
Chapter 5 • Dimensional Analysis 
and Similarity 

5.1 For axial flow through a circular tube, the Reynolds number for transition to turbulence is 
approximately 2300 [see Eq. (6.2)], based upon the diameter and average velocity. If d = 5 cm and 
the fluid is kerosene at 20°C, find the volume flow rate in m3/h which causes transition. 

Solution: For kerosene at 20°C, take ρ = 804 kg/m3 and μ = 0.00192 kg/m⋅s. The only 
unknown in the transition Reynolds number is the fluid velocity: 

tr
Vd (804)V(0.05)Re 2300 , solve for V 0.11 m/s

0.00192
ρ

μ
≈ = = =  

3
2 mThen Q VA (0.11) (0.05) 2.16E 4 3600  

4 s
Ans.π

= = = − × ≈
m0.78
hr

3

P5.2  A prototype automobile is designed for cold weather in Denver, CO (-10°C, 83 kPa).  Its 
drag force is to be tested in on a one-seventh-scale model in a wind tunnel at 20°C and 1 atm.  If 
model and prototype satisfy dynamic similarity, what prototype velocity, in mi/h, is matched?  
Comment on your result. 

Solution:   First assemble the necessary air density and viscosity data: 
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Convert 150 mi/h = 67.1 m/s.  For dynamic similarity, equate the Reynolds numbers: 
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This is too slow, hardly fast enough to turn into a driveway.  Since the tunnel can go no faster, 
the model drag must be corrected for Reynolds number effects.  Note that we did not need to 
know the actual length of the prototype auto, only that it is 7 times larger than the model length. 

5.3 An airplane has a chord length L = 1.2 m and flies at a Mach number of 0.7 in the standard 
atmosphere. If its Reynolds number, based on chord length, is 7E6, how high is it flying?   

Solution: This is harder than Prob. 5.2 above, for we have to search in the U.S. Stan-dard 
Atmosphere (Table A-6) to find the altitude with the right density and viscosity 

and speed of sound. We can make a first guess of T ≈ 230 K, a ≈ √(kRT) ≈ 304 m/s, U = 0.7a 
≈ 213 m/s, and μ ≈ 1.51E−5 kg/m⋅s. Then our first estimate for density is 

3
C

UC (213)(1.2)Re 7E6 , or 0.44 kg/m and Z 9500 m (Table A-6)
1.51E 5

ρ ρ ρ
μ

= = ≈ ≈ ≈
−

Repeat and the process converges to ρ ≈ 0.41 kg/m3 or Z ≈ 10100 m Ans. 

5.4 When tested in water at 20°C flowing at 2 m/s, an 8-cm-diameter sphere has a measured drag 
of 5 N. What will be the velocity and drag force on a 1.5-m-diameter weather balloon moored in 
sea-level standard air under dynamically similar conditions? 

Solution: For water at 20°C take ρ ≈ 998 kg/m3 and μ ≈ 0.001 kg/m⋅s. For sea-level standard 
air take ρ ≈ 1.2255 kg/m3 and μ ≈ 1.78E−5 kg/m⋅s. The balloon velocity follows from dynamic 
similarity, which requires identical Reynolds numbers: 

balloon
model model proto

1.2255V (1.5)VD 998(2.0)(0.08)Re 1.6E5 Re
0.001 1.78E 5μ

= = = = =
−

|ρ

or Vballoon ≈ 1.55 m/s. Then the two spheres will have identical drag coefficients: 

balloon
D,model D,proto2 2 2 2 2 2

FF 5 NC 0.196 C
V D 998(2.0) (0.08) 1.2255(1.55) (1.5)ρ

= = = = =

Solve for  .AnsF 1.3 Nballoon ≈

5.5 An automobile has a characteristic length and area of 8 ft and 60 ft2, respectively. When 
tested in sea-level standard air, it has the following measured drag force versus speed: 
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V, mi/h: 20 40
Drag, lbf: 31 11

The same car travels in Colorado at 65 mi/h at an altitude of 3500 m. Using dimensional analysis, 
estimate (a) its drag force and (b) the horsepower required to overcome air drag. 

Solution: For sea-level air in BG units, take ρ ≈ 0.00238 slug/ft3 and μ ≈ 3.72E−7 slug/ft·s. 
Convert the raw drag and velocity data into dimensionless form: 

V (mi/hr): 20 40 60 
CD = F/(ρV2L2): 0.237 0.220 0.211 
ReL = ρVL/μ: 1.50E6 3.00E6 4.50E6 

Drag coefficient plots versus Reynolds number in a very smooth fashion and is well fit (to ±1%) 
by the Power-law formula CD ≈ 1.07ReL−0.106. 
(a) The new velocity is V = 65 mi/hr = 95.3 ft/s, and for air at 3500-m Standard Altitude (Table A-
6) take ρ = 0.001675 slug/ft3 and μ = 3.50E−7 slug/ft⋅s. Then compute the new Reynolds number 
and use our Power-law above to estimate drag coefficient: 

(0.001675)(95.3)(8.0) 3.65 6,
3.50 7Colorado

VL E henc
E

eρ
μ

= = =
−

Re

2 2
0.106

1.07 0.2157, 0.2157(0.001675)(95.3) (8.0)   (a)D (3.65 6)
C A

E
≈ = ∴ = =F 2 ns.10 lbf  

(b) The horsepower required to overcome drag is 

Power (210)(95.3) 20030 ft lbf/s 550  (b)FV Ans.= = = ⋅ ÷ = 36.4 hp  

5.6 SAE 10 oil at 20°C flows past an 8-cm-diameter sphere. At flow velocities of 1, 2, and 3 m/s, 
the measured sphere drag forces are 1.5, 5.3, and 11.2 N, respectively. Estimate the drag force if the 
same sphere is tested at a velocity of 15 m/s in glycerin at 20°C. 

Solution: For SAE 10 oil at 20°C, take ρ ≈ 870 kg/m3 and μ ≈ 0.104 kg/m⋅s. Convert the raw 
drag and velocity data into dimensionless form: 

V (m/s): 1 2 3 
F (newtons): 1.5 5.3 11.2 
CD = F/(ρV2D2): 0.269 0.238 0.224 
ReL = ρVD/μ: 669 1338 2008 
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Drag coefficient plots versus Reynolds number in a very smooth fashion and is well fit (to ±1%) 
by the power-law formula CD ≈ 0.81ReL−0.17. 

The new velocity is V = 15 m/s, and for glycerin at 20°C (Table A-3), take ρ ≈ 1260 kg/m3 and μ
≈ 1.49 kg/m⋅s. Then compute the new Reynolds number and use our experimental correlation to 
estimate the drag coefficient: 

(1260)(15)(0.08)Re 1015 ( ),
1.49glycerin

VD within the range henceρ
μ

= = =

0.17 2 20.81/(1015) 0.250, : 0.250(1260)(15) (0.08)  .D glycerinC or= ≈ = = 453 NF Ans  

5.7 A body is dropped on the moon (g = 1.62 m/s2) with an initial velocity of 12 m/s.  
By using option 2 variables, Eq. (5.11), the ground impact occurs at  and ** 0.34t = ** 0.84.S =
Estimate (a) the initial displacement, (b) the final displacement, and (c) the time of impact. 

Solution: (a) The initial displacement follows from the “option 2” formula, Eq. (5.12): 

2 2 o
o o 2

(1.62)S1 1S** gS /V t** t** 0.84 0.34 (0.34)
2 2(12)

= + + = = + + 2  

oSolve for S  (a)Ans.≈ 39 m  

(b, c) The final time and displacement follow from the given dimensionless results: 
2 2
o finalS** gS/V 0.84 (1.62)S/(12) , solve for S  (b)Ans.= = = ≈ 75 m  

o impactt** gt/V 0.34 (1.62)t/(12), solve for t  (c)Ans.= = = ≈ 2.52 s  

5.8 The Morton number Mo, used to correlate bubble-dynamics studies, is a dimensionless 
combination of acceleration of gravity g, viscosity μ, density ρ, and surface tension coefficient 
Y. If Mo is proportional to g, find its form. 

Solution: The relevant dimensions are {g} = {LT−2}, {μ} = {ML−1T−1}, {ρ} = {ML−3}, and 
{Y} = {MT−2}. To have g in the numerator, we need the combination: 

0 0 0
2 3 2{ } { }{ } { } {Y}a b c L M M Ma b c

Mo g M L T
LTT L T

μ ρ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = =⎨ ⎬⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

Solve for 4,  1,  3, or: .a b c Ans= = − = −
gMo μ
ρ 3Y

=
4

www.20file.org

http://www.semeng.ir


374 Solutions Manual • Fluid Mechanics, Fifth Edition 

P5.9     The Richardson number, Ri, which correlates the production of turbulence by buoyancy,  

is a dimensionless combination of the acceleration of gravity g, the fluid temperature To, the 
local temperature gradient ∂T/∂z, and the local velocity gradient ∂u/∂z.  Determine the form of 
the Richardson number if it is proportional to g. 

