictional losses over a 100-foot run
of pipe? The flow may be laminar or turbulent. (This problem was proposed
originally as Example 1.8; on completion of this chapter, we now can solve
it.)

9. What is the range of the friction factor for turbulent flow in smooth and rough
pipes? What is the range of the friction factor for laminar flow?

10. Water at 25◦C flows at 6.3 × 10−3 m3/s through the irregularly shaped con-
tainer in Figure 1.48. What is the average fluid velocity at the exit? The
apparatus is open to the atmosphere at the entrance and the exit.

11. At a Reynolds number of 10,000, flow in a pipe is turbulent and it is not
possible to produce a laminar flow. What is the friction factor for a flow
in smooth pipe at this Reynolds number? If somehow we could produce a
laminar flow at this Reynolds number, what would the friction factor be?
Repeat for Re = 105. Compare the two answers and discuss.

12. Piping and tubing are names for conduits of fluids, but the two terms differ in
that the outer diameter (OD) of piping is standardized to allow pipefitters to
mount pipes into standard-size holders. The tubing OD is not standardized.
What are the ID and OD of nominal 1/2-inch, 3/4-inch, and 1-inch Schedule
40 pipes? Give dimensions in both inches and mm. What are the closest
metric standard pipe sizes to these three sizes? Search for these answers in
the literature.
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3.2 cm 3.2 cm10.0 cm

1.2 m 1.1 m 1.2 m
0.3 m 0.3 m

Fluid = water, 25oC
Circular symmetry
Cross sec�on:

Figure 1.48 Flow through an irregular container (Problem 10).

13. Piping is rated by its nominal size—for example, 1/2-inch or 3/8-inch pipe—
but the true ID is not the same as the nominal size. For water flowing in
1/2-inch, Schedule 40 PVC (smooth) pipe at 3.0 gpm, calculate the average
velocity and the Reynolds number using the correct, true ID of the pipe.
Calculate the average velocity and Reynolds number using 0.5 inch (i.e., the
nominal size) as the diameter. Calculate the friction factor based on these two
numbers (e.g., using the Colebrook equation or Equation 7.158). Calculate
the predicted pressure drop per unit length �p/L in the two cases. How
much error in pressure drop is generated for 100 feet of pipe when the wrong
diameter is used?

14. Glycerin at room temperature is made to flow through a pipe (the ID is
1.2 mm) at a Reynolds number of 1.00 × 102. What is the average velocity
of the glycerin? What is the average velocity if the fluid is water instead?
Which flow generates more friction? Be quantitative in your answer and
explain.

15. A 30-gallon bathtub takes about 8.0 minutes to fill. What is the flow rate of
water in the pipes (1/2-inch type-K copper tubing) in gpm? What is the flow
rate in cm3/s?

16. Water (25◦C) flows through 1-inch Schedule 40 steel pipe at 2.0 gpm. What
is the Reynolds number of the flow? What is the friction factor? Is the flow
laminar or turbulent?

17. Water (25◦C) flows through 1-1/2-inch Schedule 40 pipe at 2.0 gpm. What is
the pressure drop along 5,000 feet of smooth pipe? If the pipe is not smooth
but rather commercial steel, what is the pressure drop?

18. Room temperature water comes out of a spigot at 3.0 gpm. How long would
it take to fill a 5-gallon bucket?

19. Water at room temperature comes out of a spigot at the maximum speed
possible for the flow to still be laminar. What is the flow rate in gpm and in
liters/minute? The flow line is 1/2-inch, Schedule 40 smooth pipe.

20. Water (25◦C) flows through DN40 (metric pipe size) Schedule 40 smooth
pipe at 8.0 liters/minute. What is the pressure drop along 1,500 meters of
pipe? If the flow rate doubles to 16 liters/minute, what is the pressure drop?
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h

1.5 �

4.0 �

Figure 1.49 Schematic for Problem 23.

21. A Venturi meter with a 1.00-inch diameter throat is to be installed in a 2-inch
line (i.e., Schedule 40 piping, smooth) with water flowing at 25◦C. If the
flow is turbulent and the range of expected flow rates is 0–200 gpm, what is
the expected range of pressure drop in the Venturi meter? You may neglect
frictional losses.

22. A Venturi meter with a 4.00 mm ID throat is installed in a 25DN line (metric
pipe size, Schedule 40, piping, smooth) with water flowing at 25◦C. If the
flow is turbulent and the maximum flow rate is 40.0 liter/min, what is the
pressure drop in the Venturi meter? You may neglect friction.

23. A gasoline tank is connected to a 25-foot hose (ID = 1.50 cm) as shown
in Figure 1.49. The ambient temperature is 38◦C. What is the maximum
height of the barrier over which the gasoline may be siphoned? You may
neglect frictional losses. Note the following physical property data: density
of gasoline = 5.6 lbm/gal and vapor pressure at 38◦C is 12.3 psia.

24. A water tank is connected to a 100-foot hose (ID = 1.50 cm), as shown in the
top of Figure 1.50. The height h is 1.8 meters. Calculate the average velocity
of water in the hose. Do not neglect friction; you may assume turbulent flow.

25. For the flow setup in Problem 24 (h = 1.8 meters), if we elevate the center
of the hose, the flow will continue unabated. At some elevation, however, the
pressure inside the elevated part will drop to the vapor pressure of water at
25◦C and the water will boil, breaking the siphon. At what height, H, will
the siphon break?

26. A pipeline of diameter d connects the fluid (density = ρ) in an elevated open
tank and a closed tank (Figure 1.51). The fluid is motionless. Determine the
pressure in the lower tank in terms of the labeled heights.
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1

1

2

2

h

h

H

Figure 1.50 Schematic for Problems 24 and 25.

27. Water at 25◦C fills the irregularly shaped container in Figure 1.52. What is
the absolute pressure P in psia at the position noted? The apparatus is open
to the atmosphere at the top. The apparatus is 100.0 cm thick into the page.

28. A tall scaffolding is erected next to a lake where a pump is operating. The
maximum head deliverable by the pump is Wpump/mg = 70 ft. A long hose
is connected to the pump exit, and the pump draws water from the lake. The

h2

1

2

h1

Figure 1.51 Schematic of apparatus for Problem 26.

6.0 m

3.0 m

12.0 m

3.0 m

P

water

airair

45o 45o

Figure 1.52 Schematic for Problem 27.
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Figure 1.53 Schematic of a rustic shower arrangement in the woods (Problem 29).

pump is running and water is coming out of the hose. You grab the end of
the hose and start climbing the scaffolding. How high do you have to climb
before the water stops coming out of the hose? Justify your answer using the
mechanical energy balance.

29. At a vacation camp in the woods, the owner collects rainwater for washing.
She plans to construct a cold-water shower by mounting the collection tank
(i.e., 150-gallon, 36-inch diameter) on a platform and using gravity to provide
the flow through piping attached to a hole in the side near the bottom of
the tank (Figure 1.53). She easily can obtain PEX tubing (i.e., cross-linked
polyethylene) in nominal 1/2-inch and 1-inch sizes. What is the flow rate at
the pipe exit at the beginning of the shower if she connected 10 feet of the
1/2-inch PEX (ID = 0.632 inches) to a full tank of water? What is the flow
rate if the tank were only half full? Do not neglect friction.

30. Your grandfather has a cottage at the lake and wants to install a pump to
deliver water to the house. He plans to pump water at night to fill a storage
tank that he installed next to the cottage (Figure 1.54). The pipes and fittings
he chose to use for the installation are listed in the table given. The pumps in
the catalog your grandfather consulted are rated by their value of horsepower
(hp). What is the minimum hp rating of a pump capable of providing a flow

2.0 �

10 �

50 � pump

water 
intake

Figure 1.54 Schematic of the water system at cottage (Problem 30).
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rate of 5 gpm of water at the tank? Assume that the pump is 65 percent
efficient (i.e., of the energy put out by the pump, only 65 percent goes
toward work on the fluid) and that the pipe is PVC (i.e., polyvinyl chloride,
a polymeric material that is assumed to be smooth).

Fitting Number of fittings

straight pipe, 1 inch, Schedule 40 95 feet
coupling 8
globe valve 1
gate valve 4
disk water meter 1

31. Pressure-drop versus flow-rate data were taken on water (room temperature)
flowing in a 30.0 m section of old 1-inch Schedule 40 pipe (Table 1.7).
Calculate the friction factor versus the Reynolds number for these data. How
do the results compare to the standard correlation for the friction factor (i.e.,
the Colebrook equation)? Be quantitative. If we assume that there has been
some scaling (i.e., deposition of hard deposits on the inner walls) that has
decreased the effective pipe ID, can we improve the correspondence between
the data and the literature correlation? Discuss.

32. A pump is connected between two tanks as shown in Figure 1.55. Calculate
the pressure head, the velocity head, the elevation head, and the friction head

Table 1.7. Data for flow in a pipe
for Problem 31

�p Q
(k P a) (cm3/s)

8.0 350

20 560

45 880

88 1,400

230 2,200

470 3,500

20 ft

All piping 1 in. Schedule 40
2 gate valves
1 90° bend

20 ft

30 psig

40 ft

10 ft

1

2

Figure 1.55 Schematic of flow between an open and a closed tank (Problem 32).
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10 ft
tank

1

tank
2

pump

Figure 1.56 Schematic of flow for Problem 34.

between the outlet and the inlet for a flow at 5.0 gpm. Calculate the pumping
head Wpump/mg for this flow.

33. For the flow loop shown in Figure 1.55, develop an equation that gives the
friction head loss h f ≡ F21/g in feet as a function of flow rate Q in gpm. The
answer is an approximately quadratic equation. Plot your answer as friction
head versus capacity (i.e., flow rate) for turbulent flow rates up to 10 gpm.

34. Pumps are rated in terms of fluid head (i.e., energy per unit weight of the
fluid that they are pumping). A pump is connected between two open tanks
as shown in Figure 1.56. The shaft work delivered by the pump at 6.0 gpm
is measured at Wpump/mg = 75 feet, where Wpump is the shaft work done by
the pump, m is the mass flow rate of the fluid being pumped, and g is the
acceleration due to gravity. What is the friction loss of the system between
Points 1 and 2? Give your answer in feet of head. The frictional losses of
the pump already have been accounted for and should not be included in the
calculations.

35. A run of water piping crosses a field where a road is to be built. The piping
will be routed temporarily over the road as shown in Figure 1.57. How is the
load on the pump affected by the temporary change? Estimate the additional
load on the pump as a function of flow rate for the dimensions and fittings
shown in Figure 1.57. Both new valves are ball valves.

36. For the piping system shown in Figure 1.58, what is the average fluid velocity
at the pipe discharge? Write the answer in terms of the variables defined in
the figure. You may neglect friction in the solution. The tank is not open to the
atmosphere; the pipe discharges fluid to the atmosphere. P is the absolute
pressure inside the vapor space over the fluid in the tank, and P is held
constant.

37. Modify the solution for the discharge velocity of a siphon (see Example 1.5)
by accounting for the friction term. Assume that the friction factor is approxi-
mately constant and that flow is in the turbulent regime (0.002 < f < 0.010;
see the Moody chart, Figure 1.21 [103]). What is the error involved in neglect-
ing friction in a siphon?

38. Water at 25◦C flows at 3.2 gpm through the multipath pipeline in Figure 1.59.
Calculate the volumetric flow rate in each branch and the pressure drop
between points (a) and (b). Note: the pressure drop across each branch is the
same and is equal to the pressure drop from (a) to (b). Equation 1.93 shows
us that since �P is the same, then the head loss h f = �P

ρg = 2 f LV 2

Dg in each
branch is the same. The mass balance provides a second relationship between
the two velocities, allowing the problem to be solved.
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20 ft

10 ft 10 ft

Old

New40 ft 2 in. Schedule 40 steel
2 new ball valves
4 new 90° bends

Pipeline crosses desert road:

flow

Figure 1.57 Schematic of circumstances described in Problem 35.

L

h

Inner Diameter = D
Density ρ

Viscosity μ
Temperature TP

water

Figure 1.58 Schematic for Problem 36.

Q Q

(b)

(1)

(a)

All piping is 1/2 inch Schedule 40
Length branch (1) = 245 ft
Length branch (2) = 540 ft

(2)

Figure 1.59 Schematic for Problem 38.
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39. What is the effect of viscosity on the operation of a siphon?
40. Sketch the cylindrical coordinate system basis vectors êr , êθ , and êz at the

following points (r, θ, z): (3, 0, 0), (3, π
2 , 0), (3, 3π

4 , 0), (6, 0, 0), (6, π
2 , 0),

and (6, 3π

ˆ

ˆ

4 , 0). Sketch the Cartesian basis vectors êx , êy , êz at the same
locations. Comment on your sketches.

41. For the vector v = Ueθ written in the cylindrical coordinate system, what is
the component of v in the êx direction? U is a constant.

42. For the vector v = Ureθ written in the cylindrical coordinate system, what is
the component of v in the êy direction? U is a constant and r is the coordinate
variable of the cylindrical coordinate system.

43. For the following vectors v and a, what is the component of the velocity v

(m/s) in the direction of vector a

ˆ ˆ ˆ

?

v = 3ex + 2ey + 7ez =
⎛
⎝3

2
7

⎞
⎠

xyz

ˆa = 6ez =
⎛
⎝0

0
6

⎞
⎠

xyz

44. For the following vector and tensor (matrix), what is n̂ · τ̃? Both expressions
are written in the cylindrical coordinate system.

n̂ =
⎛
⎝1

1
0

⎞
⎠

rθ z

τ̃ =
⎛
⎝ 0 12 0

12 0 0
0 0 0

⎞
⎠

rθ z

45. What is the dot product of the following two vectors? Both vectors represent
properties at the point (1, 0, 0)xyz . Note: The expressions here are written in
two different coordinate systems.

⎛
⎝1

0
2

⎞
⎠

xyz

⎛
⎝1

0
2

⎞
⎠

rθ z

46. What is the dot product of the following two vectors? Both vectors represent
properties at the point (0, 1, 0)xyz . Note: The expressions here are written in
two different coordinate systems.

⎛
⎝1

2
0

⎞
⎠

xyz

⎛
⎝ 1

−1
2

⎞
⎠

rθ z

47. What is the cross product of the following two vectors? Both vectors represent
properties at the point (1, 1, 0)xyz . Note: The expressions here are written in
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two different coordinate systems.⎛
⎝1

0
1

⎞
⎠

xyz

⎛
⎝1

0
0

⎞
⎠

rθ z

ˆ
ˆ

ˆ
ˆ

48. Write the vector w = 4e1 − ê2 + ê3 in cylindrical coordinates.
49. Write the vector v = (1 − 4y2)ex in cylindrical coordinates.
50. Write the vector w = −3e1 − ê2 + ê3 in spherical coordinates.
51. Write the vector v = (1 − 2y2)ey in spherical coordinates.
52. The solution for the velocity field for steady, pressure-driven flow in a tube

is provided in Chapter 7 (see Equation 7.23). Convert this solution, which
is given in cylindrical coordinates, to Cartesian coordinates, x, y, z, êx , êy,

and êz .
53. The solution for the velocity field for steady, uniform flow around a sphere

is provided in Chapter 8 (see Equation 8.23). Convert this solution, which
is given as a vector written in the spherical coordinate system, to a vector
written in the Cartesian coordinate system. You may leave your answer in
terms of spherical coordinate variables r, θ, π . What relationships between
r, θ, φ and x, y, z do we need to complete the conversion to the Cartesian
coordinate system?

54. The solution for the velocity field for steady, pressure-driven flow in a slit is
provided in Chapter 7 (see Equation 7.188). Convert this solution, which is
given in Cartesian coordinates centered in the middle of the slit, to Cartesian
coordinates anchored on the bottom wall.

55. What is a boundary condition? Why are boundary conditions needed when
solving differential equations?

56. How many boundary conditions on x are needed for the following partial
differential equation? How many boundary conditions are needed on y?

α
∂v

∂x
= ∂2v

∂y2

ˆ

57. For the steady laminar flow of water through a long pipe, calculate the flow
rate Q from the velocity profile, which is given here. Show your work. The
following quantities are constants: R, L , ρ, g, Po, PL , μ; r is the coordinate
variable in the cylindrical coordinate system.

v = vzez

vz = R2(Lρg + p0 − pL )

4μL

(
1 − r2

R2

)

58. Using a computer program (i.e., spreadsheet or other), plot the velocity profile
given in Equation 1.140, which represents the velocity profile between two
long vertical plates separated by a narrow gap. The flow is caused by natural
convection: One plate is hotter than the other.

59. For the natural-convection velocity profile given in Equation 1.140, calculate
the second derivative of the velocity-profile function and evaluate the second
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derivative at the extrema of the function. What does the second derivative
tell us about the extrema?

60. Which of the following expressions is v · ∇v? Explain how you arrive at your
answer.⎛

⎜⎜⎜⎝
vx

∂vx
∂x + vy

∂vx
∂y + vz

∂vx
∂z

vx
∂vy

∂x + vy
∂vy

∂y + vz
∂vy

∂z

vx
∂vz
∂x + vy

∂vz
∂y + vz

∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

or

⎛
⎜⎜⎜⎜⎝

vx
∂vx
∂x + vx

∂vy

∂y + vx
∂vz
∂z

vy
∂vx
∂x + vy

∂vy

∂y + vy
∂vz
∂z

vz
∂vx
∂x + vz

∂vy

∂y + vz
∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

61. What is the substantial derivative Dv/Dt of the steady-state velocity field
represented by the following velocity vector? Note that the answer is a vector.
Explain how you arrive at your answer.

v(x1, x2, x3, t) =
⎛
⎝1 − 9x2

2

0
0

⎞
⎠

123

62. Under the pull of gravity, a Newtonian fluid drains from a cylindrical tank
through a small hole in the center of the bottom of the tank. The tank has radius
R and is of height H . Which coordinate system do you choose for solving
for the flow field in this problem? In your chosen coordinate system, what is
the general expression for the velocity field v? Are any of the components
of v zero in your coordinate system? If so, why? Of what variables is v a
function?

63. A Newtonian fluid flows past a stationary sphere. Upstream of the sphere,
the flow is uniform; that is, the velocity is constant in both magnitude and
direction. The radius of the sphere is D/2. Which coordinate system do you
choose for solving for the flow velocity field in this problem? In the chosen
coordinate system, what is the general expression for the velocity field v?
Are any of the components of v zero in your coordinate system? If so, why?
Of what variables is v a function?

64. A Newtonian fluid flows under a driving pressure gradient and down the axis
of a duct with a rectangular cross section. The width of the duct is 2W and
the height is 2H . The duct has a length of L . Which coordinate system do
you choose for solving for the flow in this problem? In the chosen coordinate
system, what is the general expression for the velocity field v? Are any of
the components of v zero in your coordinate system? If so, why? Of what
position variables is v a function?

65. A Newtonian fluid flows under a driving pressure gradient down the axis
of a duct with a circular cross section. The radius of the duct is D/2 and
the length is L . Which coordinate system do you choose for solving for the
flow in this problem? In the chosen coordinate system, what is the general
expression for the velocity field v? Are any of the components of v zero in
your coordinate system? If so, why? Of what variables is v a function?

66. A Newtonian fluid flows under a driving pressure gradient down the axis of
a duct with an elliptical cross section. The longer axis of the ellipse is a and
the shorter axis is b. The length of the duct is L . Which coordinate system do
you choose for solving for the flow in this problem? In the chosen coordinate
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system, what is the general expression for the velocity field v? Are any of
the components of v zero in your coordinate system? If so, why? Of what
variable is v a function?

67. A Newtonian fluid flows past a three-dimensional stationary object that is a
simplified version of a modern automobile. Upstream of the object, the flow is
uniform; that is, the velocity is constant in both magnitude and direction. The
object presents a cross section to the flow of Ap. Which coordinate system
do you choose for solving for the flow velocity field in this problem? In the
chosen coordinate system, what is the general expression for the velocity
field v? Are any of the components of v zero in your coordinate system? If
so, why? Of what variable is v a function?
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2 How Fluids Behave

Our task is to learn to model flows. To set up the models, we draw on our intuition
of how fluids behave; for example, we often can guess the direction that a flow
takes under the influence of particular forces. Intuition also may enable us to
identify symmetries in a flow field. Intuition comes from experience, however,
and for introductory students, experience may be in short supply.

One solution to a lack of experience is to experiment with fluids. Unfortunately,
not all of us have access to pumps, flow meters, and piping systems; therefore, it
is worthwhile to take a laboratory course in fluid mechanics, if possible. Another
way to build experience with fluid behavior is to view flow-visualization videos.
Between 1961 and 1969, a group of experts in fluid mechanics (the National
Committee for Fluid Mechanics Films [NCFMF]) produced a series of flow-
demonstration films [112] that introduce fluid behavior; the films and film notes
are now available on the Internet. There also are books [170] and other media
[65] that catalog fluid behavior, as well as Web sites on which researchers have
posted flow-visualization videos, including the Gallery of Fluid Motion [133],
and elsewhere [182]. These sites bring to life all types of fluid behavior, from the
mundane to the esoteric.

In addition to these sources of intuition on fluid behavior, there are experiments
that we conduct in our daily life. We wash, cook, eat, water the lawn, and drive
and maintain automobiles, all activities that involve interaction with one or more
fluids. In this chapter, we discuss several qualitative effects observed in flows that
we may encounter daily. The intuition built by these descriptions serves us well
in the chapters that follow as we are required to make inferences about unknown
flows. We also introduce simple mathematical relations based on the concepts
discussed here, and we revisit the balance equations introduced in Chapter 1. The
goal of this chapter is to make an initial pass through the entire range of fluid
behavior. We refer back to these phenomena throughout the remainder of the text
as we develop the appropriate models and techniques to describe the behavior
introduced here. In Chapter 10, we formally revisit the topics of this chapter to
consolidate the understanding of fluid mechanics that we achieve through our
study.

2.1 Viscosity

Not all liquids flow in the same way, as we know from handling foods and other
household fluids. Honey or syrup poured from a container flows more slowly
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Figure 2.1 Force is required to make water (left) and honey (right) flow. Honey flows more slowly under the pull of gravity than
water; therefore, honey has a higher viscosity than water.

than water. In engineering terms, honey resists the pull of gravity more than
water resists the same pulling force; honey is said to be more viscous (Figure 2.1).
Viscosity measures the tendency of a fluid to resist flow. If honey and water were
made to flow at the same volumetric flow rate—by squeezing both liquids from
plastic bottles, for example—it would take more effort to produce the flow of
honey than the flow of water.

In the garage, we encounter another viscous fluid—motor oil—for which
viscosity is a particularly important property. Motor oil lubricates an engine’s
moving parts. An effective lubricant must not flow off the moving parts during
operation of the engine; thus, the viscosity of an effective oil must be above a
specified minimum value when the engine is warm and running. High viscosity
is not an advantage when changing the oil, however, because the old oil must
flow out of the engine casing under the pull of gravity. Also, when a cold engine
first is started, low viscosity is desired so that less torque is required to start the
engine. We see then that the viscosity of engine oil must be neither too high nor
too low. The design process for engine oil is complicated further by the fact that
its viscosity decreases rapidly with increasing temperature—thus, as an engine
heats up, the viscosity of engine oil drops, which is the exact opposite of the
desired effect.

A solution to the motor-oil dilemma is to formulate oils differently for different
engines, operating conditions, and uses. Multigrade motor oils are graded for at
least two viscosities [109]. A typical automotive oil (e.g., 15W 30 motor oil) is
designed to have a viscosity of at most 7,000 centipoise (cp) at −20◦C (1 poise =
g/cm s). At 100◦C, the same oil is required to have a viscosity high enough so
that the ratio of viscosity to density (called the kinematic viscosity) is above 9.3
centistokes (cs). In the SAE rating (i.e., 15W30 in the previous example), the
first number is the cold-temperature performance (W = winter) and the second
number is the high-temperature performance. For both numbers, the higher the
number, the higher is the viscosity of the oil.

The main property of viscous liquids is that forces can be transferred through
them. Consider the experiment of spreading honey on a piece of toast or, as shown
in Figure 2.2, on a piece of parchment paper. If you try to spread honey without
holding the paper, the honey will not spread. Instead, the knife, honey, and paper
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Figure 2.2 When oil is poured on a sheet of parchment paper and then spread with a knife, no restraining force is necessary
to prevent the paper from sliding along. Oil has a low viscosity and transmits little stress. When the experiment is
repeated with honey, the paper slides along to the right with the spreading honey. A weight of 400 g is necessary to
keep the paper from sliding when honey is spread. Honey is high viscosity and transmits a great amount of stress
from the knife to the paper.

all move together. If you hold onto the paper, the honey spreads, but you must
exert a force to hold the paper in place. What is happening? The force you are
exerting on the honey with the knife is being transferred from the knife to a layer
of honey, to another layer of honey, and so on until it is transferred to the paper.
In the process, the honey flows. This is a property of viscous liquids: Frictional
forces are transferred through liquids causing deformation of the liquid. The force
required to hold the paper or bread depends on the viscosity of the spreading fluid.
To spread honey takes a larger force than to spread oil or water. Another way
of thinking about it is that more force is transferred by honey than by oil or
water. The equation that relates the viscosity, the force per area generated in the
deforming fluid, and the relative speed of the object (or knife or hand) is called
Newton’s law of viscosity:

Newton’s law of viscosity:
(force-deformation relationship;

see Chapter 5)
τ̃21 = μ

∂v1

∂x2
(2.1)

where μ is the viscosity, τ̃21 is the molecular shear stress, v1 is the fluid velocity
in the x1 coordinate direction, and x2 is the coordinate direction orthogonal
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Figure 2.3 Honey is a Newtonian fluid—that is, it flows even under the mild force imposed by gravity. After only seconds, the
surface of the honey is level and smooth. Paint is a yield-stress fluid. When spread on a wall it stays where it is
placed, resisting the pull of gravity, allowing it to dry in place. Photos courtesy of (left) Silva/AGE Photostock, and
(right) Steeger/AGE Photostock.

to x1. Newton’s law of viscosity is one of the founding equations of fluid
mechanics.

We discuss viscosity and Newton’s law of viscosity in more detail in Chap-
ter 5. For now, we associate viscosity with the tendency to resist flow. There are
subtleties, however, to our experience with fluids that resist flow. Mayonnaise is a
fluid that resists flow—so much so that it does not flow out of a jar when poured.
Yet, mayonnaise spreads easily with a knife—in fact, it spreads on a piece of toast
with less effort than honey, and thus appears to have a lower viscosity. Why is it,
then, that mayonnaise does not flow when poured?

Honey, water, and other fluids that flow when poured from a container belong
to the class of fluids called Newtonian fluids (Figure 2.3). They have a constant
viscosity and respond to all attempts to deform them, regardless of how small
the applied effort. Newtonian fluids follow Equation 2.1. Mayonnaise is not a
Newtonian fluid because it can resist small efforts to deform it, such as the
small tug of gravity that seeks to level out fluid in a jar. When a material does
not flow until a certain amount of stress is applied, it is called a yield-stress
or Bingham fluid [104]. Non-Newtonian fluids like mayonnaise are common in
both the kitchen (e.g., peanut butter and ketchup) and engineering (e.g., paint,
slurries, asphalts, and suspensions). In addition to yield-stress fluids, other types
of fluids are non-Newtonian because they have variable viscosities depending on
how fast they are stirred. Another type of non-Newtonian fluid is a memory fluid
like Silly Putty, which stretches when pulled, partially recoils when released, yet
flows into a puddle with enough time. The study of non-Newtonian fluid flow is
called rheology [104] (see Chapter 5).

In summary, viscosity describes the ability of a fluid to resist flow, and viscous
fluids can transmit forces from one surface to another. The viscous behavior of
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fluids can be simple (Newtonian) or complex (non-Newtonian). The following
two examples get us started with viscosity-related calculations.

EXAMPLE 2.1. What are the units of viscosity in the metric system and in the
American engineering unit system?

SOLUTION. Because all equations must be dimensionally consistent, we can
use Newton’s law of viscosity (see Equation 2.1) to deduce the units of viscosity.
In the metric system, the units of stress are Pa and the units of velocity are m/s.
Solving Equation 2.1 for viscosity and substituting the units, we determine the
units of viscosity:

μ = (τ21)(
∂v1

∂x2

) (2.2)

[=]
(

Pa
)(

m

m/s

)(
N/m2

Pa

)(
kg m

N s2

)
(2.3)

[=]
kg

m s
= Pa s (2.4)

If centimeters and grams are used, the unit becomes g/cm s, which is called a
poise. The viscosity of water at room temperature is about one centipoise (cp),
or one milli-pascal-second (mPa s).

In the American engineering system of units, the same manipulation yields:

μ = (τ21)(
∂v1

∂x2

) (2.5)

[=]
(

lbf
)(

ft

ft/s

)(
32.174 ft lbm

lbf s2

)
(2.6)

[=]
lbm

ft s
(2.7)

In these units, the viscosity of water at room temperature is about 6 ×
10−4 lbm/ft s. Note that the factor 32.174 is attached to the conversion of ft lbm/s2

to lbf . With American engineering units, be sure to include this factor when con-
verting force units to units of mass times acceleration (see Glossary under gc).

EXAMPLE 2.2. How much force does it take to slowly inject a water-like solution
through a 16-gauge needle?

SOLUTION. A syringe with a needle attached is shown in Figure 2.4. It takes
force to move the plunger through the barrel of the syringe even if the syringe
is empty of fluid. This is a small force, however; a much larger resistance can
develop when fluid fills the barrel of the syringe and a small needle is attached.
In our calculation, we are concerned with the contribution to force on the plunger
that is due to flow resistance in the needle.
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PO

plunger
Plunger

4 cm = L

Q

16 gauge needle

Patm = PL

Figure 2.4 The flow through the needle of a syringe can be modeled as flow through a tube. Analysis of slow tube flow (see
Chapter 7) results in the Hagen-Poiseuille equation.

In slow flows in a tube, the effects of viscosity dominate, and we can show by
using a momentum balance (see Chapter 7) and Newton’s law of viscosity (see
Equation 2.1 and Chapter 4) that the pressure drop from the upstream point to
the downstream point in a tube is related to the flow rate in the tube according to
the Hagen-Poiseuille equation:

Hagen-Poiseuille equation
(flow-rate/pressure-drop
for laminar tube flow)

Q = π (p0 − pL )R4

8μL
(2.8)

where Q is the volumetric flow rate in the tube, p0 − pL is the pressure drop
across a tube length L , μ is the viscosity of the fluid, and R is the radius of the
tube. This equation is derived in Chapter 7 for laminar flow.

To know how much force is needed to make an injection from the syringe, we
need the force on the plunger, which is related to the pressure inside the syringe
reservoir:

Magnitude of force on plunger: Fplunger =
(

force

area

)⎛⎝ plunger
cross-sectional

area

⎞
⎠ (2.9)

The pressure in the reservoir is the same as p0, the pressure in the fluid at the
beginning of the flow through the narrow needle. Therefore, we write:

Fplunger = p0

(
π R2

p

)
(2.10)

where Rp is the radius of the plunger and p0 is the force per unit area on the
plunger, which is equal to the gauge pressure in the fluid in the syringe reser-
voir. For a slow injection, we can obtain p0 from the Hagen-Poiseuille equation
(Equation 2.8):

Q = π (p0 − pL )R4

8μL
(2.11)

p0 − pL = 8QμL

π R4
(2.12)

p0 = pL + 8QμL

π R4
(2.13)
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where R is the inner radius of the needle and pL is the pressure at the exit of the
needle, which is equal to zero in terms of gauge pressure (i.e., gauges read zero
when exposed to atmospheric pressure).

A review of the literature reveals that water at room temperature has a viscosity
of 0.8937 × 10−2 poise [132]. We also learn from the literature that a 16-gauge
needle has an ID of 1.194 mm = 1.194 × 10−3 m. The piston of a typical syringe
is about 1 cm in diameter and the speed of the piston when injecting is about
0.5 cm/s. We can convert piston speed to flow rate in the needle as follows:

Flow rate =
(

average
velocity

)(
cross-sectional

area

)
(2.14)

Q = 〈v〉π R2
p (2.15)

We used this relationship in Chapter 1 (Equation 1.2) and it is derived formally in
Chapter 3. For this problem, with the values of 〈v〉 = 0.5 cm/s and Rp = 0.5 cm
assumed previously, we calculate the volumetric flow rate as:

Q = 〈v〉π R2
p (2.16)

=
(

0.5 cm

s

)
(π ) (0.5 cm)2 (2.17)

= 0.3927 cm3/s = 0.4 cm3/s (2.18)

We now can calculate the upstream pressure from the rearranged Hagen-Poiseuille
equation in Equation 2.13. We assume the needle length to be 4 cm:

p0 = 8QμL

π R4
(2.19)

=
8
(

0.3927 cm3

s

)(
0.8937×10−2 g

cm s

)
(4 cm)

π
( 0.1194 cm

2

)4 (2.20)

= 2814 g

cm s2

(
kg

1,000 g

)(
100 cm

m

)(
N

kg m/s2

)(
Pa

N/m2

)
(2.21)

= 281.4 Pa (2.22)

Now that we know the pressure in the barrel of the syringe, we can calculate the
force on the plunger:

Fplunger = p0

(
π R2

p

)
(2.23)

= (281.4 Pa) (π )
(

0.5 cm
m

100 cm

)2
(

N/m2

Pa

)
(2.24)

= 0.022 N (2.25)

This force is slightly less than the weight of a U.S. penny coin (after 1982, the
U.S. penny’s mass was 2.5 g, which weighs F = mg = 0.0245 N). For a more
viscous fluid or for a syringe of different geometry, we can adjust the quantities
in Equation 2.19 and calculate the appropriate result.
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A final comment: The equation used to solve this problem (i.e., Equation 2.8)
was for laminar flow only. We can check whether the flow is laminar by calculating
the Reynolds number:

Re = ρ〈v〉D

μ
(2.26)

=
(

1.0 g
cm3

)(
0.3927 cm3

s

)(
4

π(1.194×10−3 m)2

) (
1.194 × 10−3 m

) ( m
100 cm

)
0.8937 × 10−2 g

cm s

= 468

Because the Re is less than 2,100, we confirm that the flow is laminar (see
Equation 1.63).

2.2 Drag

In discussing viscosity, we have a fluid-centered view—that is, we ask what is the
effect on a fluid if a force were applied to it from the outside. The fluid deforms
and flows (e.g., honey pushed by a knife or medicine pushed by a syringe), and
the source of the stress is the motion of the solid boundary (e.g., knife or plunger).
The principal issue in this view is: How does the fluid deform?

We also can have a solid-centered view and ask which forces act on solids
when fluids move around them. This is an intuitive perspective when there is a
large amount of fluid and a small solid object moving through it, such as when a
ball is thrown through the air or a child swims in the ocean (Figure 2.5). It also
is natural to have a solid-centered view when fluid rushes by a stationary object,
such as when wind blows on a building or molten plastic is forced over integrated
circuit chips in an encapsulation process.

The force transferred from a fluid to a solid opposing the object’s motion is
called drag. This is the same force that transfers from a knife to honey; only
the point of view has changed. We encounter both points of view depending on
whether we are more concerned with the deformation taking place in the fluid

Fluid on outside:Fluid on inside:

Figure 2.5 Although they both represent situations in which fluids and solids interact, we consider two cases: (1) a fluids-
centered view in which a small amount of fluid is trapped between solid-bounding surfaces (i.e.,internal flow; see
Chapter 7); and (2) a solids-centered view in which there is a large amount of fluid and isolated bodies move
through the fluid (i.e., external flow; see Chapter 8).
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(i.e., fluid-centered view) or with the forces on objects moving through fluids
(i.e., solids-centered view).

The role of viscosity in creating air drag may not seem obvious at first because
we usually associate viscosity with thick fluids such as water and honey. Like
water and honey, however, air is a viscous fluid—even a Newtonian fluid. An
important difference among water, honey, and air is that the viscosity of air is
50 times smaller than that of water and a half-million times smaller than that of
honey. As shown in Equation 2.1 and discussed in more detail in Chapter 5, stress
is generated in viscous fluids when there are velocity differences. Fluids with
high viscosities develop high stresses, but even low-viscosity fluids can develop
high stresses if the velocity gradients dv1/dx2 are high enough. In air flows, often
the speed of air is quite high (e.g., hurricane wind speed past a house or relative
speed between air and an airplane); therefore, forces caused by air drag can be
significant.

EXAMPLE 2.3. Fluids with higher viscosity produce more drag. How much
difference is there among the viscosities of air, alcohol, water, olive oil, and honey?
How much do other material properties (e.g., the density) of these materials vary?
Comment on the differences.

SOLUTION. We can find the viscosities of common fluids in the literature [87],
some of which are listed in Table 2.1. Included is the viscosity of pitch, a highly
viscous material derived from wood.

Table 2.1. The viscosity of familiar materials

T μ μ ρ ρ

Fluid (◦C) (Pa s) lbm/(ft s) (kg/m3) lbm/ft3

air 25 18.6 × 10−6 12.50 × 10−6 1.20 74.9 × 10−3

water 25 0.8937 × 10−3 0.6005 × 10−3 997 62.2

n-propyl alcohol 25 1.96 × 10−3 1.32 × 10−3 804 50.2

olive oil 25 69 × 10−3 46 × 10−3 918 57.3

honey 25 9 6 1360 84.9

pitch 25 1 × 106 0.67 × 106 1100 69

Note: The range of viscosity is 10 orders of magnitude; the range of density is only 3 orders of magnitude.

The striking feature about the values of viscosity is that they range over 10
orders of magnitude (Figure 2.6 and Table 2.1). The density of air is significantly
less than densities of liquids; however, slight density differences among the liquids
do not explain viscosity variations of nine orders of magnitude.

Viscosity is the material parameter that determines how much stress is gener-
ated in a given flow (recall Newton’s law of viscosity; see Equation 2.1). Thus,
based on these values of viscosity, we conclude that the amount of stress gener-
ated by different fluids can vary widely. Because of this strong variation among
materials, researchers often resort to using logarithmic scales when plotting data
related to viscosity [104].
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Figure 2.6 Viscosities of familiar materials compared on a logarithmic scale.

Drag can have a confounding effect even at low speeds if it is forgotten or if
it is not accounted for properly. Consider the reported experiments1 of Galileo
Galilei (1564–1642) that contributed to the discovery of the nature of gravity. In
the 300s BCE, Aristotle postulated the view that heavier objects fall faster to the
Earth than lighter objects. What was Aristotle’s evidence? Aristotle compared the
gentle floating of dropped feathers to the rapid descent of stones. Viewed with
modern hindsight, Aristotle’s experiments were of bodies moving through a fluid
(i.e., air) under the action of a force (i.e., gravity). Galileo’s experiments tested
Aristotle’s hypothesis by proposing to drop stones from a great height, such as the
Leaning Tower of Pisa. If Aristotle were right, two stones, one twice the weight of
the other, would land at different times when released from the top of the tower.
In Galileo’s experiments, the differently weighted stones landed simultaneously,
proving that the speed of the falling stones was independent of their weight.

What was wrong with Aristotle’s observations and conclusions? The problem
was precisely a failure to understand the effect of the viscous drag due to the
presence of air. In Aristotle’s observations, the falling stone or feather exerted a
force on the air through which it fell (recall the moving knife transferring force
through honey to the bread). This exertion of force slightly decelerates the falling
stone and severely decelerates the lightweight feather. If Aristotle had dropped
the stone and feather in a vacuum chamber or on the moon, both objects would
have fallen at the same rate, and he would have reached a different conclusion
(Figure 2.7).2

1Historians now believe that these experiments never actually were carried out and more likely
were only “thought” experiments.

2Aristotle would have been unable to consider experiments in a vacuum chamber; the first practical
experiments on a vacuum were conducted in the 17th century.
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Figure 2.7 Astronaut David Scott conducted Galileo’s experiment on the moon [159] during Apollo 15 in 1971 and verified that
in the absence of air drag, a falcon feather and a geology hammer land simultaneously when dropped (art credit:
Tomas Co).

In many applications, effort is made to minimize drag—for example, swimmers
wear specially designed clothing and shave their body to reduce drag, bicyclists
hunch over or draft one another to reduce drag during a race (Figure 2.8), and
automobiles and airplanes are designed with smooth curves to ease the flow
of air around the moving body to increase fuel efficiency (Figure 2.9; see also
Section 8.2.3). We track drag through the drag coefficient, a quantity that is
constant for blunt objects moving at high flow speeds (see Chapter 8):

Drag coefficient CD = Fdrag

1
2ρ〈v〉2 Ap

(2.27)

where CD is the drag coefficient (unitless); Fdrag is the drag, which is a force
magnitude; ρ is the density of the fluid; 〈v〉 is the average velocity of the object
or the velocity of the fluid as it flows past the object; and Ap is the reference
area for drag coefficient—often the area presented by the object to the oncoming
flowstream. The following example is a problem that can be addressed with
knowledge of drag coefficient as a function of system geometry and the Reynolds
number.

upright

racing 
crouch

drafting

recumbent

Figure 2.8 Bicycle racers gain an edge by adopting a more streamlined shape or by drafting—that is, riding in the wake
produced by another cyclist. The drag coefficient (a measure of drag generated) for an upright bicycle driven in air
(CD = 1.1) is significantly larger compared to that of a cyclist in the racing crouch (0.88), in the drafting position
(0.50), or riding a streamlined bicycle (0.12) [183]. The cross-sectional area presented by the cyclist in these four
positions also varies: upright, 5.5 feet2; racing and drafting, 3.9 feet2; and recumbent, 5.0 feet2.
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Figure 2.9 Automobile manufacturers devote significant effort to reducing drag caused by the shape of cars. Modern automo-
biles with smooth lines experience less drag than the boxy cars of yesteryear. Computational techniques can be
used to accurately predict drag on automobiles before they are even constructed. The streamlines shown above
for flow over a race car were calculated with computational fluid dynamics (CFD) software. Image courtesy NASA.

EXAMPLE 2.4. How much faster will a bicycle racer traveling at 40 mph go if
she adopts a racing crouch rather than riding upright?

SOLUTION. Changing one’s posture on a bicycle from upright to a racing
crouch reduces the amount of area presented to the oncoming air from 5.5 feet2

to 3.9 feet2 (see Figure 2.8), but it also changes the drag coefficient because of
the change in the shape of flow around the bicyclist. We can determine the effect
of the posture change on the bicyclist’s speed by using the drag expression in
Equation 2.27 and the experimental values of the drag coefficient in Figure 2.8.

Drag coefficient CD = Fdrag

1
2ρ〈v〉2 Ap

(2.28)

We find the density of air for the conditions of interest to be ρ = 0.0766 lbm/ft3

[87]. The drag coefficient is a variable at some speeds; however, at the cyclist’s
speed, the drag coefficient is constant.

A bicycle racer, traveling at 40 mph while upright (CD = 1.1), generates a
drag of:

Fdrag =
(

CDρ Ap

2

)
〈v〉2 (2.29)

= (1.1)
(

0.0766 lbm

ft3

)
(5.5 ft2)

(
1

2

)(
(40 mph)

1.46667 ft/s

mph

)2

(2.30)

= 797.5 lbm ft

s2

(
lbf

32.174 ft lbm/s2

)
(2.31)

= 24.8 lbf (2.32)
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Again, conversion of mass-acceleration units to force units in the American
engineering system requires a unit conversion of 32.174 ft lbm/s2 per lbf .

For the same cyclist traveling with the same drag but now in the crouching
position (from Figure 2.8, CD = 0.88, and Ap = 3.9 ft2), the speed is:

CD = Fdrag

1
2ρ〈v〉2 Ap

(2.33)

〈v〉2 = Fdrag

1
2ρCD Ap

(2.34)

= (24.8 lbf )( 1
2

) ( 0.0766 lbm
ft3

)
(0.88)(3.9 ft2)

(
32.174 ft lbm

s2 lbf

)
(2.35)

= 6,070.3 ft2/s2 (2.36)

〈v〉 = 77.9 ft

s

(
mph

1.4667 ft/s

)
(2.37)

= 53 mph (2.38)

A cyclist rides 33 percent faster in the crouching position than when she rides
in the upright position. From this calculation, we see how important an athlete’s
posture can be to performance. Calculations like this can be used to motivate
drag-reducing changes in clothing and bicycle architecture and technique.

In Chapter 8, we derive the drag-coefficient equation and model flows in which
drag is the dominant engineering concern.

2.3 Boundary layers

Drag is a straightforward consequence of bodies moving through viscous flu-
ids and, because all fluids have viscosity, drag is always present. In many
flows, however, there are locations in the flow where drag is negligible. In
boundary-layer analysis, introduced here, researchers simplify their calculations
by using their knowledge of how viscous effects are distributed throughout a flow
(Figure 2.10). After the boundary-layer concept was introduced in the early 20th
century, the field of aeronautics developed rapidly. Boundary-layer concepts also
are important in heat-transfer and mass-transfer analyses [15].

Because relative speeds in flows (i.e., dv1/dx2 in Equation 2.1) can be enor-
mous (e.g., airplanes, bullets, and spacecraft), the viscous drag on surfaces
touched by rapid flow can be significant. When large forces are generated in
a flow, the flow around an obstacle rearranges to localize the effect of viscosity.
In 1904, Ludwig Prandtl [134] identified two distinct regions in rapid flow: (1) a
narrow layer near the surfaces in which the fluid’s viscosity dictates the flow
pattern and stresses; and (2) a region away from the surfaces in which viscous
effects are negligible. The thin layer in which viscosity is important is called
the boundary layer; outside of the boundary layer, the fluid (often air or water)
behaves as if it had zero viscosity.
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Outer flow

Fluid particle

Streamline

Boundary layer

Surface

Figure 2.10 Viscosity is important in the part of the flow near surfaces (i.e., the boundary layer), but it is insignificant in the part
of the flow far from solid surfaces. By separately considering the two regions—the regions near to and far from
the surface—the analysis is greatly simplified.

The importance of boundary-layer study is illustrated with an example from
sports. The flight of a golf ball is dominated by the structure of its boundary layer.
Because manufacturers and golfers did not understand the science behind their
flight, golf balls initially were manufactured to be smooth [173]. Golfers noticed,
however, that old dented balls flew farther than brand-new balls. Golfers started
roughing up new balls before playing them. If we examine the structure of the
flow of air around a ball (i.e., the flow field), we can understand why a rough golf
ball flies farther than a completely smooth ball.

Figure 2.11b shows the flow of air around a ball from the point of view of
the ball. If the ball moves very slowly, the air creeps around the ball, forming a
smooth flow pattern (Figures 2.11b and 2.12a). This type of flow is called creeping
flow (see Chapter 8), and there is no boundary layer; viscosity is important

Vv −=averageair,

Vv =ball

0averageair, =v(a)

(b)

Figure 2.11 We can visualize a ball as an object moving
through the air or as a ball with air moving around
it. We choose to observe the flow from the moving
ball; thus, the flow field appears as shown here.

throughout this flow. As the ball moves
faster (or, from the point of view of the
ball, as the air rushes by more rapidly), a
boundary layer forms (Figure 2.12d). At
high flow rates, the fluid outside the bound-
ary layer moves at a uniform speed, and
our attention shifts to the boundary layer.
Because all of the viscous or friction effects
take place in the boundary layer, the char-
acter of the boundary layer determines how
much decelerating drag is felt by the ball
and, therefore, how far the ball will fly.

In the flight of a smooth ball, the bound-
ary layer appears as shown in Figure 2.12d.
The details of the flow depend on geometry
and speed of the air rushing by the ball, but
the flow has several general characteristics.
On the face of the ball that parts the flow
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laminar boundary-layer separation;
wide wake 

turbulent boundary-layer separation;
narrow wake 

(a) no 
separation 

(b)
separation
bubble 

(c)
hairpin
vortices 

(d)
laminar 
boundary
layer 

(e)
turbulent
boundary
layer 

Figure 2.12 At very low ball speeds (i.e., low airflow rates), the air passing around the ball exhibits a flow in which the streamlines
hug the sphere and form an orderly flow pattern. As the flow rate increases, separation occurs, and a recirculation
region forms around the downstream stagnation point. At higher Reynolds numbers, complex three-dimensional
hairpin vortices form. At still higher Reynolds numbers, a laminar boundary layer forms, which separates from the
sphere surface near the equator, and a wide turbulent wake trails the sphere. At the highest Reynolds numbers, the
boundary layer becomes thick and turbulent but separates from the sphere surface at a position downstream of
the sphere equator. As a result of this delayed separation, the turbulent wake behind the turbulent boundary layer
is narrower than the wake behind the laminar boundary layer. For more details, see Chapter 8.

(i.e., the leading face), a thin boundary layer hugs the ball’s surface. At some
position, for a smooth ball this position is about halfway from the front to the
back, the boundary layer separates from the ball and forms the wake region.
The wake region is a complex flow region with vortices and curvy flow lines,
and significant drag is generated by the presence of the wake. The total amount
of drag on the ball can be reduced by redesigning the ball’s surface so that the
boundary-layer separation occurs farther back from the leading face of the ball
(Figures 2.12e and 2.13). By delaying the boundary-layer separation, we reduce
the size of the wake and thereby reduce drag. The dimples on the surface of a
golf ball do exactly this: They delay boundary-layer separation.

The aerodynamic shape of an airplane wing also is designed to delay or
eliminate boundary-layer separation. Boundary-layer separation is caused by an
adverse pressure gradient—which means that the pressure downstream is higher
than the pressure upstream. The adverse pressure gradient in flow around a sphere
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Figure 2.13 Roughening the surface of a sphere can trip the turbulent boundary layer and delay separation (Source: [34],
original source U.S. Naval Ordinance Test Station, Pasadena Annex). On the left, the dropped ball is smooth and
the boundary layer is laminar. On the right, the tip has sand grains cemented to its nose, and the sand trips the
boundary layer, delaying separation. The rightmost series shows flow past a sphere both with and without a thin
wire ring placed before the widest part of the sphere (Source: [147]; original reference Wieselsberger, ZFM, vol. 5,
140 (1914). The wire serves the same purpose as the sand; that is, the turbulent boundary layer is tripped.

is established by the uniform, viscosity-free flow outside the boundary layer. The
boundary layers that form on a smooth ball are divided into two types: laminar
and turbulent. Laminar boundary layers form at low speeds and are fairly regular
in their flow patterns; however, laminar boundary layers are less able to withstand
adverse pressure gradients without separation. Laminar boundary layers separate
from the ball surface at the equator (90 degrees from the stagnation point, the
centerline point of impact with the sphere). Turbulent boundary layers form at
higher speeds or when something disrupts the flow. Turbulent boundary layers
have a disorganized internal flow structure, but they are more able to withstand
adverse pressure gradients without separation [154] due to their ability to borrow
energy from the outer flow. Turbulent boundary layers separate behind the equator,
about 110 degrees from the stagnation point. On golf balls, dimples or dents on
the surface trip the boundary layer from a laminar boundary layer to a turbulent
boundary layer, delaying separation, reducing drag, and making the balls fly
farther (see Figure 2.13 and Section 8.2).

Another advantage of the boundary-layer picture is that it tells us for which
situations we can ignore viscosity altogether in our calculations. We want to ignore
viscosity because the flow outside the boundary layer where viscous effects can
be neglected is much easier to analyze than the viscous boundary-layer flow. In
the equations that govern the calculation of velocity in flows, the Navier-Stokes
equations (see Chapter 6), the viscous term has second derivatives of velocity.
If we can avoid including this term, solving the Naiver-Stokes equation is much
easier. Solutions to the Navier-Stokes equations when viscosity is neglected are
called potential flow solutions.3

For steady flow in the potential-flow limit, pressure calculations from velocity
are particularly simple, as now discussed. Consider the outer region of a steady

3The flow of an inviscid fluid is called potential flow because of the similarity between equations
for this flow and those for electrical potentials [167].
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streamlines
in outer flow

1

2

Figure 2.14 In the outer flow region (away from walls), there is no effect of viscosity and the Bernoulli equation holds. We can
choose Points 1 and 2 as any two points on the same streamline. The two points must be on the same streamline
so that the Bernoulli equation requirement of single-input, single-output is satisfied.

flow shown in Figure 2.10. The individual particles of fluid follow paths that
are called streamlines. The system of the fluid traveling along a streamline is
a single-input, single-output, steady flow of an incompressible fluid. Viscosity
is not important along a streamline that is far from a surface because there
is little relative motion (∂v1/∂x2 = 0); with no effect of viscosity, there is no
heat generated. The system considered has no chemical reaction or any phase
change. Thus, along the streamline and in the outer flow away from a surface, all
requirements of the mechanical energy balance (MEB) are met.

Furthermore, because there is no effect of viscosity in the region far from
any surface, the friction term of the MEB is zero. There is, of course, no pump
or any moving shafts in this flow along a streamline. The α quantity in the
MEB is related to the distribution of velocity across the inlet and outlet cross
sections (see Chapter 9); because we are following a single streamline, there is
no velocity distribution across the inlet or outlet, and α = 1 and 〈v〉 = v. Thus,
for flow along a streamline when all of the assumptions discussed are valid, the
mechanical energy balance reduces to the Bernoulli equation with the average
velocity now equal to the velocity on the streamline 〈v〉 = v (Figure 2.14):

�p

ρ
+ �v2

2
+ g�z = 0

Bernoulli equation along
a streamline, in steady,
rapid flow, far from any

surface, with no phase change,
incompressible, no velocity

distribution, �T ≈ 0, no
reaction, no friction,

no shaft work

(2.39)

p2 − p1

ρ
+ v2

2 − v2
1

2
+ g(z2 − z1) = 0 (2.40)
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We can write Equation 2.40 for any streamline in the outer flow because each
streamline is a single-input, single-output system. This is a powerful application
of the Bernoulli equation.

To put Equation 2.40 in traditional form, we can move all of the properties of
Point 1 to one side of the equation and all of the properties of Point 2 to the other
side, yielding:

p2 − p1

ρ
+ v2

2 − v2
1

2
+ g(z2 − z1) = 0 (2.41)

p1

ρ
+ v2

1

2
+ z1 = p2

ρ
+ v2

2

2
+ z2 (2.42)

The choice of Points 1 and 2 along the streamline is completely arbitrary, however;
we can keep Point 1 the same and change the choice of Point 2 to be any point
along the streamline. Because the choice of Points 1 and 2 to use in the Bernoulli
equation along a streamline is arbitrary, the combination of pressure, velocity,
and elevation terms on the lefthand and righthand sides of Equation 2.42 must be
equal to the same scalar constant for every point on the streamline:

(
p

ρ
+ v2

2
+ z

)
= constant along a streamline

in inviscid flow (away from surfaces)
(2.43)

This is a powerful result for flow along a streamline in the region of a flow in
which viscosity is not important—that is, in the outer region of a boundary-
layer flow. Equation 2.43 allows us to relate pressures, velocities, and elevations
for rapid flows away from surfaces. This result is derived more formally in
Example 8.13.

Chapter 8 discusses solutions of the momentum-balance equations for the case
of outer flows in which viscosity may be neglected. These potential-flow solutions
are useful in aeronautics and other applications in which flow speeds are very
high. The potential-flow solutions of the governing equations give the velocity
distribution in the outer flow, and application of the Bernoulli equation along a
streamline gives the pressure distribution from the velocity result. Knowing the
pressure distribution in the outer flow then permits us to solve for the flow field in
the inner region—that is, within the boundary layer (see Chapter 8). Potential-flow
results also are useful in problems when only the outer flow is of interest, as in the
following example. The key contribution of boundary-layer analysis is to clarify
the existence of the two regions—the inner region where viscosity is important
and the outer region where viscosity is not important—which then allows us to
solve for the flows in both regions, if desired. Boundary layers figure into the
development of airplanes, projectiles (e.g., bullets, torpedos, and missiles), and
fuel-efficient automobiles and trucks (Figure 2.15).
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with fairing

standard

with fairing
and gap seal

Figure 2.15 The amount of drag experienced by an 18-wheeler can be reduced by adding a piece above the truck cab that
allows a smooth boundary layer to develop over the cab, the extra piece, and the roof of the trailer. Without this
piece, the flow develops recirculation zones behind the cab and near the front of the trailer. These recirculation
zones increase drag on the vehicle [65, 183]. Photo courtesy of Lawrence Livermore National Laboratory.

EXAMPLE 2.5. A new tower hotel, cylindrical in shape and 100. feet in diameter,
was built in a resort town near the sea on the windward side of an island
(Figure 2.16). Residents complained that there often are uncomfortably high
winds near several of the tower entrances. How does the wind speed vary with
position around the tower and with onshore wind speed?

SOLUTION. The air flow around the tower is a complex flow, particularly near its
circular walls where a boundary layer forms and drag is produced. The question
is about wind speed for someone standing a little distance away from the walls,
however, and this question is about the flow outside the boundary layer. To address
this question, we must evaluate carefully what the flow structure is like in the
various locations under consideration.

Flow transverse to a long circular cylinder has been researched thoroughly and,
at high flow speeds (i.e., high Reynolds numbers), we review the flow structures
in Figure 2.17. A uniform high-speed wind approaches the cylinder at velocity
v∞; divides around the cylinder forming a boundary layer on the leading face of
the cylinder; and at a position immediately past the equator of the circular cross
section, the boundary layer separates from the cylinder surface and a turbulent
wake is observed.
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PathWindward 
side

Leeward 
side
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B
C

D

E

B
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Hotel

wind

ˆv = v∞ex

Figure 2.16 The new resort tower is cylindrical in shape with eight entrances equally spaced around the circumference.

Creeping flow 
(streamlines)

A flow with 
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streamlines)
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streamlines)

Figure 2.17 For different values of the Reynolds number, ρv∞D/μ different flow regimes are observed for flow around a long
cylinder [149].
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ˆ

For the three door positions on the leeward side of the building, the wind
velocity is the wind speed in the wake, which is somewhat chaotic and small
compared to the wind on the windward side. For the position directly facing the
oncoming wind, we expect some deceleration of the wind due to the presence of
the building. For this position and others on the windward side of the building,
we can estimate the wind speed as a function of onshore wind speed v∞ by using
the velocity solution for the outer flow—that is, the potential-flow solution for
flow around a long cylinder (see Chapter 8). The potential-flow solution does
not consider viscosity, but rapid flows form boundary layers and outside of the
boundary layer, viscosity is not important. The case we consider is a rapid flow;
for the windward side where the boundary layer is still attached to the cylinder,
the potential-flow solution should give a reasonable result for flow away from the
walls.

The velocity as a function of position for potential flow around a long cylinder
is given in the literature [9] (for this solution the x-axis points in the wind
direction, perpendicular to the cylinder; the z-axis of the rθ z system points along
the cylinder axis):

Potential flow
around a long

cylinder
v = v∞ex

v =

⎛
⎜⎜⎜⎜⎜⎜⎝

v∞
(

1 − R2

r2

)
cos θ

−v∞
(

1 + R2

r2

)
sin θ

0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθ z

(2.44)

= v∞

(
1 − R2

r2

)
ˆcos θer − v∞

(
1 + R2

r2

)
ˆsin θeθ (2.45)

We can calculate the speed of the fluid as a function of position from the magnitude
of v:

|v| = √
v · v =

√
v2

r + v2
θ + v2

z (2.46)

= v∞

√√√√√(1 +
(

R

r

)4

− 2
(

R

r

)2

cos 2θ

)
(2.47)

We now examine wind speeds along a path around the building. We choose a
path that is 10 feet from the wall, which we assume is outside the boundary layer.
With this choice, the path position is coordinate value r = 60 feet; the radius of
the cylinder is R = 50 feet; and, for the eight doors, the values of θ are listed
here with the predicted potential-flow speeds from Equation 2.47.

Door Location θ
v

v∞
behind the cylinder, center, A θ = 0 0.31

behind the cylinder, to the side, B, B′ θ = ±π
4 1.22

at the equator, C, C′ θ = ±π
2 1.69

in front of the cylinder, to the side, D, D′ θ = ± 3π
4 1.22

in front of the cylinder, center, E θ = π 0.31

(2.48)
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As discussed previously, the boundary layer in rapid flow around a cylinder is
observed to detach downstream of the cylinder equator. Thus, for positions A,
B, and B ′, we do not use the potential-flow results but rather estimate that the
cylinder shields the doors (v −→ 0). For the other five doors where the boundary
layer is attached, however, the potential-flows results are a good estimate. We
therefore find that the wind velocity along a path around the building 10 feet
from the wall of the hotel will vary as follows:

door
v

v∞
A 0

B, B ′ ≈ 0
C, C ′ 1.7
D, D′ 1.2

E 0.3

(2.49)

These calculations show that the windiest spot is half way around the building
from where the wind first hits. At this location the wind speed is 70 percent higher
than the speed of the offshore breeze.

The key knowledge needed in this example is an awareness of the existence
and impact of the boundary layer and the meaning of potential-flow solutions.
We study boundary layers in Chapter 8.

2.4 Laminar versus turbulent flow: Reynolds number

The introduction to boundary layers in the previous section is concerned with
flows in which a large amount of fluid is moving past a surface: so-called external
flows. Boundary layers also are present in internal flows: flows inside fixed
boundaries such as within pipes, reactors, or blood vessels (see Chapter 7). When
water enters an intake pipe at low flow rates (Figure 2.18), the flow in the entry
region is uniform in the core with a boundary-layer structure near the walls
that thickens and grows as the flow adapts to the presence of the pipe walls.
Once the flow fully develops inside the pipe, the region outside the boundary
layer disappears, and we observe a well-defined flow throughout the pipe, called

entrance region

boundary layer fully developed flow

Figure 2.18 The flow near the entrance of the pipe is different than the flow in the rest of the pipe. A boundary layer forms
on the inner pipe surface and friction effects are concentrated there. The boundary layer grows rapidly; soon, the
core region outside of the boundary layer disappears and a well-developed pipe flow appears, which is dominated
by frictional effects. In this illustration, the fluid is assumed to be incompressible; thus, the flow rate is constant
throughout the pipe, including in the entrance region.
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(a) Laminar flow

(b) Turbulent flow

fluid particle

fluid particle

v

v

particle
path

particle path

Figure 2.19 Laminar flow (a) is a flow in which fluid parti-
cles move in layers, one layer sliding over the
other (the word laminar comes from the Latin
word for layer ). In laminar flow, particles move
along straight paths and the velocity along those
paths is constant at steady state. The fluid parti-
cles deform in a well-defined manner. In turbulent
flow (b), the detailed motion of fluid particles is not
well defined and much mixing occurs. Particles
move along tortuous trajectories, one of which
is shown here, and are deformed in ways that
are difficult to quantify. The velocity field, even
at steady state, is a wildly fluctuating function of
space and time.

laminar flow. In laminar flow, viscous
effects dominate throughout and cylindri-
cal layers of fluid slide over one another,
transferring stress from the flow to the walls
of the pipe.

Laminar pipe flow is similar to flow in
a laminar boundary layer discussed in the
previous section—that is, the flow is orga-
nized, with fluid layers sliding over one
another, transferring stress in an orderly
manner (Figure 2.19, top). Steady lami-
nar flow in a pipe is a simple flow for
which we can fully calculate all aspects
of the flow—pressure field, velocity field,
and stress field—using the methods in this
book (see Chapter 7). We introduced one
laminar-flow result, the Hagen-Poiseulle
equation, in Equation 2.8. Although it is a
simple flow, steady laminar flow has prac-
tical applications in real-world situations,
such as in the analysis of blood flow in arter-
ies, in studies of the flow of high-viscosity
liquids (e.g., polymers, foods, and slurries),
and in viscosity measurements.

If the flow rate of a laminar flow in a tube
is increased (e.g., by increasing the driv-
ing pressure), the flow eventually becomes
unstable. By “unstable,” we mean that
the flow no longer moves in well-defined
layers from upstream to downstream but
rather breaks up into many small eddies
swirling over one another, tumbling in the
flow direction (Figure 2.19, bottom). We
encountered turbulent flow in the previous
section when discussing turbulent bound-

ary layers (see Figure 2.12). For both turbulent pipe flow and turbulent boundary
layers, the flow is disorganized, and significant energy is churned up in the motions
of the flow.

In turbulent pipe flow, there is a dominant flow direction; however, on a small
lengthscale, the flow is jumbled and mixed with small eddies and whirls that are
impossible to predict and difficult even to characterize mathematically. The dis-
tinction between laminar and turbulent flow was elucidated by Osborne Reynolds
in 1883 [139]. In his experiments, a dye was injected into the center of pipe flow
and observed through the transparent walls of the pipe (Figure 2.20). At low flow
rates, the dye moves downstream in a straight line that mixes slightly with the
main fluid due to molecular diffusion. At high flow rates (Figure 2.20c), the dye
stream breaks up soon after injection and spreads across the cross section of the
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flow

dye-injection needle

flow

flow

(a)

(b)

(c)

Figure 2.20 Reynolds demonstrated the fundamental difference between laminar and turbulent flow by injecting dye into water
flowing in a pipe. At low flow rates (a), the dye moves downstream in a straight line. At high flow rates (c), the
dye stream breaks up soon after injection and spreads across the cross section of the pipe, ultimately resulting in
a stream that is homogeneously colored with dye. In transitional flow, the dye stream distorts and elongates but
mixing is incomplete [14].

pipe, resulting in a stream that is homogeneously colored with dye. There is much
cross-stream mixing in high-flow-rate turbulent flow. By carefully increasing the
flow rate from low (laminar) to high (turbulent), the transition to turbulence can
be captured. In transitional flow (Figure 2.20b), the dye stream distorts and elon-
gates but mixing is incomplete. These pipe-flow regimes were discussed in the
quick-start section of Chapter 1. Reynolds’s dye-tracing experiments established
that the Reynolds number, Re = ρ〈v〉D/μ, is the parameter that distinguishes the
three flow regimes in a pipe: He found that laminar flow occurs for Re < 2,100;
between Re = 2,100 and Re = 4,000, the flow is transitional; and fully turbulent
flow occurs for Re > 4,000 (see Equation 1.63).

Turbulent flow is very common. Flows are turbulent in most industrial process
units (see Example 1.6) and in the air around us; some blood flow in the human
body is turbulent as well (Table 2.2 and Figure 2.21). For example, the narrowing
of arteries characteristic of advanced heart disease can be detected by a physician
listening with a stethoscope for turbulent blood flow in constricted arteries [53].
Narrowing of and obstructions in the arteries increase the blood average velocity,
causing turbulence; the rapid pressure fluctuations associated with turbulence
produce a noise (i.e., the Korotkov sound) that can be heard with a stethoscope.
The higher drag associated with turbulent flow produces wear and tear on the
arteries and is one of the dangers of heart disease. Prosthetics designed to treat
heart disease (e.g., artificial valves, artificial hearts, and stents; see Figure 2.22)
must be designed to minimize turbulence.
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Table 2.2. Reynolds numbers in the circulatory system vary from 0.0007 to almost 6,000 [145]

Location Diameter (cm) 〈v〉 (cm/s) Re

Ascending aorta 2.0–3.2 63 3,600–5,800
Descending aorta 1.6–2.0 27 1,200–1,500
Large arteries 0.2–0.6 20–50 110–850
Capillaries 0.0005–0.001 0.05–0.1 0.0007–0.003
Large veins 0.5–1.0 15–20 210–570
Vena cavae 2.0 11–16 630–900

Note: Original reference is Whitmore, R.L., Rheology of the Circulation, Oxford, 1968.

Figure 2.21 Schematic of turbulent blood flow in arteries after a bifurcation.

detalfedeuqalp  ballooncollapsed stent

inflated balloonexpanded stent

balloon removed; stent remains holding artery open

Figure 2.22 A stent is a tiny expandable stainless-steel tube that holds heart arteries open following angioplasty [21]. In angio-
plasty, a small balloon is used to force open blocked arteries. The stent is placed around the balloon and used to prop
open the artery after the balloon is deflated. Buildup of cholesterol plaque on artery walls—the cause of narrowing
of the arteries (i.e., atherosclerosis)—usually is found near branching points in the blood vessels. Researchers
believe that flow disturbances near these branches or near obstructions like plaque deposits or the stent itself may
encourage atherosclerosis [53]. Minimizing such flow disturbances thus becomes a matter of life and death.
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Because of the considerable mixing in turbulent flow, more drag is produced
compared to laminar flow.4 Although we cannot predict the detailed velocity,
pressure, and stress fields of turbulent flow, extensive study of turbulent flow
since its description by Reynolds has shown how to predict turbulence and how
to design practical equipment around average values of velocity, pressure, and
stress in turbulent flow. We discuss turbulent flow in Chapters 7 and 10.

In the following example, we illustrate the power of the Reynolds number in
analyzing pipe flow.

EXAMPLE 2.6. When choosing the pump for a flow application, it is essential
to know how much pressure is needed to produce the flow. Experiments with three
different fluids in three different pipes show that a wide range of pressure drops
are needed to bring about flows at modest flow rates (Table 2.3). The flows were
carried out in clear pipes and visually inspected; some were smooth and laminar,
some patterns were chaotic-looking and therefore deemed turbulent, and some
were difficult to evaluate for flow type; these were designated as transitional.
What are the key factors that determine flow type for these fluids? How could we
have predicted the pattern of flow type as a function of pressure drop?

Table 2.3. Three fluids pumped at fixed flow rates through 2.0-m pipes (6.6 ft) of various sizes

Pressure drop (Pa) in various pipes

Fluid Q gpm Q cm3/s 1/4 in. 3/8 in. 1/2 in.

water 4◦C 0.5 32 660 170 64
water 4◦C 1.0 63 3,600 800 210
water 4◦C 2.0 126 12,000 2,800 930
water 4◦C 3.0 189 24,000 5,500 1,800

water 25◦C 0.5 32 980 190 66
water 25◦C 1.0 63 2,900 700 240
water 25◦C 2.0 126 9,400 2,400 780
water 25◦C 3.0 189 20,000 4,700 1600

blood 37◦C 0.5 32 1,000 310 120
blood 37◦C 1.0 63 3,700 590 250
blood 37◦C 2.0 126 14,500 3,700 1,000
blood 37◦C 3.0 189 28,700 7,200 2,400

Notes: Schedule 40 pipes with nominal size given.
The difference between the pressure at the inlet and at the outlet is given in Pa . All flows were observed to be turbulent
except those indicated with italics and boldface, which were laminar and transitional, respectively.

SOLUTION. There is much data in Table 2.3; we begin by plotting it to see which
trends are revealed (Figure 2.23). Inspecting the graph, we see that the highest
pressures are generated in the smallest pipes. Also, higher flow rates generated
the highest pressures. The pressure data vary over several orders of magnitude;
because of the large pressure values at high flow rate and small diameter, the

4More drag is produced in turbulent flow than in a hypothetical laminar flow at the same flow
rate. However, it is not possible to produce such laminar flows in most high-flow-rate situations
(see Chapter 7).
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Figure 2.23 Pressures generated in steady flow of various fluids through 2-m pipes of various diameters.

lower pressure data are difficult to see in Figure 2.23. We fix this problem by
changing the y-scale on that plot to be logarithmic (Figure 2.24).

In the log-linear view of the pressure data in Figure 2.24, we see that pipe size
makes an important difference among the observed pressure drops. The data are in
three groups, with the smallest-pipe data in the topmost trend and the largest-pipe
data along a trend at the bottom. Therefore, it appears that determining factors
for laminar or turbulent flow may be critical values of pressure or pipe size.
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Figure 2.24 Pressures generated in steady flow of various fluids through 2-m pipes of various diameters; log-lin plot.
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Table 2.4. Physical property data for fluids in the example

ρ μ

Fluid kg/m3 Pa s ( kg
m s )

water 4◦C [132] 1.000 × 103 1.57 × 10−3

water 25◦C [132] 0.99708 × 103 0.894 × 10−3

blood 37◦C [145] 1.060 × 103 3.0 × 10−3

However, comparing the flow types given in Table 2.3 with the figures does not
reveal a pattern. For example, at 1.0 gpm in the 1/4-inch pipe, both water flows
are turbulent but blood flow, which has the highest pressure drop, is transitional.
At 1.0 gpm in the 3/8-inch pipe, blood again is transitional whereas water is
turbulent but, in this case, blood has the lowest pressure drop, �p = 590 Pa.

It turns out there is a simple way to correlate the data in Table 2.3, and it was
used in Chapter 1. The methods in this text led researchers of a previous generation
(including Osborne Reynolds) to discover that all of the data could be correlated
if flow rate were written in dimensionless form as the Reynolds number, Re, and
if pressure drop along a pipe were written in terms of a dimensionless wall force,
called the Fanning friction factor f :

Reynolds number: Re ≡ ρ〈v〉D

μ
(2.50)

Fanning friction factor: f = D�p

2ρ〈v〉2L
(2.51)

where ρ is the density of the fluid, 〈v〉 is the average velocity of the fluid, μ is the
fluid’s viscosity, �p is pressure drop, and L is length of the pipe. A review of the
literature allows us to find the densities and viscosities of our fluids (Table 2.4).
The average velocity in the pipe may be calculated from the experimental flow
rates using the usual expression (i.e., Equation 1.2):

〈v〉 = Q

π R2
= 4Q

π D2
(2.52)

where R = D/2 is the inner radius of the tube. For Schedule 40 piping, again
from the literature [132], we obtain the precise values of the pipe IDs (Table 2.5);
note that the values in the table are quite different from the nominal sizing values.
We now can convert the data in Table 2.3 to friction factor versus Reynolds
number, as shown in the following calculation:

Table 2.5. Inner diameter for pipes in the example [132]

Nominal ID ID
pipe size [132] inches meters

1/4 0.364 0.925 × 10−2

3/8 0.493 1.252 × 10−2

1/2 0.622 1.580 × 10−2
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For water at 4◦C in the 1/4-inch pipe at 0.5 gpm, we calculate:

〈v〉 = 4Q

π D2
(2.53)

= (4)
( 32 cm3

s

)
π (0.925 cm)2

(2.54)

= 47.62 cm/s = 48 cm/s (2.55)

Re ≡ ρ〈v〉D

μ
(2.56)

=
( 1,000 kg

m3

)( 0.4763 m
s

)
(0.925 × 10−2 m)

1.57×10−3 kg
m s

(2.57)

= 2,806 = 2,800 (unitless) (2.58)

f = D�p

2ρ〈v〉2L
(2.59)

= (0.00925 m)(660 Pa)

(2)
( 1,000 kg

m3

)( 0.4762 m
s

)2
(2.0 m)

(2.60)

= 0.0067 (unitless) (2.61)

When all the data in Table 2.3 are converted to friction factor versus Reynolds
number, we plot these quantities on a log-log plot (Figure 2.25).

The friction factor/Reynolds number plot is striking in its simplicity compared
to the same data plotted in either Figure 2.23 or 2.24. First, there is one single
curve for all three fluids. All of the differences in the experiments due to choice
of fluid are captured by including the viscosity and the density in the Reynolds
number. Second, there is no longer any evidence in the plot of a dependence on
pipe diameter. The recasting of the data into dimensionless pressure drop and
dimensionless flow rate fully captures the effect of pipe diameter on flow rate and
pressure drop. By comparing the observed flow types listed in Table 2.3, we also
see that there is a clear separation of flow types by Reynolds number in the data of
this example: Laminar flow is observed for Re < 2,100, turbulent flow is observed
for Re > 4,000, and unstable flow is observed between them. This is precisely
Osborne Reynolds’s observation that flow type depends on only the combined
variable Reynolds number, not individually on the parameters ρ, 〈v〉, D, and μ.

The problem statement asked what are the key factors that determine flow type
for the fluids studied. The answer is that flow type is determined by the Reynolds
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Figure 2.25 The data in this example are rendered into friction factor versus Reynolds number. Laminar flow is observed when
the Reynolds number is less than about 2,100; turbulent flow is observed when the Reynolds number is above
4,000.

number of the flow. We were asked how we could have predicted the observed
variations in pressure drop instead of carrying out involved experiments. We see
now that because the friction factor/Reynolds number curve is available from prior
experiments by Reynolds and others (see Figure 1.21 and the Colebrook equation,
Equation 1.95 in Chapter 1), we could have proceeded as follows: Calculate the
Reynolds number from the flow rates of interest (using Equations 2.50 and 2.52),
read friction factor from the published correlation plot (see Figure 1.21), and
calculate �p for each datapoint using Equation 2.51. Because �p(Q) in pipes in
the form of f (Re) already is well known, we can predict with confidence many
important quantities in pipe flows of all types (see Chapter 8 for more details).

The incredible simplicity of Figure 2.25 was not luck. Dimensional analysis
of the governing equations tells us directly to expect that plotting friction factor
versus Reynolds number would collapse the data for pipe flow. The dimensional
analysis of pipe flow is described in Chapter 7.

EXAMPLE 2.7. For the flow of water at 3.0 gpm in 1
2 -inch type-L copper tubing,

is the flow laminar or turbulent? What is the highest flow rate for laminar flow in
this tubing?

SOLUTION. To determine if the flow is laminar or turbulent, we calculate the
Reynolds number. The viscosity and density of water are available from the
literature, as is the true ID of 1

2 -inch copper tubing [132].

ρ = 62.25 lbm/ft3 (2.62)

μ = 6.005 × 10−4 lbm/ft s (2.63)

D = 0.545 in (2.64)
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First, we calculate the average velocity from the flow rate:

〈v〉 = 4Q

π D2
(2.65)

= 4 (3 gpm)

(
2.228 × 10−3 ft3/s

gpm

)(
4

π (0.545/12 ft)2

)
(2.66)

= 16.503 ft/s = 17 ft/s (2.67)

Second, we calculate the Reynolds number:

Re = ρ〈v〉D

μ
(2.68)

=
(
62.25 lbm/ft3

)
(16.503 ft/s)

( 0.545
12 ft

)
6.005 × 10−4 lbm/ft s

(2.69)

= 78,000 (2.70)

Because the Reynolds number is higher than 4,000, the flow is turbulent.
To determine the highest flow rate that gives laminar flow, we seek the flow

that corresponds to a Reynolds number of 2,100:

Re = 2,100 (2.71)

2100 = ρ〈v〉D

μ
(2.72)

〈v〉 = (2,100)
(
6.005 × 10−4 lbm/ft s

)
(
62.25 lbm/ft3

) ( 0.545
12 ft

) (2.73)

= 0.4460 ft/s = 0.45 ft/s (2.74)

Third, we calculate the flow rate in gpm that corresponds to this average velocity:

Q = π D2

4
〈v〉 (2.75)

= π
( 0.545

12 ft
)2

(0.4460 ft/s)

4

(
gpm

2.228 × 10−3 ft3/s

)
(2.76)

= 0.3 gpm (2.77)

We calculated that the maximum flow rate for laminar flow in the context of
a 1

2 -inch tubing is about 0.3 gpm, which is a very low flow rate in a household
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or industrial application. For comparison, a low-flow bathroom showerhead has a
flow rate between 1 and 3 gpm through a 1

2 -inch pipe. Laminar flow is used rarely
in plumbing and industrial piping unless conditions are designed deliberately to
achieve laminar flow.

2.5 Aerodynamics: Lift

In Section 2.2, we discuss the concept of fluid drag, a force that slows down
objects that move through a fluid. Drag is a consequence of viscosity—which
is a measure of the ability of a fluid to transfer stress. Drag is a force that acts
counter to the principal flow direction. Lift is another component of force created
when objects move through fluids. Lift tends to move objects in a direction
perpendicular to the main flow direction (Figure 2.26), and it is lift that gets an
airplane off the ground.

How does an airplane fly? This is not an easily answered question despite the
existence of many published explanations. The technology of heavier-than-air
flight involves a discussion of viscosity, pressure, boundary layers, and boundary-
layer separation and boundary-layer attachment (recall the complex golf-ball
discussion). To give an idea of how flight depends on complex flow phenomena,
we outline the reasons for flight. The physics of flight is better understood by

lift force

main flow direction drag
force

lift
force

drag force

flow direction
drag force

lift force

Figure 2.26 Lift is the force that allows airplanes and helicopters to resist the pull of gravity and to fly, but it also is a lateral
force that affects any body that moves through a fluid such as particles in a water stream or dolphins in the
ocean.
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(a)

(b)

(c)

force

force

force

Figure 2.27 Anisotropic bodies experience lift when placed at an inclined angle relative to a uniform flow. (a) If the body is
placed at zero inclination—that is, facing head on into the flow, there is no lift (i.e., no vertical component of force);
(b) at a 2.5-degree angle of attack, there is a small amount of lift; and (c) at a 20-degree angle of attack, there is
more lift. Notice the change in the flow around the body as the angle of attack increases [170]. Images Copyright c©
1974 ONERA.

studying aeronautics after completing this first course in fluid mechanics [11, 76]
(see also Section 10.4).

Anisotropic bodies5 experience lift when placed at an inclined angle relative
to a uniform flow field. The type of object orientation that produces lift is shown
in Figure 2.27. A body placed at an inclined angle relative to a uniform upstream
flow field splits the flow, pushing part of the fluid down and past the object and
part of the fluid up and over the object. The object does not need to be an airfoil
to experience lift. We discuss airfoils in more detail later.

One part of lift is caused by the force that the object uses to push down
the portion of the stream that flows down the underside of the object. Imagine
your hand to be the object and you are holding it in a strong oncoming air jet
(Figure 2.28). To do this, you are imposing a force on the air that is pushing
the air down. Following Newton’s law of motion, the air pushes back on your
hand with an equal and opposite force. Your hand is inclined relative to the

5Highly symmetric bodies such as spheres also can experience lift in some flows; see Chapter 8
for a discussion.
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lift

drag

Figure 2.28 A hand held up to deflect an oncoming air jet experiences lift.

velocity of the incoming air jet; to divert the air jet, you must exert a vector
force that has two components: one opposite in direction to that of the incoming
air jet and one downward. The upward force your hand feels is part of the
lift.

Lift due to the upward component of force on the bottom of an object in a
stream is not the only contribution to total lift, however, and here the explanation
becomes more complicated. There also is a component of lift from the fluid
that pours over the top of the object. The angle that the object makes with the

Figure 2.29 The Coanda effect is the tendency of a fluid
moving over the top of an object to turn
and flow along the surface. The Coanda
effect occurs because less energy is lost
by deflecting the stream toward the solid
surface than if the stream continued to
flow in a straight line. The free jet mov-
ing in a straight line tends to entrain fluid
that it flows past. The presence of the
surface prevents this inward flow. Never-
theless, the inward forces of that flow are
present and they redirect the jet toward the
surface.

oncoming fluid-velocity direction is called the
angle of attack (see Figure 2.27). For a modest
angle of attack, the air flowing over the top of
the object does not simply rush past in a straight
line; rather, it turns and flows down the surface
(see Figure 2.27b). This effect is particularly
pronounced if the top surface of the object is
smoothly curved (e.g., an airplane wing). The
smoothly varying surface of an airplane wing is
designed to prevent boundary-layer detachment,
thereby enhancing the tendency of the flow to
cling to the wing. The tendency of a fluid jet in
some geometries to attach to a nearby surface
is called the Coanda effect, which is caused by
the inertia of the uniform outer flow and the ten-
dency of fluid jets to entrain bystanding fluid on
either side of the jet [168] (Figure 2.29). The net
effect is that the object in the airstream not only
directs downward the air that flows under the
object; due to the Coanda effect, it also directs
downward the air that flows over the object (Fig-
ure 2.30). Thus, the lift experienced by the object
is the equal and opposite reaction force gener-
ated by the downward-forced airstreams passing
under and over the object. Airplane wings are
objects that move rapidly relative to air, and they
are set at an angle to push and pull down the
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Figure 2.30 An airplane wing moving rapidly deflects air downward by pushing on it. Due to the Coanda effect, the air moving
over the top of the wing also is pushed downward by the motion of the wing.

air. Airplane engines are designed to give horizontal thrust, which is used to
direct the air downward and also to overcome the horizontal drag caused by
the air.

The angle of attack is an important parameter in flight. At a zero angle of
attack—that is, with an airfoil such as an airplane wing facing squarely into
onrushing air—the airfoil experiences little lift. As the angle of attack increases,
the lift increases. There is a limit to this effect, however, due to the dynamics
of boundary layers. As the angle of attack increases, the boundary layer on the
top surface of the airfoil is increasingly unstable; it eventually detaches near the
trailing edge and drag increases (Figure 2.31). If the angle of attack is increased
further, the flow completely separates from the top surface of the airfoil, which
now is said to be stalled. During a stall, the lift decreases and the severe loss in
lift causes the airplane to drop. A midflight stall can be extremely dangerous,
although a stunt pilot who understands a stall can control it and recover by
adjusting the angle of attack to a more acceptable value.

The lifting characteristics of a well-designed airfoil are quantified in the lift
coefficient, CL (compare with drag coefficient; Equation 2.27):

Lift coefficient CL = Flift

1
2ρ〈v〉2 Ap

(2.78)

where CL is the lift coefficient (unitless); Flift is the lift, which is a force magni-
tude; ρ is the density of the fluid; 〈v〉 is the average velocity of the object or the
velocity of the fluid as it flows past the object; and Ap is the reference area for lift
coefficient, often the planform area, which is the projected area of the object in the
direction of lift (i.e., perpendicular to the oncoming flow stream). The lift coeffi-
cient, like the drag coefficient, is a function of the Reynolds number. For Reynolds
numbers associated with airplane flight, the lift coefficient of an airfoil is primarily
a function of the angle of attack. Figure 2.32 shows the measured CL as a function
of the angle of attack α for a typical airfoil [64]. The lift coefficient rises linearly
with α up to a maximum where boundary-layer separation causes stall; the lift
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angle of
attack

Figure 2.31 Increasing the angle of attack increases lift on an airfoil. When the flow completely separates from the top surface,
the flow is stalled [147]. Image from L. Prandtl and O. Tietjens, Hydro- und Aeromechanik, Springer, Berlin, (1929).

coefficient decreases with further increases in α. The maximum value of CL can
be obtained readily from such data and is a strong function of airfoil shape as
well as the Reynolds number (Figure 2.33). Advanced airfoil designs incorporate

0.0

0.5

1.0

1.5

2.0

-5 5 15 25

CL

α
oooo

stall

Figure 2.32 Lift coefficient for an airfoil as a function of the
angle of attack. For symmetric airfoils, there is
zero lift at zero angle of attack. The airfoil corre-
sponding to these data is not symmetric and has
zero lift at a downward angle of attack [64].

flaps, slots, and other types of boundary-
layer control allowing CL to increase up to
values of 4 or higher [121, 176].

The mathematical complexities of the
fluid mechanics of airplane design are
beyond the scope of this text, but the pre-
vious discussion describes the richness of
fluid phenomena and the practicality of the
study of fluid mechanics, especially drag,
lift, and boundary layers (see Chapters 8
and 10). The concept of lift is applicable to
more than airplane flight—lift affects the
settling of anisotropic particles in a suspen-
sion, wind stresses on structures, propul-
sion in sailboats, and racecar aerodynamics
(e.g., the front and rear wings on For-
mula One racing machines are designed
to counteract the tendency of lift to raise
the vehicle off the pavement). This sec-
tion concludes with an example of a lift
calculation.
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Figure 2.33 Maximum lift coefficient as a function of the Reynolds number for a typical simple airfoil. Reynolds number is based
on the chord length, which is the distance from the airfoil tip to the tail. At takeoff, Reynolds numbers are about
105, increasing to higher than 107 at cruising [64].

EXAMPLE 2.8. The takeoff speed of an aircraft is roughly 1.2 times the stall
speed. What is the takeoff speed of an aircraft with a mass of 74,000 lbm and a
planform area of 2,600 ft2? Use the lift data in Figure 2.32 for the calculations.
The density of air is 0.07625 lbm/ft3.

SOLUTION. To lift the aircraft into the air, we must generate a vertical force
that equals the weight of the plane. Thus, we need a lift of magnitude:

Flift = mg (2.79)

where m is the mass of the plane and g is the acceleration due to gravity. For the
example plane, then:

Flift = mg (2.80)

= (74,000 lbm)
(

32.174 ft

s2

)(
s2 lbf

32.174 ft lbm

)
(2.81)

= 74,000 lbf (2.82)

Note the conclusion that a mass of 74,000 lbm weighs 74,000 lbf ; this is the logic
behind the otherwise confounding American engineering units.

Because the takeoff speed is related to the stall speed, we begin by calculating
the stall speed. The stall speed is the speed at which an aircraft reaches the stall
point at the maximum of the CL versus α curve in Figure 2.32. The lift coefficient
at the maximum from the curve in Figure 2.32 is 1.5. The lift coefficient and
the plane stall speed are related in Equation 2.78 when CL is set equal to this
maximum value:

CL = Flift

1
2ρ〈v〉2 Ap

(2.83)
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For CL = 1.5 and 〈v〉 = vstall, we obtain:

vstall =
√

Flift

1
2 CLρ Ap

(2.84)

vstall =

√√√√√ (74,000 lbf )
(

32.174 ft lbm
s2 lbf

)
1
2 (1.5)(0.07625 lbm/ft3)(2,600 ft2)

(2.85)

= 127 ft/s = 130 ft/s (2.86)

The problem stated that the takeoff speed is 1.2 times the stall speed:

vtakeoff = 1.2 vstall = 152 ft/s (2.87)

= 150 ft/s (2.88)

In the remainder of this chapter, we introduce specialty flows that produce
fascinating behaviors that merit study once fluid basics are understood. Readers
who prefer to begin their own modeling efforts may proceed to Section 2.11,
which is a summary of the chapter and a launching point for the remainder of the
text.

2.6 Supersonic flow

When fluids move extremely rapidly—such as when a gas flows through a relief
valve on an overpressurized tank or when air passes through a jet engine—the
flow can become so fast that its fundamental nature changes. These high-speed
flows are called supersonic because the speed of sound is the critical speed that
marks when the change in physics occurs.

Sound is the result of forces on a gas, liquid, or solid causing a disturbance
that then propagates through the matter as a longitudinal compressive wave. An
example of sound propagation is a hammer striking a bell (Figure 2.34) causing
the bell to vibrate. The vibration of the bell causes the air around the bell to
move, and the information that the bell is vibrating travels through the air at
a speed called the speed of sound in air. Our ears pick up and interpret this
vibration through our physiology as sound. From the perspective of physics, what
happened is that forces at the source of the sound (i.e., in our example, the forces
between the hammer and the bell) caused the bell to vibrate, which in turn causes
a disturbance in the fluid near the bell. These disturbances cause subsequent
disturbances in neighboring fluid particles, and the process repeats as the wave
propagates.
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Figure 2.34 Striking a bell creates sound waves that propagate through the air.

The propagation of sound waves is so rapid and of such low amplitude that it
typically is not mentioned in the discussion of fluid mechanics; however, wave
propagation of disturbances in fluids has a role “behind the scenes” in every-
day fluid mechanics. For example, a hydraulic lift is a device used to amplify
forces using a clever geometry and a quiescent fluid through which pressure
propagates. When forces act on a liquid at one side of a hydraulic lift (Fig-
ure 2.35; see also Section 4.2.4.2), they affect the nearest layer of fluid, which

2ra 2rb

fluid of density ρ

Fa Fb

a b

lb

Fb

c dla

Fc

 (a)

 (b)

a b

Figure 2.35 A hydraulic lift is used to amplify forces. The
forces applied at surface (a) move the piston
down, thereby affecting the fluid beneath the
piston. The forces on the fluid are transmitted
through the entire fluid reservoir at the speed of
sound. The net effect is to raise the pressure in
the reservoir, and the raised pressure applied to
the larger surface (b) creates a force large enough
to lift an automobile (see Section 4.2.4.2).

contacts and affects the next nearest layer,
and so on. The information that a force has
been applied at Point (a) travels throughout
the fluid reservoir as a longitudinal pres-
sure wave, and the speed of the propagation
of that wave is the speed of sound in that
fluid. This happens so rapidly that it usu-
ally is considered to have occurred instan-
taneously, and it is not necessary to dis-
cuss the transmission of this information.
Thus, when analyzing the hydraulic lift (see
Chapter 4), we state simply that the pres-
sure applied at one location in a quiescent
fluid spreads instantly to all locations. In
a hydraulic lift, the fluid moves slowly (or
not at all), and the information on pressure
change moves rapidly.

When a fluid is moving rapidly or when
an object moves rapidly through a fluid, the
speed of the fluid and the speed of the infor-
mation waves may be similar. When this
occurs, we cannot ignore the time that it
takes for information about forces to travel

www.20file.org

http://www.semeng.ir


145 How Fluids Behave

within the fluid. This is the regime of supersonic or near-supersonic flows. A
parameter called the Mach number (Ma) delineates whether a flow is below, near,
or above the speed of sound, which is the speed of information:

Mach number Ma ≡ v0

vsound
(2.89)

where v0 is the speed of an object in the flow and vsound is the speed of sound in
the fluid. At a temperature of 15◦C and at sea level, the speed of sound in air is
340.3 m/s (761.2 mph). An object traveling at the speed of sound is traveling at
Mach 1.

Supersonic flows are important in space travel and ballistics. In process engi-
neering, supersonic flows occur in relief valves and, in this application, it is
critical that their special physics be considered when analyzing the valves (see
Chapter 10). Complete consideration of supersonic flows requires the incorpora-
tion of fluid compressibility into the modeling equations of fluid mechanics and,
therefore, involves issues related to the fluid thermodynamics. These topics are
summarized in Chapter 10; more information on supersonic flows, including the
development and use of compressible flow models, is in the literature [3].

2.7 Surface tension

The flows discussed so far involve a single fluid phase: either a fluid producing
drag on an obstacle or fluid filling a tube or channel. When two fluids are present
(e.g., both air and water), an interface forms between the two phases and new
phenomena appear. To understand flows in which one of the boundaries is another
fluid, we must consider the properties of the phase boundary, known as the free
surface of the flow.

For many, an early introduction to science was learning the distinctions among
the three basic states of matter;6 solid, liquid, and gas. In the solid state, matter
holds its own shape; whereas in the liquid state, matter conforms to the shape of
its container; and in the gaseous state, matter expands to fill all available space.
Because it does not expand to fill all space, a quantity of material in the liquid
or solid state creates an interface or phase boundary between the material and
its surroundings. For both liquids and solids, there can be interesting properties
associated with the phase boundaries because the molecules near the free surface
do not experience the same environment as those deep inside the material. The
unique surface properties of solids are exploited in fields such as catalysis, in
which chemically active groups on the surface can accelerate chemical reactions.
For liquids, the existence of a free surface often leads to motion of the interface
and subsequently to the creation of interesting surface shapes and phenomena
(Figures 2.36 and 2.37).

To account for free-surface effects within flow models, we introduce an addi-
tional material parameter beyond density and viscosity. The unbalanced molecular

6In the 21st century, children are taught about the five states of matter: solid, liquid, and gas,
Bose-Einstein condensate (a phase that appears at absolute zero), and plasma (high-temperature
ionized gas).
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Figure 2.36 Surface forces cause the curvature of interfaces in small tubes, which is called the meniscus effect. The scale on
the left is marked in millimeters.

effects at free surfaces may be accounted for by defining a fluid property called
the surface tension (see Section 4.4):

Surface tension
(extra tension/length
in a surface due to

unbalanced molecular forces)

σ [N/m] (2.90)

We can understand surface tension by considering what is unique about fluid
surfaces. The fluid properties at a free surface are exceptional because the envi-
ronment faced by the fluid molecules at a free surface is different from the
environment experienced by them away from the free surface (Figure 2.38). In
a liquid, there are attractive forces between the molecules that constitute the
liquid (see Section 4.2). In the center of a container of liquid at rest, a given
molecule experiences a cohesive pull from every direction, the different pulls
balance one another, and the molecule experiences no net force. At the interface

Figure 2.37 Surface tension allows engineers and designers to create interesting effects with water, such as the curving water
sheet in this fountain (National Museum of Contemporary Art, Gyeonggi-do, South Korea).
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??

Figure 2.38 Fluid particles deep in a container experience
forces from the fluid particles surrounding them.
For the particles at the surface, however, the
forces on one side are different: They are due
to the presence of air or whatever fluid is on the
other side of the interface. This difference causes
an imbalance in the forces for particles at the
surface.

between the liquid and a surrounding gas,
however, the attractive liquid forces pull
only from one side. Molecules at the free
surface experience the downward pull of
attraction to neighboring liquid particles,
but there is a negligible balancing upward
pull from the gas molecules above them.

The molecular-force imbalance at the
free surface is not captured by bulk fluid
properties such as the density or viscos-
ity. Because the downward force on surface
particles is not balanced by an upward force
of fluid on the other side of the interface,
the net effect is that the free surface behaves
like a thin massless film under tension. In
other words, the free surface is like a piece
of a balloon that has been stretched in all
directions (Figure 2.39). When force bal-
ances (i.e., momentum balances) are per-
formed on systems the boundaries of which
cross the free surface, there is an addi-
tional force that must be included to account
for the free-surface physics. Observations

show that this force is tangent to the surface and normal to the line where the
system boundaries and the free surface intersect.

The idea of the free surface as a massless membrane under tension helps us
to understand why some insects and small particles that are heavier than water

Figure 2.39 Unbalanced forces at the free surface of a fluid
must be accounted for by including the surface
tension in fluid models. The surface tension is the
tension per unit length present in an imaginary
stretched film coincident with the free surface.

do not sink when they walk on water. The
water strider is a common example (Fig-
ure 2.40); it is heavier than water and
should sink when it steps out onto the water.
Instead, however, the water strider produces
dimples in the fluid free surface, as if it were
walking on a stretched balloon. The sur-
vival of these insects depends on the surface
tension of the water. Pollutants that reduce
the surface tension jeopardize the existence
of the water strider.

Surface tension has a role in capillary
action, or capillarity, in which liquids climb
up narrow tubes or narrow gaps between
surfaces (Figure 2.41). Capillarity, which is
important in the flow of water through soils
as well as in flows in the human body, is the
result of free-surface forces and fluid-solid
attractive forces. In space travel, where the
pull of gravity is small, capillarity causes
liquids to crawl out of open containers.
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Figure 2.40 The legs of the water strider make impressions on the water surface as it walks across the free surface. The free
surface acts like a membrane under tension that supports the insect. Photo courtesy the U.S. National Park Service
photographer Rosalie LaRue.

Therefore, space travelers must drink with special straws that clamp shut when not
in use to prevent snacks from climbing up the straw and floating freely throughout
the cabin.

Surface forces are important in a wide variety of technical applications, includ-
ing the breakup of jets, processes involving thin films, and foams [122]. Wicking,
the drawing of fluid up into a fabric or wick as in a candle or away from the body
as in the design of exercise clothing, is another process that works by capillary
action. The opposite effect, waterproofing, is a manipulation of surface forces
to prevent wicking. Surface tension causes striking effects that are exploited
to make engaging fountain displays (see Figure 2.37). In soap and water solu-
tions, for example, variation of the concentration of the solute can cause the
surface tension to vary, which in turn causes flow. Flow driven by surface-tension
gradients—called the Marangoni effect [112]—stabilizes soap bubbles, among
other effects (Figure 2.42). Finally, the emerging field of micromechanics cre-
ates machinery that works on nearly molecular-size scales. The properties of any
liquids involved in micromachines are dominated by interfacial forces.

Interfacial forces are not always important, however, even when a large amount
of free surface is present. In an ocean, for example, wave motion depends on
viscous forces and gravity forces, but the contribution of surface-tension forces

Figure 2.41 The surface forces between the glass capillary walls and the fluid (i.e., water and food coloring) are attractive, and
this attractive force is sufficient to draw liquid into the capillary. The capillary is open at the top.
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Figure 2.42 Soap bubbles are composed of thin fluid layers sandwiched between two free surfaces. Surfactant molecules
occupy the free surfaces and reduce the surface tension of the bubble surface compared to the surface tension of
pure water. If an external force deforms or inflates the bubble, more surface is generated, reducing the concentration
of surfactant molecules at the bubble surfaces. Lower surfactant concentration implies higher surface tension,
however, and this locally higher surface tension pulls fluid into the thinning layer, stabilizing the film and preventing
bubble rupture.

to the momentum balance in oceanic flows is negligible. One goal in studying
fluid mechanics is to map out when different types of forces are important and
when they are not. Our tool in this endeavor is dimensional analysis, which we
study in Chapters 7, 8, and 10.

2.8 Flows with curved streamlines

This chapter discusses flows that form many different patterns, and the same
analysis techniques apply to mostly straight flows as to those that are strongly
curving. Flows that are strongly curving, however, present a particular challenge
to our intuition because rotational motion is more complex and can lead to
counterintuitive results. For this reason, flows with curved streamlines typically
are covered only in advanced courses in fluid mechanics. An introduction to flows
with curved streamlines is in Section 10.5.

Many important flows have curved streamlines. A tornado is an extreme exam-
ple of such a flow, and understanding their velocity and pressure distributions can
be of great humanitarian importance. Other curved flows include fluids stirred
in a vessel, water flowing in curving rivers or through pipe bends, blood flowing
throughout the human body, vessels being drained of their contents, plastic flow-
ing into a mold, smoke rings, and vortices formed at the tips of airplane wings or
in the wake following a propeller (Figure 2.43).

An unusual phenomenon associated with curved flow is the development of
secondary flows near boundaries. We experience this type of flow when stirring
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Figure 2.43 Various flows with curved streamlines are observed: (a) vortices shed by a stationary object in a flow; (b) tornadoes;
and (c) whirlpools. Images courtesy of the National Science Foundation (nsf.gov), the National Oceanic and
Atmospheric Administration’s National Severe Storm Laboratory, and tippecanoe.in.gov.

loose tea leaves in a cup (Figure 2.44).7 After stirring, the circular flow dies
slowly, and the brewed tea comes to rest. It is interesting to observe that the tea
leaves collect in the center of the cup. Because of the inertia8 of the spinning tea
leaves, it seems intuitive that the leaves would be thrown to the outer perimeter of
the cup rather than collect in the center. They collect in the center rather than at
the periphery because of a weak radial flow in the boundary layer near the bottom
of the cup. We use this example to frame a brief discussion of secondary flows.

The strong circular flow in the teacup experiment is called the primary flow,
and the weaker radial flow that takes place at the bottom is called the secondary
flow [154]. In the teacup, the secondary flow occurs because the fluid near the
bottom is slowed down by its proximity to the motionless bottom surface. Away
from the bottom, in the strong primary flow, a pressure distribution builds up,
resulting in a larger pressure near the outer edges of the cup compared to the
center. Near the bottom wall of the teacup, the slowed fluid is unable to maintain
this pressure gradient and becomes subject to it instead, and fluid is pushed toward

7In some cultures, the teabag has replaced the practice of brewing loose tea in a cup, so this
phenomenon may not be familiar; a little fieldwork therefore may be required to observe the
secondary flow discussed.

8Recall that inertia is the tendency of a body once in motion to remain in motion unless an outside
force acts on it. Thus, inertial forces in a circular flow refer to the tendency of fluid particles to
experience an outward force pushing them toward larger radial positions.
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Figure 2.44 After azimuthal stirring, tea leaves tend to gravitate to the center of a cup. This effect is due to the secondary flow
near the bottom of the cup.

the center of the cup. The tea leaves, which are heavier than water and therefore
settle to the bottom of the cup, are dragged along in this inward flow and collect
in the center of the flow (see Figure 2.44).

A second example of secondary flow induced by curved streamlines occurs
near the bottom of a riverbed. This flow is partially responsible for the tendency
of rivers and streams to develop exaggerated bends and turns. If a mild bend
develops in a river or stream, the induced secondary flow drags silt and other
sediments from the outer bank of the river and deposits them on the inner bank,
accentuating the bend and strengthening the secondary flow [112].

Secondary flows can be beneficial in applications that require good mixing,
such as in a heart–lung machine (HLM). The HLM, or pump oxygenator [54], is
an instrument used in surgery when the heart must be stopped to allow a surgeon
to perform repairs. A body cannot survive without a heart; thus, the duties of
the heart are taken over by the HLM. An important function of the heart is to
pump blood to the lungs, where carbon dioxide is removed from the blood and
oxygen is replenished. The heart also pumps the newly restored blood to the rest
of the body, where it is needed. When the HLM takes over for the heart, it pumps
blood to an external device in which oxygen is added to the blood and carbon
dioxide is removed (Figure 2.45). The transfer of gases to and from the blood in a
membrane oxygenator is effected through gas-permeable circular tubing arranged
in coils (Figure 2.46). The primary flow is down the length of the tube, but the
tube is curved intentionally to induce a secondary flow. The streamlines for this
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Figure 2.45 Schematic of the surgical use of a membrane oxygenator, a type of heart–lung machine. In a HLM, blood returning
to the heart is pumped outside of the body and through the membrane oxygenator. In the membrane oxygenator,
oxygen diffuses through membranes and dissolves into the blood, and carbon dioxide diffuses back through the
membranes and exits the oxygenator. The oxygen-laden blood exiting the membrane oxygenator returns to the
body.

secondary flow are shown in Figure 2.46. The vortices in a helical tube were first
described by W. R. Dean [38, 39] and are called Dean vortices. This secondary
flow in the HLM moves blood from the walls to the center of the tube and back
again as the fluid progresses downstream [21, 53, 110, 140]. Thus, the secondary
flow stirs up the blood and results in an improvement of a factor between two and
four in the blood oxygenation that occurs [110].

The subtle nature of curved flow makes these flows a challenge to study. Flows
with curvature are usually analyzed with the help of the concept of vorticity,
which is a vector quantity related to the amount of rotational character in a flow

Figure 2.46 The oxygen that diffuses into the blood near the tube surface mixes efficiently with the rest of the blood because
of a secondary flow that takes place in the curved tubes.
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field at a particular point. In terms of vector calculus, vorticity ω is defined as
ω ≡ ∇ × v, where v is the vector that describes the local direction and magnitude
of fluid velocity, and ∇ is the spatial differentiation operator (see Section 1.3).
Like velocity, vorticity forms a field, and we speak of a pattern of vortex lines in
a flow that map out the local vorticity vector by tracing lines that are everywhere
tangent to the vorticity (see Section 8.3). Vortex lines drawn through every point
on a closed curve form a vortex tube. Various mathematical theorems based on
momentum, mass, and energy conservation apply to vorticity and vortex tubes
and can be helpful in understanding fluid motions involving strong amounts
of curvature. For example, the product of the magnitude of the vorticity and
the cross-sectional area of a vortex tube must be constant for a vortex tube [72].
Vorticity is introduced in Section 8.3 [114], and flows with curved streamlines are
discussed in Section 10.5 [123]. Many resources in the literature [9, 79, 154, 168]
can guide further study of highly rotational flows once the basics in this text have
been mastered.

2.9 Magnetohydrodynamics

The fluid behaviors described in the preceding sections are exhibited by normal
fluids including air, water, oils, and foods. In addition to these behaviors, there are
specialized types of fluid behaviors characteristic of more esoteric fluids, such as
the molten core of the Earth. Research fields have arisen around unusual fluids,
and basic fluid mechanics is the entry point to the study of these advanced topics,
one of which is the field of magnetohydrodynamics (MHD), which helps us to
understand flows in the core of the Earth or on the surface of the sun.

As discussed in this chapter, flow and deformation of fluids is caused by the
imposition of forces such as a knife spreading peanut butter or gravity pulling
water over Niagara Falls. Three types of forces cause most flows: pressure dif-
ferences, imposed forces that act on the boundaries of a fluid, and gravity (see
Chapter 6). A more unusual source of flow driving force is a magnetic field. When
a fluid is electrically conductive, forces are induced in the fluid by an external
electric field. These forces cause fluid motion; in turn, the fluid motion alters
the magnetic field. To understand the effect of magnetic field on the motion of
a conductive fluid, the electromagnetic and the fluid-mechanics equations must
be considered simultaneously. The electromagnetic equations are the Maxwell
differential equations [167] and are taught in physics and chemistry courses. The
fluid-mechanics equations are those that are discussed in this book (see Chap-
ter 6). Both types of equations are vector-field differential equations and are best
described with vector calculus.

The phenomenon of MHD is due to the mutual interaction of a magnetic
field B and a fluid velocity field v [35]. For convenience, we divide the process
into three parts. In the first part, relative movement of a conducting fluid and
a magnetic field causes an electromotive force (e.m.f.) to develop. This is a
consequence of Faraday’s law of induction [167], and when a conducting fluid
moves in a magnetic field, a current begins to flow in the conducting fluid. The
induced current in the fluid must itself create a magnetic field, in accordance
with Ampère’s law. In the second part, the induced magnetic field adds to the
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Figure 2.47 When a conductive rod is drawn through a vertical magnetic field, the induced current in the rod creates an induced
magnetic field [35]. The effect on the magnetic field lines is that they bend. The visual effect is as if the rod is
dragging the magnetic field lines in the direction of its motion. The effect is similar for a conductive fluid, although
more complicated because the moving conductor is deformable in that case. Reprinted with the permission of
Cambridge University Press.

original magnetic field, altering the field lines. The change is usually such that
the fluid appears to drag the magnetic field lines in the direction of the flow
(Figure 2.47). The third step in this simplified explanation of MHD is when the
modified magnetic field interacts with the induced current density to give rise to
a Lorentz force. This is a force exerted on moving charged particles, and it acts
perpendicular to both the direction of the motion of the charged particles and
the magnetic field lines [167]. In MHD, the Lorentz force is directed so that it
inhibits the relative movement of the magnetic field and the fluid [35].

MHD figures prominently in astronomy, geology, and metallurgy (Figure 2.48).
The Earth’s magnetic field is a result of fluid motion in its core, and the solar
magnetic field generates sunspots and solar flares due to MHD. Because liquid
metals are conductive, MHD is used in the metallurgical industry to heat, pump,
stir, and levitate liquid metals. MHD also is used to damp surface motion in
metallurgical processing [35]. MHD flows are highly rotational, and vorticity is
an important tool in their study.

This discussion is only a summary of an advanced application of fluid
mechanics, but it demonstrates that a mathematical understanding of basic fluid
flow is essential before attempting to master complex fluid motions, such as
those induced in conducting fluids by magnetic fields. Investing in the study
of basic fluid mechanics opens up a wide variety of avenues for advanced fluid
applications.

2.10 Particulate flow

This chapter on fluid behavior concludes with a cautionary note. Not everything
that flows may be considered by using the continuum assumptions discussed in
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Figure 2.48 Many cosmic bodies are composed of hot ionized gases or plasmas. These conducting fluids interact with magnetic
fields to display a wide variety of MHD-induced motions, including the solar flares shown here. Photo courtesy of
NOAA.

this book. The continuum assumption (see Chapter 3) is a model that states that
fluids are continuous and everywhere characterized by average properties—for
example, locally averaged values of density, viscosity, and concentration. An
important class of materials that is not continuous, and therefore beyond the
scope of this book, is particulate solids.

Particulate solids are systems composed of small solid grains of matter—for
example, sand, salt, sugar, baby powder, corn starch, gravel, dirt, and polymer
pellets. Particulates can flow, and they move and deform in ways that sometimes
are similar to the flow of continuous fluids; however, there are many ways in
which they are different from continuous fluids.

Consider the flow of two fluids through a funnel (Figure 2.49). A Newtonian
fluid poured into a funnel always flows out. A viscous fluid takes longer to flow
out than a less viscous material, but the flow does not stop moving until all of it
has passed through the funnel. Consider what happens, however, if a particulate
fluid is loaded into a funnel. The particulates (e.g., tapioca pearls) flow but, at
some point, they jam. To restart the flow, it is necessary to tap the funnel or to lift
it and set it down again. After the distribution of particles is disturbed, the flow
starts again; however, several iterations of tapping and jarring may be necessary
to make the tapioca to pass completely through the funnel.

Tapioca pearls flow sporadically in a funnel due to the formation of particle
bridges or arches over the bottom opening of the funnel (Figure 2.50). Func-
tioning like the stones that comprise archways in buildings, the particles form a
sturdy structure that is able to support the weight of the material above it. This
structure stops the flow until the structure itself is disrupted externally by either
tapping on the funnel, blasting the arch with high speed air, or otherwise jostling
the flow [153].

Particulate solids exhibit properties that are a combination of liquid-like
behavior, solid-like behavior, and particle-interface–dominated behavior [163].
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Figure 2.49 When simple fluids like milk flow through a funnel, the flow is predictable and reproducible (left). However, when
particulate solids such as tapioca pearls flow, sometimes the flow moves (center) and sometimes it jams due to a
bridging effect (right). The flow varies depending on particle characteristics and initial conditions.

Particulates flow through openings, take the basic shape of the container they
occupy, and exert pressure on the walls of the container. Liquids cannot sustain
shear stresses without flow (see Chapter 4), but particulates can. An example of
particulates sustaining a shear stress is a sand pile—a liquid cannot form a pile.
Another property of liquids is that when a load is applied to a liquid, an isotropic
pressure distribution is observed throughout the liquid (see Chapter 4). For partic-
ulate solids, even if a uniform load is applied to the mass of particulates, the stress
may not be isotropically distributed—there may be a buildup of stress at points in
the sample, as occurs during bridging (see, e.g., Figure 4.27). The flow stresses
for particulates are proportional to the normal load—that is, to the magnitude
of force directed perpendicular to the flow direction—whereas the flow stresses
for Newtonian liquids are proportional to the deformation rate (Equation 2.1, see
also Chapter 5)—the list of differences is long. Perhaps the most vexing property

(a) (b)

Figure 2.50 Particulates can form bridges or arches that block the flow and support large stresses. Two types of arches form:
(a) mechanical, caused by the interlocking of large (>3,000 μm diameter) free-flowing particles; and (b) cohesive,
caused by interparticle attractions in fine powders [153].
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of particulate flows is that the magnitude of shearing stress is generally indeter-
minate: For two particulate flows with the same apparent velocity field, different
stresses can be generated [163].

The study of particulate flows is diverse and growing [30]. Numerous engineer-
ing applications involve particulate flows, including agriculture, food processing,
polymer processing, geology, construction, pharmaceuticals, and chemical man-
ufacturing. The principles of continuum fluid mechanics are not useful for these
systems, although some nomenclature and concepts are used in common.

2.11 Summary

This chapter is an overview of fluid behavior including an introduction to vis-
cosity, drag, boundary layers, laminar flow, turbulent flow, lift, supersonic flow,
surface tension, curving flow, and magnetohydrodynamics. The ultimate task
is to make engineering calculations on flows. To assess our current knowledge
of fluid mechanics, we now attempt to carry out a fluid mechanics calculation.
Simply “jumping in” is a tactic that we endorse: Even if we are ill-prepared
to complete the task, the attempt often leads to greater understanding, which
then identifies and motivates the background study needed to truly solve the
problem.

EXAMPLE 2.9. In this chapter, we presented Newton’s law of viscosity, the force-
deformation relationship for fluids. For the various flow phenomena introduced
in this chapter, how do we solve Newton’s law of viscosity to obtain the fluid
velocity field?

SOLUTION. Newton’s law of viscosity relates τ̃21, the force per area generated
in the deforming fluid; ∂v1/∂x2, the local relative speed of the object; and μ, the
viscosity (Equation 2.1):

Newton’s law of viscosity:
(force-deformation relationship)

τ̃21 = μ
∂v1

∂x2
(2.91)

To solve any equation, we need to know what is constant, what is variable, and
the meaning of the variables.

In Equation 2.91, the viscosity is a constant, and τ̃21 and v1 are variables that
are different in every location in a flow. The variable v1 is the magnitude of
the velocity in some direction; however, in many of the flows discussed in this
chapter, the velocity is a fully three-dimensional function that varies in every
direction. The general expression for the velocity is a vector:

v =
⎛
⎝v1

v2

v3

⎞
⎠

123

=

⎛
⎜⎜⎜⎝

v1(x1, x2, x3)

v2(x1, x2, x3)

v3(x1, x2, x3)

⎞
⎟⎟⎟⎠

123

(2.92)
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The stress τ̃21 also is a function of x1, x2, x3, as well as only one of several stresses
associated with a complex flow. In the tensor discussion in Chapter 1, we learned
that there are nine components of stress.

τ̃ =
⎛
⎝ τ̃11 τ̃12 τ̃13

τ̃21 τ̃22 τ̃23

τ̃31 τ̃32 τ̃33

⎞
⎠

123

(2.93)

Although Equation 2.91 gives an important local relationship between one par-
ticular stress τ̃21 and the local distribution of velocity, it alone does not contain
sufficient information about the flow to allow us to calculate the velocity field
v or the stress field τ̃ for the entire flow. As discussed in subsequent chapters,
we need mass and momentum balances, properly applied for a given situation,
and we must incorporate force-deformation information such as Newton’s law of
viscosity to solve for velocity and stress fields. The momentum balance for fluids
is introduced in Chapter 3, the stress tensor in Chapter 4, the complete stress-
velocity relationship in Chapter 5, and the techniques for solving the modeling
equations in Chapters 6–10.

This is the beginning of our study of fluid mechanics. After completing the
course, readers will be able to calculate fluid velocity and stress fields for many
flows. Therefore, the solution of this problem is postponed until more is known
about how fluids work.

In this text, we present fluid-mechanics modeling in a step-by-step manner.
We introduce fluid physics by tying together the familiar physics of rigid bodies
(e.g., blocks sliding down a hill) with the physics of deforming systems—that is,
fluids. In the next chapter, we choose our model for quantifying fluid behavior,
which is called the continuum model.

2.12 Problems

1. When you have the oil changed in your car, the service attendant asks, “Would
you like 10W40 or 10W30?” How should you decide?

2. What is the density of acetone? What is the viscosity of acetone? Compared
to water, does acetone generate more or less stress in flow? Be quantitative
in your answer.

3. What is the density of blood? What is the viscosity of blood? When doctors
give a “blood thinner,” is it the viscosity, the density, or something else that
they are changing?

4. When medical technicians draw blood for laboratory tests, they first insert
a needle attached to a tubeholder into a vein. The second step is to push a
tube onto the needle, causing blood to flow into the tube (i.e., the needle
penetrates a septum covering the top of the tube). Why does the blood flow
into the tube? It may be necessary to search the device on the Internet to
determine the answer.

5. In addition to solid, liquid, and gas, another common state of matter is foam.
Foams occur in food processing (e.g., whipped cream and frothed milk),
consumer products (e.g., hair mousse and shaving cream), and industrial
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applications (e.g., wall insulation and fire-extinguishing fluid). Describe the
structure of foam from a scientific perspective. Do the foams flow and deform
like Newtonian liquids (e.g., water and oil), Bingham plastics (e.g., mayon-
naise and paint), or do they comprise their own class of materials? Describe
the flow behavior of foams.

6. Honey is trapped between two long wide plates (plate area = 9.0 cm2) and
the top plate is moved at 1.0 cm/s. The gap between the plates is 0.50 mm.
What is the velocity gradient ∂v1/∂x2, where 1 indicates the flow direction
and 2 indicates the direction perpendicular to the plates?

7. If water is trapped between two long wide plates and subjected to a velocity
gradient of 10.0 s−1 in the 2-direction, what is the magnitude of the shear
stress τ21 that is generated? If the area of the top plate in contact with the
water is 25 cm2, what is the force needed to maintain the motion of the
plate?

8. If water is trapped between two long wide plates and subjected to a velocity
gradient of 5.0 s−1 in the 2-direction, what is the magnitude of the shear
stress τ21 that is generated? If the fluid between the plates is changed from
water to honey, how much shear stress is generated?

9. Olive oil is placed between two long wide plates (plate area = 97.5 in2) and
the top plate is moved at 0.25 in/s. The gap between the plates is 0.0126 in.
What is the force that it takes to maintain the motion?

10. Two fluids are examined with a parallel-plate apparatus like Newton used to
study fluids. The two plates have the same area A; and with the test fluid
in the gap, a constant gap of H is maintained as the top plate is dragged in
a uniform direction, causing the fluid to deform. When the two fluids are
tested, it takes twice as much force to move the plate at a fixed velocity V
with Fluid 2 as with Fluid 1. What is the ratio of the viscosities of the two
fluids?

11. A tree in the wind is an object subjected to a uniform flow (a flow that
everywhere has the same speed and direction). How much drag is a tree
subjected to by modest winds and by hurricane-force winds? Search the
literature for air speeds and drag coefficients to answer this question.

12. A bicycle racer in a racing crouch is traveling at 50 mph. How much faster
will she go if her teammate drafts her by riding immediately in front of her?

13. How much wind force is a flag subjected to on a typical day? Search the
literature for air speeds and drag coefficients to answer this question.

14. A disk (i.e., radius is R and thickness is H ) is dropped from a great height.
How much faster does the disk fall when dropped edge first versus dropped
with the large circular surface perpendicular to the fall direction? Search the
literature for drag coefficients for the disk in these two orientations.

15. When you stir water (or coffee or tea) in a cup, how does the shape and
position of the fluid surface change compared to the fluid at rest? Sketch
the quiescent and steady-state fluid interfaces. Note: The sketch should be
consistent with the principle of conservation of mass.

16. The viscosity of water is about 1 cp. Showing the unit conversions, what does
1 cp translate into in American engineering units (involving lbf , ft, s)? What
does this quantity translate into in SI units (Système international d’unités,
the metric system, involving kg, m, s)?
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17. In this chapter, we discuss the force it takes to push fluid through a needle
attached to a syringe. If the fluid ejected from the needle is glycerin rather
than water, how much force would it take? Use all of the same assumptions
as in the text example.

18. The rate of blood circulation in the body is 5.0 lpm (liters per minute) [145].
How much blood passes through the heart in a day?

19. Laminar flow in a tube is described by the Hagen-Poiseuille equation, intro-
duced in this chapter. (a) For water (25◦C) flowing through a 10-foot section
of 1/2-inch pipe (Schedule 40) in laminar flow, what is the maximum flow
rate (in gpm) through the pipe before the flow becomes transitional? (b) What
is the pressure drop (in psi) across the pipe at this maximum flow rate?

20. Water (25◦C) is pushed through a pipe (ID 4.0 mm and length 1.5 m) and
laminar flow is produced at a Reynolds number of 800. For the same fluid
subjected to the same pressure drop in a pipe of the same length, at what pipe
diameter will it no longer be possible to produce laminar flow?

21. Blood travels through the large arteries of a human body (internal radius
12 mm) at an average velocity of about 50 cm/s. What is the flow rate of
blood through these arteries? Is the flow laminar or turbulent? The viscosity
of blood is 3.0 cp and the density of blood is 1,060 kg/m3 [145].

22. Blood travels through the human heart’s ascending aorta (diameter = 3.2 cm)
at an average velocity of about 63 cm/s [145]. What is the flow rate of blood
through this vessel? See the previous problem for viscosity and density of
blood.

23. A carbon-dioxide bubble rises in a glass of soda. From the perspective of an
observer sitting on the bubble, sketch the flow lines as the liquid parts and
flows around the rising bubble. Is there a flow (i.e., motion) in the carbon
dioxide inside the bubble? Discuss why or why not.

24. How does drinking from a straw work? In your answer, use scientific terms
such as pressure, continuum, and flow.

25. An open container of fluid has a hole in the side and the fluid leaks out under
the force of gravity. If a tight-fitting but movable piston is placed on top of
the fluid and a 10-kg weight is placed on top of the piston, how would the
flow out the hole change? Sketch your answer. Why is there a change?

26. Many teapots dribble. Why? Which forces mentioned in this chapter influence
teapot dribble?

27. Consider the following (admittedly improbable) two ways to make an open-
faced peanut-butter-and-jelly sandwich: (1) Spread a layer of peanut butter
on a slice of bread; then top this layer with a layer of jelly. (2) First spread
a layer of jelly on a slice of bread; then spread peanut butter over the jelly
layer. Discuss the pros and cons of the two methods. If forced to choose
one of these two methods, which would you choose? Give a fluid-mechanics
explanation of your choice.

28. Why do ice cubes float in water? Why do olives sink in water? Which physical
property is important to the answer: viscosity, density, surface tension, or
something else?

29. You are standing facing a strong wind and you are cold. Will any of the
following actions reduce how cold you feel? Explain your reasoning using
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Figure 2.51 Water towers are visible in many towns in the United States and Europe, and they serve an important role in daily
life (Problem 32).

fluid mechanics: (a) turning sidewise to the wind; (b) laying flat on the
ground; and (c) crouching down on the ground.

30. What is a boundary layer? Give an example of a boundary-layer effect that
you have experienced.

31. Players at the 2010 Football World Cup in South Africa complained that the
ball had an erratic flight path. Discuss possible fluid-mechanics reasons for
problems with the ball.

32. What is the purpose of water towers built in many towns (Figure 2.51)? What
determines how high the water tank should be?

33. Fill a straw by placing it in a liquid. If we place a finger over the top and
remove the straw from the liquid, the straw remains full. Why does the water
not flow out of the straw (Figure 2.52)?

Figure 2.52 Liquid can be captured by submerging a straw in liquid and then plugging the top of the straw with a finger before
withdrawing the straw from the liquid (Problem 33).
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Figure 2.53 An important design element of an indoor plumbing system is the presence of vents (Problem 34).

34. Why do home plumbing systems have vents (Figure 2.53)?
35. In an experiment showed to schoolchildren, a colored liquid is placed in a 2-

liter soda bottle that is subsequently connected at the neck to a second 2-liter
bottle. When all the liquid is in one bottle and the contraption is inverted, the
liquid flows slowly and haltingly from top to bottom. If the fluid is swirled,
however, it drains rapidly from top to bottom. What is happening in this
experiment? Use fluid-mechanics concepts in your explanation.

36. Many adventure and horror movies feature quicksand. What is quicksand?
Does it really exist? How does quicksand work? Is quicksand a Newtonian
fluid?

37. In some homes, residents learn that when someone is showering, no one
should flush the toilet or otherwise use water lest the person in the shower
receives a scalding from hot water. What is happening in this circumstance?
What is wrong with the plumbing design to cause this effect?

38. Trees need water to live, and they get much of the required water from the
ground through their roots. How does water flow up a tree trunk against the
downward pull of gravity? Use scientific principles in your answer.

39. In the living space in a spacecraft in orbit around planet Earth, Earth’s
gravitational pull is not very strong. How are the following processes affected
by a zero-gravity working environment?

(a) Drinking water from the lip of an open glass.
(b) Drinking water with a straw from an open glass.
(c) Drinking water with a straw from a closed box.
(d) Flushing a toilet.
(e) Brewing coffee with an automatic-drip coffeemaker.
(f) The human digestive system.
(g) Swallowing food.
(h) Blood circulating in the human body.

40. Why do helium balloons float in air?
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41. What is the definition of the Fanning friction factor? What is the definition of
the Darcy or Moody friction factor? How can the friction factor be measured
for a given piping system?

42. Water flows through a smooth pipe at a Reynolds number of 53,000. What
is the Fanning friction factor for this flow? For glycerin and acetone flowing
at the same Reynolds number, what are the friction factors?

43. When a balloon inflated with air is released, it accelerates and flies around.
Where does the kinetic energy of the balloon originate?

44. Can you suck foam (e.g., frothed milk from a cappuccino or whipped cream
from a milkshake) up a straw? Why or why not?

45. What is a tornado? How does it form? How does it dissipate?
46. How does water-repellant fabric work?
47. When the flow rate in a water faucet is high, water emerges as an unbroken

column of fluid. When the flow rate is decreased, the faucet eventually begins
to drip. Why does the fluid stream break up into droplets?

48. What is vorticity? For what types of flow is vorticity important?
49. How fast is an aircraft going in km/hr if it is traveling at Mach 1.4?
50. An aircraft has a mass of 35,000 kg and a planform area of 250 m2. How

much lift must the aircraft generate to fly?
51. An aircraft (mass = 25,000 kg; planform area = 203 m2) has a lift coefficient

of CL = 1.8 at stall. What is the stall speed of the aircraft?
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3 Modeling Fluids

Chapter 2 describes fluid behaviors, and Chapters 1 and 2 introduce basic fluids
calculations. We turn now to developing a modeling method that allows us to
understand fluids behavior in detail.

Fluids move and deform in predictable ways that are governed by the laws of
physics. To apply the laws of physics to fluids, we must develop a mathematical
picture or model of fluid motion. With an effective model, we can predict fluid
patterns and stresses and apply these predictions to engineering calculations.

To build up the fluid model that we use, we begin with a reminder about how
to calculate the motions of individual rigid bodies. To apply these methods to
fluids, we then introduce the continuum model, a mathematical picture of fluids in
which we consider small packets of fluid to be individual bodies. We discuss how
we apply the laws of physics to these small fluid packets or particles to deduce
velocities and forces for the fluid particles. Finally, we introduce the control
volume, a point of view used for fluid modeling that focuses our calculations
on a physical region in space rather than on individual bodies in motion. This
difference in strategy—that is, considering a control volume rather than individual
bodies—is a key difference between the modeling techniques of fluid mechanics
and those of solid-body mechanics.

3.1 Motion of rigid bodies

Many of the classical laws of physics are conservation laws, which hold that some
property may neither be created nor destroyed but may interconvert only between
various forms. Mass is conserved [47],1 and so are energy and momentum [157,
167]. Motion is governed by the momentum balance.

The fundamental expression of conservation of momentum for a body is given
in Newton’s second law of motion [167]: “The time rate of change of momen-
tum of a body is equal to the resultant external force acting on the body.” In
mathematical symbols, this becomes:⎛

⎝ resultant of
external forces

on a body

⎞
⎠ =

⎛
⎝ time rate of change

of momentum
on the body

⎞
⎠ (3.1)

1Mass is conserved if a nuclear reaction does not occur. In a nuclear reaction, mass is converted
to energy [167].

167
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Newton’s second law:
∑

all forces
acting on body

f = d(mv)body

dt
(3.2)

where f represents the various forces on the body, m is the mass of the body,
v is the velocity of the body, and t is time. The derivative d(mv)/dt is the
rate of change of momentum for the body. Note that if the mass of the sys-
tem is constant and there is a single force, Newton’s second law becomes the
familiar f = ma, where a = dv/dt is the acceleration of a body of constant
mass m. Engineering and science students spend considerable time learning how
to apply Newton’s second law to rigid bodies in their physics and mechanics
classes.

How can we apply Newton’s second law to flowing systems? This is a difficult
question, but we arrive at a method by building on what we know about Newton’s
second law as applied to individual solid bodies. As a refresher problem, consider
the motion of a block sliding down an incline—first without friction, then with
friction considered.

EXAMPLE 3.1. A block of mass m slides down an inclined plane as shown in
Figure 3.1. The surface of the plane is smooth, and the friction between the block
and the plane may be neglected. What is the velocity of the block at steady state?

SOLUTION. We solve for the motion of the block by applying Newton’s second
law, the momentum balance:

Newton’s second law:
∑

all forces
acting on body

f = d(mv)body

dt
= ma (3.3)

where f represents the forces on the block, m is the mass of the block, v is the
velocity of the block, t is time, and a is the acceleration of the block.

y

θ

gm

θ
N

x

v

Figure 3.1 A block of mass m slides down a smooth incline. The motion of the block may be solved for by applying the principle
of conservation of momentum (i.e., Newton’s second law).
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There are two forces on the block: the downward force mg due to gravity and
the normal force N exerted by the surface of the incline (see Figure 3.1). We must
choose a coordinate system in which to solve the problem; we choose a Cartesian
coordinate system where the x-direction points down the incline, the y-direction
points normal to the inclined surface, and the z-direction is perpendicular to the
xy-plane such that a righthand coordinate system is formed (i.e., z-direction is
out of the page). In this coordinate system, g and N may be written as:

g =
⎛
⎝ g sin θ

−g cos θ

0

⎞
⎠

xyz

(3.4)

N =
⎛
⎝ Nx

Ny

Nz

⎞
⎠

xyz

=
⎛
⎝ 0

Ny

0

⎞
⎠

xyz

(3.5)

where we have incorporated the fact that N is normal to the surface and therefore
in the y-direction only. We also can simplify the expression for v in this coordinate
system because v is in the x-direction only:

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝vx

0
0

⎞
⎠

xyz

(3.6)

We substitute these vectors into Equation 3.3 and solve for v and N :

d(mv)

dt
= ma =

∑
all forces

acting on body

f = mg + N (3.7)

⎛
⎜⎜⎜⎝

m
dvx

dt
0
0

⎞
⎟⎟⎟⎠

xyz

=
⎛
⎝ mg sin θ

−mg cos θ

0

⎞
⎠

xyz

+
⎛
⎝ 0

Ny

0

⎞
⎠

xyz

(3.8)

Equating the y-components of each vector in Equation 3.8, we obtain:

y-component: Ny = mg cos θ (3.9)

Equating the x-components of each vector in the same equation, we obtain:

x-component: m
dvx

dt
= mg sin θ (3.10)

Now we solve for vx . Note that g and sin θ are constant:

dvx

dt
= g sin θ ≡ B (3.11)
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Integrating: ∫
dvx =

∫
B dt (3.12)

vx = Bt + C1 (3.13)

vx (t) = (g sin θ) t + C1 (3.14)

The constant C1 is an arbitrary constant of integration. If we assume that at time
t = 0 the velocity is zero, then C1 = 0 and vx = (g sin θ)t . Thus, the velocity of
the block is:

v(t) =
⎛
⎝ (g sin θ) t

0
0

⎞
⎠

xyz

ˆ= (g sin θ)tex (3.15)

As a result of gravity, the block moves down the slippery surface of the incline
with a constant acceleration dv/dt = a = g sin θ êx (Equation 3.11) and a lin-
early increasing, time-dependent velocity v = (g sin θ)t êx . In the solution to this
problem, we also obtained an expression for the normal force vector acting on
the block:

N =
⎛
⎝ 0

mg cos θ

0

⎞
⎠

xyz

= mg cos θ êy (3.16)

EXAMPLE 3.2. A block of mass m slides down an inclined plane as shown in
Figure 3.2. The surface of the plane is rough, and the contact between the block
and the plane creates a frictional force on the block that retards its motion down
the plane. The frictional force F is proportional to the magnitude of the normal
force exerted by the inclined plane on the block. What is the velocity of the block
at steady state?

gm
θ

N

y

x

v

xk eN ˆμ−=

Figure 3.2 A block of mass m slides down a rough incline. The frictional force that slows the block is proportional to the
magnitude of the normal force imposed on the block by the surface of the incline. The constant of proportionality
is called the coefficient of sliding friction [167]. Within a reasonable range of velocities, the coefficient of sliding
friction is independent of the block velocity.
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SOLUTION. The solution procedure is the same as that used in the previous
example with the addition of a force, F , which acts on the block in the negative
x-direction. We solve for the motion of the block by applying Newton’s second
law, the momentum balance. Newton’s second law is:

Newton’s second law:
∑

all forces
acting on body

f = d(mv)body

dt
= ma (3.17)

where f represents the forces on the block, m is the mass of the block, v is the
velocity of the block, t is time, and a is the acceleration of the block.

Experiments on sliding friction show that the magnitude of the retarding fric-
tional force is proportional to the magnitude of the normal force exerted on the
block. The constant of proportionality is called the coefficient of sliding friction
μk [167]. In our solution, we write the frictional force F in terms of μk :

F =

⎛
⎜⎝

−μk N

0

0

⎞
⎟⎠

xyz

ˆ= −μk Nex (3.18)

where N is the magnitude of the normal-force vector N . The negative sign in
Equation 3.18 reflects that friction slows the block; that is, it acts in the opposite
direction to the direction of the velocity of the block.

To solve for the velocity of the block, we substitute F and the expressions for
the other two forces (i.e., gravity and the normal force) into Equation 3.17 and
simplify:

d(mv)

dt
= ma =

∑
all forces

acting on body

f = mg + N + f
friction

(3.19)

⎛
⎜⎜⎜⎝

m
dvx

dt
0
0

⎞
⎟⎟⎟⎠

xyz

=
⎛
⎝ mg sin θ

−mg cos θ

0

⎞
⎠

xyz

+
⎛
⎝ 0

Ny

0

⎞
⎠

xyz

+
⎛
⎝−μk N

0
0

⎞
⎠

xyz

(3.20)

Equating the y-components of each vector in Equation 3.20, we again obtain
Ny = mg cos θ for the y-component of normal force. Note that N , the magnitude
of N , therefore is given by:

N =
⎛
⎝ 0

mg cos θ

0

⎞
⎠

xyz

(3.21)

N = |N | = +√N · N = mg cos θ (3.22)

Equating the x-components of each vector in Equation 3.20, we obtain:

x-component m
dvx

dt
= mg sin θ − μk N (3.23)
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Substituting N = mg cos θ into this equation and solving for vx yields the result
for vx :

m
dvx

dt
= mg sin θ − μkmg cos θ (3.24)

dvx

dt
= g sin θ − gμk cos θ (3.25)

vx = (g sin θ − gμk cos θ) t + C1 (3.26)

where C1 is an arbitrary constant of integration. If we assume that at time t = t0
the velocity is v0,2 then we can evaluate C1 = v0 − (g sin θ − gμk cos θ) t0. After
substituting this into Equation 3.26, we obtain the final result for vx :

vx = v0 + (g sin θ − gμk cos θ) (t − t0) (3.27)

Thus, the steady-state velocity of the block in this example is:

v(t) =

⎛
⎜⎝

v0 + (g sin θ − gμk cos θ) (t − t0)

0
0

⎞
⎟⎠

xyz

(3.28)

When analyzed with friction present, the block moves with constant acceleration
a = (g sin θ − gμk cos θ) êx (Equation 3.25), although the acceleration is less
than when the block slides without friction. With friction present (Equation 3.28)
or not present (Equation 3.15), the steady-state velocity is a linear function of
time.

As shown in these two examples, the general method for calculating the motion
of solid bodies is to write expressions for forces on a chosen body in a chosen coor-
dinate system and solve the components of the momentum balance for unknown
quantities.

The motions of fluids likewise are governed by the balance of momentum.
In flow, momentum transfers from one part of a fluid to another part or from
fluids to solids (e.g., walls, paddles, and suspended particles) and vice versa.
Our challenge in applying the momentum balance to fluids is to learn how to
interpret the momentum-balance law when the system of interest is not an easily
recognizable solid body but is, instead, a deformable medium.

3.2 Motion of deformable media

In elementary momentum-balance problems such as those discussed in the pre-
vious section, the bodies of interest are discrete (i.e., countable) and rigid. When
forces are applied to a rigid body, the body retains its shape and moves with a
resultant acceleration that depends on the forces applied and the body’s mass.

2We cannot use the same initial condition as for the previous example because of the problem of
static friction. When a block starts up from rest, it first must overcome the static-friction forces,
which are higher than the sliding-friction forces [167]. Thus, the modeling of the block velocity
is more complex if the block is assumed to start from rest. We can avoid this by choosing a time
boundary-condition that gives the velocity at some time during the sliding of the block.
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Figure 3.3 In rigid-body mechanics, individual bodies (e.g., a rock) comprise the system on which balances are made. For
fluids, deformation makes the concept of a system somewhat more complicated.

The body has an associated location (x), velocity (v = dx/dt), and acceleration
(a = dv/dt), and these properties as a function of time can be calculated by
applying the momentum balance (

∑
f = ma) to the body.

When forces are applied to fluids, they move in ways totally unthinkable for a
rigid solid. Compare, for instance, dropping a rock (i.e., rigid body) to pouring
water from a pitcher (i.e., fluid) (Figure 3.3). A rock dropped from your hand
accelerates to the ground under the force of gravity and perhaps rolls before
stopping. The motion of water draining from a pitcher onto the ground also is
caused by the force of gravity and, in response to this force, the water accelerates
toward the ground in a stream. In the course of becoming that stream, the water in
the pitcher deformed and accelerated; when the water hit the ground, it deformed
again and divided into separate pieces of fluid and moved off in many directions
before coming to rest.

The motion of the dropped rock can be analyzed by straightforward application
of momentum-conservation laws using methods reviewed in the previous section.
For flowing, deforming systems, the situation is different. Our task is to find a
mathematical method whereby we can apply the conservation laws of nature to
flowing, deforming systems.

The solution to this problem is to introduce the concept of the continuum, which
is a mathematical idea that allows us to describe fluid motion by (1) defining a
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small number of continuous functions to account for material behavior; and (2)
applying the laws of physics to infinitesimally small regions of a fluid, called fluid
particles. The fluid particles together comprise the whole of the fluid; however,
by dividing the fluid into many particles (i.e., bodies), we transform the complex
deforming-fluid system into many simpler microscopic systems. Once the fluid is
divided into infinitesimally small fluid particles, we can apply familiar methods
from rigid-body mechanics to calculate the overall motion.

The other tool used in our analysis of fluid motion is the control volume,
which is a concept that frees us from having to follow individual fluid particles
throughout a flow and instead allows us to monitor the stream of fluid particles
that pass through a chosen volume in space. The control-volume approach used
in fluid mechanics and the mass-body-motion approach favored in rigid-body
mechanics are equally correct implementations of the laws of physics. We will
see, however, that for most fluid problems, balances on control volumes are easier
to compute than those on individual fluid particles.

A fluids problem that is geometrically similar to a box sliding down an incline
is introduced in the following example.

EXAMPLE 3.3. What is the velocity field in a wide, thin film of water that runs
steadily down an inclined surface under the force due to gravity? The fluid has a
constant density ρ.

SOLUTION. The flow we are considering may be the water running down a car’s
windshield or part of the industrial operation shown in Figure 3.4. The flow is
driven by an external force (i.e., gravity), and the velocity is different at different
points throughout the film thickness. The steady-state velocity distribution in the
film depends on momentum exchanges within the fluid.

As with any type of problem solving in physics or mechanics, the first step is
to reflect on the nature of the problem. We must use our judgment to determine

steady flow 

Figure 3.4 A film of constant thickness flowing down an incline may be produced by flow through a weir, as shown here. Away
from the edges and away from the top and bottom of the flow, the flow can be sufficiently idealized that we can
solve for the velocity field.
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g

β
fluidair 

v

H

Figure 3.5 The idealized version of flow down an incline is a
film of constant thickness such that the velocity is
everywhere in the same direction but speed varies
with position in the film. We seek to calculate the
velocity as a function of position.

which properties are constant, which are
variable, and how they vary. We have many
choices about how to proceed; some choices
make the problem easier to solve, others
make the problem more difficult.

To solve for the velocity field, we must
idealize the situation. Because the flow is
wide, we consider only a two-dimensional
cut near the center of the flow, as shown
in Figure 3.5. The film is assumed to be
of uniform thickness H and the water is
isothermal.

We are asked to calculate the fluid veloc-
ity as a function of position for the situation
shown in Figure 3.5. The water is flowing
down the surface because gravity is act-
ing on it. Looking at the situation, it seems
reasonable to assume that the flow occurs
parallel to the surface, with layers of fluid

sliding over one another. The fluid in direct contact with the surface does not
move; fluid at other locations moves parallel to the surface under the pull of
gravity.

We need a way to identify small pieces of the flow as individual items so that
we somehow can work out how they interact and create the final flow. We need a
way to keep track of the motion of these pieces of fluid as well as of the forces
on the fluid pieces and the forces that the fluid exerts on the walls and other
boundaries of the flow.

In this chapter, we address these requirements. In the next section, we introduce
the continuum model of fluids, field variables to describe particle motion and
forces, and an overall approach—the control-volume approach—that allows us
to organize the balances we need to apply to this situation. With these tools, we
can return to this problem and address the issues in the problem statement.

3.2.1 The continuum model

For the solid sliding block in Section 3.1, the ideas of mass, force, and acceleration
were easy to apply (

∑
f = ma). For the example of water flowing from a pitcher,

however (see Figure 3.3), mass, force, and velocity are more difficult to translate
from ideas into hard equations. Is the m in

∑
f = ma the mass of all of the

water or the mass of only the water in motion? What is meant by velocity or
acceleration when one part of the system is moving but other parts are not or are
moving in different directions? The forces are different in different parts of the
water, leading to a confusing situation.

To address this complex situation, we divide the deforming system into multiple
subsystems and apply momentum conservation to them. This strategy allows us
to account for the exchanges of momentum between different parts of the original
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Figure 3.6 Water flowing in a channel is not characterized by a single velocity but rather by a velocity field. (This photograph
is a portion of the Cheonggye Stream, a restored waterway in Seoul, South Korea.)

system. It is these internal momentum exchanges that make fluid mechanics so
complicated and interesting.

To implement the continuum approach, first we need to adopt a method for
quantifying system properties such as mass, velocity, and force for different
regions of the fluid. We use the concepts of the density field, the velocity field,
and the stress field. Once we have a way of writing mass, motion, and force for a
deforming medium, we can move on to applying Newton’s laws to these systems.

3.2.1.1 FIELD VARIABLES
Consider a flow such as that shown in Figure 3.6. Water flows in a stream and
falls over an edge under the pull of gravity. What is the velocity of the water?
For fluids, there is not a single value of velocity that can describe completely the
motion. For a fluid, the velocity is a property that varies with position in the flow.
The function that gives the magnitude and direction of the velocity in a flow for
every location (x, y, z) and time (t) is called the velocity field, v(x, y, z, t).

How can we measure the velocity field for moving water in a stream? If we
drop a ping-pong ball in the stream, we can infer that the velocity of the fluid in
contact with the ball is the same as the velocity of the ball. If we then measured
the position of the ping-pong ball as a function of time,3 we would know the
fluid velocity at the surface of the stream in various locations. If the flow in the
stream is steady, meaning that the flow patterns and speeds at every position
do not change with time, we could repeat the experiment hundreds of times
from different starting locations and obtain enough data to map out the surface
velocity in the stream as a function of position. To obtain the velocity field below
the surface, we must figure out another way to mark and follow the fluid that is
below the surface, and there are techniques to accomplish this.4 The results of

3This could be done with a camera taking timed photographs of the position of the ping-pong ball,
for example.

4This can be done with neutrally buoyant particles—that is, particles whose density is the same
as the density of water. Such particles would not sink or float but rather would follow the local
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these experiments are data that correspond to the three-dimensional velocity field
in the stream.

The velocity field measured in this way would be a map of velocities found in
chosen locations in the stream. If we assume that the velocity is smoothly varying
from point to point, and if we have taken a sufficient number of datapoints, we
are justified in fitting a smooth function to the data that we gathered. After per-
forming such a fit on steady-flow data, we obtain a continuous three-dimensional
function v(x, y, z) that describes the velocity at every point in the stream. More
sophisticated methods are needed to measure a time-dependent velocity field, but
the general principle of the experiment is the same.

Similarly, we can use a continuous function to describe mass in a fluid. If we
measure the mass of different samples of fluid throughout the flow, we can map
the mass per volume or density as a three-dimensional function of position and
time. The resulting function ρ(x, y, z, t) is called the density field. Force per area
or stress at different locations �̃(x, y, z, t)5 likewise can be expressed as a field
variable, although it is more complicated, and we postpone a discussion of the
details of stress until Chapter 4. The continuous functions fluid density ρ, fluid
velocity v, and fluid stress �̃ are the field variables that we use to describe the
physics of fluids.

EXAMPLE 3.4. The density field ρ(x, y, z) is one of the continuous variables
of fluid mechanics. In the ocean, the density of the water varies with position due

Table 3.1. Pacific Ocean water density as
a function of vertical distance from the
surface at a position 30 degrees
south latitude

Depth ρ

m g/cm3

0 1.0250
250 1.0260
500 1.0274

1,000 1.0280
1,500 1.0280
2,500 1.0280
3,500 1.0280
4,500 1.0280

to salt concentration and temperature. At a
latitude of 35 degrees south in the Pacific
Ocean, density measurements as a func-
tion of depth z were made, and the data
are shown in Table 3.1. What is the water-
density function ρ(z) for this location?
What is the gradient of the density ∇ρ as
a function of depth? Calculate the gradient
both numerically and by fitting a function
to ρ(z).

SOLUTION. The data in Table 3.1 repre-
sent the function ρ(z) in digital form; to
see what the function look likes, we plot
it in Figure 3.7. To deduce an equation that
fits the data, we first nondimensionalize and

scale the data to vary between zero and one. If we call the data ρ(z), we can shift
the data to zero by plotting ρ(z) − ρmin. We can scale the data further by dividing
this shifted data by the range of the data, ρmax − ρmin:

Scaled variable:
ρ(z) − ρmin

ρmax − ρmin
versus z (3.29)

velocity. This technique, in conjunction with high-speed video and data processing, is used in
advanced fluid-mechanics studies to measure complex velocity fields [1, 138].

5There are two related stress variables, �̃ and τ̃ , with �̃ = τ̃ − pI . We define these variables in
Chapter 4.
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Figure 3.7 A pycnocline is a layer of water in which the water density changes rapidly with depth. These data show measured
seawater densities as a function of depth.

The scaled variable is plotted versus z in Figure 3.8. The resulting curve rises to
an asymptote. This type of curve often can be fit to a function of the following
form:

Smooth rise to asymptote:
(first-order response)

y = 1 − e− x
α (3.30)
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Figure 3.8 To find the functional form that best fits the data, we scale the variable and nondimensionalize as a first step.
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Figure 3.9 The final fit given by Equation 3.33 is not perfect but the general trend of the data is captured. Limitations of the fit
should be considered when the model is applied to any calculations.

where the value of the parameter α is adjusted to achieve the fit. Using a numerical
program to minimize the error between the model and the data,6 we obtain
a reasonable agreement for α = 390 m. The raw data with the fit plotted for
comparison are shown in Figure 3.9.

ρ(z) − ρmin

ρmax − ρmin
= 1 − e−z/z0 (3.32)

ρ(z) − 1.025 g/cm3

0.003 g/cm3
= 1 − e−z/390 m (3.33)

To calculate the gradient of the function (see Equation 1.242), we must differ-
entiate the data relative to the direction z:

z-component of the
gradient of the function:

∂ρ

∂z
(3.34)

Note that we are not given any information about how the density changes in
the other two Cartesian directions; thus, nothing can be said about the x- and
y-components of the gradient ∇ρ.

6To do this, create columns of model predictions and experimental data and then calculate an error
vector from:

error = (model − data)2

(data)2
(3.31)

The sum of the errors then is minimized by manipulating the model parameters; for the current
case, we minimize the sum of the errors by manipulating α.
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Figure 3.10 We calculate the gradient function in two ways: The first method used the data and estimated the derivative as
�ρ/�z (numerical). The second method fit the density data to a function and then analytically took the derivative
of that function; that curve is shown as a smooth line. The two methods agree but noise was introduced to the
numerical calculation that is avoided with the model method.

We can calculate ∂ρ/∂z in two ways. One way is to differentiate the function
that we fit to the data. From the result of the differentiation, we can calculate
∂ρ/∂z at each depth given in Table 3.1:

ρ(z) − ρmin

ρmax − ρmin
= 1 − e− z

α (3.35)

ρ(z) = ρmin + (ρmax − ρmin)
(

1 − e− z
α

)
(3.36)

= ρmax − (ρmax − ρmin) e− z
α (3.37)

∂ρ

∂z
= − (ρmax − ρmin)

(−1

α

)
e− z

α (3.38)

We know from Figure 3.9 that our function does not exactly fit the data; thus,
we also can estimate the gradient function by estimating it directly from the data
in Table 3.1. We calculate �ρ/�z for each neighboring set of datapoints and
associate the calculated slope with the midpoint between the two neighboring
points. The gradient calculated in these two ways is plotted in Figure 3.10.
The two calculation methods agree in trend, but the numerical calculation has
a great amount of scatter. The estimate of [∇ρ]z that comes from the curve fit
uses information from near-neighbor points but also uses data from points that
are farther apart than near neighbors; thus, a more smoothly varying function
is obtained. The continuous function ρ(z) for a fluid is useful in mass- and
momentum-balance calculations, as discussed in subsequent chapters.
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Figure 3.11 Liquids, like all matter, consist of molecules. The discrete nature of molecular structure is important when we
examine a system at the nanometer lengthscale. At macroscopic lengthscales, however, it is sufficient to look at
average properties as reflected in the continuous field variables of density, velocity, and stress.

In summary, to apply the laws of physics to deformable media, we define con-
tinuously varying field functions ρ, v, and �̃ to express mass/volume, motion, and
molecular stress. In the next section, we explain how these continuous functions
are used with the continuum picture to express fluid physics.

3.2.1.2 THE CONTINUUM HYPOTHESIS
The laws of physics—mass, momentum, and energy conservation—require that
we quantify mass, material velocity, and molecular forces for the systems consid-
ered. For the physics of solid bodies, we simply write variables for these properties
of the body. For fluids, we use continuous functions to quantify these properties
throughout space and time. This is the continuum approach.

Using continuous functions to describe mass, velocity, and stress is not
entirely consistent with what we know about the physical world. Although liquids
appear continuous—they have no visible sharp boundaries between particles like
powders—we know that fluids are made of individual pieces of mass—that is,
molecules—and that there is empty space between molecules in a fluid (Fig-
ure 3.11). The molecular nature of matter is relevant in chemical studies—for
example, studies of reactions. Because we are interested in fluid properties on a
macroscopic lengthscale, however, we ignore molecular details and instead model
systems in a more average way.

The continuum picture is an artificial model of the physical world that is
convenient to use for making calculations on fluids. When using the continuum
picture, we do not consider the motions of and forces on individual molecules;
instead, we apply the laws of physics to the continuous functions that describe
the density, velocity, and stress fields. Working at the level of continuum particles
instead of at the molecular level is convenient because it involves fewer details—
the behavior of billions of billions of billions of molecules can be summarized
in three or four continuous functions. Details of molecular arrangement and
motion are lost, however, when using the artificial continuum model rather than
dealing directly with real molecules; fortunately, these details usually turn out to
be unimportant to macroscopic observations of flow.
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Figure 3.12 The continuum picture is applicable to many systems as long as the smallest dimension of the flow (e.g., channel
width or gap between rotating screws) is much larger than the largest dimension of the material structure of the
fluid. Homogeneous chemicals are understood readily to produce continuous liquids (e.g., water and benzene), but
mixtures such as liquid–liquid mixtures (e.g., emulsions) or liquid–solid mixtures (e.g., suspensions and pastes)
also may be modeled as continua as long as the lengthscale of the flow is large enough. If the lengthscale of the
flow is very small, such as in modern micro- and nano-scale devices [44], then even simple pure liquids may cease
to behave as continua, and the methods in this chapter cannot be used. (The bubbles in the microchannel shown
here are from the research work of Shelley Anna and collaborators [4] used with permission.)

In the continuum model, the properties of a material vary continuously on any
lengthscale, even the smallest possible that we can imagine. The continuum model
is applicable for most fluids, from water to molten plastics, and can be acceptable
for modeling heterogeneous systems such as emulsions and suspensions, depend-
ing on which properties are being calculated (Figure 3.12). In general, as long as
equipment dimensions are much larger than the largest fluid structural dimension
(e.g., particle or droplet size), the continuum model is effective in predicting fluid
behavior (Figure 3.13).

In addition to simplicity, a major advantage of the continuum description for
fluids is that calculus may be used in problem solving with this model. The inter-
relations among fluid density, velocity, and stress in flowing liquids are intricate
and can be baffling, but with calculus—which was invented for this purpose—the
physics can be organized into equations that may be solved with what are now
well-known methods. Expressions for both rate of change and integration appear
naturally when we apply conservation principles to fluid motion represented by
the field variables ρ, v, and �̃. Specifically, the fundamental definitions of deriva-
tive and integral from calculus (see Section 1.3) appear when mass, momentum,
and energy-conservation principles are applied to a continuum (see Section 3.2.2
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Figure 3.13 The density of any material becomes meaningless if the lengthscales considered are very small. This shows the
result of a calculation of the average number of dots/area enclosed by circles of varying diameter (top figure).
For large diameters, the ratio (area of dots)/(unit area) in the figure is a constant equal to one. As the size of the
measurement area (R) decreases, however, the discrete nature of the dot distribution begins to be seen in the
density measurement, and the calculated density is no longer a meaningful number.

and Equation 3.126):

Derivative defined
d f

dx
≡ lim

�x−→0

[
f |x+�x − f |x

�x

]
(3.39)

Integral defined
∫ b

a
f (x)dx ≡ lim

N−→∞

[
N∑

i=1

f (a + i�x)�x

]
(3.40)

�x = b − a

N

Thus, our picture of a fluid is a mathematical continuum described by a set of
field variables that capture the fluid’s motion (v) and other properties of the fluid
(i.e., density and molecular stress). To analyze the behavior of a fluid continuum
and to solve for the field variables, we use concepts from calculus. After we
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model the physics of flow by applying the conservation equations in terms of our
continuous field variables, we obtain the final results for the field variables ρ,
v, and �̃ by applying our prior knowledge of how to integrate and differentiate
expressions and how to solve differential equations.

To demonstrate the type of calculations that the continuum model and calculus
allow, in the following example we integrate the continuous function for density
ρ(z) to obtain a desired system property: the average density.

EXAMPLE 3.5. What is the average density of seawater in the layer within
2,000 m of the ocean surface? Refer to the previous example for information on
seawater density as a function of position.

SOLUTION. Calculating averages of functions is a classic task of calculus. We
begin with the expression for the average of a function, Equation 1.157:

Average of f (z) = 〈 f 〉 =

∫ zmax

zmin

f (z) dz

(zmax − zmin)
(3.41)

The equation we fit to the seawater density data now makes the calculation of the
average density straightforward:

〈ρ〉 =

∫
0

2000 m

ρ(z) dz

(2,000 m − 0 m)
(3.42)

ρ(z) = ρmin + (ρmax − ρmin)
(

1 − e− z
α

)
(3.43)

〈ρ〉 = 1

2,000 m

∫ 2000 m

0
ρmin + (ρmax − ρmin)

(
1 − e− z

α

)
dz

=
(

ρmin

2,000 m

)
z

∣∣∣∣∣∣2000 m

0 m
+ (ρmax − ρmin)

2,000 m

(
z + αe− z

α

)∣∣∣∣2000 m

0 m

= 1,025
kg

m3
+ 3 kg

m3

2,000 m

(
2,000 m + 390 m

(
e− 2,000 m

390 m − 1
))

〈ρ〉 = 1,027.4
kg

m3
(3.44)

3.2.1.3 FLUID PARTICLES
We choose to analyze flow patterns in terms of the continuum model and to
quantify flows through the field variables of density, velocity, and stress. It remains
for us to subject fluid motion to the laws of nature, particularly the law of
conservation of momentum. When that connection is made, we can begin to
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Figure 3.14 A fluid particle is defined at some initial time. The particle always contains the same molecules that it contained
when it was defined (marked red or shaded). At later times, as the particle moves with the flow, the shape, speed,
and direction of motion change according to the constraints imposed on it by the flow. Shown for comparison is
the undeformed shape of the particle convected along with the flow.

understand why fluids make the patterns they do and why flows generate their
associated forces.

Newton’s second law,
∑

f = ma, applies to individual bodies. As discussed
in Section 3.1, when Newton’s law is applied to a body, we can calculate the
motion of the body. For a fluid, not all parts of it have the same position, velocity,
and acceleration; therefore, to describe fluid motion with Newton’s laws, we must
divide the fluid into smaller entities that can be followed as a function of time.
To obtain an accurate description of the flow, we divide the fluid into very small
fluid particles.

A fluid particle is defined as a small quantity of mass occupying a volume �V .
The mass inside this small volume at a chosen point is given by ρ�V , where ρ

is the fluid density at that point. The small mass ρ�V constitutes a fluid particle
to which we can apply Newton’s laws of motion and other laws of physics.

Consider a two-dimensional portion of a flow as shown in Figure 3.14. At some
initial time t0, we define one particular fluid particle as all of those molecules that
are contained in a cube of volume �V in one chosen location (x0, y0, z0). We
imagine the molecules within the chosen particle as colored red. As time moves
forward, the red particle moves forward with the flow and the shape, speed, and
direction of its motion all change. Our task is to apply

∑
f = ma to this body.

The mass of the particle is straightforward: m = ρ�V . Acceleration of the
particle is the average acceleration of all of the molecules within the particle.
We choose �V to be very small to increase the accuracy of using the average
acceleration: ∑

all forces
acting on particle

f
i
= ma (3.45)

= (ρ�V ) 〈a〉average for all
molecules

(3.46)

The forces on the red particle are gravity and molecular surface forces imposed
by neighboring fluid particles. It is simple to account for the force of gravity on
the particle: It is equal to particle mass multiplied by acceleration due to gravity.
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t0t

Figure 3.15 When we first divide the flow into small, cubical particles, the arrangement is orderly and it is easy to express
mathematically the forces on such systems. In a complex flow, however, convection and deformation move and
drastically change the shape of the particles as a function of time. When the particles become highly irregular in
shape, it is difficult to model the forces that act on the particles, especially the surface forces.

Thus, the force on the particle due to gravity is ρ�V g:

∑
all forces

acting on particle

f
i
= (ρ�V ) 〈a〉average for all

molecules
(3.47)

f
gravity

+ f
surface

= (ρ�V ) 〈a〉average for all
molecules

(3.48)

ρ�V g + f
surface

= (ρ�V ) 〈a〉average for all
molecules

(3.49)

The molecular surface forces on the red particle due to the neighboring particles
are the difficult part of this problem (Figure 3.15). If we divide the entire flow
field into identical particles at t0, then at that initial moment, the red particle has
six neighboring particles of the same size and shape. As the flow progresses in
time, all of these particles and the red particle move and deform. At each time
of the flow, the red particle has oddly shaped and possibly different neighbors
imposing different forces on it. Calculating the motion and shape of the red
particle at any time depends on an accurate modeling of the interactions with its
neighbors. In some flows, the deformation of particles is severe (Figure 3.16) and
it is a challenging problem to account for the forces on each small deforming
fluid particle; such calculations can be attempted only with the help of powerful
computers and advanced numerical techniques [49].

Thus, we find ourselves at a deadend. The law of conservation of momentum
requires that we consider the effects of forces on individual bodies. The individual
bodies in a deforming medium, however, are constantly changing shape, making
the application of the conservation laws difficult and, for the moment, impractical.
We need a new approach: a method that allows us to consider a more fixed type of
system, a method that makes it easier to account for the molecular surface forces
imposed by neighboring particles.
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(a) (b)

(c)

Figure 3.16 We seek a method for calculating velocity and stress fields for all types of flows. In the flows pictured here, small
fluid particles deform and adopt shapes that are difficult to track. In some cases (c), the velocities of the two ends
of the particle go in opposite directions.

3.2.2 Control-volume approach

When we reach a deadend, a good way to restart is to return to the beginning and
remind ourselves of what we want to do. We want to determine an effective way to
model the flow patterns and forces associated with fluid motion. Fluid motion can
be complex (see Chapter 2), but it makes sense to start with the simplest systems.
A simple system to consider is flow in a straight section of a river or stream
(Figure 3.17) or, even simpler, flow in a straight open channel in the laboratory,

Figure 3.17 We look for simple flows, such as the gentle flowing of a stream, to learn to model fluid motion. (The photograph
is a portion of the Cheonggye Stream, a restored waterway in Seoul, South Korea.)
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Figure 3.18 We begin again, considering a very simple flow: steady flow in a straight channel. Even in this simple flow, however,
fluid particles undergo considerable deformation.

where the channel walls have a regular shape (Figure 3.18). In such a channel,
the flow can be made to be steady, meaning that the velocity at any chosen point
is constant in time.

Steady flow in a straight channel is simple, but it still has the problem outlined
in the previous section; that is, fluid particles deform into awkward shapes as the
flow progresses, and applying momentum balances to these shapes is difficult
(see Figure 3.18).

Another approach is suggested by watching a steady stream of fluid particles
move past from a fixed position on the shore. Rather than follow individual
particles of fluid over the course of time, is it possible to calculate a momentum
balance by accounting for the forces on fluid that moves through a fixed region
within the flow? If we choose balances on a rigid (i.e., nondeforming), motionless
volume, we would not have the fluid-particle-tracking problem.

It is an appealing idea but there remains the problem of Newton’s second law,
which is written with respect to individual bodies. If we want to consider a fixed
volume in space with different bodies flowing through the volume, we must adapt
Newton’s second law to this new circumstance, if possible. This is what we do in
Sections 3.2.2.1 and 3.2.2.2.

The result we need is Newton’s second law written for a control volume (CV),
which is called the Reynolds transport theorem and is derived as Equations 3.135
and 3.136; the final equations are as follows.

Reynolds transport theorem
(momentum balance on CV

derived in this section)

∑
on
CV

f = dP

dt
+
∫∫

CS
(n̂ · v) ρv d S (3.50)

⎛
⎝ sum of

forces
on CV

⎞
⎠ =

⎛
⎜⎜⎜⎝

rate of
increase of

momentum of
fluid in CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

net outflow of
momentum

through bounding
surfaces of CV

⎞
⎟⎟⎟⎠ (3.51)
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Figure 3.19 Momentum is conserved. For individual bodies, Newton’s second law is a convenient equation for making calcu-
lations of motion and forces. For fluids, it is often more convenient to use an equivalent expression: the Reynolds
transport theorem with the momentum balance written on a control volume.

where CV is the control volume, CS is the control surface, f represents various
forces on the control volume, P is the momentum in the control volume, and the
integral expresses the net outflow of momentum through the bounding surface
of the control volume. The Reynolds transport theorem, named for Osborne
Reynolds, states that the sum of forces on a control volume is equal to the
rate of change of momentum of the fluid in the CV plus the net outward flux of
momentum through the surfaces bounding the CV (Figure 3.19). Newton’s second
law, by comparison, states that the sum of the forces on a body is equal to the rate
of change of momentum of the body. When the momentum-balance calculation
is performed on a control volume (i.e., a stationary, rigid, imaginary volume in
our usage), an extra term is needed compared to the body case because the net
forces on the CV can affect more than just the rate-of-change term: Material
can cross the boundaries of the control volume, bringing along momentum. This
extra term is called the convective term. For momentum balances on bodies (i.e.,
Newton’s second law), there is no issue of momentum being carried into the
system by another body; the balance always is carried out on a chosen body
or bodies. Once the system of interest is chosen, no other bodies enter the
picture.

We derive the Reynolds transport theorem in the next section and discuss the
convective term in Section 3.2.2.2. We show how to use this equation in Sec-
tion 3.2.3. Readers who want to begin with solving problems using the Reynolds
transport theorem may proceed to Section 3.2.3 and subsequently return to this
derivation section as desired.
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fluid particle 
pathlines 

fixed control volume

Figure 3.20 A control volume is an imagined region in space through which fluid moves. In our discussion, we assume the
control volume to be fixed in shape and position. The shape of the control volume is arbitrary, and we usually
choose a shape that mimics the flow pattern because this choice simplifies mass, momentum, and energy-balance
calculations. The paths of the particles that pass through the control volume are emphasized here.

3.2.2.1 MOMENTUM BALANCE ON A CONTROL VOLUME
The volume on which we do our balances is called the control volume (CV), which
is an imaginary container through which fluid particles move (Figure 3.20). For
the derivation of the momentum balance on a control volume, we consider an
arbitrarily shaped control volume fixed in position and shape in an arbitrary flow
(Figure 3.21).

At chosen time t , the control volume contains certain fluid particles. These
fluid particles are a body in the sense of Newton’s laws. We imagine that the fluid

inS outS

fluid pathlines 

Figure 3.21 For the derivation of the momentum balance as applied to a control volume, we do not assume any special shape,
but we do assume the control volume to be fixed in shape and position.
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t t + Δt

Figure 3.22 At time t , the fluid in the control volume is imagined to be colored red and all of the fluid outside of the control
volume is colored blue. At a slightly later time t + �t , some of the red fluid has exited the control volume and
some of the new (blue) fluid has entered through the inlet surface(s).

in the control volume at time t is colored red (Figure 3.22, left). The red fluid
is subject to forces on it, and the relationship between the net forces on and the
momentum of the red fluid is given by Newton’s second law:

∑
on

body

f = ma = d(mv)body

dt
(3.52)

∑
on

body

f =

⎛
⎜⎜⎜⎝

net force
on red fluid at t

=net force
on CV at t

⎞
⎟⎟⎟⎠ =

⎛
⎝ rate of change

of momentum of
red fluid at t

⎞
⎠ (3.53)

We must work on this equation to see how the momentum of the fluid in the CV
changes with time.

We can use the definition of derivative (see Equation 3.39) to rewrite the
derivative that appears on the righthand side of Equation 3.52 as a limit of a rate
of change of momentum over the interval between time t and a slightly later time
t + �t :

∑
on

body

f

∣∣∣∣∣∣∣∣∣∣
t

=
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

= d(mv)

dt

∣∣∣∣∣∣
t

(3.54)

= lim
�t−→0

[
(mv)|t+�t − (mv)|t

�t

]
(3.55)

To fill in the terms on the righthand side of Equation 3.55, we must think about
the momentum of the red fluid at t and at t + �t . Our goal is to relate these
quantities to the forces on the control volume.

Returning to our picture of the control volume (see Figure 3.22), we can
visualize the process of the red fluid passing through the CV between times t and
t + �t . At time t , all of the red fluid is in the CV. At time t + �t , some of the red
fluid has left the CV and some of the upstream fluid has entered it. For simplicity,
we call the upstream fluid the blue fluid. We divide the red fluid into the red fluid
that stays in the CV between t and t + �t and the red fluid that leaves during that
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interval. Dropping the limit symbol, Equation 3.55 becomes:

�t
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

=
(

momentum of
red fluid

)∣∣∣∣∣∣
t+�t

−
(

momentum of
red fluid

)∣∣∣∣∣∣
t

(3.56)

=
⎡
⎣
⎛
⎝momentum of

red fluid
that stays

⎞
⎠+

⎛
⎝momentum of

red fluid
that exits

⎞
⎠
⎤
⎦
∣∣∣∣∣∣∣∣∣
t+�t

−
⎡
⎣
⎛
⎝momentum of

red fluid
that stays

⎞
⎠+

⎛
⎝momentum of

red fluid
that exits

⎞
⎠
⎤
⎦
∣∣∣∣∣∣∣∣∣
t

(3.57)

Although we temporarily omitted the limit symbol, at the end of this derivation,
we again take the limit as �t goes to zero. Because this separation is convenient in
a later step in the derivation, we distinguish here between red fluid that ultimately
stays and red fluid that ultimately exits.

Newton’s second law relates the net forces on a body (i.e., the red fluid) to the
rate of change of momentum of the body. We now are trying to relate forces in a
fluid to the rate of change of momentum of the fluid in the control volume. The
fluid in the CV is different fluid at different times, which is the complicating factor.
Beginning with the red-fluid momentum balance as written in Equation 3.57, we
make definitions and rearrangements that allow us to isolate the rate of change
of momentum of the fluid in the CV at a time of interest.

We define a variable P to represent the momentum of the fluid in the control
volume at any time: ⎛

⎝momentum
of fluid

in the CV

⎞
⎠ ≡ P (3.58)

Because the fluid in the CV at time t is different fluid from that in the CV at time
t + �t , the momentum of the fluid in the CV is different at these two times, and
we write it in terms of red and blue fluid, as follows.

First, at time t , the red fluid fills the CV so that P|t is the momentum of all of
the red fluid at t :⎛
⎝momentum

of fluid
in CV

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

= P|t =
⎛
⎝momentum

of red fluid
that stays

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

+
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

(3.59)

Second, we write the momentum in the CV at time t + �t . At this time, the fluid
in the CV is the red fluid that stayed and the new blue fluid that entered:⎛

⎝momentum
of fluid
in CV

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

= P|t+�t =
⎛
⎝momentum

of red fluid
that stays

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

+
⎛
⎝ momentum

of blue fluid
that enters

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

(3.60)

www.20file.org

http://www.semeng.ir


193 Modeling Fluids

We now combine the two previous equations with Equation 3.57, which is the
momentum balance on the red fluid; this yields a new relationship between forces
and the fluid in the CV.

First, we solve Equation 3.59 for the momentum at time t of red fluid that
stays: ⎛

⎝momentum
of red fluid
that stays

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

= P|t −
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

(3.61)

Second, we solve Equation 3.60 for the momentum at time t + �t of red fluid
that stays:⎛

⎝momentum
of red fluid
that stays

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

= P|t+�t −
⎛
⎝ momentum

of blue fluid
that enters

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

(3.62)

Combining these two expressions with Equation 3.57 results in:

�t
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

=
⎛
⎝momentum

of red fluid
that stays

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

+
⎛
⎝momentum of

red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

−
⎛
⎝momentum

of red fluid
that stays

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

−
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

(3.63)

= P|t+�t −
⎛
⎝ momentum

of blue fluid
that enters

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

+
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

− P|t +
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

−
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t

(3.64)

The final two terms cancel, yielding:

�t
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

= P|t+�t − P|t −
⎛
⎝ momentum

of blue fluid
that enters

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

+
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

(3.65)

We have made considerable progress in our quest to relate red-fluid momentum
changes to momentum changes of the fluid in the control volume. To proceed,
we write mathematical expressions for the two quantities expressed in words
on the righthand side of Equation 3.65. These two quantities are entering and
exiting fluid momenta at t + �t—that is, momenta of fluid that crosses the CV
boundaries. Both expressions can be written following the same approach; the
calculation results in a double integral over the control-volume bounding surfaces.

The final mathematical expression for the terms in Equation 3.65 are derived
in the next section. The final results, derived as Equation 3.132, are as follows.
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The two integrals are called the convective terms.

∑
on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

= P|t+�t − P|t
�t

+
(∫∫

Sin

(n̂ · v) ρv d S
)∣∣∣∣∣∣

t+�t

+
(∫∫

Sout

(n̂ · v) ρv d S
)∣∣∣∣∣∣

t+�t

(3.66)

3.2.2.2 THE CONVECTIVE TERM
To convert the word expressions in Equation 3.65 to mathematical terms, we must
consider how to use the continuum model to keep track of mass or momentum
flow through a surface. We begin by considering the simplest case of direct mass
and momentum flow through a flat surface. We derive key mathematical tools in
the next two examples.

EXAMPLE 3.6. Liquid passes through a chosen area A as shown in Figure 3.23.
The velocity is perpendicular to the surface A at every point and does not vary
across the cross section. What are the volumetric flow rate (volume liquid/time),
mass flow rate (mass/time), and momentum flow rate (momentum/time) through
A?

SOLUTION. Figure 3.23 shows that for the case under consideration, the velocity
of the fluid is perpendicular to the surface A and is constant (i.e., it does not vary
with position). Consider the fluid that passes through A during a short time
interval �t (Figure 3.24). The volume of fluid that passes through A during the
interval �t forms a solid, the volume of which is given by:⎛

⎝ volume of fluid
passing through A

in time �t

⎞
⎠ =

(
height

of solid

)(
cross section

of solid

)
(3.67)

= �x A (3.68)

where �x is the change in location of fluid that started at A and has moved in the
x-direction for time �t . The magnitude of the fluid velocity, v, can be written as:

Magnitude of
fluid velocity

|v| = v = �x

�t
(3.69)

n̂

v

A

Figure 3.23 In this example, we consider the flow through a surface A. The velocity of the fluid is perpendicular to the
surface A.
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xΔ

x

y

n̂
v

n̂
v

A

Figure 3.24 During the time interval �t , a volume of fluid of height �x and of cross-sectional area A passes through area A.

With these two expressions, we can calculate all of the quantities of interest.
The volumetric flow rate is the volume of fluid divided by the time interval:

Q = fluid volume

time interval
= �x A

�t
= v A (3.70)

Volumetric flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

Q = v A (3.71)

The mass flow rate can be calculated from the volumetric flow rate and the
density:

m =
(

mass

volume

)(
volume

time

)
(3.72)

= (ρ)(v A) (3.73)

Mass flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

m = (ρ)(v A) (3.74)

Finally, the momentum flow rate (a vector quantity) can be calculated from the
definition of momentum and the previous results:(

momentum flow
of liquid through A

)
=
(

momentum

volume

)(
volume

time

)
(3.75)

= (mass)(velocity)

volume

(
volume

time

)
(3.76)

=
(

mass

volume

)
(v)
(

volume

time

)
(3.77)

= ρ v (vA) (3.78)
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Note that for this example, the velocity of the fluid was perpendicular to the
surface A and v does not vary across A.

Momentum flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

= ρ v (vA) (3.79)

The previous example shows how powerful the continuum approach is. With
simple logic (essentially, unit matching), we can express volume, mass, and
momentum flows for a chosen system in terms of two field variables: density
and velocity. For more complex systems, we build on these relationships and use
vector tools, as shown in the next example.

EXAMPLE 3.7. Liquid passes through a chosen area A as shown in Figure 3.25.
The velocity of the fluid makes an angle θ with the unit normal to A, which is
called n̂. The velocity does not vary across the surface A. What are the volumetric
flow rate (volume liquid/time), mass flow rate (mass/time), and momentum flow
rate (momentum/time) through A?

SOLUTION. The logic of the solution is the same for this case as in the previous
example; there is, however, a difference in the volume of fluid that passes through
A in time interval �t .

Consider the fluid that passes through A during the short time interval �t
(Figure 3.26). The x-direction is the direction of flow. In time interval �t , fluid
that started on the surface A moved along x a distance �x . The volume of fluid
that passed through A in this time interval is the volume of the mathematical
solid shown. The height of the solid is �x cos θ . The volume of fluid that passes
through A during the interval �t thus is given by:

⎛
⎝ volume of fluid

passing through A
in time �t

⎞
⎠ =

(
height

of solid

)(
cross section

of solid

)
(3.80)

= (�x cos θ) A (3.81)

v

A

n̂ θ

Figure 3.25 In this example, we consider the flow through a surface A. The velocity of the fluid is not perpendicular to the
surface A; instead, it makes an angle θ with the surface unit normal n̂ .
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v

n̂

θ

Δx

x

y

θcosxΔ

v
n̂

A

Figure 3.26 During the time interval �t , a volume of fluid of height �x cos θ and of cross-sectional area A passes through
area A.

The magnitude of the fluid velocity, v, can be written as before as follows:

Magnitude of
fluid velocity

|v| = v = �x

�t
(3.82)

With these two expressions, we can calculate all of the quantities of interest:

Volumetric flow
of liquid through A

Q = fluid volume

time interval
(3.83)

= �x cos θ A

�t
(3.84)

= v cos θ A (3.85)

= (n̂ · v)A (3.86)

Volumetric flow
of liquid through A

(general orientation case;
v does not vary across A)

Q = v cos θ A = (n̂ · v)A (3.87)

We use the definition of the dot product to write the final result (Equation 3.85)
in vector notation (n̂ · v = |n̂||v| cos θ = v cos θ ; see Equation 1.161). As before,
the mass flow rate can be calculated from the volumetric flow rate and the density:

Mass flow
of liquid through A

m =
(

mass

volume

)(
volume

time

)
(3.88)

= (ρ) (v cos θ A) = ρ (n̂ · v) A (3.89)

Mass flow
of liquid through A

(general orientation case;
v does not vary across A)

m = ρ (n̂ · v) A (3.90)

www.20file.org

http://www.semeng.ir


198 An Introduction to Fluid Mechanics

Finally, the momentum flow rate can be calculated as before from the definition
of momentum and the previous results:(

momentum flow
of liquid through A

)
=
(

momentum

volume

)(
volume

time

)
(3.91)

= (mass)(velocity)

volume

(
volume

time

)
(3.92)

=
(

mass

volume

)
(v)
(

volume

time

)
(3.93)

= ρ v (v cos θ A) = ρ v (n̂ · v)A (3.94)

This is the general result when v is not necessarily perpendicular to A:

⎛
⎜⎜⎜⎝

momentum flow
of liquid through A

(general orientation case;
v does not vary across A)

⎞
⎟⎟⎟⎠ = ρv (n̂ · v)A (3.95)

We recover the case of velocity perpendicular to A (see Equation 3.79) when
θ = 0 (cos 0 = 1, n̂ · v = v).

The relationship obtained in Equation 3.87 for volumetric flow rate through an
area as a function of the locally constant velocity v (Q = (n̂ · v)A) is similar to the
equation introduced in Chapter 1 that relates overall volumetric flow rate through
a pipe to the average velocity in the pipe 〈v〉 (see Equation 1.2). If we write
Equation 3.87 on a microscopic piece of cross-sectional area in a pipe flow with
varying v and integrate over the pipe cross section (recall Equation 1.157), we
obtain Equation 1.2; this calculation is shown in Chapter 6 (see Equation 6.254).
In the following example, we practice with the relationships just developed.

EXAMPLE 3.8. Consider a control volume in the shape of the square pyramid
as shown in Figures 3.27 and 3.28. The square pyramid is a pentahedron with
a square for a base and four triangles for sides; the one in Figure 3.27 has
four equilateral triangles for sides (i.e., a Johnson solid). The pyramid is a
control volume placed in a uniform flow (i.e., velocity v in the flow is constant at
every position in space). The flow direction is parallel at all points to a vector
in the plane of the pyramid’s base that bisects two opposite sides of the base.
Calculate the mass flow rate of fluid of density ρ through each of the five sides
of the pentahedron. Write the answer in terms of the speed of the fluid v and the
pyramid edge length α.

SOLUTION. The use of a pentahedron as a control volume is unusual, but the
calculations involved in solving this problem are not unusual when making cal-
culations of the convective contribution to the momentum balance. This problem
provides an opportunity to practice with angles, geometry, the dot product, and
the relationships in this section.
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êy

êx

êz

α

υ = υêz

α

α

Figure 3.27 The control volume is a square pyramid that has five sides, four of which are equilateral triangles.

The mass flow through a surface is given by Equation 3.90:

Mass flow of liquid
through surface A

m = ρ (n̂ · v) A (3.96)

ˆ
For each of the five surfaces of the control volume, we need the unit normal n̂
and the area A. The density ρ is constant, and the velocity vector v = vez is the
same at all locations for uniform flow.

xz-section through center:

xy-section through center:

face:

h d

êy
êx

60°

α α

α
2

60°

30° 30°

2

α
2

α
2

c

b

êz
êx

2

α√₃
2

β

β α
√2

α√₃

α√₃

Figure 3.28 The unit normals needed for the calculations in this example can be determined through the geometry of sections
cut through the center of the control volume.
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We choose a Cartesian coordinate system with the flow direction as the z-
direction:

v =
⎛
⎝ 0

0
v

⎞
⎠

xyz

ˆ= vez (3.97)

ˆ ˆ

The outwardly pointing unit normal vectors for each surface of the control volume
are shown in Figure 3.28. For the bottom of the pyramid, the outwardly pointing
unit vector a points downward, a = −ex . The dot product of a and v = vez is
therefore zero, and the mass flow rate through the bottom is zero:

m = ρ (n̂ · v) A (3.98)

m|a = ρ(a · v)α2 (3.99)

= ρα2 (1 0 0
)

xyz
·
⎛
⎝ 0

0
v

⎞
⎠

xyz

(3.100)

= 0 (3.101)

For surface b, the geometry in Figure 3.28 shows that the outwardly pointing unit
normal vector b is:

From geometry: n̂|b ≡ b =

⎛
⎜⎝

1√
3

0√
2
3

⎞
⎟⎠

xyz

(3.102)

and the area of the equilateral triangle that comprises the face is A = (1/2)
(α)(α

√
3/2). The mass flow rate through surface b is therefore:

m = ρ (n̂ · v) A (3.103)

m|b = ρ(b · v)
α2

√
3

4
(3.104)

= ρα2
√

3

4

(
1√
3

0
√

2
3

)
xyz

·
⎛
⎝ 0

0
v

⎞
⎠

xyz

(3.105)

= ρvα2

2
√

2
(3.106)

For surface c, also shown in Figure 3.28, the outwardly pointing unit normal
vector c is similar to b, but the z-component points in the opposite direction:

From geometry: n̂|c ≡ c =

⎛
⎜⎝

1√
3

0

−
√

2
3

⎞
⎟⎠

xyz

(3.107)
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The mass flow rate through surface c is therefore:

m|c = ρ(c · v)
α2

√
3

4
(3.108)

= ρα2
√

3

4

(
1√
3

0 −
√

2
3

)
xyz

·
⎛
⎝ 0

0
v

⎞
⎠

xyz

(3.109)

= −ρvα2

2
√

2
(3.110)

The mass flow rates out through surfaces b and c are the same, but one is positive,
indicating that the flow is outward (i.e., surface b

ˆ

); and one is negative, indicating
that the flow is inward (i.e., surface c).

For surfaces d and h, the two side faces of the pyramid, the unit normal vectors
are in the xy-plane. Thus, when the outwardly pointed unit normal n̂ is dotted
with v = vez in each case, the result is zero; there is no mass flow out of the
control volume through either surface:

n̂|d = d =
⎛
⎝dx

dy

0

⎞
⎠

xyz

(3.111)

ˆ ˆd̂ · v = (dx êx + dyey) · vez = 0 (3.112)

n̂|h = h =
⎛
⎝hx

hy

0

⎞
⎠

xyz

(3.113)

ˆ ˆ ˆh · v = (hx êx + hyey) · vez = 0 (3.114)

Finally, notice that the sum of all of the mass flow rates is zero, which is in
accord with the mass balance that at steady state the net outflow of mass from
the control volume is zero:⎛

⎝ net outflow
of mass from

CV

⎞
⎠ = m|a + m|b + m|c + m|d + m|h (3.115)

= 0 + ρvα2

2
√

2
− ρvα2

2
√

2
+ 0 + 0 (3.116)

= 0 (3.117)

We return now to Equation 3.65 and seek to convert the two word expressions
in that equation to mathematical terms. Both of the word expressions under
consideration account for momentum flows through the surfaces that bound the
control volume. In Example 3.8, we practiced writing momentum flows through
a surface (see Equation 3.95), and we now turn to applying this technique to the
control volume.

Beginning with the blue fluid that enters the control volume, consider the
surface area Sin through which blue fluid enters (Figure 3.29). We choose a surface
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x

z
y

inS

Figure 3.29 The momentum carried by fluid moving across
a curved surface is calculated with a surface
integral.

with an arbitrary shape and orientation for
this derivation. In a general flow, fluid veloc-
ity varies with position; therefore, care must
be taken when calculating the momentum
entering the control volume through Sin. We
must divide the surface Sin in some way and
sum the contributions from various regions.
In addition, the surface Sin generally is not
flat; therefore, the task of dividing Sin is a
challenge. This problem was addressed in
the development of integral calculus (for a
review, see the Web appendix [108]), and we
can apply these methods directly to the cal-
culation of the flow of momentum through
Sin.

Our approach is to project Sin onto a plane that we arbitrarily call the xy-plane
(Figure 3.30). The area of the projection is R. Because R is in the xy-plane, the
unit normal to R is êz . We divide the projection R into areas �A = �x�y and
seek to write the momentum flow rate in different regions of Sin associated with
their projections �Ai . By focusing on R and equal-sized divisions of R (rather
than directly dividing the curvy surface Sin), we can arrive at the appropriate
integral expression.

Figure 3.30 shows the area Sin and its projection R in the xy-plane. The area
R is divided into rectangles of area �Ai , and we consider only the �Ai that are
wholly contained within the boundaries of R. For each �Ai in the xy-plane, we
choose a point within �Ai and call it (xi , yi , 0). The point (xi , yi , zi ) is located
on the surface Sin directly above (xi , yi , 0). If we draw a plane tangent to Sin

through the point (xi , yi , zi ), we can construct an area �Si that is a portion of
the tangent plane whose projection onto the xy-plane is �Ai (see Figure 3.30).
We soon take a limit as �Ai becomes infinitesimally small; therefore, it is not
important which point (xi , yi , 0) is chosen as long as it is in �Ai .

x

in̂

),,( iii zyxv

iSΔ

),,( iii zyx

ii nv ˆ⋅

iAΔ

( ) izii SenA Δ⋅=Δ ˆˆ

z
y

inS

R

Figure 3.30 For a surface that is not flat, we first project the surface onto the x y-plane. We then divide the projection and
proceed to write and sum the momentum flow rate through each small piece. The surface differential �Si can be
related to �Ai —its projection onto the x y-plane—by �Si = �Ai /(n̂ i · êz ).
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Each tangent-plane area �Si approximates a portion of the surface Sin, and
we write an estimate of the total momentum flow through Sin as a sum of the
momentum flows through all of the tangent planes �Si . The momentum entering
the control volume between t and t + �t through one such �Si can be calculated
as follows:

⎛
⎜⎜⎜⎝

momentum
entering CV
through i th

tangent plane �Si

⎞
⎟⎟⎟⎠ =

(
momentum

volume

)(
volume flow inward

time

)
�t (3.118)

Volumetric flow inward may be written using Equation 3.87:

⎛
⎜⎜⎜⎝

momentum
entering CV
through i th

tangent plane �Si

⎞
⎟⎟⎟⎠ =

(
mass · velocity

volume

)⎛⎝ inflow
velocity

magnitude
· area

⎞
⎠ �t (3.119)

= (ρi v|i ) (−(n̂i · v|i )�Si ) �t (3.120)

where ρi and v|i are the density and velocity at (xi , yi , zi ) and n̂i is the outwardly
pointing unit normal vector at (xi , yi , zi ) (compare with Equation 3.95). Note
that we have a choice for unit normal vector n̂i because any surface has two unit
normal vectors: one pointing into and one pointing out of the control volume. The
fluid-mechanics convention is to choose the outwardly pointing unit normal. The
negative sign in Equation 3.120 is a consequence of this choice, and the expression
n̂i · v|i corresponds to the outwardly moving component of the velocity. Because
we are interested in the inwardly moving flow in Equation 3.120, we must include
a negative sign.

Equation 3.120 gives the contribution of momentum passing through each
�Si . To approximate the total momentum flow through Sin, we now sum over
all tangent-planes �Si . Note that we are including only the �Si associated with
those projections �Ai that are fully contained within R. Subsequently, we take
the limit as �A becomes small to make the calculation exact:

⎛
⎝ momentum

of blue fluid
that enters CV

⎞
⎠ ≈

N∑
i=1

⎛
⎜⎜⎜⎝

momentum
entering CV
through i th

tangent plane �Si

⎞
⎟⎟⎟⎠ (3.121)

= −
N∑

i=1

(ρi v|i ) ((n̂i · v|i )�Si ) �t (3.122)

= −�t
N∑

i=1

((n̂i · v|i )ρi v|i �Si ) (3.123)

⎛
⎝ momentum

of blue fluid
that enters CV

⎞
⎠ = −�t lim

�A−→0

[
N∑

i=1

((n̂i · v|i )ρi v|i �Si )

]
(3.124)

www.20file.org

http://www.semeng.ir


204 An Introduction to Fluid Mechanics

where N is the number of projections �Ai that are wholly within R. We can
relate the tangent-plane area �Si and the projected area �Ai through geometry
(see the Web appendix [108]). The result is:

�Ai = (n̂i · êz)�Si (3.125)

where êz is the unit normal of the �Ai and n̂i is the unit normal of �Si . Substi-
tuting this relationship, Equation 3.124 becomes:⎛

⎝ momentum
of blue fluid

that enters CV

⎞
⎠ = −�t lim

�A−→0

[
N∑

i=1

(n̂i · v|i )ρi v|i
n̂i · êz

�Ai

]
(3.126)

The limit of the sum on the righthand side of Equation 3.126 is related to the
definition of a double integral [108]:

Double integral
of a function

(general version)
I =

∫∫
R

f (x, y) d A ≡ lim
�A−→0

[
N∑

i=1

f (xi , yi )�Ai

]

(3.127)

where R is the region in the xy-plane over which f is being integrated (i.e.,
summed). Comparing Equations 3.126 and 3.127, we write:⎛

⎝ momentum
of blue fluid

that enters CV

⎞
⎠ = −�t

∫∫
R

(n̂ · v)ρv

n̂ · êz
d A (3.128)

If we define d S ≡ d A/(n̂ · êz), then Equation 3.128 becomes [108]:⎛
⎝ momentum

of blue fluid
that enters CV

⎞
⎠ = −�t

∫∫
Sin

(n̂ · v) ρv d S (3.129)

This is the expression we need to finish writing the convective terms in Equa-
tion 3.65. Our calculations show that the momentum of blue fluid that enters the
CV is equal to the surface integral of the crossing momentum per unit volume
(n̂ · v) ρv over the inlet surface Sin.

The momentum of the red fluid that exits the control volume may be written
similarly, resulting in an analogous integral over the outflow surface Sout:⎛

⎝ momentum
of red fluid

that exits CV

⎞
⎠ = �t

∫∫
Sout

(n̂ · v) ρv d S (3.130)

Notice that there is no negative sign in Equation 3.130 (recall the discussion
related to Equation 3.120) because in this case, we are accounting for fluid that
is exiting, and the outwardly pointing normal dotted with the velocity vector
gives the component of velocity corresponding to outflow. We now substitute the
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results in Equations 3.129 and 3.130 into Equation 3.65 to replace the word
expressions:

�t
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

= P|t+�t − P|t −
⎛
⎝ momentum

of blue fluid
that enters

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

+
⎛
⎝momentum

of red fluid
that exits

⎞
⎠
∣∣∣∣∣∣∣∣∣
t+�t

(3.131)

∑
on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

= P|t+�t − P|t
�t

+
(∫∫

Sin

(n̂ · v) ρv d S
)∣∣∣∣∣∣

t+�t

+
(∫∫

Sout

(n̂ · v) ρv d S

)∣∣∣∣∣∣
t+�t

(3.132)

The two integrals in Equation 3.132 may be combined because the first is over
all inlet surfaces and the second is over all outlet surfaces. All CV surfaces are
either inlet or outlet surfaces or those through which no fluid passes. Surfaces
through which no fluids pass would have n̂ · v = 0 because v = 0 there. We
therefore can write these two integrals together as the integral over the entire
enclosing surface of the control volume, CS:(∫∫

Sin

(n̂ · v) ρv d S
)∣∣∣∣∣∣

t+�t

+
(∫∫

Sout

(n̂ · v) ρv d S
)∣∣∣∣∣∣

t+�t

=
(∫∫

CS
(n̂ · v) ρv d S

)∣∣∣∣∣∣
t+�t

(3.133)

Making this change in Equation 3.132 and taking the limit as �t goes to zero,
we arrive at the final relationship we seek: between the forces on the CV and the
rate of change of momentum of the fluid in the CV:

∑
on
CV

f

∣∣∣∣∣∣∣∣∣∣
t

= lim
�t−→0

(
P|t+�t − P|t

�t

)
+ lim

�t−→0

(∫∫
CS

(n̂ · v) ρv d S
)∣∣∣∣∣∣

t+�t

(3.134)

Reynolds transport theorem
(momentum balance on CV)

∑
on
CV

f = dP

dt
+
∫∫

CS
(n̂ · v) ρv d S (3.135)

⎛
⎝ sum of

forces
on CV

⎞
⎠ =

⎛
⎜⎜⎜⎝

rate of
increase of

momentum of
fluid in CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

net outflow of
momentum

through bounding
surfaces of CV

⎞
⎟⎟⎟⎠ (3.136)
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Going from Equation 3.134 to Equation 3.135, we again have used the funda-
mental definition of a derivative (see Equation 3.39).7 The integral term is called
the convective term.

Equation 3.135, called the Reynolds transport theorem, gives the equivalent of
Newton’s second law (

∑
f = ma) for a control volume. The Reynolds transport

theorem states that the sum of forces on a control volume is equal to the rate
of increase of momentum of the fluid in the control volume plus the net out-
ward flux of momentum through the surfaces bounding the control volume (see
Figure 3.19). In the next section, we learn how to apply this equation to control
volumes that interest us in fluid mechanics.

3.2.3 Problem solving with control volumes

With development of the Reynolds transport theorem, we have the main tool
needed to solve a wide variety of flow problems:

Reynolds transport theorem
(momentum balance on CV)

∑
on
CV

f = dP

dt
+
∫∫

CS
(n̂ · v) ρv d S (3.137)

⎛
⎝ sum of

forces
on a CV

⎞
⎠ =

⎛
⎜⎜⎜⎝

rate of
increase of

momentum of
fluid in CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

net outflow of
momentum

through bounding
surfaces of CV

⎞
⎟⎟⎟⎠ (3.138)

The Reynolds transport theorem gives the equivalent of Newton’s second law
(
∑

f = ma) for a control volume. This expression states that the sum of forces
on a CV is equal to the rate of change of momentum of the fluid in the CV plus
the net outward flux of momentum through the surfaces bounding the CV (see
Figure 3.19). When properly applied to a flow situation and solved, the momentum
balance gives the velocity field and information on how forces interact in a fluid.
The Reynolds transport theorem is a powerful tool, and it solves the problem of
the difficulty in applying Newton’s laws to fluids. Now the challenge becomes to
learn how to apply this tool to problems of interest.

We turn to two problems that represent those we seek to solve. The first is
a fluids version of the sliding-block problem—the flow of a thin film of fluid
down an inclined plane (introduced previously)—in which we seek a detailed
prediction of the velocity field. The second example applies our CV approach to
a macroscopic scale, enabling us to calculate forces on the bend of a pipe with
fluid flowing inside.

For both problems, our approach is qualitatively the same. First, we interpret
the situation as a problem involving the field variables of density and velocity.
Second, we choose a CV. In the first example, we choose a microscopic CV
because we seek to calculate the velocity at every point in the fluid; in the second

7The momentum of the fluid in the control volume P is a function only of time; for more discussion
on this point, see Deen [40] and the supplemental web materials [108].
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example, we choose a macroscopic CV because a macroscopic force is sought.
Third, we apply the Reynolds transport theorem and solve.

3.2.3.1 MICROSCOPIC CONTROL-VOLUME PROBLEM
In Section 3.2, we introduced the problem of calculating the velocity field in
flow down an incline. We can make more progress on this problem now that we
understand the Reynolds transport theorem.

EXAMPLE 3.9 (Incline, continued). What is the velocity field in a wide, thin
film of water that runs steadily down an inclined surface under the force due to
gravity? The fluid has a constant density ρ.

SOLUTION. The flow considered is driven by an external force (i.e., gravity),
and the velocity is different at different points in the flow. The velocity distribution
in the film depends on momentum exchanges within the fluid. This problem is
the type for which we derived the Reynolds transport theorem:

Reynolds transport theorem
(momentum balance on CV)

∑
on
CV

f = dP

dt
+
∫∫

CS
(n̂ · v) ρv d S (3.139)

When correctly applied, the Reynolds transport theorem allows us to calculate
the velocity distribution in the flow down an incline.

To apply the Reynolds transport theorem and solve for the velocity field,
we idealize the situation. Because the flow is wide, we consider only a two-
dimensional cut near the center of the flow (see Figure 3.5). The film is assumed
to be of uniform thickness H and the water is isothermal. We assume that the
flow occurs parallel to the surface with layers of fluid sliding over one another.
The fluid in direct contact with the surface does not move; fluid at other locations
moves parallel to the surface under the pull of gravity.

We quantify the situation within the continuum model. The velocity is a field
variable that indicates the speed and direction of travel of bits of fluid at every
possible location. Velocity is a vector; therefore, in the most general case, velocity
may be written in a chosen coordinate system in terms of the three components
relative to that coordinate system:

Fluid
velocity field

v =
⎛
⎝v1

v2

v3

⎞
⎠

123

(arbitrary coordinates) (3.140)

Our first task is to choose the coordinate system in which we solve the coeffi-
cients of v. The choice of coordinate system is arbitrary—that is, the meaning of a
vector is independent of the coordinate system in which it is expressed. Although
the choice of coordinate system is arbitrary, this does not render the choice unim-
portant. If we choose wisely, we simplify the problem; if we choose unwisely, we
may be unable to solve the problem. We choose the Cartesian coordinate system
in Figure 3.31 with the z-direction parallel to the flow direction, the x-direction
perpendicular to the wall, and the y-direction following the righthand rule and
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Figure 3.31 Because we chose a coordinate system that simplifies the variable velocity vector, the gravity vector is slightly
more complicated than it might be with another choice of coordinate system.

into the paper. By choosing a coordinate system that aligns with the flow direc-
tion, we reduce to one the number of nonzero velocity components. Recall that
in the sliding-block problem, we also chose a coordinate system parallel to the
surface and in the direction of motion of the block. In Chapter 6, we examine the
issue of choosing a coordinate system and discuss the impact of this choice on
boundary conditions.

In our chosen coordinate system, the velocity vector is given by:

v =
⎛
⎝ 0

0
vz

⎞
⎠

xyz

ˆ= vzez (3.141)

In this coordinate system, the boundaries of the problem are at x = 0 (i.e., the
surface of the incline) and at x = H (i.e., the top surface of the film; also called the
free surface). A disadvantage of our choice is that the acceleration due to gravity
in this system does not line up with any coordinate direction in our coordinate
system. We can write the two nonzero components of g in terms of the angle β

that the incline makes with the vertical (see Figure 3.31):

Gravity field
(from geometry)

g =
⎛
⎝ gx

gy

gz

⎞
⎠

xyz

=
⎛
⎝−g sin β

0
g cos β

⎞
⎠

xyz

(3.142)

ˆ ˆ= −g sin βex + g cos βez (3.143)

We now are ready to apply the momentum balance to our problem. The momen-
tum balance for a control volume is the Reynolds transport theorem (see Equa-
tion 3.139). All of the terms in the Reynolds transport theorem relate to the
momentum associated with a chosen CV. The next step, therefore, is to choose
the CV to which we will apply the momentum balance.

Like the choice of coordinate system, the choice of CV is arbitrary; there are
choices that make the problem easy and those that make it nearly impossible to
solve. We seek to calculate how the velocity component vz varies with position in
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Figure 3.32 The control volume we chose is small so that vz does not vary much within it. Its shape reflects the symmetries of
the problem.

the flow. We therefore choose a CV that is small enough to characterize a single
position in the flow: the general position (x, y, z).

Choosing control volumes becomes easier with practice. Because this is the
first CV that we are choosing, the process may seem mysterious at this point.
As we study more and different problems, however, the concerns that go into
making a good choice of CV become clearer (see also Chapter 4, Figure 4.2, and
Chapter 9).

For flow of a thin film down an incline, we choose a small CV, the shape of
which reflects the symmetries of the problem. Because the flow is rectilinear, we
choose a small rectangular parallelepiped (i.e., a box; Figure 3.32). The chosen
CV allows us to write the forces that act on a little packet of fluid at a point within
the flow of interest.

Having chosen the CV, the next step is to apply the momentum balance on a
CV, the Reynolds transport theorem (see Equation 3.139), to our chosen control
volume:

dP

dt
+
∫∫

CS
(n̂ · v) ρv d S =

∑
on
CV

f (3.144)

The first term on the lefthand side of Equation 3.144 is the rate of change of
momentum of the CV. The flow we are considering is at steady state; therefore,
the rate of change of the momentum in our CV is zero.

The integral is the net outflow of momentum from the CV (recall that n̂ is the
outwardly pointing normal). Momentum flows in or out through a surface only
when mass crosses that surface—that is, when the velocity component (n̂ · v) is
nonzero at that surface. For our CV, no mass crosses the top, bottom, or in-page

www.20file.org

http://www.semeng.ir


210 An Introduction to Fluid Mechanics

or out-of-page surfaces, leaving two terms to be evaluated:∫∫
CS

(n̂ · v) ρv d S =
(

net momentum
out of CV

)
(3.145)

=

⎛
⎜⎜⎜⎝

momentum
out through
upstream

side of CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

momentum
out through
downstream
side of CV

⎞
⎟⎟⎟⎠ (3.146)

The same amount of momentum enters and leaves our CV; thus, the net momen-
tum out of the CV is zero. We formally obtain this result by writing Equation 3.146
in terms of our variables and simplifying with the mass balance. Momentum is
mass multiplied by velocity; thus, Equation 3.146 becomes:

∫∫
CS

(n̂ · v) ρv dS =

⎛
⎜⎜⎜⎝

momentum
out through
upstream

side of CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

momentum
out through
downstream
side of CV

⎞
⎟⎟⎟⎠ (3.147)

ˆ= −ez · (vz|z êz)ρ vz|z êz�x�y

+ êz · (vz|z+�z êz)ρ vz|z+�z êz�x�y (3.148)

= ρ
(
vz|z+�z

)2
�x�y

⎛
⎝0

0
1

⎞
⎠

xyz

− ρ (vz|z)2 �x�y

⎛
⎝0

0
1

⎞
⎠

xyz

(3.149)

The magnitude of the velocity at the upstream surface vz|z and the magnitude
of the velocity at the downstream surface vz|z+�z are related through the mass
balance, d MCV /dt = 0:

Steady-state
mass balance

on CV

d MCV

dt
=
(

mass
in

)
−
(

mass
out

)
= 0 (3.150)

0 = (ρ) (vz|z �x�y) − (ρ)
(
vz|z+�z �x�y

)
(3.151)

0 = vz|z − vz|z+�z (3.152)

The result, vz|z = vz|z+�z , allows us to conclude that the convective term in
Equation 3.149 is zero. Note that if we divide Equation 3.152 by �z and take the
limit as �z goes to zero, we obtain:

0 = vz|z − vz|z+�z (3.153)

0 = lim
�z−→0

[
vz|z+�z − vz|z

�z

]
(3.154)

mass balance result: 0 = dvz

dz
(3.155)
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Figure 3.33 The molecular contact forces affecting our control volume are analogous to the contact forces on a sliding solid
block: There are shear stresses due to friction and normal stresses that counteract the downward pull of gravity.

where in Equation 3.155 we used the definition of a derivative, Equation 3.39. In
Chapter 6, we arrive at this same result through a different path.

Thus, from the mass balance and the assumption of steady state, two of the
three terms in the Reynolds transport theorem (see Equation 3.144) are equal to
zero for the chosen CV, and we are left with a simple force balance to solve:

0 =
∑

on
CV

f (3.156)

To continue, we now must write the forces that act on the control volume,
one of which is gravity. The force due to gravity on the mass in the CV is the
acceleration due to gravity g (a vector) multiplied by the mass of the fluid in
the CV: ⎛

⎝ force due
to gravity

on CV

⎞
⎠ = (MCV ) g (3.157)

=
(

mass

volume

)
(volume) g (3.158)

= ρ (�x�y�z) g (3.159)

= ρ�x�y�z

⎛
⎝−g sin β

0
g cos β

⎞
⎠

xyz

(3.160)

What are the other forces on the CV? If we think of the sliding-block problem in
Section 3.1, gravity was one of the forces; the other forces were the retarding force
due to friction and the normal force from the incline surface, which supported
the block.

Within our falling film, there should be forces of this type on our control
volume as well (Figure 3.33). The sliding-friction force acts on the top f

top

and bottom f
bottom

of the CV and comes from the sliding of neighboring fluid
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ˆ

particles. The normal force supporting the CV likewise acts on the top Ntop and
bottom Nbottom of the CV and again comes from the fluid particles that are in
contact with it.

In the sliding-block example, when we needed to write expressions for these
forces, we brought in observations from experiments—namely, Equation 3.18,
F = −μk Nex , which recorded for us the relationship between sliding friction
and normal force for that sliding solid block. To continue with this falling-film
example, we need to learn how frictional and normal forces act in liquids.

We find that we cannot complete this example at this time. We first must discuss
intermolecular forces in liquids, which are the subject of Chapter 4. We return to
this example after we investigate this subject well enough to fill in the required
molecular forces. The momentum balance so far on the chosen microscopic
control volume in the flow down an incline is summarized as follows:

0 =
∑

on
CV

f (3.161)

0 =
⎛
⎝ force due

to gravity
on CV

⎞
⎠+

⎛
⎜⎜⎜⎝

molecular
sliding

surface forces
on CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

molecular
normal

surface forces
on CV

⎞
⎟⎟⎟⎠ (3.162)

0 = ρ�x�y�z

⎛
⎝−g sin β

0
g cos β

⎞
⎠

xyz

+

⎛
⎜⎜⎜⎝

molecular
sliding

surface forces
on CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

molecular
normal

surface forces
on CV

⎞
⎟⎟⎟⎠

(3.163)

3.2.3.2 MACROSCOPIC CONTROL-VOLUME PROBLEM
The previous example used a microscopic control volume (volume =�x�y�z
at point x, y, z) because we sought to calculate the velocity at a point in the fluid.
Because the velocity varies from place to place in that problem, we needed a
small CV (infinitely small, in fact) so that a single value of the velocity or, at
most, a minutely changing velocity is captured by the CV.

In some situations, we seek a more macroscopic engineering variable, in
which case an infinitesimal control volume is not necessary. An example of
a macroscopic-engineering variable is the total restraining force on a piece of
equipment in which liquids flow. Following is such a calculation.

EXAMPLE 3.10. What is the direction and magnitude of the force needed to
support the 90-degree pipe bend shown in Figure 3.34? An incompressible (i.e.,
constant-density) liquid enters the pipe at volumetric flow rate Qa and exits
at volumetric flow rate Qb. The cross-sectional area of the pipe bend is π R2

throughout.

SOLUTION. The flow is driven by external forces (i.e., the upstream pres-
sure, perhaps provided by a pump) and is affected by another external force
(i.e., gravity). The direction of velocity is different at different points in the flow
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liquid in
at flow
rate Qa

liquid out 
at flow 
rate Qb

(a) 

(b) 

2R

Figure 3.34 A liquid flowing in a pipe bend of circular cross section exerts forces on the pipe. To calculate the forces on the
pipe, we perform a momentum balance on a macroscopic control volume.

(i.e., inlet/outlet). We seek to calculate a net force, which depends on momentum
exchanges within the system. This problem is the type for which we derived the
Reynolds transport theorem.

Reynolds transport theorem
(momentum balance on CV)

∑
on
CV

f = dP

dt
+
∫∫

CS
(n̂ · v) ρv d S (3.164)

The Reynolds transport theorem correctly applied allows us to calculate the net
force on the bend.

We first examine this problem by imagining the situation. Fluid entering the
bend travels horizontally to the right, but the shape of the pipe causes the flow
direction to change. The fluid exits the pipe bend traveling vertically upward.

If the pipe bend were suspended by a light string and the fluid were directed
into the bend by a high-capacity firehose, surely the string would break because
there would be a large horizontal component to the force coming from the fluid,
and nothing restrains the pipe in the horizontal direction. If we turned down
the flow rate and stabilized the bend with our hands, we would have to exert a
horizontal component of force to counterbalance the horizontal momentum of the
incoming fluid; we also would have to exert a vertically upward force to keep the

R

Figure 3.35 Using only our imagination and intuition, we rea-
son that the solution to this problem must be a
vector directed approximately as shown here.

momentum of the upwardly flowing exiting
fluid from breaking the supporting string
and jamming the bend into the ground.

By first thinking about the problem, we
conclude that there must be a restraining
force on the pipe bend that is directed
approximately as shown in Figure 3.35. Our
task is to use the momentum balance to cal-
culate the vector restoring force R that is
needed to keep the pipe stationary.

To calculate the force on the bend, we
perform a momentum balance using the
Reynolds transport theorem, and we begin
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Figure 3.36 The force that flowing liquid exerts on a pipe bend can be calculated by performing a momentum balance on a
macroscopic control volume such as the one outlined with a dotted line. The y-direction is into the page.

by choosing a coordinate system and a control volume. Unlike in the previous
example of flow down an incline, in this problem, the CV need not be microscopic
because here we do not seek to know the details of velocity distribution inside
the pipe. We choose instead a CV that encloses all of the fluid inside the pipe
(Figure 3.36). We seek to calculate the net force exerted by the inside walls of
the pipe on the fluid in this CV.

To choose the coordinate system for our calculations, we again consider the
quantities that we seek to calculate. A horizontal Cartesian coordinate system is
a reasonable choice for this problem because it is easy to express the incoming
and exiting velocities. Although the pipe is circular in cross section, a cylindrical
coordinate system does not make the calculations easier because of the bend
in the pipe. We choose the xyz coordinate system shown in Figure 3.36. The
y-direction is into the page.8

Having chosen the control volume and the coordinate system, we proceed with
writing the terms of the momentum balance as they apply to these choices:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

CS
(n̂ · v) ρv d S =

∑
on
CV

f (3.165)

The flow is steady; therefore, the rate of change of momentum in the CV is zero,
dP/dt = 0. The surface integral term gives the net momentum flow out of the
CV due to convection. In our CV, momentum is convected in and out through
the surfaces labeled (a) and (b) in Figure 3.36. The momentum convection term
does not sum to zero for flow in a 90-degree bend because of the change in flow
direction. We calculate this convective term by carefully evaluating the integral
in Equation 3.165.

8We use a cylindrical coordinate system later in this problem when calculating forces on the ends
of the CV.
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At the inlet and outlet surfaces, we write the two unit vectors n̂ in our chosen
coordinate system as:

n̂|a =
⎛
⎝−1

0
0

⎞
⎠

xyz

n̂|b =
⎛
⎝0

0
1

⎞
⎠

xyz

(3.166)

Recall that n̂ is the outwardly pointing unit normal of the CV surfaces.
We can write versions of the velocity vectors at (a) and (b) in our coordinate

system as well. At surface (a), the velocity points in the x-direction; at surface
(b), the velocity points in the z-direction. Because our CV is macroscopic, we use
average velocities to characterize the momentum flowing in and out of it. With
this choice, we ignore the variations in velocity profile across the inlet and outlet
surfaces.

v|a =
⎛
⎝ 〈v〉|a

0
0

⎞
⎠

xyz

(3.167)

v|b =
⎛
⎝ 0

0
〈v〉|b

⎞
⎠

xyz

(3.168)

(3.169)

To relate inlet and outlet average velocities, we first perform a mass balance.
For a constant-density system, we obtain:

d MCV

dt
=
⎛
⎝ rate of

mass flow
into the CV

⎞
⎠−

⎛
⎝ rate of

mass flow
out of the CV

⎞
⎠ = 0 (3.170)

0 = ρQa − ρQb (3.171)

Qa = Qb ≡ Q (3.172)

where MCV is the mass of fluid in the CV. The cross-sectional area of the pipe π R2

is the same for the entrance and the exit; because the flow rate also is constant,
the magnitude of the average velocity at the entrance and at the exit is the same.
For the inlet and exit surfaces, we therefore write:

〈v〉|a = 〈v〉|b = 〈v〉 (3.173)

v|a =
⎛
⎝ 〈v〉

0
0

⎞
⎠

xyz

v|b =
⎛
⎝ 0

0
〈v〉

⎞
⎠

xyz

(3.174)

With these expressions for v at the inlet and outlet surfaces, we now can
calculate the surface integral in the momentum balance—Equation 3.165 (the
convective term)—for our control volume. The surface integral may be broken
into two parts—an integral over the inlet and an integral over the outlet:∫∫

CS
(n̂ · v) ρv d S =

∫∫
Sa

(n̂ · v) ρvd S +
∫∫

Sb

(n̂ · v) ρvd S (3.175)
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Because n̂, v, and ρ are constant across both the inlet and outlet surfaces, we can
remove them from the integrals:∫∫

CS
(n̂ · v) ρv dS = (n̂ · v)|a ρ v|a

∫∫
Sa

d S + (n̂ · v)|b ρ v|b
∫∫

Sb

d S (3.176)

Both surface integrals now are evaluated and give the tube cross-sectional area
π R2. We also know the various vectors n̂ and v at the inlet and outlet; thus, we
can proceed to the final answer for this term:∫∫

CS
(n̂ · v) ρvd S = (n̂ · v)|a ρ v|a π R2 + (n̂ · v)|b ρ v|b π R2 (3.177)

= ρπ R2

⎡
⎢⎣
⎛
⎝−1

0
0

⎞
⎠

xyz

·
⎛
⎝ 〈v〉

0
0

⎞
⎠

xyz

⎤
⎥⎦
⎛
⎝ 〈v〉

0
0

⎞
⎠

xyz

+ ρπ R2

⎡
⎢⎣
⎛
⎝0

0
1

⎞
⎠

xyz

·
⎛
⎝ 0

0
〈v〉

⎞
⎠

xyz

⎤
⎥⎦
⎛
⎝ 0

0
〈v〉

⎞
⎠

xyz

(3.178)

= 〈v〉2ρπ R2

⎛
⎝−1

0
1

⎞
⎠

xyz

(3.179)

To assess our progress, we substitute the convective term and the fact that
dP/dt = 0 into the momentum balance (i.e., the Reynolds transport theorem):

dP

dt
=
∫∫

CS
−(n̂ · v) ρv d S +

∑
on
CV

f (3.180)

0 = −〈v〉2ρπ R2

⎛
⎝−1

0
1

⎞
⎠

xyz

+
∑

on
CV

f (3.181)

All that remains is to write the forces on the control volume and solve for the
desired restraining-force vector.

One of the forces on the CV is gravity, which is the CV mass multiplied by the
acceleration due to gravity. For our chosen coordinate system, this becomes:

Force on CV
due to gravity

= MCV

⎛
⎝ 0

0
−g

⎞
⎠

xyz

(3.182)

where MCV is the mass of fluid in the CV.
A second force on the control volume is the force exerted on the fluid by the

walls of the pipe. To sort out what these are, we can do a “thought experiment.”
If the pipe were straight and the water were directed through the straight pipe
without touching the walls, there would be no force between the fluid and the
walls. Because the fluid touches the walls, however, there is a molecular contact
force between the fluid and the walls. The force exerted by the walls on the fluid
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is the negative of the force exerted by the fluid on the walls:⎛
⎝ force on CV

due to contact
with pipe walls

⎞
⎠=−

⎛
⎝ force on walls

due to contact
with fluid

⎞
⎠=

⎛
⎝ force by walls

due to contact
with fluid

⎞
⎠≡

⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

(3.183)

The vector R is the restoring force we seek.
The contact forces between the walls and the fluid are accounted for but the

walls of the pipe are not the only boundaries of the CV: The surfaces at (a) and
(b) also are bounding surfaces. Will there be molecular contact forces on these
surfaces? The fluid upstream of the CV is moving at volumetric flow rate Q and
is pushing the fluid ahead of it. This pushing force is a molecular contact force
on surface (a). Likewise, the fluid in the CV immediately inside surface (b) is
pushing on the fluid outside of the CV. The molecular forces on the CV include
the forces on (a) and (b), as well as the force on the walls R:⎛
⎝molecular

force
on CV

⎞
⎠ =

⎛
⎝ force on CV

due to contact
with walls

⎞
⎠+

⎛
⎝ molecular

force on CV
at (a)

⎞
⎠+

⎛
⎝ molecular

force on CV
at (b)

⎞
⎠

(3.184)

=
⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

+
⎛
⎝ molecular

force on CV
at (a)

⎞
⎠+

⎛
⎝ molecular

force on CV
at (b)

⎞
⎠ (3.185)

The molecular forces on surfaces (a) and (b) are due to the forces between
the molecules in the flowing liquid. If the liquid is a simple one, such as water,
these forces are straightforward (see Chapter 4). If the liquid is complex, such
as a high-molecular-weight polymer, the intermolecular forces are complicated.
In either case, to write an expression for these forces, we need to know how
intermolecular forces for various types of liquids can be accounted for in the
continuum model.

As in the previous example, we must postpone a solution because we do not
yet know how to handle the molecular contact forces in fluids. We return to finish
this problem after we have the proper tools. Following is the momentum balance
thus far for the flow of water in a 90-degree pipe bend:

0 = −〈v〉2ρπ R2

⎛
⎝−1

0
1

⎞
⎠

xyz

+
∑

on
CV

f (3.186)

0 = 〈v〉2ρπ R2

⎛
⎝ 1

0
−1

⎞
⎠

xyz

+ MCV

⎛
⎝ 0

0
−g

⎞
⎠

xyz

+
⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

+
⎛
⎝ molecular

force on CV
at (a)

⎞
⎠+

⎛
⎝ molecular

force on CV
at (b)

⎞
⎠ (3.187)
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3.3 Summary

In this chapter, we take the first steps toward developing a problem-solving
method for two types of flow problems: microscopic and macroscopic. We now
summarize our progress.

The continuum model is a way of viewing fluids using a set of continuous
functions to keep track of fluid behavior, ignoring molecular details. The contin-
uous functions of fluid mechanics include the density field, the velocity field, and
the molecular-stress field, which is discussed in Chapter 4. Calculus is the mathe-
matics of continuous functions and we use it extensively to make our calculations
of fluid motion and fluid forces.

Fluid motion is governed by mass, momentum, and energy balances. We choose
to use balances on control volumes instead of on individual bodies. The control-
volume method is more convenient to use in fluid mechanics because fluids are
not individual rigid bodies like those with which we deal in introductory physics
and mechanics courses. The control-volume method is well suited for use with
the continuum picture, as shown in the final two examples in this chapter. We
continue study of these two problems in Chapters 4 and 5 and consider more
problems of this type in Chapters 7–10.

The appropriate momentum balance to use with a control volume is given by
the Reynolds transport theorem:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

CS
(n̂ · v) ρv d S =

∑
on
CV

f (3.188)

Recall that n̂ is the outwardly pointing normal to the CV enclosing surface CS;
thus, the integral in Equation 3.188 is net outflow of momentum from the CV.

To apply the Reynolds transport theorem to a problem, we must be able to
identify the forces that are acting on the CV, including molecular forces. In this
chapter, we discuss one force—gravity—that acts on a CV. Chapter 4 introduces
molecular stress, the source of a second significant force that acts on a CV. In
Chapter 5, we discuss the link between molecular stress and fluid motion. When
these topics have been covered, we can complete our flow calculations on the
inclined plane and the 90-degree bend, and we will be ready to tackle a wide
variety of problems in fluid mechanics.

3.4 Problems

1. What is a control volume? Why does the field of fluid mechanics introduce
this concept?

2. What is a fluid particle? How big is a fluid particle?
3. How is the concept of a continuum different from your understanding of

matter from chemistry studies?
4. What is meant by the term velocity field? What other “fields” are there in

fluid mechanics and physics?
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Table 3.2. Data of y (t ) for Problem 11

t (s) y (m/s)

3.6 3.9
4.0 12.1
4.4 22.7
4.8 33.0
5.2 41.9
5.6 49.7
6.0 55.6
6.4 61.0
6.8 65.5
7.4 71.0
8.2 76.7
9.2 82.0

10.4 86.2
12.0 90.2
13.4 92.7
15.4 94.6
17.4 95.9
19.4 97.1
21.4 98.0
22.8 98.4
24.4 98.5
26.0 98.7
27.6 99.0
29.4 100.0
31.2 100.2
33.6 100.7

5. What are the principal forces that cause flow?
6. What is Newton’s second law

∑
f = ma when written on a control volume

V with bounding surfaces CS?
7. We derived the Reynolds transport theorem for the momentum balance. What

is it for the mass balance?
8. Why are we unable to use the momentum balance

∑
f = ma (i.e., Newton’s

second law) directly in fluid-flow calculations?
9. What is the difference between the rate of change of momentum terms d(mv)

dt

and dP
dt in Newton’s second law (Equation 3.52) and the Reynolds transport

theorem (Equation 3.135)?
10. In Equation 3.126 in the development of the convective term of the momen-

tum balance, an indeterminate vector product (v v) appears. How did that
expression come to include a dyadic product? What is the meaning of the
tensor ρv v?

11. For the data given in Table 3.2 (i.e., arbitrary time-dependent quantity y),
find a function y(t) that fits the data well. What is your estimate of y (7.0)?

12. For the experimental data given in Table 3.3 (i.e., viscosity of aqueous
sugar solutions as a function of concentration), find a function μ(c) that
fits the data well. What is your estimate of μ (28.2 wt%) and μ (50.0
wt%)?
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Table 3.3. Experimental data of viscosity
as a function of concentration μ(c ) of
aqueous sugar solutions for Problem 12

c (wt % sugar) μ (cp)

10 0.62
10 0.87
10 0.88
10 0.89
20 1.0
20 1.2
20 1.2
20 1.2
20 1.2
20 1.3
30 2.0
30 2.1
30 2.1
30 2.3
30 3.0
40 3.8
40 4.3
40 4.3
40 4.4
40 4.6
45 5.2
45 5.3
45 5.3
50 8.4
50 9.3
50 9.5
50 9.7
50 14
60 28
60 30
60 30
60 32
65 63
65 64
65 65
65 69

ˆ

ˆ

13. For the experimental data given in Table 3.4 (i.e., pumping head as a function
of volumetric flow rate [102]), find a function Hpump(Q) that fits the data
well. How much head does the pump develop at 2.2 gpm?

14. A uniform flow v = Uez of an incompressible fluid of density ρ passes
through a volume that is in the shape of a half sphere of radius R. The
outwardly pointing unit normal of the flat surface of the half sphere is n̂ =
−ez . What is the mass flow rate through the hemispherical surface of this
volume? Show that you can obtain the correct answer by integrating the
formal expression for Q (Equation 3.87).

15. What is the flow of momentum through the hemispherical surface described
in Problem 14?
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Table 3.4. Experimental data of
pumping head as a function of
volumetric flow rate Hpump (Q) for a
laboratory pump [102] (Problem 13)

Q gpm Head ft

0.88 72.5
1.00 68.1
1.38 70.5
1.87 67.2
1.99 70.4
2.37 63.6
2.86 58.9
3.23 57.3
3.36 52.7
3.85 46.2

ˆ

ˆ

16. A uniform flow v = Uex of an incompressible fluid of density ρ passes
through a volume that is in the shape of a block (i.e., rectangular paral-
lelepiped). The sides of the block are lengths a < b < c. The unit normal to
the cb surface is n̂ = (ex − êy)/

√

ˆ

2. What is the mass flow rate through the
cb surface? What is the momentum flow rate through the cb surface?

17. For the volume described in Problem 16, what are the unit normals to the
other two surfaces?

18. For the volume described in Problem 16, what is the mass flow rate through
the ac surface? What is the momentum flow rate through the ac surface?

19. For the function f (x) given here, what is the average value 〈 f 〉 of the function
between x = 0 and x = 2?

f (x) = 2x2 + 3

20. For the velocity-profile function vy(x) given here (equation uses Cartesian
coordinates xyz, v = vyey), what is the average value 〈vy〉 of the function
between x = 0 and x = 2? The units of velocity are m/s and the units of x
are m.

vy(x) = 3
(

x

6

)2

+ 1.5

21. The y-component of a velocity field in flow through a slit (equation uses
Cartesian coordinates) is given here. What is the average value of the veloc-
ity? 2H is the gap between the plates. At what location is the velocity a
maximum? The units of velocity and A are m/s and the units of x and H
are m.

v =
⎛
⎝ 0

vy(x)
0

⎞
⎠

xyz

vy(x) = A

(
1 − (x − H )2

H 2

)
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2H

PO PL

z

y

x

V

Figure 3.37 Pressure-driven flow (i.e., Poiseuille flow) through a slit with a superimposed drag flow due to the motion of the
top plate (Problem 24).

22. The z-component of a velocity field in flow through a tube (given in cylin-
drical coordinates) is shown here. What is the average value of the velocity?
R is the radius of the tube. The units of velocity and A are m/s and the units
of r and R are m.

v =
⎛
⎝ 0

0
vz(r )

⎞
⎠

rθ z

vz = A

(
1 − r2

R2

)

23. For the velocity-profile function vz(r ) given here, what is the average value
〈vz〉 of the function between r = 5 and r = 10? The function is written in
cylindrical coordinates. The units of velocity are m/s and the units of r are m.

vz(r ) = 8 ln
(

r

3

)

24. The x-component of a velocity field is given here (expressed in Cartesian
coordinates). This velocity profile results from pressure-driven flow through
a slit with the top wall moving at velocity V (Figure 3.37). What is the
average value of the velocity? 2H is the gap between the plates, a pressure
gradient �P/L is imposed, and the fluid viscosity is μ. At what location is
the velocity a maximum?

v =
⎛
⎝vx (y)

0
0

⎞
⎠

xyz

vx (y) =
(

H 2 (�P)

2μL

)(
1 − y2

H 2

)
+ V

2

(
1 + y

H

)

25. What is the wetted surface area of water flowing in a tube? Show that you can
obtain the answer by performing an integration in cylindrical coordinates.

26. What is the wetted surface area of a sphere dropping in a fluid? Show that
you can obtain the answer by integrating an appropriate quantity.

www.20file.org

http://www.semeng.ir


223 Modeling Fluids

δ

z

air

y

water

Figure 3.38 Flow coordinate system for Problem 31.

27. What is the wetted surface area of an open, semicircular channel (i.e., half
pipe) of length L and pipe radius R, in which the fluid height in the center is
h. Show that you can obtain the answer by integrating an appropriate quantity.

28. For a pipe that is only 80 percent full (i.e., occupied volume = 80 percent of
the total pipe volume), what is the wetted surface area? The pipe is of length
L and radius R.

29. For the two vectors given here, what is |w|? What is |v|? What is (w · v)?
What is the angle between the two vectors?

w =
⎛
⎝ 1

1√
2

⎞
⎠

123

v =
⎛
⎝1

6
3

⎞
⎠

123

30. For the two vectors given here, what is |w|? What is |v|? What is (w · v)?
What is the angle between the two vectors? Note that the two vectors are not
written relative to the same coordinate system.

w =
⎛
⎝1

1
0

⎞
⎠

rθ z

∣∣∣∣∣∣∣∣∣
r=1,θ=π,φ=0

v =
⎛
⎝1

6
3

⎞
⎠

123

31. For the Cartesian coordinate system shown in Figure 3.38, what is a unit
vector in the direction of gravity? What is the component of gravity in the
flow direction?

32. For the cylindrical coordinate system shown in Figure 3.39 for the axial flow
in a wire-coating operation, what is a unit vector in the direction of gravity?
What is the component of gravity in the flow direction?

33. For the horizontal flow around a sphere in a wind tunnel, the top view of
the geometry is shown in Figure 3.40. Relative to the spherical coordinate
system shown, what is a unit vector in the direction of gravity? What is the
component of gravity in the flow direction?

34. For a particular problem, the control volume is chosen to be a rectangular
parallelepiped of dimensions length L , width W , and height H . What is the
total surface area of the control volume? What is the volume of the control
volume? Choose a coordinate system and write formal surface integrals over
the surfaces and verify your answer for total surface area. Write a formal
volume integral and verify your answer for volume.
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entrance:
Po

exit:
Po

V

L
r

z

2R

V

2κR

r

z

cross
section:

Figure 3.39 Axial annular flow that occurs in wire coating (Problem 32).

35. For a particular problem, the control volume is chosen to be a right-circular
cylinder of radius R and height H . What is the total surface area of the control
volume? What is the volume of the control volume? Choose a coordinate
system and write formal surface integrals over the surfaces and verify your
answer for total surface area. Write a formal volume integral and verify your
answer for volume.

36. For a particular problem, the control volume is chosen to be a cone of height
H and widest radius R. What is the total surface area of the control volume?
What is the volume of the control volume? Choose a coordinate system and
write formal surface integrals over the surfaces and verify your answer for
total surface area. Write a formal volume integral and verify your answer for
volume.

37. For a particular flow problem, the control volume is chosen to be a rectangular
parallelepiped with dimensions of length L , width W , and height H . The
Cartesian coordinate system chosen is located at one corner of the control
volume (0 ≤ x ≤ L , 0 ≤ y ≤ W , 0 ≤ z ≤ H ). For each enclosing control

y

x

r

v = Uêz

z

x

y - into page (x, y, z coordinates)

φ - counterclockwise from x-axis
     in the xy plane
     (r, θ, φ coordinates)

φ

r sin θ

θ

x -y plane:

Figure 3.40 Flow around a sphere in a wind tunnel (Problem 33).
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1

ˆ
A

v

2

ˆ
A

v

zê

yê

xê

(2)

(1)

Figure 3.41 When fluid flows in a U-shaped tube, the momentum changes direction and forces are required to restrain the tube
(Problems 41 and 44).

ˆ

ˆ

surface of this control volume, what are the outwardly pointing unit normal
vectors n̂ for each control surface? For a uniform flow v = Uo(ex + êy)
through the control volume, what is the mass flow rate through each control
surface? The fluid has constant density ρ and U0 is constant.

38. For a particular flow problem, the control volume is chosen to be a vertical-
right circular cylinder of radius R and height H . Choose a cylindrical coor-
dinate system for flow down the cylindrical axis of this control volume. For
each enclosing control surface of the control volume, write the unit vectors
that are normal to each control surface. For a uniform flow v = Uez through
the control volume (U is constant), what is the flow rate through each control
surface? The fluid has variable density ρ. For a flow v = (U 1

r

)
êr through

ˆ

the control volume, what is the mass flow rate through each control surface?
39. For a particular flow problem, the control volume is chosen to be a truncated

cone of height H , bottom widest radius R1, and top smaller radius R2. The
cone is truncated a distance l from the tip and the cone angle is θ = α, where
θ is the coordinate variable for a spherical coordinate system with origin at
the core tip. For each enclosing control surface, write the unit vectors that
are normal to each control surface. For a uniform flow v = −Uez down the
axis of the control volume, what is the mass flow rate through each control
surface? The fluid has constant density ρ and the flow first passes through
the bottom of the control volume.

40. An incompressible fluid (i.e., density is constant) enters a rectangular duct
flowing at a steady flow rate of Q gpm. The width of the duct is W , the height
of the duct is H , and the length of the duct is L . What is the average velocity
of fluid entering the duct in terms of these variables? What is the average
velocity of fluid exiting the duct?

41. An incompressible fluid (i.e., density is constant) enters a U-shaped conduit
flowing at a steady flow rate of Q gpm (Figure 3.41). The conduit has a
circular cross section all along its length and the radius of the conduit is R.
What is the average velocity of fluid entering the conduit in terms of these
variables? What is the average velocity of fluid exiting the conduit?

42. An incompressible fluid enters a converging bend flowing at a steady flow
rate of Q gpm (Figure 3.42). The bend makes a 20-degree turn and has a
circular cross section all along its length. At the inlet to the bend, the radius
of the conduit is R1; at the exit, the radius is a smaller value, R2. What is
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20
∘

circle with 
radius R1

circle with 
radius R2

flow

Figure 3.42 Schematic of a converging fitting (Problems 42 and 47).

the average velocity of fluid entering the conduit in terms of these variables?
What is the average velocity of fluid exiting the conduit?

43. An incompressible fluid enters a horizontal, diverging conduit flowing at a
steady flow rate of Q gpm. The conduit has a circular cross section all along
its length. At the inlet, the radius of the conduit is R1; at the exit, the radius is
a larger value, R2. What is the average velocity of fluid entering the conduit
in terms of these variables? What is the average velocity of fluid exiting the
conduit?

44. In this chapter, we introduced the Reynolds transport theorem:

Reynolds transport theorem
(momentum balance on CV)

∑
on
CV

f = dP

dt
+
∫∫

S
(n̂ · v) ρv d S

The convective term is the integral in the Reynolds transport theorem, and
this term accounts for the net loss of momentum from the control volume
through its bounding surfaces. Consider two cases of flow with an average
inlet velocity of 〈v〉: (a) steady flow through a straight tube of radius R, and
(b) steady flow through a U-shaped tube of radius R (see Figure 3.41). For
Case (a), the convective term is zero; for Case (b), the convective term is not
zero. Perform each calculation and explain the results.

45. In Equation 3.181 for the problem of flow in a right-angle bend, the con-
vective term of the macroscopic momentum balance is not equal to zero,
even though an equal magnitude of momentum enters and exits the control
volume. Explain why this is so.

46. Evaluate the convective term of the Reynolds transport theorem for the 162-
degree bend-reducing fitting shown in Figure 3.43. The flow is into the wider
cross section.

47. Evaluate the convective term of the Reynolds transport theorem for the
20-degree bend-reducing fitting shown in Figure 3.42.

48. Set up the problem of steady flow of a Newtonian fluid down an inclined plane
using a Cartesian coordinate system in which gravity is in the (−z)-direction.

49. Set up the problem of steady flow of a Newtonian fluid through a right-
angle bend using a cylindrical coordinate system with the z-direction as
the inlet flow direction. What is the velocity vector like at the exit for this

www.20file.org

http://www.semeng.ir


227 Modeling Fluids

na

nb

18°

Figure 3.43 Schematic of a reducing fitting (Problem 46).

chosen coordinate system? What is the gravity vector? Comment on your
observations.

50. The definition of a derivative is given in Chapter 1 (see Equation 1.138):

d f

dx
≡ lim

�x−→0

[
f (x + �x) − f (x)

�x

]

What is the derivative (d f/dx) of f (x) = x2? Formally verify your answer
by plugging in f (x) and f (x + �x) into the definition and carrying out the
limit.
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4 Molecular Fluid Stresses

In our presentation thus far, we are seeking an effective way to model the flow
patterns and forces associated with fluid motion. Our picture of a fluid is a
mathematical continuum described by a set of field variables, including density
ρ(x, y, z, t) and velocity v(x, y, z, t), that capture the fluid’s motion. We men-
tioned but have not explained yet the field variable fluid molecular stress �̃ or
τ̃ (x, y, z, t), which describes molecular surface forces in a fluid.

In Chapter 3, we introduced the control volume (CV), a fixed region in space
through which fluid particles move and on which we perform balances. Using
CVs in fluids calculations frees us from having to follow individual particles from
place to place. The momentum balance (i.e., Newton’s second law), written with
respect to a control volume, is given by the Reynolds transport theorem:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (4.1)

where dP/dt is the rate of increase of momentum in the CV, the integral represents
the net flow of momentum out of the CV, and

∑
f is a sum of the forces on the

CV. The Reynolds transport theorem requires that we write an expression for the
forces on a control volume, including molecular forces; how to do this is the topic
of this chapter.

There are two types of forces on a control volume in a fluid: noncontact
forces such as gravity; and contact forces, which in fluids arise from molecular
forces. This chapter discusses the fact that molecular force in liquids is quantified
with stress, force per area; and that molecular stress is divided into two types,
isotropic and anisotropic. Isotropic molecular stress, or pressure, figures into
flow and also is important in static-fluid applications such as in manometers (see
Section 4.2.4.1) and hydraulic lifts (see Section 4.2.4.2). Anisotropic molecular
stress, which includes shear stress, is present only when fluids are in motion.

The stress tensor is a field variable used to write the molecular forces on a
control volume. The stress-tensor concept makes molecular stresses easier to
handle. Although it is a complicated subject, we do not need to understand all
of the details of tensor mathematics to use the stress-tensor components in our
study of fluids in motion. In practical calculations, fluid forces may be obtained
from the stress tensor by using 3 × 3 matrix operations.
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Figure 4.1 Two types of forces act: contact forces and noncontact forces. The contact forces in a fluid are molecular forces
due to the nature of the chemicals that comprise the fluid. Depending on the material that is flowing, contact forces
include dipole-dipole, ion-dipole, London, hydrogen-bond, and entanglement forces. Noncontact forces include
gravity and electromagnetism.

In this chapter, we discuss the origin of molecular forces on a control volume,
describe stress in static fluids, and introduce the stress tensor �̃ for stresses
in static and moving fluids. At the conclusion of this chapter, we return to the
two examples in Chapter 3: flow down an incline (i.e., microscopic balance) and
forces on a right-angle bend (i.e., macroscopic balance) and incorporate the stress
components into those solutions.

In Chapter 5, we discuss the connection between stress �̃ and fluid velocity
v. The relationship between �̃ and v is called the stress constitutive equation,
which is the final piece of information needed to model flows with the continuum
model and control volumes. The stress constitutive equation of Chapter 5 also is
the final piece of physics needed to complete the two example calculations.

4.1 Forces on a control volume

The general momentum-balance equation derived in Chapter 3, the Reynolds
transport theorem, requires expressions for all of the forces f acting on a control
volume. To use the Reynolds transport theorem to solve for flow patterns and to
solve for other flow properties of interest, we must determine which forces act
on the CV.

Fundamentally, there are two types of forces in nature: contact forces and
noncontact or body forces [167] (Figure 4.1):

∑
on
CV

f =
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
contact

+
∑

on
CV

f

∣∣∣∣∣∣∣∣∣∣
noncontact

(4.2)
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LWHCV =
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zrrCV ΔΔΔ= θ
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zyxCV ΔΔΔ=
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(a) (b) 
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Figure 4.2 Control volumes are arbitrary volumes; thus, we choose them for convenience. Control-volume boundaries can be
fluid-fluid (a, b) or fluid-solid (parts of c, d). When calculating velocity fields, microscopic control volumes embedded
within the flow (a, b) allow us to calculate the velocity field. Macroscopic control volumes (c, d) are convenient
when calculating, for example, the total force on the walls of a piece of process equipment.

Gravity and electromagnetism are familiar noncontact forces. Gravity is an impor-
tant force in fluid mechanics, and it is straightforward to express the effect of
gravity on a CV through Newton’s law—that is, as mass multiplied by the accel-
eration due to gravity:

∑
on
CV

f

∣∣∣∣∣∣∣∣∣∣
noncontact

=
⎛
⎝ force due to

gravity
on CV

⎞
⎠ =

(
mass of fluid

in CV

)
g (4.3)

= MCV g (4.4)

where MCV is the mass of fluid in the CV and g is the acceleration due to gravity.
If electromagnetic forces are important in a flow (e.g., in a conducting liquid;
see Section 2.9), the electromagnetic force on the CV can be written analogously
[35]. Electromagnetic forces need be considered only in specialized applications
that involve magnetic fields and conductive fluids; we omit further discussion of
these types of forces.

Contact forces on a chosen CV act through the control surface (CS) that bounds
the CV. To identify contact forces on a CV, we must choose one (example CVs
are shown in Figure 4.2) and then ask what touches the surfaces of the CV.

The forces that act on a CV surface in a flow are intermolecular forces–either
the forces between molecules in the fluid or those between molecules in the
fluid and molecules in a solid, such as a wall. To model these forces in detail,
we must specify which molecules are present in our system. For example, if
the fluid is polar (e.g., water and ethanol are both polar) (Figure 4.3), dipole-
dipole attractions and perhaps hydrogen bonding contribute to forces on the
control surface. In a nonpolar oil or a polymer melt, electrostatic attractions are
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HHH+++

hydrogen bond
(strong permanent dipole 
donates proton to make a 
bridge between molecules)

= permanent dipole
(more electronegative 
atoms draw the electron 
cloud)

= nonpolar molecule
(no dipole on average)

= temporary dipole
(due to fluctuation with 
time or due to shifts 
caused by the environment)

unlike charges 
attract

An extreme case of charge polarization: 

Figure 4.3 Fluids are held together by a variety of forces, which are responsible for flow behavior. Most intermolecular forces
are electrostatic in nature, a result of the attraction between positive and negative charges between molecules. Polar
molecules have permanent dipoles that attract one molecule to another. A nonpolar molecule exhibits a temporary
dipole when its electron cloud shifts due to, for example, the presence of a nearby positive or negative charge.
London-dispersion forces are those intermolecular forces that result from the instantaneous temporary dipoles
formed in all molecules due to the continuous motion of the electron cloud. One of the strongest intermolecular
forces is associated with the hydrogen bond, in which a proton (i.e., positive charge) is donated from one atom to
another and the resulting dipole is strongly polarized.

not of concern; however, other forces contribute (e.g., London dispersion forces
or polymer entanglement forces; Figure 4.4). Different fluids are affected by
different intermolecular forces (Table 4.1):

∑
on
CV

f

∣∣∣∣∣∣∣∣∣∣
contact

=

⎛
⎜⎜⎜⎝

force on CV
due to

dipole-dipole
interactions

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

force on CV
due to

London-dispersion
interactions

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

force on CV
due to

ion-dipole
interactions

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

force on CV
due to

H-bond
interactions

⎞
⎟⎟⎟⎠+

⎛
⎝ force on CV

due to
entanglement

⎞
⎠ (4.5)

Thus, writing an expression for molecular contact forces on a control volume is
a complex problem. We need to know which molecules are located at the control
surface and which types of intermolecular forces (i.e., dipole-dipole, hydrogen
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Table 4.1. Liquids held together by intermolecular forces [95]

Strength of force,
Type of force k J/mole Present between

Dipole-dipole 3–4 Polar molecules (e.g., acetone and glycerol)

London dispersion 1–10 All molecules; depends on polarizability of the elec-
tron cloud

Ion-dipole 10–50 Ions and polar solvents (e.g., salt solutions)

Hydrogen bond 10–40 O-H, N-H, and F-H bonds (e.g., water, ammonia, and
strands of DNA)

Polymer entanglement Unknown Polymer chains over a critical molecular weight

Note: Different forces are more important for different types of fluids, and the strength of the forces depends on
temperature. As temperatures rise, intermolecular forces lessen and liquids evaporate and form gases.

bonding, or other) are important for those molecules. Furthermore, we must write
this information for every portion of the bounding surface of the control volume
so that we can evaluate the summation in Equation 4.1.

The situation described here is complex, and at this point in our modeling it
would be convenient if we did not have to be so specific about molecular behavior
and mechanisms. Fortunately, in the continuum approach, it is possible to sidestep
the details of molecular structure and interactions and still account for molecular
forces on a control volume. The continuum approach views the fluid as a field
characterized by position-dependent density and velocity functions, ignoring the
existence of individual molecules. Consistent with this approach, we now seek a
method that allows us to quantify molecular forces without addressing molecular
details. We seek a field variable that can capture the effect of molecular forces

entanglement 

~200 nm

=
H

H

H

H

H

H

CC C . . .. . .

H

H

H

H

H

H

CC C

H

H

H

H

H

H

CC C

Figure 4.4 Polymers and other large molecules experience intermolecular forces such as entanglement forces that are due
to the physical size and complicated shape of molecules. Entanglement can hold polymeric liquids together even
when they are subjected to strong forces pulling them apart.

www.20file.org

http://www.semeng.ir


233 Molecular Fluid Stresses

t̂
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nfnf =⋅ ˆ

tftf =⋅ ˆ

f

ftfnf tn =+ ˆˆ

Figure 4.5 The forces at a location on an arbitrary surface include both normal forces and tangential or shear forces.

acting on control surfaces in a fluid. The position-dependent field variable that
makes this possible is the stress tensor—although, at this point, it is not obvious
as to how we can use a single variable to account for the numerous effects that
comprise molecular contact forces in a fluid:

∑
on
CV

f

∣∣∣∣∣∣∣∣∣∣
contact

=
∫∫

C S

⎛
⎝ a continuum expression

that works for
all types of contact forces

⎞
⎠ d S (4.6)

To develop a continuum variable for molecular forces, we begin with the most
basic characteristics of forces in fluids. In general, the molecular force f on a
tiny surface at a given location in a fluid may point in any direction. Such a force
vector can be resolved into two components: one that is normal to the surface and
one that is tangent to the surface (Figure 4.5). The component of the force vector
that is normal to the surface is called the normal force, whereas the component
of force that is tangent to the surface is called the shear force.

Shear and normal forces affect fluids differently. A material, in fact, is classified
as a fluid based on how it responds to shear forces: A fluid is a substance that
cannot withstand a shear force without continuously deforming (Figures 4.6
and 4.7). If we attempt to shear a substance and if it continuously deforms
under shearing forces, the substance is a fluid. Fluids behave this way because
the intermolecular forces that hold liquid and gas molecules together are not
strong enough in a fluid to prevent continuous lateral sliding if a tangential force
is imposed. This formal description of a fluid is consistent with our intuitive

Solid  

At rest  In motion  

shear and 
normal 
forces 

shear and 
normal 
forces 

Fluid
(gases and 

liquids) 

normal 
forces only 
(shear = 0) 

shear and 
normal 
forces 

Figure 4.6 Solids at rest may support both shear and normal forces. Fluids at rest have no shear forces. When shear forces
are applied to a fluid, the fluid deforms continuously.
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f

0=v 0=v

Figure 4.7 A fluid is a substance that cannot withstand a shear force without continuously deforming. Tofu is not a fluid
because it can withstand a shear stress when it is at rest.

understanding that a fluid is a type of matter that moves and deforms easily. The
fact that fluids continuously deform under shear forces distinguishes them from
soft elastic solids such as gelatin and tofu, which can sustain a shear force at
rest. When tofu for example (see Figure 4.7), is under shear stress, it deforms
but eventually holds a final deformed shape. Fluids, by contrast, cannot do this:
Fluids cannot be at rest when a shear force is applied.

Because of the difference between how fluids respond to shear and normal
forces, it makes sense to divide our study of molecular contact forces in fluids
into two parts: (1) fluids at rest where shear forces are zero (see Section 4.2); and
(2) fluids in motion (see Section 4.3). Our discussion of stationary and moving
fluids leads to an efficient mathematics that simplifies and organizes the task of
accounting for the contact forces within a fluid, both normal and tangential. The
result is Equation 4.285, presented here:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃

]
at surface d S (4.7)

To explain this mathematics, we begin in Section 4.2 with the simplest situation
involving forces in fluids—that is, the case of a stationary fluid. The case of
forces in a moving fluid is discussed in Section 4.3, in which we introduce the
stress tensor �̃. In the following example, we practice dividing forces into shear
and normal components.

EXAMPLE 4.1. Flow in the vicinity of a sphere produces a molecular force on
the sphere. The forces at Points (a) and (b) (Figure 4.8) are given by the following
two vectors (arbitrary force units):

f
∣∣∣∣
(a)

=
⎛
⎝ 2

0
−4

⎞
⎠

xyz

f
∣∣∣∣
(b)

=
⎛
⎝ 1

1
−3

⎞
⎠

xyz

(4.8)

What is the normal force on the sphere at Point (a)? What is the tangential force
on the sphere at Point (a)? Point (a) is located at coordinate point (R, π/2, 0)
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n at point b

Figure 4.8 A flow field causes forces on a sphere. With force vectors given, the example asks for the normal and tangential
forces at Points (a) and (b). In this chapter, we learn how to calculate the force vector at a point in a flow from the
stress tensor.

ˆ

in the rθφ coordinate system. What are the normal and tangential forces on the
sphere at Point (b)? Point (b) is located at coordinate point (R, π/4, 0) in the
rθφ coordinate system.

SOLUTION. To find the component of f on the sphere in the normal direction,
we dot f with the unit normal at Point (a). The unit normal at all points on
the surface of a sphere is êr of the spherical coordinate system evaluated at the
chosen point. The unit vector êr of the spherical coordinate system is as follows
(Cartesian coordinates; see the inside cover of this book):

er = (sin θ cos φ) êx + (sin θ sin φ) êy + (cos θ) êz (4.9)

Point (a) is located at (R, π/2, 0) of the rθφ coordinate system; thus, n̂ at Point
(a) is:

n̂ = êr |(a) = êx =
⎛
⎝1

0
0

⎞
⎠

xyz

(4.10)

ˆ

The magnitude of the normal force component of f is the component of f in the
n̂ direction, fn = n̂ · f = êx · f |(a), which is 2. Thus:

( fnn̂)|(a) = 2ex (4.11)

=
⎛
⎝2

0
0

⎞
⎠

xyz

(4.12)
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The normal and tangential forces add up to the total force; thus, we can calculate
the tangential force from the difference:

f = fnn̂ + ft t̂ (4.13)(
ft t̂
)∣∣∣

(a) = f
∣∣∣∣
(a)

− ( fnn̂)|(a) (4.14)

=
⎛
⎝ 2

0
−4

⎞
⎠

xyz

−
⎛
⎝2

0
0

⎞
⎠

xyz

(4.15)

=
⎛
⎝ 0

0
−4

⎞
⎠

xyz

ˆ= −4ez (4.16)

Similar calculations enable us to find the normal and tangential components
of f |(b). Point (b) is located at (R, π/4, 0); thus, n̂ at Point (b) is:

n̂ = êr |(b) = 1√ ˆ
2

ex + 1√ ˆ
2

ez =

⎛
⎜⎜⎜⎝

1√
2

0
1√
2

⎞
⎟⎟⎟⎠

xyz

(4.17)

fn|(b) = n̂ · f = 1√
2

+ 0 − 3√
2

= −
√

2 (4.18)

( fnn̂)|(b) = (−
√

2)

⎛
⎜⎜⎜⎝

1√
2

0
1√
2

⎞
⎟⎟⎟⎠

xyz

=
⎛
⎝−1

0
−1

⎞
⎠

xyz

(4.19)

The normal and tangential forces add up to the total force; thus, we calculate the
tangential force as:

f = fnn̂ + ft t̂ (4.20)

(
ft t̂
)∣∣∣

(b) =
⎛
⎝ 1

1
−3

⎞
⎠

xyz

−
⎛
⎝−1

0
−1

⎞
⎠

xyz

(4.21)

=
⎛
⎝ 2

1
−2

⎞
⎠

xyz

(4.22)

4.2 Stationary fluids: Hydrostatics

We now begin development of an expression for fluid contact forces by consider-
ing fluids at rest. Stationary fluids cannot support tangential forces; thus, in this
section, we need be concerned only with normal forces.
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gas liquid solid 

Figure 4.9 Gas molecules have little or no attraction for one another, whereas liquid molecules are held together by inter-
molecular attractions. Solids have strong intermolecular attractions that hold molecules in nearly fixed positions.

Fluids may be gases or liquids, and these two types of systems respond dif-
ferently to normal forces due to differences in their fundamental natures [95]
(Figure 4.9). In gases, molecules have little or no attraction for one another, are
widely spaced, and are free to move about in the volume available. In liquids,
molecules have strong attractive forces for one another, and these forces hold the
molecules in proximity. Both gases and liquids respond to normal forces.

In the last two centuries, scientists discovered the basic nature of stationary
gases and liquids and developed models that explain normal forces in these
systems. We first discuss gases and the kinetic-molecular theory of gases, which
is a model that explains how molecular motions result in normal forces on
surfaces in stationary gases. Second, we discuss a simple liquid model that uses
a potential-energy function to describe the relationship between intermolecular
structure and normal forces in a stationary liquid. These two models allow us to
connect molecular behavior of fluids with continuum functions, which then are
used to quantify molecular normal contact force in static fluids.

4.2.1 Gases

The fundamental nature of gases is discussed in elementary science and chemistry
courses. Gas molecules have little or no attraction for one another and are free to
move about in the volume available. The behavior of simple gases is captured by
the ideal gas law, which relates pressure, volume, temperature, and the number
of moles present [95].

Ideal gas law p = N

V
RT (4.23)

In this equation, p is pressure (force/area), V is volume, N is the number of
moles, T is absolute temperature, and R = 0.08206 l atm/mol K is the ideal gas
constant. We are interested in forces in a gas at rest, and the ideal gas law states
that the force per area (i.e., pressure) on a surface in a gas is proportional to both
the number of moles per unit volume (N/V ) in a container and to the absolute
temperature T of the system.

The ideal gas law is a consequence of molecular behavior that can be sum-
marized by five modeling assumptions that together are known as the kinetic-
molecular theory of gases [62, 95] (Table 4.2). According to this theory, gas
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Table 4.2. The Kinetic-Molecular theory of gases [62]

1. A gas consists of tiny particles, either atoms or molecules, moving around at random.
2. The volume of individual particles is negligible compared with the total volume occupied by the gas.

Thus, most of the volume occupied by a gas is empty space.
3. The gas particles act independently. There are neither attractive nor repulsive forces among particles.
4. Collisions involving gas particles are elastic, which means that no kinetic energy is lost by particles

when they collide.
5. The average kinetic energy of gas particles is proportional to the absolute temperature of the gas. At

constant temperature, the kinetic energy is constant.

pressure on a surface results from the collisions of gas particles with the surface
in question (Figure 4.10), and pressure is higher when there are more collisions
( i.e., N/V increases) or when particle momentum is higher (i.e., higher kinetic
energy or temperature). The first three assumptions of kinetic theory—that the
gas molecules move around rapidly at random in a vast empty space and do not
interact—predict that pressure is the same on any surface at any location in an
isothermal stationary gas.

Kinetic-molecular
theory of gases

⎛
⎜⎜⎜⎝

pressure on
any surface

in an ideal gas
at rest

⎞
⎟⎟⎟⎠ = p = constant (4.24)

This is a consequence of the fact that rapidly moving gas molecules mix readily,
resulting in the same frequency of collisions on any possible surface.

higher ρ,
higher p

T, p ρ
higher 
higher T, 

➯➯ v2, p

more 
collisions

stronger 
collisions

vv

Figure 4.10 In gases, pressure on a surface is produced by the collision of gas molecules on that surface. As gas density
increases, pressure increases because the number of collisions per unit time increases. As gas temperature
increases, pressure again increases—in this case, because temperature is proportional to kinetic energy or the
square of the molecular speed. When the speeds of molecules are higher, the forces of the collisions also are higher
and pressure is increased.
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Figure 4.11 A gas is confined in a container by a piston. There is no friction between the walls of the container and the piston.
A weight subsequently is placed on top of the piston, causing the gas to compress. The volume change of the gas
causes the pressure in the gas to increase throughout the container.

External forces on a gas have an effect on pressure, as shown in the following
thought experiment. Consider a fixed quantity of gas at a constant temperature
T confined in a piston-container arrangement (Figure 4.11). The piston moves
freely (i.e., no friction at the wall) but makes a tight seal such that no gas escapes.
We can apply an external force to the gas by placing a weight on the piston.
Before the weight is introduced, the forces on the piston are in balance; that is,
the weight of the piston is balanced by the upward force on the piston due to the
gas pressure. When the weight is placed on the piston, the forces are no longer
in balance and the piston descends, compressing the gas. This deformation of
the gas is called bulk deformation and occurs in compressible fluids when
they are subjected to normal forces. As the volume occupied by the gas
shrinks in size, the gas molecules crowd together and the density of the gas
increases. The increase in density increases the frequency of collisions on any
surface and therefore the pressure in the gas. The gas pressure rises continuously
as the piston descends until the upward force on the piston due to the gas pressure
again balances the downward force due to the combined mass of the piston and
the extra weight. When the piston comes to rest, the new pressure inside the
container is given by the ideal gas law (Equation 4.23) with the new volume
(V − �V ) inserted for V .

Thus, forces on surfaces in stationary gases are well understood in terms of the
kinetic-molecular theory of gases: The force on any surface within a stationary
gas is given by the gas pressure multiplied by the area of the surface. The pressure
force acts normal to the surface. We write this mathematically as:

f
∣∣∣∣
on �A

= p �A (−n̂) (4.25)

Force on any
small surface �A
of unit normal n̂

in a stationary ideal gas

f
∣∣∣∣
on �A

= N RT

V
�A (−n̂) (4.26)

where �A is the flat area of the surface, p is the pressure, and n̂ is the unit normal
vector for the flat surface �A. The negative sign changes the direction of the
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n̂

np ˆ−

Figure 4.12 The pressure is a compressive force per unit area.
Pressure on a surface acts in the direction oppo-
site to the direction of the outwardly pointing unit
normal vector n̂ .

outwardly pointing unit normal n̂ to the
appropriate pushing direction of pressure
(Figure 4.12).

In summary, the molecular contact force
on any surface in a gas at rest is purely a
normal force because stationary fluids can-
not support shear forces. Gases are com-
pressible fluids; thus, they undergo bulk
deformation and become more dense under
application of external normal forces. Pres-
sure and density in simple gases are related
through the ideal gas law, and the force on

any small surface in a stationary ideal gas is a vector given in Equation 4.26. A
problem of calculating force in a stationary gas is worked out in the following
example.

EXAMPLE 4.2. A shelter is created by leaning a hard plastic sheet up against
a wall as shown in Figure 4.13. Severe weather can cause very low pressures to
exist on the outside of the shelter. For an outside atmospheric pressure of 720
torr, what is the force (provide magnitude and direction) due to the air pressure
on the outside of the sheet? What is the component of this force in the downward
(i.e., gravity) direction? The inside pressure is 760 torr.

SOLUTION. The air on the outside of the shelter is in motion due to the storm and
cannot be modeled with static-fluid equations, but we can examine the effect of
pressure differences and postpone the determination of those pressures. Consider
the static case of low pressure on the outside of the shelter compared to fixed

5 m

plastic
sheet

x
z

y

3 m

4 m

y

x

β

β
n

10 m

5 m

Figure 4.13 A shelter is created by leaning a hard plastic sheet up against a wall, as shown.
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atmospheric pressure (760 torr) inside the shelter. The force on the outside of the
sheet may be calculated from Equation 4.26:

Force on any
flat surface �A
of unit normal n̂

in a stationary gas

f
∣∣∣∣
on �A

= p �A (−n̂) (4.27)

The pressure on the outside of the shelter pout exerts a force on the area of
the sheet (�A = (5 m)(10 m)) in the direction −n̂, where we use geometry to
write n̂:

n̂ =
⎛
⎝ cos β

sin β

0

⎞
⎠

xyz

(4.28)

f
∣∣∣∣
�A

= (720 torr)

(
1.01325 × 105 N/m2

760 torr

)
(50 m2)(−1)

⎛
⎜⎜⎜⎜⎝

4
5

3
5

0

⎞
⎟⎟⎟⎟⎠

xyz

(4.29)

Outside force: f
∣∣∣∣
�A

=
⎛
⎝−3.8

−2.9
0

⎞
⎠

xyz

M N (4.30)

where 1 M N = 106 N .
To calculate the component of f

∣∣∣∣
�A

ˆ

in the direction of gravity, we dot this

vector with the unit vector in the downward direction, −ey :

f
∣∣∣∣
�A

ˆ· (−ey) = (−3.8 −2.9 0
)

xyz
·
⎛
⎝ 0

−1
0

⎞
⎠

xyz

(4.31)

= 2.9 × 106 N (4.32)

This downward force is positive. Other forces on the sheet include the vertical
component of pressure on the inside of the shelter and the downward force due
to gravity (i.e., the weight of the sheet). A force balance determines whether the
shelter roof would blow away due to the low outside pressure.

4.2.2 Liquids

In Section 4.2, we arrive at Equation 4.26 for f |on �A, the molecular contact
forces on a small flat surface �A in gases at rest. We obtained this expression by
considering the fundamental nature of gases beginning with the kinetic theory.

Liquids are similar to gases in many ways. Referring to the list of assumptions
that characterize the kinetic theory of gases (see Table 4.2), the first assumption
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Figure 4.14 This potential energy function describes qualitatively the attraction of two molecules in a liquid. There is an
optimum spacing for the molecules, which is the spacing corresponding to the minimum in the potential energy
curve. Pressing the molecules to be closer than the optimum spacing requires significant force [62].

holds for liquids as well as for gases: A liquid consists of tiny particles, either
atoms or molecules, moving around at random.

The second assumption of kinetic theory, however, does not hold for liquids
because the volume of the individual liquid molecules is not negligible compared
with the total volume occupied by the liquid. For a gas at reasonable temperatures
and pressures, less than 0.1 percent of the volume is taken up by the molecules,
whereas approximately 70 percent of a liquid’s volume is taken up by molecules
[95].

The most important feature of liquids, however, is their violation of the third
assumption of the kinetic theory of gases: Particles act independently. In liquids,
molecules do not act independently. Rather, the molecules in a liquid are con-
stantly subjected to the attractive and repulsive forces of their neighbors and, if
pressed together by outside forces, the molecules strongly repel one another to
preserve optimum molecular spacing.

The behavior of liquids can be understood by reference to an intermolecular
potential-energy function shaped like that shown in Figure 4.14. The potential-
energy function φ(r ) describes the energy penalty if molecules approach to within
a distance r . For example, at large intermolecular spacings r , there is no attractive
or repulsive force felt by the molecules, and the value of the potential-energy
function φ is zero. As the molecules approach one another, however, the liquid
molecules attract (i.e., there is a negative energy penalty). The attraction increases
as two molecules get closer; eventually, the electron orbitals of the molecules
begin to overlap and this conflict results in a large positive energy penalty. The
repulsive force is strong at small spacings (r < ropt ), and the potential-energy
function increases steeply as the two molecules are forced together. The optimum
average spacing for molecules ropt is the spacing at which the potential-energy
curve reaches its minimum.
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Figure 4.15 A liquid is held in a container and a piston sits on top. There is no friction between the walls of the container and
the piston. A weight subsequently is placed on top of the piston, causing the pressure in the liquid to increase
throughout the container.

External forces have a different effect when applied to liquids rather than to
gases. Imagine a container (Figure 4.15) in which the top surface is a piston that
moves freely; however, this time a liquid such as water is placed in the container.
The liquid and the piston are both motionless; thus, the forces on the piston are
in balance. Subsequently, as with the gas in the previous section, we add a weight
to the piston. In the case of the gas, the piston moved and compressed the gas,
increasing the pressure (p = N RT/(V − �V )). In the case of a liquid, the mole-
cules already are close together and no reduction in liquid volume is observed.

Although no appreciable volume change occurs in the liquid, on a molecular
level, something changes after the weight is added. The weight placed on the
piston increases the downward force on the liquid, and this force attempts to
squeeze the molecules closer together than ropt . Any attempt to squeeze the
molecules closer together, however, is resisted by intermolecular repulsion (see
Figure 4.14). Intermolecular repulsion acts among all of the molecules in the
liquid, and when the weight is added to the top of the liquid, all the molecules
in the container are raised to the higher energy state of being slightly squeezed
closer together (Figure 4.16).

When a weight is applied to a confined liquid, what increases throughout the
liquid—as is true with a gas—is the pressure. The pressure increased in the
case of the gas due to a volume decrease; the pressure change in a liquid has
a different cause. In a gas, pressure is due to collisions among molecules and
between molecules and surfaces. In a liquid, pressure also is due to collisions
but, more important, it is a result of the repulsive and attractive intermolecular
forces described by the potential-energy function in Figure 4.14. In our example,
when the weight is placed on the piston, the force of its weight is immediately
transferred to the piston and to the liquid in contact with the piston. The liquid
does not compress—at least not significantly. Instead, the force on the piston is
transmitted to the liquid in contact with the piston, which transfers the force to
the next nearest layer of liquid, and so on, until all of the fluid in the container
is affected. This transference occurs rapidly. To accommodate the applied force,
all molecules are nudged slightly closer together, raising their intermolecular
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Figure 4.16 When an external compressive force attempts to squeeze a confined liquid, the molecules cannot easily be made
to get closer. Instead, an electrostatic repulsion acts as a restoring force to resist the external deformation.

potential energy. The net result of the application of the external normal force on
a confined liquid is that the pressure rises nearly instantaneously throughout the
container.

This is qualitative information, which we now seek to turn into a quantitative
rule describing how pressure in a liquid is related to external forces. The molecular
mechanism for pressure in a liquid, as discussed previously, is repulsion based
on intermolecular forces. Because intermolecular forces vary among chemicals,
however, we face a more complex problem with liquids than with gases. For
liquids, there is no single “ideal liquid law,” analogous to the ideal gas law, that
relates liquid pressure to molecular variables. To write a law that relates liquid
pressure to liquid properties such as density or molecular structure, we must
specify the type and intensity of the intermolecular forces acting in the liquid
and causing the pressure rise. That is, we need the exact curve of the potential
function in Figure 4.14 for the liquid in question. We can know this curve only if
we first specify which liquid we are considering.

It is undesirable, however, to be too specific about the liquid being considered
because choosing one chemical or one class of chemicals for the analysis severely
limits the results. We remind ourselves of our goal: We seek an expression for
molecular contact forces on a surface in a stationary liquid. In a gas, we arrived
at the expression we needed (Equation 4.26) through a comprehensive ideal gas
law, but this appears to be a difficult path for liquids. Perhaps there is a different
way to reach our goal.

We abandon the idea of relating liquid forces to molecular parameters with
a comprehensive equation of state and turn instead to writing an expression for
stress on a surface that requires the fewest assumptions about intermolecular
forces within the liquid. As we show herein, it turns out that liquids at rest can be
understood without specifying much about intermolecular forces. We now pursue
a general method for describing the effect of external forces on liquids, although
we revisit specific intermolecular forces in Section 4.3 and in Chapter 5, where
we discuss liquids in motion.
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We seek a liquid equation equivalent to Equation 4.26, the fluid-force equation
for ideal gases, and we want to assume as little as possible about the molecules
that comprise our liquid. We begin with the fact that the forces on surfaces in
liquids at rest are normal forces. Thus, we can immediately write:

f
∣∣∣∣
on �A

=
(

force

area

)
(flat area)

⎛
⎝unit vector

specifying
direction

⎞
⎠ (4.33)

Force at a point on a
plane of unit normal n̂
in a stationary liquid

f
∣∣∣∣
on �A

= p(x, y, z, n̂) �A (−n̂) (4.34)

ˆ

Recall that pressure is a pushing force/area; thus, the negative sign changes
the direction of n̂ so that f pushes on �A. Until we prove otherwise, pressure
p in a liquid may depend on position (x, y, z) and orientation (n̂) of the chosen
measurement surface �A. Now our task is to see whether there is anything general
we know about liquids that might help us to be more specific in Equation 4.34.

Although the details of how forces are generated vary among liquids, all
forces are subjected to the laws of physics—specifically, the law of conservation
of momentum. We can apply momentum balances to a portion of a stationary
fluid to determine whether momentum conservation places any constraints on the
function p in a liquid. Our calculations result in the discovery of two pieces of
information that engineers find extremely useful: (1) pressure at a point in a static
fluid is isotropic (i.e., does not depend on n̂; Equation 4.60); and (2) in a static
fluid subjected to gravity, the pressure on a surface varies linearly with liquid
depth and is independent of horizontal position (see Equation 4.68).

To see what can be learned from a momentum balance, we begin by choosing
a control volume (CV). Consider a small wedge of fluid within a liquid at rest
(Figure 4.17). The wedge has triangular faces in the planes parallel to the xy-
plane with sides of lengths �x , �y, and �l; the uniform height of the wedge is
�z. Gravity acts in the negative z-direction, g = −gez . The dimensions �x , �y,
and �z are small enough that the pressure does not vary significantly across the
faces of the wedge. Let the pressures on the faces be p|x , p|y , p, p|z+�z , and
p|z , as shown in Figure 4.17. We call the surface of area �l�z the “l-surface,”
and the pressure on the l-surface is p.

The momentum balance on the control volume is given by the Reynolds
transport theorem—that is, Newton’s second law as applied to a CV:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (4.35)

where P is the momentum in the CV, v is local fluid velocity, ρ is local fluid
density, and n̂ is the outwardly pointing unit normal of a small portion of the
control surface d S. The wedge CV is in a fluid at rest (v = 0, P = 0); therefore,
from Equation 4.35, the sum of the forces on the CV is zero. The forces on the
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Figure 4.17 A small wedge of fluid with forces on the sides is shown. By writing the force balance on this system, we can show
that pressure is isotropic in a fluid at rest. The balance is carried out in a Cartesian coordinate system in which
gravity is in the negative z direction.

CV are gravity and the contact forces on the five faces of the CV:

0 =
∑

on
CV

f (4.36)

0 =
(

contact
forces

)
+
(

noncontact
forces

)
(4.37)

0 =
(

contact forces
on 5 sides

)
+
(

force due
to gravity

)
(4.38)

We now write the forces on the CV. The force due to gravity is given by the mass
of fluid in the CV multiplied by the acceleration due to gravity. The contact forces
on the five faces are equal to the pressures on them multiplied by their areas A.
Because the fluid is stationary, all of the contact forces on the control surfaces act
in directions perpendicular to the surfaces (i.e., normal forces); stationary fluids
cannot sustain shear forces. The momentum balance in Equation 4.38 requires
that the vector combination of the contact forces and gravity force on the control
volume sum to zero. Writing this information mathematically, we obtain:

0 =
∑

on
CV

f (4.39)

0 =
(

contact forces
on 5 sides

)
+
(

force due
to gravity

)
(4.40)

0 = (−p An̂)|l + (−p An̂)|x + (−p An̂)|y + (−p An̂)|z + (−p An̂)|z+�z

+ ρg
1

2
�x�y�z (4.41)
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where (1/2)�x�y�z is the volume of the wedge. From the geometry and coor-
dinate system in Figure 4.17, we can specify the various pressures, areas, and
unit normals in Equation 4.41 as follows:

⎛
⎝0

0
0

⎞
⎠

xyz

=
⎛
⎝−p sin α�l�z

−p cos α�l�z
0

⎞
⎠

xyz

+
⎛
⎝ p|x �y�z

0
0

⎞
⎠

xyz

+
⎛
⎝ 0

p|y �x�z
0

⎞
⎠

xyz

+
⎛
⎝ 0

0
p|z 1

2�x�y

⎞
⎠

xyz

+
⎛
⎝ 0

0
− p|z+�z

1
2�x�y

⎞
⎠

xyz

+
⎛
⎝ 0

0
−ρg 1

2�x�y�z

⎞
⎠

xyz

(4.42)

From geometry, �x = �l cos α and �y = �l sin α.

⎛
⎝0

0
0

⎞
⎠

xyz

=
⎛
⎝−p�y�z

−p�x�z
0

⎞
⎠

xyz

+
⎛
⎝ p|x �y�z

0
0

⎞
⎠

xyz

+
⎛
⎝ 0

p|y �x�z
0

⎞
⎠

xyz

+
⎛
⎝ 0

0
p|z 1

2�x�y

⎞
⎠

xyz

+
⎛
⎝ 0

0
− p|z+�z

1
2�x�y

⎞
⎠

xyz

+
⎛
⎝ 0

0
−ρg 1

2�x�y�z

⎞
⎠

xyz

(4.43)

Equation 4.43 is three equations, one each for the x-, y-, and z-directions, and
we can solve them for the pressures. The x-component of the momentum balance
gives us:

0 = −p �y�z + p|x �y�z (4.44)

p = p|x (4.45)

Similarly, in the y-direction:

0 = −p �x�z + p|y �x�z (4.46)

p = p|y (4.47)

We have shown that the pressures on the x-, y-, and l-surfaces are equal. The
orientation of the coordinate system in the xy-plane was arbitrary, however, as
is the angle α. We conclude that the pressure in a static fluid at a point is the
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same on all planes drawn perpendicular to the xy-plane (i.e., horizontal relative
to gravity).

In the z-direction, the momentum balance gives:

p|z
1

2
�x�y − p|z+�z

1

2
�x�y − ρg

1

2
�x�y�z = 0 (4.48)

p|z+�z − p|z = −ρg�z (4.49)

p|z+�z − p|z
�z

= −ρg (4.50)

In the limit as �z goes to zero, the left side of Equation 4.50 becomes the definition
of the derivative of a function—specifically, the derivative of the pressure in the
z-direction (see Equation 1.139):

lim
�z−→0

[
p|z+�z − p|z

�z

]
= −ρg (4.51)

dp

dz
= −ρg (4.52)

ˆ

Equation 4.52 tells us that in a static liquid, there is a nonzero pressure gradient
in the direction of gravity.

The momentum balance on the wedge-shaped control volume yielded much
information about the state of stress at a point in a stationary fluid. The x- and
y-components of the momentum balance told us that when evaluating pressure at
a point, we may choose any plane through our point as long as the chosen plane
is perpendicular to the xy-plane. We also learned from the z-component how
pressure varies in the z-direction when gravity is present; this is an important
observation to which we subsequently return.

It turns out that we need not choose a measurement plane perpendicular to
the xy-plane in our analysis because the pressure on any plane through a chosen
point is the same, as we now show. Consider the stress in a static fluid at a chosen
point (Figure 4.18). We again choose our coordinate system so that gravity is
in the (−z)-direction, (g = −gez), and p represents the pressure on any plane
perpendicular to the xy-plane. We choose an arbitrary, infinitesimally small sur-
face �S that is not perpendicular to the xy-plane. The unit normal vectors of
�S are n̂ and −n̂, and we choose the x-direction so that n̂ and −n̂ are in the
xz-plane. Because the fluid is stationary, the forces on the two sides of �S are
equal and opposite in direction, f n̂ and − f n̂ (i.e., balanced normal forces). The
area of �S is �l�y, and the magnitude of pressure on either side of �S is
f/�l�y.

The projection of �S in the x-direction is a rectangular piece of surface �A,
of area �l cos θ�y (see Web appendix [108] for details), shown in Figure 4.18.
The projection of a surface in a direction gives the effective size of a surface in
that direction. The magnitude of the force on either side of �A is equal to the
portion of f n̂ that acts in the x-direction; that is, the x-component of the force
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Figure 4.18 We consider a plane that is not perpendicular to the x y-plane. We can show that the pressure on any such plane
is the same as on planes perpendicular to the x y-plane.

vector f n̂. We calculate this as follows:

n̂ =
⎛
⎝ cos θ

0
sin θ

⎞
⎠

xyz

(4.53)

f n̂ =
⎛
⎝ f cos θ

0
f sin θ

⎞
⎠

xyz

(4.54)

⎛
⎝magnitude of force

on �S in positive
x-direction

⎞
⎠ = f cos θ =

(
force on

�A

)
(4.55)

However, the pressure on either side of �A is the ratio of this force to the area of
�A: (

pressure
on �A

)
= force on �A

area of �A
(4.56)

= f cos θ

�l cos θ�y
(4.57)

= f

�l�y
(4.58)

�A is perpendicular to the xy-plane, and the pressure on any plane perpendicular
to the xy-plane is given by p. Thus, the pressure on �A, given by Equation 4.58,
is equal to p:

p =
(

pressure
on �A

)
= f

�l�y
(4.59)
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Figure 4.19 Stress is isotropic in a stationary fluid. This means
that at a point in a fluid, the pressure on a sur-
face through that point does not depend on the
orientation of the surface chosen.

We have shown that f/�l�y, the pres-
sure on the original surface �S, is equal to
p, the pressure on any surface perpendicu-
lar to the xy-plane. Because the choice of
surface �S was arbitrary, we conclude that
the pressure on any plane through the point
is equal to p = f/�l�y. Thus, at a point
in a static fluid, the pressure on all planes
is the same; that is, the function p is inde-
pendent of n̂. The pressure is isotropic (i.e.,

independent of position) in a stationary liquid (Figure 4.19).
Our discussion so far allows us to conclude that pressure is isotropic and varies

only in the direction of gravity, z (Equation 4.52). We can summarize these results
with the following equation (compare to Equation 4.34):

Force at a point on a
plane of unit normal n̂
in a stationary liquid

f
∣∣∣∣
on �A

= p(z) �A (−n̂) (4.60)

Returning to the momentum balance on the wedge CV, the z-component of the
momentum balance (Equation 4.52) has enough information to solve for p(z).
Integrating Equation 4.52 for a fluid with constant density, we obtain:

dp

dz
= −ρg (4.61)∫

dp =
∫

−ρgdz (4.62)

p(z) = −ρgz + C1 (4.63)

where C1 is an arbitrary constant of integration. If we use the boundary condition
that p = p0 at z = 0, we can solve for C1:

Pressure in a
stationary fluid
at elevation z

(z-direction upward)

p(z) = −ρgz + p0 (4.64)

ˆNote that the z-direction points upward; that is, gravity is given by g = −gez .
We also can write this as:

po = p(z) + ρgz (4.65)

Pressure at the
bottom of a

column of fluid
pbottom = ptop + ρgh (4.66)

where pbottom is the pressure at the bottom, ptop is the pressure at the top, and h
is the height of the column of fluid.
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We summarize our results by writing an equation for the force on a surface in
a stationary liquid (compare to Equation 4.34):

f
∣∣∣∣
on �A

= p(z) �A (−n̂) (4.67)

Force at a point
on a plane of area �A

with unit normal n̂
in a stationary liquid

f
∣∣∣∣
on �A

= (−ρgz + p0) �A (−n̂) (4.68)

As before, n̂ is the unit normal vector of the surface �A, ρ is the density of the
fluid, g is the magnitude of the acceleration due to gravity, and p0 is the pressure
at z = 0. The force f depends on the z-position of the point in question because
the weight of the fluid above a chosen surface affects the pressure on that surface.
The molecular force on a plane �A at a point in a stationary fluid is independent
of the orientation of the surface �A and is independent of the x- and y-positions
of the point.

We did not succeed in deducing f in terms of molecular parameters like tem-
perature and volume as for gases (Equation 4.26), but we developed a useful
equation. Having established that pressure is isotropic and a function only of
the z-position, we now can solve a wide variety of problems in stationary fluids,
including pressure effects on nonflat surfaces (Example 4.6). We can best under-
stand Equations 4.68 and 4.64 by applying these results to several examples. In
Section 4.2.3, we apply the static-fluid equation to explain the functioning of
manometers and hydraulic lifts.

EXAMPLE 4.3. Consider the water-filled device in Figure 4.20. What are the
pressures at the points indicated in the schematic?

SOLUTION. Pressure in a stationary liquid depends on only the elevation of the
point, Equation 4.64, repeated here:

Pressure in a
stationary fluid
at elevation z

p(z) = −ρgz + p0 (4.69)

where p0 is the pressure at the position z = 0 and the z-coordinate direction points
upward (see Figure 4.17). Pressure in a stationary liquid depends on neither the
shape of its container nor the lateral (x- or y-) position of the point.

To analyze the pressures in the unusual device in Figure 4.20, we first choose
our coordinate system. We locate our coordinate system at the top surface (Point
A). The three top surfaces are open to the air and have the same fluid level; thus,
the pressure at the top free surface (z = 0) is 1.0 atm = 1.01325 × 105Pa:

p(z) = −ρgz + p0 (4.70)

p(0) = p0 (4.71)

= pA = pB = pC = 1.0 atm = 1.01325 × 105 Pa (4.72)
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Figure 4.20 The pressure exerted at a point at the bottom of a quantity of fluid depends on only the vertical height of the fluid
above the point. Thus, the pressure is the same at the bottom of each tube, no matter the shape. If more fluid is
poured into any tube in the apparatus shown, flow occurs until the levels are even and the pressure is equilibrated.
Device constructed by Eugenijus Urnezius and Timothy Gasperich.

Below the top surface, the pressures are higher due to the weight of the fluid
above. Points D, E , and F have the same elevation (z = −h) and therefore the
same pressure. The density of water at room temperature is about 995 kg/m3. We
apply Equation 4.64 for z = −h = −9 cm:

p(z) = −ρgz + p0 (4.73)

p(−h) = ρgh + p0 (4.74)

=
(

995
kg

m3

)(
9.80

m

s2

)
(9.0 × 10−2 m)

(
Pa s2 m

kg

)

+ 1.01325 × 105 Pa

pD = pE = pF = 1.02203 × 105 Pa (4.75)

= 1.02 × 105 Pa (4.76)
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The pressure at Point G is calculated the same way for z = −17 cm:

Pressure at Point G:p(hG) = ρghG + p0

=
(

995
kg

m3

)(
9.80

m

s2

)
(17.0 × 10−2 m)

(
Pa s2 m

kg

)

+ 1.01325 × 105 Pa

pG = 1.02983 × 105 Pa (4.77)

= 1.03 × 105 Pa (4.78)

These two results are different by only a small amount because the heights of
fluid considered are quite small.

EXAMPLE 4.4. Write the value of the pressure and the equation for the force
vector acting on the following surface: a flat surface of area 6.00 cm2 facing
upward, 10.0 m below the surface of the ocean and located 120 km due south of
New Orleans, Louisiana, USA. The density of seawater near the ocean surface is
1,025 kg/m3.

SOLUTION. The pressure in a liquid at rest does not depend on the location of
the point in the xy-plane—that is, on how far it is from New Orleans; the pressure
depends on only how much fluid is above the surface of interest. This relationship
is codified in Equation 4.64, repeated here:

Pressure in a
stationary fluid at

elevation z
p(z) = −ρgz + p0 (4.79)

where p0 is the pressure at the position z = 0 and the z-coordinate direction
points upward (Figure 4.21). For our problem, all points on the surface of interest
are 10.0 m below the ocean surface. We designate z = 0 to be the surface of the
ocean; thus, the location we are interested in is z = −h = −10.0 m. At z = 0,
p = p0 = 1.0 atm = 1.01325 × 105Pa:

p(z) = −ρgz + p0 (4.80)

p(−h) = ρgh + p0 (4.81)

p(10 m) =
(

1,025
kg

m3

)(
9.80

m

s2

)
(10.0 m)

(
N s2

kg m

)(
Pa m2

N

)

+ 1.01325 × 105 Pa

p(10 m) = 2.01775 × 105 Pa (4.82)

= 2.02 × 105 Pa (4.83)

Because the pressure is the same across the surface, to calculate the vector force
on the surface, we multiply the pressure by the area over which it acts. The
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nez ˆˆ =

Hh 0 m.100 ==

xê
W

L

z

x

0 m.10−=z

Figure 4.21 The pressure on a horizontal surface in a liquid is calculated using Equation 4.79 in terms of the coordinate system
shown.

direction of the force is toward the surface and perpendicular to it:

f = [p(h = 10 m)] (area)(−unit normal vector) (4.84)

f =
(

2.01775 × 105 N

m2

)
(6.00 cm2)

(
m2

104 cm2

)
ˆ(−ez) (4.85)

ˆ= −121Nez (4.86)

This is the final answer.
Although we calculated correctly the force on the surface, the methods used

were informal. Using more formal mathematics points to how to approach com-
plex problems such as the examples that follow. The more formal approach is
to write first the local pressure on a small piece of the surface, �A. We then
can sum that expression over the entire surface, take the limit as �A → 0, and
obtain an integral. Because the pressure is constant on the surface in which we
are interested (i.e., the surface is oriented horizontally and all points are at the
same elevation), the pressure comes out of the integral, and we obtain the same
result as before, as we must. Beginning with Equation 4.60:

f
∣∣∣∣
on�A

= p(z) �A(−n̂) (4.87)

f = lim
�A−→0

[
N∑

i=1

f
∣∣∣∣
on�A

]
(4.88)

= lim
�A−→0

[
N∑

i=1

(p(z) �A(−n̂))i

]
(4.89)
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We recognize this as the definition of a two-dimensional integral (see Web
appendix [108]) for details):

f =
∫∫

S
(−n)p dS (4.90)

For our problem dS = dxdy, n̂ = êz , and incorporating the limits, we obtain:

f =
∫ W

0

∫
ˆ

L

0
p(−ez) dxdy (4.91)

ˆ

where W is the width and L is the length of the surface. Because p and êz are
constant, we move them out of the integral:

f = (−ez)p
∫ W

0

∫ L

0
dxdy (4.92)

ˆf = p(W L)(−ez) (4.93)

ˆf = −201Nez (4.94)

This second approach to the solution (Equation 4.90) is helpful when solving
problems in which the pressure varies across the surface (see the next example)
or when the surface is not flat (Example 4.6).

EXAMPLE 4.5. What is the total vector force on a 0.500 m × 1.00 m rectangular
plate submerged 12.0 m below the surface of a water tank and oriented as shown
in Figure 4.22 (tilted α = 30 degrees from the vertical)?

3x

h

1x

.
α

αcos1x
)0,,( 21 xx0H

ne ˆˆ3 =

H 0 m.100 =

1̂e

W

L

2ê
α

zê

Figure 4.22 A tilted surface submerged 12 m below the surface of a tank experiences a total pressure that is calculated in this
example.
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ˆ

SOLUTION. We choose a Cartesian coordinate system on the plate such that the
3-direction is normal to the plate and the surface of the plate is in the 12-plane. If
z is the vertical direction (g = −gez) and we take z = 0 at the air–water interface,
we can write p as:

Pressure in a
stationary fluid at

elevation z
p(z) = −ρgz + p0 (4.95)

p(x1, x2) = p(−h) = ρgh + p0 (4.96)

where h is the distance below the surface of the point (x1, x2, 0). We can relate
z = −h and x1 through geometry (see the inset in Figure 4.22):

h = H0 − x1 cos α (4.97)

where H0 is the depth of the plate center of gravity, H0 = 12.0 m. Combining
this result with Equation 4.96, we obtain:

p(x1, x2) = ρg(H0 − x1 cos α) + p0 (4.98)

= (ρgH0 + p0) + (−ρg cos α)x1 (4.99)

The force is calculated from Equation 4.90 with n̂ = ê3, d S = dx1dx2, and p
given by Equation 4.98:

f =
∫∫

S
(−n̂)p d S (4.100)

ˆ=
∫

x2

∫
x1

(p)(−e3)dx1dx2 (4.101)

ˆ

where the x1x2x3 coordinate system is centered on the surface of the plate. The
unit vector ê3 is constant and can come out of the integral; however, p is a function
of x1 as given in Equation 4.99 and the function must be integrated:

f =
∫

x2

∫
x1

[p(x1)](−e3)dx1dx2 (4.102)

ˆ= −e3

∫ W/2

−W/2

∫ L/2

−L/2
[(ρgH0 + p0) + (−ρg cos α)x1] dx1dx2 (4.103)

ˆ= −e3W
∫ L/2

−L/2
[Ax1 + B] dx1 (4.104)

ˆ

where we have carried out the x2 integration, and A = −ρg cos α and B =
ρgH0 + p0. Integrating over x1, we obtain:

f = −e3W

[
A

x2
1

2
+ Bx1

]∣∣∣∣∣∣∣
L/2

−L/2

ˆ

ˆ

= −e3W BL

= −e3W L (p0 + ρgH0) (4.105)
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Notice that the total force is equal to the pressure at the center of mass (the
center of mass is at x1 = 0) multiplied by the total area W L . The force is directed
normal to the plate and toward the plate. For the numbers given in this example,
the final result is:(

Force
on plate

ˆ

ˆ

)
= −e3W L (p0 + ρgH0)

= −e3(0.500 m2)

[
1.01325 × 105 Pa

+
(

995
kg

m3

)(
9.80

m

s2

)
(12.0 m)

]

= −1.09169 × 105 N ê3 (4.106)

= −1.09 × 105 N ê3 (4.107)

EXAMPLE 4.6. In a liquid of density ρ, what is the net fluid force on a submerged
sphere (e.g., a ball or a balloon)? What is the direction of the force and how does
the magnitude of the fluid force vary with fluid density?

SOLUTION. The problem again asks for the net force on a surface, but this time
the surface is the surface of a sphere, which means that force varies with position
because p varies with z. To calculate the net force on the sphere, we write the
force on a small portion of the sphere surface and then integrate over the entire
surface to obtain the net force (Figure 4.23).

In our usual coordinate system for pressure problems (i.e., z = 0 at the liquid
interface), the pressure at a point in the fluid is a function of the vertical distance
of the point from the surface of the fluid:

Pressure in a
stationary fluid at

elevation z
p(z) = −ρgz + p0 (4.108)

Figure 4.23 Fluid exerts a net force on a submerged sphere. If the sphere is light, the force from the fluid pressure acts to float
the sphere. If the sphere is heavy, the fluid sinks in the fluid, but the sphere is decelerated by the fluid force.
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where p0 is atmospheric pressure. Let H0 be the distance from the center of the
sphere to the surface of the liquid in the tank. We carry out our force integration in
a spherical coordinate system centered on the sphere. In this coordinate system,
the vertical position z is given by:

From geometry: − z = H0 − R cos θ (4.109)

The pressure at points on the sphere surface is therefore:

p(z) = −ρgz + p0 (4.110)

p|surface = ρg (H0 − R cos θ) + p0 (4.111)

p|surface − p0 = pgauge = ρg (H0 − R cos θ) (4.112)

We show in Example 4.4 that the force on a finite surface S in a stationary fluid
is given by:

f =
∫∫

S
(−n)p dS (4.113)

For the sphere surface:

p −→ ρg (H0 − R cos θ) (4.114)

dS −→ (R sin θdφ) (Rdθ) (4.115)

n̂ = êr (4.116)

Substituting these and adding appropriate limits yields:

f = −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ) êr sin θdθdφ (4.117)

ˆ ˆ ˆ ˆ

The basis vector êr varies with position and, thus, we convert to Cartesian coor-
dinates centered on the sphere before attempting to integrate. The basis vector êr

is expressed in Cartesian coordinates in Equation 1.273:

er = sin θ cos φex + sin θ sin φey + cos θez (4.118)

f = −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ) êr sin θdθdφ (4.119)

= −ρgR2
∫ 2π

0

∫
ˆ

ˆ ˆ

π

0
(H0 − R cos θ) sin θ [sin θ cos φex

+ sin θ sin φey + cos θez] dθdφ (4.120)

We carry out this integration in an example in Chapter 1 (see Example 1.27).
The equation is a vector equation, and there are three nonzero Cartesian compo-
nents of f , as emphasized here:

f = −ρgR2
∫ 2π

0

∫ π

0
(H0 − R cos θ) sin θ

⎛
⎝ sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠

xyz

dθdφ (4.121)

The x- and y-components integrate to zero, indicating that the net force due to
the fluid is only in the z-direction; that is, net force is either upward or downward.
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The z-component integrates to give the magnitude of the force, as discussed in
Chapter 1. The final result is as follows (see Equation 1.310):

f =

⎛
⎜⎝ 0

0
4π R3

3 ρg

⎞
⎟⎠

xyz

(4.122)

The final result is an upward force on the sphere equal in magnitude to the weight
of a sphere-shaped hunk of fluid. Thus, the fluid exerts an upward force on the
sphere equal in magnitude to the weight of the fluid displaced by the sphere.
This is the buoyancy effect, also known as Archimedes’ principle, which was
articulated by Archimedes in the third century BCE.

In Example 4.6, we derive Archimedes’ principle from our result for forces on
finite surfaces in stationary liquids (see Equation 4.90, repeated here):

Force on a plane
of finite area S

in a stationary liquid
f =

∫∫
S

(−n̂)p dS (4.123)

ˆ
where the pressure p is only a function of elevation with respect to gravity; for
g = −gez , p = −ρgz + p0. Archimedes arrived at his principle without calcu-
lus, but the advantage of our methods is that we are building a systematic modeling
protocol that, so far, is yielding correct results. We seek methods that work in
applications that are far more complex than those addressed by Archimedes. The
discovery of this systematic, correct protocol for stationary fluids contributes to
our ability to model the more complex and less intuitive problems of modern
engineering.

In the next example, we apply our methods to a slightly more complex case,
that of finding the pressure distribution in the atmosphere, a problem in which
the density is not constant.

EXAMPLE 4.7. What is the effect of gravity on the pressure distribution in a
compressible fluid such as air in Earth’s atmosphere?

SOLUTION. In our discussion of gases in Section 4.2.1, we did not consider the
effect of gravity on density. Gravity acts on all masses, including gas molecules,
although the effect is negligible except when great distances are considered, such
as in Earth’s atmosphere.

The application of the momentum balance to a wedge of liquid allows us to
conclude that pressure at a point is isotropic. We also saw that the effect of gravity
is to produce a gradient of pressure in the direction of gravity (see Equation 4.52):

dp

dz
= −ρg (4.124)

We integrated Equation 4.124 for constant-density fluids to obtain the hydrostatic-
pressure Equation 4.64. For gases, density is not constant, and we must modify
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our derivation. For a gas at modest pressures, gas density is given by the ideal-gas
equation (see Equation 4.23):

Ideal gas law ρ = pM

RT
(4.125)

where p is pressure, M is molecular weight, T is absolute temperature, and R is
the ideal-gas constant. Combining these two relationships, we can solve for the
pressure as a function of elevation z for an ideal gas:

dp

dz
= −ρg (4.126)

= − pMg

RT
(4.127)

∫
dp

p
= −

∫
Mg

RT
dz = − Mg

RT

∫
dz (4.128)

ln p = − Mg

RT
z + C1 (4.129)

where C1 is an arbitrary constant of integration. Note that we have assumed
that temperature is not a function of z—that is, that temperature does not vary
with elevation. If we know the pressure at one elevation—for example, at z = 0,
p = p0—we obtain the final result for pressure as a function of elevation in an
ideal gas. Applying this boundary condition:

BC: z = 0 p = p0 (4.130)

ln p0 = C1 (4.131)

ln p = − Mg

RT
z + ln p0 (4.132)

ln
(

p

p0

)
= − Mg

RT
z (4.133)

p

p0
= e− Mg

RT z (4.134)

Pressure variation
due to gravity in an
isothermal ideal gas

p = p0e− Mg
RT z (4.135)

The result in Equation 4.135 predicts that for air (M = 29 g/mol) at standard
temperature (T = 300K), a height difference of about a kilometer produces a 10
percent change in pressure. Thus, the variations in pressure experienced by a
stationary ideal gas due to gravity are not severe except when large distances are
considered. Our analysis assumes that temperature is constant in a gas, which is
not true in the atmosphere. If measurements of T (z) are available, we can include
that effect in the integration in Equation 4.128 and obtain a more accurate equation
for pressure variation in Earth’s atmosphere.

From these examples, we see that even without an “ideal liquid law,” we can
make meaningful calculations of forces in static liquids. The force on a surface
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in a static liquid is calculated from pressure. Pressure in a static liquid or gas
is isotropic (i.e., the same in all directions) and depends on only elevation in a
gravity field (see Equation 4.68). With these facts and the momentum balance
(see Equation 4.1), we can analyze static-fluid devices.

The next two sections discuss the application of our new understanding of
forces in stationary fluids to engineering devices that contain static fluids. We
treat the more complicated subject of forces in moving fluids in Section 4.3.

4.2.3 Pascal’s principle

In the previous section, we establish that the pressure on a stationary liquid is
given by:

Pressure in a
stationary fluid

(z-direction upward)
p(z) = −ρgz + p0 (4.136)

Alternate expression: pbottom = ptop + ρgh (4.137)

ˆ
where ρ is the density of the liquid, g is the magnitude of the acceleration
due to gravity, p0 is the pressure at z = 0, and z points upward (g = −gez). In
that discussion, we consider the unconventional device shown in Figure 4.20,
in which the three branches of the vessel are open to the atmosphere. We used
Equation 4.136 to explain the pressure distribution in the device.

The fluid in the device in Figure 4.20 was unconfined—that is, open to the
atmosphere. In many practical uses of liquids in engineering devices, external
forces are imposed on confined liquids. An important reason that confined liquids
are used in engineering designs is the way they transmit external forces. To
see how stationary, confined liquids transmit external forces, consider the same
unconventional device but modified such that we can impose an external force
on the top surface of the liquid.

EXAMPLE 4.8. The device shown in Figure 4.24 is pressurized using a pump
until the gas pressure in the device is 2.00 atm. What are the pressures at the
points indicated in the figure?

SOLUTION. To analyze the new device, we follow the same procedure as when
considering the original device. We apply the results of this chapter: Pressure
at a point in a stationary liquid depends on only the elevation of the point
(Equation 4.136). Pressure in a stationary liquid depends on neither the shape of
the container nor the lateral (x- or y-) position of the point.

The three top surfaces are open to the pressurized gas; thus, the pressure at the
top free surface (z = 0) is 2.00 atm = 2.03 × 105 Pa:

p(z) = −ρgz + p0 (4.138)

pA = pB = pC = p(0) = 2.00 atm = 2.03 × 105 Pa (4.139)
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x

Figure 4.24 A device similar to the one shown in Figure 4.20 is constructed but in this device, the fluid is pressurized by an
external source and then sealed.

Below the top surface, the pressures are higher. Points D, E , and F have the same
elevation (z = −hD) and, hence, the same pressure:

Pressure at D, E, F: p(z) = −ρgz + p0 (4.140)

p(−hD) = ρghD + p0 (4.141)

=
(

995
kg

m3

)(
9.80

m

s2

)
(9.0 × 10−2 m)

(
Pa s2 m

kg

)

+ 2.02650 × 105 Pa

pD = pE = pF = 2.03528 × 105 Pa (4.142)

= 2.04 × 105 Pa (4.143)

The pressure at Point G is calculated the same way:

p(z) = −ρgz + p0 (4.144)

Pressure at G: p(−hG) = ρghG + p0

=
(

995
kg

m3

)(
9.80

m

s2

)
(17.0 × 10−2 m)

(
Pa s2 m

kg

)

+ 2.02650 × 105 Pa

pG = 2.04308 × 105 Pa (4.145)

= 2.04 × 105 Pa (4.146)

Note that to three significant figures, the later two answers are the same because the
fluid heights are modest. As the imposed gas pressure increases, the contribution
to the total pressure that is made by ρgh decreases and becomes insignificant.

Note that the extra pressure applied to the device in the previous example was
distributed equally throughout the liquid; that is, the pressure at every point after
the extra pressure was applied is equal to its previous pressure plus the newly
applied extra pressure. This ability of confined liquids to distribute pressure
equally throughout a device has important engineering applications.
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500g

water

500g

500g

Figure 4.25 Unconfined gases and liquids move when pushed by a normal force. If the fluid is unconfined, the imposed normal
force transmits through the fluid and finds a location where a shearing motion is possible. Molecules subjected to
a shearing stress deform because fluids cannot sustain a shear stress without continuous deformation.

Gases and liquids are both fluids (i.e., by definition, unable to sustain shear
forces without deforming continuously) but, as we have seen, these two types
of fluid respond differently to applied external normal forces. Under the action
of external normal forces, confined gases are made to occupy smaller volumes
(see Figure 4.11). Confined liquids under the action of normal forces cannot
reduce in volume, and they resist normal forces by building up internal pressure
through intermolecular repulsion (see Figure 4.16). Key to this picture of liquid
or gas response is that the fluid is confined. Unconfined fluids—both gases and
liquids—move when pressed on by a normal force (Figure 4.25).

The response of a confined incompressible liquid to a normal force is summa-
rized in a compact statement known as Pascal’s principle: Pressure exerted on a
confined liquid is transmitted equally to every part of the liquid and to the walls
of the container.

We describe Pascal’s principle (without naming it) in Section 4.2.2 when we
discuss how a confined incompressible fluid responds to a normal force: Force
applied to the top liquid layer transmits through that layer to the next layer, and
so on, until all molecules in the container are affected. Each molecule pushes
against its neighbors or against the confining walls and—finding no relief through
motions of the neighbors or of the wall—all molecules in the container share the
burden of the normal force and enter into the elevated energy state of being
slightly closer together. The rigidity of the container walls is essential to forcing
the liquid molecules to attempt to compress and therefore to store energy by
adopting a slightly deformed molecular-orbital state. If the molecules are not
trapped, they would rather move than be compressed (see Figure 4.25).

Pascal’s principle is unique to confined incompressible liquids at rest. Confined
compressible fluids reduce in volume under the action of an external force,
and the final pressure of a compressible fluid in a device such as shown in
Figure 4.11 depends on the final volume through the equation of state (pV =
N RT ). Incompressible solids do not follow Pascal’s principle because in solids,
it is forces that transmit directly, not pressure (see the sidebar). A solid with a
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Figure 4.26 A solid stored in a container does not occupy the container in the same way that a liquid does. When a foam brick
sits in a bag (the container), it barely touches the walls and little stress is transferred. When a weight is placed on
the brick, little or no force (i.e., normal force or shear force) is transferred to the walls of the container. A liquid, by
contrast, must transmit forces to the walls of its container.

rectangular shape, for example, housed in a rectangular container can sustain
normal forces and shear forces without imparting them to the container walls
(Figure 4.26). Granular solids, by contrast, transmit some forces to the walls
of their containers; however, not all forces are transmitted and the transmitted
forces are not distributed equally to all locations. Depending on how a container
is loaded with a granular material, many different physical configurations are
possible. Figure 4.27 shows three different configurations of similar amounts of

Figure 4.27 A granular material such as foam gems stored in a container may or may not transmit applied normal forces to the
walls of the container. The configuration adopted by a stored granular material depends on the shape and size of
the grains as well as how a container is loaded [30].
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granular material; the amount of load transferred to the walls is different in each
case.

Pascal’s principle has been exploited for centuries in engineering devices. In the
next two sections, we conclude our discussion of static fluids by considering the
operation of two important engineering devices: the manometer and the hydraulic
lift. These devices depend on Pascal’s principle for their operation. In Section 4.3,
we discuss forces in moving fluids.

How do solids transmit external forces from one surface to another?

Pressure is defined as isotropic normal force per unit area. Thus, if we know the magnitude of
normal force on a surface and the area of the surface, the pressure is the ratio of the two:

p =
(

normal force

area

)
(4.147)

This definition is straightforward; however, because forces transmit differently in solids and
liquids, we must apply carefully the concept of pressure for different systems. Consider the
pressure at the bottom of a cylindrical column made of a homogeneous solid such as gold
(Figure 4.28). The bottom surface has an area π R2, where R is the radius of the column.
The magnitude of normal force exerted by the column on the surface on which it stands is

2R

h

R 2R

2

1

R

gV
gh gold

gold π
ρ

ρ +ghgoldρ

solid 

2

1

44 R

gVgh goldgold

π
ρρ

+=bottomp
(pressure 

underneath 
the solid)

Figure 4.28 Solids and liquids transmit forces differently, which we can understand by considering objects of various
shapes. For solids, all of the weight of the solid exerts force on the bottom surface.

(continued)
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How do solids transmit external forces from one surface to another? (continued)

the force due to the weight:⎛
⎜⎜⎜⎝

magnitude of
force exerted
by solid-gold

column

⎞
⎟⎟⎟⎠ = (mass)

⎛
⎝ acceleration

due to
gravity

⎞
⎠ (4.148)

=
[( mass

volume

)
(volume)

]
(gravity) (4.149)

= ρgold π R2h g (4.150)

The table on which the column stands exerts an equal and opposite force upward on the column.
The gauge pressure1 at the bottom of the column is the weight divided by the area:

p =
(

force

area

)
= ρgold ghπ R2

π R2
(4.151)

Gauge pressure at
bottom of

solid-gold rod
pbottom = ρgoldgh (4.152)

If we consider a solid object of a less regular shape, the calculation is the same. Consider the
middle solid-gold object in Figure 4.28. This object is the same height as the original rod, but at
the top there is now a ledge of radius 2R. Let V1 be the volume of gold added to make the second
object from the first object. The total mass of the new object is then:(

mass of
irregular rod

)
= ρgold (original volume + V1) (4.153)

= ρgold

(
π R2h + V1

)
(4.154)

The pressure on the bottom of the irregular rod is force due to gravity divided by the contact
area:

p = ρgoldg
(
π R2h + V1

)
π R2

(4.155)

Gauge pressure at
bottom of

irregular rod
(small side down)

pbottom = ρgoldgh + ρV1g

π R2
(4.156)

We see that for a solid object, the pressure at the bottom increases when the mass of the material
increases.

We also can turn the irregular column upside down and recalculate the pressure at the bot-
tom. The mass is the same (Equation 4.154) but the rod sits on the wide bottom; thus, the

1A pressure gauge usually reads zero when opened to atmospheric pressure. To convert gauge pressure to absolute
pressure, we add the atmospheric pressure.
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How do solids transmit external forces from one surface to another? (continued)

force is distributed over a larger area. The pressure at the bottom is calculated in the same way
as before:

p = ρgoldg
(
π R2h + V1

)
π (2R)2

(4.157)

Pressure at
bottom of

irregular rod
(larger side down)

pbottom = ρgoldgh

4
+ ρV1g

4π R2
(4.158)

When oriented large side down, the irregular rod exerts a different pressure on the table that
supports it. Because the contact area is larger by a factor of four, the pressure is smaller by that
same factor.

Now consider a fluid system. Figure 4.29 is a cylindrical container holding water. The volume
of water in the cylindrical container is the same as the volume of the first gold rod considered
previously. The pressure at the bottom of the column of water is given by Equation 4.64 applied
to this system. Note that we are measuring pressure at the bottom of the fluid, not between the
solid container and the table:

p(z) = −ρgz + p0 (4.159)

where the z-direction points upward. If we choose z = 0 at the base of the column, then p0 is the
pressure at the bottom. The pressure at the top, p(z) = p(h), is atmospheric:

p(h) = −ρgh + p0 (4.160)

p(h) = patm (4.161)

ghwaterρ ghwaterρ

liquid 

=bottomp ghwaterρ

(pressure 
underneath 
the liquid)

Figure 4.29 Solids and liquids transmit forces differently, which we can understand by considering objects of various
shapes. For liquids, not all of the weight exerts its force on the bottom liquid surface; some of the force due to
the weight is exerted on the walls as well as any ledges in the container. Note that the pressure at the bottom
discussed in this figure is the pressure inside the container, measured near the bottom of the liquid.

(continued)
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How do solids transmit external forces from one surface to another? (continued)

p0 = patm + ρwatergh (4.162)

Gauge pressure
at the bottom

of the fluid column
pbottom = p0 − patm = ρwatergh (4.163)

where ρ is the density of the fluid, water, and pbottom is given in gauge pressure. This result is
the same (except for the difference in density) as Equation 4.152, which was the calculation of
gauge pressure at the bottom of the solid-gold column of the same shape.

To determine the effect of irregular shapes on pressure in liquids, we imagine a container with
the same shape as the irregular gold rod with the ledge at the top. If we fill this irregularly shaped
container with water, the shape of the water in the container is the same as the shape of the
irregular gold rod (see Figure 4.29, center). For this container, what is the fluid gauge pressure at
the bottom of the water?

For the solid gold, we note that the force on the bottom is the mass of the gold multiplied
by gravity; the gauge pressure on the bottom is this force divided by the area in contact with
the surface on which it sits. When we add extra weight at the top of the rod, the gauge pressure
exerted on the bottom increases.2

For water, however, force transmits differently than it does for solids. In deriving Equa-
tion 4.159, we made no mention of the size or shape of the container holding the liquid, and it
was not necessary. Equation 4.159 resulted from carrying out a momentum balance on a micro-
scopic wedge-shaped control volume within a mass of fluid. This equation is equally valid for
fluid in the odd-shaped container as in the cylindrical container. Equation 4.64 states that the
pressure in a fluid depends on any imposed pressure on the top of the column and the vertical
height of fluid above the point in question. Because the water in the irregular vessel rises to the
same elevation as the water in the cylindrical container, we calculate the same pressure at the
bottom of the irregular container as for the cylindrical container:

p0 = patm + ρwatergh (4.164)

Gauge pressure
at the bottom

of the fluid column
(irregular shape,
small side down)

pbottom = p0 − patm = ρwatergh (4.165)

where ρ is the density of water and pbottom again is given in gauge pressure. If we repeat the
calculation for a third container with the shape of the irregular rod but this time with the wide

2 These were gauge pressures because we did not consider the one atmosphere pressure that acts on the rod by
virtue of it being present in the atmosphere.
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How do solids transmit external forces from one surface to another? (continued)

part at the bottom, the result would be the same:

⎛
⎜⎜⎜⎜⎜⎜⎝

pressure
at the bottom

of the fluid column
of height h

(cylindrical)

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pressure
at the bottom

of the fluid column
of height h

(irregular shape,
small side down)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pressure
at the bottom

of the fluid column
of height h

(irregular shape,
large side down)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρwatergh

(4.166)

We see from this discussion that solids and liquids are different in how they transmit forces.
The difference is due to intermolecular forces. The strong intermolecular forces that hold solids
together do not allow a solid’s molecules to move under application of a force. Thus, solids retain
their shape under the pull of gravity, and the molecules in a solid sample move as one.

Liquids have intermolecular forces that hold the liquid’s molecules together, but these forces
are not strong. Liquids deform under the pull of gravity (adopting the shape of their container)
and, when forces are applied to a liquid, the liquid usually deforms.

The difference between the gold rods and the water containers in our example is the role of
the container. For the solid, there is no container. All of the force due to the weight of the gold
is transmitted—because of the strong intermolecular forces holding the gold together—to the
bottom surface in contact with the table. For the liquid, there is a container. If there were no
container, the liquid would spread out on the table under the force of gravity. In the cylindrical
container (Figure 4.30), the shape of the container directs the effect of gravity on the liquid. Each
layer of water exerts a force due to gravity on the layer below it. The cumulative effect of all
of this mass, stacked up vertically by the cylindrical shape of the container, is to exert the total
gravitational force of the water on subsequent liquid layers and finally on the bottom surface of
the container (of area π R2). The cylindrical container holds the water in the shape of a rod; as a
rod, the water exerts the same force as a rod of gold (the only difference is the density of the two
materials).

h

ghpp topbot ρ+=

g

Figure 4.30 The liquid in the cylindrical container is vertically stacked up and aligned by the shape of the container. Thus,
the entire weight of the fluid is directed by the strong cohesive intermolecular forces of the solid toward the
bottom of the column of fluid; the pressure at the bottom of the column is the same as exerted by a solid of
the same shape.

(continued)
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How do solids transmit external forces from one surface to another? (continued)

What about irregular shapes? For an irregular solid bar, the mass is larger than the mass of a
cylindrical rod, and all of the force of gravity on this mass is directed by cohesive forces in the
solid toward the area of contact with the table. We calculated the pressure due to the irregular
rod as the new mass divided by the contact area. For the water, the situation is different. Again,
the container serves to hold the liquid in the shape of the container but, because of its irregular
shape, the container also supports some of the weight of the water.

Consider the water in the region R < r < 2R in the irregular vessel (Figure 4.31). This liquid
is sitting on a shelf created by the shape of the container, and the glass container wall below this
fluid is supporting the liquid. A portion of the force due to gravity on the liquid thus is transmitted
to the solid walls of the container and subsequently is transmitted by the solid walls to the table.
The only pressure effect in the liquid is the effect that is present in the column of fluid directly
above the bottom surface: The pressure in a liquid varies with elevation:

Pressure
at the bottom
of a column
of height h

pbottom = ptop + ρgh (4.167)

We reiterate that we are discussing the pressure inside the container at the bottom: the pressure
in the liquid. The net result is that the pressure exerted by solids of the same height vary as
shown in Figure 4.28, whereas the pressure exerted by liquids of the same height is constant (see
Figure 4.29).

The way that forces transmit in solids gives rise to the mechanical advantage of levers, pulleys,
and other simple machines [167]. The way that pressure transmits in liquids gives rise to the
mechanical advantage of the hydraulic lift and other hydraulic devices, as discussed in the next
section.

r

z

ledge 
supports 

some fluid

Figure 4.31 In containers that are not cylindrical, some of the force due to gravity on the liquid is transmitted to the walls
of the container. The support by the walls is directed to the table through the solid walls of the container. Thus,
not all of the mass of the fluid contributes to the pressure at the bottom of the column of liquid.
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red oil

water 

copper pipe containing water and 
leading to measurement sites

Figure 4.32 Manometers are a reliable way to measure pressure because they do not depend on calibration of any sort. As long
as the density of the measurement fluid is known, the pressure difference between the two sides of a manometer
may be measured accurately. Two manometers are shown but only one is highlighted. The measurement fluid is
red oil and the process fluid is water; the reading on the manometer is zero pressure difference between the two
sides. (Photograph courtesy of David Caspary, Michigan Technological University)

4.2.4 Static fluid devices

A manometer is a simple device that can be used to accurately measure pressure
differences. Manometers are used rarely in an industrial setting, but they often are
found in a laboratory (Figure 4.32). Manometers work through the principles we
elucidate in this chapter: Pressure in a stationary fluid is isotropic, independent
of horizontal position, and a linear function of elevation (Equation 4.64).

4.2.4.1 MANOMETERS
The operation of a manometer exploits the z-dependence of pressure in a liquid.
We learned in the previous section that p(z) can be written as:

p(z) = −ρgz + p0 (4.168)

ˆwhere gravity is in the −ez-direction and p0 is the pressure at z = 0. Solving
Equation 4.168 for p0:

Pressure at the
bottom of a column
of fluid of height z

p0 = p(z) + ρgz (4.169)

pbottom = ptop + ρgh (4.170)
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ρf

BA pp = BA pp =

A

B

p p 

h

p1  pref

ρBρA

ρf

B

A

d

C

Figure 4.33 General schematic of a U-tube manometer. Fluid of density ρf fills the manometer. Different fluids fill in above the
manometer fluid on the two sides of the instrument.

where p(z) is the pressure at the top of the column of fluid (position z). This is
the main equation needed to understand the functioning of manometers.

A typical schematic of a U-tube manometer is shown in Figure 4.33. A heavy
measuring fluid of density ρ f is trapped in a U-shaped glass tube. The left end
of the tube is connected to a fluid at a point where it is desired to measure the
pressure. The right end of the manometer tube is exposed to atmospheric pressure
or to some other pressure that serves as a reference. When the pressures on the
two sides of the manometer are equal (left), the measuring fluid levels out on both
sides of the manometer (imagine holding a flexible tube with some water trapped
in it (Figure 4.34)). Recall that pressure in a liquid depends on only elevation,
not on lateral position (x, y). The two sides of the manometer are at the same
elevation; therefore, they are at the same pressure. Conversely, because the two
sides are at the same pressure, they rise to the same elevation.

When the pressure on the left is higher than the pressure on the right side
of a manometer, the fluid level on the left depresses and the fluid level on the

Figure 4.34 A flexible tube demonstrates the principle that drives all manometer calculations. When a fluid is trapped in a
flexible tube, both ends are open to the same pressure (i.e., atmospheric), and the fluid levels are the same.
Changing the shape of the tube by coiling it does not change the fluid levels.
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right rises (see Figure 4.33, right). The difference in levels in the manometer
under pressure can be analyzed using Equation 4.169 to yield a measurement
of the pressure difference between the two locations. Because it takes very little
pressure difference to produce measurable fluid-height differences, manometers
are sensitive measuring devices.

If we draw a dotted horizontal line from Point A to Point B in the schematic
on the right side of Figure 4.33, below this line is an equilibrium state that we
understand—a continuous plug of one type of fluid with equal fluid levels on
both sides. The conclusion drawn from Equation 4.169 is that the pressures at
Points A and B are the same:

pA = pB (4.171)

To determine the unknown pressure p1, we apply Equation 4.169 to each side of
the manometer, calculate pA and pB , and solve Equation 4.171.

The pressure at Point A is obtained from a straightforward application of
Equation 4.169: p1 is the pressure at the top and z = (h + d) is the height of the
fluid:

p0 = p(z) + ρgz (4.172)

pA = p1 + ρAg(h + d) (4.173)

The pressure at Point B has contributions from two different columns of fluid.
We apply Equation 4.169 to the two different fluid columns sequentially:

pC = pref + ρBgd (4.174)

pB = pC + ρ f gh (4.175)

= pref + ρBgd + ρ f gh (4.176)

Substituting Equations 4.173 and 4.176 into Equation 4.171, we obtain:

pA = pB (4.177)

p1 + ρAg(h + d) = pref + ρBgd + ρ f gh (4.178)

U-tube
manometer

equation
p1 − pref = (ρ f − ρA)gh + (ρB − ρA)gd (4.179)

Thus, the pressure difference between p1 and a reference pressure may be cal-
culated by measuring h and d and knowing the densities of the fluids in the
manometer. If fluids A and B are the same (e.g., both air), then the term involv-
ing d vanishes (ρA = ρB) and we obtain a simple result:

U-tube
manometer equation

(same fluid above both sides)
p1 − pref = (ρ f − ρA)gh (4.180)

The relationships we explored to arrive at the U-tube manometer equations
can be used in more complex manometers, as shown in the following examples.

www.20file.org

http://www.semeng.ir


274 An Introduction to Fluid Mechanics

The key to analyzing manometers is to remember the principles used to derive the
equations: For a section of tube filled with only one type of fluid, the pressure is
the same at two points at the same elevation; pressure at the bottom of a column
of fluid is equal to the pressure at the top plus ρg(height).

EXAMPLE 4.9. A manometer is configured as shown in Figure 4.35. A heavy
fluid has been placed in the bottom of the manometer. A light fluid has been
added to the left side of the manometer only. Both sides of the manometer are
connected to a process stream, and the manometer is used to measure the pressure
difference p1 − p2. The fluid densities and the manometer readings are indicated
in Figure 4.35. What is the pressure difference p1 − p2 in terms of fluid heights
and fluid densities?

SOLUTION. The pressures must be equal at the two points labeled (a) and (b) in
Figure 4.35. We can relate these two pressures to the unknown pressures p1 and
p2 using the manometer principles described previously. Before we use numbers,
we first derive the equation to use in the calculation.

In a continuous fluid, fluid at the same elevation has the same pressure. This
condition is met for Points a and b in Figure 4.35:

pa = pb (4.181)

The other principle of static fluids is that the pressure at the bottom of a column
of fluid is equal to the pressure at the top, plus density multiplied by gravity
multiplied by the height of the column of fluid. When different columns of fluid
stack on top of one another as in this example, the pressures due to each column
simply add up. Thus, the pressure at Point a is:

pressure at a =
⎛
⎝pressure

at
top

⎞
⎠+

⎛
⎝pressure

due to
fluid C

⎞
⎠+

⎛
⎝pressure

due to
fluid A

⎞
⎠ (4.182)

= p1 + ρC gh + ρAgd (4.183)

p1

k =1.0 cm 

p2

ρC

ρC

ρA

ρB

ρA =1.000 g/cm3

ρB =13.546 g/cm3

ρC  << ρA < ρB

d =3.0 cm b

a

h h2

Figure 4.35 Manometers come in various shapes and use a variety of fluids. In this example, we consider a manometer that
contains two different measurement fluids.
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where h is the unknown height of the fluid above the ρA fluid in the lefthand side.
In the figure, it is given that the density of fluid C is very small; therefore, the
ρC gh term may be neglected. Similarly, the pressure at Point b is:

pressure at b = p2 + ρC gh2 + ρB gk (4.184)

= p2 + ρB gk (4.185)

where h2 is the height of ρC fluid on the righthand side; in Equation 4.185, we
neglect this contribution. Equating the pressures at Points a and b allows us to
solve for p1 − p2:

(pressure at a) = (pressure at b) (4.186)

p1 + ρAgd = p2 + ρB gk (4.187)

p1 − p2 = g(ρBk − ρAd) (4.188)

Substituting the numerical values, we obtain:

p1 − p2 = 980
cm

s2

[(
13.546

g

cm3

)
(1.0 cm) −

(
1.000

g

cm3

)
(3.0 cm)

]

= 10,335 g/(cm · s2) (4.189)

= 1.0 × 104 dynes/cm2

EXAMPLE 4.10. A double-well manometer is an instrument that can be used to
measure small pressure differences. The double well is a U-tube–type manometer;
however, at the top of each side, there is a well with a larger cross-sectional area.
There are two types of fluid in the double well: the heavier bottom fluid and the
lighter top fluid. The same amount of top fluid is placed on both sides of the
manometer, as shown in Figure 4.36a. What is the expression for the pressure
difference between the two sides of the double-well manometer in Figure 4.36b?
The cross-sectional area of both wells is A, and the cross-sectional area of the
U-tube is a.

SOLUTION. When the pressure is equal on both sides of this device, the top
levels of the two fluids are equal (Figure 4.36a). When pressure is increased on
the lefthand side, the levels change as shown in Figure 4.36b. We can analyze
this problem if we recognize the relationship between the pressures at Points 1
and 2. In a continuous fluid, fluid at the same elevation has the same pressure.
This condition is met for the two points marked 1 and 2 in Figure 4.36.

p1 = p2 (4.190)
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1

r

R

h

p+Δp p
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 ρC
p p

 ρ Α

 ρ Β

(a) (b)

Figure 4.36 The double-well manometer can be used to magnify small changes in pressure. (a) When the pressure is the same
on both sides, the level of the manometer fluid is the same. (b) When the pressure is higher on the left side, a small
change in fluid height in the well translates to a much larger change in fluid height within the U-tube portion of the
manometer.

We write the pressures at these two points in terms of �p and the various fluid
heights using Equation 4.169, first applied to the left side and then to the right
side:

p1 = p2 (4.191)

p + �p + ρC g(2h) + ρB g(r + R) = p + ρB g(r + 2h) + ρAgR (4.192)

�p + ρC g(2h) + ρB gR = ρB g(2h) + ρAgR (4.193)

�p = (ρB − ρC )g(2h) + (ρA − ρB)gR (4.194)

Equation 4.194 contains h, which is not measured. We can eliminate this height
from the equation by relating h to other distances in the manometer. Imagine the
process of applying the extra pressure �p to the lefthand well in Figure 4.36a.
The two wells start out at the same height. When �p is applied, ρB-fluid moves
from the wide well into the narrow tube. On the righthand side, ρB fluid moves
from the narrow tube into the wide well above it. By invoking mass conservation,
we can relate the changes in height that take place.

When an additional pressure �p is applied to the lefthand side of the well in
Figure 4.36a, the fluid that leaves the left well is of volume h A and of mass ρBh A.
In the manometer lefthand tube, this same quantity of fluid takes up a volume
(R/2)a and mass ρBa(R/2). Equating the two masses, we find h A = a R/2 or
2h = R(a/A). Substituting this into Equation 4.194, we arrive at our final result
for �p:

�p = gR
[

(ρB − ρC )
(

a

A

)
+ (ρA − ρB)

]
(4.195)

The pressure difference �p thus is determined by measurement of R alone;
all of the densities as well as the geometric terms a and A must be known.
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2ra 2rb

fluid of density ρ

Fa Fb

a b

lb

Fb

c dla

Fc

(a)

(b)

a b

Figure 4.37 A hydraulic lift works on the same principle as a manometer. Pressure applied to the side with a small diameter is
transmitted through the fluid and acts on the larger diameter on the other side. Although the pressure is the same,
because the area is larger, the force is proportionally larger. When the pressure is the same on both surfaces, the
liquid levels are the same (a). When the hydraulic lift operates, fluid is displaced from the left side to the right side,
and a large force is generated (b).

Note that in solving these two problem, we did not attempt to adapt the U-tube
manometer formula previously derived but rather applied the principles of fluid
statics directly to the device under consideration. These principles are as follows:

Principles of Fluid Statics

1. In a continuous fluid, fluid at the same elevation has the same pressure.
2. The pressure at the bottom of a column of fluid is equal to the pressure at

the top, plus density multiplied by gravity multiplied by the height of the
column of fluid.

A consequence of the second principle is that when different columns of fluid
stack on top of one another, the pressures due to each column simply add up.

4.2.4.2 HYDRAULIC LIFTS
We can show that there is a significant mechanical advantage implicit in Pascal’s
principle. Consider the distorted manometer in the top of Figure 4.37. The left
side of the apparatus has a small radius ra , whereas the right side has a much
larger radius rb. Because the same fluid fills both sides of the apparatus to the
same levels like a manometer, the pressures on the liquid surfaces a and b are
equal in this first configuration and pa = pb. From this observation, we can relate
Fa and Fb:

pa = pb (4.196)

Fa

πr2
a

= Fb

πr2
b

(4.197)
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where Fa and Fb are the forces on the left and right pistons, respectively. Because
r2

a /r2
b < 1, the force on surface b is larger than the force on surface a:

Fb = r2
b

r2
a

Fa (4.198)

Equation 4.198 indicates that a relatively small force applied to the left side of
the apparatus in Figure 4.37 can be translated into a larger force on the right
side. The apparatus in Figure 4.37 is called a hydraulic lift, and the hydraulic-lift
principle is used by automobile mechanics to raise vehicles off the shop floor. The
same principle is used in automotive braking systems and pneumatic actuators
for lifting or other applications requiring large forces.

The physics involved in a hydraulic lift is Pascal’s principle. The force on
the small surface is transmitted to the confined incompressible liquid in the lift.
The liquid cannot compress or escape, so the force is transmitted to all of the
molecules in the container and acts in all directions. The molecules are forced
closer together than their equilibrium position, which affects all of the molecules
in the container. The molecules in contact with the righthand side of the lift exert
the same pressure on that piston as is exerted among all of the molecules at the
same elevation. That pressure applied over the larger piston surface area results
in a larger cumulative force. Note that because high pressure exists everywhere
in the device, the entire device must be designed to withstand high pressure.

The force amplification in a hydraulic lift may appear to violate the principle of
conservation of energy, but this is not the case, as seen in the following example.

EXAMPLE 4.11. Show that the hydraulic lift does not violate conservation of
energy.

SOLUTION. Consider Figure 4.37b. To calculate the work done when the lift
operates, let la be the downward distance traveled by the piston between a and c
when a force Fc is applied. The downward displacement of fluid on the left side
of the lift must be matched with an upward displacement of fluid on the right
side, but the distance upward traveled by the larger piston on the right will not
be la; rather, it will be much smaller due to the difference in cross-sectional area.
We can use a mass balance to calculate lb, the distance upward that larger piston
travels: ⎛

⎝mass displaced
downward
on left side

⎞
⎠ =

⎛
⎝mass displaced

upward
on right side

⎞
⎠ (4.199)

ρπr2
a la = ρπr2

b lb (4.200)

r2
a

r2
b

= lb

la
(4.201)

where ρ is the density of the incompressible fluid in the device, called the
hydraulic fluid. We can calculate the relationship between Fc and Fb as well. The
principles used to analyze manometers apply; that is, pressure is equal at equal
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elevations of fluid. For the operating hydraulic lift, the pressures are equal at
Points c and d in Figure 4.37b. The pressure at Point c is due to the downward
force Fc, whereas the pressure at Point d is due to the downward force Fb plus
the weight of the hydraulic fluid above the cd level:

pc = pd (4.202)

Fc

πr2
a

= Fb

πr2
b

+ ρg(la + lb) (4.203)

Substituting Equation 4.201 into Equation 4.203 and performing some algebra,
we obtain:

Fcla = Fblb + [πr2
a laρ]g(la + lb) (4.204)

The quantity in square brackets in Equation 4.204 is the mass of fluid that transfers
from the left side to the right side. Calling this quantity m, we obtain:

Fcla − mgla = Fblb + mglb (4.205)

Equation 4.205 can be interpreted as an energy balance. Energy is the potential
to do work. Equation 4.205 states that the energy expended on the left side of
the hydraulic lift is equal to the energy expended on the right side. The energy
expended on the left side is the work pushing down the small piston (i.e., force
times displacement, Fcla) plus the work pushing down the mass of hydraulic fluid
(−mgla , which is negative because work is recovered rather than expended when
a weight is pushed down in a gravity field). The work performed on the right side
is equal to the work done lifting the large piston a distance lb (Fblb) plus the work
done to lift the mass m of hydraulic fluid (+mglb). An equal amount of work
is done on both sides of the apparatus, even though a larger force is generated
on the right side compared to the left. The mechanical advantage obtained in a
hydraulic lift is similar to the mechanical advantages gained in other elementary
machines, such as a lever and a block and tackle [67].

EXAMPLE 4.12. For a hydraulic lift with dimensions given in Figure 4.38 and
using a maximum force of 20 lb f , what diameter is needed on the small-diameter
side to lift a large pickup truck that weighs 5.5 tons (11,000 lb f )? How much
vertical displacement on the left is needed to lift the vehicle 87 inches?

SOLUTION. The numbers we calculate in this example show us that the sim-
plistic design discussed in Figure 4.38 is not the actual design of a hydraulic lift.
The calculations also lead us to a better design.

The hydraulic lift in Figure 4.38 is designed to lift an 11,000 lbf vehicle 87 in.

(220 cm) upward. The piston under the truck is 4.0 feet in diameter with an area
of:

piston area = π R2 = π (2.0 ft)2 = 1810 in.2 (4.206)
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Dle�

4.0 �

max 
force = 20 lbf

Figure 4.38 A hydraulic lift is to be designed to lift an 11,000-lbf vehicle 87 inches in the air. The piston is 4.0 feet in diameter;
on the left side, a maximum of 20 lbf is to be used to do the lifting.

The maximum displacement of the piston is 87 inches, from which we can
calculate the volume of hydraulic fluid that must enter the righthand side of the
lift:

volume of hydraulic fluid
displaced from left side

to right side
= π R2L =

(
1810 in.2

)
(87 in.) (4.207)

= 157,431 in.3(682 gal) (4.208)

The main operating principle of the lift is that the pressure is the same on both
sides (variation of pressure with elevation is negligible in these high-pressure
devices). With the 11,000-lbf truck sitting on the 4-foot diameter piston on the
right, a pressure of 6.1 psi is generated:

Pressure on the right: pright = 11,000 lbf

1810 in.2
(4.209)

= 6.1 psi (4.210)

This is also the pressure on the left side. If the maximum force on the left side is
20 lbf , we can calculate the diameter on the left:

pright = pleft (4.211)

6.1 psi = 20 lbf

π
(

Dleft/2
)2 (4.212)

Dleft = 2.0 in. (4.213)

This is a small diameter, but the situation becomes worse when we consider the
amount of vertical displacement required to lift the truck the desired amount. We
calculated that a volume of 157,431 in.3 (682 gal) must pass from the left side to
the right side to bring about the lifting. From this number, we can calculate the
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Figure 4.39 If we focus on the right side of the hydraulic lift, we see that what is required is for fluid to be fed below the piston
to raise the vehicle. To lower the vehicle, fluid needs to be allowed to drain from under the piston.

vertical displacement on the left side:

Vright = Vleft (4.214)

157,431 in.3 = π
(

Dleft/2
)2

L (4.215)

Lleft = 50,112 in. = 4176 ft = 0.79 mile (4.216)

These calculations are somewhat discouraging. If we want the force on the
left to be cut down to the reasonable 20 lbf , we must tradeoff the force with a
large displacement. If we change the design to allow for a larger force (perhaps
100 lbf ), we still cannot obtain a reasonable displacement for the left (try this
calculation for practice).

The problem is with the left side. If we can feed the fluid to the right side in little
chunks—drawing the fluid from a reservoir, for example—we could accomplish
the lift with the desired force reduction. Figure 4.39 shows the implementation of
this idea. A pump is used to feed hydraulic fluid to the “right side” of the hydraulic
lift. In actual practice, there is no longer a left side, only the right side where the
vehicle is being lifted. The pump feeds fluid against the operating pressure of
the lift (constant) and, as the fluid enters the lift, the truck rises. The force that
the pump must use to put a small amount of fluid into the lift against the reservoir
pressure is much smaller than the 11,000 lbf weight of the truck because each
stroke of the pump is like the action of a left side of the hydraulic lift.
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Figure 4.40 An actual hydraulic lift uses a pump to feed fluid below the piston of the lift. A spool valve switches how the suction
and discharge ports on the pump are connected to the lift.

Figure 4.40 shows the conventional design of a pump-enabled hydraulic lift. In
this design, hydraulic fluid is on both sides of the piston. A special valve called
a spool valve is used to switch how the pump is connected to the lift. When the
lift is operating to raise a vehicle, the discharge side of the pump is connected
below the lift piston and the suction side is connected above the lift piston.
Hydraulic fluid moves into the chamber and the vehicle rises. When the spool
valve shifts into the alternate position, the discharge side of the pump is connected
above the lift piston and the suction side is connected to the chamber below the
piston. In this configuration, the piston descends. Note that once the vehicle is
lifted, other valves may be closed to hold the lift in place and the pump may be
turned off.

Our study of stationary fluids has familiarized us with some of the intrinsic
properties of fluids. Fluids and solids differ in their responses to shear forces, as
follows:
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Properties of Fluids

1. Solids can remain deformed but stationary when subjected to shear forces,
whereas fluids must move. Therefore, fluids at rest are experiencing only
normal forces.

2. Normal forces in gases cause volume change, and the magnitude of normal
force on a surface in a gas is related to volume, temperature, and number
of moles through the equation of state; for example, the ideal gas law.

3. In stationary liquids, pressure is produced by intermolecular forces not
present in gases.

4. For both liquids and gases, pressure is isotropic.
5. In both gases and liquids, pressure depends on elevation, although the

density of gases is so small that no elevation dependence is observed
unless the distances are very large.

The properties of static fluids may be exploited in engineering applications
such as manometers and hydraulic lifts and must be accounted for in constructing
weirs, dams, water towers, and other structures, as well as in the manufacture of
boats, piers, plumbing networks and other systems involving stationary liquids.

We now discuss moving and deforming fluids in which shear forces are present;
here, the situation is considerably more complex than in stationary fluids.

4.3 Fluids in motion

In this chapter, we discuss fluid contact forces, which are forces due to inter-
molecular effects. The major issue to address is how to account for intermolecu-
lar forces in our continuum model of fluid behavior—specifically, how to write
intermolecular contact forces on a control volume (CV) so that we can carry out
a momentum balance and solve for flow fields and other quantities of interest in
moving fluids.

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (4.217)

Our first topic was stationary fluids for which the Reynolds transport theorem
reduces to a force balance 0 =∑ f . There are no shear forces in stationary fluids
because shear forces always cause motion in fluids. For both stationary gases and
liquids, the force on a fluid surface can be expressed in terms of pressure, a
normal force per unit area. In stationary fluids, both gases and liquids, pressure
at a point is isotropic—that is, pressure is independent of the orientation of the
measurement surface. On a small flat surface �A with unit normal vector n̂, the
force on that surface in a stationary fluid is given by:

Force at a point
on a surface �A

in a stationary fluid
= [p(z)]�A (−n̂) (4.218)
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The field p is a function of elevation if gravity is important. In the previous
section, we discussed several applications of momentum balances (i.e., force
balances) in stationary liquids.

In this section, we address the more complicated case of contact forces in
moving fluids. A major complication in determining contact forces on surfaces
in moving fluids is that shear forces may be present. In a stationary fluid, once a
surface is chosen, we know the direction of the force on that surface—all contact
forces in stationary fluids are normal forces. For example, in Equation 4.218 for
force in a stationary fluid, knowing that the forces were normal forces allowed us
to write f ∝ n̂. When we seek to write the force on a surface in a moving fluid,
we do not know the direction of the force—there may be a normal component to
the force but there also may be a tangential (i.e., shear) component. In addition,
both the magnitude and the direction of the force are a function of the fluid
velocity:

For fluid in motion: f
surface

=

⎛
⎜⎜⎜⎝

expression
giving magnitude

of force
(function of v)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

unit vector
giving direction

for force
(function of v)

⎞
⎟⎟⎟⎠

(4.219)

Our challenge then is to find a modeling method and a mathematics that allows
us to write the force on an arbitrary surface in a moving fluid as a function of the
fluid properties and as a function of the velocity. Once this is obtained, we can
proceed with solutions for fluids variables using the Reynolds transport theorem.

An additional challenge is that surface contact forces in a moving liquid
are due to intermolecular attractions, which vary greatly from one material to
another. Our preference in continuum modeling is to specify as little as possible
about the chemical details of the fluid so that the result will be general. We
succeeded in obtaining such a simple expression for stationary flows; we now face
the challenging situation of wanting a general, elegant solution to the complex
problem of expressing molecular forces in moving fluids. In the next section,
we introduce the fluid-mechanics community’s solution to this problem: the nine
stress components �̃i j , also known as the stress tensor.

As we explain in the remainder of this chapter and text, we do not need to
understand all of the details of tensor mathematics to use the stress tensor in our
study of fluids in motion. For our purposes, the stress tensor functions as a 3 × 3
matrix that allows us to calculate magnitude and direction of molecular contact
forces on a surface in a moving fluid. The deeper meaning and implications of
the stress tensor are important in advanced fluid-mechanics study, and readers are
referred to additional information on the stress tensor and tensor mathematics in
the literature [6, 12, 88, 89, 104].

4.3.1 Total molecular stress

We seek an expression to use in the momentum balance that represents all possible
molecular contact forces that may be present in a moving fluid. We must think in
very general terms.
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Figure 4.41 The force vector acts on a surface through Point
(x , y , z). The surface has unit normal n̂ and area
�A. A different surface through the same point
generally has a different stress vector, both in
magnitude and direction.

Molecular stress is contact force per unit
area on a chosen surface. In a moving fluid,
the stress has both normal and tangential
components. We can specify a surface by
specifying the unit normal to and the area
of the surface. If a force vector f acts on a
surface with unit normal n̂ and area �A, the
stress vector on that surface is just f /�A
(Figure 4.41). The stress vector f /�A on a
surface in a moving fluid depends on posi-
tion in the fluid (x, y, z) and time. f /�A
also depends on which surface we choose
at the location under consideration; that is,
f /�A depends on n̂ as well:

Stress vector
in a fluid on �A

at (x, y, z)
= f (x, y, z, n̂)/�A (4.220)

Instead of the vector function f (x, y, z, n̂)/�A, which points in an unknown
direction, we prefer to define a new type of stress-field variable that allows
us to express contact stress magnitude and direction in terms of a simple dot
product between the stress field variable and the surface unit normal vector n̂.
The mathematical entity that makes this possible is called the second-order tensor
[6, 12, 93, 104].

Initially, the formal derivation for the stress tensor can be intimidating. The
idea of stress in a moving fluid is unfamiliar, and the need for nine different stress
components can make the entire concept seem impossible to understand. For this
reason, some introductory textbooks on fluid mechanics avoid mentioning the
stress tensor and instead focus on problems and methods that use the components
of the stress tensor but do not call them by that name.

Avoiding the expression stress tensor is possible but, beyond the simplest
flows, accounting for intermolecular contact forces in flows is more difficult
without the stress tensor than with it. In engineering devices and in high-tech
fluids applications, the fluids from a region are constantly exchanging momentum
with both fluids from other regions and with the boundaries by exerting forces.
These momentum exchanges determine the flow field and the stress distribution;
therefore, they determine how the devices operate. Without the stress tensor,
developing enough knowledge to understand the stresses in such systems is an
enormous task—and it is an unnecessary task because the stress tensor was
developed to do the accounting for us.

Nevertheless, the stress tensor is a difficult subject to understand fully. Fortu-
nately, we do not need to understand it fully to use it at the beginner level. The
principal relationship we need is given in Equation 4.221, and its meaning is
fairly straightforward:

Tension on
a surface in a fluid
with unit normal n̂
(Gibbs notation)

f (x, y, z, n̂) = �A
[
n̂ · �̃]∣∣∣

�A (4.221)
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The tension on a surface �A with unit normal n̂ in a fluid may be calculated by
the dot product of n̂ and the stress tensor �̃ at that location. The fact that stress
is a tensor can be ignored, and we can focus on the calculation that is implied by
Equation 4.221, which in Cartesian coordinates or other orthonormal coodinates
is simply a matrix multiplication:

Tension on
a surface in a fluid
with unit normal n̂

f = �A
(

n1 n2 n3
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.222)

The multiplication of n̂ and �̃ in Equation 4.222 is carried out following the
usual conventions of matrix multiplication:

f = �A
(

n1 n2 n3
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.223)

= �A
(
n1�̃11 + n2�̃21 + n3�̃31

+ n1�̃12 + n2�̃22 + n3�̃32

+ n1�̃13 + n2�̃23 + n3�̃33
)

(4.224)

= �A
3∑

p=1

3∑
m=1

n p�̃pm (4.225)

where the stress coefficients �̃pm are evaluated at the surface �A.
To arrive at Equation 4.221, we first define the stress tensor and subsequently

show how this quantity is used to express molecular forces on an arbitrary surface
in both stationary and moving fluids. The derivation of Equation 4.221 follows;
the discussion of how to use Equation 4.221 begins after Equation 4.261.

4.3.1.1 STRESS TENSOR
To describe the stress at a point in a moving fluid, we choose three planes as the
standard reference planes for stress. These three planes are perpendicular to the
three basis vectors ê1, ê2, and ê3 associated with a Cartesian coordinate system
x1x2x3 (Figure 4.42). At an arbitrary Point P in a fluid, the stress vector on the
plane through Point P perpendicular to ê1 (the 1-plane) we call a; the stress vector
on the plane through Point P perpendicular to ê2 (the 2-plane) we call b; and the
stress vector on the plane through Point P perpendicular to ê3 (the 3-plane) we
call c. The vectors a, b, and c in general do not point in any special direction; for
instance, they are not necessarily perpendicular to the plane with which they are
associated. In deriving a general expression for the stresses at Point P , we make
no assumptions about the directions of the stress vectors associated with these
three planes.
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Figure 4.42 Schematic of the state of stress at Point P in a flowing system. The vectors shown indicate the stresses on three
mutually perpendicular planes passing through P .

ˆ ˆ ˆ

We begin by examining a in the chosen coordinate system:

a = a1e1 + a2e2 + a3e3 =
⎛
⎝a1

a2

a3

⎞
⎠

123

(4.226)

The vector a is the stress on a 1-surface—a 1-surface being a surface with unit
normal ê1. The quantity a1 is the coefficient of a in the 1-direction; thus, a1 is the
stress on a “1" plane in the “1” direction. We now define a scalar quantity �̃11

to be equal to a1. By writing the coefficients of a (and, subsequently, b and c) in
terms of these double-subscripted quantities, we can organize the different stress
components at Point P that act on planes perpendicular to the three coordinate
surfaces at Point P:

�̃11 = a1 =
⎛
⎝ stress at Point P

on a 1-surface
in the 1-direction

⎞
⎠ (4.227)

�̃12 = a2 =
⎛
⎝ stress at Point P

on a 1-surface
in the 2-direction

⎞
⎠ (4.228)

�̃13 = a3 =
⎛
⎝ stress at Point P

on a 1-surface
in the 3-direction

⎞
⎠ (4.229)

a = (stress on a 1-surface at P)

= ˆ�̃11e1 + ˆ�̃12e2 + ˆ�̃13e3 =
⎛
⎝ �̃11

�̃12

�̃13

⎞
⎠

123

(4.230)
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Following the same logic for b and c, we obtain analogous results. The vector b
is a force at Point P on a 2-surface (i.e., surface with unit normal n̂ = ê2). The
three components are the forces on a 2-surface in the 1-, 2-, and 3-directions:

�̃21 = b1 =
⎛
⎝ stress at Point P

on a 2-surface
in the 1-direction

⎞
⎠ (4.231)

�̃22 = b2 =
⎛
⎝ stress at Point P

on a 2-surface
in the 2-direction

⎞
⎠ (4.232)

�̃23 = b3 =
⎛
⎝ stress at Point P

on a 2-surface
in the 3-direction

⎞
⎠ (4.233)

ˆ ˆ ˆ

b = (stress on a 2-surface at Point P)

= �̃21e1 + �̃22e2 + �̃23e3 =
⎛
⎝ �̃21

�̃22

�̃23

⎞
⎠

123

(4.234)

For a 3-surface, the result is:

ˆ ˆ ˆ

c = (stress on a 3-surface at Point P)

= �̃31e1 + �̃32e2 + �̃33e3 =
⎛
⎝ �̃31

�̃32

�̃33

⎞
⎠

123

(4.235)

In general, �̃ik is the stress on an i-plane in the k-direction. Remember that an
i-plane means a plane perpendicular to the êi -direction. There are nine stress
quantities, �̃ik .

The quantities �̃ik are the coefficients of the total stress tensor at Point P . A
tensor is a mathematical entity related to vectors but of higher order or complexity.
Whereas vectors have three components when written in Cartesian coordinates,
tensors have nine. Tensors and vectors can be multiplied in carefully proscribed
ways (see Section 1.3), but an in-depth discussion of tensors is beyond the scope
of this book [6, 93, 104]. In vector Gibbs notation, tensor variables are written
with double underlines; thus, the total stress tensor is written as �̃. The nine
coefficients of a tensor relative to a coordinate system may be written in a 3 × 3
matrix:

�̃ =
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.236)

where the subscript ‘123’ refers to the Cartesian coordinate system ê1, ê2, and ê3.
The total stress tensor �̃ is more powerful than a naming convention, and it

has meaning for more than on the three planes discussed so far. The total stress
tensor �̃ contains all of the information about the state of stress at a point in a
stationary or moving fluid [6]. In the next example, we use rules of tensor algebra
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to show how �̃, written as we have in Equation 4.236, can be used to calculate
stress on any plane through Point P . The final matrix result for how this is done
is given in Equation 4.261.

ˆ ˆ ˆ

EXAMPLE 4.13. What is the molecular contact force at a point on an arbitrary
plane of unit normal n̂ in a moving fluid?

SOLUTION. Our task is to calculate the force vector at a point on �A, a small
surface in a fluid. Let P be our chosen point and n̂ be the unit vector normal
to �A (Figure 4.43). The vector n̂ can be written relative to a chosen Cartesian
coordinate system as shown here:

n̂ = n1e1 + n2e2 + n3e3 =
⎛
⎝n1

n2

n3

⎞
⎠

123

(4.237)

In general, n̂ does not line up with any of the coordinate-basis vectors êi , for
i = 1, 2, 3.

In this section, we defined the stress tensor �̃. In our chosen Cartesian coor-
dinate system, �̃ may be written as:

�̃ =
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.238)

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

This is shorthand for the more complete tensor representation shown here (see
Section 1.3.2.2):

�̃ = ê1e1�̃11 + ê1e2�̃12 + ê1e3�̃13

+ ê2e1�̃21 + ê2e2�̃22 + ê2e3�̃23

+ ê3e1�̃31 + ê3e2�̃32 + ê3e3�̃33 (4.239)

=
3∑

p=1

3∑
k=1

ˆ�̃pkep êk (4.240)

Later in this example, we need to reference the version of �̃ in Equation 4.239.

Figure 4.43 Consider a surface �A in a flowing fluid. At any point in the fluid, we can draw an infinite number of planes through
that point. If we arbitrarily choose one such plane with unit normal n̂ , what is the force on that surface?
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Figure 4.44 Force on the surface �A has components in three
coordinate directions.

ˆ
ˆ

ˆ ˆ

In Equation 4.239, an unusual type of
vector multiplication appears, written as
two vectors sitting side by side (e.g., ê1e2

or ê2e3). This type of product is called
the indeterminate vector product, which is
explained in Section 1.3.2.2. All of the pos-
sible indeterminate vector products of the
unit vectors ê1, ê2, and ê3 appear in Equa-
tion 4.239, for a total of nine terms. The
indeterminate vector product of two vec-
tors produces a tensor, as discussed in Sec-
tion 1.3.2.2. The terms ê1e2 and ê2e1 and
similar mirror-image pairs are not equal to
one another; thus, the positions of individ-

ual unit vectors (i.e., which vector is first, which is second) are important within
the indeterminate multiplication of vectors.

We want to write the force on �A in terms of the nine stress coefficients �̃pk .
As discussed, the nine components �̃pk at our Point P are defined relative to the
stresses on the surfaces through P that are perpendicular to the coordinate-basis
vectors, ê1, ê2, and ê3. Because �A is not lined up with any of these reference
planes, to carry out our task, we must find a way to relate the forces on the 1-, 2-,
and 3-surfaces with the force on �A.

We define the vector f as the force (not stress) on �A at Point P (see Fig-
ure 4.43). In our chosen coordinate system, f is written as:

f =
⎛
⎝ f1

f2

f3

⎞
⎠

123

ˆ ˆ ˆ= f1e1 + f2e2 + f3e3 (4.241)

ˆ ˆ
ˆ

This way of expressing f shows that f is composed of the sum of three vectors:
a force in the 1-direction, f1e1; a force in the 2-direction, f2e2; and a force in the
3-direction, f3e3 (Figure 4.44):

f =
⎛
⎝ f1

0
0

⎞
⎠

123

+
⎛
⎝ 0

f2

0

⎞
⎠

123

+
⎛
⎝ 0

0
f3

⎞
⎠

123

(4.242)

The magnitude of the force on �A in the 1-direction is f1. Examining the
nine coefficients �̃pk , we see that there are three �̃pk that describe stresses in the
1-direction. These components refer to stresses on three specific surfaces, none
of which is the surface of interest, �A:

�̃11 =
⎛
⎝ stress at Point P

on a 1-surface
in the 1-direction

⎞
⎠ (4.243)

�̃21 =
⎛
⎝ stress at Point P

on a 2-surface
in the 1-direction

⎞
⎠ (4.244)

�̃31 =
⎛
⎝ stress at Point P

on a 3-surface
in the 1-direction

⎞
⎠ (4.245)
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Figure 4.45 The stress vector on an arbitrary surface �A can be expressed in terms of the nine components of the stress tensor
�̃i k . For example, the 1-component of the force is related to the three �̃i 1 components that concern forces in the
1-direction. The projections of �A in the three coordinate directions are required to complete the expressions for
f1, f2, and f3, as discussed in this chapter.

We can decompose f1 into the sum of three contributions that incorporate the
three stresses �̃11, �̃21, and �̃31. The component f1, which is the stress on �A
in the 1-direction, is the sum of the 1-direction forces that act on projections of
the surface �A in the 1-, 2-, and 3-directions (Figure 4.45).

f1 =
⎛
⎝ the force on

�A in the
1-direction

⎞
⎠ (4.246)

f1 =
⎛
⎝ stress acting

on a 1-surface
in the 1-direction

⎞
⎠
⎛
⎝ projection

of �A in the
1-direction

⎞
⎠

+
⎛
⎝ stress acting

on a 2-surface
in the 1-direction

⎞
⎠
⎛
⎝ projection

of �A in the
2-direction

⎞
⎠

+
⎛
⎝ stress acting

on a 3-surface
in the 1-direction

⎞
⎠
⎛
⎝ projection

of �A in the
3-direction

⎞
⎠ (4.247)

= �̃11�A1 + �̃21�A2 + �̃31�A3 (4.248)

The projection of a surface in a direction gives the effective size of a surface in
the chosen direction. Thus, Equation 4.247 sums the product of the effective size
of �A in three directions multiplied by the 1-direction forces on those effective
surfaces. The net sum is the total force on �A in the 1-direction.

Needed in Equation 4.247 are the stress tensor components �̃11, �̃21, and
�̃31. Each projection needed is the projection in a coordinate direction êi of a
surface of area �A; this projection is given by (for justification, see the Web
appendix [108]):

�Ai =
(

projection of �A
in direction of êi

)
= (n̂ · êi ) �A (4.249)
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where n̂ is the unit normal vector to �A. Applying Equation 4.249, the area over
which �̃11 acts is the projection of �A in the 1-direction, n̂ · ê1 �A. Likewise,
the areas over which �̃21 and �̃31 act are n̂ · ê2 �A and n̂ · ê3 �A, respectively.
We now substitute these expressions into Equation 4.248:

f1 =
⎛
⎝ the force on

�A at P in the
1-direction

⎞
⎠

= �̃11�A1 + �̃21�A2 + �̃31�A3 (4.250)

= (�̃11(n̂ · ê1)�A) + (�̃21(n̂ · ê2)�A) + (�̃31(n̂ · ê3)�A) (4.251)

We can simplify the expression for f1 by collecting terms that are in common:

f1 = �A (n̂ · ê1�̃11 + n̂ · ê2�̃21 + n̂ · ê3�̃31) (4.252)

ˆ= �A n̂ · (e1�̃11 + ê2�̃21 + ê3�̃31) (4.253)

ˆ

We used the distributive law of the vector dot product to factor (n̂·) out to the front
of Equation 4.253. The result in Equation 4.253 for f1 relates the 1-component
of f to the stress components �̃i1 and the unit normal of the surface �A, given
by n̂. We follow the same logic to arrive at expressions for f2, the 2-component
of force on �A; and f3, the 3-component of force on �A:

f2 = �A n̂ · (e1�̃12 + ê2�̃22 + ê3�̃32) (4.254)

ˆf3 = �A n̂ · (e1�̃13 + ê2�̃23 + ê3�̃33) (4.255)

ˆ ˆ ˆ

Having related f1, f2, and f3 to the �̃i , the three expressions for f1, f2, and f3

in terms of the �̃pk can be substituted into Equation 4.241, yielding the complete
vector expression for f in terms of the �̃pk . We now assemble f and simplify
using the rules of algebra and factoring:

f = f1e1 + f2e2 + f3e3 (4.256)

= [ ˆ�A n̂ · (e1�̃11 + ê2�̃21 + ê3�̃31)
]

ê1

+ [
ˆ�A n̂ · (e1�̃12 + ê2�̃22 + ê3�̃32)

]
ê2

+ [
ˆ�A n̂ · (e1�̃13 + ê2�̃23 + ê3�̃33)

]
ê3 (4.257)

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

= �A n̂ · (e1e1�̃11 + ê2e1�̃21 + ê3e1�̃31

+ ê1e2�̃12 + ê2e2�̃22 + ê3e2�̃32

+ ê1e3�̃13 + ê2e3�̃23 + ê3e3�̃33) (4.258)

The final expression in Equation 4.258 is a quantity (�A) multiplied by the dot
product of a vector (n̂) with a new, more complex quantity: a tensor (�̃ ≡ sum
of indeterminate vector products; compare with Equation 4.239 and see also
Section 1.3.2.2 and [6]).
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ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

The terms of �̃ are not in the usual order that we take when we write a tensor
in matrix form, but all of the terms are there. Rearranging, we obtain:

f = �A n̂ · (e1e1�̃11 + ê1e2�̃12 + ê1e3�̃13

+ ê2e1�̃21 + ê2e2�̃22 + ê2e3�̃23

+ ê3e1�̃31 + ê3e2�̃32 + ê3e3�̃33) (4.259)

= �A n̂ ·
⎡
⎣ 3∑

p=1

3∑
k=1

ˆ ˆ�̃pkepek

⎤
⎦ (4.260)

The rules for dot multiplying a vector with a tensor using coefficients in an ortho-
normal coordinate system are the same as those for matrix multiplication of a
1 × 3 matrix with a 3 × 3 matrix [6]. Therefore, we can write Equation 4.259 as:

Tension on
a surface of area �A
with unit normal n̂
(matrix notation)

f = �A
(

n1 n2 n3
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.261)

This is the final result in a form that clarifies how to calculate the force on a
surface using matrix multiplication. In terms of tensor notation, the same result
may be written as:

fm = �A
3∑

p=1

n p�̃pm (4.262)

Force on
a surface of area �A
with unit normal n̂
(Gibbs notation)

f = �A [n̂ · �̃]|�A (4.263)

The total stress tensor �̃ contains all of the information about the state of
molecular stress at a point in a fluid. To calculate the contact force acting on
any specific surface, we simply dot the unit normal to the surface at the point
with �̃ at the point and multiply by the area of the surface (Equation 4.261 or
Equation 4.263).

Equation 4.263 is the key result of the discussion in this section. The stress
tensor is an elegant solution to the problem of how to mathematically express
the state of stress at a point on a chosen surface in a fluid. Equation 4.263 (or
Equation 4.261) allows us to calculate the magnitude and direction of force on a
surface in a stationary or moving fluid. To see the power of this expression, we
have three examples in which we calculate the force vector on a surface when the
stress tensor is known. In Chapter 5, we discuss how to find the coefficients of �̃

for a chosen flow.
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EXAMPLE 4.14. For a fluid whose stress tensor is given by the following general
expression:

�̃ =
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.264)

what is the force on a surface of area S whose unit normal is ê2? All quantities
are written relative to the same Cartesian coordinate system.

SOLUTION. We already know the answer to this question because we know b,
the stress on a 2-surface: The answer is the area of the surface multiplied by the
stress on the surface, given by b (see Equation 4.234). We gain some practice
with matrix-tensor notation, however, by using Equation 4.261 to calculate this
result.

f = �A n̂ · �̃ (4.265)⎛
⎜⎜⎜⎝

force on surface
of area S

whose unit normal
vector is ê2

⎞
⎟⎟⎟⎠ = S ê2 · �̃

= S
(

0 1 0
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

= S

⎛
⎝ �̃21

�̃22

�̃23

⎞
⎠

ˆ

123

= S(�̃21e1 + ˆ�̃22e2 + ˆ�̃23e3)

= Sb

This is the result we expected (compare with Equation 4.234).

EXAMPLE 4.15. The stress tensor �̃ at Point P in a fluid is given in matrix
form in Equation 4.266. For a flat square surface of area 3.1 mm2 submerged in
the fluid oriented perpendicular to the 13-plane as shown in Figure 4.46, what is
the force on that surface?

�̃ =
⎛
⎝−2.0Pa 0 0

0 −2.0Pa 0
0 0 −2.0Pa

⎞
⎠

123

(4.266)

SOLUTION. We showed in this section that the force vector f on a surface with
unit normal n̂ is given by:

f = �A
[
n̂ · �̃] (4.267)
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x1

x3

45o

n̂ AΔ

Figure 4.46 The unit normal of a chosen surface is given by the vector n̂ , which lies in the 13-plane at an angle 45 degrees
counterclockwise from the 3-axis, as shown.

where �A is the area of the surface and �̃ is the stress tensor at that point.
When all of the vectors are written in the same Cartesian coordinate system, this
expression may be evaluated using matrix multiplication:

(
f1 f2 f3

)
123

= �A
(

n1 n2 n3
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.268)

We have �̃ and we know �A = 3.1 mm2. The coefficients of the unit normal
vector n̂ in the x1x2x3 coordinate system can be worked out by geometry:

n̂ =

⎛
⎜⎜⎜⎝

−1√
2

0
1√
2

⎞
⎟⎟⎟⎠

123

(4.269)

The final step is to substitute these values into Equation 4.268 and evaluate the
matrix multiplications:

(
f1 f2 f3

)
123

= �A
(

n1 n2 n3
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

= 3.1 mm2
( −1√

2
0 1√

2

)
123

·
⎛
⎝−2.0 Pa 0 0

0 −2.0 Pa 0
0 0 −2.0 Pa

⎞
⎠

123

=

⎛
⎜⎝

(3.1) 2.0√
2

0
(3.1)−2.0√

2

⎞
⎟⎠

123

(Pa)(mm2)
(

m

103 mm

)2 N/m2

Pa

=

⎛
⎜⎝

(3.1) 2.0√
2

0
(3.1)−2.0√

2

⎞
⎟⎠

123

10−6 N
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Note that this final result is parallel to the unit normal vector n̂:

f =

⎛
⎜⎝

2(3.1) 1√
2

0
2(3.1) −1√

2

⎞
⎟⎠

123

μN = (−6.2 μN )n̂

where a μN is a microNewton.3

The force vector turned out to be parallel to n̂ because the stress given by
Equation 4.266 is isotropic. As discussed in Section 4.3.2 isotropic stress gives
a diagonal stress tensor with the three coefficients on the diagonal equal to one
another.

EXAMPLE 4.16. The stress tensor �̃ at Point P in a viscous, moving fluid is
given in matrix form here. For the same submerged flat square surface discussed
in the previous example, what is the force on that surface using this new stress
tensor?

�̃ =
⎛
⎝−2.0Pa 4.0Pa 0

4.0Pa −2.0Pa 0
0 0 −2.0Pa

⎞
⎠

123

(4.270)

SOLUTION. The solution to this problem follows the same steps as those in the
previous problem:

f = �A n̂ · �̃

(
f1 f2 f3

)
123

= �A
(

n1 n2 n3

)
123

·

⎛
⎜⎜⎜⎝

�̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎟⎟⎟⎠

123

= 3.1 mm2
(

−1√
2

0 1√
2

)
123

·

⎛
⎜⎜⎜⎝

−2.0 Pa 4.0 Pa 0

4.0 Pa −2.0 Pa 0

0 0 −2.0 Pa

⎞
⎟⎟⎟⎠

123

= 3.1

⎛
⎜⎜⎜⎜⎝

2.0√
2

−4.0√
2

−2.0√
2

⎞
⎟⎟⎟⎟⎠

123

(Pa)(mm2)
(

m

103 mm

)2 N/m2

Pa

= 3.1

⎛
⎜⎜⎜⎜⎝

2.0√
2

−4.0√
2

−2.0√
2

⎞
⎟⎟⎟⎟⎠

123

10−6 N

3The placement of the coefficients of a physical vector in column vectors (3 × 1) or in row vectors
(1 × 3) is arbitrary. These vectors have their meaning as coefficients that multiply the basis
vectors with which they are associated. How they are displayed is a matter of convenience, and
we switch between the representations as needed.
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x1

x3
n̂

x2

o45

123
0

0

2

2+n̂

x1

x3
n̂

x2

45°

0

0

+n̂

⎥
⎥
⎥
⎥⎦

⎤
⎢
⎢
⎢
⎢⎣

⎡
⎟
⎟
⎟
⎟
⎠

⎞⎜
⎜
⎜
⎜
⎝

⎛

+−=

123
0
2

2
0

ˆ2.6 nff

Figure 4.47 When a vector dot multiplies a stress tensor that is not diagonal, the tensor rotates and stretches the vector to
produce the output vector. In this example, the output vector is related to the input vector by a rotation and a stretch.

Note that this final result is not parallel to the unit normal vector n̂:

f = −6.2

⎛
⎜⎜⎜⎝

−1√
2

2√
2

1√
2

⎞
⎟⎟⎟⎠

123

μN

= (−6.2 μN)

⎡
⎢⎣ n̂ +

⎛
⎜⎝

0
2√
2

0

⎞
⎟⎠

123

⎤
⎥⎦ (4.271)

We can tell that the stress tensor from this example (Equation 4.270) is not
isotropic because it has off-diagonal elements. The isotropic stress tensor of the
previous example stretched the unit normal vector to give the force vector but did
not rotate it, and f is parallel to n̂ for Example 4.15. The stress tensor from this
example stretched and rotated the unit normal vector to produce the final force
vector (Figure 4.47). The stress tensor is usually anisotropic when the fluid is in
motion. We discuss both isotropic and anisotropic stress tensors in subsequent
sections of this chapter.
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Experimental studies on the stress tensor show that �̃ is symmetric for the
majority of fluids; that is, �̃rs = �̃sr and rows and columns if �̃ may be
exchanged with no impact:

Stress tensor
is symmetric

⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

=
⎛
⎝ �̃11 �̃21 �̃31

�̃12 �̃22 �̃32

�̃13 �̃23 �̃33

⎞
⎠

123

(4.272)

For a symmetric stress tensor, there are six independent stresses at a Point P in a
fluid:

Six independent
stress components

in a fluid

�̃11 �̃22 �̃33

�̃21 = �̃12 �̃31 = �̃32 �̃23 = �̃32
(4.273)

Note that in both examples, �̃ is symmetric. The total stress tensor can be
shown rigorously to be symmetric for nonpolar fluids [6]. For polar fluids, if
body moments4 to couple stresses [85, 169] are absent, we can show that �̃ is
symmetric [40]. We always assume �̃ to be symmetric.

In terms of the reference Cartesian coordinate system, �̃11, �̃22, and �̃33 are
all normal stresses: The stress is in the same direction as the unit normal to the
surface on which it acts (e.g., �̃11 is the stress on a 1-surface in the 1-direction).
An alternative notation for the normal stresses is σ11 = �11, σ22 = �22, and
σ33 = �33. The remaining off-diagonal terms of �̃ are all pure shear stresses
(e.g., �̃31 is the stress on a 3-surface in the 1-direction).

4.3.1.2 STRESS SIGN CONVENTION
A final unresolved surface force issue is the sign of the total stress tensor �̃. The
expression �A n̂ · �̃ gives the force vector on a surface with unit normal n̂ and
area �A. Force can be either a push (i.e., compression) or a pull (i.e., tension). In
this text, we follow the standard engineering convention and choose �̃ to express
tension on the surface (Figure 4.48). This convention implies that stress on a
surface �̃ and pressure p on a surface have opposite signs. The choice of tension
or compression is arbitrary, and the sign convention affects only expressions that
contain the total stress tensor �̃ or the extra stress tensor, τ̃ , which is introduced
in Section 4.3.2.

A warning to readers: Several chemical-engineering textbooks use the oppo-
site convention [14, 15, 104]. The choice is arbitrary, and there are good reasons
for both choices. We choose the tension-positive convention here to match the
majority of fluid-mechanics textbooks. The tension-positive convention implies
that the forces generated by a control volume will be negative and forces acting
on the control volume will be positive. The alternate convention is desirable
in the study of transport phenomena, in which the compression-positive choice

4Body moments are torques experienced by particles of fluid due to some intrinsic property of the
fluid; that is, not due to the usual body forces (i.e., gravity) or surface forces (molecular action at
the surface of the particle). Ferrofluids, which are suspensions of magnetic particles, experience
body moments when they flow in the presence of a magnetic field [85]. For these fluids, it is
inappropriate to assume that the stress tensor is symmetric.
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n̂

f
f pulls on surface 
(tension positive) 

n̂

fc −=

0

ˆ

>=

=

ff

fff

the same force, expressed as c,
the amount of compression on 
surface (compression positive) 

fffc −=−= ˆ)(

the amount of 
compression in the 

direction is -f
f̂

Figure 4.48 There are two common stress conventions in the chemical-engineering fluid-mechanics community. The one used
here is used by most engineers—that is, the stress tensor expresses tension stress. This convention affects only
expressions that contain the total stress tensor or the extra stress tensor.

makes the stress-velocity constitutive law (see Chapter 5 and the following dis-
cussion) have parallel construction to the flux/temperature and flux/concentration
constitutive laws (see Equations 5.67 and 5.68 for identification of symbols):

stress/velocity law
(compression positive)

− τ̃ik = τik = −μ
∂vi

∂xk
(4.274)

flux/temperature law
qk

A
= −k

∂T

∂xk
(4.275)

stress/velocity law J ∗
Ak = −DAB

∂cA

∂xk
(4.276)

We refer readers to Bird et al. [14, 15] for a complete discussion of the reasons
for choosing the opposite convention. Also, in some textbooks [98], the meaning
of the subscripts of �̃ are reversed from our usage; that is, in some textbooks �̃rs

is the stress on an s-plane in the r -direction. This convention is not as common
as what we are using; when reading other sources, it is important to note which
convention is being followed.

Our goal in this chapter is to develop an expression for molecular contact
forces that we can use in the momentum balance on a control volume. We seek
to represent all of the possible molecular contact forces that may be present in a
moving fluid. We developed such an expression, Equation 4.263, repeated here:

Molecular fluid tension
on a submerged surface

of area �A
with unit normal n̂
(Gibbs notation)

f
∣∣∣∣
�A

= �A
[
n̂ · �̃

]∣∣∣
�A (4.277)
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Tension on
a surface of area �A
with unit normal n̂
(matrix notation)

f
∣∣∣∣
�A

= �A
(

n1 n2 n3
)

123
·
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

(4.278)

Equation 4.277 gives the force on a small surface �A in a flowing fluid. The
contact force at a point in a fluid is written in terms of the product of an appropriate
vector stress (n̂ · �̃) and an area (�A). The stress at a point on a particular surface
is calculated from the stress tensor, �̃, which is a convenient mathematical
construct that allows us to calculate the stress on a surface if we know the unit
normal to the surface n̂. Equation 4.277 can be evaluated most easily by using
matrix calculations with the components of n̂ and �̃ when they are written in
Cartesian or other convenient coordinate systems. As yet, we do not know how
to obtain �̃ for a flow of interest; this is addressed in Chapter 5.

The expression in Equation 4.277 for force on a surface is applicable only to
infinitesimal surfaces. If the surface �A is too large, then the unit normal vector
n̂ and the stress tensor �̃ may vary for different locations within �A. We can
calculate force on a surface of finite size by applying Equation 4.277 to small
pieces of the surface of interest and summing the forces on the various pieces.
We addressed this type of sum over a surface in Chapter 3; the result is a surface
integral. If we divide a surface into small tangent planes �Si at various points on
the surface (see Figure 3.30), we can write the force due to the fluid at one piece
of the wall tangent plane �Si using Equation 4.277:

Molecular fluid force
on surface �Si

with unit normal n̂
at Point (xi , yi , zi )

f
∣∣∣∣
�Si

= [n̂ · �̃](xi yi zi )
�Si (4.279)

where �̃ is the total stress tensor and [n̂ · �̃]xi yi zi
is the stress on �Si at xi , yi , zi .

To obtain the force on an entire finite surface S , we sum all of the pieces that
comprise the surface and take the limit as �S = �A/(n̂ · êz) → 0 (see web
Appendix [108]). The result is a two-dimensional surface integral:

Total molecular fluid force
on a finite surface S =

N∑
i=1

f
∣∣∣∣
�Si

(4.280)

=
N∑

i=1

[
n̂ · �̃

]
(xi yi zi )

�Si (4.281)

= lim
�A−→0

[
N∑

i=1

[
n̂ · �̃](xi yi zi )

n̂i · êz
�Ai

]
(4.282)

=
∫∫

R

[
n̂ · �̃]at surface

n̂ · êz
d A (4.283)

=
∫∫

S

[
n̂ · �̃]at surface d S (4.284)
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Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.285)

These steps come directly from calculus and are similar to the development of
the convective term in the Reynolds transport theorem (see Equation 3.129).

The stress tensor is a powerful tool. For beginners, the key relationships are:
Equation 4.277; the matrix version of that equation given in Equation 4.261; and
Equation 4.285 for force on a finite surface. The power of the tensor notation
is that all we need is the unit normal to a surface and, through simple matrix
calculations, the force due to the fluid is predicted by Equation 4.261 or for a
finite surface by Equation 4.285. The use of tensors simplifies a complex situation
to straightforward matrix manipulations. The following is an example of how to
calculate force on a finite surface in a simple flow.

EXAMPLE 4.17. A Newtonian fluid is placed between two long, wide plates. The
top plate is made to slide at a constant speed in the x1–direction of the coordinate
system shown (Figure 4.49). What is the force needed to move the plate? The
stress tensor �̃ for the flow is given here (see Chapter 5 for the discussion of how
to obtain the stress tensor for this flow):

�̃ =
⎛
⎝ 0 γ̇0x2 0

γ̇0x2 0 0
0 0 0

⎞
⎠

123

(4.286)

SOLUTION. The quantity γ̇0 in Equation 4.286 (read as “gamma-dot-naught”)
is a constant called the shear rate, which is a quantity that characterizes the
intensity of the deformation produced by the flow. The total fluid force on a finite
surface is given by Equation 4.285.

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.287)

We are interested in the force on the top plate of our flow cell, and this plate
touches the top of the fluid. In the chosen coordinate system, the fluid surface of
interest is a plane in the fluid at uniform position x2 = B with constant unit normal

x1
x3

x2

Figure 4.49 Fluid is deformed between two long, wide plates separated by a gap B. The top plate moves at a constant speed
to the right. We seek to calculate the force needed to move the plate with this motion.
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ˆn̂ = −e2. Making these substitutions into Equation 4.287, we can calculate the
force:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃

]
at surface d S (4.288)

=
∫ L

0

∫ W

0

[− ê2 · �̃
]

x2=B dx3dx1 (4.289)

F =
∫ L

0

∫ W

0

(
0 −1 0

)
123

·
⎛
⎝ 0 γ̇0 B 0

γ̇0 B 0 0
0 0 0

⎞
⎠

123

dx3dx1 (4.290)

=
∫ L

0

∫ W

0

(−γ̇0 B 0 0
)

123
dx3dx1 (4.291)

F =
⎛
⎝−γ̇0 BLW

0
0

⎞
⎠

123

ˆ= −γ̇0 BLW e1 (4.292)

The final calculated force on the wall by the fluid is in the negative 1-direction
of magnitude F = Fx = BLW γ̇0. To overcome the fluid force, a force of equal
magnitude in the positive 1-direction must be applied to the plate.

4.3.2 Isotropic and anisotropic stress

It is useful to separate molecular fluid stresses into two categories: isotropic
and anisotropic. When stress is isotropic at a point, the same magnitude of
stress is exerted on any surface through the point and the stress always acts
normally to the surface. In moving fluids, the molecular stress is not isotropic;
rather, shear stresses—which are anisotropic stresses—are usually present, along
with isotropic and anisotropic normal stresses. When stress is anisotropic, there
are different values of stress on different surfaces through a chosen point, and
anisotropic stresses are not limited to acting normally to the surface. Anisotropic
molecular stresses are related straightforwardly to velocity gradients in a flow
(see Chapter 5). In preparation for that discussion, we separate the isotropic and
anisotropic parts of the stress tensor �̃ into two pieces.

To separate the isotropic part of �̃ from the anisotropic part, we simply subtract
the isotropic part. The isotropic part of �̃ is easy to identify because it must be
independent of surface orientation and always must act normally to any surface
through a point. In terms of the components of the stress tensor �̃, the normal
stresses are on the diagonal, �̃11, �̃22, and �̃33. For a stationary fluid, we know
that the normal stresses at a point are equal to one another and have a value of
−p. Thus, for a stationary fluid, we can write:

Total stress tensor
(stationary fluid)

�̃ =
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠

123

(4.293)

�̃ = −pI (4.294)

Recall from linear algebra that I is the identity tensor.
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Equation 4.293 is a general expression for an isotropic stress in both stationary
and moving fluids. It may seem odd to arrive at this expression by considering
only one special coordinate system, the reference Cartesian system. We expect
the stress tensor �̃ to describe the stress on any surface, not only the reference
surfaces with unit normals ê1, ê2, and ê3. In fact, Equation 4.293 expresses the
meaning we intend, the fact that pressure is isotropic and always acts normally no
matter which surface is chosen, and we can show this by making a simple matrix
calculation.

EXAMPLE 4.18. Show that writing the total stress tensor at a point as �̃ = −pI ,
where p is pressure, implies that the stress acts equally in all directions and acts
normally to any chosen surface at that point. I is the identity tensor.

I =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

123

(4.295)

�̃ =
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠

123

= −pI (4.296)

SOLUTION. Let n̂ be a unit normal vector to an arbitrary surface at the point of
interest. As described in the previous section (Equation 4.263), we can calculate
force on a surface of area �A with unit normal n̂ by matrix multiplying n̂ with
�̃:

Tension on
a surface of area �A
with unit normal n̂
(Gibbs notation)

f
∣∣∣∣
�A

= �A
[
n̂ · �̃

]∣∣∣
�A (4.297)

For �̃ given in Equation 4.296 and n̂ written in the 123-coordinate system, we
calculate the stress vector at the point of interest:

f

�A
= n̂ · �̃ (4.298)

= (n1 n2 n3
)

123
·
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠

123

= − (n1 p n2 p n3 p
)

123

= −p
(

n1 n2 n3
)

123

= −pn̂

Thus, we see that, for �̃ = −pI , f /�A = −n̂ p; that is, the stress vector for
any n̂ is parallel to n̂ of magnitude p. Thus, for the stress tensor given, the stress
vector is stress normal to the surface and of a magnitude equal to the pressure,
no matter which surface is chosen.
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From the previous example, we see that the pressure contribution to the stress
tensor may be written as a diagonal tensor −pI . Thus far, we considered pressure
in the context of stationary fluids; there also is a pressure contribution to the stress
in flowing fluids. However, pressure is not the only stress in flowing fluids; neither
is pressure the only normal stress in flowing fluids. In moving fluids, in addition
to the isotropic normal stresses, −pI , there are anisotropic stresses, that is off-
diagonal elements of �̃ and unequal diagonal terms in �̃.

To separate the isotropic normal stresses from the anisotropic stresses, we
choose to subtract the pressure contribution from the total stress tensor �̃ and
define a new stress tensor, called the extra stress tensor τ̃ .

τ̃ =
⎛
⎝ τ̃11 τ̃12 τ̃13

τ̃21 τ̃22 τ̃23

τ̃31 τ̃32 τ̃33

⎞
⎠

123

(4.299)

≡
⎛
⎝ �̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎠

123

−
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠

123

(4.300)

Extra stress
tensor

defined
τ̃ =

⎛
⎝ �̃11 + p �̃12 �̃13

�̃21 �̃22 + p �̃23

�̃31 �̃32 �̃33 + p

⎞
⎠

123

(4.301)

τ̃ = �̃ + pI (4.302)

Like the total stress tensor �̃, the extra stress tensor τ̃ is symmetric, and there
are six components of τ̃ that characterize the stress at a point: the three normal
stresses, τ̃11, τ̃22, τ̃33; and the three shear stresses, τ̃21 = τ̃12, τ̃31 = τ̃13, τ̃32 = τ̃23.

We have accomplished much in our quest to write molecular stress on a control
volume. We know that molecular tension f on a surface �A is given by:

Molecular fluid force
on a surface
of area �A

with unit normal n̂

f
∣∣∣∣
�A

= �A
[
n̂ · �̃

]∣∣∣
�A (4.303)

where n̂ is the unit normal to the surface and �̃ is the total stress tensor. For a
finite surface S, we also know that:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃

]
at surface d S (4.304)

In any problem we tackle, we choose the control volume and, therefore, we know
the area on which we are calculating molecular stress and the associated n̂ for
that area. The only missing ingredient is �̃. Thus far, we still do not know the
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nine �̃i j , but we know that �̃ is symmetric, and we have seen how to separate
out the pressure contribution −pI from the anisotropic contribution τ̃ :

Stress tensor �̃ = τ̃ − pI (4.305)

We can see the power and organization of �̃ and Equations 4.303 and 4.304 in
the trial calculations that follow.

EXAMPLE 4.19. When we study stationary fluids at the beginning of this chapter,
we calculated the buoyancy effect on a sphere submerged in a fluid of density ρ

(see Figure 4.23, Example 4.6). Reexamine this problem using the stress tensor
�̃ to obtain the stress expressions needed.

SOLUTION. In the previous solution to the problem of calculating the fluid force
on a sphere submerged in a liquid, we did not have the stress tensor to work with
and we had to carefully reason the role of pressure. Now that we have introduced
the stress tensor and have calculated it for stationary fluids (Equation 4.293), we
can calculate the force on the sphere surface directly from Equation 4.304.

Total stress tensor
(stationary fluid)

�̃ =
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠

123

= −pI (4.306)

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.307)

We are calculating the fluid force on a sphere. The unit normal at every location
on the sphere surface is êr at that location. For a static fluid, the stress tensor
at every location in the fliud is �̃ = −pI , where p is a function of elevation
due to the hydrostatic effect. To solve the problem, we form the dot product in
Equation 4.307 and carry out the integration on the surface of the sphere:

[
n̂ · �̃

]∣∣∣
r=R =

⎡
⎢⎣(1 0 0

)
rθφ

·
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠

rθφ

⎤
⎥⎦
∣∣∣∣∣∣∣∣∣∣
r=R

(4.308)

= ( −p|R 0 0
)

rθφ
(4.309)

We can directly carry out this matrix multiplication because both vectors are
written in the same orthonormal coordinate system; now we substitute the result
into Equation 4.307.

Total molecular fluid force
on a submerged sphere

F =
∫∫

S

[
n̂ · �̃]r=R d S (4.310)

=
∫ 2π

0

∫ π

0

⎛
⎝ −p|R

0
0

⎞
⎠

rθφ

R2 sin θdθdφ

(4.311)
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The pressure is a function of elevation due to the hydrostatic effect; we previously
worked out the function for p(θ) using geometry (see Equation 4.112):

p|R = ρg (H0 − R cos θ) (4.312)

where H0 is the distance from the fluid surface to the center of the sphere.
Combining this result with Equation 4.311, we obtain:

Total fluid force
on a sphere

in static fluid
F = R2

∫ 2π

0

∫ π

0

⎛
⎝−ρg (H0 − R cos θ)

0
0

⎞
⎠

rθφ

sin θdθdφ

(4.313)

This is the same equation we obtained in the earlier example, and the steps to
the final result are given there (see Equation 4.117 and the equations that follow).
We see that the stress tensor makes it straightforward to set up the calculation of
forces on surfaces in fluids.

EXAMPLE 4.20. A cup-and-bob apparatus is widely used to measure viscosities
for fluids. For the apparatus in Figure 4.50, what is the torque needed to turn the
inner cylinder (called the bob) at an angular speed of �? The stress tensor �̃

for the flow is given here (see Chapter 6 for discussion of how to calculate the

R2

R1

r

z

axis of
rotation

θ

Ω

Ω

Figure 4.50 Fluid is placed in the gap between two concentric cylinders. The inner cylinder (i.e., the bob) is made to turn at an
angular speed of �; the outer cylinder (i.e., the cup) remains stationary. We seek to calculate the torque needed to
move the bob with the proscribed motion.
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stress tensor for this flow):

�̃ =

⎛
⎜⎝

0 μr d f
dr 0

μr d f
dr 0 0

0 0 0

⎞
⎟⎠

rθ z

(4.314)

where f = vθ

r = α�
(

1 − R2
2

r2

)
and α =

(
R2

1

R2
2

)
/
(

R2
1

R2
2
− 1
)

. (The effect of pres-

sure has been neglected).

SOLUTION. We are interested in the total torque exerted by the fluid on the inner
cylinder, which has a radius of R1. Torque is the vector expressing the amount of
effort needed to produce a rotation in a body; the definition of torque is the cross
product of lever arm and the force [167]. We calculate the torque on the entire
bob beginning with the torque generated by the force on an infinitesimal surface
in contact with the fluid (see also Section 6.2.3.2).

Molecular fluid force
on surface �Si

with unit normal n̂
at point (xi , yi , zi )

f
∣∣∣∣
�Si

= [n̂ · �̃
]

(xi yi zi )
�Si (4.315)

On a small piece of the surface of the inner cup (surface at r = R1 with unit
normal n̂ = êr ), the stress is given by �̃ over an area R1dθdz; thus, the torque is:

dT = (lever arm) × (force) (4.316)

= (lever arm) × [n̂ · �̃]�S �S (4.317)

ˆ= (R1er ) × ( êr · �̃|r=R1
R1dθdz

)
(4.318)

=

⎛
⎜⎝

R1

0

0

⎞
⎟⎠

rθ z

×

⎛
⎜⎜⎜⎝

0[
μr d f

dr

]∣∣∣∣
r=R1

(R1dθdz)

0

⎞
⎟⎟⎟⎠

rθ z

(4.319)

=

⎛
⎜⎝

0

0

2μα�R2
2dθdz

⎞
⎟⎠

rθ z

(4.320)

where the dot product êr · �̃ was evaluated using Equation 4.314 and the cross
product using Equation 1.182. The total torque on the bob is this quantity inte-
grated over the entire bob surface (see Section 6.2.3.2):

T =
∫ L

0

∫ 2π

0

⎛
⎜⎝

0

0

2μα�R2
2

⎞
⎟⎠

rθ z

dθdz (4.321)

=
∫ L

0

∫ 2π

0
ˆ2μα�R2

2ezdθdz (4.322)
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ˆ

ˆ

Because all of the quantities in the integral are constant, including the basis vector
ez , the integration is straightforward:

T = 4π R2
2 Lμα�ez (4.323)

T =

⎛
⎜⎝4π R2

1 Lμ�

R2
1

R2
2
− 1

⎞
⎟⎠ êz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

4π R2
1 Lμ�

R2
1

R2
2

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

(4.324)

The result is a clockwise fluid torque (since the inner radius/outer radius < 1);
the negative of this result is the counterclockwise torque that must be applied
to the bob to produce the flow in the gap between the two cylinders. Measurement
of the torque and rotational speed � for an apparatus of known geometry (known
R1 and R2) allows us to determine the viscosity of the fluid in the gap.

ˆ
EXAMPLE 4.21. What is the force on an airfoil subjected to a uniform flow
v = Uex (Figure 4.51)? To make this calculation, numerical results for the stress
field �̃ as a function of position (x, y, z) are available. Also, the shape and
orientation of the airfoil are given.

SOLUTION. The techniques in this textbook lead to equations that can be
solved numerically for �̃(x, y, z) for flows such as the one discussed here. Once
the stress field is known, it often is our goal to calculate a concrete engineering
quantity such as the net force on the airfoil. The force vector on an airfoil in a
flow reveals the drag and the lift that the airfoil experiences (see Chapter 8):

Drag =

⎛
⎜⎜⎜⎝

Component of force
on an object
parallel to

the incident flow direction

⎞
⎟⎟⎟⎠ (4.325)

Lift =

⎛
⎜⎜⎜⎝

Component of force
on an object

normal to
the incident flow direction

⎞
⎟⎟⎟⎠ (4.326)

f =
⎛
⎝Fdrag

Flift

0

⎞
⎠

xyz

(4.327)

The y-direction has been chosen to be parallel to the direction of lift.

y

V = Uêx

x

Figure 4.51 Uniform flow approaches the airfoil from the left. The flow splits as it moves around the object.
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To calculate the force on the airfoil, we must implement the integral in Equa-
tion 4.304 over the airfoil surface:

Total molecular fluid force
on a surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.328)

The integral is carried out numerically. To revert Equation 4.328 to a form that
may be carried out numerically, we go back to the steps used in this chapter to
develop this integral, ending with Equation 4.282:

Total molecular fluid force
on airfoil

f =
⎛
⎝Fdrag

Flift

0

⎞
⎠

xyz

(4.329)

=
N∑

i=1

f
∣∣∣∣
�Si

(4.330)

=
N∑

i=1

[
n̂ · �̃

]
(xi yi zi )

�Si (4.331)

= lim
�A−→0

[
N∑

i=1

[
n̂ · �̃](xi yi zi )

n̂i · êz
�Ai

]
(4.332)

Thus, to calculate f on the airfoil, for each point (xi yi zi ) located on the surface
of the airfoil, we carry out the following calculations:

1. Calculate the outwardly pointing unit vector n̂|i at the point.
2. Calculate the dot product of n̂|i with the value of �̃ at the point.
3. Calculate the area �Ai of the airfoil surface that is associated with the

point. The value of �Ai depends on how close together the points (xi yi zi )
are available.

4. Calculate the sum in Equation 4.332.
5. Confirm that the chosen �Ai are sufficiently small for the results to be

accurate. This is usually accomplished by carrying out multiple calculations
with successively smaller �Ai until the size of this area has no effect on
the calculated answer (i.e., mesh refinement; see Chapter 10).

Numerical simulators available commercially [27] have built-in routines that
can make these calculations. In that case, it is sufficient for the user of the software
to understand which integration is needed to address the question at hand.

In this chapter, we develop a powerful tool, the stress tensor. The stress tensor
is an entity that allows us to calculate the force on a small surface in a fluid or,
with integration, the force on a finite surface in a fluid:

Fluid force on
a flat surface of area �A

with unit normal n̂
f = �A

[
n̂ · �̃]∣∣∣

�A (4.333)

www.20file.org

http://www.semeng.ir


310 An Introduction to Fluid Mechanics

123333231

232221

131211

123333231

232221

131211

~~~

~~~

~~~

~~~

~~~

~~~

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ΠΠΠ
ΠΠΠ
ΠΠΠ

p

p

p

τττ
τττ
τττ

Tension Stress Tensor in Flow

• Molecular contact stress 

• Symmetric; i.e., kiik Π=Π ~~
, mppm ττ ~~ =

• jnΠ~  is stress on a j-surface in the n-direction 

• Infinitesimal surface:  Π⋅Δ= ~
n̂Af

• Finite surface:  

Ip−=Π τ~~

Figure 4.52 The stress tensor in matrix form can be used to calculate the tension on a surface in a flow.

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.334)

The stress tensor may be thought of as composed of an isotropic part −pI and
an anisotropic part τ̃ , both of which are a function of velocity in a moving fluid

(Figure 4.52). In a stationary fluid, there is no anisotropic part ( τ̃
∣∣∣∣
stationary

= 0)

and �̃|stationary = −pI . To proceed to modeling moving fluids from this point,
we need the components of τ̃ as a function of velocity (see Chapter 5).

To see the progress made in the development of problem-solving methods, we
return to the two unfinished problems in Chapter 3—flow down an inclined plane
and flow in a right-angle bend—and see how the stress-tensor components figure
into them. Section 4.4 addresses a related but independent fluid-stress subject:
free-surface molecular-stress effects, including surface tension.

EXAMPLE 4.22 (Incline, continued). What is the velocity field in a wide, thin
film of water that runs steadily down an inclined surface under the force of
gravity? The fluid has a constant density ρ.

SOLUTION. We began this problem in Chapter 3, and the geometry is shown
in Figure 4.53. After choosing a coordinate system, we chose a rectangular solid
shape of volume �x�y�z as the control volume (Figure 4.54). To solve for the
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g

β
fluidair

v

x

z

H

Figure 4.53 The idealized version of flow down an incline is a film of constant thickness where the velocity is everywhere in
the same direction but varies in magnitude with position in the film. We seek to calculate the velocity as a function
of position relative to the wall (i.e., as a function of x ).

velocity field, we applied the momentum balance to this CV:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (4.335)

For steady flow, the rate of accumulation of momentum in the CV is zero
(dP/dt = 0). As discussed in Chapter 3, for steady, unidirectional flow, the net
outflow of momentum from the control surface (the integral in Equation 4.335) is
zero. There are two types of forces that we identified as acting on the CV: gravity

 x 

 z 

xx Δ+

x
z

zz Δ+

 y 

y

yy Δ+

β

v

 x 

 z 

Figure 4.54 The control volume we chose for this problem is a microscopic parallelepiped of volume �x �y�z. It is located
at an arbitrary location x yz within the flow. By choosing this type of control volume, we can derive the differential
equations that relate fluid stresses.
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xx Δ+

x
z

zz Δ+

y

yy Δ+
zxxxz ê

Δ+
Π

)ˆ( zxxz e−Π

)ˆ( xxxx e−Π

xxxxx ê
Δ+

Π
x

z
y

Figure 4.55 The molecular forces in the inclined flow problem are analogous to the forces that previously acted on a block
sliding down an incline studied. All stress components are positive when there is a pull (i.e., tension) in the positive
k-direction.

(noncontact) and molecular (contact) forces. Thus, as we showed in Chapter 3,
the momentum balance for this problem becomes:

0 =
∑

on
CV

f (4.336)

= �x�y�z

⎛
⎝−ρg sin β

0
ρg cos β

⎞
⎠

xyz

+

⎛
⎜⎜⎜⎝

molecular
sliding
forces
on CV

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

molecular
normal
forces
on CV

⎞
⎟⎟⎟⎠ (4.337)

We are now in a position to write the two molecular-force contributions in terms
of �̃.

When identifying the molecular forces in this example, we take inspiration
from the sliding-block example discussed in Chapter 3. In that situation, as in
this problem, there was a downward pull due to gravity. The surface of the incline
imposed a retarding frictional force and an upward, supporting normal force
on the block; in the current flow example, we see that the situation is similar.
Tangential frictional forces act on the top and the bottom of the CV (Figure 4.55).
The layers of fluid above the CV are sliding past the top, like a block sliding
down an inclined plane. These forces act in the z-direction on the top control
surface, which is a surface with unit normal êx . In the stress tensor written in our
coordinate system, the stress in the flow direction on this surface is the component
�̃xz evaluated at the top surface. The top surface is at location x + �x and has
an area of �y�z. The force on the top surface due to sliding is then:⎛

⎜⎜⎜⎝
molecular

sliding force
on top of CV
z-component

⎞
⎟⎟⎟⎠ =

⎡
⎣( force

area

)
(area)

⎛
⎝unit vector

indicating
direction

⎞
⎠
⎤
⎦
∣∣∣∣∣∣∣∣∣
top

(4.338)

= �̃xz

∣∣∣
x+�x �y�z êz (4.339)

= τ̃xz|x+�x �y�z êz (4.340)
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For shear terms, �̃i j = τ̃i j ; the only differences between �̃ and τ̃ occur in the
normal stress terms along the diagonal (see Equation 4.301).

This way of arriving at the molecular friction forces on the top of the CV relies
on thought and evaluation. We also can arrive at this result by automatically
applying Equation 4.263, which is repeated here:

Force on a surface
of area �A

with unit normal n̂
f
∣∣∣∣
�A

= �A [n̂ · �̃]|�A (4.341)

For the top control surface, n̂ = êx and �A = �y�z. We write �̃ in matrix form
and then simplify the calculation:⎛
⎝ molecular

sliding force
on top of CV

⎞
⎠ = [

�A n̂ · �̃
]∣∣∣

x+�x (4.342)

= �y�z êx · �̃∣∣∣x+�x (4.343)

= �y�z
(

1 0 0
)

xyz
·

⎛
⎜⎝

�̃xx �̃xy �̃xz

�̃yx �̃yy �̃yz

�̃zx �̃zy �̃zz

⎞
⎟⎠

xyz

∣∣∣∣∣∣∣∣∣∣∣∣
x+�x

(4.344)

= �y�z
(
�̃xx �̃xy �̃xz

)
xyz

∣∣∣∣
x+�x

(4.345)

= �y�z

⎛
⎜⎜⎜⎝

�̃xx

∣∣∣
x+�x

�̃xy

∣∣∣
x+�x

�̃xz

∣∣∣
x+�x

⎞
⎟⎟⎟⎠

xyz

(4.346)

We write this result in terms of the components of τ̃ by writing �̃ = τ̃ − pI :

⎛
⎝ molecular

sliding force
on top of CV

⎞
⎠ = f

top
= �y�z

⎛
⎜⎝

τ̃xx |x+�x − p|x+�x

τ̃xy

∣∣∣
x+�x

τ̃xz|x+�x

⎞
⎟⎠

xyz

(4.347)

The z-component of Equation 4.347 is the result obtained in Equation 4.340.
The x- and y-components of Equation 4.347 are force components that have
not yet been considered. They are the forces on the top of the CV in the x-
and y-directions. The matrix calculation shows how pressure enters the problem
for this surface—pressure is a normal force that adds to the other normal-force
component on this surface, τ̃xx . The mathematics conveniently guides us to
include these terms.