Solution:   In the {MLTΘ} system, these variables have the dimensions {g} = {L/T2}, {To} = 
{Θ}, {∂T/∂z} = {Θ/L}, and {∂u/∂z} = {T-1}.  The ratio g/(∂u/∂z)2 will cancel time, leaving {L} 
in the numerator, and the ratio {∂T/∂z}/To will cancel {Θ}, leaving {L} in the numerator.  
Multiply them together and we have the standard form of the dimensionless Richardson number: 

.
)(

)(
Ri

2
Ans

z
uT

z
Tg

o ∂
∂
∂
∂

=

5.10 Determine the dimension {MLTΘ} of the following quantities: 

2 2 u
t

∂ρ
∂0

1

(a) (b) ( ) (c) (d)p
u Tu p p dA c dx dy dz
x x y

∂ ∂ρ ρ
∂ ∂ ∂

−∫ ∫∫∫  

All quantities have their standard meanings; for example, ρ is density, etc. 

Solution: Note that { u/ x} {U/L},{ p dA} {pA},∂ ∂ = =∫  etc. The results are: 

(a) (b) (c) (d) .Ans⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩ ⎩2 ⎭ ⎭ ⎭ ⎭2 2 3 2 2

M ML M ML; ; ;
L T T L T T

 

P5.11     During World War II, Sir Geoffrey Taylor, a British fluid dynamicist, used dimensional 
analysis to estimate the wave speed of an atomic bomb explosion.  He assumed that the blast 
wave radius R was a function of energy released E, air density ρ, and time t.  Use dimensional 
analysis to show how wave radius must vary with time. 
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Solution:  The proposed function is R  = f(E, ρ, t).  There are four variables (n = 4) and three 
primary dimensions (MLT, or j = 3), thus we expect  n-j = 4-3 = 1 pi group.  List the 
dimensions: 

T}{}{;}M/L{}{;}T/ML{}{;}L{}{ 322 ==== tER ρ

Assume arbitrary exponents and make the group dimensionless: 

5
2;

5
1;

5
1Solve;02;0321;0whence

,TLMT)()M/L()T/ML(L)( 000c32211

−=+=−==+−=−+=+

==

cbacababa

tER bacba ρ

The single pi group is 

.thus   constant, 5/2
5/25/1

5/1

1 AnstR
tE

R
wave ∝==Π

ρ

5.12 The Stokes number, St, used in particle-dynamics studies, is a dimensionless combination of 
five variables: acceleration of gravity g, viscosity μ, density ρ, particle velocity U, and particle 
diameter D. (a) If St is proportional to μ and inversely proportional to g, find its form. (b) Show that 
St is actually the quotient of two more traditional dimensionless groups. 

Solution: (a) The relevant dimensions are {g} = {LT−2}, {μ} = {ML−1T−1}, {ρ} = {ML−3}, {U} =
{LT−1}, and {D} = {L}. To have μ in the numerator and g in the denominator, we need the 
combination: 

2
0 0=1 0

3{ } { }{ } { } { } { } { }a b c ca bM T M LSt g U D L M L T
LT L TL

μ ρ− ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = ⎨ ⎬⎨ ⎬⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩⎭ ⎭ ⎭⎪⎩ ⎭
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21,  1,  2, : U (a)a b c St Ans.
gD
μ

ρ
= − = = − =Solve for or

2/( )  (b)
/

U gD Froude number Ans.
UD Reynolds number

=
ρ μ

=This has the ratio form: St

5.13 The speed of propagation C of a capillary wave in deep water is known to be a function only 
of density ρ, wavelength λ, and surface tension Y. Find the proper functional relationship, 
completing it with a dimensionless constant. For a given density and wavelength, how does the 
propagation speed change if the surface tension is doubled? 

Solution: The “function” of ρ, λ, and Y must have velocity units. Thus 
a c

a b c b
3 2

L M M{C} {f( , ,Y)}, or C const Y , or: {L}
T L T

ρ λ ρ λ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

Solve for a b 1/2 and c 1/2, or:  Ans.= = − = +
YC const=
ρλ

 

Thus, for constant ρ and λ, if Y is doubled, C increases as 2, or . Ans.+41%  
_______________________________________________________________________________ 

P5.14  Consider flow in a pipe of diameter D through a pipe bend of radius R b.  The 

pressure loss Δp through the bend is a function of these two length scales, plus density ρ, 

viscosity μ, and average flow velocity V.  (a) Use dimensional analysis to rewrite this function in 

terms of dimensionless pi groups.  (b) In analyzing data for such pipe-bend losses (Chap. 6), the 

dimensionless loss is often correlated with the Dean number, De: 

b
D R

D
2

ReDe =

Can your dimensional analysis produce a similar group?  If not, explain why not. 
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Solution:  (a) The proposed function is Δp  = f(ρ, μ, V, D, R b).  There are six variables (n = 6) 
and three primary dimensions (j = 3), thus we expect  n-j = 6-3 = 3 pi groups.  Selecting, for 
example, (ρ, μ, V) as repeating variables, we would obtain the dimensionless function 

).(,2 aAns
R
DVDfcn

V
p

b
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Δ
μ

ρ
ρ

(b) The Dean number combines the two pi’s on the right hand side, using fluid flow theory as a 
guide.  This reduction from 3 to 2 pi groups cannot be predicted by pure dimensional analysis. 

5.15 The wall shear stress τw in a boundary layer is assumed to be a function of stream velocity 
U, boundary layer thickness δ, local turbulence velocity u′, density ρ, and local pressure gradient 
dp/dx. Using (ρ, U, δ ) as repeating variables, rewrite this relationship as a dimensionless function. 

Solution: The relevant dimensions are {τw} = {ML−1T−2}, {U} = {LT−1}, {δ} = {L}, {u′} =
{LT−1}, {ρ} = {ML−3}, and {dp/dx} = {ML−2T−2}. With n = 6 and j = 3, we expect n − j = k = 3 
pi groups:  

0 0 0
1 3 2{ } , 1,  2,  0a b c ca b

w
M L MU L M L T solve a b

TL LT
ρ δ τ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = = = = − = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎩ ⎩⎭ ⎭ ⎭
c  

0 0 0
2 3 { } , 0,  1,  0a b c ca bM L LU u L M L T solve a b c

T TL
ρ δ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = = = = = − =′ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎩ ⎩⎭ ⎭ ⎭

0 0 0
3 3 2 2{ } , 1,  2,  1a b c ca bdp M L MU L M L T solve a b

dx TL L T
ρ δ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = = = = − = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎩ ⎩⎭ ⎭ ⎭
c  

The final dimensionless function then is given by: 

1 2 3 ( , ), or: .fcn Ans
⎛ ⎞′

Π = Π Π ⎜ ⎟⎝ ⎠
τ δ

ρ ρ
w u dpfcn

U dxU U2 2,=

5.16 Convection heat-transfer data are often reported as a heat-transfer coefficient h, defined by 

Q hA T= Δ  
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where   = heat flow, J/s 
  A = surface area, m
Q

2 
ΔT = temperature difference, K 

The dimensionless form of h, called the Stanton number, is a combination of h, fluid density ρ, 
specific heat cp, and flow velocity V. Derive the Stanton number if it is proportional to h. 

Solution: 
2

2
3 3

ML MIf {Q} {hA T}, then {h}{L }{ }, or: {h}
T T

⎧ ⎫ ⎧ ⎫= Δ = Θ =⎨ ⎬ ⎨
Θ⎩ ⎭⎩ ⎭

⎬  
cb d2

Θc1 b d 0 0 0 0
p 3 3 2

M M L LThen {Stanton No.} {h c V } M L T
TT L T

ρ
⎧ ⎫⎧ ⎫⎧ ⎫ ⎧ ⎫= = =⎨ ⎬⎨ ⎬ ⎨ ⎬ ⎨ ⎬

Θ Θ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭

Solve for b 1,  c 1,  and d 1.= − = − = −  

11 1
pThus, finally, Stanton Number h c V Ans.ρ −− −= =

p

h
Vcρ

 

5.17 The pressure drop per unit length Δp/L in a porous, rotating duct (Really! See Ref. 35) 
depends upon average velocity V, density ρ, viscosity μ, duct height h, wall injection velocity vw, 
and rotation rate Ω. Using (ρ,V,h) as repeating variables, rewrite this relationship in dimensionless 
form. 