To write all of the molecular forces on the CV, we must carry out the equivalent
calculation (Equation 4.341) for each of the remaining five surfaces of the CV.
The calculations can be made systematically, as shown in Table 4.3 and as follows:

f
kth side

= [
�A n̂ · �̃

]∣∣∣
kth side (4.348)
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Table 4.3. The molecular stresses acting on the chosen control volume calculated individually
for six sides

Side n̂ �A n̂ · �̃ Simplified

Top êx �y�z

⎛
⎝ τ̃x x − p

τ̃x y

τ̃x z

⎞
⎠

x yz

∣∣∣∣∣∣∣∣∣∣
x +�x

⎛
⎝ −p|x +�x

0
τ̃x z

∣∣∣
x +�x

⎞
⎠

x yz

Bottom ˆ−ex �y�z −
⎛
⎝ τ̃x x − p

τ̃x y

τ̃x z

⎞
⎠

x yz

∣∣∣∣∣∣∣∣∣∣
x

⎛
⎝ p|x

0
−τ̃x z

∣∣∣
x

⎞
⎠

x yz

Neutral(1) ê y �x �z

⎛
⎝ τ̃yx

τ̃yy − p
τ̃yz

⎞
⎠

x yz

∣∣∣∣∣∣∣∣∣∣
y+�y

⎛
⎝ 0

−p|y+�y

0

⎞
⎠

x yz

Neutral(2) ˆ−ey �x �z −
⎛
⎝ τ̃yx

τ̃yy − p
τ̃yz

⎞
⎠

x yz

∣∣∣∣∣∣∣∣∣∣
y

⎛
⎝ 0

p|y

0

⎞
⎠

x yz

Downstream êz �x �y

⎛
⎝ τ̃zx

τ̃zy

τ̃zz − p

⎞
⎠

x yz

∣∣∣∣∣∣∣∣∣∣
z+�z

⎛
⎝ τ̃zx

∣∣∣
z+�z
0

−p|z+�z

⎞
⎠

x yz

Upstream ˆ−ez �x �y −
⎛
⎝ −τ̃zx

τ̃zy

τ̃zz − p

⎞
⎠

x yz

∣∣∣∣∣∣∣∣∣∣
z

⎛
⎝ τ̃zx

∣∣∣
z

0
p|z

⎞
⎠

x yz

Note: Also shown are the same terms simplified by knowledge of the stress-velocity constitutive equation
(see Chapter 5).

We now substitute these expressions back into the momentum balance, Equa-
tion 4.337:

0 =
∑

on
CV

f (4.349)

=
⎛
⎝gravity

force
on CV

⎞
⎠+

⎛
⎝ molecular

sliding forces
on CV

⎞
⎠+

⎛
⎝ molecular

normal forces
on CV

⎞
⎠ (4.350)

= f
gravity

+
6∑

k=1

f
kthside

(4.351)

= �x�y�z

⎛
⎝−ρg sin β

0
ρg cos β

⎞
⎠

xyz

+ �y�z

⎛
⎜⎝

τ̃xx |x+�x − p|x+�x

τ̃xy

∣∣∣
x+�x

τ̃xz|x+�x

⎞
⎟⎠

xyz

− �y�z

⎛
⎜⎝

τ̃xx |x − p|x

τ̃xy

∣∣∣
x

τ̃xz|x

⎞
⎟⎠

xyz

+ �x�z

⎛
⎜⎜⎜⎝

τ̃yx

∣∣∣
y+�y

τ̃yy

∣∣∣
y+�y − p|y+�y

τ̃yz

∣∣∣
y+�y

⎞
⎟⎟⎟⎠

xyz

− �x�z

⎛
⎜⎜⎜⎝

τ̃yx

∣∣∣
y

τ̃yy

∣∣∣
y − p|y

τ̃yz

∣∣∣
y

⎞
⎟⎟⎟⎠

xyz
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+ �x�y

⎛
⎜⎝

τ̃zx |z+�z

τ̃zy

∣∣∣
z+�z

τ̃zz|z+�z − p|z+�z

⎞
⎟⎠

xyz

− �x�y

⎛
⎜⎝

τ̃zx |z
τ̃zy

∣∣∣
z

τ̃zz|z − p|z

⎞
⎟⎠

xyz

(4.352)

This is a complex expression, but it is systematic. We simplify this momentum
balance by combining like terms, dividing through every term by the volume
�x�y�z, and rearranging:

0 =
⎛
⎝−ρg sin β

0
ρg cos β

⎞
⎠

xyz

+ 1

�x

⎛
⎜⎝

τ̃xx |x+�x − τ̃xx |x

τ̃xy

∣∣∣
x+�x − τ̃xy

∣∣∣
x

τ̃xz|x+�x − τ̃xz|x

⎞
⎟⎠

xyz

− 1

�x

⎛
⎜⎝

p|x+�x − p|x

0

0

⎞
⎟⎠

xyz

+ 1

�y

⎛
⎜⎜⎜⎝

τ̃yx

∣∣∣
y+�y − τ̃yx

∣∣∣
y

τ̃yy

∣∣∣
y+�y − τ̃yy

∣∣∣
y

τ̃yz

∣∣∣
y+�y − τ̃yz

∣∣∣
y

⎞
⎟⎟⎟⎠

xyz

− 1

�y

⎛
⎜⎝

0

p|y+�y − p|y

0

⎞
⎟⎠

xyz

+ 1

�z

⎛
⎜⎝

τ̃zx |z+�z − τ̃zx |z
τ̃zy

∣∣∣
z+�z − τ̃zy

∣∣∣
z

τ̃zz|z+�z − τ̃zz|z

⎞
⎟⎠

xyz

− 1

�z

⎛
⎜⎝

0

0

p|z+�z − p|z

⎞
⎟⎠

xyz

(4.353)

We can split this vector equation into three components in the x-, y-, and
z-directions. We begin with the x-component:

0 = −ρg sin β +
(

τ̃xx |x+�x − τ̃xx |x

�x

)
−
(

p|x+�x − p|x

�x

)

+
(

τ̃yx

∣∣∣
y+�y − τ̃yx

∣∣∣
x

�y

)
+
(

τ̃zx |z+�z − τ̃zx |z
�z

)
(4.354)

If we now take the limits as �x , �y, and �z go to zero, we see that the expressions
in parentheses in Equation 4.354 are equal to first derivatives (see Equation 1.138):

ρg sin β = lim
�x−→0

[
τ̃xx |x+�x − τ̃xx |x

�x

]
− lim

�x−→0

[
p|x+�x − p|x

�x

]

+ lim
�y−→0

[
τ̃yx

∣∣∣
y+�y − τ̃yx

∣∣∣
y

�y

]
+ lim

�z−→0

[
τ̃zx |z+�z − τ̃zx |z

�z

]
(4.355)

ρg sin β = ∂τ̃xx

∂x
− ∂p

∂x
+ ∂τ̃yx

∂y
+ ∂τ̃zx

∂z
(4.356)

x-component,
momentum

balance
0 = −∂p

∂x
+
[
∂τ̃xx

∂x
+ ∂τ̃yx

∂y
+ ∂τ̃zx

∂z

]
− ρg sin β (4.357)
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The result is a differential equation in terms of the stress components τ̃xx , τ̃xx ,
τ̃xx , and the pressure p. We arrive at analogous expressions for the y- and z-
components of the momentum balance by following similar steps:

y-component,
momentum

balance
0 = −∂p

∂y
+
[
∂τ̃xy

∂x
+ ∂τ̃yy

∂y
+ ∂τ̃zy

∂z

]
(4.358)

z-component,
momentum

balance
0 = −∂p

∂z
+
[
∂τ̃xz

∂x
+ ∂τ̃yz

∂y
+ ∂τ̃zz

∂z

]
+ ρg cos β (4.359)

By writing the stresses in terms of the components of the stress tensor
�̃ jm = τ̃ jm − pI , we progress from a word-equation balance of momentum in
Equation 4.337 to three partial differential equations. Our goal is to solve for the
velocity field. To proceed further, we must find out how the stress components
are related to the velocity field v. This subject was studied many years ago by
several scientists, including Isaac Newton (1643–1727). In Chapter 5, we discuss
Newton’s results and apply them to finish this example.

The momentum-balance results in Equations 4.357, 4.358, and 4.359 are more
complicated than we were likely to arrive at through an ad hoc procedure of
imagining which stresses act on the various faces of a fluid control volume. The
introduction of the stress tensor made systematic the expression of molecular
stresses. We are now confident that we are properly accounting for the contribu-
tions of molecular forces to the momentum balance. In Chapter 6, we relate these
terms to the velocity and solve the differential equation for velocity and pressure
as a function of position.

The second unfinished example in Chapter 3 used a macroscopic control
volume on the flow in a right-angle bend. We now continue our work on this
problem, using what we know about molecular stress to advance it.

EXAMPLE 4.23 (90 Degree bend, continued). What is the direction and magni-
tude of the force needed to support the 90 degree pipe bend shown in Figure 4.56?
An incompressible (i.e., constant density) liquid enters the pipe at volumetric flow
rate Qa and exits at volumetric flow rate Qb at steady state. The cross section of
the pipe bend is π R2.

SOLUTION. In this problem, we use a control volume that includes all of the fluid
in the 90 degree bend (see Figure 3.36) and perform a momentum balance (see
equation 3.187). The flow is incompressible and at steady state; thus, dP/dt = 0
and Qa = Qb. The average velocity was used in Example 3.10 to quantify the
convection of momentum into and out of the control volume through surfaces
(a) and (b). The forces on the CV were identified as gravity and three molecular
contact forces: the restoring force on the sides R for which we are solving, and
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x

z

v

(a)

(b)

2Rcontrol 
volume 

R

gMf CVgravity
=

v

Figure 4.56 In Chapter 3, we carried out a momentum balance on a macroscopic control volume such as the one outlined with
a dotted line here. In this chapter, we specify the molecular stresses.

the as-yet-unspecified molecular forces on inlet and outlet surfaces (a) and (b).
With these forces included, the momentum balance was found to be:

dP

dt
= −

∫∫
S
(n̂ · v) ρv d S +

∑
on
CV

f (4.360)

0 = −〈v〉2ρπ R2

⎛
⎝−1

0
1

⎞
⎠

xyz

+
∑

on
CV

f (4.361)

= 〈v〉2ρπ R2

⎛
⎝ 1

0
−1

⎞
⎠

xyz

+ MCV

⎛
⎝ 0

0
−g

⎞
⎠

xyz

+
⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

+
⎛
⎝ molecular

force on CV
at (a)

⎞
⎠+

⎛
⎝ molecular

force on CV
at (b)

⎞
⎠ (4.362)

We are now in a position to specify those molecular forces in terms of the stress
tensor �̃ = τ̃ − pI .

The fluid force F on a finite surface S is given by:

Total molecular fluid force
on a surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.363)

We can calculate the molecular forces on the inlet surface (a) and the outlet surface
(b) by applying Equation 4.363 to each surface in turn. The unit normal vectors
of the surfaces (a) and (b) are given in our chosen 90 degree-bend Cartesian
coordinate system by:

n̂|a =
⎛
⎝−1

0
0

⎞
⎠

xyz

n̂|b =
⎛
⎝0

0
1

⎞
⎠

xyz

(4.364)
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ˆ

When we previously worked on this problem, we decided that the variation of the
velocity across the cross section was not of interest and that we would characterize
the velocity by its average value 〈v〉, which is the same at the inlet and at the
outlet. Now we also seek to express the molecular stress in terms of a quantity
averaged over surfaces (a) and (b).

The surface at (a) is a circle, and integration over a circle most easily is
performed in a cylindrical coordinate system. At the (a) surface, we choose for
convenience to carry out the integration in a cylindrical coordinate system rθ z
with the z-direction of the cylindrical system parallel to the x-direction of our 90-
degree-bend Cartesian system. We adopt the z nomenclature to avoid confusion
with the Cartesian z-direction. The outwardly pointing unit normal to (a) in the
chosen cylindrical system is n̂ = −ez:

Total molecular fluid force
on a surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.365)

F |a =
∫ 2π

0

∫ R

0
ˆ−ez · �̃∣∣∣ardrdθ (4.366)

=
∫ 2π

0

∫ R

0
ˆ−ez ·
[
(τ̃ − pI )

]
a

rdrdθ (4.367)

=
∫ 2π

0

∫ R

0
ˆ

(
−ez · τ̃

∣∣∣∣
a

)
rdrdθ +

∫ 2π

0

∫ R

0
( p|a êz) rdrdθ (4.368)

where we have written �̃ = τ̃ − pI and êz ˆ· pI = pe

ˆ

z (see Example 4.18). The
pressure integral is the integral of a constant (i.e., both p and the unit vector
ez = êx are constant); thus, we easily carry out that integral. The extra-stress
integral is more problematic. We cannot carry out the integral with τ̃ until we
know more about τ̃ . We define f

μ
as n̂ · τ̃ at a surface of interest, which allows

us to write the unknown stress integral term as the spatial average of f
μ

:

F |a =
[∫ 2π

0

∫ R

0
ˆ

(
−ez · τ̃

∣∣∣∣
a

)
rdrdθ ˆ

]
+ p|a π R2ex (4.369)

= π R2
〈

f
μ

∣∣∣∣
a

ˆ
〉

+ p|a π R2ex (4.370)

where:

〈
f

μ

∣∣∣∣
b

〉
= 1

π R2

[∫ 2π

0

∫ R

0
ˆ

(
−ez · τ̃

∣∣∣∣
a

)
rdrdθ

]
(4.371)

We revert to using the global Cartesian coordinate system in the pressure term in
Equation 4.370.

For the (b) side, the outwardly pointing unit vector in our Cartesian system
is n̂ = êz; for the cylindrical coordinate system convenient for this integral, we
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choose êz = êz . Thus, we obtain for the (b) surface:

F |b =
∫ 2π

0

∫ R

0
êz ·
[
(τ̃ − pI )

]
b

rdrdθ (4.372)

=
[∫ 2π

0

∫ R

0

(
êz · τ̃

∣∣∣∣
b

)
rdrdθ ˆ

]
− p|b π R2ez (4.373)

= π R2
〈

f
μ

∣∣∣∣
b

ˆ
〉

− p|b π R2ez (4.374)

where: 〈
f

μ

∣∣∣∣
b

〉
= 1

π R2

[∫ 2π

0

∫ R

0

(
êz · τ̃

∣∣∣∣
b

)
rdrdθ

]
(4.375)

Substituting these results into Equation 4.362 yields:

0 = 〈v〉2ρπ R2

⎛
⎝ 1

0
−1

⎞
⎠

xyz

+ MCV

⎛
⎝ 0

0
−g

⎞
⎠

xyz

+
⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

+ π R2
〈

f
μ

∣∣∣∣
a

〉
+ π R2

⎛
⎝ p|a

0
0

⎞
⎠

xyz

+ π R2
〈

f
μ

∣∣∣∣
b

〉
− π R2

⎛
⎝ 0

0
p|b

⎞
⎠

xyz

(4.376)

From this point, we are again stuck. We replaced words in Equation 4.362 with
the stress variables τ̃ and p, and we now see how pressure is accounted for in the
problem. We cannot evaluate the two terms with f

μ
in them without knowing how

τ̃ is related to velocity, especially how τ̃ is related to flow direction. We return
to this example in Chapter 5 after the discussion of stress-velocity constitutive
relationships.

To move forward in our calculations, we need concrete values for the stress
tensor and we must know how stress is related to velocity v. To specify these
required relationships, we must discuss the behavior of molecules in motion.
Different types of fluids with different molecular forces give different functions
τ̃ (v):

Stress-velocity
constitutive equation

(different for different fluids)
τ̃ = f (v) (4.377)

For simple fluids, the stresses τ̃i j and the velocity field vp are connected through
a relationship identified by Newton—the Newtonian constitutive equation—
which is introduced in Chapter 5. As discussed there, the Newtonian constitutive
equation reflects the effects of Brownian motion on momentum transfer among
fluid layers. Because the behavior of many fluids is dominated by Brownian
motion, the random thermal motion associated with all molecules, the Newto-
nian equation is found to be widely applicable—it works for water, oil, solvents,
and even air. The Newtonian constitutive equation relates derivatives of velocity
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to the extra stress components τ̃i j . Once we understand the relationships between
τ̃i j and the velocity components vp, we can substitute these stress functions
into the momentum balance and subsequently solve the balance equations. For
a microscopic CV, the solutions of the balance equations provide the velocity
and stress fields; once we know these, we have complete knowledge of the flow
pattern and the distribution of forces in the flow. For a macroscopic balance, the
solutions of the balance equation provide the missing quantity—often a force
vector or the pressure.

Readers may proceed directly to Chapter 5. Before leaving the subject of
stresses in fluids, we present a discussion of stress-related phenomena that occur
at the interfaces between phases. Near an interface, fluids behave differently than
within a bulk fluid. In Section 4.4, we introduce a new continuum function—
the surface tension—to account for these effects. In some flows, surface tension
enters as a boundary condition. Surface tension also can drive flows, particularly
when the dimensions of the flow are small such as in microfluidics (see Figure 1.5)
[75].

4.4 Free-surface stress effects

Interesting effects occur at fluid-gas interfaces due to the intermolecular attrac-
tions that hold liquids together (see Section 2.7). These attractions act between
neighboring molecules; when a molecule is located deep within the fluid in a
container, it feels attractive pulls from every direction (Figure 2.38).The different
pulls offset one another and the molecule feels a balanced force. At the inter-
face between a liquid and a gas, however, the gas exerts a negligible attractive
force on the liquid molecules at the interface. Molecules at the surface feel the
downward pull of their attraction to the liquid molecules beneath them, but there
is no balancing upward pull from gas molecules above them. Liquid molecules
at the surface are therefore pulled toward the bulk of the liquid, and the surface
layer compresses until the liquid’s natural resistance to compression allows the
interface to attain equilibrium. The state of stress at the interface is different from
that in the bulk and must be treated differently in our continuum model.

In liquid–solid–gas systems, a related phenomenon occurs. For example,
when a liquid is contained in a solid vessel but is open to a gas, the location and
shape of the contact line where solid, liquid, and gas meet are determined by
intermolecular forces (Figure 4.57). The liquid molecules near the liquid–gas
interface experience the same unbalanced forces as described previously. The
liquid molecules in contact with the solid surface experience intermolecular
forces of two types: (1) the attraction of their neighboring liquid molecules; and
(2) either an attraction to or a repulsion from the molecules on the surface of the
solid. If the liquid molecules are attracted to the solid, the contact line will climb
the wall of the container due to these attractions. A balance between the inter-
molecular attractions between liquid and solid molecules and the downward force
due to gravity ultimately determines the location of the contact line. If the liq-
uid molecules are repelled by the solid, the contact line drops below the surface of
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Table 4.4. Surface Tension for Several
Liquids

Liquid σ (dyne/cm)

Water 73

Salt water 75

Soapy water 20-30

Ether 17

Alcohol 23

Carbon tetrachloride 27

Lubricating oil 25-35

Mercury 480

Source: reference [154]

the bulk liquid in the container, and a
balance between intermolecular forces and
gravity again determines the final position
of the contact line. This interfacial effect is
magnified in small tubes or in narrow gaps
where the attraction of a liquid for a solid
surface can cause liquid to climb several
centimeters in height above the bulk-liquid
level (Figure 2.41).

Liquid–gas and liquid–solid–gas inter-
faces occur in engineering flows, and the
effects of surface forces often must be taken
into account. Because free-surface phe-
nomena depend on intermolecular forces,
however, the effect is different for every liq-
uid/gas/solid combination. Our challenge is

to determine how to account for these intermolecular effects within the continuum
model.

The overall effect of the unbalanced molecular forces at an interface can be
modeled with a continuum property known as the surface tension. The unbalanced
forces at a liquid–gas interface make the interface act as if it were covered with
a massless membrane that is in a state of tension. The tension in this imaginary
membrane is expressed as an amount of force per unit length acting along any
line drawn in the interface. This tension/length is given the symbol σ and is called
the surface tension:

Surface tension σ [N/m] (4.378)

Surface tension manifests as a force that acts tangent to the interface and perpen-
dicular to the chosen line [40].

Representative values of surface tension are given in Table 4.4. As shown,
water has a higher surface tension than most other fluids; liquid metals such as
mercury are the exception to this rule [154]. When other molecules are added to
water, the surface tension usually decreases: for example, when soap is added to
water, the surface tension decreases by more than 70 percent. Certain salts slightly

contact 
line 

gas 

liquid 

so
li

d

Figure 4.57 When a solid, liquid, and a gas meet, the intermolecular forces between the solid and the liquid and between the
liquid and the gas are not usually the same. Thus, liquid molecules have a preference for being in contact with
either the solid or the gas. The differences in intermolecular attractions between the phases cause the surface to
curve as shown.

www.20file.org

http://www.semeng.ir


322 An Introduction to Fluid Mechanics

increase the surface tension of water. Surface tension decreases with increasing
temperature for all liquids.

To use the surface tension σ in making calculations, we apply the idea of
the interface as a massless membrane in a state of tension. When performing
momentum balances on control volumes that intersect a fluid interface, surface
tension acts along the closed line of intersection of the interface with the sur-
face of the control volume. This method can be illustrated with the following
examples.

EXAMPLE 4.24. What is the pressure inside a spherical water droplet in air
(Figure 4.58)? What is the pressure difference across interfaces when the shape
is not spherical?

SOLUTION. Consider the momentum balance on a control volume that consists
of half of the droplet (see Figure 4.58). Because the droplet is motionless (v = 0,
P = 0), the sum of the forces on the CV is zero. The forces on the CV are gravity,
molecular-contact forces, and surface-tension forces. In this analysis, we neglect
the pull of gravity:

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f
Reynolds transport theorem
(momentum balance on CV)

(4.379)

0 =
∑

on
CV

f (4.380)

0 = f
gravity

+ f
surface

+ f
σ

(4.381)

pin pout

θσ ΔR
φ

θ z

r
x

y

R

Figure 4.58 A water droplet in air has a higher pressure inside compared to outside due to the surface tension. We can calculate
the pressure difference by considering the forces on a control volume consisting of half of the spherical droplet.
The surface tension acts like a force along the rim and the pressure acts normally to the control-volume surface at
every point.
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r dr
θ

θd

x

y
drθrd

Figure 4.59 The surface element for the calculation of the force on the flat circular surface of the control volume is shown here.
The cylindrical coordinate system is used.

The molecular force on a CV is evaluated by calculating the net force on all of
the surfaces that enclose it. The surface forces on the chosen hemispherical CV
can be calculated in two pieces: force on the flat surface, f

f lat
, and force on the

hemispherical surface, f
hemisph

. The integral for force on a finite surface S is:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃]at surface d S (4.382)

ˆ

We begin with f
f lat

, the force on the circular surface portion of the CV bounding

surface. For this surface, the outwardly pointing unit normal vector n̂ = −ez . The
stress tensor in the stationary fluid inside the droplet is due entirely to isotropic
stress, �̃| f lat = −pin I (see Equation 4.293). The surface element d S in the
cylindrical coordinate system of the circular control surface is given by (dr )(rdθ)
(Figure 4.59). Combining these results in Equation 4.382, we obtain:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃

]
at surface d S (4.383)

f
f lat

=
∫ 2π

0

∫ R

0

[
ˆ−ez · (−pin I

)]
(dr )(rdθ) (4.384)

= 2π

∫ R

0

(
0 0 1

)
rθ z

·
⎛
⎝ pin 0 0

0 pin 0
0 0 pin

⎞
⎠

rθ z

rdr (4.385)

= 2π

∫ R

0

(
0 0 pin

)
rθ z

rdr (4.386)

= (0 0 π R2 pin
)

rθ z
(4.387)

ˆf
f lat

= pinπ R2ez =
⎛
⎝ 0

0
pinπ R2

⎞
⎠

rθ z

=
⎛
⎝ 0

0
pinπ R2

⎞
⎠

xyz

(4.388)
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y

x

z

φ

θ
R

θsinR

φd

θRd

φθdR sin

Figure 4.60 The surface element for the calculation of the force on the spherical surface of the control volume is shown here.

where pin is the pressure on the inside of the droplet and R is the radius of
the droplet. Note that Equation 4.388 contains the result written in two different
coordinate systems.

Next, we calculate f
hemisph

. The fluid on the outside of the bubble is different
from the fluid inside; thus, �̃ is different. For the stationary outer fluid:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[
n̂ · �̃

]
at surface d S (4.389)

f
hemisph

=
∫∫

S

[
n̂ · −pext I

]∣∣∣∣∣∣
r=R

d S (4.390)

The result of this calculation is f
hemisph

ˆ= pextπ R2 in the −ez direction because
the radially inward and radially outward components of the force due to pressure
on the hemispherical surface of our CV exactly balance out, leaving only the
z-contribution. We show this formally in the following discussion.

To calculate the force on the outside of the droplet from Equation 4.390, it
is easiest to use a spherical coordinate system rather than the cylindrical system
used on the other control surface. The definition of the spherical coordinate
system relative to the Cartesian system is given in equations 1.268–1.273. For the
hemispherical surface of our CV, n̂ = êr , where êr is a basis vector of the spherical
coordinate system. The stress tensor in the stationary fluid outside the droplet is
�̃|external = −pext I . The surface element d S of the spherical coordinate system
of the hemispherical control surface is given by (Rdθ)(R sin θdφ) (Figure 4.60).
Substituting these results into Equation 4.390, we obtain:

f
hemisph

=
∫∫

S

[
n̂ · �

]∣∣∣
surface

d S (4.391)

=
∫ 2π

0

∫ π/2

0

[
êr · (−pext I

)]∣∣∣
r=R

(Rdθ)(R sin θdφ) (4.392)
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= −
∫ 2π

0

∫ π/2

0

(
1 0 0

)
rθφ

·
⎛
⎝ pext 0 0

0 pext 0
0 0 pext

⎞
⎠

rθφ

R2 sin θdθdφ

(4.393)

= −
∫ 2π

0

∫ π/2

0

(
pext 0 0

)
rθφ

R2 sin θdθdφ (4.394)

= −
∫ 2π

0

∫ π/2

0
pext êr R2 sin θdθdφ (4.395)

The unit vector êr , which is one of the basis vectors of the spherical coordinate
system, is not a constant; rather, it is a function of both θ and φ, the vari-
ables over which we are integrating. To finish the integration in Equation 4.395,
we write êr in the Cartesian coordinate system and carry out the two integra-
tions. The expression for êr in the Cartesian coordinate system was given in
Equation 1.271:

f
hemisph

= −pext R2
∫ 2π

0

∫ π/2

0
êr sin θdθdφ (4.396)

= −pext R2
∫ 2π

0

∫ π/2

0

(
sin θ cos φ êx + sin θ sin φ êy

+ cos θ êz) sin θdθdφ (4.397)

= −pext R2
∫ 2π

0

∫ π/2

0

⎛
⎝ sin2 θ cos φ

sin2 θ sin φ

sin θ cos θ

⎞
⎠

xyz

dθdφ (4.398)

Integrating each component separately and applying the appropriate integration
limits, the φ integrals of the x- and y-components give zero. Thus, the force
on the outside has no x or y component, which was expected. The φ-integral
of the third term yields 2π . To calculate the final result, we now carry out the
θ-integration of the remaining term:

f
hemisph

= −pext R2
∫ 2π

0

∫ π/2

0
sin θ cos θ êz dθdφ (4.399)

ˆ= −pext 2π R2ez

∫ π/2

0
cos θ sin θ cos θdθ (4.400)

ˆ= −pext 2π R2ez

[
sin2 θ

2

]∣∣∣∣∣∣∣
θ=π/2

θ=0

(4.401)

ˆ= −pextπ R2ez =
⎛
⎝ 0

0
−pextπ R2

⎞
⎠

xyz

(4.402)

This is the result we reasoned out previously (see the discussion following Equa-
tion 4.390).

The final force acting on our CV is the force due to surface tension f
σ

. To
visualize how surface tension works, imagine that the surface of the droplet is
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actually a spherical balloon. We impose a pressure on the inside of the balloon
so that it inflates exactly as a sphere. If we cut the sphere in half but somehow
keep it inflated, the balloon is elastic and wants to contract and collapse. To
secure the edges of the balloon and contain its contents in place, we must hold
onto the circular rim of the half balloon with a certain amount of force that
appropriately balances the inside pressure (see Figure 4.58, right). The magnitude
of the force/length that we must apply along the rim of the circular balloon is equal
to the surface tension, σ . The force we use to restrain the balloon is tangential
to the balloon surface and is directed in the (−z)-direction of the coordinate
system shown, perpendicular to the circular line of intersection of the CV and
the interface. The net surface-tension force is given by:

⎛
⎜⎜⎜⎝

force on CV
due to
surface
tension

⎞
⎟⎟⎟⎠ = f

σ
=
⎛
⎝ force/length

along
circumference

⎞
⎠ (length)

⎛
⎝unit vector

indicating
direction

⎞
⎠ (4.403)

ˆ= σ (2π R)(−ez) =
⎛
⎝ 0

0
−2π Rσ

⎞
⎠

xyz

We return to Equation 4.380 and assemble the force balance:

0 =
∑

on
CV

f = f
surface

+ f
σ

(4.404)

= f
f lat

+ f
hemisph

+ f
σ

(4.405)

=
⎛
⎝ 0

0
pinπ R2

⎞
⎠

123

+
⎛
⎝ 0

0
−pextπ R2

⎞
⎠

123

+
⎛
⎝ 0

0
−2π Rσ

⎞
⎠

123

(4.406)

= pinπ R2 êz − pextπ R2 êz − 2π Rσ êz (4.407)

Solving for the pressure difference, we find that �p across the bubble interface
is proportional to the surface tension:

�p = pin − pext = 2σ

R
(4.408)

The pressure inside the water drop is greater than the pressure outside the drop by
the amount 2σ/R. This extra pressure is due to the unbalanced molecular forces
at the droplet surface, which lead to an extra inward pull on the surface-water
molecules. Note that the pressure difference increases as the size of the droplet
decreases.

For surfaces other than spheres, we define two local radii of curvature, R1 and
R2 (Figure 4.61), and derive the pressure difference across the surface with a simi-
lar although geometrically more complicated calculation (see Web appendix [108]
for details). The CV we choose is a thin volume that envelopes the piece of sur-
face shown in Figure 4.61. For steady state (dP/dt = 0) and zero velocity, the
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A1

A2

R1

R2

.

.

z

yx

Figure 4.61 For a surface of arbitrary shape, we relate the local pressures on the two sides of the surface to the surface tension
using this illustration. The local radii of curvature on two sides are R1 and R2 with included angles 2θ1 and 2θ2.
(See the Web appendix [108] for details.)

momentum balance becomes:

Reynolds
transport
theorem

dP

dt
+
∫∫

S
(n̂ · v) ρv d S =

∑
on
CV

f (4.409)

0 =
∑

on
CV

f = f
surface

+ f
σ

(4.410)

=
⎛
⎝ force on CV

due to
inside fluid

⎞
⎠+

⎛
⎝ force on CV

due to
outside fluid

⎞
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

force on CV
due to

surface tension
on 2 arcs of
length 2θ1 R1

⎞
⎟⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

force on CV
due to

surface tension
on 2 arcs of
length 2θ2 R2

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.411)

=
(

pin(2θ1 R1)(2θ2 R2) − pext (2θ1 R1)(2θ2 R2)

−2 σ (2θ1 R1) sin θ1 − 2 σ (2θ2 R2) sin θ2

)
êz (4.412)

where 2θ1 R2 is the arc length swept out in an xz-plane through the point
of interest, and 2θ2 R2 is the arc length swept out in a yz-plane through the
point of interest (see Figure 4.61). The sine terms originate in the geometry
of the z-component of the surface-tension force (see Web appendix [108] for
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details). For θ1 = θ2 = θ = small, we approximate sin θ ≈ θ and obtain the final
result:

�p = pin − pext = σ

(
1

R1
+ 1

R2

)
(4.413)

This equation is known as the Young–Laplace equation. Note that for R1 = R2,
the Young–Laplace equation gives the spherical droplet result (Equation 4.408).

Another classic surface-tension effect is the rise of liquids in capillary tubes,
known as capillary action. This effect can be understood by invoking the idea of
a membrane under tension at the interface, as shown in the next example.

EXAMPLE 4.25. How is the height of a fluid in a capillary tube related to the
surface tension σ?

SOLUTION. The phenomenon of capillary action (see Figure 2.41) was known
in ancient times. In small tubes, fluid is observed to rise upward, defying gravity.
Capillary action is caused by the molecular forces between the liquid molecules
and those that comprise the surface of the capillary tube. Water, for example,
has favorable molecular interactions with glass; thus, the water is attracted to
the glass. These attractions are sufficiently favorable to allow the water to climb
several centimeters into capillary tubes of the appropriate diameter.

In the continuum model, the phenomenon of capillary action can be quantified
by the surface tension. Consider the schematic of a capillary tube immersed in a
fluid shown in Figure 4.62. The fluid is shown to rise in the capillary tube, and

x

z

h

atmp

atmp

a
atmp

β

xê

zê
rê

θ
yê

Figure 4.62 In cross section, we see the forces at work that bring about capillary action. The force holding up the column
of liquid is the surface tension. Two coordinate systems are shown: the Cartesian system is used for the overall
calculation and a spherical coordinate system is used for the calculation of the net surface-tension force. We also
used a cylindrical coordinate system (not shown) in this problem.
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the shape of the interface is concave upward. The interface meets the wall of the
capillary tube at an angle designated as β.

The capillary tube is open to the atmosphere; therefore, the pressure on the
upper liquid surface is equal to patm . We also know that the pressure at Point (a)
is equal to patm , because Point (a) is at the same elevation as the outside liquid
level and locations in a fluid at the same elevation have the same pressure (i.e.,
Pascal’s principle).

It seems contradictory that the pressure is patm at both the top of the capillary
and near the bottom of the capillary. The contradiction is resolved, however, if
we examine the shape and behavior of the interface at the top of the column in
terms of surface tension.

Consider the interface at the top of the column of fluid in the capillary to be
a massless membrane under tension. To relate the forces on this membrane to
the forces in the fluid, we follow the same process used in the last example: we
choose a control volume and perform a momentum balance. The control volume
we choose is a cylindrical column of height h, the height of the fluid in the
capillary.

As in the previous example, the velocity into and out of the CV is zero, the
time rate of change of the momentum dP/dt is zero, and the momentum balance
on the CV reduces to the sum of the forces equal to zero. The forces are gravity,
the contact forces on all surfaces, and the force due to surface tension:

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f
Reynolds transport theorem
(momentum balance on CV)

(4.414)

0 =
∑

on
CV

f = f
gravity

+ f
surface

+ f
σ

(4.415)

0 = f
gravity

+ f
bottom

+ f
top

+ f
sides

+ f
σ

(4.416)

ˆOn the bottom of the CV (Point (a), n̂ = −ez), the molecular force is the force due
to pressure in the liquid at that location. This force acts normally to the bottom
surface—that is, in the positive z-direction. The steps to arrive at the needed
expression (see Equation 4.388, beginning with Equation 4.382) are the same as
in Example 4.24.

Force on
the bottom
of the CV

f
bottom

=
∫∫

Sbot

[
n̂ · �

]∣∣∣
bot

d S (4.417)

=
∫ 2π

0

∫ R

0

[
ˆ−ez · (−patm I

)]
r drdθ (4.418)

= patm π R2 êz (4.419)

where r and θ are the coordinate variables of the cylindrical coordinate system.
Similarly, the force on the flat top of the cylindrical CV (n̂ = êz) is due to air
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pressure. The force on the CV at this location is in the (−z)-direction:

Force on
the top

of the CV
f

top
=
∫∫

Stop

[
n̂ · �

]∣∣∣
top

d S (4.420)

=
∫ 2π

0

∫ R

0

[
êz · (−patm I

)]
(dr )(rdθ) (4.421)

= −patm π R2 êz (4.422)

ˆ

For this portion of the calculation, we modeled the top surface of the CV as a flat
circle, neglecting curvature.

The force on the side walls is calculated from the same starting point as the
calculation for the top and bottom shown previously. Again, we use a cylindrical
coordinate system (for sides n̂ = −er of the cylindrical coordinate system):

Force on
the sides
of the CV

f
sides

=
∫∫

Ssides

[
n̂ · �

]∣∣∣
sides

d S (4.423)

=
∫ L

0

∫ 2π

0

[
ˆ−er · (−pI

)]∣∣∣
R

Rdθ dz (4.424)

Writing êr and I in Cartesian coordinates and p = p(z) as the wall pressure, we
now carry out the matrix multiplication and integrate:

f
sides

=
∫ L

0

∫ 2π

0

(
cos θ sin θ 0

)
xyz

·
⎛
⎝ p(z) 0 0

0 p(z) 0
0 0 p(z)

⎞
⎠

xyz

Rdθdz

(4.425)

=
∫ L

0

∫ 2π

0

(
p(z) cos θ p(z) sin θ 0

)
xyz

Rdθdz (4.426)

= R
∫ L

0
p(z)

⎡
⎢⎣∫ 2π

0

⎛
⎝ cos θ

sin θ

0

⎞
⎠

xyz

dθ

⎤
⎥⎦ dz (4.427)

= R
∫ L

0
p(z)

⎡
⎢⎣
⎛
⎝ sin θ

− cos θ

0

⎞
⎠

xyz

∣∣∣∣∣∣∣∣∣∣
2π

0

⎤
⎥⎦ dz (4.428)

=
⎛
⎝0

0
0

⎞
⎠

xyz

(4.429)

This calculation indicates that there is no net force on the CV due to fluid contact
with the sides; the forces between the fluid and the vertical walls are symmetrical,
so they integrate out when we integrate all the way around the circumference.
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The force on the CV due to gravity is given by the mass of liquid multiplied
by the acceleration due to gravity:

Force on
CV due to

gravity
= f

gravity
= ρ

(
π R2h

)
ˆg (−ez) (4.430)

where ρ is the density of the liquid, g is the acceleration due to gravity, and h is
the height of the column of fluid. For the calculation of the force due to gravity,
we again assume that the fluid volume is cylindrical, which means we neglect
the mass of the liquid that would fill in the concave cap of the CV. Because the
capillary is narrow, this should be a good assumption. We include a negative sign
in Equation 4.430 to reflect that gravity acts in the (−z)-direction.

The remaining molecular force is due to surface tension. Following the same
procedure used in the previous example, we must calculate the force due to surface
tension. The surface-tension force is the force at the top of the CV applied along
the contact line between the CV and the interface—that is, along the line between
the liquid and the inside of the column. If we imagine that the top of the CV is
a massless, stretched membrane, then a force applied along the arrows shown in
Figure 4.62 must be applied to hold the membrane in place as the weight of the
column of fluid pulls downward on the membrane.

The net surface-tension force may be calculated by an integral along the contact
line at the top of the column. In the spherical coordinate system, this is along the
line θ = β. The surface tension σ is the tension per unit length along that line.
This force is directed at angle β relative to the vertical (see Figure 4.62). For an
arc along this circle of length Rdφ, where φ is the other angular coordinate of the
spherical coordinate system and R is the radius of the capillary, the magnitude
of the surface-tension force is:(

force

length

)
(length) = σ Rdφ (4.431)

This force is directed at an angle θ = β from the vertical. The vector force due
to this small arc is:

Force due to
surface tension

along a small arc
of length Rdφ

at θ = β

d f
σ

= σ Rdφ êr |θ=β (4.432)

where êr is the r -direction unit vector of the spherical coordinate system shown
in Figure 4.62. The total surface-tension force is obtained by integrating this
expression around the circle—that is, for φ varying from 0 to 2π :

Total force due to
surface tension

∮
d f

σ
= f

σ
= σ R

∫ 2π

0
êr |θ=β dφ (4.433)
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If we write the spherical-coordinate-system basis vector êr in the constant
Cartesian coordinate system, we can integrate around φ to obtain the net surface-
tension force:

(Equation 1.271) êr =
⎛
⎝ sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠

xyz

(4.434)

Total force due to
surface tension

f
σ

= σ R
∫ 2π

0
êr |θ=β dφ (4.435)

= σ R
∫ 2π

0

⎛
⎝ sin β cos φ

sin β sin φ

cos β

⎞
⎠

xyz

dφ (4.436)

The angle β is a constant in the integration, and the φ-integral is straightforward
for each component of the vector:

f
σ

= σ R

⎛
⎝ (sin β) sin φ

−(sin β) cos φ

(cos β)φ

⎞
⎠

xyz

∣∣∣∣∣∣∣∣∣∣
2π

0

(4.437)

= σ R

⎛
⎝ 0

0
(cos β)2π

⎞
⎠

xyz

= 2π Rσ cos β êz (4.438)

We now assemble the force balance:

0 =
(

f
bottom

+ f
top

+ f
sides

)
+ f

gravity
+ f

σ
(4.439)

⎛
⎝0

0
0

⎞
⎠

xyz

=
⎛
⎝ 0

0
patmπ R2

⎞
⎠

xyz

−
⎛
⎝ 0

0
patmπ R2

⎞
⎠

xyz

+
⎛
⎝0

0
0

⎞
⎠

xyz

−
⎛
⎝ 0

0
ρgπ R2h

⎞
⎠

xyz

+
⎛
⎝ 0

0
2π Rσ cos β

⎞
⎠

xyz

(4.440)

⎛
⎝0

0
0

⎞
⎠

xyz

=
⎛
⎝ 0

0
−ρgRh + 2σ cos β

⎞
⎠

xyz

(4.441)

We can solve the z-component of Equation 4.441 for the height h of the fluid in
the capillary in terms of the surface tension, the shape of the meniscus, and the
geometry of the capillary tube:

h = 2σ cos β

ρgR
(4.442)

Note that as the radius of the capillary tube R increases, the height h of the
column of fluid goes to zero.
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Surface-tension gradients caused by concentration, temperature, or electrical
gradients can drive flows. This effect, called the Marangoni effect, is demonstrated
in the NCFMF film that highlights surface-tension effects [112]. Surface tension
is important in slow flow through porous media. In most macroscopic engineer-
ing flows, surface-tension effects are negligible. There are two dimensionless
numbers that can be used to determine whether surface tension is important in a
flow—the Bond number and the Weber number:

Ratio of
gravity forces and

surface-tension forces
Bond number Bo = ρgL2

σ
(4.443)

Ratio of
inertial forces and

surface-tension forces
Weber number W e = ρV 2L

σ
(4.444)

The topic of surface tension highlights a significant aspect of the continuum
model. Because the continuum picture is a model and not physical reality, it does
not reflect all of the physics in a system that it approximates. In this chapter, the
idea of a continuous field of matter is valuable for calculations on bulk fluids,
but this picture cannot capture the boundary effects that result from the real
physics at interfaces. We must think again about the real system and adjust our
model to account for this newly appreciated aspect of the system. The cost of this
adjustment is that we have a new material parameter—the surface tension—that
we must measure and consider in continuum modeling to correctly capture the
true behavior of our system.

This circumstance—the need to adjust or to complicate a chosen model—will
recur as we seek to apply our models to complex systems. At every new juncture
where new or neglected physics intrudes, we revisit and adjust our initial model.
This does not mean that the model is wrong; it means only that any model is
limited to the circumstances under which it was developed. Dimensional analysis
is a tool that helps us to quantify when we need to switch from one description
of a physical situation to another.

In Chapter 5, we return to the task of incorporating molecular physics into our
description of stress so that we can relate τ̃ and v in a moving fluid. Once we
know the relationship between τ̃ and v, we can complete our balance calculations
on moving fluids.

4.5 Problems

1. What is a control volume? Can fluid pass through the walls of a control
volume?

2. Thinking about a fluid as a chemist would—as a collection of molecules—
which properties of molecules generate contact forces on a control volume
in a fluid? Which properties of molecules generate noncontact forces on a
control volume in a fluid?
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fluid

impose a
shear force

impose a
normal force

Figure 4.63 Olive oil is confined in the device shown (see Problems 6 and 7).

3. How does the continuum picture differentiate between the flow behavior of
a polar molecule like water compared to a nonpolar molecule like methane?

4. How does the continuum picture differentiate between the flow behavior of
a long-chain polymer that entangles with other long-chain molecules and a
short-chain molecule that is not capable of entangling?

5. Describe how a stiff solid like steel responds to shear forces. Describe for
normal forces. How does a soft solid like a block of tofu respond to shear
forces? Normal forces?

6. Describe how a confined fluid, such as olive oil in the device shown in
Figure 4.63, responds to shear forces imposed by the rotation of the lid. How
does the fluid respond to normal forces imposed by pressing down on the
lid?

7. For the fluid-filled device in Figure 4.63, we can write the forces imposed
on the fluid in a cylindrical coordinate system, with êz vertically upward and
parallel to the axis of rotation. In this coordinate system with a pure normal
force imposed, what is the vector representation of the normal force N on
the lid? Which components are zero? Give your answer in both matrix form
and component/basis-vector form (with the êr , êθ , êz basis vectors). In the
case of the lid rotating, write the tangential force on the lid in the cylindrical
coordinate system. Which components are zero? If the lid is subjected to a
force that has both normal and tangential components, what does the force
vector look like in the cylindrical coordinate system?

8. River flow in the vicinity of a vertical bridge support induces a molecular
force on the rod-shaped support. The forces at Points (a) and (b) (Figure 4.64)
and are given by the following two vectors (i.e., arbitrary force units):

f
∣∣∣∣
(a)

=
⎛
⎝320

210
0

⎞
⎠

xyz

f
∣∣∣∣
(b)

=
⎛
⎝ 310

−200
−3

⎞
⎠

xyz

What is the normal force on the support at (a)? What is the tangential force
on the support at (a)? Point (a) is located at coordinate point (R, 3π/4, 5)
in the rθ z-coordinate system. What are the normal and tangential forces on
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ˆ ˆ ˆ

ˆ ˆ

Figure 4.64 A bridge support is subject to normal and tangential forces by the river (Problem 8).

the support at (b)? Point (b) is located at coordinate point (R, 5π/4, 5) in the
rθ z-coordinate system.

9. A rectangular parallelepiped is subjected to the force f below on its top
surface (perpendicular to z-axis, arbitrary units). What is the shear force?
What is the normal force?

f = 3ex + 2ey − 0.5ez

10. A cylinder of height L is subjected to the force f on its side surface at location
(R, π/4, L/2). What is the shear force on the cylinder surface? What is the
normal force? The units of f are arbitrary.

f = 2er + 2eθ + êz

11. An ideal gas fills a balloon that has a spherical shape. The coordinate system
chosen for the problem is a Cartesian system located at the center of the sphere
with x pointing east, y pointing north, and z pointing vertically upward. The
temperature of the gas is 305 K, and the molar volume is 12.5 l/mol. What are
the forces (your answers should be vectors) on the 1.0 cm2 areas of balloon
surface located as follows:

(a) At the equator of the balloon and centered where the balloon intersects
the x-axis?

(b) At the equator of the balloon and centered where the balloon intersects
the y-axis?

(c) At the equator of the balloon and centered halfway between the first two
areas?

12. A cubical box 0.10 m on a side contains 0.121 moles of ideal gas at 403 K.
What is the force on each side? The effect of gravity may be neglected. The
answer should be a vector; choose a convenient coordinate system.

13. A standard manometer is used to calibrate a digital pressure meter. For the
manometer shown in Figure 4.65, one side is open to atmospheric pressure
(patm = 76.2 cm Hg). What is the unknown pressure P? The manometer
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p

k = 12.0 cm

h = 42 cm

patm

ρair

ρair

ρblue fluid

Figure 4.65 Manometer for Problem 13.

fluid is Blue Fluid 175 with a density of 1.75 g/cm3, and the gas on both
sides of the manometer is air at 25◦C.

14. A closed manometer (pressure is zero absolute on the closed end) contains a
dense nonvolatile liquid. The open end is connected by tubing to a gas process
stream at pressure p. The manometer fluid has density ρ = 13.6 g/cm3, and
the height difference between the two sides of the manometer is 5.4 mm.
What is the pressure in the process stream?

15. A tilted manometer is used to measure very small pressure differences. For
the tilted manometer shown in Figure 4.66, what is the pressure difference
between the two sides in terms of the variables defined in the figure?

16. A manometer is configured as shown in Figure 4.67. A heavy fluid (Fluid B)
has been placed in the bottom of the manometer; a light fluid (Fluid A) has
been added to the left side only. The left side of the manometer is connected
to a process stream in which water (25◦C, Fluid C) is flowing; the right
side is open to the atmosphere (Fluid D). The manometer is being used to
measure the pressure difference p1 − p2. The density of the two fluids in the
manometer are 1.75 and 13.6 g/cm3. What is the pressure difference p1 − p2

in terms of fluid heights and fluid densities? For h1 = 2.3 cm, h2 = 2.3 cm,
h3 = 1.0 cm, what is the pressure difference in psi?

17. The pressure in the vapor space of a tank (Figure 4.68) is measured with a
mercury manometer that is open to air. The manometer is isolated from the
water in the tank by an intermediate section of piping in which oil is trapped.

p2

p1

L

α

Figure 4.66 Schematic of a tilted manometer (Problem 15).
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ρA

p1

h1

h3

p2

ρD

ρC

ρB

h2

Figure 4.67 A schematic of a manometer that contains two different measurement fluids (Problem 16).

What is the pressure in the head space above the water for the heights and
fluids shown in Figure 4.68?

18. In the double-well manometer discussed in this chapter, the same amount
of top fluid is placed on each side of the manometer (see Figure 4.36); this
is difficult to achieve in practice, however. If slightly more fluid is placed
on the lefthand side than on the righthand side, there will be a change in
the reading of the manometer, even when the pressures on both sides are
the same (Figure 4.69). Show how Equation 4.195 is modified if the initial
reading of the double-well manometer is R0 rather than zero.

19. Will it float? In the 1990s on American television, David Letterman’s comedy
show had a nonsense segment called Will It Float? in which Letterman and
his bandleader Paul Shafer guessed whether an item would float or sink when
dropped into a container of water. For an object that occupies a volume of
4.0 liters, what is the maximum weight that can float?

20. What is the pressure at the bottom of the fluid in the container shown in
Figure 4.70 if the angle between the container wall and the horizontal is α?
Most of the fluid in this container is not vertically above the bottom surface of
the container. Explain how hydrostatic pressure is transferred to that bottom
surface in this container.

oil

mercury

h3

h2

h1

water

Figure 4.68 We use the static-pressure relationships to relate pressure in a tank to the various heights of fluids as shown
(Problem 17).
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Figure 4.69 If more top fluid is present on the left than on the right, the initial reading of a double-well manometer is R0

(Problem 18).

h

Figure 4.70 A tilted container holds a liquid (Problem 20).

h1

h

2R

R

Figure 4.71 An irregularly shaped container holds a liquid (Problem 21).

Pin

Pout

Pin

Pout

Figure 4.72 Two vessels are constructed and filled with water. We compare the pressure (force/area) near the bottom inside
the vessel and the pressure on the solid surface at the bottom of the vessel (Problem 22).
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x3

45°
ΔA

n

x1

x 1

x 3

Figure 4.73 Pressure can be calculated in any coordinate system. Problem 23 asks for a calculation in the coordinate system
shown.

21. In terms of the dimensions shown in Figure 4.71, what is the pressure on the
bottom surface of the container (area = π R2)? What is the pressure on the
ledge-surface in Figure 4.71? Check whether all of the force due to gravity
on the liquid in the container is accounted for by the pressure on these two
surfaces.

22. Consider two vessels of different shapes but that have the same height (Fig-
ure 4.72). What is the pressure at the bottom of the fluid in each case? What
is the pressure at the bottom of the vessel (outside) in each case? Are they
the same or different? Explain.

23. What is the total vector force on a 0.550 m × 1.00 m rectangular plate
submerged 13.0 m below the surface of a water tank and oriented as shown
in Figure 4.73? Express your answer in the coordinate system shown.

24. As a result of a flood, air is trapped in a room by water of depth 10.0 feet
pressing down on a metal sheet as shown in Figure 4.74. How much force
(a vector) is the water exerting on the metal sheet? How much force is the
weight of the sheet exerting on the portions of the walls that are holding it in
place? Is it possible for someone trapped in the room to push up the sheet?
The sheet is 4 feet by 6 feet by 0.10 inch thick and made of steel (density =
0.286 lbm/in.3).

25. What is the force on a six inch cube of balsa wood held 5 feet below the
surface of water in a tank? The answer must be a vector.

water

air
(1.0 atm)

10 ft

Figure 4.74 A flood creates an air pocket that is protected by a sheet of steel leaning at a 45 degree angle (Problem 24).
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150 ft

100 ft

45 ftwater

Figure 4.75 A municipal water tank stores water 150 feet in the air (Problem 30).

26. What is the force on a box of polymer foam (density 330 kg/m3) held 3 m
below the surface of water in a tank? The answer must be a vector. The
dimensions of the box are 45 cm by 18.0 cm by 6.0 cm.

27. A ball of radius 20.0 cm is submerged 5.00 m below the surface of the ocean.
What is the vector force on this object?

28. An object the shape of half a sphere of radius 20 cm is submerged 2.00 m
below the surface of the ocean. What is the vector force on this object?

29. A box made of polymeric foam (density =330 kg/m3) is to be weighted so
that it will float 4.5 m below the surface of a pool filled with water at 25◦C.
The dimensions of the box are 20 cm by 25 cm by 6.5 cm. What is the target
weight of the box so that it neither sinks nor rises to the surface? If the pool
is filled with seawater, what should the new weight be?

30. Figure 4.75 shows a water tower and some piping. For the dimensions shown
and assuming that all pipes are Schedule 40 nominal 1.5-inch pipe, calculate
the flow rate Q.

31. Pressure is an isotropic normal stress, meaning that it acts perpendicularly
to any chosen surface and has the same magnitude for all surfaces. Consider
the stress tensor given here, which has only normal stress components. Is this
stress tensor isotropic? The stress is in Pa.

�̃ =
⎛
⎝5 0 0

0 7 0
0 0 1

⎞
⎠

123

32. Consider the stress tensor given here, which has only normal stress compo-
nents. For a cube subjected to this same stress on its six surfaces, calculate
the vector force on each surface. The outwardly pointing normal to the top
surface is in the x3-direction and the cube is 20 cm on a side. The stress is
in Pa.

�̃ =
⎛
⎝3 0 0

0 −2 0
0 0 1

⎞
⎠

123
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33. The stress tensor �̃ at Point P is given in the following matrix form. For a
flat square surface centered at P of area 3.1 mm2 oriented perpendicular to
the 13-plane as shown in Figure 4.46, what is the stress on that surface at
Point P? Demonstrate that the stress in this problem is not isotropic.

�̃ =
⎛
⎝−2.0Pa 0 0

0 −4.0Pa 0
0 0 −5.0Pa

⎞
⎠

123

34. Consider the stress tensor given here (spherical coordinates). For a sphere
subjected to this stress field, calculate the vector stress at the following
locations (all written in the r , θ , φ coordinate system): (R,0,0), (R,π/2,
0), (R, π ,0), and (R, 3π/2, 0). Comment on the results. The stress is
in Pa.

�̃ =
⎛
⎝−3 0 0

0 −3 0
0 0 −3

⎞
⎠

rθφ

35. Consider the stress tensor given here (Cartesian coordinates, Pa): For a cube
(side length is L; located in the first quadrant of the 123-coordinate sys-
tem with a vertex at the origin) subjected to this stress field, calculate the
vector force on the surface at the following locations (all written in the 123-
coordinate system): ( L

2 , L
2 , 0), ( L

2 , L
2 , L), (L , L

2 , L
2 ), and ( L

2 , L , L
2 ). Comment

on the results.

�̃ =
⎛
⎝−3 2x2 0

2x2 −3 0
0 0 −3

⎞
⎠

123

36. For a flow in which the pressure p = 7 (all units arbitrary) and the extra-
stress tensor is given here, what is the total stress tensor �̃ in matrix
form?

τ̃ =
⎛
⎝1 5 2

5 1 3
2 3 0

⎞
⎠

123

37. For a flow in which the pressure p = −7x1 + 3 (all units arbitrary) and the
extra-stress tensor is given here, what is the total stress tensor �̃ in matrix
form?

τ̃ =

⎛
⎜⎜⎜⎝

0 5
(

1 − x2
2

9

)
0

5
(

1 − x2
2

9

)
0 0

0 0 0

⎞
⎟⎟⎟⎠

123

ˆ ˆ ˆ
38. For a flow in which the pressure p = 3 (arbitrary units) and the extra-stress

tensor τ̃ = 6x2 (e1e2 + ê2e1), what is the total stress tensor �̃ in matrix
form?
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fluid,  μ

y

x

V

Figure 4.76 Drag flow is the classic geometry for determining viscosity (Problem 40).

39. Consider the stress tensor given here (Cartesian coordinates, Pascals):

�̃ =
⎛
⎝−3 7x2 0

7x2 −3 0
0 0 −3

⎞
⎠

123

For a sphere subjected to this stress field, calculate the vector stress at the
following locations (all written in the rθφ coordinate system with θ the angle
between the x3-axis and r ): (R, 0, 0), (R, π/2, 0), (R, π , 0), and (R, 3π/2,
0). Comment on the results.

40. For the flow shown in Figure 4.76, a fluid is trapped between two long, wide
plates and the upper plate is made to move at a speed V in the x-direction.
This is Newton’s experiment, called drag flow. The pressure is everywhere
atmospheric. It takes some force to move the upper plate. Does the pressure
(normal force/area) have a role in determining the force that it takes to move
the top plate? State your reasoning.

41. For the flow shown in Figure 4.77, a fluid jet impinges on a wall. The pressure
around the jet is everywhere atmospheric. The jet produces a force on the
wall. Does the fluid pressure p (normal force/area) have a role in determining
the force on the wall? State your reasoning.

42. A surface of interest in a flow has a unit normal of n̂ = 1√
6

(
êx + 2êy − êz

)
and an area of 8.0 cm2. If the pressure is 1.02 × 106 Pa and the extra-stress
tensor τ̃ in mega Pa is given here, what is the force on the surface? Give the

incoming jet
y

x

Figure 4.77 A jet produces a force on a wall (Problem 41).
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Patm

20 lbm

full open 2/3 closed

V1 = V2

V2
˙ ˙

˙V1
˙

Figure 4.78 Water drains from two tanks at the same rate. However, the tank is open to the atmosphere in one case; in the
other case, an external pressure is imposed as shown (Problem 43).

complete force vector.

τ̃ =
⎛
⎝0 2 0

2 0 0
0 0 0

⎞
⎠

xyz

43. Figure 4.78 is a tank with a spout from which water can drain in a controlled
manner. When the water surface is open to the atmosphere, the water drains
at flow rate V̇ liters/min. If a piston that seals with the sides of the tank is
added to the top and a 20-kg weight is added, the flow rate increases. If we
close the valve, we can reduce the flow rate until it is again V̇ . We have two
situations, then, in which water drains from the tank at flow rate V̇ ; what is
the difference in the state of the fluid between the two situations? If we poke
a hole in the side of the tank, will the flow from the hole be the same in the
two different situations? How?

44. We can use a technique called quasi-steady-state problem solving to estimate
the time it takes a tank to drain completely. Consider the tank in Figure 4.79.

(a) When the drain is first opened, what is the instantaneous flow rate Q from
the tank in terms of the fluid height h?

(b) The height of the fluid in the tank is changing as the tank drains. What is
the speed of the fluid surface in terms of h? As the tank drains, what is
the flow rate through a cross section at the middle of the tank?

h (t)tank

Figure 4.79 Schematic of a tank draining. This problem is solved with the mechanical energy balance and quasi-steady-state
methods (Problem 44).
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Patm

3.0 cm

Patm

135°

liquid liquidliquid

Patm

Figure 4.80 When liquids have a repulsive interaction with solids, capillary depression is observed (Problem 49).

(c) Equating the instantaneous flow rate from Part (a) with the flow rate in
the tank from Part (b), obtain a differential equation for h and solve. Note
that the initial height of the fluid is h0.

45. In the water-droplet example (see Example 4.24), we concentrated on the
z-component of the momentum balance. What information do the x- and
y-components of the momentum balance convey?

46. In Example 4.24, we examined the pressure inside a spherical water droplet.
For water droplets of various sizes between 0.02 and 3.0 mm, what is the
pressure inside the droplet? What is the pressure inside droplets of mercury
for this range of sizes?

47. How high will acetone rise in a glass capillary of diameter 0.03 mm? The
angle between the vertical and the meniscus is unknown. Make a reasonable
estimate for this angle.

48. A carbon-dioxide bubble is motionless at the bottom of a glass of carbonated
beverage. Estimate the pressure inside the bubble.

49. Intermolecular forces at solid–liquid–gas interfaces can cause capillary rise
or capillary depression. Consider a glass capillary tube submerged in a fluid
that does not wet glass—that is, a fluid that has repulsive intermolecular
interactions with glass. This situation creates capillary depression as shown
in Figure 4.80. If the depression h = −0.3 cm and the angle of the meniscus
is 135 degrees, what is the surface tension of the liquid? The fluid density is
1200 kg per cubic meter and the capillary is 1.0 mm in diameter.

50. A laminar jet of an oil inside a bath of a second oil forms a cylindrical column
of fluid. Because the two oils are not the same material, there is an effect

p2

p1

p3

r1

r2

Figure 4.81 A soap bubble can be modeled as shown; the film thickness has been greatly exaggerated (Problem 51).
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of surface tension in the formation of the interface. What is the pressure
difference due to surface tension between the inside and the outside of a
cylindrical column of fluid? Hint: Think of the cylindrical column as a fluid
shape with two radii of curvature.

51. What is the pressure difference between the inside and the outside of a soap
bubble? Hint: We can draw a soap bubble as shown in Figure 4.81. We write
the liquid pressure within the film p2 in terms of the atmospheric pressure p1.
We subsequently can write the inside air pressure p3 in terms of the pressure
in the film. Taking the limit that r1 = r2 gives the final result.
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5 Stress-Velocity Relationships

In previous chapters, we have been developing a mathematical model for fluid
behavior. The task is almost complete: The missing piece in our continuum model
is the relationship between molecular stresses and fluid velocity; that connection
is made in this chapter.

First, we review our modeling efforts thus far. Our fluids calculations begin
with the momentum balance on a control volume (CV)—the Reynolds transport
theorem:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (5.1)

This equation is Newton’s second law (
∑

f = ma) written on a control volume.
The three terms in the equation are the rate of change of momentum on a CV
dP/dt , the sum of forces on the CV, and the convective term (i.e., the integral),
which accounts for the net momentum added to the CV by flow through the
bounding control surface (CS).

Chapter 3 describes how to evaluate the convective term of the momentum
balance. In Chapter 4, the forces in the summation term are written as gravity
( f

gravity
) plus the molecular surface forces ( f

surface
). We also introduced the stress

tensor �̃ to write the molecular surface forces in terms of the surface area and
the unit normal of a chosen surface:

Force in a fluid on
a flat surface of area �A

with unit normal n̂
(Gibbs notation)

f (�A, n̂) = �A [n̂ · �̃]surface (5.2)

For a finite surface, this expression becomes an integral:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[n̂ · �̃]at surface d S (5.3)

The expressions in Equations 5.2 and 5.3 require that we know the stress tensor
�̃ for the fluid. Chapters 1 and 4 explain that a tensor is a mathematical entity
characterized by nine scalar components; we also learned that tensors work like
3 × 3 matrices in practical calculations in Cartesian coordinates.

346
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p

p p

p

p p 4n̂5n̂

6n̂

1n̂
2n̂

3n̂

)2(f
)3(f

)1(f

)6(f
)5(f

)4(f

isotropic anisotropic 

Figure 5.1 When the stress is isotropic at a point, as it is in a stationary fluid, any chosen surface �A experiences the same
force, −pn̂ �A (left). When a fluid is in motion (right), the force on a chosen surface with normal n̂ depends on n̂ .
Six possible choices of n̂ i are shown with corresponding force vectors.

The expression for the stress tensor in a fluid �̃ depends on whether the
fluid is stationary or in motion. The stress tensor in stationary fluids is simple
because the stress is isotropic, as described in Chapter 4. Molecular stress in a
stationary fluid is a function of elevation in a gravity field, but the molecular
force acts equally in all directions at a given point. Writing pressure as a diagonal
stress tensor with −p along the diagonal, as shown here, encodes both the
isotropic nature of pressure stress and the trait that pressure acts normally on any
surface:

Total stress tensor
for stationary fluids

(isotropic stress)
�̃ =

⎛
⎜⎝

−p 0 0

0 −p 0

0 0 −p

⎞
⎟⎠

xyz

= −pI (5.4)

Chapter 4 describes how to make calculations with �̃ = −pI when dealing with
stationary fluids.

Fluids in motion are different than stationary fluids because the stresses in
moving fluids are not isotropic; therefore, the stress tensor is not equal to −pI . In
moving fluids, we can choose to separate �̃ into isotropic (−pI ) and anisotropic
(τ̃ ) stresses, as discussed in Chapter 4 (Figure 5.1):

Total stress tensor
in moving fluids

�̃ =
(

isotropic
stress

)
+
(

anisotropic
stress

)
(5.5)

⎛
⎜⎝

�̃xx �̃xy �̃xz

�̃yx �̃yy �̃yz

�̃zx �̃zy �̃zz

⎞
⎟⎠

xyz

=

⎛
⎜⎝

−p 0 0

0 −p 0

0 0 −p

⎞
⎟⎠

xyz

+

⎛
⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎠

xyz

(5.6)

�̃ = −pI + τ̃ (5.7)

It remains to relate these stresses to the velocity field in a moving fluid.

www.20file.org

http://www.semeng.ir


348 An Introduction to Fluid Mechanics

In continuum modeling, the stress-velocity constitutive equation—a function
that is introduced in this chapter—relates the anisotropic stress field in a moving
fluid to the velocity field.

Stress-velocity
constitutive equation

(different for different fluids;
discussed in this chapter)

τ̃ = f (v) (5.8)

We deduce the stress-velocity constitutive equation from observations of how
fluids behave. The isotropic stress −pI in a moving fluid does not have its own
constitutive equation; rather, it is related to the velocity through the momentum
balance. This means that once all of the other terms of the momentum balance are
expressed correctly, a pressure that is consistent with momentum conservation
can be calculated. Alternatively, if the pressure field is known, then solving the
momentum balance leads to the velocity field.

A final note: The relationship we seek in Equation 5.8 between anisotropic
stress and velocity is a tensor equation. In this chapter, we treat it as such but
we also present a simpler scalar version of the stress/velocity relationships. For
both those who are comfortable with tensors and for those who want to avoid
them, the relationship between stress and velocity begins with observations of
fluids in a simple flow—that is, shear flow. Once the stress-velocity equation is
obtained, we can complete the momentum balance. Tables of vector and tensor
components (see Appendix B) provide expressions to use in momentum-balance
calculations.

At the end of this chapter, we carry to completion the two momentum bal-
ances that have been in progress: (1) calculating the velocity distribution in
a film flowing down an incline, and (2) calculating the force on a 90-degree
bend. In Chapter 6, we strengthen our understanding of the continuum-modeling
method by discussing the general microscopic-balance equations and the meth-
ods used for solving them and for making engineering calculations with the
results.

5.1 Simple shear flow

In flow, velocity and stress are related, which we can prove by thinking about
simple experiences we have had with flow. When stirring a thick cake batter, it
takes more effort to stir the fluid rapidly than slowly. In terms of fluid-mechanics
variables, the total force required to sustain the flow of the batter increases with
the average velocity of the flow. Another example is the flow produced when a
tube such as a honey bottle is squeezed, expelling liquid. During squeezing, a
small force expels a small amount of honey; if a larger squeezing force is applied,
the honey emerges faster (Figure 5.2).

To quantify these effects, we must be guided by experiments. However, stir-
ring a cake batter and squeezing a fluid from a bottle are fairly complicated
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Mixing
thick
cake

Squeezing
honey from

a bottle

Figure 5.2 Larger stresses are associated with higher flow rates, as we know from working with household fluids. The
stress-constitutive equation puts this relationship in mathematical form.

situations to model. When mixing cake batter, the stirring motions of the baker
vary with every stroke; therefore, the velocity profile in the batter has three
nonzero components (e.g., vx , vy , and vz), which depend on time and vary

Figure 5.3 The flow from a bottle of honey and the stirring
of cake batter are both interesting flows, but the
velocity field in both cases is complex. Fluid par-
ticles move along three-dimensional paths and
accelerate and decelerate depending on how the
flow is maintained.

in three dimensions. The flow from the
honey bottle also is three-dimensional and
complex (Figure 5.3).

The stress-velocity relationship for a
fluid would be clearer if we studied less
complicated cases than these two. To sim-
plify the situation, we consider a flow in
which the velocity at every position points
in the same direction. We can produce such
a unidirectional flow by putting a fluid in
the narrow gap between two parallel plates
(Figure 5.4). If we move the top plate at
a constant speed V in a straight line, the
flow between the plates should be unidirec-
tional. We choose the plates to be long and
wide to minimize effects due to the edges.
By carefully choosing the flow geometry
and conditions, we make the physics of the
situation simple enough to model.

The sliding flow described in Figure 5.4
is called simple shear flow. The flow
domain has a rectangular shape; therefore,
we choose a three-dimensional rectangular
Cartesian coordinate system xyz in which
to analyze the experiments. Because we
have selected a unidirectional flow and lined
up the x-axis with the flow direction, the
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tt Δ=
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Figure 5.4 A simple flow apparatus is produced by confining a fluid in the narrow gap between two large flat plates. Moving
the top plate parallel to the bottom plate produces shear flow. A vertical line drawn on the fluid rotates and stretches
as the flow proceeds in time from top to bottom.

velocity vector in this flow can be written as a simple vector:

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝vx

0
0

⎞
⎠

xyz

= vx êx (5.9)

We want to know the relationship between the stresses in this flow and the velocity
field. We begin by looking into the form of the velocity field; that is, how does
vx vary with position in the flow?

5.1.1 Velocity field

Because our chosen flow has straight streamlines and otherwise is not compli-
cated, we can deduce the velocity field in shear flow from simple arguments.
Except near the edges of the plates, the velocity in all planes of constant z should
look like the velocity profile shown in the top of Figure 5.5. The fluid in con-
tact with the bottom plate is moving at the speed of the bottom plate, which is
zero. The fluid in contact with the top plate is moving at the speed of that plate,
which means that the speed of fluid at that top surface is equal to V . Because
we chose a particularly simple flow situation, we can deduce the likely flow field
as a linear interpolation between these two points, as shown in the bottom of
Figure 5.5:

Linear velocity profile: vx = (slope) y + (intercept) (5.10)

Known points: y = 0 vx = 0 ⇒ intercept = 0

y = H vx = V ⇒ slope = V/H

Velocity profile:
Simple shear:

vx = V

H
y (5.11)

vx

V
= y

H
(5.12)
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V

vx

Hy 1.0 0

1.0 

vx(H)=Vy=H 

y=0 

vx(0)=0 

xeFF ˆ=

x

y

Figure 5.5 The simplicity of the shear-flow experiment leads to a simple velocity profile.

Many researchers have carried out experiments in the narrow-gap, parallel-plate
shear apparatus, confirming that simple fluids and modest plate velocities produce
the linear velocity profile deduced by linear interpolation, vx = (V/H )y. The
simple-shear velocity profile is plotted as a function of y and z in Figure 5.6. The
flow at values of y and z near the edges of the plates (x = L , z = W ) do not follow
this idealized picture of the flow due to the finite extent of the flow and the presence
of an air interface. We limit our discussion to wide and long plates so that these
contributions to the overall forces driving the flow are negligible. The complete
velocity vector for our chosen flow is as follows (combining Equations 5.11 and
5.9):

Velocity profile
in simple shear flow
(experimental result)

v =
⎛
⎝ (V/H )y

0
0

⎞
⎠

xyz

= ˆ
V

H
yex (5.13)

By choosing a simple flow situation to study as test flow, we can deduce the
complete velocity field from simple arguments and observations.

5.1.2 Stress field

After carefully designing a test flow and guessing and then experimentally ver-
ifying the velocity field for this flow, the next step is to look at the flow force
measurements. We are interested in the forces within the bulk fluid. The force
that it takes to move the top plate can be measured, and we start there and call
that vector force F ˆ. The force F is applied in the x-direction; thus, F = Fex (see
Figure 5.5). The force pulling the plate acts on the top layer of the fluid, and we
want to relate this force to our stress variables �̃i j from Chapter 4, the stress in
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Figure 5.6 The velocity profile for steady drag flow between two long, wide plates is shown in a three-dimensional view. The
average velocity 〈v 〉 = V/2; thus, the wall velocity is twice the average velocity of this flow. The data are plotted
versus normalized coordinates y/H and z/W , which both range from 0 to 1.

the fluid on an êi -surface in the ê j -direction. Our goal is to discover the function
�̃(v).

We calculate the force to move the top plate in terms of the �̃i j by using
informal arguments. The tangential force exerted by the moving plate on a patch
of fluid in the top layer is a force on a êy-surface in the êx -direction at location
y = H (Figure 5.7); in terms of �̃, this force on a small area �x�z is:

Tangential force
on surface �x�z
in top fluid layer

= (stress)(area)

⎛
⎝unit vector

indicating
direction

⎞
⎠ (5.14)

= �̃yx

∣∣∣
y=H �x�z êx (5.15)

where �̃yx

∣∣∣
y=H = �̃yx

∣∣∣
H is �̃yx evaluated at the position (x, H, z). We sum

these contributions over the entire surface of the plate to arrive at an expression

y surface 

y

x

yen ˆˆ =

zΔ
xΔ

F

H

),,( zHx

Figure 5.7 The stress on the top layer of fluid is the stress on a surface with outward unit normal ê y in the êx direction, �̃yx .
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that gives the total force on the top plate:

Total tangential force
on top fluid layer

F = lim
�x −→ 0
�z −→ 0

⎡
⎣ N∑

p=1

�̃yx

∣∣∣
H �x p�z p êx

⎤
⎦ (5.16)

F =
∫ W

0

∫ L

0
�̃yx

∣∣∣
H êx dxdz (5.17)

We used the definition of integral in two dimensions in going from Equation 5.16
to Equation 5.17 (see Web appendix [108] for details).

Because all of the fluid in the top layer is moving at the same velocity, �̃yx

∣∣∣
H

is constant throughout the top layer of fluid; êx also is constant (i.e., always points
in the same direction). Moving these quantities out of the integral and integrating
what remains, we obtain:

Total tangential force
on top fluid layer

= �̃yx

∣∣∣
H êx

∫ W

0

∫ L

0
dxdz (5.18)

F = �̃yx

∣∣∣
H LW êx =

⎛
⎜⎝

�̃yx

∣∣∣
H LW

0
0

⎞
⎟⎠

xyz

(5.19)

The force on the top surface is of magnitude �̃yx

∣∣∣
H LW in the x-direction.

We arrive at the same result more formally by beginning with the general
expression from Chapter 4 for fluid force on a surface with unit normal n̂ = êy

(see Equation 4.263):

Total molecular fluid force
on a finite surface S F =

∫∫
S

[n̂ · �̃]at surface d S (5.20)

=
∫ W

0

∫ L

0
êy · �̃|H dxdz (5.21)

Carrying out this integration, we obtain:

Force on
surface of area LW

in top fluid layer
at y = H

F =
∫ W

0

∫ L

0

(
0 1 0

)
xyz

·

⎛
⎜⎜⎜⎜⎜⎜⎝

�̃xx

∣∣∣
H �̃xy

∣∣∣
H �̃xz

∣∣∣
H

�̃yx

∣∣∣
H �̃yy

∣∣∣
H �̃yz

∣∣∣
H

�̃zx

∣∣∣
H �̃zy

∣∣∣
H �̃zz

∣∣∣
H

⎞
⎟⎟⎟⎟⎟⎟⎠

xyz

dxdz

=
∫ W

0

∫ L

0

⎛
⎜⎜⎜⎜⎝

�̃yx

∣∣∣
H

�̃yy

∣∣∣
H

�̃yz

∣∣∣
H

⎞
⎟⎟⎟⎟⎠

xyz

dxdz (5.22)

Because the stress components on the surface do not depend on positions x or z,
we can pull the entire vector out of the integral and carry out the remaining area
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integration. The result for F is:

F = LW

⎛
⎜⎜⎜⎜⎝

�̃yx

∣∣∣
H

�̃yy

∣∣∣
H

�̃yz

∣∣∣
H

⎞
⎟⎟⎟⎟⎠

xyz

(5.23)

ˆ

The x-component of this force vector is the same as the result at which we
arrived previously using ad hoc arguments (see Equation 5.15). The other two
components of Equation 5.23 tell us how to calculate the y- and z-components of
the force F needed to move the top plate. We stated previously that we determined
experimentally that creating this flow required only an x-direction force F = Fex ;
thus, these two components must be zero or nearly zero for this flow:1

F = LW

⎛
⎜⎜⎜⎜⎝

�̃yx

∣∣∣
H

�̃yy

∣∣∣
H

�̃yz

∣∣∣
H

⎞
⎟⎟⎟⎟⎠

xyz

= LW

⎛
⎝ �̃yx

∣∣∣
H

0
0

⎞
⎠

xyz

(5.24)

ˆ

Returning to Equation 5.19 or Equation 5.24 and noting that by definition �̃yx =
τ̃yx (Equation 5.7), we can relate the magnitude F = |F | to the extra-stress
component τ̃yx :

F = Fex = �̃yx

∣∣∣
H LW êx (5.25)

⎛
⎝ F

0
0

⎞
⎠

xyz

=
⎛
⎝ �̃yx

∣∣∣
H LW
0
0

⎞
⎠

xyz

=
⎛
⎝ τ̃yx

∣∣∣
H LW
0
0

⎞
⎠

xyz

(5.26)

F = τ̃yx

∣∣∣
H LW (5.27)

τ̃yx

∣∣∣
H = F

LW
(5.28)

Our analysis and experiments yield a value for τ̃yx at the top plate, which
represents stress at a single value of y, y = H . To determine the relationship
between velocity and stress throughout the flow, we need values for stress at other
locations, such as in the bulk of the fluid, away from the wall. We have no stress
measurements within the flow; thus, we appear to be prevented from obtaining
information about the stresses in the bulk.

Because we chose a simple flow, however, there is a way out of this apparent
dead end, and the path is through the momentum balance. In the example that
follows, we show that the stress τ̃yx is constant throughout the flow and equal to
the value that we calculated in Equation 5.28. Because we found this particularly

1Some materials exist that are observed to require a force F = Fx êx + Fyêy to produce simple
shear flow (see Section 5.3).
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simple flow—a flow with a linear velocity profile and constant stress throughout—
we can deduce, in the next section, the stress-velocity relationship for a fluid
subjected to the flow.

EXAMPLE 5.1. Calculate the value of τ̃yx as a function of position in steady
simple shear flow between wide, long parallel plates.

SOLUTION. We calculate τ̃yx at all values of y by performing a momentum
balance on the control volume outlined in cross section by the dashed line in
Figure 5.8. The chosen control volume is a rectangular parallelepiped of height
H − y and cross-sectional area LW .

The momentum balance on a CV is given by the Reynolds transport theorem:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (5.29)

The flow is steady; thus, dP/dt = 0. The convective term (i.e., the term containing
the integral) turns out to be zero as well, as we show by calculating the integral
on the six bounding surfaces of the CV:

∫∫
C S

(n̂ · v) ρv d S =
∑

6 surfaces
Si

∫∫
Si

(n̂ · v) ρv d S (5.30)

The convection term contains the velocity v

ˆ

ˆ
ˆ

. For the bottom surface, the veloc-
ity v = 0 and there is no contribution to the convective term. For the two side
surfaces with n̂ = ±ez and for the top, the velocity v = V êx is parallel to the
surface; therefore, n̂ · v = 0 and there also is no contribution to the convective
term. For the upstream bounding surface (for which n̂ = −ex ) and the down-
stream bounding surface (n̂ = êx ), we previously determined that v = (V/H )yex

(see Equation 5.13); thus, n̂ · v �= 0. The convective term therefore is calcu-
lated as the sum of contributions from the upstream and downstream surfaces.

F

x

y
yê− y

L

H

Figure 5.8 Drag flow shown in cross section; the cell is of length L in the x -direction, of height H in the y-direction, and of
width W in the z-direction (out of the page). The CV outlined with a dashed line is used to calculate how stress
varies with position in simple shear flow.
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The calculation is straightforward:

∫∫
S
(n̂ · v) ρv d S =

[∫∫
(n̂ · v) ρv d S

]∣∣∣∣∣∣
upstream

+
[∫∫

(n̂ · v) ρv d S
]∣∣∣∣∣∣

downstream
(5.31)

=
∫ W

0

∫ H

0
ˆ

(
−ex · V y

H
êx

)
ρ

V y

H
êx dydz

∫ W

0

∫ H

0

(
êx · V y

H
êx

)
ρ

V y

H
êx dydz (5.32)

=
∫ W

0

∫ H

0
−
(

V y

H

)2

ˆρex dydz

∫ W

0

∫ H

0

(
V y

H

)2

ˆρex dydz (5.33)

= 0 (5.34)

Thus, the convective term is zero, and the momentum balance on our CV becomes:

0 =
∑

on
CV

f (5.35)

ˆ

The forces on the chosen CV are gravity and the molecular contact forces on
the six bounding surfaces. Gravity is given by the volume of the CV multiplied
by density, and it acts in the −y-direction (Figure 5.9):

f
gravi t y

= LW (H − y)(ρ)(−ey) (5.36)

ˆ ˆ

The forces on the upstream, downstream, and side surfaces are small because
the areas of these surfaces are small (H small). The forces on the top (n̂ =
ey) and bottom (n̂ = −ey) of the CV are the dominant forces. Neglecting the
contact forces on the upstream, downstream, and side surfaces, we complete the
momentum balance:

Momentum balance
on CV

0 =
∑

on
CV

f (5.37)

0 = f
gravi t y

+ f
top

+ f
bottom

(5.38)

ˆWe measured the force on the top as a force in the x-direction, ftop = F = Fex .
The force on the bottom is evaluated using Equation 5.3:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[n̂ · �̃]at surface d S (5.39)

f
bottom

=
∫ W

0

∫
ˆ

L

0
(−ey) · �̃|y dxdz (5.40)
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control
volume

H–y

W

L

Figure 5.9 The control volume for this example is a rectangular parallelepiped of height (H − y ) and cross section W L.

ˆ

As before, the quantities inside the integral do not depend on the x or z position;
thus, we carry out the integral to obtain:

f
bottom

= LW (−ey) · �̃|y (5.41)

We use matrix notation to carry out the dot product:

f
bottom

= −LW

⎛
⎜⎜⎜⎝

�̃yx

∣∣∣
y

�̃yy

∣∣∣
y

�̃yz

∣∣∣
y

⎞
⎟⎟⎟⎠ (5.42)

With this and previous results for f
top

and f
gravi t y

, the momentum balance
becomes:

0 =
∑

on
CV

f (5.43)

0 = f
gravi t y

+ f
top

+ f
bottom

(5.44)

⎛
⎝0

0
0

⎞
⎠

xyz

=
⎛
⎝ 0

−ρgLW (H − y)
0

⎞
⎠

xyz

+
⎛
⎝ F

0
0

⎞
⎠

xyz

− LW

⎛
⎜⎝

�̃yx

∣∣∣
y

�̃yy

∣∣∣
y

�̃yz

∣∣∣
y

⎞
⎟⎠ (5.45)

⎛
⎝0

0
0

⎞
⎠

xyz

=
⎛
⎝ 0

−ρgLW (H − y)
0

⎞
⎠

xyz

+
⎛
⎝ F

0
0

⎞
⎠

xyz

−

⎛
⎜⎜⎜⎝

LW τ̃yx

∣∣∣
y

LW
(

τ̃yy

∣∣∣
y − p|y

)
LW τ̃yz

∣∣∣
y

⎞
⎟⎟⎟⎠

(5.46)

The x-component of Equation 5.46 tells us what we wanted to know about the
shear-stress distribution in the flow: The shear stress at any value of y in simple
shear flow is equal to F/LW (Figure 5.10).

τ̃yx

∣∣∣
y = F

LW
(5.47)
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τ yx

Hy 1.0 0

LW
F

Figure 5.10 The shear stress τ̃yx in drag flow is constant and equal to F/LW .

Shear stress in
simple shear flow

(verified experimentally)
τ̃yx (y) = constant = F

LW
(5.48)

Experiments with optical techniques that allow measurements of stresses within
the gap of shear flow verify the result in Equation 5.48. With this result, we can
deduce the stress-velocity relationship for steady simple shear flow.

Before leaving this example, we note that Equation 5.46 provides information
about two other stress components, τ̃yy and τ̃yz . The z-component of Equation 5.46
indicates that τ̃zy = 0 for all values of y. The y-component relates gravity to stress
components; as a practical matter, gravity is negligible in this horizontal flow, and
we therefore can conclude that �̃yy = τ̃yy − p = 0 for all values of y in simple
shear.

To recap, we seek the relationship between the anisotropic stress τ̃ and the
velocity in moving fluids. We plan to deduce this relationship through exper-
iments, but we need a simple flow on which to conduct the experiments. We
chose to investigate one such simple flow—shear flow—and we find that it is
appropriate for our purposes. The velocity distribution in shear flow is a linear
function and the shear stress is constant throughout the flow domain:

Steady simple shear flow
(drag flow,

experimentally verified)

v =
⎛
⎝vx

0
0

⎞
⎠

xyz

=
⎛
⎝ V

H y
0
0

⎞
⎠

xyz

τ̃yx (y) = F

LW
= constant

(5.49)

Simple shear flow may be characterized by its geometry (L , W , H ), and just
two measurements: the velocity of the plate V and the force needed to move the
top plate, F . Steady simple shear flow created in this way also is called drag
flow.

Having identified an appropriate test flow that is simple enough to provide
clear information on fluid behavior, we now are prepared to examine the behavior
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of various fluids in drag flow to see how the flow parameters V , F , L , W , and
H are related for different fluids subjected to flows of this type. First we try a
numerical example that employs Equation 5.49.

EXAMPLE 5.2. A fluid is placed in the apparatus shown in Figure 5.5. The gap
between the plates is 1.000 mm; the plate size is 10.0 cm by 10 cm. The sample
completely fills the plates. When the top plate is in motion in the x-direction
at 1.000 mm/s, the force required to maintain the motion is 1.00 mN. What is
the shear stress at the moving plate? What is the magnitude of the velocity at
the moving plate? What is the shear stress at the stationary plate? What is the
magnitude of the velocity at the stationary plate? To make the numbers more real,
calculate the mass (in grams) that weighs 1.00 mN.

SOLUTION. The answers to the many questions of this problem are obtained
from Equation 5.49. The velocity at the top plate (y = H ) and at the bottom plate
(y = 0) are V = 1.000 mm/s and zero, respectively. These quantities were used
to derive Equation 5.49. The shear stress is constant throughout the gap in drag
flow, as shown thus, the shear stress is F/LW at both locations, which for the
values given is:

τ̃yx (y) = F

LW
= constant (5.50)

=
(

10−3 N
)( 1

(0.10 m)(0.10 m)

)(
Pa

N /m2

)
(5.51)

= 1.00 × 10−5 Pa (5.52)

To calculate the driving force 1.00 mN in an intuitive sense, we use Newton’s
second law in a gravity field:

F = mg (5.53)

m = F

g
=
(

10−3 N

9.80 m /s2

)(
kg m /s2

N

)(
103 g

kg

)
(5.54)

= 0.10 g (5.55)

This small amount of force—equivalent to the weight of a tenth of a gram—
indicates that the measuring device for force on the apparatus in Figure 5.8 must
be sensitive and accurate to be of any practical use. Alternatively, we can increase
the area of the plates to increase the signal from the apparatus (i.e., larger plates
require a larger force to pull at the indicated speed).

The forces to deform water, oil, and honey in the shear-flow apparatus would
be different. In the next section, we define viscosity—the material parameter that
quantifies the differences between the flow behaviors of different fluids.

www.20file.org

http://www.semeng.ir


360 An Introduction to Fluid Mechanics

5.1.3 Viscosity

A great deal of research has been conducted on liquids in a parallel-plate apparatus
such as the one described in Figure 5.5. In this device, a fluid is trapped between
two large plates and one plate is moved at a constant speed while the gap is
maintained constant. For many fluids, including water, oil, milk, and solvents,
measurements of the force on the plate F as a function of plate speed V , area
A = LW , and gap H reveal a simple pattern. As noted with the batter-stirring
and honey-squeezing examples (see Figure 5.2), as V increases, F increases.
When quantitative measurements are made in parallel-plate flow, we find that F
is directly proportional to V :

Experimental result
in parallel-plate apparatus:

F ∝ V (5.56)

That is, when velocity doubles, the force doubles.
We also find that changes in geometry affect the measurements. For a given

speed V , if gap H is reduced, the required shear force F increases. Also, for
a given speed V , if the area of plate A is increased, the required shear force
F increases. The relationships among these four shear-flow variables are well
described by the single equation shown here:

Experimental results:
(steady shear flow)

F

LW
∝ V

H
(5.57)

We introduce a constant of proportionality μ between F/LW and V/H and
write:

F

LW
= μ

V

H
(5.58)

We recognize F/A = F/LW as the shear stress τ̃yx (Equation 5.49), which
is constant in steady shear flow. The ratio V/H is equal to the slope of the
vx -versus-y curve; that is, to the y-derivative of the velocity vx (see equa-
tion 5.49):

vx = V

H
y (5.59)

dvx

dy
= V

H
(5.60)

Equation 5.58 thus becomes:

Newton’s law of viscosity
in steady simple shear flow
(shear flow in x-direction,

gradient in y-direction)

τ̃yx = μ
dvx

dy
(5.61)
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Table 5.1. Viscosity of familiar materials [132]

T μ μ ρ ρ

Fluid (◦C) (Pa s) lbm/(ft s) (kg/m3) lbm/ft3

Air 25 18.6 × 10−6 12.50 × 10−6 1.20 74.9 × 10−3

Water 25 0.8937 × 10−3 0.6005 × 10−3 997 62.2

n-Propyl alcohol 25 1.96 × 10−3 1.32 × 10−3 804 50.2

Olive oil 25 69 × 10−3 46 × 10−3 918 57.3

Honey 25 9 6 1360 84.9

Pitch 25 1 × 106 0.67 × 106 1100 69

Note : The range of viscosity is ten orders of magnitude; the range of density is only three orders of magnitude.

This equation, deduced from the carefully chosen test flow and found to
hold for a wide variety of fluids subjected to it, provides the missing link
between the velocity field and the stress field. This equation was first introduced in
Chapter 2.

We have arrived at a shear stress–velocity relationship for simple fluids in a
simple flow. This equation is called Newton’s law of viscosity, after Isaac Newton,
who performed many early experiments in shear flow [125]. The proportionality
constant μ in Equation 5.61 is called the viscosity or the steady-shear viscosity.
A different value of viscosity μ is found for every fluid (Table 5.1), and viscosity
is observed to be a sensitive function of temperature.

Viscosity is a material parameter that states how much shear stress τ̃yx is
generated by a given velocity gradient dvx/dy in simple shear flow. The units
of viscosity are Pa s = kg/(m·s). The poise = cm/(g·s), is named after Jean
Marie Poiseuille, a physician who made important contributions to the study
of pressure-driven flow in arteries (see Chapter 7). The magnitude of viscosity
can vary over a wide range (see Table 5.1). For air, viscosity is approximately
2 × 10−4 poise; for water, μ ≈ 0.01P = 1 cp; for oil, μ ≈ 1P = 100 cp; and for
polymer melts, 105 poise or higher.

Newton’s law of viscosity is a relationship that describes molecular forces in
flow (τ̃yx is molecular contact stress), but we did not arrive at this law by invoking
any particular molecular behavior. We arrived at the need for viscosity by making
observations on a simple test flow. Viscosity, like density and surface tension, is a
necessary parameter of the continuum model so that it correctly reflects the actual
behavior of molecules. By inventing these parameters, we build up the ability of
the continuum model to capture a wide variety of fluid behavior. As is true for
density and surface tension, however, there also is a molecular interpretation of
viscosity (see the sidebar).

In the next section, we describe how Newton’s law of viscosity may be used in
the momentum-balance calculations of Chapters 3 and 4 to finish those analyses
and to calculate flow properties of interest.
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Molecular Interpretation of Viscosity

The material-property density is the average mass per volume of the material, for a large sample
size. We formally write this definition as:

Molecular interpretation of ρ ρ = lim
N−→∞

⎡
⎢⎢⎢⎣

mass of N
molecules

volume occupied
by N molecules

⎤
⎥⎥⎥⎦ (5.62)

The material and continuum property surface tension is a measure of the unbalance of inter-
molecular forces in fluid near a phase boundary. This unbalance has the effect of creating a
tension per unit length along a line drawn in an interface:

Molecular interpretation of σ σ =

(
extra molecular

tension

)
(

length along line
in interface

) (5.63)

The material and continuum property viscosity also has a molecular mechanism associated with
it. Viscosity is a measure of the tendency in a material of momentum to transport down a velocity
gradient due to Brownian motion, which is the random motion of molecules first observed
by Robert Brown in 1827. Brown looked through his microscope at pollen floating on water
drops and saw pollen in constant motion, being pushed by the random thermal motions of water
molecules. Brownian motion is a fundamental behavior exhibited by liquids and gases: Gases
and liquids are composed of molecules that move about at random.

Brownian motion can be a source of momentum transport if there is a gradient of momentum
in a fluid [62]. The basics of the effect are illustrated in Figure 5.11. Consider a fluid in motion
in the x-direction, with a gradient of velocity in the z-direction:

v =
⎛
⎝ vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝ vx (z)

0
0

⎞
⎠

xyz

(5.64)

A positive gradient dvy/dz means that as we look at larger values of z, the average velocity of
the molecules is higher:

dvx

dz
> 0 (5.65)

In addition to the average macroscopic velocity, molecules have a Brownian contribution to
their velocity, which is random in magnitude and direction. If we choose a plane in the flow
as a reference plane, we can watch the effect of random Brownian motion on the transport of
momentum through this plane.

We choose a reference plane through the origin with unit normal equal to êz (Figure 5.11). At
a distance l above the plane, the molecules have a slightly higher average velocity vx than the
molecules a distance l below the plane. This difference in average bulk velocity is a reflection of
the positive velocity gradient dvx/dz. In addition to the bulk motion, Brownian motion moves the
molecules around at random. We know, therefore, that due to Brownian motion, equal numbers of
molecules from above and from below the reference plane pass through the plane per unit time.
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Molecular Interpretation of Viscosity (continued)

 l x

 y

 z

 l

Figure 5.11 Particles cross the z-plane through the origin from above and from below due to Brownian motion. Some
molecules are faster than others; in this figure, the faster molecules are black. There is a gradient in velocity in
the z-direction; thus, there are more black (i.e., fast) molecules above the plane than below it. When Brownian
motion causes equal numbers of molecules to cross the z-plane from above and below, there is a net flux of
black molecules (i.e., faster ones) in the (−z)-direction.

Although equal numbers of molecules from above and below our chosen plane end up crossing
the plane, because of the velocity gradient, the net effect of these crossings on momentum in the
region is not zero. The molecules that cross the reference plane from above have a slightly higher
bulk momentum, on average, than the molecules that cross it from below. Before and after the
crossing, there are the same numbers of molecules on both sides of the plane, but there is a net
transfer of momentum from the faster region to the slower region.

It is the random Brownian motion acting in the nonrandom velocity gradient that causes a net
momentum flux down a velocity gradient. If these ideas are pursued more formally and if we
identify −τ̃zx as the flux of x-momentum in the z-direction, we obtain Newton’s law of viscosity
written in the current coordinate system:2

Newton’s law of viscosity
(flow in x-direction,

gradient in z-direction)
(−τ̃zx ) = −μ

dvx

dz
(5.66)

The effect of Brownian motion in spatially inhomogeneous materials accounts for more
than Newton’s law of viscosity. If the same ideas are applied to materials in which there are
concentration or temperature gradients, Brownian motion explains important laws related to

(continued)

2 The negative sign is needed in the term −τ̃zx because of our choice of convention for the sign of the stress
tensor. We chose tension as positive; if we had chosen the other convention, compression is positive, the
negative sign would not be needed here [15].
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Molecular Interpretation of Viscosity (continued)

diffusion (i.e., Fick’s law) and heat transfer (i.e., Fourier’s law). For diffusion:

Fick’s law of diffusion J ∗
Az = −DAB

dcA

dz
(5.67)

where J ∗
Az is the molar flux of species A, DAB is the diffusion coefficient, and cA is the concen-

tration of species A. For heat transfer:

Fourier’s law of heat conduction qz = −k
dT

dz
(5.68)

where qz is the heat flux in the z-direction, k is the thermal conductivity, and T is temperature. For
more on the similarities and differences in the transport equations for mass, heat, and momentum,
see the literature [15].

5.2 Newtonian fluids

In Section 5.1, we discussed simple experiments in shear flow from which we
deduced Newton’s law of viscosity. Newton’s law of viscosity gives a relationship
between shear stress and velocity gradient that holds for many fluids when they
are subjected to steady, simple shear flow between very wide and very long
parallel plates:

Newton’s law
of viscosity

(steady, simple shear)
τ̃yx = μ

dvx

dy
(5.69)

The flow down an inclined plane considered previously was a flow not too dissim-
ilar from steady, simple shear flow. With the insight provided by Equation 5.69,
we return to the incline problem and attempt to apply Newton’s law to this new
situation with the goal of calculating the velocity and stress distributions in the
flow.

EXAMPLE 5.3 (Incline: continued). What is the velocity field in a wide, thin
film of water that runs steadily down an inclined surface under the force of
gravity? The fluid has a constant density ρ (continued from Chapters 3 and 4).

SOLUTION. We started this problem in Chapter 3 (Figure 5.12). We performed
a momentum balance on a microscopic control volume of size �x�y�z; in
Chapter 4, we wrote the molecular contact forces in terms of the extra-stress tensor
components τ̃ jk and the pressure. We incorporated the stress components into the
momentum balance (see Equations 4.357–4.359), but we paused our development
there because we did not know how the stress components varied with velocity.
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g

β
fluidair

v

x

z

H

Figure 5.12 The idealized version of flow down an incline is a film of constant thickness where the velocity is everywhere in the
same direction but the magnitude varies with position in the film. We seek to calculate the velocity as a function of
position relative to the wall (i.e., as a function of x ).

Now that we have deduced a relationship between stress and velocity in simple
shear flow—Newton’s law of viscosity—we can proceed with the solution.

Newton’s law of viscosity is given in Equation 5.69 and repeated here:

Newton’s law of viscosity
(drag-flow coordinate

system; see Figure 5.5)
τ̃yx = μ

dvx

dy
(5.70)

This equation was inferred from experiments in drag flow in which the flow
direction was the x-direction and the gradient direction was the y-direction. We
adjust Newton’s law for our current flow by changing the first subscript on τ̃i j

to the gradient direction of our flow, and the second subscript of τ̃i j to the flow
direction. We also make the corresponding changes in the velocity gradient:

Newton’s law
of viscosity

(current coordinate system)
τ̃xz = μ

dvz

dx
(5.71)

The steps taken to adapt Newton’s law of viscosity seem reasonable, although
we may hesitate to apply this equation to a flow other than drag flow—that is,

vx(H)=V 

vx(0)=0 

x

y

g

β
fluidair

v

x

z

H

Figure 5.13 We developed Newton’s law of viscosity in drag flow (left), and we now seek to apply it to the falling-film flow. The
two flows are similar but there are differences that may be significant.
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the one on which Newton’s law of viscosity is based. The falling-film flow we
are considering is different from drag flow in that the falling film has a nonlinear
(Figure 5.13) rather than a linear velocity profile. Also, we know little about
the shear-stress distribution in the falling-film problem. How do we know if the
adaptation in Equation 5.71 is correct?

Again we must postpone completion of this example to clarify the questions
raised by changes in coordinate system, velocity field, and stress field.

One approach to the dilemma of how to adapt Newton’s law of viscosity to the
falling-film problem is to assume that our approach is correct and then check the
answer obtained for the velocity profile against measurements. If we do this with
the falling-film example, we find that the adaptation works—Equation 5.71 is the
correct version of Newton’s law of viscosity to use in this flow. We do not always
find it so easy to adapt Newton’s law of viscosity, however, as the next example
shows.

EXAMPLE 5.4. What is the correct form for Newton’s law of viscosity for the
two flows shown in Figure 5.14?

SOLUTION. The top schematic in Figure 5.14 depicts a flow produced by a
sheet of fluid impinging on a wall. To make the flow simpler, we consider a

x

y

vx

vy

a

b

 y

 z

 (r,θ,φ)

θ 

Figure 5.14 When the flow is not unidirectional, it is not clear how to adapt Newton’s law of viscosity. The top flow is analyzed
in Cartesian coordinates, and the bottom flow uses spherical coordinates.
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very wide sheet of fluid so that changes in the width direction z are negligible.
The curved streamlines of the flow make it a challenge to analyze the flow.
The flow is symmetric from top to bottom, so we choose to model the flow
in a Cartesian coordinate system with the x-direction toward the wall and the
y-direction upward, as shown in Figure 5.14.

Our choice of coordinate system takes advantage of the symmetry of the
problem and allows us to eliminate the z-component of the velocity profile:

Planar jet
flow

v =

⎛
⎜⎝

vx

vy

vz

⎞
⎟⎠

xyz

=

⎛
⎜⎝

vx

vy

0

⎞
⎟⎠

xyz

(5.72)

We now want to adapt Newton’s law of viscosity for this flow. Newton’s law
tells us that the shear stress is proportional to the velocity gradient. We begin,
therefore, by looking for the velocity gradients. We have two nonzero components
of velocity, vx and vy . As previously when analyzing shear flow in Section 5.1.1,
we look at the velocity boundary conditions to see how the velocity components
change with position in the flow.

Along the centerline of the flow, at the inflow boundary of the flow, vx is large;
but, at the wall, vx goes to zero. Thus, vx is a function of the x-position. The
component vx also is a function of y, although this is more difficult to see. If we
consider the variation of vx along the vertical dotted line in Figure 5.14, we see
that at Point (b), the x-component of velocity is slightly smaller than at Point (a)
because fluid particles are losing speed in the x-direction as they move through
the flow. Hence, vx also is a function of y. If we now consider the component
vy in the same way, we see that vy also is a function of both x and y. Neither
component is a function of z due to the large width of the flow.

To adapt Newton’s law of viscosity for the jet flow, we now have four nonzero
velocity gradients that may affect stress in this flow:

∂vx

∂x

∂vx

∂y

∂vy

∂x

∂vy

∂y
(5.73)

It is not easy to see where we should go from here. One option is to create four
different Newton’s laws of viscosity with the four velocity gradients:

τ̃xx
?= μ

∂vx

∂x

τ̃yx
?= μ

∂vx

∂y

τ̃xy
?= μ

∂vy

∂x

τ̃yy
?= μ

∂vy

∂y

(5.74)

It turns out this would be incorrect. One way we can tell that this approach is
incorrect is to notice that such a system results in τ̃xy �= τ̃yx . Because the stress
tensor is symmetric, there is a problem with this guess.
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x

y

Figure 5.15 In the flow of the planar jet into the wall, the fluid particles experience an extreme compressional deformation near
the wall; that is, vx varies in the x -direction, ∂vx /∂x �= 0.

Another problem with our guess is that Newton’s law of viscosity was devel-
oped in a sliding flow, and we have two velocity gradients that are not the sliding
type; ∂vx/∂x and ∂vy/∂y. These velocity gradients describe compressional and
extensional aspects of the flow (Figure 5.15). It does not seem reasonable to
directly adapt the shear-stress–velocity relationship developed in shear flow to
flows that are so different from simple shear. This flow with curved streamlines
shows that we have more work before we can understand how stress and veloc-
ity are related in general flows—even for materials that follow Newton’s law of
viscosity in simple shear.

As a second example, consider the axisymmetric flow around a sphere (see
Figure 5.14, bottom). This flow is related to the settling of spherical particles and
to the flow around bubbles. Because the flow is around a sphere, the flow has a
symmetry that is easiest to describe using the spherical coordinate system, rθφ.
In that coordinate system, the velocity vector of the flow around a sphere has two
nonzero coordinates, vr and vθ . The vφ component is zero because there is no
spiral or spinning component to the flow:

v =

⎛
⎜⎝

vr

vθ

vφ

⎞
⎟⎠

rθφ

=

⎛
⎜⎝

vr

vθ

0

⎞
⎟⎠

rθφ

(5.75)

In addition, the flow is symmetrical in the φ-direction (i.e., if we slice the flow
at different values of φ, we see the same flow pattern). Both vr and vθ , however,
are functions of both r and θ :

Flow around
a sphere

v =

⎛
⎜⎝

vr (r, θ )

vθ (r, θ )

0

⎞
⎟⎠

rθφ

(5.76)

We do not attempt to write an ad hoc adaptation of Newton’s law of viscosity
for this flow. We know from Chapter 1 to expect complications from the change
of coordinates from Cartesian to spherical coordinates, which must be done
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Figure 5.16 In the flow around a sphere, the fluid particles moving along the centerline impact the sphere and experience an
extreme compressional deformation.

rigorously. In addition, this flow has both shear and elongation/compression
aspects, as did the planar-jet flow considered. For example, the fluid particles
that travel along the axis of symmetry go from traveling at the mean velocity to
traveling at zero velocity when they encounter the sphere (Figure 5.16).

The complications due to curved streamlines and the change of coordinates
convince us that we must reconsider the mathematical form of Newton’s law of
viscosity. We must seek a general formulation for the stress-velocity relationship.
The formulation we need must work in the widest possible variety of flows and
in any coordinate system.

The previous example shows that we need a stress–velocity relationship that
is more general than Newton’s law of viscosity. As stated in the introduction
to this chapter, the true relationship between stress and velocity is a tensor
relationship. Tensors are independent of coordinate system; thus, if we formulate
a correct tensor relationship between the stress tensor and velocity, we satisfy
the requirement for an equation that works in any coordinate system. The second
requirement is that the tensor relationship between stress and velocity should
correctly capture material behavior. The relationship that does this correctly for
many fluids is called the Newtonian constitutive equation.

To rigorously derive a tensor version of Newton’s law of viscosity, we need to
know more about tensors. Instead, we present simple arguments to justify the final
result, but this is not a proof. Interested readers may pursue more information
and a complete proof in the literature [6].

5.2.1 The constitutive equation

The tensor that contains all of the information about how the velocity vector
varies in space is called the velocity gradient tensor ∇v. In a Cartesian coordinate
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system, ∇v is given by the following (see Appendix B):

Velocity
gradient
tensor

∇v =

⎛
⎜⎜⎜⎜⎝

∂vx
∂x

∂vy

∂x
∂vz
∂x

∂vx
∂y

∂vy

∂y
∂vz
∂y

∂vx
∂z

∂vy

∂z
∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.77)

We now guess a relationship between τ̃ and ∇v. The simplest relationship is that
τ̃ is proportional to ∇v, τ̃ = a∇v. In Cartesian coordinates, this becomes:

τ̃
?=

⎛
⎜⎜⎜⎜⎝

a ∂vx
∂x a ∂vy

∂x a ∂vz
∂x

a ∂vx
∂y a ∂vy

∂y a ∂vz
∂y

a ∂vx
∂z a ∂vy

∂z a ∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.78)

Notice that if we make this choice, the yx-component of τ̃ = a∇v is the equiva-
lent of Equation 5.61, Newton’s law of viscosity, if a = μ. This simplest equation
is not appropriate, however, because we know that τ̃ is symmetric. Because ∇v

is not symmetric (e.g., the xy-component is not equal to the yx-component), a
simple proportionality between τ̃ and ∇v cannot be correct, and τ̃ = μ∇v can
not be the correct stress–velocity equation.

It is straightforward to show that the tensor is ∇v + (∇v)T is symmetric. The
notation AT means the transpose of the tensor is A, and AT is the new tensor
obtained by switching the rows and columns of the matrix representation of A:

(∇v)T =

⎛
⎜⎜⎜⎜⎝

∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy

∂x
∂vy

∂y
∂vy

∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.79)

∇v + (∇v)T =

⎛
⎜⎜⎜⎜⎝

∂vx
∂x

∂vy

∂x
∂vz
∂x

∂vx
∂y

∂vy

∂y
∂vz
∂y

∂vx
∂z

∂vy

∂z
∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

+

⎛
⎜⎜⎜⎜⎝

∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy

∂x
∂vy

∂y
∂vy

∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.80)

=

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.81)

Considering the symmetry requirement, we propose that a possible relationship
between the stress tensor τ̃ and v is a simple proportionality between τ̃ and

(∇v + ∇v)T :

Hypothesis: This is the
general stress–viscosity

relationship for Newtonian fluids
τ̃

?= μ
(∇v + (∇v)T ) (5.82)
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The first test of our hypothesis is shear flow. In shear flow, we know that
v = vx êx :

Shear flow: v =
⎛
⎝vx

0
0

⎞
⎠

xyz

=
⎛
⎝

V y
H
0
0

⎞
⎠

xyz

(5.83)

and from Newton’s law of viscosity, τ̃yx = μ(dvx/dy). First, we write Equa-
tion 5.82 in Cartesian component form:

Hypothesis test:
shear flow

τ̃
?= μ
(∇v + (∇v)T ) (5.84)

= μ

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.85)

Note that the predicted τ̃ is symmetric. We can simplify Equation 5.85 for simple
shear flow because v = vx êx , which means that vy = vz = 0. With these velocity
components equal to zero, Equation 5.85 becomes:

τ̃
?= μ

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vx
∂y 0 0

∂vx
∂z 0 0

⎞
⎟⎟⎟⎟⎠

xyz

(5.86)

ˆ
We know from the experiments discussed previously in this chapter that in simple
shear flow, vx = (V/H )yex ; therefore, vx is not a function of x or of z and, thus,
∂vx/∂z = 0 and ∂vx/∂y = 0. Including these two facts in Equation 5.86, the final
result for τ̃ is:

Stress tensor
steady simple shear

(testing proposed relationship)
τ̃

?= μ

⎛
⎜⎜⎜⎜⎝

0 ∂vx
∂y 0

∂vx
∂y 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

xyz

(5.87)

This tensor for simple shear flow has only two nonzero components, and they
give Newton’s law of viscosity. With the additional information that in simple
shear flow the velocity is a function only of y, we can change the partial derivatives
in Equation 5.87 to total derivatives. Thus, the guessed tensor relationship between
stress and velocity works for the simple shear-flow case.
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Stress tensor
steady simple shear

(testing proposed relationship)

τ̃ = μ

⎛
⎜⎜⎜⎜⎝

0 dvx
dy 0

dvx
dy 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

xyz

τ̃yx = τ̃xy = μ
dvx

dy

(5.88)

In fact, it may be shown through rigorous experimental testing on many shear
and non-shear flows that our guessed constitutive equation, Equation 5.82, is the
correct constitutive equation for many fluids. The tensor constitutive equation we
propose captures the full three-dimensional nature of the flow of simple fluids
and is called the Newtonian constitutive equation:

Newtonian
constitutive equation

(stress-velocity relationship)
τ̃ = μ

(
∇v + (∇v)T

)
(5.89)

The Newtonian constitutive equation in Cartesian, cylindrical, and spherical coor-
dinates are given here:

⎛
⎜⎜⎜⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎟⎟⎟⎠

xyz

= μ

⎛
⎜⎜⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

xyz

(5.90)

⎛
⎜⎜⎜⎜⎝

τ̃rr τ̃rθ τ̃r z

τ̃θr τ̃θθ τ̃θ z

τ̃zr τ̃zθ τ̃zz

⎞
⎟⎟⎟⎟⎠

rθ z

= μ

⎛
⎜⎜⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

∂vr
∂z + ∂vz

∂r

r ∂
∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
1
r

∂vz
∂θ

+ ∂vθ

∂z

∂vr
∂z + ∂vz

∂r
1
r

∂vz
∂θ

+ ∂vθ

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

rθ z

(5.91)

⎛
⎜⎜⎜⎜⎝

τ̃rr τ̃rθ τ̃rφ

τ̃θr τ̃θθ τ̃θφ

τ̃φr τ̃φθ τ̃φφ

⎞
⎟⎟⎟⎟⎠

rθφ

= μ

⎛
⎜⎜⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

1
r sin θ

∂vr
∂φ

+ r ∂

∂r

(
vφ

r

)
r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
sin θ

r
∂

∂θ

(
vφ

sin θ

)+ 1
r sin θ

∂vθ

∂φ

1
r sin θ

∂vr
∂φ

+ r ∂

∂r

(
vφ

r

)
sin θ

r
∂

∂θ

(
vφ

sin θ

)+ 1
r sin θ

∂vθ

∂φ
2
(

1
r sin θ

∂vφ

∂φ
+ vr

r + vθ cot θ
r

)

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

(5.92)

These components also are given in Appendix B, Table B.8.
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Newton published his one-dimensional law of viscosity in 1687, and G. G.
Stokes generalized it to three dimensions in 1845 [90]. Important experimental
verification of the Newtonian constitutive equation did not occur until the work
of Poiseuille (1856) [90, 91] and Couette (1890) [29] later in the 19th century.
For a discussion of the development of the Newtonian constitutive equation from
Newton’s law of viscosity, see Bird et al. [15].

Having the Newtonian constitutive equation, we now are ready to complete
the problem of the film flowing down the incline. Before we return to complete
that example, however, we try again to evaluate the stress-velocity laws for the
two complex flows recently considered: the planar-jet flow and flow around a
sphere.

EXAMPLE 5.5 (Stress-velocity relationship: concluded). What are the correct
forms of the stress-velocity relationship for the two flows shown in Figure 5.14?

SOLUTION. The solution to this problem is to look up the Newtonian constitu-
tive equation in our chosen coordinate system and then simplify it based on what
we know about the velocity field and how it varies in space.

For the planar jet hitting the wall, we chose the Cartesian coordinate system;
the constitutive equation therefore is given by Equation 5.90:

⎛
⎜⎜⎜⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎟⎟⎟⎠

xyz

= μ

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.93)

The velocity vector for the planar-jet flow has vz = 0; thus, we may eliminate the
terms of Equation 5.93 that contain vz:

v =
⎛
⎝vx

vy

0

⎞
⎠

xyz

(5.94)

As discussed previously, in this flow, vx and vy are both functions of x and y;
however, because the flow is wide, they are not functions of z. We therefore
also eliminate the terms in the constitutive equation that contain derivatives with
respect to z. Incorporating these observations in Equation 5.93, we obtain:

⎛
⎜⎜⎜⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎟⎟⎟⎠

xyz

= μ

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y 0

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y 0

0 0 0

⎞
⎟⎟⎟⎟⎠

xyz

(5.95)
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This is the final result. There are four nonzero stresses in this flow and two of
them are equal to one another, τ̃yx = τ̃xy :

τ̃yx = τ̃xy = μ

(
∂vy

∂x
+ ∂vx

∂y

)

τ̃xx = 2μ
∂vx

∂x

τ̃yy = 2μ
∂vy

∂y

(5.96)

This result is different from our simplistic guess in Equation 5.74. If we perform
a mass balance on a microscopic control volume, we discover other relationships
among the velocity derivatives that also simplify the problem.

For the flow around a sphere, we begin with the Newtonian constitutive equation
written in spherical coordinates, Equation 5.92:

⎛
⎜⎜⎜⎜⎝

τ̃rr τ̃rθ τ̃rφ

τ̃θr τ̃θθ τ̃θφ

τ̃φr τ̃φθ τ̃φφ

⎞
⎟⎟⎟⎟⎠

rθφ

= μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

1
r sin θ

∂vr
∂φ

+ r ∂
∂r

(
vφ

r

)
r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
sin θ

r
∂
∂θ

(
vφ

sin θ

)+ 1
r sin θ

∂vθ

∂φ

1
r sin θ

∂vr
∂φ

+ r ∂
∂r

(
vφ

r

)
sin θ

r
∂
∂θ

(
vφ

sin θ

)+ 1
r sin θ

∂vθ

∂φ
2
(

1
r sin θ

∂vφ

∂φ
+ vr

r + vθ cot θ
r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(5.97)

The stress tensor written in spherical coordinates has many extra terms that result
from the coordinate transformation from Cartesian to spatially varying spheri-
cal coordinates. These nonintuitive terms can be arrived at only by performing
rigorous algebraic calculations of the transformation of the Cartesian coordi-
nates to the spherical coordinates using Equations 1.268–1.273. Because these
calculations are complex, we use tables that provide the final results needed.

For the flow around a sphere, vφ = 0, and the flow is symmetric relative to φ,
which means that derivatives with respect to φ are zero. These two facts allow us
to simplify the expression for τ̃ in Equation 5.97:

v =

⎛
⎜⎝

vr (r, θ )

vθ (r, θ )

0

⎞
⎟⎠

rθφ

(5.98)
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⎛
⎜⎜⎜⎝

τ̃rr τ̃rθ τ̃rφ

τ̃θr τ̃θθ τ̃θφ

τ̃φr τ̃φθ τ̃φφ

⎞
⎟⎟⎟⎠

rθφ

= μ

⎛
⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

0

r ∂
∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
0

0 0 2
(

vr
r + vθ cot θ

r

)

⎞
⎟⎟⎟⎟⎠

rθφ

(5.99)

This is as far as we can simplify the constitutive equation. There are four unique,
nonzero stress–velocity relations to consider in this flow:

τ̃rr = 2μ
∂vr

∂r

τ̃rθ = τ̃θr = μ

(
r

∂

∂r

(
vθ

r

)
+ 1

r

∂vr

∂θ

)

τ̃θθ = 2μ

(
1

r

∂vθ

∂θ
+ vr

r

)

τ̃φφ = 2μ

(
vr

r
+ vθ cot θ

r

)

(5.100)

These components are more complex than any guess we are likely to make for
the relationship between stresses and velocity gradients. It was essential to use
the correct tensor transformation of τ̃ to the chosen coordinate system. It was
straightforward to obtain those terms from a reference table (see Equation 5.92
and Table B.8) as long as we knew the constitutive equation in Gibbs notation
(Equation 5.89).

The stress-velocity laws obtained in Equations 5.96 and 5.100 can be used in
the momentum balances on control volumes appropriate to the particular flow.
Complex problems such as those in Figure 5.14 generally are solved with the
aid of the general microscopic-momentum-balance equation, which is derived
for balances on arbitrary control volumes in Chapter 6. Once the microscopic-
momentum-balance equation is solved for v with the help of the constitutive equa-
tion, Equations 5.96 and 5.100 are used again to calculate stresses in the two flows.

The Newtonian constitutive equation is a powerful result. This simple equation,
which contains a single material-flow parameter, the viscosity μ, gives the stress
tensor as a function of velocity at any position in a flow. With the Newtonian
constitutive equation, we now know τ̃ and �̃ and can calculate forces or surfaces
in flows with the usual integral of n̂ · �̃|surface (Equation 5.3). In Section 5.3, we
explore constitutive equations for materials that do not follow Newton’s law of
viscosity. Non-Newtonian fluids are common, and the field of study that focuses
on non-Newtonian fluids is called rheology [12, 90, 104].

www.20file.org

http://www.semeng.ir


376 An Introduction to Fluid Mechanics

The next two examples provide practice with calculations using the Newtonian
constitutive equation. In Section 5.2.2, we deploy the Newtonian constitutive
equation to allow us to finish the two example problems from Chapters 3 and 4.

EXAMPLE 5.6. Calculate the stress field in the steady upward flow of an incom-
pressible Newtonian fluid around a stationary solid sphere of diameter 2R (velo-
city and pressure fields given here). The fluid approaches the sphere with a
uniform upstream velocity of v∞ (Figure 5.17).

SOLUTION. We are not ready to carry out such a calculation from scratch, but
if we are given the velocity solution, we now know how to calculate the stress
tensor from the velocity solution.

The solution for the velocity field in creeping flow around a sphere is given
here and discussed in detail in Chapter 8. The problem is solved and reported in
spherical coordinates:

Solution [43],
creeping flow
(Stokes flow)

around a sphere

v(r, θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v∞

[
1 − 3

2

R

r
+ 1

2

(
R

r

)3
]

cos θ

−v∞

[
1 − 3

4

R

r
− 1

4

(
R

r

)3
]

sin θ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(5.101)

p(r, θ ) = p∞ − ρgr cos θ − 3

2

μv∞
R

(
R

r

)2

cos θ (5.102)

The quantity p∞ is the pressure far from the sphere at the elevation of the origin
of the coordinate system (i.e., at θ = π/2, the sphere equator).

 x

 z
 (r,θ,φ)

θ 

flow

g φ

 R

r

∞v

z

Pθ
r

φ y

x

Figure 5.17 Schematic of creeping flow around a sphere. This flow is known as Stokes flow. The solution for the velocity field
is discussed in Chapter 8.

www.20file.org

http://www.semeng.ir


377 Stress-Velocity Relationships

Given that we were provided the solution for v for the flow around a sphere
problem, we can calculate the stress field in this flow from the Newtonian con-
stitutive equation. Because we are in spherical coordinates, we must use the
correct form for the Newtonian constitutive equation in this coordinate system.
The correct form is in Table B.8:

τ̃ = μ
(∇v + ∇vT ) (5.103)

v =

⎛
⎜⎝

vr (r, θ )

vθ (r, θ )

0

⎞
⎟⎠

rθ z

(5.104)

τ̃ (r, θ ) = μ

⎛
⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

0

r ∂
∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
0

0 0 2vr
r + 2vθ cot θ

r

⎞
⎟⎟⎟⎠

rθφ

(5.105)

�̃(r, θ ) = τ̃ − pI

=

⎛
⎜⎜⎜⎝

2μ∂vr
∂r − p(r, θ ) μr ∂

∂r

(
vθ

r

)+μ

r
∂vr
∂θ

0

μr ∂
∂r

(
vθ

r

)+ μ

r
∂vr
∂θ

2μ
(

1
r

∂vθ

∂θ
+ vr

r

)
−p(r, θ ) 0

0 0 2μvr

r + 2μvθ cot θ
r − p(r, θ )

⎞
⎟⎟⎟⎠

rθφ

(5.106)

The components of �̃ are calculated from the velocity and pressure solutions,
Equations 5.101 and 5.102. For �̃rr and �̃rθ = �̃θr , we obtain:

�̃rr = 2μ
∂vr

∂r
− p(r, θ )

= μv∞ cos θ

(
3R

r2
− 3R3

r4

)
− p(r, θ )

= μv∞ cos θ

(
3R

r2
− 3R3

r4

)
− p0 + ρgr cos θ + 3

2
μv∞ cos θ

(
R

r2

)

= μv∞ cos θ

(
9R

2r2
− 3R3

r4

)
− p0 + ρgr cos θ (5.107)

�̃rθ = μr
∂

∂r

(
vθ

r

)
+ μ

r

∂vr

∂θ

= −μv∞ sin θ
3R3

2r4
(5.108)

The two remaining coefficients of �̃, �̃θθ and �̃φφ , may be calculated similarly
(see Problem 27).
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ˆ

EXAMPLE 5.7. For the flow of an incompressible Newtonian fluid with the
velocity field given here, calculate the extra-stress tensor τ̃ . What is the force on
a small plane �A located at coordinate point (x, y, z) = (0, 0, l0) and facing the
flow (n̂ = −ez)?

v =

⎛
⎜⎝

− ε̇0x
2

− ε̇0 y
2

ε̇0z

⎞
⎟⎠

xyz

(5.109)

SOLUTION. The flow field in Equation 5.109 is called uniaxial elongational
flow [12, 104], and it is a standard flow used in the study of non-Newtonian
fluids (Figure 5.18). We calculate the stress produced by a Newtonian fluid in
this flow from the velocity field by applying the Newtonian constitutive equation.
The velocity field is given in a Cartesian coordinate system; thus, we begin with
Equation 5.90:

⎛
⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎠

xyz

= μ

⎛
⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z
∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z
∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎠

xyz

(5.110)

Using the velocity field in Equation 5.109 to calculate these derivatives, we obtain
the final result:

⎛
⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎠

xyz

=
⎛
⎝−με̇0 0 0

0 −με̇0 0
0 0 2με̇0

⎞
⎠

xyz

(5.111)

Z

x, y

)

Figure 5.18 In elongational flow, the principal flow direction is in the z-direction. The flow stretches strongly in the z-direction,
and contracts equally in the x - and y-directions.
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The total stress tensor �̃ is then:

�̃ = τ̃ − pI (5.112)

=
⎛
⎝−με̇0 − p 0 0

0 −με̇0 − p 0
0 0 2με̇0 − p

⎞
⎠

xyz

(5.113)

To calculate the force on the plane of interest, we begin with the equation for
the fluid force on a small plane in terms of the stress tensor, Equation 5.2:

Force in a fluid on
a surface of area �A
with unit normal n̂

f (�A, n̂) = �A [n̂ · �̃]surface (5.114)

We have all of the quantities needed to calculate the force:

f = �A
(

0 0 −1
)

xyz
·

⎛
⎜⎜⎜⎝

−με̇0 − p 0 0

0 −με̇0 − p 0

0 0 2με̇0 − p

⎞
⎟⎟⎟⎠

xyz

∣∣∣∣∣∣∣∣∣∣∣∣
at (0,0,l0)

(5.115)

= �A
(

0 0 −2με̇0 + p
)

xyz
(5.116)

=

⎛
⎜⎜⎜⎝

0

0

�A (−2με̇0 + p)

⎞
⎟⎟⎟⎠

xyz

(5.117)

5.2.2 Using the constitutive equation

We return to the two flow problems we have been solving since introducing the
continuum model: flow of a thin film of liquid down an inclined plane and force on
a right-angle bend. We now are ready to finish these problems, and in this section,
we arrive at the final velocity profile for flow down an incline (Example 5.8) and
the final force on the bend (Example 5.9).

EXAMPLE 5.8 (Incline: concluded). What is the velocity field in a wide, thin
film of water that runs steadily down an inclined surface under the force of
gravity? The fluid has a constant density ρ (continued from Chapters 3 and 4 and
previously in this chapter).

SOLUTION. In Chapter 3, we started this problem, which is illustrated in Fig-
ure 5.12. We performed a momentum balance on a microscopic control volume
of size �x�y�z; in Chapter 4, we wrote the contact forces in terms of the
extra-stress tensor components and the pressure. We then incorporated the stress
components into the momentum balance (see Equations 4.357–4.359), but we
paused the development there because we did not know how the stress compo-
nents varied with velocity. Previously in this chapter, we tried to use Newton’s
law of viscosity for the stress-velocity relationship, but we were unsure about
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how to convert Newton’s law of viscosity to a new coordinate system. Now that
we know how to write the stress-velocity law in any coordinate system (see
Equations 5.90–5.92), we can proceed with the solution.

The stress-velocity relationship for Newtonian fluids is the Newtonian con-
stitutive equation, which may be written in the Cartesian coordinate system as
shown in the following matrix:

Newtonian
constitutive

equation
τ̃ = μ

(∇v + (∇v)T ) (5.118)

⎛
⎜⎜⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎟⎟⎠

xyz

= μ

⎛
⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

(5.119)

We now simplify Equation 5.119 for the flow down an incline by considering
what we know about the velocity vector in the flow. We chose our coordinate
system such that the z-direction is the flow direction; thus, for our flow:

v =
⎛
⎝ 0

0
vz

⎞
⎠

xyz

(5.120)

The components vx and vy are both zero. In addition, the mass balance for this
problem performed in Chapter 3 gave dvz/dz = 0 (see Equation 3.155), which
allows us to eliminate one term on the right side of Equation 5.119. Finally, if
we neglect edge effects and consider our flow to be very wide, there is no vari-
ation in the velocity in the y-direction, dvz/dy = 0. With these simplifications,
Equation 5.119 becomes:

τ̃ = μ

⎛
⎜⎜⎜⎝

0 0 ∂vz
∂x

0 0 0
∂vz
∂x 0 0

⎞
⎟⎟⎟⎠

xyz

(5.121)

Finally, because vz is not a function of x or z, we can change the derivatives in
Equation 5.121 from partial derivatives to total derivatives:

⎛
⎜⎜⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎟⎟⎠

xyz

=

⎛
⎜⎝

0 0 μ dvz
dx

0 0 0

μ dvz
dx 0 0

⎞
⎟⎠

xyz

(5.122)

This is the stress-velocity relationship for this flow problem.
Now that we know the stress-velocity relationship for the flow down an incline,

we can solve the momentum-balance equations at which we arrived in Chapter 4,
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Equations 4.357–4.359, repeated here:

x-Component,
momentum

balance
on CV

0 = −∂p

∂x
+
[
∂τ̃xx

∂x
+ ∂τ̃yx

∂y
+ ∂τ̃zx

∂z

]
− ρg sin β (5.123)

y-Component,
momentum

balance
on CV

0 = −∂p

∂y
+
[
∂τ̃xy

∂x
+ ∂τ̃yy

∂y
+ ∂τ̃zy

∂z

]
(5.124)

z-Component,
momentum

balance
on CV

0 = −∂p

∂z
+
[
∂τ̃xz

∂x
+ ∂τ̃yz

∂y
+ ∂τ̃zz

∂z

]
+ ρg cos β (5.125)

These three components of the momentum balance seem complicated but, for
the simple flow considered, many of the stress components are equal to zero
(Equation 5.122)—for example, τ̃yx = τ̃xy = 0. If we incorporate the information
from Equation 5.122 about which terms are zero, the three components of the
momentum balance simplify considerably:

x-Component 0 = −∂p

∂x
+ ∂τ̃zx

∂z
− ρg sin β (5.126)

y-Component 0 = −∂p

∂y
(5.127)

z-Component 0 = −∂p

∂z
+ ∂τ̃xz

∂x
+ ρg cos β (5.128)

We simplified the momentum balance by using the zero terms obtained by
matching the tensor coefficients in the matrices on the left and right sides of
the Newtonian constitutive equation, Equation 5.122. We have one more piece
of information from the constitutive equation: We know that the two remaining
stress components are equal to one another and are proportional to the velocity
gradient with coefficient of proportionality μ, the viscosity:

τ̃xz = τ̃zx = μ
∂vz

∂x
(5.129)

Substituting Equation 5.129 into Equations 5.126–5.128, we obtain:

x-Component 0 = −∂p

∂x
+ μ

∂

∂z

∂vz

∂x
− ρg sin β (5.130)

y-Component 0 = −∂p

∂y
(5.131)

z-Component 0 = −∂p

∂z
+ μ

∂2vz

∂x2
+ ρg cos β (5.132)
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The mixed second derivative in Equation 5.130 also may be written as follows:

∂

∂z

∂vz

∂x
= ∂

∂x

∂vz

∂z
(5.133)

Because vz is not a function of z (recall the mass balance result Equation 3.155,
which gave dvz/dz = 0), this derivative is equal to zero. Furthermore, because
∂vz/∂y = 0 as well (wide flow), the partial x-derivative in Equation 5.132
becomes the total derivative, ∂2vz/∂x2 = d2vz/dx2. Equations 5.130–5.132 thus
become:

x-Component 0 = −∂p

∂x
− ρg sin β (5.134)

y-Component 0 = −∂p

∂y
(5.135)

z-Component 0 = −∂p

∂z
+ μ

d2vz

dx2
+ ρg cos β (5.136)

After all of these simplifications, the only term in the momentum balance that
addresses velocity is in Equation 5.136, the z-component of the momentum
balance. To proceed, we must solve Equation 5.136 for vz(x).

We turn now from questions of fluid mechanics to questions of solving dif-
ferential equations. Equation 5.136 concerns two variables: vz and pressure. The
pressure appears as ∂p/∂z, the pressure gradient in the z-direction. This term is
nonzero if the pressure varies in the z-direction. We can be convinced that the
pressure does not vary in the z-direction as follows: The flow is open to the atmo-
sphere; thus, at the top surface, pressure does not vary with z-position. The
pressure varies with depth x , which we can see from the x-component of the
momentum balance. The x-variation is the same at all values of z, however; thus,
at all positions, pressure is independent of z. Because p is not a function of z,
then ∂p/∂z = 0 everywhere, and we can omit this term from Equation 5.136 and
solve the equation by direct x-integration:

Deduce from x- and y-components
of the momentum balance
and boundary conditions:

∂p

∂z
= 0 (5.137)

Equation 5.136 becomes: 0 = μ
d2vz

dx2
+ ρg cos β (5.138)

Rearrange:
d2vz

dx2
= −ρg cos β

μ
(5.139)

The final velocity profile vz(x) may be obtained by integrating Equation 5.139
twice, as we now show in detail.
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We define ψ to be the first derivative of the velocity relative to x and substitute
ψ into Equation 5.139:

ψ ≡ dvz

dx
(5.140)

d2vz

dx2
= dψ

dx
= −ρg cos β

μ
(5.141)

We solve this equation for ψ . Integrating once, we obtain:∫
dψ =

∫ [−ρg cos β

μ

]
dx (5.142)

ψ =
[−ρg cos β

μ

]
x + C1 (5.143)

where C1 is an arbitrary integration constant that must be determined by boundary
conditions. Substituting dvz

dx ≡ ψ and integrating again:

ψ = dvz

dx
=
[−ρg cos β

μ

]
x + C1 (5.144)

∫
dvz =

∫ ([−ρg cos β

μ

]
x + C1

)
dx (5.145)

vz =
[−ρg cos β

μ

]
x2

2
+ C1x + C2 (5.146)

This is the solution for vz(x) in terms of the two unknown integration constants,
C1 and C2.

We evaluate the integration constants C1 and C2 by using two boundary con-
ditions on velocity; that is, we need to know something about the velocity at two
locations to evaluate C1 and C2. We do not know the velocity at the top surface
in this problem but, at the bottom, we know that the velocity is equal to zero
because the fluid sticks to the stationary wall. Substituting this information into
Equation 5.146, we find the value of C2:

Boundary condition (BC): x = 0 vz = 0 (5.147)

⇒ C2 = 0 (5.148)

We need a second boundary condition on velocity, which is less obvious. The other
boundary of the flow down the incline is the free surface; that is, the top surface
where the fluid is in contact with air. At that interface, little force is transferred
between the fluid and the air, which leads to the second boundary condition. At
the top surface (x = H ), the shear stress in the fluid is approximately zero (see
Chapter 6 for more details):

Boundary condition (BC): x = H τ̃xz = 0 (5.149)
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From the constitutive equation, we can relate this fact about stress to the velocity
derivative at the free surface:

Newton’s law of viscosity: τ̃xz = μ
dvz

dx
(5.150)

τ̃xz|x=H = 0 ⇒ dvz

dx

∣∣∣∣∣∣
x=H

= 0 (5.151)

Equivalent boundary condition (BC): x = H
dvz

dx
= 0 (5.152)

We substitute this relationship into Equation 5.143 to calculate the second inte-
gration constant C1:

(Equation 5.140)
dvz

dx
= −ρg cos β

μ
x + C1 (5.153)

⇒ C1 = ρgH cos β

μ
(5.154)

Substituting the results from the boundary-condition calculations into Equa-
tion 5.146, we obtain the final result for the velocity profile:

Final answer: vz(x) = ρg cos β

μ

[
H x − x2

2

]
(5.155)

The result in Equation 5.155 is the information we have been seeking through-
out our long consideration of this problem: the distribution of velocity with
position for the steady flow of a fluid down an inclined plate. The pattern that
the fluid adopts in this flow—compactly and quantitatively represented now by
Equation 5.155—results from the influences of both gravity and the molecular
exchange of momentum among the layers of fluid that slide down the incline. To
arrive at the solution, we imposed mass and momentum conservation on a micro-
scopic control volume and accounted for velocity-dependent molecular effects
through the use of the Newtonian constitutive equation. Our ally throughout this
analysis was calculus, which allowed us to account for the various local effects
through derivatives, integrals, differential equations, and boundary conditions.

To make the velocity profile easier to plot, we rearrange it to be written in
terms of the dimensionless variable x/H , the relative distance through the film
thickness:

vz(x) = ρgH 2 cos β

2μ

[
2
(

x

H

)
−
(

x2

H 2

)]
(5.156)
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Figure 5.19 The results of microscopic balances in the falling-film example are the velocity and shear-stress profiles.

v =

⎛
⎜⎝

0
0

ρgH 2 cos β

2μ

[
2
( x

H

)− ( x
H

)2
]
⎞
⎟⎠

xyz

(5.157)

Now that we know the velocity profile for the flow, we can evaluate the stress
from Equation 5.121:

τ̃ = μ

⎛
⎜⎝

0 0 ∂vz
∂x

0 0 0
∂vz
∂x 0 0

⎞
⎟⎠

xyz

(5.158)

τ̃xz = μ
dvz

dx
(5.159)

τ̃xz = ρgH cos β

(
1 − x

H

)
(5.160)

τ̃ =
⎛
⎝ 0 0 ρgH cos β

(
1 − x

H

)
0 0 0

ρgH cos β
(
1 − x

H

)
0 0

⎞
⎠

xyz

(5.161)

Note that unlike in drag shear flow between parallel plates, in flow down an
incline, the shear stress is not constant but rather varies linearly with position x
or dimensionless position x/H . The velocity and shear-stress profile results for
the incline problem are shown in Figures 5.19 and 5.20 (compare with shear-flow
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Figure 5.20 The solution for velocity profile for steady flow down an inclined plane is shown in a three-dimensional view. The
velocity at the free surface is 1.5 times the average velocity of this flow. The data are plotted versus normalized
coordinates x /H and y/W , which both range from 0 to 1.

results in Figures 5.5 and 5.6). The shear stress is a linear function of x/H , and
the velocity profile is a parabola in the variable x/H with a maximum velocity
at the free surface.

With completion of the falling-film example, we have fully demonstrated the
continuum model and how it may be used to calculate velocity and stress profiles
in flows. The solution began with the microscopic momentum balance on a
control volume, the Reynolds transport theorem. We wrote expressions for the
various forces and momentum contributions. The last step of the procedure was
to quantify the relationship between molecular stress and velocity, which is the
information in the Newtonian constitutive equation. In Chapter 6, we expand the
method to more complex problems and standardize and simplify our solution
technique. In that chapter, we also discuss additional boundary conditions used
in flow problems. For complex two- and three-dimensional flows, numerical
methods are used to solve the momentum-balance equations for v(x, y, z) and
p(x, y, z).

In Chapter 3, we started a second example in which we performed balances
on a much larger control volume. In that problem, we sought the force due to
flow on a 90-degree pipe bend, but we were unable to complete that problem
because we lacked information on how stresses and velocity are related. Now
that we have the missing information, we return to that macroscopic-balance
problem and complete the calculation. Macroscopic-CV problems require the
use of average or integrated properties rather than the microscopic properties
used in the inclined-flow case.

EXAMPLE 5.9 (90-Degree bend: concluded). What is the direction and magni-
tude of the force needed to support the 90-degree pipe bend shown in Figure 5.21
(continued from Chapters 3 and 4)? An incompressible liquid enters the pipe at
volumetric flow rate Qa and exits at volumetric flow rate Qb. The flow is steady.
The cross-sectional area of the pipe bend is π R2.
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x

z

v

(a)

(b)

2Rcontrol 
volume 

R

gMf CVgravity
=

v

Figure 5.21 In Chapter 3, we carried out the momentum balance on a macroscopic control volume outlined here with a dotted
line. In Chapter 4, we specified the molecular stresses in this problem in terms of the stress components τ̃i j . In
this chapter, we use the constitutive equation to relate stress to velocity and complete the problem.

SOLUTION. In this problem, we used a CV that included all of the fluid in the
90-degree bend (see dotted line in Figure 5.21), and we applied and simplified
the Reynolds transport theorem:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (5.162)

The flow is steady; thus, dP/dt = 0. The average velocity was used to quantify
the convection of momentum into and out of the CV through surfaces (a) and
(b). The average velocity through the CV was found to be constant throughout
and is designated 〈v〉. The forces on the CV were identified as gravity and three
molecular contact forces: the restoring force R for which we are solving, and the
molecular forces on surfaces (a) and (b)—which we wrote in terms of integrals
involving the extra-stress tensor. The momentum balance incorporating these
observations was found to be as follows (see Equation 4.376):

dP

dt
= −

∫∫
S
(n̂ · v) ρv d S +

∑
on
CV

f (5.163)

= −
∫∫

S
(n̂ · v) ρv d S + f

gravi t y
+ R + F |a + F |b (5.164)

0 = 〈v〉2ρπ R2

⎛
⎝ 1

0
−1

⎞
⎠

xyz

+ MCV

⎛
⎝ 0

0
−g

⎞
⎠

xyz

+
⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

+ π R2
〈

f
μ

∣∣∣∣
a

〉
+ π R2

⎛
⎝ p|a

0
0

⎞
⎠

xyz

+ π R2
〈

f
μ

∣∣∣∣
b

〉
− π R2

⎛
⎝ 0

0
p|b

⎞
⎠

xyz

(5.165)
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where: 〈
f

μ

∣∣∣∣
a

〉
= 1

Sa

∫∫
a

(
n̂ · τ̃

)∣∣∣∣
a

d S (5.166)

〈
f

μ

∣∣∣∣
b

〉
= 1

Sb

∫∫
b

(
n̂ · τ̃

)∣∣∣∣
b

d S (5.167)

ˆ ˆ ˆ

Sa and Sb are the cross-sectional areas at surfaces a and b. Now that we know
the stress-constitutive equation, we can evaluate these integrals and conclude this
problem.

As with the pressure integrals on this problem in Example 4.23, we carry
out the integral in Equation 5.166 in a cylindrical coordinate system rθ z with
ez = êx . The outwardly pointing unit normal at (a) therefore is n̂ = −ex = −ez .〈

f
μ

∣∣∣∣
a

〉
= 1

Sa

∫∫
a

(
n̂ · τ̃

)∣∣∣∣
a

d S (5.168)

= 1

π R2

∫ 2π

0

∫ R

0
ˆ

(
−ez ·τ̃

∣∣∣∣
a

)
rdrdθ (5.169)

For the (b) surface, the calculation is similar. The outwardly pointing unit normal
at (b) is n̂ = êz = êz:〈

f
μ

∣∣∣∣
b

〉
= 1

Sb

∫∫
b

(
n̂ · τ̃

)∣∣∣∣
b

d S (5.170)

= 1

π R2

∫ 2π

0

∫ R

0

(
êz ·τ̃

∣∣∣∣
b

)
rdrdθ (5.171)

To carry out these dot products, we need τ̃ in the rθ z cylindrical coordinate
system (see Equation B.8-2):

τ̃ = μ

⎛
⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

∂vr
∂z + ∂vz

∂r

r ∂
∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
1
r

∂vz
∂θ

+ ∂vθ

∂z

∂vr
∂z + ∂vz

∂r
1
r

∂vz
∂θ

+ ∂vθ

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎠

rθ z

(5.172)

(
êz · τ̃

)
= μ

⎛
⎜⎜⎜⎜⎝

∂vr
∂z + ∂vz

∂r

1
r

∂vz
∂θ

+ ∂vθ

∂z

2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎠

rθ z

(5.173)

At both (a) and (b), we assume the velocity to be perpendicular to the surface,
that is, in the z-direction, with a constant speed across the cross section. This
means that across the surfaces, vr = vθ = 0 and vz is independent of r and θ .
Equation 5.173 thus simplifies to:

(
êz · τ̃

)
=
⎛
⎝ 0

0
2μ

∂vz
∂z

⎞
⎠

rθ z

(5.174)

This viscous-force contribution is not zero because the velocity vz changes in
the z direction. The contribution is small, however, and usually is not mentioned
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in discussion of flow through a bend. We can be rigorous in carrying along this
calculation, however, and the derivation of the final result follows (the final result
neglecting this term is in Equation 5.185).

The integrals in Equations 5.169 and 5.171 easy to carry out because the
expressions they contain are constant with respect to r and θ . We can estimate
the derivative ∂vz/∂z at each surface by noting that at (a), the average z-velocity
goes from 〈v〉 to zero over the length of the bend L , whereas at (b), the average
z-velocity goes from zero to 〈v〉 over the same length:

π R2
〈

f
μ

∣∣∣∣
a

〉
=
∫ 2π

0

∫ R

0
ˆ

(
−ez ·τ̃

∣∣∣∣
a

)
rdrdθ (5.175)

=
∫ 2π

0

∫ R

0
−2μ

(
∂vz

∂z

)∣∣∣∣∣∣
a

êz rdrdθ (5.176)

=
∫ 2π

0

∫ R

0
−2μ

(−〈v〉
L

)
êz rdrdθ (5.177)

= 2π R2μ〈v〉
L

êx (5.178)

π R2
〈

f
μ

∣∣∣∣
b

〉
=
∫ 2π

0

∫ R

0

(
êz ·τ̃

∣∣∣∣
b

)
rdrdθ (5.179)

=
∫ 2π

0

∫ R

0
2μ

(
∂vz

∂z

)∣∣∣∣∣∣
b

êz rdrdθ (5.180)

=
∫ 2π

0

∫ R

0
2μ

( 〈v〉
L

)
êz rdrdθ (5.181)

= 2π R2μ〈v〉
L

êz (5.182)

We reverted to the overall Cartesian coordinate system in these final answers; at
Sa , êz = êx , whereas at Sb, êz = êz . The momentum balance becomes:

0 = 〈v〉2ρπ R2

⎛
⎝ 1

0
−1

⎞
⎠

xyz

+ MCV

⎛
⎝ 0

0
−g

⎞
⎠

xyz

+
⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

+ π R2

⎛
⎝2μ 〈v〉

L
0
0

⎞
⎠

xyz

+ π R2

⎛
⎝ 0

0
2μ 〈v〉

L

⎞
⎠

xyz

+ π R2

⎛
⎝ p|a

0
− p|b

⎞
⎠

xyz

(5.183)

In Example 5.11, we evaluate the relative magnitude of the two viscosity ex-
pressions in Equation 5.183 and find that the viscous terms make a negligi-
ble contribution. Neglecting these terms, the final result for restraining force
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vector, R, is given here:⎛
⎝Rx

Ry

Rz

⎞
⎠

xyz

= 〈v〉2ρπ R2

⎛
⎝−1

0
1

⎞
⎠

xyz

+ MCV

⎛
⎝ 0

0
g

⎞
⎠

xyz

+ π R2

⎛
⎝− p|a

0
p|b

⎞
⎠

xyz

(5.184)

R =
⎛
⎝ −π R2

(
ρ〈v〉2 + p|a

)
0

π R2
(
ρ〈v〉2 + p|b

)+ MCV g

⎞
⎠

xyz

(5.185)

This completes the 90-degree bend problem. The change of direction of the
flow has a profound effect on the direction of the resulting force.

The completion of these two examples signals that we have finished the devel-
opment of the continuum model for flow. The essential physics of flow is momen-
tum conservation, captured for a control volume in the Reynolds transport theo-
rem. In the process, we developed the continuum approach, the control volume,
and the molecular-stress constitutive equation to allow momentum conservation
to be applied to fluids in motion. The methodology used in these two examples
is general; in Chapter 6, we apply this method to an arbitrary control volume
and derive the general microscopic-momentum-balance equation. Further refine-
ments of the method in subsequent chapters lead to techniques that allow us
to apply the continuum method to important flows. In Chapter 9, we develop a
general macroscopic-momentum-balance equation that is useful for problems in
which forces are sought and flow details are less important.

The purpose of modeling is to render mathematically the behavior of a system
of interest. Once a model is complete, we can use it to calculate quantities of
interest such as flow rates, forces, and other related properties. We demonstrate
calculations of this type in the next two examples. In the last section of this
chapter, we introduce non-Newtonian constitutive modeling.

EXAMPLE 5.10. What are the flow rate and average velocity in the falling-film
example (see Figure 5.12)? What is the effect of the incline angle β on the flow
rate and average velocity achieved?

SOLUTION. We discuss volumetric flow through a surface in Chapter 3. We
show that for flow through a surface that is not necessarily oriented perpendicular
to the flow, the volumetric flow rate is given by:

Volumetric flow
of liquid through A

(general-orientation case;
v does not vary across A)

Q = (n̂ · v)A (5.186)

where Q is the volumetric flow rate through the small flat area A, n̂ is the unit
normal to A, and the velocity is given by v. For an area that is finite in size and not
necessarily flat and across which v may vary, we can generalize Equation 5.186
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to the following (see Section 6.2.3.3):

Total flow rate
out through finite

surface S
Q =

∫∫
S

[n̂ · v]at surface d S (5.187)

To apply Equation 5.187 to the flow down an incline, we must identify n̂, v,

ˆ

and the surface over which we want to integrate. The flow rate in the flow-down-
an-incline problem is the same at every z-position throughout the flow; therefore,
we can choose as our calculation surface any plane perpendicular to the flow—we
choose the cross section at the exit, z = L . The unit normal of our calculation
surface is n̂ = êz , and the velocity vector is given in Equation 5.120 as v = vzez .
The dot product of these two vectors is n̂ · v = vz:

n̂ · v =
⎛
⎝0

0
1

⎞
⎠

xyz

·
⎛
⎝ 0

0
vz

⎞
⎠

xyz

= vz (5.188)

We solved for vz in a previous example (see Equation 5.155); the result is given
here:

vz|z=L = vz = ρg cos β

2μ

(
2H x − x2

)
(5.189)

The surface S is a rectangle in the xy-plane; thus, d S = dxdy. The flow rate
Q then is given by:

Q =
∫∫

S
[n̂ · v]at surface d S (5.190)

=
∫ W

0

∫ H

0
vz|z=L dxdy (5.191)

=
∫ W

0

∫ H

0

ρg cos β

2μ

(
2H x − x2

)
dxdy (5.192)

= W
∫ H

0

ρg cos β

2μ

(
2H x − x2

)
dx (5.193)

The final integration is left to readers (see Problem 6 in Chapter 6). The average
velocity is calculated from the flow-rate result:

Average velocity
out through
surface S

〈v〉 =

∫∫
S

[n̂ · v]at surface d S∫∫
S

d S
(5.194)

= Q∫ W

0

∫ H

0
dxdy

(5.195)

= Q

H W
(5.196)
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The effect of β on the average velocity achieved is controlled by the cos β term
in the final answer.

EXAMPLE 5.11. What are the relative magnitudes of the various terms in the
calculated force on a right-angle bend? Which forces may be neglected and under
what circumstances?

SOLUTION. In Example 5.9, we completed the solution for the force on a right-
angle bend (see Figure 5.21). The result is repeated here, including the two terms
accounting for viscous effects on the entry and exit surfaces of the control volume:

Force on a
right-angle bend

R =

⎛
⎜⎜⎜⎜⎝

−ρ〈v〉2π R2 − p|a π R2 − 2μ 〈v〉
L π R2

0

ρ〈v〉2π R2 + p|b π R2 − 2μ 〈v〉
L π R2 + MCV g

⎞
⎟⎟⎟⎟⎠

xyz

(5.197)

To compare these terms in an actual situation, we choose to look at a particular
right-angle bend. We choose a bend in 1-1/2-inch, Schedule 40 (cross-sectional
area A = π R2 = 2.04 in) steel pipe. We choose that the length of each arm
of the bend is about 6 in = 0.5 ft. Water (density = 62.25 lbm/ft3, viscosity =
6.005 × 10−4 lbm/(ft s)) is flowing in the pipe at 3.0 gpm.

There are four terms in the final result for force: the convective term, the
pressure term, the viscous entry/exit term, and the gravity term. The convective
and viscous terms are small:

ρ〈v〉2 A =
(

62.25 lbm

ft3

)(
0.4718 ft

s

)2
(

2.04 in.2

144 in.2 /ft2

)(
s2 lbf

32.174 ft lbm

)

= 6 × 10−3 lbf = 30 mN

2μ
〈v〉
L

A = (2)

(
6.005 × 10−4 lbm

ft s

)(
0.4718 ft /s

0.5 ft

)(
2.04 in.2

144 in.2 /ft2

)(
s2 lbf

32.174 ft lbm

)

= 5 × 10−7 lbf = 2 μN

The viscous effect is negligible compared to the convective term. The impact of
gravity also is modest:

MCV g ≈ ρ A (2L) g

=
(

62.25 lbm

ft3

)(
2.04 in.2

144 in.2 /ft2

)
(2) (0.5 ft)

(
32.174 ft /s2

32.174 ft lbm /s2 lbf

)

= 0.9 lbf = 4 N

The dominant terms are the pressure terms. The pressures on the inlet and the
outlet of the bend depend on how the bend is installed. If we imagine the pressure
as due to a constant-head tank upstream of the bend (see Example 1.4), then the
gauge pressure at the inlet of the bend is given by ρgh. A reasonable number
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for the upstream head is 33.9 atm = 1 ft = 14.6 psi. For these conditions, we
calculate the force due to pressure as:

p|a A = ρghA =
(

14.696 lbf

in2

)(
2.04 in2

)
= 30 lbf = 130 N

The pressure at the outlet of the bend is slightly less due to the frictional losses
within the bend, and we can calculate the pressure drop across the bend from the
K f value for a 90-degree bend (using the mechanical energy balance; see Chap-
ter 1). This pressure drop is negligible; thus, p|b ≈ p|a . Using our hypothetical
installation and operation of the bend, we calculate:

R =
⎛
⎝−30 lbf

0
31 lbf

⎞
⎠

xyz

=
⎛
⎝−130 N

0
140 N

⎞
⎠

xyz

(5.198)

and the only contributions that have significance in the final answer are the
pressure and gravity terms. Thus, for the conditions cited, the convective and
viscous terms are negligible. The numbers indicate that the viscous effect likely
always will be negligible; the convective term is four orders of magnitude larger
than the viscous entry/exit term and is proportional to 〈v〉2. If the flow rate were
much higher and if the pressure terms were lower, then the convective term might
be a factor.

In Section 5.3, we discuss constitutive equations for fluids that do not follow the
Newtonian equation. This is advanced material, but the subject is not esoteric.
Rather, many common and important materials are non-Newtonian, including
most foods, molten plastics, pastes, suspensions, and biological fluids. The tensor
approach to stress is essential in non-Newtonian fluid mechanics. First-time
readers may want to proceed to Chapter 6 and return to the discussion of non-
Newtonian fluids once the techniques of Newtonian fluid mechanics are familiar.

5.3 Non-Newtonian fluids

As discussed previously in this chapter, experiments on the parallel-plate appara-
tus confirm the validity of Newton’s law of viscosity and the Newtonian constitu-
tive equation for many materials, including water, oil, honey, milk, and solvents.
Many materials, however, do not follow the Newtonian constitutive equation.
Fluids that are compressible, for example, have an additional contribution to
stress other than what we described; Chapter 10 presents modifications to the
Newtonian constitutive equation that account for compressibility.

Many incompressible fluids, including foods such as mayonnaise, peanut
butter, and ketchup, do not follow the Newtonian constitutive equation. Many
industrial materials, including molten plastics, asphalt, and concrete, are non-
Newtonian. Biological fluids, including blood and mucus, are almost universally
non-Newtonian. In addition, the stresses in geological flows, such as those involv-
ing soil and lava, fail to follow the Newtonian constitutive equation.
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The field of study that addresses the many effects seen in non-Newtonian fluids
is called rheology, and there is considerable literature on the subject [8, 12, 13, 90,
37, 92, 104, 164]. In this section, we introduce the basic nature of non-Newtonian
flows and constitutive models for non-Newtonian fluids; in-depth information on
non-Newtonian fluids is in the cited literature.

Although there is a single Newtonian constitutive equation, for non-Newtonian
fluids, we have many different constitutive equations:

Newtonian
constitutive equation:

τ̃ = μ
(
∇v + (∇v)T

)
(5.199)

Non-Newtonian
constitutive equation:

τ̃ = unknown function, f (v) (5.200)

We need a variety of constitutive equations for non-Newtonian fluids because
of what the constitutive equation is. Recall that the stress tensor τ̃ accounts for
the molecular-force contributions to the momentum balance. Molecular contact
forces are different in every fluid because they arise from chemical interactions,
and the atoms and molecules are different in every substance (see Figure 4.3).
We take the continuum approach in our modeling of fluid motion but, ultimately,
we must match our models to the actual chemical behavior of the fluid systems
under study. The constitutive equation is the link between the continuum model
and the chemical properties of the molecules that comprise the fluid.

There could be as many constitutive models as there are chemicals, but it
turns out to be less complicated. For thousands of fluids, including water, oil, and
even gases under most circumstances, the Newtonian constitutive equation is the
stress-velocity relationship. For many materials that do not follow the Newtonian
constitutive equation, simple modifications often are adequate, as discussed in
Section 5.3.3. Other materials, such as polymer melts and solutions, require
complex viscoelastic constitutive equations; a detailed study of such equations is
beyond the scope of this book. We outline issues related to viscoelastic constitutive
equations in Section 5.3.4. The discussion of non-Newtonian fluids begins with
two sections in which the material functions that are used to describe non-
Newtonian behavior are introduced.

5.3.1 Non-Newtonian viscosity

The description non-Newtonian indicates that a fluid does not follow the Newto-
nian constitutive equation. There are many ways to not follow this equation, as
we now discuss.

One type of non-Newtonian behavior observed in the parallel-plate apparatus
is a nonlinear relationship between F/LW and V/H in steady-drag flow (Fig-
ure 5.22). An upward curving shear-stress/velocity-gradient relationship indicates
that the fluid deformed at high speeds generates more stress than expected from
the Newtonian relationship. This type of behavior is known as shear-thickening.
Few systems shear-thicken, but one well-known shear-thickening fluid is a con-
centrated suspension of cornstarch and water. This fluid is sometimes used in
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Figure 5.22 In shear flow, Newtonian fluids exhibit a linear relationship between F/LW and V/H . For the suspensions of Ti02 in
water shown here, the lowest concentrations are approximately Newtonian. Some fluids show nonlinear behavior
in shear flow, such as the higher-concentration suspensions. The data are recalculated and replotted from Metzner
and Whitlock [97].

science demonstrations because the effect is very striking [130]. When slowly
stirring a cornstarch/water suspension, the effort required is about the same as for
stirring water. When rapidly stirring the same fluid, however, the fluid develops
an internal structure that thickens the fluid; this thicker fluid has a higher instan-
taneous viscosity and resists the stirring. When stirring ceases, the consistency
of the fluid returns to its initial low value. A fun shear-thickening experiment is
to run across a pool of cornstarch/water suspension (Figure 5.23). The high rate
of deformation involved in running makes the viscosity increase rapidly to a very
high value, and the suspension supports the runner. Stopping and standing still on
the mixture reveals the fluid to be a low-viscosity liquid; under these conditions,
the runner sinks [107].

Figure 5.23 Cornstarch/water suspensions are shear-thickening. If a person walks quickly across a bath of this suspension, it
supports him and, in fact, provides adequate traction for the motion; it is not slippery. If he stops walking, however,
he sinks into the bath and it is difficult to extricate him.
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Figure 5.24 Steady shear stress as a function of shear rate plotted on a linear scale (left) and on a log-log scale (right) for
a concentrated solution of a narrowly distributed polybutadiene (recalculated from Menezes and Graessley [96]).
Mw = 350 kg/mol, Mw /Mn < 1.05, and concentration is 0.0676 g/cm3 in Flexon 391, a hydrocarbon oil. Note
that a linear relationship between steady shear stress and shear rate is reflected in a line of slope 1 when the data
are plotted log-log.

Shear-thickening is found in suspensions due to particle interactions. In the
corn-starch/water suspension, solid starch granules are touching one another and
water fills the spaces between the particles. When such a system is disturbed by
slowly stirring it, the water fluidizes the solid particles and the mixture moves
easily. When it is disturbed rapidly, however, the particles jam against one another,
forming larger structures called hydroclusters [171] that strongly resist the defor-
mation. Thus, such fluids exhibit low viscosities at low rates-of-deformation and
high and increasing viscosity at high rates-of-deformation.

A downward-curving stress/velocity-gradient relationship in the steady-drag
experiment (Figure 5.24) indicates that compared to a Newtonian fluid, the fluid
generates less stress than expected for a given speed. This type of behavior
is known as shear-thinning, which is very common. Polymer melts in particu-
lar often are shear-thinning, which may be caused in part by disentanglement of
long-chain polymers (Figure 5.25). Whereas in shear-thickening a structure devel-
ops that jams the flow during high-rate flow making movement more difficult,

considerable 
overlap 

(entanglement)

less overlap 
(disentangled) 

Figure 5.25 Disentanglement of long-chain molecules contributes to shear-thinning. When the molecules are entangled, the
viscosity is high. When the flow disentangles the chains, they flow separately and generate less stress. When the
flow stops or slows, the chains reentangle due to the Brownian motion of their segments.
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in shear-thinning materials, structure breaks down during high-rate flow making
movement easier. Whether a fluid shear-thickens or shear-thins depends on the
material’s molecular structure and the details of intermolecular and interparticu-
late forces.

To quantify shear-thickening and shear-thinning, we define a non-Newtonian
viscosity. To choose our definition, recall that for Newtonian fluids in steady-
drag flow, Newton’s law of viscosity states that the viscosity is the slope of the
shear-stress versus velocity-gradient line (see Equation 5.61):

Newtonian viscosity
(constant)

μ = τ̃yx(
dvx

dy

) = constant (5.201)

where we chose the x-direction as the flow direction and the y-direction as the
velocity-gradient direction. For fluids in which the graph of shear-stress versus
velocity-gradient in steady-drag flow is not a line, we define the non-Newtonian
viscosity η as the instantaneous ratio of shear stress and velocity gradient at each
value of velocity gradient:

Non-Newtonian viscosity
(variable function of shear rate)

η ≡
τ̃yx

∣∣∣
γ̇(

dvy

dx

) = η(γ̇ )

γ̇ =
∣∣∣∣∣∣dvy

dx

∣∣∣∣∣∣ (shear flow)

(5.202)

The expression γ̇ (read as gamma dot) is the rate-of-deformation. Plots of non-
Newtonian viscosity versus rate-of-deformation characterize non-Newtonian flu-
ids as shear-thinning (Figure 5.26) or shear-thickening (Figure 5.27). It is straight-
forward to calculate the non-Newtonian viscosity from experimental measure-
ments in a shear apparatus.

5.3.2 Shear-induced normal stresses

Another type of non-Newtonian behavior is the generation of normal stresses in
steady drag flow. In the introduction to shear flow in Section 5.1, we assumed that
the force to move the top plate in the parallel-plate shear apparatus was purely in
the flow (x) direction:

Force to move
plate in shear flow

(Newtonian)
=
⎛
⎝ Fx

Fy

Fz

⎞
⎠

xyz

=
⎛
⎝ F

0
0

⎞
⎠

xyz

ˆ= Fex (5.203)

Experiments in the parallel-plate apparatus verify that fluids such as water, oil,
and honey do not generate normal stresses in steady shear (Fy = Fz = 0), and
the stress-velocity relationship for such materials is the Newtonian constitutive
equation, as discussed previously.
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Figure 5.26 Shear-thinning is very common for polymer melts. The non-Newtonian viscosity η can vary with velocity gradient γ̇
over five or more decades in magnitude. Steady-shear viscosity and first normal-stress coefficient (see Section 5.3.2)
as a function of shear rate for a concentrated solution of a narrowly distributed polybutadiene (replotted from
Menezes and Graessley [96]). Mw = 350 kg/mol, Mw /Mn < 1.05, and concentration is 0.0676 g/cm3 in Flexon
391, a hydrocarbon oil.
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Figure 5.27 Viscosity, η, versus shear rate, γ̇ , for five suspensions of TiO2 in water (recalculated and replotted from Metzner
and Whitlock [97]). The diameters of the TiO2 particles are between 0.2 and 1 microns.
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Figure 5.28 The photograph at top shows how a Newtonian fluid—a dilute mixture of flour, water, and food coloring in this
case—moves away from the mixing blades when it is stirred at a high rate. A non-Newtonian flour–water dough
in the bottom photograph, however, climbs the mixing blades.

However, some fluids generate normal stresses in shear. We can obtain firsthand
experience with shear-induced normal stresses in the kitchen (Figure 5.28). When
mixing flour and water in an electric mixer, the batter is unremarkable until the
flour content rises to a critical level. Flour–water dough is elastic, and the turning
mixing blades create a shear flow. The dough is not constrained in the axial
direction, and elasticity causes it to climb up the mixing blades in response to
shear-induced normal stresses.

Shear-induced normal stresses can be detected in the parallel-plate apparatus
because the normal stress manifests as an upward thrust on the top plate (Fy �= 0,
Fz �= 0; see Section 5.1.2). For some polymeric fluids, to keep the gap between
the parallel plates constant during drag flow, a downward force must be imposed
on the upper plate. The upward thrust is generated by the deformation of the
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Figure 5.29 One of the most striking viscoelastic effects is called rod-climbing or the Weissenberg effect [12]. In this photograph,
a rod is rotated clockwise in a fluid reservoir at a slow speed of approximately 0.5 cycle/s. In response to the flow,
the fluid climbs the rod. When the turning ceases, the fluid returns to the reservoir. The apparatus shown was
created by John L. Schrag and Arthur S. Lodge at the University of Wisconsin; the fluid is a 2 percent aqueous
polyacrylamide solution. (Photograph by Carlos Arango Sabogal.)

fluid; when the deformation stops, the upward thrust goes to zero. If there is
no upper plate in a shearing flow, a fluid that exhibits shear normal stresses
climbs up a turning rod as a way of expressing the shear-induced normal forces
(Figure 5.29).

Shear-induced normal stresses appear in our continuum model as nonzero
stresses τ̃xx , τ̃yy , and τ̃zz in this flow. When a shear flow is assumed and
the Newtonian model is used to predict stress, the diagonal normal stresses
are zero (τ̃xx = τ̃yy = τ̃zz = 0), as Example 5.12 demonstrates. The Newtonian
model, thus, is not appropriate to model τ̃ in materials that exhibit shear normal
stresses.

EXAMPLE 5.12. What are the predicted normal stresses generated in steady
drag flow for a Newtonian fluid?

SOLUTION. We establish in Section 5.1.1 that the velocity profile for steady-
shear flow (see Figure 5.5) is:

v =
⎛
⎝vx

0
0

⎞
⎠

xyz

=
⎛
⎝V y/H

0
0

⎞
⎠

xyz

(5.204)
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We also calculated the complete stress tensor for Newtonian fluids in steady-shear
flow (compare to Equation 5.87):

τ̃ = μ
(
∇v + (∇v)T

)
(5.205)

= μ

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.206)

=

⎛
⎜⎝

0 μ dvx
dy 0

μ dvx
dy 0 0
0 0 0

⎞
⎟⎠

xyz

(5.207)

Evaluating ∂vx∂y from Equation 5.204, we obtain:

τ̃ =

⎛
⎜⎜⎜⎝

0 μ V
H 0

μ V
H 0 0

0 0 0

⎞
⎟⎟⎟⎠

xyz

(5.208)

We see from Equation 5.208 that in steady drag flow of a Newtonian fluid, the
normal stresses τ̃xx , τ̃yy , and τ̃zz are zero.

Shear-induced normal stresses are independent of the direction of the shearing
flow: Whether the flow is in the (+x)- or the (−x)-direction, the thrust that is
generated is upward. This is in contrast to the shear stress, which changes sign
when the flow direction changes. Thus, rotating the mixer blades in the opposite
direction still results in the dough climbing up the blades. The function defined
to quantify shear normal stresses is �1(γ̇ ), the first normal stress coefficient:

First normal stress
coefficient

�1(γ̇ ) ≡ (τ̃xx − τ̃yy)

γ̇ 2
(5.209)

where x- is the flow direction and y- is the gradient direction of shear flow. For
polymeric fluids, the first normal stress coefficient varies significantly with rate-
of-deformation γ̇ , as shown in Figure 5.26 [104]. Normal stress effects are not
insignificant in many polymeric systems.

Shear-induced normal stresses are one result of fluid elasticity. Memory is
another effect associated with elasticity. Memory is exhibited by fluids such as
Silly Putty [31], which stretches when pulled slowly but which also bounces.
During the slow deformation, the material “forgets” its past shape, whereas in
rapid deformation, it has nearly perfect “memory” of a past shape (Figure 5.30).
Memory effects put a strong constraint on stress modeling. To predict flow
behavior that makes reference to past shapes and deformations, a constitutive
equation must refer to past shapes and deformations. Constitutive modeling that
considers fluid memory can be complex [82, 104].
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Figure 5.30 Silly Putty is a liquid and, if left on a table, it will flow into a puddle; when stretched slowly, it elongates. However,
when the applied force acts rapidly, such as when a blob of Silly Putty is thrown against the floor, the fluid behaves
like an elastic solid [119].

As stated at the beginning of this section, the study of non-Newtonian effects
is itself an entire discipline. We discuss just two classes of non-Newtonian con-
stitutive equations: inelastic and viscoelastic. Inelastic constitutive equations are
fairly simple equations that adapt the tensor structure of the Newtonian constitu-
tive equation and the definition of the non-Newtonian viscosity (Equation 5.202)
to produce non-Newtonian constitutive equations that can be used on materials
that do not exhibit memory. Inelastic constitutive equations may be useful for
calculations on viscoelastic fluids, within certain limits.

Viscoelastic constitutive equations include all other types of fluid constitu-
tive equations; Section 5.3.4 briefly describes some of the issues involved in
their development and application. More information on viscoelastic constitutive
equations is in the literature [37, 82, 104].

5.3.3 Inelastic constitutive equations

The variation of non-Newtonian viscosity with shear rate is a significant effect that
cannot be ignored when modeling stress produced in the flow of molten polymers,
foods, and many industrial and biomedical materials. For these systems, the
change in the viscosity often is the most dramatic and important effect occurring
in the flow. Because the viscosity is not constant, the Newtonian stress-velocity
relationship τ̃ = μ(∇v + (∇v)T ) is not correct for these systems and we need a
new, non-Newtonian constitutive equation.
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A simple way to adapt the Newtonian constitutive equation to make it non-
Newtonian is to replace the constant Newtonian viscosity μ in the equation with
the nonconstant, non-Newtonian viscosity η(γ̇ ):

Proposed
non-Newtonian

constitutive equation
τ̃

?= η(γ̇ )
(
∇v + (∇v)T

)
(5.210)

This proposed constitutive equation is in the form of a tensor and the predicted
stress is symmetric, which means that it meets two important criteria for stress.
There is a problem with this equation, however, and it is related to the current
definition of the quantity γ̇ :

Current definition of
rate-of-deformation γ̇ :

(shear flow)
γ̇ =

∣∣∣∣∣∣dvx

dy

∣∣∣∣∣∣ (5.211)

The definition in Equation 5.211 refers to a specific coordinate system associated
with a specific flow—shear flow. For flows other than a shear flow in the x-
direction that varies in the y-direction, the definition of rate-of-deformation in
Equation 5.211 does not make sense.

The problem with the current definition of the rate-of-deformation γ̇ is illus-
trated by trying to use it in flows with which we are somewhat familiar.

EXAMPLE 5.13. For the planar-jet flow shown in Figure 5.31, what are the
stress components predicted by the proposed non-Newtonian stress-velocity rela-
tionship given in Equation 5.210?

SOLUTION. We discussed this flow previously, but this time we choose to use a
coordinate system in which the direction toward the wall is the z-direction. The

z

x

vz

vx

Figure 5.31 We revisit this planar-jet flow to see if the proposed non-Newtonian constitutive equation can be applied. We chose
a new coordinate system, with z as the direction toward the wall and x as the direction upward.
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choice of coordinate system is arbitrary; we choose z as toward the wall because
this choice highlights the problem with Equation 5.210.

The flow is designed so that the y-component of velocity is zero; also, because
the flow is wide, the remaining velocity components do not depend on y. We
mathematically summarize these characteristics as follows:

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝vx (x, z)

0
vz(x, z)

⎞
⎠

xyz

(5.212)

To test the proposed constitutive equation, first we write it in component form in
the chosen coordinate system; and second, we simplify it using what we know
about the velocity field:

τ̃
?= η(γ̇ )

(
∇v + (∇v)T

)
(5.213)

⎛
⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎠

xyz

?= η(γ̇ )

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.214)

⎛
⎜⎜⎜⎝

τ̃xx τ̃xy τ̃xz

τ̃yx τ̃yy τ̃yz

τ̃zx τ̃zy τ̃zz

⎞
⎟⎟⎟⎠

xyz

?= η(γ̇ )

⎛
⎜⎜⎜⎝

2 ∂vx
∂x 0 ∂vz

∂x + ∂vx
∂z

0 0 0
∂vx
∂z + ∂vz

∂x 0 2 ∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

(5.215)

The proposed constitutive equation is intended to be non-Newtonian, with the
nonconstant viscosity given by η(γ̇ ). The current definition of γ̇ , however, refers
to a particular shear coordinate system:

Current definition of γ̇ :
(shear flow)

γ̇ =
∣∣∣∣∣∣dvx

dy

∣∣∣∣∣∣ (5.216)

We are faced with the problem of adapting this definition to our current flow. In
the coordinate system we are using for our flow, dvx/dy = 0, which certainly
does not reflect the deformation taking place in the flow. If we change x to z and
y to x :

Proposed adaptation of γ̇ :
for current flow

γ̇
?=
∣∣∣∣∣∣dvz

dx

∣∣∣∣∣∣ (5.217)

we obtain a nonzero γ̇ , but this value is arbitrary and does not reflect all of the
deformation taking place in our flow.

The proposed constitutive equation is found to have a fundamental flaw: The
expression η(γ̇ ) with the current definition of γ̇ refers to a coordinate system
that is meaningless in our current situation and mostly meaningless in the general
situation. There was a similar problem in Section 5.2.1, when we tried to adapt
Newton’s law of viscosity to flows other than simple shear. We cannot proceed
with a prediction of the τ̃i j using Equation 5.210 until we address the meaning of
γ̇ in flows other than shear flow.
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This problem illustrates another requirement imposed on a constitutive equa-
tion: It should be valid in any coordinate system and for any flow. We must find
a way to express non-Newtonian stresses that does not violate this rule.

A solution to this problem is to define γ̇ generally so that it is applicable and
meaningful in all coordinate systems and for all flows. The choice of definition
should reduce to our original definition in simple shear flow. To derive this
definition, we turn to tensor mathematics [104]. We begin by defining the rate-
of-deformation tensor γ̇ :

γ̇ ≡ ∇v + (∇v)T (5.218)

=

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vx
∂y + ∂vy

∂x
∂vx
∂z + ∂vz

∂x

∂vy

∂x + ∂vx
∂y 2 ∂vy

∂y
∂vy

∂z + ∂vz
∂y

∂vz
∂x + ∂vx

∂z
∂vz
∂y + ∂vy

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.219)

This tensor appears in the Newtonian constitutive equation (τ̃ = μγ̇ ) and in the
proposed non-Newtonian constitutive equation, Equation 5.210. For our rate-of-
deformation measure γ̇ , we choose that γ̇ is given by the magnitude of the tensor
γ̇ . The magnitude of a tensor is a quantity defined in tensor mathematics; tensor
magnitude is independent of the coordinate system and is a measure of a tensor’s
size or effect [6]. The magnitude of a tensor A is defined as:

Magnitude
of tensor A

(orthonormal coordinate system)

∣∣∣
A
∣∣∣ = +

√√√√√√
⎛
⎝1

2
·

3∑
p=1

3∑
j=1

Apj A jp

⎞
⎠ (5.220)

where A is expressed in an orthonormal coordinate system (e.g., Cartesian,
cylindrical, or spherical). For a symmetric tensor (remember that γ̇ is symmetric),
the calculation is even easier because Apj = A jp:

Symmetric tensor A:
∣∣∣
A
∣∣∣ = +

√√√√√√
⎛
⎝1

2
·

sum of squares
of each orthonormal

component of A

⎞
⎠ (5.221)

We define the rate-of-deformation γ̇ as the magnitude of the tensor γ̇ :

Rate-of-deformation
(general definition)

γ̇ ≡
∣∣∣∣γ̇ ∣∣∣∣ = +

√√√√√√√√
⎛
⎜⎝ 1

2 ·
sum of squares

of each orthonormal
component of γ̇

⎞
⎟⎠

= +

√√√√√√
⎛
⎝1

2
·

3∑
p=1

3∑
j=1

γ̇ 2
pj

⎞
⎠

(5.222)
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Although this definition seems complex, it is straightforward to calculate from
matrix components of the rate-of-deformation tensor γ̇ . We now try this new
definition, beginning with shear flow.

EXAMPLE 5.14. With the new definition for γ̇ , what is γ̇ for steady-shear flow?

SOLUTION. To solve this problem, we write the definition of γ̇ , simplify the
expression by using the velocity field for steady-shear flow, and use the new

definition of the tensor magnitude, γ̇ =
∣∣∣∣γ̇ ∣∣∣∣:

v =

⎛
⎜⎝

V
H y

0
0

⎞
⎟⎠

xyz

(5.223)

γ̇ =

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vx
∂y + ∂vy

∂x
∂vx
∂z + ∂vz

∂x

∂vy

∂x + ∂vx
∂y 2 ∂vy

∂y
∂vy

∂z + ∂vz
∂y

∂vz
∂x + ∂vx

∂z
∂vz
∂y + ∂vy

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.224)

=

⎛
⎜⎝

0 V
H 0

V
H 0 0

0 0 0

⎞
⎟⎠

xyz

(5.225)

γ̇ ≡ +

⎛
⎜⎝1

2
·

sum of squares
of each Cartesian
component of γ̇

⎞
⎟⎠

1
2

(5.226)

= +
√

1

2

(
0 + V 2

H 2
+ 0 + V 2

H 2
+ 0 + 0 + 0 + 0 + 0

)
(5.227)

=
∣∣∣∣∣∣V

H

∣∣∣∣∣∣ (5.228)

This is the same result for γ̇ in a shear flow as would be obtained if we used the
former definition of γ̇ .

Former definition of γ̇ :
(shear flow only)

γ̇ =
∣∣∣∣∣∣dvx

dy

∣∣∣∣∣∣ (5.229)

=
∣∣∣∣∣∣d(V y/H )

dy

∣∣∣∣∣∣ (5.230)

=
∣∣∣∣∣∣V

H

∣∣∣∣∣∣ (5.231)

The new definition of rate-of-deformation γ̇ has the same value in any coordi-
nate system; this is guaranteed by tensor mathematics.3 The new definition also

3Tensor magnitude is one of the three invariants of a second-order tensor and γ̇ is a second-order

tensor [6].
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is valid for any flow: For any flow, we can write the tensor γ̇ = ∇v + (∇v)T and
take its magnitude using Equation 5.222. We demonstrate this now by applying
the new definition of γ̇ to a flow with curved streamlines: the planar-jet flow.

EXAMPLE 5.15. For the planar-jet flow shown in Figure 5.31, what are the stress
components predicted by the proposed non-Newtonian constitutive equation in
Equation 5.210? Use the new definition of γ̇ , Equation 5.222.

SOLUTION. We choose to analyze this problem in the same Cartesian coordinate
system as used before, in which z is toward the wall and the flow varies in the x-
and z-directions. The solution follows the same steps as in the previous attempt,
with the difference being the definition of the rate-of-deformation γ̇ .

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝vx (x, z)

0
vz(x, z)

⎞
⎠

xyz

(5.232)

γ̇ =
(
∇v + (∇v)T

)
(5.233)

=

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vy

∂x + ∂vx
∂y

∂vz
∂x + ∂vx

∂z

∂vx
∂y + ∂vy

∂x 2 ∂vy

∂y
∂vz
∂y + ∂vy

∂z

∂vx
∂z + ∂vz

∂x
∂vy

∂z + ∂vz
∂y 2 ∂vz

∂z

⎞
⎟⎟⎟⎟⎠

xyz

(5.234)

=

⎛
⎜⎜⎜⎝

2 ∂vx
∂x 0 ∂vz

∂x + ∂vx
∂z

0 0 0
∂vx
∂z + ∂vz

∂x 0 2 ∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

(5.235)

γ̇ ≡ +

⎛
⎜⎝1

2
·

sum of squares
of each Cartesian
component of γ̇

⎞
⎟⎠

1
2

(5.236)

= +

√√√√√√√√√
1
2

(
4
(

∂vx
∂x

)2 + 0 +
(

∂vz
∂x + ∂vx

∂z

)2 + 0 + 0

+ 0 +
(

∂vx
∂z + ∂vz

∂x

)2 + 0 + 4
(

∂vz
∂z

)2
) (5.237)

γ̇ = +
√

2
(

∂vx

∂x

)2

+
(

∂vz

∂x
+ ∂vx

∂z

)2

+ 2
(

∂vz

∂z

)2

(5.238)

The final result for the rate-of-deformation is complex, and it is unlikely that
we would have determined this formula on our own. Because of the formal math-
ematics involved in the definition of the magnitude of a tensor, however, this
calculation of the rate-of-deformation γ̇ correctly reflects the deformation occur-
ring at every location in this complex flow. The proposed constitutive equation is
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τ̃ = η(γ̇ )γ̇ ; thus, the predicted stress components are:

τ̃ = η(γ̇ )γ̇ (5.239)

τ̃ = η(γ̇ )

⎛
⎜⎜⎜⎝

2 ∂vx
∂x 0 ∂vz

∂x + ∂vx
∂z

0 0 0
∂vx
∂z + ∂vz

∂x 0 2 ∂vz
∂z

⎞
⎟⎟⎟⎠

xyz

(5.240)

with γ̇ given by Equation 5.238.

We have arrived at a reasonable expression for non-Newtonian stress for our
planar-jet flow. The result in Equation 5.240 does not violate any rules for con-
stitutive equations. Our final result for the stress in Equation 5.240 is incom-
plete, however, because we have not yet specified the details of the function
η(γ̇ ). We next discuss this and how well this guessed-at constitutive equation
works.

The constitutive equation we are using is called the generalized Newtonian
fluid (GNF) constitutive equation:

Generalized Newtonian
constitutive equation

(GNF)

τ̃ = η(γ̇ )
(∇v + (∇v)T

)
= η(γ̇ )γ̇

γ̇ =
∣∣∣∣γ̇ ∣∣∣∣

η(γ̇ ) = specified by user

(5.241)

The function η(γ̇ ) is chosen by the user to match the curve of steady-shear
viscosity as a function of γ̇ for a material of interest.

For many polymer melts at high rates-of-deformation, measurements of η(γ̇ )
when plotted on a log-log graph result in a straight line (Figure 5.32): Data of
this type can be fit with a η(γ̇ ) given by a power-law function:

Power-law
GNF viscosity function

η(γ̇ ) = mγ̇ n−1 (5.242)

where m and n are the fitting parameters of the model. The parameter m is called
the consistency index and n is called the power-law index. The power-law index
n is unitless, and the units of m can be worked out from Equation 5.242 (see
Problem 38). We can see how m and n are related to the plot in Figure 5.32 by
taking the log of both sides of Equation 5.242:

η(γ̇ ) = mγ̇ n−1 (5.243)

log η = log m + (n − 1) log γ̇ (5.244)

log η = (intercept) + (slope) log γ̇ (5.245)

Thus, the slope of a log η versus log γ̇ plot is equal to n − 1, and the value of
log η at log γ̇ = 0 (i.e., γ̇ = 1) is log η = log m.
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Figure 5.32 Steady-shear viscosity as a function of shear rate for composites of a liquid-crystal polymer with carbon black
(CB) (concentrations indicated); the viscosity data follow a power-law relationship with shear rate. The data are for
mixtures of Vectra A950RX and Ketjenblack EC-600 JD [74].

Over the entire range of γ̇ , many polymers exhibit a more complex shape
for η(γ̇ ) than what is described by the power-law model. The viscosity data in
Figure 5.26 exhibit a power-law region at high rates-of-deformation; however, at
low γ̇ , the viscosity levels off to a plateau. For some materials, viscosity also
plateaus at high rates-of-deformation. A function for η(γ̇ ) that can fit these more
complex shapes is the Carreau–Yasuda model [181, 104] (Figure 5.33).

Carreau–Yasuda
GNF viscosity function

η(γ̇ ) = η∞ + (η0 − η∞)
[
1 + (λγ̇ )a] n−1

a (5.246)

vi
sc

os
ity

shear rate

η0

η∞

λ
slope = (n-1)

a determines
curvature

shifts power-law

Figure 5.33 The Carreau–Yasuda model for η(γ̇ ) predicts a shape that is compatible with what is observed for many polymer
melts and solutions [104].
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Figure 5.34 The viscosity data in Figure 5.26 can be fit to the Carreau–Yasuda model with the parameter values indicated.
The infinite-shear viscosity parameter η∞ is not needed for this fit because the data do not plateau at high shear
rate.

The Carreau–Yasuda model has five parameters: η0, which determines the level
of the low shear-rate plateau; η∞, which determines the level of the high shear-
rate plateau; n, which determines the slope of the sharply decreasing region; λ,
which determines when the viscosity curve begins to decrease; and a, which
determines the shape of the curve as it transitions from the η0 level to the
power-law region. The Carreau–Yasuda model works well for typical polymer
viscosity curves that show a low-shear-rate plateau and shear-thinning behavior
(Figure 5.34).

The generalized Newtonian fluid model is popular in many fields, including
plastics processing, hemorheology (i.e., blood flow), and geophysics. Numer-
ous viscosity functions η(γ̇ ) have been published, some of which are listed in
Table 5.2. Making analytical calculations with GNF models is fairly simple, and
complex flows are calculated readily using computer codes [5, 27, 151]). In the
rheology literature there are many examples of momentum-balance calculations
carried out using the power-law GNF [12, 104].

The generalized Newtonian fluid constitutive equations have limitations that
they share as a group. Because of the form of the equation, τ̃ = ηγ̇ , the GNF
models predict that the normal stresses are zero in steady shearing, regardless of
the form chosen for η(γ̇ ) (see Problem 37). Thus, GNF models cannot predict rod-
climbing (see Figure 5.29). Also, the GNF models predict stresses by considering
only the rate-of-deformation at the current time, γ̇ (t). Because they do not include

the effect of past deformations, generalized Newtonian models cannot predict
memory effects (see Figure 5.30). Thus, the GNF models are catagorized as
inelastic models.
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Table 5.2. Several choices of function η(γ̇ ) used in the generalized Newtonian constitutive equation,
depending on application

Name
System η(γ̇ ) Parameters Reference

Power-Law
(polymer melts)

η(γ̇ ) = mγ̇ n−1 m – consistency index
n – power-law index

[12, 131]

Carreau–Yasuda
(polymer melts)

η(γ̇ ) − η∞
(η0 − η∞)

= [
1 + (λγ̇ )a

] n−1
a

η∞ – infinite-shear viscosity
η0 – zero-shear viscosity
λ – relaxation time
a – shape index
n – power-law index

[12, 181]

Bingham
(suspensions,
emulsions, pastes)

η(γ̇ ) =
⎧⎨
⎩

∞ τ ≤ τ̃0

μ0 + τ̃0

γ̇
τ > τ̃0

τ =
∣∣∣∣τ̃ ∣∣∣∣ =

∣∣∣∣ηγ̇

∣∣∣∣
τ̃0 – yield stress
μ0 – viscosity

[12]

Ellis
(polymer melts)

η(γ̇ ) = η0

1 +
∣∣∣∣∣∣ τ

τ̃0

∣∣∣∣∣∣α−1

τ =
∣∣∣∣τ̃ ∣∣∣∣ =

∣∣∣∣ηγ̇

∣∣∣∣
η0 – zero-shear viscosity
τ̃0 – characteristic stress
α – stress power-law index

[12]

DeKee
(polymer melts)

η(γ̇ ) = η1e−λγ̇ + η2e−0.1λγ̇ + η∞

η1 – first viscosity
η2 – second viscosity
η∞ – infinite-shear viscosity
λ – relaxation time

[19, 41]

Casson
(blood)

√
τ =

√
τ̃0 +

√
η0γ̇

τ =
∣∣∣∣τ̃ ∣∣∣∣ =

∣∣∣∣ηγ̇

∣∣∣∣ η0 – zero-shear viscosity
τ̃0 – characteristic stress

[19]

Even with these limitations, the GNF models are useful. For flow in pipes
or in which the relationship between pressure drop and flow rate is the most
important aspect, GNF models perform well [12]. See the literature surrounding
each equation to determine its validity for a given flow of interest.

To apply the inelastic models discussed here, we again need the momentum
balance—Reynolds transport theorem applied to a microscopic control volume.
The general equation that is most convenient to use for non-Newtonian calcula-
tions is a version of this balance called the Cauchy momentum equation, which
is derived and discussed in Chapter 6 [12, 104].

In the following example, we see how we can use the power-law, generalized
Newtonian fluid model to calculate an engineering property of interest such as
force on the wall in a flow of a non-Newtonian fluid.
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EXAMPLE 5.16. A shear-thinning, power-law fluid (m and n known) is sub-
jected to a steady-drag flow in the apparatus shown in Figure 5.35. The velocity
field is given here (see also Example 6.4):

v =
⎛
⎝ V

H x2

0
0

⎞
⎠

123

(5.247)

What is the stress tensor �̃ for this flow? Using the stress-tensor expression
found, calculate the force needed to move the top plate at the speed V .

x1
x3

x2

Figure 5.35 A shear-thinning, power-law fluid subjected to a drag flow.

SOLUTION. If the velocity field is known, the stress in a fluid may be calculated
from the constitutive equation. For a power-law fluid, the constitutive equation is
the generalized Newtonian fluid equation:

Generalized Newtonian fluid
constitutive equation

(GNF)
τ̃ (t) = η(γ̇ )

(
∇v) + (∇v))T

)
(5.248)

= η(γ̇ )γ̇ (5.249)

The function η(γ̇ ) can assume a variety of forms; for a shear-thinning power-law
fluid, η(γ̇ ) is given by:

Power-law GNF
viscosity function:

η(γ̇ ) = mγ̇ n−1 (5.250)

with n < 1 and γ̇ given by Equation 5.222 and repeated here:

γ̇ = +

√√√√√√
⎛
⎝1

2
·

3∑
p=1

3∑
j=1

γ̇ 2
pj

⎞
⎠ (5.251)
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For the velocity field given in Equation 5.247, we therefore calculate ∇v, γ̇ ,
γ̇ , and finally η(γ̇ ):

∇v =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v1
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

⎞
⎟⎟⎟⎟⎟⎟⎠

123

(5.252)

=

⎛
⎜⎜⎜⎝

0 0 0
V
H 0 0

0 0 0

⎞
⎟⎟⎟⎠

123

(5.253)

γ̇ = ∇v + (∇v))T (5.254)

=

⎛
⎜⎜⎜⎜⎝

0 V
H 0

V
H 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(5.255)

γ̇ = +

√√√√√√
⎛
⎝1

2
·

3∑
p=1

3∑
j=1

γ̇ 2
pj

⎞
⎠ (5.256)

= +
√(

V

H

)2

= V

H
(5.257)

η(γ̇ ) = mγ̇ n−1 (5.258)

= m

(
V

H

)n−1

(5.259)

We now assemble the final expression for τ̃ from the GNF constitutive equation:

τ̃ (t) = η(γ̇ )γ̇ (5.260)

= m
(

V

H

)n−1

⎛
⎜⎜⎜⎜⎝

0 V
H 0

V
H 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(5.261)

τ̃ =

⎛
⎜⎜⎜⎜⎝

0 m
( V

H

)n
0

m
( V

H

)n
0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(5.262)
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To calculate the force on a finite surface in a fluid, we use the same integral of
n̂ · �̃|surface discussed in equation 4.285:

Total molecular fluid force
on a finite surface S F =

∫∫
S

[n̂ · �̃]at surface d S (5.263)

ˆFor the top surface, n̂ = −e2 and x2 = H . Therefore, the force on the top surface
in this flow, F , is given by:

�̃ = −pI + τ̃ (5.264)

=

⎛
⎜⎜⎜⎜⎝

−p m
( V

H

)n
0

m
( V

H

)n −p 0

0 0 −p

⎞
⎟⎟⎟⎟⎠

123

(5.265)

[n̂ · �̃]x2=H = (0 −1 0
)

123
·

⎛
⎜⎜⎜⎜⎝

−p m
( V

H

)n
0

m
( V

H

)n −p 0

0 0 −p

⎞
⎟⎟⎟⎟⎠

123

(5.266)

=
(−m

( V
H

)n
p 0
)

123
(5.267)

F =
∫∫

S
[n̂ · �̃]at surface d S (5.268)

=
∫ L

0

∫ W

0

⎛
⎜⎝

−m
( V

H

)n

p
0

⎞
⎟⎠

123

dx3dx1 (5.269)

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

−mLW
( V

H

)n

pLW

0

⎞
⎟⎟⎟⎟⎟⎟⎠

123

(5.270)

This is the fluid force on the top plate; the force to drive the top plate is the
negative of the fluid force. The 1-component of the result gives the tangential
force needed to drive the flow. The 2-component of the force result reflects the
force due to the atmosphere, which acts normally to the plate.

5.3.4 Viscoelastic constitutive equations

The inelastic generalized Newtonian fluid (GNF) constitutive equation cannot
predict shear normal stresses or memory effects (see Figure 5.29). To capture this
kind of behavior in our models, far more sophisticated analysis is needed. This
section is a brief overview of the study of constitutive equations for viscoelastic
fluids. Of the two observations that inelastic constitutive equations fail to predict,
fluid memory is the easier to address, and we discuss it first.
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Honey
no

memory

memoryPolymer

snaps
back

Figure 5.36 Pouring honey and then stopping abruptly makes a mess (top). Pouring a polyacrylamide solution and stopping
abruptly results in the fluid snapping back into the beaker from which it was poured (bottom) [112].

The difference between a fluid with memory and a fluid with no memory
is shown when trying to pour two fluids from a beaker (Figure 5.36) [119]. A
Newtonian fluid like honey has no memory. If we begin pouring and then attempt
to stop, the honey makes a mess. No honey that had been poured returns to the
beaker; rather, the pouring stream is cut off and honey dribbles down the outside
of the beaker. A polyacrylamide solution, which is viscoelastic, responds quali-
tatively differently to the same experiment. If we begin pouring the viscoelastic
fluid but then reverse direction in an attempt to stop pouring, the viscoelastic
solution snaps back elastically and returns to the beaker [119].

Viscoelastic fluids move like Newtonian fluids under some circumstances,
but they also have memory of past velocities, velocity gradients, and shapes.
A constitutive equation that seeks to capture such complex behavior must refer
to current velocities, velocity gradients, or shapes but also must refer to these
quantities in the past. The generalized Newtonian constitutive equation discussed
in the previous section relates stress at a time t , τ̃ (t) to the velocity field v(t) at
that same time:

GNF
constitutive equation

(no memory)

τ̃ (t) = η(γ̇ )γ̇ (t)

γ̇ (t) = ∇v(t) + (∇v(t))T

γ̇ =
∣∣∣∣γ̇ (t)

∣∣∣∣
η(γ̇ ) = specified by the user

(5.271)
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The GNF relates the instantaneous velocity gradient tensor to the instantaneous
stress tensor and thus does not capture memory.

A constitutive equation that has memory of past events has terms that refer
to the fluid’s motion in the past. We construct a memory-constitutive equation
by writing the stress as a sum of two types of contributions: (1) contributions
generated as a result of the fluid’s current motion; and (2) contributions generated
from what the fluid’s motion was sometime in the past.

If we write t − λ as the time λ seconds before the current time t , and t − 2λ as
the time 2λ seconds before the current time t , we can write stress for one possible
memory fluid as follows:

τ̃ (t) = η1γ̇ (t) + η2γ̇ (t − λ) + η3γ̇ (t − 2λ) (5.272)

where η1, η2, η3, and λ are scalar parameters of the model. In this equation, the
stress at the current time t depends not only on v(t) but also on v at several other
times in the past. These ideas lead to valid constitutive equations for viscoelastic
fluids. If we consider contributions from all past times and total them such that the
memory of past events fades farther back in the past, we obtain the generalized
linear-viscoelastic constitutive equation [104]:

Generalized
linear-viscoelastic

constitutive equation
τ̃ (t) =

∫ t

−∞
G(t − t ′) γ̇ (t ′) dt ′ (5.273)

In this equation, G(t − t) is a function that describes how the fluid forgets past
events. The integral represents a sum over contributions to the stress from rates-
of-deformation γ̇ at past times t ′.

Incorporating memory into a constitutive equation may be accomplished by
adding contributions from the past to contributions from the present. Predict-
ing normal stresses in shear flow, however, requires a more drastic change of
approach. Normal stresses in shear flow are a nonlinear effect. This means that to
predict shear normal stresses, we need a constitutive equation that is more than a
simple proportionality between stress and γ̇ (e.g., the Newtonian or generalized
Newtonian equations) and more than linear combinations of γ̇ at different times
(e.g., the generalized linear-viscoelastic model). To capture nonlinear effects, we
must find a new nonlinear form for the constitutive equation. When consider-
ing nonlinear models, however, the possibilities are endless. To model nonlinear
effects in both fluid mechanics and other fields of physics, it is rarely fruitful to
guess at possible forms—which has been our approach thus far. The number of
reasonable nonlinear functions we can use for τ̃ (v) is nearly infinite.