Solution: The relevant dimensions are {Δp/L} = {ML−2T−2}, {V} = {LT−1}, {ρ} = {ML−3}, 
{μ} = {ML−1T−1}, {h} = {L}, {vw} = {LT−1}, and {Ω} = {T−1}. With n = 7 and 
j = 3, we expect n − j = k = 4 pi groups: They are found, as specified, using (ρ, V, h) as repeating 
variables: 

0 0 0
1 3 2 2{ } , 1,  2,  1a b c ca bp M L MV h L M L T solve a b c

L TL L T
ρ Δ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = = = = − = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎩ ⎩⎭ ⎭ ⎭
1−

1 0 0 0
2 3 { } , 1,  1,  1a b c ca bM L MV h L M L T solve a b c

T LTL
ρ μ− ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = = = = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎩ ⎩⎭ ⎭ ⎭

0 0 0
3 3

1{ } , 0,  1,  1a b c ca bM LV h L M L T solve a b c
T TL

ρ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = Ω = = = = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩⎭ ⎭ ⎭

0 0 0
4 3 { } , 0,  1,  0a b c ca b

w
M L LV h v L M L T solve a b c

T TL
ρ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = = = = = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎩ ⎩⎭ ⎭ ⎭

The final dimensionless function then is given by: 
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1 2 3 4 2( , , ), or: , , wvp h Vh hfcn fcn Ans.
L V VV

ρ
μρ

⎛ ⎞Δ Ω
Π = Π Π Π = ⎜ ⎟

⎝ ⎠
 

5.18 Under laminar conditions, the volume flow Q through a small triangular-section pore of side 
length b and length L is a function of viscosity μ, pressure drop per unit length Δp/L, and b. Using 
the pi theorem, rewrite this relation in dimensionless form. How does the volume flow change if the 
pore size b is doubled? 

Solution: Establish the variables and their dimensions: 

    Q  = fcn(Δp/L   ,   μ   ,  b ) 

{L3/T}   {M/L2T2}  {M/LT}  {L} 

Then n = 4 and j = 3, hence we expect n − j = 4 − 3 = 1 Pi group, found as follows: 
a b c 1 2 2 a b c 3 1 0 0

1 ( p/L) ( ) (b) Q {M/L T } {M/LT} {L} {L /T} M L TμΠ = Δ = = 0  
M: a + b = 0; L: −2a – b + c + 3 = 0; T: −2a – b – 1 = 0,  

solve a = −1, b = +1, c = −4 

1 .
/

AnsΠ = 4
Q constant

( p L)b
μ

=
Δ

Clearly, if b is doubled, the flow rate Q increases by a factor of 16. Ans. 

5.19 The period of oscillation T of a water surface wave is assumed to be a function of density ρ, 
wavelength λ, depth h, gravity g, and surface tension Y. Rewrite this relationship in dimensionless 
form. What results if Y is negligible? 

Solution: Establish the variables and their dimensions: 

  T   = fcn(  ρ  ,   λ ,  h  ,      g ,  Y  ) 

{T}     {M/L3}   {L}  {L}  {L/T2} {M/T2} 

Then n = 6 and j = 3, hence we expect n − j = 6 − 3 = 3 Pi groups, capable of various arrangements 
and selected by myself as follows: 

Typical final result: .Ans
⎛ ⎞
⎜ ⎟
⎝ ⎠

1/2
2

h YT(g/ ) fcn ,
g

λ
λ ρ λ

=
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If Y is negligible, drops out also, leaving: .Ansρ ⎛ ⎞
⎜ ⎟
⎝ ⎠

1/2 hT(g/ ) fcnλ
λ

=

5.20 We can extend Prob. 5.18 to the case of laminar duct flow of a non-newtonian fluid, for 
which the simplest relation for stress versus strain-rate is the power-law approximation: 

ndC
dt
θτ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

This is the analog of Eq. (1.23). The constant C takes the place of viscosity. If the exponent n is less 
than (greater than) unity, the material simulates a pseudoplastic (dilatant) fluid, as illustrated in Fig. 
1.7. (a) Using the {MLT} system, determine the dimensions of C. (b) The analog of Prob. 5.18 for 
Power-law laminar triangular-duct flow is Q = fcn(C, Δp/L, b). Rewrite this function in the form of 
dimensionless Pi groups. 
Solution: The shear stress and strain rate have the dimensions {τ} = {ML−1T−2}, and {dθ/dt} 
= {T−1}. 
(a) Using these in the equation enables us to find the dimensions of C: 

2
1{ } ,  (a)M C hence Ans.
TLT

⎧ ⎫ ⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩⎭ ⎭ ⎭2 n

M{ }
LT

C −=
n

Now that we know {C}, combine it with {Q} = {L3T−1}, {Δp/L} = {ML−2T−2}, and  
{b} = {L}. Note that there are 4 variables and j = 3 {MLT}, hence we expect 4 − 3 = only one pi 
group: 

−

⎧ ⎫Δ⎧ ⎫ ⎧ ⎫ ⎧ ⎫= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩⎭ ⎭ ⎭⎪⎩ ⎭

= = − = − −

3
0 0 0

2 2 2{ } { } { } { } ,

,  1,  3 1

aa c cb b
n

p L M MQ L C L M L
L T L T LT

solve a n c nb

T
 

The one and only dimensionless pi group is thus: 

(b)Ans.+Π = =
Δ1 3 1 constant

( / ) n
Q C

p L b

n

5.21 In Example 5.1 we used the pi theorem to develop Eq. (5.2) from Eq. (5.1). Instead of 
merely listing the primary dimensions of each variable, some workers list the powers of each 
primary dimension for each variable in an array: 
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ρ μ
⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

1 0 0 1 1
1 1 1 3 1
2 0 1 0 1

F L U
M
L
T

This array of exponents is called the dimensional matrix for the given function. Show that the rank
of this matrix (the size of the largest nonzero determinant) is equal to j = n – k, the desired reduction 
between original variables and the pi groups. This is a general property of dimensional matrices, as 
noted by Buckingham [29]. 

Solution: The rank of a matrix is the size of the largest submatrix within which has a non-zero 
determinant. This means that the constants in that submatrix, when considered as coefficients of 
algebraic equations, are linearly independent. Thus we establish the number of independent
parameters—adding one more forms a dimensionless group. For the example shown, the rank is 
three (note the very first 3 × 3 determinant on the left has a non-zero determinant). Thus “j” = 3 
for the drag force system of variables. 

5.22 The angular velocity Ω of a windmill is a function of windmill diameter D, wind velocity V, 
air density ρ, windmill height H as compared to atmospheric boundary layer height L, and the 
number of blades N: Ω = fcn(D, V, ρ, H/L, N). Viscosity effects are negligible. Rewrite this function 
in terms of dimensionless Pi groups. 

Solution: We have n = 6 variables, j = 3 dimensions (M, L, T), thus expect n − j = 3 Pi groups. 
Since only ρ has mass dimensions, it drops out. After some thought, we realize that H/L and N
are already dimensionless! The desired dimensionless function becomes: 

Ans.⎛ ⎞
⎜ ⎟
⎝ ⎠

Ω
=

D H , N
V L

fcn

5.23 The period T of vibration of a beam is a function of its length L, area moment of inertia I, 
modulus of elasticity E, density ρ, and Poisson’s ratio σ. Rewrite this relation in dimensionless 
form. What further reduction can we make if E and I can occur only in the product form EI? 

Solution: Establish the variables and their dimensions: 

  T  = fcn( L , I ,   E   ,    ρ  ,  σ  ) 

{T}    {L}  {L4}   {M/LT2}  {M/L3}  {none} 

Then n = 6 and j = 3, hence we expect n − j = 6 − 3 = 3 Pi groups, capable of various arrangements 
and selected by myself as follows: [Note that σ  must be a Pi group.] 
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Typical final result: .Ans
⎛ ⎞
⎜ ⎟
⎝ ⎠

T E Lfcn ,
L I

σ
ρ

=
4

If E and I can only appear together as EI, then Ans.3
T EI fcn( )
L

σ
ρ

=  

5.24 The lift force F on a missile is a function of its length L, velocity V, diameter D, angle of 
attack α, density ρ, viscosity μ, and speed of sound a of the air. Write out the dimensional matrix of 
this function and determine its rank. (See Prob. 5.21 for an explanation of this concept.) Rewrite the 
function in terms of pi groups. 