Instead of guessing, researchers in the field looked at the rules of tensor
transformations and found how those rules constrain the constitutive equation.
We know that the nonlinear constitutive equation we seek must work in any
coordinate system; we also know that the constitutive equation should not depend
on the point of view of the observer. Thus, if we calculate stress in a flow with
our constitutive equation expressed in a stationary coordinate system, or if we
use a coordinate system moving at a constant velocity, we should calculate the
same results.
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The late 20th-century work of Oldroyd [129], Coleman and Noll [26], and
others clarified the constraints that the tensor transformation rules had on consti-
tutive modeling. Their work led to the discovery of nonlinear constitutive models
that predict shear normal stresses and many other nonlinear effects. There still
are many challenges in nonlinear constitutive modeling, however, because no
single model has been discovered that predicts the complete range of behaviors
exhibited by viscoelastic fluids. It is an ongoing research challenge to develop
constitutive models that capture the behavior of nonlinear viscoelastic fluids.

Finally, there is another approach to the stress-velocity relationship in non-
Newtonian fluids. We have followed the continuum approach, beginning with the
velocity field and the stress tensor, and asked the question: How can we relate
these two continuum field variables? An alternative approach is to forego the
stress tensor, return to the momentum balance, and ask the original question:
How can we quantify the molecular forces in the momentum balance?

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (5.274)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S = f

contact
+ f

gravi t y

(5.275)

For the contact-force term, our continuum approach is to write fcontact as an
integral over n̂ · �̃|surface, to define the stress tensor as �̃ = −pI + τ̃ , and to
look for constitutive equations to obtain τ̃ (v):

dP

dt
+
∫∫

S
(n̂ · v) ρv d S =

∫∫
S

[n̂ · �̃]at surface d S + MCV g (5.276)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S + MCV g (5.277)

In arriving at Equation 5.277 from Equation 5.276, we substituted Equation 4.263
for the molecular-force vector and Equation 4.4 for the gravity term.

A different approach is to return to the molecules and model how they behave.
For a chosen system, we know the chemistry and we often know much about the
molecular forces that cause the nonlinear stress-velocity behavior observed. It
is possible to begin with the molecules, their structure and their intermolecular
forces, and then build up to a contact-force term that can be included in the
momentum balance.

The molecular-modeling approach can be an effective strategy for complex
systems. It is limited, however, in that the results are valid only for the specific
fluids modeled. Also, the calculations can be time-consuming. Even with these
drawbacks, however, the greatest advances in nonlinear rheological modeling
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in recent years have come from molecular modeling. For an introduction to
molecular modeling in non-Newtonian fluids, refer to the literature [13, 83].

5.4 Summary

Our search in this chapter was for a stress-velocity relationship for molecular
forces in fluids. We sought expressions that could describe all (or most) fluids. In
reaching that goal, we have been reasonably successful. We arrived at the New-
tonian constitutive equation, a rigorous stress-velocity relationship that captures
the behavior of thousands of fluids, including the two most common: water and
air. The field of fluid mechanics is the field of Newtonian fluid mechanics—that
is, the study of fluids that follow the Newtonian constitutive equation.

Non-Newtonian fluids challenge the continuum approach. We can use contin-
uum ideas to develop inelastic constitutive equations and even simple viscoelastic
constitutive equations, but we find that for the most complex fluids and complex
behaviors, it is more fruitful to return to a molecular approach for stress-velocity
calculations.

The pattern of discovery in the quest for a proper molecular-force term in
fluids follows a standard discovery pattern in science. When investigating obser-
vations, we look at the simplest explanations first, seeking to define when they
are suitable. When the simplest systems are well understood, we move on to more
complex cases. If the most obvious modifications fail, we move on to more com-
plicated models, always looking for constraints that help narrow down the possible
choices.

In the remaining chapters, we apply the Newtonian stress-velocity relationship
and hone our skills in solving for velocity and stress fields in flowing liquids.
Chapter 6 focuses on generalizing our solution methods and equations; Chap-
ter 7 applies our techniques to flows within boundaries; and Chapter 8 focuses
on unbounded flows, known as external flows, which includes the analysis of
boundary layers. Chapter 9 takes forward and generalizes the macroscopic bal-
ance techniques. Advanced applications of continuum modeling are described in
Chapter 10.

5.5 Problems

1. In fluid mechanics, what is a constitutive equation?
2. Is the Newtonian constitutive equation related to molecular forces in a fluid?

How?
3. What does it mean to say a fluid is a “Newtonian fluid?” Give examples of

non-Newtonian behavior.
4. What is stress? What is pressure? Distinguish between these two concepts in

the context of fluid flow.
5. In Chapter 4, molecular force on a surface in a fluid is given by∫∫

S n̂ · �̃|surface dS. How can we calculate �̃ for a flow?
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6. The total stress tensor �̃ is given by �̃ = −pI + τ̃ . If the velocity is zero,
what is �̃?

7. Sometimes we see different versions of the total-stress tensor:

This text and [174]: �̃ = −pI + τ̃

Bird et al. and [12, 104]: � = pI + τ

What is the difference between these two equivalent representations?
8. Figure 5.1 and the accompanying text discusses stress at a point in terms of

the different stresses that different surfaces experience at the same point in
a moving fluid. If the stress tensor �̃ for a flow was calculated at Point P to
be (arbitrary units):

�̃|P =
⎛
⎝2 0 0

0 0.5 0
0 0 1

⎞
⎠

xyz

calculate the force on the following six surfaces of unit area through P: The
first surface is oriented with n̂ = êx . The five remaining surfaces are oriented
with unit normals that are obtained from êx by making successive 60-degree
rotations around the z-axis. Plot these vectors.

9. For the velocity profile given here, what is ∂vz
∂z along the line x = 0, y = 0?

What is the value of that derivative on that line at locations z = 1, 2, and 3?
What is the value of the velocity vector at those locations? Comment on the
connection between the two quantities, v and ∂vz

∂z .

ˆ ˆ ˆ

ˆ

ˆ

v = −9xex − 9yey + 18zez

10. For the flow in Figure 5.18, describe the motion of a fluid particle traveling
on the streamlines shown. Are the fluid particles accelerating? How do you
know?

11. Drag flow is a flow with velocity vector v = vx (y)ex when written in the
Cartesian coordinate system (i.e., flow in the x-direction). Calculate the
velocity gradient tensor ∇v (a 3 × 3 matrix) for this flow.

12. For the two-dimensional flow shown in Figure 4.77, write the velocity gradi-
ent tensor ∇v in matrix form, indicating which coefficients and derivatives
are zero. Are the fluid particles accelerating?

13. For a flow (Newtonian fluid) that may be written as v = vx êx + vzez , calculate
the 3 × 3 matrix ∇v + (∇v)T . What is τ̃ for this flow?

14. For a flow (Newtonian fluid) that may be written as v = vθ êθ in a cylindrical
coordinate system, calculate the 3 × 3 matrix ∇v + (∇v)T . What is τ̃ for
this flow?

15. For a flow (Newtonian fluid) that may be written as v = vr êr + vθ êθ in a
cylindrical coordinate system, calculate the 3 × 3 matrix ∇v + (∇v)T . What
is τ̃ for this flow?

16. In Example 5.1, we use the x-component of the momentum balance in a
simple shear flow to show that the shear stress is constant in simple shear
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flow. What conclusions can we draw from the y- and z-components of the
momentum balance?

17. In the development of Newton’s law of viscosity in Section 5.1.2, we discuss
experimental results that show that in steady shear flow, F/LW is propor-
tional to V/H , where F is the tangential pulling force on the top plate, A is
the area of the plate, V is the speed of the plate, and H is the gap between the
plates. Use your own experience with fluids to describe how force depends
on gap in shear flow for constants A and V . Also, describe a situation that
illustrates how force depends on area for constants H and V .

18. A fluid is made to flow in a parallel-plate apparatus with a narrow gap of
1.0 mm. The tangential force to move the top plate at 0.012 mm/s is 13 mN.
What is the viscosity of the fluid in the gap? Give the answer in centipoise
and American engineering units. The plate area is 9.1 cm2.

19. What is the vector velocity field in a simple shear flow produced in the flow
between two large parallel plates? The top plate is moved at 1.2 mm/s and
the gap between the plates is 0.5 mm. What is the velocity (magnitude and
direction) in the plane halfway between the plates?

20. What is the shear stress if peanut butter is sheared in a narrow-gap parallel
plate device? The gap is set at 0.8 mm and the velocity of the upper plate is
0.1 mm/s. What is the shear stress if the gap doubles?

21. In a narrow-gap parallel-plate device, a Newtonian fluid is made to flow in
steady-drag flow. If the shear rate (i.e., shear rate =velocity/gap in this flow)
is cut in half, what happens to the stress on the upper plate?

22. What is the extra-stress tensor for a Newtonian fluid undergoing the uniform
flow described by the velocity profile given here? U∞ is a constant.

v =
⎛
⎝U∞

0
0

⎞
⎠

xyz

23. What is the extra-stress tensor for a Newtonian fluid undergoing the shear
flow described by the velocity profile given here?

v =
⎛
⎝−8y

0
0

⎞
⎠

xyz

24. What is the extra-stress tensor for a Newtonian fluid undergoing the pipe
flow described by the velocity profile given here? V and R are constants.

v =

⎛
⎜⎝

0
0

V
(

1 − r2

R2

)
⎞
⎟⎠

rθ z
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x2

x3

x1

v1(x2,x3)

x1 = 0 
p = p0

x1 = L 
p = pL

123

321

0

0

),(

=

xxv

v

cross section:

x1

x2
H

2W

Figure 5.37 Unidirectional flow in a rectangular channel varies in three dimensions (Problem 30).

25. What is the extra-stress tensor for a Newtonian fluid undergoing the elonga-
tional flow described by the velocity profile given here?

v =
⎛
⎝−3x

−3y
6z

⎞
⎠

xyz

26. What is the extra-stress tensor for a Newtonian fluid undergoing the flow in
the spiral vortex tank with the velocity profile given here? K is a constant.
See Chapter 6 for more details on calculating velocity profiles in flow.

v =
⎛
⎝ 0

K
r
0

⎞
⎠

rθφ

27. When a velocity field in a flow has been calculated, it is straightforward
subsequently to calculate the stress tensor. For creeping flow around a sphere,
calculate �̃ from the solution given in Equations 5.101 and 5.102.

28. For the problem of a film flowing down an inclined plane discussed in this
chapter, what is the maximum value of the velocity? What is the average flow
rate?

29. For the problem of a film flowing down an inclined plane discussed in this
chapter, what is the maximum value of the shear stress? How does shear
stress vary across the film thickness?

30. How do the velocity components simplify for the unidirectional flow of water
through a rectangular channel (Figure 5.37)? For a Newtonian fluid, how does
the extra-stress tensor simplify as a result of this?
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r

z

Figure 5.38 Squeeze flow between two parallel plates is a common flow test geometry (Problem 31).

31. How do the velocity components simplify for the squeezing flow shown in
Figure 5.38? For a Newtonian fluid, how does the extra-stress tensor simplify
as a result of this?

32. How do the velocity components simplify for the wide-slit planar-contraction
flow shown in Figure 5.39? For a Newtonian fluid, how does the extra-stress
tensor simplify as a result of this?

33. How do the velocity components simplify for axisymmetric-contraction flow
shown in Figure 5.40? For a Newtonian fluid, how does the extra-stress tensor
simplify as a result of this?

34. The problem of a thin film falling down an incline is discussed in this chap-
ter. Figure 5.41 is a version of this problem in which a Cartesian coordinate
system is proposed. Write the velocity vector in this coordinate system (i.e.,
which components are zero?) and the boundary conditions. How does the

x

z
y

Figure 5.39 Planar contraction flow occurs when a larger reservoir drains through a slot (Problem 32).
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r

z

Figure 5.40 Axisymmetric-contraction flow occurs when a larger round reservoir drains through a pipe (Problem 33).

ˆ ˆ

Newtonian constitutive equation simplify? Comment on the chosen coordi-
nate system.

35. We solved the incline problem using a coordinate system that sits on the
solid surface (Figure 5.12). Here, choose instead to solve the same problem
with a coordinate system in which the coordinate position x = 0 is located
at the free surface (i.e., the top of the film) (Figure 5.42). What is the gravity
acceleration vector in this coordinate system? What are the flow-boundary
conditions? Are there any advantages or disadvantages to this choice of
coordinate system? Discuss your observations.

36. In a drag flow in the x-direction with the gradient in the y-direction, the force
on the top plate is measured as f = 16ex + 2ey . Is the fluid Newtonian? How
do you know one way or the other?

37. The text indicates that the generalized Newtonian models cannot predict
normal stresses in shear; show that this is true. (Hint: Write γ̇ for shear flow
and calculate stresses from the constitutive equation.)

air

liquid

H

x

g
–

y

Figure 5.41 Flow problems may be solved in any coordinate system. Some choices are much better than others, however
(Problem 34).
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air

liquid

H

x

y

g
–

Figure 5.42 Flow problems may be solved in any coordinate system. The choice here has hidden advantages (Problem 35).

38. What are the units of the power-law parameters m and n in the power-law
model for viscosity, η = mγ̇ n−1 (see Equation 5.242)? Why are the units so
strange? Is there an error?

39. For a high molecular-weight polymer, the stress response is modeled with the
generalized Newtonian fluid constitutive equation, τ̃ = η(γ̇ )

(∇v + (∇v)T
)
.

The viscosity function η(γ̇ ) is measured as:

η[Pa s] = (3.4 × 105) γ̇ −0.43 = (3.4 × 105) ∣∣∣∣∣∣∂v1

∂x2

∣∣∣∣∣∣−0.43

where γ̇ =
∣∣∣∣ ∂v1
∂x2

∣∣∣∣
ˆ

is given in units of s−1. Plot the viscosity function (i.e.,

log-log plot). In a flow with v = (0.90 1/s)x2e1, what is τ̃21?
40. Plot the viscosity-versus-shear rate for a power-law generalized Newtonian

fluid. The parameters of the model are m = 3,200 Pa s0.54 and n = 0.54.
Choose a range of shear rate that is physically reasonable. The plot should
be logarithmic on both axes.

41. Plot the viscosity versus shear rate for a Carreau–Yasuda Generalized New-
tonian fluid. The parameters of the model are listed here. Choose a range of
shear rate that is physically reasonable. The plot should be logarithmic on
both axes:

η0 = 3,500 Pa s

n̂ = 0.42

a = 2.0

η∞ = 0

λ = 11 s

42. The units of the power-law model do not follow accepted rules in physics.
What are the units on m in the power-law model? We can normalize the units
of this model by introducing a parameter λ to nondimensionalize the shear
rate γ̇ [36]:

Revised power-law model: η = η̃ (λγ̇ )n−1
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y

z
êz

x

Figure 5.43 A control volume shaped like a rectangular parallelepiped (Problem 44).

For viscosity in units of Pa s, what are the units of the parameters η̃ and n of
this revised power-law model? Comment on the relative desirability of the
revised power-law model compared to the traditional model.

43. What is the extra-stress tensor for a non-Newtonian power-law fluid under-
going the elongational flow described by the velocity profile given here?

v[m/s] =
⎛
⎝−4x

−4y
8z

⎞
⎠

xyz

44. A control volume shaped like a rectangular parallelepiped is shown in Fig-
ure 5.43. For the velocity field given in Problem 43, how would you calculate
the total fluid force on the z-surface of the control volume for a power-law
GNF? What additional information would you need? The dimensions of the
box in the x-, y-, and z-directions are L , W , and H , respectively.

45. What is the extra-stress tensor for a non-Newtonian power-law fluid under-
going the uniform flow described by the velocity profile given here? U∞ is a
constant.

v =
⎛
⎝U∞

0
0

⎞
⎠

xyz

46. What is the extra-stress tensor for a non-Newtonian power-law fluid undergo-
ing the shear flow described by the velocity profile given here? The parameter
a is a constant.

v =
⎛
⎝−ay

0
0

⎞
⎠

xyz

47. What is the extra-stress tensor for a non-Newtonian power-law fluid under-
going the pipe flow described by the velocity profile given here? V and R
are constants.

v =

⎛
⎜⎝

0
0

V
(

1 − ( r
R

)2.85
)
⎞
⎟⎠

rθ z
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48. For Newtonian fluids, the extra-stress tensor is given by τ̃ =
μ
(∇v + (∇v)T

)
, where μ is a constant—the viscosity. Fluids like “oobleck”

(i.e., cornstarch and water) exhibit unusual behavior that does not follow this
equation. Investigate the behavior of oobleck on the Internet and indicate the
features of the Newtonian constitutive equation that prevent it from describ-
ing the behavior of oobleck.

49. For Newtonian fluids, the extra-stress tensor is given by τ̃ =
μ
(∇v + (∇v)T

)
, where the viscosity μ is a constant. Fluids like pizza dough

exhibit unusual behavior that does not follow this equation. Investigate and
indicate what must be changed in the Newtonian constitutive equation to
correctly describe the behavior of pizza dough.

50. For Newtonian fluids, the extra-stress tensor is given by τ̃ =
μ
(∇v + (∇v)T

)
, where the viscosity μ is a constant. Fluids like high

molecular-weight polymer melts exhibit behavior that does not follow this
equation. Investigate and indicate what must be changed in the Newtonian
constitutive equation to correctly describe the behavior of entangled polymer
melts.
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6 Microscopic Balance Equations

In Chapter 5, we completed two example problems that we have pursued for
several chapters. The first was the flow of a thin liquid film down an inclined
plane. To solve that problem, we chose a microscopic control volume (CV) and
performed a momentum balance on it. In the course of the solution, we adopted the
use of the stress tensor �̃ = −pI + τ̃ as a way to quantify the contact forces on
the CV. We subsequently introduced the Newtonian constitutive equation to relate
the extra-stress tensor τ̃ to velocity. The microscopic CV solution method used in
Chapter 5 is general and can be applied to other problems, although not without
difficulty. Choosing a microscopic CV can be tricky; if the flow streamlines are
not straight, getting all of the geometric factors correct is challenging.

The microscopic-balancing method can be made considerably easier by devel-
oping general balance equations and beginning the analysis there. We pursue
this problem-solving method in this chapter. The derivations of the microscopic-
mass-balance and the microscopic-momentum-balance equations are provided
in Section 6.1, using vector/tensor theorems introduced there. The derivations in
Section 6.1 are generalizations of the control-volume method used in Chapters 3–
5 to solve the falling-film problem. The two general balance equations derived in
this chapter are as follows:

Continuity equation:
(microscopic mass balance)

(
∂ρ

∂t
+ v · ∇ρ

)
= −ρ∇ · v (6.1)

Navier-Stokes equation:
(microscopic momentum balance)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

(6.2)

These are partial differential equations (PDEs) for velocity and pressure. Using
the continuity and the Navier-Stokes equations is a streamlined way to apply the
continuum model and the control-volume analysis of Chapters 3–5.

The Navier-Stokes equation is the core tool used to solve problems in fluid
mechanics. The tools necessary to carry out microscopic momentum balances
on arbitrary flows of Newtonian fluids are (1) an understanding of the solu-
tion methodology; (2) tables of the Navier-Stokes equation written in common
coordinate systems (see Appendix B); and (3) an understanding of the types of
boundary conditions encountered in such problems. These topics are discussed
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Figure 6.1 Schematic of an arbitrary volume enclosed by a
surface area. Each particular piece of the surface,
d S, is characterized by the direction of its unit
normal, n̂ .

in Section 6.2, and it is an option for readers
to proceed directly to that section. Chap-
ters 7, 8, and 10 discuss specific applica-
tions of the Navier-Stokes equation to a
variety of flow problems. In those chapters,
we also sort out the various behaviors that
fluids exhibit and finally learn the reasons
for observed flow patterns and stresses.

The second flow problem completed in
Chapter 5 is a calculation of the force
needed to restrain a 90 degree pipe bend
with water flowing in it. To solve the 90-
degree-bend problem, we chose a macro-
scopic control volume and wrote a momen-

tum balance. We generalize the macroscopic solution method in Chapter 9. The
general macroscopic-balance equations also enhance our appreciation of flow-
system behavior. Macroscopic balances are suited to developing practical data
correlations that apply to fluid devices (see Chapter 9).

6.1 Deriving the microscopic balance equations

The solution of the flow-down-an-incline problem began with choosing the con-
trol volume, after which we applied the mass balance and the momentum balance
(i.e., Reynolds transport theorem); this led to differential equations—first for
stress and then for velocity—which were solved with boundary conditions. The
derivation of the general microscopic balance equations follows these steps.

To calculate the momentum balance in the general case, the control volume
we choose is an arbitrarily shaped microscopic volume (Figure 6.1). Because
it is arbitrarily shaped, we cannot define its geometry and carry out specific
calculations on this control volume; instead, we write the terms of the balances
as integrals over the volume and enclosing surface. Because the choice of CV is
arbitrary, we subsequently deduce that the relationships we derive must hold at
every point in space.

The chosen CV has a total volumeV and is enclosed by a surfaceS. To write the
amount of mass, momentum, and energy interacting with the CV, we again use the
fundamental definition of an integral as a limit of a sum (see Section 1.3 and the
Web appendix [108] for details). To calculate the quantity of mass, momentum,
or energy in the CV, we construct a sum of small pieces of mass, momentum, or
energy located in small volumes �V within it:

Total quantity
of a property within

volume V
≈

N∑
i=1

(
quantity

volume

)
�Vi (6.3)

=
N∑

i=1

f (xi , yi , zi )�Vi (6.4)

www.20file.org

http://www.semeng.ir


431 Microscopic Balance Equations

where f in this case is quantity per volume of mass, momentum, or energy.
In the limit that �V goes to zero, this approximation becomes exact (see the
Web appendix [108]):

Total quantity
of a property within

volume V
= lim

�V −→0

[
N∑

i=1

f (xi , yi , zi )�Vi

]
(6.5)

This expression may be written as a triple integral of f over the volume V (see
the Web appendix [108]):

Total quantity
of a property within

volume V
=
∫∫∫

V
f (x, y, z)dV (6.6)

For quantities that act on or pass through the control surface, we use surface
integrals, much like as in Section 3.2.2 when we calculated the convection term in
the Reynolds transport theorem. To calculate the total quantity of mass, momen-
tum, or energy acting on or passing through the control surface, we construct a
sum of contributions associated with small pieces of tangent plane �S. If we then
take the limit as �A = (n̂ · êz)�S goes to zero, we obtain a surface integral:

Rate of transfer
of a property

through or to S
≈

N∑
i=1

(
quantity

area · time

)
�Si (6.7)

=
N∑

i=1

f (xi , yi , zi )�Si (6.8)

Rate of transfer
of a property

through or to S
= lim

�A−→0

[
N∑

i=1

f (xi , yi , zi )�Si

]
(6.9)

where, in the surface case, f is flux of a property, quantity/(area·time), and
�Ai is the projection of the tangent-plane area �Si . The two areas �Si in the
tangent plane and its projection �Ai are related through geometry (see the Web
appendix [108]):

�Ai = (n̂i · êz)�Si (6.10)

ˆ
where n̂i is the outwardly pointing unit normal to the tangent plane �Si and
ez is the z-direction of a convenient Cartesian coordinate system. Substituting
Equation 6.10 into Equation 6.9, we obtain:

Rate of transfer
of a property

through or to S
= lim

�A−→0

[
N∑

i=1

f (xi , yi , zi )

(n̂i · êz)
�Ai

]
(6.11)
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Equation 6.11 may be written as a double integral over the total projected area R
(see the Web appendix [108]):

Rate of transfer
of a property

through or to S
=
∫∫

R

f (x, y, z)

(n̂ · êz)
d A (6.12)

If we define d S ≡ d A/(n̂ · êz), then Equation 6.12 becomes the surface integral:

Rate of transfer
of a property

through or to S
=
∫∫

S
f (x, y, z) d S (6.13)

The volume integral in Equation 6.6 and the surface integral in Equation 6.13
allow us to express mass, momentum, and energy terms in calculations on our
arbitrary control volume. We need one more tool from vector mathematics to
carry out our derivation of the microscopic balances, and we state this theorem
without proof in the next section.

6.1.1 Gauss-Ostrogradskii divergence theorem

The Gauss-Ostrogradskii divergence theorem1 relates the change of a vector or
tensor property, b, in a closed volume, V , with the flux of that property through
the surface S that encloses V [6, 58, 146] (Figure 6.1). The theorem is:

Gauss-Ostrogradskii
divergence theorem

∫∫
S

(n̂ · b) d S =
∫∫∫

V
(∇ · b) dV (6.14)

Divergence theorem
(Cartesian coordinates,

b is a vector)

∫∫
S

(n1b1 + n2b2 + n3b3) d S

=
∫∫∫

V

(
∂b

∂x1
+ ∂b

∂x2
+ ∂b

∂x3

)
dV

(6.15)

where n̂ is the outwardly pointing unit normal of the differential surface ele-
ment, dS. The volume V is not necessarily constant in time. Use of the Gauss-
Ostrogradskii divergence theorem allows us to convert an integral over a volume
into a surface integral (or vice versa) without loss of information. The divergence
theorem can be thought of as justification for defining the divergence operator ∇
in the first place. Proof of the divergence theorem is in the literature [146].

The divergence theorem relates two different mathematical ways of expressing
changes in a function with position (x, y, z) within a volume V . The divergence
operator ∇· quantifies changes by considering the spatial derivatives ∂/∂xi in
three coordinate directions. Recall that in Cartesian coordinates, the gradient
operator ∇ is defined as:

∇ =

⎛
⎜⎜⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎟⎟⎠

xyz

(6.16)

1Also known as Green’s theorem or simply as the divergence theorem; see Aris and Schey [6, 146].

www.20file.org

http://www.semeng.ir


433 Microscopic Balance Equations

The divergence operator ∇· acts on vectors or tensors; for example, for the
vector v:

Divergence of v: ∇ · v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(6.17)

Note that the divergence of a vector is a scalar. For the tensor A, the divergence
is given here. Note that the divergence of a tensor is a vector:

Divergence of A: ∇ · A =

⎛
⎜⎜⎜⎝
[∇ · A

]
x[∇ · A
]

y[∇ · A
]

z

⎞
⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎜⎝

∂ Axx
∂x + ∂ Ayx

∂y + ∂ Azx
∂z

∂ Axy

∂x + ∂ Ayy

∂y + ∂ Azy

∂z

∂ Axz
∂x + ∂ Ayz

∂y + ∂ Azz
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(6.18)

A way to characterize an amount of change occuring in a finite volume is to add
up (i.e., volume integrate) the divergence of a property over the volume, giving
the righthand side of Equation 6.14. When defining ∇ and choosing to add up
∇ · b over a volume V , we do not have specific physics in mind—it is simply a
way to characterize an amount of spatial change present in the function b.

A second mathematical way to express spatial changes in a finite volume is
given by the lefthand side of Equation 6.14. The lefthand side of the divergence
theorem adds up (i.e., surface integrates) the outward components of a quantity
acting on or crossing the bounding surface. This integral may express a quantity
of interest for a physical problem such as the mass flow through a surface. The
divergence theorem states that these two calculated quantities are equal.

The physical meanings of terms that resemble either the lefthand or the right-
hand side of the divergence theorem depend on the identity of the quantity b.
In the sections that follow, we use integrals of these two types. The divergence
theorem provides a way to connect and to interrelate physical phenomena that
naturally manifest in spatial rates-of-change in volumes (i.e., right side) or as
fluxes through surfaces (i.e., left side).

We now discuss the derivation of the microscopic mass, momentum, and energy
balances.

6.1.2 Mass balance

One of the fundamental laws of nature is that mass is conserved. Mathematically,
this means that the time rate-of-change of mass of a body m B is zero:

Mass of a body
is conserved

dm B

dt
= 0 (6.19)

For flow calculations, we seek to write the mass balance on a control volume
rather than on a body. The general mass balance on a microscopic control volume
is found by considering CV mass changes over a time interval �t . Recall that
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in the Chapter 3 discussion, we consider a particular control volume and the
momentum flows into and out of that volume (see Figure 3.22). That analysis,
now performed for the changes in mass taking place in the arbitrary CV, yields
an expression for the time rate-of-change of the mass of the CV:

(
rate of increase
of mass in CV

)
=
(

mass
flow in

)
−
(

mass
flow out

)
(6.20)

dmCV

dt
=
⎛
⎝net inward

mass flow
through S

⎞
⎠ (6.21)

where mCV is the mass of the CV and S is the bounding surface of the CV. This
equation is the mass equivalent of Equation 3.65, the momentum balance on a
CV.

To apply Equation 6.21 to the general CV in Figure 6.1, we work term by term.
The net inward flux of mass through the control surface S can be written using
Equation 6.13:

Rate of transfer
of a property

through or to S
=
∫∫

S
f (x, y, z) d S (6.22)

where f is flux of a property, quantity/(area·time). Recall that this relationship
is discussed in Chapter 3 (see Section 3.2.2.2). At a point on the control surface
with velocity v and outward unit normal vector n̂, we can write mass/(area · time)
as follows (see Equation 3.90):

mass

area · time
=
(

mass
volume

)(
volume

time

)
area

(6.23)

mass out

area · time
=

(ρ)

⎛
⎝ outward

velocity · area
component

⎞
⎠

area
(6.24)

= ρ (n̂ · v) (6.25)

Recall that n̂ is the outwardly pointing unit normal and n̂ · v is the component of
v that passes out of the CV (see Equation 3.90). Substituting Equation 6.25 into
Equation 6.22 gives:

Net outward
mass flow through S =

∫∫
S

ρ(n̂ · v) d S (6.26)
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Substituting Equation 6.26 into the equation for mass conservation on a CV
(Equation 6.21) yields:

dmCV

dt
=
⎛
⎝net inward

mass flow
through S

⎞
⎠ (6.27)

Mass balance on a CV
dmCV

dt
=
∫∫

S
−(n̂ · v)ρ d S (6.28)

We include a negative sign to convert outflow to inflow. This version of the mass
balance on a CV is directly analogous to the Reynolds transport theorem (see
Equation 3.135), with mass substituted for momentum:

Momentum balance on a CV
(Reynolds transport theorem)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (6.29)

The integral term in both expressions is called the convective term, and it appears
when we consider a CV rather than a body. An analogous term appears in the
energy balance (see Section 6.1.4).

The lefthand side of the mass balance (Equation 6.28) is evaluated for our
arbitrary CV by first writing mCV in terms of an integral of the local density over
the CV (see Equation 6.6):

mCV =
∫∫∫

V

(
mass

volume

)
dV (6.30)

mCV =
∫∫∫

V
ρ dV (6.31)

The density may be a function of time and position. The time derivative may be
calculated by differentiating Equation 6.31 directly:

dmCV

dt
= d

dt

∫∫∫
V

ρ dV (6.32)

We can move the time derivative from the outside of the integral to become a
partial derivative inside the volume integral by using a vector relation called the
Leibniz rule for a constant volume V (see the Web appendix [108] and [58]):

Leibniz rule
(constant volume)

d

dt

∫∫∫
V

ρ dV =
∫∫∫

V

∂ρ

∂t
dV (6.33)

The mass balance is therefore:

dmCV

dt
= −

∫∫
S

(n̂ · v)ρ d S (6.34)

∫∫∫
V

∂ρ

∂t
dV = −

∫∫
S

(n̂ · v)ρ d S (6.35)
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To convert the righthand side of Equation 6.35 to an integral over the volume
rather than over the surface, we use the divergence theorem, which relates the
surface integral of n̂· a property to the volume integral of ∇· that same prop-
erty. In the mass balance, we apply the divergence theorem to the property ρv.
Equation 6.35 becomes:

∫∫∫
V

∂ρ

∂t
dV = −

∫∫
S

(n̂ · v)ρ d S (6.36)

= −
∫∫

S
n̂ · (ρv) d S (6.37)

= −
∫∫∫

V
∇ · (ρv) dV (6.38)

It is important when applying the divergence theorem to note that the divergence
operator ∇· acts on ρv and not on v alone because both ρ and v may vary with
position. Finally, Equation 6.38 relates the integrals of two properties over the
same arbitrary volume V . We now combine the two integrals under the same
integration symbol:

∫∫∫
V

[
∂ρ

∂t
+ ∇ · (ρv)

]
dV = 0 (6.39)

We arrive at an equation for conservation of mass over an arbitrary volume V
in our flowing stream. Because that volume is arbitrary, however, this equation
must hold over every volume we choose. The only way that this can be true is
if the expression within the integral sign is zero at every position in space. Note
that it is unusual that we may conclude that an integral being zero implies that
the integrand therefore must be zero everywhere. We consider this situation in
the following example.

EXAMPLE 6.1. When an integral is zero, under what circumstances may we
assume the integrand to be equal to zero?

SOLUTION. It is highly unusual to conclude that an integral being zero implies
that the integrand—the quantity being integrated over—is zero. Consider the
function y = sin x . Although we know that:

∫ 2π

0
sin x dx = 0 (6.40)

we also know that sin x is not equal to zero at every point (Figure 6.2). What
makes the integral in Equation 6.40 equal to zero is the choice of limits. We can
find any number of other limits, however, over which the integral of sine is not
zero.

In the case discussed in Equation 6.39, the limits of the integral are the bound-
aries of V , which are arbitrary. If there is a function over which we may integrate
and always obtain zero no matter which limits are chosen, that function must be
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θsin

θ

0sin
2

0
=∫

π
θθ d

0sin
3.2

0
≠∫

π
θθ d

Figure 6.2 For many functions, an interval may be found over which the integral of the function is zero. Only the function
f (x ) = 0 integrates to zero over every possible interval.

equal to zero. It is the arbitrariness of the integration limits—V in the current
case—that implies that the integrand must be zero at every point.

Thus, although it is highly unusual to state that when an integral is zero implies
its integrand must be zero, the one time this is true is when the limits in the integral
are arbitrary. The arbitrariness of V implies that the integrand in Equation 6.39
must be zero at every point:

Continuity equation
(microscopic mass balance)

0 = ∂ρ

∂t
+ ∇ · (ρv) (6.41)

The result of our calculation is the microscopic-mass-balance equation, which is
known as the continuity equation.

We can expand Equation 6.41 to three terms by carrying out the spatial deriva-
tive ∇ · (ρv), which is the divergence of the product of two variables. Manipula-
tions of vector and tensor components may be carried out in Cartesian coordinates
using matrix notation or by using a compact vector–tensor notation called Ein-
stein notation [104]. We omit the details of these calculations, recording only the
results (see Problem 11, the Web appendix [108], and [104]). Equation 6.41 may
be shown with no additional assumptions to be equivalent to (see also Table B.1):

0 = ∂ρ

∂t
+ v · ∇ρ + ρ∇ · v (6.42)

Continuity equation
(microscopic mass balance)

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v (6.43)

When the density is constant (i.e., incompressible fluid), the continuity equation
becomes:

Continuity equation
(incompressible fluid)

0 = ∇ · v (6.44)
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We write the equations in this section in Gibbs notation (∇, v, and so on),
a notation from vector–tensor mathematics that allows us to write an equation
independent of the coordinate system. We can write any Gibbs expression in
any coordinate system by using the defining equations for the chosen coordinate
system and rigorously carrying out the indicated derivatives. The continuity equa-
tion (Equation 6.43) is worked out for the Cartesian, cylindrical, and spherical
coordinate systems and appears in Section 6.2 and in Table B.5 of Appendix B.
We further discuss these equations in Section 6.2.1.1.

6.1.3 Momentum balance

We turn now to the derivation of the microscopic momentum balance. First the
general balance is discussed; subsequently the balance is specified to Newtonian
fluids.

6.1.3.1 GENERAL FLUIDS
The derivation of the microscopic momentum balance parallels the derivation
of the continuity equation, although the force terms require special attention.
The momentum balance on a control volume is the Reynolds transport theorem,
familiar from Chapter 3:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (6.45)

dP

dt
= −

∫∫
C S

(n̂ · v) ρv d S +
∑

contact
forces
on CV

(molecular)

f +
∑
body
forces
on CV

(gravity)

f (6.46)

As before, we apply Equation 6.46 to our arbitrary microscopic control volume
and proceed term by term.

The term dP/dt on the lefthand side of Equation 6.46 is the rate-of-change
of momentum in the CV. We can write the total amount of momentum in the
arbitrary, microscopic CV by writing the momentum analog of Equation 6.30,
the total mass in the CV. To obtain dP/dt , we subsequently take the time derivative
of that integral:

P =
∫∫∫

V

(
momentum

volume

)
dV (6.47)

=
∫∫∫

V
ρv dV (6.48)

dP

dt
= d

dt

∫∫∫
V

ρv dV (6.49)

dP

dt
=
∫∫∫

V

∂(ρv)

∂t
dV (6.50)

As before, when the time derivative moves inside the integral over a fixed volume,
it becomes a partial derivative (Leibniz rule; see the Web appendix [108]).
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The convection term in Equation 6.46 is already in a form that applies to the
arbitrary, microscopic CV. We apply the divergence theorem to express this term
as a volume integral:2 ∫∫

C S
(n̂ · v) ρv d S =

∫∫
S

n̂ · (ρv v) d S (6.51)

∫∫
S

(n̂ · v) ρv d S =
∫∫∫

V
∇ · (ρv v) dV (6.52)

The contact-force term may be written in terms of the usual integral of
n̂ · �̃|surface over a finite surface, the finite surface being the surface that bounds
the CV (see Equation 4.285):

Total molecular fluid force
on a finite surface S F =

∫∫
S

[n̂ · �̃]at surface d S (6.53)

∑
contact
forces
on CV

(molecular)

f =
∫∫

S
n̂ ·
(
−pI + τ̃

)
d S (6.54)

where p is pressure and τ̃ is the extra-stress tensor. We now convert Equation 6.54
to a volume integral using the divergence theorem:

∑
contact
forces
on CV

(molecular)

f =
∫∫∫

V
∇ ·
(
−pI + τ̃

)
dV (6.55)

The final term of the momentum balance on the arbitrary, microscopic CV is
the gravity term, which is a straightforward volume integral:

f
gravi t y

=
∫∫∫

V

(
mass · acceleration

volume

)
dV (6.56)

f
gravi t y

=
∫∫∫

V
ρg dV (6.57)

We now put all of the pieces together in the Reynolds transport theorem:

Reynolds transport theorem
(microscopic momentum balance)

dP

dt
=
∫∫

C S
(−n̂ · v) ρv d S +

∑
on
CV

f

(6.58)

2The resulting term v v is known as a dyadic product between two vectors, and it is a tensor. Note
that there is no dot product or any other operation between these vectors. (See Sections 1.3.2.2
and 3.2.2.2.)
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∫∫∫
V

∂(ρv)

∂t
dV = −

∫∫∫
V

∇ · (ρv v) dV +
∫∫∫

V
∇ ·
(
−pI + τ̃

)
dV

+
∫∫∫

V
ρg dV (6.59)

As with the equation for microscopic mass balance, we combine all of the terms
under a common integral sign:∫∫∫

V

[
∂(ρv)

∂t
+ ∇ · (ρv v) − ∇ ·

(
−pI + τ̃

)
− ρg

]
dV = 0 (6.60)

We arrive at an equation for conservation of momentum over an arbitrary volume
V in our flowing stream. Because that volume is arbitrary, however, this equation
must hold over every volume we choose. The only way that this can be true is
if the expression within the integral sign is zero at every position in space. We
therefore can write the integrand of Equation 6.60 as equal to zero everywhere:

∂(ρv)

∂t
+ ∇ · (ρv v) − ∇ ·

(
−pI + τ̃

)
− ρg = 0 (6.61)

Microscopic
momentum

balance

∂(ρv)

∂t
+ ∇ · (ρv v) = ∇ ·

(
−pI + τ̃

)
+ ρg (6.62)

Equation 6.62 is a version of the microscopic momentum balance, but there
are algebraic simplifications we can make by carrying out the time derivative
on the product ρv and by carrying out the divergence operations (∇·). These
manipulations of vector and tensor components may be made in Cartesian coor-
dinates using either matrix notation or Einstein notation [104] (see Appendix B.1,
Table B.1). We omit the details of these calculations, recording only the results
(see Problem 12 and [104]). Equation 6.62 may be shown to be equivalent to:

ρ
∂v

∂t
+ v

∂ρ

∂t
+ ρ(v · ∇v) + v∇ · (ρv) = −∇ p + ∇ · τ̃ + ρg (6.63)

This equation may be simplified further if we group some of these terms:

ρ

(
∂v

∂t
+ v · ∇v

)
+ v

[
∂ρ

∂t
+ ∇ · (ρv)

]
= −∇ p + ∇ · τ̃ + ρg (6.64)

The terms in square brackets are simply the terms of the microscopic mass balance
(see Equation 6.41), and these terms sum to zero, leaving the final result:

Cauchy momentum equation
(microscopic momentum balance,

equation of motion [EOM])
ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + ∇ · τ̃ + ρg

(6.65)

The microscopic momentum balance in Equation 6.65 is written in Gibbs nota-
tion, which is independent of the coordinate system. Each term in Equation 6.65
is a vector. When we write the equation of motion in a chosen coordinate sys-
tem, it becomes three scalar equations—one equation for each component. The
microscopic momentum equation is expressed in several coordinate systems in
Table B.6 in Appendix B. We further discuss these equations in Section 6.2.1.1.
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6.1.3.2 NEWTONIAN FLUIDS
The equation of motion or Cauchy momentum equation (Equation 6.65) can be
specialized for incompressible Newtonian fluids by incorporating the Newtonian
constitutive equation (see Equation 5.89):

Newtonian
constitutive equation

(incompressible)
τ̃ = μ

(
∇v + (∇v)T

)
= μγ̇ (6.66)

We proceed by substituting Equation 6.66 into the general equation of motion,
Equation 6.65:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + ∇ · τ̃ + ρg (6.67)

= −∇ p + ∇ ·
(
μ
(
∇v + (∇v)T

))
+ ρg (6.68)

Equation 6.68 is the microscopic momentum balance for incompressible Newto-
nian fluids, but there are simplifications we can make by carrying out the spatial
derivatives in the viscosity term. As stated in the previous section, manipulations
of vector and tensor components may be carried out in Cartesian coordinates
using matrix notation or Einstein notation [104] (see Appendix B.1, Table B.1).
We omit the details of these calculations, recording only the results. Equation 6.68
may be shown to be equivalent to:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇ · ∇v + μ∇(∇ · v) + ρg (6.69)

= −∇ p + μ∇2v + μ∇(∇ · v) + ρg (6.70)

Note that by definition, ∇2v ≡ ∇ · ∇v. We can make a final simplification because
the continuity equation for incompressible fluids indicates that ∇ · v = 0 (see
Equation 6.44). This fact eliminates the second term containing viscosity. The
final result is the microscopic momentum balance for incompressible Newtonian
fluids, called the Navier-Stokes equation:

Navier-Stokes equation
(microscopic momentum balance,
incompressible Newtonian fluids)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

(6.71)

To use the Navier-Stokes equation, we must write the vector equation in com-
ponent form in a chosen coordinate system. The components in Cartesian, cylin-
drical, and spherical coordinate systems are given in Table B.7 in Appendix B.

The difference between the Navier-Stokes equation and the Cauchy momentum
equation is that the former is specialized for incompressible Newtonian fluids.
By contrast, the Cauchy momentum equation is good for all fluids, including
non-Newtonian fluids that follow inelastic and viscoelastic constitutive equations
(see Section 5.3).

The use of the Navier-Stokes equation is discussed in Section 6.2.
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v

z = h

z = 0

g

Figure 6.3 Energy is a property of a system. Energy may be stored in the state of a system—for example, as kinetic energy
stored in the speed of the system, as potential energy stored in the position of the system in a potential field, or as
internal energy stored in the chemical state of a system.

6.1.4 Energy balance

The third fundamental law of nature that we need that energy is conserved. The
mechanical energy balance (MEB) covered in the “quick start” in Chapter 1 is
based on an energy balance on a CV. We introduce energy balances here and give
the complete derivation of the macroscopic energy balances in Chapter 9.

The first law of thermodynamics relates the time rate-of-change of energy of
a body to the heat into the system and the work done by the system [157]:

First law of thermodynamics:
(energy conservation)

d EB

dt
= Qin,B − Wby,B (6.72)

The term Qin,B is the total rate of heat into the body; Wby,B is the total rate of
work done by the body; and EB is the total energy of the body, consisting of
internal, kinetic, and potential energy [157, 167] (Figure 6.3):

EB = U + Ek + E p (6.73)

The kinetic energy of a body is the energy due to the speed at which the body is
moving. To calculate the kinetic energy, we first must choose a reference state;
for kinetic energy, the reference state is the body at rest, v = 0. Relative to a body
at rest, the kinetic energy of a body moving with speed v is given by:⎛

⎝ Kinetic energy
of a body moving

with speed v

⎞
⎠ = 1

2
mv2 = Ek (6.74)

where m is the mass of the body and v is the speed of the body.
Potential energy is the energy of the body by virtue of its position in a potential

field. The most important potential fields are gravity and electromagnetic fields.
Potential energy in Earth’s gravitational field is the energy that the body has by
virtue of being at a particular elevation. A ball, for example, can roll down a hill
and exchange its potential energy (i.e., the energy stored in it simply by being
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at the top of the hill) for kinetic energy (i.e., speed). Again, energy is calculated
relative to a reference state. For potential energy, we choose a reference elevation
and then measure the elevation of the body relative to that reference elevation.
The potential energy of a body therefore is given by:⎛

⎝Potential energy
of a body at
elevation z

⎞
⎠ = mg(z − zref) = E p (6.75)

where m is the mass of the body, g is the acceleration due to gravity, and (z − zref)
is the elevation of the body relative to the reference elevation zref. Often, zref is
chosen to be z = 0 and E p = mgz.

Internal energy is the energy possessed by a body internally—that is, in its
molecules and atoms. The temperature of a body is one indicator of its internal
energy, but a body may store internal energy in its phase (e.g., being a solid
versus being a liquid) or in its chemical arrangement (e.g., being a 2:1 mixture of
gases H2 and O2 versus being a beaker of H2O). Internal energy is kept track of
with the defined function U . Again, the value of U reported for a body is always
relative to a chosen reference state:⎛

⎜⎜⎜⎜⎜⎜⎝
Internal energy

of a body
with respect to

a chosen reference
state

⎞
⎟⎟⎟⎟⎟⎟⎠ = U (6.76)

ˆ

The reference state for internal energy must describe fully the internal energy of
the body. For example, we might choose liquid water at temperature 25◦C as the
reference state for a calculation involving steam. We must specify temperature
(25◦ C in this example), phase (liquid), and chemical composition (H2O) to fully
specify the internal energy.

We seek to write the energy balance on a control volume rather than on
a body. As with the mass and momentum balances on a control volume (see
Equations 6.28 and 6.29), changing from the balance on a body to the balance
on a control volume results in the addition of a convective term. The analysis
of Chapter 3 (see Figure 3.22) that resulted in the Reynolds transport theorem
also can be carried out for energy balances. The correct convective-energy term
that emerges is analogous to the convective term for mass, with energy per unit
volume ρE replacing density (mass per unit volume):

Energy balance on
a CV (First law of
thermodynamics)

d ECV

dt
= Qin,CV − Wby,CV −

∫∫
S

(n̂ · v ˆ)ρE d S (6.77)

ˆ ˆ
In this equation, ECV is the total energy of the control volume; Ê is the energy per
unit mass of the fluid; Ê = U + Ek + Ê p; and the terms Qin,CV and Wby,CV are
the rate of heat addition to the CV and the rate of work by the CV, respectively. The
convective term (including the negative sign) represents the net flow of energy
into the CV per unit time. Equation 6.77 has the same form as the mass balance
on a CV (Equation 6.28) and the momentum balance on a CV (Equation 6.29).
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Control Volume Balances
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Figure 6.4 The mass, momentum, and energy conservation equations have their own particular physics (lefthand sides), but
the transformation from the balance on a body to the balance on a control volume happens in the same way for all
three relationships—that is, a convective term is added.

The three balance equations written for a body and for a CV are compared in
Figure 6.4.

In fluid mechanics, the energy balance in Equation 6.77 applied to macro-
scopic CVs leads to important relationships among pressure, fluid velocity, and
work by engineering devices such as pumps and turbines (see discussions about
the mechanical energy balance and the macroscopic Bernoulli equation in Chap-
ter 9). Equation 6.77 applied to a microscopic CV gives the microscopic energy
balance, which is a fundamental relationship used to calculate properties in non-
isothermal flows. In this texts we concentrate on isothermal flows; thus, the
microscopic energy balance is not of central importance. The derivation of the
microscopic energy balance in terms compatible with this text is available in
the Web appendix [108]. The final microscopic energy balance is:

Microscopic
energy
balance

ρ

(
∂ Ê

∂t
+ v · ∇ Ê

)
= −∇ · q − ∇ · (pv) + ∇ ·

(
τ̃ · v

)
+ Se

(6.78)
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Figure 6.5 The mass, momentum, and energy conservation equations have their own particular physics (righthand sides), but
the transformation from the balance on a body to the balance on a control volume happens in the same way for all
three relationships—that is, a convective term is added. In the microscopic balances, this results in the substantial
derivative.

where Ê is the energy per unit mass, q is the energy flux due to conduction,
and Se is the energy produced per time per volume by energy sources. All of the
microscopic balances are summarized in Figure 6.5. Another common version of
the microscopic energy balance is given in Equation 6.79:

Thermal energy equation
(no viscous dissipation,

fluid at constant p or ρ �= ρ(T ))

ˆρC p

(
∂T

∂t
+ v · ∇T

)
= k∇2T + Se

(6.79)

where T is temperature, Ĉ p is specific heat capacity, and k is the thermal con-
ductivity. For more information on nonisothermal flows, see the literature [15].

6.2 Using microscopic-balance equations

Key to using the microscopic balances in flow calculations is: understanding
their meaning and how to employ them; having access to tables of the balances
written in convenient coordinate systems; and choosing boundary conditions
appropriately. In this section, we discuss the isothermal microscopic mass and
momentum balances and show how to solve problems with them. The final results
of such calculations are the velocity field and the pressure field for a flow. In this
section, we also show how macroscopic engineering quantities (e.g., the overall
flow rate or the total force on a wall) are obtained from the results of microscopic-
balance calculations.
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Problem-Solving Procedure –
Control-Volume Approach

1. Sketch the problem.
2. Choose a coordinate system. The coordinate system should be chosen

so that the velocity vector and the boundary conditions are simplified.
3. Considering the flow, simplify v as much as possible.
4. Choose a control volume on which to perform balances. The control

volume should be of infinitesimal size in any direction in which
momentum is being transported.

5. Write the mass balance on the control volume. Simplify the resulting
expression.

6. Write the momentum balance on the control volume. Simplify the
resulting expression.

7. Take the limit as the size of the control volume vanishes. The result of
taking this limit is a differential equation for the stress.

8. Solve the resulting differential equation and apply boundary conditions
on stress, if known.

9. Substitute the Newtonian constitutive equation, the generalized
Newtonian constitutive equation, or other appropriate constitutive
equation for the stress as a function of velocity and solve the resulting
differential equation for velocity field. Apply velocity boundary
conditions to solve for unknown constant(s) of integration.

10. Solve for the pressure field, if applicable.
11. Calculate the stress components and engineering quantities of interest.

Figure 6.6 With the control-volume approach, the steps for solving a microscopic balance are shown above. The modified
steps for solving a microscopic balance using the microscopic balance equations is shown in Figure 6.9.

6.2.1 Solution methodology

In the falling-film example of Chapters 3–5, we followed a procedure—the
control-volume approach—that can be used to solve for velocity fields for New-
tonian fluids. We summarize the procedure in Figure 6.6.

Implementation of the CV approach is complex. Steps 4–7 in Figure 6.6 involve
manipulations of the microscopic control volume, and they can be difficult steps
to get right. The control-volume choice is arbitrary and, once it is chosen, the
balances must be written correctly, with all necessary terms included. If the
streamlines are not straight, we face the additional challenge of getting right all
of the geometric factors at this step.

A simpler approach is to use the microscopic balances derived in Section 6.1
instead of deriving the CV balances each time as in the CV approach. The
microscopic-balance equations are written on an arbitrary, microscopic CV, and
are applicable to any problem. The microscopic-balance equations for mass and
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momentum conservation contain all of the terms needed for flow calculations.3

This preferable pathway is presented in this section.

6.2.1.1 THE EQUATIONS
The microscopic mass balance is called the continuity equation, and it is given
here in Gibbs notation as well as Cartesian coordinates. This equation and the
correct expressions for the continuity equation in cylindrical and spherical coor-
dinates are listed in Table B.5 in Appendix B:

Continuity
equation

(microscopic
mass balance)

0 = ∂ρ

∂t
+ v · ∇ρ + ρ∇ · v (6.80)

Cartesian
coordinates

0 = ∂ρ

∂t
+
(

vx
∂ρ

∂x
+ vy

∂ρ

∂y
+ vz

∂ρ

∂z

)
+ ρ

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)

(6.81)

Recall that the ∇ operator is the spatial differentiation operator; in Cartesian
coordinates, ∇ is given by the following (see Section 1.3.2.2):

∇ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x
∂

∂y
∂

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

(6.82)

Gibbs expressions such as ∇ρ, ∇v, and ∇ · v for several coordinate systems are
in Table B.2 in Appendix B.

Looking at the continuity equation in Gibbs notation (Equation 6.80), we can
interpret each term physically. There are three terms that sum to zero. The first
two involve derivatives of the density ρ relative to time t and position x, y, z,
respectively. The third term does not involve derivatives of the density ρ but rather
spatial derivatives of the velocity v. In words, the continuity equation states that
the mass per unit volume at a point may change in one of three ways (Figure 6.7):
The local density may change with time (e.g., due to reaction or the net effects of
other contributions); the local density may change relative to position; or the local
density may change because the velocity of fluid particles varies with position;
therefore, at a given position at a particular time, more or less material may be
present.

When a fluid is incompressible, the density is constant; thus, ∂ρ/∂t = 0 and
the partial derivatives of ρ relative to x , y, and z also are zero. For incompressible

3Modification of the microscopic balances may be necessary to account for forces in conducting
fluids (see Section 2.9), where electromagnetic-force body forces are present or for materials
with body couples. We do not consider such flows in this text.
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Figure 6.7 The changes in density ρ at a point are due to contributions due to density variations with position and velocity
variations with position.

fluids, the continuity equation simplifies as shown here:

Continuity equation
(incompressible fluid)

0 = ∇ · v (6.83)

Cartesian
coordinates

0 = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(6.84)

In the falling-film example, we had unidirectional flow of an incompressible fluid
in the z-direction. For such a flow, vx = vy = 0 and the continuity equation gives:

Continuity equation
(incompressible fluid,

unidirectional flow in z-direction)

∂vz

∂z
= 0 (6.85)

We arrive at the equivalent result in the CV solution to that problem (see Equa-
tion 3.155).

There are two useful versions of the microscopic momentum balance. The
most general version is the Cauchy momentum equation, which is applicable for
all fluids—Newtonian or non-Newtonian, compressible or incompressible:

Cauchy momentum equation
(microscopic momentum balance)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + ∇ · τ̃ + ρg

(6.86)

Note that τ̃ appears in the Cauchy momentum equation. The second version of
the microscopic momentum balance is specialized for incompressible Newtonian
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fluids; this is called the Navier-Stokes equation:

Navier-Stokes equation
(microscopic momentum

(balance for incompressible
Newtonian fluids)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

(6.87)

Because the Newtonian constitutive equation is used to write stress in terms
of the velocity field, τ̃ no longer appears in the Navier-Stokes version of the
momentum balance. Both are vector equations, and we can display them as either
the sum of vector terms or as three equations, one for each component in physical
space (e.g., x , y, and z). Following are the two momentum balances in Cartesian
coordinates, in both the vector–sum form and the three-component form. The
Cauchy momentum equation and the Navier-Stokes equation written in Cartesian,
cylindrical, and spherical coordinates are in Tables B.6 and B.7 (see Appendix B).

Cauchy Momentum Equation
(microscopic momentum balance)

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂vx

∂t
∂vy

∂t
∂vz

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx
∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

vx
∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

vx
∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x

∂p

∂y

∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ̃xx

∂x
+ ∂τ̃yx

∂y
+ ∂τ̃zx

∂z

∂τ̃xy

∂x
+ ∂τ̃yy

∂y
+ ∂τ̃zy

∂z

∂τ̃xz

∂x
+ ∂τ̃yz

∂y
+ ∂τ̃zz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎝ gx

gy

gz

⎞
⎠

xyz

(6.88)

x-Component Cauchy momentum equation:

ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
=−∂p

∂x
+
(

∂τ̃xx

∂x
+ ∂τ̃yx

∂y
+ ∂τ̃zx

∂z

)
+ρgx

(6.89)

y-Component Cauchy momentum equation:

ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
=−∂p

∂y
+
(

∂τ̃xy

∂x
+ ∂τ̃yy

∂y
+ ∂τ̃zy

∂z

)
+ρgy

(6.90)
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z-Component Cauchy momentum equation:

ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
=−∂p

∂z
+
(

∂τ̃xz

∂x
+ ∂τ̃yz

∂y
+ ∂τ̃zz

∂z

)
+ρgz

(6.91)

Navier-Stokes Equation
(microscopic momentum balance, incompressible Newtonian fluids)

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂vx

∂t
∂vy

∂t
∂vz

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx
∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

vx
∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

vx
∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x

∂p

∂y

∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎝ gx

gy

gz

⎞
⎠

xyz

(6.92)

x-Component Navier-Stokes:

ρ

(
∂vx

∂t
+vx

∂vx

∂x
+vy

∂vx

∂y
+vz

∂vx

∂z

)
=−∂p

∂x
+μ

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
+ρgx

(6.93)

y-Component Navier-Stokes:

ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= −∂p

∂y
+ μ

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)
+ρgy

(6.94)

z-Component Navier-Stokes:

ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= −∂p

∂z
+ μ

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)
+ ρgz

(6.95)

The source of each term of the Navier-Stokes equation is discussed in the
derivation in Section 6.1 and summarized in Figure 6.8. The Reynolds transport
theorem was the starting place, which states that the rate-of-change of momentum
on a CV is equal to a convective term plus the sum of the forces on the CV
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Figure 6.8 The Navier-Stokes equation is a microscopic momentum balance, and the terms are the same as the terms in the
Reynolds transport theorem.

(i.e., Newton’s second law applied to a control volume; see Chapter 3):

Reynolds transport theorem
(momentum balance on CV)

dP

dt
=
∫∫

S
−(n̂ · v) ρv d S +

∑
on
CV

f (6.96)

If we move the convective term to the lefthand side, the Reynolds transport
theorem states that the time-rate of change of momentum in the CV, plus the net
outflow of momentum, is equal to the sum of forces on the CV:

Reynolds transport theorem
(momentum balance on CV)

dP

dt
+
∫∫

S
(n̂ · v) ρv d S =

∑
on
CV

f (6.97)

In this form, the Reynolds transport theorem and the Navier-Stokes equation
are parallel in construction: The Navier-Stokes equation also has the rate-of-
change of momentum and a convective term on the lefthand side, and the sum of
three forces: isotropic molecular stress contribution (i.e., pressure), anisotropic
molecular stress contribution (i.e., viscosity), and gravity on the righthand side.

In this text we focus on isothermal problems, but nonisothermal problems
can be addressed as well. The third microscopic balance needed to carry out a
nonisothermal calculation is the microscopic energy balance. Energy is a scalar
property; thus, the microscopic energy balance is a single equation, which may
be written in the Cartesian coordinate system as shown here. This equation in
Cartesian, cylindrical, and spherical coordinates is listed in Table B.9:

Thermal energy equation
(no viscous dissipation,

fluid at constant p or ρ �= ρ(T ))

ˆρC p

(
∂T

∂t
+ v · ∇T

)
= k∇2T + Se

(6.98)
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Problem-Solving Procedure –
Microscopic-Balances Approach

1. Sketch the problem.
2. Choose a coordinate system. The coordinate system should be chosen so

that the velocity vector and the boundary conditions are simplified.
3. Considering the flow, simplify v as much as possible.
4. Simplify the continuity equation (i.e., microscopic mass balance).
5. Simplify the equation of motion (i.e., microscopic momentum balance,

Navier-Stokes equation).
6. Solve the resulting differential equation for the velocity field. Apply

velocity boundary conditions to solve for the unknown constant(s) of
integration.

7. Solve for the pressure field if applicable.
8. Calculate the stress components from the Newtonian constitutive

equation and for any engineering quantities of interest.

Figure 6.9 With the microscopic-balance approach, the steps for problem solving are shown.

Cartesian
coordinates

∂T

∂t
+
(

vx
∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)

=
ˆ
k

ρC p

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
+ S

ˆ
e

ρC p

(6.99)

6.2.1.2 APPLYING THE EQUATIONS
The microscopic mass, momentum, and energy equations eliminate the need to
choose a control volume, write forces, and take limits. To use the microscopic
balances, we follow a modified solution procedure compared to the CV approach,
as shown in Figure 6.9. We are freed from choosing and manipulating a control
volume in the microscopic-balance approach. Instead, we interrogate each term
of the equations of change (i.e., mass, momentum, and energy balances) to
determine which are zero and which must be retained in the solution.

We now demonstrate the process of using the microscopic balances by repeat-
ing a familiar problem: the flow of a thin film down an inclined plane.

EXAMPLE 6.2 (Incline, revisited). What is the velocity field in a wide, thin film
of water that runs steadily down an inclined surface under the force of gravity?
The fluid has a constant density ρ.

SOLUTION. We solve this familiar problem again, now using the procedure for
problem solving with microscopic balances (see Figure 6.9).
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g

β
fluidair

v

x

z

H

Figure 6.10 The idealized version of flow down an incline is a film of constant thickness where the velocity is unidirectional but
its magnitude varies with position in the film. We want to calculate the velocity as a function of position relative to
the wall, vz (x ).

First, we sketch the problem as shown in Figure 6.10. We choose as our
coordinate system a Cartesian system in which z is the flow direction. In thinking
about the flow, we decide that it is unidirectional; that is, z is the flow direction
and vx = vy = 0. The velocity vector is therefore:

v =
⎛
⎝ 0

0
vz

⎞
⎠

xyz

(6.100)

We completed Steps 1–3 of Figure 6.9. Step 4 is to simplify the continuity
equation. We assume water to be an incompressible fluid; therefore, the conti-
nuity equation is the version given in Equation 6.83. In our Cartesian system,
this is:

Continuity equation
(incompressible fluid)

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (6.101)

Because the velocity vector has only one nonzero component, the continuity
equation simplifies to:

∂vz

∂z
= 0 (6.102)

Step 5 is to simplify the equation of motion (EOM). Water is an incompressible
Newtonian fluid; thus, we use the Navier-Stokes equation written in Cartesian
coordinates (see Equation 6.92).
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Navier-Stokes equation
Momentum balance for an incompressible fluid:

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂vx

∂t
∂vy

∂t
∂vz

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx
∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

vx
∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

vx
∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x
∂p

∂y
∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎝ gx

gy

gz

⎞
⎠

xyz

(6.103)

These are three equations for the x-, y-, and z-components, which we solve for
the velocity and pressure fields. To begin simplifying Equation 6.103, we cancel
the terms with vx , vy , and ∂vz/∂z because these are zero (see Equation 6.102).
Also, the flow is steady, so we eliminate the time-derivative term. This simplifies
the Navier-Stokes equation as shown here:

⎛
⎝0

0
0

⎞
⎠

xyz

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x
∂p

∂y
∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ μ

⎛
⎜⎜⎜⎜⎝

0
0

∂2vz

∂x2
+ ∂2vz

∂y2

⎞
⎟⎟⎟⎟⎠

xyz

+ ρ

⎛
⎝ gx

gy

gz

⎞
⎠

xyz

(6.104)

We now write the gravity vector in our chosen coordinate system as follows
(Figure 6.10):

g =
⎛
⎝−g sin β

0
g cos β

⎞
⎠

xyz

(6.105)

Finally, because we assume the flow to be very wide, the velocity is independent
of y. Thus, ∂vz/∂y = 0 and, in conjunction with Equation 6.102, we conclude
that vz is a function only of x . Because vz is a function only of x , we can replace
partial x-derivatives of vz with regular derivatives. The simplified Navier-Stokes
equation is now:

⎛
⎝0

0
0

⎞
⎠

xyz

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x
∂p

∂y
∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+

⎛
⎜⎜⎜⎝

0
0

μ
d2vz

dx2

⎞
⎟⎟⎟⎠

xyz

+
⎛
⎝−ρg sin β

0
ρg cos β

⎞
⎠

xyz

(6.106)
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The x- and y-components of the Navier-Stokes equation for this problem
(Equation 6.106) are simple and tell us about the pressure distribution. The z-
component of the Navier-Stokes equation tells us about the velocity distribution:

x-Component:
∂p

∂x
= −ρg sin β (6.107)

y-Component:
∂p

∂y
= 0 (6.108)

z-Component:
∂p

∂z
= μ

d2vz

dx2
+ ρg cos β (6.109)

The derivative of the pressure in the flow direction appears in the z-component
of the Navier-Stokes equation. We have not attempted to eliminate any of the
pressure terms on our own, and this is deliberate. As we see from the y-component
of the Navier-Stokes equation, we did not need to assume that the pressure does not
change in the y-direction; rather, this becomes the conclusion of the momentum
balance, given the other assumptions we made. Likewise, the momentum balance
in the x-direction indicates that with our assumptions thus far, the pressure varies
in the x-direction due to the component of gravity in the x-direction. This is a
hydrostatic pressure contribution analogous to Equation 4.64.

The momentum balance in the z-direction is more complicated, and both
pressure and velocity terms appear. At this point, it is worthwhile to ask the
question: Does the pressure vary in the z-direction? As when we solved this
problem using the CV approach, to answer the question we must look at the
boundary conditions. We know that along the top surface of the film, the pressure
is atmospheric. At least at this location, x = H , the pressure is not a function
of the z-position. The pressure varies in the x-direction, but the gradient in the
x-direction is constant (Equation 6.107); and thus no z-variation is introduced
between x = H and x = 0, and pressure does not change in the z-direction
anywhere in the flow. With these arguments, we deduce that ∂p/∂z = 0, and
the z-component of the Navier-Stokes equation becomes a simple differential
equation that we can solve:

z-Component: 0 = μ
d2vz

dx2
+ ρg cos β (6.110)

This is the same equation solved previously (see Equation 5.138), and it completes
Step 5.

The steps to the results for vz and τ̃xz are the same from this point as in
the problem solved with the CV approach (see Equation 5.155). The boundary
conditions used were no-slip at the wall (see Equation 5.147) and zero shear
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stress at the interface with air (see Equation 5.149). The final results are:

vz = ρg cos β

μ

[
H x − x2

2

]
(6.111)

τ̃xz = ρg cos β (H − x) (6.112)

v =

⎛
⎜⎝

0
0

ρg cos β

μ

[
H x − x2

2

]
⎞
⎟⎠

xyz

(6.113)

These results are plotted in Figures 5.19 and 5.20. The stress tensor τ̃ was calcu-
lated for this flow from its definition and the velocity result (see Equation 5.161).

To calculate the pressure distribution in the falling film, we return to the
components of the Navier-Stokes equation (i.e., Equations 6.107–6.109). We
argued that ∂p/∂z = 0, and the y-component of the Navier-Stokes indicates that
∂p/∂y = 0. We therefore conclude that pressure is a function only of x , p = p(x).
With this information, we now solve Equation 6.107 for the pressure as a function
of x :

dp

dx
= −ρg sin β (6.114)

p(x) = −ρg sin βx + C3 (6.115)

The boundary condition on pressure is that at the top surface of the film, the
pressure is atmospheric. We therefore can solve for C3 and for the final expression
for pressure:

Boundary condition: x = H p = patm (6.116)

p = patm + ρgH sin β

(
1 − x

H

)
(6.117)

We use this result in Section 6.2.3.1 to calculate the total force on the incline. The
total molecular stress tensor �̃ is equal to −pI + τ̃ , which we can calculate from
the Newtonian constitutive equation, τ̃ = μ(∇v + (∇v)T ) (see Equation 6.66),
and Equations 6.113 and 6.117.

The solution to the flow-down-an-inclined-plane problem using the micro-
scopic balances was straightforward. The Navier-Stokes equation contained all
of the forces that act in this problem, and they are written correctly in our cho-
sen coordinate system. We were free to concentrate on deciding which terms
were important in the solution. We could solve for pressure without performing
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additional balances. Two more examples follow: a Newtonian and a non-
Newtonian. In Chapters 7 and 8, we apply the equations of change to more
complex flows.

EXAMPLE 6.3. An incompressible Newtonian fluid is confined between two
long, wide plates. The gap between the plates is H and the top plate moves
with a constant speed V in the x1-direction of the coordinate system shown in
Figure 6.11. What is the velocity field in the flow?

SOLUTION. To solve for the velocity field, we follow the problem-solving
procedure in Figure 6.9. The flow is illustrated in Figure 6.11 and the coordinate
system is specified there. The flow is in the x1-direction; thus, v simplifies to:

v =
⎛
⎝v1

v2

v3

⎞
⎠

123

=
⎛
⎝v1

0
0

⎞
⎠

123

(6.118)

Because v2 = v3 = 0, the continuity equation simplifies as follows:

Continuity equation
(incompressible fluid)

0 = ∇ · v (6.119)

0 = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(6.120)

0 = ∂v1

∂x1
(6.121)

We turn now to the Navier-Stokes equation. We know v2 = v3 = 0 and from
the continuity equation that ∂v1/∂x1 = 0. The flow is steady (∂v1/∂t = 0). The
Navier-Stokes equation simplifies to:

Navier-Stokes equation
(microscopic momentum balance for

incompressible Newtonian fluids)
ρ

(
∂v

∂t
+ v · ∇v

)
= − ∇ p + μ∇2v + ρg

x1
x3

x2

Figure 6.11 An incompressible Newtonian fluid is confined between two long, wide plates. The gap between the plates is H
and the top plate moves with a constant speed V in the x1-direction.
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ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v1

∂t
∂v2

∂t
∂v3

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
∂v1

∂x1
+ v2

∂v1

∂x2
+ v3

∂v1

∂x3

v1
∂v2

∂x1
+ v2

∂v2

∂x2
+ v3

∂v2

∂x3

v1
∂v3

∂x1
+ v2

∂v3

∂x2
+ v3

∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x1

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2v1

∂x2
1

+ ∂2v1

∂x2
2

+ ∂2v1

∂x2
3

∂2v2

∂x2
1

+ ∂2v2

∂x2
2

+ ∂2v2

∂x2
3

∂2v3

∂x2
1

+ ∂2v3

∂x2
2

+ ∂2v3

∂x2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+ ρ

⎛
⎝ g1

g2

g3

⎞
⎠

123

(6.122)

ρ

⎛
⎝0

0
0

⎞
⎠

123

+ ρ

⎛
⎝0

0
0

⎞
⎠

123

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x1

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2v1

∂x2
2

+ ∂2v1

∂x2
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

+
⎛
⎝ 0

−ρg
0

⎞
⎠

123

(6.123)

If we assume that the plates are very wide and if we consider only a region away
from the edges, we can neglect the dependence of v1 on x3. The x1-component
of the momentum balance becomes:

1-Component Navier-Stokes: 0 = − ∂p

∂x1
+ μ

d2v1

dx2
2

(6.124)

There is no imposed pressure gradient in the x1-direction, and the pressure at the
edges of the plate is atmospheric. We assume that there is no pressure gradient
in the x1-direction. With this final additional assumption, we can solve the x1-
component of the Navier-Stokes equation for the velocity field:

0 = μ
d2v1

dx2
2

(6.125)

Dividing by μ and defining � ≡ dv1/dx2, we integrate once:

μ
d2v1

dx2
2

= 0 (6.126)

d�

dx2
= 0 (6.127)

� = C1 (6.128)
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where C1 is an arbitrary integration constant. Substituting the definition of � and
integrating again:

� = C1 (6.129)

dv1

dx2
= C1 (6.130)

v1 = C1x2 + C2 (6.131)

The boundary conditions are no-slip at the top and the bottom:

Boundary Condition 1: x2 = H v1 = V (6.132)

Boundary Condition 2: x2 = 0 v1 = 0 (6.133)

from which we obtain the final result for the velocity field:

v1(x2) = V

H
x2 (6.134)

Having obtained the equation for the velocity field, the stress field now may be
obtained from the Newtonian constitutive equation (see Equation 6.66):

τ̃ = μ
(
∇v + (∇v)T

)
(6.135)

= μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
∂v1

∂x1

∂v2

∂x1
+ ∂v1

∂x2

∂v3

∂x1
+ ∂v1

∂x3
∂v2

∂x1
+ ∂v1

∂x2
2
∂v2

∂x2

∂v2

∂x3
+ ∂v3

∂x2
∂v3

∂x1
+ ∂v1

∂x3

∂v2

∂x3
+ ∂v3

∂x2
2
∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(6.136)

=

⎛
⎜⎜⎜⎜⎝

0 μ
V

H
0

μ
V

H
0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(6.137)

EXAMPLE 6.4. An incompressible power-law fluid is confined between two
long, wide plates. The gap between the plates is H and the top plate moves with a
constant speed V in the z-direction of the coordinate system shown in Figure 6.11.
What is the velocity field in the flow?

SOLUTION. This example is the same as the previous except that now we are
asked to solve for the case of a non-Newtonian fluid—specifically, a power-law
generalized Newtonian fluid. The solution to the problem is similar to Example 6.3
at the beginning, but the momentum balance we use is the Cauchy momen-
tum equation rather than the Navier-Stokes, which is valid only for Newtonian
fluids.
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ˆReferring to the previous example, v = v1e1 and the mass balance is the same
with ∂v1/∂x1 = 0. We assume as we did in the Newtonian case that because the
plates are wide, there is no variation of the velocity field in the width direction,
∂v1/∂x3 = 0; we also assume that pressure is independent of position in the flow
direction, yielding ∂p/∂x1 = 0 (see the Newtonian solution in Example 6.3). The
momentum balance is Equation 6.86, the Cauchy momentum equation, which is
valid for Newtonian and non-Newtonian fluids:

Cauchy momentum equation (Cartesian coordinates):

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v1

∂t
∂v2

∂t
∂v3

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
∂v1

∂x1
+ v2

∂v1

∂x2
+ v3

∂v1

∂x3

v1
∂v2

∂x1
+ v2

∂v2

∂x2
+ v3

∂v2

∂x3

v1
∂v3

∂x1
+ v2

∂v3

∂x2
+ v3

∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂x1

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ̃11

∂x1
+ ∂τ̃21

∂x2
+ ∂τ̃31

∂x3

∂τ̃12

∂x1
+ ∂τ̃22

∂x2
+ ∂τ̃32

∂x3

∂τ̃13

∂x1
+ ∂τ̃23

∂x2
+ ∂τ̃33

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+ ρ

⎛
⎝ g1

g2

g3

⎞
⎠

123

(6.138)

Using what we already know about the flow, the Cauchy momentum equation
becomes:

⎛
⎝0

0
0

⎞
⎠

123

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ̃11

∂x1
+ ∂τ̃21

∂x2
+ ∂τ̃31

∂x3

∂τ̃12

∂x1
+ ∂τ̃22

∂x2
+ ∂τ̃32

∂x3

∂τ̃13

∂x1
+ ∂τ̃23

∂x2
+ ∂τ̃33

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎝

0
−ρg

0

⎞
⎟⎟⎟⎠

123

Because the coefficients of τ̃ appear in the Cauchy momentum equation, we
cannot directly simplify this equation as much as the Navier-Stokes equation,
which contains pressure and the coefficients of velocity. To further simplify the
Cauchy momentum equation for this problem, we must examine τ̃ . We obtain the
relationship between τ̃ and velocity from the generalized Newtonian constitutive
equation with the power-law function for the viscosity:

Generalized Newtonian
equation

τ̃ (t) = η(γ̇ )
(
∇v) + (∇v))T

)
(6.139)

= η(γ̇ )γ̇ (6.140)
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The function η(γ̇ ) for a shear-thinning power-law fluid, η(γ̇ ) is given by:

η(γ̇ ) = mγ̇ n−1 (6.141)

with n < 1 and γ̇ given by Equation 5.222, which is repeated here:

γ̇ = +

√√√√√√
⎛
⎝1

2
·

3∑
p=1

3∑
j=1

γ̇ 2
pj

⎞
⎠ (6.142)

Thus, we need γ̇ , which we can construct from v:

γ̇ = ∇v + (∇v))T (6.143)

∇v =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v1
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

⎞
⎟⎟⎟⎟⎟⎟⎠

123

(6.144)

For the velocity field, we know v2 = v3 = 0; from the mass balance, we obtained
∂v1/∂x1 = 0. Therefore, we calculate:

∇v =

⎛
⎜⎜⎜⎜⎝

0 0 0
∂v1
∂x2

0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(6.145)

γ̇ =

⎛
⎜⎜⎜⎜⎝

0 ∂v1
∂x2

0
∂v1
∂x2

0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(6.146)

γ̇ = +

√√√√√√
⎛
⎝1

2
·

3∑
p=1

3∑
j=1

γ̇ 2
pj

⎞
⎠ (6.147)

= +
√(

∂v1

∂x2

)2

=
∣∣∣∣∣∣∂v1

∂x2

∣∣∣∣∣∣ (6.148)

Because v1 increases in the x2 direction, the derivative ∂v1
∂x2

is always positive, and

we choose the positive square root as + ∂v1
∂x2

. Now that we have γ̇ , we can calculate
η(γ̇ ) and, subsequently, τ̃ :

η(γ̇ ) = mγ̇ n−1 (6.149)

= m

(
∂v1

∂x2

)n−1

(6.150)
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The constitutive equation for stress is given in Equation 6.140. Substituting
what we know about v and η, we obtain a 3 × 3 matrix containing what we know
about the stress tensor for the current problem:

Generalized Newtonian
constitutive equation

τ̃ (t) = η(γ̇ )
(
∇v) + (∇v))T

)
(6.151)

= η(γ̇ )γ̇ (6.152)

= m
(

∂v1

∂x2

)n−1

⎛
⎜⎜⎜⎜⎝

0 ∂v1
∂x2

0
∂v1
∂x2

0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(6.153)

τ̃ =

⎛
⎜⎜⎜⎜⎝

0 m
(

∂v1
∂x2

)n
0

m
(

∂v1
∂x2

)n
0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(6.154)

From Equation 6.154, we see that all but the τ̃21 and τ̃12 components of the
stress are zero; thus, returning to the momentum balance, we eliminate all of the
zero stresses:

⎛
⎝0

0
0

⎞
⎠

123

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂τ̃21

∂x2

∂τ̃12

∂x1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎝

0
−ρg

0

⎞
⎟⎟⎟⎠

123

We also know that τ̃21 = τ̃12 = m
(

∂v1
∂x2

)n
, which is not a function of x1; thus, the

term ∂τ̃21/∂x1 drops out as well:

⎛
⎝0

0
0

⎞
⎠

123

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

∂p

∂x2

∂p

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂x2

(
m
(

∂v1

∂x2

)n)
0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

123

+

⎛
⎜⎜⎜⎝

0
−ρg

0

⎞
⎟⎟⎟⎠

123

As was true in the Newtonian solution, the components of the momentum
balance tell us that pressure may not vary in the x3-direction and, in the x2-
direction, the only pressure variation is the hydrostatic effect. In the x1-direction,
we can solve for the velocity profile by integrating twice. The final result for the

www.20file.org

http://www.semeng.ir


463 Microscopic Balance Equations

velocity field turns out to be the same as in the Newtonian case:

∂

∂x2

(
m
(

∂v1

∂x2

)n)
= 0 (6.155)

m

(
∂v1

∂x2

)n

= C1 (6.156)

∂v1

∂x2
=
(

C1

m

) 1
n

(6.157)

v1 =
(

C1

m

) 1
n

x2 + C2 (6.158)

The boundary conditions are given in Equations 6.132 and 6.133 and the final
result is given here:

Boundary Condition 1: x2 = H v1 = V (6.159)

Boundary Condition 2: x2 = 0 v1 = 0 (6.160)

v1(x2) = V

H
x2 (6.161)

Although the velocity fields are the same for drag flow of Newtonian and non-
Newtonian fluids, the stress fields are different, as demonstrated when we substi-
tute the previous result into Equation 6.154 for the stress tensor τ̃ :

τ̃ =

⎛
⎜⎜⎜⎜⎝

0 m
( V

H

)n
0

m
( V

H

)n
0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(6.162)

When n = 1, the power-law generalized Newtonian fluid result becomes the
Newtonian result with m = μ.

The Navier-Stokes equations are highly complex, and the behavior they are
capable of describing is extraordinary in breadth and variability, as we can see
from the range of flow behavior around us: turbulent streams and rivers, tornados,
and sloshing mixing tanks. The Navier-Stokes equations are nonlinear PDEs and
the fact that they are nonlinear allows them to describe systems that change
rapidly over short time or length scales. This is the true physics of momentum
balances and the challenge to those who seek to solve them. A general solution
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of the Navier-Stokes equation does not yet exist:4

Navier-Stokes equation
(microscopic momentum balance for

incompressible Newtonian fluids)
ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

Chapters 7 and 8 discuss solutions of the Navier-Stokes equations for simple
and complex internal and external flows. For some complex flows, the Navier-
Stokes equations can be solved with specialized analytical techniques. Numerical
flow simulators have been developed to solve complex flow fields as well (see
Section 10.2) [5, 27]. The Navier-Stokes equations are the governing equations
for turbulent flow (see Section 2.4) but, in the case of turbulent flow, they must
be averaged before solving (see Section 10.3).

Developing the governing equations and a solution methodology is an impor-
tant first step that now must be followed with a broad study of fluid behavior and
a careful and inventive application of the solution method; we show how in the
remaining chapters. A critical step in solving the Navier-Stokes equation or the
Cauchy momentum equation is to identify correctly the boundary conditions. We
discuss commonly encountered boundary conditions in the next section. The final
section of this chapter discusses how engineering quantities of interest (e.g., flow
rates and forces on walls) are calculated from the solutions for velocity field v

and the pressure field. The reward for the hard work of solving the Navier-Stokes
equation is the ability to calculate whatever we want from the velocity and stress
fields obtained.

6.2.2 Boundary conditions

An important step in the microscopic problem-solving procedure is to identify the
boundary conditions. It often is helpful to think about the boundary conditions
when first sketching the problem and when choosing the coordinate system. The
boundary conditions hold information about how the velocity field varies and
about which components of v are zero or negligible. We practice with boundary
conditions in the following example.

EXAMPLE 6.5. What are the boundary conditions for the flows shown in
Figure 6.12?

SOLUTION. To apply a boundary condition, we must write a mathematical
expression that relates the variables for velocity or stress to the flow geometry.
In this example, we write the boundary conditions for the flows in Figure 6.12
using the indicated coordinate systems.

4In April 2000, the Clay Mathematics Institute made the following announcement: “In order to
celebrate mathematics in the new millennium, The Clay Mathematics Institute of Cambridge,
Massachusetts (CMI) has named seven Prize Problems. The Scientific Advisory Board of CMI
selected these problems, focusing on important classic questions that have resisted solution over
the years. The Board of Directors of CMI designated a $7 million prize fund for the solution to
these problems, with $1 million allocated to each.” One of the millennium problems is “to make
substantial progress toward a mathematical theory which will unlock the secrets hidden in the
Navier-Stokes equations.” (www.claymath.org/millennium)

www.20file.org

http://www.semeng.ir


465 Microscopic Balance Equations
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Figure 6.12 Examples of the most common boundary conditions. Clockwise from upper left: symmetry and no-slip,
stress/velocity matching and no-slip, no-slip, and surface tension and no-slip.

Figure 6.12a depicts flow through a contraction from a big pipe to a smaller
pipe. Both the upstream and downstream sections are circular pipes; thus, the flow
is axially symmetric. For flows that are symmetric, one of the “boundaries” is the
axis of symmetry. For the flow in Figure 6.12a, the centerline of the flow is the
axis of symmetry. At this location, the velocity field goes through a maximum:

Figure 6.12a
Boundary Condition 1:

(symmetry)
for all z r = 0

∂vz

∂r
= 0 (6.163)

The other boundary of the flow is the wall of the tube. The flow velocity goes to
zero at the walls (i.e., no-slip boundary condition). The position of the wall is r =
R1 in the upstream portion (−L1 < z < 0) and r = R2 in the downstream portion
(0 < z < L2). At z = 0, there also is a vertical portion of the wall that must be
assigned a no-slip boundary condition. Thus, the second boundary condition on
velocity is:

Figure 6.12a
Boundary Condition 2:

(no-slip)

⎧⎨
⎩

−L1 < z < 0 r = R1 vz = 0
z = 0 R1 < r < R2 vz = 0

0 < z < L2 r = R2 vz = 0
(6.164)

The complexity of this boundary makes it impractical to find an analytical solution
to this problem (i.e., a solution arrived at by symbolic manipulation), but it is
straightforward to solve this flow using numerical codes [5, 27].

Figure 6.12b depicts two fluid layers composed of different Newtonian fluids
sandwiched between long, wide, parallel plates. The top fluid has a lower viscosity
than the bottom fluid; the top plate moves in the x-direction with speed V and the
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bottom plate is stationary. The boundaries of this flow are the bottom (y = 0) and
the top (y = H ). Also, there is a boundary where the two fluids meet (y = λH ).

The momentum balance equation is different within the two fluids because the
viscosities are different. To solve the problem, we solve separately for velocity
and shear stress in Fluid 1 and Fluid 2, and then we match velocity and stress at
the fluid-fluid boundary. Thus, the four boundary conditions are:

Figure 6.12b

Boundary Condition 1 (no-slip): y = 0 v(fluid 1)
x = 0

Boundary Condition 2 (velocity matching): y = λH v(fluid 1)
x = v(fluid 2)

x

Boundary Condition 3 (stress matching): y = λH τ̃ (fluid 1)
yx = τ̃ (fluid 2)

yx

Boundary Condition 4 (no-slip): y = 0 v(fluid 2)
x = V

(6.165)

Figure 6.12c depicts the steady flow of a drop of Newtonian fluid “rolling”
down an inclined plane. Because of the complex geometry of the flow domain,
this flow is best analyzed numerically, and the details of that calculation are
beyond the scope of this text [70]. Although numerical methods are needed to
solve the differential equations, we can arrive at the correct equations to solve
by following the methods in this text (see Problem 37), and we can write the
boundary conditions using the vector tools discussed.

The boundaries of the moving droplet flow are the surfaces of the drop [156].
Part of the drop surface is in contact with the wall, and the wall is not moving.
Thus, for the part of the flow in contact with the wall, the boundary condition is
no-slip at the wall:

Figure 6.12c
Boundary Condition 1:

v
∣∣∣∣ surface

in contact
with wall

= 0 (6.166)

Part of the drop surface is in contact with air; at this surface, the tangential
component of stress on that surface is approximately zero. The vector stress on
any surface at a chosen location is shown in Equation 4.263 to be given by:⎛

⎝ stress vector
on a surface

of unit normal n̂

⎞
⎠ = [n̂ · �̃]at surface (6.167)

where n̂ is the outwardly pointing unit normal at the surface at the location of
interest and �̃ = −pI + τ̃ is the total stress tensor at that same location. The
boundary condition on the free surface is that the tangential component of f is
zero:

Figure 6.12c
Boundary Condition 2:

[n̂ · �̃] · t̂ = 0 (6.168)

where t̂ is a unit vector tangent to the drop at the surface.
An important complexity in this calculation is that we do not know the shape

of the drop in advance. We need to calculate the shape of the drop from the mass
and momentum balances, and the shape will be affected by surface tension and
gravity. Also, because the drop is moving, it is desirable to analyze this flow in a
coordinate system that is moving with the drop. In a stationary coordinate system,
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the drop comes into view at some time and exits some time later; whereas in a
coordinate system that moves with the speed of the center of gravity, the drop
stays within view at all times. Discussion of a numerical solution in a moving
coordinate system is in the literature [70].

Figure 6.12d is steady-drag flow of a Newtonian fluid between two very
long, wide plates; the no-slip boundary conditions for this flow were discussed
previously:

Figure 6.12d

Boundary Condition 1 (no-slip): y = 0 vx = 0 (6.169)

Boundary Condition 2 (no-slip): y = H vx = V (6.170)

ˆ

Identifying boundary conditions is sometimes a challenge when fluid-
mechanics problems are first attempted. The number of different types of bound-
ary conditions used in fluid mechanics is relatively small, however, and the
most prominent were encountered in Example 6.5. The common fluid-mechanics
boundary conditions are as follows.

1. No-slip at the wall. This boundary condition states that the fluid in contact
with a wall has the same velocity as the wall. Often, the walls are not mov-
ing, so the fluid velocity is zero at the wall. In drag flow (see Figure 6.12d
and Section 5.1), the velocity of the bottom wall is zero and the velocity of
the top wall is nonzero; in both cases, the fluid velocity is equal to the wall
velocity:

Drag flow in x-direction, v = vx (y)ex :
no-slip on bottom (y = 0)

and top (y = H ) plates

vx |y=0 = 0
vx |y=H = V

(6.171)

Usually, the velocity is specified in terms of a component normal to the
boundary and a component tangential to the boundary. If n̂ is the unit vector
normal to the boundary and t̂ is the unit vector tangential to the boundary,
we can write the general no-slip boundary condition as:

General case: no-slip
normal component of v: (n̂ · v)|boundary = Vn

tangential component of v:
(
t̂ · v
)∣∣∣

boundary = Vt

(6.172)

where Vn and Vt are the specified normal and tangential components of the
velocity at the boundary.

2. Symmetry. In some flows, there is a plane or line of symmetry (see Fig-
ure 6.12a, line of cylindrical symmetry). Because the velocity field is the
same on either side of the plane of symmetry or circularly symmetrical
around a line of symmetry, the velocity must go through a minimum or
a maximum at that location. Thus, the boundary condition to use in this
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ˆ

case is that the first derivative of the velocity is zero at the boundary of
symmetry:

Axisymmetric
contraction flow, v = vz(r )er :

symmetry along centerline

∂vz

∂r

∣∣∣∣∣∣
r=0

= 0 (6.173)

The general case of the symmetry-boundary condition is written as:

General-case symmetry: v|symmetry boundary = extremum (6.174)

ˆ

This expression means that the velocity must come to a maximum or
minimum at a symmetry boundary.

3. Stress continuity. When a fluid forms one of the boundaries of the flow, the
stress is continuous from one fluid to another (see Figure 6.12b,c). Thus, for
a viscous fluid in contact with an inviscid (i.e., zero or very low viscosity
fluid), the stress in the viscous fluid is the same as the stress in the inviscid
fluid. Because the inviscid fluid cannot support any shear stress (i.e., zero
viscosity), this means that the stress is zero at this interface (recall the
incline problem in Section 5.2.2; see Figure 5.12).

Flow down an incline
(see Figure 5.12)

v = vz(x)ez , open to
air at x = H

τ̃xz|x=H = 0 (6.175)

For the general case, such as the moving droplet shown in Figure 6.12c, the
boundary condition in Gibbs notation is:

Viscous fluid contacts
inviscid fluid
at boundary

(tangential stresses vanish)

(
n̂ · τ̃ · t̂

)∣∣∣∣
at boundary

= 0 (6.176)

ˆ

where t̂ is a unit vector tangent to the surface.
Alternatively, if two viscous fluids meet and form a flow boundary, this

same boundary condition requires that the stress in one fluid equal the
stress in the other at the boundary. For example, in Figure 6.12b, the shear
stresses must match at the fluid interface:

Drag flow v = vx (y)ex

of two viscous fluid
(Figure 6.12b)

(shear stress matches at boundary)

τ̃ f luid1
yx

∣∣∣∣
y=λH

= τ̃ f luid2
yx

∣∣∣∣
y=λH

(6.177)
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For the general case, this becomes:

Two viscous
fluids in contact

(shear stress
matches at
boundary)

(
n̂ · τ̃ f luid1 · t̂

)∣∣∣∣
at interface

=
(

n̂ · τ̃ f luid2 · t̂
)∣∣∣∣

at interface

(6.178)

ˆ

4. Velocity continuity. When a fluid forms one of the boundaries of the flow
as described previously and as shown in Figure 6.12b, the velocity also
is continuous from one fluid to another. For the flow in Figure 6.12b, the
velocity boundary condition at the interface is:

Drag flow v = vx (y)ex

of two viscous fluids
(Figure 6.12b)

(velocity matches
at boundary)

v f luid1
x

∣∣∣∣
y=λH

= v f luid2
x

∣∣∣∣
y=λH

(6.179)

For the general case of two viscous fluids in contact, the boundary condi-
tions on normal and tangential velocity components are shown here:

Two viscous fluids
in contact

(tangential and normal
velocities match)

at boundary)

t̂ · v f luid1
∣∣∣
at boundary = t̂ · v f luid2

∣∣∣
at boundary

n̂ · v f luid1
∣∣∣
at boundary = n̂ · v f luid2

∣∣∣
at boundary

(6.180)

5. Finite velocity and stress. Occasionally, an expression is derived that pre-
dicts infinite velocities or stresses at a point; an example is an equation
that includes 1/r , for a flow domain where r = 0 is included. A possible
boundary condition to use in this instance is the requirement that the veloc-
ity and/or the stress be finite throughout the flow domain. This boundary
condition appears occasionally in flows with cylindrical symmetry:

Finite
properties

v|at boundary = finite

τ̃
∣∣∣∣
at boundary

= finite (6.181)

6. Surface tension. As discussed in Section 4.4, the imbalance of molecular
forces at interfaces can be modeled within the continuum model using a
material parameter called the surface tension. In Section 4.4, we derive an
expression that relates pressures inside and outside of a spherical drop (see
Equation 4.408):

�p = pin − pout = 2σ

R
(6.182)

The pressure inside is greater than the pressure outside the drop by the
amount 2σ/R. The unbalanced molecular forces at the surface lead to an
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extra inward pull on the surface molecules. The surface tension can serve
as a boundary condition on pressure:

Surface tension
(spherical interface)

p|at boundary = pout + 2σ

R
(6.183)

If the surface is not spherical, the pressure at the boundary becomes the
following [5, 27]:

Surface tension
(general interface)

p|at boundary = pout + σ

(
1

R1
+ 1

R2

)

(6.184)

where R1 and R2 are the two principal radii of curvature of the surface at
the point of interest (see Section 4.4 and the Web appendix [108] for more
detail).

This list is not all-encompassing; for more information on boundary conditions,
consult the literature [9, 14, 85]. We often know the most about the character
of a flow near its boundaries. It is good practice to start a flow problem with
consideration of the boundaries. As shown in the following example, we often
can make a problem easier to solve by choosing the coordinate system such that
the boundary conditions are easy to evaluate.

EXAMPLE 6.6. For the flow of a thin film down an inclined plane, various
possible choices for the coordinate system are shown in Figure 6.13. What are
the boundary conditions for each choice? Discuss the relative merits of these
coordinate-system choices.

SOLUTION. By now, the problem of flow down an incline is familiar. For our
problem, the flow shape is rectilinear; therefore, we choose a Cartesian coordinate
system to use when solving for the velocity and stress fields. Having made this
choice, we still have a number of reasonable options for the choice of coordinate
system, as shown in Figure 6.13.

In general, we usually choose Cartesian systems that are aligned with gravity,
such as those at the top and bottom of Figure 6.13. In this problem, however,
such a choice requires us to solve for two nonzero components of the velocity
vector—an unnecessary complication.

If we choose one of the two coordinate systems in the center of Figure 6.13,
we reduce the number of nonzero velocity components to one:

v =
⎛
⎝ 0

0
vz

⎞
⎠

xyz

coordinate system chosen with
z in flow direction

(6.185)

This is an important simplification. By expressing v in a coordinate system in
which there is a single nonzero component, vz , we reduce the complexity of
the problem. The two lined-up coordinate systems in the center of Figure 6.13
appear equally good for solving the incline problem; previously in Chapter 3, we

www.20file.org

http://www.semeng.ir


471 Microscopic Balance Equations
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⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= 0

0

x
z

z

x

x

z

z
v

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝v x̄

0
v z̄

⎞
⎠

x̄ ȳ z̄

Figure 6.13 The choice of a coordinate system is arbitrary but important. If we choose a horizontal Cartesian system, the velocity
vector has two nonzero components, requiring us to solve simultaneously two components of the momentum
balance. If we choose a Cartesian coordinate system that aligns one of the basis vectors with the direction of the
flow, the velocity vector has only one nonzero component and the momentum balance is easier to solve.

chose the system that is on the surface of the incline (Figure 6.14). In our chosen
coordinate system, the velocity vector is given by:

v =
⎛
⎝ 0

0
vz

⎞
⎠

xyz

ˆ= vzez (6.186)

In this coordinate system, the boundaries of the problem are:

Boundary conditions:
(origin at incline surface)

BC1a: x = 0 vz = 0
BC2a: x = H dvz

dx = 0
(6.187)

g

β

x

z

β

βsing

βcosg

x

z

Figure 6.14 Because we chose a coordinate system that simplifies the velocity vector, the gravity vector is slightly more
complicated than it might be with another choice.

www.20file.org

http://www.semeng.ir


472 An Introduction to Fluid Mechanics

If we chose instead the lined-up coordinate system with the origin at the free
surface, the boundaries of the problem are:

Boundary conditions:
(origin at free surface)

BC1b: x = H vz = 0
BC2b: x = 0 dvz

dx = 0
(6.188)

Both choices for the coordinate system are valid; there is a slight advantage
to the second choice in terms of the amount of algebra to solve for C1 and C2.
In the solution to the problem, the boundary conditions are needed once the
Navier-Stokes equation is integrated to give Equation 5.146:

vz =
[−ρg cos β

μ

]
x2

2
+ C1x + C2 (6.189)

To apply the free-surface boundary condition, we must differentiate the result to
obtain dvz/dx :

dvz

dx
=
[−ρg cos β

μ

]
x + C1 (6.190)

If we choose x = 0 at the free surface, C1 becomes zero, simplifying the
algebra for determining the integration constants. If we choose x = H at the free
surface, we must perform more complex manipulations to obtain C2.

Because of this advantage, it is customary to choose the origin for this problem
at the free surface. When there is a symmetry plane or line of symmetry in a
problem, there also is a boundary condition in terms of a derivative, and the same
logic applies.

6.2.3 Engineering quantities from velocity and stress fields

A final topic that may help students is how to calculate engineering quantities
from velocity and stress fields. Four important engineering quantities are force
on a surface, torque to produce a rotation, flow rate, and velocity/stress maxima.

6.2.3.1 TOTAL FORCE ON A WALL
One reason that fluids are used in devices is to transfer forces. An example of
this already discussed is the hydraulic lift (see Section 4.2.4.2), in which a fluid
is used to amplify forces. Another example of fluids mediating forces is when a
fluid is introduced between two solid parts as a lubricant to reduce the amount
of force transferred (Figure 6.15). Force transfer is not always the goal—for
example, when the transportation of the fluid is the engineering goal. In this case,
the forces of the fluid on the wall must be overcome with a pump or another
device. In fast-moving equipment, the fluid forces can be significant and the
consequences of failure disastrous.

In all of these examples, the design of the apparatus depends on knowing the
total force that a fluid exerts on the wall. If the stress distribution in the fluid
is obtained using the microscopic momentum balance, then the total force on
any surface may be calculated by evaluating the fluid stress at each point on that
surface and summing the product of stress and area over the entire surface.
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gM

lubricating 
oil

Figure 6.15 When two metal parts move relative to one another, such as in the journal bearing sketched here, a lubricant is
used to reduce the stress transferred from one part to the other. The total force on a surface in contact with a
lubricant can be calculated with the equations in this section.

We previously addressed such a sum over a surface; the result is a surface
integral. The force due to the fluid at one piece of the wall tangent plane �Si is
given by Equation 4.263:

Fluid force
on surface �Si

with unit normal n̂
at point (xi , yi , zi )

= [n̂ · �̃](xi yi zi ) �Si (6.191)

where �̃ is the total-stress tensor and [n̂ · �̃]xi yi zi
is the stress on �Si at xi , yi , zi .

To obtain the force on the entire wall, we sum all of the pieces that comprise
the surface and take the limit as �S = �A/(n̂ · êz) goes to zero (see the Web
appendix [108]):

Total fluid force
on a surface S:

F = lim
�A−→0

[
N∑

i=1

[n̂ · �̃](xi yi zi ) �Si

]
(6.192)

= lim
�A−→0

[
N∑

i=1

[n̂ · �̃](xi yi zi )

n̂i · êz
�Ai

]
(6.193)

=
∫∫

R

[n̂ · �̃]at surface

n̂ · êz
d A (6.194)

=
∫∫

S
[n̂ · �̃]at surface d S (6.195)

Total fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (6.196)

We previously introduced this expression in Equation 4.285, and we use it exten-
sively throughout the text.

We can try Equation 6.196 by calculating the total force on the incline in the
falling-film example.

EXAMPLE 6.7. What is the total vector force on the incline in the falling-film
example (see Figure 6.10)?
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SOLUTION. The total force on a surface in a fluid is given by Equation 6.196.
The unit normal to the incline surface written in the chosen flow coordinate
system is n̂ = êx (see Figure 6.10). This unit normal vector is the same at every
location on the surface of the incline. The stress tensor �̃ = −pI + τ̃ was solved
for in pieces in previous examples; the result for �̃ can be constructed from
the Newtonian constitutive equation (Equation 6.66) and the shear-stress result
(Equation 6.112). The final force then can be calculated with a straightforward
integration of Equation 6.196.

For the flow down an incline the total-stress tensor �̃ is:

�̃ = −pI + τ̃ (6.197)

=

⎛
⎜⎝

−p(x) 0 τ̃xz(x)

0 −p(x) 0

τ̃xz(x) 0 −p(x)

⎞
⎟⎠

xyz

(6.198)

We solved previously for the two missing pieces of information, p(x) and τ̃xz:

p(x) = patm + ρgH sin β

(
1 − x

H

)
(6.199)

τ̃xz(x) = ρg cos β(H − x) (6.200)

To use Equation 6.196, we need n̂ · �̃ at the incline surface. The surface of the
incline is located at x = 0, and the unit normal to the entire surface is n̂ = êx :

[n̂ · �̃ ˆ]at surface = [ex · �̃]x=0 (6.201)

= (1 0 0
)

xyz
·

⎛
⎜⎝

−p(0) 0 τ̃xz(0)

0 −p(0) 0

τ̃xz(0) 0 −p(0)

⎞
⎟⎠

xyz

= (−p(0) 0 τ̃xz(0)
)

xyz
(6.202)

=

⎛
⎜⎝

−patm − ρgH sin β

0

ρgH cos β

⎞
⎟⎠

xyz

(6.203)

Note that in the last step, we changed from a row vector to a column vector for
convenience.

The surface integral in Equation 6.196 can be carried out by identifying d S
for the surface and coordinate system. The surface of the incline is flat and
rectangular with unit normal n̂ = êx ; therefore, we write d S = dydz. We now
complete the integration:

Total force
on the

incline surface
F =

∫∫
S

[n̂ · �̃]at surface d S (6.204)

=
∫ L

0

∫ W

0

⎛
⎝−patm − ρgH sin β

0
ρgH cos β

⎞
⎠

xyz

dydz (6.205)
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W
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n̂
( ) nPLW atm

ˆ−

( )gLWHρ

Figure 6.16 The force on the incline is a combination of the weight of the fluid and the force due to atmospheric pressure.

The limits of the integrals are chosen to cover the entire surface of the plane. The
quantities L and W are the length and width of the incline. After integration, the
result is:

Total force

on the

incline surface

F = LW

⎛
⎝−patm − ρgH sin β

0
ρgH cos β

⎞
⎠

xyz

(6.206)

ˆ= (−LW patm − LW Hρg sin β) êx + ρgH cos βez (6.207)

The integration was easy because nothing in the integral varies with y or z.
Reviewing the geometry of the falling-film problem and the form of the solution

in Equation 6.206, we notice that we can rewrite our solution in a form that helps
to grasp its meaning:

Total fluid force
on the

incline surface
= ρ(LW H )

⎛
⎜⎝

−g sin β

0

g cos β

⎞
⎟⎠

xyz

− LW

⎛
⎝ patm

0
0

⎞
⎠

xyz

= ρ(LW H )g − (LW )patmn̂

(6.208)

We see from this final way of writing the result that the force on the incline
is simply the weight of the fluid plus the force due to atmospheric pressure
(Figure 6.16).

In Example 6.7 and with many calculations of this type, we need to carry
out a surface integration. The surface differential d S in Equation 6.196 must be
interpreted according to the specific case under consideration. For convenience,
we assemble several common cases in the inside front cover of this book.

For the simple case of the flow down an incline, it appears that we could
arrive at the total-force result using a straightforward force balance instead of
performing the integration in Equation 6.196. The surface-integration method
is general, however, and is useful in more complex situations, including those
involving intricate wall shapes. We discuss a case involving spherical coordinates
in Example 6.8 and we discuss more flow examples in Chapters 7 and 8.
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EXAMPLE 6.8. What is the total vector force on a sphere in creeping flow
around a sphere, the flow shown in Figure 6.17?

SOLUTION. In Chapter 8, we discuss the solution for the velocity and stress
fields for flow around a sphere. We can calculate the total force on the sphere from
the results for v and �̃ = τ̃ − pI obtained there. We begin with Equation 6.196:

Total fluid force
in a fluid

on a surface S:
F =

∫∫
S

[n̂ · �̃]at surface d S (6.209)

As stated previously, to carry out this integral we need �̃ = τ̃ − pI solved for
with the microscopic momentum balance. If we presume that we have this result,
then we can calculate the total force from Equation 6.209. The surface in which
we are interested is located at r = R and has an outwardly pointing unit normal
vector n̂ = êr , where we are using the spherical coordinate system as shown in
Figure 6.17. The differential surface element d S on the surface of the sphere can
be written in the spherical coordinate system as d S = R2 sin θdθdφ. The total
force then is given by:

Total fluid force
on the sphere:

F =
∫ 2π

0

∫ π

0
ˆ[er · �̃]r=R R2 sin θdθdφ (6.210)

The limits on the integrations are chosen to cover the entire surface of the sphere.
The velocity has nonzero components in the r and θ directions, but there is no

swirling component in the φ-direction:

v =
⎛
⎝ vr

vθ

vφ

⎞
⎠

rθφ

=
⎛
⎝ vr

vθ

0

⎞
⎠

rθφ

(6.211)

x

 z
 (r,θ,φ)

θ 

flow

g φ

 R

r

∞v

Figure 6.17 Flow around a sphere is important in droplet flow and in settling flows in suspensions.
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The stress tensor in spherical coordinates is given in Table B.8 in Appendix B.
In this flow, there is symmetry in the φ-direction, which allows us to eliminate
velocity derivatives with respect to φ in Equation B.8-3. Also, vφ = 0; thus, four
components of τ̃ are zero. With these simplifications, Equation B.8-3 becomes:

τ̃ =

⎛
⎜⎝

τ̃rr τ̃rθ τ̃rφ

τ̃θr τ̃θθ τ̃θφ

τ̃φr τ̃φθ τ̃φφ

⎞
⎟⎠

rθφ

=

⎛
⎜⎝

τ̃rr τ̃rθ 0

τ̃θr τ̃θθ 0

0 0 τ̃φφ

⎞
⎟⎠

rθφ

(6.212)

We now can write n̂ · �̃ = êr · (τ̃ − pI ) as:

n̂ · �̃ = êr · �̃ = (1 0 0
)

rθφ
·

⎛
⎜⎝

τ̃rr − p τ̃rθ 0

τ̃θr τ̃θθ − p 0

0 0 τ̃φφ−p

⎞
⎟⎠

rθφ

(6.213)

= ( τ̃rr − p τ̃rθ 0
)

rθφ
(6.214)

=

⎛
⎜⎝

τ̃rr − p

τ̃rθ

0

⎞
⎟⎠

rθφ

(6.215)

Substituting this result into Equation 6.210, we obtain the expression that we
must evaluate to obtain the force on the sphere:

Total fluid force
on the sphere:

F =
∫ 2π

0

∫ π

0
ˆ[er · �̃]r=R R2 sin θdθdφ (6.216)

=
∫ 2π

0

∫ π

0

⎛
⎜⎝

τ̃rr |R − p|R

τ̃rθ |R

0

⎞
⎟⎠

rθφ

R2 sin θdθdφ (6.217)

Without the microscopic-balance results for the components of v, this is as far
as we can go in our solution for the total force on the sphere. The solution to the
flow around the sphere problem for creeping flow (i.e., slow flow) is presented
in Chapter 8. It turns out that τ̃rr is equal to zero at the surface r = R; thus, the
final expression to evaluate for force is that given here:

Total fluid force
on the sphere:

F =
∫ 2π

0

∫ π

0

⎛
⎜⎝

− p|R

τ̃rθ |R

0

⎞
⎟⎠

rθφ

R2 sin θdθdφ (6.218)

Note that êr and êθ are both functions of θ ; this must be considered in the
integration. We complete this calculation in Chapter 8.

Working on a more complex problem such as calculating the forces in the
flow around a sphere is made considerably easier by having the general rule,
Equation 6.196, and then knowing how to apply it. More examples of the utility

www.20file.org

http://www.semeng.ir


478 An Introduction to Fluid Mechanics

of Equation 6.196 appear in the remaining chapters. In complex flows, Equa-
tion 6.196 is evaluated numerically using computer code [5, 27].

6.2.3.2 TORQUE
We worked briefly with torque in Chapter 1 (see Example 1.17) and in Chapter 4
(see Example 4.20). As in Example 4.20, when machine parts turn in fluids, torque
is needed or generated by the motion; thus, torque is an engineering quantity of
interest in fluid mechanics.

Torque is the amount of effort to produce a rotation in a body; the definition
of torque is the cross product of the lever arm and the tangential force. The lever
arm vector is along the path from the axis of rotation to the point of application
of the force:

T = (lever arm) × (force) (6.219)

= R × f (6.220)

We calculate torque on a finite surface in a flow beginning with the fluid force on
an infinitesimal surface given by Equation 4.279:

Molecular fluid force
on surface �Si

with unit normal n̂
at point (xi , yi , zi )

f
∣∣∣∣
�Si

= [n̂ · �̃](xi yi zi ) �Si (6.221)

The total torque is the limit of the sum of the infinitesimal torques on small pieces
of the surface tangent planes �Si :

Total torque
on a surface S:

= lim
�A−→0

[
N∑

i=1

R|�Si
× [n̂ · �̃](xi yi zi ) �Si

]
(6.222)

= lim
�A−→0

[
N∑

i=1

R|�Ai
× [n̂ · �̃](xi yi zi )

n̂i · êz
�Ai

]
(6.223)

=
∫∫

R

[R × (n̂ · �̃)]at surface

n̂ · êz
d A (6.224)

=
∫∫

S
[R × (n̂ · �̃)]at surface d S (6.225)

Total torque
on a surface S:

T =
∫∫

S
[R × (n̂ · �̃)]at surface d S (6.226)

The torque thus may be calculated from the stress tensor, which (as usual) may
be obtained from the solution of the momentum balance. We practice applying
Equation 6.226 in Example 6.9.

EXAMPLE 6.9. A compact device that may be used to measure viscosity and
other flow properties of fluids is the parallel-plate torsional rheometer (Fig-
ure 6.18). In this device, the gap between two circular disks is filled with fluid

www.20file.org

http://www.semeng.ir


479 Microscopic Balance Equations

cross-
section

H

D

Ω

Figure 6.18 An incompressible Newtonian fluid is confined between two circular disks of diameter D. The gap between the
plates is H and the top plate rotates with a constant angular velocity �, as shown here.

and one of the disks is turned. The design is such that the velocity field in the gap
is given by:

v =

⎛
⎜⎜⎜⎜⎝

0
r�z
H

0

⎞
⎟⎟⎟⎟⎠

rθ z

= r�z

H
êθ (6.227)

The viscosity is related to the torque required to turn the disk. For a Newtonian
fluid in such an apparatus, how is the viscosity related to the total torque to turn
the top disk?

SOLUTION. The total torque on a surface in a fluid is given by Equation 6.226:

Total torque
on a surface S:

T =
∫∫

S
[R × (n̂ · �̃)]at surface d S (6.228)

ˆ

To apply this equation to calculate the torque in the current problem, we identify
each quantity in the equation and carry out the integration. Torque is needed to
turn the top plate because the flat circular surface at z = H is in contact with
the fluid. The surface in the fluid in contact with the top plate has a unit normal
n̂ = êz . The lever-arm vector R is from the axis of rotation to a point experiencing
torque. The points on the surface experiencing torque are all of the locations on
the top fluid surface; thus, the lever arm is variable. We choose a small area
d S = rdθdr , which is located in the plane of the plate, a distance r from the axis
of rotation. For these areas, the lever-arm vectors are R = rer . Equation 6.228
becomes:

Total torque on the
top fluid surface

in the parallel-plate
rheometer

T =
∫ 2π

0

∫ D/2

0
[R × (n̂ · �̃)]at z=H d S (6.229)

=
∫ 2π

0

∫ D/2

0
ˆ ˆ[rer × (ez · �̃)]at z=H rdrdθ (6.230)
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The stress tensor �̃ comes from the Newtonian constitutive equation evaluated for
this flow. Because we know the velocity field (Equation 6.228), we can calculate
the expression that we need directly from the constitutive equation, Equation 5.89:

�̃ = −pI + τ̃ (6.231)

= −pI + μ
(
∇v + (∇v)T

)
(6.232)

In cylindrical coordinates, the Newtonian constitutive equation is given in Equa-
tion 5.91. We can immediately simplify Equation 5.91 because vr = vz = 0 and
vθ is not a function of θ . With these simplifications, the Newtonian constitutive
equation becomes:

τ̃ =

⎛
⎜⎜⎜⎝

0 μ
(

∂vθ

∂r − vθ

r

)
0

μ
(

∂vθ

∂r − vθ

r

)
0 μ∂vθ

∂z

0 μ∂vθ

∂z 0

⎞
⎟⎟⎟⎠

rθ z

(6.233)

Carrying out the partial derivatives of vθ using the velocity field given and
assembling �̃, we obtain:

�̃ = −pI + μ
(
∇v + (∇v)T

)
(6.234)

=

⎛
⎜⎜⎜⎝

−p μ
(

∂vθ

∂r − vθ

r

)
0

μ
(

∂vθ

∂r − vθ

r

)
−p μ∂vθ

∂z

0 μ∂vθ

∂z −p

⎞
⎟⎟⎟⎠

rθ z

(6.235)

�̃ =

⎛
⎜⎝

−p 0 0

0 −p μ r�
H

0 μ r�
H −p

⎞
⎟⎠

rθ z

(6.236)

The next steps are to carry out the dot product and the cross product in
Equation 6.230:

Total torque on the
top fluid surface

in the parallel-plate
rheometer

T =
∫ 2π

0

∫ D/2

0
ˆ ˆ[rer × (ez · �̃)]at z=H rdrdθ (6.237)

êz · �̃ = (0 0 1
)

rθ z
·

⎛
⎜⎝

−p 0 0

0 −p μ r�
H

0 μ r�
H −p

⎞
⎟⎠

rθ z

(6.238)

= (0 μ r�
H −p

)
rθ z

(6.239)

ˆ ˆrer × (ez · �̃) =
⎛
⎝ r

0
0

⎞
⎠

rθ z

×

⎛
⎜⎝

0

μ r�
H

−p

⎞
⎟⎠

rθ z

(6.240)

=

⎛
⎜⎝

0
r p

r2μ�

H

⎞
⎟⎠

rθ z

(6.241)

www.20file.org

http://www.semeng.ir


481 Microscopic Balance Equations

where we use Equation 1.182 to evaluate the cross product. The integral to
evaluate for torque thus becomes:

T =
∫ 2π

0

∫ D/2

0
ˆ ˆ[rer × (ez · �̃)]at z=H rdrdθ (6.242)

=
∫ 2π

0

∫ D/2

0

⎛
⎜⎜⎜⎝

0

r p
r2μ�

H

⎞
⎟⎟⎟⎠

rθ z

rdrdθ (6.243)

=
∫ 2π

0

∫ D/2

0

[
ˆr2 peθ + r3μ�

H
êz

]
drdθ (6.244)

The basis vector êθ is a function of θ ; thus, we convert to Cartesian coordinates
before evaluating the integral:

T =
∫ 2π

0

∫ D/2

0

[
ˆr2 peθ + r3μ�

H
êz

]
drdθ (6.245)

=
∫ 2π

0

∫ D/2

0

[
r2 p

(
ˆ ˆ− sin θex + cos θey

)+ r3μ�

H
êz

]
drdθ (6.246)

The θ-integral results in the êx and êy terms dropping out, leaving the êz compo-
nent as the only nonzero component of torque. The details of the remaining steps
are left to readers. The final result for torque is:

Total torque on the
top fluid surface

in the parallel-plate
rheometer

(Newtonian)

T = π�μR4

2H
êz =

⎛
⎜⎜⎜⎝

0

0
π�μR4

2H

⎞
⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎝

0

0
π�μR4

2H

⎞
⎟⎟⎟⎠

rθ z

(6.247)

We therefore can calculate the viscosity μ from a measurement of the torque
magnitude as:

Viscosity from torque
in parallel-plate

Newtonian
μ = 2HT

π�R4
(6.248)

6.2.3.3 FLOW RATE AND AVERAGE VELOCITY
Forces and torques are two types of engineering variables; another important
quantity is flow rate. Flow rate, or volume flow per unit time, may be calculated
directly from a velocity profile. To calculate the flow rate through a finite surfaceS
when the velocity varies across the surface, we again calculate a surface integral.

The flow rate through one piece of the surface tangent plane �Si is given by
Equation 3.90 at that point:

Flow rate through �Si

with unit normal n̂
at point (xi , yi , zi )

= [n̂ · v](xi yi zi ) �Si (6.249)
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To obtain the total flow rate, we sum all of the pieces that comprise the surface
S, and take the limit as �S goes to zero (see the Web appendix [108]):

Total flow rate
out through
surface S:

Q = lim
�A−→0

[
N∑

i=1

[n̂ · v](xi yi zi ) �Si

]
(6.250)

= lim
�A−→0

[
N∑

i=1

[n̂ · v](xi yi zi )

n̂i · êz
�Ai

]
(6.251)

=
∫∫

R

[n̂ · v]at surface

n̂ · êz
d A (6.252)

Q =
∫∫

S
[n̂ · v]at surface d S (6.253)

Total flow rate
out through
surface S:

Q =
∫∫

S
[n̂ · v]at surface d S (6.254)

To calculate the average velocity, we divide the total volumetric flow rate by the
area through which the flow passes:

Average velocity
through surface S:

〈v〉 = Q∫∫
S

d S
=

∫∫
S

[n̂ · v]at surface d S∫∫
S

d S
(6.255)

We used this expression in Equation 5.194. We can try these expressions by
calculating the total flow rate and average velocity in the steady drag-flow between
parallel plates (see Example 6.3).

EXAMPLE 6.10. What are the flow rate and average velocity in the steady
drag-flow between parallel plates (see Example 6.3)?

SOLUTION. We begin the solution with Equation 6.254:

Total flow rate
out through
surface S:

Q =
∫∫

S
[n̂ · v]at surface: d S (6.256)

We must identify n̂, v, and the surface over which we want to integrate. The flow
rate in the drag-flow-between-infinite-plates problem is the same at every x1-
position throughout the flow; therefore, we can choose as our calculation surface
any plane perpendicular to the flow—we choose a plane at the exit, x1 = L . The
unit normal of our calculation surface is n̂ = ê1, and the velocity vector is given
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ˆin Equation 6.134 as v = (V/H )x2e1. The dot of these two vectors is:

n̂ · v =
⎛
⎝1

0
0

⎞
⎠

123

·

⎛
⎜⎝

V
H x2

0

0

⎞
⎟⎠

123

= V

H
x2 (6.257)

The surface S is a rectangle in the 23-plane; thus, d S = dx2dx3 (see Fig-
ure 6.11), and the location of the surface is x1 = L . The flow rate Q then is given
by:

Q =
∫∫

S
[n̂ · v]x1=L d S (6.258)

=
∫ W

0

∫ H

0

(
V

H
x2

)
dx2dx3 (6.259)

= W H V

2
(6.260)

The average velocity is Q/H W :

Average velocity
out through
surface S

in drag flow:

〈v〉 =

∫∫
S

[n̂ · v]at surface d S∫∫
S

d S
(6.261)

= Q∫ W

0

∫ H

0
dx1dx2

(6.262)

= V

2
(6.263)

6.2.3.4 VELOCITY AND STRESS EXTREMA
In some engineering problems, the maximum or minimum velocity or force is
of interest. For example, if a fluid jet hits a surface, the maximum value of the
force is important to know in designing the surface to withstand the impact. The
location of the maximum force also is important when designing a bracing system
for such a device.

To locate the maximum or minimum of any function (e.g., the velocity or stress
component), we calculate the first derivative of the function and set it equal to
zero (see Section 1.3.1) [166]:

At the maximum/minimum of f (x):
d f

dx
= 0 (6.264)

Solving Equation 6.264 for xmin/max gives us the location of the minimum or
maximum. To determine if the extrema located is a minimum or a maximum, we
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calculate the second derivative [166]:

d2 f

dx2

∣∣∣∣∣∣∣
xmin/max

> 0 ⇒ minimum (6.265)

d2 f

dx2

∣∣∣∣∣∣∣
xmin/max

< 0 ⇒ maximum (6.266)

EXAMPLE 6.11. A Newtonian fluid flows steadily between two long, wide plates
under an imposed pressure difference �p = p0 − pL (Figure 6.19). In addition,
the top plate moves at a velocity V . The velocity field is found by using methods
described in Chapters 3–6; The solution for vx (y) in the coordinate system of
Figure 6.19 is given here:

v =
[

H 2(pL − p0)

2μL

((
y

H

)2

− 1

)
+ V

2

(
y

H
+ 1
)]

êx (6.267)

What is the location of the velocity maximum as a function of the imposed pressure
difference?

SOLUTION. To find the location ymax at which the velocity function vx (y)
attains its maximum value, we must find the location where the first derivative of
vx with respect to y goes to zero:

vx (y) = H 2(pL − p0)

2μL

[(
y

H

)2

− 1

]
+ V

2

(
y

H
+ 1
)

(6.268)

Location
of

maximum:

dvx

dy

∣∣∣∣∣∣
y=ymax

= 0 (6.269)

To simplify the algebra, we define the constant B as:

B ≡ H 2(pL − p0)

2μL
(6.270)

which allows us to write the velocity as:

vx (y) = B
y2

H 2
− B + V

2H
y + V

2
(6.271)

 x

y
W

H

x=0 
 p=po

x1=L
 p=pL

 vx(y)

V

H

Figure 6.19 Combined pressure and drag flow of a Newtonian fluid through a wide, long slit can be modeled as shown.
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We now take the first derivative of vx (y) and solve for the value of y that makes
this zero:

dvx

dy
= 2B

H 2
y + V

2H
(6.272)

0 = 2B

H 2
ymax + V

2H
(6.273)

ymax = −V H

4B
(6.274)

ymax = μLV

2H (p0 − pL )
(6.275)

We can verify that this is, in fact, a maximum rather than a minimum by calculating
the second derivative of vx (y):

d2vx

dy2
= 2B

H 2
(6.276)

d2vx

dy2
= pL − p0

μL
< 0 (6.277)

Because the upstream pressure is higher than the downstream pressure (p0 > pL ),
Equation 6.277 indicates that the second derivative is negative throughout the
flow; thus, the extremum we found is a maximum (compare to Equation 6.266).

6.3 Summary

In this chapter, we derive and use the microscopic mass and momentum balances.
For general fluids, the microscopic momentum balance is the Cauchy momentum
equation, Equation 6.86. For incompressible Newtonian fluids, the microscopic
momentum balance is the Navier-Stokes equation, Equation 6.122. We show how
to apply these equations to a problem with which we are familiar: the flow of a thin
film down an inclined plane. We also discuss two topics necessary for problem
solving with the microscopic balances: flow boundary conditions and methods
for calculating macroscopic engineering properties from the microscopic results.

We have provided the groundwork for performing microscopic balances on
a wide variety of flows. Chapters 7 and 8 discuss microscopic solutions in two
important flow classes: internal and external flows, including boundary-layer
flows. In those chapters, we apply the microscopic balances to simple and com-
plicated cases, and we discuss how to use dimensional analysis to modify the
microscopic analysis when a detailed microscopic solution is impractical or
unnecessary. Studying the Navier-Stokes equation in various situations reveals
why fluids behave the way they do.
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6.4 Problems

1. Compare and contrast the solution to the flow down an incline plane pursued
in Chapters 3–5 with the solution in Example 6.2.

2. What is the difference between solving for pressure with the mechanical
energy balance and solving for pressure with the Navier-Stokes equation?

3. In the derivation of the continuity equation, we omit details of some vec-
tor/tensor manipulations. Using matrix notation in a Cartesian coordinate
system or using Einstein notation, show that Equation 6.41 may be simpli-
fied to give Equation 6.43.

4. In the derivation of the Cauchy momentum equation, we omit details of some
vector/tensor manipulations. Using matrix notation in a Cartesian coordinate
system or using Einstein notation, show that Equation 6.62 may be simplified
to give Equation 6.63.

5. In the derivation of the Navier-Stokes equation, we omit details of some
vector/tensor manipulations. Using matrix notation in a Cartesian coordinate
system or using Einstein notation, show that Equation 6.68 may be simplified
to give Equation 6.70.

6. In the calculation of the total flow rate down an inclined plane, integrate
Equation 5.193 to obtain the final result.

7. Show that the results for creeping flow around a sphere (see Equation 5.101)
satisfy the continuity equation for incompressible fluids.

8. For each of the four coordinate systems shown in Figure 6.13, what is the
vector that expresses the acceleration due to gravity?

9. In Figure 6.13, the following equality is given:

v =
⎛
⎝vx

vy

vz

⎞
⎠

xyz

=
⎛
⎝vx̄

0
vz̄

⎞
⎠

x̄ ȳ z̄

Explain how both of these ways to express v are correct. Note that vx �= vx̄ ,
vz �= vz̄ .

10. Show with matrix operations on Cartesian coordinates that ∇ · pI = ∇ p.
Use Table B.2 in Appendix B to obtain the Cartesian coordinates of this
Gibbs expression.

11. Using matrices and the definition of the gradient of a vector (Appendix B),
show that the following two expressions are equivalent:

∇ · (ρv) = v · ∇ρ + ρ(∇ · v)

12. Using matrices and the definition of the gradient of a vector (Appendix B),
show that the following two expressions are equivalent:

∂(ρv)

∂t
+ ∇ · (ρv v) = ρ

∂v

∂t
+ v

∂ρ

∂t
+ ρ (v · ∇v) + v∇ · (ρv)

13. Using matrices and the definition of the gradient of a vector (Appendix B),
show that the following two expressions are equivalent (viscosity is constant):

∇ · (μ (∇v + (∇v)T )) = μ∇2v + μ∇(∇ · v)
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14. Using matrices and the definition of the gradient of a vector (Appendix B),
show that the following two expressions are equivalent:

∂
(

ˆρE
)

∂t
+ ∇ ·

(
v ˆρE

)
= ρ

∂ Ê

∂t
+ Ê

[
∂ρ

∂t
+ ∇ · (ρv)

]
+ ρ

(
v · ∇ Ê

)

15. Using matrices and the definition of the gradient of a vector (Appendix B),
show for a Newtonian fluid that τ̃ T : ∇v is always positive. This term appears
in the derivation of the microscopic energy balance [108].

16. Compare and contrast the form of the momentum balance in the Navier-
Stokes equation and the form of the momentum balance given by Newton’s
second law of motion,

∑
f = ma.

17. What is the difference between the equation of motion with the extra-stress
tensor τ̃ included (i.e., the Cauchy momentum equation, Equation 6.65)
and the equation of motion with viscosity μ present (i.e., the Navier-Stokes
equation, Equation 6.71)? Can both equations be used for Newtonian fluids?

18. In the solution method for microscopic-momentum-balance problems out-
lined in Section 6.2, how would the solution steps change if the fluid under
consideration were non-Newtonian rather than Newtonian?

19. A fluid flows down an inclined plane. The magnitude of the total force on the
plane is 100N . If a fluid of the same density but 10 times higher viscosity
flows down the incline, what is the magnitude of the total force on the plane?
Explain your answer.

20. If the velocity vector v in m/s and pressure in Pa for water flow in a pipe
(radius 0.010 m, length 2.00 m) are given by the following expressions, what
is the vector F that indicates the magnitude and direction of the force on the
walls of the pipe?

p[Pa] = −240z

v[m/s] =

⎛
⎜⎝

0
0

6.0
(

1 − ( r
0.010

)2
)
⎞
⎟⎠

rθ z

where r and z are expressed in m.
21. If the velocity vector v in m/s for flow through a pipe of radius 0.012 m is

given by the following expression, what is the volumetric flow rate Q of fluid
through the pipe?

v[m/s] =

⎛
⎜⎝

0
0

12.0
(

1 − ( r
0.012

)2
)
⎞
⎟⎠

rθ z

where r is expressed in m.
22. Fluid is trapped between two concentric cylinders and the inner cylin-

der (with radius = κ R) is turning, producing the velocity field v given
here. What is the torque on the inner cylinder? What is the torque on the
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outer cylinder (with radius = R)? Assume that the pressure is constant
throughout.

v =

⎛
⎜⎝

0(
κ2�R
κ2−1

) ( r
R − R

r

)
0

⎞
⎟⎠

rθ z

23. For a pressure-driven flow in a slit, the total stress tensor �̃ is given here,
where P = Cx is pressure, μ is viscosity, B is the gap half-height, and A is
the velocity at the centerline. The fluid is an incompressible Newtonian fluid.
What is the x-component of the force due to fluid on the bottom plate?

vx (z) = A

(
1 − z2

B2

)

�̃ =

⎛
⎜⎝

−P 0 − 2μAz
B2

0 −P 0

− 2μAz
B2 0 −P

⎞
⎟⎠

xyz

24. For water in a flow with the velocity vector given here, what is the force in
the fluid on a square surface with unit normal n̂ = êz extending from x = 0,
y = 0 to x = 1, y = 1. All distances are in meters; assume the pressure is
the same everywhere.

v[m/s] =

⎛
⎜⎝

−0.04x

−0.04y

0.08z

⎞
⎟⎠

xyz

25. What is the torque on a rod turning in an infinite bath of fluid? The radius of
the rod is R, the length is L , and the rod turns at angular velocity � in a fluid
of viscosity μ. You may leave your answer in terms of the unknown velocity
distribution.

26. The velocity field for squeeze flow between parallel plates is given here
(This was obtained with a quasi-steady-state solution [12]), where h is the
instantaneous gap height. What is the instantaneous flow rate through the
circular strip of surface of height 2h at r = R/2? The area of this surface is
2π (R/2)2h.

v =

⎛
⎜⎜⎜⎜⎝

vr

vθ

vz

⎞
⎟⎟⎟⎟⎠

rθ z

=

⎛
⎜⎜⎜⎜⎜⎜⎝

− 3
4

V r
h

(
z2

h2 − 1
)

0

3
2 V
(

z3

3h3 − z
h

)

⎞
⎟⎟⎟⎟⎟⎟⎠

rθ z

27. A fluid in a circular tank is in solid-body rotation on a turntable. The velocity
field is given here. What is the fluid force on the wall due to the rotation?
Explain your results.

v =

⎛
⎜⎜⎜⎜⎝

vr

vθ

vz

⎞
⎟⎟⎟⎟⎠

rθ z

=
⎛
⎝ 0

r�

0

⎞
⎠

rθ z
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L z

2R

P = PL

P = Por

Figure 6.20 Pressure-driven flow in a tube (see Problem 30).

28. The z-direction velocity shown here results from the effect of natural con-
vection (i.e., hot air rises) between two vertical parallel plates (the plates
are long and wide). At what position in the flow does the velocity reach a
maximum? In the equation, vz is the velocity and y is the coordinate direction
in a Cartesian coordinate system; all other quantities are constants related to
the flow.

vz(y) = ρ̄β̄(T2 − T1)b2

12μ

[(
y

b

)3

−
(

y

b

)]

29. For the combined pressure-driven and wall-drag flow discussed in Exam-
ple 6.11, sketch the coordinate system that was used to find the velocity
solution provided in the example. What are the boundary conditions that
were used?

30. What are the velocity boundary conditions in the flow shown in Figure 6.20?
Express your answer in the coordinate system shown.

31. The problem of a thin film falling down an incline is discussed in this chapter.
In Figure 5.41, a version of this problem is illustrated and a Cartesian coordi-
nate system is proposed. Write the velocity vector in this coordinate system.
How does the continuity equation simplify? How does the Navier-Stokes
equation simplify? Comment on the chosen coordinate system.

32. For the velocity described in Figure 5.31 (i.e., the planar-jet flow), apply
the microscopic mass balance (i.e., the continuity equation). What is the
relationship between the velocity gradients that the mass balance requires?

33. Two different fluids with different densities and viscosities are layered
between two long, parallel plates. The thickness of the bottom and more
dense fluid layer is h1; the thickness of the top and less dense fluid layer
is h2. The top plate is made to move parallel to the bottom plate at a low
velocity V . The bottom plate is stationary. The flow is steady and both fluids
are incompressible. The flow problem is solved in a Cartesian coordinate
system with flow in the x-direction, and y is the direction perpendicular
to the plates, with y = 0 at the surface of the bottom plate. What are the
boundary conditions for this flow? Give your answer in mathematical form
in the coordinate system described.
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34. An incompressible fluid with density ρ and viscosity μ is placed in the
region between two coaxial cylinders. The outer cylinder (radius = R) is
stationary and the inner cylinder (radius =κ R) is moving counterclockwise
at angular velocity � in rad/s. The flow is steady. The flow is solved in
a cylindrical coordinate system with z = 0 at the bottom surface of the
apparatus; êz points upward. What are the boundary conditions for this flow?
Give the answer in mathematical form in the coordinate system described.
Check the units of your expressions.

35. In Example 6.2, we discuss the solution for the velocity field for flow
down an inclined plane. The upper boundary of this flow is a free surface,
meaning that there is no solid surface there. The boundary condition
at the free surface where two fluids meet is that the velocity and stress
should be continuous across the boundary. Consider the free surface in the
flow-down-an-incline problem as the meeting point of two fluids—air and
water—with the viscosity of air being much lower than the viscosity of
water. Using the stress-matching boundary condition, justify the boundary
condition used for the free surface in Example 6.2.

36. Sketch the flow domain for upward flow in a circular pipe inclined by
a 30-degree angle to the horizontal. Pipe flow usually is analyzed in a
cylindrical coordinate system. In terms of the cylindrical coordinate system
for this problem, what is the gravity vector? Hint: choose gravity to be in the
x-z plane. What are the implications of this complicated expression? How
would this complication affect the solution of the Navier-Stokes equations
for this problem?

37. Figure 6.12c depicts the steady flow of a drop of Newtonian fluid “rolling”
down an inclined plane. Because of the complex geometry of the flow domain,
this flow is best analyzed numerically, and the details of that calculation are
beyond the scope of this text [70]. Although numerical methods are needed
to solve the differential equations, we can arrive at the correct equations to
solve by following the methods in this text. What is the differential equation
that governs this flow and what are the appropriate boundary conditions?

38. Flow Problem: Drag flow of a Newtonian fluid in a slit. Calculate the
velocity profile and flow rate for drag flow of an incompressible Newtonian
liquid between two infinitely wide parallel plates separated by a gap of H .
The pressure in the gap is uniform in the flow direction. The lower plate
does not move, but the upper plate is pulled to the right at a speed V . The
flow is steady and well developed.

39. Flow Problem: Pressure-driven flow in an uphill slit. An incompressible
Newtonian fluid is made to flow between two long, wide parallel plates by
a constant driving pressure gradient. The pressure at an upstream point is
P0 and a distance L downstream the pressure is PL . The plates tilt upwards,
making an angle ψ with the horizontal; do not neglect gravity. Calculate the
steady state velocity profile, the flow rate, and the force on the walls. The
gap between the plates is B.

40. Flow Problem: Combined forward pressure and drag. An incompressible
Newtonian fluid is made to flow between two long, wide, horizontal parallel
plates by the combined effect of a constant driving pressure gradient and
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V

V

x

y

I

I IL

W

H exit:
PL

entrance:
Po

Figure 6.21 Schematic for Problem 41.

the motion of the wall. The gap between the plates is B, and the top plate
is pulled to the right at a speed V while the lower plate remains stationary.
The pressure at an upstream point is P0 and a distance L downstream
the pressure is PL . Calculate the steady state velocity field and the flow
rate.

41. Flow Problem: Combined backward pressure and forward drag of a
Newtonian fluid in a slit. Calculate the velocity profile for the flow shown in
Figure 6.21. The flow is steady flow of an incompressible Newtonian fluid
between two wide plates. The flow is driven forward by the motion of the
top plate (i.e., the top plate moves in the x-direction at speed V ) and the flow
is opposed by the pressure, which is slightly higher at the exit, PL , than at
the entrance, P0, PL > P0. Neglect the effect of gravity. Use the coordinate
system given in Figure 6.21.

42. Flow Problem: Combined pressure-driven/drag flow of a Newtonian fluid
in a slit that is tilted upward. Calculate the velocity profile and flow rate for
pressure-driven flow of an incompressible Newtonian liquid between two
infinitely wide parallel plates separated by a gap of H . The slit is inclined to
the horizontal by an angle α. The top plate moves forward at velocity V . The
pressure at an upstream point is P0; at a point a distance L downstream, the
pressure is PL . Assume that the flow between the plates is well developed
and at steady state. The axial pressure gradient is constant.

43. Flow Problem: Axial annular drag, wire coating. An incompressible
Newtonian fluid fills the annular gap between a cylindrical wire of radius κ R
and an outer shell of inner radius R (Figure 6.22). The wire is pulled to the

entrance:
Po

exit:
Po

V

L
r

z

2R

V

2κR

r

z

cross
section:

Figure 6.22 In wire-coating, a wire is drawn through a bath. This axial drag flow is addressed in Problem 43.
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right at a speed V. There is no pressure variation throughout the apparatus.
Calculate the steady state velocity profile, the flow rate, and the force on the
wire. This geometry occurs in wire-coating. Answer: vz/V = ln(r/R)/ ln κ .

44. Flow Problem: Upward, pressure-driven flow of a Newtonian fluid in a pipe.
Calculate the velocity profile and flow rate for pressure-driven flow of an
incompressible Newtonian liquid in a vertical pipe of radius R. The pressure
at the bottom entrance to the tube is P0; at a point a distance L upward, the
pressure is PL . Assume that the flow is well developed and at steady state.
Do not neglect gravity.

45. Flow Problem: Two-layer drag flow between parallel plates. Two different
fluids with different densities and different viscosities are layered between
two long, parallel plates. The thickness of the bottom and more dense fluid
is h1; the thickness of the top and less dense fluid is h2. The top plate is
made to move parallel to the bottom plate at a velocity V . The bottom
plate is stationary. The flow is steady and both fluids are incompressible.
Solve for the velocity profile in a Cartesian coordinate system with flow in
the x-direction; y is the direction perpendicular to the plates, with y = 0 at
the surface of the bottom plate.

46. Flow Problem: Two-layer drag, pressure-driven flow between parallel plates.
Two different fluids with different densities (ρ1, ρ2) and viscosities (μ1, μ2)
are layered between two long, parallel plates. The thickness of the bottom and
more dense fluid layer is h1; the thickness of the top and less dense fluid layer
is h2. Both plates are stationary and a flow is produced by the imposition of
a small, constant pressure gradient such that the interface between the two
fluids remains flat and parallel to the walls. The flow is steady and both fluids
are incompressible. Solve for the velocity profile in a Cartesian coordinate
system with flow in the x-direction; y is the direction perpendicular to the
plates, with y = 0 at the surface of the bottom plate (copious algebra!).

47. Flow Problem: Two-layer flow down an incline. Two different fluids with
different densities (ρ1, ρ2) and viscosities (μ1, μ2) are layered on a long plate
tilted at an angle β to the horizontal. The thickness of the bottom and more
dense fluid layer is h1; the thickness of the top and less dense fluid layer is
h2. The bottom plate is stationary and a flow is produced by gravity. The flow
is steady and both fluids are incompressible. Solve for the velocity profile in
a Cartesian coordinate system with flow in the x-direction; y is the direction
perpendicular to the plates, with y = 0 at the surface of the bottom plate.

48. Flow Problem: Drag flow with viscosity varying. Calculate the velocity
profile and flow rate for drag flow of an incompressible Newtonian liquid
between two infinitely wide parallel plates separated by a gap of H . The
viscosity of the fluid varies linearly with position in the gap as μ = ay + b.
The pressure in the gap is uniform in the flow direction. The upper plate is
driven such that the velocity is V and the lower plate is stationary. Assume
that the flow between the plates is well developed and at steady state. Solve
for the velocity profile in a Cartesian coordinate system with flow in the
x-direction; y is the direction perpendicular to the plates, with y = 0 at
the surface of the bottom plate.
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49. Flow Problem: Axial annular drag with pressure drop, wire coating. Repeat
Problem 43 with an imposed pressure gradient = (−�p/L) in the flow
direction. Calculate the velocity field only.

50. Flow Problem: Drag flow in a slit, power-law non-Newtonian fluid. Repeat
Problem 38 with a power-law, generalized Newtonian fluid with parameters
m and n. Calculate the velocity and stress fields.

51. Flow Problem: Pressure-driven flow in a slit tilted upward, power-law
non-Newtonian fluid. Repeat Problem 39 with a power-law, generalized
Newtonian fluid with parameters m and n. Calculate the velocity field only.

52. Flow Problem: Upward pressure-driven flow in a tube, power-law
non-Newtonian fluid. Repeat Problem 44 with a power-law, generalized
Newtonian fluid with parameters m and n.
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7 Internal Flows

So far, we have concentrated on developing a method for modeling fluids. We
established the idea of the continuum to allow us to describe flows with continuous
functions, and we introduced the use of the control volume (CV) to free us
from having to follow individual fluid particles (see Chapter 3). We described a
method of accounting for stresses in fluids (see Chapter 4) and showed how stress
and motion are related through the constitutive equation (see Chapter 5). We
developed a solution methodology that led to the microscopic balance equations
and, finally, to solutions of simple flow problems (see Chapter 6). We have all
of the tools necessary to solve flow problems, and we now turn to the task of
modeling and understanding the flow behaviors described in Chapter 2.

In this chapter, we concentrate on internal flows, which are flows through
closed conduits. Chapter 8 discusses both external flows, in which fluid moves
over or around obstacles, and an important class of flows called boundary-layer
flows.

In this chapter and in Chapter 8, we address complex, realistic, and practical
flow problems with our modeling methods. We begin the analysis of complex
problems with a microscopic analysis on an idealized system. When it is possible
to solve the microscopic-analysis equations, we obtain a complete description of
the flow (v, �̃), from which we can calculate any engineering property of interest
(e.g., flow rate Q, 〈v〉, Fdrag, Fwall, and Tsurface). Numerical methods may be
used to solve the microscopic balances when complex geometries are considered
[49, 100]. For turbulent and other highly complex flows, we usually cannot solve
microscopic balances, even with the help of computer methods; for these cases,
we use dimensional analysis and data correlations to obtain results. In this chapter
and the next, we see the entire progression from microscopic balance to complex
flow solutions to dimensional analysis to, finally, data correlations.

7.1 Circular pipes

We begin with an important and widely applied area in fluid mechanics: flow rate
and stress relationships in pipes and other closed conduits. This topic includes the
issue of laminar versus turbulent flow (see Section 2.4). We start with a practical
problem.
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EXAMPLE 7.1. The hose connecting the city water supply to the washing
machine in a home burst while the homeowner was away (Figure 7.1). Water
gushed out of the 1/2-inch Schedule 40 pipe for 48 hours before the problem
was noticed by a neighbor and the water was shut off. How much water sprayed
into the house over the two-day period? The water utility reports that the water
pressure supplied to the house was approximately 60 psig.

Figure 7.1 The flexible hosing that connects a cold-water shutoff valve to an automatic washing machine is the weak point in
the water-delivery system of many homes. When this hose breaks (bottom), water spills into the home in a forceful,
never-ending stream. The top photograph and schematic show the damage caused by the water to a nearby wall.
Because the homeowner was away, the entire home flooded.

SOLUTION. Fundamentally, this problem is flow through a pipe (Figure 7.2).
The pressure is the driving force for the flow, and the set driving pressure of
60 psig causes a certain flow rate for the water. That flow rate multiplied by 48
hours gives the total amount of water that sprayed into the house:⎛

⎝ volume
of water
in house

⎞
⎠ =

(
volume

time

)
(time interval) (7.1)

= Q�t (7.2)

The missing information is the relationship between driving pressure �p =
60 psig and the volumetric flow rate Q.
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R

L
p = 60 psig p = 0 psig

Figure 7.2 To calculate the volume of water that flows into the house over two days, we must relate the driving pressure �p
to the flow rate Q for flow of water in a pipe of circular cross section.

If we assume that the flow rate is low, then the flow is laminar. In a lami-
nar flow, the flow is well organized and layers of fluid slide smoothly over one
another (Figure 7.3). In laminar flow in pipes, the flow is unidirectional in the
z-direction of a cylindrical coordinate system. Using the microscopic-
momentum-balance method from Chapter 6, we can solve for the velocity and
stress fields for unidirectional flow in a tube. When we have the velocity field, we
can calculate the flow rate with an integral of vz(r ) over the cross section of the
tube, as demonstrated in Section 6.2.3 (see Equation 6.254). This integral yields
the needed relationship between flow rate and pressure drop so that we can finish
the calculation in Equation 7.2.

If the flow rate is not low, then Reynolds’s experiments, as discussed in Sec-
tion 2.4, show that the flow is not unidirectional but rather three-dimensional and
disorganized (see Figure 2.19). In the case of turbulent flow, directly applying
the microscopic-momentum-balance method is problematic. We cannot make
enough assumptions to be able to solve the Navier-Stokes equations in the case of
turbulent flow. To solve the turbulent-flow problem, we need experimental data
on pressure drop as a function of flow rate.

In summary, to solve the burst-pipe problem, we must know the flow-
rate/pressure-drop relationship in the pipe. The flow in the pipe may be lami-
nar or turbulent. Using microscopic-balance techniques (see Chapter 6), we now
solve the problem for laminar flow. For turbulent flow, we anticipate difficulties
in solving for Q(�p) because the flow field is complex.

As is typical in engineering problem solving, we are presented with a compli-
cated situation and the available information about the system and its physics is
incomplete. Our strategy in these situations is to proceed where we can, beginning
with the simpler case and, if necessary, building on it to learn how to address more

rr

 z
z

Figure 7.3 Laminar flow in a tube is a unidirectional flow in which concentric cylinders of fluid slide over one another in straight
lines.
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complex situations later. For the burst-pipe problem, this means we first solve
the laminar pipe-flow problem and test whether that solution yields reasonable
results for the problem of interest. If the laminar-flow solution is not acceptable,
we redirect our efforts to the study of turbulent flow.

We suspend for the moment our work on the problem of the burst water pipe and
turn to solving for Q(�p) for laminar pipe flow of an incompressible Newtonian
fluid.

7.1.1 Laminar flow in pipes

The problem of pressure-driven flow in a tube is called Poiseuille flow after Jean
Louis Marie Poiseuille (1797–1869), who conducted important early experiments
on flow in tubes from 1838 to 1846. The final result for Q versus �p in lami-
nar tube flow (see Equation 7.28) is called the Hagen-Poiseuille equation after
Poiseuille and Gotthilf Heinrich Ludwig Hagen (1797–1869), who independently
deduced the law in 1839 from experimental observations. In the example that fol-
lows, we use the Navier-Stokes equations to solve for the flow-rate/pressure-drop
relationship for laminar flow in a pipe.

EXAMPLE 7.2. Calculate the velocity profile, flow rate, and shear-stress func-
tion for downward, pressure-driven flow of an incompressible Newtonian liquid
in a tube of circular cross section (Figure 7.4). The pressure at an upstream point
is p0; at a point a distance L downstream, the pressure is pL . Assume that the
flow between these two points is fully developed (i.e., not affected by inlet or exit
effects) and at steady state.

cross section:

 r
 z

 r

 z

 L
vz(r)

R
fluid

Figure 7.4 Schematic of pressure-driven flow in a tube of circular cross section. This flow is known as Poiseuille flow in a
tube.
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Problem-Solving Procedure –
Microscopic-Balances Approach

1. Sketch the problem.
2. Choose a coordinate system. The coordinate system should be chosen so

that the velocity vector and the boundary conditions are simplified.
3. Considering the flow, simplify v as much as possible.
4. Simplify the continuity equation (i.e., microscopic mass balance).
5. Simplify the equation of motion (i.e., microscopic momentum balance,

Navier-Stokes equation).
6. Solve the resulting differential equation for the velocity field. Apply the

velocity boundary conditions to solve for the unknown constant(s) of
integration.

7. Solve for the pressure field, if applicable.
8. Calculate the stress components from the Newtonian constitutive

equation and for any engineering quantities of interest.

Figure 7.5 With the microscopic-balance approach, the steps for solving a microscopic balance are shown here.

SOLUTION. Our task is to calculate the velocity field; thus, we proceed with
the microscopic mass and momentum balances developed in Chapter 6:

Mass conservation:
(continuity equation,

constant density)
0 = ∇ · v (7.3)

Momentum conservation:
(Navier-Stokes equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (7.4)

To apply these equations to the problem, we follow the procedure in Figure 6.9,
which is repeated in Figure 7.5: Choose a coordinate system, simplify where
possible, and solve the equations obtained. Because the tube is cylindrical, we
choose to use cylindrical coordinates (see Tables B.5 and B.7 in Appendix B.2).

We assume that the velocity is only in the z-direction. This assumption permits
us to cancel terms in the continuity equation and in the equation of motion (EOM)
(i.e., the Navier-Stokes equation) that involve the velocity components vθ and vr :

v =
⎛
⎝ vr

vθ

vz

⎞
⎠

rθ z

=
⎛
⎝ 0

0
vz

⎞
⎠

rθ z

(7.5)

Mass conservation is given by the continuity equation for an incompressible fluid,
which in cylindrical coordinates is given here (see Equation B.5-2):

Continuity equation: 0 = ∇ · v (7.6)

0 = 1

r

∂(rvr )

∂r
+ 1

r

∂(vθ )

∂θ
+ ∂(vz)

∂z
(7.7)
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For the velocity field in Equation 7.5, vr = vθ = 0 and the continuity equation
simplifies to:

Continuity equation,
laminar pipe flow:

∂vz

∂z
= 0 (7.8)

The microscopic-momentum balance for an incompressible Newtonian fluid
is the Navier-Stokes equation. The Navier-Stokes equation in cylindrical coordi-
nates is given in Table B.7 and here:

Navier-Stokes equation: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (7.9)

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂vr

∂t
∂vθ

∂t
∂vz

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vr

(
∂vr

∂r

)
+ vθ

(
1

r

∂vr

∂θ
− vθ

r

)
+ vz

(
∂vr

∂z

)

vr

(
∂vθ

∂r

)
+ vθ

(
1

r

∂vθ

∂θ
+ vr

r

)
+ vz

(
∂vθ

∂z

)

vr

(
∂vz

∂r

)
+ vθ

(
1

r

∂vz

∂θ

)
+ vz

(
∂vz

∂z

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂r
1

r

∂p

∂θ

∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r

(
1

r

∂(rvr )

∂r

)
+ 1

r2

∂2vr

∂θ2
+ ∂2vr

∂z2
− 2

r2

∂vθ

∂θ

∂

∂r

(
1

r

∂(rvθ )

∂r

)
+ 1

r2

∂2vθ

∂θ2
+ ∂2vθ

∂z2
+ 2

r2

∂vr

∂θ

1

r

∂

∂r

(
r
∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

+ ρ

⎛
⎝ gr

gθ

gz

⎞
⎠

rθ z

(7.10)

For the coordinate system we chose (see Figure 7.4), gravity is in the
z-direction. We therefore write the gravity vector g as:

g =
⎛
⎝ gr

gθ

gz

⎞
⎠

rθ z

=
⎛
⎝ 0

0
g

⎞
⎠

rθ z

(7.11)

Substituting g and what we know already about v (i.e., steady state, vr = vθ = 0,
∂vz/∂z = 0), we obtain a simplified version of the Navier-Stokes equation

www.20file.org

http://www.semeng.ir


500 An Introduction to Fluid Mechanics

for Poiseuille flow in a tube:

⎛
⎜⎜⎜⎜⎝

0

0

0

⎞
⎟⎟⎟⎟⎠

rθ z

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂r
1

r

∂p

∂θ
∂p

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

μ

r

∂

∂r

(
r
∂vz

∂r

)
+ μ

r2

∂2vz

∂θ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

+

⎛
⎜⎜⎜⎜⎝

0

0

ρg

⎞
⎟⎟⎟⎟⎠

rθ z

(7.12)

The r - and θ-components of the Navier-Stokes equation indicate that pressure
is a function of neither r nor θ :

r -Component: −∂p

∂r
= 0 (7.13)

θ-Component: −1

r

∂p

∂θ
= 0 (7.14)

Thus, pressure is a function only of z; p = p(z). This is a useful conclusion,
which we use in solving the z-component of the Navier-Stokes equation. Note
that we did not have to assume anything about the pressure distribution to arrive
at Equations 7.13 and 7.14; rather, the assumptions that vr = vθ = 0 and writing
the form of g, coupled with conservation of momentum, were sufficient to require
that the r and θ pressure derivatives be zero.

We solve for the velocity field using the z-component of the Navier-Stokes
equation, given in Equation 7.12:

z-Component:
dp

dz
= μ

r

∂

∂r

(
r
∂vz

∂r

)
+ μ

r2

∂2vz

∂θ2
+ ρg (7.15)

Notice that we changed the partial derivative ∂p/∂z to the total derivative dp/dz
because pressure is a function only of z (∂p/∂r = ∂p/∂θ = 0).

Our task is now reduced to solving Equation 7.15. It is still a complicated
equation, however, and before we try to solve it, we look to see if we can simplify
it further by examining the meaning of each term.

The lefthand side of Equation 7.15 contains the term dp/dz. This is certainly
not zero because the axial-pressure difference is driving the flow. The righthand
side of Equation 7.15 contains θ- and r -derivatives of vz; vz certainly varies with
r because vz is zero at r = R and nonzero in the center (r = 0; see Figure 7.4).
Now we examine the possibility of θ-variation of vz . We see from Equation 7.14
that the pressure does not vary in the θ-direction. Although we did not yet find
any restriction on the θ-variation of the velocity vz , with no flow in the θ-direction
and no pressure variation in that direction, it is reasonable to assume that there is
no variation of vz in the θ-direction; that is, the flow should be symmetric with
respect to θ . We make this assumption and, as with the previous assumption of
unidirectional flow, we will check the final results against experimental observa-
tions to determine the accuracy of this assumption. On the basis of these physical
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arguments, we take ∂vz/∂θ = 0. Thus, Equation 7.15 simplifies to:

dp(z)

dz
− ρg = μ

r

∂

∂r

[
r
∂vz(r )

∂r

]
(7.16)

The partial differential equation (PDE) in Equation 7.16 is of a type not too
difficult to solve. Although it is an equation of two variables, p and vz , which
are a function of two independent variables, z and r , it is a separable equation,
meaning that we can separate the pressure and velocity parts and solve them
independently (see the Web appendix [108] for more details).

Looking at Equation 7.16, we analyze it as follows. Because by the continuity
equation (i.e., microscopic mass balance) vz is not a function of z, and by previous
assumption vz also is not a function of θ , we conclude that vz is a function of r
alone. We therefore change the partial derivatives of vz with respect to r to total
derivatives:

dp

dz
− ρg = μ

r

d

dr

(
r

dvz

dr

)
(7.17)

From the discussion of the r - and θ-components of the Navier-Stokes equation,
we found that p = p(z). Thus, the lefthand side of Equation 7.17 is a function only
of z and the righthand side is a function only of r . For two functions of different,
independent variables (r and z) to be equal for all values of the independent
variables, the two functions need to be equal to the same constant. Thus, the two
sides of Equation 7.17 are equal to the same constant, which we call λ (see the
Web appendix [108]). Our complex, multivariable equation thus becomes two
single-variable equations that we are able to solve:

Lefthand side:
dp

dz
− ρg = λ (7.18)

Righthand side:
μ

r

d

dr

(
r

dvz

dr

)
= λ (7.19)

The boundary conditions on velocity for this problem are no-slip at the wall
and symmetry relative to the centerline of the flow (see Section 6.2.2):

Velocity
boundary conditions:

(Poiseuille flow)

r = R vz = 0

r = 0
dvz

dr
= 0

(7.20)

For pressure we are given values at two locations, which we use as boundary
conditions:

Pressure
boundary conditions:

(Poiseuille flow)

z = 0 p = p0

z = L p = pL
(7.21)

Integrating Equations 7.18 and 7.19 and incorporating the boundary conditions,
we obtain the final results; calculation details are left to readers (see Problem 6).
These results are plotted in dimensionless form in Figures 7.6 and 7.7 and a
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Figure 7.6 Velocity and pressure profiles calculated for Poiseuille flow (i.e., pressure-driven flow) of a Newtonian fluid in a
tube. Average velocity 〈v 〉 in this flow is given in Equation 7.29.

vector plot of the velocity field is in Figure 7.8:

Solution
Poiseuille flow

in a tube:
p(z) = −

(
p0 − pL

L

)
z + p0 (7.22)

vz(r ) = (p0 − pL + ρgL)R2

4μL

[
1 −

(
r

R

)2
]

(7.23)

0

0.5

1.0

1.5

2.0
v

vz

r
θ

Figure 7.7 The solution for velocity profile for pressure-driven laminar flow in a tube is shown in a three-dimensional view. The
centerline velocity is twice the average velocity of this flow. The data are plotted versus dimensionless cylindrical
coordinates r /R and θ .
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v

Figure 7.8 The solution for the velocity field for pressure-driven laminar flow in a tube is shown in this arrow plot. Each arrow
starts at a location in the fluid and then points in the direction of the velocity at that point. The length of the arrow
is proportional to the speed of the fluid at that location. Because Poiseuille flow is symmetric in the θ-direction, the
arrow map shows a cross-sectional cut at a single value of θ . For a more complex flow, a three-dimensional arrow
map is required; alternatively, the solution can be plotted at various cross sections.

The solution for the flow rate, Q, is calculated using Equation 6.254:

Total flow rate
out through
surface S:

Q =
∫∫

S
[n̂ · v]at surface d S (7.24)

The surface of interest in this integral is the tube cross section at the exit. For this
surface, n̂ · v = êz · v = vz , and the surface-area element d S for the circular-tube
cross section is d S = rdθdr (Figure 4.61):

Q =
∫∫

S
vz d S (7.25)

=
∫ 2π

0

∫ R

0
vz(r ) rdrdθ (7.26)

Substituting the solution for vz(r ) from Equation 7.23 and integrating, we obtain
the relationship between pressure drop and flow rate in laminar flow in a tube
(see Problem 7). This equation is known as the Hagen-Poiseuille equation, and it
appeared in Chapter 2 (see Equation 2.8). Note that we neglect gravity in writing
Equation 7.28 and in subsequent equations in this example:1

(Gravity included) Q = π (p0 − pL + ρgL)R4

8μL
(7.27)

Hagen-Poiseuille equation
(Flow-rate/pressure-drop

for laminar tube flow)
(No gravity)

Q = π (p0 − pL )R4

8μL
(7.28)

For the case in which gravity is neglected, the average velocity is given by:

〈v〉 = Q

π R2
= (p0 − pL )R2

8μL
(7.29)

1We neglect gravity in Equation 7.28 because for most pipe flows the gravity contribution is small.
It is possible to include the hydrostatic effect of the flow-direction component of gravity for all
orientations of the pipe by defining a dynamic pressure that incorporates the effect of gravity as
an increase in the driving pressure drop (see Equation 8.115, Problem 10, and the Glossary).
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and the velocity profile (see Equation 7.23) may be written in terms of average
velocity 〈v〉 as:

vz

〈v〉 = 2

[
1 −

(
r

R

)2
]

(7.30)

which is plotted in Figures 7.6 and 7.7.
Now that we know v, we can calculate the stress field from the Newtonian

constitutive equation. Because we are in cylindrical coordinates, we must use the
correct form for the Newtonian constitutive equation in this coordinate system,
found in Table B.8:

Newtonian
constitutive equation

(stress/velocity relationship)
τ̃ (r ) = μ

(∇v + (∇v)T ) (7.31)

v =
⎛
⎝ 0

0
vz(r )

⎞
⎠

rθ z

(7.32)

(see Table B.8) τ̃ (r ) = μ

⎡
⎢⎣
⎛
⎝0 0 ∂vz

∂r
0 0 0
0 0 0

⎞
⎠

rθ z

+
⎛
⎝ 0 0 0

0 0 0
∂vz
∂r 0 0

⎞
⎠

rθ z

⎤
⎥⎦ (7.33)

=
⎛
⎝ 0 0 μ∂vz

∂r
0 0 0

μ∂vz
∂r 0 0

⎞
⎠

rθ z

=

⎛
⎜⎝ 0 0 (pL−p0)r

2L
0 0 0

(pL−p0)r
2L 0 0

⎞
⎟⎠

rθ z

(7.34)

The only nonzero stress components in τ̃ are the shear stresses, τ̃r z = τ̃zr (Fig-
ure 7.9). In this flow, a measurable quantity is the shear stress at the wall, which
is given by:

Shear stress
at wall for
pipe flow:

τ̃r z(r )|R = (pL − p0)R

2L
(7.35)

The total-stress tensor �̃ is given by Equation 4.302, �̃(r, z) = τ̃ − pI .
For Newtonian fluids in a tube �̃ becomes:

�̃(r, z) =

⎛
⎜⎝ −p(z) 0 (pL−p0)r

2L
0 −p(z) 0

(pL−p0)r
2L 0 −p(z)

⎞
⎟⎠

rθ z

(7.36)

Total stress-
tensor

Poiseuille flow
in a tube:

�̃(r, z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�p
L z − p0 0 −�p r

2L

0 �p
L z − p0 0

−�p r
2L 0 �p

L z − p0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθ z

(7.37)
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Figure 7.9 Shear-stress profile for Poiseuille flow in a tube. The magnitude of the wall stress is
∣∣∣
τ̃max

∣∣∣ = �pR/2L.

where �p ≡ p0 − pL . The tensor �̃ is a complete description of stress in this
flow, and Equation 7.37 may be used to calculate the force on any surface in the
flow by using the usual integral of n̂ · �̃|surface (see Equation 6.196):

Total molecular force
in a fluid

on a surface S:
F =

∫∫
S

[n̂ · �̃]at surface d S (7.38)

Through this microscopic analysis, we arrive at equations for vz(r ) (Equa-
tion 7.23), Q(�p) (Equation 7.28), and �̃(r, z) (Equation 7.37) for steady, lam-
inar flow in a tube. With these results, we can calculate any fluid force on any
surface (Equation 7.38; see, for example, Problem 20).

Example 7.2 shows the power of microscopic analysis. With a set of reasonable
assumptions and applying the continuum model, we can solve the problem of
steady flow for laminar pipe flow. When a flow of interest is sufficiently simple,
the microscopic-balance technique is powerful.

We obtained the result for the flow-rate/pressure-drop relationship for laminar
flow—that is, the Hagen-Poiseuille equation:

Hagen-Poiseuille equation:
(Q(�p) for

laminar tube flow):
Q = π (p0 − pL )R4

8μL
(7.39)

In the burst-pipe problem that began this chapter, the missing information was the
flow-rate/pressure-drop relationship. With Equation 7.39, we now can solve the
burst-pipe problem for the case of laminar flow. We carry out this calculation in
Example 7.3 and check the final result to see whether the laminar-flow assumption
is reasonable for the case of flow in household pipes.
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EXAMPLE 7.3 (Burst pipe, continued). The hose connecting the city water
supply to the washing machine in a home burst while the homeowner was away.
Water gushed out of the 1/2-inch Schedule 40 pipe for 48 hours before the problem
was noticed by a neighbor and the water was shut off. How much water sprayed
into the house over the two-day period? The water utility reports that the water
pressure supplied to the house was approximately 60 psig.

SOLUTION. The pressure is the driving force for the flow, and the set driving
pressure of 60 psig causes a certain flow rate for the water. That flow rate
multiplied by 48 hours gives the total amount of water that gushed into the
house:

⎛
⎝ volume

of water
in house

⎞
⎠ =

(
volume

time

)
(time interval) (7.40)

= Q�t (7.41)

If we assume that flow in the pipes is laminar, then we can calculate the
flow rate Q from the Hagen-Poiseuille equation, Q = (π�pR4)/(8μL) (Equa-
tion 7.39).

To calculate the flow rate from the Hagen-Poiseuille equation, we must know
the fluid viscosity, the radius of the pipe, the length of the pipe, and the pressure
drop across the length of the pipe. We know the pressure supplied by the municipal
water authority, and water is delivered to a house typically in a 1-inch main supply
line from the road to the house. We investigate and find that the distance from the
main to the house is 80 feet. From the terminus of the main water supply line,
we also find that there is 20 feet of 1/2-inch Schedule 40 (ID = 0.622 in.) pipe
carrying water to the washing machine. This is a typical arrangement in homes
in the United States.

QQ
80 ft 20 ft 

1-in pipe 1/2-in pipe 

p = 60 psig p = p1 p = 0 psig

Figure 7.10 We model the piping leading to the broken hose as 80 feet of 1-inch Schedule 40 pipe connected to 20 feet of
1/2-inch Schedule 40 pipe.

Thus, we have two pipes to consider (Figure 7.10), and there also are bends,
fittings, and valves in the line. For the purposes of this estimate we ignore any
pressure changes caused by them2 and consider only the pressure changes in
the straight pipes. Beginning with the larger pipe (assuming this pipe also is

2In Chapter 1 (see Example 1.10), we saw that friction due to fittings often is small compared to
wall drag in straight pipes.
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Schedule 40, ID = 1.049 in.) and applying the Hagen-Poiseuille equation, we
obtain:

Q = π (p0 − p1)R4
1

8μL1
(7.42)

= π (60 psig − p1)(0.5245 in)4

8μ(80 ft)
. (7.43)

The quantity p1 is the pressure at the end of the 1-inch main supply line. For the
smaller line to the washer, the flow rate Q is the same, and we write:

Q = π (p1 − patm)R4
2

8μL2
(7.44)

= π (p1 − 0 psig)(0.311 in)4

8μ(20 ft)
. (7.45)

Note that in gauge pressure, patm = 0 psig. We now have two equations and two
unknowns, Q and p1, which we solve simultaneously:

p1 = 40 psig

Q = 1,200 gal/min (7.46)

The result we obtain for flow rate is quite high. For comparison, we learn from
an Internet search that a typical 1-1/2-inch firehose delivers about 100 gal/min
from a driving pressure of approximately 300 psi. The largest 4-inch supply
firehose can reach 1,000 gal/min. Thus, 1,200 gal/min from a 1/2-inch line
operating at 60 psi is not reasonable. Another feasibility check is to see how
fast a swimming pool would fill at the calculated flow rate. An Internet search
reveals that 13,000 gallons is the capacity of a typical home swimming pool; at
1,200 gal/min, it would take 11 minutes to fill it, compared to a more typical filling
time of 24–34 hours, an estimate also obtained from the Web. Finally, checking
the Reynolds number, we see that according to our laminar result, Re = 7 × 106

in the small pipe. Reynolds’s experiments (see Chapter 2) indicated that laminar
flow persists only to Re = 2,100. Thus, for many reasons, this calculation of
flow rate and pressure drop arrived at from laminar flow is not correct for the
burst-pipe problem.

The reason for the incorrect result is that frictional losses in the pipes were
underestimated by assuming laminar flow. Turbulent motions dissipate energy
and slow the flow. To calculate the correct flow rate, we must study turbulent flow
and how it affects flow rate.

Using the Hagen-Poiseuille equation—which is only correct for laminar flow—
greatly underestimates the frictional drag present in pipes. The true estimate
of flow rate in household pipes (according to the Internet, it is approximately
10 gal/min) is two orders of magnitude lower than what we calculated in the
laminar example. The large discrepancy between the laminar prediction and what
is observed is evidence that the flow in household pipes is not laminar. To correctly
solve the burst-pipe problem, we must know more about turbulent flow.

www.20file.org

http://www.semeng.ir


508 An Introduction to Fluid Mechanics

Turbulent flow problems cannot be solved directly by following the
microscopic-momentum balance from start to finish as we did for laminar flow,
but we can modify our approach by incorporating experimental observations and
arrive at important results, including the flow-rate/pressure-drop relationship. We
discuss turbulent-flow modeling in the next section.

There are important flows for which the laminar-flow solution and the Hagen-
Poiseuille equation are appropriate, such as in glass-tube viscometers that are
used to find the viscosity of fluids. We show how the Hagen-Poiseuille equation
applies to these instruments in Example 7.4.

EXAMPLE 7.4. How does the measurement of efflux time �t in a Cannon-
Fenske routine viscometer (Figure 7.11) allow us to deduce the viscosity of the
fluid?

downstream
reservoir

upstream
reservoir

overfill
reservoir

capillary

cleaning
access

tube

suction-
fill tube

Figure 7.11 The Cannon-Fenske viscometer—a variation on the Ostwald viscometer invented by Wilhelm Ostwald—has two
fluid reservoirs connected by a tilted capillary tube. The fluid is drawn up through the capillary to fill the second
reservoir to overfull. The fluid level then is allowed to drop; the time required for the fluid meniscus to pass between
the two marks shown is the efflux time �t .

SOLUTION. The Cannon-Fenske viscometer is a glass apparatus that has two
fluid reservoirs connected by a tilted capillary tube (see Figure 7.11). The capillary
tube is manufactured to be straight and of uniform inside diameter (ID). An
appropriate volume is charged to the downstream reservoir and, after equilibration
at constant temperature, this fluid is drawn up through the capillary to fill the
upstream reservoir to overfull. The fluid level then is allowed to drop under the
pull of gravity. The time required for the fluid meniscus to pass between the two
dashed marks shown in Figure 7.11 is the efflux time �t .

The flow through the capillary can be analyzed as shown in Figure 7.12.
Fluid in the amount that fits in the upper reservoir, volume �V , flows through
a capillary of length L . The time required for that fluid to pass through the
capillary is the efflux time �t . Thus, the measured flow rate Q through the
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L

β

0
p

L
p

VΔ

timing mark

timing mark

Figure 7.12 Schematic of the operation of a Cannon-Fenske viscometer. A volume of fluid �V is timed as it passes through a
capillary of length L.

capillary is Q = �V/�t :

Measured flow rate
through capillary

in viscometer:
Q = �V

�t
(7.47)

The flow rate through a capillary as a function of system variables was solved
for in the previous discussion, and the result is the Hagen-Poiseuille equation
(with gravity), Equation 7.27:

Hagen-Poiseuille
(gravity gz = g included):

Q = π (p0 − pL + ρgL)R4

8μL
(7.48)

ˆBecause the capillary is tilted, gravity is not in the flow (ez) direction but rather
is tilted from êz by an angle β. To apply Equation 7.48 to the Cannon-Fenske
system defined in Figure 7.12, we substitute the correct z-component of gravity
(g cos β) for the z-component that was used in the derivation (g):

Hagen-Poiseuille
(gravity gz = g cos β included):

Q = π (p0 − pL + ρg cos βL)R4

8μL
(7.49)

We now substitute Q from Equation 7.47 and solve for �t :

Q = �V

�t
= π (p0 − pL + ρg cos βL)R4

8μL
(7.50)

�t = 8μ�V

π R4

(
1

p0−pL

L + ρg cos β

)
(7.51)

The pressure at the top of the capillary is nearly atmospheric and the pressure at
the bottom also is nearly atmospheric. Taking p0 − pL ≈ 0 (see Problem 18 for
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corrections to this assumption), we obtain the final result:

tefflux = �t = 8μ�V

π R4ρg cos β
(7.52)

Efflux time
in Cannon-Fenske

viscometer:
�t = 8ν�V

π R4g cos β
(7.53)

where ν = μ/ρ is the kinematic viscosity of the fluid. We thus can write the
kinematic viscosity in terms of viscometer dimensions and the measured efflux
time as follows:

Kinematic viscosity
obtained using
Cannon-Fenske

viscometer
(p0 − pL neglected):

ν =
(

π R4g cos β

8�V

)
�t (7.54)

The angle β depends on how the viscometer is mounted during experimental
operation; for that reason, experimentalists use great care in vertically aligning the
viscometer. The values of R and �V are fixed at the time of device manufacture.

Everything in parentheses in Equation 7.54 is fixed for a given viscometer,
although dimensions such as �V and R vary slightly among instruments. As a
matter of practicality, each viscometer is supplied by the manufacturer with a cal-
ibration constant that replaces the quantity in parentheses in Equation 7.54. The
calibration constant, which is a function of temperature, is determined at the fac-
tory by measuring efflux time �t for a material of known kinematic viscosity ν.
This approach has the advantage of accounting for the small neglected pressure
difference. Thus, the final operating equation for the Cannon-Fenske viscometer
is:

ν =
⎡
⎣
⎛
⎝ correction

factor for
p0 − pL

⎞
⎠(π R4g cos β

8�V

)⎤⎦�t (7.55)

Kinematic viscosity
obtained using
Cannon-Fenske

viscometer
(p0 − pL accounted for):

ν(T ) = α(T )�t (7.56)

where α(T ) is the temperature-dependent calibration constant supplied by the
manufacturer for a given viscometer. Note that for accurate viscosities to be
measured, each Cannon-Fenske viscometer must be mounted vertically and
charged with its standardized volume of material; excess fluid alters the back
pressure (pL ) and introduces variability not accounted for by the calibration (see
Problem 19 for more discussion on this issue).

The solution strategy in this section is general and may be used to solve for
velocity and stress fields for well-defined flows. We follow the methodology in
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this section to solve the Navier-Stokes equations for other flows in Sections 7.2
and 7.3 and in Chapter 8. When geometry or flow circumstances are complex,
computer-implemented numerical methods may be used to solve the Navier-
Stokes equations for v and p (see Section 10.2).

We return now to the burst-pipe problem and the need for information on
turbulent flow.

7.1.2 Turbulent flow in pipes

In the previous section, we sought to calculate the flow rate in the burst-pipe
example using a result from laminar flow. The formula used was the Hagen-
Poiseulle equation, an equation that relates pressure drop to flow rate for laminar
pipe flow:

Hagen-Poiseuille equation:
(Q(�p) for laminar tube flow)

Q = π (p0 − pL )R4

8μL
(7.57)

We found that the burst-pipe result predicted by this laminar-flow equation was
not correct; the predicted flow rate was orders of magnitude too high. The error in
that calculation was to use a laminar-flow relationship to predict turbulent flow.
To correctly complete the burst-pipe calculation, we need the flow-rate/pressure-
drop relationship for turbulent flow in pipes.

We can seek the missing relationship by following the same steps used to
develop the laminar-flow relationship. As we attempt to follow that process, we
hope to see why and how the method fails in turbulent flow. The steps leading to
the Hagen-Poiseuille equation (Equation 7.57) are as follows:

Steps to Hagen-Poiseuille Equation

1. Apply the microscopic mass and momentum balances to pressure-driven
tube flow (see Equations 7.7 and 7.10).

2. Simplify using reasonable assumptions (see Equations 7.8 and 7.17).
3. Calculate the velocity field, which is a function of pressure drop (see

Equation 7.23).
4. Calculate the flow rate as an integral over the velocity field (see Equa-

tion 7.26).

For turbulent flow, Step 1 is easy—the microscopic mass and momentum equa-
tions for turbulent pipe flow are the same as for laminar pipe flow (see Equa-
tions 7.3 and 7.4). The difficulty arises in Step 2 as we attempt to solve these
equations for the turbulent velocity field. In the laminar-flow case, the calcula-
tion was fairly simple because the flow was simple: unidirectional, steady, and
symmetrical. Turbulent flow has none of these characteristics (see Section 2.4
and Figure 7.13). Turbulent flow is time-varying and three-dimensional, meaning
vr �= 0 and vθ �= 0. Because we cannot solve for the velocity field in turbu-
lent flow, we cannot directly calculate Q(�p) for turbulent flow using the steps
outlined here.
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(a) laminar flow

(b) turbulent flow

fluid particle

fluid particle

v

v

particle
path

particle path

Figure 7.13 Laminar flow (a) is a flow in which fluid particles move in layers, one layer sliding over the other (the word laminar
comes from the Latin word for layer). In laminar flow, particles move along straight paths and the velocity along
them is constant at steady state. The fluid particles deform in a well-defined manner. In turbulent flow, (b) the
detailed motion of fluid particles is not well defined and a great deal of mixing occurs. Particles move along tortuous
trajectories, one of which is shown here, and are deformed in ways that are difficult to quantify. The velocity field,
even at steady state, is a wildly fluctuating function of space and time.

A modification of the calculation procedure that works for turbulent flow is
to use experiments to fill in the gaps in the theoretical approach (Figure 7.14).
Combining a theoretical approach with experimental results can be an effective
way to understand complex phenomena. This technique was pursued successfully
for turbulent flow in pipes by Ludwig Prandtl who, in the first half of the 20th
century, published a flow-rate/pressure-drop equation for turbulent flow in pipes
[175, 136]. Prandtl’s equation is of a mixed theoretical/experimental type, called
data correlations. Prandtl’s data correlation for �p(Q) is given here:3

Prandtl correlation
for flow rate/pressure drop

(turbulent pipe flow,
smooth pipe):

1√
f

= 4.0 log Re
√

f − 0.40 (7.58)

3The Prandtl correlation is equivalent to the Colebrook equation of Chapter 1 with ε = 0 (see
Equation 1.95).

www.20file.org

http://www.semeng.ir


513 Internal Flows

1. Apply microscopic mass 
and momentum balances 
to the problem.

2. Solve for the velocity 
profile.

3. Integrate the velocity 
profile to obtain the flow
rate as a function of
pressure drop.

1. Apply microscopic mass and 
momentum balances to the problem.

2. Solve for the velocity profile                                                                                                    

Analyze the microscopic equations 
to obtain the form of Δp(Q).

3. Integrate the velocity profile to 
o                                 

                                                                                                    

btain flow rate as a function of 
p                                      

                                                                                                    

ressure drop                                                                                                    Perform 
experiments to determine Δp(Q).

Laminar Flow Turbulent Flow 

Dimensional 
analysis 

Problem-Solving Strategies for Pipe Flow 

Figure 7.14 The procedure that leads to the flow-rate/pressure-drop relationship for laminar flow may be modified to give
useful results in turbulent flow.

There are two dimensionless variables in this equation, f —the Fanning friction
factor—which is related to pressure drop, and Re—the Reynolds number—which
is related to flow rate:

Fanning friction factor
in tubes:

f = (p0 − pL )D

2ρV 2L
(7.59)

Reynolds number
in tubes:

Re = ρV D

μ
(7.60)

in which V = 〈v〉 = Q/π R2 is the average velocity across the pipe cross sec-
tion. The Fanning friction factor and a version of the Prandtl correlation were
introduced in the quick-start section in Chapter 1.

The development of Prandtl’s correlation (discussed in the next section) fol-
lowed the steps shown on the right side of Figure 7.14. First, the mass and
momentum balances for pipe flow were written. Second, these microscopic equa-
tions were manipulated to show how the mass and momentum-conservation laws
constrain �p(Q). This step involves a technique called dimensional analysis,
which is discussed in detail in Section 7.1.2.2. Third, experiments were per-
formed to determine the actual function �p(Q) (with all of the details filled in)
for turbulent flow.

Dimensional analysis is a powerful tool of science and engineering that can
be used to establish the variables that impact a given quantity. For the pipe-flow
problem, Prandtl and his coworkers used dimensional analysis to determine the
appropriate experiments to conduct to determine �p(Q) (Equation 7.58) for
turbulent pipe flow. The science leading to Equation 7.58 takes time to explain
and comprehend, and we turn to that effort next. First, however, we use the Prandtl
correlation to solve the burst-pipe problem for turbulent flow.

EXAMPLE 7.5 (Burst pipe, concluded). The hose connecting the city water
supply to the washing machine in a home burst while the homeowner was away.
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Water gushed out of the 1/2-inch Schedule 40 pipe for 48 hours before the problem
was noticed by a neighbor and the water was shut off. How much water sprayed
into the house over the two-day period? The water utility reports that the water
pressure supplied to the house was approximately 60 psig.

SOLUTION. Pressure is the driving force for the flow and the fixed driving
pressure of 60 psig causes a certain flow rate of the water. That flow rate multiplied
by 48 hours gives the total amount that sprayed into the house:⎛

⎝ volume
of water
in house

⎞
⎠ =

(
volume

time

)
(time interval) (7.61)

= Q�t (7.62)

If we assume that the flow in the pipes is turbulent, then we can calculate the flow
rate Q from the Prandtl correlation (assuming smooth pipes).

As before (see Example 7.3), we assume that the municipal water supply is
connected to the house by 80 feet of 1-inch Schedule 40 pipe, which subsequently
connects in the house to the washing machine through 20-feet of 1/2-inch Sched-
ule 40 pipe. Thus, we have two pipes to consider (Figure 7.10), and there also are
fittings and valves in the line. We ignore any pressure changes due to the fittings
or valves and the velocity change and consider only the pressure changes in the
straight pipes (Problem 12 considers the complete case).

In principle, the solution method for this turbulent-flow problem is the same
as the method used in the previous attempt, in which we considered laminar flow
in the same system. The flow-rate/pressure-drop relationship (we now use the
Prandtl correlation instead of the Hagen-Poiseuille equation) must be satisfied in
each section, and the pressure drop over the two pipes must total 60 psig. Because
the flow-rate/pressure-drop relationship for turbulent flow (i.e., the Prandtl cor-
relation) is highly nonlinear, however, we must perform iterative calculations to
solve for the pressures and flow rate.

In each pipe section, the flow-rate/pressure-drop relationship is given by the
Prandtl correlation, Equation 7.58. Both the friction factor f and the Reynolds
number Re are functions of flow rate through the average velocity 〈v〉 ≡ V =
Q/π R2, which we do not know. The friction factor also depends on the pressure
drop for each pipe section. There is sufficient information to solve for the two
pressure drops and for the overall flow rate (i.e., two equations and two unknowns),
but we cannot solve directly for these unknowns.

An iterative solution could be performed as shown in Figure 7.15.

Solution steps:

1. Guess flow rate Q.
2. Calculate the Reynolds number in the large pipe, Re1 = ρ〈v〉1 D1/μ.
3. Calculate f1 for the large pipe from the friction-factor/Reynolds-number

correlation for turbulent flow, the Prandtl correlation (see Equation 7.58).
Note that the calculation of f1 from Equation 7.58 must be done iteratively.

4. With the value of f1 calculated and the assumed flow rate Q, calculate the
pressure drop �p1 across the large pipe from the expression that gives the
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Calculate Q guess Q= 0.001972 m3/s

change units Q= 31 gpm

density r= 997.08 kg/m3

V1=4Q/pD1
2 V1= 3.537 m/s

1" pipe given D1= 0.0266 m

viscosity m= 8.94E-04 Pa s
calculate Re from definition Re1= 105,154     

Calculate f1 from Prandtl correlation guess f1= 0.004454   

iterate to final answer g (f )= 14.98         
next round f  = 1/g (f )2

f final= 0.004454   

given L1= 80               ft

change units L1= 24.4            m

calculate Dp from friction factor Dp1= 1.02E+05 Pa  

 pressure drop across the first tube Dp1= 14.8            psi

total Dp (given) Dptotal= 60               psi

 pressure drop across the second tube Dp2= 45.2            psi

change units Dp2= 3.12E+05 Pa
given D2= 0.0158 m

Calculate V2 from Prandtl correlation
(no iteration needed) L2= 20 ft

change units L2= 6.1              m

calculate Re from correlation LHS= 15.8006     
f = 1/LHS2

f 2= 0.004005   

next round V2 V2= 10.0612     m/s

Next round Q=V2pD2
2/4 Q= 0.001972 m3/s

)( fg  

f
f

1
4.0)log(Re4 =−  

Prandtl correlation: 

fVL

pDVD 1
4.0

2
log4

2
=−⎥

⎦

⎤
⎢
⎣

⎡ Δ
ρμ

ρ
Prandtl correlation: 

LHS 

22 VL

pD
f

ρ
Δ=  

Pipe friction factor from 
experiments: 

Figure 7.15 The iterative solution for the flow rate may be carried out in a spreadsheet program. The steps of the solution are
described in this chapter. The values shown correspond to the final iteration.

friction factor in pipes in terms of pressure drop and geometric and material
parameters (see Equation 7.59).

5. Calculate the pressure drop �p2 across the small tube from �p2 =
60 psig − �p1.

6. Calculate velocity 〈v〉2 in the smaller pipe through solution of Equa-
tion 7.58, the Prandtl correlation. Note that although we do not know
the friction factor f2 or the Reynolds number Re2 for the smaller pipe,
we do know the pressure drop. Both the friction factor and the Reynolds
number are a function of velocity, but the product Re

√
f is independent of

velocity and can be calculated directly from �p2 for the small pipe:

Re
√

f = ρ〈v〉D

μ

√
�pD

2Lρ〈v〉2
(7.63)

= ρD

μ

√
�pD

2Lρ
(7.64)

=
√

ρ�pD3

2Lμ2
(7.65)
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The lefthand side of the Prandtl correlation is calculated using the expres-
sion for Re

√
f . This gives f , and the velocity is calculated directly from

Equation 7.59. No iterations are necessary for this step.
7. Calculate flow rate from Q = 〈v〉2π D2

2/4.
8. Compare calculated flow rate Q with the initial guess and iterate until the

two values converge.

For this problem and following this procedure, we calculate that the flow rate
in the burst pipe is 31 gpm. The pressure drop across the larger and smaller pipes
is 15 and 45 psi, respectively. The smaller cross-sectional area of the small pipe
causes a larger resistance to flow; thus, the pressure drop across the smaller pipe
is much larger than across the larger pipe. Note that the flow is turbulent (i.e.,
Re = 105,000), as we assumed.

We now calculate the volume of water that filled the house over two days as a
result of the burst water pipe:

⎛
⎝ volume

of water
in house

⎞
⎠ =

(
volume

time

)
(time interval) (7.66)

= Q�t (7.67)

=
(

31 gal

min

)(
60 min

h

)(
24 h

day

)
(2 days) (7.68)

= 89,280 gal (7.69)

= 89,000 gal (two significant figures) (7.70)

Thus, a volume of water equal to six times the volume of a typical home
swimming pool (i.e., 6 × 13, 000 gal) spilled into the home over two days. If
the amount of half-inch pipe were longer (i.e., the distance from the water main
line to the washer is farther), the flow rate would be less because there would be
more friction.

The burst-pipe example shows the usefulness of the Prandtl data correlation
for calculating flow rates in pressure-driven turbulent flow in straight pipes.
The Prandtl correlation also may be used to calculate flows and pressures in
complex piping systems, as shown in Example 7.9. Another data correlation, the
Colebrook equation (Equation 7.161; see Chapter 1 and Section 7.1.2.3), relates
flow rate/pressure drop in rough pipes; there are data correlations available for
�p(Q) in other circumstances—for example, in conduits of different shapes (see
Section 7.2) [132].

The Prandtl data correlation and the others mentioned all come from exper-
imental observations. By definition, a data correlation is a function, table, or
rule of thumb that summarizes actual behavior of a real system. To arrive at
data correlations, we must conduct experiments. If we have an actual apparatus
of interest—a coating line or an artificial heart, for example—we can conduct
experiments on the actual device and correlate the data through fitting functions,
summarizing the data in tables, or establishing rules of thumb.
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If we do not have the actual piece of equipment but want to make an estimate
of how a device or variations on it might behave, we must exploit our knowledge
of the physics that similar devices have in common. This is what Prandtl did in
arriving at Equation 7.58 and what has been done by generations of physicists and
engineers in the development of new technologies. Subsequent sections describe
the process of dimensional analysis and how it can be applied to a complex
system such as turbulent flow in a pipe. Through dimensional analysis, a process
that shows the essential relationships in a system, we are able to conclude that
flow-rate/pressure-drop relationships in similar pipes can be organized in a single
equation if the data are written in terms of the Fanning friction factor as a function
of the Reynolds number f (Re). Once we make this determination, experiments
show the exact form of the f (Re) relationship, and a data correlation such as the
Prandtl correlation may be produced.

The next two subsections explain how the Prandtl correlation may be developed
for turbulent flow in smooth pipes with the help of dimensional analysis. Uses
of data correlations in pipe-flow problems are discussed in Section 7.1.2.3. We
move on to other internal flows in Section 7.2.

7.1.2.1 MOMENTUM BALANCE IN TURBULENT FLOW
We are investigating a way to quantify flow rate/pressure drop in turbulent flow.
As shown previously, we calculate flow rate/pressure drop in laminar flow by
solving the continuity equation and the Navier-Stokes equations in the flow:

Mass conservation:
(continuity equation,

constant density)
0 = ∇ · v (7.71)

Momentum conservation:
(Navier-Stokes equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (7.72)

To make the same calculation for turbulent flow, therefore, we first must solve
for the velocity field and stress tensor for turbulent flow in a tube:

Turbulent pipe flow: v =
⎛
⎝ vr (r, θ, z, t)

vθ (r, θ, z, t)
vz(r, θ, z, t)

⎞
⎠

rθ z

(7.73)

We attempt to do this now, following the same steps as in the laminar-flow
calculation.

For the laminar-flow solution, we solved the mass and momentum balances for
the velocity field v by making reasonable assumptions about the flow symmetry,
such as unidirectional flow, steady state, and θ-symmetry. Because laminar flow
is well organized and has a great deal of symmetry, we obtained the complete
solutions for v and p and could calculate the flow-rate/pressure-drop relationship
for laminar tube flow in the form of the Hagen-Poiseuille equation.

Using the laminar-flow case as a guide, we now think about turbulent flow to see
whether we can identify any features that allow us to simplify Equations 7.71–7.73
and to proceed to calculate �p(Q) in turbulent flow. In the laminar-flow solution,
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we obtained vz(r ) by solving the z-component of the equation of motion. In
cylindrical coordinates, the z-component of the equation of motion for turbulent
tube flow is:

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)

= −∂p

∂z
+ μ

(
1

r

∂

∂r

(
r
∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

)
+ ρgz (7.74)

We see that none of the terms is zero for turbulent flow: Turbulent flow is time-
varying; turbulent flow has three nonzero velocity components; vz varies in all
three coordinate directions; and pressure varies in the z-direction.

Because we cannot solve the Navier-Stokes equations for turbulent flow, we
need a new approach. If we need a detailed understanding of the structure and
stresses of turbulent flow, we show in Section 10.3 that a useful approach is to
consider a time-averaged version of the microscopic-momentum balance. In that
approach, each velocity component vi = vr , vθ , vz is written as a mean value vi

plus a time-fluctuating term v′
i , and the entire momentum-balance equation is

averaged over a reasonable time interval T . Statistical methods then are used to
describe and model the structure and stresses associated with turbulence. The
development of the time-averaging approach was critical to advances in the basic
understanding of turbulence that were achieved in the second half of the 20th
century [10, 165].

Fortunately, we do not need a detailed understanding of the structure and
stresses of turbulence to address the current problem. We seek only to understand
the flow-rate/pressure-drop relationship in turbulent flow. Because we defined
the scope of the problem as the narrow issue of the flow-rate/pressure-drop
relationship, we can use a combined analytical/experimental approach.

To summarize, it is not possible to obtain directly an analytical expression
for �p(Q) in turbulent flow. It is possible to pursue a statistical exploration
of turbulence, but this effort is not needed for our limited purposes. Instead,
we develop a correlation for �p(Q) using experimental data on turbulent flow
in pipes. To be sure to capture the physics of the flow, we design the �p(Q)
experiments using the physics implicit in the mass and momentum balances
(Equations 7.71–7.73). The fundamental physics can tell us the form of the
correlation between �p and Q before a single datapoint is taken.

7.1.2.2 DIMENSIONAL ANALYSIS
We seek the pressure-drop/flow-rate relationship for turbulent flow. The situation
is that we know the equations that govern mass and momentum conservation for
turbulent flow, Equations 7.71 and 7.72, but we cannot solve them:

Mass conservation:
(continuity equation,

constant density)
0 = ∇ · v (7.75)

Momentum conservation:
(Navier-Stokes equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (7.76)
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We decide to conduct experiments to provide the information we need, but there
are many variables and physical properties to consider. The flow is characterized
by unknown fields p and v as a function of position and time, and the flow also is
a function of material parameters density ρ and viscosity μ, which are different
for different fluids. The physical dimensions of the system (D, L) also affect
our results. Our first task is to determine how these various factors interact and
influence the flow produced. We can do so by looking at how these parameters
influence solutions to the Navier-Stokes equation.

The Navier-Stokes equation is the complete expression of momentum con-
servation for Newtonian fluids, but certain terms of the Navier-Stokes equation
are more or less important in any particular case under consideration. For exam-
ple, when viscosity is very large, the μ∇2v term dominates the Navier-Stokes
equation. When the time-rate-of-change is rapid, the time-derivative term ∂v/∂t
dominates. Many terms (but not all) contain velocity; some contain velocity more
than once. The effect of geometry also is complex because it affects the spatial
derivatives, which appear on both the lefthand (v · ∇v) and righthand (μ∇2v)
sides of the equation.

To determine how each term scales for a given problem, we nondimensionalize
each quantity in the equation. We used a type of nondimensionalization before
when we sought a convenient way to plot complex equations. For example, the
equation for the final velocity field in Poiseuille flow in a tube (see Equation 7.23),
reproduced here, was plotted in Figure 7.6 in terms of the dimensionless quantity
vz/〈v〉 as a function of the dimensionless variable r/R:

vz = (p0 − pL )R2

4μL

[
1 −

(
r

R

)2
]

(7.77)

〈v〉 = Q

π R2
= (p0 − pL )R2

8μL
(7.78)

vz

〈v〉 = 2

[
1 −

(
r

R

)2
]

(7.79)

We always should be able to organize an equation into nondimensional groups
because every equation must be dimensionally consistent. Organizing an equation
into nondimensional form serves to visualize a final solution (see also Figures 7.9,
7.28, and 7.30), find algebra mistakes, and see clearly the form of an equation
without distracting details.

We extend the idea of plotting nondimensionally to our current problem of
determining which quantities in the Navier-Stokes equations are important for
certain flows. If we rewrite the governing equations in terms of nondimensional
versions of velocity, coordinate directions r and z, velocity, time, and other
variables, we see more clearly the structure of the equations. The clarity that
comes from rewriting these equations in nondimensional form helps considerably
in designing experiments, plotting data, and deriving correlations.

We seek to nondimensionalize the continuity equation and the z-component of
the Navier-Stokes equation (Equation 7.74). To nondimensionalize a term such
as ∂vz/∂r , we choose characteristic values of velocity and length. For turbulent

www.20file.org

http://www.semeng.ir


520 An Introduction to Fluid Mechanics

tube flow, we choose the average velocity V ≡ 〈v〉 as the characteristic velocity
and the pipe diameter D = 2R as the characteristic distance. These choices are
arbitrary, and how effective they are as choices can be decided only from the final
results of the analysis. We define nondimensional variables v∗

z and z∗ as the ratios
of the dimensional variables to the characteristic values:

v∗
z ≡ vz

V
(7.80)

z∗ ≡ z

D
(7.81)

We must nondimensionalize all of the variables in the Navier-Stokes equation;
thus, we define the additional dimensionless variables here:

v∗
r ≡ vr

V
(7.82)

v∗
θ ≡ vθ

V
(7.83)

r∗ ≡ r

D
(7.84)

So far, we can nondimensionalize with only two characteristic scale factors, V
and D. We also must nondimensionalize time; if we choose the ratio D/V as the
characteristic time, we avoid introducing yet another scale factor:

t∗ ≡ t

D/V
(7.85)

The time D/V represents the time that the fluid traveling at the average velocity
requires to travel a distance of one tube diameter. This seems reasonable as
a characteristic time for tube flow; again, the utility of these choices can be
evaluated only when we see the final results of the analysis.

Having constructed dimensionless velocities, distances, and times, we now are
ready to substitute these dimensionless variables into the continuity equation and
the z-component of the Navier-Stokes equation. We anticipate that the resulting
dimensionless equations will be easier to interpret than their dimensional analogs.
Solving Equations 7.80–7.85 for the dimensional variables vr , vθ , vz , z, r , and t
and substituting them in the continuity equation, we obtain:

Continuity equation:
(incompressible)

∂vr

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 (7.86)

∂
(
v∗

r V
)

∂r∗ D
+ 1

r∗ D

∂
(
v∗

θ V
)

∂θ
+ ∂

(
v∗

z V
)

∂z∗ D
= 0 (7.87)

Dimensionless
continuity
equation:

∂v∗
r

∂r∗ + 1

r∗
∂v∗

θ

∂θ
+ ∂v∗

z

∂z∗ = 0 (7.88)

This dimensionless result does not contain any scale factors containing the char-
acteristic dimensions V or D; thus, this equation does not yield any information
about the relative importance of the dimensionless derivatives. Each term in
Equation 7.88 is equally important in all flows.
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Following the same steps for the z-component of the Navier-Stokes equation,
we obtain:

z-component Navier-Stokes equation:

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)

= −∂p

∂z
+ μ

(
1

r

∂

∂r

(
r
∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

)
+ ρgz

Dimensionless z-component Navier-Stokes equation:

ρ

(
∂(v∗

z V )

∂(t∗ D/V )
+ (v∗

r V )
∂(v∗

z V )

∂(r∗ D)
+ (v∗

θ V )

(r∗ D)

∂(v∗
z V )

∂θ
+ (v∗

z V )
∂(v∗

z V )

∂(z∗ D)

)

= − ∂p

∂(z∗ D)
+ μ

(
1

(r∗ D)

∂

∂(r∗ D)

(
r∗ D

∂(v∗
z V )

∂(r∗ D)

)
+ 1

(r∗ D)2

∂2(v∗
z V )

∂θ2

+ ∂2(v∗
z V )

∂(z∗ D)2

)
+ ρgz (7.89)

There are two terms that have not been nondimensionalized: pressure and gravity.
We nondimensionalize gravity by defining g∗

z ≡ gz/g. For inspiration on how to
address the pressure term, we return to a discussion of the solution of laminar
flow in a tube.