Solution: Establish the variables and their dimensions: 

      F    = fcn(   L  ,    V ,   D  ,   α  ,    ρ  ,   μ  ,  a  ) 

{ML/T2}     {L}  {L/T}  {L}   {1}   {M/L3}  {M/LT} {L/T} 

Then n = 8 and j = 3, hence we expect n − j = 8 − 3 = 5 Pi groups. The matrix is 

M: 
L: 
T: 

The rank of this matrix is indeed three, hence there are exactly 5 Pi groups, as follows: 

Typical final result: .Ans⎛ ⎞
⎜ ⎟
⎝ ⎠2 2

F VL L Vfcn , , ,
D aV L

ρα
μρ

=

______________________________________________________________________________ 

P5.25     The thrust F of a propeller is generally thought to be a function of its diameter D and 
angular velocity Ω, the forward speed V, and the density ρ and viscosity μ of the fluid.  Rewrite 
this relationship as a dimensionless function. 

Solution:  Write out the function with the various dimensions underneath: 
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}/{}/{}/{}/1{}{}/{

),,,,(
32 LTMLMTLTLTML

VDfcnF μρΩ=

There are 6 variables and 3 primary dimensions (MLT), and we quickly see that j = 3, because 

(ρ, V, D) cannot form a pi group among themselves.  Use the pi theorem to find the three pi’s: 

VD
cbaDV

V
DcbaDV

DV
FcbaFDV

cba

cba

cba

ρ
μμρ

ρ

ρ
ρ

=Π−=−=−==Π

Ω
=Π=−==Ω=Π

=Π−=−=−==Π

33

22

2211

Thus.1,1,1forSolve;

Thus.1,1,0forSolve;

Thus.2,2,1forSolve;

One of many forms of the final desired dimensionless function is 

.),(22 Ans
VDV

Dfcn
DV

F
ρ

μ
ρ

Ω
=

5.26 A pendulum has an oscillation period T which is assumed to depend upon its length L, 
bob mass m, angle of swing θ, and the acceleration of gravity. A pendulum 1 m long, with a bob 
mass of 200 g, is tested on earth and found to have a period of 2.04 s when swinging at 20°. (a) 
What is its period when it swings at 45°? A similarly constructed pendulum, with L = 30 cm and 
m = 100 g, is to swing on the moon (g = 1.62 m/s2) at θ = 20°. (b) What will be its period? 
Solution: First establish the variables and their dimensions so that we can do the numbers: 

  T   = fcn(   L   ,  m   ,   g  ,  θ  ) 

{T}   {L}   {M}   {L/T2} {1} 

Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups. They are unique: 

gT fcn( ) (mass drops out for dimensional reasons)
L

θ=

(a) If we change the angle to 45°, this changes Π2, hence we lose dynamic similarity and do not 
know the new period. More testing is required. Ans. (a) 
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(b) If we swing the pendulum on the moon at the same 20°, we may use similarity: 
1/2 1/21/2 2 2

1
1 2

1

g 9.81 m/s 1.62 m/sT (2.04 s) 6.39 T ,
L 1.0 m 0.3 m

or:  (b)Ans. 

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2T 2.75 s=

5.27 In studying sand transport by ocean waves, A. Shields in 1936 postulated that the bottom 
shear stress τ  required to move particles depends upon gravity g, particle size d and density ρp, and 
water density ρ and viscosity μ. Rewrite this in terms of dimensionless groups (which led to the 
Shields Diagram in 1936). 

Solution: There are six variables (τ, g, d, ρp, ρ, μ) and three dimensions (M, L, T), hence 
we expect n − j = 6 − 3 = 3 Pi groups. The author used (ρ, g, d) as repeating variables: 

/1 2 3/2
.Ans

⎛ ⎞
⎜ ⎟⎝ ⎠

ρτ ρ
ρ μ ρ

pg dfcn
gd

= ,  

The shear parameter used by Shields himself was based on net weight: τ /[(ρp −ρ)gd]. 

5.28 A simply supported beam of diameter D, length L, and modulus of elasticity E is subjected to 
a fluid crossflow of velocity V, density ρ, and viscosity μ. Its center deflection δ is assumed to be a 
function of all these variables. (a) Rewrite this proposed function in dimensionless form. (b) Suppose 
it is known that δ is independent of μ, inversely proportional to E, and dependent only upon ρV2, not ρ
and V separately. Simplify the dimensionless function accordingly. 
Solution: Establish the variables and their dimensions: 

  δ = fcn(   ρ  ,   D  ,   L   ,    E    ,  V ,    μ    ) 

{L}     {M/L3}  {L}   {L}  {M/LT2}   {L/T}   {M/LT} 

Then n = 7 and j = 3, hence we expect n − j = 7 − 3 = 4 Pi groups, capable of various arrangements 
and selected by myself, as follows (a): 

Well-posed final result: . (a)Ans
⎛ ⎞
⎜ ⎟
⎝ ⎠

δ ρ
μ ρ 2

L VD Efcn , ,
L D V

=

(b) If μ is unimportant, then the Reynolds number (ρVD/μ) drops out, and we have already cleverly 
combined E with ρV2, which we can now slip out upside down: 
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D

δ ρμ δ ⎛ ⎞∝ = ⎜ ⎟E L E

or:  (b)Ans.

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

δ
ρ 2

E Lfcn
DV L

=

5.29 When fluid in a pipe is accelerated linearly from rest, it begins as laminar flow and then 
undergoes transition to turbulence at a time ttr which depends upon the pipe diameter D, fluid 
acceleration a, density ρ, and viscosity μ. Arrange this into a dimensionless relation between ttr and 
D. 

Solution: Establish the variables and their dimensions: 

  ttr    = fcn(  ρ  , D  ,  a  ,    μ   ) 

{T}     {M/L3}   {L}  {L/T2}   {M/LT} 

Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups, capable of various arrangements 
and selected by myself, as required, to isolate ttr versus D: 

Ans.
⎡ ⎤⎛ ⎞⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

2 2

tr 2
a at fcn Dρ ρ
μ μ

=
⎛ ⎞

1/3 1/3

5.30 The wall shear stress τw for flow in a narrow annular gap between a fixed and a rotating 
cylinder is a function of density ρ, viscosity μ, angular velocity Ω, outer radius R, and gap width Δr. 
Using (ρ, Ω, R) as repeating variables, rewrite this relation in dimensionless form. 
Solution: The relevant dimensions are {τw} = {ML−1T−2}, {ρ} = {ML−3}, {μ} = {ML−1T−1}, 
{Ω} = {T−1}, {R} = {L}, and {Δr} = {L}. With n = 6 and j = 3, we expect n − j = k = 3 pi 
groups. They are found, as specified, using (ρ, Ω, R) as repeating variables: 

0 0 0
1 3 2

1 { } , 1, 2, 2a b c ca b
w

M MR L M L T solve a b
TL LT

ρ τ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = Ω = = = − = − = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩⎭ ⎭ ⎭

c  

1

c
−

1 0 0 0
2 3

1 { } , 1, 1, 2a b c ca bM MR L M L T solve a b
T LTL

ρ μ− ⎧ ⎫ ⎧ ⎫ ⎧ ⎫Π = Ω = = = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎩ ⎩⎭ ⎭ ⎭

0 0 0
3

1 { } { } , 0, 0, 1a b c ca bMR r L L M L T solve a b c
TL

ρ ⎧ ⎫ ⎧ ⎫Π = Ω Δ = = = = = −⎨ ⎬ ⎨ ⎬
⎩ ⎩⎭ ⎭

The final dimensionless function has the form: 

1 2 3( , ), :fcn or Ans.
⎛ ⎞

Π = Π Π ⎜ ⎟⎝ ⎠
τ ρ

μρ
wall R rfcn

RR
Ω Δ

=
Ω2 2 ,

2
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5.31 The heat-transfer rate per unit area q to a body from a fluid in natural or gravitational 
convection is a function of the temperature difference ΔT, gravity g, body length L, and three fluid 
properties: kinematic viscosity ν, conductivity k, and thermal expansion coefficient β. Rewrite in 
dimensionless form if it is known that g and β appear only as the product gβ. 

Solution: Establish the variables and their dimensions: 

  q   = fcn(  ΔT ,   g  ,   L  , ν   ,  β ,   k     ) 

{M/T3}     {Θ}   {L/T2}  {L}  {L2/T}  {1/Θ}   {ML/ΘT3} 

Then n = 7 and j = 4, hence we expect n − j = 7 − 4 = 3 Pi groups, capable of various arrangements 
and selected by myself, as follows: 

3
Δ 2

qL gLIf and T kept separate, then fcn T,
k T

β
⎛

β
ν

⎞
Δ = ⎜ ⎟Δ ⎝ ⎠

If, in fact, β and ΔT must appear together, then Π2 and Π3 above combine and we get 

Nusselt No. Grashof Number

Ans.
⎛ ⎞
⎜ ⎟
⎝ ⎠

3

2
qL TgLfcn

k T
Δ

=
Δ

β
ν  
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5.32 A weir is an obstruction in a channel flow 
which can be calibrated to measure the flow rate, 
as in Fig. P5.32. The volume flow Q varies with 
gravity g, weir width b into the paper, and 
upstream water height H above the weir crest. If it 
is known that Q is proportional to b, use the pi 
theorem to find a unique functional relationship 
Q(g, b, H). 

Fig. P5.32 

Solution: Establish the variables and their dimensions: 

  Q  = fcn(   g ,  b  ,  H ) 

{L3/T}   {L/T2}  {L}   {L} 

Then n = 4 and j = 2, hence we expect n − j = 4 − 2 = 2 Pi groups, capable of various arrangements 
and selected by myself, as follows: 

1/2 5/2
Q bfcn ; but if Q b, then we reduce to .

Hg H
Ans⎛ ⎞= ∝⎜ ⎟

⎝ ⎠ 1/2 3/2
Q constant

bg H
=

5.33 A spar buoy (see Prob. 2.113) has a period 
T of vertical (heave) oscillation which depends 
upon the waterline cross-sectional area A, buoy 
mass m, and fluid specific weight γ. How does 
the period change due to doubling of (a) the mass 
and (b) the area? Instrument buoys should have 
long periods to avoid wave resonance. Sketch a 
possible long-period buoy design. 

Fig. P5.33 

Solution: Establish the variables and their dimensions: 

T   =  fcn(  A  ,   m  ,         γ   ) 

{T}    {L2}  {M}  {M/L2T2} 

Then n = 4 and j = 3, hence we expect n − j = 4 − 3 = 1 single Pi group, as follows: 

.AnsAT dimensionless constant
m
γ

=
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Since we can’t do anything about γ, the specific weight of water, we can increase period T by 
increasing buoy mass m and decreasing waterline area A. See the illustrative long-period buoy in 
Figure P5.33. 

5.34 To good approximation, the thermal conductivity k of a gas (see Ref. 8 of Chap. 1) depends 
only on the density ρ, mean free path  gas constant R, and absolute temperature T. For air at 20°C 
and 1 atm, k ≈ 0.026 W/m⋅K and ≈ 6.5E−8 m. Use this information to determine k for hydrogen at 
20°C and 1 atm if  ≈ 1.2E−7 m. 

,

Solution: First establish the variables and their dimensions and then form a pi group: 

  k   = fcn(   ρ  ,     ,  R   ,  T ) 

{ML/ΘT3}     {M/L3}   {L}  {L2/T2Θ}   {Θ} 

Thus n = 5 and j = 4, and we expect n − j = 5 − 4 = 1 single pi group, and the result is 
3/2 1/2

1/( ) a dimensionless constantk R Tρ = = Π  

The value of Π1 is found from the air data, where ρ = 1.205 kg/m3 and R = 287 m2/s2⋅K: 

1, 1,3/2
0.026 3.99air (1.205)(287) (293)(6.5 8) hydrogenE

Π = = = Π
−

For hydrogen at 20°C and 1 atm, calculate ρ = 0.0839 kg/m3 with R = 4124 m2/s2⋅K. Then 

1 3/2 1/23.99 ,   
(0.0839)(4124) (293) (1.2 7)

hydrogen
hydrogen

k
solve for k Ans.

E
Π = = =

−
W0.182

m K⋅
 

This is slightly larger than the accepted value for hydrogen of k ≈ 0.178 W/m⋅K. 

5.35 The torque M required to turn the cone-plate viscometer in Fig. P5.35 depends upon the 
radius R, rotation rate Ω, fluid viscosity μ, and cone angle θ. Rewrite this relation in dimensionless 
form. How does the relation simplify if it is known that M is proportional to θ? 

Fig. P5.35 

www.20file.org

http://www.semeng.ir


Chapter 5 • Dimensional Analysis and Similarity 389 

Solution: Establish the variables and their dimensions: 

   M   = fcn(   R  , Ω   ,   μ   ,  θ    ) 
{ML2/T2}    {L}  {1/T}  {M/LT}  {1} 

Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups, capable of only one reasonable 
arrangement, as follows: 

; if M , then .Ansθ∝3 3
M Mfcn( ) constant

R R
θ

μ μ θ
= =

Ω Ω

See Prob. 1.56 of this Manual, for an analytical solution. 

5.36 The rate of heat loss, Qloss through a window is a function of the temperature difference 
ΔT, the surface area A, and the R resistance value of the window (in units of ft2⋅hr⋅°F/Btu): Qloss 
= fcn(ΔT, A, R). (a) Rewrite in dimensionless form. (b) If the temperature difference doubles, how 
does the heat loss change? 

Solution: First figure out the dimensions of R: {R} = {T3Θ/M}. Then note that n = 4 variables 
and j = 3 dimensions, hence we expect only 4 − 3 = one Pi group, and it is: 

1 , :  (alossQ R Const or  Ans.
A T

Π = =
Δ loss

A TQ Const
R
Δ

= )  

(b) Clearly (to me), Q ∝ ΔT: if Δt doubles, Qloss also doubles. Ans. (b) 

P5.37     The volume flow Q through an orifice plate is a function of pipe diameter D, pressure 
drop Δp across the orifice, fluid density ρ and viscosity μ, and orifice diameter d.  Using D, ρ, 
and Δp as repeating variables, express this relationship in dimensionless form.

Solution:  There are 6 variables and 3 primary dimensions (MLT), and we already know that  

j = 3, because the problem thoughtfully gave the repeating variables.  Use the pi theorem to find the 
three pi’s:   

2/12/113 Thus.2/1,2/1,1forSolve;
pD

cbapD
Δ

=Π−=−=−=Δ=Π
ρ

μρ

12

2/12

2/1

11

Thus.001forSolve;

Thus.2/1,2/1,2forSolve;

D
dcbadpD

pD
QcbaQpD

cba

cba

cba

=Π==−=Δ=Π

Δ
=Π−==−=Δ=Π

μ

ρ

ρρ
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The final requested orifice-flow function (see Sec. 6.12 later for a different form) is: 

.),( 2/12/12/12

2/1
Ans

pDD
dfcn

pD
Q

Δ
=

Δ ρ
μρ

5.38 The size d of droplets produced by a liquid spray nozzle is thought to depend upon the 
nozzle diameter D, jet velocity U, and the properties of the liquid ρ, μ, and Y. Rewrite this relation 
in dimensionless form.  Hint: Take D, ρ, and U as repeating variables. 

Solution: Establish the variables and their dimensions: 

  d = fcn(   D  ,  U ,   ρ  ,    μ   ,   Y  ) 

{L}   {L}   {L/T}   {M/L3}  {M/LT}   {M/T2} 

Then n = 6 and j = 3, hence we expect n − j = 6 − 3 = 3 Pi groups, capable of various arrangements 
and selected by me, as follows: 

Typical final result: .Ans
⎛ ⎞
⎜ ⎟
⎝ ⎠

d UD U Dfcn ,
D Y

=
ρ ρ

μ

2

__________________________________________________________________________ 

5.39 In turbulent flow past a flat surface, the velocity u near the wall varies approximately 
logarithmically with distance y from the wall and also depends upon viscosity μ, density ρ, and 
wall shear stress τw. For a certain airflow at 20°C and 1 atm, τw = 0.8 Pa and u = 15 m/s at y = 
3.6 mm. Use this information to estimate the velocity u at y = 6 mm. 

Solution: Establish the variables and their dimensions: 

 u  = fcn( y  ,  ρ    ,  μ     ,   τw    ) 

{L/T}   {L}  {M/L3}   {M/LT}   {M/LT2} 
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Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups, capable of various 
arrangements and selected by me to form the traditional “u” versus “y,” as follows: 

w

w

y ( )uIdeal non-dimensionalization: const ln
( / )

τ ρ
μτ ρ

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠

The logarithmic relation is assumed in the problem, and the “constant” can be evaluated from the 
given data. For air at 20°C, take ρ = 1.20 kg/m3, and μ = 1.8E−5 kg/m·s. Then 

1/2 1/215 (0.0036)(0.8) (1.20)C ln ,  or: C 3.48 for this data
1.8E 5(0.8/1.20)

⎡ ⎤
≈ ≈⎢ ⎥−⎣ ⎦
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Further out, at y = 6 mm, we assume that the same logarithmic relation holds. Thus 
1/2 1/2u (0.006)(0.8) (1.2)At y 6 mm: 3.48 ln , or  

1.8E 5(0.8/1.20)
Ans.

⎡ ⎤
= ≈ ⎢ ⎥−⎣ ⎦

mu 16.4
s

≈

P5.40     The time td  to drain a liquid from a hole in the bottom of a tank is a function of the hole 

diameter d, the initial fluid volume υo, the initial liquid depth ho, and the density ρ and viscosity 

μ of the fluid.  Rewrite this relation as a dimensionless function, using Ipsen’s method. 