We need a characteristic pressure to nondimensionalize the pressure term in
Equation 7.89. We begin by calling the characteristic pressure P and nondimen-
sionalizing as usual:

p∗ ≡ p − pref

P
(7.90)

We choose to express p∗ in terms of a pressure difference rather than as an
absolute pressure because pressure differences cause flow. With this definition,
the pressure-gradient term of the z-component of the Navier-Stokes equation
becomes:

Pressure term
nondimensional
Navier-Stokes:

−
(

1

D

)
∂p

∂z∗ = −
(

P

D

)
∂p∗

∂z∗ (7.91)

We now write P in terms of other characteristic quantities by forcing the
coefficient of the pressure term to be the same as the coefficient of the ∂vz/∂t
or v · ∇v terms. Thus:(

coefficient of
pressure term

)
=
(

coefficient of
∂/∂t term

)
(7.92)

P

D
= ρV 2

D
(7.93)

P = ρV 2 (7.94)

Note that this choice of characteristic pressure is dimensionally correct.
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Figure 7.16 The inertial terms of the momentum balance are on the lefthand side. The righthand side of the momentum balance
has the forces that act on the control volume.

The choice P = ρV 2 is arbitrary, but we can argue its reasonableness. The
lefthand-side terms of the Navier-Stokes equation are the rate-of-change and the
convective terms, which are collectively known as the inertial terms (Figure 7.16).
These terms are directly concerned with the fluid momentum; thus, choosing to
link the pressure and inertial terms is the nondimensional equivalent of allowing
the velocity term to be calculated in terms of the pressure. This was our approach
in the laminar-flow solution, and we make this choice for nondimensionalizing
pressure; it can be truly justified only by testing the final results of our analysis
against what is observed in laboratory flow.

We arrive at a version of the z-component of the microscopic-momentum-
balance equation written in terms of nondimensional variables:

(
ρV 2

D

)[
∂v∗

z

∂t∗ + v∗
r

∂v∗
z

∂r∗ + v∗
θ

r∗
∂v∗

z

∂θ
+ v∗

z

∂v∗
z

∂z∗

]

=
(
−ρV 2

D

)
∂p∗

∂z∗ +
(

μV

D2

)[
1

r∗
∂

∂r∗

(
r∗ ∂v∗

z

∂r∗

)
+ 1

r∗2

∂2v∗
z

∂θ2
+ ∂2v∗

z

∂z∗2

]
+ (ρg) g∗

z

(7.95)

The characteristic values V and D along with ρ and μ are grouped in front of
each term of Equation 7.95, and these groupings indicate the relative magnitudes
of the various terms.

Inertial and pressure terms
ρV 2

D
(7.96)

Viscous terms
μV

D2
(7.97)

Gravity term ρg (7.98)
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We can make the front factors dimensionless if we divide through by one of
them—for example, if we divide through by the inertial group ρV 2/D:

∂v∗
z

∂t∗ + v∗
r

∂v∗
z

∂r∗ + v∗
θ

r∗
∂v∗

z

∂θ
+ v∗

z

∂v∗
z

∂z∗

= −∂p∗

∂z∗ + 1

Re

[
1

r∗
∂

∂r∗

(
r∗ ∂v∗

z

∂r∗

)
+ 1

r∗2

∂2v∗
z

∂θ2
+ ∂2v∗

z

∂z∗2

]
+ 1

Fr
g∗

z (7.99)

The two dimensionless scale factors that appear in the nondimensional Navier-
Stokes equation are called the Reynolds number and the Froude4 number:

Reynolds number: Re ≡ ρV D

μ
ratio of

(inertial forces)

(viscous forces)
(7.100)

Froude number: Fr ≡ V 2

gD
ratio of

(inertial forces)

(gravity forces)
(7.101)

If we nondimensionalize the r - and θ-components of the Navier-Stokes equation,
the same dimensionless groups appear. Thus, the dimensionless Navier-Stokes
equation written in Gibbs notation is as follows (see Figure 7.16):

Dimensionless
Navier-Stokes:

∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗ p∗ +
(

1

Re

)
∇∗2

v∗ +
(

1

Fr

)
g∗

(7.102)

where ∇∗ represents the dimensionless del operator.
The dimensional analysis so far indicates that the Navier-Stokes equation for

any given problem is specified by the values of two dimensionless groups: the
Reynolds number and the Froude number. The grouping of scale factors that we
performed made it easier to see how the Navier-Stokes equation would change if
it were applied to different pipe-flow problems; that is, if the density or viscosity
changed or if the pipe diameter changed. If Re is large, for example, the Re−1∇2v

term drops to zero. The familiar Reynolds number is the ratio of inertial to viscous
forces in the Navier-Stokes equation.

We seek the pressure-drop/flow-rate relationship for turbulent flow. We showed
that for any pipe-flow problem, the mass and momentum balances are governed by
the Reynolds number and the Froude number. To apply this dimensional analysis
result to turbulent pipe flow, we must recognize that pressure drop and flow rate
are connected through the drag on the walls of the tube. To show the relationship
between wall drag and pressure drop, we calculate Fdrag for laminar flow next.
After we identify the governing relationships for the problem of pipe flow, we
return to the turbulent-flow case.

4Pronounced “Frood.”
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EXAMPLE 7.6. What is the equation for drag at the wall for steady, laminar,
pressure-driven flow of a Newtonian fluid in a pipe? This flow is called Poiseuille
flow.

SOLUTION. In Section 6.2.3.1, we discuss fluid forces at walls, which may be
obtained from a surface integral over n̂· the stress tensor on the surface:

Total molecular fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (7.103)

ˆThe stress on the inside walls of the pipe (i.e., unit normal is −er , location is
r = R) is [n̂ · �̃ ˆ]at surface = −er · �̃|R . In a previous example, we solved for the
stress tensor in laminar pipe flow of an incompressible Newtonian fluid (see
Equation 7.37). Therefore, we calculate the total stress on the pipe walls by
carrying out the integration in Equation 7.103 using the known laminar-flow
solution for �̃(r, z):

Pressure-driven
laminar flow

in a tube
(Newtonian):

�̃(r, z) =

⎛
⎜⎜⎜⎝

−p(z) 0 (pL−p0)r
2L

0 −p(z) 0
(pL−p0)r

2L 0 −p(z)

⎞
⎟⎟⎟⎠

rθ z

(7.104)

[n̂ · �̃ ˆ]at surface = −er · �̃|R (7.105)

= (−1 0 0
)

rθ z
·

⎛
⎜⎜⎜⎝

−p(z) 0 (pL−p0)R
2L

0 −p(z) 0
(pL−p0)R

2L 0 −p(z)

⎞
⎟⎟⎟⎠

rθ z

(7.106)

=
(

p(z) 0 − (pL−p0)R
2L

)
rθ z

(7.107)

=

⎛
⎜⎜⎜⎝

p(z)

0
(p0−pL )R

2L

⎞
⎟⎟⎟⎠

rθ z

(7.108)

The r -component of Equation 7.108 represents the radial force on the pipe
walls, which must be counterbalanced by the material strength of the solid pipe
or the pipe will burst. The z-component of Equation 7.108 represents the axial
drag on the pipe walls:

Fdrag =
⎛
⎝ axial drag

in laminar flow
in a pipe

⎞
⎠ =

⎛
⎜⎜⎜⎝

ˆ

z-component of
total force

on CV surface
of unit normal −er

⎞
⎟⎟⎟⎠ (7.109)

www.20file.org

http://www.semeng.ir


525 Internal Flows

Fdrag =
∫ L

0

∫ 2π

0
êz · ( n̂ · �̃|surface) R dθdz (7.110)

=
∫ L

0

∫ 2π

0
ˆ ˆez · (−er · �̃|R) R dθdz (7.111)

=
∫ L

0

∫ 2π

0

(
0 0 1

)
rθ z

·
⎛
⎝ p(z)

0
�pR
2L

⎞
⎠

rθ z

R dθdz (7.112)

=
∫ L

0

∫ 2π

0

(p0 − pL )R

2L
R dθdz (7.113)

= (p0 − pL )π R2 (7.114)

Laminar pipe flow: Fdrag = (p0 − pL )π R2 (7.115)

The inner pipe surface experiences drag in the (+z)-direction due to the fluid
motion. This can be visualized as the stickiness of the viscous fluid grabbing
onto the walls and attempting to drag the pipe forward with the fluid as it moves
along.

The result in Equation 7.115 is derived here for laminar flow; in Chapter 9, we
also obtain the same result for turbulent flow using a macroscopic-momentum
balance (see Equation 9.236):

Laminar or turbulent
pipe flow:

Fdrag = (p0 − pL )π R2 (7.116)

ˆ

The relationship between wall drag and pressure turns out to be independent
of flow type. Our current problem of pressure drop/flow rate can be recast as a
calculation of Fdrag as a function of Q.

Recognizing wall drag as the cause of pressure drop in pipe flow leads to
the correct governing expression for our pressure-drop/flow-rate problem for
turbulent flow. The general expression for drag in pipe flow—Equation 7.110,
repeated here—is the key result of Example 7.6:

Axial fluid drag
on a pipe surface

of unit normal −er :
Fdrag =

∫ L

0

∫ 2π

0
ˆ ˆez · (−er · �̃|R) R dθdz (7.117)

We now nondimensionalize this expression to drill down to the fundamental
relationship governing pressure drop/flow rate in general pipe flow.
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We can write a detailed version of Equation 7.117 for turbulent flow by using
the general expression for �̃:

Stress tensor: �̃ = −pI + τ̃ (7.118)

=
⎛
⎝ τ̃rr − p τ̃rθ τ̃r z

τ̃θr τ̃θθ − p τ̃θ z

τ̃zr τ̃zθ τ̃zz − p

⎞
⎠

rθ z

(7.119)

ˆ

Axial fluid drag
on a pipe surface

of unit normal −er :
Fdrag =

∫ L

0

∫ 2π

0
ˆ ˆez · (−er · �̃|R) R dθdz (7.120)

=
∫ L

0

∫ 2π

0

⎛
⎝0

0
1

⎞
⎠rθ z ·

[(−1 0 0
)

rθ z
· �̃|R

]
R dθdz

(7.121)

=
∫ L

0

∫ 2π

0
−τ̃r z|R R dθdz (7.122)

We arrived at the simplified expression in Equation 7.122 by using matrix calcu-
lations to carry out the dot products in Equation 7.121. We need the shear stress
τ̃r z to calculate Fdrag for turbulent flow. For both laminar and turbulent flow,
shear stress τ̃r z is related to the velocity field through the Newtonian constitutive
equation (see Table B.8):

Newtonian constitutive equation: τ̃ = μ(∇v + (∇v)T ) (7.123)

r z-Component of τ̃ : τ̃r z = μ

(
∂vz

∂r
+ ∂vr

∂z

)
(7.124)

ˆ

Thus, substituting Equation 7.124 into Equation 7.122, we obtain the analytical
expression for the axial drag in a pipe in turbulent flow:

Axial fluid drag
in turbulent flow
on a pipe surface

of unit normal −er :

Fdrag =
∫ L

0

∫ 2π

0
−μ

(
∂vz

∂r
+ ∂vr

∂z

)∣∣∣∣∣∣
R

R dθdz (7.125)

To proceed further in the calculation ofFdrag, we need the solution for the turbulent
velocity field v(r, θ, z, t).

We determined, in general terms, how drag is related to flow for turbulent flow.
With this result, we now are ready to try dimensional analysis on our problem. As
discussed previously, we cannot solve the Navier-Stokes equations for turbulent
flow; thus, we cannot calculate Fdrag directly. We are following the dimensional-
analysis approach, however; and thus, we can nondimensionalize Equation 7.125
to see which dimensionless groups enter into wall drag and therefore into
�p(Q).

To nondimensionalize Equation 7.125, we use the same dimensionless quanti-
ties v∗

z , r∗, and so on, as when we nondimensionalized the Navier-Stokes equation.

www.20file.org

http://www.semeng.ir


527 Internal Flows

As in that case, we apply dimensional analysis to determine what the important
factors are in our problem. Beginning with Equation 7.125, we substitute the
usual dimensionless expressions and obtain:

Fdrag =
∫ L

0

∫ 2π

0
−μ

(
∂vz

∂r
+ ∂vr

∂z

)∣∣∣∣∣∣
R

R dθdz (7.126)

=
∫ L/D

0

∫ 2π

0
−μ

(
∂(v∗

z V )

∂(r∗ D)
+ ∂(v∗

r V )

∂(z∗ D)

)∣∣∣∣∣∣
r∗=1/2

D

2
dθ(dz∗ D)

(7.127)

Fdrag

(
2

μV D

)
=
∫ L/D

0

∫ 2π

0
−
(

∂v∗
z

∂r∗ + ∂v∗
r

∂z∗

)∣∣∣∣∣∣
r∗=1/2

dθdz∗ (7.128)

We have not yet chosen how to nondimensionalize the wall drag Fdrag. All
the quantities on the righthand side of Equation 7.128 are dimensionless. The
dimensionless velocity gradients ∂v∗

z /∂r∗ and ∂v∗
r /∂z∗ come from the solution of

the dimensionless Navier-Stokes equation, Equation 7.102, which is a function of
the two dimensionless numbers Re and Fr. The righthand side of Equation 7.128
has an additional dimensionless group in it, L/D. We organize the lefthand side
of Equation 7.128 by writing the viscosity in terms of the Reynolds number:

μ = ρV D

Re
(7.129)

Fdrag

(
1

1
2ρV 2

1

D2

)
Re = −

∫ L/D

0

∫ 2π

0

(
∂v∗

z

∂r∗ + ∂v∗
r

∂z∗

)∣∣∣∣∣∣
r∗=1/2

dθdz∗ (7.130)

It remains to nondimensionalize the wall drag, Fdrag.
We could choose to define the characteristic wall drag as the quantities in the

denominator on the lefthand side of Equation 7.130. The units are correct and
the quantity ρV 2/2 is a type of kinetic energy per unit volume characteristic of
the flow; it is appealing to use in our nondimensionalization process a quantity
that has physical meaning. The area D2 is not particularly meaningful when it
comes to wall drag, however, because D2 is related to the pipe cross-sectional area
(π D2/4). A more meaningful area would be the wetted area of the pipe—that is,
the wall surface area that is in contact with the fluid. The wetted area is the actual
area over which the fluid exerts drag; thus, it is preferable to nondimensionalize
the wall drag with this area rather than with the pipe cross section.

Thus, we choose (arbitrarily but with some justification) to define a dimen-
sionless drag on the wall as follows:

Dimensionless
drag on wall:

f ≡ wall force(
kinetic energy

volume

)
(characteristic area)

(7.131)

= Fdrag( 1
2ρV 2

)
(2π RL)

(7.132)
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Recall Equation 1.89; we take the wetted area to be the characteristic area. With
this definition for dimensionless wall drag f , Equation 7.130 becomes:

f = Fdrag

(
1

1
2ρV 2

1

2π RL

)
(7.133)

f = 1

Re

1

L/D

1

π

∫ L/D

0

∫ 2π

0
−
(

∂v∗
z

∂r∗ + ∂v∗
r

∂z∗

)∣∣∣∣∣∣
r∗=1/2

dθdz∗ (7.134)

Note that the change from D2 to 2π RL for characteristic area did not introduce
any new dimensionless groups because L/D already was present in the limits of
the integral. The quantity f is called the Fanning friction factor, which appears
in Chapter 1 and in Equation 7.59 for the burst-pipe example. Equation 7.131
is the formal definition of the Fanning friction factor, which is a dimensionless
force on the wall of a tube:5

Fanning
friction factor

f ≡ Fdrag( 1
2ρV 2

)
(2π RL)

(7.135)

If we use the macroscopic-balance result for wall drag in turbulent flow, Fdrag =
�pπ R2 (Equation 7.116), we can write f in terms of experimental variables—
that is, in terms of �p:

Fanning friction
factor from

experimental variables
(pipe flow):

f = (p0 − pL )D

2ρV 2L
(7.136)

This equation is given in Equations 1.91 and 7.59. As stated previously, the
relationship Fdrag = �pπ R2 can be calculated directly from the velocity profile
for laminar flow (Equation 7.115). In Chapter 9, we derive the identical result for
turbulent flow (see Equation 9.236) from the macroscopic momentum balance.

Our nondimensionalization exercise is complete and the final result of the
analysis is the determination that dimensionless wall drag f is a function of
dimensionless variables (i.e., v∗

z , p∗, r∗, and so on) and three dimensionless scale
factors (i.e., Re, Fr, and L/D):

Dimensionless
Navier-Stokes:

∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗ p∗ +
(

1

Re

)
∇∗2

v∗ +
(

1

Fr

)
g∗

(7.137)

Dimensionless
wall drag:

f = 1

Re

1

L/D

1

π

∫ L/D

0

∫ 2π

0
−
(

∂v∗
z

∂r∗ + ∂v∗
r

∂z∗

)∣∣∣∣∣∣
r∗=1/2

dθdz∗

(7.138)

5An alternate definition of friction factor is used in engineering literature. The Darcy or Moody
friction factor � [174] differs from the Fanning friction factor by a factor of 4: 4 f = �. Care
should be exercised when reading friction-factor values in the literature; it is important to know
which definition is being used.
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The integral in Equation 7.138 may be evaluated for a known L/D if we know
the function v∗(r∗, θ, z∗), which is obtained by solving the dimensionless micro-
scopic mass and momentum balances. The microscopic balances are a function
of only two dimensionless groups: the Reynolds number and the Froude number.
Thus, the friction factor for a particular situation is governed by three dimension-
less quantities—L/D, Re, and Fr:

f = f
(

Re, Fr,
L

D

)
(7.139)

This final result is powerful and practical when combined with experimental
results, as discussed in the following section.

7.1.2.3 DATA CORRELATIONS
To summarize our strategy thus far, we are looking for a way to quantify pressure
drop as a function of flow rate for turbulent flows in pipes. This kind of information
is needed to solve problems like the burst-pipe problem in Example 7.5. We started
with laminar flow in pipes to gain familiarity with the physics of the situation.
In laminar flow in pipes, the flow-rate/pressure-drop relationship is the Hagen-
Poiseuille equation, Equation 7.28. However, the Hagen-Poiseuille equation is of
no practical use in turbulent flow because it underestimates the frictional drag on
the walls in the pipe enough to overpredict flow rates in the burst-pipe example
by orders of magnitude.

Dimensional analysis of the problem of flow in pipes demonstrates that
dimensionless wall drag in the form of the Fanning friction factor f is a
function of at most the Reynolds number, Froude number, and L/D (Equa-
tion 7.139). The correlation f (Re, Fr, L/D) is a dimensionless version of the
flow-rate/pressure-drop correlation we seek, �p(Q). To determine the form
of the function f = f (Re, Fr, L/D) for turbulent flow in pipes, we must
experiment.

For measurements on a known fluid (i.e., known ρ and μ), in a known apparatus,
we can determine experimentally the friction factor from the pressure drop and
the average velocity 〈v〉 = V as follows. Beginning with the definition of f :

f = Fdrag( 1
2ρV 2

)
(2π RL)

(7.140)

we substitute Equation 7.116, which relatesFdrag to pressure drop for both laminar
and turbulent flow. The result is f in terms of experimental variables:

f = (p0 − pL )π R2( 1
2ρV 2

)
(2π RL)

(7.141)

Fanning friction
factor from

experimental variables
(pipe flow):

f = (p0 − pL )

2ρV 2L/D
(7.142)
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We measure pressure drop and flow rate on an apparatus that sends fluid through a
section of straight pipe. We then calculate the experimental Reynolds number and
the Froude number from the data, incorporating material and geometric constants
that correspond to our apparatus:

Re = ρV D

μ
(7.143)

Fr = V 2

gD
(7.144)

Thus, data of pressure drop versus average velocity or flow rate (Q = π R2V ) can
be plotted as friction factor versus the three dimensionless quantities: Reynolds
number, Froude number, and L/D. The power of Equation 7.139 is that measure-
ment of f (Re, Fr, L/D) for a single system yields the function that describes all
straight-pipe systems. This is a spectacularly powerful result.

Careful experiments on flow in straight, smooth pipes were conducted in the
1800s and 1900s [139]. Researchers found that Equation 7.139 holds for pipes
of all sizes and lengths and for various fluids. They further determined that
friction factor is independent of Froude number for incompressible flow in full
pipes,6 implying that gravity is not important in horizontal pipes. The hydrostatic
effect of gravity in tilted or vertical pipe flow may be combined with pressure
by considering a dynamic pressure (see Problem 10, Equation 8.115, and the
Glossary). It also was found experimentally that the ratio L/D is not important
in determining the friction factor for long pipes, L/D > 40 [43]. Together these
experiments reveal that the important relationship for flow in long pipes is only
between the friction factor and the Reynolds number. Nikuradse’s data revealing
this measured relationship are plotted in Figure 7.17 [126].

The friction-factor/Reynolds-number relationship for flow in pipes is a well-
known data correlation, perhaps the best-known data correlation in fluid mechan-
ics. The data show the three flow regimes observed by Osborne Reynolds in
1883 [139]: laminar flow, transitional flow, and turbulent flow. At low flow rate
(i.e., low Re), the friction factor plunges steeply with increasing Reynolds num-
ber; this is the laminar-flow regime. Above Re = 4,000, the friction factor is a
more gradually changing function of Reynolds number; this is the turbulent-flow
regime. Between Re ≈ 2,100 and Re ≈ 4,000, the flow is neither laminar nor
fully turbulent; this region is called transitional flow. In the transitional regime,
the friction-factor data show a sensitivity to experimental conditions. Below
Re = 2,100, the friction-factor follows the law f = 16/Re, which can be pre-
dicted from the Hagen-Poiseuille equation (see Example 7.7). Above Re = 4,000,

6The Froude number reflects the importance of nonhydrostatic gravity effects in the Navier-
Stokes equation. Experiments show that these effects become important only when fluids of
different densities are present, such as in a half-full pipe or in open channels where there are
waves [178].
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Laminar Flow Turbulent Flow

f

Re102 103 104 105 106 107

Smooth Pipe

Re

16=f

T
ransitional 

Prandtl Correlation

40.0Relog0.4
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Figure 7.17 Friction factor as a function of Reynolds number for Newtonian fluids in smooth pipes (representative data
from Nikuradse [126]). Three regimes are shown: laminar flow (Re < 2,100), turbulent flow (Re > 4,000), and
transitional flow (2,100 < Re < 4,000). See the discussion for Equation 7.156 for more about the Prandtl friction-
factor/Reynolds-number correlation for turbulent flow.

the data follow the Prandtl correlation (Equation 7.58); the data for all Reynolds
numbers can be summarized by the correlations given here:

Data correlation
for friction factor
for pipe flow (all
flow regimes):

Re f

Re < 2,100
16

Re
= 16 Re−1

2,100 ≤ Re ≤ 4,000 unstable

4,000 ≤ Re ≤ 1 × 106 1√
f

= 4.0 log Re
√

f − 0.40

or

f = 1.02
4 log Re−2.5

(7.145)

See also the single-equation correlation in Figure 7.18 (see Equation 7.158).
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Figure 7.18 Equation 7.158 [105] captures the smooth-pipe friction factor as a function of the Reynolds number over the entire
Reynolds-number range. Also shown are Nikuradse’s experimental data for flow in smooth pipes [126].

EXAMPLE 7.7. What is the predicted friction-factor/Reynolds-number relation-
ship in steady laminar flow in a tube?

SOLUTION. We calculated the flow-rate/pressure-drop relationship for laminar
flow in a tube to be:

Hagen-Poiseuille equation
(pressure drop/flow rate
for laminar tube flow):

Q = π (p0 − pL )R4

8μL
(7.146)

Writing the Hagen-Poiseuille equation in terms of average velocity V , we obtain:

V = 〈v〉 = Q

π R2
= (p0 − pL )R2

8μL
(7.147)

The Fanning friction factor written in terms of experimental pressure drop is
given in Equation 7.142:

Fanning friction factor f = (p0 − pL )

2ρV 2L/D
(7.148)

We now eliminate the pressure drop between these two equations and simplify:

f = (p0 − pL )

2ρV 2L/D
(7.149)

= D

2ρV 2L

8V μL

R2
(7.150)

= 16μ

ρV D
(7.151)

= 16

Re
(7.152)
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The function f (Re) is usually plotted on a log-log scale. Taking the log of both
sides of Equation 7.152, we obtain:

f = 16

Re
(7.153)

log f = log 16 − log Re (7.154)

Thus, the friction-factor/Reynolds-number relationship for laminar flow in a tube,
when plotted log-log, is a straight line of slope equal to -1 and an intercept of
log 16. This is precisely what is on the left side of Figure 7.17:

Fanning friction
factor for

laminar tube flow
f = 16

Re
(7.155)

The success of dimensional analysis in pipe flow is remarkable. By nondi-
mensionalizing the Navier-Stokes equation and the equation for drag on the tube
walls, we can conclude that the dimensionless wall force ( f ) correlates with the
dimensionless groups Re, Fr, and L/D. Experiments confirm this and tell us
further that Fr is unimportant for closed full tubes and that L/D is unimportant
for long pipes (see also Section 7.3.3 and Figure 7.50).

For Re > 4,000, the turbulent-flow friction-factor/Reynolds-number data are
well represented by a correlation equation that arises from the work of von
Kármán, Prandtl, and Nikuradse [174]. This equation was derived by Prandtl
from measurements of the average velocity profile in turbulent flow. Once the
velocity profile is known, we can integrate that result to obtain the flow rate Q.
When combined with the definition of friction factor and adjusted for a better fit,
Equation 7.156 results, as discussed in detail by White [174]:

Prandtl correlation
for f (Re)

(smooth pipes only,
turbulent flow):

1√
f

= 4.0 log
[
Re
√

f
]

− 0.40 (7.156)

This equation was introduced previously in the burst-pipe example, Equa-
tion 7.58. Note that f is present on both sides of Equation 7.156. A modified
version of Equation 7.156 that is explicit in friction factor may be used for
convenience [174]:

f ≈ 1.02

4
log Re−2.5 (7.157)

Equations 7.157 and 7.156 differ by up to ±3 percent. A data correlation that
fits smooth-pipe data over the entire range of Reynolds numbers was developed
by Morrison [105]:

f (Re) smooth pipes
(all Reynolds numbers):

f =
(

0.0076
(

3,170
Re

)0.165

1 + ( 3,170
Re

)7.0

)
+ 16

Re
(7.158)

www.20file.org

http://www.semeng.ir


534 An Introduction to Fluid Mechanics

This equation follows the analytical laminar result at low Reynolds numbers (i.e.,
f = 16/Re) and the Prandtl equation at high Reynolds numbers (see Figure 7.18).

It is remarkable that through dimensional analysis we can collapse pressure
drop versus flow-rate data onto a single curve of f versus Re for flow in smooth
tubes of any size for any Newtonian fluid. At the end of this section, we provide
an example in branched piping (see Example 7.9), demonstrating the utility of
our data-correlation results. The success of the friction-factor/Reynolds-number
correlation is due to the powerful technique of dimensional analysis.

The first step in dimensional analysis is the key to success: identifying the
correct relationships that govern the physics of the problem under consideration.
In the pipe-flow case, these are the Navier-Stokes equation and the equation
for force on the wall (see Equation 7.117). A second requirement is to choose
reasonable characteristic values—for example, velocity V , length D, time D/V ,
and pressure ρV 2. If an important aspect of the physics is missed, dimensional
analysis will not succeed, as shown in the next example.

EXAMPLE 7.8. The experimental data in Figure 7.17 is for smooth pipes.
Nikuradse [126] performed experiments on a rough-walled pipe to obtain the
data in Figure 7.19, which are different from the smooth-wall results. Why did the
curves for the different pipes not collapse to one curve, as we might expect from
the previous dimensional-analysis discussion?

0.001

0.01

0.1

1

Laminar Flow Turbulent Flow

f

Re102 103 104 105 106 107

rough pipe

smooth pipe

Figure 7.19 In the turbulent region, the data on f versus Re for a rough pipe are higher than the data for a smooth pipe. Data
shown were taken by Nikuradse in a pipe that was roughened by gluing sand to the walls [126].

SOLUTION. Dimensional analysis on flow in a pipe indicated that wall drag
should be a function of Re and Fr through the solution v(r∗, θ, z∗, t∗) of the
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ε

Figure 7.20 A close look at a rough pipe wall reveals that roughness introduces a new lengthscale into the problem.

dimensionless Navier-Stokes equation; it also should be a function of L/D
through the boundary conditions used to evaluate wall drag (i.e., the limit on
the integral; see Equation 7.138).

f = 1

Re

1

L/D

1

π

∫ L/D

0

∫ 2π

0
−
(

∂v∗
z

∂r∗ + ∂v∗
r

∂z∗

)∣∣∣∣∣∣
r∗=1/2

dθdz∗ (7.159)

The result f = f (Re, Fr, L/D) should be good for all systems described by
Equation 7.159.

For a smooth pipe, Equation 7.159 is correct because r∗ = 1/2 or r = D/2 is
an accurate description of the wall-surface location in this case. For a rough pipe,
however, the integration in Equation 7.159 is not quite correct. The roughness

0.001

0.01

0.1

1

Laminar Flow Turbulent Flow

f

Re102 103 104 105 106 107

rough pipes,

smooth pipe

0.033
0.016
0.008
0.004
0.002
0.001

Sand-Roughened Pipe

D

ε

Figure 7.21 Nikuradse [126] quantified the effect of the size of wall protuberances on the friction factor by attaching a
well-characterized sand to the inner walls of pipes. The data show that the friction factor is characterized by
two dimensionless groups, Re and ε/D. Furthermore, f is independent of pipe roughness for laminar flow. At
high Reynolds numbers, the friction factor is independent of the Reynolds number and depends on only pipe
roughness.
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Table 7.1. Manufactured pipes have different values of
roughness ε depending on construction material

Material of construction ε(mm)

Drawn tubing (brass, lead, glass) 1.5 × 10−3

Commercial steel or wrought iron 0.05
Asphalted cast iron 0.12
Galvanized iron 0.15
Cast iron 0.46
Woodstove 0.2–0.9
Concrete 0.3–3.0
Riveted steel 0.9–9.0

The values are reported in the literature [132]. Colebrook [25] cor-
related friction-factor measurements on manufactured and sand-
roughened pipes to obtain equivalent values of roughness for the
manufactured pipes.

of the pipe surface introduces a new lengthscale to the problem. We have not
accounted for this new lengthscale (Figure 7.20).

To solve for the friction on a rough wall, we must perform the integral in
Equation 7.159, but the velocity-gradient terms must be evaluated at the rough-
wall surface r = ψ(θ, z) or r∗ = ψ∗(θ, z∗) rather than at the smooth wall surface
of r = D/2 or r∗ = 1/2:

f = 1

Re

1

L/D

1

π

∫ L/D

0

∫ 2π

0
−
(

∂v∗
z

∂r∗ + ∂v∗
r

∂z∗

)∣∣∣∣∣∣
r∗=ψ∗(θ,z∗)

dθdz∗ (7.160)

If the function ψ(θ, z) that describes the shape of the wall surface has a single
characteristic dimension ε (see Figure 7.20), then nondimensionalization of this
function results in a new dimensionless group ε/D that characterizes the surface
shape or roughness. Pipes characterized by different values of ε/D have different
curves of f (Re, ε/D).

In summary, the differences between rough-pipe and smooth-pipe data are
predicted by dimensional analysis when the additional roughness lengthscale ε is
included in the analysis. To quantify the pipe-roughness effect, Nikuradse [126]
performed careful experiments on pipes artificially roughened by attaching sand
to the inner walls. His results (Figure 7.21) established the validity of ε/D as
the additional controlling dimensionless parameter for flow through rough pipes.
This is another success for dimensional analysis.

A final point on rough pipes: Data on commercial rough pipes are similar
to Nikuradse’s data at larger Reynolds number but show a different shape at
lower Re. Colebrook [25] gathered literature data on commercial rough pipes
and deduced equivalent values of ε for actual pipes by matching the large-Re
asymptotes between the commercial data and Nikuradse’s data (Table 7.1). Cole-
brook’s correlation for rough commercial pipes can be used for accurate computer
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Figure 7.22 Fanning friction factor versus Reynolds number for flow in smooth and rough commercial pipes of circular cross
section. After Moody [103]; calculated from the Colebrook correlation [25] (see Equation 7.161). Note that the
shapes of the curves for commercial pipes are different from the data for sand-roughened pipes in the turbulent
region at Reynolds numbers before f becomes independent of Re.

calculations of friction factor in commercial rough pipes (see Problem 17 for more
discussion):

Colebrook correlation
for f (Re)

(smooth and rough pipes,
turbulent flow):

1√
f

= −4.0 log
(

ε

D
+ 4.67

Re
√

f

)
+ 2.28

(7.161)

The Colebrook equation is introduced in Chapter 1 as Equation 1.95. A summary
plot of Colebrook’s correlation is shown in Figure 7.22 as plotted by Moody
[103]. The Colebrook correlation also works for smooth pipes (ε = 0), where it
reduces to the Prandtl correlation.

The previous example emphasizes that dimensional analysis works only if the
physics of the problem is incorporated correctly. To determine what the correct
physics is, scientists and engineers use their judgment to propose a model for
a system; then, they nondimensionalize the equations, seeking predictions that
can be tested. Subsequently, they perform experiments and the results indicate
whether the assumptions in the model are correct or if the analysis must be
modified. Data correlations can be determined from experimental results if the
dimensional analysis succeeds.

The Prandtl (i.e., smooth pipe) and Colebrook (i.e., rough pipe) correlations are
useful in a wide variety of practical problems involving turbulent flows in pipes,
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as shown in the following branched-piping example. The overall solution method
used in this chapter also is widely applicable. Stated succinctly, the method is to
solve practical problems using mixed analytical/empirical correlations arrived at
through dimensional analysis of idealized problems:

Method for Solving Complex Engineering Problems

1. Devise a related, idealized problem that may be solved analytically.
2. Use dimensional analysis on the idealized problem to determine the gov-

erning parameters.
3. Perform experiments varying the governing parameters.
4. Obtain accurate data correlations among the governing parameters for

future problem solving.

In Section 7.2, we apply this approach to the flow of Newtonian fluids in
closed conduits with noncircular cross sections. In Chapter 8, we apply this same
approach to external flows, obtaining correlations for drag coefficients.

EXAMPLE 7.9. A 40-foot section of 1.0-inch ID piping branches into two pipes
of the same diameter, one of which is 60.0 feet long and one of which is 85.0 feet
long (Figure 7.23). The main pipe is connected to the municipal water supply,
which supplies a constant water pressure of 62 psig at the pipe entrance. What
are the flow rates through the two pipe exits? What is the pressure at the splitting
point? Assume smooth pipes.

p1 = 62 psig 
Q = Q1+Q2

p2

p3 = 0 psig
Q1 = ?

p4 = 0 psig 
Q2 = ?

40 ft 

85 ft

60 ft

Figure 7.23 A simple pipe branch splits flow unevenly because the two branches do not resist the flow equally. The Prandtl
correlation may be used to solve for the correct flow split, as discussed in this chapter.

SOLUTION. Pressure is the driving force for the flow, and the set driving pressure
of 62 psig causes a certain flow rate for the water in the system. That flow rate
divides unevenly into the two exit pipes, depending on resistances to flow in the
pipes. The two exit pipes are the same diameter but they have different lengths.
The resistance to the flow is due to the frictional drag at the walls of the pipe;
thus, longer pipes have more resistance to flow. From these considerations, we
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Material Properties:

density ρ= 1,000 kg/m3

viscosity μ= 0.001 Pa s
given D= 0.0254 m

At Branch Point, Guess ΔΔp2 Δp2= 20.9 psi
change units Δp2= 144,100     Pa

given L1= 60 ft
change units L1= 18.3           m

calculate V1 from Prandtl (no iteration) LHS= 15.2199     

f = 1/LHS2
f 1= 0.004317

calculate from f V 1= 4.8146       m/s

Flow Rate in Branch 1 Q1= 0.002440 m3/s

given L 2= 85 ft
change units L2= 25.9           m

calculate V2 from Prandtl (no iteration) LHS= 14.9174     

f = 1/LHS2
f 2= 0.004494

calculate from f V 2= 3.9647       m/s

Flow Rate in Branch 2 Q 2= 0.002009 m3/s

main branch: total Q= 0.004449 m3/s
change units Q = 71 gpm

V=4Q/πD2 V= 8.779 m/s
calculate Re from definition Re= 222,995    

f 0.003830
iterate to final answer g(f ) 16.16       

next round f  = 1/g (f )2
ffinal= 0.003830

given L= 40            ft
change units L= 12.2         m

calculate Δp1 from friction factor Δp1= 2.83E+05 Pa  
 pressure drop across the main tube Δp1= 41              psi

total Δp (given) Δptotal= 62              psi
Δp2= 20.9 psi

 f  from Prandtl Correlation,Calculate Guess 

 Pressure Drop Across the Branch Tubes

Figure 7.24 The iterative solution for the flow rates in branched-piping networks can be carried out in a spreadsheet program.
The steps of the solution in this example are described in this chapter. The definitions of LHS and g (f ) are given in
Figure 7.15: LHS = 4 log

√
�pD3ρ/(2Lμ2) − 0.4 and g (f ) = 4 log

(
Re

√
f
)

-0.40.

expect the proportion of the flow going to the shorter pipe to be larger than the
proportion going to the longer pipe.

If we assume that the flow in the pipes is turbulent and that the pipes are
smooth, then we can calculate the flow rate in each section of pipe using the
Prandtl correlation. We ignore the frictional losses from any fittings or valves in
the lines. Because the flow-rate/pressure-drop relationship for turbulent flow is
nonlinear, we must perform iterative calculations to solve for the pressures and
flow rates.

The pressure at the split p2 determines the pressure drop across both exit
pipe sections. Our iterative solution begins with a guess for p2, which allows
us to calculate the overall flow rate. Pressure drop over the main pipe, �p1,
can be calculated from the flow-rate/pressure-drop relationship applied to that
pipe; iteration yields the final solution. Details of the calculation are illustrated in
Figure 7.24 and listed here. We assume turbulent flow and check that Re > 4,000
at the end of the calculation.
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Solution Steps

1. Guess �p2, which is equal to both p2 − p3 and p2 − p4.
2. From the Prandtl correlation, calculate Q1 and Q2 for the two exit branches.

As discussed in a previous example, calculating flow rate for a known
pressure drop does not require iteration.

3. The total flow rate is the sum of the flows in the two branches, Q =
Q1 + Q2.

4. From the predicted value of Q, calculate the pressure drop across the main
pipe, �p1 = p1 − p2. This is an iterative calculation.

5. Calculate a revised �p2 from �p2 = 62 psig − �p1.
6. Iterate until the values of �p2 converge.

From the solutions for flow rates Q1 and Q2 in Figure 7.24, we calculate that
Q1/Q = 55 percent of the flow goes toward the shorter pipe and Q2/Q = 45
percent of the flow goes in the longer pipe. The pressure drop across the main pipe
is �p1 = 41 psig, and the pressure at the split point is 62 psig − 41 psig = 21 psig.

More complex piping networks can be solved with the same equations; some
amount of problem-solving strategy is needed to solve complex piping networks.
More information about strategies for flow-rate/pressure-drop problems is in the
literature [176].

The methods of this section may be extended to other problems. In Section 7.2,
we apply these techniques to flows in noncircular conduits; in Section 7.3, we
consider more complex internal flows. Chapter 8 applies the methods in this
chapter to external flows.

7.2 Noncircular conduits

The flows in closed rectangular conduits (e.g., ducts and slits) or in closed con-
duits of other shapes (Figure 7.25) occur in engineering applications such as
heat-exchanger and reactor design as well as in cutting-edge research fields such

Figure 7.25 Noncircular conduits are common devices such as a rectangular duct or a double-pipe heat-exchanger (i.e.,
flow through an annulus); more specialized devices are pipes with a triangular or trapezoidal cross section. The
trapezoidal cross section is produced in microfluidic devices as a consequence of the manufacturing process [75].
Flow through a packed bed may be modeled as flow in a closed conduit with an irregular cross section (see
Section 7.2.1.2).
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x1 = 0 
p = p0

x1 = L
p = pL

Axs

cross section: 

Figure 7.26 Pressure-driven laminar flow in a conduit may be analyzed with the geometry shown here.

as the development of microfluidic devices for medical research [75]. These flows
are similar to the flow in pipes—an imposed pressure drop results in a flow rate
that is determined by the amount of momentum lost to drag on the walls or other
solid surfaces. We can extend our analysis of pipe flow to these new geometries.

As with pipe flow, the flows in noncircular conduits can be laminar or turbulent.
Following the method established in this chapter, we begin with the simpler case of
laminar flow. Subsequently, we perform dimensional analysis and use experiments
to develop data correlations for turbulent flow in noncircular conduits.

7.2.1 Laminar flow in noncircular ducts

Steady flows through ducts of noncircular cross section share much in common
with pipe flow. For laminar duct flow, we analyze the problem following the same
steps as for pipe flow, beginning with the microscopic momentum balance. We
begin by considering the problem generally and subsequently address specific
geometries.

7.2.1.1 POISSON EQUATION
Consider the pressure-driven flow of a Newtonian fluid through a long duct of an
arbitrary cross-sectional shape (Figure 7.26). The flow is assumed steady, well
developed, and incompressible.

We begin with the incompressible-fluid continuity equation written in Cartesian
coordinates, x1x2x3, with the flow direction being x1:

Mass conservation:
(continuity equation,

constant density)
0 = ∇ · v

0 = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(7.162)

Because the flow is only in the x1-direction, the 2- and 3-components of v are
zero:

v =

⎛
⎜⎝v1

0
0

⎞
⎟⎠

123

(7.163)
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After making these cancellations, the continuity equation gives us:

∂v1

∂x1
= 0 (7.164)

We also saw this result for pipe flow (compare to Equation 7.8).
Momentum conservation is given by the equation of motion for an incom-

pressible Newtonian fluid: the Navier-Stokes equation. The components of the
Navier-Stokes equation in Cartesian coordinates are in Table B.7 in Appendix B:

Momentum conservation:
(Navier-Stokes equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

ρ

(
∂v1

∂t
+ v1

∂v1

∂x1
+ v2

∂v1

∂x2
+ v3

∂v1

∂x3

)

= − ∂p

∂x1
+ μ

(
∂2v1

∂x2
1

+ ∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
+ ρg1 (7.165)

ρ

(
∂v2

∂t
+ v1

∂v2

∂x1
+ v2

∂v2

∂x2
+ v3

∂v2

∂x3

)

= − ∂p

∂x2
+ μ

(
∂2v2

∂x2
1

+ ∂2v2

∂x2
2

+ ∂2v2

∂x2
3

)
+ ρg2 (7.166)

ρ

(
∂v3

∂t
+ v1

∂v3

∂x1
+ v2

∂v3

∂x2
+ v3

∂v3

∂x3

)

= − ∂p

∂x3
+ μ

(
∂2v3

∂x2
1

+ ∂2v3

∂x2
2

+ ∂2v3

∂x2
3

)
+ ρg3 (7.167)

To convert the xyz-coordinate system of Table B.7 to our x1x2x3 system, we write
x = x1, y = x2, and z = x3.

We now cancel all terms involving v2, v3, or spatial derivatives of v1 with
respect to x1 (from the continuity-equation result). We also neglect gravity.7

Making these substitutions, we obtain:

1-Component: ρ
∂v1

∂t
= − ∂p

∂x1
+ μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
(7.168)

2-Component: 0 = − ∂p

∂x2
(7.169)

3-Component: 0 = − ∂p

∂x3
(7.170)

The 2- and 3-components of the Navier-Stokes equation indicate that there are
no variations of pressure in either the x2- or x3-direction. The 1-component of

7See Problem 10 for a method of including the effect of the flow-direction component of gravity
in nonhorizontal ducts.
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the Navier-Stokes equation reveals the most about the flow:

1-Component: ρ
∂v1

∂t
= − ∂p

∂x1
+ μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
(7.171)

We can simplify this expression by noting that because the flow is at steady state,
the time derivative on the lefthand side is zero:

0 = − ∂p

∂x1
+ μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
(7.172)

For the flow in a noncircular duct, v1 is a function of two variables, x2 and x3.
As we determined from the equation of motion, the pressure is not a function of
either of these variables but rather is a function only of x1. Placing the pressure
on one side of the equation and the velocity terms on the other, we can separate
the variable x1 from x2 and x3:

∂p(x1)

∂x1
= μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
(7.173)

Because pressure is a function only of x1 and velocity is a function only of x2

and x3 (not x1), Equation 7.173 can hold only if the two sides are equal to the
same constant. We call that constant λ, and we now have two equations to solve
separately (see the Web appendix [108] for more details):

Lefthand side:
dp

dx1
= λ (7.174)

Righthand side: μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
= λ (7.175)

We changed the partial derivative symbol ∂ to the total derivative symbol d in
the equation for pressure because p = p(x1) only. We cannot make the same
change in the velocity equation because v1 = v1(x2, x3); Equation 7.175 remains
a partial differential equation (PDE).

We previously solved the pressure equation (see Equation 7.18) with the same
boundary conditions (x = 0, p = p0; x = L , p = pL ). The result is as follows
(see also Equation 7.22):

Pressure profile
Poiseuille flow

in a duct:
p(x1) =

(
pL − p0

L

)
x1 + p0 (7.176)

From Equations 7.176 and 7.174, we see that λ = (pL − p0)/L .
The PDE to solve for velocity in noncircular ducts is more complicated than

the equation for tube flow because the velocity profile is three-dimensional:

Poisson equation:
Flow-direction

momentum balance for
pressure-driven flow
in closed conduits

∂2v1

∂x2
2

+ ∂2v1

∂x2
3

= − p0 − pL

μL
= −�p

μL
(7.177)

www.20file.org

http://www.semeng.ir


544 An Introduction to Fluid Mechanics

This PDE has been studied for many years. It is called the Poisson equation, and
it belongs to a class of equations called elliptical PDEs.8 Once the shape of a duct
is known, Equation 7.177 may be solved analytically or numerically. Numerous
solutions for laminar flow are given in Shah and London [152], including solutions
for ducts with rectangular, triangular, elliptical, and even limaçon9 cross sections.
Once the velocity solution is known, the stress tensor can be calculated in the
usual way from the Newtonian constitutive equation (see Table B.8):

Newtonian
constitutive
equation:

τ̃ = μ
(∇v + (∇v)T ) (7.178)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 μ
∂v1

∂x2
μ

∂v1

∂x3

μ
∂v1

∂x2
0 0

μ
∂v1

∂x3
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

(7.179)

where we simplified Equation 7.179 using v2 = v3 = 0 and the continuity equa-
tion result, ∂v1/∂x1 = 0. The total-stress tensor then is given by:

�̃ = τ̃ − pI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−p(x1) μ
∂v1

∂x2
μ

∂v1

∂x3

μ
∂v1

∂x2
−p(x1) 0

μ
∂v1

∂x3
0 −p(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

(7.180)

Having the stress tensor �̃ and the velocity field v allows us to calculate force on
any surface from the integral of n̂ · �̃ over the surface (Equation 6.53).

In Example 7.10, we solve the Poisson equation for the velocity and stress
fields for a simple shape: flow between infinite parallel plates. Subsequently,
we discuss a more complex geometry, a duct of rectangular cross section. For
all shapes, the mathematical problem is the same—the Poisson equation with
no-slip boundary conditions—but the mathematical techniques required to arrive
at the final solution can be quite sophisticated for all but the most symmetric
geometries.

EXAMPLE 7.10. Calculate the velocity profile, flow rate, and shear stress for
pressure-driven flow of an incompressible Newtonian liquid between two infinitely
wide, parallel plates separated by a gap of 2H. The pressure at an upstream point
is p0; at a point a distance L downstream the pressure is pL . Assume that the
flow between these two points is well developed and at steady state. Gravity may
be neglected.

8See the Glossary for more on the classification of PDEs.
9The limaçon, which looks like a lima bean, is a polar curve of the form r = a + b cos θ (a and b
are constants; r and θ are polar coordinates).
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x3 = -W/2 

x3 = W/2

2H

Figure 7.27 Schematic of Poiseuille flow in a wide slit.

SOLUTION. We apply the continuity equation and the Navier-Stokes equation,
following the same procedure as in general noncircular ducts. The flow domain
and coordinate system are shown in Figure 7.27.

Through the steps discussed in this section, we determine the differential
equation for velocity and pressure fields. The resulting PDE is separable, and the
pressure part is solved easily as before. The pressure profile for this problem is
the same as in all steady unidirectional flows in ducts (Equation 7.176).

Pressure profile:
Poiseuille flow in a slit

p(x1) =
(−�p

L

)
x1 + p0 (7.181)

Velocity equation to solve:
Poiseuille flow in a slit

∂2v1

∂x2
2

+ ∂2v1

∂x2
3

= −�p

μL
(7.182)

Because the plates are infinite in width, we assume that there is no variation of
any properties in the x3-direction (∂v1/∂x3 = 0); therefore, for the slit, we obtain:

∂2v1

∂x2
2

= −�p

μL
(7.183)

Because v1 is a function only of x2, we change the partial-derivative symbol ∂ to
the total-derivative symbol d and integrate Equation 7.183 twice:

d2v1

dx2
2

= −�p

μL
(7.184)

dv1

dx2
= −�p

μL
x2 + C1 (7.185)

v1 = − �p

2μL
x2

2 + C1x2 + C2 (7.186)

where C1 and C2 are arbitrary integration constants.
The boundary conditions are no-slip at the two walls: x2 = H, −H . Further-

more, halfway between the planes is a plane of symmetry, which means that v1

must go through a maximum or a minimum at this plane—that is, the deriva-
tive of v1 with respect to x2 must be zero at this plane. These three conditions
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Figure 7.28 Velocity and pressure profiles calculated for Poiseuille flow (i.e., pressure-driven flow) of a Newtonian fluid in a slit.

(one is redundant) give us the needed boundary conditions on velocity:

Boundary conditions:
x2 = H v1 = 0

x2 = 0
dv1

dx2
= 0

(7.187)

The symmetry boundary condition is particularly desirable because it simplifies
the evaluation of the integration constants. The choice of coordinate system with
x2 = 0 at the centerline of the channel is well matched with the boundary con-
ditions (see Section 6.2.2). The solution for v1(x2) is given here (the integration
is left to readers and is assigned in Problem 32) and is plotted in Figures 7.28
and 7.29:

v1(x2) = H 2(p0 − pL )

2μL

[
1 −

(
x2

H

)2
]

(7.188)

It is instructive to visually compare the two parabolic equations for the velocity
profiles in tube flow (Equation 7.23) and slit flow (Equation 7.188); one is the
shape of a bullet (see Figure 7.7). The other profile, also parabolic in profile, is
in the shape of a rounded front (see Figure 7.29).

The solution for the flow rate Q in slit flow is calculated using Equation 6.254:

Total flow rate
out through
surface S:

Q =
∫∫

S
[n̂ · v]at surface d S (7.189)
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Figure 7.29 Three-dimensional representation of the velocity profile in steady Poiseuille flow in a slit. The centerline velocity is
1.5 times the average velocity of this flow. The data are plotted versus normalized coordinates x2/H and x3/(W/2)),
which both range from −1 to 1.

The surface in which we are interested is the slit cross section at the exit, where
n̂ · v = ê1 · v = v1 and d S = dx2dx3. Thus:

Q =
∫∫

S
v1 d S (7.190)

=
∫ W/2

−W/2

∫ H

−H
v1(x2) dx2dx3 (7.191)

= W
∫ H

−H
v1(x2) dx2 (7.192)

= 2W
∫ H

0
v1(x2) dx2 (7.193)

Substituting v1(x2) from Equation 7.188 and carrying out the integration (see
Problem 32) yields the final result for flow rate per unit width:

Flow rate/width:
Poiseuille flow

in a slit

Q

W
= 2H 3(p0 − pL )

3μL
(7.194)

From v1(x2) we can calculate the stress components from the Newtonian
constitutive equation written in the Cartesian coordinate system (see Table B.8
in Appendix B):

Newtonian
constitutive
equation:

τ̃ = μ
(∇v + (∇v)T ) (7.195)
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Figure 7.30 Shear stress as a function of x2/H for Poiseuille flow in a slit.

v =
⎛
⎝v1(x2)

0
0

⎞
⎠

123

(7.196)

τ̃ =

⎛
⎜⎜⎜⎜⎝

0 μ dv1
dx2

0

μ dv1
dx2

0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

=

⎛
⎜⎜⎜⎜⎝

0 −(p0−pL )x2

L 0

−(p0−pL )x2

L 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

123

(7.197)

�̃ = τ̃ − pI =

⎛
⎜⎜⎜⎜⎝

�p
L x1 − p0

−(p0−pL )x2

L 0

−(p0−pL )x2

L
�p
L x1 − p0 0

0 0 �p
L x1 − p0

⎞
⎟⎟⎟⎟⎠

123

(7.198)

We see that the shear stress τ̃21 is a linear function of the variable x2 in this flow
(Figure 7.30). Also, the shear stress is zero at the center of the flow and is at its
highest absolute values at the walls.

A quantity that can be measured in this flow is the magnitude of shear stress
at the wall, which is given by:

Shear stress
at the wall:

(Poiseuille flow in slit)
|τ̃21(H )| = τ̃H = (p0 − pL )H

L
(7.199)
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The total drag on the walls is given by the integral of n̂ · �̃ at the surface (see
Equation 7.103), with the surface of interest being the wetted surfaces of the
two infinite plates. In the following calculation, we evaluate drag on the bottom
surface and double the results:

Total molecular fluid force
on a surface S:

F =
∫∫

S

[
n̂ · �̃]at surface d S (7.200)

Fdrag =
Axial drag

in laminar flow
in a slit

= 2

⎛
⎜⎜⎜⎝

1-component of
total force

on bottom (surface
of unit normal ê2)

⎞
⎟⎟⎟⎠ (7.201)

= 2
∫ L

0

∫ W/2

−W/2

⎛
⎝1

0
0

⎞
⎠

123

·
[(

0 1 0
)

123
· �|x2=−H

]
dx3dx1 (7.202)

= 2
∫ L

0

∫ W/2

−W/2
τ̃21|x2=−H dx3dx1 (7.203)

= 4
∫ L

0

∫ W/2

0

H�p

L
dx3dx1 (7.204)

= 2H W�p (7.205)

Fdrag = 2H W�p (7.206)

This result is analogous to the solution obtained for drag in pipes (see Equa-
tion 7.116), where Fdrag = (cross-sectional area)�p.

ˆ
ˆ

The calculation for flow in a slit was straightforward because the assumption
of a wide slit reduced the problem to a two-dimensional flow, v = v1(x2)e1.
For a channel of finite width, the flow is three-dimensional, v = v1(x2, x3)e1,
which makes the solution of the PDE more involved. In the case of a rectangular
cross section, the differential equations are solvable using advanced mathematical
techniques [61]; the solution is summarized in Example 7.11.

EXAMPLE 7.11. Calculate the velocity profile, flow rate, and shear stress field
for pressure-driven flow of an incompressible Newtonian liquid in a rectangular
duct of height 2H and width 2W . The pressure at an upstream point is p0; at a
point a distance L downstream, the pressure is pL . Assume that the flow between
these two points is well developed and at steady state. Gravity may be neglected
(Figure 7.31).

SOLUTION. We apply the continuity equation and the Navier-Stokes equation to
solve for v and τ̃ . The continuity equation and microscopic momentum balance
for pressure-driven flow in a duct simplify as before to ∂v1/∂x1 = 0 and the
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Figure 7.31 Poiseuille flow through a duct of rectangular cross section can be set up following the same procedures used for
flow in a tube. The velocity is unidirectional (here, in the x1-direction) and varies with both x2 and x3.

Poisson equation with pressure profile given by Equation 7.181:

Continuity equation:
∂v1

∂x1
= 0 (7.207)

1-Component Navier-Stokes:
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

= −�p

μL
(7.208)

Because the velocity profile is three-dimensional, the Poisson equation does not
simplify further in the finite-duct case compared to the slit case. The solution to
Equation 7.208 strongly depends on the boundary conditions, which are no-slip
boundary conditions at each of the four walls:

x2 = ±H v1 = 0 for all values of x3 (7.209)

x3 = ±W v1 = 0 for all values of x2 (7.210)

Note that in the rectangular duct discussed here the width is 2W , whereas for the
infinite slit, we used width W .

The details of the solution method for the Poisson equation with these boundary
conditions are in standard textbooks on solving PDEs [24, 61]. The basic method
is to postulate that the solution is separable; that is, that v1 may be written as:

v1(x2, x3) = f (x2)g(x3) (7.211)

where f (x2) and g(x3) are unknown functions that we must determine. Once
f (x2) and g(x3) are known, v1 is reassembled from Equation 7.211, and the
resulting equation contains integration constants that must be evaluated from
the boundary conditions. For the rectangular-duct solution, the functions f (x2)
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Figure 7.32 The solution for velocity profile for pressure-driven laminar flow in a rectangular duct is shown in a three-dimensional
view. The centerline velocity is twice the average velocity of this flow. The data are plotted versus normalized
coordinates ξ2 ≡ x2/H and ξ3 ≡ x3/W ), which both range from −1 to 1. Compare with the equivalent plot for
an infinite slit in Figure 7.29.

and g(x3) are trigonometric functions, which complicates the evaluation of the
integration constants; the established method for solving for these integration
constants involves the use of orthogonal functions [61].

The final result for the velocity field in a rectangular duct [28] is the following
infinite sum (note that the solution is given in dimensionless form):

v1(ξ2, ξ3)

〈v〉sli t
=
(

48

π3

) ∞∑
n=1,3,5,...

(−1)
(n−1)

2

[
1 − cosh (nπWξ3/2H )

cosh (nπW/2H )

]
cos (nπξ2/2)

n3

(7.212)

where:

ξ2 ≡ x2

H
(7.213)

ξ3 ≡ x3

W (7.214)

〈v〉slit = H 2�p

3μL
(7.215)

The result for the velocity field is plotted in Figure 7.32 (compare to the tube and
slit solutions, Figures 7.7 and 7.29).

From the velocity field, we can calculate any engineering quantities of interest.
The flow rate is calculated with more effort than was required in tube flow, but
the calculation is again the integral of the velocity across the flow cross section
as discussed in Chapter 6 (see Equation 6.254); the result is [174]:

Total flow rate
out through
surface S:

Q =
∫∫

S
[n̂ · v]at surface d S (7.216)
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Q =
∫ W

−W

∫ H

−H
v1 dx2dx3 (7.217)

Q = Qslit

⎛
⎝1 − 192H

π5W

∞∑
n=1,3,5,...

tanh (nπW/2H )

n5

⎞
⎠ (7.218)

where:

Qslit = 4WH 3�p

3μL
(7.219)

The average velocity for the rectangular duct is 〈v〉 = Q/(2H )(2W).
The stress tensor τ̃ is calculated from the Newtonian constitutive equa-

tion, given in rectangular coordinates in Table B.8. The velocity field is three-
dimensional, v1 = v1(x2, x3); thus, there are several nonzero terms in the stress-
tensor expression:

Newtonian
constitutive
equation:

τ̃ = μ
(∇v + (∇v)T ) (7.220)

τ̃ = μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∂v1

∂x2

∂v1

∂x3

∂v1

∂x2
0 0

∂v1

∂x3
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(7.221)

�̃ = τ̃ − pI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−p(x1) μ
∂v1

∂x2
μ

∂v1

∂x3

μ
∂v1

∂x2
−p(x1) 0

μ
∂v1

∂x3
0 −p(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(7.222)

The velocity derivatives may be evaluated from the velocity-profile solution,
Equation 7.212; p(x1) is given by the usual expression for conduits of constant
cross-section, Equation 7.176.

The total force on the walls is calculated from Equation 7.103:

Total molecular fluid force
on a surface S:

F =
∫∫

S

[
n̂ · �̃]at surface d S (7.223)
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The surfaces that experience drag are the four walls. We calculate force on the
bottom and on the left side and double our result:

Fdrag =
Axial drag

in laminar flow
in a rectangular conduit

(7.224)

= 2

⎛
⎜⎜⎜⎜⎜⎜⎝

1-component of
total force

on conduit surface
of unit normal ê2

(bottom)

⎞
⎟⎟⎟⎟⎟⎟⎠+ 2

⎛
⎜⎜⎜⎜⎜⎜⎝

1-component of
total force

on conduit surface
of unit normal ê3

(left side)

⎞
⎟⎟⎟⎟⎟⎟⎠ (7.225)

= 2
∫ L

0

∫ W

−W
ê1 · [ê2 · �̃

]
x2=−H dx3dx1

+ 2
∫ L

0

∫ H

−H
ê1 · [ê3 · �̃]x3=−W dx2dx1 (7.226)

= 4μL
∫ W

0

∂v1

∂x2

∣∣∣∣∣∣
x2=−H

dx3 + 4μL
∫ H

0

∂v1

∂x3

∣∣∣∣∣∣
x3=−W

dx2 (7.227)

= 4μL〈v〉slit

H/W

[∫ 1

0

∂ṽ1

∂ξ2

∣∣∣∣∣∣
ξ2=−1

dξ3 + H 2

W2

∫ 1

0

∂ṽ1

∂ξ3

∣∣∣∣∣∣
ξ3=−1

dξ2

]
(7.228)

= 4HW�p

3

[∫ 1

0

∂ṽ1

∂ξ2

∣∣∣∣∣∣
ξ2=−1

dξ3 + H 2

W2

∫ 1

0

∂ṽ1

∂ξ3

∣∣∣∣∣∣
ξ3=−1

dξ2

]
(7.229)
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Figure 7.33 The stresses generated at the walls of a rectangular duct due to pressure-driven flow are proportional to the velocity
gradients at the walls (see Equation 7.222). The velocity gradients in dimensionless form are plotted here versus
ξ2 = x2/H or ξ3 = x3/W . The shear stresses are not constant at the surfaces but rather vary with position. In
the corners, the stress is zero; the stress is at maximum in the center of the faces.
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= 4HW�p

⎡
⎣ 8

π2

∞∑
n=1,3,5,...

1

n2

⎤
⎦ (7.230)

= 4HW�p (7.231)

where ṽ1 ≡ v1/〈v〉slit and 〈v〉slit = Qslit/4HW = H 2�p/(3μL) (see Equa-
tion 7.194; note that W in the rectangular duct is the half-width, whereas in
the slit case, W is the width). The total drag on the walls of a rectangular duct
is the cross-sectional area times the pressure drop, as it was in pressure-driven
slit flow and Poiseuille flow. The total-stress components used here are from
Equation 7.222, and the final calculation of the expression in brackets in Equa-
tion 7.229 is carried out using the velocity result in Equation 7.212. The infinite
sum in Equation 7.230 converges to π2/8.

The dimensionless wall gradients d ṽ1/dξ2 and d ṽ1/dξ3 are proportional to
wall stresses (see Equation 7.222). These quantities are plotted in Figure 7.33
for a rectangular duct that is twice as wide as it is tall (W = 2H ). Note that
unlike tube flow and slit flow, the stress is not independent of position along the
perimeter in a duct of rectangular cross section.

In summary, the flow-direction momentum balance for flows through ducts of
constant cross section gives the Poisson equation (Equation 7.177), which can be
challenging to solve for some geometries, as in the case of the rectangular duct.
More solutions for flows in ducts are in the literature [152]. In the next section, we
see that even without obtaining exact solutions, we can learn much about general
flow in noncircular ducts by applying dimensional analysis and the friction-factor
concept to these flows. In Section 7.3, we apply the Navier-Stokes equations to
unsteady flow and to flows that are not unidirectional; in Chapter 8, we model
external flows—that is, flows around and over objects rather than through closed
conduits.

7.2.1.2 POISEUILLE NUMBER AND HYDRAULIC DIAMETER
Our experience with flows through pipes in turbulent flow leads us to expect that
dimensional analysis may result in helpful relationships for laminar and turbulent
flows in noncircular conduits; this is indeed the case. Dimensional analysis of the
Poisson equation leads to the definition of a general characteristic lengthscale—
the hydraulic diameter—that organizes the behavior of noncircular conduits.

In the previous section, we derive the flow-direction component of the
microscopic-momentum balance for Poiseuille flow in a conduit as the Poisson
equation (see Equation 7.177):

Poisson equation:
Flow-direction

momentum balance for
pressure-driven flow
in closed conduits

∂2v1

∂x2
2

+ ∂2v1

∂x2
3

= −�p

μL
(7.232)

The derivatives on the lefthand side of the momentum-balance Poisson equa-
tion are obtainable from the shape of the velocity profile, which varies with
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cross-sectional shape (see the velocity results for pressure-driven tube flow, slit
flow, and rectangular-duct flow; Figures 7.7, 7.29, and 7.32). Different conduit
shapes result in different pressure drops on the righthand side.

Dimensional analysis demonstrated that friction factor is a function only of
Reynolds number for pipe flow; it is straightforward to show that this is true also
for flows through noncircular conduits.10 For the simple conduit flows studied
thus far, the friction-factor/Reynolds-number relationships for laminar flow are:

Friction factor
in circular ducts

(laminar tube flow):
f = 16

Re
(7.233)

Friction factor
(laminar slit flow):

f = 24

Re
(7.234)

For laminar flow in a general noncircular conduit, we obtain the friction-factor/
Reynolds-number relationship by a judicious rearrangement of the Poisson
equation, Equation 7.232 (i.e., flow-direction momentum balance), as we now
show.

For circular pipes, we obtained Fdrag = π R2�p for laminar pipe flow (see
Section 7.1) and (width)(height)�p for slit and rectangular duct flow. We can
perform a macroscopic-momentum balance on a section of a noncircular conduit
and obtain the same results for an arbitrary cross-sectional shape (assigned as
Problem 18 in Chapter 9). The result is:

Wall drag for
noncircular
conduits:

Fdrag = �p Axs (7.235)

where Axs is the cross-sectional area of the conduit. We convert the Poisson
equation (Equation 7.232) to a more general nondimensional expression by sub-
stitutingFdrag/Axs for �p and defining the friction factor for a conduit of arbitrary
cross section as:

Friction factor
noncircular conduit:

f ≡ Fdrag

1
2ρV 2 (wetted area)

(7.236)

= Axs�p
1
2ρV 2 (wetted area)

(7.237)

The wetted surface area of a noncircular conduit is the conduit perimeter −p
multiplied by the length L of the conduit:

Wetted area,
conduit of constant

cross section
= −pL (7.238)

10An exception to this is eccentric annular flow, in which flow rate varies with eccentricity. See
Shah and London [152] for solutions to laminar flow through eccentric annuli. The lengthscale
introduced into the problem by placement of the center modifies the dimensional analysis, much
as ε modified the dimensional analysis for rough pipes.
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Using this area in Equation 7.237, we obtain:

f = Axs�p
1
2ρ〈v〉2 −pL

(7.239)

=
(

�p

L

)
Axs/−p
1
2ρV 2

(7.240)

The ratio Axs/−p has dimensions of length; for a circular tube, it is equal to half
the radius. Solving for �p/L gives:

�p

L
=

1
2ρV 2 f

Axs/−p (7.241)

Combining this result with the momentum balance, Equation 7.232, gives:

∂2v1

∂x2
2

+ ∂2v1

∂x2
3

= −
1
2ρV 2 f

(Axs/−p)

1

μ
(7.242)

To write Equation 7.242 in a more familiar friction-factor/Reynolds-number
form, we nondimensionalize the variables in the equation. Following the usual
nondimensionalization techniques, we designate V ≡ 〈v〉 the characteristic
velocity and D the characteristic length. It is not obvious what D should be
for the noncircular conduits considered; we defer identifying D until after sim-
plifying Equation 7.242.

We define the dimensionless velocity and positions as:

v∗
1 ≡ v1

V
(7.243)

x∗
2 ≡ x2

D
(7.244)

x∗
3 ≡ x3

D
(7.245)

Substituting these into Equation 7.242, we obtain:

V

D2

(
∂2v∗

1

∂x∗
2

2 + ∂2v∗
1

∂x∗
3

2

)
= −

1
2ρV 2 f

(Axs/−p) μ
(7.246)

∂2v∗
1

∂x∗
2

2 + ∂2v∗
1

∂x∗
3

2 = −1

2

(
ρV D

μ

)
D

(Axs/−p)
f (7.247)

We see in Equation 7.247 that the Reynolds number appears (ρV D/μ), written
in terms of the as-yet-unspecified characteristic length D. The form of Equa-
tion 7.247 suggests that a reasonable definition of D is Axs/−p. By convention,
a factor of 4 is included in the definition of characteristic length, a choice that
allows that length D to become pipe diameter for tube flow, the same characteristic
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length we used for tube flow. The characteristic length thus defined is called the
hydraulic diameter:11

Hydraulic diameter : D = DH ≡ 4Axs

−p (7.248)

Incorporating the definition of hydraulic diameter, we arrive at the nondimen-
sional version of the flow-direction microscopic-momentum balance for laminar
flow in conduits of arbitrary cross section:

Flow-direction
momentum balance in

laminar flow in ducts of
constant cross section

(Cartesian coordinates):

−1

2

(
∂2v∗

1

∂x∗
2

2 + ∂2v∗
1

∂x∗
3

2

)
= fDH ReDH = Po (7.249)

where the friction factor and the Reynolds number are given by:

fDH =
(

�p

L

)
Axs/−p
1
2ρV 2

=
(

�p

L

)
DH

2ρV 2
(7.250)

ReDH ≡ ρV DH

μ
(7.251)

The combination fDH ReDH is called the Poiseuille number (Po) and it is a constant
(i.e., independent of the Reynolds number) for steady laminar flows in ducts. The
flow-direction momentum balance also may be written in general vector–tensor
(i.e., Gibbs) notation or in cylindrical coordinates, as shown here:

Gibbs
notation:

−1

2
∇∗2

v∗ = fDH ReDH (7.252)

Cylindrical
coordinates:

−1

2

[
1

r∗
∂

∂r∗

(
r∗ ∂v∗

z

∂r∗

)
+ 1

r∗2

∂2v∗
z

∂θ2

]
= fDH ReDH =Po

(7.253)

Equation 7.249 (or Equation 7.252 or 7.253) is a powerful general result for
unidirectional, steady flow in noncircular ducts. For a duct of a chosen cross
section, the velocity profile has a steady-state shape, and the lefthand side of
Equation 7.249 evaluates to a numerical constant. The value obtained for the
constant, the Poiseuille number, depends on only the shape of the cross section,
not on flow variables such as the Reynolds number. Thus, Equation 7.249 states
that Po = fDH ReDH = constant for a given geometry. We already know this is
true for tubes and slits (see Equations 7.233 and 7.234). Through this derivation,

11Note that in the literature there also is a quantity called the hydraulic radius rH , which is equivalent
to DH /4 (see Problem 23). This is an unfortunate inconsistency in nomenclature.
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we now see that this is a general result for laminar flow in conduits of constant
cross section with f and Re based on hydraulic diameter.12

To illustrate the power of Equation 7.249 and to explore the concept of hydraulic
diameter, we calculate the constant fDH ReDH for both circular tubes and conduits
with triangular cross section.

EXAMPLE 7.12. For steady laminar flow in ducts of constant cross section, the
combination fDH ReDH is a constant. For steady laminar flow in a tube, evaluate
this constant using Equation 7.253.

SOLUTION. We calculated the velocity profile for laminar flow in a tube in
Equation 7.23 and the average velocity for that flow in Equation 7.29 (results
given in cylindrical coordinates):

vz(r ) = (p0 − pL )R2

8μL

[
1 −

(
r

R

)2
]

(7.254)

V = 〈v〉 = (p0 − pL )R2

4μL
(7.255)

In dimensionless form, we write the velocity profile as:

v∗
r = vr

V
= 2

(
1 − 4r∗2

)
(7.256)

where r∗ = r/DH and DH = 4(π R2)/(2π R) = 2R.
The flow-direction microscopic momentum balance is given by Equa-

tion 7.253:

−1

2

[
1

r∗
∂

∂r∗

(
r∗ ∂v∗

z

∂r∗

)
+ 1

r∗2

∂v∗
z

∂θ2

]
= fDH ReDH (7.257)

We now substitute Equation 7.256 into Equation 7.257 and simplify:

fDH ReDH = −1

2

[
1

r∗
∂

∂r∗

(
r∗ ∂v∗

z

∂r∗

)
+ 1

r∗2

∂v∗
z

∂θ2

]
(7.258)

v∗
r = vr

V
= 2

(
1 − 4r∗2

)
(7.259)

∂v∗
z

∂θ
= 0 (7.260)

∂v∗
z

∂r∗ = −16r∗ (7.261)

fDH ReDH = −1

2

(
1

r∗
∂

∂r∗
(
−16r∗2

))
(7.262)

= 16 (7.263)

We arrive at fDH = 16/ReDH , the familiar result from Equation 7.152.

12A notable failure of the hydrodynamic-diameter concept is eccentric annular flow, as noted in
Footnote 10.
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EXAMPLE 7.13. For steady laminar flow in ducts of constant cross section,
the combination fDH ReDH is a constant. If the shape of the cross section of
the conduit is an equilateral triangle (Figure 7.34), evaluate this constant using
Equation 7.249.

2

3aa a

a

Figure 7.34 The shape of the cross section in this example is an equilateral triangle with walls of length a .

SOLUTION. The velocity profile and average velocity for laminar flow in an
equilateral triangular conduit is given by White [174] to be (Cartesian coordi-
nates):

vx (y, z) = (p0 − pL )

2a
√

3μL

(
z − a

√
3

2

)(
3y2 − z2

)
(7.264)

V = 〈v〉 = a2(p0 − pL )

80μL
(7.265)

To nondimensionalize the velocity profile, we need the hydraulic diameter:

DH ≡ 4Axs

−p (7.266)

=
4
(

1
2 a a

√
3

2

)
3a

(7.267)

= a√
3

(7.268)

In dimensionless form, we write the velocity profile in terms of v∗
x = vx/V ,

y∗ = y/DH , and z∗ = z/DH :

v∗
x = 20

9
(2z∗ − 3)

(
3y∗2 − z∗2

)
(7.269)

The microscopic-momentum balance in the flow direction written in Cartesian
coordinates is as follows (Equation 7.249):

−1

2

(
∂2v∗

x

∂ y∗2 + ∂2v∗
x

∂z∗2

)
= fDH ReDH (7.270)
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where we make the substitutions x∗
2 = y∗, x∗

3 = z∗, and v∗
1 = v∗

x . Calculating the
required derivatives of v∗

x from Equation 7.269, we proceed to the final result
for fDH ReDH :

∂v∗
x

∂y∗ = 20

9
(2z∗ − 3) (6y∗) (7.271)

∂2v∗
x

∂ y∗2 = 40

3
(2z∗ − 3) (7.272)

∂v∗
x

∂z∗ = 40

3

(
−z∗2 + z∗ + y∗2

)
(7.273)

∂2v∗
x

∂z∗2 = 40

3
(−2z∗ + 1) (7.274)

fDH ReDH = −1

2

(
∂2v∗

x

∂ y∗2 + ∂2v∗
x

∂z∗2

)
(7.275)

= −20

3
(2z∗ − 3 − 2z∗ + 1) (7.276)

= 40

3
(7.277)

The friction-factor/Reynolds-number relationship for laminar flow in a conduit
with an equilateral triangular cross section is fDH = 13.333/ReDH .

For highly symmetric shapes, Po is a single number, whereas for more com-
plex shapes, Po depends on geometric parameters that define the cross-sectional
shape. For example, for elliptical cross sections, the shape of the cross section is
defined by the lengths of the major and minor axes of the ellipse (Figure 7.35).
The Poiseuille number for an elliptical cross section may be written as follows
(see Problem 25):

Poiseuille number
for laminar flow
in a duct of an

elliptical cross section:

Po(a, b) = fDH ReDH = 32π2

−p (a2 + b2) (7.278)

where a and b are the semi-major and semi-minor axes of the ellipse, and −p is
the perimeter of the ellipse, given in terms of a and b as:

−p = 4
∫ π

2

0

√
a2 sin2 ψ + b2 cos2 ψ dψ (7.279)

a

b

Figure 7.35 The shape of an ellipse is defined by the lengths of its major (2a ) and minor (2b) axes.
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HH DDf Re

Figure 7.36 fDH ReDH versus b/a for elliptical ducts [152].

Note that ψ is a dummy variable of integration. The relationship fDH ReDH

versus b/a for an ellipse is shown in Figure 7.36. The Poiseuille number for the
rectangular geometry can be calculated from the laminar-flow solution presented
in Equation 7.212 (this is left to readers in Problem 27). The results are given
in Figure 7.37. In their text Shah and London [152] summarize and graphically
display solutions for fDH ReDH for 40 geometries, encompassing both practical
engineering shapes and those of more theoretical interest.

In summary, we can analyze steady, unidirectional, laminar flow through
noncircular closed geometries as a group. For simple shapes, we can solve the

14.0

16.0

18.0

20.0

22.0

24.0

26.0

1.00.80.60.40.20

a

b

W/2 

H

HH DDf Re

W

H2

Figure 7.37 The Poiseuille number for laminar flow in a rectangular duct is a function of the ratio H/W [152], where H and W
are the half-height and half-width of the duct, respectively.
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Figure 7.38 Friction-factor/Reynolds-number relationships for laminar flows in conduits of constant cross section are similar and
characterized by a constant Poiseuille number: Po = fDH ReDH . For noncircular conduits, therefore, fDH ∝ 1/ReDH .

problems completely—for example, slit flow (Equation 7.188) and tube flow
(Example 7.2)—although the mathematics required can be sophisticated for some
shapes (e.g., the rectangular duct; see Equation 7.212). For almost all shapes,13

we show that the Poiseuille number is constant, which corresponds to the friction-
factor scaling as 1/ReDH (Figure 7.38). The hydraulic diameter, DH = 4A/−p,
was developed as a common lengthscale for use in such flows.

We can use the laminar flow results from this section to calculate flow-rate/
pressure-drop problems for noncircular conduits, as shown in the following exam-
ples. We also show in Example 7.16 how a packed bed may be analyzed as a con-
duit of irregular cross section. In the next subsection, we briefly discuss turbulent
flows in noncircular conduits before continuing with more complex internal flows
in Section 7.3.

EXAMPLE 7.14. Water is flowing in a 15.0-m-long triangular duct (i.e., an
equilateral triangle in cross section; geometry given in Figure 7.34: a = 50 mm).
The upstream gauge pressure is 25.0 Pa and the downstream gauge pressure is 0
Pa. Calculate the average velocity in the conduit.

SOLUTION. The pressure drop is only 25.0 Pa; therefore, we assume at first that
the flow is laminar. We doublecheck this assumption at the end of the calculation.

13Hydrodynamic diameter does not work for eccentric annuli [152].

www.20file.org

http://www.semeng.ir


563 Internal Flows

For laminar flow in a triangular duct, fDH ReDH = 40/3. We therefore can
write:

fDH ReDH = 40/3 (7.280)(
�pDH

2LρV 2

)(
ρV DH

μ

)
= 40

3
(7.281)

Solving for V = 〈v〉, we obtain:

�pD2
H

2μLV
= 40

3
(7.282)

V = 3D2
H�p

80μL
(7.283)

We substitute numerical values for the quantities in Equation 7.283 and obtain
the final result for average velocity V :

DH = a√
3

= 50 mm√
3

= 0.02887 m (7.284)

V = (3)(0.02887 m)2(25.0 Pa)

(80)(15.0 m)(0.00100 Pa s)
(7.285)

= 0.05209 m/s (7.286)

= 0.052 m/s (2 significant figures) (7.287)

We check our assumption of laminar flow:

ReDH = ρV DH

μ
=
(

1,000 kg
m3

) (
0.05209 m

s

)
0.02887 m

(0.00100 Pa s)
= 1,504 (7.288)

The Reynolds number is below 2,100, which is the upper limit for laminar flow
in circular pipes. We do not know a priori if this is the upper limit of Re for flow
in a triangular duct, however, until we discuss turbulent flow in triangular ducts
(see Section 7.2.2).

EXAMPLE 7.15. For laminar flow in a duct at average velocity V , which
geometry has more drag: a tube of diameter a or a square duct of side a?

SOLUTION. The drag in a flow is quantified by the friction factor:

fDH = Fdrag

1
2ρV 2 −pL

(7.289)

The hydraulic diameters for the two geometries are the same:

Circle: DH = 4Axs

−p = 4 π
( a

2

)2

2π a
2

= a (7.290)

Square: DH = 4Axs

−p = 4 a2

4a
= a (7.291)
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For a tube, Po = fDH ReDH = 16; for a square duct, Po = fDH ReDH =
14.22708 (see Figure 7.37 and [152]). For the same fluid (ρ, μ) at the same
average velocity V , we compare the two geometries to see which has higher drag:

fDH = Fdrag
1
2ρV 2 −pL

= Po

ReDH

(7.292)

Fdrag =
1
2ρV 2

ReDH

Po −pL (7.293)

Fdrag

∣∣∣
circle =

1
2ρV 2L

ReDH

(16)(πa) = 50.265
1
2ρV 2 aL

ReDH

(7.294)

F drag

∣∣∣
square =

1
2ρV 2L

ReDH

(14.22708)(4a) = 56.908
1
2ρV 2 aL

ReDH

(7.295)

A square duct has 13 percent more drag than a circular duct of the same
hydraulic diameter and length.

EXAMPLE 7.16. For pressure-driven flow through a packed bed, how can we
relate pressure drop and flow rate? For example, a 1.0-cm-diameter chromatog-
raphy column consists of a packing with a void fraction ε = 0.39 and a specific
surface area (i.e., total particle surface area/particle volume) av = 720 cm−1.
What pressure drop (�p/L) must be applied to drive toluene through the column
at 1.0 ml/min?

SOLUTION. We have succeeded thus far in relating pressure drop and flow
rate in circular and noncircular ducts. We choose now to think of flow through
a packed bed as flow through a duct of an extremely irregular cross section
(Figure 7.39). With this picture, we can derive a functional form for the friction-
factor/Reynolds-number relationship, which can be tested through comparison
to experiments. We follow the development in Denn [43].

For conduits of arbitrary cross section, we show in this chapter that the
Poiseuille number is constant:

Po ≡ fDH ReDH = constant (7.296)

where friction factor and Reynolds number are defined in terms of the hydraulic
diameter (see Equations 7.250 and 7.251):

fDH =
(

�p

L

)
Axs/−p
1
2ρV 2

=
(

�p

L

)
DH

2ρV 2
(7.297)

ReDH ≡ ρV DH

μ
(7.298)

For circular tubes, Po = 16; for triangular ducts, Po = 40/3; and for elliptical
and rectangular ducts, Po is given in Figures 7.36 and 7.37.

For simple geometries such as a tube and a triangle, we solved analytically for
Po by using known solutions for the flow field. We cannot do this for the tortu-
ous three-dimensional flow through a packed bed, but we can derive a hydraulic
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Figure 7.39 The structure of a porous material is illustrated by this snapshot of an empty pore model calculated by Lev Gelb and
coworkers at Washington University (St. Louis, Missouri, USA; used with permission, for related work see [144]).
Flow through a packed bed follows a tortuous three-dimensional path that may be thought of as flow through a
conduit of irregular cross section.

diameter and then perform experiments to see (1) if the Poiseuille number is
constant; and (2) if Po is constant, to see what value is obtained for flow through
packed beds. Once we know the value of Po, we can solve easily the chromatog-
raphy problem posed at the beginning of this example as a pressure drop/flow
rate problem.

The hydraulic diameter is defined as:

DH ≡ 4Axs

−p (7.299)

where Axs is the cross-sectional area open to flow and −p is the wetted perimeter.
For flow in a packed bed, Axs and −p can be related to two properties of the bed
and its packing: the void fraction ε and the specific surface area av .

The void fraction is a measure of how much of the bed volume is occupied by
packing. The void fraction is defined as:

Void fraction: ε ≡ (empty-bed volume)

(total-bed volume)
(7.300)

Thus, 1 − ε is the fraction of the bed volume occupied by the packing:

1 − ε = (volume of solids)

(total-bed volume)
(7.301)

The cross section open to flow Axs is the open volume per unit length (compare
to the same calculation for a tube):

Axs =
(

empty-bed volume

L

)
= εV

L
(7.302)

where V is the total volume occupied by the bed and L is the length of the bed.
The specific surface area of a packing is the total surface area of the particle per
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unit volume of the particle:

Specific surface
area of a packing:

av ≡ (total particle surface area)

(particle volume)
(7.303)

Note that if the packing is nonporous spheres:

Specific
surface area of

nonporous spheres:
av = 4π R2

4
3π R3

= 6

D
(7.304)

where D = 2R is the diameter of the spheres. For nonspherical particles, av =
6/D may be used to calculate an effective spherical diameter from the known av

for the nonspherical geometry.
The wetted perimeter −p is the amount of particle surface area associated with

a cross section of the column. Thus, −p is the total particle surface area per unit
bed length. This can be related to av , as follows:

−p =
(

total surface area in column

L

)
(7.305)

= 1

L

(
surface area

volume

)
(volume occupied by solids) (7.306)

=
(

1

L

)(
av

)(
V(1 − ε)

)
(7.307)

= av

L
(1 − ε)V (7.308)

We now can calculate the hydraulic diameter for the packed bed:

DH ≡ 4Axs

−p (7.309)

=
4
(

εV
L

)
av

L
(1 − ε)V

= 4ε

(1 − ε)av

(7.310)

Hydraulic diameter
for a packed bed:

DH = 4ε

(1 − ε)av

(7.311)

The friction factor in terms of hydraulic diameter and experimental variables
for a noncircular conduit is given directly by Equation 7.297, with the velocity
V interpreted for a packed bed as the average velocity through the void regions.
The superficial velocity v0 is defined as the apparent average flow velocity as if
the packing were not present:

Superficial velocity v0 ≡
(

total flow rate

bed cross-sectional area

)
= Q

V/L
(7.312)

where Q is the volumetric flow rate of liquid through the bed. The true average
velocity through the void regions V is equal to the flow rate divided by the cross
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section open to flow Axs :

True average velocity
through void regions:

V = Q

Axs
= Q

εV/L
= v0

ε
(7.313)

Substituting V into Equation 7.297, the friction factor for packed beds becomes:

fDH =
(

�p

L

)
DH

2ρV 2
(7.314)

Friction factor
for a packed bed:
(based on DH )

fDH =
(

�p

L

)
DH ε2

2ρv2
0

(7.315)

The Reynolds number14 also contains average velocity, which we replace with
true average velocity, V = v0/ε:

ReDH = ρV DH

μ
(7.316)

Reynolds number
for a packed bed:
(based on DH )

ReDH = ρ(v0/ε)DH

μ
(7.317)

Our hypothesis is that we can model flow through a packed bed as flow in
a highly irregular, noncircular conduit. If we are correct, then when we take
measurements on packed beds, fDH should go as 1/ReDH , at least in the laminar-
flow (i.e., slow-flow) region. Experimental data by Ergun [45] and others for
fDH versus ReDH are shown in Figure 7.40. The hydrodynamic-diameter model
describes well flows through packed beds at small ReDH , and the Poiseuille num-
ber for flow through packed beds is found experimentally to be 100/3 = 33.33.
The data follow the curve fDH ReDH = 33.33 until ReDH ≈ 10. The entire dataset
is well represented by the following equation, known as the Ergun correlation
[23, 45]:15

Ergun correlation:
friction factor/

Reynolds number for
flow through packed beds

100/3

ReDH

+ 1.75

3
= fDH (7.318)

The Ergun correlation trends to a constant value (1.75/3) at large Reynolds
numbers; the friction factor in very rough pipes also approaches to constant value
as Re becomes large (see Figure 7.22). Thus, the result for packed beds shows
that at low Reynolds number, the flow may be modeled as flow through a highly
irregular noncircular conduit; whereas at high Reynolds number, the response is
analogous to turbulent flow through extremely rough pipe (Figure 7.41).

14In the literature on this subject, a slightly different friction factor and Reynolds number are
defined and used: the particle friction factor ( f p = 3 fDH ) and the particle Reynolds number
(Rep = (3/2)ReDH ).

15In terms of particle friction factor f p = 3 fDH and particle Reynolds number Rep = (3/2)ReDH ,
the Ergun correlation is 150/Rep + 1.75 = f p [23].
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Figure 7.40 Data on friction factor versus Reynolds number at low Reynolds number validate the hypothesis that fDH ReDH

is constant for slow flow through packed beds. The constant fDH ReDH is found to be 100/3 = 33.33. Above
ReDH = 10, the data deviate from the hydraulic-diameter result, following instead fDH = constant = 1.75/3,
which is the result expected for flow in very rough pipe (compare to Figure 7.22 for large ε/D and large Re). Data
are from reference [45].
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Figure 7.41 We compare the packed-bed result (i.e., Ergun correlation) with the friction-factor/Reynolds-number relationship
for flows in other conduits. At low Reynolds number, the Poiseuille number, Po = fDH ReDH , is constant for most
cross-sectional shapes and for packed beds. At high Reynolds number and high roughness in pipe flow, the friction
factor becomes constant with a value that increases with increasing roughness; packed beds at high Re also have
fDH = constant. At intermediate Reynolds number, the observed behavior of packed beds is intermediate between
these two extremes.
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The Ergun correlation contains the information we need to solve the question
posed at the beginning of this example about flow through a chromatography
column. We are asked to consider a 1.0-cm-diameter chromatography column
with ε = 0.39 and av = 720 cm−1. The desired flow rate through the column
is Q = 1.0 ml/min, and we need to know the applied pressure drop required to
achieve this flow rate.

From the literature, we obtain the density and viscosity of toluene at room
temperature to be ρ = 0.8669 g/cm3 and μ = 0.590 cp [132]. We directly cal-
culate the Reynolds number, and we calculate the friction factor from the Ergun
correlation:

v0 = Q

π R2
=
(

1.0 cm3

min

) ( min
60 s

)
(π ) (0.5 cm)2 = 0.02122066 cm/s (7.319)

DH = 4ε

(1 − ε)av

= 4(0.39)

(1 − 0.39)(72 1
cm )

= 3.55191 × 10−2 cm (7.320)

ReDH = ρ(v0/ε)DH

μ
= (0.8669 g

cm3 )(0.02122066 cm
s )(3.55191 × 10−2 cm)

(0.00590 g
cm s )(0.39)

= 0.28397 (7.321)

fDH = 100

3ReDH

+ 1.75

3
= 100

(3)(0.28397)
+ 1.75

3
(7.322)

= 118 (7.323)

We now calculate �p/L from the definition of fDH (see Equation 7.315):

fDH =
(

�p

L

)
DH ε2

2ρv2
0

(7.324)

�p

L
= 2 fDH ρv2

0

DH ε2
(7.325)

=
(2)(118)

(
0.8669 g

cm3

)
(0.02122066 cm

s )2
(

dyne s2

g cm

)
(3.55191 × 10−2 cm)(0.39)2

(7.326)

= 17.05
dynes

cm3

(
0.1 Pa

1 dyne/cm2

)(
100 cm

m

)
(7.327)

= 170 Pa/m (7.328)

The methods in this section provide an understanding of steady, laminar
flow in noncircular conduits. As with tubes, however, flows in noncircular con-
duits become unstable at Reynolds numbers greater than a certain critical value
(Recrit = 2,100 for the case of tubes). A brief discussion of turbulent flow in
noncircular ducts follows.
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7.2.2 Turbulent flow in noncircular ducts

In circular pipes, we know that above a Reynolds number of Recrit = 2,100 the
flow is no longer laminar. In Section 7.1.2.2, we use dimensional analysis on
the expression for drag at the pipe walls to determine that the dimensionless
wall drag, or friction factor, is a function of the Reynolds number only. We can
perform the same calculation for noncircular conduits (assigned as Problem 18
in Chapter 9) and the result is the same: The friction factor in noncircular ducts
is a function of the Reynolds number only, as long as the flow is fully developed
(i.e., no entrance effects).

In laminar duct flow, we learned that the friction-factor/Reynolds-number
relationships for circular and noncircular conduits were similar (i.e., Po =
fDH ReDH = constant) but not identical. In turbulent flow, therefore, we approach
the problem with the expectation that the fDH (ReDH ) correlation for noncircular
ducts may be similar to the pipe-flow case but not identical. In an interesting
twist of physics, it turns out that the fDH (ReDH ) correlation for turbulent flow in
noncircular ducts is nearly identical to the tube-flow correlations (it is within a
few percentage points) [68, 126, 148]. Thus, it is a fair approximation to use the
Prandtl correlation (see Equation 7.156) or the Moody chart (see Figure 7.17)
for turbulent flow in noncircular ducts, with both friction factor and Reynolds
number written in terms of hydraulic diameter. Experiments on rectangular [68],
triangular, and annular [69] ducts show that the error in this approximation may be
reduced further by adjusting the Reynolds number by a ratio of 16—the Poiseuille
number for tube flow—to the laminar-flow Poiseuille number for the duct under
consideration:

Modified Prandtl
correlation for
turbulent flow

in noncircular ducts
(experimental results):

1√
fDH

= 4.0 log

[
ReDH

√
fDH

Poduct
16

]
− 0.40

(7.329)

Hydraulic
diameter:

DH ≡ 4Axs

−p (7.330)

Fanning friction
factor for ducts:

fDH = Fdrag[ 1
2ρ〈v〉2

]
(−pL)

= �p Axs[ 1
2ρ〈v〉2

]
(−pL)

= �pDH[ 1
2ρ〈v〉2

]
(4L)

(7.331)

Reynolds number
for ducts:

ReDH = ρ〈v〉DH

μ
(7.332)

(Compare Equation 7.329 to the circular-pipe Prandtl correlation in Equa-
tion 7.156.) The combination 16DH/Poduct is called the effective diameter, Deff

[176]. Values of Poduct are shown in Figure 7.38 for several cross sections.
The similarities among turbulent-flow correlations in noncircular ducts are less

surprising when we examine the turbulent velocity fields in ducts of most cross
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Figure 7.42 Turbulent flows in noncircular ducts are similar. The flow in the central region is plug flow, and shear stress is
concentrated at the walls. A weak secondary flow brings momentum from the center of the flow to the walls [127].

sectional shapes [176]. For cross sections that are not too thin in any portion,
the flow is plug flow in the core with a viscous boundary layer near the wall
(Figure 7.42). This common flow profile is maintained by the presence of a weak
secondary flow that exists on top of the mean unidirectional flow. The secondary
flow consists of recirculating cells that bring momentum from the center of the
conduit to the walls [42]. This recirculation maintains the flow structure of a large
plug-like central core, with the viscous-drag effects confined to the near-wall
region. Thus, the importance of the shape of the conduit is diminished, and only
the amount of wall area—as quantified by the hydraulic diameter—determines
the amount of friction [128]. More detail on flows through noncircular ducts is
in the literature [42, 152].

The practical result of this discussion about turbulent flow in noncircular ducts
is that the modified Prandtl correlation (Equation 7.329) may be used in pressure-
drop/flow-rate calculations in such systems, as demonstrated in Example 7.17.

EXAMPLE 7.17. Water at 25◦ is forced through a narrow slit that is 1.0 mm by
50 mm in cross section and 50.0 cm long. The driving pressure is 6.0 psi. What
is the flow rate through the slit? The flow may be assumed to be turbulent.

SOLUTION. Flow through a noncircular duct may be analyzed with the hydraulic
diameter and the friction-Re correlation in Equation 7.329. For the slit, we first
calculate the hydraulic diameter:

DH = 4Axs

−p (7.333)

= 4(1 mm)(50 mm)

2(50 mm) + 2(1 mm)
(7.334)

= 1.96 mm (7.335)
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To calculate the Reynolds number or the friction factor, we need the average
velocity, which is related to the flow rate as Q = 〈v〉W H , where L is the length
of the slit and H is the slit height. We can guess a value of 〈v〉 and then iterate to
the correct answer. Our method is as follows:

1. Guess flow rate Q; calculate 〈v〉 = Q/W H .
2. Calculate ReDH from the definition of the Reynolds number for noncircular

conduits, Re = ρ〈v〉DH/μ.
3. Following Example 7.5, calculate fDH through an iterative process. First

guess fDH , calculate the right side of Equation 7.329, and then calculate
a new fDH from this rightside calculation. Iterate until the value of fDH

converges.
4. Calculate 〈v〉 from fDH through its definition for noncircular conduits,

Equation 7.331.
5. Calculate Q from 〈v〉: Q = 〈v〉W H .
6. If Q does not match the initial guess, use the new value as the next guess

and iterate.

This entire process can be carried out in spreadsheet software. The solution
for the numbers in this example is:

Q = 96 cm3/s = 1.5 gpm

〈v〉 = 190 cm/s

ReDH = 4,200

fDH = 1.1 × 10−2

7.3 More complex internal flows

In this chapter we provide an introduction to internal flows. The governing equa-
tions for all incompressible Newtonian flow problems are known:

Mass conservation:
(continuity equation,

constant density)
0 = ∇ · v (7.336)

Momentum conservation:
(Navier-Stokes equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

(7.337)

Newtonian
constitutive equation:

τ̃ = �̃ + pI = μ
(∇v + (∇v)T ) (7.338)

Total molecular fluid
force on a surface S:

F =
∫∫

S

[
n̂ · �̃]at surface d S (7.339)

Total flow rate out
through surface S:

Q =
∫∫

S

[
n̂ · v

]
at surface d S (7.340)
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For complex internal flows, advanced mathematical and computational tech-
niques are needed to find solutions to this set of equations. Here we briefly
introduce solution methods common to the study of more complex internal
flows.

We have solved the equations of Newtonian flow for simple flows. For steady,
unidirectional flows (i.e., pipe flow and flow through noncircular ducts), the
lefthand side of the Navier-Stokes equation is zero, and we solve the Poisson
equation. For unsteady, undirectional flows, the ∂v/∂t term remains, and we
seek an unsteady solution (see Section 7.3.1) or a simplified, quasisteady solu-
tion (see Section 7.3.2). When flows are not unidirectional, the Navier-Stokes
equations are difficult to solve, even for steady flows (discussed at length in
Chapter 8 for external flows). For slowly changing geometries in internal flows,
approximate solutions to steady, nonunidirectional flows are obtained with the
lubrication approximation (see Section 7.3.3). Often, flows in complex geome-
tries and unsteady flows are solved numerically (see Chapter 10). We begin with
unsteady-state solutions to the Newtonian flow equations.

7.3.1 Unsteady-state solutions

The incompressible internal flows analyzed in this chapter thus far are
steady flows. For steady unidirectional flows, the velocity field has a single
nonzero component, and the continuity and Navier-Stokes equations simplify
to:16

Steady, Incompressible, Unidirectional Flow

Continuity equation: 0 = ∂vx

∂x

x-Component Navier-Stokes: 0 = −∂p

∂x
+ μ

(
∂2vx

∂y2
+ ∂2vx

∂z2

)

y-Component Navier-Stokes: 0 = ∂p

∂y

z-Component Navier-Stokes: 0 = ∂p

∂z

(7.341)

We looked at several problems described by these equations; more solutions are
in the literature [152].

For unsteady, incompressible, unidirectional flows, these equations are modi-
fied by the retention of the time derivative in the x-component of the momentum
balance.

16Gravity is neglected or incorporated into pressure through the use of an equivalent or dynamic
pressure P (see the Glossary and Problem 10).
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Unsteady, Incompressible, Unidirectional Flow

Continuity
equation:

0 = ∂vx

∂x

x-Component
Navier-Stokes:

ρ
∂vx

∂t
= −∂p

∂x
+ μ

(
∂2vx

∂y2
+ ∂2vx

∂z2

)

y-Component
Navier-Stokes:

0 = ∂p

∂y

z-Component
Navier-Stokes:

0 = ∂p

∂z

(7.342)

The time derivative is one of the inertial terms (lefthand side) of the momen-
tum balance (see Figure 7.16). So far we considered flows only influenced by
viscous forces, which enter into the microscopic momentum balance through the
μ∇2v term on the righthand side. For flows in which inertia is present, there
is competition between the inertial and viscous forces. We can see the effect of
inertia on flow fields by considering a simple unsteady flow, the unidirectional
accelerating flow at the bottom of a tall container (Figure 7.43).

EXAMPLE 7.18. A semi-infinite fluid bounded by a wall is set in motion by the
sudden acceleration of the wall (see Figure 7.43). Calculate the time-dependent
velocity and stress fields. The fluid is an incompressible Newtonian fluid. The
effect of gravity may be neglected.

x

y

0<t
wall at rest 
fluid at rest 

x

y

0≥t
wall in motion 

fluid accelerating

V

Figure 7.43 A plate forms a boundary for a semi-infinite fluid. At time t = 0, the plate is suddenly accelerated and then
maintains a constant speed V .
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SOLUTION. This flow is discussed at length by Denn [43]. In this flow, a
semi-infinite fluid is set in motion by the sudden acceleration of the wall (see
Figure 7.43). The fluid velocity field is unidirectional in the x-direction, and the
continuity equation for unidirectional flow in the x-direction gives dvx/dx = 0.
For wide flow, there is no variation of vx in the neutral direction z. Thus, vx varies
only in the y-direction. The Navier-Stokes equation reduces to:

x-Component Navier-Stokes: ρ
∂vx

∂t
= −∂p

∂x
+ μ

∂2vx

∂y2
(7.343)

y-Component Navier-Stokes: 0 = −∂p

∂y
(7.344)

z-Component Navier-Stokes: 0 = −∂p

∂z
(7.345)

Pressure is constant away from the wall; thus, we assume ∂p/∂x = 0 everywhere.
The appropriate initial and boundary conditions are that the fluid is initially
quiescent, there is no-slip at the wall, and the fluid is undisturbed far from the
wall. Mathematically, these conditions are:

t = 0 vx = 0 for all y ≥ 0 (7.346)

t > 0 vx = V for y = 0 (7.347)

t < ∞ vx = 0 for y = ∞ (7.348)

This flow may be solved analytically by noting that a fortuitous combination
of variables, ζ ≡ y/

√
4μt/ρ, reduces the PDE in Equation 7.343 to an ordinary

differential equation (ODE). A solution that exploits such a combination of
variables is called a similarity solution. For the problem of the wall suddenly set
in motion, the velocity profile is as follows (the details of the solution are left to
the reader) [43]:

Velocity profile
semi-infinite fluid,

wall suddenly set in motion:

vx (y, t)

V
= 1 − erf

(
y/
√

4μt/ρ
)

(7.349)

where erf () is the error function, defined as:

Error function defined: erf ζ ≡ 2√
π

∫ ζ

0
e−ξ 2

dξ (7.350)

This solution for vx (y, t) is plotted in Figure 7.44 for the combined variables
(left) and for vx (y) at various times (right).

The idealized problem of a wall suddenly set in motion has inertial effects due
to the term ρ∂vx/∂t as well as viscous effects due to the term μ∂2vx/∂y2. The
competition between these two terms dictates the flow structure. The inertial term
imposes the tendency of the fluid to remain at rest. The viscous term, because
it describes the stress transfer between fluid layers, enforces the tendency of the
fluid to match the velocity of the wall. The viscous forces dominate near the wall;
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Figure 7.44 The solution to the flow caused by a wall suddenly set in motion may be represented in terms of the dimensionless
similarity variable y/

√
4μt /ρ or in terms of the physical variables y and t . In this figure, the flow is upward on the

left side and the thickness of the boundary layer is represented by the location on the abscissa where the velocity
goes to zero.

whereas far from the wall, the inertial forces dominate. The layer near the wall
where viscous forces dominate is called the viscous boundary layer. As shown in
Figure 7.44 (bottom), the boundary layer—that is, the region of flow affected by
the motion of the wall—grows in thickness with time. The plot of the velocity
versus the combined variable y/

√
4μt/ρ (see Figure 7.44, top) shows that when

y/
√

4μt/ρ = 2, the effect of the wall has died out (i.e., velocity goes to zero).
If we consider the thickness of the boundary layer δ to be the value of y when
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y/
√

4μt/ρ = 2, then δ grows with time as:

Boundary-layer
thickness, δ:

δ = 2
√

4μt/ρ (7.351)

The boundary layer is a natural outcome of the competition between viscous and
inertial forces in this flow. Chapter 8 discusses steady flows in which viscous and
inertial effects compete and boundary layers form.

More information about solutions to unsteady fluid flow problems is in the
literature [9] or may be pursued numerically [49, 100].

7.3.2 Quasi-steady-state solutions

There are many important engineering flows that vary slowly with time. A mod-
eling approach that works well in this circumstance is to solve the problem at a
particular time—for example, the initial time—as if it were a steady-state prob-
lem. Subsequently, a quantity that is actually changing with time, a height, a
flow rate, or a velocity, is allowed to slowly vary with time. An example of a
quasi-steady-state flow solution follows.

EXAMPLE 7.19. Water is siphoned from a tank as shown in Figure 7.45. What
is the flow rate of the water in the siphon tube (ID = 2R) as a function of time?
How long does it take the tank to drain?

1

h1 = 22 cm

V
⋅

2

1.5 cm

Figure 7.45 A siphon is inherently unsteady in its operation. To solve for the time to drain the tank, we use a quasi-steady-state
approach.

SOLUTION. The system of the water flowing in the siphon is an unsteady flow
of an incompressible fluid. Therefore, the mechanical energy balance (MEB),
which is allowed only on steady-state problems, appears to be an inappropriate
choice to use to solve the siphon problem. If, however, we assume that at any
instant in time the flow is steady, perhaps we can obtain a useful result.
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We seek, therefore, to use the MEB to solve for the instantaneous flow rate in
the siphon as a function of the instantaneous height of the fluid in the feed tank.
The system of the water in the siphon is single-input, single-output, the fluid is
incompressible, and we assume that over a short period that the flow is steady
(i.e., quasi-steady-state). There is no heat transfer and no chemical reaction or
phase change. All of the requirements of the mechanical energy balance therefore
are met over the short period considered:

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible, v̂

constant across inlet, outlet
�T ≈ 0, no reaction)

(7.352)

To apply the MEB to our siphon, we choose the two points as (1) the free
surface in the tank, and (2) the exit point of the siphon. There are no moving
parts in the chosen system and therefore no shaft work. The flow in the tank
and siphon is tranquil and little friction is generated. The MEB simplifies to the
macroscopic Bernoulli equation. The velocity profile is flat at Points (1) and (2);
therefore, α = 1:

�p

ρ
+ �〈v〉2

2
+ g�z = 0

Bernoulli equation
(single-input, single-output,

steady, no phase change,
incompressible,

�T ≈ 0, no reaction,
no friction, no shaft work)

(7.353)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2
+ g(z2 − z1) = 0 (7.354)

At Points (1) and (2), the pressure is atmospheric; therefore, p2 − p1 = 0.
The quantities z1 and z2 refer to the elevations of the two chosen points. We
may choose the elevation of the discharge as our reference level for measuring
elevation. Thus, z2 = 0 and z1 = h(t) + ha , where ha is the vertical distance from
the discharge to the bottom of the tank and h(t) is the height of the fluid in the
tank at the instant being considered.

The average velocity of the water at the exit 〈v〉2 is related to the discharge
flow rate Q as:

〈v〉2 = Q

π R2
(7.355)

where R is the radius of the siphon tube. The expression 〈v〉1 refers to the velocity
of the tank water surface; in the solution to a related problem in Chapter 1
(Example 1.5), we assume this velocity is approximately zero. As a result, the
Chapter 1 solution is limited to the early stages of draining the tank. For this
problem, we must consider all times during the tank draining; thus, 〈v〉 is not
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constant. We can express the variable 〈v〉1 in terms of the discharge volumetric
flow rate:

〈v〉1 = Q

A
(7.356)

where A is the cross-sectional area of the tank.
Making these substitutions, the mechanical energy balance becomes:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2
+ g(z2 − z1) = 0 (7.357)

〈v〉2
2 − 〈v〉2

1

2
− g(h(t) + ha) = 0 (7.358)

(
Q

π R2

)2

−
(

Q

A

)2

= 2g(h(t) + ha) (7.359)

Q =
√√√√√ 2g(h(t) + ha)( 1

π R2

)2 − ( 1
A

)2 (7.360)

For the case of A large and h(t) constant and fixed at the value of the initial height
of the fluid in the tank, we recover the solution of Chapter 1 (see Equation 1.45).

To implement a quasi-steady-state solution, we note that flow rate Q is related
to the average speed of the falling water level in the tank. Because h(t) is the
position of the water level in the tank, −dh/dt is the average speed of the tank
water level:

〈v〉1 = −dh

dt
= Q

A
(7.361)

−dh

dt
=
√√√√√2g(h(t) + ha)( A

π R2

)2 − 1
(7.362)

dh

dt
=
⎡
⎣−
√√√√√ 2g( A

π R2

)2 − 1

⎤
⎦ (h(t) + ha)

1
2 (7.363)

dh

dt
= β(h(t) + ha)

1
2 (7.364)

where β is the quantity in square brackets in Equation 7.363. Equation 7.364 is
straightforward to integrate to obtain h(t). The result is:

Level of tank
drained by a siphon:

h(t) = −ha +
(

βt

2
+
√

h0 + ha

)2

(7.365)

The flow rate now may be obtained from Equation 7.361, and the time to drain the
tank t f also may be obtained. The details are left to readers (see also Problem 35).

www.20file.org

http://www.semeng.ir


580 An Introduction to Fluid Mechanics

x

y

xv
yv

Figure 7.46 The pressure-driven flow between plates that are not parallel must be analyzed with two components of the
Navier-Stokes equation.

7.3.3 Geometrically complex flows (including lubrication approximation,
converging flows, and entry flows)

For steady flows that are not unidirectional, two or more components of the
Navier-Stokes equation are significant. A simple example of a two-dimensional
flow is pressure-driven flow between two plates that are not parallel (Figure 7.46).
For such a flow (i.e., no flow in width direction vz = 0, wide plates ∂/∂z =
0, steady ∂/∂t = 0, gravity neglected), the microscopic mass and momentum
balances simplify as shown here:

Steady, Two-Dimensional, Incompressible Flow

Continuity equation: 0 = ∂vx

∂x
+ ∂vy

∂y

x-Component Navier-Stokes:

ρ

(
vx

∂vx

∂x
+ vy

∂vx

∂y

)
= −∂p

∂x
+ μ

(
∂2vx

∂x2
+ ∂2vx

∂y2

)

y-Component Navier-Stokes:

ρ

(
vx

∂vy

∂x
+ vy

∂vy

∂y

)
= −∂p

∂y
+ μ

(
∂2vy

∂x2
+ ∂2vy

∂y2

)

z-Component Navier-Stokes: 0 = ∂p

∂z

(7.366)

Note the presence of inertial terms (lefthand-side terms) in both the x- and
y-components of the Navier-Stokes equation.

This system of equations is extraordinarily complex and is best solved using
numerical-solution techniques [27]. A highly idealized problem of this type is
symmetric converging or diverging flow between two plates, called Hamel flow
(Figure 7.47), which is introduced in Example 7.20 and discussed in more detail
in Denn [43] and Landau and Lifshitz [80].
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EXAMPLE 7.20. Fluid enters the narrow opening between two long, wide plates
that diverge as shown in Figure 7.47. Calculate the steady-state velocity and stress
fields in the diverging flow. The fluid is an incompressible Newtonian fluid.

x

y
r

θ
α

Figure 7.47 A symmetric converging or diverging flow was studied in the early 1900s by Hamel. The complete solution is given
in Landau and Lifshitz [80].

SOLUTION. This problem is analyzed in cylindrical coordinates with z as the
width direction. To obtain equations that we can solve analytically, we neglect the
flow in the θ-direction and assume that the flow is purely radial (vθ = vz = 0). We
also assume that there are no variations of quantities in the z-direction (∂/∂z = 0)
and that the flow is steady. The governing equations thus become:

Continuity equation: 0 = 1

r

∂(rvr )

∂r
(7.367)

r -Component
Navier-Stokes:

ρvr
∂vr

∂r
= −∂p

∂r
+ μ

(
∂

∂r

(
1

r

∂(rvr )

∂r

)
+ 1

r2

∂2vr

∂θ2

)
(7.368)

θ-Component
Navier-Stokes:

0 = −1

r

∂p

∂θ
+ μ

2

r2

∂vr

∂θ
(7.369)

z-Component
Navier-Stokes:

0 = ∂p

∂z
(7.370)

This is a two-dimensional problem to be solved for vθ (r, θ ) and p = p(r, θ ).
The solution process is simplified greatly by the constraint imposed by the con-
tinuity equation, Equation 7.367. Because we assume that vz = vθ = 0, the con-
tinuity equation is a PDE that we can integrate:17

1

r

∂(rvr )

∂r
= 0 (7.371)

(rvr ) = f (θ) (7.372)

vr = f (θ)

r
(7.373)

17Recall that when integrating a partial differential, instead of adding an arbitrary integration
constant, we must add an arbitrary integration function of the other variables—in this case,
θ . The partial derivative of our result, Equation 7.373, with respect to r satisfies the original
equation, Equation 7.367.
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Figure 7.48 The solution to Hamel flow for flow between converging or diverging plates [43]. Dimensionless variables are
αf (θ )/(Q/W ) as a function of scaled angular position θ/α, where α is the convergence half-angle; α = 45◦ for
the case shown. The Reynolds number for this flow is 2ρQα/(μW ).

Thus, the problem is simplified from solving for the two-dimensional function
vθ (r, θ ) to solving for the one-dimensional function f (θ). Pressure can be elimi-
nated from the Navier-Stokes equations by differentiating the r -component by θ

and the θ-component by r , as discussed by Denn [43] (this technique of elimi-
nating pressure is employed in the study of potential flows in Chapter 8). In this
way, the problem is reduced from solving the complex set of partial differen-
tial equations, Equations 7.367–7.370, to solving a single third-order ODE for
the function f (θ). For the case of α = 45◦, the solutions for f (θ) are shown in
Figure 7.48. The Reynolds number is defined for this flow as:

Reynolds number, Hamel flow: Re ≡ ρ(2Qα/W )

μ
(7.374)

The flow rate (as quantified by Re) may be positive or negative, indicating flow
in the positive r -direction (i.e., diverging flow) or in the negative r -direction (i.e.,
converging flow). The half-angle α also appears in Re; thus, for Re = 0, the flow
is unidirectional flow between parallel plates.

The solutions to Hamel flow in Figure 7.48 show the important role of bound-
ary layers in problems in which both inertia and viscosity are significant. Fig-
ure 7.48 demonstrates that the solutions for converging and diverging flow are
quite different. For converging flow (i.e., negative Re), the velocity profile evolves
with increasing |Re| toward a central plug flow with thin viscous boundary lay-
ers near the walls. This flow is stable for all |Re|. When the flow is diverging
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Figure 7.49 This schematic was drawn from a still from a flow-visualization experiment in a diffuser [121, 154]. The flow shows
flow separation at the wall. This backflow is caused by the adverse (i.e., rising) pressure gradient in the flow.

(i.e., positive Re), there is a qualitative change to the velocity profile as |Re|
increases to large positive values. With increasing |Re| in a diverging channel,
the flow has increasing difficulty in maintaining the flow near the boundary where
viscosity dominates. Pressure decreases near the wall and, for Re > 14, the cal-
culated solution indicates that the velocity reverses direction near the walls. This
circumstance, which is due to the pressure profiles that accompany the flow, is
called backflow and is unstable in practice. In experiments, instead of producing
this backflow, the flow separates from the wall and produces complex structures
and, eventually, turbulence (Figure 7.49).

The discussion of Hamel flow illustrates the nature of the Navier-Stokes equa-
tions. We see in this simplest of two-dimensional flows that when both inertial
and viscous forces are present, the two contributions interact, and complex flows
result. Under certain circumstances—for example, the case of converging Hamel
flow at large magnitude of Reynolds number—viscosity and inertia divide the
flow domain in two: (1) a region dominated by the viscous effects (i.e, the bound-
ary layer near the wall); and (2) a region dominated by the inertial effects (i.e, the
core flow). In other circumstances, as exemplified by the case of diverging Hamel
flow, such a division of labor is not produced effectively, and the flow becomes
unstable.

Another mixed inertia–viscous flow of major importance is the entry flow in
a tube; boundary layers have a role here as well (Figure 7.50). Entry flow has
been studied in-depth for conduits of many shapes [152]. The flow near the entry

entrance region

boundary layer fully developed flow

Figure 7.50 At the inlet to tube flow, the velocity profile rearranges and eventually becomes the well-developed flow studied in
this chapter. The transition from the inlet to well-developed flow begins by the formation of boundary layers near
the walls. These boundary layers grow and eventually merge at the center of the tube.
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Figure 7.51 As shown in Figure 7.50, when fluid enters a pipe from a reservoir, the velocity profile in the pipe is flat and the
centerline velocity vz (0) equals the average velocity 〈v 〉. As the flow develops along the tube, the velocity profile
rearranges and the centerline velocity increases. Calculations by Langhaar and experiments by Nikuradse agree
that the entrance effect is no longer important when L/D > 0.058Re [81].

of a tube is different from the well-developed flow downstream. Near the entry,
the flow enters as plug flow (i.e., with a flat velocity profile), but the presence
of the walls causes boundary layers to form near them. Inside the boundary
layers, the plug flow slows as the no-slip boundary condition is satisfied at the
wall. As the flow progresses in the tube, viscous momentum-transport always is
occurring, and the boundary layer grows in thickness, much as it does in the semi-
infinite wall case. Eventually, the boundary layers at the wall grow in thickness
to fill the entire tube, and the velocity attains its well-known parabolic profile
shape (i.e., fully developed, laminar flow, and viscous-dominated). Experiments
and calculations in laminar flow show precisely when the flow becomes fully
developed [81] (Figure 7.51). Turbulent flows also exhibit boundary layers in
which viscous effects are dominant; entry effects in turbulent flow in pipes die
out for L/D > 40 [132]. In the modeling of blood flow in the human body, both
laminar and turbulent flows exist and most flows in the body are entry flows. For
this application, more precise correlations are needed [21]:

Correlations
for pipe

entry length:

laminar flow:
Le

D
= 0.59 + 0.056Re Atkinson et al. [7]

turbulent flow:
Le

D
= 4.4Re

1
6 White [176]

(7.375)

See also Shah and London, who report an even more precise correlation for
laminar entry flow [152].
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gM

lubricating 
oil

Figure 7.52 Schematic of a lubrication flow. The central axis
may be the axle of an automobile, for example,
and the outer ring represents part of the housing.

The concept of the boundary layer is
important in fluid mechanics and it is dis-
cussed again in Section 8.2. Boundary-layer
formation is a common trait of flows for
which both inertial and viscous contribu-
tions are important. For engineering appli-
cations, consideration of the boundary layer
is essential because heat and mass transfer
often occur through walls; thus, heat and
mass must traverse the boundary layer.

When the inertial contribution to the
flow momentum is slight, analytical solu-
tions are sometimes found using a quasi-

unidirectional technique known as the lubrication approximation. Lubrication
flow is named for flow in narrow gaps between moving parts in which the role of
the fluid is to lubricate the parts (Figure 7.52). In such gaps, the flow is only slightly
different from unidirectional; the lubrication approximation takes advantage of
this similarity by considering the flow to be locally unidirectional and parallel
[43]. With this assumption, analytical solutions may be found. The lubrication
approximation is useful in polymer-processing flow calculation. Chapter 13 in
Denn [43] discusses the lubrication approximation.

This chapter demonstrates that the continuum modeling method is versatile
and capable of providing insight to a wide variety of flow problems. The overall
strategy is outlined in Section 7.1.2.3: When tackling a difficult flow problem,
begin by identifying an idealized version of the flow that can be solved. Then,
use the solution to the idealized problem to nondimensionalize the equations of
change so that information in the governing equations can be accessed. Finally,
solve for v and p or conduct experiments and develop data correlations so that
the engineering problem may be solved.

Problems that are unidirectional and steady are not difficult to solve—the left-
hand side of the Navier-Stokes equation goes to zero, eliminating the nonlinear
terms. When we stray from these flows, inertia becomes increasingly important
and the flow behavior becomes more complex and fascinating. Chapter 8 con-
fronts these issues as we move on to external flows, which almost always exhibit
both viscous and inertial contributions.

7.4 Problems

1. The governing equations for fluid flow are four coupled equations in four
unknowns. What are these equations? What is a strategy for solving them?

2. What is the role of dimensional analysis in fluid mechanics?
3. Using the methods in this chapter, write the continuity equation (i.e.,

microscopic-mass balance) in dimensionless form. What can we learn from
the result?

4. Figure 7.6 plots results for the velocity and pressure profiles for steady,
Poiseuille flow in a tube. We choose to plot these functions using
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dimensionless combinations of the variables and characteristic quantities.
Why do we use dimensionless combinations? What difficulties would we
encounter if we choose to plot the bare vz versus r and p versus z?

5. In terms of the problem-solving strategy defined in Section 7.1.2.3, identify
the idealized problem, the experiments, and the data correlations that were
used to solve the burst-pipe problem of this chapter.

6. Complete the calculation of the velocity profile and the total-stress tensor for
steady, pressure-driven flow in a tube (i.e., Poiseuille flow in a tube). In other
words, show that Equations 7.22, 7.23, and 7.34 result from the integration
and application of Equations 7.18 and 7.19.

7. Show that the Hagen-Poiseuille equation (Equation 7.28) for pressure drop
as a function of flow rate in laminar flow follows from the integration of the
velocity field across the pipe cross section (Equation 7.26).

8. In the calculation of total drag in a pipe, show using matrix calculations that
the simplified expression in Equation 7.122 is equivalent to the definition of
axial drag in Equation 7.120.

9. In laminar flow in a tube, calculate the axial drag by beginning with the
surface integral in Equation 7.125 and incorporating the solution for the
velocity profile. Neglect the effect of gravity.

10. The solution for pressure-driven laminar flow in a tube includes the effect
of gravity. How does the solution change if the flow is upward instead of
downward? How does the solution change if the pipe is mounted at a 30-
degree angle to horizontal? Show that the effect of gravity in all cases can be
accounted for by defining the dynamic pressure as given here [43] (see the
Glossary):

P ≡ p − ρgz Z

11. For the burst-pipe problem discussed in this chapter, we first attempt to solve
by assuming laminar flow. For the laminar-flow result, what was the Reynolds
number calculated in the small pipe? If the flow could have remained laminar
up to that Reynolds number (it cannot; the flow becomes unstable), what
would have been the Fanning friction factor? Compare this number and the
pressure drop it implies to the actual f and �p that we calculated. Discuss
your answer.

12. We neglect the presence of fittings and the velocity change in the burst-
pipe example in this chapter. What would be the effect on the burst-pipe
calculation if we include the frictional loss due to velocity head, bends,
fittings, and valves? Assume that there are eight 90-degree bends, two gate
valves, and one globe valve half open in the smaller piping section.

13. We assume a smooth pipe in the burst-pipe example in this chapter. Repeat
Example 7.5 assuming that the pipes are galvanized iron with a pipe rough-
ness of 0.0005 foot. Was smooth pipe a good assumption?

14. An 80-foot section of 1/2-inch ID Schedule 40 piping branches into two
pipes of the same diameter, one of which is 160 feet long and the other
200.0 feet long (all horizontal). The main pipe is connected to the municipal
water supply, which supplies a constant 50.0 psig at the pipe entrance. What
are the flow rates through the two pipe exits? What is the pressure at the
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Figure 7.53 Data on rough commercial pipes, represented by the Colebrook correlation (solid lines), are compared with the
data of Nikuradse [126] for sand-roughened pipes (discrete points). The two measurements agree at large Re but
not at lower values (Problem 17).

splitting point? Assume smooth pipes; do not consider friction losses due to
fittings.

15. For turbulent pipe flow, show that Equation 7.156—the Prandtl correlation
for fluid friction—is equivalent to the case ε = 0 in the Colebrook correlation
(Equation 7.161).

16. For steady pipe flow, repeat branched-piping, Example 7.9 for pipes with
roughness ε = 0.05 mm.

17. The Colebrook correlation (i.e., Equation 7.161) gives friction factor as a
function of Reynolds number and roughness ratio for commercial pipes. The
values of roughness ε for commercial pipes were deduced by comparing
the measured asymptotic values of f for real pipes, with the values for
f at large Re obtained by Nikuradse [126] on pipes roughened with well-
characterized sand of uniform size. The Colebrook equation and Nikuradse’s
data are compared in Figure 7.53. The two datasets have different shapes
at Reynolds numbers below the asymptotic values. What differences can
you think of between the wall surfaces on commercial pipes and those on
the artificially roughened walls of Nikuradse that might account for these
differences? Discuss your answer.

18. In Section 7.1.1, we initially neglect the pressure difference p0 − pL when
analyzing the Cannon-Fenske viscometer (see Figure 7.11) before ulti-
mately resorting to experimental calibration to account for the small pres-
sure effect (see Equation 7.56). We can account for the pressure difference
p0 − pL more formally by performing a quasi-steady-state analysis on the
system.
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Figure 7.54 The Cannon-Fenske viscometer measures fluid viscosity by allowing the user to time the passage of a set volume
of fluid through a long narrow capillary. The flow is driven primarily by gravity; the imposed pressure drop due
to the changing driving fluid head h1(t ) and the back pressure due to the head h2(t ) may be accounted for by
applying a quasi-steady-state analysis, as described in Problem 18.

Consider the expanded view of the Cannon-Fenske viscometer shown in
Figure 7.54. Let h1(t) represent the time-dependent height of the upper menis-
cus above the second timing mark and h2(t) represent the time-dependent
height difference between the fluid level in the lower reservoir and the exit of
the capillary tube. In the quasi-steady-state approach, we write relationships
between variables as if time were moving slowly and the system were nearly
in steady state.

(a) Using the principles of fluid statics on our quasistationary system, what
is the relationship among p0, h1, and atmospheric pressure?

(b) Using the same approach, what is the relationship among pL , h2, and
atmospheric pressure?

(c) Writing the volumetric flow rate Q as the rate of change of the fluid vol-
ume V in the upper reservoir −dV/dt , integrate the appropriate equation
for volume with respect to time from 0 to tefflux to obtain a pressure-
corrected equation for the measurement of fluid kinematic viscosity ν

with the Cannon-Fenske viscometer. Assume that h1(t) and h2(t) vary
linearly with time throughout the experiment:

Answer:

μ

ρ
=
[

π R4g

8V L

(
h1(0)

2
+ h2(0)

2
+ h2(tefflux)/2 + L cos β

)]
tefflux

(d) Do h1(t) and h2(t) vary linearly with time? How important is this effect?

19. When using a calibrated Cannon-Fenske viscometer, it is necessary to employ
the same fluid volume as during calibration. To achieve this, the viscometer
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suction

Figure 7.55 Schematic of the inverted loading technique that is required when using a Cannon-Fenske viscometer (Problem
19).

is loaded with fluid as shown in Figure 7.55. The viscometer is inverted into
a beaker of fluid and suction is applied to the cleaning arm. In the inverted
position, when the fluid reaches the timing mark nearest the capillary, the
correct volume has been loaded.

When several concentrations of solution are being measured as part of
a sequence, it is convenient to dilute a concentrated solution within the
viscometer to make the subsequent measurements on less concentrated solu-
tions. This technique is used in the study of polymers [60]. The Cannon-
Fenske viscometer is inappropriate for this type of measurement due to the
excess, unknown back pressure that would result from adding additional
solvent.

The Ubbelhode viscometer is similar to the Cannon-Fenske, but the exit of
the capillary in the former is vented, preventing the back-pressure problem
(Figure 7.56). Following the quasi-steady-state technique outlined in Prob-
lem 18, calculate the equation that relates kinematic viscosity and efflux time
in the Ubbelhode viscometer.

20. Liquid with the physical properties of water flows in a tube in laminar flow. A
researcher studying biological flows in tubes wants to conduct experiments
on the apparatus and must replace part of the wall with a different solid
material that is transparent to a particular kind of electromagnetic radiation.
What is the force on the patch of the wall being replaced? The patch is
one-eighth the circumference of the tube and is of length l.

21. What is the purpose of the concept of the hydraulic diameter?
22. The correlation between the Fanning friction factor and the Reynolds number

for turbulent flow through pipes (circular cross section) is shown in the
Moody plot (Figure 7.22). Which plot do we use for the correlation of f (Re)
for noncircular conduits? Explain.
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Figure 7.56 Schematic of a Ubbelhode viscometer. The Ubbelhode viscometer is vented at the exit of the capillary. Venting
the exit ensures that the pressure at the exit is known (i.e., atmospheric) and allows the sample volume to vary
(Problem 19).

23. Hydraulic radius [174] in a noncircular conduit is defined as:

Hydraulic radius rH ≡ A

−p
where A is the cross-sectional area of the conduit and −p is the wetted
perimeter of the conduit. With this definition, how are hydraulic radius and
hydraulic diameter related? Discuss your answer.

24. For steady flow in a duct of rectangular cross section, carry out the integra-
tions in Equation 7.229 to obtain the analytical expression for the wall drag
in pressure-driven flow.

25. Calculate the Poiseuille number, fDH ReDH , for a conduit with elliptical cross
section; compare your result with Figure 7.36. The major axis of the ellipse
is of length 2a and the minor axis is 2b. The velocity field for laminar flow
through a conduit of elliptical cross section is given by White [174] as:

vx = 1

2μ

�p

L

a2b2

a2 + b2

[
1 − y2

a2
− z2

b2

]

The average velocity in this conduit is given by:

V = 〈v〉 = �p

4μL

a2b2

a2 + b2

What is the friction-factor/Reynolds-number relationship for this geometry?
26. In steady, pressure-driven, planar-slit flow of an incompressible Newtonian

fluid, calculate the vector force on a plane given by the cross section at the
exit (see Example 7.10).
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R1

R2

Figure 7.57 For the flow between the inner and outer surfaces of an annulus, the geometry is shown here (Problem 30).

27. Calculate the Poiseuille number, fDH ReDH , for a conduit the cross section
of which is a rectangle of sides a and b (b > a). What is the friction-
factor/Reynolds-number relationship for this geometry?

28. Calculate the Poiseuille number, fDH ReDH , for a conduit the cross section
of which is a square of side a. What is the friction-factor/Reynolds-number
relationship for this geometry?

29. Calculate the Poiseuille number, fDH ReDH , for a conduit the cross section of
which is a slit of infinite width. What is the friction-factor/Reynolds-number
relationship for this geometry?

30. Calculate the Poiseuille number, fDH ReDH , for flow between the two circular
surfaces of an annulus. Let R1 be the outside radius of the inner pipe and
R2 be the inside radius of the outer pipe (Figure 7.57). What is the friction-
factor/Reynolds-number relationship for this geometry?

31. For flow through a rectangular duct, show that in the limit of infinite width,
the solution for velocity (Equation 7.212) becomes the solution for velocity
in steady flow through a slit.

32. In Poiseuille flow in a slit, complete the integration in Example 7.10 to obtain
the final velocity profile for Poiseuille flow in a slit (Equation 7.188). Calcu-
late the flow rate per unit width by carrying out the missing calculus/algebra
to arrive at Equation 7.194.

33. Water at 25◦ is forced through an isosceles triangular duct that is 1.0 mm on
a side and 5.0 cm long. The driving pressure is 6.0 psig; the exit is open to
the atmosphere. What is the flow rate through the slit? Assume the flow to
be turbulent.

34. Under what conditions (i.e., limits) does the solution for tangential-annular
flow (see figure for Problem 37) approach the parallel-plate solution (Exam-
ple 6.3)? Using the solution given here, perform a coordinate transformation
to show that this is so.

v =

⎛
⎜⎝

0(
κ2�R
κ2−1

) ( r
R − R

r

)
0

⎞
⎟⎠

rθ z

35. For a tank draining through an exit in the bottom, calculate the flow rate
by completing a quasi-steady-state calculation like that discussed in Exam-
ple 7.19. You may neglect friction.
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κR

R

r

z

cross section:
fluid

θ

Ω

Ω

Figure 7.58 Tangential annular flow of a Newtonian fluid (Problem 37).

36. Using a numerical software package, calculate the total force on the wall
for pressure-driven flow in a slit. How does your numerical result com-
pare to the analytical result? Use the same boundary conditions in both
solutions.

37. Flow Problem: Tangential annular flow. An incompressible Newtonian fluid
fills the annular gap between a cylinder of radius κ R and an outer cup of
inner radius R (Figure 7.58). The inner cylinder turns counter clockwise at
an angular velocity � radians/s. The flow may be assumed to be symmetrical
in the azimuthal direction (i.e., no θ variation). A pressure gradient develops
in the radial direction; the pressure at z = L at the inner cylinder is p1.
Calculate the steady state velocity profile, the radial pressure distribution,
and the torque needed to turn the inner cylinder.

38. Flow Problem: Pressure-driven flow of a Newtonian fluid in an annular gap.
Calculate the velocity profile and flow rate for pressure-driven flow of an
incompressible Newtonian liquid in the annular gap between two vertical
cylinders. The radius of the inner cylinder is κ R and the radius of the outer
cylinder is R. The pressure at an upstream point is P0; at a point a distance L
downstream, the pressure is PL . Assume that the flow is well developed and
at steady state. You may neglect gravity.

39. Flow Problem: Pressure-driven flow of a Newtonian fluid in an annular
gap, numerical. Solve Problem 38 using computer simulation software [27].
Calculate the forces on both the inner and outer surfaces.

40. Flow Problem: Flow due to natural convection between two long plates. The
flow between the panes of glass in a double-pane window may be modeled as
shown in Figure 7.59. Calculate the velocity profile at steady state. Assume
the plates are infinitely long and wide (for answer, see Example 1.11). The
density variation with position may be handled as follows. The density of the
gas is a function of temperature as given by:

ρ = ρ̄ − ρ̄β̄(T − T̄ )

where ρ̄ is the mean density, β̄ is the mean coefficient of thermal expan-
sion, and T̄ is the mean temperature (all constant). The temperature profile

www.20file.org

http://www.semeng.ir


593 Internal Flows

T2 T1

y
z

(warm) (cool)b

Figure 7.59 Temperature difference generates a flow between two long, wide plates (i.e., hot air rises). We obtain the velocity
profile given in Equation 1.140 by using the methods in this chapter in conjunction with energy-balance equations
(Problem 40).

obtained from the energy balance is:

T = T1 − T2

2b
y + T2 + T1

2

= T1 − T2

2b
y + T̄

41. Flow Problem: Radial flow between parallel disks. An incompressible New-
tonian fluid fills the gap between two parallel disks of radius R (Figure 7.60).
Fluid is injected through a hole in the center of the top disk, and a steady
radial flow occurs. The flow may be assumed to be symmetrical in the
azimuthal direction (i.e., no θ variation). A pressure gradient develops in the
radial direction; the pressure near the center is p0 and the pressure at the
rim is pR . Calculate the steady state velocity profile and the radial pressure
distribution.

42. Flow Problem: Unsteady one-dimensional flow, startup. An incompressible
Newtonian fluid is in contact with a long, tall wall that initially is stationary

r2h

κR

cross section:

z

R

Figure 7.60 Radial flow of a Newtonian fluid from between parallel disks (Problem 41).
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x

y

x

y

fluid

fluid

t = 0, stationary plate

t > 0, moving plate

 vx(y,t)

Figure 7.61 Startup flow of a plate in a semi-infinite Newtonian fluid (Problem 42).

(Figure 7.61). The wall suddenly accelerates and moves at steady velocity
V . The pressure is uniform throughout the flow. Calculate the steady state
velocity profile. Plot the velocity solution for various values of time.

43. Flow Problem: Flow near an oscillating wall. An incompressible Newtonian
fluid is bounded on one side by a wall and is infinite in the y-direction
(Figure 7.62). The wall is moved back and forth according to:

vx (t)|wall = V cos ωt = R{V eiωt}
What is the time-dependent velocity profile in the fluid as a function of
position and time? (see also page 102 of [104]).

44. Flow Problem: Squeeze flow. An incompressible Newtonian fluid fills the gap
between two parallel disks of radius R (Figure 7.63). The disks are subjected
to axial forces that cause them to squeeze together. The fluid in the gap
responds by producing a combined axial and radial flow that pushes fluid

plate moves
back and

forth

fluid

Figure 7.62 A plate forms a boundary for a semi-infinite fluid. The wall is moved according to a sinusoidal function (Problem
43).
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cross section:
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Figure 7.63 Squeeze flow of a Newtonian fluid between parallel disks (Problem 44).

out of the gap. The flow may be assumed to be symmetrical in the azimuthal
direction (i.e., no θ variation). A pressure gradient develops in the radial
direction; the pressure at the center is p0 and the pressure at the rim is pR .
Calculate the steady state velocity profile and the radial pressure distribution.
If the plates are moving with speed V , calculate the force needed to maintain
the motion.

45. Flow Problem: Rod turning in an infinite fluid. A rod rotates counterclockwise
in an infinite bath of fluid. What is the velocity field in the fluid? The radius
of the rod is R, the length of the rod is L , and the rod turns at angular velocity
� in a fluid of viscosity μ. The flow is steady and the fluid is Newtonian.

46. Flow Problem: Poiseuille flow in a rectangular duct. An incompressible
Newtonian fluid flows down the axis of a duct of rectangular cross section
under the influence of a pressure gradient (Figure 7.31). The width of the
duct is 2W and the height of the duct is 2H. The upstream pressure is p0

and the pressure a distance L downstream is pL . Calculate the steady state
velocity and pressure profiles. Note: the velocity is three-dimensional and
the solution involves a series of hyperbolic trigonometric functions [174].

47. Flow Problem: Poiseuille flow in a rectangular duct, numerical. Calculate
the velocity field and flow rate for steady, well-developed, pressure-driven
flow in a duct of rectangular cross section (Poiseuille flow in a duct; see
Figure 7.31). Compare your result to the analytical solution [174].

48. Flow Problem: Two-dimensional planar flow in a right-angle tee-split,
numerical solution. Flow enters a two-dimensional right-angle tee-split as
shown in Figure 7.64. The flow is steady, two-dimensional flow of an incom-
pressible Newtonian fluid (water may be used). Calculate the flow field and
the force on the wall as a function of the inlet Reynolds number. Produce
appropriate plots to demonstrate the characteristics of the flow.
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out
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laminar
flow in

two-dimensional flow, planar

L

L

L

1.5 L L

Figure 7.64 Numerical simulation software may be used to calculate the flow domain for two-dimensional planar flow in a
right-angle split (Problem 48).

49. Flow Problem: Two-dimensional axisymmetric flow into radial wall flow in
a narrow gap, numerical solution. Flow exits a pipe at the center of a disk
and impinges on a wall producing a radial flow that spreads outward between
parallel disks as shown in Figure 7.65. The flow is steady, two-dimensional,
axisymmetric flow of an incompressible Newtonian fluid (water may be used).
Calculate the flow field and the force on the wall as a function of the inlet
Reynolds number. Produce appropriate plots to demonstrate characteristics
of the flow.

50. Flow Problem: Two-dimensional axisymmetric flow through an orifice,
numerical solution. Flow passes through an orifice positioned in the center
of a tube as shown in Figure 7.66. The flow is steady, slow, two-dimensional
flow of an incompressible Newtonian fluid (water may be used). Calculate
the flow field and the pressure drop across the orifice as a function of the inlet
Reynolds number. Produce appropriate plots to demonstrate characteristics
of the flow.

51. Flow Problem: Two-dimensional planar cavity flow, numerical solution. Flow
is produced in a cavity by the motion of the top wall as shown in Figure 7.67.

out

D

D

laminar
flow intwo-dimensional

axisymmetric
flow
gap = D

out

5 D

Figure 7.65 Numerical simulation software may be used to calculate two-dimensional axisymmetric flow into radial wall flow
in a narrow gap (Problem 49).
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uniform
inlet flow

out

6 D

D

D/10

D/5

two-dimensional
axisymmetric

Figure 7.66 Numerical simulation software may be used to calculate the flow domain for two-dimensional axisymmetric flow
through an orifice (Problem 50).

The flow is steady, two-dimensional planar flow of an incompressible New-
tonian fluid (water may be used). Calculate the flow field and the force on the
stationary walls as a function of a Reynolds number based on wall velocity
and cavity depth. Produce appropriate plots to demonstrate the characteristics
of the flow.

52. Flow Problem: Two-dimensional planar gradual contraction near wall,
numerical solution. Flow enters a channel that gradually contracts as shown
in Figure 7.68. The flow is steady, two-dimensional flow of an incompressible

two-dimensional flow, planar V

L

L

Figure 7.67 Numerical simulation software may be used to calculate the flow domain for two-dimensional planar cavity flow
(Problem 51).

D

D/2
out

8 D

uniform
flow in

two-dimensional, planar

Figure 7.68 Numerical simulation software may be used to calculate the flow domain for two-dimensional planar gradual
contraction near the wall (Problem 52).
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uniform
flow

two-dimensional, axisymmetric

4 D

4 D 5 D

D

out

Figure 7.69 Numerical simulation software may be used to calculate the flow domain for two-dimensional axisymmetric 4:1
contraction (Problem 53).

Newtonian fluid (water may be used). Calculate the flow field and the force on
the two walls as a function of the inlet Reynolds number. Produce appropriate
plots to demonstrate characteristics of the flow.

53. Flow Problem: Two-dimensional axisymmetric 4:1 contraction, numerical
solution. Flow enters 4:1 axial contraction as shown in Figure 7.69. The
flow is steady, two-dimensional, axisymmetric flow of an incompressible
Newtonian fluid (water may be used). Calculate the flow field and the force on
the wall as a function of the outlet Reynolds number. Produce appropriate
plots to demonstrate characteristics of the flow.

54. Flow Problem: Flow in an obstructed channel, numerical. For the obstructed
flow shown in Figure 7.70, calculate the flow field with a numerical problem
solver. What is the velocity field?

55. Flow Problem: Squeeze flow with constant force. For the same flow as
described in Problem 44, calculate the plate separation as a function of
time if the applied force is constant.

56. Flow Problem: Helical flow. An incompressible Newtonian fluid fills the
annular gap between a cylinder of radius κ R and an outer shell of inner

y = 0.065
y = 0.050

y = 0.035
y = 0.015

x = 0.015 x = 0.065

Dcircle = 0.010 m

x = 0.040

(0, 0)

y
x

Figure 7.70 Numerical problem-solving software may be used for complex flow geometries shown here (Problem 54).
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 R

κR

v (r)θ

Ω

Figure 7.71 Helical flow of a Newtonian fluid (Problem 56).

radius R (Figure 7.71). The inner cylinder turns counter clockwise at an
angular velocity � radians/s. In addition, the inner cylinder is pulled to the
right at a velocity V. The combined effect of these two motions produces a
helical flow. The flow may be assumed to be symmetrical in the azimuthal
direction (i.e., no θ variation). The axial pressure gradient is constant and
denoted λ, and the pressure at the inner cylinder is Pκ R . Calculate the steady
state velocity profile, the radial pressure distribution, and the torque needed
to turn the inner cylinder.
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8 External Flows

In Chapter 7, we applied analysis methods to flows inside pipes and other closed
conduits. We started with a practical challenge of estimating the extent of a
home flood and developed our solution method by thinking about that problem
from various angles (Figure 8.1). We first decided on the goal of our analysis;
then, starting with the simplest models, we systematically investigated flows of
increasing complexity until we found a solution to the burst-pipe problem through
dimensional analysis and data correlations. This protocol is general, and it can
be applied to other flows, as demonstrated in this chapter.

We turn now to external flows. External flow is a term used to describe flows
over or around obstacles. The wind blowing on a skyscraper is an example of
an external flow (see Example 2.5), as is an electric fan cooling a printed cir-
cuit board in a computer or a cleaning jet directed past the fender of a freshly
painted automobile. Objects moving through fluids also create external flows
(see Figure 2.11). Ships on the ocean, mixing blades in viscous liquids, and
skydivers (Figure 8.2) are all operating in external flows. External flows are
not unidirectional, steady flows; thus, both inertia and viscosity affect flow
behavior.

We begin Section 8.1 with a practical problem and follow the strategy of
Chapter 7 to arrive at a solution. In the process, we investigate solutions to simple,
classic problems of external flow; resort to dimensional analysis; and, finally,
address complex engineering problems in external flow with data correlations.
The study of external flow in this chapter includes an in-depth discussion of
boundary layers in Section 8.2. The creation of boundary layers is nature’s way
of isolating viscous effects from strong inertial effects.

Section 8.3 discusses complex external flows and introduces the use of vorticity
in flow modeling. Vorticity is a flow-field property that allows us to keep track
of rotational character in flows. As discussed in Section 8.3.1, a key effect of
the no-slip boundary condition is to introduce the tendency to rotate into flow
fields. In external flows and in complex flows of all types, it is convenient to
keep track of the transport of rotational character—introduced by the wall and
measured by vorticity—in addition to keeping track of the transport of velocity
and the distribution of pressure as we have thus far. The definition and tracking
of vorticity is a tactic devised to clarify the behavior of flows in which both
inertia and viscosity are important. We turn now to introductory external-flow
problems.

600
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What was driving the flow?  Pressure. 
Under a given pressure, 
how much flow occurs? 

Try simple laminar 
analysis to find out. 

Is the laminar-flow solution 
correct? 

No. 

What is wrong with the 
laminar prediction? 

Experiments show flow is 
turbulent. 

Can we analyze turbulent 
flow using laminar-flow 
methods? 

No; too difficult; flow is 
statistical and time-
varying. 

What can the governing 
equations tell us about 
turbulent flow? 

Dimensional analysis;
friction factor is, a function
only of Reynolds number.

What is the experimental 
relationship f(Re) for 
turbulent flow? 

Colebrook correlation. 

How much water was 
wasted in the flood?   

89,000 gallons 

A pipe bursts:  How much water 
was wasted in the flood? 

PROBLEM: 

Questions Answers

Figure 8.1 In Chapter 7 we use this process to solve the burst-pipe problem. This solution involved the analysis of an internal
flow; in this chapter, the same methodology is applied to external flows.

8.1 Flow around a sphere

The topic of this section is the external flow that takes place around an obstacle
in the path of a uniform flow. We begin with a simple obstacle: a single, isolated
sphere. We choose to study this flow because it is an entry point to understanding
flows around more complex objects such as automobiles moving through air
or hurricane winds pounding a building. Investigating flows around obstacles
leads to the concept of the drag coefficient CD and development of CD-Reynolds
number correlations, which are experimentally determined relationships essential
to many external-flow engineering problems. Following our usual practice, we
begin with a practical problem.

EXAMPLE 8.1. What is the maximum speed reached by a skydiver who jumps
out of an airplane at 13,000 feet (see Figure 8.2)? How much can the speed of
the skydiver vary depending on her body position (i.e., arms and legs flung out
or pulled in tightly)?

SOLUTION. In this example, we are asked several questions about skydiving,
a problem that is fundamentally an object falling through a viscous fluid: air.
According to Newton’s laws of motion, a body under the pull of gravity falling
through a vacuum falls with constant acceleration. A body falling in the presence
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object falling through 
viscous fluid 

Figure 8.2 Skydiving is a flow that we can analyze through methods in this text. The skydiver is an object moving through a
viscous fluid. From the point of view of the skydiver, the flow is a stationary object with a flow rushing past it.

of a viscous fluid is subject to retarding fluid forces, as discussed in Chapter 2
(see Figure 2.7). Fluid forces slow the motion of the object and, ultimately,
the downward force due to gravity is balanced by the retarding fluid forces. At
steady-state, the object reaches a zero-acceleration condition called the terminal
speed.

Here, we seek to calculate the terminal speed of a skydiver. Our solution to
the problem should consider aspects of object shape and orientation and perhaps
changes in fluid viscosity due to density and temperature variations. As a first
approach to this problem, we consider the skydiver to be a simple object (i.e.,
a sphere) falling in a fluid of constant viscosity μ (Figure 8.3). Following the
same approach as in our initial problem in Chapter 7, we calculate the skydiver’s
terminal speed from this first analysis and see how it compares with literature
values for the observed speed. Depending on the comparison, we then refine our
analysis to obtain a more accurate result.

To calculate the terminal speed of a falling sphere, we apply Newton’s second
law (i.e., momentum conservation) to the sphere (Figure 8.4):

Newton’s second law:
momentum conservation

for a body

∑
all forces

acting on body

f = ma (8.1)
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fluid 
viscosity 

μ

Figure 8.3 We can model a skydiver as an object falling in a vast container of a fluid of viscosity μ.

where f represents the various forces on the body, m is the mass of the body,
and a is the acceleration of the body. The acceleration of the falling sphere is
zero (i.e., it falls at constant terminal speed). The two forces on the skydiver are
gravity and the fluid forces:

Momentum balance
on skydiver

at terminal speed:

∑
all forces

acting on body

f = ma = 0 (8.2)

f
gravity

+ f
fluid

= 0 (8.3)

mg + F = 0 (8.4)

ˆwhere m is the mass of the skydiver, g = −gez is the acceleration due to gravity,
and F is the retarding fluid force on the sphere. In the Cartesian coordinate

buoyancydragfluid
fff +==

gmf
gravity

=

sphere falling 
at steady state:

F

Figure 8.4 The forces on the moving sphere are gravity and the forces due to the fluid. The fluid forces consist of two types:
buoyancy and drag. At steady state, the upward and downward forces balance and the sphere acceleration is zero.
The speed of the sphere at steady state is called the terminal speed.
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system with êz upward, the force due to gravity on the sphere is written as:

fgravity = mg =

⎛
⎜⎝

0
0

−
(

4π R3

3

)
ρbodyg

⎞
⎟⎠

xyz

(8.5)

where ρbody is the density of the sphere.
The problem now becomes to calculate the fluid forces on the body F . Calcu-

lating fluid forces on an object is a basic problem in fluid mechanics that can be
solved using the microscopic-momentum-balance approach (see Chapter 6):

Total molecular fluid force
on a surface S:

F =
∫∫

S

[
n̂ · �̃] at surface d S (8.6)

To calculate F , we need the total-stress tensor in the fluid �̃ for the flow being

considered; to calculate �̃, which is equal to −pI + μ
(
∇v + (∇v)T

)
, we need

the velocity field v. Thus, to proceed with our skydiver calculation, we need the
velocity field around a sphere falling in a fluid of constant viscosity.

We postpone our calculation of the terminal speed of a skydiver and turn instead
to learning the fundamentals of flow past a sphere in a uniform flow. From v in
the sphere case, we can calculate �̃; from �̃, we can calculate F for the sphere
from Equation 8.6. After absorbing the lessons of flow past a sphere, we return to
the skydiver problem and continue with the calculation of the skydiver’s terminal
speed.

8.1.1 Creeping flow around a sphere

The problem of slow, steady flow past a sphere is called creeping flow or Stokes
flow, after George Gabriel Stokes (1819–1903), the mathematician and physicist
who presented groundbreaking calculations on this flow in 1851. The equation
for magnitude of drag on a sphere as a function of terminal speed is called
Stokes law, and we derive it in Example 8.2 (see Equation 8.62). With Claude-
Louis Navier (1785–1836), Stokes also is credited with the elucidation of the
microscopic-momentum balance, now called the Navier-Stokes equations. Using
the microscopic-balance methodology (see Chapters 6 and 7), we arrive at the
Stokes solution for the velocity and stress fields in creeping flow around a sphere.

EXAMPLE 8.2. Calculate the velocity field, the stress field, and the force on the
sphere in the steady upward flow of an incompressible Newtonian fluid around a
stationary solid sphere of diameter 2R. The fluid approaches the sphere with a
uniform upstream velocity v∞ (Figure 8.5).

SOLUTION. The flow shown in Figure 8.5 is the equivalent of a sphere falling
slowly downward in a viscous fluid (see Figure 8.3). We analyze the flow in a
coordinate system that is anchored to the sphere; thus, the fluid appears to rise
upward at a steady speed v∞.
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Figure 8.5 Schematic of flow around a sphere. In the creeping-flow limit (i.e., no inertia), this flow is known as Stokes flow.

The presence of the sphere makes it reasonable to analyze this problem in
spherical coordinates, r , θ , and φ. The z-direction of the Cartesian system also
is an important direction because êz is both the far-field flow direction and is
related to the direction of gravity (g = −gez). Therefore, both the spherical and
the Cartesian systems shown in Figure 8.5 are used.

In spherical coordinates, the fluid velocity field may be written as:

v =
⎛
⎝ vr

vθ

vφ

⎞
⎠

rθφ

=
⎛
⎝ vr

vθ

0

⎞
⎠

rθφ

(8.7)

We assume that vφ is equal to zero; that is, there is no swirling component to the
flow. The flow is steady but it is not unidirectional.

Mass conservation is given by the continuity equation, and we write it in
spherical coordinates (see Equation B.5-3) as follows:

Continuity equation
(Gibbs notation):

∇ · v = 0 (8.8)

1

r2

∂(r2vr )

∂r
+ 1

r sin θ

∂(vθ sin θ)

∂θ
+ 1

r sin θ

∂(vφ)

∂φ
= 0 (8.9)

The density is constant; thus, ∂ρ/∂t = 0 and ρ may be removed from the spatial
derivatives and subsequently canceled out of the equation. With these considera-
tions and vφ=0, the continuity equation simplifies to:

Continuity equation,
flow around a sphere:

1

r2

∂(r2vr )

∂r
+ 1

r sin θ

∂(vθ sin θ)

∂θ
= 0 (8.10)

ˆ

Comparing this result with the simplified continuity equation for Poiseuille flow
in a tube (see Equation 7.8), Equation 8.10 is more complicated. Laminar flow
in a tube is in the same direction at every location (i.e., v = vzez for tube flow),
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whereas the fluid velocity in flow around a sphere is in different directions
depending on the location we choose to observe. The flow around an obstacle is
more complex than pipe flow, even in the highly symmetrical case of flow around
a sphere.

The microscopic-momentum balance for an incompressible Newtonian fluid
is the Navier-Stokes equation. The Navier-Stokes equation written in spherical
coordinates is given in Table B.7 in Appendix B and reproduced here:

Navier-Stokes equation: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (8.11)

ρ

⎛
⎜⎜⎜⎜⎜⎜⎝

∂vr
∂t

∂vθ

∂t

∂vφ

∂t

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

+ ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vr
(

∂vr
∂r

)+ vθ

( 1
r

∂vr
∂θ

− vθ

r

)+ vφ

(
1

r sin θ
∂vr
∂φ

− vφ

r

)
vr

(
∂vθ

∂r

)
+ vθ

(
1
r

∂vθ

∂θ
+ vr

r

)
+ vφ

(
1

r sin θ
∂vθ

∂φ
− vφ

r cot θ
)

vr

(
∂vφ

∂r

)
+ vθ

(
1
r

∂vφ

∂θ

)
+ vφ

(
1

r sin θ

∂vφ

∂φ
+ vr

r + vθ

r cot θ
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

= −

⎛
⎜⎜⎜⎜⎜⎜⎝

∂p
∂r

1
r

∂p
∂θ

1
r sin θ

∂p
∂φ

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂
∂r

( 1
r2

∂
∂r (r2vr )

)+ 1
r2 sin θ

∂
∂θ

(
sin θ ∂vr

∂θ

)+ 1
r2 sin2 θ

∂2vr
∂φ2

− 2
r2 sin θ

∂
∂θ

(vθ sin θ) − 2
r2 sin θ

∂vφ

∂φ

)
(

1
r2

∂
∂r

(
r2 ∂vθ

∂r

)
+ 1

r2
∂
∂θ

( 1
sin θ

∂
∂θ

(vθ sin θ)
)+ 1

r2 sin2 θ
∂2vθ

∂φ2

+ 2
r2

∂vr
∂θ

− 2 cot θ
r2 sin θ

∂vφ

∂φ

)
(

1
r2

∂
∂r

(
r2 ∂vφ

∂r

)
+ 1

r2
∂
∂θ

( 1
sin θ

∂
∂θ

(vφ sin θ)
)+ 1

r2 sin2 θ

∂2vφ

∂φ2

+ 2
r2 sin θ

∂vr
∂φ

+ 2 cot θ
r2 sin θ

∂vθ

∂φ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

+ ρ

⎛
⎝ gr

gθ

gφ

⎞
⎠

rθφ

(8.12)

This is a complex equation but, as is true with Poiseuille flow in Chapter 7, we
know much about flow past a sphere that we can use to simplify Equation 8.12.
First, the flow is steady (∂/∂t = 0) and we assume that vφ = 0 and that the
flow is symmetric in the φ-direction; therefore, we can eliminate all terms with
vφ or velocity derivatives with respect to φ. Second, gravity is in the downward
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ˆ

direction and for the spherical coordinate system we chose (see Figure 8.5) gravity
becomes:

g = −gez =
⎛
⎝ gr

gθ

gφ

⎞
⎠

rθφ

=
⎛
⎝−g cos θ

g sin θ

0

⎞
⎠

rθφ

(8.13)

Substituting g and what we know already about the velocity field v (i.e., steady
state, vφ = 0, symmetric in the φ-direction), we obtain a simplified version of the
Navier-Stokes equation for steady flow around a sphere:

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vr

(
∂vr

∂r

)
+ vθ

(
1

r

∂vr

∂θ
− vθ

r

)

vr

(
∂vθ

∂r

)
+ vθ

(
1

r

∂vθ

∂θ
+ vr

r

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p

∂r
1

r

∂p

∂θ

1

r sin θ

∂p

∂φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎝

(
∂
∂r

( 1
r2

∂
∂r (r2vr )

)+ 1
r2 sin θ

∂
∂θ

(
sin θ ∂vr

∂θ

)− 2
r2 sin θ

∂
∂θ

(vθ sin θ)
)

(
1
r2

∂
∂r

(
r2 ∂vθ

∂r

)
+ 1

r2
∂
∂θ

( 1
sin θ

∂
∂θ

(vθ sin θ)
)+ 2

r2
∂vr
∂θ

)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

+ ρ

⎛
⎜⎝

−g cos θ

g sin θ

0

⎞
⎟⎠

rθφ

(8.14)

We have made many assumptions about the structure of the flow field and
still have a complex equation that is too difficult to solve (Equation 8.14). In
particular, the lefthand side of Equation 8.14 has nonlinear terms—that is, terms
with velocity multiplied by a velocity derivative or multiplied by another veloc-
ity (Figure 8.6). Mathematically, these nonlinear terms make the Navier-Stokes
equation intractable to us.

We appear to be blocked at this point, and we must bring something new into
the problem to proceed. The terms on the lefthand side of the Navier-Stokes
equation—those that are multiplied by the density—are the inertial terms (see
Figure 7.16). These terms account for the tendency of a fluid to remain at rest
once at rest or to remain in motion once in motion. The inertial contributions to
the momentum balance are important in rapid flows; in flows in which viscosity
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Figure 8.6 On the left side of the Navier-Stokes equation are nonlinear terms. The nonlinear terms in Equation 8.14 are shown
here.

is high or velocity is low (i.e., low-Reynolds-number flows), the inertial terms do
not contribute significantly to the solution.

The external flows of interest here are sometimes slow and sometimes fast. In
fact, our skydiver problem is certainly a flow in which the fluid speed is high. This
is the beginning of our study of flow past objects, however, and it makes sense to
study first a problem that we may be able to solve—the slow-flow problem—and
see what insights we obtain. With this in mind, we now assume that the flow is
slow enough so that the (nonlinear) inertial terms can be neglected. When we
arrive at our solution, we can compare predictions of the analysis with actual
experiments to see whether and when this assumption is valid.

Neglecting the inertial terms, the Navier-Stokes equation for flow around a
sphere becomes:

⎛
⎝0

0
0

⎞
⎠

rθφ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂p

∂r

−1

r

∂p

∂θ

1

r sin θ

∂p

∂φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

+

⎛
⎜⎜⎜⎜⎜⎜⎝

μ
(

∂
∂r

( 1
r2

∂
∂r (r2vr )

)+ 1
r2 sin θ

∂
∂θ

(
sin θ ∂vr

∂θ

)− 2
r2 sin θ

∂
∂θ

(vθ sin θ)
)

μ
(

1
r2

∂
∂r

(
r2 ∂vθ

∂r

)
+ 1

r2
∂
∂θ

( 1
sin θ

∂
∂θ

(vθ sin θ)
)+ 2

r2
∂vr
∂θ

)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

+ ρ

⎛
⎝−g cos θ

g sin θ

0

⎞
⎠

rθφ

(8.15)
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Figure 8.7 The boundary conditions on the spherical-
coordinate-system velocity components can be
related to the uniform velocity v∞ through
geometry.

Equation 8.15 still appears formidable;
however, at this point, it is possible to
find an analytical solution to the equation.
The solution method [14, 43], although not
obvious (especially to a beginner in the
study of partial differential equations), is
straightforward to understand, as we now
demonstrate.

One clue that experts find useful when
seeking solutions to partial differential
equations (PDEs) is to look at the boundary
conditions. To solve Equation 8.15, because
of the second derivatives on the righthand

side, we need two boundary conditions each on vr and vθ . Two boundary condi-
tions that we can identify easily are no-penetration and no-slip at the surface of
the sphere:

r = R vr = 0 for all θ , φ (8.16)

r = R vθ = 0 for all θ , φ (8.17)

ˆ
The other boundary conditions are that, far from the sphere, the flow must return
to the uniform velocity field that exists upstream of the sphere, v = v∞ez . The
uniform velocity v∞ is upward; in terms of the spherical velocity components vr

and vθ , the uniform velocity field at infinity becomes the following (Figure 8.7):

r = ∞ vr = v∞ cos θ for all φ (8.18)

r = ∞ vθ = −v∞ sin θ for all φ (8.19)

The second set of boundary conditions indicates that at the edges of the flow,
the θ-dependencies of the velocity components are given by cos θ and sin θ

functions. As a first guess, therefore, it seems plausible to assume that the angular
dependences of vr and vθ also are given by cos θ and sin θ functions throughout
the flow. Thus, we guess that:

vr = A(r ) cos θ (8.20)

vθ = B(r ) sin θ (8.21)

whereA(r ) andB(r ) are functions only of r , andA andB now must be determined
by solving Equations 8.10 and 8.15.

The guessed step based on boundary conditions turns out to work. Details of
the solution are given in the literature [43] and they consist of substituting our
guesses for the functionality of the velocity components (Equations 8.20 and 8.21)
into the continuity and Navier-Stokes equations (Equations 8.10 and 8.15) and
solving the resulting ordinary differential equations (ODEs) for A(r ) and B(r ).
The final solutions for v(r, θ ) and p(r, θ ) are given here; note that the velocity
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solution is written relative to our chosen coordinate-system basis vectors êr

and êθ :1

v = vr êr + vθ êθ

=
[

1 − 3

2

R

r
+ 1

2

(
R

r

)3
]

ˆv∞ cos θer −
[

1 − 3

4

R

r
− 1

4

(
R

r

)3
]

ˆv∞ sin θeθ

(8.22)

Solution [43],
creeping flow
(Stokes flow)

around a sphere:

v(r, θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v∞

[
1 − 3

2

R

r
+ 1

2

(
R

r

)3
]

cos θ

−v∞

[
1 − 3

4

R

r
− 1

4

(
R

r

)3
]

sin θ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.23)

p(r, θ ) = p∞ − ρgr cos θ − 3

2

μv∞
R

(
R

r

)2

cos θ

(8.24)

The quantity p∞ in Equation 8.24 was introduced when a pressure boundary
condition was needed; p∞ is the pressure far from the sphere at the elevation of
the origin of the coordinate system (i.e., at θ = π/2, r = ∞, p = p∞).

The velocity field for creeping flow around a sphere is shown in Figure 8.8. Note
that because the flow field is two-dimensional (i.e., it depends on two variables,
r and θ), we cannot produce an easy one-dimensional or even three-dimensional
sketch of the flow profile as we did for the Poiseuille tube flow in Figures 7.6
and 7.7. The velocity field in tube flow did not depend on the z-coordinate and
was fully symmetric in the θ-direction, making it easier to plot. For the current
case of creeping flow around a sphere, we render the velocity field by drawing
vectors at selected points in the flow, where the length of the vector represents the
magnitude of the velocity at that location. Creeping flow around a sphere is fully
symmetric in the φ-direction by assumption; thus, Figure 8.8 is a representation
of the velocity field in an arbitrary plane of constant φ.

An alternative way to represent the velocity field is to sketch the streamlines.
Streamlines in steady flow are the equivalent of particle paths—that is, the path
that a fluid particle takes as it passes through the field of view. Streamlines

1To write the solution in Cartesian coordinates, use Equation 8.22; for the two basis vectors êr

and êθ , substitute the appropriate basis-vector transformations from Equations 1.271–1.273. The
coordinates r and θ are transformed to x , y, and z in Equations 1.268–1.270.
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Figure 8.8 Vector or arrow plot of the velocity field of creeping flow around a sphere. For points along several streamlines
(i.e., particle paths), the velocity vector centered at the point is shown; the length of the arrow is proportional to the
magnitude of the velocity at that point. Note that near the sphere the velocity is low due to the no-slip boundary
condition.

are defined more formally as lines that are everywhere tangent to the local
velocity field; this definition is appropriate for steady and unsteady flows. The
streamlines for steady creeping flow around a sphere are shown in Figure 8.9.2 For
Poiseuille flow in a tube, the streamlines are straight lines of constant θ and r (see
Figure 2.19).

Now that we know v(r, θ ) and p(r, θ ) (Equations 8.23 and 8.24), we can cal-
culate the stress field in creeping flow from the Newtonian constitutive equation.
Because we are in spherical coordinates, we must use the correct form for the
Newtonian constitutive equation in this coordinate system (see Table B.8). We

2The stream function shows the locations of the streamlines. For creeping flow, the stream function
ψ is given by [85]:

ψ(r ) = v∞ R2 sin2 θ

[
1

2

(
r

R

)2

− 3

4

(
r

R

)
+ 1

4

(
R

r

)]
(8.25)

Streamlines and the stream function ψ are discussed in Section 8.2 and in the Glossary.
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Figure 8.9 Streamlines or particle paths of creeping flow around a sphere. The values of the stream function ψ for several
lines are shown. For steady flows, streamlines mark the paths of fluid particles in the flow. In all flows, the local
velocity vector at a point in the flow is tangent to the streamline function ψ at that point. For more on the stream
function, see the literature [43, 85].

performed this calculation in Chapter 5 (see Example 5.6):

τ̃ = μ
(∇v + ∇vT

)
(8.26)

v =
⎛
⎝ vr (r, θ )

vθ (r, θ )

0

⎞
⎠

rθφ

(8.27)

τ̃ (r, θ ) = μ

⎛
⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

0

r ∂
∂r

(
vθ

r

)+ 1
r

∂vr
∂θ

2
(

1
r

∂vθ

∂θ
+ vr

r

)
0

0 0 2vr
r + 2vθ cot θ

r

⎞
⎟⎟⎟⎠

rθφ

(8.28)

�̃(r, θ ) = τ̃ − pI

=

⎛
⎜⎜⎜⎝

2μ∂vr
∂r − p(r, θ ) μr ∂

∂r

(
vθ

r

)+ μ

r
∂vr
∂θ

0

μr ∂
∂r

(
vθ

r

)+ μ

r
∂vr
∂θ

2μ
(

1
r

∂vθ

∂θ
+ vr

r

)− p(r, θ ) 0

0 0 2μvr

r + 2μvθ cot θ
r − p(r, θ )

⎞
⎟⎟⎟⎠

rθφ

(8.29)

www.20file.org

http://www.semeng.ir


613 External Flows

Any components of �̃ that are of interest now may be calculated from Equa-
tions 8.29, 8.23, and 8.24.

Our objective is to calculate the total amount of force that is exerted on the
sphere by the fluid. The tensor �̃ is a complete description of fluid stress in a
flow, and the result for �̃ in this flow (Equation 8.29) may be used to calculate
the force on any surface in the flow by using Equation 6.196, repeated here:

Total molecular fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (8.30)

Because we now have the stress tensor �̃, we are ready to perform this
calculation.

We want to calculate the force on the sphere in creeping flow using Equa-
tion 8.30. The surface of the sphere is the surface at r = R for all values of θ and
φ, and the unit normal to this surface is n̂ = êr at every point on the sphere sur-
face. The simplicity with which we can describe the sphere surface validates our
choice of the spherical coordinate system for our calculations. The differential
surface element d S for a sphere is (R sin θdφ)(Rdθ). Thus, the total fluid force
on the sphere F becomes:

F =
∫∫

S
[n̂ · �̃]at surface d S (8.31)

=
∫ 2π

0

∫
ˆ

π

0
[er · �̃]r=R R2 sin θdθdφ (8.32)

The dot product in Equation 8.32 may be evaluated using matrix manipulations
as follows:

ˆ[er · �̃] = (1 0 0
)

rθφ
·

⎛
⎜⎜⎜⎜⎜⎜⎝

�̃rr �̃rθ �̃rφ

�̃θr �̃θθ �̃θφ

�̃φr �̃φθ �̃φφ

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.33)

= ( �̃rr �̃rθ �̃rφ

)
rθφ

=

⎛
⎜⎜⎜⎝

�̃rr

�̃rθ

�̃rφ

⎞
⎟⎟⎟⎠

rθφ

(8.34)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2μ
∂vr

∂r
− p(r, θ )

μr
∂

∂r

(
vθ

r

)
+ μ

r

∂vr

∂θ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.35)
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θê
zee ˆˆ −=θ

ˆ

Figure 8.10 The basis vectors in the spherical coordinate system vary with position. Shown is the plane for x = 0. For the
downstream stagnation point (r , θ , φ) = (R , 0, 0), êr = êz and êθ = êx (out of the plane of the paper). For the
second point shown (r , θ , φ) = (R , π/2, π/2), êr = ê y and êθ = −ez .

where the coefficients of the tensor �̃ were obtained from Equation 8.29. It is
now straightforward to calculate F from the solution for v:

Total fluid
force on the

sphere in
creeping flow:

F = R2
∫ 2π

0

∫
ˆ

π

0
[er · �̃]r=R sin θdθdφ (8.36)

F = R2
∫ 2π

0

∫ π

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2μ
∂vr

∂r
− p(r, θ )

μr
∂

∂r

(
vθ

r

)
+ μ

r

∂vr

∂θ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r=R

sin θdθdφ

(8.37)

Carrying out the indicated derivatives using the expressions for vr and vθ in
Equation 8.23 and evaluating the results at the surface of the sphere r = R, we
obtain:

F = R2
∫ 2π

0

∫ π

0

⎛
⎜⎜⎜⎜⎜⎜⎝

−p(R, θ ) sin θ

−3μv∞ sin2 θ

2R

0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

dθdφ (8.38)

= R2
∫ 2π

0

∫ π

0

[
(−p(R, θ ) sin θ) êr +

(
−3μv∞ sin2 θ

2R

)
êθ

]
dθdφ (8.39)

The form of the equation for F in Equation 8.39 emphasizes a complicating
factor in the integration. The two basis vectors êr and êθ both vary with θ and φ.
We can be convinced of this fact by considering two points on the surface of the
sphere, as shown in Figure 8.10. The geometric relationships between the spheri-
cal basis vectors and the Cartesian basis vectors are discussed in Section 1.3, and
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ˆ ˆ ˆ ˆ

the equations that relate them are given in Equations 1.271–1.273 and repeated
here:

er = (sin θ cos φ)ex + (sin θ sin φ)ey + (cos θ)ez

=

⎛
⎜⎝

sin θ cos φ

sin θ sin φ

cos θ

⎞
⎟⎠

xyz

(8.40)

ˆ ˆ ˆ ˆeθ = (cos θ cos φ)ex + (cos θ sin φ)ey + (− sin θ)ez

=

⎛
⎜⎝

cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎟⎠

xyz

(8.41)

ˆ ˆ ˆeφ = (− sin φ)ex + (cos φ)ey

=

⎛
⎜⎝

− sin φ

cos φ

0

⎞
⎟⎠

xyz

(8.42)

The Cartesian basis vectors do not vary with position; that is, êx , êy , and êz are
constants. To properly consider the θ- and φ-dependence of the basis vectors in
the integration, we substitute the expressions for êr and êθ in terms of the constant
Cartesian basis vectors into Equation 8.39 and proceed with the integrations:

F = R2
∫ 2π

0

∫ π

0
(−p(R, θ ) sin θ) êr +

(
−3μv∞ sin2 θ

2R

)
êθ dθdφ (8.43)

= R2
∫ 2π

0

∫ π

0
(−p(R, θ ) sin θ)

⎛
⎝ sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠

xyz

+
(

−3μv∞ sin2 θ

2R

)⎛⎝ cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎠

xyz

dθdφ (8.44)

Equation 8.44 appears to be complicated, but the symmetry of the prob-
lem makes the φ-integration fairly simple to carry out. Note that the only φ-
dependence in the x-component is cos φ, which appears in every term. Likewise,
the only φ-dependence in the y-component is sin φ, and this quantity appears in
every term of the y-component. The z-component of Equation 8.44 is indepen-
dent of φ. To clarify the process of carrying out the φ-integration, therefore, we
write Equation 8.44 as:

F = R2
∫ 2π

0

∫ π

0

⎛
⎜⎜⎜⎝

A(θ) cos φ

A(θ) sin φ

B(θ)

⎞
⎟⎟⎟⎠

xyz

dθdφ (8.45)
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where A(θ) and B(θ) are given by:

A(θ) = (−p(R, θ ) sin θ) sin θ +
(

−3μv∞ sin2 θ

2R

)
cos θ (8.46)

B(θ) = (−p(R, θ ) sin θ) cos θ +
(

3μv∞ sin2 θ

2R

)
sin θ (8.47)

Individually integrating the x-, y-, and z-components of Equation 8.45 over φ,
we obtain:

x-Component of Equation 8.45: R2
∫ 2π

0

∫ π

0
(A(θ) cos φ) dθdφ

= R2
[∫ π

0
A(θ)dθ

] ∫ 2π

0
cos φdφ

= 0 (8.48)

y-Component of Equation 8.45: R2
∫ 2π

0

∫ π

0
(A(θ) sin φ) dθdφ

= R2
[∫ π

0
A(θ)dθ

] ∫ 2π

0
sin φdφ

= 0 (8.49)

z-Component of Equation 8.45: R2
∫ 2π

0

∫ π

0
B(θ)dθdφ

= R2
[∫ π

0
B(θ)dθ

] ∫ 2π

0
dφ

= R2
[∫ π

0
B(θ)dθ

]
2π (8.50)

Incorporating these results into Equation 8.45, we obtain:

F = R2
∫ 2π

0

∫ π

0

⎛
⎜⎜⎜⎝

A(θ) cos φ

A(θ) sin φ

B(θ)

⎞
⎟⎟⎟⎠

xyz

dθdφ (8.51)

F =

⎛
⎜⎜⎜⎝
Fx

Fy

Fz

⎞
⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎜⎝

0

0

2π R2
∫ π

0
B(θ)dθ

⎞
⎟⎟⎟⎟⎠

xyz

(8.52)

The expression for force on the sphere in Equation 8.52 reflects our intuition
that the net fluid force on the sphere is in the far-field flow direction, êz . We
calculate the remaining nonzero component of the forces on the sphere, Fz , by
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substituting the equation for B(θ) (Equation 8.47) into Equation 8.52 and carrying
out the θ-integration. This involves algebra and trigonometric integration, but the
integrals are standard. The procedure is outlined herein. We begin with B(θ) from
Equation 8.47:

B(θ) = −p(R, θ ) sin θ cos θ +
(

3μv∞ sin3 θ

2R

)
(8.53)

The creeping-flow solution for the pressure p(r, θ ) is given in Equation 8.24.
Taking r = R in Equation 8.24 and substituting the result in the previous equation
for B(θ), we obtain:

p(R, θ ) = p∞ − ρgR cos θ − 3

2

μv∞
R

cos θ (8.54)

B(θ) = −p∞ sin θ cos θ + ρgR sin θ cos2 θ

+ 3

2

μv∞
R

sin θ cos2 θ + 3μv∞ sin3 θ

2R
(8.55)

Substituting Equation 8.55 for B(θ) into Equation 8.52 for force on a sphere and
integrating B(θ) term by term yields:

Fz = 2π R2
∫ π

0
B(θ)dθ (8.56)

= 2π R2
∫ π

0
−p∞ sin θ cos θdθ + 2π R2

∫ π

0
ρgR sin θ cos2 θdθ

+ 2 π R2
∫ π

0

3

2

μv∞
R

sin θ cos2 θdθ + 2π R2
∫ π

0

3μv∞ sin3 θ

2R
dθ (8.57)

= 0 + 4π R3ρg

3
+ 2π Rμv∞ + 4π Rμv∞ (8.58)

=
⎛
⎝ contribution

from far-field
pressure

⎞
⎠+

⎛
⎜⎜⎜⎝

gravity contribution
from fluid

surrounding sphere
(buoyancy)

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

contribution
from flow-induced

pressure
(pressure or form drag)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

contribution
from flow-induced

shear stress
(friction drag)

⎞
⎟⎟⎟⎠ (8.59)

Fz = 4π R3ρg

3
+ 6π Rμv∞ (8.60)

Fluid force on a
sphere in

creeping flow
(Stokes flow):

F =

⎛
⎜⎜⎜⎝

0
0

4π R3ρg

3
+ 6π Rμv∞

⎞
⎟⎟⎟⎠

xyz

(8.61)
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Figure 8.11 The buoyant force experienced by a sphere in a liquid can be understood as the force that the surrounding fluid
exerts on the volume occupied by the sphere. In the liquid when the sphere is not present, a volume equivalent
to the volume of the sphere is occupied by liquid. The surrounding liquid and this liquid sphere are in equilibrium
(i.e., no motion). When that liquid volume is replaced by the sphere, if the sphere weighs more than the liquid it
replaced, the sphere sinks; if the sphere weighs less than the liquid it replaced, it rises.

Equation 8.61 gives the total fluid force on a sphere in creeping flow. The first
contribution in the z-component, which accounts for the effect of gravity, is the
buoyancy term. The buoyancy effect is the net gravity effect of the surround-
ing fluid on the sphere; it is present whether or not the fluid moves (note that
v∞ does not appear in this term; see Example 4.6). A steel ball falls through
water, whereas a balloon rises. In each case, the sphere experiences an upward
force that is the equivalent of the force due to gravity that would have acted
on the fluid that has been displaced by the sphere (Figure 8.11). If the mass of
the displaced fluid is lower than the mass of the sphere (i.e., the steel case), the
sphere falls—although it is retarded by the buoyancy force. If the mass of the
displaced fluid is higher than the mass of the sphere, as in the case of the balloon,
the sphere rises. In a force balance on the sphere without drag, there would be
a downward force due to gravity on the sphere (4πρsphereg/3), the upward buoy-
ancy term (4πρfluidg/3), balanced by the mass times the acceleration of the sphere
(
∑

f = ma).
The second contribution to the z-component of the fluid force on a sphere

(Equation 8.61) comes from the motion of the sphere and is called the kinetic
force. Tracing back the source of the terms (Equation 8.59), the kinetic force
comes from two sources: one source is the effect of the flow-induced pressure
field (i.e., the third term); and the second source is the effect of viscosity to
produce shear stress on the surface of the sphere (i.e., the fourth term). Together,
these two kinetic contributions—the form drag (due to the pressure distribution)
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and the friction drag (due to shear stress)—are the drag on the sphere:

Stokes law:
magnitude of drag
in creeping flow
around a sphere

(Stokes-Einstein-Sutherland equation)

Fdrag = 6π Rμv∞ (8.62)

The drag is the retarding fluid force due to fluid motion. Stokes law is the starting
point in many important analyses of the motion of solid and liquid spheres,
including the study of colloidal dispersions, suspensions, and emulsions [83].

This completes our analysis of creeping flow around a sphere. Through micro-
scopic analysis, we arrived at equations for velocity field v(r, θ ) and pressure
field p(r, θ ), from which the stress field �̃(r, θ ) and the force on any surface in
the flow F (Equation 8.30) may be calculated. The assumptions of this analysis
are steady flow, no φ-velocity, φ-symmetry of velocity, and no inertial effects (the
left side of the Navier-Stokes equation was neglected). The drag on the sphere
was calculated as Fdrag = 6π Rμv∞, which is Stokes law.

This chapter begins the discussion of external flow by considering the problem
of calculating the terminal speed of a skydiver. We solved the idealized case of
a sphere falling through a viscous fluid or, equivalently, a viscous fluid flowing
slowly around a stationary sphere. If the equation for fluid force F calculated for
the falling-sphere case (Equation 8.61) can be applied to the skydiver, we now
have enough information to calculate her terminal speed. We perform this calcu-
lation now and check our answer against observations reported in the literature
to see whether the creeping-flow assumptions are justified in the skydiver case.

EXAMPLE 8.3 (Skydiver, continued). What is the maximum speed reached by
a skydiver who jumps out of an airplane at 13,000 feet? How much can the speed
of the skydiver vary depending on her body position (i.e., arms and legs flung out
or pulled in tightly)?

SOLUTION. As we learned in the creeping-flow solution, a body falling in
the presence of a viscous fluid such as air is subject to fluid forces of drag
and buoyancy. Both effects slow the motion of the object and, ultimately, the
downward force due to gravity is balanced by the retarding fluid forces; at steady
state, the object reaches a zero-acceleration condition called the terminal speed.

To calculate the terminal speed as a function of the various fluid and sphere
properties, we apply Newton’s second law (i.e., momentum conservation) to the
sphere (see Figure 8.4):

Newton’s second law:
∑

all forces
acting on body

f = ma (8.63)

where f represents the various forces, m is the mass of the body, and a is the
acceleration of the body. When the skydiver is at terminal speed, she is moving at
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constant speed; therefore, the acceleration is zero. The two forces on the skydiver
are gravity and the fluid force:

Momentum balance
on skydiver

at terminal speed:

∑
all forces

acting on body

f = ma = 0 (8.64)

f
gravity

+ f
fluid

= 0 (8.65)

mg + F = 0 (8.66)

where m is the mass of the skydiver assumed to be a sphere of density ρbody;
g is the acceleration due to gravity; and F

ˆ

, the fluid force on a sphere falling
through a viscous liquid, is given by the result of the analysis of Stokes flow,
Equation 8.61. Note that we are using the coordinate system in Figure 8.5; thus,
g = −gez . Substituting the Stokes-flow result in Equation 8.61 into the sphere
momentum-balance equation, Equation 8.66, yields:

mg + F = 0 (8.67)

⎛
⎜⎜⎜⎜⎝

0

0

−4π R3ρbodyg

3

⎞
⎟⎟⎟⎟⎠

xyz

+

⎛
⎜⎜⎜⎜⎝

0

0

4π R3ρg

3
+ 6π Rμv∞

⎞
⎟⎟⎟⎟⎠

xyz

=

⎛
⎜⎝

0

0

0

⎞
⎟⎠

xyz

(8.68)

Solving the z-component of Equation 8.68 for the terminal speed v∞, we obtain
the final result:

v∞ = (ρbody − ρ)2R2g

9μ
(8.69)

Terminal speed
of a sphere

(Stokes regime):
v∞ = (ρbody − ρ)D2g

18μ
(8.70)

Equation 8.70 now may be used to estimate the terminal speed of a skydiver,
provided that the assumptions of Stokes flow (i.e., steady flow, no inertia, vφ = 0,
φ-symmetry) are valid. To obtain a final answer, we must estimate the values
of the physical parameters in Equation 8.70. For the skydiver, we assume sphere
dimensions that approximate the size of a human being. For the physical-property
data, we consult the Internet for approximate values. We can check the sensitivity
of the calculation to these choices after obtaining our initial result:

Viscosity of air: μ = 1.7 × 10−5 Pa s

Density of air: ρ = 1.3 kg/m3

Density of human ball (water): ρbody ≈ 1,000 kg/m3

Diameter of sphere: D = 0.50 m

Acceleration due to gravity: g = 9.80 m/s2
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With these parameter values, we obtain the terminal speed from Equation 8.70
as:

Stokes-flow estimate of
terminal speed:

v∞ = 8 × 106 m/s = 18 × 106 mph (8.71)

The result obtained, 8 million m/s, is an unphysically high number. The speed
of sound, for example, is 343 m/s (770 mph), and our answer is four orders
of magnitude higher. There is something seriously wrong with our analysis. If
we decrease the values of the parameters in the numerator of Equation 8.70 to
the lowest possible estimates and increase the viscosity of air, which appears in
the denominator, to five times our previous estimate, we obtain the lowest possible
estimate from this calculation method:

Viscosity of air: μ ≈ 8.5 × 10−5 Pa s

Density of air: ρ ≈ 0.1 kg/m3

Density of human ball: ρbody ≈ 100 kg/m3

Diameter of sphere: D ≈ 0.1 m

Acceleration due to gravity: g = 9.80 m/s2

New Stokes-flow estimate of
terminal speed:

v∞ ≈ 6,400 m/s =14,000 mph (8.72)

This value is still unphysically high. The problem with the analysis is not in the
accuracy of the estimates of model parameters; rather, it is that the assumptions
of Stokes flow are not correct in the flow regime that exists during skydiving.

The reason for the incorrect results is that highly ordered Stokes flow breaks
down above a critical speed (see Section 8.2). As the velocity increases, the
flow around a sphere undergoes a series of transitions (see Figure 2.12 and
further discussion in this section) from creeping flow to the development of
recirculation and laminar boundary layers, eventually producing a flow with a
turbulent boundary layer near the object and a turbulent wake behind it.

As in the case of laminar flow in tubes in Chapter 7, the study of highly idealized
flow is enlightening when we begin to study a problem, but more intensive study
is needed before practical solutions can be calculated.

The creeping-flow results in Example 8.3, which were derived for very slow
flows of highly viscous liquids, greatly underestimate the frictional drag present
in a rapid skydiving descent. The true estimate of the terminal speed of a sky-
diver is about 55 m/s, two orders of magnitude lower than the lower estimate
made.3 The significant discrepancy between the creeping-flow prediction and
what is observed is evidence that a skydiver is not in creeping flow. To correctly
solve the skydiver problem, we must know more about rapid flows around obsta-
cles, including the study of boundary layers, inertial forces, flow separation, and
wakes—all of which were neglected in the Stokes-flow analysis.

3The terminal speed is approximately 55 m/s when the skydiver is in the belly-to-Earth position;
in the head-first position, speeds can reach 90 m/s.
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8.1.2 Noncreeping flow around a sphere

In the previous section, we calculated the terminal speed of a skydiver by using
results from creeping flow around a sphere:

Fluid force on a sphere
in creeping flow
in the z-direction

(Stokes flow):

F =

⎛
⎜⎜⎜⎝

0
0

4π R3ρg

3
+ 6π Rμv∞

⎞
⎟⎟⎟⎠

xyz

(8.73)

We find that the skydiver terminal-speed result predicted by this creeping-flow
equation is not correct; the predicted flow rate is at least two orders of magnitude
too high. Our error in that calculation was to use a creeping-flow relationship
(i.e., inertia neglected) to make a prediction in a very rapid flow where inertia is
important. To correctly complete the skydiver calculation, we need a drag/velocity
relationship for rapid flow past objects.

When we addressed pipe flow in Chapter 7, we had a similar dilemma: We could
calculate pressure drop/flow rate from a laminar-flow analysis (i.e., the Hagen-
Poiseuille equation, Equation 7.26); however, we needed a pressure-drop/flow-
rate equation for turbulent flow and we could not solve directly for that. In
Chapter 7, we solved the rapid-pipe-flow problem by using a mixed analyti-
cal/experimental approach. We relied on a data correlation—either the Prandtl
correlation (see Equation 7.58) or the Colebrook equation (see Equation 1.95)—
to obtain a correct result for pressure drop in turbulent pipe flow.

Using the tube-flow experience as our guide, we now follow the same steps to
arrive at a solution to the external-flow problem considered here. The appropriate
correlation we need to solve the skydiving problem is between nondimensional
drag and nondimensional flow rate in noncreeping flow. Nondimensional drag is
called the drag coefficient CD , and nondimensional flow rate is again the Reynolds
number—this time defined relative to the object in the flow. We develop the drag
coefficient in this section. To obtain a reasonable solution to the skydiver problem,
we first present the definition of the drag coefficient without derivation:

Drag coefficient:
nondimensional

drag
CD ≡ Fdrag( 1

2ρV 2
) (

Ap
) (8.74)

Reynolds number:
nondimensional

flow rate
Re ≡ ρV D

μ
(8.75)

where Fdrag is the drag on the object; Ap is the projected area of the object, which
is π R2 = π D2/4 for the sphere; D is the diameter of the sphere; ρ and μ are the
density and viscosity of the fluid, respectively; and V is a characteristic velocity
of the flow, chosen to be the upstream velocity v∞. Note the similarity between
the definitions of drag coefficient and Fanning friction factor for pipes (see
Equation 7.135)—this similarity is appropriate because both are nondimensional
retarding fluid forces.
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For creeping flow, we can calculate CD versus Re from the Stokes-flow anal-
ysis. We demonstrate the creeping-flow calculation before discussing CD(Re) in
noncreeping flow.

EXAMPLE 8.4. What is the relationship between drag coefficient CD and
Reynolds number Re for creeping flow around a sphere?

SOLUTION. We begin with the definition of drag coefficient, Equation 8.74:

Drag coefficient of a sphere:
nondimensional

drag
CD ≡ Fdrag( 1

2ρV 2
) (

π D2

4

) (8.76)

The drag Fdrag appears in this definition; for creeping flow, this quantity is given
by Stokes law (Equation 8.62):

Stokes Law:
drag in creeping flow

around a sphere
Fdrag = 6π Rμv∞ (8.77)

Substituting Stokes law (Equation 8.77) into the definition of drag coefficient
yields the desired relationship:

CD ≡ Fdrag( 1
2ρV 2

) (
π D2

4

) (8.78)

= 6π RμV( 1
2ρV 2

) (
π D2

4

) (8.79)

= 24μ

ρV D
= 24

Re
(8.80)

Drag law for
creeping flow

around a sphere:
CD = 24

Re
(8.81)

Experiments that test the validity of Equation 8.81 were performed as long
ago as the mid-1800s, and the results are shown in Figure 8.12. For Reynolds
numbers below 2, the creeping-flow solution is verified. This agreement is a
validation of the microscopic analysis performed in the first part of this chapter.
From the experimental data, we also learn the limits of the analysis. For Re < 2,
the flow is consistent with the assumptions of steady flow: vφ = 0, symmetry in
the φ-direction, and negligible inertia. For Re > 2, inertia is important; and, at
high Reynolds numbers, the creeping-flow equation CD = 24/Re grossly under-
predicts the drag.

The data in Figure 8.12 indicate the true amount of drag observed in flow around
a sphere for the velocities corresponding to the Reynolds numbers shown. For
Re < 2, the drag coefficient is given by CD = 24/Re, the creeping-flow solution.
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Figure 8.12 Experimental data for drag coefficient as a function of the Reynolds number for flow around a sphere [147]. Below
Re = 2, the data closely follow the creeping-flow solution of CD = 24/Re.

For 0.1 ≤ Re ≤ 1,000, CD follows a less steeply declining curve given approx-
imately by CD ≈ 24

Re
(
1 + 0.14Re0.7

)
[132]. We see that above Re = 1,000, the

curve of CD versus Re levels off, and CD may be estimated within 15 per-
cent by the constant CD � 0.445 (called Newton’s drag-law regime) up to a
Reynolds number of 2.6 × 105. This region is followed by a sharp drop in drag
at Re = 2.6 × 105. In summary, the experimental correlation for drag coefficient
versus Reynolds number for flow around a sphere is:

Data correlation
for drag

coefficient for
flow around
a sphere (all

flow regimes):

Re CD

Re < 2
24

Re
= 24Re−1

0.1 ≤ Re ≤ 1,000 24
Re
(
1 + 0.14Re0.7

)
1,000 ≤ Re ≤ 2.6 × 105 ≈ 0.445

2.8 × 105 ≤ Re ≤ 106 log CD

Re/106
= 4.43 log Re − 27.3

(8.82)

A single correlation equation for sphere drag coefficient as a function of Reynolds
number is given here [106]; Equation 8.83 is valid from the creeping-flow limit
through Re = 106 and is suitable for computer implementation:

Data correlation for drag coefficient for flow around a sphere
(all flow regimes up to Re = 106) [106]:

f = 24

Re
+

2.6
(

Re
5.0

)
1 +

(
Re
5.0

)1.52 +
0.411

(
Re

263,000

)−7.94

1 +
(

Re
263,000

)−8.00 +
0.25

(
Re
106

)
1 +

(
Re
106

)
(8.83)

The correlation in Equation 8.83 is compared to literature data in Figure 8.13.
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Figure 8.13 Experimental data for drag coefficient as a function of the Reynolds number for flow around a sphere [147]. Also
shown are the approximations of these data that are represented in Equation 8.83 [106]. The data correlation is
not to be used above Re = 106.

Now that experiments and data correlations have shown the true nature of drag
in rapid flow around a sphere, we are in a better position to estimate the terminal
speed of a skydiver.

EXAMPLE 8.5 (Skydiver, continued). What is the maximum speed reached by
a skydiver who jumps out of an airplane at 13,000 feet? How much can the speed
of the skydiver vary depending on her body position (i.e., arms and legs flung out
or pulled in tightly)?

SOLUTION. As shown during our previous attempt at this problem, to calculate
the terminal speed of a falling object, we apply Newton’s second law (i.e., momen-
tum conservation). When the skydiver is at terminal speed, the acceleration is
zero. The two forces on the skydiver are gravity and the fluid forces:

Momentum balance
on skydiver

at terminal speed:

∑
all forces

acting on body

f = ma = 0 (8.84)

f
gravity

+ f
fluid

= 0 (8.85)

mg + F = 0 (8.86)

ˆwhere m is the mass of the skydiver; the acceleration due to gravity is g = −gez;
and for F , the force on a sphere falling through a viscous liquid, we previously
used the result of the analysis of Stokes flow, Equation 8.61. We now know that
using Stokes flow in the skydiver case is an error because Stokes flow is not
produced at the high speeds attained by the skydiver. Instead, we express F in
terms of drag coefficient and use the experimental correlations for CD(Re) in
Equation 8.82 or 8.83 to obtain our final answer.

To incorporate the drag coefficient in our expressions, we review our previous
solution for Stokes flow. In Stokes flow, the fluid force on the sphere F was seen
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to be composed of two parts: a buoyancy term (contains gravity) and a drag term
(contains velocity) (see Example 8.2):

Fluid force on a
sphere in

creeping flow
(Stokes flow)

F =

⎛
⎜⎜⎜⎜⎝

0

0

4π R3ρg

3
+ 6π Rμv∞

⎞
⎟⎟⎟⎟⎠

xyz

(8.87)

For flow outside the Stokes regime, we replace the drag term (6π Rμv∞) with
drag given in Equation 8.74, the defining equation for the drag coefficient CD:

Arbitrary shape: CD ≡ Fdrag( 1
2ρV 2

) (
Ap
) (8.88)

Sphere: CD ≡ Fdrag( 1
2ρV 2

) (
π D2

4

) (8.89)

Solving Equation 8.88 for Fdrag and substituting Fdrag for the Stokes drag in the
fluid-force Equation 8.87, we obtain:

Fdrag = ρV 2 ApCD

2
(8.90)

F =

⎛
⎜⎜⎜⎜⎝

0

0

4π R3ρg

3
+ Fdrag

⎞
⎟⎟⎟⎟⎠

xyz

(8.91)

Fluid force on a
sphere in

uniform flow
(all flow regimes):

F =

⎛
⎜⎜⎜⎜⎝

0

0

4π R3ρg

3
+ ρV 2 ApCD

2

⎞
⎟⎟⎟⎟⎠

xyz

(8.92)

Now, returning to the momentum balance (see Equation 8.86), we substitute
Equation 8.92 for the fluid force and expand the gravity term in our chosen
coordinate system:

⎛
⎜⎝

0

0

−Vρbodyg

⎞
⎟⎠

xyz

+

⎛
⎜⎜⎜⎜⎝

0

0

Vρg + ρV 2 ApCD

2

⎞
⎟⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎜⎝

0

0

0

⎞
⎟⎟⎟⎟⎠

xyz

(8.93)

where the mass of the sphere is given by Vρbody = (4/3)π R3ρbody; ρbody is the
density of the body; and V is the volume of the body. Solving the z-component of
Equation 8.93 for the drag coefficient, we obtain the equation used to generate the
CD(Re) correlations from experimental data on terminal speed. Solving the same
equation for the terminal speed, we obtain the equation that allows us to calculate
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terminal speed from published experimental results for the drag coefficient:

Measured drag coefficient:
(arbitrary object drop)

CD = 2Vg
(
ρbody − ρ

)
ρ Apv2∞

(8.94)

Terminal speed
of an arbitrary body:

v∞ = V =
√

2Vg(ρbody − ρ)

ρ ApCD
(8.95)

Measured drag coefficient:
(sphere drop)

CD = 4gD
(
ρbody − ρ

)
3ρv2∞

(8.96)

Terminal speed
of a sphere:

v∞ = V =
√

4(ρbody − ρ)Dg

3ρCD
(8.97)

Equation 8.97 and the data in Figure 8.12 now may be used to estimate the
terminal speed of a skydiver. Using the same original values of the physical
parameters as in Example 8.3, we start by assuming that the Reynolds number
for a skydiver will be high—perhaps in the 103 ≤ Re ≤ 2 × 105 region—where
the drag coefficient reaches a constant value, CD = 0.445:

Density of air: ρ = 1.3 kg/m3 (8.98)

Density of human ball (water): ρbody = 1,000 kg/m3 (8.99)

Diameter of sphere: D = 0.5 m (8.100)

Acceleration due to gravity: g = 9.80 m/s2 (8.101)

Drag coefficient: CD = 0.445 (8.102)

With these parameter values, we obtain the terminal speed as:

Estimate of
terminal speed:
(CD = 0.445)

V = 107 m/s (8.103)

The estimate obtained is a substantial improvement when compared to the
Stokes-flow estimate. The actual speed of a skydiver in freefall is approximately
55 m/s (belly-to-Earth position) or 90 m/s (head-first position). Thus, assuming
the skydiver was a sphere and that CD was equal to a constant value of 0.445
allowed us to predict an answer within a reasonable uncertainty of the correct
experimental result (i.e., within a factor of 2).