Solution:   As asked, use Ipsen’s method.  Write out the function with the dimensions beneath: 

}/{}/{}{}{}{}{

),,,,(
33 LTMLMLLLT

hdfcnt ood μρυ=

Eliminate the dimensions by multiplication or division.  Divide by μ to eliminate {M}: 

}/{}{}{}{}{

),,,,(

23 LTLLLT

hdfcnt ood μ
μ
ρυ=

Recall Ipsen’s rules:  Only divide into variables containing mass, in this case only ρ.  Now 

eliminate {T}.   Again only one division is necessary: 

}{}{}{}{

),,,(

32 LLLL

hdfcn
t

oo
d

μ
ρυ

ρ
μ

=
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Finally, eliminate {L} by dividing by d.  This completes our task when we discard d itself: 

}1{}1{}1{

.),( 32 Ans
d
h

d
fcn

d
t ood υ
ρ

μ
=

Just divide out the dimensions, don’t worry about j or selecting repeating variables.  Of course, 

the Pi Theorem would give the same, or comparable, results. 

5.41 A certain axial-flow turbine has an output torque M which is proportional to the volume 
flow rate Q and also depends upon the density ρ, rotor diameter D, and rotation rate Ω. How 
does the torque change due to a doubling of (a) D and (b) Ω? 

Solution: List the variables and their dimensions, one of which can be M/Q, since M is stated 
to be proportional to Q: 

  M/Q = fcn(   D  ,   ρ  , Ω ) 

{M/LT}   {L} {M/L3} {1/T} 

Then n = 4 and j = 3, hence we expect n − j = 4 − 3 = 1 single Pi group: 

2
M/Q dimensionless constant

Dρ
=

Ω

(a) If turbine diameter D is doubled, the torque M increases by a factor of 4. Ans. (a) 
(b) If turbine speed Ω is doubled, the torque M increases by a factor of 2. Ans. (b) 

P5.42     When disturbed, a floating buoy will bob up and down at frequency f.  Assume that this 

frequency varies with buoy mass m and waterline diameter d and with the specific weight γ of 

the liquid.  (a)  Express this as a dimensionless function.  (b) If d and γ are constant and the buoy 

mass is halved, how will the frequency change? 
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Solution:   The proposed function is    f   =  fcn( m, d, γ ).  Write out their dimensions: 

}{}{;}{}{;}{}{;}{}{ 221 −−− ==== TMLLdMmTf γ

There are four variables and j = 3.  Hence we expect only one Pi group.  We find that 

Hence, for these simplifying assumptions,  f  is proportional to  m-1/2.   If m halves, f  rises by a 
factor  (0.5)-1/2  =  1.414.  In other words, halving m increases  f  by about 41%.     Ans.(b) 

).(constant1 aAnsm
d
f

==Π
γ

_______________________________________________________________________________ 

5.43 Non-dimensionalize the thermal energy partial differential equation (4.75) and its 
boundary conditions (4.62), (4.63), and (4.70) by defining dimensionless temperature , 
where T

oT* T/T=
o is the fluid inlet temperature, assumed constant. Use other dimensionless variables as 

needed from Eqs. (5.23). Isolate all dimensionless parameters which you find, and relate them to 
the list given in Table 5.2. 

Solution: Recall the previously defined variables in addition to T* : 

u x Ut v or w y or zu* ; x* ; t* ; similarly, v* or w* ; y* or z*
U L L U

= = = = =
L

 

Then the dimensionless versions of Eqs. (4.75, 62, 63, 70) result as follows: 

μ
ρ ρ

⎛ ⎞ ⎛ ⎞
= ∇ + Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2

p p o
1/Peclet Number Eckert Number divided by Reynolds Number

dT* k U* T* *(4.75):
dt* c UL c T L
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5.44 The differential energy equation for incompressible two-dimensional flow through a “Darcy-
type” porous medium is approximately 

2

2 0p p
p T p T Tc c k
x x y y y

σ ∂ ∂ σ ∂ ∂ ∂ρ ρ
μ ∂ ∂ μ ∂ ∂ ∂

+ + =  

where σ is the permeability of the porous medium. All other symbols have their usual meanings. 
(a) What are the appropriate dimensions for σ? (b) Nondimensionalize this equation, using (L, U, 
ρ, To) as scaling constants, and discuss any dimensionless parameters which arise. 

Solution: (a) The only way to establish {σ} is by comparing two terms in the PDE: 
2

3
?p T T M M ,

T
σ ∂ ∂ ∂⎧ ⎫⎧ ⎫

p 2 3 3c k , or: { }  
x x x L T L

Thus { } { }  (a)Ans.

ρ σ
μ ∂ ∂ ∂

σ

⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬=⎩ ⎩⎭ ⎭⎪⎩ ⎭ ⎩ ⎭

= 2L

(b) Define dimensionless variables using the stated list of (L, U, ρ, To) for scaling: 

2
o

x y px* ; y* ; p* ; T*
L L Uρ

= = = =
T
T

 

Substitution into the basic PDE above yields only a single dimensionless parameter: 
2

2
p* T* p* T* T* 0, where  (b)
x* x* y* y* y*

Ans.∂ ∂ ∂ ∂ ∂ζ ζ
∂ ∂ ∂ ∂ ∂

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
=

ρ σ
μ
pc U
k

2 2

I don’t know the name of this parameter. It is related to the “Darcy-Rayleigh” number. 

5.45 A model differential equation, for chemical reaction dynamics in a plug reactor, is  
as follows: 

2 CC2
C Cu k
x tx

∂ ∂ ∂
∂ ∂∂

= − −D

where u is the velocity, D is a diffusion coefficient, k is a reaction rate, x is distance along the 
reactor, and C is the (dimensionless) concentration of a given chemical in the reactor. (a) 
Determine the appropriate dimensions of D and k. (b) Using a characteristic length scale L and 
average velocity V as parameters, rewrite this equation in dimensionless form and comment on any 
Pi groups appearing. 
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Solution: (a) Since all terms in the equation contain C, we establish the dimensions of k and D
by comparing {k} and {D∂ 2/∂x2} to {u∂ /∂x}: 

2

2 2
1 1{ } { } { } { } ,

x L

hence and  (a)

Lk u
x T L

Ans.

∂ ∂
∂∂

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎨ ⎬
⎩ ⎩ ⎩ ⎩⎭ ⎭ ⎭⎪⎩ ⎭

⎧ ⎫⎧ ⎫
⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪⎩ ⎭

D D

21{ } { } Lk
T T

D= =

⎫
⎭

,(b) To non-dimensionalize the equation, define * / ,  * /u u V t Vt L= =  and * /x x L=  and sub-stitute 
into the basic partial differential equation. The dimensionless result is 

where mass-transfer Peclet number . (b)VL Ans⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
C C kL Cu C
x VL V tx 2* ,
* **

∂ ∂ ∂
∂ ∂∂

= − −
D

D

2

5.46 The differential equation for compressible inviscid flow of a gas in the xy plane is 
2 2 2 2

0
y∂

=2 2 2 2 2 2
2 2 2( ) ( ) ( ) 2u u a a u

t xt x y
∂ φ ∂ ∂ φ ∂ φ ∂ φυ υ υ

∂ ∂∂ ∂ ∂
+ + + − + − +

where φ is the velocity potential and a is the (variable) speed of sound of the gas. 
Nondimensionalize this relation, using a reference length L and the inlet speed of sound ao as 
parameters for defining dimensionless variables. 

Solution: The appropriate dimensionless variables are ou* u/a ,= ot* a t/L,= x* x/L,=  
and oa* a/a ,= * /(a L)oφ= . Substitution into the PDE for φ as above yields φ

Ans.∂ φ ∂ ∂ φ ∂ φ ∂ φ
∂ ∂∂ ∂ ∂

2 2 2 2 2 2
2 2 2
* * *u* v* u* a* v* a* 2u*v* 0

t* x* y*t* x* y*
+ ( + ) + ( − ) + ( − ) + =

∂

2 2 2 2 *

The PDE comes clean and there are no dimensionless parameters. Ans. 

5.47 The differential equation for small-amplitude vibrations y(x, t) of a simple beam is given by 
2 4

2 4 0y yA EI
t x

∂ ∂ρ
∂ ∂

+ =  

where ρ = beam material density 
A = cross-sectional area 
I = area moment of inertia 
E = Young’s modulus 
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Use only the quantities ρ, E, and A to nondimensionalize y, x, and t, and rewrite the differential 
equation in dimensionless form. Do any parameters remain? Could they be removed by further 
manipulation of the variables? 

Solution: The appropriate dimensionless variables are 

y Ey* ; t* t ; x*
AA Aρ

= = =
x  

Substitution into the PDE above yields a dimensionless equation with one parameter: 

One geometric parameter: Ans.⎛ ⎞
⎜ ⎟⎝ ⎠

∂ ∂
∂ ∂2 2 4 2

y* I y* I0;
t* A x * A

+ =
2 4

We could remove (I/A2) completely by redefining . Ans. 1/4x* x/I=

5.48 A smooth steel (SG = 7.86) sphere is immersed in a stream of ethanol at 20°C moving at 1.5 
m/s. Estimate its drag in N from Fig. 5.3a. What stream velocity would quadruple its drag? Take D
= 2.5 cm. 

Solution: For ethanol at 20°C, take ρ ≈ 789 kg/m3 and μ ≈ 0.0012 kg/m⋅s. Then 

D D,sphere
UD 789(1.5)(0.025)Re 24700; Read Fig. 5.3(a): C 0.4

0.0012
ρ

μ
= = ≈ ≈  

2 2 2 21 1π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞
DCompute drag F C U D (0.4) (789)(1.5) (0.025)

2 4 2 4
Ans.

ρ= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

≈ 0.17 N

Since CD ≈ constant in this range of ReD, doubling U quadruples the drag. Ans. 

5.49 The sphere in Prob. 5.48 is dropped in gasoline at 20°C. Ignoring its acceleration phase, what 
will its terminal (constant) fall velocity be, from Fig. 5.3a? 

Solution: For gasoline at 20°C, take ρ ≈ 680 kg/m3 and μ ≈ 2.92E−4 kg/m⋅s. For steel take ρ ≈
7800 kg/m3. Then, in “terminal” velocity, the net weight equals the drag force: 

3
steel gasolineNet weight ( )g D  Drag force,

6
πρ ρ= − =  

3 2
D

1or: (7800 680)(9.81) (0.025) 0.571 N C (680)U (0.025)
6 2
π π⎛ ⎞− = = ⎜ ⎟

⎝ ⎠
2

4
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DGuess C 0.4 and compute  Ans.≈ U 2.9 m
s

≈  

Now check ReD = ρUD/μ = 680(2.9)(0.025)/(2.92E−4) ≈ 170000. Yes, CD ≈ 0.4, OK. 

5.50 When a microorganism moves in a viscous fluid, inertia (fluid density) has a negligible 
influence on the organism’s drag force. These are called creeping flows. The only important 
parameters are velocity U, viscosity μ, and body length scale L. (a) Write this relationship in 
dimensionless form. (b) The drag coefficient CD = F/(1/2 ρU2A) is not appropriate for such flows. 
Define a more appropriate drag coefficient and call is Cc (for creeping flow). (c) For a spherical 
organism, the drag force can be calculated exactly from creeping-flow theory: F = 3πμUd. Evaluate 
both forms of the drag coefficient for creeping flow past a sphere. 

Solution: (a) If F = fcn(U, μ, L), then n = 4 and j = 3 (MLT), whence we expect n − j =
4 − 3 = only one pi group, which must therefore be a constant: 

1 , :   (F Const or Ans.
ULμ

Π = = creeping flowF Const UL= μ a)

=

(b) Clearly, the best ‘creeping’ coefficient is Π1 itself: Cc = F/(μUL). Ans.  (b) 
(c) If Fsphere = 3πμUd, then Cc = F/(μUd) = 3π. Ans. (c—creeping coeff.) 
The standard (inappropriate) form of drag coefficient would be 

2 2(3 )/(1/2 U d /4) 24 /( Ud) .Udπμ ρ π μ ρ= =DC / d24 Re  Ans. (c—standard) 

5.51 A ship is towing a sonar array which approximates a submerged cylinder 1 ft in diameter and 
30 ft long with its axis normal to the direction of tow. If the tow speed is 12 kn (1 kn = 1.69 ft/s), 
estimate the horsepower required to tow this cylinder. What will be the frequency of vortices shed 
from the cylinder? Use Figs. 5.2 and 5.3. 

Solution: For seawater at 20°C, take ρ ≈ 1.99 slug/ft3 and μ ≈ 2.23E−5 slug/ft·s. Convert V = 12 
knots ≈ 20.3 ft/s. Then the Reynolds number and drag of the towed cylinder is 

D D

2 2
D

UD 1.99(20.3)(1.0)Re 1.8E6. Fig. 5.3(a) cylinder: Read C 0.3
2.23E 5

1 1Then F C U DL (0.3) (1.99)(20.3) (1)(30) 3700 lbf
2 2

Power P FU (3700)(20.3) 550   (a)Ans.

ρ
μ

ρ

= = ≈ ≈
−

⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= = ÷ ≈ 140 hp
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Data for cylinder vortex shedding is found from Fig. 5.2b. At a Reynolds number  
ReD ≈ 1.8E6, read fD/U ≈ 0.24. Then 

(0.24)(20.3 / )   (b)
1.0 shedding

StU ft sf Ans.
D ft

= = ≈ 5 Hz  

P5.52     A standard table tennis ball is smooth, weighs 2.6 g, and has a diameter of 1.5 in.  If 

 struck with an initial velocity of 85 mi/h, in air at 20°C and 1 atm, (a) what is the initial 
deceleration rate?  (b) What is the estimated uncertainty of your result in past (a)? 

Solution:  Convert everything to SI units:  m = 0.0026 kg, D = 0.0381 m, V = 38 m/s.  For air at 

20°C, take ρ = 1.205 kg/m3 and μ = 1.8E-5 kg/m-s.  (a) Calculate the Reynolds number and then 

read the drag coefficient from Fig. 5.3a. 

).(180
0026.0
466.0Then 

466.0)0381.0(
4

)38)(
2
205.1)(47.0(

42

47.0:3.5.Fig;000,97
/58.1

)0381.0)(/38)(/205.1(Re

2

2222

3

aAns
s
m

kg
N

m
Fa

NDVCF

Ca
smkgE

msmmkgVD

Ddrag

DD

≈==

≈==

≈=
−−

==

ππρ
μ

ρ

(b)  This estimate is quite uncertain, about  ±20%, because Fig. 5.3a is too small to read 

accurately.  The writer cheated and took a better value from Chap. 7.  Figure Prob. D5.2 is 

better, also.   
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5.53 Vortex shedding can be used to design a 
vortex flowmeter (Fig. 6.34). A blunt rod stretched 
across the pipe sheds vortices whose frequency is 
read by the sensor downstream. Suppose the pipe 
diameter is 5 cm and the rod is a cylinder of 
diameter 8 mm. If the sensor reads 5400 counts per 
minute, estimate the volume flow rate of water in 
m3/h. How might the meter react to other liquids? 

Solution: 5400 counts/min = 90 Hz = f. 
Fig. 6.34 

fD 90(0.008) mGuess 0.2 , or U 3.6 
U U

≈ = ≈
s

 

D,water
998(3.6)(0.008)Check Re 29000; Fig. 5.2: Read St 0.2, OK.

0.001
= ≈ ≈  

If the centerline velocity is 3.6 m/s and the flow is turbulent, then Vavg ≈ 0.82Vcenter (see  
Ex. 3.4 of the text). Then the pipe volume flow is approximately: 

3 3
2

avg pipe
mQ  V A (0.82 3.6) (0.05 m) 0.0058  

4 s
π

= = × ≈ ≈
m21
hr

Ans.  

5.54 A fishnet is made of 1-mm-diameter strings knotted into 2 × 2 cm squares. Estimate the 
horsepower required to tow 300 ft2 of this netting at 3 kn in seawater at 20°C. The net plane is 
normal to the flow direction. 

Solution: For seawater at 20°C, take ρ ≈ 1025 kg/m3 and μ ≈ 0.00107 kg/m·s. Convert V = 3 
knots = 1.54 m/s. Then, considering the strings as “cylinders in crossflow,” the Reynolds number 
is Re 

D D,cyl
VD (1025)(1.54)(0.001)Re 1500; Fig. 5.3(a): C 1.0

0.00107
ρ

μ
= = ≈ ≈  

Drag of one 2-cm strand: 

2 2
D

1025F C V DL (1.0) (1.54) (0.001)(0.02) 0.0243 N
2 2
ρ ⎛ ⎞= = ≈⎜ ⎟

⎝ ⎠
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Now 1 m2 of net contains 5000 of these 2-cm strands, and 300 ft2 = 27.9 m2 of net contains 
(5000)(27.9) = 139400 strands total, for a total net force F = 139400(0.0243) ≈ 3390 N ÷ 4.4482 
= 762 lbf on the net. Then the horsepower required to tow the net is 

Power FV (3390 N)(1.54 m/s) 5220 W 746 Ans.= = = ÷ ≈ 7.0 hp  

5.55 The radio antenna on a car begins to vibrate wildly at 8 Hz when the car is driven at 45 mi/h 
over a rutted road which approximates a sine wave of amplitude 2 cm and wavelength λ = 2.5 m. 
The antenna diameter is 4 mm. Is the vibration due to the road or to vortex shedding? 