This second attempt is already good, but we have many effects to investigate
as we continue our solution to this problem. Note that we only roughly modeled
our skydiver, assuming that she falls like a sphere of a chosen diameter. There
certainly is an effect of object shape on the terminal speed, and we explore these
issues later in the chapter (see Example 8.24). In addition, we assumed a constant
drag coefficient of CD = 0.445; this value is valid up to a Reynolds number
of about 2.6 × 105. Using the velocity result of 107 m/s, the Reynolds number
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is Re = 4 × 106, which is beyond this maximum Re for the Newton’s drag-law
regime. Finally, there is a qualitative change in the sphere CD(Re) correlation
at high Reynolds numbers (Re > 2.6 × 105). It is reasonable to ask whether the
phenomena that cause the abrupt drop in CD seen in Figure 8.12 also might
affect our skydiver. More experiments, including flow visualization, are needed
to address these questions.

The reasonable estimate of terminal speed obtained in Example 8.5 can be
counted as a success for the modeling methods in this text. We start with a real,
practical problem; identify an idealized situation related to our real problem;
investigate the idealized situation; and then use experimental results to map the
idealized problem onto the real problem. This is a fundamental methodology of
fluid-mechanics modeling. The answer obtained is within a factor of 2 of the
observed terminal speed.

To move to the next level and improve the accuracy of our estimates, we must
refine the models and broaden the experiments. We can clarify the origin of the
drag coefficient (see Equation 8.74) by using dimensional analysis, and we turn
to a discussion of this topic in the next section. That development shows how we
knew CD would be a function only of Reynolds number. We also discuss more
thoroughly the types of flow behaviors seen in the noncreeping regime of flow past
a sphere (e.g., recirculation, boundary layers, separation, and wakes), and we make
a first attempt at modeling high-speed flows with the Navier-Stokes equation. In
Section 8.2, we discuss boundary layers and flows past nonspherical objects and
investigate the influence of shape and orientation on drag. In Section 8.3, we
build on what we learned from our trials and errors and discover the importance
of the rotational character of flow fields, quantified by the field property vorticity.
The chapter concludes with a discussion of complex external flows.

8.1.2.1 DIMENSIONAL ANALYSIS OF NONCREEPING FLOW
In the previous section, we learn that drag coefficient CD quantifies drag in non-
creeping flow past a sphere. In this section, we discuss the origin of drag coef-
ficient. The concept of the drag coefficient derives directly from dimensional
analysis.

The situation we face with noncreeping flow around a sphere is the same
situation we faced when analyzing turbulent pipe flow in Chapter 7: We know the
equations that govern mass and momentum conservation for the flows of interest,
but we are unable to solve them:

Mass conservation:
(continuity equation,

constant density)
0 = ∇ · v (8.104)

Momentum conservation:
(Navier-Stokes equation)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (8.105)

Newtonian
constitutive equation:

τ̃ = �̃ + pI = μ
(∇v + (∇v)T ) (8.106)

Total fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (8.107)
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We will use experiments to provide the information we lack, but there are many
variables and physical properties to consider. To sort out how each quantity affects
a given problem, we follow the procedure in Chapter 7: We nondimensionalize
each quantity in the governing equations. If we rewrite the governing equations
in terms of nondimensional versions of velocity, coordinate directions, time,
and other variables, we can see more clearly the structure of the equations; that
clarity helps considerably in designing experiments, plotting data, and deriving
correlations.

We want to nondimensionalize the governing equations for flow around a
sphere: the continuity equation, the Navier-Stokes equation, and the expression
for fluid force on a sphere. We choose the upstream velocity V ≡ v∞ as the
characteristic velocity and the sphere diameter D = 2R as the characteristic lin-
ear dimension. These choices are arbitrary; how good they are can be decided
from the final results of the analysis. As in Chapter 7, we define nondimen-
sional variables as the ratios of the dimensional variables to the characteristic
values:

v∗
r ≡ vr

V
(8.108)

v∗
θ ≡ vθ

V
(8.109)

v∗
φ ≡ vφ

V
(8.110)

r∗ ≡ r

D
(8.111)

t∗ ≡ t

D/V
(8.112)

We now solve these expressions for the dimensional variables and substitute them
into the Navier-Stokes equation, continuity equation, and equation for fluid force
F on a surface. After some algebra, we obtain new nondimensional versions of
the governing equations.

For the constant-density continuity equation, we obtain:

Continuity equation:
1

r∗2

∂(r∗2v∗
r )

∂r∗ + 1

r∗ sin θ

∂(v∗
θ sin θ)

∂θ
+ 1

r∗ sin θ

∂(v∗
φ)

∂φ
= 0

(8.113)

The nondimensional mass balance does not include any scale factors containing
the characteristic dimensions V or D; thus, this version does not yield any
information about the relative importance of the three terms in the continuity
equation. Each term in Equation 8.113 appears to be equally important.

For the momentum balance, we use the Navier-Stokes equation—the
microscopic-momentum balance:

Navier-Stokes equation: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

(8.114)
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Figure 8.14 The dynamic pressure folds the hydrostatic effect
of gravity into the pressure term. The height h
must be expressed in whichever coordinate sys-
tem is chosen for problem solving.

Before we nondimensionalize the Navier-
Stokes equation, we can simplify the equa-
tion given our experience with Stokes
flow. The role of gravity in the flow-
around-a-sphere problem can be deter-
mined by reviewing the creeping-flow solu-
tion, Equations 8.23 and 8.24. Gravity
appears only in the pressure distribution.
Because the presence of gravity affects only
the pressure field, we can roll the effect
of gravity into the pressure function by
using a dynamic pressure as follows—let
the dynamic pressure field, P(r, θ, φ) or
P(x, y, z), be defined as:

Dynamic pressure P ≡ p + ρgh (8.115)

where p(x, y, z) is the pressure at a given location in the fluid, ρ is the density
of the fluid, and h is the vertical height of the location (x, y, z) above an eleva-
tion chosen as the reference elevation. For example, if we choose the reference
elevation for the flow-around-a-sphere problem as the horizontal plane through
the origin of the coordinate systems, then in the two coordinate systems of our
problem, h is given by the following (Figure 8.14):

h(x, y, z) = z (8.116)

h(r, θ, φ) = r cos θ (8.117)

The mathematical form of h used for a given calculation depends on the coordinate
system being used.

Having defined the dynamic pressure in Equation 8.115, we can group the
pressure (∇ p) and gravity (ρg) terms of the Navier-Stokes equations. To see this,
consider the term ∇ p of the Navier-Stokes equation. In the Cartesian coordinate
system, this term is a vector given by the following (Equation 1.242):

∇ p =

⎛
⎜⎜⎜⎜⎝

∂p
∂x

∂p
∂y

∂p
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(8.118)

In the Cartesian coordinate system of the sphere problem (see Figure 8.5), h
is given by h = z; thus, P = p + ρgz. We can form ∇P from the definition
of ∇ (Equation 8.118), which is valid for any function, and then simplify each
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component by carrying out the partial derivatives:

∇P = ∇ (p + ρgh) (8.119)

= ∇ (p + ρgz) (8.120)

=

⎛
⎜⎜⎜⎜⎝

∂(p+ρgz)
∂x

∂(p+ρgz)
∂y

∂(p+ρgz)
∂z

⎞
⎟⎟⎟⎟⎠

xyz

(8.121)

=

⎛
⎜⎜⎜⎝

∂p
∂x

∂p
∂y

∂p
∂z + ρg

⎞
⎟⎟⎟⎠

xyz

(8.122)

=

⎛
⎜⎜⎜⎝

∂p
∂x

∂p
∂y

∂p
∂z

⎞
⎟⎟⎟⎠

xyz

+

⎛
⎜⎜⎜⎜⎝

0

0

+ρg

⎞
⎟⎟⎟⎟⎠

xyz

(8.123)

∇P = ∇ p − ρg (8.124)

ˆ
where we use the fact that the gravity vector in our chosen coordinate system
is given by g = −gez . Incorporating the gradient of dynamic pressure from
Equation 8.124 into the Navier-Stokes equation yields:

Navier-Stokes equation:
(regular pressure term)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (8.125)

Navier-Stokes equation:
(dynamic pressure term)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + μ∇2v (8.126)

The version of the Navier-Stokes equation in Equation 8.126 was derived in a
particular Cartesian coordinate system, but it is valid in any coordinate system
because vectors and tensors are independent of the coordinate system. Note
that when there is no flow (v = 0), the Navier-Stokes equation states that the
gradient of the dynamic pressure is zero (∇P = 0), which is simply the static-
fluid equation (see Equation 4.52):

No-flow Navier-Stokes equation: ∇P = 0 (8.127)⎛
⎜⎜⎜⎜⎜⎜⎝

∂p
∂x

∂p
∂y

∂p
∂z + ρg

⎞
⎟⎟⎟⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎝

0

0

0

⎞
⎟⎟⎟⎠

xyz

(8.128)

We are nondimensionalizing the Navier-Stokes equation in search of the
dimensionless groups that govern the flow-around-a-sphere problem. Beginning
now with the Navier-Stokes equation in terms of dynamic pressure (Equa-
tion 8.126), we incorporate the nondimensional variables v∗

r , v∗
θ , and so on (i.e.,

Equations 8.108–8.112). For the dynamic-pressure term, we nondimensionalize
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P with a characteristic pressure P chosen as P = ρV 2; this is the same char-
acteristic pressure we choose in tube flow.4 The nondimensional Navier-Stokes
equation becomes:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v∗
r

∂t∗

∂v∗
θ

∂t∗

∂v∗
φ

∂t∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v∗
r

(
∂v∗

r

∂r∗

)
+ v∗

θ

(
1

r∗
∂v∗

r

∂θ
− v∗

θ

r∗

)
+ v∗

φ

(
1

r∗ sin θ

∂v∗
r

∂φ
− v∗

φ

r∗

)

v∗
r

(
∂v∗

θ

∂r∗

)
+ v∗

θ

(
1

r∗
∂v∗

θ

∂θ
+ v∗

r

r∗

)
+ v∗

φ

(
1

r∗ sin θ

∂v∗
θ

∂φ
− v∗

φ

r∗ cot θ

)

v∗
r

(
∂v∗

φ

∂r∗

)
+ v∗

θ

(
1

r∗
∂v∗

φ

∂θ

)
+ v∗

φ

(
1

r∗ sin θ

∂v∗
φ

∂φ
+ v∗

r

r∗ + v∗
θ

r∗ cot θ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P∗

∂r∗

1

r∗
∂P∗

∂θ

1

r∗ sin θ

∂P∗

∂φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

+ 1

Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂

∂r∗
(

1
r∗2

∂
∂r∗ (r∗2v∗

r )
)+ 1

r∗2 sin θ
∂
∂θ

(
sin θ

∂v∗
r

∂θ

)
+ 1

r∗2 sin2 θ

∂2v∗
r

∂φ2

− 2
r∗2 sin θ

∂
∂θ

(v∗
θ sin θ) − 2

r∗2 sin θ

∂v∗
φ

∂φ

)
(

1
r∗2

∂
∂r∗

(
r∗2 ∂v∗

θ

∂r∗

)
+ 1

r∗2
∂
∂θ

(
1

sin θ
∂
∂θ

(v∗
θ sin θ )

)+ 1
r∗2 sin2 θ

∂2v∗
θ

∂φ2

+ 2
r∗2

∂v∗
r

∂θ
− 2 cot θ

r∗2 sin θ

∂v∗
φ

∂φ

)
(

1
r∗2

∂
∂r∗

(
r∗2 ∂v∗

φ

∂r∗

)
+ 1

r∗2
∂
∂θ

(
1

sin θ
∂
∂θ

(v∗
φ sin θ )

)+ 1
r∗2 sin2 θ

∂2v∗
φ

∂φ2

+ 2
r∗2 sin θ

∂v∗
r

∂φ
+ 2 cot θ

r∗2 sin θ

∂v∗
θ

∂φ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.129)

The dimensionless scale-factor that appears in the nondimensional Navier-
Stokes equation is again the Reynolds number:

Reynolds number Re ≡ ρV D

μ
ratio of

(inertial forces)

(viscous forces)
(8.130)

The nondimensional Navier-Stokes equation for flow around a sphere written in
Gibbs notation is:

Nondimensional
Navier-Stokes:

(dynamic pressure)

∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗P∗ +
(

1

Re

)
∇∗2

v∗

(8.131)

4There is more discussion of this choice later in this development and in Section 8.3.2.
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where ∇∗ represents the nondimensional del operator. Note that compared to
the nondimensional Navier-Stokes equation at which we arrived when studying
Poiseuille flow in a tube (see Equation 7.99), this version does not contain the
Froude number, because we write pressure in terms of dynamic pressure P .
Using the dynamic pressure is appropriate when the effect of gravity is only as
a hydrostatic supplement to the pressure field. In flows with free surfaces, waves
can form and gravity has a profound effect on the shape of the fluid–air interface.
For such free-surface flows, the Froude number Fr is important [115], and the
grouping of pressure and gravity effects into a dynamic pressure is inappropriate.

We nondimensionalized mass and momentum balances for flow around a
sphere and determined that the Reynolds number is the important quantity that
determines the form of solutions to these equations. To apply the mass- and
momentum-balance equations to the specific problem of determining the force
on the sphere, we must also nondimensionalize the expression for fluid force on
a surface. To calculate fluid forces on the sphere, we use the usual expression
(Equations 8.6 and 8.32):

Total fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (8.132)

Total fluid force
on the sphere

in noncreeping flow:
F =

∫ 2π

0

∫
ˆ

π

0
[er · �̃]r=R R2 sin θdθdφ (8.133)

ˆ

Carrying out the dot product on the tensor �̃ = τ̃ − pI written in the spherical
coordinate system, we obtain:

[er · �̃] = (1 0 0
)

rθφ
·

⎛
⎜⎜⎜⎝

�̃rr �̃rθ �̃rφ

�̃θr �̃θθ �̃θφ

�̃φr �̃φθ �̃φφ

⎞
⎟⎟⎟⎠

rθφ

(8.134)

= ( �̃rr �̃rθ �̃rφ

)
rθφ

(8.135)

=

⎛
⎜⎜⎜⎝

�̃rr

�̃rθ

�̃rφ

⎞
⎟⎟⎟⎠

rθφ

=

⎛
⎜⎜⎜⎝

τ̃rr − p

τ̃rθ

τ̃rφ

⎞
⎟⎟⎟⎠

rθφ

(8.136)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2μ
∂vr

∂r
− p(r, θ, φ)

μr
∂

∂r

(
vθ

r

)
+ μ

r

∂vr

∂θ

μ

r sin θ

∂vr

∂φ
+ μr

∂

∂r

(
vφ

r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.137)

where the components of τ̃ in spherical coordinates are obtained from Table B.8
in Appendix B. Substituting this result into the equation for force on a sphere
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(Equation 8.133), we obtain:

Total molecular fluid force
on the sphere

in noncreeping flow:
F =

∫ 2π

0

∫
ˆ

π

0
[er · �̃]r=R R2 sin θdθdφ (8.138)

F = R2
∫ 2π

0

∫ π

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2μ
∂vr

∂r
− p(r, θ, φ)

μr
∂

∂r

(
vθ

r

)
+ μ

r

∂vr

∂θ

μ

r sin θ

∂vr

∂φ
+ μr

∂

∂r

(
vφ

r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r=R

sin θdθdφ (8.139)

Comparing Equation 8.139 to the creeping-flow equivalent, Equation 8.37, note
that we include �̃rφ here because in the general case we may not assume that vφ =
0 or that noncreeping flow is symmetric in the φ-direction. Later, we substitute
the dynamic pressure p = P − ρgh = P − ρgr cos θ into the expression for F
to separate the effect of buoyancy. We delay this substitution to keep the current
calculation simpler.

At this point in the previous creeping-flow calculation of F , we used the
creeping-flow solutions for velocity v and pressure p. Due to mathematical
complexity, however, we are unable to solve the Navier-Stokes equations for
v(r, θ, φ, t) and p(r, θ, φ, t) for noncreeping flow; thus, we cannot calculate F
directly. It is precisely for this reason that we follow the dimensional-analysis
approach.

Because we cannot solve for F directly in the noncreeping-flow case, we
nondimensionalize Equation 8.139 to see which dimensionless groups enter into
noncreeping force on a sphere. We use the same nondimensional quantities v∗

z ,
p∗, r∗, and so on that we used when nondimensionalizing the Navier-Stokes
equations. Making the appropriate substitutions of nondimensional quantities,
we obtain:

F = ρV 2 R2
∫ 2π

0

∫ π

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

Re

∂v∗
r

∂r∗ − p∗

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

1

Re r∗ sin θ

∂v∗
r

∂φ
+ r∗

Re

∂

∂r∗

(
v∗

φ

r∗

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r∗= 1
            

2

sin θdθdφ

(8.140)

Note that the pressure term (prefactor = 1) and the velocity-gradient or vis-
cous terms (prefactor = 1/Re) scale differently; this is a consequence of how
we choose to scale pressure. By choosing the characteristic pressure P as ρV 2

rather than as something involving viscosity, we impose that these terms scale
differently.5

5Note also that in the nondimensionalization of tube flow, there was no pressure term in the drag
expression (see Equation 7.138) because the flow was unidirectional.
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ˆ

To calculate the drag from the total force F in Equation 8.140, we follow
the steps for the analogous creeping-flow calculation and convert the vector
in Equation 8.140 to Cartesian coordinates. We convert our expression to the
Cartesian coordinate system so that the θ- and φ-dependencies of the basis vectors
are accounted for appropriately prior to final integration. The basis vectors êr ,
eθ , and êφ are written in terms of the Cartesian basis vectors in Equations 1.271–
1.273:

F = ρV 2 R2
∫ 2π

0

∫ π

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

Re

∂v∗
r

∂r∗ − p∗

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

1

Re r∗ sin θ

∂v∗
r

∂φ
+ r∗

Re

∂

∂r∗

(
v∗

φ

r∗

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r∗= 1
            

2

sin θdθdφ

(8.141)

= ρV 2 R2
∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − p∗
)

êr +
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)
êθ

+
(

1

Re r∗ sin θ

∂v∗
r

∂φ
+ r∗

Re

∂

∂r∗

(
v∗

φ

r∗

))
êφ

]
r∗= 1

            

2

sin θdθdφ (8.142)

Fluid force on
a sphere in

noncreeping
flow:

F = ρV 2 R2
∫ 2π

0

∫ π

0

⎡
⎢⎣( 2

Re

∂v∗
r

∂r∗ − p∗
)⎛⎝ sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠

xyz

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)⎛⎝ cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎠

xyz

+
(

1

Re r∗ sin θ

∂v∗
r

∂φ
+ r∗

Re

∂

∂r∗

(
v∗

φ

r∗

))⎛⎝− sin φ

cos φ

0

⎞
⎠

xyz

⎤
⎥⎦

r∗= 1
            

2

× sin θdθdφ (8.143)

The result for F in Equation 8.143 is more complicated than the result for F
obtained for creeping flow (compare Equation 8.143 to Equation 8.61, repeated
here):

Fluid force on a
sphere in

creeping flow:
(Stokes flow,

Equation 8.61)

F =

⎛
⎜⎜⎜⎝

0
0

4π R3ρg

3
+ 6π Rμv∞

⎞
⎟⎟⎟⎠

xyz

(8.144)
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A significant difference between these two expressions is the direction of the
vector F . In arriving at Equation 8.144, we carried out the φ-integrations; from
those integrations, we learned that the x- and y-components of F were zero (see
Equation 8.52). Thus, the force on a sphere in a uniform z-directional creeping
flow is in the z-direction, the direction of the oncoming flow. In the general,
noncreeping flow (Equation 8.143), we cannot carry out the φ-integrations, and
we cannot rule out that there will be nonzero x- and y-components to the force on
the sphere. Thus, for the general case of uniform flow in the z-direction around a
sphere, the vector that expresses the force on the sphere likely has three nonzero
components:

Fluid force on a sphere
in noncreeping flow:

(Equation 8.143)
F =

⎛
⎝Fx

Fy

Fz

⎞
⎠

xyz

(8.145)

In creeping flow, the total fluid force F (see Equation 8.61) was found to be the
sum of buoyancy, which is in the direction opposite to gravity, and drag, which
is in the far-field flow direction êz:

f
buoyancy

= −ρVbodyg (8.146)

f
drag

ˆ= Fdragez (8.147)

Fluid force on a sphere
in creeping flow:

F = f
buoyancy

+ f
drag

(8.148)

where ρ is the density of the fluid and Vbody is the volume of the body, which
for a sphere is 4π R3/3. The total fluid force on a sphere in noncreeping flow is
the sum of three vector contributions: the buoyancy; the drag; and, apparently,
another contribution perpendicular to êz , called the lift, which may be arrived at
by subtraction:

F = f
buoyancy

+ f
drag

+ f
lift

(8.149)

Fluid force on a sphere
in noncreeping flow

in terms of lift:
(upstream flow in z-direction)

ˆF = −ρVbodyg + Fdragez + F lift

(8.150)⎛
⎝Fx

Fy

Fz

⎞
⎠

xyz

= −ρVbody

⎛
⎝ gx

gy

gz

⎞
⎠

xyz

+
⎛
⎝ 0

0
Fdrag

⎞
⎠

xyz

+
⎛
⎝Flift,x

Flift,y

0

⎞
⎠

xyz

(8.151)

Note that because drag is defined as all of the z-direction force not due to
buoyancy, the z-component of the lift is zero.
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zegg ˆ−=

zevv ˆ∞=

fluidF

liftF

buoyancydrag FF +

Figure 8.15 There are forces on the sphere due to gravity and due to the fluid. The fluid forces can be divided into buoyancy,
which acts opposite to gravity, and two contributions due to fluid motion. The kinetic contribution to the fluid force
that is parallel to the upstream flow direction is called drag; the kinetic contribution to the fluid force that is not
parallel to the upstream flow direction is called lift.

ˆ

In the coordinate systems we are using for flow around a sphere (see Figure 8.5),
gravity is parallel to the upstream flow direction êz but in the opposite direction,
g = −gez . Incorporating this and the volume of the sphere into Equation 8.151,
we obtain:

F =
⎛
⎝Fx

Fy

Fz

⎞
⎠

xyz

= −4π R3ρ

3

⎛
⎝ 0

0
−g

⎞
⎠

xyz

+
⎛
⎝ 0

0
Fdrag

⎞
⎠

xyz

+
⎛
⎝Flift,x

Flift,y

0

⎞
⎠

xyz

(8.152)

ˆ

Lift:
(gravity given

by −gez)
F lift =

⎛
⎝Flift,x

Flift,y

0

⎞
⎠

xyz

=
⎛
⎝Fx

Fy

0

⎞
⎠

xyz

(8.153)

ˆNote that when g = −gez , the x- and y-components of Flift are equal to the x-
and y-components of F overall.

Lift is an extra contribution to the force on a sphere for noncreeping flow around
a sphere (Figure 8.15). We first discussed lift in Section 2.5 (see Figure 2.26).
Lift is the tendency of an object in a flow to experience a kinetic fluid force in a
direction other than the upstream flow direction. Lift is what allows airplanes to
fly (see discussion in Example 8.6). Lift, as shown in Equation 8.150, is a portion
of the fluid force on an object in a uniform flow. In creeping flow, we calculate
that the lift is zero (i.e., in Equation 8.61, the x- and y-components are zero);
in noncreeping flow, however, inertia is present and spheres may experience lift,
meaning side-to-side forces in a uniform flow (see Figure 8.15). We discuss these
effects in the next section (see also Figures 8.21 and 8.22). To make the concept
of lift more intuitive, we explore the colloquial use of the term lift in the following
example.
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EXAMPLE 8.6. How does the concept of lift, a lateral force defined for
flow around a sphere, relate to lift, the upward force that allows an airplane
to fly?

SOLUTION. The two concepts of lift—lift in flow around a sphere and lift on
an airplane’s wings—are the same concept but are applied with flows in different
directions relative to gravity (Figure 8.16). For an airplane wing moving rapidly
horizontal to the ground, the flow may be analyzed from the perspective of the
center of gravity of the wing. From that point of view, a horizontal flow of air
in the x-direction approaches the wing, and the wing is set at some finite angle
to horizontal. This angle is called the angle of attack, α. The fluid force felt by
the wing has a horizontal component, called the drag, and a vertical component,
the sum of the lift and a small buoyant force. The component of force in the
y-direction is not considered here because the wing is wide and the flow is
approximately two-dimensional.

∞v

gVairfoilρ

buoyancylift FF +

fluidF

dragF

xyzlift
xyz

drag

xyz

liftdragbuoyancyfluid

F

F

g
V

fffF

++=

++=

0
0

0
00

0
ρ

z

x
α

Figure 8.16 From the point of view of the airplane, the flight of an airplane is flow around an obstacle. The flow approaches the
airplane wing (volume of wing = V ; density of wing = ρairfoil) with a uniform speed v∞. The wing experiences the
downward pull of gravity, the retarding drag, buoyancy (small), and lift, which is a force in the airplane perpendicular
to the flow direction and opposite to the direction of gravity.

Buoyancy, drag, and lift sum to give the total fluid force on a two-dimensional
airfoil (Equation 8.149):

F = Ffluid = f
buoyancy

+ f
drag

+ f
lift

(8.154)

=
⎛
⎝ 0

0
ρVg

⎞
⎠

xyz

+
⎛
⎝Fdrag

0
0

⎞
⎠

xyz

+
⎛
⎝ 0

0
Flift

⎞
⎠

xyz

(8.155)

where ρ is fluid density,V is the volume of the airfoil, and g is the acceleration due
to gravity. The buoyancy is negligible. Thus, flow around an airplane wing and
flow around a sphere are similar, differing only in whether buoyancy is parallel
to drag (i.e., sphere case) or to lift (i.e., airplane case) (compare Equations 8.152
and 8.155).
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Returning to the question of drag on a sphere in noncreeping flow, we are
working on nondimensionalizing the expression for Fdrag on a sphere. In Equa-
tion 8.143, the component of F that we need to calculate the drag is the z-
component of F (compare to Equation 8.152). Fortunately, the z-component of
F is the simplest of the three components in terms of mathematics. From Equa-
tion 8.152, we see that the drag is given by the z-direction force on a sphere,
minus the buoyancy contribution:

Fdrag = Fz − 4π R3ρg

3
(8.156)

The quantity Fz is the z-component of Equation 8.143; thus, the drag on a sphere
in noncreeping flow is given by:

Fdrag = Fz − 4π R3ρg

3
(8.157)

= ρV 2 R2
∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − p∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ − 4π R3ρg

3

(8.158)

We can write Equation 8.158 in terms of the nondimensional dynamic pressure
P∗ as follows. The dynamic pressure was defined in Equation 8.115 as:

P ≡ p + ρgh (8.159)

In the spherical coordinate system of Figure 8.5, h = r cos θ . We now nondimen-
sionalize P in the usual way using the characteristic pressure P = ρV 2:

P∗ = P − pre f

ρV 2
= p − pre f

ρV 2
+ ρgr cos θ

ρV 2
(8.160)

= p∗ + gr cos θ

V 2
(8.161)

Solving for p∗, we obtain:

p∗ = P∗ − gr cos θ

V 2
(8.162)

which we substitute into Equation 8.158. The pressure term in the integral in
Equation 8.158 may be simplified by carrying out the integrations over θ and φ.
Showing only the pressure term and carrying out the substitution for dynamic
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pressure, and (where possible) carrying out the integrations discussed previously,
we obtain:

Pressure term
(Equation 8.158)

= ρV 2 R2
∫ 2π

0

∫ π

0

[−p∗ cos θ
]

r∗= 1
            

2
sin θdθdφ (8.163)

= ρV 2 R2
∫ 2π

0

∫ π

0

[
−P∗ cos θ + gr cos θ

V 2
cos θ

]
r∗= 1

            

2

sin θdθdφ

(8.164)

= ρV 2 R2
∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ

+ρV 2 R2
∫ 2π

0

∫ π

0

gR cos2 θ

V 2
sin θdθdφ

(8.165)

=
[
ρV 2 R2

∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ

]
+ 4π R3ρg

3

(8.166)

where we carried out the second integration in Equation 8.165. Substituting
Equation 8.166 into the complete Equation 8.158, the two terms containing
gravity cancel, and we obtain the final expression for drag Fdrag in noncreeping
flow around a sphere:

Fdrag = ρV 2 R2
∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − P∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ (8.167)

Note that dynamic pressure P∗, not regular pressure p∗, now appears in Equa-
tion 8.167 and that the buoyancy-subtraction term is gone. Modifying pressure
to dynamic pressure has the effect of absorbing the buoyancy effect into P , an
altered pressure.

Equation 8.167 is nondimensional, except that we have not yet chosen how to
nondimensionalize the wall drag, Fdrag. We define a nondimensional drag on the
wall following the logic employed previously with tube flow. The nondimensional
drag is the drag coefficient:

Drag coefficient:
nondimensional drag

on a sphere
CD ≡ wall force(

kinetic energy
volume

)
(characteristic area)

(8.168)

= Fdrag( 1
2ρV 2

) (
π D2

4

) (8.169)

We choose the projected area in the flow direction π D2/4 to be the characteristic
area. With this definition for nondimensional wall drag CD , we can write the drag
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in terms of the drag coefficient:

Fdrag = ρV 2π D2CD

8
(8.170)

and substitute this into Equation 8.167 to obtain the general expression for non-
dimensional drag for noncreeping flow around a sphere:

Nondimensional drag,
noncreeping flow around a sphere:

CD = 2

π

∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − P∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ

(8.171)

This completes our nondimensionalization exercise; the final result of our
analysis (Equation 8.171) is the determination that nondimensional wall drag CD

is a function of nondimensional variables (v∗
r , v∗

θ , v∗
φ , P∗, r∗, θ , φ, t∗) and one

dimensionless scale factor Re. Also, the microscopic balances that determine
relationships among the nondimensional variables are a function of only the
Reynolds number, as previously discussed for Equation 8.131. Thus, the drag
coefficient for noncreeping flow around a sphere is determined by knowledge of
Reynolds number alone:

Drag law,
flow around a sphere

(see Figure 8.13)
CD = CD (Re) (8.172)

We saw this verified in experimental results shown in Figure 8.12 and discussed
in the previous section.

The calculations of this section confirm the usefulness of dimensional analysis
in understanding complex flow problems. We used dimensional analysis to deter-
mine that the drag coefficient is a function of only Reynolds number, a prediction
that is confirmed by experiments (see Figure 8.12). We showed an example of how
to use drag coefficient as a function of Reynolds number in the skydiver example
in Section 8.1.2, and two more examples are presented here. We showed that, in
general, the fluid force on a sphere is a combination of buoyancy, drag, and lift.
We learned that the same procedures developed for internal flows work well for
external flows (i.e., start simple, solve, nondimensionalize, and conduct experi-
ments to correlate). However, we have not yet addressed detailed flow predictions
(v and p) in noncreeping flow; we turn to this topic after the examples.

EXAMPLE 8.7. A smooth ball the size of a baseball is dropped from the Golden
Gate Bridge in San Francisco, California, USA. How fast is the ball going when
it hits the water?

SOLUTION. The dropping of a ball from a bridge is the same as the skydiver
problem, Example 8.5. To calculate the terminal speed as a function of the various
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fluid and sphere properties, we apply Newton’s second law (i.e., momentum
conservation) to the ball. When the ball is at terminal speed, the acceleration is
zero. The two forces on the ball are gravity and the fluid force:

Momentum balance
on ball

at terminal speed:

∑
all forces

acting on body

f = ma = 0 (8.173)

f
gravity

+ f
fluid

= 0 (8.174)

mg + F = 0 (8.175)

ˆ
ˆ

where m is the mass of the ball, a sphere of density ρbody; g = −gez is the
acceleration due to gravity; and F = Fez is the fluid force on a sphere falling
through a viscous liquid.

As in the solution to the skydiver problem (see Example 8.5), the fluid force
on the falling object is given by:

Fluid force on a
sphere in

uniform flow
(all flow regimes):

F =

⎛
⎜⎜⎜⎜⎝

0

0

4π R3ρg

3
+ ρV 2 D2CDπ

8

⎞
⎟⎟⎟⎟⎠

xyz

(8.176)

where CD is the drag coefficient, V = v∞ is the terminal velocity, D = R/2
is the diameter of the ball, and ρ is the density of air. Substituting this into
Equation 8.175 and solving the z-component for the velocity, the final expression
for terminal velocity becomes:

Terminal speed
of a sphere

(arbitrary regime of Re):
v∞ =

√
4(ρbody − ρ)Dg

3ρCD
(8.177)

We use the correlation for drag coefficient CD(Re) in Equation 8.82 or 8.83 to
calculate the drag.

Equation 8.177 may be used to estimate the terminal speed of a dropped
baseball. Using the values of the physical parameters of air from Example 8.3,
we assume that the Reynolds number will be high enough that the drag coefficient
can be assumed to be a constant average value, CD = 0.445. The dimensions of
a baseball may be obtained from an Internet search:

Viscosity of air: μ = 1.7 × 10−5 Pa s

Density of air: ρ = 1.23 kg/m3

Density of baseball: ρbody = 668 kg/m3

Diameter of baseball: D = 0.0746 m

Acceleration due to gravity: g = 9.80 m/s2

Drag coefficient (Newton’s regime): CD = 0.445
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With these parameter values, we obtain the terminal speed as:

Estimate of
terminal speed:
(CD = 0.445)

V = 34 m/s = 77 mph (8.178)

To check our assumption of CD = 0.445, we calculate the Reynolds number:

Re = ρv∞ D

μ
(8.179)

= 1.9 × 105 (8.180)

This value is within the range of the assumed value of drag coefficient; thus, the
solution is valid.

EXAMPLE 8.8. A smooth ball the size of a baseball is thrown with an initial
velocity of 90 mph at an angle of 22 degrees from the horizontal. What is the
velocity of the ball as a function of time and how far will it go? What is the path
traced out by the ball?

SOLUTION. This problem, like the dropped ball in Example 8.7, is solved with a
force balance on the ball. In this case, however, the ball is accelerating throughout
the time of observation:

Momentum balance
on ball:

∑
all forces

acting on body

f = ma (8.181)

f
gravity

+ f
fluid

= m
dv

dt
(8.182)

mg + F = m
dv

dt
(8.183)

where m is the mass of the ball, a sphere of density ρbody; g is the acceleration due
to gravity; and F , the fluid force on a sphere moving through a viscous liquid,
is given by the data correlations for drag coefficient and acts in the direction
opposite to the motion of the ball. We use the correlation for drag coefficient
CD(Re) in Equation 8.83 to calculate the drag. The defining equation for the drag
coefficient CD is:

CD ≡ Fdrag( 1
2ρv2

) (
π D2

4

) (8.184)

Neglecting buoyancy (a small effect) for this problem, we write the fluid force as
the drag directed in the direction opposite to the ball’s motion:

F = f
drag

+ f
buoyancy

(8.185)

= Fdrag (−v̂) (8.186)

= ρv2 D2CDπ

8
(−v̂) (8.187)
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z

x

90mph

22°

x = xmax

z = 0

Figure 8.17 From knowledge of the launch angle and the initial speed, we can calculate the entire trajectory of a thrown ball.

where v̂ is a unit vector in the direction of the ball’s motion.
We solve the problem for v written in a Cartesian coordinate system, with

gravity in the −z-direction. The ball is thrown in the xz-plane (Figure 8.17):

v =

⎛
⎜⎝

vx

0
vz

⎞
⎟⎠

xyz

v̂ =

⎛
⎜⎜⎜⎝

vx
v

0
vz
v

⎞
⎟⎟⎟⎠

xyz

(8.188)

where v = |v|. The momentum balance is thus:

dv

dt
= g + F

m
(8.189)

⎛
⎜⎜⎜⎝

dvx
dt

0
dvz
dt

⎞
⎟⎟⎟⎠

xyz

=
⎛
⎝ 0

0
−g

⎞
⎠

xyz

+

⎛
⎜⎜⎜⎜⎝

− ρv2 D2CDπ

8m

(
vx
v

)
0

− ρv2 D2CDπ

8m

(
vz
v

)

⎞
⎟⎟⎟⎟⎠

xyz

(8.190)

The drag coefficient is a function of velocity; thus, we cannot use analytical
techniques to solve Equation 8.190. Instead, we use numerical methods and
spreadsheet software to obtain an accurate solution.

The numerical strategy for solving Equation 8.190 is to begin when the ball
is thrown and calculate the location of the ball a short time later (we choose
�t = 0.05 s), assuming that the ball moves at a constant speed over the short
time interval. At the new location, we recalculate the direction and speed of the
ball from Equation 8.190 and use the new values to calculate another step. We
continue stepping forward in time until the ball hits the ground (z = 0). This is
known as Euler’s method [24].

For our problem, the ball starts at time tcurrent = 0 at location xcurrent = 0,
zcurrent = 0 with initial speed v|current = 90 mph. Using geometry, the initial
direction v̂|current may be written as (see Figure 8.17):

v̂|current =
⎛
⎝ cos β

0
sin β

⎞
⎠

xyz

(8.191)

where β = 22 degrees from the horizontal. Details of the solution are given here,
and a spreadsheet implementation is shown in Figure 8.18.
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756555…4321:xedni
increment with Δt t= 0.05 s  0.1 0.15 0.2 2.75 2.8 2.85

Vx=Vnew,x previous step Vx= 37 m/s 37 36 36 … 20 20 20

Vz=Vnew,z previous step Vz= 15 m/s 14 14 13 … -12 -13 -13

V=sqrt(Vnew,x
2+Vnew,z

2) V= 40 m/s 39 39 38 … 24 24 24

V_hatx=V/Vx V_hatx= 0.927 dimensionless 0.931 0.936 0.940 … 0.858 0.849 0.839

V_hatz=V/Vz V_hatz= 0.375 dimensionless 0.364 0.353 0.342 … -0.514 -0.529 -0.543

Re=VD/ν Re= 2.13E+05 SI units 2.09E+05 2.05E+05 2.01E+05 … 1.26E+05 1.26E+05 1.27E+05

from data correlation and Re CD= 0.38 0.39 0.40 0.40 … 0.42 0.42 0.42

from definition of CD and velocity Fx= -1.55 Newton -1.525 -1.497 -1.466 … -0.552 -0.548 -0.544

from definition of CD and velocity Fz= -0.63 Newton -0.596 -0.564 -0.533 … 0.330 0.341 0.352

previous location + (Vx)(Δt) location xnew= 1.865 meters 3.704 5.516 7.303 … 75.228 76.242 77.248

previous location + (Vz)(Δt) location znew= 0.754 meters 1.472 2.155 2.805 … 0.045 -0.587 -1.238

From momentum balance Vnew,x= 37 m/s 36 36 35 … 20 20 20

From momentum balance Vnew,z= 14 m/s 14 13 12 … -13 -13 -13

Subsequent Steps:
N

ew
, 

Ca
lc
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ed
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Cu

rr
en

t V
al

ue
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 O
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)

Figure 8.18 Using spreadsheet software, we can implement the algorithm described in this example. The initial properties are
set up in cells above the main calculation cells. The first step is in the column with index=1, followed by subsequent
time steps in columns to the right.

Solution Steps

1. Increment the time, tnew = tcurrent + �t .
2. For the current v = |v|, calculate the Reynolds number Re = ρvD/μ, CD

(see Equation 8.83), and the drag on the ball.
3. From the momentum balance in Equation 8.190, calculate the new values

of vx and vz as follows. Write the time derivatives in terms of a finite time
step using the fundamental definition of derivative (see Equation 1.138):

dvx

dt
≈ vx |new − vx |current

�t
(8.192)

vx |new = vx |current + �t

(
dvx

dt

)
(8.193)

Substituting the time derivative from the x-component of Equation 8.190,
we obtain:

vx |new = vx |current + �t

(
−ρv2 D2CDπ

8m

(
vx

v

))∣∣∣∣∣∣∣
current

(8.194)

Repeat these steps with the z-component:

dvz

dt
≈ vz|new − vz|curent

�t
(8.195)

vz|new = vz|current + �t

(
dvz

dt

)
(8.196)

= vz|current − g + �t

(
−ρv2 D2CDπ

8m

(
vz

v

))∣∣∣∣∣∣∣
current

(8.197)

4. Calculate the new ball speed, vnew = √
v2

x + v2
z

∣∣∣∣
new

.
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Figure 8.19 The ball trajectory is plotted for three different initial conditions: 22 degrees, 70 mph (dashed); 22 degrees, 90 mph
(dash-dot); and 40 degrees, 90 mph (solid). Having set up the calculation for one set of conditions, we easily can
run other initial conditions.

5. Calculate the new location of the ball assuming constant velocity at the
current value of the velocity:

xnew = xcurrent + �t vx |current (8.198)

znew = zcurrent + �t zx |current (8.199)

6. Save the dataset: tnew, vx |new, vz|new, vnew, xnew, and znew.
7. If znew is less than zero, indicating that the ball has hit the ground, stop the

calculation. Otherwise, carry forward all of the new velocity and position
data to be current data in the next step; then return to the first solution
step.

Figure 8.18 is a spreadsheet implementation of the algorithm (i.e., Euler’s
method). The calculated ball trajectories for three different initial conditions
are plotted in Figure 8.19 (top). For an initial angle of 22 degrees from the hor-
izontal and an initial speed of 90 mph, the ball travels 75 m. The velocity as a
function of time is obtained as part of the solution for ball position, and this is
plotted in Figure 8.19 (bottom). Mathematical modeling of a process allows us
to easily rerun the calculation for different initial conditions (β, v(0)).
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The correlation for sphere drag coefficient as a function of Reynolds number
allows us to address various engineering problems related to flow past a sphere.
When drag is the only issue of an external-flow problem, the knowledge of
CD(Re) is sufficient to find an appropriate solution.

When more than drag is an issue—when we seek the flow pattern that develops,
for example, or the distribution of forces on an object—we must pursue a greater
understanding of external flows than available from drag results alone. In the
next section, we pursue more in-depth knowledge about such flows by exploring
details of the observed flow fields that correspond to the higher-Reynolds-number
results in Figure 8.12. We will learn—as expected from the fluid-force equation
(Equation 8.143)—that the force on a sphere in noncreeping flow has components
not only in the upstream-flow (z) direction but also in the lateral (x- and y-)
directions (i.e., lift). A dramatic illustration of this effect is that a sphere dropped
in a fluid, moving at a sufficiently high Reynolds number, will zigzag back and
forth under the influence of lift forces arising from the interplay between inertia
and fluid viscosity (see [113]; see also Section 8.2 and Figure 8.21).

As discussed in the next section, lift components of fluid force and com-
plex flow patterns are two signature characteristics of noncreeping flow around
a sphere. The flow patterns observed behind a sphere vary considerably with
Reynolds numbers for Re modestly above the creeping-flow limit. At higher
Reynolds numbers, the flow structure stabilizes into a pattern that reflects the
dominance of inertial forces in most of the flow domain. This high-Re flow pat-
tern is known as boundary-layer flow, and our usual methodology—start with a
simple problem, proceed to dimensional analysis for the more complex case—is
used once again as we seek to understand high-inertia experimental flows in the
boundary-layer limit (see Section 8.2). Airplane flight and most high-speed flows
fall into the realm of boundary-layer flow.

8.1.2.2 FLOW PATTERNS
The experiments that produced the drag-coefficient data in Figure 8.12 were of
two types: spheres dropping in viscous fluids and viscous fluid being pushed past
a stationary sphere in a wind tunnel, for example. As discussed in Section 8.1,
these two experimental setups are equivalent—as long as the sphere drops in
a straight line in the sphere-dropping experiments and does not move at all in
the fixed-sphere experiments. Figure 8.20 illustrates that under the appropriate
conditions, a sphere dropped in a liquid follows a straight path (see [113] for a
video of this flow).

As mentioned at the end of the previous section, however, as the speed v∞
increases in the dropping experiments (e.g., by using heavier spheres or lower-
viscosity fluid), a curious effect is observed: The sphere no longer falls in a
straight line but rather begins to weave back and forth as it falls through the fluid
(Figure 8.21). The lateral motions of the sphere violate the assumption used when
analyzing this flow—that is, if the sphere moves from side to side, we can no
longer use a coordinate transformation to turn a sphere-dropping experiment into
a flow-around-a-sphere experiment. Thus, at Reynolds numbers when the sphere
weaves back and forth, we cannot compare the results of sphere-drop experiments
to our fixed-sphere calculations.
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∞v

Figure 8.20 A stainless-steel sphere, dipped in ink and dropped in glycerin [155], falls in a straight line and, after a short startup
period, at a constant velocity. The ink on the surface is pulled back around the sphere and colors the central trailing
streamline, which is straight. A video of this experiment is available on the Web as part of the National Committee
on Fluid Mechanics Films series [113].

The sideways motions in dropping-sphere experiments show that lateral forces
are experienced by the sphere. These lateral forces are due to lift and were antici-
pated in Equation 8.143, which gives the force on a sphere under noncreeping con-
ditions. The onset of lateral sphere motion in sphere-drop experiments marks the
highest Reynolds number at which sphere-dropping experiments are useful to us;
therefore, we now abandon those simple experiments. We reach higher Reynolds

v

Figure 8.21 At a high Reynolds number, a sphere dropped in
a viscous fluid travels back and forth under the
influence of lateral lift forces. Compared to Fig-
ure 8.20, the experiment depicted here was pro-
duced by using water instead of glycerin. A video
of this experiment is available on the Web as part
of the National Committee on Fluid Mechanics
Films series [113].

numbers with experiments in which the
sphere is fixed in place and the flow is made
to go around the sphere.

If a sphere is fixed in place and fluid is
pumped around it, the flow may be visu-
alized with the aid of smoke or reflective
particles. The results of observations of
this type are shown in Figure 8.22 [143].
At low Re (i.e., creeping-flow regime, not
shown), the flow shows the streamlines that
are predicted by the Stokes result (see Equa-
tion 8.23); this flow is equivalent to the flow
in sphere-dropping experiments. For 130 <

Re < 300 (Figure 8.22a), the streamlines
near the rear of the fixed sphere (called
the trailing side of the sphere) are notice-
ably different and vortices appear behind
the sphere. With the appearance of trail-
ing vortices, the flow pattern farther behind
the sphere also changes. The central trailing
streamline, which in creeping flow was a
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(a) 130 < Re < 300

(b) 300 < Re < 420

SIDE VIEW

UPPER VIEW

(c) 420 < Re < 800

(d) Re > 800

Figure 8.22 Schematic of sphere wakes and flow-visualization photographs from wind-tunnel experiments at various Reynolds
numbers [143]. Flow is from left to right and the sphere is stationary. From top to bottom: (a) 130 < Re < 300;
(b) 300 < Re < 420; (c) 420 < Re < 800; and (d) 800 < Re. Image source: H. Sakamoto and H. Haniu, Trans.
ASME, vol. 112, 286 (1990), used with permission.

straight line extending from the rear stagnation point downstream (see Fig-
ure 8.20), changes character and begins to weave as the flow propagates down-
stream. The flow field is no longer independent of time; instead, there is a periodic
character to the flow field as the central trailing streamline weaves back and forth.

At a still higher Reynolds number, the flow patterns around a fixed sphere
become more interesting and complex. For 300 < Re < 420 (Figure 8.22b), the
trailing vortices grow in length and their shape becomes more obviously three-
dimensional and complex. These vortices, called hairpin vortices, resemble bent
wires linked in a chain. For 420 < Re < 800, the chain of hairpin vortices weave
back and forth; at Re > 800, the weaving vortices break up and the wake becomes
more difficult to describe.

The development of vortices and wake behind the sphere is a fundamental
change in the flow pattern of flow around a sphere, analogous to the appearance
of transitional and turbulent flows in pipes. To correlate the effect of these pattern
changes with drag, we annotate the sphere-CD(Re) plot to match the effect of
these flow-pattern changes with the measured drag coefficient (Figure 8.23).
We see that the observed complex vortex patterns are associated with higher
drag. The drag for Re > 120, where the vortex patterns occur, is much higher
than the drag that would be obtained if the Stokes-flow solution (CD = 24/Re)
could be made to persist to higher Reynolds numbers. This is reminiscent of the
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Figure 8.23 Experimental data for drag coefficient as a function of the Reynolds number for flow around a sphere [143.147].
Below Re = 0.1, the data follow the creeping-flow solution of CD = 24/Re. The flow patterns associated with
different Reynolds numbers are indicated.

transition that occurs in pipe flow in which higher friction factors f are observed
in transitional and turbulent pipe flow (Re > 2,100) than expected from a laminar
flow if a laminar pipe flow ( f = 16/Re) could be made to persist to these higher
Reynolds numbers (compare Figure 8.23 to Figure 7.17).

In both pipe flow and flow around a sphere, nature chooses a different flow
pattern for rapid flows compared to slow flows, and the high-speed flow pattern
in both cases is more complex than the slow-flow pattern. In addition, in both
pipe flow and flow around a sphere, the high-speed flow pattern produces higher
drag, even after all the scale factors of the flow are considered—that is, even
when nondimensional friction forces f and CD are compared. There apparently
is some change in the character of the flow driving forces such that the slow-
flow pattern is unattainable at high flow rates. Understanding the observed flow
transitions between slow and rapid flows has been a goal of scientists and engi-
neers for at least two centuries; considering the interest of ancient civilizations
in domestic, oceanic, and meteorological flows, it likely has been of interest
for considerably longer. We turn our attention now to the study of rapid-flow
phenomena.

8.1.2.3 POTENTIAL FLOW
For insight into rapid external flows, we deploy our analysis techniques, which are
based on the time-tested principles of mass, momentum, and energy conservation.
The slow-flow and rapid-flow regimes are delineated by the value of the Reynolds
number Re. We can find the governing equations for rapid flows by letting the
Reynolds number go to infinity in the general governing equations. The governing
equations in this limit reveal more about which forces are driving the complex
behavior summarized in Figures 8.22 and 8.23.
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Using dimensional analysis, we already have written nondimensional mass-
balance, momentum-balance, and wall-drag equations for the general flow around
a sphere:

Nondimensional
continuity equation:

∇∗ · v∗ = 0 (8.200)

Nondimensional
Navier-Stokes

(dynamic pressure):

∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗P∗ +
(

1

Re

)
∇∗2

v∗ (8.201)

Nondimensional
drag

on a sphere:
CD = 2

π

∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − P∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)

+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ (8.202)

Beginning with these three equations, we take the limit of Re −→ ∞ to obtain
the governing equations in the high-Re limit:

Equations of
potential flow

(perfect or inviscid fluid):

∇∗ · v∗ = 0

∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗P∗

CD = 2

π

∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ

(8.203)

These equations (Equation 8.203) are the governing equations for flow when
the Reynolds number is high—that is, when viscous forces are not important. A
fluid without viscosity is called a perfect fluid or an inviscid fluid, and a flow
with no viscous effects is called an inviscid flow or potential flow. The use of the
term potential flow comes from the observation that the system of equations in
Equation 8.203 also occurs when analyzing electrical potentials [79].

The set of Equations 8.203 can be applied to flow around a sphere, and we turn
now to this calculation (Example 8.9). We expect this calculation to explain the
complex behavior observed in Figures 8.22 and 8.23.

EXAMPLE 8.9. Calculate the steady-state velocity field for the flow of an
incompressible, inviscid fluid around a solid sphere of diameter 2R. The fluid
approaches the sphere with a uniform upstream velocity v∞. The geometry is the
same as in the viscous, creeping-flow calculation (see Figure 8.5); however, in
this problem, the fluid is inviscid (μ = 0) and inertia is not neglected.

SOLUTION. The solution we seek here is called the potential-flow solution for
flow around a sphere. We choose to solve the problem in spherical coordinates
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due to the geometry of the problem, and we begin with the microscopic mass and
momentum balances (i.e., continuity equation and equation of motion) written in
the chosen coordinate system.

There is no azimuthal-component of the flow (vφ = 0) and the flow is symmet-
ric in the φ-direction; thus, there are only two nonzero components of velocity
and all φ-derivatives are zero. The flow is steady and the viscosity is zero. The
continuity equation becomes:

v =
⎛
⎝ vr

vθ

vφ

⎞
⎠

rθφ

=
⎛
⎝ vr

vθ

0

⎞
⎠

rθφ

(8.204)

Continuity equation: 0 = ∇ · v

0 = 1

r2

∂
(
r2vr

)
∂r

+ 1

r sin θ

∂ (vθ sin θ)

∂θ
(8.205)

ˆ
The momentum balance is next. As discussed previously, we can combine the

effects of gravity g = −gez and pressure p on our problem by using dynamic
pressure P given by Equation 8.115. The microscopic-momentum balance for
steady, inviscid flow becomes:

Navier-Stokes equation:
(dynamic pressure)

ρ
∂v

∂t
+ ρv · ∇v = −∇P + μ∇2v

ρv · ∇v = −∇P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

(
vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r

)

ρ

(
vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r

)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂P
∂r

−1

r

∂P
∂θ

− 1

r sin θ

∂P
∂φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.206)

The φ-component of the momentum balance confirms that there is
no φ-variation of the pressure for this problem. The continuity equation
(Equation 8.205) and the r - and θ-components of the Navier-Stokes equation
(Equation 8.206) form a system of three equations in three unknowns: vr , vθ ,
and P .

The problem is set up, but we are left with a difficult mathematical task. We
are aided in solving these equations by an invention known as the stream function
ψ(r, θ ), which we develop now. For a function of two variables, the two mixed
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second-derivative functions are equal. For any function ψ(r, θ ), therefore:

∂2ψ

∂θ∂r
= ∂2ψ

∂r∂θ
(8.207)

∂

∂θ

(
∂ψ

∂r

)
= ∂

∂r

(
∂ψ

∂θ

)
(8.208)

0 = ∂

∂r

(
∂ψ

∂θ

)
+ ∂

∂θ

(
−∂ψ

∂r

)
(8.209)

There are similarities between the continuity-equation result for this problem
(Equation 8.205) and the mixed-partials expression in Equation 8.209. First, we
rearrange the continuity equation:

0 = 1

r2

∂
(
r2vr

)
∂r

+ 1

r sin θ

∂ (vθ sin θ)

∂θ
(8.210)

0 = sin θ
∂
(
r2vr

)
∂r

+ r
∂ (vθ sin θ)

∂θ
(8.211)

0 = ∂
(
r2 sin θvr

)
∂r

+ ∂ (rvθ sin θ)

∂θ
(8.212)

We can move sin θ into the r -derivative term and r into the θ-derivative term

because the derivatives are partial derivatives of the other variable. Comparing
Equation 8.212 to Equation 8.209, we define the function ψ(r, θ ) so that these
two equations are equivalent [40]:

∂ψ

∂θ
≡ r2 sin θvr (8.213)

−∂ψ

∂r
≡ rvθ sin θ (8.214)

Solving these definitions for the velocity components vr and vθ in terms of the
single function ψ , we obtain:

vr = 1

r2 sin θ

∂ψ

∂θ
(8.215)

vθ = −1

r sin θ

∂ψ

∂r
(8.216)

For the function ψ(r, θ ) defined this way, the continuity equation is auto-
matically satisfied. The problem now becomes to solve for ψ(r, θ ) and P(r, θ ).
The equations to use to solve the problem are the r - and θ-components of the
momentum balance, Equation 8.206, with the appropriate expressions involving
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ψ substituted for vr and vθ (Equations 8.215 and 8.216):

ρ

(
vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r

)
= −∂P

∂r
(8.217)

ρ

(
vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r

)
= −1

r

∂P
∂θ

(8.218)

To obtain a single equation for ψ(r, θ ), we differentiate Equation 8.217 by θ

and Equation 8.218 by r , yielding the same mixed second partial derivative of
dynamic pressure on the righthand side of both expressions:

∂

∂θ

(
vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r

)
= − 1

ρ

∂2P
∂θ∂r

(8.219)

∂

∂r

(
r

(
vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r

))
= − 1

ρ

∂2P
∂r∂θ

(8.220)

Eliminating the pressure second derivative between these two equations and sub-
stituting the defining equations for the stream function ψ(r, θ ) (Equations 8.215
and 8.216) produces a single, third-order, partial differential equation for ψ(r, θ ).
The algebra in spherical coordinates is complex but, ultimately, the equation to
solve for ψ(r, θ ) is an encouragingly simple expression [40]:

∂2ψ

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
= 0 (8.221)

This mathematical system is studied in many areas of physics, and the entire
expression is defined as the operator E2:

E2ψ ≡ ∂2ψ

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
(8.222)

The equation for the momentum balance for flow around a sphere thus can be
written as:

Momentum-balance
flow around a sphere

(potential flow):
E2ψ = 0 (8.223)

We can find a solution for ψ from Equation 8.223 (Equation 8.221) by following
the same strategy used in the creeping-flow solution: Consider the boundary
conditions and guess an appropriate solution. We discuss that solution now.

The boundary conditions for the flow around a sphere are: (1) the velocity
goes to zero at the sphere surface, and (2) the flow is uniform in the z-direction
at infinity. We first write the boundary conditions in terms of v and then convert
to ψ :

At r = R: v = 0 (8.224)

=
⎛
⎝ vr

vθ

0

⎞
⎠

rθφ

=
⎛
⎝0

0
0

⎞
⎠

rθφ

(8.225)
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In terms of ψ , these become:

∂ψ

∂r

∣∣∣∣∣∣
r=R

= 0 (8.226)

∂ψ

∂θ

∣∣∣∣∣∣
r=R

= 0 (8.227)

Far from the sphere, the flow must return to the uniform flow at speed v∞:

At r = ∞: ˆv = v∞ez (8.228)

ˆ ˆ= v∞ cos θer − v∞ sin θeθ (8.229)

=
⎛
⎝ vr

vθ

0

⎞
⎠

rθφ

=
⎛
⎝ v∞ cos θ

−v∞ sin θ

0

⎞
⎠

rθφ

(8.230)

In terms of ψ , these become:

∂ψ

∂r

∣∣∣∣∣∣
r=∞

= v∞r sin2 θ (8.231)

∂ψ

∂θ

∣∣∣∣∣∣
r=∞

= v∞r2 sin θ cos θ (8.232)

Integrating these two boundary conditions, we obtain the same result—a single
boundary condition for ψ at r = ∞:

ψ |r=∞ = v∞r2

2
sin2 θ (8.233)

Note that we arbitrarily set the integration constant for ψ to zero. We can do this
because vr and vθ depend on only derivatives of ψ , not on the value of ψ (see
Equations 8.215 and 8.216).

The form of the far-field boundary condition given in Equation 8.233 suggests
that we might find a solution for ψ in the form:

Guess solution: ψ(r, θ ) = f (r ) sin2 θ (8.234)

We can test this idea by substituting this guess into the differential equation for
ψ (Equation 8.221) and solving for f (r ), if possible. Making this substitution,
we obtain an equation for f (r ):

d2 f

dr
− 2 f

1

r2
= 0 (8.235)

This is an ordinary differential equation (ODE) with a known solution, f (r ) = rn ,
where n must be solved for by substitution of the solution into the differential
equation. Carrying out this substitution, we find that for Equation 8.235 to be
satisfied, n must equal 2 or −1; thus, the complete solution for f (r ) is:

f (r ) = Ar2 + Br−1 (8.236)

where A and B are constants that must be evaluated by using the boundary
conditions.
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We have two constants to evaluate, but we have three boundary conditions (i.e.,
Equations 8.226, 8.227, and 8.233). This occurred because our true system was
second order in spatial derivatives of both vr and vθ (i.e., ∇2 in the Navier-Stokes
equation), requiring two boundary conditions on each velocity, component or a
total of four boundary conditions. When we switched to the stream function, we
obtained a second-order equation on ψ (Equation 8.221). Because of the form
of ψ , the two boundary conditions at r = ∞ could be satisfied simultaneously;
however, it is not possible to satisfy simultaneously both boundary conditions at
R and we must choose to satisfy one or the other. We choose avoiding penetration
of the sphere (r = R, vr = 0) as a more important condition than no-slip at the
surface (r = R, vθ (R) = 0).

Applying the boundary condition at infinity, we obtain A = v∞/2. At the
surface of the sphere, we must avoid fluid entering the sphere; thus, vr = 0 at
the surface. This boundary condition combined with the result for A gives us
B = −v∞ R3/2. We have no additional degrees of freedom to use to force the
no-slip boundary condition to hold; therefore, the velocity field for which we have
solved will slip at the sphere surface. The final result for the stream function
ψ(r, θ ) for potential flow around a sphere at high Re is given by:

Stream function
potential flow

around a sphere:
ψ(r, θ ) = v∞ R2 sin2 θ

2

[(
r

R

)2

−
(

R

r

)]
(8.237)

ˆ

We emphasize that this solution does not respect the no-slip boundary condition
at the sphere surface.

To calculate v from the stream function ψ , we return to Equations 8.215
and 8.216. Knowing the velocities, we calculateP(r, θ ) by integrating the pressure
partial derivatives in Equations 8.217 and 8.218 and apply the boundary condition
far from the sphere r = ∞, P = P∞.6 The solutions for v(r, θ ) and P(r, θ ) are
given here. Note that the solution is written in spherical rθφ coordinates:

Steady potential flow
around a sphere [85]
(flow in z-direction;

g = −gez or neglected):

v(r, θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v∞

[
1 −

(
R

r

)3
]

cos θ

−v∞

[
1 + 1

2

(
R

r

)3
]

sin θ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.238)

P(r, θ )=P∞+ 1

2
ρv2

∞

[
2
(

R

r

)3 (
1− 3

2
sin2 θ

)
−
(

R

r

)6(
1− 3

4
sin2 θ

)]

(8.239)

6There is a simpler equivalent way to solve for the pressure function; see Example 8.12.
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These equations give velocity field v and pressure field P for the high-
Reynolds-number problem posed, but we are unable to satisfy all of the boundary
conditions.

For steady, uniform, high-Reynolds-number flow around a sphere, the velocity-
field and pressure-field solutions arrived at by using the potential-flow equations
(see Equation 8.203) are given here, and the streamlines ψ(r, θ ) and velocity
field are plotted in Figures 8.24 and 8.25 [85]. For steady flows, streamlines
mark the paths of fluid particles in the flow. In all flows, the local velocity vector
at a point in the flow is tangent to the streamline function ψ at that point (see
Equations 8.215 and 8.216) [40, 85].

What we notice first about the potential-flow solution obtained in Exam-
ple 8.9 is that it is wrong. The potential-flow solution does not resemble the
high-Reynolds-number experimental results in Figure 8.22: There are no vortices
or wake predicted. For 300 > Re > 420, for example, experiments show a recir-
culating region behind the sphere and a distinct and wavy wake. The potential
solution for all Reynolds numbers has no recirculation, no wake, and straight
streamlines downstream of the sphere (Figure 8.26). This complete lack of agree-
ment between prediction and measurement is an enormous surprise. Our process
of obtaining the nondimensional equation of motion and the nondimensional con-
tinuity equation seemed destined to produce the correct governing equations for
high-Reynolds-number flows and, therefore, the correct solutions. Yet, the pre-
dictions do not match the observations. Again, we encounter a stumbling block
in our analysis, and we now must struggle to understand what is wrong with our
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Figure 8.24 Streamlines or particle paths for potential flow around a sphere. The values of the stream function ψ for several lines
are shown. For steady flows, streamlines mark the paths of fluid particles in the flow. In all flows, the local velocity
vector at a point is tangent to the streamline function ψ at that point. Compare to creeping flow in Figure 8.9.
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Figure 8.25 Vector or arrow plot of the velocity field of potential flow around a sphere. For points along several streamlines
(i.e., particle paths), the velocity vector centered at the point is shown and the length of the arrow is proportional to
the magnitude of the velocity at that point. Note that near the sphere, the velocity is very high; the potential-flow
solution does not respect the no-slip boundary condition at the sphere surface.

predicted 
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one 
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Figure 8.26 The prediction of our potential-flow calculations for rapid flow around a sphere are shown at the top. Potential flow
predicts that the streamlines closely hug the sphere and are straight and parallel after the sphere. The observed
flow pattern is more like the photograph at the bottom [143], which shows recirculating flow on the trailing side
of the sphere and a wake that has a complex shape. A sketch of the wake shape is also shown. Image source: H.
Sakamoto and H. Haniu, Trans. ASME, vol. 112, 286 (1990), used with permission.
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Figure 8.27 The velocity field in creeping flow around a sphere shows effects of the sphere far upstream and complies with the
no-slip boundary condition. The velocity field in potential flow around a sphere is nearly indifferent to the presence
of the sphere at equivalent locations upstream and downstream. It is significant that the potential-flow solution
does not satisfy the no-slip boundary condition at the sphere surface.

methods. As usual, a closer examination of our results and assumptions leads us
to an understanding of this situation and will get us past this roadblock.

The streamlines of potential flow do not resemble the experimental observa-
tions, but they are not entirely unfamiliar. At first glance, the streamlines predicted
by the equations of potential flow (see Figure 8.24) are similar to those found
in creeping flow (see Figure 8.9), a flow valid for only low Reynolds numbers.
Closer examination, however, reveals that the streamlines near the centerline of
the flows (i.e., φ = 0.01 on both plots) are qualitatively different. In potential
flow, fluid particles that follow the φ = 0.01 streamline closely hug the sphere
as they pass. In creeping flow, fluid particles following the φ = 0.01 streamline
swing away from the sphere significant a distance.

The differences in the streamline maps for potential and creeping flow around
a sphere are reflected more starkly in the differences in the velocity fields. Fig-
ure 8.25 shows that the velocities near the sphere surface in potential flow are
anomalously high. In creeping flow by contrast (see Figure 8.8), the fluid slows
near the sphere and velocity eventually goes to zero at the sphere surface. Fig-
ure 8.27 is a closer look at creeping and potential flows, in which the velocity
distributions along three vertical lines in the flow domain are shown. The three
vertical lines are a line upstream of the sphere (z/R = −3); a line that passes
through the center of the sphere (z/R = 0); and a downstream line (z/R = 3).
The velocity fields of creeping and potential flows are quite different at these
three locations. Upstream, potential flow is nearly plug flow; that is, the velocity
is insensitive to position x/R and approximately equal to the free-stream speed
v∞ at all points along the line z/R = 3. By contrast, the velocity distribution
in creeping flow at z/R = −3 shows a pronounced dip near the flow centerline
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x/R = 0. The dip indicates that in creeping flow the presence of the sphere is
strongly felt at a distance of three radii upstream of the sphere’s location.

Along the line that passes through the center of the sphere (z/R = 0), the
differences in velocity distribution between creeping and potential flow are great.
In potential flow, the flow slips at the sphere surface. In addition, in potential flow,
the fluid speed at the sphere surface exceeds the free-stream speed (vz/v∞ > 1)
and decreases to v∞ only at distances far from the sphere. By contrast, along this
same axis in creeping flow, the velocity goes to zero at the sphere surface (i.e.,
the no-slip boundary condition is respected), and at no location in creeping flow
does vz/v∞ exceed 1. Far from the sphere, vz/v∞ goes to 1 for both creeping and
potential flow. At a position three radii downstream of the sphere z/R = 3, the
velocity profiles in both potential and creeping flow return to the flow patterns
observed at the equivalent upstream position.

We also can compare the drag on the sphere predicted by creeping and potential
flow. For creeping flow, we calculated the nondimensional wall drag as follows
(see Equation 8.81):

Nondimensional wall drag
for creeping flow
around a sphere:

CD = 24

Re
(8.240)

and we saw that for Re < 2, this relationship is observed experimentally. For
potential flow, we can calculate the drag on the sphere from the pressure solution
and the nondimensionalized fluid-force equation for infinite Reynolds number
(see Equation 8.203). This calculation is shown in Example 8.10.

EXAMPLE 8.10. Calculate the drag on a sphere in steady potential flow around
a sphere (high Reynolds number, inviscid fluid).

SOLUTION. As shown previously, the drag coefficient, which is the nondimen-
sional drag on the sphere, may be calculated for flow of an inviscid fluid by using
Equation 8.203:

Inviscid flow: CD = 2

π

∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ (8.241)

We carry out this integration for potential flow around a sphere using the solution
for the pressure distribution in this flow (Equation 8.239):

Pressure
distribution,

potential flow:
P∗(r, θ ) = P

ρv2∞
(8.242)

= P∞
ρv2∞

+ 1

2

[
2
(

R

r

)3 (
1 − 3

2
sin2 θ

)

−
(

R

r

)6 (
1 − 3

4
sin2 θ

)]
(8.243)
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We must evaluate this expression at the sphere surface, r∗ = 1/2 or r = R:

r∗ = r

D
= 1

2
(8.244)

P∗(r, θ )
∣∣∣
r∗= 1

            

2
= P∞

ρv2∞
+ 1

2

[(
2 − 3 sin2 θ

)
−
(

1 − 3

4
sin2 θ

)]
(8.245)

P∗(r, θ )
∣∣∣
r∗= 1

            

2
= P∞

ρv2∞
+ 1

2
− 9

8
sin2 θ (8.246)

= A + B sin2 θ (8.247)

where we define constants A and B to simplify the integrations:

A = P∞
ρv2∞

+ 1

2
(8.248)

B = −9

8
(8.249)

Substituting Equation 8.247 into the equation for drag coefficient (see Equa-
tion 8.241), we now finish the calculation of drag coefficient for potential flow:

CD = 2

π

∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ (8.250)

= − 2

π

∫ 2π

0

∫ π

0

[
A + B sin2 θ

]
cos θ sin θdθdφ (8.251)

= −4
∫ π

0

[
A + B sin2 θ

]
cos θ sin θdθ (8.252)

= −4
∫ π

0
A cos θ sin θdθ − 4

∫ π

0
B sin3 θ cos θdθ (8.253)

= −4Asin2 θ

2

∣∣∣∣∣∣∣
π

0

−4B sin4 θ

4

∣∣∣∣∣∣∣
π

0

= 0 (8.254)

Drag coefficient,
potential flow:

CD = 0 (8.255)

We arrive at an astonishing result. According to the high-Reynolds-number,
zero-viscosity solution to the Navier-Stokes equations (i.e., the potential-flow
solution), there is no drag whatsoever on a sphere in uniform flow at high speeds.

It is time to review our process. We turned to the Navier-Stokes equation at
high Reynolds number to understand the unusual flow patterns observed in wind-
tunnel experiments for flow around spheres, as shown in Figures 8.22 and 8.23.
Instead of providing insight, however, the solution to the Navier-Stokes equations
in this flow for high Reynolds numbers is unreasonable. The no-slip boundary
condition is not respected at the surface of the sphere (see Figures 8.25 and 8.27),
and no drag is predicted (Equation 8.255). Both of these predictions are wrong:
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Figure 8.28 The pressure distribution very near the sphere surface as a function of the angle ζ = π − θ from the forward
stagnation point. Shown are the potential-flow prediction and a measurement from Flachsbart [50], as cited in
Schlichting [148], at a Reynolds number of 43,500. The pressure distributions are similar.

In uniform flow, fluid adheres to the surface of the sphere and drag most definitely
is measured at all Reynolds numbers (see Figure 8.23).

The failure of potential-flow calculations to predict drag is called d’Alembert’s
paradox, after Jean le Rond d’Alembert, who calculated forces in a variety of high-
Re flows and found drag to be missing in each case. Researchers’ initial inability
to understand the problem with potential-flow solutions led to a multidecade
rift between hydraulics experts, who observed phenomena that could not be
explained (e.g., trailing vorticies and wake flow), and theoretical researchers,
whose potential-flow solutions (exhibiting no drag and slipping at the wall) were
not observed.

To understand why potential flow does not correctly capture high-speed flows,
we begin with what potential flow predicts correctly. Experiments on high-
Reynolds-number flows show that away from the sphere, the potential-flow pre-
dictions of the streamlines in steady flow (i.e., particle paths) are correct. More
significant, the pressure distribution—as predicted by potential flow—is found to
be approximately correct both far away from and near to the sphere (Figure 8.28).
The problems with the potential-flow solution mostly are confined to predicting
an incorrect velocity field near the sphere and predicting the total absence of drag
(Figure 8.29).

Because the pressure distribution seems to be correct throughout the flow, it is
particularly confusing that the drag prediction is wrong. It seems to reason that if
the pressure distribution is approximately correct and since the prediction of drag
coefficient CD comes from an integration over the pressure (see Equation 8.241),
the drag prediction of the potential-flow solution also should be correct. We can
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Potential flow 
calculations at high 
Reynolds number: 

away from sphere: 
p correct
v correct 

near to sphere: 
p ~correct
v NOT correct 

at sphere surface: 
p ~correct
v NOT correct 
drag NOT correct 

Figure 8.29 Potential-flow theory gets the pressure distribution nearly right everywhere. The velocity solution in potential flow
is incorrect near the sphere; the calculation of drag at the surface of the sphere also is incorrect.

investigate this question by looking at how the shape of the pressure distribution
affects the predicted drag on a sphere.

EXAMPLE 8.11. What kind of pressure distributions lead to drag on a sphere
in noncreeping flow?

SOLUTION. The drag on a sphere in noncreeping flow is given by Equa-
tion 8.171, which contains the nondimensional dynamic pressure distribution
P∗:

CD = 2

π

∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − P∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ (8.256)

withP∗ = P∗(r∗, θ, φ). When Reynolds number is large, Equation 8.256 reduces
to:

Drag coefficient,
noncreeping flow
around a sphere:

(high Reynolds number)

CD = 2

π

∫ 2π

0

∫ π

0

[−P∗(r∗, θ, φ) cos θ
]

r∗= 1
            

2
sin θdθdφ

(8.257)

In a previous example, we carried out this integration for potential flow and
obtained CD = 0 (Equation 8.255).

Without assuming potential flow, if we assume that the pressure distribution is
independent of φ, we can carry out the φ-integration in Equation 8.257, which
results in a factor of 2π :

CD = 4
∫ π

0

[−P∗(r∗, θ )
]

r∗= 1
            

2
cos θ sin θdθ (8.258)
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Figure 8.30 For the potential-flow solution for flow around a sphere, the pressure along the center streamline varies as shown.
Upstream of the sphere, the central streamline (curve with arrows) follows the z-axis and then splits into two and
flows around the sphere, rejoining as a single streamline at the rear stagnation point. For the central streamline,
the pressure rises as the fluid approaches the sphere. Along the sphere surface, the pressure profile following this
streamline (dotted curve) drops from a maximum at the forward stagnation point to below the mean-stream value
at the sphere equator and then rises again to a maximum at the rear stagnation point. From the rear of the sphere
downstream, the pressure falls again to the mean-stream value.

To explore the effect of pressure distribution on drag, we can explore other
assumptions and see how they affect the predicted drag coefficient.

Pressure in the flow around a sphere typically is an important function of θ ,
and we do not know that dependence in general. In the potential-flow solution
to flow around a sphere (i.e., the solution in which viscosity is assumed to be
zero), the pressure distribution along the surface of the sphere is symmetrical in
a front-to-back sense (Figure 8.30). That is, the shape of the pressure distribution
on the leading hemisphere is the same as the shape on the trailing hemisphere.
We write this fact mathematically as:

Inviscid flow
around a sphere;

pressure distribution
is front-to-back symmetrical:

P(θ)|r=R = P(π − θ)|r=R (8.259)

To see the implications of the pressure-distribution symmetry on the prediction of
drag coefficient, we can divide the integral in the drag equation, Equation 8.258,
into two pieces: one over the trailing half of the sphere (0 ≤ θ ≤ π/2) and the
other over the leading half of the sphere (π/2 ≤ θ ≤ π):

CD = 4
∫ π

2

0

[−P∗]
r∗= 1

            

2
cos θ sin θdθ + 4

∫ π

π
2

[−P∗]
r∗= 1

            

2
cos θ sin θdθ

(8.260)

www.20file.org

http://www.semeng.ir


665 External Flows

We define the angle ζ (zeta) to be ζ ≡ π − θ and write the second integral in
Equation 8.260 in terms of ζ as follows (note particularly the limits of integration
on the second integral):

θ ≡ π − ζ

P(θ) = P(ζ ) (symmetry assumption)

sin θ = sin ζ (trigonometric identity)

cos θ = − cos ζ (trigonometric identity)

dθ = −dζ

θ = π

2
, ζ = π

2
θ = π, ζ = 0

CD = 4
∫ π

2

0

[−P∗(r∗, θ )
]

r∗= 1
            

2
cos θ sin θdθ

+ 4
∫ 0

π
2

[−P∗(r∗, ζ )
]

r∗= 1
            

2
(− cos ζ ) sin ζ (−dζ ) (8.261)

CD = 4
∫ π

2

0

[−P∗(r∗, θ )
]

r∗= 1
            

2
cos θ sin θdθ

− 4
∫ π

2

0

[−P∗(r∗, ζ )
]

r∗= 1
            

2
cos ζ sin ζdζ (8.262)

CD = 0

We see that the pressure-distribution symmetry on the sphere surface (i.e., P∗

independent of φ and P∗(θ) = P∗(π − θ) = P∗(ζ )) implies that the drag coef-
ficient CD is zero. Thus, because the inviscid solution of flow around a sphere
predicts that the pressure distribution is symmetrical, it also predicts that there is
no drag on a sphere in uniform flow.

The previous example is enlightening. From that calculation, we see that the
fore–aft symmetry of the surface-pressure distribution in flow around a sphere—
when coupled with zero viscosity (assumed in arriving at the equation for nondi-
mensional force, Equation 8.257)—is associated with zero drag. In inviscid flows
with such fore–aft symmetrical pressure distributions, the forces on the leading
hemisphere are balanced exactly by the forces on the trailing hemisphere, and the
net drag is zero.

At this point, it is helpful to review our situation. We analyzed flow around a
sphere at low flow rates, neglecting inertia, and calculated the results for velocity
field, pressure field, and drag on the sphere. These results match what is observed
as long as the Reynolds number is less than about 2 (see Figure 8.12; CD = 24/Re,
creeping flow, inertia neglected).
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At Reynolds numbers above 2, the Stokes drag result does not hold and flow
visualization indicates that the flow around a sphere is characterized by recircu-
lating vortices, oscillatory wake flow, and, ultimately, complex flow structure (see
Figure 8.22).

To find the source of the observed flow richness, we returned to the microscopic
mass and momentum balances, which were too difficult to solve when both
viscous and inertial effects are included. We postulated that viscous effects are
not important in rapid flows and looked at the limit in which the Reynolds number
is quite large. Solving those equations, we obtained the potential-flow solutions
for velocity field, pressure field, and drag. The potential-flow solutions, however,
do not match what is observed: The predicted velocity field poorly matches the
observed velocity field near the sphere, and the drag result is completely wrong
(Fdrag = 0; see Figure 8.29). Potential flow does not predict wake, flow separation,
vortices, or any oscillatory flow at any Reynolds number. Only the pressure field
and the velocity field away from the sphere are approximately correct when
the calculated potential-flow results are compared to high-Re experiments (see
Figure 8.28).

The failure of potential flow to explain high-Re flow around a sphere is a
setback; however, it does not need to lead to failure of our project. Instead, as
shown previously, reaching a dead end on the current path simply necessitates
reviewing the path, finding the wrong step, and beginning another investigation.
In the next section, which is on boundary layers, we examine the flow near the
surface of the sphere to track down the problem with our attempts so far to
calculate flow fields and drag in high-Reynolds-number flow.

Potential flow is wrong for drag calculations, but away from walls it is right.
For high-speed flow problems, we use potential flow solutions to predict pressure
and flow patterns, provided the influence of the wall may be neglected (see
Example 8.15). Pressure distributions are easy to calculate in potential flows
because, as we show in Examples 8.12–14, the Bernoulli equation (familiar
from Chapter 1) applies in potential flow. The examples here also point out the
important distinction between rotational and irrotational flows and explain why
this flow classification affects how the Bernoulli equation is applied to high-speed
flows. After these examples we turn to boundary layers to fix what is wrong with
potential flow.

EXAMPLE 8.12. How are pressure and fluid velocity related in steady, incom-
pressible, potential (inviscid) flows?

SOLUTION. The governing equations for potential flow are the mass and
momentum balances evaluated in the limit that the Reynolds number is very
large (see Equation 8.203). We write them in dimensional form:

Continuity equation
(incompressible):

∇ · v = 0 (8.263)

Navier-Stokes equation
(inviscid):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P (8.264)
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At steady state (∂v/∂t = 0), the momentum balance simplifies further to:

ρv · ∇v = −∇ (p + ρgh) (8.265)

Navier-Stokes
(steady, incompressible,

inviscid):
v · ∇v + ∇ p

ρ
+ g∇h = 0 (8.266)

where we revert to using the bare pressure instead of the dynamic pressure
P = p + ρgh, and h is the variable representing the vertical height of the loca-
tion of a point (x, y, z) above an elevation chosen as the reference elevation
(see Equation 8.115). We used the assumption of incompressible fluid (constant
density) in moving ρ through the gradient operator, ∇(ρgh) = ρg∇h.

Through algebraic manipulations in Cartesian coordinates, the following vec-
tor identity can be shown to hold for any vector field v [6]:

Vector identity: v · ∇v = ∇
(

1

2
v2
)

− v × (∇ × v) (8.267)

where v2 = v · v = v2 and v is the magnitude of the vector v. Substituting this
identity into the steady, inviscid Navier-Stokes equation (Equation 8.266), we
obtain:

Navier-Stokes for
steady, incompressible,

inviscid flow
(potential flow):

v × (∇ × v) = ∇
(

1

2
v2
)

+ ∇ p

ρ
+ g∇h

(8.268)

This is known as Crocco’s theorem [154], which is the relationship between
pressure and velocity for steady, incompressible, inviscid flow.

We also consider an additional special case, that of irrotational flow—a flow
for which ∇ × v = 0. Assuming irrotational flow, Equation 8.268 becomes:

Irrotational potential flow: ∇
(

1

2
v2
)

+ ∇ p

ρ
+ g∇h = 0 (8.269)

We factor out the gradient operator ∇ from each term to obtain:7

Navier-Stokes
(steady, incompressible,
inviscid, irrotational):

∇
(

v2

2
+ p

ρ
+ gh

)
= 0 (8.270)

The final result in Equation 8.270 indicates that the gradient of the scalar function
enclosed between the parentheses is zero everywhere in a steady, incompress-
ible, inviscid, irrotational flow. Thus, that combination of variables is constant

7In [14], gh = � is called the gravity potential.
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throughout the flow. We recognize this final expression as the Bernoulli equation:

Bernoulli equation:
integration of the

Navier-Stokes equation for
steady, incompressible,

inviscid, irrotational flow

(
v2

2
+ p

ρ
+ gh

)
= constant (8.271)

(
v2

2
+ P

ρ

)
= constant (8.272)

For any two points in a
steady, incompressible,

inviscid, irrotational flow:

v2
2 − v2

1

2
+ p2 − p1

ρ
+ g (h2 − h1) = 0

(8.273)

In Example 8.9, we calculate the velocity field for potential flow around a sphere;
it is possible to show that uniform potential flow past an obstacle is irrotational
(see Problem 53 and Example 8.25). Thus, we can use Equation 8.271 as an easy
way to calculate the pressure (or dynamic pressure with Equation 8.272) from
the velocity field (see Problem 27). This is a handy pressure-calculating method
when the flow of interest is irrotational and inviscid.

EXAMPLE 8.13. Show that the Bernoulli equation applies in steady, inviscid,
flows in which ∇ × v is not zero (rotational flows), if properly applied along a
streamline.

SOLUTION. For steady (∂v/∂t = 0), inviscid (μ = 0) flow, the Navier-Stokes
equation simplifies to:

Navier-Stokes equation: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (8.274)

ρv · ∇v = −∇ p + ρg (8.275)

We can write the Navier-Stokes equation in any coordinate system. We choose
a coordinate system that always has one direction pointing in the direction of
flow. At any point, the flow direction is v̂ = v/v. The other two directions of the
coordinate system we call û and ŵ; all three basis vectors vary with position.
Thus, in the vuw-coordinate system, the velocity vector is given by:

v =
⎛
⎝ vv

vu

vw

⎞
⎠

vuw

=
⎛
⎝v

0
0

⎞
⎠

vuw

(8.276)
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The simple form of the velocity vector given in the vuw-coordinate system also
makes the v̂-component of the Navier-Stokes equation quite simple:

Navier-Stokes equation:
(steady, inviscid)

ρv · ∇v = −∇ p + ρg (8.277)

v̂-component: ρ

(
vv

∂vv

∂xv

+ vu
∂vv

∂xu
+ vw

∂vv

∂xw

)
= − ∂p

∂xv

+ ρgv (8.278)

ρv
∂v

∂xv

= − ∂p

∂xv

+ ρgv (8.279)

It is straightforward to verify algebraically that v ∂v
∂xv

= 1
2

∂(v2)
∂xv

. We define h in the
usual way as the vertical distance upward; thus, gv = −g∂h/∂xv (see discussion
with Equation 8.119). Making these two substitutions, the Navier-Stokes equation
for steady, inviscid flow in our chosen coordinate system becomes:

ρv
∂v

∂xv

+ ∂p

∂xv

− ρgv = 0 (8.280)

ρ
∂
(

v2

2

)
∂xv

+ ∂p

∂xv

+ ρg
∂h

∂xv

= 0 (8.281)

∂

∂xv

(
v2

2
+ p

ρ
+ gh

)
= 0 (8.282)

This result is similar to the result for irrotational flow, Equation 8.270, except
that in irrotational flow, the gradient operation may be taken in any direction and
zero always is obtained. In the current case of inviscid but not irrotational flow,
we cannot arrive at this result in any arbitrary direction; rather, we obtain the
Bernoulli equation only when we integrate in the v̂-direction—that is, along a
streamline:

Navier-Stokes
(steady, incompressible,
inviscid, v̂-component):

∂

∂xv

(
v2

2
+ p

ρ
+ gh

)
= 0 (8.283)

Bernoulli equation (again)
(steady, incompressible,

inviscid flow, quantity integrated
along a streamline):

(
v2

2
+ p

ρ
+ gh

)
=

constant
along a

streamline

(8.284)

For two points on the
same streamline in a steady,

incompressible, inviscid,
rotational flow

v2
2 − v2

1

2
+ p2 − p1

ρ
+ g (h2 − h1) = 0

(8.285)
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As long as we are careful to apply this expression only in steady, inviscid flow
and along a streamline, Equation 8.284 is a powerful result. It is only in irrota-
tional flow, ω ≡ ∇ × v = 0, that the requirement of following a streamline is not
necessary.

We encountered the Bernoulli equation in Chapter 1 (see Equation 1.17). For
a steady, incompressible, single-input, single-output fluid flow in which friction
may be neglected and there are no shafts or reaction and little heat transfer, we
can perform the macroscopic energy balance along a streamline (to ensure that
we only consider a single-input, single-output case) and obtain the Bernoulli
equation. On different streamlines in flows where rotational character is present
(∇ × v �= 0), the quantity on the left side of Equation 8.271 sums to different
numbers, but that number is constant along the streamline. For the case of irro-
tational flow, the value of this constant—the Bernoulli constant—is the same
everywhere in the flow, and we do not need to confine our calculations to points
on the same streamline. More discussion on rotational character in flows appears
in Section 8.3, which introduces vorticity ω, a property of the velocity field.
Vorticity is zero in irrotational flow (ω = ∇ × v).

If we are careful to apply potential-flow results where they are valid, we can
use these widely available solutions [9] to make useful calculations. One such
application is in the wind-speed calculation in Chapter 2 (see Example 2.5), and
Example 8.15 uses a potential-flow solution to calculate pressure. We apply the
Bernoulli equation along a streamline in Example 9.6, in which we analyze a Pitot
tube (see Chapter 9). The rules for using potential-flow solutions are summarized
here.

Rules for Using Potential-Flow Solutions

1. Potential-flow solutions may be only used in rapid flows away from walls.
2. The Bernoulli equation may be used only along streamlines, not across

streamlines (unless the flow is known to be irrotational).
3. In high-speed flows that have rotational character (e.g., aeronautical flows),

useful potential-flow models can be constructed by superposing rotational
and irrotational potential-flow solutions (see Section 10.4).

EXAMPLE 8.14. What is the pressure distribution around a cylinder in potential
flow? The flow field is irrotational.8

SOLUTION. Example 8.12 shows that the Bernoulli equation holds in potential
flows. Thus, we can calculate the pressure field around a cylinder from the solution
for the velocity field using the Bernoulli equation.

The velocity as a function of position for potential flow around a long cylinder
may be solved for following a procedure similar to that used in the sphere case in
Example 8.9; the solution is given in the literature [9] and in Equation 2.44. The
x-axis of the Cartesian system points in the wind direction, perpendicular to the

8Uniform potential flow past an obstacle is irrotational (see Problem 53).
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ˆ

cylinder; the z-axis of the rθ z-system points along the cylinder axis:

Potential flow
around a long cylinder

v = v∞ex :
v =

⎛
⎜⎜⎜⎜⎝

v∞
(

1 − R2

r2

)
cos θ

−v∞
(

1 + R2

r2

)
sin θ

0

⎞
⎟⎟⎟⎟⎠

rθ z

(8.286)

= v∞

(
1 − R2

r2

)
ˆcos θer − v∞

(
1 + R2

r2

)
ˆsin θeθ

(8.287)

To calculate the pressure distribution from this velocity field, we apply the
Bernoulli equation between two points: at a point far upstream where we designate
the pressure as p∞ and at another point where it is p(r, θ ). Because we are
discussing an irrotational flow, we are not limited to applying the Bernoulli
equation along a streamline.

The Bernoulli equation (Equation 8.271) is given by:

Bernoulli equation:
integration of the

Navier-Stokes equation for
steady, incompressible,

inviscid, irrotational flow:

(
v2

2
+ p

ρ
+ gh

)
= constant (8.288)

For any two points in a
steady, incompressible,

inviscid, irrotational flow:

v2
2 − v2

1

2
+ p2 − p1

ρ
+ g (h2 − h1) = 0

(8.289)

Neglecting gravity and substituting the expressions for velocity and pressure at
the two points, we obtain:

v2
2 − v2

1

2
+ p2 − p1

ρ
+ g (h2 − h1) = 0 (8.290)

v(r, θ )2 − v2
∞

2
+ p(r, θ ) − p∞

ρ
= 0 (8.291)

p(r, θ ) = ρ

(
p∞
ρ

− v2

2
+ v2

∞
2

)
(8.292)

= ρv2
∞

2

(
p∞

ρv2∞/2
− v2

v2∞
+ 1

)
(8.293)

where v = v(r, θ ) is the magnitude of the velocity, which may be calculated from
v = |v| = √

v · v and the velocity result in Equation 8.286. After some algebra,
we obtain: (

v

v∞

)2

= 1 −
(

2R2

r2

)
cos 2θ + R4

r4
(8.294)
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Substituting this expression into Equation 8.293, we obtain:

p(r, θ )

ρv2∞/2
= p∞

ρv2∞/2
− v2

v2∞
+ 1 (8.295)

Pressure distribution,
potential flow

around a cylinder:

(p(r, θ ) − p∞)

ρv2∞/2
=
(

2R2

r2

)
cos 2θ − R4

r4

(8.296)

EXAMPLE 8.15. A new tower hotel, cylindrical in shape and 100 feet in diameter,
is built in a resort town near the sea on the windward side of an island (see
Figure 2.16). Residents complain that there often are uncomfortably high winds
near several entrances to the tower. In addition, the doors are sometimes difficult
to open. In Chapter 2, we addressed the issue of the wind speed as a function of
position around the hotel tower in Example 2.5. How does the pressure field vary
at different locations around the building?

SOLUTION. We are interested in the flow in the main stream, away from the
walls; thus, we can model the flow around the tower with the potential flow around
a cylinder. The pressure distribution for flow around a cylinder is calculated in
Example 8.14:

Pressure distribution,
potential flow

around a cylinder:

(p(r, θ ) − p∞)

ρv2∞/2
=
(

2R2

r2

)
cos 2θ − R4

r4
(8.297)

We are interested in the values of the pressure near the doors located at points C ,
C ′, D, D′, and E in Figure 2.16. The other doors are on the lee side of the hotel
and therefore in the wake behind the cylinder. In the wake region, the potential-
flow solution does not represent either the velocity or the pressure distribution.
The pressures behind the hotel are likely to be close to the mean atmospheric
pressure p∞.

For the windward doors, we calculate the pressures from Equation 8.297 (we
use air density ≈ 1.3 kg/m3):

Location r θ v∞ = 30 50 70 90 mph

C, C ′ 60 feet ±π
2 p − p∞ = −0.03 −0.09 −0.17 −0.29 psig

D, D′ 60 feet ± 3π
4 p − p∞ = −0.01 −0.02 −0.04 −0.07 psig

E 60 feet π p − p∞ = +0.02 +0.04 +0.08 +0.14 psig

Due to these forces, some of the doors tend to fly open if they are not latched
(i.e., the negative pressures), whereas other doors are impossible to open if the
winds are high. If we estimate that a door is 3 feet by 6 feet, then the force holding
shut the door at E ranges from 40 lbf (at 30 mph) to 360 lbf (at hurricane strength
of 90 mph), whereas the force sucking open the side doors at C and C ′ range
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from −80 lbf (at 30 mph) to −740 lbf (at 90 mph). Clearly, the doors should be
secured when winds are high.

8.2 Boundary layers

The task remains to understand the rich flow patterns that occur at Reynolds num-
bers above Re = 2 in flow around a sphere. Examining the potential-flow results,
it is striking that although the pressure distribution calculated from potential flow
is approximately correct near the sphere, the calculated drag is completely wrong.
This is particularly striking because the equation used to evaluate drag, Equa-
tion 8.241 (repeated here), is an integral over the surface pressure distribution
only, with no influence of the (incorrect) velocity field or velocity gradients:

Drag coefficient
(potential flow)

CD = 2

π

∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ (8.298)

Because the pressure field of potential flow is approximately correct and the drag
comes from an integration over only the pressure field, the drag calculated from
potential flow is expected to be approximately correct—yet, it is not.

There are differences between the observed pressure field at high Re and the
calculated potential-flow pressure field (see Figure 8.28) but, as discussed, these
are not too large. The fact that we calculated drag from Equation 8.298—an
equation that depends on only the pressure distribution—is worth reexamining,
however. Equation 8.298 was obtained by permitting the Reynolds number to go
to infinity in the more complete equation for drag on a sphere, Equation 8.171,
repeated here:

CD = 2

π

∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − P∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)
+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ (8.299)

The potential-flow version of the equation for drag (Equation 8.298) indicates that
the drag on the sphere at a high Reynolds number should be independent of veloc-
ity gradients near the sphere surface. These velocity gradients are a substantial
source of drag in creeping flow, a flow dominated by viscosity (see the last term in
Equations 8.58 and 8.59: friction drag = 4π Rμv∞ = 2/3 of total drag). Perhaps
we should examine whether the viscous effects represented by these velocity
gradients really are negligible, as we assume when using Equation 8.298.

In our previous analysis, we began with Equation 8.299 and took the high-
Reynolds-number limit, eliminating all velocity-derivative terms (i.e., terms with
the prefactor = 1/Re). We implicitly assumed in that analysis that all of the
nondimensional velocity derivatives in Equation 8.299 would remain finite or
increase slowly as the Reynolds number approached infinity; thus, terms with
1/Re would go to zero. Perhaps, however, at high Reynolds numbers and near the
surface of the sphere, the velocity derivatives grow rapidly with Re. If the velocity
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Figure 8.31 Near the sphere surface, if the no-slip velocity boundary condition is satisfied, the velocity gradients must grow as
the free-stream velocity increases. The free-stream velocity is in the z-direction.

derivatives increase rapidly near the surface of the sphere, which seems likely in
retrospect (Figure 8.31), it may not be possible to consider the velocity-derivative
terms in Equation 8.299 to be negligible—even given the prefactor 1/Re, which
is getting very small. In other words, it is worth considering that our ad hoc
scaling practices may break down near the sphere surface, causing difficulty in
our calculations.

In reflecting on the flow near the surface of the sphere, we expect high-velocity
derivatives because the fluid adheres to the stationary sphere—that is, the no-slip
boundary condition holds at the surface. In reviewing the velocity-field results
for potential flow, we are reminded that the no-slip boundary condition is not
respected in that solution (see Figure 8.27). To explain why we were unable
to force the potential-flow solution to respect the no-slip boundary condition,
we return to the microscopic-momentum balance from which we obtained the
potential-flow solution.

In the nondimensional Navier-Stokes equation, Equation 8.201:

Nondimensional
Navier-Stokes

(dynamic pressure):

∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗P∗ +
(

1

Re

)
∇∗2

v∗ (8.300)

we obtained the potential-flow equations by taking the limit of this equation as

Re −→ ∞. In this limit, the term
(

1
Re

)
∇∗2v∗ was eliminated. This is the only

term in the momentum balance in which second derivatives of velocity appear.
Because we eliminated the second derivative of velocity, leaving terms with only
first derivatives, we need only a single velocity boundary condition to obtain
solutions to the resulting equations. Once we specify that the normal component
of the velocity is zero at the surface, the problem is completely specified and we
cannot impose the additional constraint that the tangential velocity goes to zero
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Figure 8.32 The nondimensional pressure distributions for z-direction flow around a sphere for both the inviscid-flow solution
(zero viscosity) and the creeping-flow solution (zero inertia). The calculations shown follow the pressure along
the negative z-axis to the upstream stagnation point, then follow the surface of the sphere (dotted-line results),
rejoining the z-axis at the rear stagnation point.

at the surface of the sphere (see Equations 8.16 and 8.17):

Tangential component of the
no-slip boundary condition

at sphere surface
not satisfied for potential flow:

r = R vr = 0 for all values of φ

r = R vθ �= 0 for all values of φ

(8.301)

In addition to not following the no-slip boundary condition, the potential-flow
solution predicts a different pressure distribution than the viscous-dominated
solution, creeping flow. Figure 8.32 compares the calculated pressures of the two
solutions as we follow the central streamline up to and around the sphere. For
the potential-flow case (see Figure 8.30), the pressure rises as fluid approaches
the forward stagnation point, defined as a point where the velocity approaches
a wall and halts, such as when the central streamline impacts the sphere. As the
stream splits and hugs the sphere, the pressure decreases to a minimum below the
mean pressure P∞ at the sphere equator. The pressure then rises symmetrically
to its previous maximum value as the streamline reaches the rear stagnation point
and subsequently decreases to the mean value of pressure as the flow continues
downstream.
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Figure 8.33 The pressure distribution caused by a purely inertial flow (potential flow) can be visualized by thinking of another
inertially dominated situation, the motion of a roller coaster. A roller-coaster car at the top of a hill gains momentum
as it rolls down the hill. The speed is a maximum at the bottom of the hill. As the car climbs the hill, the kinetic
energy of the car, reflected in the high speed, is traded for potential energy as the car rises. If there is no friction,
the car will arrive at the top of the hill just as it runs out of kinetic energy (speed goes to zero).

In creeping flow, the pressure also rises as the central streamline approaches
the sphere, but the nondimensional pressure rise is higher in the creeping case.
As the stream splits and hugs the surface of the sphere, the pressure in creeping
flow decreases to the free-stream value at the top of the sphere. However, instead
of rising back to the previous maximum value as in potential flow, the pressure
in creeping flow continues to fall, reaching a negative value at the rear stagnation
point equal in magnitude to the value of pressure reached at the forward stagnation
point. As the flow continues downstream, the pressure rises to the mean pressure
value observed away from the sphere.

The differences between the two pressure traces produced by inertia-dominated
(i.e., potential) and viscous-dominated (i.e., creeping) flows can be visualized in
terms of inertia and viscosity. In the inertial case, the pressure acts like a roller
coaster, which also moves due to high inertia (Figure 8.33): A roller-coaster car
at the top of the pressure hill at the forward stagnation point rolls downhill and,
with no frictional losses (i.e., no viscosity), inertia allows it to arrive back at the
original value of pressure at the rear stagnation point.

For the viscous case there is no inertia, only a sticky, gooey, viscous glue. The
top of the pressure hill in the viscous case can be visualized by considering a
thin cantilevered beam submerged in a viscous fluid (Figure 8.34). If a spoon
is submerged in a fluid and pressed into a beam in the fluid, the beam deflects
downward—the elastic energy stored in the deflected beam is like the stored
energy of the high pressure at the forward stagnation point. If we try now to
extract the spoon from the viscous fluid, the deflected beam will help to push the
spoon upward until the beam returns to the neutral position. If we keep pulling on
the spoon, the beam is sucked upward by the adhesive and cohesive fluid forces
reflected in viscosity. The beam experiences a negative pressure—much as the
sphere experiences a negative pressure at the rear stagnation point in creeping
flow around a sphere.

We seek to understand drag in real flows at finite Reynolds numbers. Our
approach has been first to study creeping flow, which generated drag from two
sources: (1) an asymmetric pressure distribution (see Figure 8.32), which con-
tributed 2π Rμv∞ to the drag (see Equation 8.58); and (2) viscous shear stress at
the surface of the sphere, which contributed 4π Rμv∞ to the drag (Figure 8.35).
The sum of these two quantities gave Fdrag = 6π Rμv∞, the Stokes law for drag
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spoon pushes
down on beam

elastic energy
stored in beam

withdrawing spoon 
sucks beam upwards

Figure 8.34 The effect of viscosity on pressure in flow around a
sphere may be visualized by considering another
viscous-dominated scenario, the effect of viscos-
ity on a deflecting beam submerged in a viscous
liquid.

on a sphere in creeping flow. We then stud-
ied potential flow and learned that neither
pressure (which was symmetric) nor vis-
cosity (which was neglected) contributed to
the drag, and no drag was produced. Based
on the observation that drag indeed exists at
finite Re, we now reason that in a real flow at
high Reynolds numbers, viscosity may not
be neglected—at least not near the sphere.
The inclusion of viscosity surely introduces
viscous shear stress at the surface of the
sphere. Furthermore, based on the shape of
the pressure trace in creeping flow, the intro-
duction of viscosity is likely to make the
surface pressure trace in real flows asym-
metric and therefore drag-producing. Thus,
in real high-Re flows, we expect both pres-
sure and viscous contributions to drag. The
challenge now is to reformulate our analy-

sis of rapid flows by focusing on the surface so that we can calculate these two
drag contributions: (1) pressure drag due to an asymmetric pressure distribution;
and (2) viscous drag due to velocity gradients at the sphere surface. The method
that facilitates these calculations is boundary-layer analysis.

Creeping flow 
0inertia →

∞∞ += vRvRFdrag μπμπ 42

asymmetric 
pressure 

33% 
viscosity 

67% 

Potential flow 
0→μ

00 +=dragF

asymmetric 
pressure viscosity 

∞vRμπ6
Stokes Law 

no drag 

Real flow ?? +=dragF drag 

μandinertia

pressure 
(symmetric) 

viscosity 
(neglected) 

Due to viscous 
loss of stored 

pressure 

Due to high 
gradients at 

sphere surface 

Figure 8.35 Drag comes from pressure asymmetry and viscosity. In the creeping-flow solution, both contributions are present
(see Equation 8.58). In the potential-flow solution, neither are present. In a finite-Re solution, both are present.
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Outer solution: 
potential flow  
(no viscosity)

Inner solution: 
impose p(R,θ) solution from 
potential flow and solve Navier-
Stokes with viscosity for v(r,θ)

Solutions match at 
boundary 

Figure 8.36 The boundary-layer approach divides a flow domain of interest into an inner solution, near the boundary, and an
outer solution, which comprises the free stream. The two solutions are matched in an overlap region. The thickness
of the boundary layer is greatly exaggerated in this schematic.

8.2.1 Laminar boundary layers

An insightful solution to the problem of noncreeping flow past a surface was
proposed by Ludwig Prandtl in 1904. As discussed, in flow around a sphere,
both viscous and inertial effects are important. Viscosity and inertia are not
equally important everywhere in the flow, however. Prandtl recognized that for
computational purposes, he could divide the flow domain into two regions: a
large outer region and a small, thin boundary layer near the surface of the sphere
(Figure 8.36). In the outer region, viscosity is not important and inertia dom-
inates; in the boundary-layer region, both inertia and viscosity are important.
Prandtl’s idea was to solve separately the momentum-balance problem in the two
flow regions and to subsequently match the two solutions in an overlap region
between the inner and outer flows. Any interaction between the two solutions is
ignored.

For Prandtl’s approach to work, we must be able to calculate the velocity and
pressure fields in the inner and outer regions. Prandtl noted that the potential-flow
solution for flow around a sphere correctly predicts the pressure and velocity fields
far from the sphere; also, the potential-flow solution does not pose any calculation
difficulties. It therefore was proposed that potential flow be the outer solution for
both pressure and velocity in the boundary-layer construction for uniform flow
past a sphere (see Figure 8.36).

To calculate the inner solution for both pressure and velocity fields, Prandtl
reasoned that the inner-region pressure field is largely determined by the outer
solution for pressure; the inner or boundary-layer region is very thin (a guess;
verified later) and can be thought of as responsive to the pressure distribution
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imposed by the outer solution. If we use the outer solution for the pressure
distribution as both a driving force and a boundary condition for the inner flow,
we can calculate the inner flow once the outer flow is known.

The boundary-layer idea is very clever. Once this way of thinking about high-
Reynolds-number flow is introduced, it is easy to be convinced of its logic and cor-
rectness. The experimental observations of high-Reynolds-number flow around
spheres and other objects conform to the boundary-layer point of view: The
streamlines away from the obstacle follow the inviscid, potential-flow solutions;
near the obstacle, something else happens that deserves special attention. On the
leading side of obstacles, thin layers of viscous flow are observed, in agreement
with the boundary-layer picture. On the trailing side of obstacles, however, the
flow is neither potential flow nor boundary-layer flow; thus, the boundary-layer
view is not applicable on the trailing side. However, if we focus on applying the
boundary-layer method to the leading side of the sphere, we can move one step
closer to understanding the entire flow.

We have decided on our course of action: we will model rapid flows (e.g.,
flow past a sphere) as separate outer and inner flows and combine them at the
boundary. For the outer flow, we know how to solve the high-Reynolds-number
governing equations (see Equation 8.203) for the velocity and pressure fields. We
have not yet studied the inner flow—the viscous flow near the sphere surface as
fluid streams by at a rapid rate with an imposed pressure distribution. This is the
problem of the laminar boundary layer.

EXAMPLE 8.16. Calculate the steady-state velocity field for the flow of an
incompressible viscous fluid near the surface of a solid sphere of diameter 2R. The
fluid approaches the sphere with a uniform upstream velocity v∞. The geometry is
the same as in the creeping-flow and potential-flow calculations (see Figure 8.5)
but, in this problem, the flow is not slow (i.e., the Reynolds number is finite) and
viscosity may not be neglected (μ �= 0). A known pressure distribution in the flow
direction is imposed at the edge of the boundary layer. The imposed pressure
distribution is the pressure distribution of potential flow around a sphere (see
Equation 8.239).

SOLUTION. The solution starts the same way as our creeping-flow solution
(see Example 8.2). In spherical coordinates, the fluid velocity field may be written
as:

v =

⎛
⎜⎝

vr

vθ

vφ

⎞
⎟⎠

rθφ

=

⎛
⎜⎝

vr

vθ

0

⎞
⎟⎠

rθφ

(8.302)

We assume that vφ is equal to zero—that is, there is no swirling component to
the flow.
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Mass conservation is written in spherical coordinates (see Equation B.5-3) as
follows (i.e., constant density):

Continuity equation
(Gibbs notation):

∇ · v = 0 (8.303)

With vφ = 0, the continuity equation simplifies to:

Continuity equation,
flow around a sphere:

1

r2

∂(r2vr )

∂r
+ 1

r sin θ

∂(vθ sin θ)

∂θ
= 0

(8.304)

The Navier-Stokes equation written in spherical coordinates is given in
Table B.7. For steady flow with no φ-component and with φ-symmetry assumed,
the Navier-Stokes equation becomes:

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vr

(
∂vr

∂r

)
+ vθ

(
1

r

∂vr

∂θ
− vθ

r

)

vr

(
∂vθ

∂r

)
+ vθ

(
1

r

∂vθ

∂θ
+ vr

r

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

=−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P
∂r

1

r

∂P
∂θ

1

r sin θ

∂P
∂φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθφ

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎝

(
∂
∂r

( 1
r2

∂
∂r (r2vr )

)+ 1
r2 sin θ

∂
∂θ

(
sin θ ∂vr

∂θ

)− 2
r2 sin θ

∂
∂θ

(vθ sin θ)
)

(
1
r2

∂
∂r

(
r2 ∂vθ

∂r

)
+ 1

r2
∂
∂θ

( 1
sin θ

∂
∂θ

(vθ sin θ)
)+ 2

r2
∂vr
∂θ

)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθφ

(8.305)

The set of equations to solve (Equations 8.304 and 8.305) is the same set con-
templated when we first began what became the creeping-flow problem in Exam-
ple 8.2. It was daunting then, and it is daunting now. In that first problem, we
reduced the complexity of the system of equations by neglecting the entire left-
hand side of the Navier-Stokes equations. By neglecting these inertial terms, we
simplified the problem enough to be able to solve it.

We do not want to neglect inertia in our current solution. Instead, we follow
the boundary-layer approach and solve for the flow in the boundary layer with
the pressure distribution from the free stream imposed as a boundary condition.
Even given the assumption of the pressure boundary-condition, we still face many
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complexities in the current problem. Our equation contains nonzero pressure
derivatives in two coordinate directions, r and θ . There also are many terms with
velocity derivatives and, certainly, some are more important than others. We need
to sort out which of the velocity and pressure derivatives can be neglected so that
the mathematics simplifies. This is a difficult task.

This problem still may be too difficult. Some of the complexity of the problem
comes from the fact that the surfaces are curved and the coordinate transforma-
tion that allowed the governing equations to be written in spherical coordinates
introduced extra curvature terms. We are better off if we start with a simpler
problem—one without curvature, for example, that would help determine which
of the pressure and velocity derivatives are significant for the current problem.
We pause, therefore, in our solution of boundary-layer flow around a sphere to
address a simpler boundary-layer problem: uniform flow past a flat plate. We
follow our usual protocol here; that is, we turn to simple problems to discover the
fundamental issues. We return to the flow-past-a-sphere boundary-layer problem
after we are more experienced with idealized flat-plate flow.

From the previous discussion, we are led to the idea to investigate the case of
flow past a flat plate. By turning to this simpler case, we increase our chances
of success with the sphere-boundary-layer problem. Even if it turns out that
we cannot neglect curvature effects in the sphere-boundary-layer problem, solv-
ing the flat-plate boundary-layer problem is still a good first step that follows
exactly our problem-solving strategy: Solve a simple related problem and then
use what we learn from the simple problem to tackle the more difficult problem of
interest.

EXAMPLE 8.17. What are the velocity field and the pressure field in a viscous
fluid for the flow in which a rapid, uniform flow approaches a flat plate? The flow
is steady and the fluid is incompressible. Away from the plate, the flow approaches
the inviscid (i.e., potential) flow solution of this same problem.

SOLUTION. The flow is shown in Figure 8.37. On first consideration, it appears
that the flow may be unidirectional throughout the flow domain. Assuming
unidirectional flow, we apply the microscopic mass balance, the continuity

x1

x2υ– = υ∞ê1 

υ∞ υ∞

Figure 8.37 When a uniform flow meets a flat plate, the no-slip boundary condition slows the flow where it contacts the plate.
Far from the plate, the flow remains the undisturbed uniform flow.
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x1

b

edge of
boundary
layer

bx2

υ∞ υ∞ υ∞

υ1 = υ∞

Figure 8.38 A fluid particle a small distance from the plate surface initially is outside of the boundary layer but, as it moves
downstream, it enters the boundary layer and slows down. Thus, the flow-direction component of fluid velocity
varies with x1, the principal direction.

equation:

Unidirectional flow: v =

⎛
⎜⎝

v1

0

0

⎞
⎟⎠

123

(8.306)

Continuity equation:
(microscopic-mass balance)

∇ · v = 0 (8.307)

∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x0
= 0 (8.308)

∂v1

∂x1
= 0 (8.309)

From this result, we immediately see a problem with our assumption that the
velocity is only in the x1-direction. If we assume unidirectional flow, then con-
servation of mass imposes that the flow may not vary in the flow direction. Yet,
the flow does vary in the flow direction, as we can establish with a simple thought
experiment. In the current flow, consider a series of locations at a constant dis-
tance b from the wall (Figure 8.38). When the fluid confronts the plate edge, the
flow speed is the speed of the free stream, v1 = v∞. As the flow progresses along
the plate, however, the presence of the plate causes a slower fluid layer to form;
at some x1 position down the plate, fluid at a distance b from the wall exhibits a
velocity of less than v∞. At this point, the b-streamline is within the boundary
layer. Because our reflection on the flow indicates that v1 is a function of the
x1-position (∂v1/∂x1 �= 0), we must not be able to assume unidirectional flow
(Equation 8.309).
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Given that there is a problem with the assumption of unidirectional flow, we
now relax that assumption and allow the velocity to have a nonzero x2-component:

Two-dimensional flow: v =
⎛
⎝v1

v2

0

⎞
⎠

123

ˆ ˆ= v1e1 + v2e2 (8.310)

Continuity equation: ∇ · v = 0 (8.311)

∂v1

∂x1
+ ∂v2

∂x2
= 0 (8.312)

The continuity-equation result does not appear to be helpful, but there is nothing
to be done about it because we tried the simpler case of unidirectional flow and
we know that the simpler case is not correct.

We proceed now to the Navier-Stokes equation:

Navier-Stokes equation
(microscopic-momentum balance):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

(8.313)

For steady flow, we can eliminate the time-derivative term, and we choose to
combine the pressure and the gravity effects into the dynamic pressure P ≡
p + ρgh. Taking these steps and writing the equation in Cartesian coordinates,
we obtain the simplified momentum-balance equations that govern the flow in
the boundary layer near a flat plate:

Navier-Stokes equation
(steady, two-dimensional,

dynamic pressure):
ρv · ∇v = −∇P + μ∇2v (8.314)

1-component Navier-Stokes:

ρ

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= − ∂P

∂x1
+ μ

(
∂2v1

∂x2
1

+ ∂2v1

∂x2
2

)
(8.315)

2-component Navier-Stokes:

ρ

(
v1

∂v2

∂x1
+ v2

∂v2

∂x2

)
= − ∂P

∂x2
+ μ

(
∂2v2

∂x2
1

+ ∂2v2

∂x2
2

)
(8.316)

The problem now is to solve for v1, v2, and P from the mass- and momentum-
balance equations (Equations 8.312, 8.315, and 8.316). The velocity boundary
conditions are no-slip and no-penetration at the surface of the plate and matching
the velocity of the free stream at the edge of the boundary layer. For pressure, our
plan is to match the value at the edge of the boundary layer with the flow-direction
pressure profile from the potential-flow version of this same problem.
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The task is still daunting because P is a function of x1 and x2, as are v1 and
v2. Our first solution step is to sort out which terms in Equations 8.315 and 8.316
dominate the solution and which are negligible. Turning first to determining the
importance of the pressure derivatives, we must know the function P(x1, x2) to
impose at the edge of the boundary layer. This function comes from the potential-
flow solution for uniform flow past a flat plate. We therefore pause in our attempt
to solve for the flow of a viscous fluid past a flat plate and solve instead for the
inviscid case. We return to finish this problem after that solution is known.

The boundary-layer paradigm requires that we know the pressure profile for
the outer flow. Once this pressure profile is known, we impose that pressure
distribution on the inner flow as a boundary condition. In the next example, we
pursue the pressure distribution in uniform flow of an inviscid fluid past a flat
plate.

EXAMPLE 8.18. Calculate the velocity and pressure fields for steady uniform
flow of an incompressible, inviscid fluid past a flat plate.

SOLUTION. The flow is shown in Figure 8.39. On first consideration, it appears
that the flow may be unidirectional throughout the flow domain. Assuming unidi-
rectional flow, we apply the microscopic mass balance, the continuity equation:

Unidirectional flow: v =
⎛
⎝v1

0
0

⎞
⎠

123

(8.317)

Continuity equation:
(microscopic-mass balance)

∇ · v = 0 (8.318)

∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x0
= 0 (8.319)

∂v1

∂x1
= 0 (8.320)

υ∞υ∞υ∞ υ∞

Figure 8.39 When a uniform flow of an inviscid fluid meets a flat plate, there is no mechanism for the flow to slow at the plate
surface, and the no-slip boundary condition is not satisfied. The flow is the same near the plate and far from the
plate.
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Because we do not impose the no-slip boundary condition due to the absence of
viscosity in this flow, it is possible to have a flow that does not vary in the flow
direction. Thus, the conclusion of the mass balance is valid, and we continue with
our assumption of unidirectional flow.

For steady (∂v/∂t = 0), unidirectional (v · ∇v = 0) flow of an invisicid
(μ = 0) fluid, the Navier-Stokes equation now becomes:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (8.321)

0 = −∇P (8.322)

0 =

⎛
⎜⎜⎜⎝

∂x1
− ∂P

∂x2
− ∂P

− ∂P
∂x3

⎞
⎟⎟⎟⎠

123

(8.323)

ˆ

where, as usual, P ≡ p + ρgh is the dynamic pressure. Integrating each term of
Equation 8.323, we see that the final solution for potential flow past a flat surface
is constant dynamic pressure. In addition, the momentum balance indicates that
the velocity thus cannot change. Because the incoming velocity profile is known
to be v = v∞e1, this must be the flow field throughout. The potential-flow solution
for uniform flow over a flat plate is:

Potential flow
past a flat plate

(steady, incompressible, inviscid):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ ˆ

P = constant

v = v∞e1 =
⎛
⎝v∞

0
0

⎞
⎠

123

(8.324)

Without the no-slip boundary condition (associated with viscosity), the
incoming uniform flow is uninterrupted by the presence of the plate. No
variation of pressure or of velocity is observed. Now that we know the
pressure distribution in the free stream away from the wall (i.e., constant
pressure, viscosity neglected), we can continue with our solution for the
velocity and pressure profiles in viscous flow near a plate with no slip at the wall.

EXAMPLE 8.19 (Flat plate, concluded). What are the velocity field and the
pressure field in a viscous fluid for the flow in which a rapid, uniform flow
approaches a flat plate? The flow is steady and the fluid is incompressible. Away
from the plate, the flow matches the inviscid (potential) flow solution of this same
problem.

SOLUTION. The flow is shown in Figure 8.37. From our previous treatment of
this problem in Example 8.17, we know that the flow is two-dimensional. For
steady, two-dimensional flow of an incompressible fluid, we previously showed
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that the governing equations are:

Two-dimensional flow: v =
⎛
⎝v1

v2

0

⎞
⎠

123

(8.325)

Continuity equation: ∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
= 0 (8.326)

Navier-Stokes equation
(steady, two-dimensional,

dynamic pressure):
ρv · ∇v = −∇P + μ∇2v (8.327)

1-component Navier-Stokes:

ρ

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= − ∂P

∂x1
+ μ

(
∂2v1

∂x2
1

+ ∂2v1

∂x2
2

)
(8.328)

2-component Navier-Stokes:

ρ

(
v1

∂v2

∂x1
+ v2

∂v2

∂x2

)
= − ∂P

∂x2
+ μ

(
∂2v2

∂x2
1

+ ∂2v2

∂x2
2

)
(8.329)

Our task in this problem is to solve for v1, v2, and P from the mass- and
momentum-balance equations (i.e., Equations 8.326, 8.328, and 8.329). The
velocity boundary conditions are no-slip and no-penetration at the surface of the
plate and matching the velocity of the free stream at the edge of the boundary
layer. The boundary condition on pressure is to match the pressure at the boundary
layer with the flow-direction pressure profile from the potential-flow version of
this same problem. We showed in Example 8.18 that the pressure and velocity
fields are uniform in the potential-flow version of the flow-past-a-plate problem.

The problem remains formidable. Our strategy is to simplify it by looking
closely at each term in the three equations that we are solving for those terms
that can be neglected safely. If we can eliminate some terms, the mathematical
problem may become simple enough to complete.

We first consider the pressure terms. We know that at the top of the boundary
layer, the pressure must become a constant. This condition arises from the need
to match the pressure distribution in the outer flow. Does the pressure vary across
the boundary layer? This is the equivalent to asking: Is ∂P/∂x2 nonzero? The
answer to this question is given by the 2-component of the Navier-Stokes equation,
Equation 8.329:

∂P
∂x2

= −ρv1
∂v2

∂x1
− ρv2

∂v2

∂x2
+ μ

∂2v2

∂x2
1

+ μ
∂2v2

∂x2
2

(8.330)

We know that the pressure at the top of the boundary layer is constant (matching
the potential-flow situation). If we can assume that all of the velocity gradients
in Equation 8.330 are negligible, then ∂P/∂x2 = 0, and the pressure must be
constant throughout the boundary layer.
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We consider each velocity-derivative term in Equation 8.330 separately to see
whether it is negligible. We are aided by the continuity equation, which indicates
that ∂v2/∂x2 = −∂v1/∂x1. The magnitudes of the terms in Equation 8.330 are
estimated here:

v1
∂v2

∂x1
= (large) (small)

?= 0 (8.331)

v2
∂v2

∂x2
= v2

(
−∂v1

∂x1

)
= (small) (moderate) ?= 0 (8.332)

∂2v2

∂x2
1

= ∂

∂x1

(
∂v2

∂x1

)
= (small change of [small quantity]) ?= 0 (8.333)

∂2v2

∂x2
2

= ∂

∂x2

(
∂v2

∂x2

)
= (small change of [moderate quantity]) ?= 0 (8.334)

First, if the variation of pressure in the boundary layer is to be ignored, we must
neglect ∂v2/∂x1. This is the flow-direction change of the small component of
velocity that moves fluid away from the wall. If we make this assumption, the first
and the third conditions are satisfied. We are confident that the second derivative
of v2 in the direction perpendicular to the wall (Equation 8.334) also is small
enough to neglect: although ∂v2/∂x2 may be a quantity of finite size, the rate of
change of this rate of change is expected to be small.

The assumption that is the biggest stretch is the second one (Equation 8.332),
in which we must assume that the product of the transverse velocity and one of the
velocity derivatives ∂v1/∂x1 or ∂v2/∂x2 is negligible. The velocity derivatives in
Equation 8.332 appear in the continuity equation, and neither is itself negligible,
nor is v2. We assume, however, that the product of these two quantities results in
a negligible effect.

When making ordering approximations as discussed here, we necessarily rely
on judgment, which may or may not hold up to reality. We proceed, however,
in making these judgments and we evaluate their appropriateness based on the
outcome of the analysis and comparison to experiments.

With the assumptions discussed previously, the Navier-Stokes equations
become:

1-component Navier-Stokes:

ρ

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= ∂P

∂x1
+ μ

(
∂2v1

∂x2
1

+ ∂2v1

∂x2
2

)
(8.335)

2-component Navier-Stokes: 0 = − ∂P
∂x2

(8.336)

We now apply our ordering judgments to the 1-component of the equation of
motion as well. Examining each term of the 1-component of the Navier-Stokes,
we judge that both terms on the lefthand side are significant because v1 is the
dominant velocity and its principal change is in the x2 direction. For this latter
reason, the second derivative of v1 with respect to x2 on the righthand side also
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should be retained. The second derivative of v1 with respect to the flow direction,
however, is likely to be small because it is a rate of change of the less important
rate of change of v1. Note that because P is constant at the edge of the boundary
layer and, by the 2-component of the Navier-Stokes P , does not vary with x2, then
P must not vary with x1 anywhere (∂P/∂x1 = 0). The summary list of all of our
assumptions for both components of the Navier-Stokes equation is as follows:

∂v2

∂x1
≈ 0

Assumptions of
flat-plate boundary-layer

analysis:

∂2v2

∂x2
2

≈ 0

∂2v1

∂x2
1

≈ 0

v2
∂v2

∂x2
= v2

(
−∂v1

∂x1

)
≈ 0

(8.337)

The final equations that remain to be solved for the velocity field for viscous flow
past a flat plate are:

v =
⎛
⎝v1(x1, x2)

v2(x2)
0

⎞
⎠

123

(8.338)

P = constant (8.339)

∂v1

∂x1
+ dv2

dx2
= 0 (8.340)

ρ

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= μ

∂2v1

∂x2
2

(8.341)

Having made these several assumptions discussed here, we at last arrive at a
set of coupled partial differential equations that, although complex, can be solved
for the velocity field v. We turn now to a discussion of that solution.

The analytical solution of viscous flow past a flat plate comes from the insight
that uniform flow past a flat plat is similar to the sudden acceleration of a wall
in semi-infinite fluid. We discussed the solution to the wall-acceleration problem
in Example 7.18. In the acceleration problem for a fixed position of observation,
a boundary layer forms near the wall and grows as a function of time. In the
current problem, if an observer travels to the right at a speed of v∞, it appears as
if the boundary layer grows with time (Figure 8.40). The solution for velocity in
the accelerating-wall problem at time t , therefore, looks like the solution to our
problem at location x1 = tv∞. In the accelerated-wall problem, we found that we
could collapse the system of partial differential equations (PDEs) into a single
ordinary differential equation (ODE) by using a combined variable defined as:

Accelerating flow (Example 7.18): combined variable ≡ y√
νt

(8.342)
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Flat plate set in 
motion

Uniform flow 
approaches flat plate

)c()b()a(

(a)
(b)

(c)

Figure 8.40 Flow near a wall suddenly set in motion (top) and uniform flow encountering a wall (bottom) are similar. The effect
of the no-slip boundary condition in each case is to introduce rotational character into the flow field near the wall.
The rotational character moves out from the wall in both cases, causing a characteristic boundary layer to develop.

where ν = μ/ρ is the kinematic viscosity. Taking t = x1/v∞, we therefore guess
for the flat-plate problem that we can define a combined variable ζ as:

Boundary layer, flat plate: ζ ≡ x2√
νx1/v∞

= x2

√
ρv∞
μx1

(8.343)

The details of the final solution for v are in the literature [43]. The first step is
to define the function f (ζ ) as:

d f (ζ )

dζ
= f ′ ≡ v1

v∞
(8.344)

v1 = v∞ f ′ (8.345)

We choose to define the function f for our problem in terms of its first derivative
f ′ because of the way the rest of the solution develops, as we discuss herein. The
second step of the solution is to use the continuity equation (Equation 8.340) to
solve for v2 in terms of f , ζ , and x1. The result is:

v2 = 1

2

(
v∞μ

ρx1

) 1
2 [

f ′ζ − f
]

(8.346)

Notice that the integrated function f = ∫ f ′dζ appears in this expression, justi-
fying our choice to define f ′ = v1/v∞ the way we did. The integration constant
for f = ∫ f ′dζ has been set to zero because to obtain v1, we need only f ′ and
not f ; therefore, this constant is arbitrary.

Now that we have v2 in terms of the combined variable ζ (although there is

still an x
− 1

2
1 in the expression), we convert the 1-component of the Navier-Stokes

equation (Equation 8.341) to be in terms of f and ζ and incorporate the derived
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expression for v2 (Equation 8.346). After some algebra, the result is a third-order
ODE for f (ζ ) with a remarkably simple although nonlinear structure:

Third-order ODE
for function f related

to velocity component v1

for flat-plate boundary-layer flow

0 = 2 f ′′′ + f ′′ f (8.347)

ˆ

All of this effort is wasted if we cannot convert the boundary conditions on
v1 and v2 to boundary conditions on f . The boundary conditions are no-slip at
the wall (v1 = 0 at the wall), no-penetration at the wall (v2 = 0 at the wall), and
the velocity matches the free-stream velocity field at the boundary (v = v∞e1 at
x2 = δ(x1)). In terms of ζ , these become:

No-slip at the wall: v1|x2=0 = 0 =⇒ f ′(0) = 0 (8.348)

No-penetration at the wall: v2|x2=0 = 0 =⇒ f (0) = 0 (8.349)

Velocity match at the boundary: v1|x2=δ(x1) = v∞ =⇒ ? (8.350)

v2|x2=δ(x1) = 0 =⇒ ? (8.351)

Leading-edge velocity is

the free-stream value: v1|x1=0 = v∞ =⇒ f (∞) = 1 (8.352)

where δ(x1) is the thickness of the boundary layer as a function of position.
The thickness of the boundary layer is unknown; therefore, it is awkward to

apply boundary conditions that refer to the thickness of the boundary layer δ. We
can eliminate reference to δ if we acknowledge that we do not really care where
v1 goes back to v∞, only that it does reach v∞ away from the wall. Thus, we
can replace the δ boundary conditions with a velocity match in the far distance
at x2 = ∞. If we rewrite the boundary conditions involving the boundary-layer
thickness δ as discussed here, then because the similarity variable ζ has x2 in
the numerator and x1 in the denominator, the two uncertain boundary conditions
become identical to the last boundary condition—that is, the condition at the
leading edge of the plate.

Velocity match at the boundary: v1|x2=∞ = v∞ =⇒ f (∞) = 1 (8.353)

v2|x2=∞ = 0 =⇒ f (∞) = 1 (8.354)

Leading-edge velocity

is the free-stream value: v1|x1=0 = v∞ =⇒ f (∞) = 1 (8.355)

The particular similarity transformation discussed for this problem, f (ζ ), can
satisfy all of the boundary conditions while not overconstraining the third-order
ODE for f . It is this serendipitous circumstance that allows us to solve the
flat-plate boundary-layer problem with the approach described here.
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Figure 8.41 The normalized flow-direction velocity in the boundary layer as a function of the combined variable ζ = x2

√
ρv∞
μx1

;

data shown; theory matches well (not shown). Note that for ζ = 5, v1/v∞ has reached 1, indicating that the speed
of the fluid in the boundary layer has reached the free-stream speed. This value of ζ marks the edge of the boundary
layer. Data from J. Nikuradse, Laminare Reibungsschichten an der langsangestromten Platte. Monograph. Zentrale
f. wiss. Berichtswessen, Berlin, 1942 as cited by [149].

Equation 8.347 with boundary conditions Equations 8.348, 8.349, and 8.352
can be solved numerically as discussed in Denn and in Problem 43 [43]. The
solution for f (ζ ) was found by Blasius in 1908 and is tabulated in [174]. The
boundary-layer velocity solution v1/v∞ = f ′ fits the curve-fitting function given
here (maximum error =0.5 percent):

Velocity profile
for laminar flow
past a flat plate
(fit to numerical

solution):

v1

v∞
= f ′(ζ ) = 1− (0.5434) log

[
1+ (68.3)10−0.6247ζ

]

(8.356)

Recall that ζ ≡ x2
√

ρv∞/(μx1). Experiments by Nikuradse [149] and others
confirm that the solution obtained here matches the actual shape of the laminar
boundary layer in flow past a flat plate (Figure 8.41). This correspondence vali-
dates the ordering assumptions we made in simplifying the governing equations
(see Equation 8.337).

The definition of the combined variable ζ allowed the boundary conditions to
be expressed in terms of conditions at infinite distance; because of this, we did not
have to assume a boundary-layer thickness to arrive at the final solution for the
velocity profile. We now can calculate the boundary-layer thickness as a function
of distance x1 from the leading edge by consulting the solution for the velocity
field in Figure 8.41. We see that the speed of the fluid at the surface (ζ = 0) is
zero due to the no-slip boundary condition at the wall. As we move to locations

www.20file.org

http://www.semeng.ir


692 An Introduction to Fluid Mechanics

0

2

4

6

8

10

1.00.80.60.40.20

v

δ
μ

ρ ∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

1x

v

μ
ρ ∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

Figure 8.42 The thickness of a laminar boundary layer on a flat plate increases with the square root of the distance from the
leading edge of the plate. Note that the dashed line denoting the boundary-layer edge is not a streamline but rather
the locus of points where the velocity reaches the free-stream velocity.

away from the wall, we find that the v1-speed of the fluid increases, eventually
reaching the speed of the free stream (v1/v∞ ≈ 1). We define the thickness of the
boundary layer to be the x2-location where the speed of the fluid in the boundary
layer reaches 0.99v∞; from Figure 8.41 or Equation 8.356, this happens at ζ ≈ 5.
From the definition of ζ , we now calculate the boundary-layer thickness δ as a
function of distance x1 from the leading edge:

ζ |BL edge =
(

x2

√
ρv∞
μx1

)∣∣∣∣∣∣
BL edge

(8.357)

5 = δ

√
ρv∞
μx1

(8.358)

Boundary-layer
thickness:

δ =
(√

25μ

ρv∞

)
√

x1 (8.359)

Note that as the free-stream velocity v∞ increases, the boundary-layer thickness
δ decreases. As expected, viscosity works to thicken the boundary layer. The
boundary layer does not plateau to a constant thickness far from the leading edge
(Figure 8.42); rather, boundary-layer thickness increases without bound as we
look at the flow farther downstream from the leading edge.

The fluid force on the plate is calculated in the usual way (see Equation 8.6).
For our flat plate, the unit normal to the surface in question is n̂ = ê2; the surface
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in contact with the fluid is a rectangle with area LW located at coordinate position
x2 = 0:

Total
molecular
fluid force

on a
surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (8.360)

=
∫ W

0

∫
ˆ

L

0
[e2 · �̃]x2=0 dx1dx3 (8.361)

=
∫ W

0

∫ L

0

(
0 1 0

)
123

·

⎛
⎜⎜⎜⎝

�̃11 �̃12 �̃13

�̃21 �̃22 �̃23

�̃31 �̃32 �̃33

⎞
⎟⎟⎟⎠

123

∣∣∣∣∣∣∣∣∣∣∣∣
x2=0

dx1dx3

(8.362)

=
∫ W

0

∫ L

0

⎛
⎜⎜⎜⎜⎝

τ̃21|x2=0

(τ̃22 − P)|x2=0

τ̃23|x2=0

⎞
⎟⎟⎟⎟⎠

123

dx1dx3 (8.363)

The drag on the wall is equal to F1, the flow-direction (i.e., 1-direction) force
on the plate. The 1-component of Equation 8.363 is the integration of τ̃21 at the
wall, and we can calculate τ̃21 from the solution for the velocity profile v1(x1, x2),
Equation 8.356 (see Figure 8.41):9

τ̃21|x2=0 = τ̃w = μ
∂v1

∂x2

∣∣∣∣∣∣
x2=0

(8.364)

=
[
μv∞ f ′′ dζ

dx2

]∣∣∣∣∣∣
x2=0

(8.365)

Wall shear stress
on flat plate

as a function of location x1

(laminar boundary layer):

τ̃w = 0.332μv∞
(

ρv∞
μx1

) 1
2

(8.366)

9Because of the limited accuracy of the curve-fit used to obtain Equation 8.356, if that equation
is used to calculate the drag, we obtain a coefficient of 0.334 for Equation 8.366. Numerically
integrating the full numerical solution for f (ζ ) yields the most accurate calculation of this
coefficient, a value of 0.332057 [174].
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To calculate the drag, we integrate the 1-component of the fluid-force expression,
Equation 8.363:

Fdrag = F1 =
∫ W

0

∫ L

0
τ̃21|x2=0 dx1dx3 =

∫ W

0

∫ L

0
τ̃w dx1dx3 (8.367)

= W
∫ L

0
0.332μv∞

(
ρv∞
μx1

) 1
2

dx1 (8.368)

Fdrag = 0.664Wv∞ (μρv∞L)
1
2 (8.369)

In terms of drag coefficient, Equation 8.369 becomes:

CD = Fdrag

1
2ρv2∞W L

(8.370)

Drag in
laminar flow

past a flat plate:
CD = 1.328

√
μ

ρv∞L
(8.371)

Finally, it is possible to define a Reynolds number for the flow over a flat plate.
There is no obvious characteristic lengthscale in this flow on which to base a
Reynolds number, but it is the custom in boundary-layer discussions to define
a Reynolds number based on the coordinate variable x1, the distance from the
leading edge:

Rex1 ≡ ρv∞x1

μ
(8.372)

Rex1

x2
1

= ρv∞
μx1

(8.373)

√
Rex1

x1
=
√

ρv∞
μx1

= ζ

x2
(8.374)

In terms of Rex1 , the thickness of the boundary layer (see Equation 8.359) may
be written as:

Laminar
boundary-layer thickness:

δ = 5x1√
Rex1

(8.375)

The drag coefficient for flow past a flat plate likewise can be expressed in terms
of the Reynolds number as:

Drag in
laminar flow

past a flat plate:
CD = 1.328√

ReL
(8.376)

where ReL = Rex1

∣∣∣
x1=L is the Reynolds number based on the length of the plate.

The predicted velocity profile for flow past a flat plate (see Figure 8.41) has
been verified experimentally [149]. Experimental agreement is obtained for the
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region beginning at the leading edge; however, at a location far downstream,
the boundary layer is unstable and becomes turbulent. This instability occurs at
values of Rex1 between 2 × 105 and 6 × 105 [43]. Turbulent boundary layers are
discussed in Section 8.2.2.

We can use the results of the flat-plate analysis to calculate the thickness of
laminar boundary layers (see Example 8.20). If the boundary layer is found to
be sufficiently thin, we can use the flat-plate solution as a stand-in for the true
curved surfaces of flow around a sphere. This may allow us to proceed further on
the sphere problem that we began in Example 8.16.

EXAMPLE 8.20. What is the thickness of the boundary layer on the leading side
of a baseball thrown at 90 mph? Assume that the ball is completely smooth.

SOLUTION. If we assume that the boundary layer is very thin, we can model the
flow around a baseball as flow over a flat plate; if the boundary layer is laminar,
we can calculate δ from Equation 8.375. By using the flat-plate results, we are
not considering the pressure effects in this flow; we suspend this concern in favor
of obtaining a first answer to our question.

To apply the result of the flat-plate analysis, we must know the total distance
that the fluid travels in the boundary layer; that is, we need the equivalent length
of the plate. The distance that a boundary layer on a ball has traveled from the
leading edge is simply the arc length on the surface of the ball up to an angle
of 90◦ = π

2 . Beyond this angle, we know from flow observation that the flow no
longer has a boundary-layer character. Thus, x1,max = R�max = R

(
π
2

)
, where

R is the radius of the ball (the diameter of a baseball is about 7.46 cm). Knowing
this length, we now calculate the boundary-layer thickness from Equation 8.375:

Rex1 = ρv∞x1

μ
= v∞x1

μ/ρ
(8.377)

=

(
90 miles

hr

)(
1,609.344 m

mile

)(
hr

3,600 s

)(
0.0746 m

2

)(
π

2

)
1.412 × 10−5 m2

s

(8.378)

= 1.7 × 105 (8.379)

This Reynolds number is just within the laminar boundary-layer limit. The
boundary-layer thickness is therefore:

δ = 5x1√
Rex1

(8.380)

= (5)
( 0.0746 m

2

) (
π
2

)
√

1.7 × 105
= 0.00071 m (8.381)

δ = 0.7 mm (8.382)
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The boundary layer is indeed quite thin; we are justified in neglecting curvature
for such a thin boundary layer.

As shown, the region near the wall where viscosity is important is thin; thus, we
can justify neglecting the effect of curvature when we return to the flow around a
sphere. In subsequent sections, we look at turbulent boundary layers and the effect
of object shape on the stability of boundary layers. At the end of Section 8.2, we
return to the noncreeping flow around a sphere and take full account of pressure
in a more complete solution to the boundary-layer flow around a sphere (see
Example 8.23).

8.2.2 Turbulent boundary layers

The analysis of boundary layers discussed thus far has been successful. Because
the analysis is confined to a thin region near a surface, we choose to use the
problem of flow past a flat plate to obtain a solution for the velocity profile
in the boundary layer (see Equation 8.356). Experiments performed on flows
past flat plates confirm that the calculated velocity profile is observed, at least
near the leading edge of the plate [149]. As we observe the flow downstream
from the leading edge, however, the velocity eventually becomes unstable and
the boundary layer changes from the calculated laminar-flow solution to a new,
turbulent boundary layer.

The transition to turbulence in the boundary layer occurs at Reynolds numbers
in the range of 2 × 105 < Rex1 < 6 × 105; the value of the Reynolds number at
the transition depends on the smoothness of the surface and the uniformity of
the upstream flow. Turbulent boundary layers are thicker than laminar boundary
layers and they do not grow with x0.5

1 like laminar boundary layers; rather, they
grow more steeply as x0.8

1 [147]:

Turbulent
boundary-layer growth

with distance along the plate:
δ = 0.37x0.8

1

(
ρv∞
μ

)− 1
5

(8.383)

In terms of Reynolds number Rex1 , this is:

Turbulent
boundary-layer growth
with Reynolds number
(due to Prandtl [147]):

δ = 0.37x1

Re
1
5
x1

(8.384)

White [174] gives a slightly different correlation that is more accurate:

Turbulent
boundary-layer growth
with Reynolds number

δ = 0.16x1

Re
1
7
x1

(8.385)
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Figure 8.43 The velocity profile in laminar boundary layers can be obtained from the solution to Blasius’s equation
(see Equation 8.347). For turbulent boundary layers, the average velocity profile in the boundary layer
may be obtained from experimental observations, and the shape of the turbulent profile is approximately
v1/v∞ = (x2/δ)

1
7 [174].

The two types of boundary layers also differ in the distribution of velocity
within the boundary layer. Because of the nature of turbulent flow, the velocity in
a turbulent boundary layer fluctuates in three dimensions. Thus, to compare the
turbulent velocity profile with the velocity profile in laminar flow, we consider
a time-averaged, 1-direction turbulent velocity profile (Figure 8.43). Compared
to laminar boundary layers, the averaged velocity profile in a turbulent boundary
layer has a much higher velocity gradient (slope) close to the surface than a
laminar boundary layer (see Figure 8.43). The time-averaged velocity v1 of a
turbulent boundary layer is found to follow a power-law shape with an exponent
of 1/7.

Time-averaged
turbulent velocity profile in

flow past a flat plate
(experimental result):

v1

v∞
=
(

x2

δ

) 1
7

(8.386)

We cannot solve the governing equations for turbulent flow past a flat plate, but
we know from dimensional analysis that the drag coefficient is a function only of
the Reynolds number. Therefore, as in pipe flow and in flow past a sphere, we can
use measurements on actual flat plates to determine the empirical correlations for
drag on a flat plate in turbulent flow. The data for the flat-plate drag coefficient
are shown in Figure 8.44. The experimental CD(Re) correlations for various flow
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Figure 8.44 Drag coefficient for flow past a flat plate as a function of plate Reynolds number [63, 176]. Laminar boundary-layer
flow is unstable above Rex1 = 5 × 105, and a turbulent boundary larger forms. For rough plates CD is much larger
than for smooth plates.

regimes are given here [147, 183]:

Laminar flow: CD = 1.328

Re0.5
L

(8.387)

Transitional flow, ReL < 5 × 105: CD = 0.455

(log ReL )2.58 − 1,700

ReL
(8.388)

Turbulent, smooth plate: CD = 0.455

(log ReL )2.58 (8.389)

Turbulent, surface roughness ε: CD =
[

1.89 − 1.62 log
(

ε

L

)]−2.5

(8.390)

The result for the laminar regime was derived in the previous section. For turbu-
lent boundary layers on smooth surfaces, the drag coefficient is roughly double
the laminar drag coefficient. For rough plates, the drag increases significantly
with surface roughness, but the drag coefficient for rough plates is independent
of Reynolds number (see Figure 8.44).

Because the drag on a flat plate is higher when the boundary layer is turbulent
than when it is laminar, we always can reduce the force on the plate or the energy of
pumping fluid past a flat plate by designing the flow to produce laminar boundary
layers. To do this, we must keep the Reynolds number below the critical value for
transition to turbulence. For objects other than flat plates, however, it is not always
true that producing laminar boundary layers results in less drag on the object.
This counterintuitive result is due to the outer-flow pressure distribution present
for objects other than flat plates. The pressure distribution in the outer flow causes
flow separation—a drastic change in the flow pattern in flow past nonflat objects.
Flow past blunt objects and flow separation are discussed in Section 8.2.3.

The following example demonstrates an application of the flat-plate analysis.

EXAMPLE 8.21. The flow over an airplane wing is modeled, in a first attempt,
as the flow over a flat plate of length equal to the wing’s chord length. For the
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SPA
N

CHORD LENGTH

Figure 8.45 An airplane wing is a type of airfoil. The shape of an airfoil minimizes drag by gradually tapering off after the thickest
portion. This type of shape change promotes attachment of the boundary layer, thereby reducing the dominant
form of drag—the pressure drag due to boundary-layer detatchment. The dimensions of an airfoil are chord length
(related to the length in the flow direction) and span (width in the neutral direction).

airplane wing in Figure 8.45, what is the maximum thickness of the boundary
layer? The wing is very wide and chord length is 2.00 m. The airplane is moving
at a cruising speed of 9.00 ×102 km/hour.

SOLUTION. The thickness of the boundary layer in flow over a flat plate is a
function of the Reynolds number and the distance traveled along the flat plate
(see Equations 8.375 and 8.384 for laminar and turbulent flow, respectively). We
have all of the information needed to calculate the boundary-layer thickness δ for
the situation under consideration. We begin by calculating the Reynolds number:

Rex1 = ρv∞x1

μ
= v∞x1

μ/ρ
(8.391)

=

(
900 km

hr

)
(2 m)

(
103 m

km

)(
hr

3,600 s

)

1.412 × 10−5 m2

s

(8.392)

= 3.541 × 107 (8.393)

This Reynolds number is above the laminar boundary-layer limit. We therefore
calculate δ from the equation that gives boundary-layer thickness for turbulent
boundary layers, Equation 8.384:

δ = 0.37

(
x1

Re0.2
x1

)
(8.394)

= (0.37)(2 m)(
3.541 × 107

)0.2 = 0.023 m (8.395)

δ = 2.3 cm (8.396)

At these high Reynolds numbers, the boundary layer is less than a few centimeters
thick (about an inch); thus, we are justified in ignoring curvature effects in the
boundary-layer calculations.
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The boundary-layer problems discussed thus far are for flow over a flat plate;
the pressure is constant throughout this flow. When boundary layers form on
nonflat objects, a pressure distribution develops throughout the flow field, and
this has a profound effect on the velocity field and the drag produced by the
object. Flow past nonflat objects is discussed in the next section. The pressure
distribution developed in the flow past nonflat objects causes boundary-layer
separation, which occurs when pressure rises in the direction of flow. In addition,
because rising pressure affects laminar and turbulent boundary layers differently,
under some circumstances flow separation leads to counterintuitive results, such
as lower drag in turbulent flow than in laminar flow.

This section concludes with an example in which we set up the study of flow
past nonflat objects by carrying out a formal dimensional analysis on a boundary
layer with a nonconstant pressure distribution.

EXAMPLE 8.22. What are the boundary-layer equations for flows in which the
pressure field is not constant (i.e., objects other than a flat plate)?

SOLUTION. In the discussion of boundary-layer flow past a flat plate, we were
dealing with a simple flow and could make the ordering judgments needed to
simplify the problem. When the obstacle is not a flat plate, the pressure field will
not be uniform; thus, to determine the governing equations, we must proceed
more formally. The discussion presented here follows that of Denn [43].

We consider the case of an obstacle of arbitrary shape. Based on our experience
with flat plates, we assume that the boundary layer on the obstacle is thin. Thus,
we can model flow around the nonflat obstacle as equivalent to flow over a flat
plate with a nonuniform pressure distribution imposed at the location where
the boundary layer meets the outer flow. The imposed pressure distribution is
obtained from the potential-flow solution for flow around the object.

We showed previously that for steady, two-dimensional flow of an incom-
pressible fluid past a flat plate, the governing equations are given by Equa-
tions 8.312, 8.315, and 8.316, repeated here:

Continuity equation:
∂v1

∂x1
+ ∂v2

∂x2
= 0 (8.397)

1-component
Navier-Stokes: ρ

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= − ∂P

∂x1
+ μ

(
∂2v1

∂x2
1

+ ∂2v1

∂x2
2

)

(8.398)

2-component
Navier-Stokes: ρ

(
v1

∂v2

∂x1
+ v2

∂v2

∂x2

)
= − ∂P

∂x2
+ μ

(
∂2v2

∂x2
1

+ ∂2v2

∂x2
2

)

(8.399)
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Figure 8.46 Characteristic values should be chosen so that the nondimensional derivatives are O(1). Thus, for the 1-velocity,
for ∂v ∗

1 /∂x ∗ to be O(1), we choose U to be the maximum value of v1. Then, we choose the characteristic length
to be the distance over which v1 undergoes a change of magnitude U .

Thus far we make no assumptions about the pressure distribution. To see which
terms can be neglected, we use dimensional analysis.

We begin with the continuity equation. The first step in dimensional analy-
sis is to choose the characteristic values. We choose these values so that the
resulting nondimensional derivatives in Equation 8.397 will be scaled to O(1)
(order of magnitude 1) because both derivatives are important. Thus, to scale
the x1-component of velocity, we choose the maximum 1-direction velocity in
the boundary layer, which is the free-stream velocity U = v∞ (Figure 8.46). The
distance over which the 1-velocity changes in the flow direction is unknown; we
designate this distance L . The distance over which this velocity changes in the
x2-direction is the height of the boundary layer δ. We choose, therefore, two char-
acteristic lengths—δ for x2 and L for x1—because the velocity varies differently
in the two directions.

The two velocity components of flow near a surface are very different in size;
therefore, they merit separate characteristic values. For the x1-direction velocity,
we choose a characteristic velocity U = v∞ as discussed previously; for the x2-
direction velocity, we designate V as the characteristic velocity. We refer to the
governing equations for guidance on how the various lengthscales and velocity
scales interrelate. The characteristic pressure is designated P .

Beginning with the continuity equation (see Equation 8.397), we nondimen-
sionalize as usual:

v∗
1 ≡ v1

U
(8.400)

v∗
2 ≡ v2

V
(8.401)

∂v1

∂x1
+ ∂v2

∂x2
= 0 (8.402)

U

L

∂v∗
1

∂x∗
1

+ V

δ

∂v∗
2

∂x∗
2

= 0 (8.403)

(
Uδ

V L

)
∂v∗

1

∂x∗
1

+ ∂v∗
2

∂x∗
2

= 0 (8.404)
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A dimensionless group appeared in the continuity equation: Uδ/V L . If this
dimensionless group is small, then v2 is not a function of x2. Because v2 is zero
at the boundary, this means that v2 is zero everywhere. This is not the result
anticipated because boundary layers are known to grow in the flow direction. If
Uδ/V L is large, then v1 is not a function of x1—the position variable in the flow
direction. Again, we believe that this is incorrect, as discussed previously. Our
conclusion, therefore, is that Uδ/V L must be of order 1 (O(1)), and we can use
this fact to define V with respect to the other variables:

Choose:
Uδ

V L
= 1 (8.405)

Scaled continuity equation
in boundary layer:

∂v∗
1

∂x∗
1

+ ∂v∗
2

∂x∗
2

= 0 (8.406)

Characteristic
velocity for v2:

V = Uδ

L
(8.407)

The result for V is a characteristic velocity in the x2-direction that is proportional
to the characteristic velocity in the main (x1-) direction but much smaller (V =
Uδ/L).

The 1-component of the Navier-Stokes (see Equation 8.399) likewise can be
nondimensionalized:

ρ

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= − ∂P

∂x1
+ μ

(
∂2v1

∂x2
1

+ ∂2v1

∂x2
2

)
(8.408)

ρU 2

L
v∗

1

∂v∗
1

∂x∗
1

+ ρV U

δ
v∗

2

∂v∗
1

∂x∗
2

= P

L

(
−∂P∗

∂x∗
1

)
+ μU

L2

∂2v∗
1

∂x∗2
1

+ μU

δ2

∂2v∗
1

∂x∗2
2

(8.409)

ρU 2

L

(
v∗

1

∂v∗
1

∂x∗
1

+ v∗
2

∂v∗
1

∂x∗
2

)
= P

L

(
−∂P∗

∂x∗
1

)
+ μU

L2

∂2v∗
1

∂x∗2
1

+ μU

δ2

∂2v∗
1

∂x∗2
2

(8.410)

We know that v∗
1 is a strong function of x∗

2 and the ∂2v∗
1/∂x∗2

2 term is therefore a
significant term; thus, we divide through by the coefficient of this term, leaving
this term with a coefficient of 1:

ρUδ2

μL

(
v∗

1

∂v∗
1

∂x∗
1

+ v∗
2

∂v∗
1

∂x∗
2

)
= Pδ2

μU L

(
−∂P∗

∂x∗
1

)
+
(

δ

L

)2 ∂2v∗
1

∂x∗2
1

+ ∂2v∗
1

∂x∗2
2

(8.411)

The coefficient of the inertial terms is ρUδ2/μL . If this quantity is large, the
inertial terms dominate; if this quantity is small, the viscous terms dominate.
Because we seek a solution in a regime where neither inertial nor viscous terms
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dominate, we set this coefficient to 1 and use it to define the behavior of δ:

Choose:
ρUδ2

μL
= 1 (8.412)

Characteristic
lengthscale

in x2-direction
(boundary-layer height):

δ =
(

μL

ρU

) 1
2

(8.413)

The boundary-layer thickness δ thus defines the region of the flow in which neither
inertial nor viscous forces dominate the flow physics. If we define a Reynolds
number based on the principal velocity v1 and the flow-direction lengthscale L:

ReL ≡ ρU L

μ
(8.414)

we can write the boundary-layer thickness as:

δ = L

(ReL )
1
2

(8.415)

Returning to Equation 8.411, the coefficient of the pressure-gradient term
contains δ2; substituting the scaling of δ (Equation 8.413) into the pressure
coefficient in Equation 8.411, we obtain:

Coefficient of
pressure-gradient term:

Pδ2

μU L
= P

ρU 2
(8.416)

Following our usual practice when we want to retain a term, we set this coefficient
equal to 1 and define P = ρU 2, a characteristic pressure based on the inertia of
the free stream. The 1-component of the Navier-Stokes now becomes:

v∗
1

∂v∗
1

∂x∗
1

+ v∗
2

∂v∗
1

∂x∗
2

= −∂P∗

∂x∗
1

+
(

δ

L

)2 ∂2v∗
1

∂x∗2
1

+ ∂2v∗
1

∂x∗2
2

(8.417)

The boundary-layer thickness δ is known to be very small compared to any
macroscopic lengthscale in the flow direction; in addition, the nondimensional
second derivative ∂2v∗

1/∂x∗2
1 was scaled to be O(1)—thus, the ∂2v∗

1/∂x∗2
1 term

may be neglected. Omitting this term yields the properly scaled 1-component of
the Navier-Stokes equation for boundary layers:

Scaled Navier-Stokes
in boundary layer
(1-component):

v∗
1

∂v∗
1

∂x∗
1

+ v∗
2

∂v∗
1

∂x∗
2

= −∂P∗

∂x∗
1

+ ∂2v∗
1

∂x∗2
2

(8.418)

This result is consistent with the result obtained in Example 8.19 for a flat-plate.
Compared to the flat-plate result, however, in this general solution the pressure
gradient is retained.

We see from these calculations that from basic knowledge about how the
flow in the boundary layer behaves, we can establish the correct scaling fac-
tors for the flow. Equation 8.404 states that v2 must vary with x2 and v1 must

www.20file.org

http://www.semeng.ir


704 An Introduction to Fluid Mechanics

vary with x1; therefore, scale factors V and δ must be related as given in Equa-
tion 8.407. Equation 8.411 states that neither inertia nor viscosity dominate the
momentum balance in the boundary layer; thus, δ and ReL are related as given
in Equation 8.415. The scaled x1-component of the Navier-Stokes equation in
Equation 8.418 comes together with no additional assumptions.

We also can nondimensionalize the x2-component of the Navier-Stokes equa-
tion (see Equation 8.399), using the same characteristic values that we have
established for the problem. Recall that V = Uδ/L and P = ρU 2:

ρ

(
v1

∂v2

∂x1
+ v2

∂v2

∂x2

)
= − ∂P

∂x2
+ μ

(
∂2v2

∂x2
1

+ ∂2v2

∂x2
2

)
(8.419)

ρU V

L
v∗

1

∂v∗
2

∂x∗
1

+ ρV 2

δ
v∗

2

∂v∗
2

∂x∗
2

= P

δ

(
−∂P∗

∂x∗
2

)
+ μV

L2

∂2v∗
2

∂x
2

1

+ μV

δ2

∂2v∗
2

∂x∗2
2

(8.420)

ρU 2δ

L2

(
v∗

1

∂v∗
2

∂x∗
1

+ v∗
2

∂v∗
2

∂x∗
2

)
= ρU 2

δ

(
−∂P∗

∂x∗
2

)
+ μUδ

L3

∂2v∗
2

∂x∗2
1

+ μU

δL

∂2v∗
2

∂x∗2
2

(8.421)

Dividing through by the coefficient of the pressure-gradient term and eliminating
all viscosities μ in favor of δ (μ = δ2ρU/L), we obtain:

δ2

L2

(
v∗

1

∂v∗
2

∂x∗
1

+ v∗
2

∂v∗
2

∂x∗
2

)
= −∂P∗

∂x∗
2

+ δ4

L4

(
∂2v∗

2

∂x∗2
1

)
+ δ2

L2

(
∂2v∗

2

∂x∗2
2

)
(8.422)

Solving for nondimensional pressure gradient:

Scaled
Navier-Stokes

in boundary layer
(2-component):

∂P∗

∂x∗
2

= δ2

L2

(
δ2

L2

∂2v∗
2

∂x∗2
1

+ ∂2v∗
2

∂x∗2
2

− v∗
1

∂v∗
2

∂x∗
1

− v∗
2

∂v∗
2

∂x∗
2

)

(8.423)

Equation 8.423 shows an important result. Each of the nondimensional derivative
terms was scaled carefully to be of O(1). Every term is multiplied by δ2/L2

(or δ4/L4), which is a very small number. Thus, we may conclude that the
nondimensional pressure gradient in the x2-direction is zero; that is, there is no
variation of dynamic pressure P in the direction normal to the surface:

Scaled Navier-Stokes
in boundary layer

(x-component, all shapes):

∂P∗

∂x∗
2

= 0 (8.424)

This is the same assumption we made in Example 8.19 for a flat plate, and we
find it again here for any obstacle shape. This is a key component of boundary-
layer theory. Combining dimensional-analysis results, we obtain the simplified
nondimensional equations that govern the flow in the viscous boundary layer.
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Governing Equations in Boundary Layer (Arbitrary Shape, Thin Layer)

Scaled continuity equation
in boundary layer:

∂v∗
1

∂x∗
1

+ ∂v∗
2

∂x∗
2

= 0 (8.425)

Scaled Navier-Stokes
in boundary layer
(1-component):

v∗
1

∂v∗
1

∂x∗
1

+ v∗
2

∂v∗
1

∂x∗
2

= −∂P∗

∂x∗
1

+ ∂2v∗
1

∂x∗2
2

(8.426)

Scaled Navier-Stokes
in boundary layer
(1-component):

∂P∗

∂x∗
2

= 0 (8.427)

The formal dimensional analysis confirms the ordering performed on the flat-
plate problem in Example 8.19. For the flow past obstacles other than a flat plate,
P is a function of x1 outside the boundary layer and the term ∂P/∂x1 becomes
prominent. We obtain ∂P/∂x1 from the potential-flow solution of the flow past
an obstacle of interest. We use these governing equations in Example 8.23 in a
solution for boundary-layer flow past a sphere.

8.2.3 Flow past blunt objects

In this chapter, we discuss external flows. We began with the skydiver problem,
which was modeled as a sphere falling in a viscous liquid. We found that we could
solve the flow-past-a-sphere problem in the creeping-flow limit (no inertia), but
the terminal speed we calculate for the skydiver assuming creeping flow is wildly
incorrect. For further insight on rapid flows past objects, we turned to dimensional
analysis and correlations from experimental sphere data, and we arrived at a value
of the terminal velocity for the skydiver that was within a factor of 2 of the correct
speed. This is excellent agreement considering that we modeled the shape of a
skydiver as a sphere, which is a rough approximation.

To further improve our calculations on flow past an obstacle, we moved on
to investigate the different flow regimes seen in flow past a sphere. Experiments
outside the creeping-flow limit show that with increasing Reynolds number,
recirculation appears on the trailing side of the sphere, followed by development
of an oscillatory wake. Ultimately, boundary-layer flow and fully turbulent wake
are observed behind the sphere. We cannot calculate this behavior with either
creeping-flow or potential-flow models.

Following a different approach, called the boundary-layer method, we investi-
gated rapid flows near surfaces and found that we could predict velocity fields in
laminar boundary layers on flat plates. Furthermore, through dimensional analy-
sis and experiments, we found that we could correlate flat-plate boundary-layer
data outside of the laminar regime. The resulting plot of drag coefficient versus
Reynolds number for flat plates provides a complete picture of the drag/flow-rate
relationship in that flow. Figure 8.44 is a flat-plate analog to the pipe-flow Moody
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chart for the Fanning friction factor versus Reynolds number. The pressure is
constant in flow past a flat plate.

Flow past a three-dimensional object is more complex than flow past a plate,
however, because there is a distribution of pressure in such flows. The boundary-
layer method is still applicable in these cases; the only adjustment is that the outer-
flow pressure distribution must be included when the boundary-layer equations
are solved. The pressure distribution in flow past an obstacle is obtained from
the potential-flow solution for the situation of interest. In uniform potential flow
around an obstacle, the flow is irrotational (see Problem 53, Equation 8.480,
and discussion in Example 8.25), and the pressure distribution may be calculated
with the Bernoulli equation. The Bernoulli states that where flow speeds increase,
pressure must decrease, and when flow speeds decrease, pressure must rise.

We now have the tools to address the high-Re sphere problem with the
boundary-layer method. The pressure distribution for potential flow around a
sphere was calculated in Example 8.9 (see Equation 8.239). In Example 8.23,
this pressure distribution is imposed on the boundary layer near a sphere to obtain
results for the velocity field within the sphere’s boundary layer. Example 8.23 is
a first step toward calculating the effects of object shape on external flows. In that
example, we see striking effects that demonstrate that rising pressure in the flow
direction has a profound effect on boundary layers. As mentioned previously, it
turns out that positive pressure gradients from the outer flow—which are created
by the shape of the object—are the source of much of the remaining unexplained
flow complexity in flows around obstacles.

EXAMPLE 8.23 (Sphere, concluded). Calculate the steady-state velocity field
for the flow of an incompressible viscous fluid near the surface of a solid sphere
of diameter 2R. The fluid approaches the sphere with a uniform upstream velocity
v∞. The geometry is the same as in the creeping-flow and potential-flow calcula-
tions (see Figure 8.5), but in this problem, the flow is not slow (i.e. the Reynolds
number is finite) and viscosity may not be neglected (μ �= 0). A known pressure
distribution in the flow direction is imposed at the edge of the boundary layer.
The imposed pressure distribution is the pressure distribution of potential flow
around a sphere (see Equation 8.239).

SOLUTION. We started this problem in Example 8.16. There, we assumed that
density is constant, the φ-component of the velocity is zero, and the flow is steady
and symmetrical in the φ-direction:

v =
⎛
⎝ vr (r, θ )

vθ (r, θ )
0

⎞
⎠

rθφ

(8.428)

We also assumed that we could confine our calculations to the boundary layer
at the surface, with the pressure from the potential-flow solution imposed as a
boundary condition. The spherical geometry is a complication, and we since have
learned that because the boundary layer is thin, we can model the flow domain as
a flat plane using local Cartesian coordinates xyz (Figure 8.47). For these local
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x

y

z

Figure 8.47 For the very thin layer of fluid near the surface of the sphere, the curvature can be neglected and the equations
analyzed in Cartesian coordinates. This is analogous to using Cartesian coordinates on Earth’s surface rather than
spherical coordinates.

coordinates and incorporating our assumptions thus far, the governing equations
become:

Continuity equation:
∂vx

∂x
+ ∂vy

∂y
= 0 (8.429)

Navier-Stokes: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + μ∇2v (8.430)

ρv · ∇v = −∇P + μ∇2v (8.431)

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vx
∂vx

∂x
+ vy

∂vx

∂y

vx
∂vy

∂x
+ vy

∂vy

∂y

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

xyz

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂P
∂x

−∂P
∂y

−∂P
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

+ μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2vx

∂x2
+ ∂2vx

∂y2

∂2vy

∂x2
+ ∂2vy

∂y2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

(8.432)

Incorporating the usual boundary-layer approximations (see Equation 8.337),
all of the velocity gradients in the y-component of the Navier-Stokes equation
are neglected, leaving zero pressure gradient in the y-direction (∂P/∂y) and the
x-component simplifies by the omission of one term, ∂2vx/∂x2. The system of
equations to solve for vx (x, y) and vy(y) becomes:

∂vx

∂x
+ ∂vy

∂y
= 0 (8.433)

ρ

(
vx

∂vx

∂x
+ vy

∂vx

∂y

)
= ξ (x) + μ

∂2vx

∂y2
(8.434)

where ξ (x) = − ∂P
∂x is a known function obtained from P(r, θ )|r=R in the

potential-flow solution to flow around a sphere, as discussed now.
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x

R
x

θπ − θ

R(π − θ)

Figure 8.48 We can relate the spherical coordinate system to the near-surface Cartesian system through geometry.

The outer-flow pressure distribution for potential flow around a sphere is given
in Equation 8.239. Note that the solution is expressed in the spherical coordinate
system used in the potential-flow problem:

P(r, θ ) = P∞ + 1

2
ρv2

∞

[
2
(

R

r

)3 (
1 − 3

2
sin2 θ

)
−
(

R

r

)6 (
1 − 3

4
sin2 θ

)]

(8.435)

At the surface of the sphere (r = R), this becomes:

P(r, θ )|r=R = P∞ + 1

2
ρv2

∞

[
1 − 9

4
sin2 θ

]
(8.436)

To use this result in our near-surface solution, we translate the spherical
coordinate-system variable θ into the near-surface Cartesian coordinates we are
using. Figure 8.48 shows that we can write:

arc length = (radius) (included angle) (8.437)

x = R (π − θ) (8.438)

sin
(

x

R

)
= sin(π − θ) = sin θ (8.439)

Substituting this into the pressure distribution, we now calculate ξ (x) (Fig-
ure 8.49).

P(x) = P∞ + 1

2
ρv2

∞

[
1 − 9

4
sin2

(
x

R

)]
(8.440)

ξ (x) = −∂P
∂x

(8.441)

ξ (x) = 9ρv2
∞

4R
sin
(

x

R

)
cos
(

x

R

)
(8.442)

The governing equations can be solved using a mathematical software pack-
age [94, 180]. The boundary conditions on velocity are the usual ones: no-slip
and no-penetration at the sphere surface and matching the free-stream velocity at
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Figure 8.49 The calculated velocity profile for potential flow around a sphere has regions of negative and positive pressure
gradient. When the pressure gradient is negative, conditions are favorable to boundary-layer attachment because
the pressure gradient helps to push the flow forward. When the pressure gradient is positive, the conditions are
unfavorable to boundary-layer attachment.

large distances from the sphere and as the fluid enters the boundary layer:

No-slip: y = 0 vx = 0 (8.443)

Match outer flow: y = ∞ vx = v∞ (8.444)

No-penetration: y = 0 vy = 0 (8.445)

Match at entrance: x = 0 vx = v∞ (8.446)

The solutions for vx (y, θ̃) [147, 149] are plotted in Figure 8.50, where θ̃ =
(π − θ) = (x/R) is the angle measured clockwise around the origin as the fluid
proceeds around the sphere (see Figure 8.48). The shape of the velocity profile
at the upstream stagnation point (θ̃ = 0, bottom curve) is familiar from our
discussion of flow in the boundary layer along a flat plate: The no-slip boundary
condition is respected at y = 0, and the velocity increases as we move away from
the wall (increasing y), reaching the free-stream velocity v∞ at a value of the
dimensionless scaled variable ζ̃ = y/R

√
v∞ R/ν of about 1.5.

Looking at the solution vx (y, θ̃) at various positions θ̃ on the sphere sur-
face, we see that the shape of the velocity profile changes as the flow proceeds
around the sphere. The value of ζ̃ at which the velocity reaches the free-stream
value increases with increasing θ̃ , reaching ζ̃ = 3 at the largest angle computed,
θ̃ = 109.6 degrees. Close to the wall, the slope of the velocity profile dvx/dy
decreases steadily as the flow moves around the sphere. The slope begins at a
finite value of about 1.6 but, at the last value of θ̃ shown, the velocity gradient

near the wall approaches zero
(

dvx
dy

∣∣∣∣
θ̃=109.6◦

= 0.1
)

.

The variable pressure gradient imposed from the outer flow is the cause of
the position-dependent changes in velocity-profile shape (Figure 8.51). The

www.20file.org

http://www.semeng.ir


710 An Introduction to Fluid Mechanics

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0

109.6
100
90
75
50
0

o

o

o

o

o

o

v Ry
R

ρ
μ

∞

xv
v∞

ξ =

θ
∼

Figure 8.50 The solution in the boundary layer for flow around a sphere is reported in Schlichting [148, page 238].

pressure gradient (Equation 8.442) is negative on the leading side of the sphere
and therefore drives the flow forward and adds to the inertia of the fluid. As
usual, the presence of the wall retards the fluid near the wall, but the imposed
high upstream pressure helps to replace some of this lost fluid momentum and
pushes the fluid forward.

The magnitude of the favorable pressure gradient falls with increasing θ̃ ,
however; finally, at θ̃ = 90◦ = π/2, the imposed pressure gradient is zero

x

P(x)

pressure
pushes flow along

pressure retards
the flow + causes reversal

separation

Vx(x,y)

x

Figure 8.51 Boundary-layer separation is caused by rising pressure in the direction of flow in the boundary layer. In modeling
calculations of this flow, the pressure distribution is imposed on the boundary layer by the outer flow (inviscid).
The shape of the object determines the pressure profile, which can fall or rise. Falling pressure does not cause any
difficulties; rising pressure, however, slows the flow in the boundary layer and can cause flow reversal near the
surface.
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Boundary layer li�s from 
the sphere surface

Figure 8.52 When the imposed pressure from the free stream rises in the flow direction (adverse pressure gradient), the
boundary-layer character of the flow ends at a point called the separation point. Beyond this point, the boundary
layer is no longer attached to the wall and a stagnant region with recirculation forms.

(−∂P/∂x = ξ (Rπ/2) = 0). From this point forward (θ̃ > 90◦), the pressure gra-
dient is positive, and the forces from the imposed pressure now are pushing the
flow in the opposite direction, working against the fluid inertia. Eventually, the
inertia runs out, and the pressure wins. As a consequence, the flow near the wall—
which was always the slowest flow in the boundary layer—stops. The location
where the flow in the boundary layer stops and subsequently reverses direction is
called the separation point.

When the flow near the wall stops and reverses, the flow pattern looks like
the boundary layer has lifted off of the surface and joined the outer stream
(Figure 8.52). The calculations described here cannot tell us what happens in the
flow after flow separation occurs because the assumptions used to simplify the
governing equations are no longer valid in separated flow. In particular, once
the flow has separated, the pressure distribution near the sphere is no longer given
by the potential-flow result, as we discuss now.

Although we cannot calculate the velocity profile near the sphere past the
separation point, this does not prevent us from calculating drag on the sphere
from our boundary-layer analysis. The drag on the sphere is calculated in
the usual way, from an integration over the wetted surface of n̂ · �̃ at the surface
(Equation 8.6):

Total molecular fluid
force on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (8.447)

Total fluid force
on the sphere in

noncreeping flow:
F =

∫ 2π

0

∫
ˆ

π

0
[er · �̃]r=R R2 sin θdθdφ (8.448)

=
∫ 2π

0

∫ π

0

⎛
⎝ (τ̃rr − P)|r=R

τ̃rθ |r=R

τ̃rφ

∣∣∣
r=R

⎞
⎠

rθφ

R2 sin θdθdφ

(8.449)
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We include the effect of gravity by substituting P for p in the expression for
the stress components. The drag is given by the z-component of this expression,
which we obtained previously (see Example 8.2) by converting all three basis
vectors êr , êθ , and êφ to Cartesian coordinates and then taking the z-component.
We also can obtain the z-component by writing êz in the rθφ-coordinate system
and carrying out the dot product with the fluid force written in the same coordinate
system. We follow this approach here:

Fdrag = Fz = êz · F (8.450)

=

⎛
⎜⎝

cos θ

− sin θ

0

⎞
⎟⎠

rθφ

·

⎛
⎜⎝

Fr

Fθ

Fφ

⎞
⎟⎠

rθφ

(8.451)

= cos θFr − sin θFθ (8.452)

Fdrag =
∫ 2π

0

∫ π

0
(τ̃rr − P)|r=R cos θ R2 sin θdθdφ

+
∫ 2π

0

∫ π

0
τ̃rθ |r=R (− sin θ) R2 sin θdθdφ (8.453)

Fdrag =
∫ 2π

0

∫ π

0
−P|r=R cos θ R2 sin θdθdφ

+
∫ 2π

0

∫ π

0
[τ̃rr cos θ − τ̃rθ sin θ]r=R R2 sin θdθdφ (8.454)

=
⎛
⎝ pressure

contribution
to drag

⎞
⎠+

⎛
⎝ viscous

contribution
to drag

⎞
⎠ (8.455)

=
(

form
drag

)
+
(

skin-friction
drag

)
(8.456)

Equation 8.454 shows that we can calculate the drag on the sphere from two
contributions: (1) the pressure distribution around the sphere (i.e., the true, flow-
separated pressure distribution, not the potential-flow distribution, which gives
zero pressure drag); and (2) the stress distribution near the surface, which is
calculable from the boundary-layer velocity results.

The pressure contribution to drag on a sphere sometimes is called the form
drag because the asymmetry in the pressure distribution caused by flow sep-
aration is a function of the shape or form of an obstacle. Form drag cannot
be calculated from the current results because the true pressure profile in the
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Figure 8.53 Pressure profiles in the flow past a cylinder. Boundary-layer separation leads to a low-pressure pocket behind blunt
objects [178]. The overall pressure distribution in separated flow is asymmetric, and this configuration leads to
drag through the pressure contribution to drag described in Equation 8.454.

separated flow is not obtained. If, however, experiments are conducted that
give the pressure distribution (see Figure 8.53 for flow around a cylinder),
the form drag may be calculated from the data by evaluating the first term in
Equation 8.454.

The viscous or skin-friction contribution to drag on a sphere can be calculated
from our velocity results. Focusing then on the second term of Equation 8.454, we
first note that the flow is assumed to be symmetrical in the φ-direction, allowing
us to carry out the φ-integration:

(
skin-friction

drag

)
=
∫ 2π

0

∫ π

0
[τ̃rr cos θ − τ̃rθ sin θ]r=R R2 sin θdθdφ (8.457)

= 2π R2
∫ π

0
[τ̃rr cos θ − τ̃rθ sin θ]r=R sin θdθ (8.458)

The remaining θ-integration is over two stress components, τ̃rr and τ̃rθ ; the
stress τ̃rr is zero at the surface because the boundary-layer solution for vy shows
that τ̃rr (θ)|r=R = τ̃yy(x)

∣∣∣
y=0 = 0. The stress τ̃rθ is nonzero at the sphere surface

and must be integrated. Finally, the limits of the integration should be modified
to take into account flow separation. When the boundary layer separates from
the surface, a slow recirculating region is observed on the lee side of the sphere,
and the skin friction is assumed to be approximately zero in this region. Thus, to
calculate the skin-friction drag, we integrate the shear stress at the surface from
the separation point (θ = π − θ̃max ) to where the flow first impacts the sphere,
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the forward stagnation point (θ = π ):(
skin-friction

drag

)
= 2π R2

∫ π

0
[τ̃rr cos θ − τ̃rθ sin θ]r=R sin θdθ (8.459)

= 2π R2
∫ π

π−θ̃max

− τ̃rθ (θ)|r=R sin2 θdθ (8.460)

= 2π R2
∫ π

π−θ̃max

− τ̃yx

∣∣∣∣
y = 0
x = R(π − θ )

sin2 θdθ (8.461)

The required stress components may be obtained from the constitutive equation

and the velocity solution. The integration may be performed numerically.

Although not without limitations, Prandtl’s basic boundary-layer analysis has
brought us a long way. From the results of this analysis, we become aware of
an important aspect of flow past obstacles: Adverse (rising) pressure gradients
cause fluid-layer separation. Fluid-layer separation has the important effect of
altering the pressure distribution in the flow from what would be expected from
potential-flow theory: The low pressures on the lee side (i.e., separated side)
of obstacles fail to balance the high pressures on the windward side of the
obstacle, producing an asymmetric pressure profile and a large drag due to the
unbalanced forces. Measured pressure distributions for laminar and turbulent
flow past a cylinder are shown in Figure 8.53. A pressure minimum is observed
ahead of the sphere equator (θ = 90◦) for both flow regimes, and—although
there is some pressure recovery after the minimum—the pressure downstream of
the sphere never returns to upstream pressure levels, and the pressure profile is
asymmetric.

The result in Equation 8.454 confirms that drag has two contributions: viscous
and pressure drag (see Figure 8.35). The amount of friction drag produced by
an obstacle versus how much pressure drag is produced depends on the object’s
shape. For example, the drag on a flat plate is pure friction drag because the
pressure is everywhere constant. The drag on a cylinder is almost purely pressure
drag (drag on a cylinder is about 3 percent friction drag [178]). We can see the
effect of object shape on drag in Figure 8.54, which portrays the relative amount
of friction drag versus pressure drag produced by an object called a streamlined
cylinder, which is a cylinder altered to have a tapered shape on its lee side. When
the thickness t of the object is small compared to the length of the tail measured
by its chord length c, the object is essentially a flat plate and all the drag is friction
drag. When t/c is about 1, the streamlined cylinder is approximately a cylinder,
and the pressure drag dominates the drag. Between these two shapes, the ratio
of the friction drag to the pressure drag drops gradually and smoothly from 1 to
zero as the ratio t/c goes from zero to 1.

The process of modifying body shape to reduce pressure drag is called stream-
lining, which works by delaying and eliminating boundary-layer separation.
Boundary-layer separation, we now know, is affected by the shape of the body;
specifically, long flat bodies do not exhibit flow separation and blunt objects
always exhibit flow separation. By changing the shape of an obstacle, we change
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Figure 8.54 A cylinder modified to have a tapered back section is known as a streamlined cylinder. As the shape of the
streamlined cylinder changes from essentially a flat plate to a conventional cylinder, the drag produced by the
object switches from pure friction drag to essentially pure pressure drag [178]. The scatter in the data is represented
by the line thickness.

the pressure distribution in the outer flow. Shape changes that eliminate adverse
pressure gradients or that make more gradual the rising pressure on the backside
of the obstacle eliminate or delay boundary-layer separation.

Streamlining does not reduce drag due to viscosity, however; in fact, stream-
lining typically increases the surface area in contact with fluid, thereby increasing
viscous drag. Streamlining nevertheless is beneficial because the enormous reduc-
tion of pressure drag that results when boundary-layer separation is avoided more
than compensates for the slightly increased viscous drag associated with making
an object more streamlined. Figure 8.55 shows two objects, drawn to scale, that
have the same amount of drag. Although the streamlined shape is much larger
than the small blunt circular shape, the streamlined object has relatively little drag
for its size because in the flow around it boundary-layer separation is avoided.

Another curious observation is that turbulent boundary layers are better able to
resist boundary-layer separation than laminar boundary layers. The extra stabil-
ity of turbulent boundary layers relative to flow separation means that the wake
behind a sphere is more narrow when a turbulent boundary layer has separated

circular cylinder

d

L

υ∞

υ∞

Figure 8.55 A small wire, which is a blunt object, generates as much drag as a much larger streamlined object (airfoil NACA
634 − 021; L = 167d ) [147, 149]. See [113] for a demonstration of this effect.
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than when a laminar boundary layer separates. The turbulent boundary layer
separates farther back along the sphere surface because the turbulent flow in
the boundary layer is better able to accommodate itself to the adverse pressure
gradient that causes flow separation. Two reasons are cited most commonly as
accounting for the turbulent boundary layer’s robustness in the face of adverse
pressure gradients. First, there is more momentum near the wall in a turbulent
boundary layer due to the mean shape of turbulent boundary layers (see Fig-
ure 8.43). This configuration protects the boundary-layer momentum, in a sense,
from the influence of the outer flow. Second, the three-dimensional fluctuations
that occur in turbulent boundary layers contain significant energy that helps the
boundary layer to resist the decelerating effects of an adverse pressure gradient.

For blunt objects, the drag coefficient is insensitive to the effect of Reynolds
number above a certain threshold (i.e., Newton’s drag law regime; see Fig-
ure 8.12). Why this is so is easily understood in terms of the flow-separation
concepts discussed previously. Total drag is generated from two sources: pres-
sure asymmetry and viscosity. Viscous drag is calculated from an integration
of velocity gradients near the surface of an object; therefore, viscous drag is a
function of the Reynolds number: The speed of the flow affects the magnitude
of the velocity gradients near the surface, which increases viscous drag. Pressure
drag does not depend on the Reynolds number, however. Once the boundary
layer has separated, the pressure profile does not change any more with increas-
ing Reynolds number. The overall drag for a blunt object is primarily pressure
drag, which is independent of the Reynolds number. This is true provided that
the boundary layer has separated. Because most objects are blunt, a single value
of drag coefficient is all that is needed to calculate the drag in flow past most
objects. Tables of (constant) drag coefficients for a variety of blunt objects are in
the literature [63].

A skydiver falling through the air is an approximately streamlined object when
her arms and legs are pulled in and is more blunt when her arms and legs are
flung out. In the following example, we return to the skydiver problem to settle a
final question that was asked in that problem: What is the effect of body position
on the drag on a skydiver?

EXAMPLE 8.24 (Skydiver, concluded). What is the maximum speed reached
by a skydiver who jumps out of an airplane at 13,000 feet? How much can the
speed of the skydiver vary depending on her body position (i.e., arms and legs
flung out or pulled in tightly)?

SOLUTION. We learned from our study of spheres that flow around a blunt object
forms a boundary layer on the upstream side of the object, and the boundary layer
separates from the surface when the pressure begins to rise at the widest part the
object. The skydiver is a blunt object moving through a fluid, and we expect the
same type of flow around her.

The drag on a blunt object is dominated by the pressure drag due to flow
separation. Because the pressure distribution around a blunt object is insensitive
to Reynolds number, pressure drag is independent of Reynolds number and a
single value of drag coefficient is sufficient to describe the drag on blunt objects.
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We can estimate the effect of the skydiver’s posture on her terminal speed by
making terminal-speed calculations with drag coefficients from two different
shapes: one that mimics the pulled-in-tight posture (a rectangular solid in the
shape of a person, CD = 0.5, Ap = 0.111 m2) and one that mimics the arms-
flung-out posture (a flat disk, CD = 1.17, Ap = 0.84 m2) [63].

We previously obtained the terminal velocity of an object of arbitrary shape as
follows (Equation 8.95):

Terminal speed
of a blunt object

(arbitrary regime of Re):
v∞ = V =

√
2V(ρbody − ρ)g

ρ ApCD
(8.462)

where v∞ is the terminal speed, V is the volume of the object, ρbody is the density
of the object, g is the acceleration due to gravity, ρ is the density of air, Ap is the
reference area for the chosen shape (projected area in the direction of motion),
and CD is the drag coefficient of the chosen shape. For the volume of the body,
we assume our skydiver to be h = 1.78 m tall, and we calculate her volume as
V = Aph based on the Ap of the rectangular solid shape.

Using the same original values of the physical parameters as in Example 8.3,
we estimate the terminal speed:

Density of air: ρ = 1.3 kg/m3 (8.463)

Density of human (water): ρbody = 1,000 kg/m3 (8.464)

Acceleration due to gravity: g = 9.80 m/s2 (8.465)

Bullet shape: CD = 0.5, Ap = 0.111 m2 (8.466)

Disk shape: CD = 1.17, Ap = 0.84 m2 (8.467)

With these parameter values, we obtain the terminal speeds as:

Estimate of fastest terminal speed:
(arms and legs pulled in; rectangular solid)

V = 170 m/s (8.468)

Estimate of slowest terminal speed:
(arms and legs flung out; disk)

V = 55 m/s (8.469)

The estimate using the drag coefficient of the disk is the same as the belly-to-
Earth estimates of terminal skydiver speeds from the Internet. The terminal speed
estimate for the pulled-in-tight posture is too high (i.e., terminal speed ≈ 90 m/s
for this position). The two estimates bracket the original estimate (107 m/s),
which used a sphere as the shape of the skydiver. By varying how spread out she
is, the skydiver can vary her speed of descent by a factor of 2 or so.

This concludes our introduction to external flow. The physics of fluid flow is
captured by the continuity equation and the Navier-Stokes equation, but these
equations are so mathematically complex that we can solve them analytically
only in certain cases. In this and in the previous chapter, we studied several
cases of relatively simple flows: flows in which viscosity dominates (i.e., laminar
flow and creeping flow) and in which inertia dominates (i.e., turbulent pipe flow
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and potential flow). The boundary-layer method of Prandtl is a first foray into
the study of mixed flows. Boundary-layer flow is a simplified mixed flow in
which viscous effects are confined to a small region, whereas the majority of the
flow is free from the effects of viscosity. More advanced fluid-mechanics study
continues from this point, seeking methods to obtain solutions to the Navier-
Stokes equations for mixed viscous and inertial flows. An important method for
advanced-flow analyses is tracking vorticity in mixed flows. Vorticity, which is
introduced in the next section, is a property of a flow field that helps us to study
viscous and inertial interactions in flows.

8.3 More complex external flows

We completed our studies of flow basics in external flows and now move on to
study more complex flows. In Section 8.3.1, we introduce and motivate the use of
vorticity to study complex flows. In Section 8.3.2, we revisit dimensional analysis
and discuss how the proper use of dimensional analysis guides us to sophisticated
techniques for the study of complex flow.

8.3.1 Vorticity

To make predictions in complex flows, we begin as usual with the governing
equations of fluid motion—the mass and momentum balances—and we make
follow-up calculations with the appropriate expressions for forces or for whatever
is of interest:

Continuity equation: ∇ · v = 0 (8.470)

Navier-Stokes equation: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + μ∇2v (8.471)

Total molecular fluid force
on a finite surface S:

F =
∫∫

S:
[n̂ · �̃]at surface d S (8.472)

With complex flows, it is difficult to solve the governing equations, especially
when both viscous and inertial effects are important. Thus far, we can solve the
Navier-Stokes equations only when we make strong simplifying assumptions,
such as creeping flow or steady, unidirectional flow (no inertia); and potential
flow (no viscosity).

We have succeeded with a flow that is somewhat complex: boundary-layer flow.
In boundary-layer flows, both viscous and inertial effects are present, but Prandtl’s
idea of incorporating viscous effects only near the wall enabled the solution of
significant problems in flows around obstacles. Many flows with mixed viscous
and inertial effects are not boundary-layer flows, however, and these problems
require a different approach. To devise a new approach, we begin by reflecting
on the types of flow patterns that have been overlooked so far. By examining the
as-yet-unsolved flow problems, we hope to discover methods and techniques that
provide understanding of them.

Figure 8.56 shows some of the flow behavior that we currently cannot predict.
In Figure 8.56a, smoke is used to visualize the flow behind a model of an
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a

b

c

Figure 8.56 There is still a significant amount of flow behavior that is difficult to predict due to the mathematical complexity of
the governing equations (the Navier-Stokes equations). In (a), a complex wake is produced immediately behind an
airplane. In (b) clouds show that a passing aircraft leaves a complex pattern over long distances; in (c) flood water
passing under a low bridge produces a whirlpool. Image credits: (a) Courtesy of NASA; (b) NASA/GSFC/JPL, MISR
Team; (c) Courtesy USGS photographer Mark Landers.

airplane in a wind tunnel. The flow is curly, complex, and three dimensional. In
Figure 8.56b, an airplane moves through clouds that show the flow pattern behind
the moving aircraft. The trail behind the plane shows that curly vortices form in
an alternating pattern behind the plane (called a von Karman vortex street) and
the vortices slowly move away from the plane’s path as they die out. In the flooded
river upstream of a bridge (see Figure 8.56c), a whirlpool forms. The whirlpool
is the top of a three-dimensional vortex caused by the water passing under the
bridge. The vortex is a flow pattern in which there is a concentrated rotational
character in a small region of fluid. Vortices form in idealized flows as well, such
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as the clockwise vortex that forms on the leeward side of a sphere at intermediate
Reynolds numbers (see Figure 8.22). These vortices are not shed from the sphere
but rather stay in place.

The flows in Figure 8.56 have in common that they exhibit a degree of rotary
motion. In flows that produce a vortex, the rotary motion present in the flow is
intense and localized. We succeeded in modeling flow around obstacles when
we (meaning Ludwig Prandtl) noticed that the effect of viscosity was localized
at solid surfaces—we could ignore viscosity away from surfaces. In flows that
produce vortices, there is a different property that is localized: rotational character.
Perhaps we can devise a boundary-layer–like approach to rotational character
and divide flows into regions that are rotational and irrotational. Following
the boundary-layer idea, we could model the rotational and irrotational parts
separately and combine the solutions where they overlap.

This is the motivation for using vorticity to model complex flows. Vorticity is a
property of a velocity field that is a measure of rotational character as a function
of position and time. Vorticity is associated with a time and a location in space:
The direction of the vorticity vector indicates the direction of the axis around
which the local velocity field tends to rotate a particle, and the magnitude of the
vorticity indicates the intensity of the rotational character of the local velocity
field. Understanding the role of vorticity and visualizing the meaning of rotational
character of a flow field can be difficult. In this section, we discuss why vorticity
is worth tracking in flows that are driven by both viscous and inertial forces.

Vorticity ω is defined as the curl10 of the fluid velocity field. Vorticity is a
vector field:

Vorticity defined
(a measure

of rotational character
of the flow field v):

ω ≡ ∇ × v (8.473)

The vector cross product is reviewed in Chapter 1 (see Equation 1.183); the curl
of the vector v is given by:

ω = ∇ × v = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ê1 ê2 ê3

∂

∂x1

∂

∂x2

∂

∂x3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(8.474)

ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v3

∂x2
− ∂v2

∂x3

∂v1

∂x3
− ∂v3

∂x1

∂v2

∂x1
− ∂v1

∂x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(8.475)

10The curl is a vector-field operator defined as ∇× a field; see [146].
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Figure 8.57 In uniform flow in a channel (a), a ping-pong ball placed in the center of the flow away from the wall does not
rotate; the flow there is free of vorticity. A spiral vortex tank (b) is a flow that is irrotational away from the drain;
however, as the fluid approaches the drain, the flow becomes intensely rotational [114, 154].

It can be shown that the magnitude of the vorticity is equal to twice the potential
rate of spin caused by the flow field [114]. The direction of the vorticity is the
local axis of potential spin; the relationship between the rotation direction of the
potential spin and the direction of the vorticity vector is dictated by the righthand
rule.

To familiarize ourselves with vorticity, we first look for flows or regions of flow
that have no vorticity (i.e., no rotational character) and those that have rotational
character. An example of a flow with no vorticity is a uniform flow away from a
wall as shown in Figure 8.57a. We can use a ping-pong ball as a rough vorticity
meter; we paint lines on the ball so that we can track its orientation. If we then
place this marked ball in uniform flow away from walls, it floats downstream
in pure translation and does not rotate. Uniform flow away from walls has no
vorticity. A surprising flow that also has no vorticity is the flow in a spiral vortex
tank (see Figure 8.57b [114]), which is a large tank full of fluid that has a tangential
inlet at the top and an outlet hole in the center of the bottom. The fluid follows
nearly circular paths as it moves toward the drain. If we place in the flow a marked
ping-pong ball or another device that is sensitive to the local rate of rotation, we
see that the ball translates in a circular path as it follows the streamlines but the
orientation remains constant (i.e., the ball does not rotate). The stillness of the
ball in terms of rotation is reminiscent of the stillness of the needle of a compass
placed on a turntable: As the compass translates in a circle, the needle always
points north. From these examples, we see that vorticity can be absent in flows
with both straight and curved streamlines.

An example of a flow with vorticity throughout is the “flow” of water in a
tank when it is located on a rotating turntable (Figure 8.58b). In a body of water
moving in rigid-body rotation, the lines on a vorticity meter (i.e., the marked
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(b)

Ω Ω
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(a)

Figure 8.58 In uniform flow in a channel (a), a ping-pong ball placed in the flow near the wall rotates due to the vorticity in the
boundary layer. Fluid in a tank that is on a rotating turntable moves in solid-body rotation (b). A marked ping-pong
ball shows that the flow has vorticity; that is, the orientation of the ball rotates as it moves along with the fluid [114,
154].

ping-pong ball) rotate with the same angular rotational speed as the tank. The
streamlines in rigid-body flow are circles, as are the approximate streamlines in
the spiral vortex tank. However, in rigid-body rotation, there is vorticity (i.e., a
local tendency to rotate), whereas in the spiral vortex tank, there is none. Another
flow with vorticity is the flow in the straight-channel boundary layer near a wall
(Figure 8.58a). Within the boundary layer, the flow is shear flow, and the faster
speed of the layers away from the wall compared to the layers near the wall
causes the vorticity meter to spin. The near-wall-flow example indicates that
having straight-line flow does not guarantee that there will be no vorticity—
flow in a boundary layer has nearly straight streamlines, yet there is vorticity.
The example in Figure 8.57b of a vorticity-free flow, the spiral vortex tank, has
vorticity in one location—the center: If we place the vorticity meter near the
center of the spiral-vortex-tank, the meter spins intensely. The spiral-vortex-tank
flow has no vorticity away from the drain and concentrated vorticity near the
drain.

In these descriptions, it is striking that the unidirectional flow past a surface
was invoked when describing flows with vorticity (i.e., the flow in the boundary
layer) as well as flows without vorticity (i.e., the flow in the free stream). This
ideal flow seems like one that we should examine more closely if we want to
understand rotational character, including how rotational character is generated
in a flow and how it propagates throughout the flow field.

In flow past a flat plate, an irrotational free-stream flow approaches a flat plate.
When the flow meets the flat plate, fluid elements that pass near the wall move
in approximately straight lines, but the flow field near the wall is shear and has
rotational character (Figure 8.59). A marked ping-pong ball placed upstream in
this flow would not begin to rotate until it encountered the boundary layer. The
question is: What is the source of this rotational character? The answer is that
it is coming from the wall. The no-slip boundary condition slows the fluid near
the wall and sets up a shear flow near the wall. This shear flow is rotational and
within the boundary layer there is vorticity.
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Figure 8.59 A marked ping-pong ball in a free stream that approaches a flat plat initially does not rotate because the uniform
upstream flow is without vorticity. As the ball reaches the plate, it eventually begins to spin due to the vorticity
produced by the no-slip boundary condition at the wall. The vorticity diffuses from the wall and also is convected
downstream by the flow.

The production and transport of vorticity in a flow can be calculated from the
Navier-Stokes equation, which is an equation for the velocity v. If we form the
cross product of ∇ with each term of the Navier-Stokes equation, we produce a
transport equation that concerns the vorticity ω = ∇ × v.

We begin by taking the curl of the Navier-Stokes equation:

Navier-Stokes equation
(microscopic-momentum balance):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + μ∇2v

(8.476)

∇ ×
[
ρ

(
∂v

∂t
+ v · ∇v

)]
= ∇ ×

[
−∇P + μ∇2v

]
(8.477)

The first term on the left becomes the time-derivative of the vorticity. The second
term is the curl of v · ∇v, which may be shown to satisfy the following identity
[6, 146]:

Vector identity: ∇ × (v · ∇v) = v · ∇ω + ω (∇ · v) − ω · ∇v (8.478)

Assuming incompressible fluid (∇ · v = 0) and substituting Equation 8.478 into
Equation 8.477, we obtain:

ρ

(
∂ω

∂t
+ v · ∇ω − ω · ∇v

)
= ∇ ×

[
−∇P + μ∇2v

]
(8.479)

Working now on the right-hand side, the pressure term is zero because the curl of
the gradient of a scalar function is zero (∇ × ∇ f = 0) [6, 146]; in the last term,
we can show that ∇ × ∇2v = ∇2(∇ × v) = ∇2ω. Both of these simplifications
result from the fact that we can carry out the spatial derivatives in any order. The
final result for the momentum balance in terms of vorticity is:

Vorticity-transport equation
(curl of Navier-Stokes;
incompressible fluid):

∂ω

∂t
+ v · ∇ω = ω · ∇v + ν∇2ω (8.480)

where ν = μ/ρ is the kinematic viscosity.
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ˆ
ˆ
In two-dimensional flows—flows that can be written as v (x1, x2) = v1e1 +

v2e2—the vorticity-transport equation has an even simpler form, as demonstrated
in the following example.

EXAMPLE 8.25. How does the vorticity-transport equation simplify in two-
dimensional flow? Comment on your results.

SOLUTION. A two-dimensional flow is one that in a Cartesian coordinate system
can be written with only two components:

v (x1, x2) =

⎛
⎜⎝

v1

v2

0

⎞
⎟⎠

123

(8.481)

Vorticity is the curl of the velocity vector; for the components given here, we
calculate ω as:

ω ≡ ∇ × v (8.482)

ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v3

∂x2
− ∂v2

∂x3

∂v1

∂x3
− ∂v3

∂x1

∂v2

∂x1
− ∂v1

∂x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

∂v2

∂x1
− ∂v1

∂x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

123

(8.483)

This equation indicates that for any two-dimensional flow, the vorticity at every
location is perpendicular to the plane of the flow. This means that at every point,
the tendency of the flow field to rotate fluid particles always produces rotation in
the x1-x2-plane (i.e., around the x3 axis).

The vorticity-transport equation is given by Equation 8.480:

Vorticity-
transport
equation:

∂ω

∂t
+ v · ∇ω = ω · ∇v + ν∇2ω (8.484)

For steady flow, the time-derivative is zero. For two-dimensional flow, we can use
matrix calculations to show that the first term on the right-hand side also is zero
(see Problem 55). The vorticity-transport equation for steady two-dimensional
flow past a flat plate becomes:

Vorticity-transport equation
(steady, two-dimensional, incompressible):

v · ∇ω = ν∇2ω (8.485)

v · ∇ω = ν∇2ω (8.486)

The second equation for the scalar ω is the 3-component and only nonzero
component of Equation 8.485, where ω = ω3 is the magnitude of the vorticity.

The vorticity-transport equation indicates how vorticity moves around in a
flow. There are two terms in the vorticity-transport equation for steady two-
dimensional flow (Equation 8.485). On the left is the convective term. Vorticity
can be transported by flow from one location to another much like momentum,
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(a)

(b)

(c)

(d)

(e)

(f)
φ

Figure 8.60 Plotting vorticity contour (right) gives more of the physical sense of what is happening in flow around a sphere than
what is obtained from the streamline plots (left). (a) Re = 5, no separation; (b) Re = 20, separation at 171 degrees;
(c) Re = 40, separation at 148 degrees. After calculations done by V. G. Jenson (Proc. Roy. Soc. London A, vol. 249,
346 (1959) reproduced in [147].

energy, or mass (see Figure 6.4; the convective terms contain v · ∇ρ [mass],
v · ∇v [momentum], and v · ∇ Ê [energy]). On the right of Equation 8.485 is the
diffusive term. Vorticity can diffuse, and the transport coefficient for the diffu-
sion of vorticity is the kinematic viscosity ν = μ/ρ. In steady, incompressible,
two-dimensional flow, vorticity produced by the no-slip boundary condition at
solid surfaces moves away from the wall by diffusion and convects and diffuses
throughout the flow.

Vorticity contours are often more effective than streamline plots in showing
the character of complex flows. Figure 8.60 plots streamlines and isovorticity
contours for a familiar flow: flow around a sphere at finite Reynolds numbers.
The streamlines for the flows at three different Reynolds numbers are shown on
the left, and the differences with Reynolds number are rather subtle in terms of the
streamline pattern. The isovorticity contours on the right, however, distinctly and
intuitively show the effect on the flow of the rising Reynolds number. The vorticity
originates at the sphere due to the no-slip boundary condition and spreads into
the flow by diffusion. We also can see the effect of convection: The upstream
flow carries the vorticity downstream.

The vorticity-transport equation has important implications in uniform, two-
dimensional flows around obstacles. Note also that Equation 8.485 has no vorticity
production term. If applied along a streamline, we see that this equation indicates
that there is no vorticity production along a streamline. If the vorticity is zero
at any point on the streamline, then it is zero at all points along the streamline.
This relationship explains why uniform potential flow around an obstacle is
irrotational.

The vorticity-transport equation (Equation 8.480) indicates how momentum
conservation governs the transport of vorticity. We understand the convection
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and diffusion terms of that equation. There is an additional term that appears,
however, which has interesting implications in three-dimensional flows. The term
ω · ∇v dropped out of the vorticity-transport equation when we considered two-
dimensional flow in Example 8.25. This term captures a physics that has no anal-
ogy in other transport laws. It is associated with vorticity intensification, which
is a three-dimensional effect related to the conservation of angular momentum.
Briefly, the term ω · ∇v tracks the flow-field analogy of the acceleration that hap-
pens when a twirling iceskater draws his arms inward to spin faster. The skater’s
acceleration occurs because he has reduced his moment of inertia by drawing
in his arms. For the skater’s motion to contain the same amount of momentum
with a smaller moment of inertia, his angular speed must increase. The motion of
tornados is governed by the ω · ∇v term of the vorticity transport equation (see
Section 10.5). The upward motion of the fluid in the center of a tornado stretches
the vortex; conservation of momentum then causes the spin of the storm to
intensify, sometimes to disastrous effect. This is discussed in Chapter 10.

This concludes our brief introduction to vorticity and its use in complex-flow
modeling. Chapter 10 discusses the role of vorticity in the production of lift and
its usefulness when considering flows with curved streamlines. Readers who are
interested in learning more about vorticity, circulation, and lift are encouraged
to view the two-part National Committee on Fluid Mechanics Films film on the
subject [114].

In the next section, we return to the topic of dimensional analysis and explore
in detail how nondimensionalization techniques misled us in our study of external
flows (i.e., d’Alembert’s paradox, Fdrag = 0). We will see that not all nondimen-
sionalization choices are equal when carrying out dimensional analysis: Care
must be taken to choose characteristic values that guarantee meaningful results
throughout a complex flow. As discussed in the next section, when we simplify
the governing equations based on dimensional analysis, we must be rigorous in
checking the magnitudes of all terms in the equations and be prepared to use
different scalings in different flow regions. The section on dimensional analysis
concludes our discussion of external flow. In Chapter 9, we return to the topic
of macroscopic balances and their application to complex engineering flows. In
Chapter 10, we revisit the flow behaviors described in Chapter 2, assess our
progress, and point the way to advanced study in fluid mechanics.

8.3.2 Dimensional analysis redux

In Chapter 7, we introduced the concept of dimensional analysis and first applied
that technique to problems in fluid mechanics. Dimensional analysis is the method
in which system variables such as velocity, distance, and pressure are scaled
relative to characteristic values of those quantities. At a fundamental level, scaling
the variables has the effect of eliminating units from the calculations. We used
dimensional analysis for this purpose in Section 7.1, and we saw that dimensional
analysis also had the practical effect of checking our calculations for dimensional
consistency. A second practical application of dimensional analysis is that it
allows us to plot functions without having to detail the values of too many
parameters (see, e.g., Figure 7.6).
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The powerful use of dimensional analysis, however, is in tailoring the equations
of change: the microscopic mass, momentum, and energy balances. As demon-
strated in Section 8.1, most fluid-mechanics problems require the solution of the
full, complex, nonlinear versions of the continuity equation and the Navier-Stokes
equation. We can simplify this task if we identify terms of these equations that
have little effect in a chosen problem. This is the value of dimensional analysis:
Properly applied, it demonstrates which terms in an equation are important for a
given flow situation and which may be eliminated safely (see Example 8.22 on
the topic of dimensional analysis on boundary-layer flows).

Sometimes formal dimensional analysis appears to be superfluous. In the
analysis of creeping flow around a sphere (Section 8.1.1), we casually simpli-
fied the governing equations, choosing to eliminate the inertial terms from the
dimensional Navier-Stokes equation without conducting any dimensional anal-
ysis. We arrived at solutions for velocity and pressure fields using these ad hoc
methods. Given that the results of the analysis were borne out by experiments
(CD = 24/Re), that methodology seems justified.

We encountered trouble with this casual approach when we went to higher
Reynolds numbers, however. When we considered the more complex behavior
seen at higher Reynolds numbers (Section 8.1.2.2), ad hoc dimensional analy-
sis produced the following nondimensional equations that we used to explore
noncreeping flow around a sphere:

For all Reynolds numbers:

Continuity equation: ∇∗ · v∗ = 0

Navier-Stokes equation:
∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗P∗ +
(

1

Re

)
∇∗2

v∗

Drag on a sphere:

CD = 2

π

∫ 2π

0

∫ π

0

[(
2

Re

∂v∗
r

∂r∗ − P∗
)

cos θ

+
(

r∗

Re

∂

∂r∗

(
v∗

θ

r∗

)

+ 1

Re r∗
∂v∗

r

∂θ

)
(− sin θ)

]
r∗= 1

            

2

sin θdθdφ

(8.487)

For rapid flows, we let Re −→ ∞, and these three equations became:

For Re −→ ∞:

Continuity equation: ∇∗ · v∗ = 0

Navier-Stokes equation:
∂v∗

∂t∗ + v∗ · ∇∗v∗ = −∇∗P∗

Drag on a sphere: CD = 2

π

∫ 2π

0

∫ π

0

[−P∗ cos θ
]

r∗= 1
            

2
sin θdθdφ

(8.488)
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These are the potential-flow equations, and we discuss their solution for uniform
flow around a sphere in Section 8.1.2.2.

As discussed in Section 8.1.2.2, the predicted behavior in the potential-flow
solution is not what we expected. It did not correctly calculate drag, predicting
that drag was zero. Potential flow also predicted slip at the sphere surface. The
source of the confusion can be traced to our initial attitude toward dimensional
analysis. When introducing dimensional analysis, we correctly recognized that
if scaled properly, the equations of change would be displayed in a way that
organizes and systematizes the effects of various quantities, such as density,
viscosity, velocity, time, and distance. The missing rigor in our method was
that we failed to examine what it meant to scale properly our equations; as we
discuss here, different choices for characteristic quantities can lead us in different
directions. Sometimes the choice does not have a major impact and sometimes it
does. We were fortunate when we scaled the equations for pressure-driven flow
in a tube, and our results led to friction-factor/Reynolds-number correlations that
were correct and helpful. We were less fortunate in noncreeping flow around a
sphere; in that case, our scaling was improper and our analysis failed.

Although we hit some dead ends before arriving at our current state of under-
standing, we are now in an excellent position to revisit dimensional analysis and
to appreciate the true merits and power of this type of analysis. With the benefit
of hindsight, we can clarify the requirements that must be met when choosing
characteristic lengths, times, and other quantities. With the appropriate choices
for characteristic quantities, we are guided by dimensional analysis to the proper
equations that govern different regions of complex flows. With careful attention
to method, we turn dimensional analysis into a powerful and effective tool for
solving the most difficult problems in fluid mechanics.

We now revisit dimensional analysis, determined to be more rigorous. Two
problems on which we used dimensional analysis are turbulent pipe flow and non-
creeping flow past a sphere. The procedure is straightforward: Beginning with the
governing equations, choose characteristic values of the variables in the problem,
define nondimensional versions of those variables, and substitute the new nondi-
mensional variables in the governing equations. For the problems mentioned, we
made similar choices: For characteristic length, we chose the pipe or sphere diam-
eter; for characteristic velocity, we chose the dominate velocity in the flow; and for
characteristic time and pressure, we built a characteristic value from the previous
choices for D and V (Table 8.1). Our choices for characteristic values were based
on capturing the magnitude of the changes taking place in the system variables.

With the nondimensional variables thus defined, we substitute these expres-
sions into the Navier-Stokes equation and factor out the dimensions:

ρV

T

(
∂v∗

z

∂t∗

)
+ ρV 2

D

(
v∗

x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂x∗
1

)

= P

D

(
−∂P∗

∂z∗

)
+ μV

D2

(
∂2v∗

z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)
(8.489)

Dividing Equation 8.489 by the coefficient of the second term on the left-hand
side (i.e., the convective term), the inverse of the Reynolds number appears as

www.20file.org

http://www.semeng.ir


729 External Flows

Table 8.1. Characteristic values in dimensional analysis of turbulent pipe flow and noncreeping flow
around a sphere

Dimension Symbol Pipe flow Flow around sphere Nondimensional variable

Length D Pipe diameter Sphere diameter r ∗ = r
D

z∗ = z
D

Velocity V 〈vz〉 v∞ v ∗
r = vr

V

v ∗
θ = vθ

V

v ∗
z = vz

V

Time T D
V

D
V t ∗ = t

T
= t V

D

Pressure P ρV 2 ρV 2 p∗ = p
P

= p
ρV 2

the coefficient of the viscous momentum term on the right-hand side:

D

T V

(
∂v∗

z

∂t∗

)
+
(

v∗
x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂z∗

)

= P

ρV 2

(
−∂P∗

∂z∗

)
+ μ

ρV D

(
∂2v∗

z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)
(8.490)

From Equation 8.490, we see that our standard choices for T and P correspond
to choosing that the coefficients of the velocity-time-derivative term and the
pressure-derivative term both be equal to 1. By choosing these coefficients to
be 1, we force the terms to be as important to the solution as the other terms with
coefficient 1—that is, as important as the convective term.

Choose: T ≡ D

V
P ≡ ρV 2

Time changes,
pressure gradient,

and convection
of comparable
importance:

(
∂v∗

z

∂t∗

)
+
(

v∗
x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂z∗

)

=
(

−∂P∗

∂z∗

)
+ 1

Re

(
∂2v∗

z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)

(8.491)

This is the version of the nondimensional Navier-Stokes equation discussed in
Sections 7.1.2.2 and 8.1.2.1. The characteristic values are chosen so that the
nondimensional derivatives—∂v∗

z /∂t∗, ∂v∗
z /∂x∗, and others—are expected to

be independent of the characteristic values. This scaling may be described as
producing terms of order one, written O(1). The nomenclature y = O(x) means
in general that the quantity y is proportional to x ; O(1) means that y is independent
of the parameters of the model [85].
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Several of the steps reviewed here were taken arbitrarily under the presump-
tion that the choice would make no difference. For example, we choose in Equa-
tion 8.489 to divide the entire equation by the coefficient of the convective inertial
term. If we had chosen instead to divide the entire equation by the coefficient of
the viscous term μV/D2, the result would be:

ρD2

T μ

(
∂v∗

z

∂t∗

)
+ ρV D

μ

(
v∗

x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂z∗

)

= P D

μV

(
−∂P∗

∂z∗

)
+
(

∂2v∗
z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)
(8.492)

Again, the Reynolds number appears—albeit in a different location—but equally
significant, the coefficients of the pressure- and time-derivative terms have
changed:

ρD2

T μ

(
∂v∗

z

∂t∗

)
+ Re

(
v∗

x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂z∗

)

= P D

μV

(
−∂P∗

∂z∗

)
+
(

∂2v∗
z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)
(8.493)

If we choose the same characteristic time T = D/V and pressure P = ρV 2 as
before, the result for nondimensional Navier-Stokes will be the same (Equa-
tion 8.491). If, however, we follow the same inspiration as we did previously and
set the coefficients of convenient terms in Equation 8.493 to 1, we are led to
different choices for T and P:

Choose: T ≡ ρD2

μ
P ≡ μV

D(
∂v∗

z

∂t∗

)
+ Re

(
v∗

x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂z

)

=
(

−∂P∗

∂z∗

)
+
(

∂2v∗
z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)
(8.494)

Time changes,
viscosity, and

pressure gradient
of comparable
importance:

1

Re

(
∂v∗

z

∂t∗

)
+
(

v∗
x

∂v∗
z

∂x∗ + v∗
y

∂v∗
z

∂y∗ + v∗
z

∂v∗
z

∂z∗

)

= 1

Re

(
−∂P∗

∂z∗

)
+ 1

Re

(
∂2v∗

z

∂x∗2
+ ∂2v∗

z

∂y∗2
+ ∂2v∗

z

∂z∗2

)

(8.495)

Equations 8.491 and 8.495 are different versions of the nondimensional Navier-
Stokes equation, and we arrived at them by following similar steps. The differ-
ences between the two versions are in the coefficients of the time-derivative and
pressure-gradient terms. In Equation 8.491, the time-derivative and pressure-
gradient coefficients are chosen to be 1; in Equation 8.495, the coefficients turn
out to be 1/Re.
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To a certain extent, the differences between Equations 8.491 and 8.495 are
insignificant. If our goal was, as in Chapter 7, to determine which dimension-
less groups are important for developing friction correlations, both versions of
the nondimensionalization are satisfactory, and they both identify the Reynolds
number as the important dimensionless parameter in the flow.

We now are interested more in the second use of dimensional analysis, which
is to guide us as we attempt to solve the nonlinear Navier-Stokes equations for
complex flows. For this purpose, we need to know the order of magnitude of
each term in the equation so that we may judge which terms are dominant and
which may be neglected. When applied to this purpose, the two versions of the
nondimensional Navier-Stokes equation give different answers, as demonstrated
in the following examples.

EXAMPLE 8.26. For steady creeping flow around a sphere (Re → 0), which
version of the nondimensional Navier-Stokes equation (Equation 8.491 or Equa-
tion 8.495) predicts the better approximate momentum balance?

SOLUTION. We are asked to consider two versions of the steady-state Navier-
Stokes equation: one nondimensionalized with a characteristic pressure P = ρV 2

and one nondimensionalized with a characteristic pressure P = μD/V . Written
in Gibbs notation, the two versions are as follows:

P ≡ ρV 2 ⇒ Re (v∗ · ∇∗v∗) = Re (−∇∗P∗) + ∇∗2v∗ (8.496)

P ≡ μV

D
⇒ Re (v∗ · ∇∗v∗) = (−∇∗P∗) + ∇∗2v∗ (8.497)

Creeping flow around a sphere is flow at a vanishingly low Reynolds number.
Taking the limit that Re −→ 0 in the two versions of the Navier-Stokes equation,
we obtain two different predictions for the governing momentum equation:

P ≡ ρV 2 ⇒ 0 = ∇∗2v∗ (8.498)

P ≡ μV

D
⇒ 0 = −∇∗P∗ + ∇∗2v∗ (8.499)

We see that the first choice for the characteristic pressure leads to a governing
momentum equation that does not contain the pressure gradient; in the second
version, the pressure is retained. When we solve creeping flow in Section 8.1.1,
we retain the pressure term and find that the pressure distribution is a significant
feature of creeping flow. Thus, it appears that for creeping flow around a sphere,
Equation 8.499 is the correct nondimensionalization, and we should choose P =
μV/D for the characteristic pressure.

Creeping flow
around a sphere:

Characteristic
pressure:

P ≡ μV

D

Navier-Stokes: 0 = −∇∗P∗ + ∇∗2v∗
(8.500)

We see from this example that the two different choices for P do not give
equivalent simplified Navier-Stokes equations.
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In the previous example, we carefully consider steady flow around a sphere and
find that there are at least two ways to nondimensionalize the pressure. To choose
between the two possible characteristic pressures, we consider creeping flow and
find that only the characteristic pressure based on viscosity is appropriate. This
seems to settle the issue: We should choose P = μV/D. Perhaps, however, we
should check another limit to verify that the characteristic pressure based on
viscosity is always the correct choice.

EXAMPLE 8.27. For steady rapid flow around a sphere, which version of the
nondimensional Navier-Stokes equation (Equation 8.491 or Equation 8.495)
predicts the better approximate momentum balance?

SOLUTION. We are asked to consider two versions of the steady-state Navier-
Stokes equation, one nondimensionalized with a characteristic pressure P = ρV 2

and one nondimensionalized with a characteristic pressure P = μD/V . Written
in Gibbs notation, the two versions are as follows:

P ≡ ρV 2 ⇒ Re (v∗ · ∇∗v∗) = Re (−∇∗P∗) + ∇∗2v∗ (8.501)

P ≡ μV

D
⇒ Re (v∗ · ∇∗v∗) = (−∇∗P∗) + ∇∗2v∗ (8.502)

Rapid flow around a sphere is represented by a high Reynolds number. Taking
the limit that Re → ∞ in the two versions of the Navier-Stokes equation, we
obtain two different predictions for the governing momentum equation:

P ≡ ρV 2 ⇒ (v∗ · ∇∗v∗) = −∇∗P∗ (8.503)

P ≡ μV

D
⇒ (v∗ · ∇∗v∗) = 0 (8.504)

We see that in the rapid-flow case, the characteristic pressure based on viscosity
leads to a governing momentum equation that does not contain the pressure gra-
dient. The inertial choice, with P = ρV 2, correctly retains the pressure. In both
cases, the effect of viscosity is completely lost. Equation 8.503 is the momentum
balance for potential flow, and the pros and cons of potential flow are discussed in
the previous section. Thus, it appears that for rapid flow around a sphere, Equa-
tion 8.503 is the least detrimental nondimensionalization; therefore, for rapid
flow, we should choose P = ρV 2 for the characteristic pressure:

Potential flow
around a sphere:

Characteristic
pressure:

P ≡ ρV 2

Navier-Stokes: (v∗ · ∇∗v∗) = −∇∗P∗
(8.505)

We see from this example that again the two choices for P are not equivalent
and which choice is preferable depends on the flow situation: P = ρV 2 is better
in the case of potential flow, whereas P = μV/D is preferred for creeping flow.

To summarize, we can think of at least two choices for characteristic pressure
in flow around a sphere. We see that the viscosity-based P is preferable for the
creeping-flow case, in which viscosity dominates; choosing the viscosity-based
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pressure leads to governing equations at zero Reynolds number that correctly
include the pressure effects. The inertia-based P is more meaningful where
inertia dominates; choosing the inertia-based characteristic pressure leads to
governing equations at an infinite Reynolds number that correctly include the
pressure effects. It appears that if we want to simplify the governing equations, it
matters what we choose for characteristic values—if we make the wrong choice,
we are led to the wrong simplified equations.

In addition to the confusing issue of which characteristic pressure to choose,
the conundrum of potential flow remains. Dimensional analysis, even with the
correct characteristic pressure chosen, leads in the high-Reynolds-number limit
to results that simply do not match what is observed. It appears that dimensional
analysis has failed for the case of rapid flow around a sphere: It has not led to
simplified equations that predict the rich flow behavior observed (see Figure 8.22).

The failure of dimensional analysis in the case of rapid flow around a sphere
is due to the choice of the sphere diameter D for the lengthscale for nondimen-
sionalization [85]. In the boundary layer, the lengthscale over which the velocity
changes is not the large lengthscale D but rather the much smaller lengthscale
δ (see Example 8.22). Thus, the flow around a sphere has the property that the
characteristic dimensions over which properties change are different for differ-
ent regions of the flow. The choice of D as the single dimension over which to
nondimensionalize leads to the difficulties experienced with the potential-flow
solution [85]. When we recognize that a problem has regimes with different char-
acteristic lengths, we can build our solution methods around the correct length-
scales. This is a technique of advanced fluid mechanics (i.e., matched asyptotic
expansion). For an indepth treatment of scaling issues in fluid mechanics, see
Leal [85]; see also Problem 57.

This concludes our discussion of the continuum model. The continuum model
is a successful model of fluid behavior. For simple flows, with the help of calculus,
we solve for the velocity and stress fields. For complex flows, with the help of
dimensional analysis and advanced methods (Chapters 7, 8, and [85]), we also
solve for the velocity and stress fields. In this text, we have seen how to calculate
flow quantities of interest from the velocity and stress fields. In the remaining
chapters of this book, we explore the origins of the macroscopic balance equations
and apply these balances to more complex situations (Chapter 9) and we revisit
our Chapter 2 tour of fluid behavior and see how much of that behavior is now
within our modeling means.

8.4 Problems

1. The classic internal flow is pipe flow; the classic external flow is uniform
flow past a sphere. Using these two examples, compare and contrast internal
and external flows.

2. Compare and contrast the Fanning friction factor and the drag coefficient.
What is the purpose of each?

3. Why does a skydiver reach terminal velocity? Why does the skydiver not
accelerate continuously as she falls?
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4. Spherical coordinates are used to solve for the velocity profile in a flow.
The result is given here. Convert v from spherical coordinates to Cartesian
coordinates.

v =

⎛
⎜⎜⎜⎝
[
a + b 1

                     

r + c 1
r3

]
cos θ

− [a + b
2

1
r − c

2
1
r3

]
sin θ

0

⎞
⎟⎟⎟⎠

rθφ

ˆ5. In Example 8.2, gravity is given by g = −gez . Using Equations 1.271–1.273,
calculate this g in the spherical coordinate system (the answer is given in
Equation 8.13).

6. From intuition, sketch the velocity field for flow around a sphere at modest
flow rates. Make your arrows proportional to what you believe the velocity
magnitude should be at each point.

7. In the creeping flow around a sphere problem (see Example 8.1), which terms
of the Navier-Stokes equation are neglected? How is this justified?

8. In creeping flow around a sphere, we calculate the final velocity profile
beginning with the guess for the velocity components in Equations 8.20
and 8.21. Carry out the detailed calculation of the final velocity profile.
[Lengthy]

9. In calculating forces on the sphere in creeping flow around a sphere, we use
the fact that τrr | r=R at the surface of the sphere is equal to zero. Confirm this.

10. Using plotting software, plot the pressure distribution in creeping flow around
a sphere. Comment on the results.

11. For a 1.0-mm-diameter polystyrene bead falling in water, what is the expected
terminal speed? Assume creeping flow. What is the Reynolds number of this
flow? Would this flow represent creeping flow?

12. For a 1.0-mm-diameter ball made of stainless steel falling in glycerol, what
is the expected terminal speed? Assume Stokes flow. Will the ball fall in the
Stokes regime?

13. What is the largest Reynolds number that we can explore with sphere-
dropping experiments? What limits this experimental technique?

14. For stainless-steel spheres of reasonable sizes, in reasonable fluids, what is
the minimum fluid viscosity you may use in a terminal velocity experiment?
What sizes of steel ball would you use to obtain these measurements of
terminal velocity?

15. When we nondimensionalize the Navier-Stokes equation in pipe flow, two
dimensionless groups appear: the Reynolds number, Re, and the Froude num-
ber, Fr. When the Navier-Stokes equation was nondimensionalized for flow
around a sphere, the Froude number did not appear. Explain the difference.

16. The force on a sphere in creeping flow was found to be unidirectional:
F ˆ|creeping = Fzez , whereas for noncreeping flow, the force is not unidirec-
tional. Why?

17. What is lift? What are the dimensions of lift?
18. A cricket ball is thrown with an initial speed of 52 mph straight up in the air.

How long until the ball hits the ground? With what speed will the ball hit the
ground? Do not neglect air resistance.
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Figure 8.61 A Rankine half-body (Problem 29).

ˆ

19. A smooth ball the size of a soccer ball is dropped from a bridge to a river
140 m below. Calculate the speed of the ball both with and without drag.
How much error is there in the calculation if air resistance is neglected?

20. A smooth ball 4.0 cm in diameter weighing 0.25 kg is launched at an initial
velocity of 40.0 mph at an angle of 34 degrees from the horizontal. What is
the speed of the ball as a function of time and how far will the ball go? What
is the path traced out by the ball?

21. Calculate the true pressure drag on a cylinder by numerically integrating the
experimental pressure data in Figure 8.53.

22. The flow patterns behind a sphere at high Reynolds numbers are shown in
Figure 8.22. Compare these flow patterns to what is observed behind a long
cylinder. Discuss the comparison.

23. What is the definition and meaning of stream function?
24. What are the governing equations for potential flow around a sphere? Where

do these equations originate?
25. Using plotting software, plot the pressure distribution in potential flow around

a sphere. Comment on the results.
26. What is d’Alembert’s paradox? Why is this observation important?
27. For potential flow around a sphere, calculate the pressure distribution. Start

from the velocity solution given in Equation 8.238.
28. Demonstrate the error involved when the Bernoulli equation is applied inap-

propriately by carrying out the following calculation and comparison: Begin-
ning with the correct velocity profile result for creeping flow around a sphere,
use the Bernoulli equation (incorrectly) to calculate the pressure profile.
Compare the incorrect profile obtained from the Bernoulli equation to the
correct pressure profile for creeping flow around a sphere. Comment on your
results.

29. The velocity field for uniform upstream flow v = Uex flowing in potential
flow around an obstacle called a Rankine half-body is sketched in Figure 8.61.
The shape of the obstacle follows the equation rbody(θ) given here. What is
the pressure field for this flow? You may neglect gravity. The quantities b
and U are constants. Plot the results for a half-body with b = 1.0 m and
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upstream flow speed U = 1.0 m/s.

rbody(θ) = (π − θ)b

sin θ

v =

⎛
⎜⎜⎜⎜⎝

−U cos θ − Ub

r
−U sin θ

0

⎞
⎟⎟⎟⎟⎠

rθ z

30. Calculate the extra-stress tensor τ̃ for potential flow around a sphere of an
inviscid Newtonian fluid. Calculate the total-stress tensor �̃. Comment on
what is obtained.

31. At first glance, the streamlines for creeping flow and potential flow around a
sphere (see Figures 8.9 and 8.9) seem similar. The arrow plots of the velocity
fields for these two flow solutions, however, show the striking differences
between the two scenarios (see Figures 8.8 and 8.25). Summarize the dif-
ferences in velocity fields. Why do the streamline plots look similar? When
looking at streamline plots, how can a viewer perceive the differences in
flows?

32. Are boundary layers important in both internal and external flows? Explain
your answer.

33. What type of forces dominate in the boundary layer? What type of forces
dominate outside the boundary layer?

34. To solve the microscopic mass and momentum balances in the boundary layer,
we make many assumptions. List the assumptions that go into developing the
simplified equations of change for the boundary layer. Comment on each.

35. For a laminar boundary layer on a flat plate, how does the boundary-layer
thickness vary with viscosity? How does the thickness vary with distance
from the leading edge?

36. The flow in a boundary layer near a flat plate has two components: one that
is large (v1), and one that is much smaller but nonzero (v2). For several
locations x1, plot v2(x1). Comment on your results.

37. The solution for the boundary-layer flow near a flat plate is given by Equa-
tion 8.356. Plot the velocity v1 as a function of the distance away from the
plate x2 for various distances from the leading edge (i.e., various x1 values).

38. For water flow at 1.5 m/s over a flat plate, at what distance downstream will
the boundary-layer thickness be 1 inch? Assume laminar boundary layer.

39. A boundary layer is considered thin if δ/x < 0.1. For these conditions, cal-
culate whether the boundary layer is thin for the following system: water
flowing over a 1.0-m-long flat plate with a free-stream velocity of 0.010 m/s.

40. What is the force (i.e., drag) on a thin plate given the following conditions?
The fluid is water, the plate is 0.52 m long and 6.3 m wide, and the free-stream
velocity is 1.3 × 10−2 m/s.

41. What is the thickness of the boundary layer on a golf ball driven from the
tee at 145 mph? Assume that the ball is completely smooth and therefore
has a laminar boundary layer. For a real golf ball, the dimples on the surface
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ensure that the boundary layer is everywhere turbulent. What is the thickness
of a turbulent boundary layer under these conditions?

42. For the flow in the boundary layer near a flat plate, derive the third-order, ordi-
nary differential equation that governs the spatial variation of the principal
velocity component. Begin with the continuity equation (see Equation 8.340)
and the Navier-Stokes equation (see Equation 8.341) and incorporate the
coordinate transformations defined in this chapter (see Equation 8.343). The
final result is Equation 8.347.

43. Example 8.19 addresses the solution for the velocity field in the problem of
boundary-layer flow past a flat plate. To obtain the velocity field, we need the
solution to the third-order, nonlinear ODE in Equation 8.347. Solve Equation
subject to the boundary conditions in Equations 8.348, 8.349, and 8.352. This
can be done using Mathematica [203] or equivalent software and by using a
shooting algorithm, whereby the initial value of the second derivative of the
function is guessed and adjusted until the boundary condition at infinity is
satisfied. The correct guess for f”(0) is 0.332 [48].

44. Derive the expression for wall shear stress on a flat plate as a function of loca-
tion (see Equation 8.366). Use the empirical curve fit (see Equation 8.356)
for the velocity profile.

45. What is streamlining? Why does it work?
46. Blunt objects experience drag from two sources: pressure drag and friction

drag. Explain these two types of drag. Which type is eliminated through
streamlining?

47. How much faster will a cyclist traveling at 40 mph go if he buys a recumbent
bicycle compared to an upright posture on a standard bicycle?

48. When riding downhill on a bicycle, a cyclist can slow down by sitting up
straight rather than crouching over. How much deceleration can be expected
from this posture change? Make reasonable assumptions in your calculations
and indicate those assumptions.

49. What would the drag coefficient have to be to obtain the correct value of
the terminal speed of a skydiver? Calculate for both the head-first and the
belly-to-Earth positions.

50. If a coin falls flat-side-down through water versus edge-side-down, what is
the speed difference at terminal speed?

51. What is vorticity? It is mentioned only in the advanced study of fluid mechan-
ics, yet it is a fundamental property of flow fields. Discuss the utility of
vorticity.

52. The isovorticity lines in Figure 8.60 appear to be pushed downstream by the
flow. Describe what is happening in the flow that results in this effect.

53. Show that uniform potential flow past an obstacle is an irrotational flow. Hint:
Far upstream of the obstacle, the flow is irrotational.

54. A vector identity useful in vorticity calculation is given in Equation 8.267.
Writing the vectors in Cartesian coordinates, verify this vector identity.

55. For two-dimensional flow, use matrix calculations to show that ω · ∇v = 0,
where ω = ∇ × v is the vorticity.

56. Show that ∇ × ∇ f = 0, where f is a scalar function.
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57. In this chapter, we always nondimensionalize time with a characteristic time
T = D/V . For this characteristic time to be appropriate, the scaled time-
derivative should be O(1). This is true if characteristic changes in the velocity
take place over an amount of time equal to T . A second characteristic time
what we could construct from various quantities in the flow is based on the
viscosity:

T̃ = ρD2

μ
= D2

ν

where ν is the kinematic viscosity, which takes the role of a momentum-
diffusion coefficient. Also, if the flow has its own imposed characteristic
time—such as an imposed frequency of oscillation—this is another potential
characteristic time to adopt.

(a) Using the definition of characteristic time T̃ introduced in this problem,
what are the two forms of the nondimensional Navier-Stokes equation
that result from choosing characteristic pressure to be first P = ρV 2 and
then P = μV/D?

(b) The Strouhal number Str is defined as the dimensionless ratio of time
scales in the flow:

Str = T

D/V

Str = T

ρD2/μ

Incorporate the Strouhal number into the two forms of the nondimen-
sional Navier-Stokes equation found in (a).

(c) For the nondimensional Navier-Stokes equation discussed in this chapter,
what value do we implicitly assume for the Strouhal number? In unsteady
and oscillating flows, the Strouhal number assumes a prominent role [85].
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9 Macroscopic Balance Equations

The mass- and momentum-balance techniques described in Chapters 3–5 are
general and apply to any control volume (CV). We apply those techniques to
a general microscopic control volume in Chapter 6 and use the microscopic
balances in Chapters 7 and 8. Microscopic-control-volume calculations yield the
equations that govern three-dimensional velocity and stress fields. If the equations
can be solved, the information that microscopic balances provide is complete.
Solving the microscopic balances is difficult, however, because the continuity
equation and the Navier-Stokes equation are a set of four nonlinear, coupled,
partial differential equations (PDEs).

For many fluids problems, the information sought is relatively large scale and
flow details are not very important. For these problems—such as the calculation
of the total force on a wall; overall flow rate in a device; and the total work
performed by a pump, a turbine, or a mixer—balancing on a larger CV can be a
fast and simple way to arrive at quantities of interest. Macroscopic CV balances
are mathematically easier to calculate than microscopic CV balances, although
they generally require information that must be determined experimentally.

In this chapter, we derive and learn to use the macroscopic mass, momentum,
and energy balances, including the mechanical energy balance (MEB), which is
discussed in Chapter 1. The macroscopic momentum balance is introduced here;
it is a generalization of the problem solving methods we used in Chapters 3–5 to
calculate the force caused by fluid moving through a 90-degree pipe bend (see Fig-
ure 5.21). Setting up effective macroscopic balances requires ingenuity because
to obtain useful information, we must choose the control volume carefully.

We begin with derivations in Section 9.1. Section 9.2 shows how macroscopic
balances can be applied to complex engineering problems.

9.1 Deriving the macroscopic balance equations

In the subsections that follow, we derive the macroscopic-balance equations.
These three equations represent fundamental laws of physics: Mass is conserved,
momentum is conserved, and energy is conserved. They are called the macro-
scopic balances because we write them on large systems, as contrasted with
the microscopic balances of Chapters 6–8, which were applied to infinitesi-
mally small control volumes and resulted in detailed differential equations. The
equations derived here are coarser but easier to solve. Macroscopic balances

741
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1A

3A

2A

Figure 9.1 To derive the general macroscopic balances, we imagine a device of arbitrary shape and size with the input and
output surfaces oriented at arbitrary angles. The flow enters and exits the device through these surfaces but is not
necessarily perpendicular to the surfaces.

incorporate experimentally determined parameters to improve accuracy. Both the
microscopic and macroscopic balances have a place in fluid-mechanics modeling.

9.1.1 Macroscopic mass-balance equation

In Chapter 6, we arrived at a general expression for the mass balance on a control
volume (CV) of any size (see Equation 6.28, repeated here):

Mass balance
on a CV:

dmCV

dt
+
∫∫

C S
ρ(n̂ · v) d S = 0 (9.1)

where mCV is the total mass of fluid in the CV and the integral represents the
net outflow of mass from the CV. The integral must be carried out on the entire
control surface, CS, that forms the boundary of the CV.

In Chapters 7 and 8, we perform balances on microscopic CVs because we
wanted detailed information on the velocity and stress fields. Here, we choose
macroscopic CVs for our balances. Macroscopic CVs can be as large as an entire
piece of equipment, and they also can be complex in shape. The complexity in
CV shape is not a hindrance in macroscopic balances because the quantities we
want to calculate also are macroscopic. A macroscopic CV should be chosen to
incorporate the entire flow or force of interest.

To derive a general macroscopic balance, we draw a nonspecific macroscopic
control volume (Figure 9.1). The device in Figure 9.1 is drawn with an arbi-
trary shape and with input and output surfaces at unusual angles so that we can
determine the general equations for macroscopic mass, momentum, and energy
balances.

To apply the mass balance in Equation 9.1 to our macroscopic CV, we first
work on the integral in that equation. For the CV in Figure 9.1, the fluid velocity
v is zero on all parts of the boundary except on the surfaces Ai —the input and
output surfaces for the CV. We therefore can write:∫∫

C S
ρ(n̂ · v) dS =

∑
Ai

∫∫
Ai

ρ(n̂ · v) d S (9.2)
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Figure 9.2 Vector quantities have magnitude and direction. In our macroscopic-balance derivations we allow magnitude of
velocity to vary but we hold the direction v̂ constant.

The fluid density ρ appears in these integrals and although the fluid density may
vary across the Ai , for many engineering problems this variation is insignificant.
If we assume ρi does not vary across the surfaces Ai , we may move the density
outside the integrals in Equation 9.2. With this change, the mass balance in
Equation 9.1 becomes:

dmCV

dt
+
∫∫

C S
ρ(n̂ · v) d S = 0 (9.3)

dmCV

dt
+
∑

Ai

ρi

∫∫
Ai

(n̂ · v) d S = 0 (9.4)

The integrals in this mass balance may be simplified further if we assume that
the velocity through the inlet and outlet surfaces varies in magnitude across the
surface but not in direction (Figure 9.2). In terms of the variables of the problem,
this means that the magnitude v of the fluid velocity is a variable but the direction
v̂ of the fluid velocity is a constant (Figure 9.3).

v = vv̂ (9.5)

Modeling assumption =⇒ v̂|Ai
is constant across surface Ai (9.6)

With this assumption, Equation 9.4 becomes:

dmCV

dt
+
∑

Ai

ρi

∫∫
Ai

v(n̂ · v̂) d S = 0 (9.7)

dmCV

dt
+
∑

Ai

ρi cos θi

∫∫
Ai

v d S = 0 (9.8)

where the θi are the angles between v|Ai
and n̂|Ai

at the input and output surfaces
and, therefore, (n̂ · v̂)|Ai

= cos θi (Figure 9.4). Note that for inlet surfaces, n̂ and
v̂ form an angle greater than 90 degrees and cos θ < 0; for outlet surfaces, the
angle is less than 90 degrees and cos θ > 0.
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1A

3A

2A

Assume: All velocity 
vectors parallel at a 

given surface 

Figure 9.3 For many flows, the direction of the velocity is a constant across the inlet and outlet surfaces, whereas the
magnitude of the velocity may vary.

The integrals that remain in Equation 9.8 are related to the average value of
the fluid speed across the inlet and outlet surfaces:

Average fluid speed
across Ai

〈v〉|Ai
=
∫∫

Ai
v d S∫∫

Ai
d S

= 1

Ai

∫∫
Ai

v d S (9.9)

The mass balance on the macroscopic CV thus becomes:

dmCV

dt
+
∑

Ai

ρi cos θi

∫∫
Ai

v d S = 0 (9.10)

dmCV

dt
+
∑

Ai

ρi cos θi Ai 〈v〉|Ai
= 0 (9.11)

1̂n

θ

1̂v

1A

3A

2A

Figure 9.4 The vector v̂ is the direction of the velocity and n̂ denotes the outwardly pointing unit normal to a surface through
which fluid passes; the angle between these two directions is θ . For inlet surfaces n̂ and v̂ form an angle greater
than 90 degrees and cos θ < 0, whereas for outlet surfaces, θ < 90 degrees and cos θ > 0.
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Macroscopic
mass balance

(ρ,v̂ constant across Ai ,
θi = angle between n̂i and v̂i ):

dmCV

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉

]∣∣∣∣
Ai

= 0

(9.12)

Single-input,
single-output:

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.13)

where N is the number of inlet and outlet surfaces; if N = 2 (i.e., one inlet and
one outlet), the macroscopic mass balance becomes Equation 9.13. Note that n̂ is
an outwardly pointing unit normal. If we further assume that v̂ is parallel to n̂ at
both the inlet and outlet surfaces, then the macroscopic mass balance simplifies
further to (cos θ1 = −1; cos θ2 = 1):

Single-input,
single-output
v̂ parallel to n̂

(velocity perpendicular
to surface)

dmCV

dt
+ (ρ A〈v〉)|out − (ρ A〈v〉)|in = 0 (9.14)

In Section 9.2, we practice using the macroscopic-mass-balance equation by
applying Equation 9.13 to a Venturi meter.

9.1.2 Macroscopic momentum-balance equation

We turn now to the derivation of the macroscopic momentum balance. This bal-
ance is useful when calculating total fluid force on an apparatus. The momentum
balance on a control volume of any size is given by the Reynolds transport the-

orem (see Equation 3.135), which is Newton’s second law
(∑

f = ma
)

written

on a CV:

Reynolds transport theorem
(momentum balance on CV):

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (9.15)

The convective integral in Equation 9.15 may be simplified for a macroscopic
CV by making the same assumptions made for developing the macroscopic mass
balance (Equation 9.12)—namely, that the density is constant across surfaces Ai

and the direction of the fluid velocity v̂ does not vary across Ai :

dP

dt
−
∑

on
CV

f = −
∫∫

C S
(n̂ · v) ρv d S (9.16)

= −
∑

Ai

ρi

∫∫
Ai

v2(n̂ · v̂)v̂ d S (9.17)

= −
∑

Ai

ρi cos θi v̂|Ai

∫∫
Ai

v2 d S (9.18)
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The remaining integrals in Equation 9.18 are related to the average values across
the surfaces Ai of the square of the fluid speed:

Average across Ai of
fluid speed squared

〈v2〉
∣∣∣∣

Ai

=
∫∫

Ai
v2 d S∫∫

Ai
d S

= 1

Ai

∫∫
Ai

v2 d S (9.19)

The momentum balance on the macroscopic CV thus becomes:

dP

dt
−
∑

on
CV

f = −
∑

Ai

ρi cos θi v̂|Ai

∫∫
Ai

v2 d S (9.20)

= −
∑

Ai

ρi cos θi v̂|Ai
Ai 〈v2〉

∣∣∣∣
Ai

(9.21)

Macroscopic
momentum

balance
(ρ,v̂ constant
across Ai ):

dP

dt
+

# streams∑
i=1

[
ρ A cos θ〈v2〉v̂

]∣∣∣∣
Ai

=
∑

on
CV

f (9.22)

Single-input,
single-output:

dP

dt
+ ρ1 A1 cos θ1〈v2〉1 v̂|A1

+ ρ2 A2 cos θ2〈v2〉2 v̂|A2
=
∑

on
CV

f

(9.23)

where N is the number of inlet and outlet surfaces; if N = 2 (i.e., one inlet
and one outlet), the macroscopic momentum balance becomes Equation 9.23.
As noted for the macroscopic mass-balance equation, cos θi is negative for inlet
surfaces.

Equation 9.22 contains an expression for the average of the square of the speed
〈v2〉. For turbulent flows, because the velocity profile is flat (or uniform), this
quantity is approximately equal to the square of the average speed. For laminar
flows, the velocity profile is not flat but rather parabolic (see Equation 7.23) and
〈v2〉 is appreciably larger than the square of the average speed (see Example 9.1).
To account for these two situations, we define the parameter β as:

Momentum
velocity profile

parameter
β ≡ 〈v〉2

〈v2〉 (9.24)

Incorporating 〈v2〉 = 〈v〉2/β into Equations 9.22 and 9.23, we obtain:

Macroscopic momentum
balance (ρ,v̂ constant
across Ai , θi = angle

between n̂i and v̂i ):

dP

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉2

β
v̂

]∣∣∣∣∣∣∣
Ai

=
∑

on
CV

f

(9.25)
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dP

dt
+

# streams∑
i=1

⎡
⎣ρ A cos θ〈v〉2

β

⎛
⎝ v̂1

v̂2

v̂3

⎞
⎠

123

⎤
⎦
∣∣∣∣∣∣∣∣∣

Ai

=
∑

on
CV

f (9.26)

Single-input,
single-output:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f

(9.27)

In the second form of the macroscopic momentum-balance equation (Equa-
tion 9.26), we write the unit vectors v̂|Ai

in matrix form to emphasize the vector
direction associated with those terms. Because momentum is a vector, the vector
directions v̂|Ai

have an important role in problems that involve the macroscopic
momentum balance.

To determine the values of β for laminar and turbulent flow, we carry out the
integrations of the velocity (see Equation 9.9) and the square of the velocity (see
Equation 9.19) for these two flows.

EXAMPLE 9.1. For laminar and turbulent pipe flow, what are the correct values
of the momentum velocity-profile parameter β?

SOLUTION. The momentum velocity-profile parameter β is defined in Equa-
tion 9.24:

β ≡ 〈v〉2

〈v2〉 (9.28)

If the speed v = |v| is constant across the cross-sectional area A1, we calculate
β to be:

v = v0 = constant (9.29)

β = 〈v〉2

〈v2〉 (9.30)

=

(
1

A1

∫∫
A1

v d S

)2

(
1

A1

∫∫
A1

v2 d S

) (9.31)

=

(
1

A1

∫∫
A1

v0 d S

)2

(
1

A1

∫∫
A1

v2
0 d S

) =
(

(v0 A1)
A1

)2

v2
0

A1
A1

(9.32)

β = 1 (9.33)

A value of β = 1 indicates that there is no variation in the velocity across the
cross section.
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For laminar pipe flow, we calculate in Chapter 7 that the velocity is not constant
across the cross section of the pipe. The velocity in laminar pipe flow was found
to be as follows (see Equation 7.23):

Laminar
pipe flow:

v = vv̂ =
⎛
⎝ 0

0
vz

⎞
⎠

rθ z

ˆ= vzez (9.34)

v = vz(r ) = (p0 − pL + ρgL)R2

4μL

[
1 −

(
r

R

)2
]

(9.35)

= vz,max

[
1 −

(
r

R

)2
]

(9.36)

where vz,max = (p0 − pL + ρgL)R2/4μL . We can use Equation 9.36 to carry
out the calculation of β for laminar pipe flow:

β = 〈v〉2

〈v2〉 =

(
1

A1

∫∫
A1

v d S
)2

(
1

A1

∫∫
A1

v2 d S

) (9.37)

=

(
1

π R2

∫ 2π

0

∫ R

0
vz,max

[
1 −

(
r

R

)2
]

rdrdθ

)2

⎛
⎝ 1

π R2

∫ 2π

0

∫ R

0

(
vz,max

[
1 −

(
r

R

)2
])2

rdrdθ

⎞
⎠

(9.38)

=

(
2vz,max

R2

∫ R

0

[
r − r3

R2

]
dr

)2

2v2
z,max

R2

∫ R

0

[
r − 2r3

R2
+ r5

R4

]
dr

(9.39)

=

2

R2

⎛
⎝[ r2

2
− r4

4R2

]∣∣∣∣∣∣∣
R

0

⎞
⎠

2

[
r2

2
− r4

2R2
+ r6

6R4

]∣∣∣∣∣∣∣
R

0

=

2

R2

(
R2

4

)2

R2

6

= 3

4
(9.40)

β = 3

4
= 0.75

Momentum
velocity profile
parameter for
laminar flow

(9.41)

We find that β = 〈v〉2/〈v2〉 = 0.75 for laminar flow. Thus, the quantity that
appears in the macroscopic momentum balance, 〈v2〉, in laminar flow is equal to:

Laminar flow: 〈v2〉 = (4/3)〈v〉2 = 1.33〈v〉2 (9.42)
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We can carry out the same calculation for turbulent pipe flow if we have an
expression for vz(r ) for that case. Experimental measurements show that the
velocity profile for turbulent flow may be written as [14, 137]:

Velocity profile
for turbulent

pipe flow
(experimental result):

vz(r ) = vz,max

(
1 − r

R

) 1
7

(9.43)

where vz,max is the maximum value of the velocity. Substituting Equation 9.43
into Equation 9.37, we arrive at the value of β for turbulent flow (the details are
left to readers; Problem 6):

Momentum
velocity-profile
parameter for
turbulent flow:

β = 0.98 (9.44)

The momentum velocity-profile parameter β thus varies from β = 3/4 for lami-
nar flow to β = 0.98 or β = 1 for turbulent flow or plug flow, respectively.

We arrive at the macroscopic momentum balance (see Equation 9.25, repeated
here), which we obtained by adapting the general momentum balance on a CV
(see Equation 9.15) to the case of a macroscopic CV:

Macroscopic
momentum

balance
(ρ, v̂ constant across Ai ):

dP

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉2

β
v̂

]∣∣∣∣∣∣∣
Ai

=
∑

on
CV

f

(9.45)

In this adaptation, we specified that there is no change in either the density or the
direction of the velocity across the input and output surfaces. The modifications
to the general momentum balance in Equation 9.15 are only in the convective
term (i.e., the integral).

The sum-of-the-forces term and the rate-of-change term are unaltered for
macroscopic versus microscopic CVs. In Chapters 3–5, the forces on a macro-
scopic CV were body forces (i.e., gravity) and the molecular surface forces on
the bounding control surfaces. In a macroscopic CV, the bounding surface may
be solid (i.e., walls) or fluid:∑

on
CV

f = f
gravity

+ f
surface

(9.46)

= f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.47)

The force due to gravity on the CV may be written (as usual) as follows:

f
gravity

= MCV g (9.48)
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The fluid surface forces, including pressure, are expressed using the stress tensor
�̃ (see Equation 4.221):

Total molecular fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (9.49)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S (9.50)

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.51)

The simplification n̂ · pI = pn̂ in Equation 9.51 is due to vector/tensor rela-
tionships discussed in Section 1.3.2.2. The pressure contribution

∫∫ −pn̂ d S on
fluid surfaces of macroscopic CVs is almost always important; the extra-stress∫∫

n̂ · τ̃ dS contribution on fluid surfaces of CVs is almost never important, as
demonstrated in the examples in this chapter. This particular viscous term (vis-
cous stresses on fluid surfaces) may be omitted; we formally address this term in
this chapter to demonstrate that omitting it as regular practice is justified. Viscous
stresses on solid surfaces are very important and are included in fwalls.

In Section 9.2, we apply the macroscopic momentum balance (Equation 9.45)
to engineering problems, and we present examples that guide readers to evaluate
the various force terms. The derivation of the macroscopic energy balance is
discussed next.

9.1.3 Energy balance

The third macroscopic balance is on energy. When we describe microscopic
balances in Chapter 6, little was discussed about microscopic energy balances;
microscopic energy balances are mostly important in flows in which the tempera-
ture varies or in which there are large thermal energy flows. Macroscopic energy
balances, conversely, are widely used, even in flows in which the temperature
is constant. In fact, a particular version of the macroscopic energy balance, the
mechanical energy balance (MEB) (see Equation 1.3), is possibly the most widely
used equation in fluid mechanics, as discussed in Chapter 1. Later in this section,
we derive the MEB from the general macroscopic energy balance.

The energy balance on a CV is given in Chapter 6 in Equation 6.77 and repeated
here:

Energy balance
on a CV:

d ECV

dt
+
∫∫

C S
(n̂ · v ˆ)ρE d S = Qin,CV − Wby,CV (9.52)

The energy balance states that the rate-of-change of total energy in a CV (ECV =
U + Ek + E p), plus the net convective outflow of total energy (i.e., the integral),
is balanced by the rate of heat into the CV Qin,CV minus the rate of work done
by the fluid in the CV Wby,CV . This is the first law of thermodynamics written on
a constant CV.

Energy balances are an important tool in the field of thermodynamics, and
a wide body of literature exists that describes how energy balances are applied
to physical systems [99, 157, 167]. It is conventional in thermodynamics to
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500g

500gClosed System: gas 
trapped by a piston

Open System: fluid in
a centrifugal pump 

Figure 9.5 Examples of a closed system and an open system. The gas trapped by a piston is a closed system that may be
heated or worked on, but the mass of the system does not change. The liquid in a centrifugal pump also may be
heated and worked on, but it also changes in mass as fluid flows in and out of the pump; this is an example of an
open system.

consider two classes of problems: closed systems and open systems. Applying
energy balances on closed systems is analogous to applying mass, momentum,
and energy balances on a body—the mass of a closed system does not change.
A system of unchanging mass is closed in the sense that mass does not cross
the boundaries of the system (Figure 9.5, top). By contrast, mass crosses the
boundaries of an open system (Figure 9.5, bottom). Applying energy balances on
open systems is analogous to applying mass, momentum, and energy balances on
a control volume. In fluid mechanics, we are concerned with open-system energy
balances.

We derive two versions of Equation 9.52, the macroscopic closed-system
energy balance and the macroscopic open-system energy balance. From the open-
system energy balance, we can obtain the mechanical energy balance (MEB) and
its specialized version, the macroscopic Bernoulli equation. These equations are
the principal tools used for analyzing pumps, piping networks, and other flow
machinery such as turbines and mixers. We present all three energy balances in
the next sections to compile all of the energy balances on liquids within the same
organizational structure. The discussion of fluid-mechanics problem solving with
the MEB is in Chapter 1 for elementary problems in Section 9.2 and for more
complex problems.

9.1.3.1 CLOSED SYSTEMS
We begin with the energy balance on a control volume, Equation 9.52:

Energy balance
on a CV

(First law of
(thermodynamics)

d ECV

dt
+
∫∫

C S
(n̂ · v ˆ)ρE d S = Qin,CV − Wby,CV

(9.53)
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For a closed system, no mass flows into or out of the system; thus, the convective
term (i.e., the integral) is zero:

Energy balance
on a closed system

d ECV

dt
= Qin,CV − Wby,CV (9.54)

When performing balances on a closed system, we usually are interested in the
changes that take place between an initial time t0 and a final time t f . To write
Equation 9.54 in terms of these two times, we integrate between these two limits:1∫ t f

t0
d ECV =

∮ t f

t0
Qin,CV dt −

∮ t f

t0
Wby,CV dt (9.55)

ECV |t f
− ECV |t0 = �

f −i
ECV =

∮ t f

t0

Qin,CV dt −
∮ t f

t0

Wby,CV dt (9.56)

Here, we introduce the symbol �
f −i

to indicate the difference between the final

and the initial values of the property. The integrals on the righthand side of
Equation 9.56 are the total amount of heat and work associated with the energy
change �

f −i
ECV . We use the line integral symbol for these integrations to remind

us that heat and work in a process depend on the path taken in the process. These
quantities are not state functions (see the thermodynamics literature [157]). We
define the heat and work integrals as Qin and Wby :

Qin ≡
∮ t f

t0
Qin,CV dt (9.57)

Wby ≡
∮ t f

t0
Wby,CV dt (9.58)

The closed-system energy balance thus becomes:

Energy balance,
closed system: �

f −i
ECV = Qin − Wby (9.59)

As discussed in Chapter 6, the total energy of a system is composed of the
sum of three contributions to energy: internal, kinetic, and potential energy,
ECV = U + Ek + E p. Incorporating this sum into Equation 9.59, we arrive at
the final version of the macroscopic closed-system energy balance:

Macroscopic
closed-system

energy balance:
�
f −i

U + �
f −i

Ek + �
f −i

E p = Qin − Wby (9.60)

where the �
f −i

are the changes in that property in the sense final–initial, and Qin

and Wby are given by Equations 9.57 and 9.58.

1The energy of a system is a state function; that is, its value depends on only the state of a system
and not on the particular path that a system takes to arrive at that state. State variables integrate
straightforwardly. The heat and work associated with a system are not state variables. The work
and heat that go into changing the energy of a system are different depending on the path chosen.
For that reason, we cannot evaluate directly the integrals in Equations 9.57 and 9.58 unless the
path is known. For more on this aspect of thermodynamics, see the literature [99, 157].
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9.1.3.2 OPEN SYSTEMS
As with the macroscopic closed-system balance, the derivation of the macroscopic
open-system balance begins with the energy balance on a CV, Equation 9.52. For
an open system, mass flows into and out of the system; thus, the convective term
(i.e., the integral) is an important part of this balance:

Energy balance
on a CV

(First law of
thermodynamics):

d ECV

dt
+
∫∫

C S
(n̂ · v ˆ)ρE d S = Qin,CV − Wby,CV

(9.61)

The convective integral in Equation 9.61 may be simplified for a macroscopic
CV by making the same assumptions as previously in developing the macroscopic
mass and momentum balances—namely, that the density ρi is constant across
control surfaces Ai and the direction of the fluid velocity v̂i does not vary across
Ai . With these assumptions and writing v = vv̂, the convective integral becomes:∫∫

C S
(n̂ · v ˆ)ρE d S =

∑
Ai

∫∫
Ai

(n̂ · v ˆ)ρE d S (9.62)

=
∑

Ai

cos θiρi

∫∫
Ai

Êv d S (9.63)

Note that we incorporate the fact that n̂ · v = v|Ai
cos θi . If we further assume

that Êi does not vary across surface Ai , Equation 9.63 becomes (see the caveat
in Example 9.2):∫∫

C S
(n̂ · v ˆ)ρE d S =

∑
Ai

cos θiρi Êi

∫∫
Ai

v d S (9.64)

With the help of Equation 9.9, we recognize the remaining integral as related to
the average speed of the fluid across Ai :

Average fluid speed
across Ai :

〈v〉|Ai
=
∫∫

Ai
v d S∫∫

Ai
d S

= 1

Ai

∫∫
Ai

v d S (9.65)

The convective term in the energy balance becomes:∫∫
C S

(n̂ · v ˆ)ρE d S =
∑

Ai

cos θiρi Êi Ai 〈v〉|Ai
(9.66)

For many open-system energy-balance problems, we can further assume that
n̂ and v̂ are parallel (Figure 9.6). This is the case if the fluid enters and exits the
CV perpendicular to the inlet and outlet control surfaces. If n̂ and v are parallel
and in the same direction (n̂ = v̂), then n̂ · v̂ = cos θ = 1; this is the case for
an outflow surface. If n̂ and v are parallel but in opposite directions (n̂ = −v̂),
then n̂ · v̂ = cos θ = −1; this is the case for an inflow surface. We can break up
the summation in Equation 9.66 into outflow and inflow surfaces. We further
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iv̂

in̂

180°=iθ

inlet surfaces

jv̂

jn̂

0°=jθ
outlet surfaces

Figure 9.6 For many systems analyzed by the macroscopic balances, the velocity is perpendicular to the inlet and outlet control
surfaces.

simplify the convective expression by writing the mass flow rate through Ai as
mi = ρi Ai 〈v〉|Ai

:∫∫
C S

(n̂ · v ˆ)ρE d S =
∑

Ai

cos θiρi Êi Ai 〈v〉|Ai
(9.67)

=
∑

A j
out

(
ρ j A j 〈v〉|A j

)
Ê j −

∑
Ai
in

(
ρi Ai 〈v〉|Ai

)
Êi (9.68)

=
∑

A j
out

m j Ê j −
∑

Ai
in

mi Êi (9.69)

The macroscopic energy balance becomes:

d ECV

dt
+
∑

A j
out

m j Ê j −
∑

Ai
in

mi Êi = Qin,CV − Wby,CV (9.70)

ˆ ˆ

The total energy of a system is composed of the sum of three contributions to
energy: internal, kinetic, and potential, ECV = U + Ek + E p, or on a per-unit-
mass basis, ÊCV = U + Ek + Ê p. Incorporating these expressions into Equa-
tion 9.69, we arrive at the final version of the convective terms of the macroscopic
open-system energy balance:∑

A j
out

m j Ê j −
∑

Ai
in

mi Êi

=
∑

A j
out

m j

[
Û + Êk + Ê p

]
j
−
∑

Ai
in

mi

[
Û + Êk + Ê p

]
i

(9.71)

=

⎡
⎢⎢⎢⎣∑

A j
out

m jÛ j −
∑

Ai
in

miÛi

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣∑

A j
out

m j Êk, j −
∑

Ai
in

mi Êk,i

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣∑

A j
out

m j Ê p, j −
∑

Ai
in

mi Ê p,i

⎤
⎥⎥⎥⎦ (9.72)

= �
o−i

U + �
o−i

Ek + �
o−i

E p (9.73)
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where the expression �
o−i

means change
∑

out −∑ in. The �
o−i

terms in Equa-

tion 9.73 are defined here:

�
o−i

U ≡
∑
out

m jÛ j −
∑

in

miÛi (9.74)

�
o−i

Ek ≡
∑
out

m j Êk, j −
∑

in

mi Êk,i (9.75)

�
o−i

E p ≡
∑
out

m j Ê p, j −
∑

in

mi Ê p,i (9.76)

Substituting these results into Equation 9.70 gives the final version of the micro-
scopic open-system energy balance:

Macroscopic
open-system

energy balance:

d ECV

dt
+ �

o−i
U + �

o−i
Ek + �

o−i
E p = Qin,CV − Wby,CV

(9.77)

d

dt

(
U + Ek + E p

)+ �
o−i

U + �
o−i

Ek + �
o−i

E p = Qin,CV − Wby,CV (9.78)

Again, the �
o−i

Ek , �
o−i

E p, and �
o−i

U in Equation 9.77 refer to the differences

between the sum of contributions from the outlet streams minus the sum of
contributions from the inlet streams (

∑
out −∑ in).2

At steady state, the time derivative in Equation 9.77 is zero. The steady-state,
macroscopic, open-system energy balance is shown here:

�E p + �Ek + �U = Qin,CV − Wby,CV

Steady-state,
macroscopic,
open-system,

energy balance
(preliminary form)

(9.79)

In this equation, we revert to using � for the change-in-energy terms in preference
to �

o−i
because using the bare symbol � is more standard. In this and all related

open-system equations, the symbol � signifies
∑

out −∑ in.
The preliminary form of the open-system balance shown in Equation 9.79 is

correct, but this equation may be written in a more convenient form with a few
adaptations. In open systems, the work term Wby,CV contains two contributions.
The first contribution is due to moving parts that intrude into the system, such
as mixing shafts, turbines, and the internal workings of pumps (Figure 9.7). The
work performed by the fluid associated with moving shafts is called shaft work
and is given the symbol Ws,by . The other contribution to Wby,CV in an open
system is the work done by the fluid as it enters or leaves the system (Figure 9.8);
this contribution is called flow work. Flow work usually is combined with the
convective terms, as follows.

2Contrast the �
o−i

here with �
f −i

in Equation 9.60.
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M
O

TO
R

Generator

Figure 9.7 Work is force times displacement; thus, moving parts are one source of work. Work performed by the fluid associated
with moving parts is called shaft work. Examples of systems with shaft work are centrifugal pumps, mixers, and
turbines used in hydropower generation.

A stream entering a chosen open system flows with a pressure pi and at a
volumetric flow rate of Qi = 〈v〉i Ai , where 〈v〉i is the average speed of the fluid
in the i th inlet stream and Ai is the cross-sectional area of the i th inlet stream.
Pressure is force per unit area, and rate-of-work is force multiplied by velocity;

System =
fluid in pipe
between Ai

and Aj

Flow work
on system

at Ai

Aj

=

Ai

V̇i V̇j

V̇j

pj,outpi,in

pi,in
Flow work
by system

at Aj

= V̇jpj,out

Figure 9.8 Work is force times displacement; thus, moving fluid is a source of work. Work done by or on the fluid as it enters
or leaves the system is called flow work. The work on the boundaries of a flow system is done by fluid outside the
boundary on the fluid inside the system. If the system works on its surroundings, such as at the exit shown here,
then the work on the system is negative.
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thus, just at the system boundary as the fluid enters, the pressure times the cross-
sectional area of the pipe is a force acting on the fluid in the CV, doing work on
the fluid as it crosses into the system (see Figure 9.8). The rate-of-work by the
fluid is the negative of this:

⎛
⎝ rate of flow work

by fluid system at entrance
for i th input stream

⎞
⎠ = (force)

(
displacement

time

)

=
[(

force

area

)
(area)

](
displacement

time

)

= −pi Ai 〈v〉i (9.80)

= −pi Qi (9.81)

A stream exiting a chosen open system flows with a pressure p j and at a
volumetric flow rate of Q j = 〈v〉 j A j , where 〈v〉 j is the average speed of the j th
exit stream and A j is the cross-sectional area of the j th exit stream. As before, just
at the system boundary as the fluid exits, the pressure times the cross-sectional
area of the pipe is a force acting on fluid. However, because this stream is an
exiting stream, the work is done by the fluid in the CV on fluid that is outside of
the CV. Thus, the work done by the chosen system at the exit is the force times
the fluid displacement at the exit (i.e., no sign change):

⎛
⎝ rate of flow work

by fluid system at exit
for j th stream

⎞
⎠ = p j A j 〈v〉 j (9.82)

= p j Q j (9.83)

We now sum all of the flow-work contributions and rearrange the open-system
energy balance to include the separation of shaft work and flow work into the
different expressions derived previously:

�E p + �Ek + �U = Qin,CV − Wby,CV (9.84)

= Qin,CV − Ws,by +
∑

in

pi Qi −
∑
out

p j Q j (9.85)

�E p + �Ek +
[
�U +

∑
out

p j Q j −
∑

in

pi Qi

]
= Qin,CV − Ws,by,CV (9.86)

ˆ ˆ

The two flow-work terms commonly are combined with the internal-energy
term and expressed in terms of the change in the thermodynamic function
enthalpy, as we now show. Specific enthalpy or enthalpy per unit mass Ĥ is
defined as:

Specific enthalpy H ≡ U + pV̂ (9.87)
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where V̂ = 1/ρ is the specific volume and, therefore, mV̂ = Q:

m V̂ = Q (9.88)(
mass

time

)(
volume

mass

)
=
(

volume

time

)
(9.89)

For each flow stream in our system, we can calculate the amount of enthalpy
brought in or taken out; summing as previously we calculate an overall change in
enthalpy for our system:⎛
⎜⎜⎜⎝

net rate
of enthalpy
flow out of

open system

⎞
⎟⎟⎟⎠ = �

o−i
H = �H =

∑
out

m j Ĥ j −
∑

in

mi Ĥi (9.90)

=
∑
out

(
m jÛ j + m j p j V̂ j

)
−
∑

in

(
miÛi + mi pi V̂i

)
(9.91)

The mpV̂ = pQ terms can be recognized as the flow-work terms that appeared
in Equation 9.86 (see also Equation 9.81):⎛
⎝ net rate of

enthalpy flow out
of an open system

⎞
⎠ = �H (9.92)

=
∑
out

(
m jÛ j + p j Q j

)
−
∑

in

(
miÛi + pi Qi

)
(9.93)

=
(∑

out

m jÛ j −
∑

in

miÛi

)
+
∑
out

p j Q j −
∑

in

pi Qi

(9.94)

=
[
�U +

∑
out

p j Q j −
∑

in

pi Qi

]
(9.95)

Equation 9.95 matches the bracketed terms in Equation 9.86. Returning to Equa-
tion 9.86 and combining with Equation 9.95, we obtain the conventional form of
the macroscopic, open-system energy balance:

Macroscopic
open-system

energy balance
(steady state):

�E p + �Ek + �H = Qin,CV − Ws,by,CV (9.96)

where here � refers to
∑

out −∑ in and �H is given by the following
expression:

�H =

⎡
⎢⎢⎢⎣∑

A j
out

m j Ĥ j −
∑

Ai
in

mi Ĥi

⎤
⎥⎥⎥⎦ (9.97)
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m

2

1

RXR TANK 

PUMP 

m

Figure 9.9 A common system often is one with a single input stream and a single output stream, and in which an incompressible
(1/V̂ = ρ = constant), nonreacting, nearly isothermal (U small) fluid is flowing.

For many heat-transfer systems, separation systems, and reactors, the kinetic
and potential energy changes are not important and there is no shaft work (i.e.,
no mixers, no turbines, and no pumps). Under these conditions, the open-system
energy balance reduces to:

�H = Qin,CV

Open-system energy balance
when �E p, �Ek , Ws,by,CV ≈ 0

(steady state)
(9.98)

A way to think about enthalpy, therefore, is as the energy function that changes
when heat is added to an open system (i.e., mass flows in and out) under the fairly
common conditions listed with Equation 9.98.

Note that for all of the � terms in the open-system balances, � refers to∑
out −∑ in. Techniques for applying the steady-state, open-system energy

balance are discussed in introductory engineering textbooks [47].

9.1.3.3 MECHANICAL ENERGY BALANCE
The simple form of the steady-state, macroscopic, open-system energy balance
discussed previously, �H = Qin,CV (Equation 9.98), is common in heat exchang-
ers and reactors; however, in the flow of liquids and gases through conduits, the
kinetic energy, potential energy, and shaft work dominate the energy balance.
This circumstance is so common, in fact, that a simplified version of the steady-
state, macroscopic, open-system energy balance is given a name: the mechanical
energy balance (MEB). We derive the MEB in this section.

We consider the special case of a single-input, single-output system such as a
liquid pushed through a piping system by a pump (Figure 9.9), and we apply the
steady-state, open-system energy balance (Equation 9.96).

Macroscopic
open-system

energy balance
(steady state):

�E p + �Ek + �H = Qin,CV − Ws,by,CV (9.99)

For such a system, there is only a single mass flow rate, m; thus, all of the∑
out −∑ in summations implicit in the � terms of the open-system energy
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balance become simple differences, as we now show. We label the outlet of our
system (i.e., the control volume) as Position 2 and the inlet as Position 1. We
further substitute Êk = Ek/m = v2/2 = 〈v〉2/2 (see Equation 6.74) and Ê p =
E p/m = gz (see Equation 6.75). For the case of single-input, single-output,
steady flow, each term in the open-system energy balance simplifies as shown
here:

�E p =
∑
out

m j Ê p, j −
∑

in

mi Ê p,i (9.100)

ˆ ˆ= m E p,2 − m E p,1 (9.101)

= m
(

Ê p,2 − Ê p,1

)
(9.102)

= mg (z2 − z1) (9.103)

�Ek ≡
∑
out

m j Êk, j −
∑

in

mi Êk,i (9.104)

ˆ ˆ= m Ek,2 − m Ek,1 (9.105)

= m
(

Êk,2 − Êk,1

)
(9.106)

= m

(
〈v〉2

2

2
− 〈v〉2

1

2

)
(9.107)

�H =
(∑

out

m jÛ j −
∑

in

miÛi

)
+
∑
out

m j p j V̂ j −
∑

i

m j pi V̂i (9.108)

ˆ ˆ= mU2 − mU1 + mp2V̂2 − mp1V̂1 (9.109)

= m
(

Û2 − Û1 + p2V̂2 − p1V̂1

)
(9.110)

= m
(

Û2 − Û1 + p2

ρ2
− p1

ρ1

)
(9.111)

In Equation 9.111 we used the fact that V̂ = 1/ρ, where ρ is fluid density. For an
incompressible fluid, the density is constant and ρ1 = ρ2 = ρ. We now substitute
all of these results into the steady-state, open-system energy balance and simplify:

�Ek + �E p + �H = Qin,CV − Ws,by,CV (9.112)

m

(
〈v〉2

2

2
− 〈v〉2

1

2

)
+ mg (z2 − z1) + m

(
Û2 − Û1 + p2

ρ
− p1

ρ

)

= Qin,CV − Ws,by,CV (9.113)

(
〈v〉2

2

2
− 〈v〉2

1

2

)
+ g (z2 − z1) +

(
Û2 − Û1

)
+
(

p2

ρ
− p1

ρ

)

= Qin,CV

m
− Ws,by,CV

m
(9.114)
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�p

ρ
+ �〈v〉2

2
+ g�z +

[
ˆ�U − Qin,CV

m

]
= −Ws,by,CV

m
(9.115)

In Equation 9.115, � again means out–in.
The terms in square brackets in Equation 9.115 are small for the flow of

incompressible fluids in pipes because (1) temperature is approximately constant;
(2) no phase or other chemical changes take place; and (3) only modest amounts
of heat are transferred. We group these terms together and call them the friction
term, F :

�p

ρ
+ �〈v〉2

2
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,
turbulent flow,

v̂ constant across
cross section

�T ≈ 0, no reaction)
(turbulent flow only)

(9.116)

ˆ ˆ ˆ

This is the mechanical energy balance. For compactness and following conven-
tion, we write the shaft work on the CV in the mechanical energy balance as
Ws,by rather than Ws,by,CV .

There is one subtlety that we ignored in our derivation of the mechanical
energy balance. In the kinetic-energy term, although velocity varies across the
cross section, we assume that Êk = 〈v〉2/2; that is, kinetic energy per unit mass
equals half the square of the average velocity. By making this assumption, we
assume the velocity to be constant across the cross section of the input and
outlet flows. We make this assumption in Equation 9.64 when we assume that
E = Ek + E p + Û was independent of position and could be moved out of the
integral. This is a good assumption for turbulent flow because velocity does not
vary much with position in turbulent flow, but it is incorrect for laminar flow. In
the next example, we consider this effect and add a correction to Equation 9.116
so that it may be used in laminar flow.

EXAMPLE 9.2. What is the mechanical energy balance for laminar flows and
other flows where the velocity varies across the tube cross section (Figure 9.10)?

SOLUTION. In our development of the steady-state, open-system energy bal-
ance, we customized the energy balance on a CV, beginning with the general
energy-balance in Equation 9.61:

Energy balance
on a CV

(First law of
thermodynamics):

d ECV

dt
+
∫∫

C S
(n̂ · v ˆ)ρE d S = Qin,CV − Wby,CV

(9.117)
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Figure 9.10 In turbulent flow, the velocity profile is mostly flat; in laminar flow, there is a pronounced variation of velocity across
the tube cross section. This must be considered in the energy balances.

In our customization, we set the time-derivative to zero (steady state), and we
worked on the convective integral, making it specific to a single-input, single-
output system. In that development, we assumed that the specific energy Ê was
independent of position on an input or output control surface. This allowed us to
bring several terms, including Êi , out of the double integral:∫∫

C S
(n̂ · v ˆ)ρE d S =

∑
Ai

cos θiρi Êi

∫∫
Ai

v d S (9.118)

where Ê = Û + Êk + Ê p.
For internal energy Û and potential energy Ê p, the assumption is correct

and Equation 9.118 holds. For the kinetic energy Êk , however, we must be
more careful. The kinetic-energy-per-unit-mass term Êk is given by Êk = v2/2
(no average brackets 〈〉; see Equation 6.74). For turbulent flow, the velocity is
approximately constant across the inlet and outlet surfaces, and the assumption
v ≈ 〈v〉 is valid. For steady laminar flow in a tube, however, the velocity has a
parabolic profile across the cross section (see Equation 7.23):

Velocity for
laminar tube flow:

vz(r ) = (p0 − pL + ρgL)R2

4μL

[
1 −

(
r

R

)2
]

(9.119)

and we may not ignore the variation of Êk across the flow cross section. As a
result, in laminar flow, the kinetic-energy expression cannot be taken out of the
integral in Equation 9.117.

For laminar flow and other flows where v varies across the cross section, we
thus take a slightly different path to the mechanical energy balance. Beginning
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with the convective integral from Equation 9.117, we write the energy as its three
parts:∫∫

C S
(n̂ · v ˆ)ρE d S =

∑
Ai

cos θiρi

∫∫
Ai

(
Û + Êk + Ê p

)
v d S (9.120)

=
∑

Ai

cos θiρi

∫∫
Ai

Ûv d S +
∑

Ai

cos θiρi

∫∫
Ai

Êkv d S

+
∑

Ai

cos θiρi

∫∫
Ai

Ê pv d S (9.121)

The internal- and potential-energy terms may be simplified as they were in the
turbulent case; the kinetic-energy term needs additional attention:∫∫

C S
(n̂ · v ˆ)ρE d S = �

o−i
U +

∑
Ai

cos θiρi

∫∫
Ai

Êkv d S + �
o−i

E p (9.122)

Concentrating now on the kinetic-energy term, we write Êk = v2/2:

∑
Ai

cos θiρi

∫∫
Ai

Êkv d S =
∑

Ai

cos θiρi

∫∫
Ai

v2

2
v d S (9.123)

=
∑

Ai

cos θiρi

2

∫∫
Ai

v3 d S (9.124)

The remaining integral in Equation 9.124 may be recognized as related to the
average of the cube of the fluid speed across Ai :

Average across Ai of
fluid speed cubed:

〈v3〉
∣∣∣∣

Ai

=
∫∫

Ai
v3 d S∫∫

Ai
d S

= 1

Ai

∫∫
Ai

v3 d S (9.125)

Thus:

∑
Ai

cos θiρi

∫∫
Ai

Êkv d S =
∑

Ai

cos θiρi

2

∫∫
Ai

v3 d S (9.126)

=
∑

Ai

cos θiρi Ai 〈v3〉∣∣∣Ai

2
(9.127)

Equation 9.127 contains an expression for the average of the cube of the speed
〈v3〉. For turbulent flows, this quantity is approximately equal to the cube of the
average speed, whereas for laminar flows, it is appreciably larger than the cube
of the average speed (Figure 9.11). To account for these two situations, we define
the parameter α as:

Energy
velocity-profile

parameter:
α ≡ 〈v〉3

〈v3〉 (9.128)
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Figure 9.11 For a function that varies with position, the cube of the average of the function is not generally equal to the average
of the cube of the function.

Incorporating 〈v3〉 = 〈v〉3/α into Equation 9.127, we obtain:

∑
Ai

cos θiρi

∫∫
Ai

Êkv d S =
∑

Ai

cos θiρi Ai 〈v3〉∣∣∣Ai

2
(9.129)

=
∑

Ai

cos θiρi Ai

( 〈v〉3
∣∣∣

Ai

2α

)
(9.130)

We further simplify the kinetic-energy expression by writing the mass flow rate
through Ai as mi = ρi Ai 〈v〉|Ai

:

∑
Ai

cos θiρi

∫∫
Ai

Êkv dS =
∑

Ai

cos θiρi Ai 〈v〉|Ai

( 〈v〉2
∣∣∣

Ai

2α

)
(9.131)

=
∑

Ai

cos θi mi

( 〈v〉2
∣∣∣

Ai

2α

)
(9.132)

The development of the MEB now proceeds in the same manner as before.
We assume that n̂ and v̂ are parallel, which is the case if the fluid enters and
exits the CV perpendicular to the inlet and outlet control surfaces. If n̂ = v̂, then
n̂ · v̂ = cosθ = 1; this is the case for an outflow surface. If n̂ = −v̂, then n̂ · v̂ =
cosθ = −1; this is the case for an inflow surface. We break up the summation in
Equation 9.132 into outflow and inflow surfaces:

∑
Ai

cos θiρi

∫∫
Ai

Êkv d S =
∑

A j

outflow

m j

( 〈v〉2
∣∣∣

A j

2α

)
−
∑

Ai
inflow

mi

( 〈v〉2
∣∣∣

Ai

2α

)
(9.133)
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We thus can redefine �
o−i

Ek to apply to both turbulent and laminar flows as:

�
o−i

Ek ≡
∑
out

m j

( 〈v〉2
∣∣∣

A j

2α

)
−
∑

in

mi

( 〈v〉2
∣∣∣

Ai

2α

)
(9.134)

(Compare to Equation 9.75.)
The mechanical energy balance applies to the special case of a single-input,

single-output system such as a liquid pushed through a piping system by a pump
(see Figure 9.9). For such a system, there is only a single mass flow rate, m;
thus, the

∑
out −∑ in summations become simple differences. Proceeding as

before, we label the outlet as Position 2 and the inlet as Position 1 and the general
kinetic-energy term becomes:

�
o−i

Ek = �Ek =
∑
out

m j

( 〈v〉2
∣∣∣

A j

2α

)
−
∑

in

mi

( 〈v〉2
∣∣∣

Ai

2α

)
(9.135)

= m

(
〈v〉2

2

2α
− 〈v〉2

1

2α

)
(9.136)

Compare this result to Equation 9.107. The inclusion of α in the denominator
makes the expression correct for both laminar and turbulent flow.

We see that the only change in this laminar-flow analysis compared to the
original turbulent-flow analysis is the inclusion of α in the denominator of the
kinetic-energy term. The final version of the mechanical energy balance that is
applicable for both laminar and turbulent flows is thus:

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,
v̂ constant across

cross section
�T ≈ 0, no reaction)

(9.137)

(Compare to Equation 9.116.) The values of α = 〈v〉3/〈v3〉 for laminar and
turbulent flows may be calculated formally (as we did with β in the macroscopic
momentum balance) from the definition of α in Equation 9.128 and the velocity
profiles vz(r ) for laminar and turbulent flow (see Problem 6). The values of α and
β for plug flow (i.e., constant velocity across the cross section), laminar flow, and
turbulent flow are summarized in Table 9.1.

The mechanical energy balance gives the relationship among pressure, velocity,
elevation, frictional losses, and shaft work for the steady flow of incompressible
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Table 9.1. Parameter α from the MEB and parameter β from the macroscopic
momentum balance

Name Flow: Plug Turbulent Laminar

energy
velocity-profile
parameter

α = 〈v 〉3

〈v 3〉 1 0.90–0.99 1
2

momentum
velocity-profile
parameter

β = 〈v 〉2

〈v 2〉 1 0.98 3
4

Note: Both parameters reflect the deviation of the velocity profile from plug flow.

fluids where there is little heat transfer, no phase changes, no chemical changes,
and little change in temperature:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,
v̂ constant across

cross section
�T ≈ 0, no reaction):

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m
(9.138)

The values of α and β for various flow types are summarized in Table 9.1.
Application of the mechanical energy balance is limited to single-input, single-
output systems. Pressure, fluid velocity, and elevation are easily measured in
experimental systems, and shaft work is often the quantity to be calculated with
the MEB. The friction term sometimes may be neglected; when it cannot be
neglected, it must be calculated from experimental results—that is, from data
correlations (see Section 1.2).

We discuss applications of the mechanical energy balance in Section 9.2,
including the analysis of valves and fittings that leads to the concept of K f

introduced in Chapter 1. Other significant applications of the MEB include the
analyses of pumping systems and open-channel flows, which are also discussed
in the next section.

9.2 Using the macroscopic balance equations

The macroscopic balances on mass, momentum, and energy, derived in the previ-
ous section, are used widely to calculate flow information in industrial problems.
The balances are written on an arbitrarily shaped macroscopic control volume
(CV) (see Section 9.1 for derivations).

The macroscopic mass balance is given by:

Macroscopic
mass balance

(ρ,v̂ constant across Ai ):

dmCV

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉

]∣∣∣∣
Ai

= 0 (9.139)
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Macroscopic
mass balance
single-input,

single-output:

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.140)

where mCV is the mass of the control volume, ρ is the density, A is the cross-
sectional area of an inlet or outlet surface, θ is the angle between the unit normal
n̂ to the surface A and the direction of the velocity through the surface, and 〈v〉
is the average velocity through the surface. If there is one inlet and one outlet
stream, the macroscopic mass balance becomes Equation 9.140. Note that n̂ is
an outwardly pointing unit normal; thus, for inlet surfaces, n̂ and v̂ form an angle
greater than 90 degrees (see Figure 9.4) and cos θ is negative. If we further assume
that v̂ is parallel to n̂ at both inlet and outlet surfaces (cos θ1 = −1; cos θ2 = 1),
then the macroscopic mass balance simplifies to:

Macroscopic mass balance
single-input,
single-output
v̂ parallel to n̂

(velocity perpendicular
to surface)

dmCV

dt
+ (ρ A〈v〉)|out − (ρ A〈v〉)|in = 0

(9.141)

We show how to use the macroscopic mass balance (Equations 9.139–9.141) in
this section.

The macroscopic momentum balance is given by:

Macroscopic
momentum balance

(ρ, v̂ constant across Ai )

dP

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉2

β
v̂

]∣∣∣∣∣∣∣
Ai

=
∑

on
CV

f

(9.142)

where P is the momentum in the control volume; f is a force on the control
volume; β = 〈v〉2/〈v2〉 is the momentum velocity-profile parameter; v̂ is a unit
vector in the direction of the velocity through surface A; and ρ, A, 〈v〉, and θ are
as described previously for the macroscopic mass balance. The values of β for
various flow types are summarized in Table 9.1. In Equation 9.142, we specify
that neither the density nor the direction of the velocity changes across the input
and output surfaces. The forces in the summation in Equation 9.142 are body
forces (i.e., gravity) and the molecular surface forces on the bounding control
surfaces:

∑
on
CV

f = f
gravity

+ f
surface

(9.143)

= f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.144)
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The molecular surface forces, including pressure, are expressed using the stress
tensor �̃ (see Equation 4.221):

Total molecular
fluid force

on a surface S:
F =

∫∫
S

[n̂ · �̃]at surface d S (9.145)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S (9.146)

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.147)

The simplification n̂ · pI = pn̂ in Equation 9.147 is due to vector/tensor rela-
tionships discussed in Section 1.3.2.2. We show how to use the macroscopic
momentum balance (Equations 9.142– 9.147) in this section.

The third macroscopic balance is the macroscopic energy balance. In Sec-
tion 9.1.3, we derive three macroscopic energy balances: (1) the closed-system
energy balance (see Equation 9.60), which is useful for systems where no flow
occurs; (2) the open-system energy balance (see Equation 9.96), which is widely
used in chemical engineering for the analysis of heat exchangers, evaporators,
and other devices in which flow occurs and temperature change dominates; and
(3) the mechanical energy balance (see Equation 9.138), which is a useful energy
balance for fluid systems in which the fluid motion is dominant and thermal and
chemical effects are negligible. Here we focus on the mechanical energy balance
(MEB).

The mechanical energy balance gives the relationship among pressure, velocity,
elevation, frictional losses, and shaft work for the steady flow of incompressible
fluids in which there is little heat transfer, no phase changes, no chemical changes,
and minimal change in temperature:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible, v̂ constant

across cross section
�T ≈ 0, no reaction)

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

(9.148)

The symbol � indicates “out–in.” The values of the energy velocity-profile param-
eter α for various flow types are summarized in Table 9.1. Application of the MEB
is limited to single-input, single-output systems. Pressure, fluid velocity, and ele-
vation are measured easily in experimental systems, and shaft work often is the
quantity to be calculated with the MEB. The friction term sometimes may be
neglected; when the friction term cannot be neglected, it must be calculated from
experimental results—that is, from data correlations, as discussed in Section 1.2
and examined here.

The examples in this section demonstrate the techniques used to apply the
macroscopic mass, momentum, and energy balances in fluid mechanics. The
MEB problems discussed here are more complex than those in Chapter 1. In
addition, we demonstrate how the macroscopic momentum balance can be useful
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in fluid-mechanics analysis, particularly when forces on devices are of interest.
The discussion is organized around the types of devices we consider: pressure
measurement, flow-rate measurement, valves and fittings, and pumps. We also
show how the MEB may be used in the analysis of open-channel flows.

9.2.1 Pressure-measurement devices

Pressure is an important variable in fluids engineering, and many devices have
been developed to measure pressure. Here, we carry out two examples of applying
the macroscopic balances to measure pressure in flows.

The results in this section are expressed in terms of head. The concept of
head—that is, energy per unit weight—is common in fluids engineering, and we
can understand it by examining the mechanical energy balance. As discussed in
Sections 1.2 and 9.1, each term of the mechanical energy balance has units of
energy per unit mass, either J/kg or ft lbf/lbm:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

v̂ constant across cross section
�T ≈ 0, no reaction)

�P

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

(9.149)

If we divide the MEB by the acceleration due to gravity g, each term becomes
energy per unit weight, which has units of length, feet or meters. Energy per unit
weight of flowing liquid is called fluid head:

Mechanical
energy balance
(units of head)

�P

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.150)

It is common for hydraulic engineers to discuss flow energies in terms of head.
The practice of using head units can be traced to the still-current practice of using
manometer tubes and Pitot tubes to measure flow pressures and flow rates [118].
The first example shows how head is related to the reading of a manometer tube;
the second example discusses Pitot tubes, which report the stagnation head—a
quantity related to flow rate.

EXAMPLE 9.3. A vertical manometer tube is attached to the wall of a flow
channel as shown in Figure 9.12. The flowing liquid rises in the manometer tube
to a height hstatic. Relate the height hstatic to a property of the flow.

SOLUTION. We choose our system to be the fluid in the manometer between
Point 1 at the base of the manometer in contact with the moving fluid and Point
2 at the top free surface of the fluid in the manometer. The system of water
in the vertical manometer tube in Figure 9.12 is a single-input, single-output,
steady flow of an incompressible fluid. There is no heat transfer and no chemical
reaction or phase change. All of the requirements of the mechanical energy
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Figure 9.12 Manometer tubes are clear vertical tubes of arbitrary cross section installed in a flow such that the fluid can enter
and rise into the tube. The height of the fluid in the manometer tube may be shown to represent the gauge pressure
in the flow.

balance therefore are met. We begin with the MEB in terms of head:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.151)

In our chosen system, there are no shafts and therefore no shaft work; the velocity
in the manometer is zero at both points and therefore �〈v〉2 = 0. With no velocity,
there is no friction. The pressure at Point 1 is the pressure in the flow, and the
pressure at Point 2 is atmospheric. The mechanical energy balance reduces to:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2gα
+ (z2 − z1) + F2,1

g
= −Ws,by.21

mg
(9.152)

patm − p1

ρg
+ (z2 − z1) = 0 (9.153)

hstatic = z2 − z1 = p − patm

ρg
(9.154)

where p1 = p is the flow pressure where the manometer is installed. We see
that hstatic is the gauge pressure (see the Glossary) at the point of manome-
ter installation, expressed in head units. Note that we can arrive at the same
result by analyzing the manometer with the static fluid equations discussed in
Section 4.2.4.
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EXAMPLE 9.4. A Pitot tube is a “J”-shaped manometer tube installed through
the wall of a flow such that the curved end directly faces the oncoming flow
(Figure 9.13). The flowing liquid rises in the Pitot tube to a height hstag. Relate
the height hstag to a property of the flow.

SOLUTION. Our system is the fluid in the Pitot tube. We choose Point 1 to be the
surface of fluid that faces the flow. This surface intercepts the flow and produces a
stagnation point (see the Glossary). The flow decelerates and the velocity comes
to zero on this surface. Point 2 is chosen to be the top free surface of the fluid in
the vertical portion of the tube. The system of fluid in the installed Pitot tube is
a single-input, single-output, steady flow of an incompressible fluid. There is no
heat transfer and no chemical reaction or phase change. All of the requirements
of the mechanical energy balance therefore are met. We begin with the MEB in
terms of head:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.155)

In our chosen system, there are no shafts and therefore no shaft work; the
velocity is zero at both Points 1 and 2; thus, �〈v〉2 = 0. With no velocity, there
is no friction. The pressure at Point 1 is the pressure at the stagnation point, and

Figure 9.13 Pitot tubes are clear J-shaped tubes of arbitrary cross section installed in a flow such that the curved bottom
portion directly faces the incoming flow. The height of the fluid in the Pitot tube may be shown to represent the
stagnation pressure at the point where the bottom portion of the tube stops the flow. Stagnation pressure, in turn,
may be shown to be related to the velocity in the flow.
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the pressure at Point 2 is atmospheric. The MEB reduces to:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2gα
+ (z2 − z1) + F2,1

g
= −Ws,by.21

mg
(9.156)

patm − p1

ρg
+ (z2 − z1) = 0 (9.157)

hstag = z2 − z1 = pstag − patm

ρg
(9.158)

where the pressure at the stagnation point p1 now is called pstag.
We see that hstag is the gauge flow pressure at the stagnation point, expressed

in head units. The expression hstag is called the stagnation head. A Pitot tube
allows us to measure the gauge pressure at the stagnation point where the Pitot
tube intercepts the flow. This is a useful quantity for flow measurements (see
Example 9.6).

Static manometer tubes and Pitot tubes are used widely in demonstrations
of fluid phenomena (see, e.g., the NCFMF film on pressure [112]), and the
combination of a static tube with a Pitot tube makes a device that can measure
flow rate. In the second example in the next section, we discuss Pitot-static tubes,
which are used on airplanes to determine flight speed.

9.2.2 Flow-rate-measurement devices

In Chapter 1, we discuss the need for flow measurement in process streams.
Although the pail-and-scale method for measuring flow rate is accurate, it is
disruptive to the system; therefore, many devices have been developed to allow
for accurate flow-rate measurement without breaking into the flow loop. One
such flow-measurement device is discussed in Chapter 1: the Venturi meter. To
illustrate the application of the macroscopic mass balance (see Equation 9.140),
we repeat the (simple) mass balance from that example to see how to apply the
formal macroscopic mass-balance equation.

EXAMPLE 9.5. What is the relationship between measured pressure drop and
flow rate through a Venturi meter? The flow may be assumed to be steady and the
fluid is incompressible.

SOLUTION. We solved this problem in Chapter 1 and the figure is repeated
here (Figure 9.14). To determine the relationship between pressure drop and flow
rate, we apply the mechanical energy balance as well as mass conservation (see
Equation 1.15). To see how our general macroscopic mass balance works, we
formally apply Equation 9.140 to the Venturi problem.

The first step in applying the macroscopic mass balance is to choose our control
volume. We choose a shape that encloses all of the fluid between Planes 1 and
2 in Figure 9.14. Point 1 is the point of the upstream pressure measurement and
Point 2 is at the throat, the location of the other pressure measurement. For this
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2v̂

2n̂1n̂
1̂v

2p1p

c.v.1

2

Figure 9.14 In a Venturi meter, flow is directed through a gently tapering tube. Pressure is measured before the contraction (1)
and at the point of smallest diameter (2) (i.e., the throat). The relationship between the measured pressures and
the fluid velocity may be deduced from the mechanical energy balance with assistance of the macroscopic mass
balance.

CV, there is one inlet surface and one outlet surface (single-input, single-output).
The macroscopic mass balance on this CV is given by Equation 9.140:

Macroscopic
mass balance,
single-input,
single-output

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.159)

For the Venturi meter, the flow is steady; thus, the rate-of-change term is zero.
The other terms may be identified readily as:

ρ1 = ρ2 = ρ (incompressible fluid) (9.160)

θ1 = 180◦ cos θ1 = −1 (input surface) (9.161)

θ2 = 0◦ cos θ2 = 1 (output surface) (9.162)

The mass balance becomes:

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.163)

ρ A2〈v〉2 − ρ A1〈v〉1 = 0 (9.164)

For a circular pipe of diameter Di , the area is given by Ai = π D2
i /4 and we

obtain:

A1〈v〉1 = A2〈v〉2 (9.165)

π D2
1〈v〉1

4
= π D2

2〈v〉2

4
(9.166)

Velocity relationship
in Venturi meter:

〈v〉1 =
(

D2

D1

)2

〈v〉2 (9.167)

The complete solution for the friction in a Venturi meter is in Chapter 1. In
that solution, Equation 9.167 appears as Equation 1.25.
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The use of Equation 9.159 for the problem in the previous example is more
rigorous than necessary, but it is useful to see how the formal equation works in
a problem for which we know the solution. In the next example, we show how
the combination of a static-pressure manometer tube and a Pitot tube can be used
to measure flow speed. The Pitot-static tube is a common sight on the nose of
commercial jets.

EXAMPLE 9.6. A static-pressure manometer and a Pitot tube are installed in the
flow as shown in Figure 9.15. Note that the static-pressure manometer is installed
upstream of the Pitot tube along the same streamline. How are the heights of the
fluid in each tube related to flow variables?

SOLUTION. To see the usefulness of the combination of sensors shown in
Figure 9.15, consider the system of the streamline that connects Points 1 and 2
in Figure 9.15. A steady-flow streamline is the path followed by a series of fluid
particles (Figure 9.16; see also the Glossary). Because the only mass particles
traveling along the streamline are those that start at the upstream point of the
streamline, a streamline is a single-input, single-output system, even without any
walls to enclose it.

The system of the streamline between Points 1 and 2 in Figure 9.15 is a
single-input, single-output, steady flow of an incompressible fluid. There is no
heat transfer and no chemical reaction or phase change. All of the require-
ments of the mechanical energy balance therefore are met. We begin with the

21

hdynamic
hstag

hstatic

Figure 9.15 Schematic of velocity measurement with a combination of a Pitot table and a static tube.
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Figure 9.16 A streamline in steady flow is the path that fluid particles take as they advance through the flow. Packets of
fluid enter the streamline at an upstream point and stay on the streamline throughout. Thus, a streamline is a
single-input, single-output system and we can use the mechanical energy balance along streamlines.

MEB in terms of head:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.168)

We choose Point 2 to be the stagnation point of the Pitot tube. The streamline
that ends at the stagnation point originates upstream; we choose Point 1 to be
on this streamline, at a point directly below the vertical manometer tube (see
Figure 9.15).

In our chosen system there are no shafts and therefore no shaft work; the
velocity is zero at Point 2, and at Point 1 it is equal to the free-stream average
velocity 〈v〉1. The pressures at Points 1 and 2 are different and can be written
as p1 and p2. The elevations of Points 1 and 2 are the same; thus, �z = 0. We
choose to neglect any frictional losses in the flow between Points 2 and 1. Finally,
we assume turbulent flow (α = 1). The MEB reduces to:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2gα
+ (z2 − z1) + F2,1

g
= −Ws,by.21

mg
(9.169)

p2 − p1

ρg
+ 0 − 〈v〉2

1

2g
= 0 (9.170)

〈v〉2
1

2g
= (p2 − p1)

ρg
(9.171)

The result in Equation 9.171 demonstrates that the average fluid velocity near
the point of installation of the manometer tube is related to the pressure difference
between the two chosen points used in our balance: (2) a downstream point
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where the flow was halted by the Pitot tube; and (1) an upstream point along the
same streamline.

From Examples 9.3 and 9.4, we may write the pressures p1 and p2 in terms of
the heads at the two points. The head reflected by the manometer tube (Point 1)
is called the static head hstatic, and it displays the gauge pressure of the flowing
liquid at Point 1. The head at the Pitot tube (Point 2) is called the stagnation
head hstag, and it reflects the pressure at the stagnation point, which includes a
contribution due to the deceleration of the fluid that is halted at the tip of the Pitot
tube:

hstatic = pstatic − patm

ρg
= p1 − patm

ρg
(9.172)

hstag = pstag − patm

ρg
= p2 − patm

ρg
(9.173)

We now substitute these relationships into our MEB results (Equation 9.171) and
simplify:

〈v〉2
1

2g
= (p2 − p1)

ρg
(9.174)

= 1

ρg

((
ρghstag + patm

)− (ρghstatic + patm)
)

(9.175)

〈v〉2
1

2g
= (hstag − hstatic

)
(9.176)

Our analysis shows that the difference between the stagnation head and the static
head provides a measurement of the average velocity at Point 1:

Fluid velocity head, hvelocity,
equals difference between
stagnation and static head:

hvelocity = 〈v〉2

2g
= (hstag − hstatic

)
(9.177)

〈v〉 =
√

2g
(
hstag − hstatic

)
(9.178)

where 〈v〉 = 〈v〉1 is the average fluid velocity near the installation of the vertical
manometer tube. The flow energy due to kinetic energy is termed the velocity
head and is given by hvelocity = 〈v〉2/2g. The velocity head is given by the dif-
ference between the stagnation head and the static head in a Pitot-static device
(Equation 9.177).

Our analysis shows that the readings on a vertical manometer tube and on
a Pitot tube installed as shown in Figure 9.15 give readings of static head and
stagnation head. The difference between these two quantities is the velocity
head, which also is called the dynamic head. The measurement of this head
difference gives the average velocity in a turbulent flow through Equation 9.178
(friction neglected). Calibrated Pitot-static tubes (friction accounted for) are used
on aircraft (Figure 9.17).
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Figure 9.17 Pitot-static tubes are used on aircraft to measure the speed of the air rushing past the vessel in flight. The Pitot-static
tube measures the air velocity relative to the position of the device on the hull of the airplane. The exposed sensor
tubes seen on the front of a jet airplane have the classic “J” shape of a Pitot tube.

Head appears naturally in the discussion of some devices, and it is particularly
prominent in the analysis of centrifugal pumps, which we discuss in Section 9.2.4.
Head has another advantage that is obscured in the recent examples by the fact that
no numbers were used. To understand another reason why engineers sometimes
prefer head units, we examine the pressure head produced by a pressure difference
of 50 lbf /ft2 in a system pumping water (ρ = 62.43 lbm/ft3). For the pressure term
in the mechanical energy balance, we obtain:

Energy
per unit mass

due to pressure:
= �P

ρ

=
(

50
lbf

ft2

)(
ft3

62.43 lbm

)

= 0.80
ft lbf

lbm
(9.179)

Energy
per unit weight
due to pressure:

= �P

ρg
=
(

�P

ρ

)(
1

g

)

=
(

0.80
ft lbf

lbm

)(
s2

32.174 ft

)(
32.174 ft lbm

s2lbf

)
(9.180)

= 0.80 ft (9.181)
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The numbers for the two different quantities in Equations 9.179 and 9.181 are the
same. As we see in Equation 9.180, when converting energy/mass to head and
making subsequent unit conversions, the number 32.174 appears in two places:
(1) in the numerator as part of the unit conversion from lbf to ft lbm/s2; and
(2) in the denominator as g, the acceleration due to gravity. Because these two
factors are numerically the same, the two quantities of magnitude 32.174 cancel
(i.e., the numbers cancel, not the units), and expressions with units of ft lbf /lbm

and ft of head are numerically the same. We made this same observation in
the final example in Chapter 1: The numbers for energy/mass in ft lbf /lbm are
the same as the head results, energy/weight in ft. Thus, we can take a shortcut
when performing calculations in American engineering units and calculate all
types of energy/mass (i.e., pressure-based, velocity-based, and friction loss) in
ft lbf /lbm, and the numbers obtained can be recognized immediately as equal to
the corresponding head numbers (i.e., ft of head, energy per unit weight).

In metric units, when we repeat the analogous calculations, there is no such
numerical serendipity:

Energy
per unit mass

due to pressure:
= �P

ρ

=
(

50
lbf

ft2

)(
ft3

62.43 lbm

)

=
(

0.800897
ft lb f

lbm

)(
J/s

0.7376ft lbf /s

)(
lbm

0.453593 kg

)

= 2.3938 Nm/kg

= 2.4 Nm/kg (9.182)

Energy
per unit weight
due to pressure:

= �P

ρg
=
(

�P

ρ

)(
1

mg

)

=
(

2.3938 Nm

kg

)(
s2

9.8066 m

)(
kg m/s2

1 N

)

= 0.24410 m

= 0.24 m (9.183)

In the metric system, the numerical value of energy per unit mass is not the same
as the numerical value of energy per unit weight. There is no arithmetic advantage
to using head in the metric system.

In summary, ft of head is a unit of length. It expresses the energy per unit
weight in a flowing system. It may be converted to other systems by using the
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conversion factors for length, and some engineers find it intuitive to compare
energies in a flow in terms of head. In the American engineering system of
units, ft of head (energy per unit weight) has exactly the same numerical value
as ft lbf /lbm (energy per unit mass). In the SI system, N m/kg (the analogous
expression to ft lbf /lbm) is not numerically equal to m of head.

9.2.3 Valves and fittings

In this section, we show several calculations using the macroscopic mass, momen-
tum, and energy balances to determine forces as well as frictional losses in valves
and fittings. We used some of these results in Chapter 1, but now we apply our
formal modeling methods to obtain them directly.

EXAMPLE 9.7 (90-Degree bend, revisited). What is the direction and magni-
tude of the force needed to support the 90-degree pipe bend shown in Figure 9.18?
This problem was solved previously in Chapters 3 and 5. The flow is steady and
turbulent and the cross section of the pipe bend is π R2.

SOLUTION. We seek a macroscopic force caused by a flow; density and veloc-
ity direction are constant across the inlet and outlet surfaces. The macroscopic
momentum balance for a single-input, single-output system applies to this flow
situation (see Equation 9.142, N = 2):

Macroscopic
momentum

balance
on a CV,

ρ, v̂ constant
across Ai :

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f

(9.184)

We choose as our control volume all of the fluid in the bend, as outlined by the
dashed curve in Figure 9.18. For our analysis, we choose a rectangular coordinate

x

z

v

(a)

(b)

2Rcontrol 
volume 

R

gMf CVgravity
=

v

Figure 9.18 In Chapters 3–5, we worked on this problem as we developed the continuum model for fluids. Here, we solve it
again using the macroscopic momentum balance.
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system, which is desirable because the inlet and outlet velocities are expressed
most conveniently in a Cartesian system. The forces in this problem are discussed
in Chapter 7. The part that is different here is the convective term, which we now
can treat formally with the macroscopic momentum-balance equation.

The flow is steady; thus, the rate of change of momentum in the CV ∂P/dt is
zero. The forces on the bend are gravity and the molecular surface forces on the
CV: inlet, outlet, and walls:∑

on
CV

f = f
gravity

+ f
surface

(9.185)

= f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.186)

The two convective terms are evaluated at the inlet and outlet surfaces of the
bend. The momentum balance becomes:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f (9.187)

ρ1 A1 cos θ1〈v〉2
1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

= f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.188)

From Figure 9.18 and the chosen coordinate system, we can identify the
following quantities in the convective terms:

ρ1 = ρ2 = ρ (incompressible fluid)

A1 = A2 = π R2 (constant cross section)

β1 = β2 ≈ 1 (turbulent flow)

ˆn̂1 = −ex =
⎛
⎝−1

0
0

⎞
⎠

xyz

n̂2 = êz =
⎛
⎝0

0
1

⎞
⎠

xyz

v̂|1 = êx =
⎛
⎝1

0
0

⎞
⎠

xyz

v̂|2 = êz =
⎛
⎝0

0
1

⎞
⎠

xyz

cos θ1 = n̂1 · v̂|1 = −1

cos θ2 = n̂2 · v̂|2 = 1
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Substituting these values into the macroscopic momentum balance yields:

ρπ R2〈v〉2
1

⎛
⎝−1

0
0

⎞
⎠

xyz

+ ρπ R2〈v〉2
2

⎛
⎝0

0
1

⎞
⎠

xyz

= f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.189)

We can relate 〈v〉1 and 〈v〉2 through the macroscopic mass balance (see Equa-
tion 9.140). Substituting the values of various parameters discussed previously
into the macroscopic mass balance yields:

Macroscopic
mass balance
(ρ,v̂ constant
across Ai ),

single-input,
single-output

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.190)

−ρπ R2〈v〉1 + ρπ R2〈v〉2 = 0 (9.191)

〈v〉1 = 〈v〉2 (9.192)

ˆ

Thus, the average velocity is the same at the inlet and the outlet, and we write the
average velocity simply as 〈v〉. With this notation, the macroscopic momentum
balance becomes:

ρπ R2〈v〉2 (−ex + êz) = f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.193)

ρπ R2〈v〉2

⎛
⎝−1

0
1

⎞
⎠

xyz

= f
gravity

+ f
inlet

+ f
outlet

+ f
walls

(9.194)

We obtained this same result for the convective term in Chapter 3 (see Equa-
tion 3.181). From this point on, the force terms are calculated as discussed
previously, and the final result is obtained in the same manner as in Chapter 5
(see Equation 5.185).

We now present a second example, to calculate the effect of pressure on flow
in a horizontal pipe. We calculated this quantity in Chapter 7 for laminar flow,
beginning with the microscopic-balance results for vz(r ) (see Equation 7.103).
Now we perform this calculation for general flow—laminar and turbulent—using
the macroscopic momentum-balance equation.

EXAMPLE 9.8. What is the total force on the wall for a Newtonian fluid of
viscosity μ flowing in a long circular pipe under pressure? Over a length L, the
pressure drops from p0 to pL; the flow may be laminar or turbulent.

SOLUTION. We seek a macroscopic force caused by a flow; density and veloc-
ity direction are constant across the inlet and outlet surfaces. The macroscopic
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L

2R 

(1) (2) 

z
1

n̂
2

n̂avv

0pp = Lpp =

r

Figure 9.19 A macroscopic balance on a section of straight pipe allows us to relate the total force on the pipe to the pressure
drop. The macroscopic control volume is indicated by a dotted line.

momentum balance applies to this flow situation (see Equation 9.142):

Macroscopic
momentum

balance
on a CV,

ρ, v̂ constant
across Ai :

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f

(9.195)

We choose as our CV all of the fluid inside the pipe, as outlined by the dotted line
in Figure 9.19. A horizontal cylindrical coordinate system is a reasonable choice
for this problem because it is easy to express the incoming and exiting velocities
in such a coordinate system. We choose the (rθ z)-coordinate system shown in
Figure 9.19.3

Because the flow is steady, the time derivative on the lefthand side of Equa-
tion 9.195 is zero. The convective term can be simplified if we realize that for the
current problem, the density is constant (ρ1 = ρ2 = ρ), the cross-sectional area
is constant (A1 = A2 = π R2), and the quantities cos θ1 and cos θ2 are given by:

θ1 = 180◦ cos θ1 = −1 (9.196)

θ2 = 0◦ cos θ2 = 1 (9.197)

The forces on the CV are body forces (i.e., gravity) and surface forces (i.e.,
wall forces and molecular forces on the fluid ends of the CV). We assume that
the flow is either laminar or turbulent (i.e., does not switch between laminar and
turbulent); thus, β is constant. The direction of the velocity at Surfaces (1) and (2)
is v̂|A1

= v̂|A2
= êz . The macroscopic momentum-balance equation becomes:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f (9.198)

−ρπ R2〈v〉2
1

β
êz + ρπ R2〈v〉2

2

β
êz = f

gravity
+ f

surface
(9.199)

where f
surface

= f
inlet

+ f
outlet

+ f
walls

.

3In Chapter 5 and in the previous problem, we use a Cartesian system in our calculations. We can
do the same here; readers are encouraged to carry out such a calculation for practice.
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We can relate 〈v〉1 and 〈v〉2 through the mass balance. The macroscopic mass
balance is given by Equation 9.140, repeated here:

Macroscopic
mass balance
(ρ,v̂ constant
across Ai ),

single-input,
single-output

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.200)

Making the same substitutions, we obtain:

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.201)

−〈v〉1 + 〈v〉2 = 0 (9.202)

〈v〉1 = 〈v〉2 = 〈v〉 (9.203)

Returning to the momentum balance (see Equation 9.199) and incorporating the
mass-balance result, we see that the convective terms cancel for both laminar
(β = 0.75) and turbulent (β ≈ 1) flow. The macroscopic momentum balance for
this problem now simplifies to:

− ρπ R2〈v〉2

β

⎛
⎝0

0
1

⎞
⎠

rθ z

+ ρπ R2〈v〉2

β

⎛
⎝0

0
1

⎞
⎠

xyz

= f
gravity

+ f
surface

(9.204)

0 = f
gravity

+ f
surface

(9.205)

All that remains is to write the four forces on the CV: gravity and molecular
forces on the inlet, outlet, and the walls. The gravity force in the chosen coordinate
system is:

Force on CV
due to gravity:

f
gravity

= mCV g = mCV

⎛
⎝ gr

gθ

0

⎞
⎠

rθ z

(9.206)

where mCV is the mass of fluid in the CV. Although the use of cylindrical coordi-
nates is awkward for the gravity vector, it does not cause any difficulty because
our main concern is with the z-component (i.e., flow-direction component) of the
momentum balance.

The surface force consists of forces on the inlet, outlet, and walls:

f
surface

= f
inlet

+ f
outlet

+ f
walls

(9.207)

The force exerted on the fluid by the walls of the pipe is the force we seek. We
can write this force as:⎛

⎝ force on CV
due to contact

with walls

⎞
⎠ = −

⎛
⎝ force on walls

due to contact
with fluid

⎞
⎠ =

⎛
⎝ Rr

Rθ

Rz

⎞
⎠

rθ z

= R (9.208)

www.20file.org

http://www.semeng.ir


784 An Introduction to Fluid Mechanics

The source of this term is the molecular contact between the fluid and the walls.
The no-slip boundary condition imposes molecular stresses on the walls, and to
remain stationary the walls exert an equal and opposite force. The remaining two

forces are the molecular forces on the inlet and outlet surfaces, f
∣∣∣∣

A1

and f
∣∣∣∣

A2

,

which we discuss now.
The macroscopic momentum balance for this problem thus far is shown

here:

0 = f
gravity

+ f
surface

(9.209)

0 = mCV g + f
∣∣∣∣

A1

+ f
∣∣∣∣

A2

+ R (9.210)

In Equation 9.210, the gravity term is known, and R is the quantity we seek. The
two terms f |A1 and f |A2 are the molecular forces on the end surfaces of the CV,
including pressure and viscous forces. To calculate these terms, we turn to the
stress tensor.

The molecular fluid forces on any surface may be expressed using the stress
tensor �̃ (see Equation 4.221):

Total molecular fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (9.211)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S (9.212)

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.213)

When we apply Equation 9.213 to the inlet A1 and outlet A2 surfaces, we obtain
f |A1 and f |A2 :

f
∣∣∣∣

A1

=
∫∫

A1

[
−pn̂ + n̂ · τ̃

]
A1

d A (9.214)

=
∫∫

A1

[−pn̂]A1
d A +

∫∫
A1

[
n̂ · τ̃

]
A1

d A (9.215)

f
∣∣∣∣

A2

=
∫∫

A2

[
−pn̂ + n̂ · τ̃

]
A2

d A (9.216)

=
∫∫

A2

[−pn̂]A2
d A +

∫∫
A2

[
n̂ · τ̃

]
A2

d A (9.217)

ˆ
The pressure contribution to each force is straightforward to calculate. The

unit normal vectors of Surfaces (1) and (2) are n̂|A1
= −ez and n̂|A2

= êz .
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We therefore can write:

∫∫
A1

[−pn̂]A1
d A =

∫ 2θ

0

∫ R

0
(−p0)

⎛
⎝ 0

0
−1

⎞
⎠

rθ z

rdrdθ (9.218)

=
⎛
⎝ 0

0
π R2 p0

⎞
⎠

rθ z

(9.219)

∫∫
A2

[−pn̂]A2
d A =

∫ 2θ

0

∫ R

0
(−pL )

⎛
⎝0

0
1

⎞
⎠

rθ z

rdrdθ (9.220)

=
⎛
⎝ 0

0
−π R2 pL

⎞
⎠

rθ z

(9.221)

The contributions of the extra-stress tensor τ̃ to f |A1 and f |A2 are subtler; thus, to
calculate these terms, it is best to proceed formally. This contribution cancels out
of the momentum balance equation, as we show here. Some readers may prefer
to skip this discussion of the extra-stress contribution on the fluid ends, accept
that the contributions are both zero, and proceed to the assembled momentum
balance, Equation 9.231.

To calculate the extra-stress contribution to the force on the ends of our CV,
we proceed as follows. For laminar flow, we calculate τ̃ from the constitutive
equation for Newtonian fluids (see Equation 5.89). For the current problem, the
velocity is only in the z-direction and varies only with r ; the density is constant.
Therefore, using Table B.8, in Appendix B we calculate the stress tensor τ̃ to be:

Extra-stress tensor
laminar flow

in a tube:
τ̃ = μ

(
∇v + (∇v)T

)
(9.222)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 μ
∂vz

∂r

0 0 0

μ
∂vz

∂r
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

(9.223)

For turbulent flow, we calculate τ̃ from the time-averaged result for τ̃ , developed
in the Web appendix [108]. Both results simplify to the same form; thus, we can
develop both cases together in subsequent calculations:

Extra-stress tensor
turbulent flow

in a tube:
τ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 μ
∂vz

∂r

0 0 0

μ
∂vz

∂r
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

(9.224)
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Having obtained τ̃ , the extra-stress tensor, we now substitute Equation 9.224 into
the second integrals of Equations 9.215 and 9.217 and calculate the τ̃ contribu-
tions:

[
n̂ · τ̃

]∣∣∣∣
A1

= (0 0 −1
)

rθ z
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 μ
∂vz

∂r

0 0 0

μ
∂vz

∂r
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

rθ z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A1

(9.225)

=
(

−μ
∂vz

∂r
0 0

)
rθ z

∣∣∣∣∣∣
A1

= −μ
∂vz

∂r

∣∣∣∣∣∣
A1

êr (9.226)

∫ 2π

0

∫ R

0

[
n̂ · τ̃

]∣∣∣∣
A1

rdrdθ =
∫ 2π

0

∫ R

0
−μ

∂vz

∂r

∣∣∣∣∣∣
A1

êr rdrdθ (9.227)

=
∫ 2π

0

∫ R

0
−μ

∂vz

∂r

∣∣∣∣∣∣
A1

⎛
⎝ cos θ

sin θ

0

⎞
⎠

xyz

rdrdθ (9.228)

= 0 (9.229)

Note that we converted êr to Cartesian coordinates, which allows us to carry
out the θ-integration. The θ-integral in both the x- and y-components is zero. A
similar calculation leads to the same result for the τ̃ -related molecular force on
A2.

Substituting all of the calculated forces on the CV into the macroscopic
momentum-balance equation, we obtain an equation that we can solve for the
wall force R:

0 =
∑

on
CV

f = mCV g + f
∣∣∣∣

A1

+ f
∣∣∣∣

A2

+ R (9.230)

⎛
⎝0

0
0

⎞
⎠

rθ z

= mCV

⎛
⎝ gr

gθ

0

⎞
⎠

rθ z

+
⎛
⎝ 0

0
π R2 (p0 − pL )

⎞
⎠

rθ z

+
⎛
⎝ Rr

Rθ

Rz

⎞
⎠

rθ z

(9.231)

The momentum-balance result in Equation 9.231 is a vector equation, and
we obtain information from all three components. The r - and θ-components of
Equation 9.231 show that a portion of R must counter gravity:

r -component: 0 = mCV gr + Rr (9.232)

θ-component: 0 = mCV gθ + Rθ (9.233)

The z-component of Equation 9.231 relates axial drag and pressure drop:

z-component: 0 = π R2 (p0 − pL ) + Rz (9.234)

Fdrag = −Rz = π R2(p0 − pL ) (9.235)
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zdrageF ˆ−

gmCV

R

Figure 9.20 The calculated result for the net force on a straight pipe is a combination of two forces: an upward component that
counteracts gravity, and a second component, the drag, that is in the direction opposite to the flow direction.

Note that this is the same answer obtained for laminar flow from the microscopic
calculation (see Equation 7.115):

Axial drag on walls
in tube flow,

laminar or turbulent:
Fdrag = (p0 − pL )π R2 (9.236)

We can rewrite Equation 9.231 as shown here, a form that emphasizes the two
parts of R—axial drag and vertical gravity (Figure 9.20):

Wall force on fluid
in tube flow,

laminar or turbulent:
ˆR = −Fdragez − mCV g (9.237)

Force on walls
in tube flow,

laminar or turbulent:
− R = F ˆdragez + mCV g (9.238)

In Example 9.8, we arrive at the molecular force on the ends of the CV by
using the fundamental equation F = ∫∫S [n̂ · �̃]at surface d S. We did not have
to draw on intuition about the effect of molecular stresses (i.e., pressure and
viscosity) because we completely accounted for them with the stress tensor �̃.
Although we may have been able to use intuition to arrive at pressure as the only
relevant surface force, proceeding formally is helpful in more complex problems
in which intuition fails. The formal macroscopic momentum-balance equation
is particularly helpful in sorting out the effect of direction changes in flows, as
shown in the next example.

EXAMPLE 9.9. Calculate the net force on the horizontal U-shaped pipe bend
shown in Figure 9.21. The pipe is circular in cross section, water is flowing in
the pipe, and the flow is steady.

SOLUTION. We seek a macroscopic force caused by a flow; density and veloc-
ity direction are constant across the inlet and outlet surfaces. The macroscopic
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1

ˆ
A

v

2

ˆ
A

v

zê

yê

xê

(2)

(1)

Figure 9.21 When fluid flows in a U-shaped tube, the momentum changes direction and forces are required to restrain the tube.

momentum balance applies to this flow situation.

Macroscopic
momentum

balance
on a CV,

ρ, v̂ constant
across Ai :

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f

(9.239)

We choose a macroscopic CV that encloses all of the fluid inside the pipe section.
A horizontal rectangular coordinate system is a reasonable choice for expressing
the momentum in this problem because it is easy to express the incoming and
exiting velocities and the effect of gravity in such a coordinate system.

Having chosen the CV and the coordinate system, we proceed with writing the
terms of the macroscopic mass and momentum balances on the CV as they apply
to these choices. The mass balance is given by Equation 9.140, repeated here:

Macroscopic
mass balance on CV

(ρ,v̂ constant across Ai ),
single-input, single-output

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0

(9.240)

Because our flow is steady, the time-derivative on the lefthand side of Equa-
tion 9.240 is zero. The convective terms can be simplified if we note that for the
current problem, density is constant (ρ1 = ρ2 = ρ), the cross-sectional area is
constant (A1 = A2 = π R2), and the quantities cos θ1 and cos θ2 are given by:

θ1 = 180◦ n̂|A1
· v̂|A1

= cos θ1 = −1 (9.241)

θ2 = 0◦ n̂|A1
· v̂|A2

= cos θ2 = 1 (9.242)

Making these substitutions, we find:

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.243)

−〈v〉1 + 〈v〉2 = 0 (9.244)

〈v〉1 = 〈v〉2 = 〈v〉 (9.245)
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Turning now to the macroscopic momentum balance, again the flow is steady;
therefore, the rate of change of momentum of the CV is zero, dP/dt = 0. The
convective terms can be simplified using the same information used before to
simplify the mass balance (ρ, A constant) as well as the result of the mass balance
(〈v〉 constant). We assume that the flow is either laminar or turbulent (it does not
switch between laminar and turbulent); thus, β is constant. The forces on the CV
are body forces (i.e., gravity) and surface forces (i.e., wall forces and forces on
the inlet and outlet). The macroscopic-momentum-balance equation becomes:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f (9.246)

−ρπ R2〈v〉2

β
v̂|A1

+ ρπ R2〈v〉2

β
v̂|A2

= f
gravity

+ f
surface

(9.247)

ˆ
The direction of the velocity at Surface (1) is v̂|A1

= êz and the direction of the
velocity at Surface (2) is v̂|A2

= −ez; thus, the convective terms do not cancel.
The macroscopic momentum balance for this problem simplifies to the following
(compare to the straight-pipe Equations 9.204 and 9.205):

− ρπ R2〈v〉2

β
êz + ρπ R2〈v〉2

β
ˆ(−ez) = f

gravity
+ f

surface
(9.248)

−2ρπ R2〈v〉2

β
êz = f

gravity
+ f

surface
(9.249)

The gravity force in the chosen coordinate system is:

Force on CV
due to gravity:

f
gravity

= mCV g =
⎛
⎝−mCV g

0
0

⎞
⎠

xyz

(9.250)

where mCV is the mass of fluid in the CV. The surface force is the force on the
inlet, outlet, and walls:

f
surface

= f
inlet

+ f
outlet

+ f
walls

(9.251)

= f
∣∣∣∣

A1

+ f
∣∣∣∣

A2

+ R (9.252)

The momentum balance becomes:

− 2ρπ R2〈v〉2

β
ˆ ˆez = −mCV gex + f

∣∣∣∣
A1

+ f
∣∣∣∣

A2

+ R (9.253)
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The molecular forces f |Ai may be expressed in terms of the usual expression
for molecular forces, n̂ · �̃, integrated over the surface of interest (see Equa-
tion 4.221):

Total molecular
fluid force

on a surface S:
F =

∫∫
S

[n̂ · �̃]at surface d S (9.254)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S (9.255)

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.256)

For the inlet and outlet fluid surfaces, we write:

f
∣∣∣∣

A1

=
∫∫

A1

[
−pn̂ + n̂ · τ̃

]
A1

d A (9.257)

=
∫∫

A1

[−pn̂]A1
d A +

∫∫
A1

[
n̂ · τ̃

]
A1

d A (9.258)

f
∣∣∣∣

A2

=
∫∫

A2

[
−pn̂ + n̂ · τ̃

]
A2

d A (9.259)

=
∫∫

A2

[−pn̂]A2
d A +

∫∫
A2

[
n̂ · τ̃

]
A2

d A (9.260)

ˆ
The pressure contribution to each force is straightforward to calculate. The

unit normal vectors of Surfaces (1) and (2) are the same, n̂|A1
= n̂|A2

= −ez . We
therefore can write:

∫∫
A1

[−pn̂]A1
d A =

∫ 2θ

0

∫ R

0
(−p1)

⎛
⎝ 0

0
−1

⎞
⎠

rθ z

rdrdθ (9.261)

=
⎛
⎝ 0

0
π R2 p1

⎞
⎠

rθ z

(9.262)

∫∫
A2

[−pn̂]A2
d A =

∫ 2θ

0

∫ R

0
(−p2)

⎛
⎝ 0

0
−1

⎞
⎠

rθ z

rdrdθ (9.263)

=
⎛
⎝ 0

0
π R2 p2

⎞
⎠

rθ z

(9.264)

The two pressure terms combine and reinforce one another. The contribution of
the extra-stress tensor τ̃ to f |A1 and f |A2 may be calculated formally from the
constitutive equation as before, and the calculation is similar to that in Exam-
ple 5.9. In this case, the small viscous contributions on the two surfaces due to the
fluid deceleration dvz/dz cancel out (the detailed calculation is left to readers;
see Problem 23).
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zê

yê

xê

RgmCV

( )
β

ρπ
π

22

21
2 2 vR

ppR −+−

Figure 9.22 The solution we calculated can be understood directly as a backward force countering the fluid motion and an
upward force countering gravity.

ˆ

Putting all of the forces on the control volume into the macroscopic momentum-
balance equation (Equation 9.253), we obtain an equation that we can solve for
the wall force R:

0 = −mCV gex + f
∣∣∣∣

A1

+ f
∣∣∣∣

A2

+ R + 2ρπ R2〈v〉2

β
êz (9.265)

0 =
⎛
⎝−mCV g

0
0

⎞
⎠

xyz

+
⎛
⎝ 0

0
π R2 (p1 + p2)

⎞
⎠

xyz

+
⎛
⎝ Rx

Ry

Rz

⎞
⎠

xyz

+

⎛
⎜⎝

0
0

2ρπ R2〈v〉2

β

⎞
⎟⎠

xyz

(9.266)

The x-component of the macroscopic momentum balance states that Rx balances
gravity. The y-component states that there is no need for any y-restraining force
(i.e., no side-to-side force). The z-component gives the required horizontal force
(Figure 9.22):

Force on CV
from walls:

R =
⎛
⎝ Rx

Ry

Rz

⎞
⎠

xyz

=

⎛
⎜⎝

mCV g
0

−π R2 (p1 + p2) − 2ρπ R2〈v〉2

β

⎞
⎟⎠

xyz

(9.267)

Force on walls
from fluid:

−R (9.268)

The two remaining examples use macroscopic balances to calculate the friction
of an expansion fitting and a valve.

EXAMPLE 9.10. How does friction in a sudden expansion (Figure 9.23) depend
on fluid velocity?

SOLUTION. To solve this problem, we need all three of the macroscopic bal-
ances. First, we perform the macroscopic mass balance. Our chosen control
volume, shown in Figure 9.23, consists of the fluid just inside the expansion;
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Figure 9.23 The friction in a sudden expansion may be calculated directly from a combination of macroscopic mass, momentum,
and energy balances. The flow cross section changes from circle A 1 to circle A 2.

Inlet-Surface 1 is just at the plane where the cross-sectional area changes, and
Outlet-Surface 2 is slightly downstream where the flow has straightened out.

For a single-input, single-output system, the macroscopic mass balance is given
by Equation 9.140:

Macroscopic
mass balance
Single-input,
single-output

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.269)

For our system, the time-derivative is zero (i.e., steady state), the density is
constant ρ1 = ρ2 = ρ, θ1 is equal to 180 degrees, and θ2 is equal to 0 degrees.
The mass balance becomes:

ρ A1(−1)〈v〉1 + ρ A2〈v〉2 = 0 (9.270)

〈v〉2 = A1

A2
〈v〉1 (9.271)

We seek a macroscopic force caused by a flow; density and velocity direction
are constant across the inlet and outlet surfaces. The macroscopic momentum
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balance applies to this flow situation:

Macroscopic
momentum

balance
on a CV,

ρ, v̂ constant
across Ai :

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f

(9.272)

We choose a Cartesian coordinate system with flow in the z-direction; thus,
v̂|A1

= v̂|A2
= êz . Assuming steady, turbulent flow (β1 = β2 = 1) and incorpo-

rating the same simplifications as for the mass balance, we obtain:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f (9.273)

−ρ A1〈v〉2
1

⎛
⎝0

0
1

⎞
⎠

xyz

+ ρ A2〈v〉2
2

⎛
⎝0

0
1

⎞
⎠

xyz

=
∑

on
CV

f (9.274)

The forces on the expansion are gravity, which we neglect, and the surface forces
on the inlet, outlet, and walls:

∑
on
CV

f = f
gravity

+ f
surface

(9.275)

= f
surface

(9.276)∑
on
CV

f = f
inlet

+ f
outlet

+ f
walls

(9.277)

The molecular surface forces, including pressure, are expressed using the stress
tensor �̃ (see Equation 4.221):

Total molecular fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (9.278)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S (9.279)

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.280)

The surface forces on the expansion are the fluid forces on the horizontal and
vertical solid walls and the fluid forces on the inlet and outlet surfaces, which are
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fluid surfaces. Thus, the macroscopic momentum balance becomes:

ρ A2〈v〉2
2

⎛
⎝0

0
1

⎞
⎠

xyz

− ρ A1〈v〉2
1

⎛
⎝0

0
1

⎞
⎠

xyz

=
∑

on
CV

f (9.281)

+ρ

(
A2〈v〉2

2 − A1〈v〉2
1

)⎛⎝0
0
1

⎞
⎠

xyz

= f
inlet

+ f
outlet

+ f
walls

(9.282)

ρ

(
A2〈v〉2

2 − A1〈v〉2
1

)⎛⎝0
0
1

⎞
⎠

xyz

= f
∣∣∣∣

A1

+ f
∣∣∣∣

A2

+ f
walls

(9.283)

ˆ
The forces on the fluid boundaries are calculated just as in the two previous
examples. Surface A1 has outwardly pointing unit normal n̂|A1

= −ez , whereas
Surface A2 has unit normal = êz . Using local cylindrical coordinates for the
integrations, we obtain:

f
∣∣∣∣

A1

+ f
∣∣∣∣

A2

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.284)

=
∫ 2π

0

∫ R1

0
−p1

⎛
⎝ 0

0
−1

⎞
⎠

rθ z

rdrdθ +
∫ 2π

0

∫ R1

0
ˆ−ez · τ̃

∣∣∣∣
A1

rdrdθ

+
∫ 2π

0

∫ R2

0
−p2

⎛
⎝0

0
1

⎞
⎠

rθ z

rdrdθ +
∫ 2π

0

∫ R2

0
êz · τ̃

∣∣∣∣
A2

rdrdθ

(9.285)

From our solution of the 90-degree-bend and the U-bend problems, we know
that the two τ̃ integrals have a contribution when ∂vz/∂z is important. Although
there is a change of vz in the flow direction due to the expansion, this viscous-
stress contribution, always small, is very small in this fitting. We neglect the n̂ · τ̃

integrals. The momentum balance now becomes (Equation 9.283):⎛
⎜⎜⎜⎝

0
0

ρ

(
A2〈v〉2

2 − A1〈v〉2
1

)
⎞
⎟⎟⎟⎠

xyz

=
⎛
⎝ 0

0
p1π R2

1 − p2π R2
2

⎞
⎠

rθ z

+ f
walls

(9.286)

The last force we need is the z-direction force on the solid-wall surfaces. The
z-directional force on the solid surfaces includes the fluid force on the horizontal
tube wall and on the vertical washer-shaped wall at Surface 1. The force on the
horizontal wall should be small and we neglect this term:

fwalls,z = fvertical
wall, z

+ fhorizontal
wall, z

(9.287)

≈ fvertical
wall, z

(9.288)
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The force on the vertical washer-shaped surface near the inlet is not negligible
because the pressure exerts a z-direction force. We calculate this force in the
usual way with an integral over the stress tensor �̃. We neglect the n̂ · τ̃ integral
as before due to the small ∂vz/dz gradients. Using cylindrical coordinates for the
integrations, we obtain:

f vertical
wall

=
∫∫

S

[
−pn̂ + n̂ · τ̃

]
at surface

d S (9.289)

=
∫ 2π

0

∫ R2

R1

−p1

⎛
⎝ 0

0
−1

⎞
⎠

rθ z

rdrdθ (9.290)

= p1π
(

R2
2 − R2

1

)⎛⎝0
0
1

⎞
⎠

rθ z

(9.291)

fvertical
wall, z

= p1π
(

R2
2 − R2

1

)
(9.292)

Combining this result with the z-component of the momentum balance in Equa-
tion 9.286, we obtain:

ρ

(
A2〈v〉2

2 − A1〈v〉2
1

)
= p1π R2

1 − p2π R2
2 + fwalls,z (9.293)

= p1π R2
1 − p2π R2

2 + p1π
(

R2
2 − R2

1

)
(9.294)

= p1 A1 − p2 A2 + p1 (A2 − A1) (9.295)

where we write π R2
1 = A1 and π R2

2 = A2. We now incorporate the mass-balance
result and rearrange:

ρ A2〈v〉2
2 − ρ A1〈v〉2

1 = p1 A1 − p2 A2 + p1(A2 − A1) (9.296)

ρ
(

A2〈v〉2
2 − A1〈v〉2

1

)
= p1 A2 − p2 A2 (9.297)

p2 − p1

ρ
= A1

A2
〈v〉2

1 − 〈v〉2
2 (9.298)

p2 − p1

ρ
= A1

A2
〈v〉2

1

(
1 − A1

A2

)
(9.299)

The z-direction momentum balance and the mass balance yield a relationship
between pressure and velocity. To relate the pressure difference to friction, we
now apply the mechanical energy balance for turbulent flow. The system of water
in the expansion between Points 1 and 2 is a single-input, single-output, steady
flow of an incompressible fluid. There is no heat transfer and no chemical reaction
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or phase change. All the requirements of the mechanical energy balance therefore
are met:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

turbulent flow (α = 1),
v̂ constant across cross section

�T ≈ 0, no reaction)

�p

ρ
+ �〈v〉2

2
+ g�z + F = −Ws,by

m

(9.300)

There is no shaft work and there is no elevation change. The MEB thus becomes:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(9.301)

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2
+ F2,1 = 0 (9.302)

F2,1 = − p2 − p1

ρ
− 〈v〉2

2 − 〈v〉2
1

2
(9.303)

To complete the calculation of F2,1 for an expansion, we substitute the pressure
term from the z-momentum balance (see Equation 9.299), eliminate 〈v〉2

2 with
the mass balance (see Equation 9.271), and solve for the friction F2,1. The result
(after some algebra) is:

Fexpansion = F2,1 = − p2 − p1

ρ
− 〈v〉2

2 − 〈v〉2
1

2
(9.304)

Friction in
an expansion

Fexpansion = 〈v〉2
1

2

(
1 − A1

A2

)2

(9.305)

This expression was given in Chapter 1 (see Equation 1.121) as the formula to
calculate the frictional contributions from expansion fittings.

EXAMPLE 9.11. A new valve has been invented and manufactured. Show how
to account for the valve’s friction as a function of the number of handle turns
open.

SOLUTION. When manufacturers sell valves, they provide a specifications sheet
that includes a quantity known as the valve flow-coefficient CV . The valve coef-
ficient CV usually is provided in a plot as a function of the setting of the valve
in terms of the number of turns the valve is opened (Figure 9.24). This informa-
tion indicates how much friction is produced by the valve in all of its operating
positions. The CV plot also is useful information for determining how the valve
opens and closes; that is, it distinguishes between valves that close suddenly after
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Figure 9.24 For a particular valve, a manufacturer supplies information on the amount of friction the valve produces in terms
of the valve flow coefficient CV as a function of the number of turns open. The flow characteristics shown are for
the Swagelok integral Bonnet needle valves, 18-series [162].

many turns and valves that gradually (linearly) close as the valve stem is turned
(i.e., the trim of the valve; see the Glossary).

The valve flow coefficient CV is defined in terms of data recorded in specified
units. The definition of CV is [132]:

Valve flow coefficient: CV ≡ Q(gpm)

√
SG

p1(psi) − p2(psi)
(9.306)

where Q is the volumetric flow rate through the valve in units of gallons per
minute (gpm), SG = ρ/ρref is the specific gravity of the fluid, ρref is the density
of water at 4◦C and 1 atm pressure, and p1 − p2 is the pressure drop across the
valve in units of lbf /in.2 (psi). In piping or pumping discussions, volumetric flow
rate Q often is called capacity. From Equation 9.306, we see that the units of CV

are gpm/psi0.5.
The valve flow coefficient is related to pressure drop versus flow rate for the

valve, but the relationship is somewhat convoluted. We can sort out the role of
CV and understand its unusual definition by first applying the mechanical energy

21

Figure 9.25 A valve is a single-input, single-output system
with few thermal energy effects; thus, it is an
excellent candidate for the mechanical energy
balance.

balance to the valve (Figure 9.25). We
choose as our system the water flowing
between Points 1 and 2, as shown.

The system of water in the valve is
a single-input, single-output, steady flow
of an incompressible fluid. There is no
heat transfer and no chemical reaction or
phase change. All the requirements of the
mechanical energy balance are therefore
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met. The mechanical energy balance is:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

turbulent flow (α = 1)
v̂ constant across cross section

�T ≈ 0, no reaction)

�p

ρ
+ �〈v〉2

2
+ g�z + F = −Ws,by

m

(9.307)

Because we assume turbulent flow, α = 1.
Our chosen system is fluid between Points 1 and 2 in Figure 9.25. For this

system, there is no shaft work, no change in elevation, and no change in velocity.
Thus, the MEB reduces to:

p2 − p1

ρ
+ 〈v〉2

2 − 〈v〉2
1

2
+ g(z2 − z1) + F2,1 = −Ws,by,21

m
(9.308)

p2 − p1

ρ
+ F2,1 = 0 (9.309)

Fvalve = F2,1 = (p1 − p2)

ρ
(9.310)

To relate Fvalve to CV , we begin with the definition of CV in Equation 9.306.
First, we square both sides of Equation 9.306 and incorporate the definition of
specific gravity, SG = ρ/ρre f :

C2
V = Q2

(
SG

p1 − p2

)
= Q2ρ

ρre f (p1 − p2)
(9.311)

For a pipe of diameter D, we can write the volumetric flow rate Q in terms of the
average velocity 〈v〉 in the usual way:

Q = π D2〈v〉
4

(9.312)

Substituting this into Equation 9.311 and rearranging, we arrive at a ratio that is
related to the friction term we seek:

C2
V = ρ

(p1 − p2)

Q2

ρre f
(9.313)

= ρ

(p1 − p2)

π2 D4〈v〉2

16ρre f
(9.314)

(p1 − p2)

ρ
= π2 D4〈v〉2

C2
V 16ρre f

(9.315)
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Figure 9.26 To characterize the performance of a valve and to quantify the frictional losses due to the valve, measurements are
taken of pressure drop and flow rate as a function of number of turns open. The data can then be cast as CV as a
function of number of turns open. Data shown are for a laboratory metering valve.

We now calculate Fvalve as:

Fvalve = F2,1 = p1 − p2

ρ
(9.316)

Fvalve =
(

π2 D4

8ρrefC2
V

)
〈v〉2

2
(9.317)

We see that the friction term for the valve is proportional to 〈v〉2. The friction
coefficient K f is defined by Equation 1.120:

Valve friction coefficient, K f

defined:
Fvalve = K f

〈v〉2

2
(9.318)

Thus, we find that K f is given by:

Valve friction coefficient: K f ≡
(

π2 D4

8ρrefC2
V

)
(9.319)

For the CV and K f of the new valve, we take measurements of pressure
drop and flow rate across the valve as a function of valve position (Fig-
ure 9.26). From the pressure drop and flow rate measurements, we calculate the
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function CV (number of turns) using Equation 9.306; from this function, we
calculate K f (number of turns) from Equation 9.319. Valve characteristics are
reported as either CV as a function of valve position or K f as a function of valve
position.

In this section, we have worked several examples with the macroscopic momen-
tum balance. There is a pattern to how these problems come together, which can
be summarized in a more specific version of the macroscopic momentum-balance
equation. Beginning with the usual form of the balance (see Equation 9.45), we
explicitly write the force terms, following the pattern set in the examples of this
section.

dP

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉2

β
v̂

]∣∣∣∣∣∣∣
Ai

=
# streams∑

i=1

[−p An̂]Ai
+
[

# streams∑
i=1

∫∫
Ai

[
n̂ · τ̃

]
Ai

d S

]
+ R + MCV g (9.320)

where R is the viscous force on the solid walls of the control volume. We assume
that the pressure does not vary across Ai , which allows us to carry out the pressure
integral. We note that the term on the righthand side in square brackets is small
or zero. Omitting this term, our final equation for the macroscopic momentum
balance has the same form as the microscopic momentum balance or Navier-
Stokes equation: Rate of change plus convective term equals a pressure term, a
term dealing with viscous forces, and a gravity term.

Macroscopic Momentum Balance on a Control Volume (ρ, v̂, p constant
across Ai ):

dP

dt
+

# streams∑
i=1

[
ρ A cos θ〈v〉2

β
v̂

]∣∣∣∣∣∣
Ai

=
# streams∑

i=1

[−p An̂]Ai
+ R + MCV g

{
βlaminar = 0.75

βturbulent ≈ 1

(9.321)

This version of the macroscopic momentum balance is suitable for most problems
of interest.

9.2.4 Pumps

Moving liquids through piping systems usually is accomplished with a pump,
and the most common and robust pump design is the centrifugal pump. In the
sections that follow, we show how the mechanical energy balance may be used
to choose the right pump for a given application. The MEB also shows why
low-suction pressures are harmful to pumps; this limitation must be considered
when installing pumps.
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flow in flow out 

housing 

vane 

Figure 9.27 In a centrifugal pump, a motor spins a vane within a housing. The spinning vane draws fluid in along a central pipe,
and the fluid spins outward with centrifugal acceleration. The fluid is collected along the outer part of the housing
and is discharged at an accelerated speed or higher pressure.

9.2.4.1 PUMP SIZING
The centrifugal pump is one of the most effective and economical machines
for transporting water-like liquids (Figure 9.27). Centrifugal pumps move fluid
along by spinning an appropriately shaped vane within a housing and hurling
fluid outward with centrifugal force. The vane is driven by an electrical motor,
and the speed of rotation of the vane (i.e., revolutions per minute [RPM]) and the
design of the pump determine how much shaft work is delivered by the pump to
the fluid. The energy balance governs how the shaft work delivered by the pump
affects the speed, pressure, and other characteristics of the fluid. In the following
examples, we explore the operation of a centrifugal pump in a variety of common
systems.

EXAMPLE 9.12. A new pump has been invented and manufactured. Potential
owners of the pump need to know how it operates under various conditions. Show
how to account for the operation of the pump.

SOLUTION. When manufacturers sell pumps, they provide specifications that
indicate how the pump operates under various conditions. The key chart is a plot
of pumping head (discussed here) versus capacity (volumetric flow rate). This
curve is called the pumping-head curve. We show here the meaning and utility
of the pumping-head curve.

Consider a pump that is fit with pressure taps just upstream and just downstream
of the pump (Figure 9.28). The upstream tap is called the suction tap, and the
downstream tap is called the discharge tap. The system of the fluid between Points
s and d is a single-input, single-output, steady flow of an incompressible fluid.

d

pump
s

Figure 9.28 Schematic of pump suction-discharge system.
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There is no heat transfer and no chemical reaction or phase change. All of the
requirements of the mechanical energy balance therefore are met:

�p

ρ
+ �〈v〉2

2α
+ g�z + F = −Ws,by

m

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

v̂ constant across cross section
�T ≈ 0, no reaction)

(9.322)

Applied to the suction-discharge system, the MEB becomes:

pd − ps

ρ
+ 〈v〉2

d − 〈v〉2
s

2α
+ g(zd − zs) + Fd,s = −Ws,by,ds

m
(9.323)

where d denotes the property at the discharge point and s denotes the property
at the suction point. The work done by the fluid as it passes through the pump is
negative (Ws,by,ds < 0). The total work delivered by the pump is positive and is
known as the brake horsepower (bhp).

Pump
Brake horsepower, bhp

(total work delivered by pump):
bhp = −Ws,by,ds (9.324)

bhp = ωT (9.325)

where ω is the angular velocity of the vane and T is the magnitude of the torque
on the vane. The friction term Fd,s in Equation 9.323 is the fluid friction between
Points d and s, which almost entirely is the friction in the pump. Following
the procedure we used when considering turbines in Chapter 1, we group the
pump losses with the pump shaft work and define a pump efficiency. The pump
efficiency reflects the fraction of the energy delivered by the pump that is actually
converted to usable work on the fluid in the form of pressure change, velocity
change, or elevation change, rather than being dissipated as friction:

Pump
efficiency:

η =

(
useful energy

mass fluid

)
(

total energy input
mass fluid

) (9.326)

η ≡

(−Ws,by,ds

m
− Fd,s

)
(−Ws,by,ds

m

) (9.327)
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Substituting pump efficiency η from Equation 9.327 into Equation 9.323, we
obtain:

pd − ps

ρ
+ 〈v〉2

d − 〈v〉2
s

2α
+ g(zd − zs) + Fd,s = −Ws,by,ds

m
(9.328)

pd − ps

ρ
+ 〈v〉2

d − 〈v〉2
s

2α
+ g(zd − zs) = −Ws,by,ds

m
− Fd,s (9.329)

pd − ps

ρ
+ 〈v〉2

d − 〈v〉2
s

2α
+ g(zd − zs) = η

(
−Ws,by,ds

m

)
(9.330)

= η bhp

m
(9.331)

All of the quantities on the lefthand side of Equation 9.330 are readily mea-
surable on the pump instrumented as in Figure 9.28, and they provide a measure
of the performance of the pump in terms of the useful energy/mass provided by
the pump (i.e., the righthand side of the equation). The plot of the lefthand side
of Equation 9.330 versus flow rate is the pumping-head curve we seek.

To write the pump-head curve in its standard form, we now divide Equa-
tion 9.330 by gravity to convert the equation to head and regroup the terms into
discharge and suction terms. Taking α = 1 (turbulent flow), we obtain:

pd − ps

ρ
+ 〈v〉2

d − 〈v〉2
s

2α
+ g(zd − zs) = η

(
−Ws,by,ds

m

)
(9.332)

(
pd

ρg
+ 〈v〉2

d

2g
+ zd

)
−
(

ps

ρg
+ 〈v〉2

s

2g
+ zs

)
= η

(
−Ws,by,ds

mg

)
(9.333)

The expressions in brackets are called the discharge head and the suction head:

Discharge head: Hd ≡ pd

ρg
+ 〈v〉2

d

2g
+ zd (9.334)

Suction head: Hs ≡ ps

ρg
+ 〈v〉2

s

2g
+ zs (9.335)

Using these quantities, Equation 9.333 becomes:(
pd

ρg
+ 〈v〉2

d

2g
+ zd

)
−
(

ps

ρg
+ 〈v〉2

s

2g
+ zs

)
= η

(
−Ws,by,ds

mg

)
(9.336)

Hd − Hs = η

(−Ws,by,ds

mg

)
(9.337)

Each pumping-head term is a combination of pressure head, velocity head, and
elevation head. These three types of head represent the three ways that energy
from the pump may be transferred to the fluid. Plots of Hd − Hs measured on a
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Figure 9.29 Actual pump characteristic curves, Hd ,s versus Q, for several commercial centrifugal pumps. Each curve represents
the performance capabilities of a particular pump. (Source: Krum Pump Company, Kalamazoo, MI)

pump as a function of capacity Q in gpm are known as pumping-head curves:

Pumping-head
curve:

Hd − Hs = Hd,s = η

(
−bhp

mg

)
(9.338)

Examples of pumping-head curves for a family of commercial pumps are shown
in Figure 9.29. Each curve represents the performance of a particular centrifugal
pump operating at a fixed angular velocity (i.e., fixed RPM). These curves are
determined experimentally by measuring pressure, average velocity, and elevation
at the suction and discharge locations on a pump (Equations 9.334 and 9.335).

The pumping ability of a centrifugal pump depends on shaft rotational speed,
shape of the vanes in the pump, flow path within the housing, and other pump-
design variables that are fixed at the time of manufacture. At a given RPM, the
amount of pumping head Hd,s (i.e., energy per unit weight of fluid) that a pump
can deliver depends on flow rate Q. When the amount of head delivered is high,
the flow rate is low; as the flow rate increases, the amount of head delivered
decreases. For an application that requires a pump, the details of the actual
system—how high the fluid is to be raised in elevation and is there a pressure
increase, for example—determine how much head is needed from the pump. The
right pump is one that can deliver the amount of pumping head needed at the
desired flow rate. We discuss pump sizing in the examples that follow.

The previous example shows how we use pumping-head curves to supply
information about pump performance. We saw that a pump operating at a chosen
head is limited in the amount of flow rate it can produce, and it produces more
flow when pumping against a system that presents less resistance in the form
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of head. When installing a pump, we must know how much head is needed to
choose the pump wisely.

To understand these issues of head deliverable by a pump versus the amount
of head a system requires, we consider a simple example.

EXAMPLE 9.13. After the local river flooded, 3.0 feet of water filled the base-
ment of a university building. A PE33B pump (see Figure 9.29) is available to
pump the water out of the basement. The vertical distance from the water surface
to the nearest drain is 60 feet. Will the pump work?

SOLUTION. The proposed operation of the pump is shown in Figure 9.30.
The system of the water between Points 1 and 2 is a single-input, single-output,
steady flow of an incompressible fluid. There is no heat transfer and no chemical
reaction or phase change. All of the requirements of the mechanical energy
balance therefore are met. Assuming turbulent flow, we write:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

turbulent flow (α = 1),
v̂ constant across cross section

�T ≈ 0, no reaction):

�p

ρg
+ �〈v〉2

2g
+ �z + F

g
= −Ws,by

mg

(9.339)

In our chosen system, the pressures at Points 1 and 2 are both atmospheric;
thus, there is no pressure change. The velocity at Point 1 is zero and the velocity at
Point 2 is nonzero and unknown. The elevation change z2 − z1 is roughly 60 feet.
There also are frictional losses in the system, but they should be minor except

2

60′1

Figure 9.30 We want to install a pump to move water up 60 feet from a flooded basement. The mechanical energy balance tells
us whether this scheme will work.
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for the losses in the pump, which we include through pump efficiency. The MEB
becomes:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + F2,1

g
= −Ws,by,21

mg
(9.340)

〈v〉2
2

2g
+ (z2 − z1) = η

(
−Ws,by,21

mg

)
(9.341)

〈v〉2
2

2g
+ 60 ft = η

(
−Ws,by,21

mg

)
= Hd,s (9.342)

We do not know what the velocity through the hose will be, but the elevation
change is at least 60 feet, and the velocity head will make the lefthand side of
Equation 9.342 larger. The pump’s performance, represented by the righthand
side of Equation 9.342, must be powerful enough to match the demands of the
system at the flow rate achieved. The pumping head curve H (Q) is shown in
Figure 9.29 (see also Equation 9.338).

Consulting the characteristic curve of the PE33B pump in Figure 9.29, we
see that the maximum head deliverable is about 50 feet; this maximum value
occurs at Q = 0. The demands of the system are at least 60 feet of head due to
the elevation rise from the basement to the street drain. Although we do not know
the velocity head in the hose, we know enough about the system to conclude
that the PE33B pump is inadequate. This pump will not perform the task we are
asking of it because it cannot deliver the minimum of 60 feet of head.

The pumping-head curve is useful in the previous example, and we easily
determine that it was pointless to ask the available pump to lift the flood waters
by 60 feet. It is clear that a pump must be able to deliver at least the elevation
head required by the system. This type of verification is quick and easy to make.

To choose the appropriate pump for a task that involves velocity head, friction
loss, and pressure head in addition to elevation head, we need a technique that
allows us to account for all of the demands a particular system makes on a pump.
The MEB applied to a system can be used to construct a characteristic curve
for the system that can provide the needed information. We demonstrate this
technique next.

EXAMPLE 9.14. A family built a small vacation home on a hill near a lake. They
plan to obtain wash water directly from the lake. To bring the water from the lake,
they plan to install the piping/tank system shown schematically in Figure 9.31.
When the pump is running to fill the tank, they desire a flow rate of at least 2 gpm.
Which pump should they install? Choose your answer from among those with
pumping-head curves appearing in Figure 9.29.

SOLUTION. The size of the pump needed depends on the load placed on the
pump. We analyze the load on the pump using the mechanical energy balance.

The details of the piping system for the cottage are shown in Figure 9.32.
Nominal 1/2-inch, type K, copper water tubing is used throughout the installation.
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2

25 ft

1

Figure 9.31 The flow rate achieved in the piping system shown depends on the energy demands of the system compared to
the ability of the pump as reflected in the pumping-head curve.

The system of fluid between Points 1 and 2 is a single-input, single-output, steady
flow of an incompressible fluid. There is no heat transfer and no chemical reaction
or phase change. All of the requirements of the mechanical energy balance are
therefore are met:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

turbulent flow (α = 1),
v̂ constant across cross section

�T ≈ 0, no reaction):

�p

ρg
+ �〈v〉2

2g
+ �z + F

g
= −Ws,by

mg

(9.343)

In our chosen system, the pressure at Points 1 and 2 are both atmospheric; thus,
there is no pressure change. The velocity at Point 1 is zero and the velocity at
Point 2 is nonzero and unknown; at a minimum, it should be 2 gpm. The elevation
change is roughly 25 feet. There also are frictional losses, which include the losses

1

2

25 ft

10 ft

P
um

p5 ft

3 ft 3 ft

50
 ft

45° bend

Figure 9.32 To calculate the friction loss in the system, we need detailed information about the lengths of runs of piping and
the number of bends and fittings.
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in the piping Fpiping and the losses in the pump, which we include through a pump
efficiency. The MEB becomes:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + F2,1

g
= −Ws,by,21

mg
(9.344)

〈v〉2
2

2g
+ (z2 − z1) + Fpiping

g
= η

(
−Ws,by,21

mg

)
(9.345)

〈v〉2
2

2g
+ 25 ft + Fpiping

g
= η

(
−Ws,by,21

mg

)
(9.346)

Thus far, the problem is similar to the previous example. To perform a first
calculation, we neglect the frictional losses in the piping and assume that the
velocity is the maximum of 2 gpm. If the problem turns out to be impossi-
ble with these assumptions, we avoid the unnecessary work of more detailed
calculations. With these assumptions, we calculate the required head as shown
here:

〈v〉2
2

2g
+ 25 ft + Fpiping

g
= η

(
−Ws,by,21

mg

)
(9.347)

〈v〉2
2

2g
+ 25 ft = η

(
−Ws,by,21

mg

)
(9.348)

We calculate the average velocity in the tubing from the volumetric flow rate (i.e.,
2 gpm) and the true inner diameter (ID) of the copper tubing. We obtain the true
ID from the literature [132]:

Copper water tubing
1/2-inch nominal

type K:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

outer diameter: 0.625 in.

wall thickness: 0.049 in.

inner diameter: 0.625 in. − (2)(0.049 in.)

= 0.527 in.

(9.349)

〈v〉2 = 4Q

π D2
(9.350)

= (2.0 gpm)

(
4

π
( 0.527

12 ft
)2

)(
2.22802 × 10−3 ft3/s

gpm

)
(9.351)

= 2.94171 ft/s = 2.9 ft/s (9.352)
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Figure 9.33 The calculated operating point for 2 gpm is shown with the available pumping-head curves, Hd ,s . All of the pumps
are capable of supplying this capacity. (Source: Krum Pump Company, Kalamazoo, MI)

Using this value for velocity in Equation 9.348, we calculate the work needed
from the pump:

(
work supplied

by pump

)
=
(

work needed
by system

)
(9.353)

Hd,s = η

(
−Ws,by,21

mg

)
(9.354)

= 〈v〉2
2

2g
+ 25 ft (9.355)

=
(

1

2

)(
s2

32.174 ft

)(
2.94171

ft

s

)2

+ 25 ft

= 25.13448 ft

≈ 25.1 ft (9.356)

The estimate of 25.1 feet is reachable by all of the pumps in Figure 9.29,
which we can determine by plotting the point (i.e., 2 gpm, 25.1 ft) on the same
axes as the pumping-head curves (Figure 9.33). Because this point is below the
pumping-head curves for all of the pumps, this indicates that they are capable of
producing this amount of head at the desired flow rate. We neglected the friction,
however, and it is possible that with the addition of the friction head, the smallest
pump may not be able to meet the need. To add in the effect of friction in our
system-head calculation, we use the correlations for friction in pipes and fittings
discussed in Chapter 1 to calculate piping friction loss Fpiping.
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In Chapter 1 and earlier in this chapter, we show that friction in piping can be
calculated from data correlations (Equation 1.124):

Fpiping =
∑(

friction of
straight-pipe sections

)
+
∑(

friction of
fittings and valves

)
(9.357)

Friction
in a

piping
system:

Fpiping =
∑

j, straight
pipe

segments

[
4 f j

L j

D j

〈v〉2
j

2

]
+

∑
i, f i t tings

[
ni K f,i

〈v〉2
i

2

]

(9.358)

For our piping system, we have the same average velocity throughout, and Equa-
tion 9.358 becomes:

Friction in a
constant-velocity

piping system
Fpiping =

⎡
⎣4 f

L

D
+

∑
i, f i t tings

ni K f,i

⎤
⎦ 〈v〉2

2
(9.359)

where L is the total length of piping of diameter D.
For the piping loop under consideration in this problem, there are two 90-degree

bends, one 45-degree bend, three gate valves, a contraction as the flow enters the
pipe entrance, and a total of 71 feet of 1/2-inch, type K, copper water tubing. The
friction coefficients for the fittings are listed in Table 1.4 and summarized here:

Fitting n K f nK f

90◦ bend 2 0.75 1.50
45◦ bend 1 0.35 0.35

gate valve 3 0.17 0.51
contraction ∞ → 0.527 in 1 0.55 0.55∑

nK f = 2.91

(9.360)

For the friction due to the straight-pipe sections, we need the friction factor
f , which we obtain from the Colebrook equation (see Equation 1.95) and the
Reynolds number:

1√
f

= −4.0 log
(

4.67

Re
√

f

)
+ 2.28

Colebrook formula,
Fanning friction factor
in steady turbulent flow

in smooth pipes

(9.361)

Re2 gpm = ρ〈v〉D

μ
=
(

62.25lbm
ft3

)
(2.94171 ft/s)

(
0.527 in.

12 in./ft.

)
(

6.005 × 10−4 lbm
ft s

) (9.362)

= 13, 392 = 1.3 × 104 ⇒ f = 0.007158 = f = 0.007 (9.363)
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where we calculate the friction factor iteratively with the Colebrook Equation
(see Chapter 1).

We calculate Fpiping in units of head from Equation 9.359:

Fpiping

g
= 1

g

⎡
⎣4 f

L

D
+

∑
i, f i t tings

ni K f,i

⎤
⎦ 〈v〉2

2
(9.364)

= 1

32.174 ft/s2

[
4(0.007158)

71 ft

0.527/12 ft
+ 2.91

]
(2.94171 ft/s)2

2

= 6.61643 ft (9.365)

We substitute the piping friction result into Equation 9.347 and recalculate the
system head, H21:

H21 = η

(
−Ws,by,21

mg

)
= 〈v〉2

2

2g
+ 25 ft + Fpiping

g
(9.366)

= (2.94171 ft/s)2

(2)(32.174 ft/s2)
+ 25 ft + 6.61643 ft (9.367)

= 31.7509 ft (9.368)

= 32 ft (9.369)

We calculate that we need a pump that can operate at the point 2.0 gpm and
32 feet of head. Reviewing the pumping head curves in Figure 9.29, we see
that even with the friction losses added in, all of the pumps can operate at this
value of head and capacity. We therefore recommend that the smallest pump (i.e.,
PE33B) be purchased for this application. However, if there is a likelihood that
elements will be added to the system that raise the needed head by 18 or more
feet (e.g., if many valves or an orifice plate flow meter are added), this pump
will be inadequate because the PE33B develops only 50 feet of head. If system
modification is likely, the next largest pump (i.e., PE50E) should be selected.

The calculation in the previous example allowed us to choose a pump that
could perform at our minimum specification of 2 gpm. If we are interested in
knowing what the actual flow rate will be on a system of interest for a chosen
pump, we can calculate the system head H21 at a variety of flow rates and plot
a system head curve. We demonstrate this procedure in the final example of this
section.

EXAMPLE 9.15. A family built a small vacation home on a hill near a lake.
They plan to provide water for washing directly from the lake. To bring the water
from the lake, they plan to install the piping/tank system shown schematically
in Figure 9.31. They want to install a PI33B pump. What will be the flow rate
through the piping?

www.20file.org

http://www.semeng.ir


812 An Introduction to Fluid Mechanics

)( ftH

)(1,2 VH
•

•

•

)(, VH sd

)/( mingalV

valve 50% 
open 

valve fully
open 

mechanical 
work required 
by the system 

mechanical 
work supplied 
by the pump =

sdHH ,1,2 =

Figure 9.34 To calculate the actual flow rate that a pump will produce on a chosen system, we plot system head as a function of
capacity on the same axes as the pump head deliverable by the pump. The intersection of the two curves indicates
where the pump will operate on the chosen system.

SOLUTION. The problem is again approached using the mechanical energy bal-
ance, and most of the information we need is discussed in the previous example.
In that example, we calculate the friction in the piping for a single chosen flow
rate of 2 gpm. We also calculate the velocity-head term 〈v〉2/2g and frictional
losses at that single value of capacity. To calculate the actual operating flow rate,
we need to guess various other flow rates and calculate for each new flow rate the
terms in the MEB on the system. The several values of flow rate for which we cal-
culate head form a curve that we can plot on the same axes as the pumping-head
curve. The intersection of the calculated system requirements (i.e., the system
curve) and the pumping-head curve indicate the actual operating point of the
system (Figure 9.34).

We formally define the system-head curve as follows. We begin with the
mechanical energy balance on our system, the water between Points 1 and 2 in
Figure 9.32:

Mechanical energy balance
(single-input, single-output,

steady, no phase change,
incompressible,

turbulent flow (α = 1), v̂

constant across cross section
�T ≈ 0, no reaction):

�p

ρg
+ �〈v〉2

2g
+ �z + F

g
= −Ws,by

mg
(9.370)

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + F2,1

g
= −Ws,by,21

mg
(9.371)
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Table 9.2. System-head calculations for the lake house in Example 9.15

Q 〈v〉2

〈v〉2
2

2g
Fpiping

g H 2,1

(gpm) (ft/s) (ft)
Re
104

104 f (ft) (ft)

2.0 2.9 0.1 1.34 71.6 6.5 31.7

4.0 5.9 0.5 2.68 60.3 22.3 47.8

6.0 8.8 1.2 4.02 54.9 45.8 72.0

8.0 11.8 2.2 5.36 51.5 76.7 103.8

10.0 14.7 3.4 6.70 49.0 114.5 142.8

We separate the friction from the pump as before, introducing the pump efficiency
(see Equation 9.327):

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + Fpiping

g
= η

(
−Ws,by,21

mg

)
(9.372)

The lefthand side of Equation 9.372 is all of the information that addresses the
amount of pumping head presented by our system. We define H2,1 as the system
head for the system defined as the fluid between Points 1 and 2. Note that the
friction of the pump is not included in the system head because it already is
accounted for on the righthand side through the pump efficiency:

System-head curve
for system between

Points 1 and 2:
H2,1 ≡ p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + Fpiping

g

(9.373)

Fpiping is given by Equation 9.358. The right-hand side of Equation 9.372 indicates
that the system head will be provided by a pump. The pump’s performance is
given by its pumping-head curve, Hd,s :

η

(−Ws,by,21

mg

)
= Hd,s (9.374)

The mechanical energy balance becomes:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + Fpiping

g
= η

(
−Ws,by,21

mg

)
(9.375)

Operating point: H2,1 = Hd,s (9.376)

We use spreadsheet software to carry out the calculation of H2,1 for the lake
house. We choose to calculate the system losses for flow rates of 2.0, 4.0, 6.0,
8.0, and 10.0 gpm. Setting up the same calculations as in the previous example,
we obtain the results shown in Table 9.2 and plotted as the system curve in
Figure 9.35.
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Figure 9.35 To calculate the operating point, the system curve is plotted with the pumping-head curve. The intersection of
the system curve with the pumping-head curve indicates the flow rate and head that will be produced with a
given pump inserted in the loop. For the system in the chapter example, the operating points for the PE33B pump
(i.e., 4 gpm, 50 feet) and the PE50E pump (i.e., 6 gpm, 70 feet) are indicated. (Source: Krum Pump Company,
Kalamazoo, MI)

H2,1 = p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ (z2 − z1) + Fpiping

g
(9.377)

= 〈v〉2
2

2g
+ 25 ft + Fpiping

g
(9.378)

Fpiping

g
= 1

g

⎡
⎣4 f

L

D
+
∑

i,fittings

ni K f,i

⎤
⎦ 〈v〉2

2
(9.379)

The intersection of the system-head curve with the PE33B pumping-head curve
is at approximately 4 gpm, 50 feet; the intersection with the head curve for the
PE50 pump is 6 gpm, 70 feet. Thus, if the smaller pump is installed, the operating
flow rate will be 4 gpm, whereas if the larger pump is installed, the flow will be
6 gpm.

9.2.4.2 NET POSITIVE SUCTION HEAD
The operation of a pump is captured by the mechanical energy balance, as dis-
cussed in the previous section. The MEB indicates that knowing differences
in pressure, velocity, and elevation between two points allows us to calculate
frictional losses and shaft work in a pumping system:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.380)

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2g
+ z2 − z1 + F2,1

g
= −Ws,by,21

mg
(9.381)
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Figure 9.36 Cavitation is the formation of vapor bubbles when the pressure drops to the value of the fluid’s vapor pressure.
In turbo equipment, the formation of vapor bubbles and their subsequent collapse causes serious damage to
propellers and vanes. In this figure a sonic wand generates cavitation at a surface. Image credit: K. S. Susick and
J. K. Kolbeck, University of Illinois.

The absolute magnitudes of pressure, velocity, and elevation are not significant
for the MEB calculation because only the differences out minus in appear. There
is one circumstance, however, when the bare magnitude of pressure is important:
when cavitation is possible.

Cavitation is the formation of vapor bubbles within a flow system, and it
occurs when the local pressure level drops to and below the vapor pressure of
the fluid being pumped (Figure 9.36). At pressures below the vapor pressure
p∗

v , fluid flashes and forms vapor. The formation and collapse of vapor bubbles
in turbomachinery can cause serious damage to propellers, drive shafts, and
vanes. Also, a cavitating pump delivers far less head and flow rate than a pump
operating properly. Cavitation is highly undesirable and may be avoided through
proper design and installation of pumping systems.

To guard against cavitation, designers configure flow systems so that at no
time does the absolute pressure in the machinery fall below the fluid’s vapor
pressure. In a pumping system, the likely low-pressure point is the suction side
of the pump (see Figure 9.28). The magnitude of pressure at the suction side of
a pump depends on how the pump is operated; that is, it depends on the system
against which the pump is working. For example, if a pump is fed by a tank that
is elevated (Figure 9.37), the pressure at the suction side will be higher than if the
pump is drawing fluid from a reservoir at a lower elevation. The raised elevation
of the feed tank increases the absolute magnitude of head at the suction point and
may prevent or eliminate cavitation.
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Figure 9.37 The elevation of the feed tank affects the head on the suction side of a pump. If the suction head is too low, the
pump will cavitate.

Suction pressure also depends on the pump’s internal workings; thus, for differ-
ent pumps operating on the same system, suction pressure varies. Manufacturers
test their pumps to identify the operating conditions when cavitation occurs, and
they report the pump’s cavitation performance in terms of required net positive
suction head (NPSH), which we describe here [111]. NPSH as a function of flow
rate is plotted on the pump-characteristic curves obtained from the manufacturer
(Figure 9.38). Net positive suction head is a measure of the head required at
the pump inlet to keep the liquid from cavitating or boiling. To use NPSH in
designing flow loops, we must relate its definition to the flow configuration of
interest.

Net positive suction head is a measure of how much the suction head of a pump
exceeds the vapor pressure. The suction head (see Equation 9.335) is:

Suction head: Hs ≡ ps

ρg
+ 〈v〉2

s

2g
+ zs (9.382)
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Figure 9.38 Characteristic curves of pumping head versus capacity and NPSH versus capacity for the pump in the example.
All three curves are for the same pump at the same rotational speed, but different sized impellers are installed
(Source: Ingersoll-Rand Corporation, Cameron Pump Division; from White [174]).
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where Hs is the head at pump suction; ps is the pressure; ρ is the fluid density; g
is the acceleration due to gravity; 〈v〉s is the average velocity; and zs = 0 is the
elevation of the suction point, which is chosen to be the reference datum-level. In
the expression for suction head, the suction pressure ps and the average velocity
at suction 〈v〉s depend on the design of the pump, whereas the suction elevation
depends on how the pump is installed.

To give the installing engineer information about pump performance, manu-
facturers report the safe (i.e., cavitation-free) operating values of suction head.
This is reported through the required net positive suction head defined here:

Required net positive
suction head
(NPSHR):

NPSHR = Hs − p∗
v

ρg
(9.383)

= ps

ρg
+ 〈v〉2

s

2g
− p∗

v

ρg
(9.384)

where p∗
v is the vapor pressure of the flowing liquid at the operating temperature

and zs is assumed to be zero. NPSHR represents the increment above vapor
pressure head (p∗

v/ρg) that the suction head ps/ρg + 〈v〉2
s/2g must meet to

avoid cavitation.4 NPSHR is a quantity, therefore, that represents the intrinsic
performance of the pump in the limit of cavitation occurring. To learn how to use
NPSHR , we consider a pump-installation problem in the next example.

EXAMPLE 9.16. A pump manufacturer needs to measure NPSHR on a new
pump. What tests need to be run?

SOLUTION. To determine the NPSHR for the new pump, we need to operate it
at incipient cavitation. A possible apparatus for measuring NPSHR is shown in
Figure 9.39. A pump running at fixed RPM moves water in a closed cycle from
an open reservoir through some piping and back to the reservoir. The elevation
of the reservoir with respect to the pump may be varied by use of a lift. The pump
is outfitted with a suction pressure tap, a flow meter, and a metering valve (i.e., a
valve to adjust the flow rate). Measurements are taken of suction pressure ps and
flow rate. Average velocity, which is constant throughout the loop, is calculated
from the flow rate, 〈v〉 = 4Q/π D2, where D is the pipe diameter.

To measure NPSHR , a slow flow first is established in the loop with the
reservoir at a high elevation; no cavitation should be observed. The elevation
of the reservoir subsequently is reduced below the suction level until cavitation
occurs. At cavitation or somewhat before, NPSHR is calculated from its definition
and the measured values of ps and 〈v〉 = 〈v〉s near or just below cavitation:

NPSHR ≡
[

ps

ρg
+ 〈v〉2

s

2g
− p∗

v

ρg

]∣∣∣∣∣∣∣at incipient
cavitation

(9.385)

4Because vapor pressure is an absolute pressure, ps also must be written in absolute pressure
rather than gauge pressure.
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(z1 – zs) = –h

Figure 9.39 Schematic of an apparatus for measuring NPSHR .

The measurement of NPSHR as described produces a single datapoint of
(Q, NPSHR). To obtain a second datapoint at a higher flow rate, the tank is raised
and the flow rate is increased by opening the valve by an increment. The tank then
is lowered until just before cavitation occurs. The data of NPSHR as a function
of flow rate Q is recorded and supplied to the customer. NPSHR represents a
minimum value for suction head to exceed vapor-pressure head. When designing
a flow loop, the minimum value must be exceeded:

[
ps

ρg
+ 〈v〉2

s

2g
− p∗

v

ρg

]∣∣∣∣∣∣∣ available
as installed

≥ NPSHR (9.386)

NPSHA ≥ NPSHR (9.387)

where NPSHA is the available net positive suction head. This quantity is calculated
for an installation and the height of the suction above the feed and/or the pressure
of the feed is chosen so that NPSHA exceeds the pump’s NPSHR .

The required net positive suction head is a measure of pump performance.
To use this quantity in designing a pump installation, we apply the mechanical
energy balance to the proposed installation and compare the NPSHA to the
reported NPSHR to ensure that the design avoids cavitation. We demonstrate this
type of calculation in the following two examples.

EXAMPLE 9.17. The pump with pumping-head curves given in Figure 9.38 (35
inch impeller) is installed as shown in Figure 9.40. The pressure in the tank is
760 mmHg and the desired flow rate is 2.0 × 104 gpm. If frictional head loss
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1

s

h

Figure 9.40 The pump in Example 9.17 is installed as shown here.

Fs,1/g from the reservoir to the pump inlet is 7.0 feet, at what elevation should
the pump suction be placed relative to the feed tank to avoid cavitation for water
at 77 degrees F (25 degrees C)? If the water temperature changes to 200◦F
(93.3◦C), what is the new location of the pump?

SOLUTION. The system of water in the pumping loop in Figure 9.40 is a single-
input, single-output, steady flow of an incompressible fluid. There is no heat
transfer and no chemical reaction or phase change. All of the requirements of the
mechanical energy balance therefore are met. We begin with the MEB in terms
of head:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.388)

We choose as our system the water between the free surface in the tank and the
suction point of the pump. We assume turbulent flow (α = 1). There is no pump
in our chosen system (s, 1), and the velocity at Point 1 is approximately zero. The
MEB becomes:

ps − p1

ρg
+ 〈v〉2

s − 〈v〉2
1

2g
+ zs − z1 + Fs,1

g
= −Ws,by,s1

mg
(9.389)

ps − p1

ρg
+ 〈v〉2

s

2g
+ zs − z1 + Fs,1

g
= 0 (9.390)

We take zs as zero (i.e., reference elevation); thus, z1 = −h, where h is the positive
vertical height between the feed-tank fluid level and the suction elevation. We
obtain:

ps − p1

ρg
+ 〈v〉2

s

2g
+ h + Fs,1

g
= 0 (9.391)

[
ps

ρg
+ 〈v〉2

s

2g

]
= p1

ρg
− h − Fs,1

g
(9.392)
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We can calculate NPSHA from this equation by subtracting vapor-pressure head
p∗

v/ρg from both sides:

[
ps

ρg
+ 〈v〉2

s

2g
− p∗

v

ρg

]
= p1

ρg
− h − Fs,1

g
− p∗

v

ρg
(9.393)

NPSHA = p1

ρg
− h − Fs,1

g
− p∗

v

ρg
(9.394)

To avoid cavitation, the pump should be installed so that the NPSHA is greater
than the manufacturer-reported NPSHR of the pump:

NPSHA ≥ NPSHR (9.395)

p1

ρg
− h − Fs,1

g
− p∗

v

ρg
≥ NPSHR (9.396)

For our current problem, we now calculate the required pump location. Accord-
ing to Figure 9.38, at 20,000 gpm, the NPSHR is 16 feet (note the scale on the
righthand side). Vapor pressures and densities for various fluids may be found in
the literature [132]; water at 25◦C has a vapor pressure of 23.756 mmHg, and
the density of water at that temperature is 62.25 lbm/ft3. We calculate the needed
(z1 − zs) from Equation 9.394:

p1

ρg
− h − Fs,1

g
− p∗

v

ρg
≥ NPSHR (9.397)

h ≤ (p1 − p∗
v )

ρg
− Fs,1

g
− NPSHR

≤
((760 − 23.756) mmHg)

(
(14.696 lbf /in.2)(144 in.2/ft2)

760 mmHg

)(
32.174 ft lbm/s2

lbf

)
(62.25 lbm/ft3)(32.174 ft/s2)

− 7.0 ft − 16 ft

≤ 32.93 ft − 7.0 ft − 16 ft

≤ 9.93 ft

h ≤ 9.5 ft (9.398)

We calculate at this temperature that the pump may be located up to about 9.5 feet
above the feed reservoir without cavitating.

At higher temperatures, the vapor pressure and density change. Consult-
ing Perry’s [132], we find that for water p∗

v (200◦ F) = 595.21 mmHg and
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821 Macroscopic Balance Equations

ρ(200◦F) = 0.96308 g/cm3 = 60.125 lbm/ft3. For these new conditions, we
obtain:

h ≤ (p1 − p∗
v )

ρg
− Fs,1

g
− NPSHR

≤
((760 − 595.21) mmHg)

(
(14.696 lbf /in.2)(144 in.2/ft2)

760 mmHg

)(
32.174 ft lbm/s2

lbf

)
(60.125 lbm/ft3)(32.174 ft/s2)

− 7.0 ft − 16 ft

≤ 7.63 ft − 7.0 ft − 16 ft = −15 ft

(−h) ≥ 15 ft (9.399)

At the higher temperature of 200◦F, we calculate that the feed tank must be located
at least 15 feet higher than the pump to avoid cavitation in the pump.

In Example 9.17 we see that when cavitation is likely to occur, we need to
elevate the feed tank to avoid cavitation. If raising the feed tank is not practical,
another solution is to pressurize it. We can calculate the feed-tank pressure needed
to avoid cavitation by using the MEB.

EXAMPLE 9.18. The pump with characteristic curves given in Figure 9.38 is
operated as shown in Figure 9.41. The 35-inch impeller is installed. The desired
flow rate is 2.0 × 104 gpm. Frictional head loss Fs,1/g from the reservoir to the
pump inlet is 7.0 feet, and the fluid is water at 200◦F (93.3◦C). The location of
the pump is fixed at 3.0 feet below the level of liquid in the tank. To what pressure
must the feed tank be raised to avoid cavitation in the pump?

SOLUTION. The system of water in the pumping loop in Figure 9.41 is a single-
input, single-output, steady flow of an incompressible fluid. There is no heat
transfer and no chemical reaction or phase change. All of the requirements of
the mechanical energy balance therefore are met. We begin with the mechanical
energy balance in terms of head:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.400)

1

s 20,000
gpm

3 ft

Figure 9.41 The pump in this example is installed with the suction port 3 feet below the tank water level.
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Again, we choose as our system all of the water between the open free surface in
the tank and the suction point of the pump. We assume turbulent flow (α = 1).
There is no pump in our chosen calculation system, and the velocity at Point 1 is
approximately zero. The MEB becomes:

ps − p1

ρg
+ 〈v〉2

s − 〈v〉2
1

2g
+ zs − z1 + Fs,1

g
= −Ws,by,s1

mg
(9.401)

ps − p1

ρg
+ 〈v〉2

s

2g
+ (zs − z1) + Fs,1

g
= 0 (9.402)

As usual, we assume zs = 0 and, relative to this datum, z1 = h = 3. We now
rearrange Equation 9.402 and calculate the NPSHA:

ps − p1

ρg
+ 〈v〉2

s

2g
+ (zs − z1) + Fs,1

g
= 0 (9.403)

[
ps

ρg
+ 〈v〉2

s

2g

]
= p1

ρg
+ h − Fs,1

g
(9.404)

NPSHA = p1

ρg
+ h − Fs,1

g
− p∗

v

ρg
(9.405)

To avoid cavitation, NPSHA must exceed the manufacturer’s reported NPSHR

for the pump. For the current problem, we use this to devise a condition on the
feed-tank pressure p1:

NPSHA ≥ NPSHR (9.406)

p1

ρg
+ h − Fs,1

g
− p∗

v

ρg
≥ NPSHR (9.407)

p1

ρg
≥ −h + Fs,1

g
+ p∗

v

ρg
+ NPSHR (9.408)

We now can evaluate the minimum pressure to avoid cavitation for this problem.
Using the values of vapor pressure and density obtained in the previous example,
(p∗

v (200◦F) = 595.21 mmHg and ρ(200◦ F) = 60.125 lbm/ft3 [132]), we calculate:

p1

ρg
≥ −h + Fs,1

g
+ p∗

v

ρg
+ NPSHR

≥ (−3 ft) + 7.0 ft

+
(595.21 mmHg)

(
(14.696 lbf /in.2)(144 in.2/ft2)

760 mmHg

)(
32.174 ft lbm/s2

lbf

)
(60.125 lbm/ft3)(32.174 ft/s2)

+ 16 ft

≥ −3 ft + 7 ft + 27.57 ft + 16 ft = 47.57 ft

≥ 48 ft (9.409)
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The pressure in the tank, in units of head, must be at least 48 feet of water at
200◦F. To convert this pressure to psi, we solve the head expression for p1:

p1

ρg
= 47.57 ft (9.410)

p1 = 47.57 ft
(

60.125 lbm

ft3

)(
32.174 ft

s2

)(
lbf

32.174 ft lbm/s2

)(
ft2

144 in.2

)

= 19.86 psi

p1 = 20 psia (absolute) (9.411)

We calculate that the tank must be held approximately 6 psi above atmospheric
to avoid cavitation at the pump.

The mechanical energy balance is the most widely used relationship in engi-
neering fluid mechanics, and this chapter explains why. From siphons to pumps,
much engineering equipment can be analyzed using the MEB, and these alge-
braic calculations provide useful information. The key to properly using the
MEB is to always check that its assumptions are met: single-input, single-output,
steady flow of an incompressible fluid with no heat transfer, no chemical reac-
tion, and no phase change. Neither the MEB nor the macroscopic momentum
balance provides information about flow patterns, flow stresses, or velocity dis-
tributions. If more detail about flow patterns is required, then the microscopic
balancing-methods in this book should be pursued (see Chapters 6–8) rather than
macroscopic control-volume calculations.

9.2.5 Open-channel flow

Open-channel flow refers to flows open to the atmosphere. Water flowing in open
culverts or gutters is a common example of open-channel flow. The presence of
the air–water free surface and the fact that the free-surface shape may change
in response to imposed forces gives the flow a unique character that separates
open-channel flows from the internal and external flows discussed thus far. Open-
channel flows most often are turbulent.

Gravity is the main driving force in open-channel flow. Because open-channel
flows are open to the atmosphere, pressure does not vary in the flow direction and
is not a flow driving force. When a fixed volumetric flow rate of water is flowing
in a channel, the height of the water in the channel is that which minimizes the
amount of wall drag produced in the flow. For a fixed flow rate (Figure 9.42),
if the flow chooses a high water level, the fixed volume of fluid moves at a
slower average velocity, but more of the channel is wetted by the water (thereby
producing more drag). If the flow chooses a low water level, the fixed volume of
fluid moves at a higher average velocity, but a rapid flow has a higher velocity-
gradient near the wall. High wall velocity-gradients produce higher wall drag
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Q

Q

Q

A/2

more
wetted
surface

case 1: case 2:

A

A
<v> = higher wall

shear rate

Q
A

<v> = 2Q

Figure 9.42 The tradeoffs of open-channel flow can be visualized by considering the cross-sectional area of the flow. For a fixed
flow rate, if a low flow speed is chosen, the cross-sectional area must be large, increasing the wetted surface of the
channel, thereby increasing the drag. If a higher flow speed is chosen for the same flow rate, the cross-sectional
area is lower; however, the velocity gradients near the wall also will be higher, which increases drag. The observed
channel depth balances these two effects.

than low velocity-gradients due to Newton’s law of viscosity:

Shear flow near wall:
(δ = boundary-layer thickness)

v|wall ≈ 〈v〉
δ

y

∣∣∣∣∣∣
wall

êx (9.412)

Drag at wall: Fdrag ∝ τyx

∣∣∣
wall = μ

∂vx

∂y

∣∣∣∣∣∣
wall

≈ μ
〈v〉
δ

(9.413)

Therefore, an optimum fluid height balances the tradeoff between too-high gra-
dients near the wall and too much wetted surface. In Example 9.19 we calculate
the height of water in a channel by applying the mechanical energy balance.

EXAMPLE 9.19. A rough cement rectangular channel (roughness ε =
0.0080 feet) slopes downward at an angle of 0.6 degree carrying water. The
channel is 8.0 feet wide and the water depth is 4.5 feet. What is the flow rate in
the channel? Assume that the depth is constant.

SOLUTION. The system of water in the channel is a single-input, single-output,
steady flow of an incompressible fluid. There is no heat transfer and no chemical
reaction or phase change. All of the requirements of the mechanical energy
balance therefore are met. We begin with the MEB in terms of head:

Mechanical
energy balance
(units of head):

�p

ρg
+ �〈v〉2

2gα
+ �z + F

g
= −Ws,by

mg
(9.414)

We choose our system to be the fluid in the conduit between Points 1 and 2, which
are a distance L apart (Figure 9.43).
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Q

β

1

2

LL sinβ

z1

z2

Figure 9.43 The depth of a gravity-driven flow depends on the pitch of the channel and the flow rate. The depth observed is
the depth that minimizes drag.

In our chosen system, there are no shafts and therefore no shaft work. The
velocity in the channel is the same at both points; thus, �〈v〉2 = 0. The pressure
is atmospheric throughout the flow. We assume the flow is turbulent (this is the
usual case; α = 1). The MEB reduces to:

p2 − p1

ρg
+ 〈v〉2

2 − 〈v〉2
1

2gα
+ (z2 − z1) + F2,1

g
= −Ws,by.21

mg
(9.415)

(z2 − z1) + F2,1

g
= 0 (9.416)

h f = F2,1

g
= (z1 − z2) = L sin β (9.417)

where h f = F2,1/g is the head loss in the system and β = 0.6 degree is the angle
between the channel bed and horizontal. We can relate F2,1 to the Fanning friction
factor (see Equation 9.358) and use the Colebrook equation (see Equations 1.95
and 9.361) for f , substituting the hydraulic diameter DH (see Equation 7.248)
for D because the cross section is noncircular (see Chapter 7):

Friction in pipe
(Equation 9.358):

F2,1

g
= 4 f

L

DH

〈v〉2

2g
(9.418)

= L sin β (9.419)

Rearranging, we obtain:

〈v〉 =
√

sin β DH g

2 f
(9.420)

The hydraulic diameter is given by Equation 7.248:

DH = 4Axs

−p = (4)(4.5 ft)(8.0 ft)

((2)(4.5 ft) + 8 ft)
(9.421)

= 8.47 ft (9.422)
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For the Fanning friction factor, we use the Colebrook equation (see Equation 1.95)
at high Reynolds numbers:

Colebrook formula,
Fanning friction factor
in steady turbulent flow

in rough conduits

1√
f

= −4.0 log
(

ε

DH
+ 4.67

Re
√

f

)
+ 2.28 (9.423)

At high Reynolds numbers:

1√
f

= −4.0 log
(

ε

DH

)
+ 2.28 (9.424)

We have all of the numerical values necessary to perform our final calculations.
We leave the detailed solution to readers (see Problem 42). The results are:

〈v〉 = 17.176 = 17 ft/s (9.425)

Q = 〈v〉Axs (9.426)

= 618.3 ft3/s = 620 ft3/s = 280,000 gpm (9.427)

An interesting effect can occur in open-channel flow when there is a slope
change in the flow path or a flow cross section change (Figure 9.44). If water is
flowing in a steep open channel, it establishes its fluid height ha . For the same vol-
umetric flow rate, if the downward pitch of the channel is smaller, the equilibrium
fluid height hb in the less-steep section is higher than it was for the steep portion,
hb > ha . This follows from the relationships used in Example 9.19. In a channel

Figure 9.44 A hydraulic jump occurs when a rapid upstream flow can no longer be accommodated by the conditions downstream.
This happens, for example, when the pitch of a channel decreases or as shown in the figure, when the cross section of
flow increases. Image/Photo courtesy of John W. M. Bush, Jeffrey M. Aristoff, and Jeff Leblanc of the Massachusetts
Institute of Technology.
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in which such a slope-decrease occurs—that is, when the rapidly moving, thinner,
upstream flow meets the slower-moving, thick, downstream flow—a discontinu-
ity occurs that is called a hydraulic jump (Figure 9.44). Hydraulic jumps are seen
commonly at dam spillways where such a slope change occurs. In the following
example, we show how the macroscopic balances may be used to calculate flow
depth after a hydraulic jump.

EXAMPLE 9.20. Water flows over a dam spillway and produces a hydraulic
jump on the horizontal apron onto which the spillway empties. The spillway is
150 feet wide and the fluid velocity in this region is 22 ft/s. The depth of the water
on the apron is 6.0 inches. What is the fluid depth after the hydraulic jump?

SOLUTION. We choose our macroscopic control volume as that shown in
Figure 9.45 [183]. For a single-input, single-output system, the macroscopic
mass balance is given by Equation 9.140:

Macroscopic
mass balance
Single-input,
single-output:

dmCV

dt
+ ρ1 A1 cos θ1〈v〉1 + ρ2 A2 cos θ2〈v〉2 = 0 (9.428)

For our system, the time derivative is zero (i.e., steady state), the density is
constant ρ1 = ρ2 = ρ, θ1 is equal to 180 degrees, and θ2 is equal to 0 degrees.
The mass balance becomes:

ρ A1(−1)〈v〉1 + ρ A2〈v〉2 = 0 (9.429)

W y1〈v〉1 = W y2〈v〉2 = Q (9.430)

Macroscopic
mass balance result:

y1〈v〉1 = y2〈v〉2 = Q

W
(9.431)

where y1 is the upstream depth, y2 is the downstream depth, and W is the width
of the channel.

Momentum must be conserved across the jump. We use the macroscopic
momentum balance with density and velocity direction constant across the inlet

y
y1 y1 – y

y2 – y
y2

Patm

P (y) = Patm + ρg(y1 – y )

1

2
y

x

〈v 〉1
〈v 〉2

Q Q

control
volume

1 2

Figure 9.45 To calculate the height of a hydraulic jump, we choose the control volume shown here. When we analyze the
hydraulic jump, we do not need to consider the pitch of either section; macroscopic balances applied to a horizontal
jump yield the needed relationships.

www.20file.org

http://www.semeng.ir


828 An Introduction to Fluid Mechanics

and outlet surfaces:

Macroscopic
momentum

balance
on a CV,

ρ, v̂ constant
across Ai :

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f

(9.432)

We choose a Cartesian coordinate system with flow in the x-direction; thus,
v̂|A1

= v̂|A2
= êx . Assuming steady, turbulent flow (β1 = β2 = 1) and incorpo-

rating the same simplifications as for the mass balance, we obtain:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f (9.433)

−ρ A1〈v〉2
1

⎛
⎝1

0
0

⎞
⎠

xyz

+ ρ A2〈v〉2
2

⎛
⎝1

0
0

⎞
⎠

xyz

=
∑

on
CV

f (9.434)

The forces on the control volume are gravity, which we neglect, and the surface
forces on the bounding surfaces of our chosen control volume:∑

on
CV

f = f
gravity

+ f
surface

(9.435)

= f
surface

(9.436)∑
on
CV

f = f
inlet

+ f
outlet

+ f
top

+ f
bottom

(9.437)

The top surface is air and the forces there are zero. The hydraulic jump will not be
very long; thus, we neglect the viscous wall forces on the bottom. The remaining
surface forces are on the inlet and the outlet.

The molecular surface forces are expressed using the usual integral of n̂ · �̃

(see Equation 4.221). We learned in previous examples that the viscous n̂ · τ̃

forces on the inlet and outlet surfaces are zero or small; thus, we omit the τ̃ term
entirely for the calculation of surface forces on the inlet and outlet surfaces:

Total molecular fluid force
on a surface S:

F =
∫∫

S
[n̂ · �̃]at surface d S (9.438)

=
∫∫

S

[
n̂ ·
(
−pI + τ̃

)]
at surface

d S (9.439)

=
∫∫

S
[−pn̂]at surface d S (9.440)

f
inlet

=
∫ W

0

∫ y1

0
ˆ−p(y)(−ex ) dydz (9.441)

We can use the static-pressure equation to write the variable pressure p(y) at
the inlet of our control volume: Pressure at the bottom of a column of fluid
equals pressure at the top plus (density)(gravity)(height) (see Equation 4.136).
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We neglect atmospheric pressure in this calculation:

f
inlet

= W
∫ y1

0
[patm + ρg(y1 − y)] êx dy (9.442)

= W
∫ y1

0
[ρg(y1 − y)] êx dy (9.443)

ˆ= Wρgex (y1 y − y2

2

∣∣∣∣∣∣∣
y1

0

(9.444)

= Wρgy2
1

2
êx (9.445)

A similar calculation for the outlet surface yields:

f
outlet

= −Wρgy2
2

2
êx (9.446)

We now assemble the momentum balance:

dP

dt
+ ρ1 A1 cos θ1〈v〉2

1

β1
v̂|A1

+ ρ2 A2 cos θ2〈v〉2
2

β2
v̂|A2

=
∑

on
CV

f (9.447)

− ρ A1〈v〉2
1

⎛
⎝1

0
0

⎞
⎠

xyz

+ ρ A2〈v〉2
2

⎛
⎝1

0
0

⎞
⎠

xyz

= f
inlet

+ f
outlet

(9.448)

− ρ A1〈v〉2
1

⎛
⎝1

0
0

⎞
⎠

xyz

+ ρ A2〈v〉2
2

⎛
⎝1

0
0

⎞
⎠

xyz

= Wρgy2
1

2

⎛
⎝1

0
0

⎞
⎠

xyz

− Wρgy2
2

2

⎛
⎝1

0
0

⎞
⎠

xyz

(9.449)

The x-component of the macroscopic momentum balance gives the following
(note that the cross-sectional area Ai = W yi ):

− W y1〈v〉2
1 + W y2〈v〉2

2 = Wgy2
1

2
− Wgy2

2

2
(9.450)

y2〈v〉2
2 − y1〈v〉2

1 = g

2

(
y2

1 − y2
2

)
(9.451)

Macroscopic
momentum-balance

result:

y1〈v〉1

g

(
〈v〉2 − 〈v〉1

)
= 1

2

(
y2

1 − y2
2

)
(9.452)

where we used the mass balance results to arrive at the final equation.
The two equations obtained from the macroscopic mass- and momentum-

balances (see Equations 9.431 and 9.452) form a set of two nonlinear alge-
braic equations with two unknowns (i.e., 〈v〉1 and y1 are given; 〈v〉2 and y2 are
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unknown). We use Equation 9.431 to eliminate 〈v〉2 from Equation 9.452:

y1〈v〉1

g

( 〈v〉1 y1

y2
− 〈v〉1

)
= 1

2

(
y2

1 − y2
2

)
(9.453)

y1〈v〉2
1

gy2
(y1 − y2) = 1

2
(y1 + y2) (y1 − y2) (9.454)

Canceling (y1 − y2), multiplying through by y2/y2
1 , and simplifying, we obtain:

2〈v〉2
1

gy1
=
(

y2

y1

)
+
(

y2

y1

)2

(9.455)

This is a quadratic equation for y2/y1, which we now solve:

Height of a
hydraulic jump:

y2

y1
= −1

2
+ 1

2

√√√√√1 + 8

(
〈v〉2

1

gy1

)
(9.456)

We choose the root that gives a positive y2/y1. The quantity 〈v〉2
1

gy1
is the Froude

number for this flow (see Chapter 7):

Froude number: Fr ≡ V 2

gD
ratio of

(inertial forces)

(gravity forces)
(9.457)

where D = y1 is the characteristic lengthscale of this flow. We can calculate
the height of the hydraulic jump for our problem using the final result in Equa-
tion 9.456:

Height of the
spillway jump:

y2 = − y1

2
+ y1

2

√√√√√1 + 8

(
〈v〉2

1

gy1

)
(9.458)

= 3.6 ft (9.459)

The Froude number for this flow is 30.

For more information on open-channel flows, consult the literature [178, 183].

9.3 Problems

1. The name “mechanical energy balance” implies, perhaps, that “mechanical
energy” exists. Does it? Does it balance? Explain the meaning of the name
of this important equation.

2. What is “macroscopic” about the macroscopic mass, momentum, and energy
balances? How are these balances different compared to their microscopic
analogs?
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3. In the mechanical energy balance, the symbol � signifies “out” minus “in.”
If we mistakenly write “in” minus “out,” what are the consequences to the
final results? Discuss various scenarios. Is this distinction important in all
cases?

4. What is the difference between solving for the vector force on a surface with
the macroscopic momentum balance and solving for the vector force on a
surface with the following equation?

F =
∫ ∫

S
[n̂ · �̃]surface d S

5. Show that the energy velocity-profile parameter α is approximately equal to
0.5 for laminar tube flow.

6. Show that the energy velocity-profile parameter α is equal to 0.99 for tur-
bulent flow. Assume that the velocity profile in turbulent flow is given by
Equation 9.43.

7. For a slit flow with the velocity profile given here, what are the correct values
of the momentum velocity-profile parameter β and the energy velocity-profile
parameter α?

v = vx êx

vx = vmax

(
1 − y

H

)0.24

8. For laminar flow of water (25◦C) in a pipe that is 200.0 km long, what are
the frictional losses? The pipe inner diameter is 40.0 cm and the flow rate is
the highest it can be and still be laminar flow.

9. Derive the rule of thumb that the losses in turbulent flow in a pipe that is 50
diameters long are approximately equal to one velocity head [43].

10. Three 10-foot horizontal sections of pipe are connected and water at room
temperature is pushed through by an upstream pressure of 55 psig. The three
sections are 1/2-inch, 3/8-inch, and 1/4-inch, nominal type L, copper tubing.
What is the flow rate through this series of tubes? At the exit, the 1/4-inch
tubing is open to the atmosphere. Do not neglect velocity head changes.

11. Apply the appropriate balances to the fittings shown in Figure 9.46 and show
that the expressions obtained are consistent with Equation 1.120.

12. For the flow loop in Figure 1.17, a colleague states that it is not necessary to
do the detailed calculation. She suggests that you consider only the straight-
pipe friction and neglect all of the fittings. What error would be associated
with adopting her suggestion? Is it a good idea?

13. A vertical manometer tube is attached to the wall of a closed-channel water
flow as shown in Figure 9.12. The flowing liquid rises in the manometer tube
to a height of 12 cm. What is the pressure at that location in the flow? Give
your answer in psig and psia.

14. A Pitot-static tube is installed through the wall of a water flow (27◦C) such
that the curved end (i.e., the Pitot tube) directly faces the oncoming flow at
the center of the pipe. The liquid rises in the Pitot tube to a height of 34 cm.
In the static tube, the fluid height is 12 cm. What is the fluid velocity in the
pipe?
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Figure 9.46 For these fittings, Problem 11 asks for the frictional losses.

15. The friction generated by straight piping can be written in terms of head.
How many meters of 20 mm inner-diameter smooth tubing does it take to
generate 1 meter of friction head? The Reynolds number of the flow is 20,000
and the fluid is water.

16. How does friction in a sudden contraction depend on fluid velocity? Can you
derive your answer from fundamental relationships (i.e., mass, energy, and
momentum balances)?

17. Devise a way to redefine the valve flow coefficient that is independent of the
units of pressure drop and flow rate.

18. Show that for a noncircular conduit, the drag is given by:

Fdrag = �p Axs

where Axs is the cross-sectional area of the conduit.
19. What is the direction and magnitude of the force needed to support the 90-

degree expanding pipe bend shown in Figure 9.47? The water flow is steady
and turbulent, the cross section of the inlet of the pipe bend is π R2

1, and the
cross section of the outlet of the bend is π R2

2, where R2 > R1. Evaluate your
answer for R1 = 0.545 inch and R2 = 0.834 inch and various values of flow
parameters.

20. What is the direction and magnitude of the force needed to support the 60-
degree expanding pipe bend shown in Figure 9.48? The water flow is steady
and turbulent, the cross section of the inlet of the pipe bend is π R2

1, and the
cross section of the outlet of the bend is π R2

2, where R2 > R1. Evaluate your
answer for R1 = 0.545 inch and R2 = 0.834 inch.

21. What is the direction and magnitude of the force needed to support the 90-
degreee contracting pipe bend shown in Figure 9.49? The water flow is steady
and turbulent, the cross section of the outlet of the pipe bend is π R2

1, and the
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Figure 9.47 Force on a 90-degree expanding bend (Problem 19).
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Figure 9.48 Force on a 60-degree expanding bend (Problem 20).
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Figure 9.49 Force on a 90-degree contracting bend (Problem 21).
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Figure 9.50 Force on a 45-degree contracting bend (Problem 22).

cross section of the inlet of the bend is π R2
2, where R2 > R1. Evaluate your

answer for R2 = 0.834 inch and R1 = 0.430 inch.
22. What is the direction and magnitude of the force needed to support the 45-

degree contracting pipe bend shown in Figure 9.50? The water flow is steady
and turbulent, the cross section of the inlet of the pipe bend is π R2

1, and the
cross section of the outlet of the bend is π R2

2, where R2 < R1.
23. For the flow in a U-tube bend, carry out the integration in Equations 9.258

and 9.260 to show that the viscous contribution due to the rate-of-change of
velocity in the flow direction cancels out in this problem.

24. Consider two different sections of pipe of the same diameter and same length.
One is straight and the other is bent into the U shape. What are the forces
on these two sections when 3.0 gpm of water flows through them (installed
horizontally)? Assume the inlet and outlet pressures in the two cases are the
same. Discuss the effect of the shape of the fitting on the force to which the
fitting is subjected.

25. A Y-shaped piping installation for water flow is extended as shown in Fig-
ure 9.51 by the addition of a 70-foot section of the same type of pipe. The
flow rate into the piping is a constant value of 4.0 gpm. What is the flow-rate
split before the modification? What is the flow-rate split after the modifica-
tion? All of the piping is 1/2-inch nominal Schedule 40 steel pipe. You may
neglect the losses in the fittings.

Q

All 1/2 nominal
Schedule 40

60 ft

40 ft

40 ft

70 ft

new section

Figure 9.51 A modified Y-shaped piping installation with a split (Problem 25).
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1.0 m

10.0 m

52 m
pump

water 
intake 70 m75 m

All pipe is Schedule 40 ¾ inch

Figure 9.52 Designing a lawn-irrigation system (Problem 30).

26. For the installation described in Problem 25, if the inlet flow pressure is held
constant (instead of the flow rate) at 60 psig, what is the flow-rate split before
and after the modification?

27. What is the difference between a centrifugal pump and a positive-
displacement pump?

28. What is net positive suction head? What is the danger involved in ignoring
NPSH when installing a pump?

29. What are the signs and implications of cavitation?
30. A lawn-irrigation system is to be built next to a natural pond. The installers

plan to obtain water for irrigation directly from the lake. To bring the water
from the lake, they plan to install the piping system shown schematically
in Figure 9.52. When the pump is running to fill the storage tank, they
desire a flow rate of at least 14 liters/min. Which pump should they install?
If possible choose your suggestion from among those with pumping-head
curves in Figure 9.29.

31. For the pump installation shown in Figure 9.53, calculate and plot the system
curve. The tank water levels are 6 feet apart in elevation. What is the mini-
mum head needed to pump water in this loop at low flow rates? All pipe is
Schedule 40.

ball valve

sum of all piping = 200 ft
½ inch nominal pipe

metering
valve

measures height
between water
level and pipe

6′
5′

3′ }

Figure 9.53 To choose a pump for the system shown (Problem 31), a system-head curve is constructed.
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Figure 9.54 Avoiding cavitation in an installed pump (Problem 35).

32. After the local river flooded, 3.0 feet of water filled the basement of a uni-
versity building. Several pumps are available to help empty the basement
(see Figure 9.29). Which pump do you recommend for this operation? Jus-
tify your answer. Make reasonable assumptions.

33. Careful calculation of frictional losses in a system led to the following
equation for system head in feet as a function of flow rate Q in gpm. At the
last minute, the final tank in the installation was raised 5.0 feet. What is the
new curve for system head?

Hsystem = 0.023Q2 + 35.2Q + 34

34. The frictional losses in a system are represented accurately by the following
equation for system head in feet as a function of flow rate Q in gpm.

Hsystem = 0.023Q2 + 34

Included in the frictional losses are those for a metering valve. The equation
was calculated for the valve fullopen. Plot the system-head equation. Sketch
qualitatively how the curve will shift to if the metering valve is closed halfway.

35. The pump with characteristic curves given in Figure 9.38 is installed as shown
in Figure 9.54. The pressure in the tank headspace is 1,660 mmHg, and the
desired flow rate is 2.2 × 104 gpm. If frictional head loss h f = Fs,1/g from
the reservoir to the pump inlet is 11.0 feet, at what elevation should the pump
suction be placed relative to the feed-tank fluid level to avoid cavitation for
water at 122◦F? All piping is 6.0 inches ID.

36. What data must be collected to determine the efficiency of a pump?
37. What is a hydraulic jump?
38. When heavy rains cause flooding, the water moves downstream under the

pull of gravity. For a given flow rate, if the water moved very fast, the depth of
the moving water could be shallow. For the same flow rate if the water moved
less rapidly, the moving water would be very deep. What physics determines
which of these two states nature chooses?

39. A rough cement rectangular channel (roughness ε = 0.0085 feet) slopes
downward at an angle of 1.2 degrees carrying water. The channel is 20.0 m
wide and the water depth is 1.2 m. What is the flow rate in the channel?
Assume that the depth is constant.

40. A rough cement rectangular channel (roughness ε = 0.0080 feet) slopes
downward at an angle of 3.2 degrees carrying water at 2.0 million gpm. The
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p1 p2

orifice plate

DQ Q

Figure 9.55 An orifice meter measures flow rate from the pressure drop across a plate with a hole in the center (Problem 43).

channel is 20.0 m wide. How deep is the water? Assume that the depth is
constant.

41. A dilute aqueous solution flowing in a drying operation over a tilted surface
encounters a slope change in the middle of its passage down the surface.
The initial slope of the surface is 20 degrees relative to horizontal, and the
new slope is 10 degrees relative to horizontal. The slope change produces a
hydraulic jump. The flow is 15 m wide and the fluid velocity in the upstream
region is 0.52 m/s. The fluid depth in the upstream region is 1.0 cm. What is
the fluid depth after the hydraulic jump?

42. Calculate the flow rate for the circumstances described in Example 9.19.
Show all of your work.

43. An orifice meter (see Figure 9.55 and Glossary) is a device that is used
to measure flow rates of liquids and gases. The flow in a pipe of inner
diameter D is obstructed by a plate with an orifice of diameter D0. The flow
streamlines contract from an upstream cross-sectional area of π D2/4 to a
jet of approximate cross-sectional area π D2

0/4. The pressure in the pipe is
measured upstream and slightly downstream of the orifice plate as shown in
Figure 9.55. Show that the volumetric flow rate may be obtained from the
following equation:

Q = π D2

4

√√√√√√
2(p2−p1)

ρ(
1 − D4

D4
0

)
You may neglect friction; friction in an orifice meter is accounted for by
including a prefactor C0, which is determined experimentally (For D0

D < 0.5
and Re = ρv2 D0

μ
> 2 × 104, C0 ≈ 0.61 [132].
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10 How Fluids Behave (Redux)

In this text, our goal is to explain flow; this chapter surveys how far we have come.
With the completion of nine chapters of study, we find that we can make sense of
much of the fluid behavior we observe. A reexamination of those behaviors helps
consolidate our knowledge.

Section 10.1 is an integrated summary of the concepts of viscosity, drag,
and boundary layers. Section 10.2 provides guidance on how numerical tools
are used to pursue advanced flow-field models. In Section 10.3, we turn to
turbulent flow, which until now was addressed only through data correlations for
friction factor and drag coefficient. Sophisticated applications involving turbulent
flow (e.g., airplane flight, mixing, and reactor design) require more detailed
understanding of turbulent flow structure than discussed so far. We introduce
the statistical study of turbulence in Section 10.3. Lift—briefly introduced in
Chapter 8—is studied most effectively with advanced tools such as vorticity
and circulation (Section 10.4). Section 10.5 continues with vorticity to show
how this tool improves our understanding of curvy flow. Compressible fluid
flow is discussed in Section 10.6. The flow behaviors not addressed in this text
are accessible through advanced study based on the introductory methods in
Chapters 1–9.

10.1 Viscosity, drag, and boundary layers

Our first topic in Chapter 2 was viscosity, and there we stated only that viscosity
is a measure of a fluid’s ability to resist flow. Chapter 5 formally defined viscosity
μ: Viscosity is a material property that enters into the stress constitutive equation
of the continuum model of fluids. In simple shear flow, the stress constitutive
equation is:

Newton’s law of viscosity
(flow in x1-direction,

gradient in x2-direction):
τ̃21 = μ

∂v1

∂x2
(10.1)

In an arbitrary flow, the stress constitutive equation for a Newtonian fluid is a
tensor equation:

Newtonian constitutive equation: τ̃ = μ
(
∇v + (∇v)T

)
(10.2)

We learned how to use the Newtonian constitutive equation in Chapters 6–8.

838
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The stress constitutive equation relates the stresses generated by a flow to the
velocity field. The Newtonian constitutive equation is the correct constitutive
equation for a wide variety of fluids including water, air, and oil. To customize
the Newtonian constitutive equation for a particular fluid, all that changes is the
value of the viscosity. This is a striking simplicity! It is almost unbelievable that
we can relate a complex flow field to its complex stress field with a single equation
that has a single, scalar material parameter.

Actually, it is a bit too good to be true, and we learn in Section 5.3 that fluids
that follow the Newtonian constitutive law are but one type of fluid. All other
fluids, called non-Newtonian [104], follow more complex constitutive laws that
vary in their mathematical structure and in the number of material parameters
needed to fully specify the model.

The Navier-Stokes equation captures the physics of the flow of Newtonian
fluids and is a nonlinear equation of great mathematical complexity—a
complexity that matches the fluid behavior it describes:

Navier-Stokes Equation
(Microscopic momentum balance, continuum model):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (10.3)

The terms on the lefthand side of the Navier-Stokes are the inertial terms. When
flows are rapid, these terms and the physics they represent dominate in the flow.
The inertial terms are nonlinear. The terms on the righthand side of the Navier-
Stokes equation represent the forces on fluid particles: pressure, viscous, and
gravity; the viscous term is linear in velocity.

Because of the nonlinearity of the inertial terms of the Navier-Stokes, a general
solution has not been found to this equation; rather, the history of fluid mechanics
is of applying the Navier-Stokes equation to select problems, simplifying the
governing equations, and solving the simplified equations. When the lefthand
terms are zero (e.g., unidirectional or creeping flows), solutions of the Navier-
Stokes equation are found (see Sections 7.1 and 8.1). When viscosity can be
neglected (away from boundaries in rapid flow; see Section 8.1.2.3), the potential-
flow solutions of the Navier-Stokes equation are found. In addition, analytical
solutions to the Navier-Stokes equation are found for a limited number of flows
in which both inertia and viscosity contribute; we discuss one such solution:
boundary-layer flow (see Section 8.2). For most real flows, all terms of the
Navier-Stokes equation must be retained.

The future of research into the effect of viscosity is numerical simulation
of the Navier-Stokes equation for flows in which both viscosity and inertia are
important. This field, which is active and growing, is called computational fluid
dynamics (CFD). Commercial CFD codes are available, permitting contemporary
researchers to benefit from decades of software development in the field. In many
industries (e.g., aeronautics, meteorology, and reactor design), CFD modeling
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is essential to engineering design and decision making. We briefly introduce
numerical approaches to the Navier-Stokes equation in the next section.

10.2 Numerical solution methods

The modeling process described in this text leads us to the differential equations
that govern fluid flow—the continuity equation and the Navier-Stokes equation—
which are nonlinear, multicomponent, coupled equations for the velocity and
pressure fields. These equations are difficult to solve. We are familiar with ana-
lytical solutions to the governing equations that are obtained when the inertial
terms are zero and when the viscous term is zero. For flows in which the equa-
tions may not be simplified, there are strategies that allow us to obtain useful
results (e.g., boundary-layer approximation and circulation/lift calculations; see
Section 10.4). In all cases, analytical solutions are limited to flows with simple
geometries, and usually we are restricted to flows that are steady. For flows in
complex geometries, for flows in which viscous and inertial contributions are
both important, and for unsteady flows, the governing equations must be solved
numerically.

The state of the art in numerical problem solving is to use software designed
and written by coding experts rather than to develop standalone code. To obtain
and interpret correctly solutions with such codes, we need some background in
computational methods. In this section, we introduce numerical problem solv-
ing in fluid mechanics and discuss issues that affect the accuracy of numerical
solutions. Numerical problem solving of nonlinear, coupled, partial differential
equations (PDEs) is a complex topic; more on computational methods in fluid
mechanics is available in the literature [49, 57, 86, 100].

10.2.1 Strategy

Many methods have been developed for numerically solving differential equa-
tions; all begin with the idea of dividing the flow domain into many small pieces.
The map of the divided flow domain is called the mesh. To see why dividing
the flow domain helps solve the differential equation, consider the value of our
functions v and p at an arbitrary location in the mesh (Figure 10.1). If the mesh is
fine, the values of the functions v|i, j and p|i, j at an arbitrary mesh point i, j will
be not very different from the values of these functions at neighboring points.
Because the neighboring values are not so different, we can propose approximate
methods (e.g., linear interpolation) based on the values of v and p at i, j to
estimate the values of v and p and their derivatives at the neighboring points.
The formulas used in this step vary from algorithm to algorithm, and the method
choice affects accuracy and computational efficiency. The result of the estimiza-
tion step is the generation of a large number of simple and interrelated equations
that approximate the values of the functions v and p and their derivatives at all
points in the mesh.

Having approximated the values of the function at every point in terms of its
neighbors, we then must find a way to include in the problem the constraint of
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i – 1, j + 1 i + 1, j + 1i, j + 1

i – 1, j i + 1, ji, j

i – 1, j – 1 i + 1, j – 1i, j – 1

Figure 10.1 Numerical schemes divide a flow domain into small pieces that are numbered sequentially. Individual methods
differ in how they estimate properties at a grid point; in all cases, the idea is to approximate the value based on the
values of quantities such as velocity and pressure at neighboring grid locations.

the differential equation that we are trying to solve—for example, the Navier-
Stokes equation. For two neighboring points i, j and i + 1, j + 1 (considering a
two-dimensional flow domain and a single component of the Navier-Stokes), we
can write:

Differential equation to solve: f (vx , vy, p) = 0 (10.4)

If we now write the differential equation at each mesh point and substitute the
simple approximate expressions developed, we obtain:

Algebraic equations at every
mesh point, obtained from substituting

v, p estimates into differential equation:

f (vx , vy, p)
∣∣∣
i, j = Ri, j

f (vx , vy, p)
∣∣∣
i+1, j+1 = Ri+1, j+1

etc.
(10.5)

where Ri, j is the residual calculated when the approximations for v and p at i, j
are substituted into the differential equation and Ri+1, j+1 is the residual at the
location i + 1, j + 1. The residuals appear because the mesh-point approxima-
tions for v and p are not exact; therefore, the differential equation is satisfied only
approximately at every point. We can write equations for residuals at every point
in the mesh. The substitution of the estimates, which are different at every mesh
point, changes the single differential equation to a set of many coupled algebraic
equations. The best solution of the problem is obtained when all of the residuals
are minimized.

With these steps, we transform our single differential equation into hundreds,
thousands, or even tens of thousands of much simpler (the form depends on
how the functions at the neighboring points are estimated from their neighbors),
coupled, algebraic equations that are inconceivable to solve manually but which a
computer easily solves using techniques from linear algebra. The final result is a
database of the values of v and p for every point on the mesh. Figure 10.2 shows
a finite-element mesh with a triangular grid that can be used for flow calculations
in a complex geometry.
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Figure 10.2 To numerically solve a differential equation, the first step is to divide the flow domain into a mesh. The discrete
points of the mesh are chosen so that the functions we seek do not vary much between mesh points. The mesh
shown allows us to calculate the velocity field in a cross section of complex shape—the free space around three
tubes encased in a much larger outer pipe. (Finite-element mesh provided by Tomas Co [24].)

10.2.2 Software packages

The most likely way that a contemporary engineer approaches numerical solutions
to problems is by using commercial software packages. Many packages are
available that require little or no user programming. The introduction here des-
cribes enough about the process to allow us to begin to use a flow software
package. Discussion of individual numerical methods (e.g., finite difference, finite
volume, and finite-element methods) is found in the literature [24, 49, 57, 86, 100].
We outline the steps that lead to a numerical solution when using a software
package.

Steps for Using a Numerical Software Package to Solve Flow Problems

1. Choose the flow geometry. If possible, take advantage of symmetry to
reduce the size of the computational domain. It may be necessary to add
sections before and/or after the flow section of interest (i.e., the test section)
to eliminate edge effects or other boundary issues.

2. Design and generate the mesh. The mesh may be uniform or nonuniform;
a nonuniform mesh with smaller elements near points of higher interest or
higher rates of change is the norm because the approximations in the method
assume that the function does not vary much between neighboring points.

3. Choose the physics. For flow problems, this is the equation of motion, the
continuity equation (compressible or incompressible), the energy equation
(for nonisothermal flow), or other equations as appropriate.

4. Define the boundary conditions. The fluid behavior at all boundaries is
specified; the initial conditions are defined in nonsteady-state problems.
If the desired boundary condition is not available in the code, it may be
necessary to add a section to the flow domain to generate the desired
boundary conditions on the test section (Figure 10.3).

www.20file.org

http://www.semeng.ir


843 How Fluids Behave (Redux)
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condition tube exit

tube
centerline
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unknown
υ_ profile,
pressure

υ_ =   υ 0êz
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p = 0

Figure 10.3 It often is necessary to add sections before or after flow that can be used to allow flows to come to steady state or
to eliminate exit effects. The portion of the flow of interest is called the test section. The added upstream section
shown here allows the uniform inlet velocity profile to rearrange to the steady-state velocity profile before entering
the test section.

5. Solve the problem. To solve the problem, a specific solution method is
applied (i.e., finite elements, finite volume, finite difference, or other),
algebraic versions of the differential equations are generated for each mesh
location, and the residuals are minimized by the computer code. If the code
fails to find a solution in this step, common causes include: the Reynolds
number is too high (i.e., turbulence appears); the mesh is too refined (i.e.,
rounding errors become the same size as some values of velocity and
pressure); the boundary conditions are inappropriate; some assumptions
were violated (e.g., incompressibility, isothermal, flow or steady state);
or a numerical instability occurred due to roundoff or other numerical
issues.

6. Calculate and plot the engineering quantities of interest. This step is
performed in a postprocessor that can access the database of v, p results
at each mesh point. The postprocessing code makes the appropriate
interpolations and integrations/differentiations to calculate the requested
quantities. If the plotting capabilities of the code are inadequate, datasets of
engineering quantities can be output for plotting with graphing software.

10.2.3 Accuracy

For various reasons, neither analytical nor numerical solutions to flow problems
are 100 percent accurate to a real flow. When a flow is modeled, we make
assumptions throughout the modeling process, from the assumption that the fluid
is a continuum to assumptions about boundary conditions or flow symmetry.
For analytical solutions, we often make additional assumptions, such as about
the importance to the problem of certain terms in the differential equations;
we do this to make the equations more tractable to analytical solution. With
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Table 10.1. Summary of issues affecting accuracy of solutions of flow problems using the
Navier-Stokes equations

Issue Analytical Numerical

continuum hypothesis x x

symmetry assumptions x x

approximate geometry x x

approximate boundary conditions x x

steady-state assumption x x

incompressible fluid x x

Newtonian fluid x x

isothermal, single-phase flow x x

finite domain size x x

neglect inconvenient terms (creeping flow, inviscid flow) x

linearization and other approximate analytical solution methods x

final solution series truncation error x

discretization of the flow domain (finite grid size, resolution) x

derivative approximation errors x

roundoff error x

interpolation error in final calculations of engineering properties of interest x

numerical instability induced by accumulation of error x

inappropriate implementation of comercial code x

numerical solutions, there also are assumptions made to allow the solutions
to be obtained, and these are different in character from those in analytical
methodologies. Because making assumptions affects the accuracy of the solutions
obtained, we always must be aware of the assumptions we are making and how
those assumptions affect our answers. Table 10.1 summarizes accuracy issues
that we face in solving flow problems.

When using code on a new problem, it is essential to solve a related problem for
which we know the solution and to compare the numerical and analytical results.
This allows us to verify whether we understand how to make the code function.
The design of the mesh is important: If the mesh is too fine, the computer
may be slow or may not be able to find a solution; if the mesh is too coarse,
the approximation errors may be unacceptably large. When the mesh is refined
between calculations (i.e., made finer), the result should become more accurate. If
refining the mesh results in a less reasonable solution, the reasons for this failure
must be determined before proceeding.

Although most computer programming has been eliminated from flow simula-
tion due to the availability of effective codes and fast computers, the task of obtain-
ing reliable results is still challenging. As we discuss in Section 10.3.2, flows can
become unstable due to their inherent physics. Numerical instabilities also can
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Figure 10.4 Turbulent flow, such as in a swollen creek, is full of eddies, which are curvy regions with significant vorticity. The
flow structure is three-dimensional and chaotic.

be observed, caused by roundoff error or other reasons. Some flow problems are
more compatible with a particular type of numerical analysis, and this may be
discovered only through long investigation. Finally, as with any modeling, the
solution obtained from a numerical model is only as good as the assumptions
incorporated into the model. The responsibility for the accuracy and relevancy of
a numerical result lies entirely with the individual carrying out the analysis.

10.3 Laminar flow, turbulent flow

Laminar flow and related orderly flows are described in depth in this text. Turbu-
lent flow, however, was examined only briefly. It is worthwhile to further discuss
turbulent flow, which has a structure and complexity that requires a different
approach than what is used in the study of laminar flow.

Turbulent flow is a highly disordered flow that in many ways is the opposite of
laminar flow (Figure 10.4 and [117]). Turbulent flow is a three-dimensional flow
characterized by swirling eddies and efficient mixing. It is observed at higher
flow speeds than laminar flow, and it takes place in a wide variety of situations.
Turbulent flow is characterized by having vorticity (i.e., rotational character of
the velocity field) continuously but irregularly distributed throughout the flow in
all three dimensions. Laminar flow also has vorticity—for example, a marked
ping-pong ball set down in a shear flow spins continuously—but the vorticity
field in laminar flow is rather tame and organized, not the disheveled riot that it is
in turbulent flow. Turbulent flow occurs spontaneously and unavoidably at high
flow speeds as a result of instabilities in laminar flow.

The continuum approach that provides velocity and stress fields in laminar flow
also is applicable to turbulent flow; the only obstacle to using the Navier-Stokes

www.20file.org

http://www.semeng.ir


846 An Introduction to Fluid Mechanics

equations in a turbulent flow is that turbulent flow is inherently three-dimensional
and complex. The complexity of turbulent flow makes the continuum-mechanics
equations impossible to solve for the detailed motions in these flows. In fact,
the disorder of turbulent flow is such that not all aspects are even reproducible:
Experiments and simulations on turbulent flows in which every aspect is scrupu-
lously repeated unfortunately result in flows that are not identical in their details.
The averages of many results in these repeated experiments are the same, but the
precise location of individual eddies or swirls is not reproduced every time the
experiment or simulation is run.

What is reproducible in turbulent flow is the statistically averaged variables
for the velocity and stress fields. The averages used in the study of turbulent flow
are ensemble averages such as those used in statistical thermodynamics. These
quantities are averages of many implementations—carried out through modeling
or experimentation—of a flow under identical circumstances. The modern study
of turbulence uses statistical models and high-performance computers to obtain
weather predictions, the shape of the wake behind boats and airplanes, and the
mixing characteristics of chemical reactors.

In this section, we present the statistically averaged equations of change (i.e.,
continuity and Navier-Stokes) and discuss issues that arise in using them. Numer-
ical solutions to the statistically averaged equations of change give researchers
the tools they need to study turbulent-flow behavior in detail. We also introduce
the concept of instability as related to flow studies, including the transition from
laminar to turbulent flow. Complex flow structure often can be understood by
tracking the evolution of the flow from a well-understood stable flow to the more
complex state. Tools such as frequency-response analysis are helpful in studies of
this type. More in-depth understanding of turbulent flow may be pursued through
additional reading [10, 165].

10.3.1 Statistical modeling of turbulence

Turbulent flow is a rapidly fluctuating flow with many fine structures throughout.
For steady turbulent flows, we can monitor the velocity as a function of time at a
fixed location, and when we look at the data, we see a rapidly varying signal that is
characteristic of turbulence. Fluid arrives continuously at the velocity probe from
upstream positions; thus, the value of the signal at any one time represents the
value of the velocity at that location for a single, instantaneous implementation of
the flow. The time-average of that signal, therefore, is comparable to an ensemble-
average velocity for that location in the flow [10].

The velocity components for one implementation of a chosen turbulent flow
may be written as a time-averaged (i.e., ensemble-averaged) velocity contribution
vi plus a deviation from the average vi

′ that corresponds to that particular flow
implementation. In Cartesian coordinates, this becomes:

vx = vx + v′
x (10.6)

vy = vy + v′
y (10.7)

vz = vz + v′
z (10.8)
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where vx , vy , and vz are the velocity components for a single implementation
of the flow. The flow must satisfy the continuity equation and the Navier-Stokes
equation. Our strategy then is to write the Navier-Stokes and continuity equations
for vx , vy , and vz and subsequently carry out a time-average of the entire equation.
If the Navier-Stokes equations were linear, after averaging we would obtain them
again with every term replaced with its time-average. However, the Navier-Stokes
equations are not linear; thus, interesting fluctuation terms appear when we do
the time-average, and these terms help to quantify turbulence.

The most convenient forms of the equations of change to use for the time-
averaging calculation are those given here (incompressible fluid assumed; see
Equation 6.62):

Continuity equation: ∇ · v = 0 (10.9)

Cauchy momentum equation: ρ
∂v

∂t
+ ∇ · (ρv v) = −∇ p + ∇ · τ̃ + ρg

(10.10)

Newtonian constitutive equation: τ̃ = μ
(∇v + (∇v)T )

(10.11)

The time-averaging of the equations of change is performed over a short time
interval t0; the time interval is chosen to be long enough to eliminate the random
fluctuations of turbulent flow but short enough not to eliminate changes with time
that are part of the average character of the flow. The time-averaging of velocity
components, pressure, and other flow variables is carried out using the following
integral:

(quantity) = 1

t0

∫ t+t0

t
(quantity) dt ′ (10.12)

To calculate the fluctuation-averaged equations of change, we substitute the veloc-
ity expressions in Equations 10.6–10.8 into the equations of change and carry
out the time-averaging integrations.

The averaging process described here produces three types of terms: those
that yield average properties, those that average to zero, and those that quantify
fluctuations. An example of a term that yields average properties is the following
expression, which occurs in the x-component of the momentum-balance equation:

ρ
∂vx

∂t
= 1

t0

∫ t+t0

t

(
ρ

∂vx

∂t

)
dt ′ (10.13)

= ρ

t0

∂

∂t

[∫ t+t0

t
vx dt ′

]
(10.14)

= ρ
∂vx

∂t
(10.15)

For terms like this, the averaging process returns the average of the same quantities
as when we started. For terms with a fluctuating quantity multiplying an average
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quantity, we obtain:

∂(v′
xvy)

∂y
= 1

t0

∫ t+t0

t

∂(v′
xvy)

∂y
dt ′ (10.16)

= 1

t0

∂

∂y

[∫ t+t0

t
v′

xvy dt ′
]

(10.17)

= 1

t0

∂

∂y

[
vy

∫ t+t0

t
v′

x dt ′
]

(10.18)

= 0 (10.19)

This integral gives zero because v′
x has a random value with zero mean; thus, the

integration of this random value gives zero.
The significant terms are those in which two fluctuating terms multiply each

other. The fluctuating terms may be positive and negative with equal probability.
When both are negative, they produce a positive product, which skews the value
of the integral toward a positive, nonzero value. We must retain terms of this type
as an average of the product with no simplification:

∂(v′
xv

′
y)

∂y
= 1

t0

∫ t+t0

t

∂(v′
xv

′
y)

∂y
dt ′ (10.20)

= ∂

∂y

[
1

t0

∫ t+t0

t
v′

xv
′
y dt ′

]
(10.21)

= ∂v′
xv

′
y

∂y
(10.22)

Following the time-averaging procedure for each term in the equations of
change, we obtain the ensemble-averaged equations of change for turbulent flow.

Fluctuation-averaged equations of change for turbulent flow:

Continuity equation: 0 = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(10.23)

Cauchy
momentum equation:

(x-component) ρ
∂vx

∂t
+
(

ρ
∂ (vx vx )

∂x
+ ρ

∂
(
vy vx

)
∂y

+ ρ
∂ (vz vx )

∂z

)

+
[
ρ

∂v′
xv

′
x

∂x
+ ρ

∂v′
yv

′
x

∂y
+ ρ

∂v′
zv

′
x

∂z

]

= −∂ p

∂x
+ ∇ · τ + ρgx (10.24)

Newtonian
constitutive equation:

τ = μ
(∇v + (∇v)T ) (10.25)
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⎛
⎜⎝

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎞
⎟⎠

xyz

= μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
∂vx

∂x

(
∂vx

∂y
+ ∂vy

∂x

) (
∂vx

∂z
+ ∂vz

∂x

)
(

∂vy

∂x
+ ∂vx

∂y

)
2
∂vy

∂y

(
∂vy

∂z
+ ∂vz

∂y

)
(

∂vz

∂x
+ ∂vx

∂z

) (
∂vz

∂y
+ ∂vy

∂z

)
2
∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xyz

(10.26)

Similar y- and z-components to the momentum equation were omitted.
Comparing the x-momentum equation (Equation 10.24) to the original Cauchy

momentum equation, we see that they are identical except that the veloc-
ity has become the time-averaged velocity and there are three extra terms
(boxed in Equation 10.24). The boxed terms contain convective momentum
contributions due to turbulent fluctuations, and these are called the Reynolds
stresses:

Reynolds stresses
(x-component of momentum):

τxx
turb ≡ −ρv′

xv
′
x

τyx
turb ≡ −ρv′

yv
′
x

τzx
turb ≡ −ρv′

zv
′
x

(10.27)

The negative sign is introduced into the definition of Reynolds stresses by
convention to move them from the left side of the momentum balance (i.e.,
inertial terms) to the right side (i.e., forces)—we think of them as an additional
force/area acting within the fluid. Writing the x-component of the momentum
balance equation this way, we obtain:

Momentum equation:

(x-component) ρ
∂vx

∂t
+
(

ρ
∂ (vx vx )

∂x
+ ρ

∂
(
vy vx

)
∂y

+ ρ
∂ (vz vx )

∂z

)

= −∂ p

∂x
+ ∇ · τ −

[
∂ρv′

xv
′
x

∂x
+ ∂ρv′

yv
′
x

∂y
+ ∂ρv′

zv
′
x

∂z

]
+ ρgx

(10.28)

= −∂ p

∂x
+ ∇ ·

[
τ lam + τ turb

]
+ ρgx (10.29)

where we adopt the nomenclature τ lam for the averaged, viscosity-based stresses
in Equation 10.26 to distinguish material-based stresses present in both laminar
and turbulent flows from the convective turbulent stresses discussed here.
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The final form of the fluctuation-averaged momentum balance is appealing in
its simplicity:

Fluctuation-averaged
momentum balance
for turbulent flow:

ρ

(
∂v

∂t
+ ∇ · v v

)
= −∇ p + ∇ ·

[
τ lam + τ turb

]
+ ρg

(10.30)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + ∇ ·

[
τ lam + τ turb

]
+ ρg

(10.31)

The equivalence of the first and second versions may be shown using the
fluctuation-averaged continuity equation, ∇ · v = 0. When τ turb = 0, we recover
the usual momentum-balance equation, which—when combined with the
Newtonian constitutive equation (Equation 10.31)—may be solved for the aver-
aged properties v and p using the methods in this text.

When τ turb �= 0, we cannot solve the equations of motion unless we know the
relationship between τ turb and the averaged velocity field v. In viscous flow, we
use the constitutive equation to express the stress tensor in terms of the velocity
components. Making an analogy to viscous flow, for the turbulent stresses we need
some type of “turbulent constitutive equation” to relate the turbulent stresses to
the velocity field.

We seek a turbulent constitutive equation to allow us to solve Equation 10.31
for v and p. For viscous flow, we obtained the material-stress constitutive equa-
tion by observing material behavior and guessing an appropriate equation; for
Newtonian fluids, this equation is well known (Equation 10.25). For turbulent
flow, many turbulent-stress constitutive equations have been proposed, and we
give two such equations here. Note that the relationship between τ turb and the
averaged velocity field v is not a material relationship: Instead, τ turb(v) is a
characteristic of a flow or rather of the particular flow implementation under
discussion.

A reasonable first guess at a turbulent constitutive equation is to pattern the
form of the equation on the Newtonian material-stress constitutive equation. This
was suggested by Boussinesq in 1877 [16]:

Eddy viscosity, defined: τ turb = μeddy

(∇v + (∇v)T ) (10.32)

Eddy viscosity
(x-direction shear flow):

τ turb
yx = μeddy

∂vx

∂y
(10.33)

The eddy viscosity is not a constant; if it were, the effect of turbulence would be
simply to increase the viscosity of the fluid, but this is not the case. Eddy viscosity
is a function of position, which we can deduce by considering the turbulent
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stresses at the wall. Because the fluctuations v′
x and v′

y must go to zero at the
wall, then τ turb

yx = −ρv′
xv

′
y also must go to zero at the wall. Because the velocity

derivative is not zero at the wall, Equation 10.33 implies that the eddy viscosity
must go to zero. Although these considerations mean that the eddy-viscosity
concept is not very helpful for quantitative modeling, the concept is useful in
discussions and in visualization of turbulent flow. The eddies of turbulent flow
can be visualized as organized and fluctuating structures that bump into one
another and introduce extra dissipation into the flow. In this sense, they have a
viscosity.

A more useful model for turbulent stresses was developed by Prandtl [135].
Using an analogy to how molecules move about in a gas (an analogy, unfortu-
nately, that does not accurately describe eddy motion), Prandtl proposed for shear
flow that the turbulent shear stress should be given by the following function of
the velocity field:

Mixing length, defined: τ turb
yx = ρl2

∣∣∣∣∣∣∂vx

∂y

∣∣∣∣∣∣(∂vx

∂y

)
(10.34)

where the length l is called the mixing length. Experiments on two types of
turbulent flows—shear flow near a wall and free-jet flow—show that the mixing
length increases with distance from the wall in the shear case and increases with
the width of the mixing zone in the free-jet case:

Shear near a wall (wall turbulence): l = κ1 y (10.35)

Free jet (free turbulence): l = κ2b (10.36)

where κ1 and κ2 are constants, y is the distance from the wall in wall shear flow,
and b is the width of the mixing zone in the free jet [15]. The mixing length can
be thought of as the distance over which a turbulent eddy retains its identity.

Once the model for the Reynolds stresses is chosen, a turbulence problem is
solved like a problem in nonturbulent flow: The equations of change are set up for
the flow geometry, and solution methods (i.e., analytical and numerical) for partial
differential equations are used. Flow simulators have various turbulence models
built in [27]. For more on this and other approaches to turbulence modeling (e.g.,
K -ε models), refer to the literature [40, 165].

10.3.2 Flow instability

We can broaden our understanding of turbulent flow by reviewing the origins of
turbulence. Reynolds’s tube-flow experiments showed that organized laminar flow
becomes disorganized turbulent flow when the same flow is operated at higher
Reynolds numbers (see Figure 7.17). In other words, laminar flow is unstable
above Re = 2,100. In a laminar flow in which the Reynolds number gradually
increases, instability is the first step in the chain of events that produce turbulence
(paraphrased from [116]).

An accurate flow model should capture flow instability. However, models must
be exceptionally accurate if they are to predict correctly flow instabilities. To see
why this is true, consider the task of creating a model of Reynolds’s pipe-flow
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experiment. Our goal is to find within the model the origins of the laminar–
turbulent transition.

To model flow in a pipe, we know that the governing equations are the continuity
equation and the equation of motion in the form of the Navier-Stokes equation. In
identifying these equations as the governing equations for our problem, however,
we already have made (or soon will make) a series of assumptions. The Navier-
Stokes equations, for example, are valid only for fluids with a constant viscosity.
Additional usual assumptions are that the flow is isothermal and incompressible.
If we make these assumptions, however, we technically are constraining our model
predictions to the behavior of a fluid that is perfectly Newtonian (i.e., viscosity is
unwaveringly constant), perfectly incompressible (i.e., the density is absolutely
constant), and perfectly isothermal (i.e., the temperature does not change under
any circumstances). Mathematics allows for the consideration of such perfect
systems; however, real-life experiments are not perfect.

Strangely enough, we obtain reasonable solutions in the steady, laminar pipe-
flow problem making all three of these assumptions (see Chapter 7). The laminar-
flow modeling result matches experimental measurements (i.e., the Hagen-
Poiseuille equation and the parabolic velocity profile) either because the model-
ing assumptions are true (highly unlikely because no experimental system can
be “perfect”) or possibly because slight deviations from what is assumed in the
model simply do not matter much. The latter statement is another way of stating
that the flow turns out to be stable relative to small variations in viscosity, density,
and temperature.

In an experimental flow, flow stability can be investigated by introducing slight
changes to various flow conditions and then observing their effect on the flow
produced. For example, we can investigate the experimental stability of laminar
flow to changes in fluid density by comparing runs made with fluids of slightly
different density.

Experiments are costly and difficult, however, and we prefer to investigate
mathematically a flow’s stability by using a model. We can understand stability
of laminar flow by subjecting an existing flow solution to a perturbation of a
variable that we are investigating. If the flow returns to the starting steady state
after the perturbation dies out, then the flow is stable relative to that perturbation.
If the flow moves to a new operating condition as a result of the perturbation,
or if the perturbation grows without bound, the flow is unstable to that type of
perturbation.

The predictions of a stability analysis are necessarily limited by the physics
included in the model. If the model with which we are working assumes constant
density, then the mathematics indicates the behavior of a system that is constrained
to have a constant density. A real system is not constrained in this way, however;
therefore, the real system may respond to the perturbation in a way that includes a
change in the density. Any variable of the flow may be perturbed in this way, and
the model will reveal the stability of the flow to perturbations of the individual
variables. Stability analyses can teach us much about flows, although they are
limited to the physics that we input.

The National Committee for Fluid Mechanics Films (NCFMF) film on flow
instabilities [116] illustrates how we can quantify the character of flow instabilities
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Figure 10.5 An open-channel flow (b) is perturbed at different frequencies to map the character of the instabilities that occur.
The data obtained are summarized in the neutral stability curve (a) [116, 155].

(Figure 10.5). The flow examined in that film is air of various speeds blown over
water. The flow is perturbed by tapping on the water surface in a controlled
manner. At low air speeds, with no disturbances, there are no waves on the
water and the flow is stable. When disturbances are added at low air speeds,
waves appear, but they damp out rapidly. At higher air speeds with still no waves
produced by the air flow alone, added disturbances produce waves that do not
damp out but that, instead, grow as they move along in the flow. Finally, at an even
higher air speed, waves are produced on the water without any need for external
disturbances. The instabilities observed when no forced disturbance is applied
are caused by accidental disturbances present in the incoming airstream.

The result of such a frequency analysis can be plotted to produce the neu-
tral stability curve, which shows when amplification begins to be observed as a
function of frequency and wave speed. The neutral stability curve (Figure 10.5a)
indicates which frequency is amplified in a flow exposed to perturbations con-
taining all frequencies; these are the conditions present in most real systems. For
more on stability analysis and the origins of turbulence, refer to the literature
[22, 40, 165].

10.4 Lift, circulation

In Chapter 2, we introduced lift and briefly discuss the fluid physics of airplane
flight. Airplane flight is complicated and only a simplified version of the flow
mechanics of lift is accessible to students who do not have a fluid-mechanics
background. When a wing moves rapidly through air, a particular flow pattern
(i.e., velocity field) develops, along with an accompanying pressure field. If we
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assume a flow pattern (e.g. a particular flow on the upper wing surface), we can
present arguments to justify lift and drag on airplanes; likewise, if we assume
a pressure field (i.e., higher pressure on the lower wing surface), we can justify
flight. In reality, however, we do not specify the flow field or the pressure field:
They are both consequences of the horizontal motion of the obstacle (i.e., wing)
through the fluid (i.e., air). The simple but unsatisfying answer to why airplanes
can fly is that the momentum balance allows it!

Aeronautical engineers need a more thorough explanation of the physics of
flight, including how wing shape, aircraft speed, angle of attack, and other factors
affect flight. Now that we understand basic fluid flow, we can examine more
carefully the mechanics of flight and point out important concepts for future study.
As is true for drag, the complete picture of lift comes from a fluid-force calculation
on an object in a free stream using solutions to the Navier-Stokes equation to
obtain the stress tensor, �̃ = −pI + τ̃ . Lift is the fluid force perpendicular to
drag in a uniform flow:

Total molecular fluid force
on a finite surface S :

F =
∫∫

S
[n̂ · �̃]at surface d S (10.37)

Uniform flow in z-direction
past an obstacle:

F =
⎛
⎝ 0

0
Fdrag

⎞
⎠

xyz

+
⎛
⎝Flift,x

Flift,y

0

⎞
⎠

xyz

(10.38)

A wing moving through air may be studied as the two-dimensional flow of an
airstream moving past an airfoil cross section. The flow is rapid; thus, we assume
the Reynolds number to be high. Chapter 8 explains that we expect the flow around
an airfoil at high Reynolds numbers to form a thin boundary layer with the rest of
the flow being inviscid. The flow in the boundary layer is viscous, and vorticity
is produced in the boundary layer. For each potential airfoil shape, designers can
carry out a complete boundary-layer calculation or CFD analysis to see what the
drag and lift are on the airfoil and then use this information to modify and perfect
their designs. This method is sufficient but needlessly complex; a much simpler
method was discovered almost 100 years ago.

As noted previously, most of the flow past an airplane wing is a very rapid
flow in which viscous effects are negligible; thus, it is tempting to use potential
flow to model airplane flight. Unfortunately, calculations on potential flow past
a cylinder (the cylinder is a stand-in for the airplane wing) predict incorrectly
that there is neither lift nor drag on the wing. This is another instance of the
D’Alembert paradox discussed in Chapter 8. However, researchers who were
solving potential-flow problems in the early 1900s found that there are potential-
flow models that generate lift: The potential flow that represents flow past a
cylinder superimposed with a vortex flow of a certain strength (i.e., free vortex;
more discussion of this follows) produces a lift that is proportional to the strength
of the vortex. This observation became a modeling strategy that is the basis of
modern aircraft design; we explain this aeronautical fluid-mechanics model here.

The Navier-Stokes equations for inviscid flows (i.e., potential-flow equations;
see Equation 8.203) are nonlinear; however, for steady, two-dimensional flows,
they can be transformed to a single linear equation by using the stream function ψ
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(see Equation 8.223). The advantage of the transformation to a linear differential
equation is that linear combinations of solutions to linear equations also are
solutions of the equations. Rather than choosing a flow and seeing if we can
model it, we can turn around the process and find new solutions of the equations
by simply adding up known solutions. The new potential flow described by such
a superposed solution is not guaranteed to be useful or even physically realizable;
it turns out, however, that this tactic produced a model that is useful for the study
of lift.

The potential-flow solution to flow around a long cylinder is known [176]:

Velocity field for
potential flow

around a long cylinder
(viscosity neglected):

v =

⎛
⎜⎜⎜⎜⎝

v∞ cos θ
(

1 − R2

r2

)
−v∞ sin θ

(
1 + R2

r2

)
0

⎞
⎟⎟⎟⎟⎠

rθ z

(10.39)

This flow is irrotational. Another known solution to the potential-flow equations
is the free vortex, which is a theoretical flow that approximates the flow in a spiral
vortex tank (see Figure 8.57). The streamlines in a free vortex are concentric
circles. The velocity field for a free vortex satisfies the potential-flow equations
and is given here:

Velocity field for
a free vortex flow
(potential flow):

v =

⎛
⎜⎜⎜⎝

0

K
r

0

⎞
⎟⎟⎟⎠

rθ z

(10.40)

K is called the strength of the vortex [76, 176], and the value of K determines the
speed of the flow. This flow has rotational character. We can create a new solution
to the potential-flow equations by adding the free-vortex solution to that for
potential flow past a cylinder. The addition of these two potential-flow solutions
creates a new flow that is similar to the flow-past-a-cylinder problem, but the new
combined flow is different in that it has a degree of rotational character. It is the
added rotational character throughout the flow field—introduced by the addition
of the free-vortex solution—that produces lift in the superposed solution.

We might wonder why adding additional rotational character improves a
potential-flow model—that is, makes the flawed potential-flow solution more
like a real flow. Missing from the potential-flow solution to flow around a cylin-
der is any effect of the boundary layer and viscosity. When we neglect viscosity,
we take out of the flow solution the rotational character associated with viscosity;
recall that vorticity is strongly generated by viscosity in the boundary layer. The
superposition described here—adding a free-vortex solution to the solution for
flow around an obstacle—is a way of returning to the problem the rotational char-
acter taken out when we neglected viscosity in the momentum balance. As we
see in the discussion that follows if we return just the right amount of rotational
character we can make a model that accurately predicts the flow field, the pressure
field, and the lift in real flow around an object.

We already defined a function that quantifies local rotational character of a
flow field: the vorticity. To quantify the rotational character of an entire region of
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a flow, we can integrate the vorticity over an area S:

Net vorticity flux
through S:

=
∫∫

S
(n̂ · ω) d S (10.41)

where S is any chosen area in the flow. Using Stokes’s theorem [146], we can
relate this integral to a line integral around the perimeter of S. Stokes’s theorem
for a general vector field f is given by:

Stokes’s theorem
for vector field f :

∫∫
S

n̂ ·
(
∇ × f

)
d S =

∮
C

(
t̂ · f

)
dl (10.42)

where C is the curve that encloses the surface S, t̂ is a unit vector locally tangent
to C , and dl is a small displacement counterclockwise around C . Choosing f as
the velocity v, we can calculate the net flux of vorticity ω = ∇ × v through S as
the following line integral:

Net vorticity flux
through S:

=
∫∫

S
(n̂ · ω) d S =

∫∫
S

n̂ · (∇ × v) d S (10.43)

=
∮

C

(
t̂ · v
)

dl ≡ � (10.44)

The line integral in the previous equation defines the circulation, �, which is a
property of the flow field and depends on the choice of C (or, equivalently, S).
The circulation is the counterclockwise integration of the tangential component
of the velocity field around a closed curve:

Circulation on C : � ≡
∮

C

(
t̂ · v
)

dl (10.45)

The definition of circulation allows us to quantify how the strength of an
added free vortex is related to lift in the superposed models discussed here. In
the early 20th century, Kutta and Joukowski separately studied the theory behind
the production of lift in superposed flow solutions [71, 77]. The addition of the
free-vortex solution to the initially irrotational flow past an obstacle introduced
rotational character into the flow field. Kutta and Joukowski established that the
observed lift on an object in superposed uniform and vortex solutions can be
calculated readily from the circulation associated with the superposed flow:

Kutta–Joukowski theorem
for production of lift

on a two-dimensional object of any shape:

Flift

(width)
= −ρv∞� (10.46)

where Flift is the lift, � is the circulation, ρ is the density of the fluid, and v∞ is the
speed of the oncoming flow. Upward lift is associated with clockwise circulation
(i.e., negative �). The Kutta–Joukowski result applies to inviscid flow for objects
of any shape. For the wing model discussed here (i.e., free vortex plus flow past
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(a) (b)

Figure 10.6 Calculated potential-flow streamline patterns for flow around an airfoil. In (a), no circulation is added to the model
and unrealistic streamlines result. In (b), the correct amount of circulation is added by superposing a vortex flow;
thus, the rear stagnation point is located at the trailing edge of the airfoil (i.e., Kutta condition).

a cylinder), the calculation of circulation using any curve C that encloses the
cylinder results in the same value of circulation �.1

Proving the Kutta–Joukowski theorem is beyond the scope of this text [76, 136].
In Example 10.1, we verify that the Kutta–Joukowski theorem holds for flow
around a cylinder with a superposed free vortex of strength K . Within the Kutta–
Joukowski theorem is the genesis of a clever simplification to the airfoil-design
problem. The Kutta–Joukowski result applies to inviscid-flow calculations. Real
objects cannot be analyzed with inviscid-flow theories because they neglect the
strong effect of viscosity in the boundary layer. In lift calculations on real airfoils,
however, the main role of viscosity is to produce vorticity in the boundary layer
and, hence, circulation on circuits C that are drawn around the airfoil. The
clever idea is this: We can analyze real airfoils using inviscid-flow calculations
if we insert into the inviscid model an amount of circulation that is equal to
the circulation actually produced by the viscous boundary layer of the airfoil
(Figure 10.6). In this strategy, we neglect the viscosity in the calculation of
velocity and pressure from the momentum balance, but we return an important
effect of the viscosity to our solution by imposing a particular value of circulation
on the inviscid, irrotational flow field past the airfoil.

The circulation added to the flow in this method is the “vortex bound in the
wing” referred to in the aerodynamics literature [114]. The strategy described
here is similar to the boundary-layer strategy. In the study of boundary layers, we
solved the potential-flow equations for the pressure field and then imposed that
pressure field on the boundary layer to obtain the boundary-layer velocity profile,
the drag on the surface, and the location where the boundary layer separates
from the surface. For airfoil study, we solve the inviscid-flow problem around the
airfoil with various values of circulation imposed (i.e., adding free vortices of
various strengths K ). The correct value of the circulation for the real airfoil is the
value that produces flow-field streamlines that best match experimental results
on the airfoil. Experiments show that the real streamlines are those in which the
flows from the upper and lower surfaces meet smoothly at the trailing edge of the
airfoil (Figure 10.6b). Another way to say this is that the rear stagnation point
of the flow around the airfoil should be located at the sharp tip at the end of the
airfoil. This requirement is known as the Kutta condition [76, 176].

1This is true because all of the vorticity in the free vortex is located at the center; the rest of the
free-vortex flow (i.e., spiral-vortex tank) is irrotational [176].
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In summary, the flow of air past an airplane wing is a complex flow in which
both inertia and viscosity are important. The inertia dominates the flow but the
viscous boundary layer has the important effect of producing vorticity at the
wing surface. The vorticity produced by the no-slip boundary condition adds
circulation to the flow, which can be modeled as the addition to the purely
inertial flow field of a free vortex of the appropriate strength; this vortex has
its core or center inside the airplane wing. With this clever strategy, we can use
purely inertial solutions to the Navier-Stokes equations (i.e., the potential-flow
solutions) to make meaningful calculations of lift in aeronautical flows. Pressure
drag on an airfoil also may be calculated from these solutions (i.e., drag caused
by asymmetric pressure profiles); viscous drag is zero in potential-flow solutions
and must be calculated from a boundary-layer approach.

For more on lift and aeronautics, refer to the literature [11, 76].

EXAMPLE 10.1. An airplane wing is modeled as a long cylinder placed in an
oncoming stream. We assume that the flow may be represented by the potential-
flow solution to flow around a cylinder with an added free vortex of strength K
supplying circulation. The added free vortex accounts for the effect of viscosity
in the boundary layer, which otherwise is neglected. What is the circulation in
the superposed flow in terms of the vortex strength? What is the lift experienced
by the wing? Is the Kutta–Joukowski theorem satisfied?

SOLUTION. We are asked to model a cylindrical airplane wing using the velocity
field obtained by adding the potential-flow velocity solution (Equation 10.39) to
the free-vortex velocity solution (Equation 10.40). Thus, the velocity field for
flow around the wing is given by:

Velocity field for
potential flow

around a long cylinder
with circulation:

v =

⎛
⎜⎜⎜⎜⎜⎜⎝

v∞ cos θ
(

1 − R2

r2

)
−v∞ sin θ

(
1 + R2

r2

)
+ K

r

0

⎞
⎟⎟⎟⎟⎟⎟⎠

rθ z

(10.47)

For K = 0 (i.e., no circulation), the streamlines for this flow are given in Fig-
ure 10.7 (left). When the free-vortex contribution is added, the streamlines become
those shown in Figure 10.7 (right).

Γ = 0 Γ < 0

Figure 10.7 The streamlines for flow around a cylinder somewhat resemble the streamlines of flow around a sphere. When
circulation is added to the solution by superposing a vortex flow, the streamlines compress on one side of the
cylinder. The direction of lift is toward the compressed streamlines [178].
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To calculate the circulation in our model flow, we begin with the definition of
circulation, Equation 10.45:

Circulation on C : � ≡
∮

C

(
t̂ · v
)

dl (10.48)

Because all curves C that surround the cylinder center result in the same value of
circulation �, we choose the simplest curve for our calculation: the circumference
of the cylinder; thus, dl = Rdθ and θ goes from 0 to 2π . The tangential unit
vector t is equal to êθ :

Circulation
around the wing:

� =
∮

C

(
t̂ · v
)

dl (10.49)

=
∫ 2π

0
ˆ(eθ · v)|r=R Rdθ (10.50)

=
∫ 2π

0
(−2Rv∞ sin θ + K ) dθ (10.51)

= (2Rv∞ cos θ + K θ)

∣∣∣∣∣∣2π

0
= 2π K (10.52)

� = 2π K (10.53)

The lift is calculated as the upward component of fluid force on the wing.
Choosing the flow to be in the x-direction and the lift to be in the y-direction, we
write:

Force on an obstacle
in a free stream:

F =
∫∫

S

[
n̂ · �̃

]
at surface d S (10.54)

=
⎛
⎝Fdrag

Flift

0

⎞
⎠

xyz

(10.55)

The normal vector on the cylinder surface is n̂ = êr and, because viscosity has
been neglected, τ̃ = μ

(∇v + (∇v)T
) = 0:

F =
∫∫

S

[
n̂ · (−pI + τ̃ )

]
at surface

d S (10.56)

=
∫ L

0

∫ 2π

0

[
êr · −pI

]
r=R

Rdθdz (10.57)

= RL
∫ 2π

0
ˆ(−per )|r=R dθ = RL

∫ 2π

0

⎛
⎜⎝−pR

0
0

⎞
⎟⎠

rθ z

dθ (10.58)

= RL
∫ π

0
pR
[

ˆ ˆcos θex + sin θey
]

dθ = RL
∫ 2π

0

⎛
⎝−pR cos θ

−pR sin θ

0

⎞
⎠

xyz

dθ

(10.59)
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where pR(θ) is the pressure at the surface of the cylinder. To calculate pR(θ),
we write the Bernoulli equation along the central streamline. Recall that the
Bernoulli equation applies along streamlines in potential flow. Along the central
streamline but far upstream of the cylinder, the pressure is p∞ and the fluid speed
is v∞. On the same streamline but at r = R and various angles θ , we write the
pressure as pR(θ). The velocity is given by the expression in Equation 10.47 with
r = R, as given here:

v|r=R =

⎛
⎜⎜⎜⎝

0

−2v∞ sin θ + K
R

0

⎞
⎟⎟⎟⎠

rθ z

(10.60)

vR =
∣∣∣∣∣∣ v|r=R

∣∣∣∣∣∣ = −2v∞ sin θ + K

R
(10.61)

Writing the Bernoulli equation (i.e., integrated momentum balance along a
streamline2) at the points indicated and neglecting the effect of gravity on the
pressure field, we obtain:

Bernoulli
equation:

0 = p2 − p1

ρ
+ v2

2 − v2
1

2
+ g(z2 − z1) (10.62)

0 = pR − p∞
ρ

+ v2
R − v2

∞
2

(10.63)

pR = p∞ + ρ

2

(
v2

∞ −
(

−2v∞ sin θ + K

R

)2
)

(10.64)

= p∞ + ρ

2

(
v2

∞ − 4v2
∞ sin2 θ + 4K

R
v∞ sin θ − K 2

R2

)
(10.65)

The lift now may be calculated from the y-component of Equation 10.59:

Flift = RL
∫ 2π

0
−pR sin θdθ (10.66)

Flift = RL
∫ 2π

0

[
−p∞ − ρ

2

(
v2

∞ − 4v2
∞ sin2 θ + 4K

R
v∞ sin θ − K 2

R2

)]
sin θdθ

(10.67)

= RL

(
−p∞ − ρ

2
v2

∞ + ρK 2

2R2

)∫ 2π

0
sin θdθ +

(
2RLρv2

∞
) ∫ 2π

0
sin3 θdθ

− (2ρL Kv∞)
∫ π

0
sin2 θdθ (10.68)

Evaluating the integrals, we obtain zero for the first two and π for the third,
yielding the final result for lift:

Flift = −2πρK Lv∞ (10.69)

2We must follow a streamline because the flow is not irrotational; see Example 8.13.
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We calculated that the circulation � = 2π K (see Equation 10.53); therefore, the
lift per unit length of cylinder becomes:

Lift per unit length
on a transverse cylinder

in a uniform flow:

Flift

L
= −ρv∞� (10.70)

This is the result predicted by the Kutta–Joukowski theorem for lift on a long
obstacle of arbitrary cross section.

10.5 Flows with curved streamlines

In Chapter 2, we discuss the unconventional behavior of flows with curved stream-
lines, including smoke rings, the violent flow of a tornado, and the twisty flow of
rivers and streams. Because of the curvature of the streamlines, there is acceler-
ation in these flows, which means that inertia is important and the lefthand side
of the Navier-Stokes equation does not go to zero (as it does in unidirectional
flow). A possible strategy in analyzing such flows is to simplify the momentum
balance by making appropriate assumptions. A model simplification investigated
in Chapter 8 neglected viscous effects and therefore droped the μ∇2v-term from
the righthand side of the Navier-Stokes equation. As we learned by studying
boundary layers, however, this approximation will not be satisfactory when the
flow is near a surface because viscosity is important in the shear flow near sur-
faces. When we attempt to apply the Navier-Stokes equation to curly, curving
flows, we face the same problem encountered with flow around a sphere (see
Example 8.16): We are unable to simplify the equations enough to allow us to
solve them analytically.

As a result of these difficulties, flows with curved streamlines usually must be
modeled with numerical methods. If we confine our studies to two-dimensional
flows, numerical simulators [5, 27] often can find the velocity and stress fields. For
three-dimensional problems, numerical solutions are more complex, although still
possible. Computer-based problem solving for both two- and three-dimensional
flow is time-consuming and requires learning numerical solution techniques and
strategies (see Section 10.2). For both two- and three-dimensional flows, it often
is better first to think intuitively about the flow and to reason out how the fluid
is likely to behave. With that in mind, we discuss in this section general ways in
which the momentum balance can help us to understand the behavior of two- and
three-dimensional curvy flows.

For two-dimensional flows, basic information about rapid, curved flows may
be deduced from applying the momentum balance normal to the streamlines.
Recall that the momentum balance along a streamline in potential flow (see
Example 8.13) results in the Bernoulli equation, which relates flow-direction
pressure variations and velocity. As we see in the following example, if we
consider the component of the momentum balance that is perpendicular to the
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streamlines, we can state something about the cross-stream pressure distribution
in two-dimensional potential flows with curved streamlines.

EXAMPLE 10.2. Example 8.13 shows that in potential flow, the pressure and
velocity variations along a streamline are related by the Bernoulli equation. How
does pressure vary across streamlines for two-dimensional potential flow?

SOLUTION. We begin in the same way as in Example 8.13. For steady (∂v/∂t =
0), inviscid (μ = 0) flow, the Navier-Stokes equation simplifies to:

Navier-Stokes equation: ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg (10.71)

ρv · ∇v = −∇ p + ρg (10.72)

We can write the Navier-Stokes equation in any coordinate system. To address
our problem, we choose a spatially varying coordinate system that always has
one direction pointing in the (varying) direction of flow. At any point, the flow
direction is v̂ = v

ˆ

/v. Previously, when we used a streamwise coordinate system
(see Example 8.13), we defined the other two directions of our coordinate system,
u and ŵ, to be mutually perpendicular and perpendicular to v̂, an orthonormal
coordinate system. This choice simplified the evaluation of the vuw-components
of the Navier-Stokes equation. In the current problem, we are investigating pres-
sure distributions normal to the streamlines. In this case, there is an advantage
in choosing the second coordinate direction to be along r̂, a spatially varying
unit vector pointing toward the local center of streamline curvature (Figure 10.8).
Because we are considering two-dimensional flow, the third coordinate direction,
ẑ = êz , is chosen to be perpendicular to the horizontal plane of the flow. This is
a spatially varying, orthonormal coordinate system.

r̂R

Figure 10.8 We choose our normal coordinate direction to be toward the local center of curvature. This allows us to express
fluid acceleration in terms of the radius of curvature R.
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In the vrz-coordinate system, the velocity vector is given by:

v =
⎛
⎝vv

vr

vz

⎞
⎠

vrz

=
⎛
⎝v

0
0

⎞
⎠

vrz

(10.73)

We previously used the v-component of the Navier-Stokes equation to show that
the Bernoulli equation holds along a streamline in potential flow. We now want
to consider the r-component of the equation of motion to deduce the pressure
variation normal to the streamlines:

Navier-Stokes equation:
(steady, inviscid)

ρv · ∇v = −∇ p + ρg (10.74)

r-component:
(toward local center of curvature)

ρ [v · ∇v]r = − ∂p

∂xr

+ ρgr (10.75)

ˆ
Because of our choice of the vertical vector êz as one of the basis vectors of our
coordinate system, we know that g = −gez; thus, gr = 0. Using the appropriate
geometric arguments to relate the local fluid acceleration to R, the local radius
of curvature ([111], page 167), we can write:

[v · ∇v]r = v2

R
(10.76)

r-component Navier-Stokes: ρ [v · ∇v]r = − ∂p

∂xr

+ ρgr (10.77)

ρ

(
v2

R

)
= − ∂p

∂xr

(10.78)

Cross-stream pressure gradient
(steady, incompressible,
inviscid, r-component):

∂p

∂xr

= −ρ

(
v2

R

)
(10.79)

The form of [v · ∇v]r is the familiar expression for centrifugal acceleration
[167]. The result in Equation 10.79 shows that the pressure in a rapid, inviscid
flow decreases in the direction of the local center of streamline curvature [123].
We can use this information to interpret, for example, the secondary flow that
occurs along the bottom of a riverbed. In that flow, when the water goes around
a curve, Equation 10.79 indicates that the pressure is higher along the outside
of the curve than on the inside. For the main part of the channel where the flow
may be modeled as inviscid (i.e., away from the walls), this pressure distribution
exists. Along the bottom of the channel, however, the fluid has been slowed in
the boundary layer. This slower fluid cannot maintain the pressure gradient of
the fully inertial flow; instead, it is pushed by the pressure gradient toward the
center of curvature. We see evidence of this in the motion of tea leaves in a stirred
mug (see Figure 2.44). The cross-stream secondary flow in a river tends to scour
material from the outer walls of the riverbed and deposit that material on the inner
walls; this action causes slightly curvy streams to take on exaggerated curves and
bends.
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For an excellent discussion of the effect of streamline curvature, we recommend
the NCFMF film on pressure and acceleration [118], which illustrates the effects
of inertia in flows with curved streamlines. The experiments shown in the film
are designed to minimize viscous effects.

Example 10.2 demonstrated that for two-dimensional curved flows, the cross-
stream momentum balance simplifies to a useful expression that relates the flow
field to the pressure field. The momentum balance is more difficult to apply to
three-dimensional flow, however, because there are uniquely three-dimensional
effects to consider. Tornados, wing-tip vortices on airplanes, and the details
of turbulent-flow structure are examples of flows in which three-dimensional
effects are essential to a fluid’s behavior. Three-dimensional-curvature effects
are discernible in the momentum balance through vorticity, as we discuss briefly
here.

We can develop insight into the behavior of three-dimensional rotational flows
by considering the physics of vorticity production in a flow. The mechanisms
of vorticity production were studied in the late 19th century, and a major
contribution from that period is Kelvin’s circulation theorem [76, 114], which
evolves from the momentum balance. Kelvin’s theorem identifies three sources
of vorticity generation: torques due to pressure; torques due to viscosity; and
torques due to nonconservative body forces such as the Coriolis force, a pseudo
force that appears in rotating reference frames [9, 161].

Kelvin’s circulation theorem (circulation on a closed material curve C):

∂�C

∂t
+ v · ∇�C = −

∮
C

dp

ρ
+
∮

C

t̂ ·
(
ν∇2v

)
dl +

∮
C

t̂ · G dl (10.80)

D�C

Dt
= −

∮
C

dp

ρ
+
∮

C

t̂ ·
(
ν∇2v

)
dl +

∮
C

t̂ · G dl (10.81)

The circulation in Kelvin’s theorem is calculated around C, a closed curve in the
fluid that always is composed of the same fluid particles; G is a nonconservative
body force. We do not discuss Kelvin’s theorem in detail here [76] except to
examine the common case in which the pressure is a function only of density
(thus, the pressure term integrates to zero), viscosity is negligible (potential flow),
and the conservative force gravity is the only body force present (G = 0).

Under these conditions, Kelvin’s theorem states that the circulation around a
material curve is a constant:

Kelvin’s circulation theorem
(barotropic, inviscid,

conservative body forces):

∂�C

∂t
+ v · ∇�C = D�C

Dt
= 0 (10.82)

The constancy of the circulation on a material curve explains some fluid behavior
seen in tornados and in turbulent flow, for example. We explore this effect in the
following example.
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EXAMPLE 10.3. A vortex tube is a region of a flow bounded by vortex lines,
lines that are everywhere tangent to the vorticity. Consider a volume consisting
of a portion of a vortex tube in the shape of a cylinder of height l1 and radius
R1. If the flow stretches this volume to a length l2, what is the effect of this
stretch on the vorticity in the tube? We are interested in the barotropic, inviscid,
conservative-body-force case.

SOLUTION. The volumes under consideration are shown in Figure 10.9. We
first can relate the two volumes by imposing conservation of mass on the two
states. The vortex tube always consists of the same material points; this is another
consequence of Kelvin’s theorem [76]:

Mass conservation: ρ1

(
l1π R2

1

)
= ρ2

(
l2π R2

2

)
(10.83)

R2
1 = ρ2l2 R2

2

l1ρ1
(10.84)

where ρ1 and ρ2 are the densities of the fluid in the two states and the geometrical
parameters are defined in Figure 10.9.

From Kelvin’s theorem (i.e., barotropic, inviscid, and conservative body
forces), the circulation is constant throughout the motion:

Kelvin’s circulation theorem
(barotropic, inviscid,

and conservative body forces):
�1 = �2 (10.85)

From the discussion in Section 10.4 (see Equation 10.44), we now can write the
circulations in the two states, �1 and �2, in terms of the vorticity flux. The top
surfaces S1 and S2 are vortex-tube cross-sectional areas associated with the same
material points for the two states, 1 and 2. The net vorticity fluxes through S1 and

Figure 10.9 We consider a portion of a vortex tube that is the shape of a cylinder of proscribed length and radius. The motion
of the fluid stretches the cylinder, and the dynamical laws of fluid mechanics indicate how this stretching affects
the vorticity in the tube.
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S2 are equal to�1 and �2, as follows:

Net vorticity flux
through S:

∫∫
S

(n̂ · ω) d S =
∮

C

(
t̂ · v
)

dl = � (10.86)

Applying this to our two states and substituting into Kelvin’s theorem, we obtain:

�1 = �2 (10.87)∫∫
S1

(n̂ · ω)|1 d S =
∫∫

S2

(n̂ · ω)|2 d S (10.88)

∫ 2π

0

∫ R1

0
ˆ ˆ(ez · ω1ez) rdrdθ =

∫ 2π

0

∫ R2

0
ˆ ˆ(ez · ω2ez) rdrdθ (10.89)

ω12π R2
1 = ω22π R2

2 (10.90)

Combining this result with the mass balance, yields:

ω1 R2
1 = ω2 R2

2 (10.91)

ω1
ρ2l2 R2

2

l1ρ1
= ω2 R2

2 (10.92)

ω1

l1ρ1
= ω2

l2ρ2
(10.93)

Because the choice of which material curve to follow is arbitrary, the result
applies to all material curves bounding the vortex tube:

On a vortex line
(barotropic, inviscid,

and conservative body forces):

ω

lρ
= constant (10.94)

Equation 10.94 and Kelvin’s theorem help us to understand three-dimensional
flow effects such as the creation and intensification of tornados. If an updraft
of air occurs and if Coriolis forces in the rotating frame of reference of Earth
initiate a circulatory motion, a vortex core is produced and lengthened by the
continuing updraft. The lengthening of the vortex core increases the vorticity
in the core according to Equation 10.94 because the value of the ratio ω/ lρ
must be preserved. The intensification of the vorticity by this three-dimensional
mechanism causes the flow speed to increase, creating the damaging storms
that occur. The flow speeds in tornados can be so rapid that extremely low
pressures are produced in the core. The Bernoulli equation applies along the
circular streamlines in this inviscid flow; thus, high speed is accompanied by low
pressure. The extreme low pressure at the core of a tornado pulls off roofs and
can cause buildings to explode.

Vorticity, circulation, and vortex mapping all are tools that can help us under-
stand the highly curly flows that dominate meteorology, magnetohydrodynamics,
and turbulent flow dynamics. For more information on applications of Kelvin’s
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circulation theorem and the related Helmholtz vortex theorems, see the literature
[11, 76].

10.6 Compressible flow and supersonic flow

We consider only incompressible fluids thus far (i.e., constant density). Because
water, oil, and most liquids are approximately incompressible, this is a reasonable
starting point for the study of fluid mechanics. Gases may be modeled as incom-
pressible fluids in both microscopic and macroscopic calculations, as long as the
pressure changes are less than about 20 percent of the mean pressure [43, 55]; this
is true for friction-factor/Reynolds-number correlations, for example [43, 132].

There are circumstances, however, in which fluid compressibility must be con-
sidered, such as in gas flows with high pressure drops, for example. For both
compressible and incompressible flows, density variations are captured by the
continuity equation. The Newtonian constitutive equation does not, however,
take compressibility into account, and it must be modified for use in high-
pressure-drop flows.

For incompressible Newtonian fluids, we discuss in Chapter 5 that the extra-
stress tensor τ̃ is given by a simple expression that works for all flows:

τ̃ = μγ̇

Newtonian constitutive
equation for

incompressible fluids
(10.95)

For compressible Newtonian fluids, the relationship between stress and deforma-
tion is found to be [12]:

τ̃ = μγ̇ +
(

2

3
μ − κ

)
(∇ · v)I

Newtonian constitutive
equation for

compressible fluids
(10.96)

The parameter κ is the dilational or bulk viscosity, a coefficient that expresses
viscous momentum transport that occurs when density changes; κ is zero for
ideal, monatomic gases [12, 43]. The bulk viscosity is only important when very
large expansions take place, and it can usually be neglected [43]. Note that for
incompressible fluids, ∇ · v = 0 and Equation 10.96 reduces to Equation 10.95.
Problem solving with Equation 10.96 follows the same methods as described
in this text. For more on modeling of high-pressure-gradient gas flows, see the
literature [3, 124].

There is an important group of flows for which compressibility changes the
physics—high-speed gas flows, including sonic flows. These flows occur in space
flight, through nozzles, in turbines, and in relief valves (Figure 10.10). Relief
valves exhibit a condition called choked flow that limits the flow rate at which a
gas can escape. Properly understanding choked flow in a relief valve can be a life-
and-death safety issue. In high-speed gas flows, the physics changes because the
flow moves faster than does the information about the pressure field. In this section
we discuss information travel in flows and its effects on high-speed gas flows.
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tank 

Rapid flows
in relief valves
can become
sonic

For sonic flow,
flow rate is constant
regardless of the
pressure drop
(i.e., choked flow)

spring-loaded 
relief system 

Figure 10.10 When an explosion or runaway reaction occurs in a storage tank, the pressure is designed to be relieved by flow
through valves known as pressure-relief valves. Because the pressures are high in the tank, the flow through the
relief valves may be supersonic and may therefore become choked. Lack of understanding of supersonic flow can
lead to the tragic underdesign of relief systems.

All fluids are compressible—liquids and gases both change in density
if sufficient pressure is applied. The distinction between compressible- and
incompressible-fluid modeling is a question of whether the fluid compressibility
needs to be considered in a given modeling situation.

For water and other liquids, when pressure is applied at one location, the
information about that applied pressure appears to travel instantaneously to other
parts of the flow. Consider the flow of water in a straw (Figure 10.11). When a
person applies suction to one end of a straw submerged in water, the water moves
instantaneously throughout straw. Likewise, in a long, completely filled piping
system, if a pump is turned on at one end, an incompressible fluid immediately
begins to flow out of the other end of the pipe. In a hydraulic lift (see Figure 4.37),
pushing down on fluid on one side of the apparatus immediately causes the fluid

p
1

p
2

<

1p

Figure 10.11 Drinking water from a straw works because a lower pressure is created in the mouth, and this imposes a pressure
gradient on the liquid in the straw. The liquid flows under the pressure gradient.
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Figure 10.12 In a compressible fluid, pressure applied at one end is not transmitted instantaneously to the rest of the fluid. The
pressure pulse takes a finite amount of time to travel and affects the density of the fluid along the way.

to push up on the other side. No significant density changes take place in liquids
under these circumstances, and they may be modeled as incompressible flows.

In gases at modest flow speeds, the situation is the same. If we draw air
into a straw, the air moves seemingly instantaneously and may be modeled as
an incompressible fluid. Likewise, for air flowing in pipes and ducts at modest
speeds there is no significant density change, and incompressible-flow equations
apply.

The speed of pressure waves is not actually instantaneous in either liquids or
gases, however. For both types of fluid the imposition of a force at one end of a
system actually does not result in an immediate motion throughout the system.
Instead, the fluid near where the force was applied compresses (Figure 10.12); that
is, its density increases locally in response to the force. The locally compressed
fluid expands against neighboring fluid, causing the neighboring fluid to compress
and setting in motion a wave pulse that travels through the system. The pulse
of higher-density fluid takes time to travel from the source of the disturbance
through the pipe to the far end of the system. Sound travels through fluid with
this same mechanism: Sound is matter’s response to a compression wave. The
speed of a compression wave through a medium is called the speed of sound.

The speed of sound is not important in fluid mechanics, except when the
speed of the fluid begins to approach the speed of sound. When this happens, the
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information about the flow travels at a speed comparable to the fluid speed, and
things work a bit differently. The physics changes, because the speed of sound is
the speed of information travel in a fluid. Once a fluid approaches the speed of
information travel, the fluid cannot respond to the information about the pressure
in the same way as it does at slower speeds. To account for this change of physics
in rapidly flowing systems, we must include fluid compressibility in our models,
as we now discuss.

For rapid gas flows, we can account for compressibility with the mechanical
energy balance. In calculations with the MEB, we must make modifications to
allow it to apply to compressible fluids because the derivation of the MEB in
Chapter 9 assumes incompressible fluid. The MEB for compressible fluids can
be obtained by writing it on a differential length of straight pipe and assuming
ideal gas (pV = nRT ). The details are in the literature [55] (See Problem 19).
The final result for the MEB in isothermal compressible flow is given here:

Mechanical energy balance
(isothermal, compressible flow):

p2 − p1 = 4 f LG2

2Dρave
+ G2

ρave
ln
(

p1

p2

)

(10.97)

where L is the pipe length and G = 〈v〉ρ. Note that because 〈v〉ρ A is the mass
flow rate (A is the pipe cross-sectional area), G = 〈v〉ρ is constant for a pipe of
constant cross section.

A striking aspect of the compressible-fluid mechanical energy balance result
is that it predicts a maximum velocity at high pressure drops. This is choked flow.
Taking the derivative of Equation 10.97 and setting it to zero, we calculate that:

Condition during choked flow:
(compressible fluids)

vmax =
√

p2

ρ2
(10.98)

The reason for choked-flow behavior in compressible fluids can be traced to the
previously discussed limiting speed of information travel in a medium. In flows at
modest speeds, the instantaneous transmission of forces through the fluid (com-
pared to the speed of the fluid) allows flow around an obstacle, for example,
to rearrange to allow for the smooth passage of flow around the obstacle (Fig-
ure 10.13). In incompressible flows, forces are applied and the fluid, moving much
slower than the information, responds directly to the forces by moving, displac-
ing neighboring particles, and thereby establishing the appropriate flow field. The
fact of the presence of an obstacle in a flow is transmitted upstream through pres-
sure; the fluid pattern reflects the presence of the obstacle even though the fluid
particles have not arrived yet at the obstacle. Because information transmission
happens very rapidly compared to the time-scale of the flow, incompressible flows
easily transmit stress information throughout the flow field. Information travel is
not instantaneous for compressible fluids; hence, choked flow is observed.

In Examples 10.4 and 10.5 we relate the choked-flow speed in compress-
ible flow predicted by the MEB (Equation 10.98) to the speed of sound in the
medium.
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Information about
the presence of the
obstacle travels upstream

Flow in an obstructed channel 

Figure 10.13 In most flows, pressure information travels very rapidly compared to flow speeds. Thus, information about the
presence of an obstacle downstream can transmit upstream by way of rapid pressure waves, and the flow
rearranges quickly. In supersonic flows—in which the speed of propagation of the pressure wave is close to or
slower than the flow speed—this type of rearrangement is not possible and the flow develops differently.

EXAMPLE 10.4. The compressible-fluid mechanical energy balance (Equation
10.97) predicts that there is a maximum speed for flows for which it applies (single-
input, single-output, steady, no reaction, no phase change, little temperature
change, compressible fluid). How is the predicted maximum flow speed related
to the speed of sound in the fluid? You may assume that the sound travels under
isothermal conditions.

SOLUTION. If the pressure variation is not too large, the speed of sound in a
medium is given by [167]:

v =
√

B

ρo
(10.99)

where ρ0 is density and B is the bulk modulus, defined as the ratio of the change
in pressure to the fractional decrease in volume:

B = �p

−�V/V
(10.100)

The bulk modulus relates the change in volume to changes in pressure. This
information is found in the equation of state for a material. For example, for an
ideal gas, pressure and volume are related by the ideal gas law:

Ideal gas law : pV = n RT (10.101)

If we differentiate the ideal gas law and assume that temperature is constant, we
obtain:

pdV + V dp = 0 (10.102)

which may be rearranged to give the bulk modulus for an ideal gas under isother-
mal conditions:

B = dp

−dV/V
= p

Bulk modulus
of an ideal gas
at constant T

(10.103)
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The speed of sound, therefore, is given by:

v =
√

B

ρo
(10.104)

=
√

p

ρo
=
√

RT

M
(10.105)

where we substitute for p the expression given by the ideal gas law p =
nRT/V = ρo RT/M , and M is the molecular weight of the medium. Com-
paring to the maximum velocity calculated in Equation 10.98 for nonisothermal
compressible flow, we see that the maximum fluid velocity in single-input, single
output-flow is the speed of sound in the medium, Equation 10.99.

EXAMPLE 10.5. The compressible-fluid mechanical energy balance (Equation
10.97) predicts that there is a maximum speed for flows for which it applies (single-
input, single-output, steady, no reaction, no phase change, little temperature
change, compressible fluid). How is the predicted maximum flow speed related
to the speed of sound in the fluid? You may assume that the sound travels under
adiabatic conditions.

SOLUTION. The expression for the speed of sound in Equation 10.105 is found
to be 20 percent too small when compared with experimental results, as assumed
[167] because the passage of sound through a medium does not occur isother-
mally. The compressions and decompressions that take place tend to change
locally the temperature of the gas (consider the relationship between volume
and temperature in the ideal gas law) and, because these temperature changes
occur rapidly, there is no time for much heat transfer to take place. Rather than
assume isothermal passage, it is better to assume that the movement of sound is
adiabatic—that is, no heat transfer occurs.

Application of the first law of thermodynamics under quasistatic, adiabatic
conditions results in an expression that relates pressure and volume when a
gas undergoes volume changes under adiabatic conditions (see the Web appen-
dix [108]):

pV γ = constant (10.106)

where γ ≡ C p/Cv , the ratio of the heat capacity at constant pressure to the heat
capacity at constant volume. We can derive B for the quasistatic, adiabatic case by
taking the derivative of Equation 10.106 with respect to pressure and rearranging:

d(pV γ )

dp
= 0 (10.107)

pγ V γ−1 dV

dp
+ V γ = 0 (10.108)

pγ dV + V dp = 0 (10.109)

B = dp

−dV/V
= γ p (10.110)
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Substituting this into Equation 10.99 for the speed of sound in terms of B yields
a more accurate expression for the speed of sound in an ideal gas:

v =
√

B

ρo
(10.111)

=
√

γ p

ρo
(10.112)

v =
√

γ RT

M

Speed of sound
of an ideal gas

(adiabatic)
(10.113)

This result makes predictions that are close to experimental observations. Note
that vmax for adiabatic flow is the adiabatic speed of sound [55].

The relief-valve problem occurs because there is a fixed, constant speed that
pressure waves travel in matter—that is, the speed of sound in that material. The
fixed speed of pressure waves also creates interesting phenomena when sonic
or supersonic speeds are achieved by objects moving through matter. Objects
moving through air push the air aside as they move forward. At subsonic speeds,
the object pushing aside the air creates a pressure wave in the air that propagates
forward of the object at a wave speed (i.e., the speed of sound) that greatly exceeds
the speed of the object. When the speed of the object exceeds the speed of the
pressure wave, however (i.e., supersonic flow), the object essentially outruns the
pressure wave. This is how a shock wave is produced (Figure 10.14).

For more information on compressible flow, refer to the literature [3].

Shock wave

Pressure piles up
at the shock

wave

Figure 10.14 A shock wave is produced when an object moves faster than the pressure waves in the medium. In subsonic flows,
the information about the object moves ahead of the object in the flow. In supersonic flows, the object outpaces the
information about its motion. The information about the motion—the pressure—piles up in a characteristic pattern
that fans out from the moving object (Photo courtesy NASA).
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10.7 Summary

The modeling discussed in this text is the shared background of all flow modeling.
From this starting point, we now can pursue more complex flow issues, from
plastics processing to aeronautics. In this text we also focused on revealing a
process of problem solving, in which a complex problem is approached by first
turning to a solvable but necessarily simpler problem, followed by dimensional
analysis, experimentation, and data correlation. If we look around in other fields
of science and engineering, we find the same pattern of investigation as discussed
here for fluid mechanics. This problem-solving methodology offers a place to
start when we face a new and challenging problem.

10.8 Problems

1. Under what flow conditions are the Newtonian constitutive equation (Equa-
tion 10.2) and Newton’s law of viscosity (Equation 10.1) equivalent?

2. Design a flow domain for numerical analysis on which to calculate the
results from Hamel flow (see Figure 7.47). Indicate the boundary conditions
on every boundary. Indicate regions where the mesh should be refined to
improve accuracy.

3. Figure 10.3 is a proposed flow domain for the numerical evaluation of
pressure-driven flow through a tube. Why has a section been added before
the beginning of the test section?

4. A flow domain for the analysis of the steady flow through a two-dimensional
contraction is shown in Figure 10.15. The flow rate is constant, the fluid is
incompressible, and the fluid exits into air. What are the boundary conditions
for this flow?

d2

d1

LH

Figure 10.15 A flow domain for numerical evaluation of a flow (Problem 4).
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uniform
inlet flow

Figure 10.16 Flow field for Problem 5.

5. For the two-dimensional flow domain in Figure 10.16, indicate the regions
where viscous effects are important and indicate the regions where inertial
effects are expected to be important. The flow is rapid (i.e., Re is high) and
the fluid is incompressible. The hashed regions are solid walls or obstacles.

6. For a pipe with laminar flow established, an increase in flow rate eventually
causes the flow to become unstable and for turbulent flow to appear. Why is
the flow unstable? Why is it that we cannot achieve arbitrarily high flow rates
with laminar flow?

7. What are the K−ε models of turbulence? To answer this, research informa-
tion in the literature.

8. What is the physical origin of the stresses described by the τ̃ turb term in the
fluctuation-averaged Navier-Stokes equation for turbulent flow?

9. What is circulation?
10. Calculate the circulation around the center point of the free-vortex flow given

in Equation 10.40.
11. Sketch the calculated flow field around an airfoil if too little and too much

circulation are added. Sketch how the flow field around an airfoil should
look if the correct amount of circulation (produced by the viscous flow in
the boundary layer) is included in the model. What is the characteristic of
the streamlines that shows that the correct amount of circulation has been
added?

12. For the gradually contracting flow in Figure 10.17, where is the pressure
highest? Indicate your answer on the a sketch of the flow. Explain.

Figure 10.17 A flow with streamline curvature (Problem 12).
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W
ID
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D

Figure 10.18 Flow over a bump (Problem 16).

13. Calculate the pressure distribution in a spiral-vortex tank. The velocity field
is given in Equation 10.40.

14. Using a numerical simulator [5, 27], calculate the velocity field for Poiseuille
flow in a tube. Assume axisymmetric steady flow of an incompressible New-
tonian fluid. Compare your result for the velocity field with the analytical
solution obtained in Chapter 7.

15. Using a numerical simulator [5, 27], calculate the velocity field for flow in
a 2:1 axisymmetric contraction. Assume two-dimensional steady flow of an
incompressible Newtonian fluid. Choose a steady flow rate in the creeping-
flow regime. What is the highest Reynolds number you can simulate with the
available code?

16. Using a numerical simulator [5, 27], calculate the velocity field for flow over
the bump shown in Figure 10.18. Assume two-dimensional steady flow of an
incompressible Newtonian fluid. Make your calculations in the creeping-flow
regime.

17. Using a numerical simulator [5, 27], calculate the velocity field for axial
unidirectional flow in the void space around three tubes mounted inside a
cylindrical shell (Figure 10.19). Assume steady flow of an incompressible
Newtonian fluid. Make your calculations in the creeping-flow regime. Review
the mesh in Figure 10.2.

18. Using a numerical simulator [5, 27], calculate the drag coefficient as a func-
tion of the Reynolds number for flow around a sphere. The flow is solved
most easily in axisymmetric mode with a flow domain resembling that in
Figure 10.20. Compare your results with experimental data.

19. Derive the mechanical energy balance for isothermal, compressible flow,
Equation 10.97 [55].

rod diameter = D
outer tube diameter =8D

Figure 10.19 Shell-and-tube heat exchangers have flow in the outer region similar to that shown here (Problem 17).
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inflow, uniform 
volumetric flow rate 

constant pressure = 0 

slip axial 
symmetry 

Figure 10.20 The steady, noncreeping flow around a sphere may be calculated using finite-element analysis or other numerical
techniques. A reasonable formulation of the problem is to use the flow domain and boundary conditions shown
here. The flow domain is chosen to be longer after the sphere to capture the wake structure expected to form there.
The mesh chosen for the calculation should be refined near the sphere (Problem 18).

20. What is the speed of sound in room-temperature air? What is the speed of
sound in air at −20◦C?

21. What causes a shock wave? Investigate in the literature and provide citations.
22. How do the Navier-Stokes equations change if we want to study magnetohy-

drodynamics?
23. How do the Navier-Stokes equations change if we want to study flows with

a rotating reference frame?
24. What is a Taylor column? Investigate in the literature and provide citations.
25. What is the Coriolis force? Investigate in the literature and provide citations.
26. Describe a tornado in fluid-mechanics terms.
27. Explain a boundary layer in terms suitable for an elementary-school student.
28. Explain the use of dimensionless numbers in fluid mechanics.
29. Discuss the utility of dividing flows into internal and external flows.
30. What are the forces accounted for in the Navier-Stokes equation? Which

forces dominate? Explain.
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Appendix A Glossary

API gravity: This is the American Petroleum Institute standard for grading the
densities of petroleum crude oils. The definition of API gravity is:

API gravity = 141.5

SG
− 131.5 (A.1)

where SG = ρ/ρref is the specific gravity of the fluid, and ρref is chosen as the
density of water at the triple point (4◦C). A petroleum with a specific gravity
of 1.0 has an API gravity of:

API gravity = 141.5

1
− 131.5 = 10 (A.2)

An API gravity of 10 is written as 10◦ API. Petroleum grades are defined as
follows:

light crude AP I > 31.1◦

medium oil 22.3◦ < AP I < 31.1◦

heavy oil AP I < 22.3◦

extra-heavy oil (bitumen) AP I < 10◦
(A.3)

body forces: Forces exerted on fluid particles from a distance—that is, without
contact. These forces include gravity and electomagnetic forces [167]. These
also are called field forces or noncontact forces.

bulk deformation: This is a deformation that results in a volume change; also
called volume deformation.

calibration: This term refers to taking experimental data on a device and adjust-
ing so that an expected relationship becomes more accurate. Some devices
have internal calibrations in which a procedure is followed and the adjustment
is made within the instrument (usually using software). In this text, we refer to
calibration in which experimental data are collected on an instrument and the
results are plotted to create a calibration curve that can be used to operate the
device.

capacity: This term in the discussion of turbo machinery is synonymous with
volumetric flow rate.

check valve: See valves and fittings.
coefficient of sliding friction: When two solids rub together, there is a frictional

force that opposes the relative motion of the solids. The frictional force in solids
is proportional to the normal force with which the solids are pressed together.
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The constant of proportionality between the magnitudes of the frictional retard-
ing force F and the normal force N is the coefficient of sliding friction
μk :

F = μk N (A.4)

conservative force: A force is conservative if the work it does on a particle sums
to zero over any path that returns the particle to the initial position [167].
Gravity is a conservative force (the work required to lift a mass to a certain
elevation is independent of the path followed). Friction is not a conservative
force (nonzero work is required to move a mass along a closed path).

constitutive equation: A constitutive equation in fluid mechanics refers to a
stress constitutive equation, such as the Newtonian constitutive equation (see
Equation 5.89). These equations give the relationship between the motion of
the fluid (v) and the nine components of stress generated by the motion (τ̃ ).
For non-Newtonian fluids, there is a wide variety of constitutive equations that
capture the nonlinear and time-dependent effects not present in Newtonian
flows (see Section 5.3 and [104]).

contact forces: Contact forces act on a surface of a system under consideration;
contrast with noncontact (or body) forces.

control surface: This is the surface that encloses all or part of a control volume.
control volume (CV): This is an arbitrary volume in a flow used for performing

balances such as on mass, momentum, and energy. In general, control volumes
may move and change in shape, but the simplest case of a fixed, rigid control
volume is quite useful in fluid mechanics (see Section 3.2.2).

convection: This is another term for flow.
convective terms: Mass can flow into and out of the control volume. The terms

in mass, momentum, and energy balances that consider changes in control-
volume mass, momentum, and energy due to this material flow are called the
convective terms.

correlations: A data correlation is an experimentally determined relationship
between two or more variables. For example, the friction factor and the
Reynolds number are correlated, and we can measure the correlation by setting
the Reynolds number, measuring the friction factor, and plotting the friction
factor versus the Reynolds number. The resulting curve (often fit to a mathe-
matical expression) is called a data correlation.

coupling: See valves and fittings.
data correlation: See correlation.
differential equations: See partial differential equations.
divergence of a vector, tensor: The divergence of a vector, v, is ∇ · v; the diver-

gence of a tensor, A, is ∇ · A.
drag coefficient CD: This is a dimensionless measure of drag defined as:

CD ≡ drag force
1
2ρv2 A

(A.5)

where ρ is the fluid density, v is the fluid velocity, and A is a characteristic
area facing the flow.

www.20file.org

http://www.semeng.ir


883 Appendix A: Glossary

dynamic pressure: The dynamic pressure, P , also called equivalent pressure, is
a function that combines the effects of flow pressure, p, and gravity, g. The
force due to gravity, ρg, is a conservative force; that is, the work done by the
force due to gravity is independent of the path taken in the course of doing
the work [167]. All conservative forces may be written as the negative of the
gradient of a potential-energy function:

ρg = −∇�

where � is potential energy due to gravity. � is equal to ρgh, where g is the
gravitational force constant and h is the height of a particle of interest above a
reference plane. Thus:

ρg = −∇(ρgh)

and, for constant density:

g = −g∇h

The dynamic pressure appears when the pressure and gravity terms of the
Navier-Stokes equation are combined [43, 168]:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ p + μ∇2v + ρg

= −∇ p + μ∇2v − ∇�

= −∇(p + �) + μ∇2v

= −∇P + μ∇2v

where P ≡ p + � = p + ρgh. To evaluate P , the function h must be ex-
pressed correctly in the coordinate system of interest. See also Equation 8.115.

Einstein notation: This is a way of writing vectors and tensors in an orthonormal
coordinate system. A vector or tensor written in Einstein notation is written as
a sum of coefficients and basis vectors (in the case of vectors) or of coefficients
and diads of basis vectors (in the case of tensors). In Einstein notation the
summation signs are not written explicitly. Every pair of repeated indices
indicates that the terms must be summed. Examples of Einstein notation are
given here:

v =
3∑

p=1

ˆ ˆvpep = vpep

A =
3∑

s=1

3∑
m=1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

Asmesem = Asmesem

v · A = vi êi · Akneken = vi Ainen

empirical relation: This results from experimental observation rather than the-
oretical derivation.

Eulerian description of fluid mechanics: Traditionally, there are two ways to
describe a flow: (1) from the point of view of individual fluid packets (i.e., a
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body approach, Newton’s second law formulation); and (2) from the point of
view of a fixed observer (i.e., control-volume approach, Reynolds-transport-
theorem formulation). Both methods are equivalent but one or the other may
be easier for certain problems. When a flow is described from the point of view
of individual fluid packets, this is called an Lagrangian description. When a
flow is described from the point of view of a fixed observer, this is called an
Eulerian description. The Eulerian approach is common in Newtonian fluid
mechanics, although for some atmospheric, oceanographic, and groundwater
problems, the Lagrangian approach is favored. In polymer fluid dynamics,
many calculations are made from a Lagrangian point of view because elastic
behavior of the fluid necessitates keeping track of the histories of individual
packets.

external flow: This is a flow around an object, such as a sphere or particles in a
packed bed. Objects moving through a fluid (e.g., balls and airplanes) may be
analyzed from the point of view of the moving object; therefore, the flow field
is considered an external flow. Contrast this with internal flow.

extra-stress tensor: The total-stress tensor, �̃, expresses the molecular surface
forces that produce stress at a point in a flowing fluid. The extra-stress tensor, τ̃ ,
is the part of the total stress tensor, �̃, that is anisotropic; that is, �̃ = −pI + τ̃ .

fluid: This is defined as a substance that cannot withstand a shear force without
continuously deforming. This formal definition is consistent with our intuitive
understanding that a fluid is a type of matter that moves and deforms easily. The
fact that fluids continuously deform under shear distinguish them from elastic
solids (e.g., gelatin), which deform under shear forces but stop deforming
when their equilibrium shape is reached. A fluid will not stop deforming as
long as a shear force is applied. Therefore, if a fluid is at rest, the shear forces
must be everywhere zero throughout the fluid.

free surface: This refers to a fluid surface open to the atmosphere. Thus, in a
film of fluid flowing down an incline, the top surface in contact with air is the
free surface. In a fluid emerging from a nozzle and forming a jet, the entire
surface of the jet is a free surface.

fully developed flow: A flow is termed fully developed if the velocity and stress
fields no longer exhibit any entrance effects. For example, fully developed tube
flow takes place sufficiently downstream from the entrance that the geometry
of the tube entrance has no effect. The velocity and stress fields of a fully
developed unidirectional flow do not vary in the flow direction.

gate valve: See valves and fittings.
gauge pressure: This is the term for pressure measurement relative to atmo-

spheric pressure. A gauge reads zero when exposed to atmospheric pressure.
Thus, pressures measured by gauges are relative to atmospheric pressure. To
obtain absolute pressure from gauge pressure, we add 1 atm.

Gauss’s integral theorem: Also known as the divergence theorem, this is a key
theorem in vector mathematics that allows us to convert surface integrals to
volume integrals:

∫ ∫
S

n̂ · w d S =
∫ ∫ ∫

V
∇ · w dV
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The two-dimensional version is known as Stokes’s theorem (see Stokes’s
theorem).

gc: This is the symbol given for the conversion factor that converts units of
(mass · acceleration) to force units. The equivalence of these two quantities is
a result of Newton’s second law:

F = ma

N = [kg]
[

m

s2

]

where the force unit N (Newton) in the SI unit system (from French: Système
international d’unités, also known as the metric system) is defined as 1 kg ·
m/s2. In American engineering units, Newton’s second law is

[force] = [lbm]
[

ft

s2

]

The customary unit for force in American engineering units is the pound-force
(lbf ); there are 32.174ft · lbm

s2 /lbf . This conversion factor is defined as gc.

[lbf ] =
(

lbf

32.174 ft lbm
s2

)
[lbm]

[
ft

s2

]

[lbf ] =
(

1

gc

)
[lbm]

[
ft

s2

]

Although technically gc = 1N
kg·m/s2 , this nomenclature is not used in SI unit

calculation. It is preferable not to write equations explicitly with unit conversion
factors; we must check all calculations for dimensional consistency.

Gibbs notation: This is the vector–tensor notation used in this book (e.g., v, ∇u
B, ∇ · v). Gibbs notation makes no reference to coordinate system.

globe valve: See valves and fittings.
head: This is energy per unit weight of fluid in a flow loop.
head loss: This is the frictional loss in a piping system expressed in units of

head.
indeterminate vector product: This product between two vectors produces a

tensor dyad. This product is not evaluated; rather, the two vectors are written
side by side. When dot- or cross-multiplied, either from the left or the right,
the multiplication is carried out with the nearest dyad vector:

v · a b = (v · a)b

a b · v = a(b · v) = (b · v)a

Note that in the first expression, the result is parallel to b, whereas in the
second expression, the result is parallel to a. For more information on tensors,
see Section 1.3.2.2 or [6].

internal flow: This is a flow that is bounded by a surface or surfaces. The
principal example of an internal flow is flow in a pipe or other conduit but
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internal flow also includes flow between parallel plates (drag flow) or concentric
cylinders (Couette flow). Contrast this with external flow.

inviscid fluid: A fluid is inviscid if its viscosity is zero or negligible. The flow
of an inviscid fluid also is called potential flow. Because shear stress is propor-
tional to viscosity, inviscid fluids may not transfer shear stresses.

irrotational flow: A flow is irrotational if the circulation around every point is
zero. Another way of expressing the same condition is that the vorticity ω is
zero everywhere. In an irrotational flow, there is no tendency of fluid particles
to rotate.

isotropic stress: Stress is isotropic at a point if the magnitude of the force per unit
area on any plane through the point is the same. Pressure is an isotropic stress.
The stress tensor for an isotropic stress is diagonal (i.e., all of the off-diagonal
coefficients are zero), and all the diagonal components are equal.

kinematic viscosity: See viscosity, kinematic.
kinematics: This term refers to all information about the flow’s motion. The

flow kinematics consist of the velocity field, v.
Kronecker delta: The Kronecker delta function, δpk , is defined here:

δpk ≡
{

1 for p = k

0 for p �= k

Lagrangian description of fluid mechanics: See Eulerian description.
manometer: This is a device that measures pressure by inducing changes in

the heights of columns of fluid. A U-tube manometer is a U-shaped tube that
contains a measuring fluid (e.g., mercury, water, or oil). The tops of the two
sides of the manometer are exposed to fluids at different pressures, causing
the level of the measuring fluid to change. The height difference between the
measuring fluid on the two sides of the U-tube manometer can be related to
the difference between the two pressures (see Section 4.2.4.1).

molecular forces: These are forces in a fluid due to chemical or physical inter-
actions between molecules. These forces include electrostatic attraction or
repulsion between molecules, van der Waals forces, hydrogen bonding, and
intermolecular entanglement, as well as other forces specific to the materials
under consideration.

Newton, Sir Isaac: Isaac Newton (1643–1727) was an English mathematician
who made many seminal contributions to the fields of mathematics, mechanics,
and optics. In 1687, Newton published the Philosophiae Naturalis Principia
Mathematica in which—from three postulates now known as Newton’s laws
of motion—he derived how bodies move in both the heavens (i.e., planetary
motion) and on Earth. Newton’s laws of motion form the core of any current
introduction to physics. Newton made a significant contribution to the invention
of calculus.

Newton’s second law: This law states that momentum is conserved and can be
written mathematically as:

∑
all forces

acting on body

f = d(mv)

dt
(A.6)
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where f are the various forces on the body, m is the mass of the body, v is
the velocity of the body, and t is time. The derivative d(mv)/dt is the rate of
accumulation of momentum for the body. Note that if the mass of the system is
constant and there is a single force, Newton’s second law becomes the familiar
f = ma, where a = dv/dt is the acceleration of the body of constant mass m.

noncontact forces: See body forces.
orifice plate or orifice meter: This is a device used to measure volumetric flow

rate in a pipe (Figure 7.66). The device consists of a plate that obstructs the
flow except for a small hole (orifice) in the plate center. The blockage of
the flow increases the pressure upstream of the plate. A measurement of the
pressure difference across the orifice plate may be related to the volumetric flow
rate through application of the mechanical energy balance. In flow through an
orifice, the streamlines are observed to converge axisymmetrically and reach
their narrowest cross section slightly downstream of the orifice; the location of
this narrowest jet cross section is called the vena contracta.

orthonormal basis vectors: Any three nonzero, noncoplanar vectors may form a
basis in physical (i.e., three-dimensional) space. Basis vectors that are mutually
perpendicular and of unit length are called orthonormal basis vectors.

partial differential equations (PDEs): The microscopic momentum balance
(see Equation 6.71) is an example of a partial differential equation, which is a
differential equation that involves partial derivatives. Sommerfeld [158, 174]
determined that second-order PDEs (i.e., those that involve second derivatives)
may be divided into three classes according to the following scheme. For the
equation:

A
∂2φ

∂x2
+ B

∂2φ

∂x∂y
+ C

∂2φ

∂y2
= D (A.7)

where A, B, C , and D may be nonlinear functions of x , y, φ, ∂φ/∂x , and
∂φ/∂y but not of the second derivatives of φ, the three classes are divided
according to the value of the discriminant function B2 − 4AC :

B2 − 4AC < 0 elliptic PDE
B2 − 4AC = 0 parabolic PDE
B2 − 4AC > 0 hyperbolic PDE

(A.8)

If the equation is elliptic, the problem is a boundary-value problem, and it can
be solved only by specifying the boundary conditions on a complete contour
enclosing the region. Parabolic equations are mixed initial- and boundary-
value problems, and the boundary conditions must be closed in one direction
but remain open at one end of the other direction. Hyperbolic equations are
initial-value problems, and they can be solved in a given region by specifying
the conditions at only one portion of the boundary with the other boundaries
remaining open [174]. Numerical schemes to solve PDEs usually are special-
ized for one of the three types; thus, problems that mix or change type during
the solution process may present difficulties during solution.

Pascal’s principle: This states that the pressure exerted on an enclosed liquid is
transmitted equally to every part of the liquid and to the walls of the container.
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Pascal’s principle is the reason for the functioning of manometers and hydraulic
devices such as automotive brakes.

pressure, equivalent: See dynamic pressure.
return bend: See valves and fittings.
Reynolds, Osborne: Osborne Reynolds (1842–1912) was a British engineer and

professor of engineering at Owens College in Manchester (now the University
of Manchester) who studied the transition from laminar to turbulent flow in
pipes. The Reynolds number is named after him. In the field of turbulent flow,
Reynolds contributed the technique of Reynolds-averaging, in which the local
fluid velocity is divided into the average velocity and a superposed fluctuating
component. His work on dimensional analysis and dimensional similarity made
important contributions to naval architecture, enabling accurate ship-design
inferences from experiments on small-scale models.

Reynolds transport theorem: This is the equivalent of Newton’s second law
(i.e., momentum is conserved) written for a control volume:

Reynolds
transport
theorem:

dP

dt
+
∫∫

C S
(n̂ · v) ρv d S =

∑
on
CV

f (A.9)

where
∑

f is the sum of forces acting on the control volume, dP
dt is the rate of

change of momentum in the control volume, n̂ is the outwardly pointing unit
normal of dS, v is the velocity of fluid passing through surface element d S,
and ρ is the density of fluid passing through d S. The integral is taken over C S,
the surface that bounds the control volume.

rotameter: This is a device used to measure flow rate. Flow is directed through
the rotameter chamber, causing a float to rise. The internal shape of the rota-
meter is designed so that the vertical height of the float (as measured on an
inscribed scale) is proportional to flow rate. Rotameter readings are reported
in units of percent full scale; they must be calibrated to give absolute units (see
calibration).

roundoff error: This term refers to the loss in accuracy that happens in digital
devices when a number is truncated, or rounded off. For example, the fraction
one-third (1/3) in digital form is 0.333333 with a never-ending number of
digits. By necessity, calculators and computers must truncate this number to a
finite number (8 or 16 or 32 are typical choices). When calculations use this
truncated number, there is a loss of accuracy in the calculation. The effect
of roundoff error may be minimized by keeping a large excess of digits in
intermediate calculations. Final answers then may be truncated (or rounded
off) to reflect the known precision to which the calculation may be reported.

scalar: This is a quantity that has magnitude only. Examples of scalars include
mass, energy, density, volume, and the number of automobiles in a parking lot.
In ordinary arithmetic, we are using scalars.

shear force: The force on an arbitrary surface in a fluid can be resolved into two
components: (1) the normal force, which is perpendicular to the surface; and
(2) the shear force, which tangential to the surface.
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specific gravity (SG): This is the ratio of a substance density to its density at
a reference temperature and pressure. The usual reference temperature for
water is the triple point at atmospheric pressure, which is 4◦C. The source that
publishes specific gravity should indicate the reference conditions.

stagnation point: This refers to a point on a solid surface where a streamline
terminates. The classic stagnation point is the point in the center of a planar jet
where the flow comes to a halt (Figure 4.77). Streamlines to the right and left
of the central streamline are diverted by the wall to the right or left. There is
one streamline, the stagnation streamline, that terminates in the surface at the
stagnation point.

Stokes’s theorem: The two-dimensional version of the Gauss-Ostrogradskii
divergence theorem (see Equation 6.14) is Stokes’s theorem. This theorem
allows us to convert a line integral along a path to an area integral:

Stokes’s theorem
for vector field F :

∮
C

(
t̂ · F

)
dl =

∫∫
S

n̂ · (∇ × F) d S

where F is any vector field, C is a contour in the field, dl is a differential length
along the contour C , n̂ is an outward-pointing unit vector from a surface S, t̂
is a tangential unit vector along C , and d S is a differential piece of S [142].

stream function (ψ): This is a function that is everywhere tangent to the velocity
field. In two-dimensional flow expressed in Cartesian coordinates:

vx = ∂ψ

∂y

vy = ∂ψ

∂x

ψ is a function of x and y and may be a function of t . Lines of ψ = constant
are called streamlines. In steady flows, streamlines are coincident with particle
paths; thus, we often visualize steady-state streamlines—by using tracer parti-
cles, for example—to show how the fluid deforms. When flows are not steady,
streamlines are not equivalent to pathlines and more sophisticated fluid tracing
methods must be adopted.

streamlines: See stream function.
tensors: A second-order tensor or simply a tensor is an ordered pair of coordinate

directions or the indeterminate vector product of two vectors. The simplest
tensor is called a dyad or dyadic product and is written as two vectors side
by side. For example, the tensor A is the indeterminate vector product of the
vectors a and b:

A = a b

Tensors are operators that express linear vector functions. For example, in the
following equation in which a tensor A dot-multiplies the vector v giving the
vector w:

A · v = w
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the tensor A transforms the vector v into the vector w. This is the action of a
vector function. Tensors are linear vector functions [6, 104]. Any second-order
tensor may be expressed in a coordinate system as the linear combination
of nine dyads formed from the basis vectors of the coordinate system. For
example, in the Cartesian coordinate system ê1, ê2, ê3, a tensor A can be
written as:

A =
3∑

n=1

3∑
j=1

ˆAnj êne j

ˆ ˆ ˆ
The coefficients Anj are called the scalar coefficients of A relative to the basis
e1e2e3, and they may be written for convenience in a 3 × 3 matrix:

A =
⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

123

ˆ ˆ
The subscript 123 indicates that the entries in the matrix represent the coeffi-
cients of a tensor written relative to the ê1e2e3 coordinate system.

trim of a valve: See valve trim.
union: See valves and fittings.
unit vector: This is a vector the magnitude of which is 1. For example, if for a

vector m:

|m| = √
m · m = 1

then m is a unit vector. In this text, unit vectors are written with a carat (ˆ) over
the symbol:

|m̂| = 1

valve trim: This is a curve that shows how the flow rate from the valve varies
with the valve’s position. A metering valve is designed to have a linear trim.
With a linear trim, when the valve is twice as open, there is twice the flow.
Valves less precisely designed can require many turns to slow the flow, and the
flow may stop suddenly with a small amount of additional turning.

valves and fittings: Several common valves and fittings are defined as follows:

1. Coupling. A fitting that unites tubing of the same or different diameter
through soldered or other permanent connections.

2. Return bend. A fitting in the shape of a U that reverses the direction of the
flow.

3. Gate valve. A valve that varies the passing flow by raising and lowering
a gate that blocks the flow. Gate valves are used when minimum flow
restriction is desired through an open valve.

4. Globe valve. A valve that varies the flow by seating a plug to close off
the flow. The flow in a globe valve is obstructed by the seating structure
even when the valve is open; thus, these valves are not appropriate when
minimum flow restriction is desired through an open valve.

5. Check valve. A valve that allows flow in one direction but prevents flow in
the reverse direction (i.e., no back flow).
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6. Union. A fitting that unites tubing of the same or different diameter through
screws or other temporary connections.

vapor lock: This term refers to a device failing to operate because fluid within
it has vaporized, breaking liquid continuity and causing the device to cease
operating. When pressures within a device fall below the vapor pressure of a
fluid within the device, the fluid vaporizes. Devices often are designed to have
liquids rather than gases; the presence of gases causes device failure.

vectors: These are quantities that have associated magnitude and direction.
Examples that appear in fluid mechanics are fluid velocity, v, and force, f .

velocity field: In fluids, different portions of the flow move in different directions
and at different speeds. To describe the motion of fluids, we use the velocity
field, a two- or three-dimensional continuous function that describes the fluid
motion as a function of position and time.

viscosity, kinematic: This is the ratio of viscosity μ and density ρ:

Kinematic viscosity: ν ≡ μ

ρ

The kinematic viscosity is measured in a Cannon-Fenske viscometer (see
Figure 7.11). Kinematic viscosity also appears in the Reynolds number, Re =
ρ〈v〉D/μ = 〈v〉D/ν.

vorticity ω: This is the curl of the velocity vector:

ω ≡ ∇ × v

Vorticity is a flow-field property that allows us to keep track of rotational
character in flows.

weir: This is a low overflow dam placed across a waterway to raise its level or
to divert the flow. The presence of a weir makes it straightforward to calculate
flow rate in the stream [183].
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B.1 Differential operations on vectors and tensors

In fluid mechanics we are concerned with variables such as density, velocity, and
stress that take on different values at different positions in a field. The modeling
we describe in this text relies on our ability to keep track of spatial variations of
these functions.

We are familiar with taking derivatives of scalar functions with respect to
spatial variables x , y, and z in the Cartesian coordinate system. Less familiar,
perhaps, is the idea of taking spatial derivatives of vectors and tensors. When
we write a vector with respect to a basis and then take its derivative, we must
treat both the vector coefficients and the basis vectors as variables. Consider a
vector v written with respect to the arbitrary coordinate system ẽ1, ẽ2, ẽ3 (not the
Cartesian system):

˜v = ṽ1e1 ˜+ ṽ2e2 ˜+ ṽ3e3 (B.1)

When calculating a spatial derivative of the vector v with respect to, for example
x2, we differentiate the three terms on the right of Equation B.1, applying the
product rule of differentiation to each term:

∂v

∂x2
= ˜

∂

∂x2
(ṽ1e1 ˜+ ṽ2e2 ˜+ ṽ3e3) (B.2)

= ˜
∂

∂x2
(ṽ1e1) + ˜

∂

∂x2
(ṽ2e2) + ˜

∂

∂x2
(ṽ3e3) (B.3)

˜= ṽ1
∂e1

∂x2
+ ẽ1

∂ṽ1 ˜

∂x2
+ ṽ2

∂e2

∂x2
+ ẽ2

∂ṽ2 ˜

∂x2
+ ṽ3

∂e3

∂x2
+ ẽ3

∂ṽ3

∂x2
(B.4)

˜The derivatives of the basis vectors ∂e ˜3
∂x1

, ∂e ˜3
∂x2

, ∂e3
∂x3

are not zero because in the general
case, the basis vectors vary with position, and the expression in Equation B.4
cannot be simplified.

There is a special coordinate system in which the spatial derivatives of the
basis vectors are zero: The Cartesian coordinate system. In the Cartesian system,
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ˆ ˆ ˆ

for every location in space, the basis vectors ê1, ê1, and ê3 point in the same
directions. Because they do not vary with spatial position, the spatial derivatives
of the Cartesian basis vectors are zero, and Equation B.4 becomes:

∂v

∂x2
= v1

∂e1

∂x2
+ ê1

∂v1

∂x2
+ v2

∂e2

∂x2
+ ê2

∂v2

∂x2
+ v3

∂e3

∂x2
+ ê3

∂v3

∂x2
(B.5)

= ê1
∂v1

∂x2
+ ê2

∂v2

∂x2
+ ê3

∂v3

∂x2
(B.6)

Note that we have removed the tilde from all symbols to indicate that we are now
considering the Cartesian components of v. There are similar terms for the x1

and x3 derivatives of v.
The differentiation of a vector expressed in Cartesian coordinates can be

communicated with the spatial differentiation operator ∇, called del:

Del operator: ∇ ≡ ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
(B.7)

Del is a vector operator. We verify here that the derivative in Equation B.6 can be
written in terms of del as follows:

∂v

∂x2
= ê2 · ∇v (B.8)

= ê2 ·
[(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
ˆ ˆ ˆ(v1e1 + v2e2 + v3e3)

]
(B.9)

= ê2 ·
[

ê1
∂v1

∂x1
ê1 + ê1

∂v2

∂x1
ê2 + ê1

∂v3

∂x1
ê3

+ ê2
∂v1

∂x2
ê1 + ê2

∂v2

∂x2
ê2 + ê2

∂v3

∂x2
ê3

+ ê3
∂v1

∂x3
ê1 + ê3

∂v2

∂x3
ê2 + ê3

∂v3

∂x3
ê3

]
(B.10)

= ∂v1

∂x2
ê1 + ∂v2

∂x2
ê2 + ∂v3

∂x2
ê3 (B.11)

To simplify the expressions here, we have used the fact that the Cartesian coor-
dinate system is orthonormal. The del operator follows the distributive law of
algebra, as shown; also, the differentiation operations of del operate on everything
to their right.

www.20file.org

http://www.semeng.ir


894 Appendix B: Mathematics

The del operator is useful in expressing many spatially changing quantities
in physics and engineering. Del operates on scalars, vectors, and tensors. When
operating on a scalar (e.g., α), ∇α becomes:

∇α =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
α (B.12)

= ê1
∂α

∂x1
+ ê2

∂α

∂x2
+ ê3

∂α

∂x3
(B.13)

=

⎛
⎜⎜⎜⎜⎝

∂α
∂x1

∂α
∂x2

∂α
∂x3

⎞
⎟⎟⎟⎟⎠

123

(a vector) (B.14)

When del operates on a scalar (order 0), it produces a vector (order 1). The laws
of algebra for del operating on a scalar are given here:1

Laws of algebra
for del operating

on scalars:

⎧⎨
⎩

Not commutative ∇α �= α∇
Not associative ∇(ζα) �= (∇ζ )α

distributive ∇(ζ + α) = ∇ζ + ∇α

The associative law does not hold with the del operator because we must follow
the rules of differentiating a product when faced with a term such as ∇(ζα).

∂(γα)

∂x
= γ

∂α

∂x
+ α

∂γ

∂x
(B.15)

Del operates on vectors and tensors in addition to scalars [6, 12, 104, 160].
When del operates on a vector (order 1) it produces a tensor (order 2). The laws
of algebra for del operating on a vector are given here:

Laws of algebra
for del operating

on vectors:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Not commutative ∇w �= w∇
Not associative ∇(a · b) �= (∇a) · b

∇(a × b) �= (∇a) × b
distributive ∇(w + b) = ∇w + ∇b

The quantities ∇α and ∇w are called the gradients of α and w, respectively.
Two other operations involving ∇ are commonly used: the divergence, written as
(∇· ); and the Laplacian, written as (∇ · ∇) = (∇2). The divergence reduces the

1Scalars, vectors, and tensors can all be classified as tensors of different orders. Scalars are zero-
order tensors, vectors are first-order tensors, and the usual tensors encountered in fluid mechanics
are second-order tensors. What changes when del operates on a scalar or vector is the order of
the quantity on which it acts [6, 12, 104, 160].

www.20file.org

http://www.semeng.ir


895 Appendix B: Mathematics

order of a quantity on which it operates, and thus we cannot take the divergence
of a scalar. The Laplacian does not change the order of a quantity on which it
operates.

A complete discussion of vector operators is beyond the scope of this text.
We include here examples of the divergence and Laplacian operations; these
calculations are valid in Cartesian coordinates. When we wish to express these
operators in non-Cartesian coordinates, the differentiation operators ∂/∂xi must
act on the (non-constant) basis vectors as well as the scalar coefficients. The tables
at the end of this chapter contain vector-tensor components of various quantities
written in cylindrical and spherical coordinates.

EXAMPLE B.1. What are the following quantities: (∇w); (∇ · w);
(∇ · B

)
;(∇2α

)
;
(∇2w

)
?

SOLUTION.
The gradient of a vector w:

∇w =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
ˆ ˆ ˆ(w1e1 + w2e2 + w3e3) (B.16)

= ∂w1 ˆ
∂x1

ê1e1 + ∂w2 ˆ
∂x1

ê1e2 + ∂w3 ˆ
∂x1

ê1e3 + ∂w1 ˆ
∂x2

ê2e1 + ∂w2 ˆ
∂x2

ê2e2

+ ∂w3 ˆ
∂x2

ê2e3 + ∂w1 ˆ
∂x3

ê3e1 + ∂w2 ˆ
∂x3

ê3e2 + ∂w3 ˆ
∂x3

ê3e3 (B.17)

=
3∑

p=1

3∑
k=1

ˆ ˆepek
∂wk

∂x p
(B.18)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂w1
∂x1

∂w2
∂x1

∂w3
∂x1

∂w1
∂x2

∂w2
∂x2

∂w3
∂x2

∂w1
∂x3

∂w2
∂x3

∂w3
∂x3

⎞
⎟⎟⎟⎟⎟⎟⎠

123

(a tensor) (B.19)

ˆ ˆwhere the matrix holds the coefficients of the expressions ê1e1, ê1e2, and so
on. These expressions êi ê j are called indeterminate vector products and are
themselves simple second-order tensors (see Chapter 1 and [104]).

The divergence of a vector w:

∇ · w =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
ˆ ˆ ˆ

)
· (w1e1 + w2e2 + w3e3) (B.20)

= ∂w1

∂x1
+ ∂w2

∂x2
+ ∂w3

∂x3
(a scalar) (B.21)
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The divergence of a tensor B:

∇ · B =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
·

3∑
m=1

3∑
n=1

ˆ ˆBmnemen (B.22)

=
3∑

m=1

3∑
n=1

ˆ ˆ
∂

∂x1
Bmn(e1 · êm)en +

3∑
m=1

3∑
n=1

ˆ ˆ
∂

∂x2
Bmn(e2 · êm)en

+
3∑

m=1

3∑
n=1

ˆ ˆ
∂

∂x3
Bmn(e3 · êm)en (B.23)

=
(

∂ B11

∂x1
+ ∂ B21

∂x2
+ ∂ B31

∂x3

)
ê1 +

(
∂ B12

∂x2
+ ∂ B22

∂x2
+ ∂ B32

∂x3

)
ê2

+
(

∂ B13

∂x3
+ ∂ B23

∂x2
+ ∂ B33

∂x3

)
ê3 (B.24)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ B11
∂x1

+ ∂ B21
∂x2

+ ∂ B31
∂x3

∂ B12
∂x2

+ ∂ B22
∂x2

+ ∂ B32
∂x3

∂ B13
∂x3

+ ∂ B23
∂x2

+ ∂ B33
∂x3

⎞
⎟⎟⎟⎟⎟⎟⎠

123

(a vector) (B.25)

The Laplacian of a scalar α:

∇ · ∇α =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
·
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
α

(B.26)

= ∂2a

∂x2
1

+ ∂2a

∂x2
2

+ ∂2a

∂x2
3

(a scalar) (B.27)

The Laplacian of a vector w:

∇ · ∇w =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)

·
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
ˆ ˆ ˆ(w1e1 + w2e2 + w3e3) (B.28)

=
(

∂2w1

∂x2
1

+ ∂2w1

∂x2
2

+ ∂2w1

∂x2
3

)
ê1 +

(
∂2w2

∂x2
1

+ ∂2w2

∂x2
2

+ ∂2w2

∂x2
3

)
ê2

+
(

∂2w3

∂x2
1

+ ∂2w3

∂x2
2

+ ∂2w3

∂x2
3

)
ê3 (B.29)
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2w1

∂x2
1

+ ∂2w1

∂x2
2

+ ∂2w1

∂x2
3

∂2w2

∂x2
1

+ ∂2w2

∂x2
2

+ ∂2w2

∂x2
3

∂2w3

∂x2
1

+ ∂2w3

∂x2
2

+ ∂2w3

∂x2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

(a vector) (B.30)

EXAMPLE B.2. What is ∇ · α b?

SOLUTION. We begin by writing ∇ · α b in a Cartesian coordinate system:

∇ · α b =
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
ˆ ˆ ˆ

)
· α(b1e1 + b2e2 + b3e3) (B.31)

=
(

ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
ˆ ˆ ˆ

)
· (αb1e1 + αb2e2 + αb3e3) (B.32)

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

Because both α and the coefficients of b are to the right of the del operator, they
all are acted on by the differentiation action. The Cartesian unit vectors also are
affected, but these are constant. Now we carry out the dot product, using the
distributive law. Because the basis vectors are orthogonal and of unit length, most
of the dot products are zero:

∇ · α b = ê1
∂

∂x1
· (αb1e1 + αb2e2 + αb3e3)

+ ê2
∂

∂x2
· (αb1e1 + αb2e2 + αb3e3)

+ ê3
∂

∂x3
· (αb1e1 + αb2e2 + αb3e3) (B.33)

= ê1 · ê1
∂(αb1)

∂x1
+ ê1 · ê2

∂(αb2)

∂x1
+ ê1 · ê3

∂(αb3)

∂x1

+ ê2 · ê1
∂(αb1)

∂x2
+ ê2 · ê2

∂(αb2)

∂x2
+ ê2 · ê3

∂(αb3)

∂x2

+ ê3 · ê1
∂(αb1)

∂x3
+ ê3 · ê2

∂(αb2)

∂x3
+ ê3 · ê3

∂(αb3)

∂x3
(B.34)

= ∂(αb1)

∂x1
+ ∂(αb2)

∂x2
+ ∂(αb3)

∂x3
(B.35)
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To further expand this expression, we use the product rule of differentiation
on the quantities in parentheses:

∇ · α b = α
∂b1

∂x1
+ b1

∂α

∂x1
+ α

∂b2

∂x2
+ b2

∂α

∂x2
+ α

∂b3

∂x3
+ b3

∂α

∂x3
(B.36)

= α

(
∂b1

∂x1
+ ∂b2

∂x2
+ ∂b3

∂x3

)
+
(

b1
∂α

∂x1
+ b2

∂α

∂x2
+ b3

∂α

∂x3

)
(B.37)

This is as far as we can proceed. It is possible to write this final result in vector
(also called Gibbs) notation:

∇ · α b = α∇ · b + b · ∇α (B.38)

The equivalency of Equations B.38 and B.39 may be verified by writing the terms
in Equation B.39 and carrying out the dot products. If the differentiation of the
product is not carried out correctly, the second term on the righthand side would
be omitted (incorrectly).

A summary of vector identities involving the ∇ operator is in Table B.1 and
the inside front cover of this text.

Table B.1. Additional vector identities involving the ∇ operator

∇(v · f ) = ∇f · v + ∇v · f B-1.1

∇ · (A · v ) = AT : ∇v + v · (∇ · A) B-1.2

∇ · (v · A) = A : ∇v + v · (∇ · AT ) B-1.3

∇ · pI = ∇ p B-1.4

∇ · ∇v = ∇2v B-1.5

∇ · (∇v )T = ∇(∇ · v ) B-1.6

∇ · (ρv f ) = ρ(v · ∇f ) + f ∇ · (ρv ) B-1.7

See also the table in the inside cover of this text.

B.2 Differential operations in rectangular and curvilinear coordinates

Calculations of flow fields require that the governing equations be written in
chosen coordinate systems. In this section, we list the governing equations in
Cartesian, cylindrical, and spherical coordinates.

www.20file.org

http://www.semeng.ir


899 Appendix B: Mathematics

Table B.2. Differential operations in the rectangular coordinate system (x , y , z)

w =
⎛
⎝ wx

w y

wz

⎞
⎠

x yz

B.2-1

∇ = êx
∂
∂x + ê y

∂
∂y + êz

∂
∂z B.2-2

∇a =

⎛
⎜⎜⎜⎝

∂a
∂x

∂a
∂y

∂a
∂z

⎞
⎟⎟⎟⎠

x yz

B.2-3

∇ · ∇a = ∇2a = ∂2a
∂x 2 + ∂2a

∂y2 + ∂2a
∂z2 B.2-4

∇ · w = ∂wx
∂x + ∂w y

∂y + ∂wz
∂z B.2-5

∇ × w =

⎛
⎜⎜⎜⎜⎝

∂wz
∂y − ∂w y

∂z

∂wx
∂z − ∂wz

∂x

∂w y

∂x − ∂wx
∂y

⎞
⎟⎟⎟⎟⎠

x yz

B.2-6

A =
⎛
⎝ Ax x Ax y Ax z

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠

x yz

B.2-7

∇w =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂wx
∂x

∂w y

∂x
∂wz
∂x

∂wx
∂y

∂w y

∂y
∂wz
∂y

∂wx
∂z

∂w y

∂z
∂wz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

x yz

B.2-8

∇2w =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2wx
∂x 2 + ∂2wx

∂y2 + ∂2wx
∂z2

∂2w y

∂x 2 + ∂2w y

∂y2 + ∂2w y

∂z2

∂2wz
∂x 2 + ∂2wz

∂y2 + ∂2wz
∂z2

⎞
⎟⎟⎟⎟⎟⎟⎠

x yz

B.2-9

∇ · A =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Ax x
∂x + ∂Ayx

∂y + ∂Azx
∂z

∂Ax y

∂x + ∂Ayy

∂y + ∂Azy

∂z

∂Ax z
∂x + ∂Ayz

∂y + ∂Azz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

x yz

B.2-10

u · ∇w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ux
∂wx
∂x + u y

∂wx
∂y + u z

∂wx
∂z

ux
∂w y

∂x + u y
∂w y

∂y + u z
∂w y

∂z

ux
∂wz
∂x + u y

∂wz
∂y + u z

∂wz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

x yz

B.2-11
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Table B.3. Differential operations in the cylindrical coordinate system (r ,θ ,z)

w =

⎛
⎜⎝

wr

wθ

wz

⎞
⎟⎠

r θ z

B.3-1

∇ = êr
∂
∂r + êθ

1
r

∂
∂θ

+ êz
∂
∂z B.3-2

∇a =

⎛
⎜⎜⎜⎝

∂a
∂r

1
r

∂a
∂θ

∂a
∂z

⎞
⎟⎟⎟⎠

r θ z

B.3-3

∇ · ∇a = ∇2a = 1
r

∂
∂r

(
r ∂a

∂r

) + 1
r 2

∂2a
∂θ2 + ∂2a

∂z2 B.3-4

∇ · w = 1
r

∂
∂r (r wr ) + 1

r
∂wθ

∂θ
+ ∂wz

∂z B.3-5

∇ × w =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
r

∂wz
∂θ

− ∂wθ

∂z

∂wr
∂z − ∂wz

∂r

1
r

∂ (r wθ )
∂r − 1

r
∂wr
∂θ

⎞
⎟⎟⎟⎟⎟⎟⎠

r θ z

B.3-6

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ar r Ar θ Ar z

Aθr Aθθ Aθ z

Azr Azθ Azz

⎞
⎟⎟⎟⎟⎟⎟⎠

r θ z

B.3-7

∇w =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂wr
∂r

∂wθ

∂r
∂wz
∂r

1
r

∂wr
∂θ

− wθ

r
1
r

∂wθ

∂θ
+ wr

r
1
r

∂wz
∂θ

∂wr
∂z

∂wθ

∂z
∂wz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

r θ z

B.3-8

∇2w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂r

(
1
r

∂ (r wr )
∂r

)
+ 1

r 2
∂2wr
∂θ2 + ∂2wr

∂z2 − 2
r 2

∂wθ

∂θ

∂
∂r

(
1
r

∂ (r wθ )
∂r

)
+ 1

r 2
∂2wθ

∂θ2 + ∂2wθ

∂z2 + 2
r 2

∂wr
∂θ

1
r

∂
∂r

(
r ∂wz

∂r

) + 1
r 2

∂2wz
∂θ2 + ∂2wz

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

r θ z

B.3-9

∇ · A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
r

∂
∂r (r Arr ) + 1

r
∂Aθr
∂θ

+ ∂Azr
∂z − Aθθ

r

1
r 2

∂
∂r (r 2Ar θ ) + 1

r
∂Aθθ

∂θ
+ ∂Azθ

∂z + Aθr −Ar θ

r

1
r

∂
∂r (r Ar z ) + 1

r
∂Aθ z
∂θ

+ ∂Azz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r θ z

B.3-10

u · ∇w =

⎛
⎜⎜⎜⎜⎜⎜⎝

ur
(

∂wr
∂r

) + uθ

( 1
r

∂wr
∂θ

− wθ

r

) + u z
(

∂wr
∂z

)
ur

(
∂wθ

∂r

) + uθ

( 1
r

∂wθ

∂θ
+ wr

r

) + u z
(

∂wθ

∂z

)
ur

(
∂wz
∂r

) + uθ

(
1
r

∂wz
∂θ

) + u z
(

∂wz
∂z

)

⎞
⎟⎟⎟⎟⎟⎟⎠

r θ z

B.3-11
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Table B.4. Differential operations in the spherical coordinate system (r ,θ ,φ)

w =
⎛
⎝ wr

wθ

wφ

⎞
⎠

r θφ

B.4-1

∇ = êr
∂
∂r + êθ

1
r

∂
∂θ

+ êφ
1

r sin θ
∂
∂φ

B.4-2

∇a =

⎛
⎜⎜⎜⎝

∂a
∂r

1
r

∂a
∂θ

1
r sin θ

∂a
∂φ

⎞
⎟⎟⎟⎠

r θφ

B.4-3

∇ · ∇a = ∇2a = 1
r 2

∂
∂r

(
r 2 ∂a

∂r

) + 1
r 2 sin θ

∂
∂θ

(
sin θ ∂a

∂θ

) + 1
r 2 sin2 θ

∂2a
∂φ2 B.4-4

∇ · w = 1
r 2

∂
∂r

(
r 2wr

) + 1
r sin θ

∂
∂θ

(wθ sin θ ) + 1
r sin θ

∂wφ

∂φ
B.4-5

∇ × w =

⎛
⎜⎜⎜⎝

1
r sin θ

∂
∂θ

(
wφ sin θ

) − 1
r sin θ

∂wθ

∂φ

1
r sin θ

∂wr
∂φ

− 1
r

∂
∂r (r wφ )

1
r

∂
∂r (r wθ ) − 1

r
∂wr
∂θ

⎞
⎟⎟⎟⎠

r θφ

B.4-6

A =

⎛
⎜⎜⎜⎝

Ar r Ar θ Ar φ

Aθr Aθθ Aθφ

Aφr Aφθ Aφφ

⎞
⎟⎟⎟⎠

r θφ

B.4-7

∇w =

⎛
⎜⎜⎜⎜⎝

∂wr
∂r

∂wθ

∂r
∂wφ

∂r

1
r

∂wr
∂θ

− wθ

r
1
r

∂wθ

∂θ
+ wr

r
1
r

∂wφ

∂θ

1
r sin θ

∂wr
∂φ

− wφ

r
1

r sin θ

∂wθ

∂φ
− wφ

r cot θ 1
r sin θ

∂wφ

∂φ
+ wr

r + wθ

r cot θ

⎞
⎟⎟⎟⎟⎠

r θφ

B.4-8

∇2w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂
∂r

( 1
r 2

∂
∂r (r 2wr )

) + 1
r 2 sin θ

∂
∂θ

(
sin θ ∂wr

∂θ

) + 1
r 2 sin2 θ

∂2wr
∂φ2

− 2
r 2 sin θ

∂
∂θ

(wθ sin θ ) − 2
r 2 sin θ

∂wφ

∂φ

)
(

1
r 2

∂
∂r

(
r 2 ∂wθ

∂r

) + 1
r 2

∂
∂θ

(
1

sin θ
∂
∂θ

(wθ sin θ )
) + 1

r 2 sin2 θ

∂2wθ

∂φ2

+ 2
r 2

∂wr
∂θ

− 2 cot θ
r 2 sin θ

∂wφ

∂φ

)
(

1
r 2

∂
∂r

(
r 2 ∂wφ

∂r

)
+ 1

r 2
∂
∂θ

( 1
sin θ

∂
∂θ

(wφ sin θ )
) + 1

r 2 sin2 θ

∂2wφ

∂φ2

+ 2
r 2 sin θ

∂wr
∂φ

+ 2 cot θ
r 2 sin θ

∂wθ

∂φ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r θφ

B.4-9

∇ · A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
r 2

∂
∂r (r 2Ar r ) + 1

r sin θ
∂
∂θ

(Aθr sin θ ) + 1
r sin θ

∂Aφr

∂φ
− Aθθ +Aφφ

r

1
r 3

∂
∂r (r 3Ar θ ) + 1

r sin θ
∂
∂θ

(Aθθ sin θ ) + 1
r sin θ

∂Aφθ

∂φ
+ (Aθr −Ar θ )−Aφφ cot θ

r

1
r 3

∂
∂r (r 3Ar φ ) + 1

r sin θ
∂
∂θ

(Aθφ sin θ ) + 1
r sin θ

∂Aφφ

∂φ
+ (Aφr −Ar φ )+Aφθ cot θ

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

r θφ

B.4-10

u · ∇w =

⎛
⎜⎜⎜⎜⎜⎜⎝

ur
(

∂wr
∂r

) + uθ

( 1
r

∂wr
∂θ

− wθ

r

) + uφ

(
1

r sin θ
∂wr
∂φ

− wφ

r

)
ur

(
∂wθ

∂r

) + uθ

( 1
r

∂wθ

∂θ
+ wr

r

) + uφ

(
1

r sin θ

∂wθ

∂φ
− wφ

r cot θ
)

ur

(
∂wφ

∂r

)
+ uθ

(
1
r

∂wφ

∂θ

)
+ uφ

(
1

r sin θ

∂wφ

∂φ
+ wr

r + wθ

r cot θ
)

⎞
⎟⎟⎟⎟⎟⎟⎠

r θφ

B.4-11
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Table B.5. Continuity equation in three coordinate systems

Cartesian coordinates:

∂ρ

∂ t
+

(
vx

∂ρ

∂x
+ v y

∂ρ

∂y
+ vz

∂ρ

∂z

)
+ ρ

(
∂vx

∂x
+ ∂v y

∂y
+ ∂vz

∂z

)
= 0 B.5-1

Cylindrical coordinates:

∂ρ

∂ t
+ 1

r
∂ (ρr vr )

∂r
+ 1

r
∂ (ρvθ )

∂θ
+ ∂ (ρvz )

∂z
= 0 B.5-2

Spherical coordinates:

∂ρ

∂ t
+ 1

r 2

∂ (ρr 2vr )
∂r

+ 1
r sin θ

∂ (ρvθ sin θ )
∂θ

+ 1
r sin θ

∂ (ρvφ )
∂φ

= 0 B.5-3

Table B.6. Equation of motion for incompressible fluids in three coordinate systems

Cartesian coordinates:

ρ

(
∂vx

∂ t
+ vx

∂vx

∂x
+ v y

∂vx

∂y
+ vz

∂vx

∂z

)
= − ∂p

∂x
+

(
∂τx x

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
+ ρgx B.6-1

ρ

(
∂v y

∂ t
+ vx

∂v y

∂x
+ v y

∂v y

∂y
+ vz

∂v y

∂z

)
= − ∂p

∂y
+

(
∂τx y

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)
+ ρgy B.6-2

ρ

(
∂vz

∂ t
+ vx

∂vz

∂x
+ v y

∂vz

∂y
+ vz

∂vz

∂z

)
= − ∂p

∂z
+

(
∂τx z

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
+ ρgz B.6-3

Cylindrical coordinates:

ρ

(
∂vr

∂ t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
− v 2

θ

r
+ vz

∂vr

∂z

)
= − ∂p

∂r
+

(
1
r

∂ (r τr r )
∂r

+ 1
r

∂τθr

∂θ
− τθθ

r
+ ∂τr z

∂z

)
+ ρgr B.6-4

ρ

(
∂vθ

∂ t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vθ vr

r
+ vz

∂vθ

∂z

)
= −1

r
∂p
∂θ

+
(

1
r 2

∂ (r 2τr θ )
∂r

+ 1
r

∂τθθ

∂θ
+ ∂τθ z

∂z

)
+ ρgθ B.6-5

ρ

(
∂vz

∂ t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

)
= − ∂p

∂z
+

(
1
r

∂ (r τr z )
∂r

+ 1
r

∂τθ z

∂θ
+ ∂τzz

∂z

)
+ ρgz B.6-6

Spherical coordinates:

ρ

(
∂vr

∂ t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vφ

r sin θ

∂vr

∂φ
− v 2

θ + v 2
φ

r

)

= − ∂p
∂r

+
(

1
r 2

∂ (r 2τr r )
∂r

+ 1
r sin θ

∂ (τθr sin θ )
∂θ

+ 1
r sin θ

∂τφr

∂φ
− τθθ + τφφ

r

)
+ ρgr B.6-7

ρ

(
∂vθ

∂ t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vφ

r sin θ

∂vθ

∂φ
+ vr vθ

r
− v 2

φ cot θ

r

)

= −1
r

∂p
∂θ

+
(

1
r 3

∂ (r 3τr θ )
∂r

+ 1
r sin θ

∂ (τθθ sin θ )
∂θ

+ 1
r sin θ

∂τφθ

∂φ
+ (τθr − τr θ )

r
− (cot θ )τφφ

r

)

+ ρgθ B.6-8

ρ

(
∂vφ

∂ t
+ vr

∂vφ

∂r
+ vθ

r
∂vφ

∂θ
+ vφ

r sin θ

∂vφ

∂φ
+ vr vφ

r
+ vφvθ cot θ

r

)

= − 1
r sin θ

∂p
∂φ

+
(

1
r 3

∂ (r 3τr φ )
∂r

+ 1
r sin θ

∂ (τθφ sin θ )
∂θ

+ 1
r sin θ

∂τφφ

∂φ
+ τφr − τr φ

r
+ (cot θ )τφθ

r

)

+ ρgφ B.6-9
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Table B.7. Equation of motion for incompressible Newtonian fluids: Navier-Stokes equations in three
coordinate systems

Cartesian coordinates:

ρ

(
∂vx

∂ t
+ vx

∂vx

∂x
+ v y

∂vx

∂y
+ vz

∂vx

∂z

)
= − ∂p

∂x
+ μ

(
∂2vx

∂x 2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
+ ρgx B.7-1

ρ

(
∂v y

∂ t
+ vx

∂v y

∂x
+ v y

∂v y

∂y
+ vz

∂v y

∂z

)
= − ∂p

∂y
+ μ

(
∂2v y

∂x 2
+ ∂2v y

∂y2
+ ∂2v y

∂z2

)
+ ρgy B.7-2

ρ

(
∂vz

∂ t
+ vx

∂vz

∂x
+ v y

∂vz

∂y
+ vz

∂vz

∂z

)
= − ∂p

∂z
+ μ

(
∂2vz

∂x 2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)
+ ρgz B.7-3

Cylindrical coordinates:

ρ

(
∂vr

∂ t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
− v 2

θ

r
+ vz

∂vr

∂z

)

= − ∂p
∂r

+ μ

(
∂

∂r

(
1
r

∂ (r vr )
∂r

)
+ 1

r 2

∂2vr

∂θ2
− 2

r 2

∂vθ

∂θ
+ ∂2vr

∂z2

)
+ ρgr B.7-4

ρ

(
∂vθ

∂ t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vr vθ

r
+ vz

∂vθ

∂z

)

= −1
r

∂p
∂θ

+ μ

(
∂

∂r

(
1
r

∂ (r vθ )
∂r

)
+ 1

r 2

∂2vθ

∂θ2
+ 2

r 2

∂vr

∂θ
+ ∂2vθ

∂z2

)
+ ρgθ B.7-5

ρ

(
∂vz

∂ t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

)
= − ∂p

∂z
+ μ

(
1
r

∂

∂r

(
r
∂vz

∂r

)
+ 1

r 2

∂2vz

∂θ2
+ ∂2vz

∂z2

)
+ ρgz B.7-6

Spherical coordinates:

ρ

(
∂vr

∂ t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vφ

r sin θ

∂vr

∂φ
− v 2

θ + v 2
φ

r

)

= − ∂p
∂r

+ μ

[
1
r 2

∂2

∂r 2
(r 2vr ) + 1

r 2 sin θ

∂

∂θ

(
sin θ

∂vr

∂θ

)
+ 1

r 2 sin2 θ

∂2vr

∂φ2

]
+ ρgr B.7-7

ρ

(
∂vθ

∂ t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vφ

r sin θ

∂vθ

∂φ
+ vr vθ

r
− v 2

φ cot θ

r

)

= −1
r

∂p
∂θ

+ μ

[
1
r 2

∂

∂r

(
r 2 ∂vθ

∂r

)
+ 1

r 2

∂

∂θ

(
1

sin θ

∂

∂θ
(vθ sin θ )

)

+ 1
r 2 sin2 θ

∂2vθ

∂φ2
+ 2

r 2

∂vr

∂θ
− 2

r 2

cot θ
sin θ

∂vφ

∂φ

]
+ ρgθ B.7-8

ρ

(
∂vφ

∂ t
+ vr

∂vφ

∂r
+ vθ

r
∂vφ

∂θ
+ vφ

r sin θ

∂vφ

∂φ
+ vr vφ

r
+ vφvθ cot θ

r

)

= − 1
r sin θ

∂p
∂φ

+ μ

[
1
r 2

∂

∂r

(
r 2 ∂vφ

∂r

)
+ 1

r 2

∂

∂θ

(
1

sin θ

∂

∂θ
(vφ sin θ )

)
+ 1

r 2 sin2 θ

∂2vφ

∂φ2

+ 2
r 2 sin θ

∂vr

∂φ
+ 2

r 2

cot θ
sin θ

∂vθ

∂φ

]
+ ρgφ B.7-9
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Table B.8. Newtonian constitutive equation for incompressible fluids in rectangular, cylindrical, and
spherical coordinates

Cartesian coordinates:

⎛
⎜⎜⎜⎝

τx x τx y τx z

τyx τyy τyz

τzx τzy τzz

⎞
⎟⎟⎟⎠

x yz

= μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vx
∂y + ∂v y

∂x
∂vx
∂z + ∂vz

∂x

∂v y

∂x + ∂vx
∂y 2 ∂v y

∂y
∂v y

∂z + ∂vz
∂y

∂vz
∂x + ∂vx

∂z
∂vz
∂y + ∂v y

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

x yz

B.8-1

Cylindrical coordinates:

⎛
⎜⎜⎜⎝

τr r τr θ τr z

τθr τθθ τθ z

τzr τzθ τzz

⎞
⎟⎟⎟⎠

r θ z

= μ

⎛
⎜⎜⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

( vθ

r

) + 1
r

∂vr
∂θ

∂vr
∂z + ∂vz

∂r

r ∂
∂r

( vθ

r

) + 1
r

∂vr
∂θ

2
( 1

r
∂vθ

∂θ
+ vr

r

) 1
r

∂vz
∂θ

+ ∂vθ

∂z

∂vr
∂z + ∂vz

∂r
1
r

∂vz
∂θ

+ ∂vθ

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

r θ z

B.8-2

Spherical coordinates:⎛
⎜⎜⎜⎝

τr r τr θ τr φ

τθr τθθ τθφ

τφr τφθ τφφ

⎞
⎟⎟⎟⎠

r θφ

= μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

( vθ

r

) + 1
r

∂vr
∂θ

1
r sin θ

∂vr
∂φ

+ r ∂
∂r

( vφ

r

)
r ∂

∂r

( vθ

r

) + 1
r

∂vr
∂θ

2
( 1

r
∂vθ

∂θ
+ vr

r

) sin θ
r

∂
∂θ

( vφ

sin θ

) + 1
r sin θ

∂vθ

∂φ

1
r sin θ

∂vr
∂φ

+ r ∂
∂r

( vφ

r

) sin θ
r

∂
∂θ

( vφ

sin θ

) + 1
r sin θ

∂vθ

∂φ
2
(

1
r sin θ

∂vφ

∂φ
+ vr

r + vθ cot θ
r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

r θφ

B.8-3

Note: These expressions are general and applicable to three-dimensional flows. For unidirectional flows, they reduce to Newton’s law of
viscosity (see Chapter 5).

Table B.9. The microscopic energy equation in rectangular, cylindrical, and spherical coordinates

Cartesian coordinates:

∂T
∂ t

+
(

vx
∂T
∂x

+ v y
∂T
∂y

+ vz
∂T
∂z

)
=

ˆ
k

ρCp

[
∂2T
∂x 2

+ ∂2T
∂y2

+ ∂2T
∂z2

]
+

ˆ
S

ρCp
B.9.1

Cylindrical coordinates:

∂T
∂ t

+
(

vr
∂T
∂r

+ vθ

r
∂T
∂θ

+ vz
∂T
∂z

)
=

ˆ
k

ρCp

[
1
r

∂

∂r

(
r
∂T
∂r

)
+ 1

r 2

∂2T
∂θ2

+ ∂2T
∂z2

]
+

ˆ
S

ρCp
B.9.2

Spherical coordinates:

∂T
∂ t

+
(

vr
∂T
∂r

+ vθ

r
∂T
∂θ

+ vφ

r sin θ

∂T
∂φ

)

=
ˆ

k

ρCp

[
1
r 2

∂

∂r

(
r 2 ∂T

∂r

)
+ 1

r 2 sin θ

∂

∂θ

(
sin θ

∂T
∂θ

)
+ 1

r 2 sin2 θ

∂2T
∂φ2

]
+

ˆ
S

ρCp
B.9.3
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Table B.10. Power-law, generalized Newtonian constitutive equation for incompressible fluids in
rectangular, cylindrical, and spherical coordinates

Cartesian coordinates:⎛
⎜⎜⎜⎝

τx x τx y τx z

τyx τyy τyz

τzx τzy τzz

⎞
⎟⎟⎟⎠

x yz

= ηγ̇ B.10-1

η ≡ mγ̇ n−1 = m

∣∣∣∣∣∣∣ 1
2 · sum of squares

of each term in γ̇

∣∣∣∣∣∣∣
n−1

2

= m

∣∣∣∣∣∣∣1
2

·
3∑

p=1

3∑
j =1

γ̇ 2
p j

∣∣∣∣∣∣∣
n−1

2

B.10-2

γ̇ =

⎛
⎜⎜⎜⎜⎝

2 ∂vx
∂x

∂vx
∂y + ∂v y

∂x
∂vx
∂z + ∂vz

∂x

∂v y

∂x + ∂vx
∂y 2 ∂v y

∂y
∂v y

∂z + ∂vz
∂y

∂vz
∂x + ∂vx

∂z
∂vz
∂y + ∂v y

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎟⎠

x yz

B.10-3

Cylindrical coordinates:⎛
⎜⎜⎜⎝

τr r τr θ τr z

τθr τθθ τθ z

τzr τzθ τzz

⎞
⎟⎟⎟⎠

r θ z

= ηγ̇ B.10-4

η ≡ mγ̇ n−1 = m

∣∣∣∣∣∣∣ 1
2 · sum of squares

of each term in γ̇

∣∣∣∣∣∣∣
n−1

2

= m

∣∣∣∣∣∣∣1
2

·
3∑

p=1

3∑
j =1

γ̇ 2
p j

∣∣∣∣∣∣∣
n−1

2

B.10-5

γ̇ =

⎛
⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

( vθ

r

) + 1
r

∂vr
∂θ

∂vr
∂z + ∂vz

∂r

r ∂
∂r

( vθ

r

) + 1
r

∂vr
∂θ

2
( 1

r
∂vθ

∂θ
+ vr

r

) 1
r

∂vz
∂θ

+ ∂vθ

∂z

∂vr
∂z + ∂vz

∂r
1
r

∂vz
∂θ

+ ∂vθ

∂z 2 ∂vz
∂z

⎞
⎟⎟⎟⎠

r θ z

B.10-6

Spherical coordinates:⎛
⎜⎜⎜⎝

τr r τr θ τr φ

τθr τθθ τθφ

τφr τφθ τφφ

⎞
⎟⎟⎟⎠

r θφ

= ηγ̇ B.10-7

η ≡ mγ̇ n−1 = m

∣∣∣∣∣∣∣ 1
2 · sum of squares

of each term in γ̇

∣∣∣∣∣∣∣
n−1

2

= m

∣∣∣∣∣∣∣1
2

·
3∑

p=1

3∑
j =1

γ̇ 2
p j

∣∣∣∣∣∣∣
n−1

2

B.10-8

γ̇ =

⎛
⎜⎜⎜⎜⎝

2 ∂vr
∂r r ∂

∂r

( vθ

r

) + 1
r

∂vr
∂θ

1
r sin θ

∂vr
∂φ

+ r ∂
∂r

( vφ

r

)
r ∂

∂r

( vθ

r

) + 1
r

∂vr
∂θ

2
( 1

r
∂vθ

∂θ
+ vr

r

) sin θ
r

∂
∂θ

( vφ

sin θ

) + 1
r sin θ

∂vθ

∂φ

1
r sin θ

∂vr
∂φ

+ r ∂
∂r

( vφ

r

) sin θ
r

∂
∂θ

( vφ

sin θ

) + 1
r sin θ

∂vθ

∂φ
2
(

1
r sin θ

∂vφ

∂φ
+ vr

r + vθ cot θ
r

)
⎞
⎟⎟⎟⎟⎠

r θφ

B.10-9

Note: These expressions are general and applicable to three-dimensional flows. For unidirectional flows, they reduce to the simple power-law
expression (see Chapter 5).
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factors affecting, 844t
numerical solutions method, 843–845

aerodynamics, 120–121, 137–143. See also lift
aeronautics, 5, 118
airfoil, 699 f , 854, 857 f

angle of attack, 140–142 f , 141 f
boundary layer thickness, 698–699 f
lateral vs. upward flow, 638 f –641
uniform flow, 308–309, 308 f

anisotropic bodies, and lift, 138 f , 141
anisotropic stress, 228, 297, 302, 304, 305, 310,

347, 347 f, 348. See also extra-stress tensor
API (American Petroleum Institute) gravity, 881
Archimedes’ principle, 259
Aristotle, 115
associative law for scalars, 58

with vectors, 59
asymptote, 178, 536
automobiles, and drag, 5, 117 f
average density, 52, 184
average fluid velocity, 9, 12, 13–14 f
average of function, calculating, 55–58, 184

ball valve. See valves and fittings
basis vector

Cartesian, 61 f –63, 74–75, 615
curvilinear, 75–77, 76 f
orthonormal, 62–63, 64, 76, 78, 887

behavior of fluid, 838–874
compressible flow, 867–874

examples/solutions, 871–874
flows with curved streamlines,

examples/solutions, 861–867
laminar flow, turbulent flow, 845–853

flow instability, 851–853
statistical modeling of turbulence, 846–851

lift, circulation, 853–861
numerical solutions method, 840–845

accuracy, 843–845
software packages, 842–843
strategy, 840–842

supersonic flow, 867–874

viscosity, drag, and boundary layers, 838–840
Bernoulli equation, 15–26, 578, 668–672, 706,

862
irrotational flow, 668–672

bicycle racing, 116 f , 117–118
Bingham viscosity function, 109, 411t
blood flow dynamics. See hemodynamics
blunt objects, flow past, 705–718
body forces, 229 f –230, 887
body moments, 298, 298n4
Bond number, 333
boundary conditions, 464–472

example/solution, 464–467, 470–472
falling film (incline) problem, 470–472,

471 f
finite velocity and stress, 469
flows in most common, 464–467, 465 f
no-slip at wall, 467
no-slip for rectangular duct, 550
Poiseuille flow in slit, 546
stress continuity, 468–469
surface tension, 469–470
symmetry, 467–468
velocity continuity, 469

boundary-layer analysis, 678 f
boundary layers, 4–5, 7, 118–127

attached vs. detached, 5 f , 710–714
blunt objects, 705–718
cylinders, 124–127 f , 125 f , 715 f
flat plate, 681–694
fluid behavior, 838–840
introduction to, 673–677
laminar, 120 f , 121

examples/solutions, 678–696
inertia, 678
thickness, 692 f , 695–696
velocity profile, 697 f

and rotation, 689 f
separation of, 710 f , 711 f , 713 f , 714–716
thickness of airfoil, 698–699 f
turbulent, 120 f , 121

drag, 698 f
examples/solutions, 696–705
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turbulent (cont.)
thickness of, 698–699 f

and viscosity, 678, 838–840
Brown, Robert, 362
Brownian motion, 319, 362–364
bulk deformation, 239, 881
buoyancy, 81–84, 257–259

and drag, 604–619, 605 f , 608 f , 609 f , 611 f ,
612 f , 618 f

neutrally buoyant particles, 177n4
buoyancy effect, 83, 305–306, 618 f
burst pipe problem, 601 f

conclusion, 513–517, 515 f
flow-rate/pressure-drop relationship,

505–508
laminar flow, 495–497 f , 496 f

calculus, 49–93
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calibration, 881
Cannon-Fenske routine viscometer, 508 f –511,

509 f
capacity, 8 f , 881
capillary action, 147–148 f , 328 f –332

Cannon-Fenske routine viscometer, 508 f –511,
509 f

Carreau–Yasuda model, 409 f –411t , 410 f
Cartesian coordinates, 61 f –63, 74, 75 f , 707 f ,

892–893
boundary conditions, 470–472, 471 f
continuity equation, 902t
control volume, 200, 207–208, 214
equations

incompressible fluids, constitutive equation,
904t

incompressible fluids, motion, 902t , 903t
incompressible fluids, power-law, 905t
microscopic energy, 904t

examples/solutions, 63–67
flow direction in ducts, 557
microscopic energy balance, 451–452
microscopic momentum balance, 460
right angle bend, 317–319, 389
stationary liquids, 256
tensors, 286, 288

Casson viscosity function, 411t
Cauchy momentum equation, 411, 464, 846, 847,

848, 849
microscopic balance, 440, 441–442, 448–450,

459, 460
cavitation, 815–816, 815 f , 816 f
centrifugal pumps, 800–823, 801 f
check valve. See valves and fittings
choked flow, 867–868 f , 870
circulation, 853–861. See also lift

examples/solutions, 858–861
Clay Mathematics Institute (CMI), 464n4
closed system, energy balance in, 751 f –752
Coanda effect, 139 f , 140 f
coefficient of sliding friction, 171, 881–882

Colebrook correlation for pipe friction, 37,
536–538

commutative law for scalars, 58, 59
complex flows, 572–574, 718–733

dimensional analysis, 726–733
example/solution, 574–577
quasi-steady-state solutions, 577–580
unpredictability of, 718–720
unsteady-state solutions, 573–574
vorticity, 718–726

complex problems, 538 f –540
method for solving, 538

compressible flow, 867–874
examples/solutions, 871–874

computational fluid dynamics (CFD), 839–840
conservative force, 882
conservation laws, 8–9

Bernoulli equation, 15–26
energy, 70, 87–88, 89 f , 167
equations

control volume balances, 444 f
individual bodies, 444 f
microscopic balances, 445 f

mass, 70, 87–88, 89 f , 167
momentum, 70, 87–88, 89 f , 167

constant-head tank, 19 f
constitutive equations, 369–372, 882

example/solution, 373–393
generalized Newtonian fluid, 408–412 f , 416,

460–461
incompressible fluids, 504, 904t
inelastic (see inelastic constitutive equations)
Newtonian fluids, 319–320, 369–375
power-law viscosity, 408–412 f , 441
stress, 4, 229, 349 f , 390, 838–839, 850
stress tensor, 544
stress-velocity, 299, 319, 348
viscoelastic, 414–418, 415 f , 441

contact forces, 228, 229 f , 230, 882
moving fluids, 283–320

free-surface stress effects, 320–322
isotropic and anisotropic stress, 302–320
total molecular stress, 284–302, 347

stationary fluids, 236–283
devices, 271–283
gases, 237 f –241
liquids, 237 f , 241–261

Pascal’s principle, 263–270, 277–278
pressure on, 250 f , 251–255, 261
principles of, 277
solids, 263–270
total stress tensor equation, 302

total molecular stress
stress sign convention, 301–302
stress tensor, 294–297

continuity equation
coordinate systems, 902t
dimensionless, 520
microscopic mass balance, 429, 437–438,

447–448
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pressure-driven flow, 549–550
continuum assumption, 155, 173–174
continuum model, 4, 175–187

continuum hypothesis, 181–184
field variables, 176–180
fluid particles, 184–187

control surface, 882
control volume (CV), 8, 9 f , 174, 187–194, 766

conservation law equations, 444 f
definition, 190 f , 882
examples/solutions, 194–201
forces on, 229–236
macroscopic, 212–217, 230 f
microscopic, 207–212, 230 f
microscopic parallelepiped CV, 311 f
momentum balance, 190–194

convective term, 189, 194–206, 435, 882. See also
Reynolds transport theorem

coordinate systems, 61–63. See also Cartesian
coordinates; curvilinear coordinates;
cylindrical coordinates; spherical
coordinates

differential operations, 898–905
Gibbs notation independence from, 438, 440
vector calculus, 61–67, 892–893

correlations, 11, 529–530, 882
example/solution, 531–540

coupling. See valves and fittings
creeping flow, 119, 376 f –377, 476 f –477, 675 f ,

676, 677 f
around sphere, 604–619, 605 f , 608 f , 611 f ,

612 f , 623
dimensional analysis, 731
terminal speed, 619–621

Crocco’s theorem, 667
cross product, 59, 60 f , 63
cross-stream momentum balance, 864
cup-and-bob apparatus, 306 f –308
curved streamlines, flows with, 149–153,

366–369, 373–375, 861–867
curvilinear coordinates, 74–84

cylindrical, 74–77, 75 f , 76 f
examples/solutions, 78–84
spherical, 75 f , 76 f , 77

cylinders, flow around
boundary layers, 124–127 f , 125 f
pressure fields, 672–673

cylindrical coordinates
differential operations in, 900t
equations

incompressible fluids, 504, 904t
incompressible fluids, motion, 902t , 903t
incompressible fluids, power-law, 905t
microscopic energy, 904t

flow-direction momentum balance, 557

d’Alembert, Jean le Rond, 662
d’Alembert’s paradox, 662
Darcy friction factor, 528n5. See also Fanning

friction factor

Darcy-Weisbach equation, 36
data correlations. See correlations
Dean vortices, 152
deformable media, motion of, 172–218

continuum model, 175–187
deformation rate, 156, 397, 403
DeKee viscosity function, 411t
del operator, 71, 893–898
density field, 177–181
derivatives, 50–52, 182–183

examples/solutions, 52–54
diagonal stress tensor, 304, 347. See also isotropic

stress
differential operations, 70–71. See also partial

differential equations
examples/solutions, 71–74
in rectangular and curvilinear coordinates,

898–905
on vectors and tensors, 892–898

dimensional analysis, 7, 513, 726–733
creeping flow around sphere, 731
examples/solutions, 731–733
noncreeping flow, 628–638

example/solution, 638, 641–646
lift, 637–641, 638 f
terminal speed, 641–643
velocity/trajectory, 643–647, 644 f

turbulent flow in pipes, 518–529
dipole-dipole forces, 229 f , 231, 232t
distributive law for scalars, 58

with vectors, 59
divergence, 432–433, 894

of tensor, 882, 896
of vector, 882, 895

divergence theorem, 432–433
dot product, 59, 60 f , 62–63, 68–69
double integral, 58, 204
double-well manometer, 275–276 f
drag, 113–118

and automobiles, 117 f
and blunt objects, 716
and buoyancy, 604–619, 605 f , 608 f , 609 f ,

611 f , 612 f , 618 f
examples/solutions, 114, 117–118
fluid behavior, 838–840
form drag, 712–713
Newtonian fluid, 366 f , 400–401, 484 f –485
noncircular conduits, 563–564
nondimensional, 622, 623–624 f , 640
potential flow, 660–661, 663–665
simple shear flow, 358–359, 366 f
steady drag flow, 400–401, 482–483
turbulent boundary layers, 698 f
viscous, 714, 716, 838–840
at wall (see wall drag)

drag coefficient, 116 f –118, 622, 641,
882

correlations, 116 f , 624, 625 f
ducts of constant cross section, 558
dyad/dyadic product, 67, 68, 889
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dynamic pressure, 630 f –634, 652
and buoyancy effect, 649
definition, 630, 883
nondimensional, 639, 651, 663, 674
steady, two-dimensional, 683, 685

eddies, 845 f
Einstein notation, 437, 883
electrostatic attraction, 230–231 f , 244 f
elliptical cross section, laminar flow, 560–562,

561 f , 562 f
Ellis viscosity function, 411t
elongational flow, 378 f –379
empirical relation, 883
energy

internal, 443
kinetic, 442 f , 443, 527
potential, 442 f –443

energy balance, 750–766
closed systems, 751–752
mechanical energy balance, 8–49, 759–766
open systems, 753–759

energy conservation, 70, 87–88, 89 f , 167,
442–445

energy velocity-profile parameter, 763, 766t , 768
entanglement forces, 232 f , 232t
equilateral triangle cross section, 559 f –560
equivalent pressure. See dynamic pressure
Ergun correlation, 567, 569
error, roundoff, 27, 41, 46, 843, 845, 888
Eulerian description of fluid mechanics, 190–206,

883–884
Euler’s method, 646
external flows, 4, 600–733

definition, 884
dimensional analysis, 726–733

examples/solutions, 731–733
vorticity, 718–726

examples/solutions, 724–726
extra-stress tensor, 304, 364–365, 378, 884

falling film (incline) problem, 174–175 f
boundary conditions, 470–472, 471 f
conclusion of, 379–386 f
flow rate/average velocity, 12, 390–392
microscopic balances, 452–457
microscopic control-volume, 207–212, 208 f ,

209 f , 211 f
Newtonian fluids, 364–365 f
stress-tensor components, 310–316, 311 f ,

312 f , 314t
total force on wall, 473–475

Fanning friction factor ( f ), 35–37, 39, 513, 528
ducts, 570
flow-rate/pressure-drop, 532
smooth/rough commercial pipes, 537 f

Faraday’s law of induction, 153
ferrifluids, 298n4
field variables, 176–177

example/solution, 177–180 f , 178 f , 179 f

first law of thermodynamics, 443
flat plate, flow past, 681–705
flow cytometry, 7 f
flow-direction component of fluid velocity, 682 f ,

691 f
flow instability, 851–853
flow rate, 194–201, 390–392, 481–483
flow-rate-measurement devices,

examples/solutions, 772–779
flow variables, examples/solutions, 13–15
flow-visualization videos, 106
fluctuation-averaged equations of change for

turbulent flow, 848–849
fluid acceleration, 862 f
fluid-centered view, 113
fluid contact forces, 203
fluid-force equation

for ideal gases, 245
sphere in creeping flow, 614, 617
sphere in noncreeping flow, 626
sphere in uniform flow, 626

fluid-layer separation, 714
fluid particles, 184–187 f , 185 f
fluid(s)

definition, 233, 884
properties of, 283

fluid-stress modeling, 4
flux/temperature law, 299
form drag, 712–713
free-stream velocity, 674 f
free-surface effects, 145–146, 884
free-surface stress effects, 320–322

capillary action, 328–332
examples/solutions, 322–332
spherical water droplet in air, 322–328, 323 f

friction, 792 f
examples/solutions, 34–49
Fanning friction factor ( f ), 35–37, 39
no friction, no work, examples/solutions, 15–26

friction factor. See also Fanning friction factor;
Darcy friction factor

circular ducts, 555
correlations, 35, 37, 529–540, 532 f
laminar slit flow, 555
noncircular conduit, 555
packed bed, 567
Reynolds number, 36, 530–533, 531 f

friction loss, 807 f . See also head loss
friction-loss factors for fittings

laminar flow, 43t
turbulent flow, 43t

Froude number, 523, 529, 530, 633, 830
fully developed flow, 884
function

average of, 55–58
maximum value of, 52–54

Galilei, Galileo, 115
gases, static, 237 f –241

examples/solutions, 240–241
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ideal gas law, 237–238
kinetic-molecular theory of, 238t–240

gate valve. See valves and fittings
gauge pressure, 112, 266, 268, 770 f , 772, 884
Gauss-Ostrogradskii divergence theorem,

432–433. See also Stokes’s theorem
Gauss’s integral theorem, 884–885
gc , 29n2, 47, 885
generalized Newtonian fluid (GNF) constitutive

equation, 408–412 f , 416, 460–461
geological flows, 154
geometrically complex flows, 580–581

example/solution, 581–585
Gibbs notation, 71, 85, 89, 898

boundary conditions, 468
continuity equation, 447, 605, 680
definition, 885
flow-direction momentum balance, 557
independence from coordinate systems, 438,

440
molecular contact forces, 299
nondimensionality, 523, 632, 731, 732
stress tensor, 285, 288, 293, 303, 346

globe valve. See valves and fittings
golf balls, 119 f –120 f , 121 f
gradient function, 179, 180 f , 894, 895. See also

del operator
gravity field equation, 208
gravity forces, ratios, 333, 523, 830

Hagen-Poiseuille equation
flow-rate/pressure-drop, 111 f , 507, 511, 532
flow through capillary, 509
laminar flow, 128, 497
steps to, 511

Hamel flow, 581 f , 582 f –583
head, 8 f , 47–48, 769, 777, 885
head loss, 36, 41, 818–819, 821, 885. See also

friction loss
heart–lung machine (HLM), 151–152 f
hemodynamics, 5, 6 f , 129–130t , 130 f
hotel tower example

and boundary layers, 124–127 f , 125 f
pressure fields, 672–673

hydraulic diameter, 557
and Poiseuille equation, 554–558

hydraulic jump, 826–830, 827 f
hydraulic lifts, 144 f , 277–282

examples/solutions, 278–282
hydraulic radius, 557n11
hydroelectric power, 30–34, 31 f
hydrogen bond, 229 f , 230, 231 f , 232t
hydrostatics, 236–283. See also contact forces,

stationary fluids

ideal gas law, 237–238, 239, 240, 244, 245, 260,
871–872

incline problem. See falling film (incline) problem
indeterminate vector product, 67–68, 70, 290, 292,

885, 889, 895. See also tensor

induction, 30 f , 153–154
inelastic constitutive equations, 402–414, 441

example/solution, 403–404, 403–414, 406,
407–408

generalized, 408–414, 412 f
planar-jet flow, 403 f –404, 407–408
power-law viscosity function, 408–409, 411t ,

412–414
rate of deformation, 403, 406

inertial forces
circular flow, 150
laminar boundary layers, 678
sudden acceleration of wall, 575–577
viscous forces vs., 676

inertia vs. viscosity, 676
inner product, 59
integral, 54–55, 182–183

example/solution, 55–58
over arbitrary limits, 436, 437 f

interfacial forces, 148–149
intermolecular forces, 230–232t , 231 f

potential energy function, 242 f , 243–244
intermolecular repulsion, 242, 243, 244 f , 263,

320
internal energy, 443
internal flow, 4, 494, 885–886.

See also laminar flow; turbulent flow
entry flow, 127, 583–584
noncircular conduits, 540–564, 570–572
packed bed, 564–569
pipe flow, laminar, 497
pipe flow, turbulent, 511

inviscid fluid, 651, 675 f , 886. See also potential
flow

ion-dipole forces, 229 f , 231, 232t
irrotational flow, 668–672, 855, 857n1, 886.

See also vorticity
irrotational regions, 720, 721f
isotropic pressure distribution, 156, 250 f
isotropic stress, 228, 302–320

examples/solutions, 303–319, 347, 886
moving fluid, 347 f , 348
stationary fluid, 323

iterative solution, 514–515 f , 539 f

Kelvin’s circulation theorem, 864, 865–866
kinematics, 886
kinematic viscosity. See viscosity, kinematic
kinetic energy, 442 f , 443, 527
kinetic-molecular theory of gases, 238t–240,

241–242
Korotkov sound, 129
Kronecker delta, 886
Kutta–Joukowski theorem, 856–857, 858, 861

Lagrangian description of fluid mechanics, 87. See
also Eulerian description

laminar boundary layers, 120 f , 121, 678
examples/solutions, 678–696
inertia in, 678
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laminar boundary layers (cont.)
thickness of, 692 f , 695–696
velocity profile, 697 f

laminar flow, 4, 5 f , 11, 127–137, 845–853. See
also turbulent flow; internal flow

burst pipe problem, 495–497 f , 496 f , 505–508
Cannon-Fenske routine viscometer, 508 f –511,

509 f
conduit with equilateral triangular cross section,

559 f –560
defining, 128 f , 512 f
elliptical cross section, 560–562, 561 f , 562 f
example/solution, 497–511
examples/solutions, 131–137, 135 f
flow instability, 851–853
flow-rate/pressure-drop relationship, 497–505 f ,

502 f –503 f
friction factor in slit flow, 555
friction-loss factors, 43t
Hagen-Poiseuille equation, 128, 497
microscopic balances equation, 497–505 f ,

502 f –503 f
noncircular conduits, 540–544

Poiseuille number and hydraulic diameter,
554–558
average velocity in triangular duct, 562–563
drag in laminar flow, 563–564
ducts of constant cross section, 558
elliptical cross section, 560–562, 561 f ,

562 f
equilateral triangle cross section, 559 f –560
example/solution, 558–569
pressure-driven flow through packed bed,

564–569, 565 f
Poisson equation, 541–544

problem solving strategy, 513 f
turbulent flow vs., 127–137, 762 f

Laplacian, 894–895
of scalar, 896
of vector, 896–897

Leibniz rule (constant volume), 435, 438
lift, 137–143, 853–861

angle of attack and, 138 f , 139–140
anisotropic bodies, 138 f , 141
calculating, 142–143
examples/solutions, 858–861
lateral vs. upward flow, 638 f –641

lift coefficient, 140–141 f , 142 f
liquids, stationary, 237 f , 241–261. See

hydrostatics
confined, 263
examples/solutions, 251–260
momentum balances, 245–251
pressure on, 250 f , 251–255, 261–262
unconfined, 263 f

London dispersion forces, 229 f , 231 f , 232t
Lorentz force, 154
lubricants, 107, 472, 473 f
lubrication approximation, 585

Mach number (Ma), 145
macroscopic analysis, disadvantages of, 9

macroscopic balance equations, 9, 741–830
derivation of, 741–766

energy balances, 750–766
mass-balance equation, 742–745
momentum-balance equation, 745–750

use of, 766–830
flow-rate-measurement devices,

examples/solutions, 772–779
open-channel flow, examples/solutions,

823–830
pressure-measurement devices,

examples/solutions, 769–772
pumps, examples/solutions, 800–823
valves and fittings, examples/solutions,

779–800
macroscopic Bernoulli equation, 15–26
macroscopic closed-system energy balance,

751–752
macroscopic control-volume, 212–217, 230 f

example/solution, 212–217
macroscopic energy balance, 750–766, 768
macroscopic mass balance, 742–745, 766–767
macroscopic momentum balance, 767–768, 779 f

equation, 745–750
macroscopic open-system energy balance, 751,

753–759
magnetohydrodynamics (MHD), 5, 153–154 f ,

155 f
magnitude of tensor, 405
manometers, 271–277, 274 f , 272 f

definition, 886
examples/solutions, 274–276

manometer tubes, 770, 770 f , 774–776, 774 f
Marangoni effect, 148, 149 f , 333
mass balance, 433–438. See macroscopic mass

balance; continuity equation; mass
conservation

continuity equation, 429, 437–438
example/solution, 436–437 f

mass-body-motion approach, 174
mass conservation, 70, 87–88, 89 f , 167, 433–438

continuity equation, constant density, 572
mass flow rate, 12, 14, 195, 197

pentahedron example, 198–201
matrix algebra, 69
maximum value of function, calculating, 52–54
mechanical energy balance (MEB), 8–49, 759–766

application method, 13t
definition of terms, 10
derivation, 759–766
flow variables, examples/solutions, 13–15
with friction, examples/solutions, 34–49
macroscopic energy balance and, 750
with no friction, no work, examples/solutions,

15–26
pumps and, 805 f
requirements for using, 11t
with shaft work, examples/solutions, 26–34
volumetric flow rate-average velocity

relationship, 12, 13
memory fluid, 109, 416
meniscus effect, 146 f
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microfluidics, 5–6, 7 f , 541
microscopic balance equation, 71, 429

Cauchy momentum, 440, 441–442, 448–450,
459, 460

continuity equation, 447–448
deriving equations, 430–432
energy balance, 442–445
falling film (incline) problem, 452–457
flow-direction momentum balance for Poiseuille

flow in conduit, 549–554, 550 f , 551 f
mass balance, 433–438

continuity equation, 429, 437–438
example/solution, 436–437 f

momentum balance, 438–442, 440, 448–450,
459–463, 460

Navier-Stokes, 441, 449, 450–451 f , 454–456,
457–458, 463–464, 499

Newtonian fluids, 457–459
non-Newtonian fluids, 459–463
problem-solving procedure, 446–447, 452 f ,

498 f
steady flow for laminar pipe flow, 497–505 f ,

502 f –503 f
velocity and stress field quantities, 472–473

creeping flow, 476 f –477
example/solution, 473–478
falling-film (incline) problem, 472–475
flow rate and average velocity, 481–483
torsional rheometer, 478–481, 479 f
total force on wall, 472–473
velocity and stress extrema, 483–485

microscopic control-volume, 230 f
example/solution, 207–212

microscopic parallelepiped, 311 f
molecular forces

definition, 886
dipole-dipole, 229 f , 231, 232t
electrostatic attraction, 230–231 f , 244 f
hydrogen bond, 229 f , 230, 231 f , 232t
intermolecular repulsion, 242, 243, 244 f , 263,

320
ion-dipole, 229 f , 231, 232t
London dispersion, 229 f , 231 f , 232t
polymer entanglement, 229 f , 231, 232 f , 232t ,

396
momentum balance, 147, 167–171, 438–442. See

also microscopic balance equation
general fluids, 438–440
Newtonian fluids, 441–442
on skydiver at terminal speed, 603

momentum conservation, 70, 87–88, 89 f , 167,
184–186, 245

momentum flow rate, 195–196, 198, 201–206
momentum velocity-profile parameter, 746,

747–749, 766 f , 767
Moody Plot, 38 f , 568 f , 570
motor oil, viscosity of, 107

National Committee for Fluid Mechanics Films
(NCFMF), 333, 852–853

Navier-Stokes equation, 121, 572, 723, 731,
839–840

in coordinate systems, 429–430, 903t
dynamic pressure term, 631, 652
flow around sphere, 606–610
flow rate/pressure-drop relationship, 498–500
geometrically complex flows, 580–585
microscopic momentum balance, 441, 449,

450–451 f , 454–456, 457–458, 463–464,
499

momentum conservation, 542–543
nondimensional, 421, 519–523, 528, 535,

631–632, 674–675
pressure-driven flow in duct, 550
regular pressure term, 631
semi-infinite fluid bound by wall, 575

net positive suction head (NPSH), 814–823,
818 f

examples/solutions, 817–823
neutrally buoyant particles, 177n4
Newton, Sir Isaac, 316, 361, 886
Newtonian fluids, 364–393. See also

non-Newtonian fluids
constitutive equation, 319–320, 369–373
creeping flow around solid sphere, 376 f –377
drag flow, 366 f , 484 f –485
elongational flow, 378 f –379
equations for all incompressible flow problems,

572
falling film (incline) problem, 364–365 f ,

379–386 f , 390–392
flow around sphere, 366 f , 368–369 f ,

374–375
microscopic balance equation, 457–459
molecular fluid force, 301–302
momentum balance, 441–442
planar-jet flow, 366 f –368 f , 373–374
right angle bend problem, 386–390, 387 f ,

392–393
shear flow, 364–365 f
steady-drag flow, 400–401

Newton’s law of viscosity, 108–109, 360–361
example/solution, 157–158

Newton’s second law of motion, 167–168 f , 185
control volume (see Reynolds transport

theorem)
definition, 886–887
examples/solutions, 168–172
terminal speed, 602, 619, 642

noncontact forces. See body forces
noncreeping flow, 628–638
around sphere, 622–623, 728–729, 729 f

drag coefficient, 623–625, 624, 625 f , 641
terminal speed, 625–628

example/solution, 638, 641–646
fluid-force equation, 626
lift, 637–641, 638 f
terminal speed, 641–643
velocity/trajectory, 643–647, 644 f

nondimensional flow equations
drag, 622, 623–624 f , 640
dynamic pressure, 639, 651, 663, 674
Navier-Stokes equation, 421, 519–523, 528,

535, 631–632, 674–675
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nondimensional flow equations (cont.)
Reynolds number, 523, 622, 623–625 f , 624 f
wall drag, 527–528

nondimensional pressure distributions, 675 f
nonlinear constitutive models, 417
non-Newtonian fluids, 5, 393–418. See also

Newtonian fluids
inelastic constitutive equations, 402–403

example/solution, 403–404, 406, 407–408,
412–414

generalized, 408–414, 412 f
planar-jet flow, 403 f –404, 407–408
power-law viscosity function, 408–409, 411t ,

412–414
rate of deformation, 406

microscopic balance equation, 459–463
shear-induced normal stresses, 397, 399–402,

399 f , 400 f
viscoelastic constitutive equations, 414–418,

415 f
viscosity, 394–397

non-Newtonian 394–397
shear-thickening, 394–397, 395 f , 398 f
shear-thinning, 396 f –397, 398 f , 412–414

normal forces, 233 f –234, 284
normal stresses, 397, 399–402
numerical solutions method, 840–845, 841 f ,

842 f
accuracy, 843–845
software packages, 842–843
strategy, 840–842

open-channel flow, 853 f
examples/solutions, 823–830, 824 f
gravity in, 823

open system, energy balance in, 751 f , 753–759
ordinary differential equations (ODEs),

examples/solutions, 91–93
orifice plate (orifice meter), 34, 811, 887
orthonormal basis vectors, 64, 76, 78, 887
outer flow

potential-flow solution, 121, 123, 126
pressure distribution, 684–685, 686, 698, 700,

708–710 f , 715
streamlines, 122 f , 123

outer product, 59

pail-and-scale method, 16 f
parallel-plate apparatus

boundary conditions, 464–467, 465 f
derivatives, 52–54, 53 f
force-velocity relationship, 360
Newtonian fluid drag flow, 484 f –485
Newtonian fluids, 457–459
non-Newtonian fluids, 459–463
Poisson equation for velocity and stress fields,

544–549, 545 f , 546 f , 547 f , 548 f
shear-induced normal stresses, 399–400
simple shear flow, 349–350 f , 355–358,

357 f

steady drag flow, 482–483
torsional rheometer, 478–479 f
velocity field, 351
viscosity, 364, 394

partial derivatives, 54
partial differential equations (PDEs), 6, 8, 9 f ,

91
definition, 887
examples/solutions, 91–93

particulate flow, 154–157, 156 f
Pascal’s principle, 263–271, 887–888
pathlines of the flow, 86 f –87
perfect fluid, 651
pipe flow. See internal flow

dimensional analysis of, 135
Pitot tube, 771–772, 771 f , 774–776, 774 f ,

777 f
planar-jet flow

Newtonian fluids, 366 f –368 f , 373–374
non-Newtonian fluids, 403 f –404, 407–408

Poiseuille, Jean Marie, 361
Poiseuille equation

burst pipe problem, 495–497 f , 496 f
drag at wall, 524–529, 544–549
duct of elliptical cross section, 560–562, 561 f ,

562 f
examples/solutions, 92–93
and hydraulic diameter, 554–569
momentum balance, 543–544
rectangular duct, 549–554, 550 f , 551 f
velocity and stress fields in slit, 544–549, 545 f ,

546 f , 547 f , 548 f
Poiseuille number (Po), 557, 560, 561 f , 562 f ,

570
Poisson equation, 554–555
polymer entanglement, 229 f , 231, 232 f , 232t ,

396
potential energy, 442 f –443
potential energy function, 242 f
potential flow, 121–122, 650–673, 675, 677 f

drag on sphere, high-Reynolds-number,
660–661

examples/solutions, 651–657, 660–661,
663–665, 666–673

flow around sphere, high Reynolds number,
651–657 f , 658 f

flow around sphere, no drag, 676–677 f
irrotational flow around cylinder, 670–672
pressure distribution, irrotational flow,

668–670
pressure distribution, steady, incompressible,

potential flow, 666–668
pressure distribution of flows, 672–673
pressure distribution on drag, 663–665
rules for using solutions, 670

power-law viscosity function, 408–409, 409 f ,
411t , 412–414

Prandtl, Ludwig, 118, 678–679, 714, 851
Prandtl correlation

burst pipe problem, 513–517, 515 f
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modified, for turbulent flow in noncircular
ducts, 570

turbulent pipe flow, smooth pipe, 512, 533,
537–538

pressure, equivalent. See dynamic pressure
pressure drag, 714, 716
pressure-measurement devices,

examples/solutions, 769–772
pressure-relief valves, 868 f
pressure waves, 869, 869 f , 871 f
pumping-head curves, 801–804, 806, 807 f , 809 f
pumps, 6, 8 f , 800–823

net positive suction head, examples/solutions,
814–823

size of, examples/solutions, 801–814

quasi-steady-state solution, 573, 577 f –579, 588 f

rate-of-deformation tensor, 405. See also
deformation rate

rectangular coordinate system. See also Cartesian
coordinates

differential operations in, 899t
rectangular duct, 549–554, 550 f , 551 f

laminar flow, elliptical cross section, 560–562,
561 f , 562 f

repulsion, intermolecular, 242, 243, 244 f , 263,
320

return bend. See valves and fittings
Reynolds, Osborne, 128–129, 888
Reynolds number, 18, 28–29, 128–132, 513, 727

circular ducts, 555, 556–558
examples/solutions, 131–137
flow patterns, high Reynolds number, 647–650,

648 f , 649 f
friction factor, 530–534, 531 f , 532 f , 555,

556–558
Hamel flow, 582 f –583
high, drag on sphere, 660–661
high, flow around sphere, 651–657 f , 658 f
laminar flow, equilateral triangular cross

section, 559 f –560
lift coefficient as function of, 140–141 f , 142 f
noncircular duct, 570
nondimensional flow, 523, 622, 623–625 f ,

624 f
packed bed, 567–568 f
smooth/rough commercial pipes, 537 f

Reynolds transport theorem
control volume, 187–189, 205–206, 228, 346
definition, 888
macroscopic control volume, 213–214
momentum balance, 438, 439, 451
moving fluids, 283–284
right angle bend problem, 387
simple shear flow, 355
stationary fluids, 245

rheology, 5, 109. See also non-Newtonian fluids
right angle bend problem, 430, 779–781

conclusion of, 386–390, 387 f

macroscopic control volume, 212–217, 213 f ,
214 f

molecular stresses, 316–320, 317 f
relative magnitudes of terms, 392–393

right-hand rule, 60 f
rigid bodies, motion of, 167–168, 173 f

examples/solutions, 168–172
rod-climbing, 400 f , 410
rotameter, 888
rotation, and boundary layers, 689 f
rotational flow, 720, 721f
roughness of manufactured pipes, 535–536t
roundoff error, 27, 41, 46, 843, 844, 888

scalars
associative law for, 58, 59
commutative law for, 58, 59
definition, 888
distributive law for, 58, 59
product, 59

Schedule 40 piping, 13
Scott, David (astronaut), 116 f
secondary flow, 149–153, 151 f
separation, of boundary layers, 710 f , 711 f , 713 f ,

714–716
shaft work, 10, 11, 26–34

examples/solutions, 26–34
shear flow, simple, 348–364
shear force, 233 f –234 f , 888
shear-induced normal stresses, 397–402
shear stress, 351–359
shear thickening, 394–397, 395 f , 411t
shear thinning, 396 f –397, 398 f , 411t , 412–414
shock wave, 873 f
simple shear flow, 348–359

drag flow, 358–359
examples/solutions, 355–358, 359
stress field, 351–355
velocity field, 350–351 f , 352 f
viscosity, 360–361

molecular interpretation of, 362–364
siphon, 21–25
skydiving, 601–604, 619–621, 625–628
sliding-block

with friction, 170–172
without friction, 168–170, 168 f , 170 f

slope
of secant line, 51 f
of tangent line, 50–52, 51 f

software packages, for numerical solutions
method, 842–843

solids, and transmission of forces, 263–270
sound, speed of, 869–870
spatial derivatives, 70–71, 892–893
specific gravity (SG), 797, 798, 889
sphere

dimensional analysis, 628–641
examples, 641–646
flow, creeping. See creeping flow
flow, noncreeping, 622–627
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sphere (cont.)
flow patterns, 647
pressure, creeping, 610
pressure, potential, 656, 666–668
potential flow, 650–665

spherical coordinates, 708 f
differential operations, 901t
equations

incompressible fluids, constitutive equation,
904t

incompressible fluids, motion, 902t , 903t
incompressible fluids, power-law, 905t
microscopic energy, 904t

stagnation point, 675, 889
statistical models of turbulence, 846–851
Stokes’s flow. See also creeping flow

estimate of terminal speed, 621
Stokes-Einstein-Sutherland equation, 619
Stokes’s theorem, 889
stream function, 122–123, 714–715 f , 775 f

curved streamlines, examples/solutions,
861–867

flows around sphere, 610–611 f , 612 f
flows with curved, 149–153, 150 f

streamlines. See stream function
stress constitutive equation, 4, 229, 349 f , 390,

838–839, 850
stress sign convention, total molecular stress,

298–301
example/solution, 301–302

stress tensor, 284–305
extra-stress tensor, 304, 364–365, 378,

884
matrix form, 310 f
stationary fluids, 347
symmetry of, 405
total molecular stress, 286–293, 347

examples/solutions, 294–297
substantial derivative, 84–90

examples/solutions, 89–90
physical meaning of, 84–88

supersonic flow, 143–145, 867–874
surface integral, 202 f
surface tension, 145–149, 146 f , 147 f , 320–333

capillary effect, 328–332
dimensionless numbers, 333
droplet, 322–328
nonspherical surface, 326–328
representative values, 321t

tensor. See also stress tensor; indeterminate vector
product

definition, 67–69, 889–890
divergence of, 882, 896
dot product of, 68–69
examples/solutions, 69–70
magnitude of tensor, 405
rate-of-deformation tensor, 405
symmetric tensor, 405
vector calculus, 67–70

terminal speed, 602, 603, 619–621, 625–628,
641–643

test section, of flow of interest, 843 f
torque, 65, 66 f –67, 478–481, 479 f
Torricelli’s law, 20
torsional rheometer, 478–481, 479 f
total molecular stress, 284–302

stress sign convention, 298–301
example/solution, 301–302

stress tensor, 286–293, 347
examples/solutions, 294–297

trim of a valve. See valve trim
triple integrals, 58, 431
tube flow. See internal flow
turbine, 30–33
turbulent boundary layers, 120 f , 121

drag, 698 f
examples/solutions, 696–705
thickness of, 698–699 f

turbulent flow, 4, 5 f , 11, 127–137, 511–513,
728–729 f , 845 f –853. See also laminar
flow

burst pipe problem, 513–517, 515 f
data correlations, 529–540
defining, 128 f , 512 f
dimensional analysis, 518–529, 534–535
examples/solutions, 131–137, 135 f , 513–517,

524–525, 531–533, 534–535, 538–540
flow instability, 851–853
flow splits, 538 f –540
friction-loss factors for, 43t
laminar flow vs., 127–137, 762 f
momentum balance, 517–518
noncircular conduits, 570–572
Prandtl correlation for noncircular ducts, 570
problem solving strategy, 513 f
smooth pipe, Prandtl correlation, 512, 533,

537–538
statistical modeling of turbulence, 846–851
wall drag, 527–528, 536 f

union. See valves and fittings
unit vector, 59, 60, 890. See also basis vector
unsteady, incompressible, unidirectional flow,

573–574

valves and fittings
ball valve, 42 f
check valve, 42 f
coupling, 44t
defining, 890–891
examples/solutions, 779–800
friction-loss factors, 43t
gate valve, 42 f
globe valve, 42 f
return bend, 42 f
union, 42 f

valve trim, 890
vapor lock, 24, 891
vector calculus, 58–84, 892–898

www.20file.org

http://www.semeng.ir


927 Index

coordinate systems, 61–67, 892–893
curvilinear coordinates, 74–84
differential operations, 70–74
tensors, 67–70
vorticity, 7, 152–153, 718

vectors
algebra laws for, 59
cross product of, 59, 60 f , 63
definition, 891
direction of, 59, 61
dot product of, 59, 60 f , 62–63
magnitude of, 59, 60–61
orthonormal, 62–63

velocity
direction and magnitude of, 744 f
in turbulent vs. laminar flow, 762 f

velocity field, 176–177, 891
velocity profile

calculating flow rate from average velocity,
481–483

converging flows, 583 f –584 f
energy velocity-profile parameter, 763, 766t ,

768
equilateral triangle, 559–560
flow around sphere, 709 f
flow down incline, 379–385, 386 f
laminar boundary layers, 697 f
laminar flow in pipes, 502 f
laminar flow past flat plate, 691, 695–696
momentum velocity-profile parameter, 746,

747–749, 766 f , 767
potential flow and creeping flow, 660
potential flow around sphere, 709 f
quasi-steady-state solution, 578
rectangular duct, 554–555, 557
semi-infinite fluid wall suddenly set in motion,

575
simple shear flow, 349, 350–351 f
steady drag, 352 f
steady flow in narrow slit, 55–58, 56 f
turbulent boundary layer, 696, 697
turbulent pipe flow, 749
two-dimensional, 543, 550

Venturi meter, 15, 16–19, 772–773, 773 f
viscoelastic constitutive equations, 414–418,

415 f , 441
viscosity, 106–113, 114t , 115t , 360–361, 361t .

See also drag
Bingham function, 109, 411t
boundary layers, 838–840

Casson function, 411t
DeKee function, 411t
drag, 714, 716, 838–840
effect on pressure, 677 f
Ellis function, 411t
examples/solutions, 110–113
familiar materials, 114t
familiar materials, compared on logarithmic

scale, 115 f
fluid behavior, 838–840
kinematic, 38, 107, 891
laminar boundary layers, 678
measuring using Cannon-Fenske viscometer,

508 f –511, 509 f
molecular interpretation, 362–364
motor oil, 107
Newton’s law, 108–109, 157–158, 360–361
non-Newtonian fluids, 394–397, 412–414
parallel-plate apparatus, 364, 394
power-law function, 408–409, 411t , 412–414
simple shear flow, 360–364

volumetric flow rate, 9, 12, 194–195, 197
volumetric flow rate-average velocity relationship,

12, 13
vortex tube, 865–866, 865 f
vorticity, 7, 152–153, 718–726, 721f, 722 f , 723 f ,

891
examples/solutions, 724–726

vorticity-transport equation, 725–726

wake region, 120
wall drag

noncircular conduits, 555
nondimensional, 527–528
Poiseuille flow, 524–529, 544–549
turbulent flow in circular pipe, 527–528,

536 f
water striders, 147, 148 f
Weber number, 333
weir, 891
Weissenberg effect, 400 f
wicking, 148
work, 442, 750
energy and, 442–443
flow work, 756 f

yield-stress fluid, 109 f . See Bingham viscosity
function

Young–Laplace equation, 328. See also surface
tension
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