Solution: Convert U = 45 mi/h = 20.1 m/s. Assume sea level air, ρ = 1.2 kg/m3,  
μ = 1.8E−5 kg/m⋅s. Check the Reynolds number based on antenna diameter: 
Red = (1.2)(20.1)(0.004)/(1.8E−5) = 5400. From Fig. 5.2b, read St ≈ 0.21 = (ω/2π)d/U =
(fshed)(0.004 m)/(20.1 m/s), or fshed ≈ 1060 Hz ≠ 8 Hz, so rule out vortex shedding. Meanwhile, 
the rutted road introduces a forcing frequency froad = U/λ = (20.1 m/s)/(2.5 m) ≈ 8.05 Hz. We 
conclude that this resonance is due to road roughness. 

5.56 Flow past a long cylinder of square cross-section results in more drag than the comparable 
round cylinder. Here are data taken in a water tunnel for a square cylinder of side length b = 2 cm: 

V, m/s: 1.0 2.0 3.0 4.0 
Drag, N/(m of depth): 21 85 191 335 

(a) Use this data to predict the drag force per unit depth of wind blowing at 6 m/s, in air at 20°C, 
over a tall square chimney of side length b = 55 cm. (b) Is there any uncertainty in your estimate? 

Solution: Convert the data to the dimensionless form F/(ρV2bL) = fcn(ρVb/μ), like  
Eq. (5.2). For air, take ρ = 1.2 kg/m3 and μ = 1.8E−5 kg/m⋅s. For water, take ρ = 998 kg/m3 and μ = 
0.001 kg/m⋅s. Make a new table using the water data, with L = 1 m: 

F/(ρV2bL): 1.05 1.06 1.06 1.05 
ρVb/μ: 19960 39920 59880 79840 

In this Reynolds number range, the force coefficient is approximately constant at about 1.055. Use 
this value to estimate the air drag on the large chimney: 

2
2

3( ) (1.055) 1.2 6 (0.55 )(1 )   (a)air F air air chimney
kg mF C V bL m m Ans.

sm
ρ ⎛ ⎞⎛ ⎞= = ≈⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
25 N/m  
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(b) Yes, there is uncertainty, because Rechimney = 220,000 > Remodel = 80,000 or less. 

5.57 The simply supported 1040 carbon-steel rod 
of Fig. P5.57 is subjected to a crossflow stream of 
air at 20°C and 1 atm. For what stream velocity U
will the rod center deflection be approximately 1 
cm? 

Solution: For air at 20°C, take ρ ≈ 1.2 kg/m3 and μ
≈ 1.8E−5 kg/m·s. For carbon steel take Young’s
modulus E ≈ 29E6 psi ≈ 2.0E11 Pa. 

Fig. P5.57 

This is not an elasticity course, so just use the formula for center deflection of a simply-
supported beam: 

3 3

center 4

2 2
D D

FL F(0.6)0.01 m , solve for F 218 N
48EI 48(2.0E11)[( /4)(0.005) ]

1.2Guess C 1.2, then F 218 N C V DL (1.2) V (0.01)(0.6) 
2 2

δ
π

ρ

= = = ≈

⎛ ⎞≈ = = = ⎜ ⎟
⎝ ⎠

Solve for V ≈ 225 m/s, check ReD = ρ VD/μ ≈ 150,000: OK, CD ≈ 1.2 from Fig. 5.3a. 
Then V ≈ 225 m/s, which is quite high subsonic speed, Mach number ≈ 0.66. Ans. 

5.58 For the steel rod of Prob. 5.57, at what airstream velocity U will the rod begin to vibrate 
laterally in resonance in its first mode (a half sine wave)? (Hint: Consult a vibration text under 
“lateral beam vibration.”) 

Solution: From a vibrations book, the first mode frequency for a simply-supported slender 
beam is given by 

2 2
n steel4

EI where m R beam mass per unit length
mL

ω π ρ π= = =

1/24
n

n 2 4
2.0E11( /4)(0.005)Thus f 55.1 Hz

2 2 (7840) (0.005) (0.6)
ω π π

π π
⎡ ⎤

= = ≈⎢ ⎥
⎣ ⎦

www.20file.org

http://www.semeng.ir


Chapter 5 • Dimensional Analysis and Similarity 403 

The beam will resonate if its vortex shedding frequency is the same. Guess fD/U ≈ 0.2: 

fD 55.1(0.01) mSt 0.2 , or U 2.8 
U U

= ≈ = ≈
s

 

DCheck Re VD/ 1800. Fig. 5.2, OK, St 0.2. Then  Ans.ρ μ= ≈ ≈
mV 2.8
s

_______________________________________________________________________________ 
≈

P5.59     A long, slender, 3-cm-diameter smooth flagpole bends alarmingly in 20 mi/h sea-level  

winds, causing patriotic citizens to gasp.  An engineer claims that the pole will bend less 
if its  surface is deliberately roughened.   Is she correct, at least qualitatively? 

Solution:  For sea-level air, take ρ = 1.2255 kg/m3 and μ = 1.78E-5 kg/m-s.  Convert 20 mi/h =  

8.94 m/s.  Calculate the Reynolds number of the pole as a “cylinder in crossflow”: 

500,18
/578.1

)03.0)(/94.8)(/2255.1(Re
3

=
−−

==
smkgE

msmmkgVD
D μ

ρ

From Fig. 5.3b, we see that this Reynolds number is below the region where roughness is 

effective in reducing cylinder drag.  Therefore we think the engineer is incorrect.      Ans. 

[It is more likely that the drag of the flag is causing the problem.] 

*P5.60    The thrust F of a free propeller, either aircraft or marine, depends upon density ρ, the 

rotation rate n in r/s, the diameter D, and the forward velocity V.  Viscous effects are slight and 

neglected here.  Tests of a 25-cm-diameter model aircraft propeller, in a sea-level wind tunnel, 

yield the following thrust data at a velocity of 20 m/s:            
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Rotation rate, r/mi 4800 6000 8000 

Measured thrust, N 6.1 19 47 

(a) Use this data to make a crude but effective dimensionless plot.  (b) Use the dimensionless data to 
predict the thrust, in newtons, of a similar 1.6-m-diameter prototype propeller when rotating at 3800 
r/min and flying at 225 mi/h at 4000 m standard altitude. 

Solution:  The given function is   F  =  fcn(ρ, n, D, V), and we note that j = 3.  Hence we expect 2 pi 
groups.  The writer chose (ρ, n, D) as repeating variables and found this: 

nD
VJand

Dn
FCwhereJfcnC FF === 42,)(

ρ

The quantity CF is called the thrust coefficient, while J is called the advance ratio.  Now use the data 

(at ρ = 1.2255 kg/m3) to fill out a new table showing the two pi groups: 

n, r/s 133.3 100.0 80.0 

CF 0.55 0.40 0.20 

J 0.60 0.80 1.00 

A crude but effective plot of this data is as follows.     Ans.(a) 
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0
0.1
0.2
0.3
0.4
0.5
0.6

0.5 0.6 0.7 0.8 0.9 1 1.1
J

CF

(b)   At 4000 m altitude, from Table A.6, ρ = 0.8191 kg/m3.  Convert 225 mi/h = 101.6 m/s.  Convert 

3800 r/min = 63.3 r/s.   Then find the prototype advance ratio:   

                               J  =  (101.6 m/s)/[(63.3 r/s)(1.6 m)]    =     1.00 

Well, lucky us, that’s our third data point!  Therefore   CF,prototype  ≈  0.20.   And the thrust is 

).()6.1()3.63)(8191.0)(20.0( 42
3

42 bAnsm
s
r

m
kgDnCF Fprototype N4300≈== ρ

5.61 If viscosity is neglected, typical pump-flow 
results are shown in Fig. P5.61 for a model pump 
tested in water. The pressure rise decreases and the 
power required increases with the dimensionless flow 
coef-ficient. Curve-fit expressions are given for the 
data. Suppose a similar pump of 12-cm diameter is 
built to move gasoline at 20°C and a flow rate of 25 
m3/h. If the pump rotation speed is 30 r/s, find (a) the 
pressure rise and (b) the power required. 

Fig. P5.61 
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Solution: For gasoline at 20°C, take ρ ≈ 680 kg/m3 and μ ≈ 2.92E−4 kg/m⋅s. Convert Q = 25 
m3/hr = 0.00694 m3/s. Then we can evaluate the “flow coefficient”: 

2
3 3 2 2

3 5

Q 0.00694 p0.134, whence 6 120(0.134) 3.85
D (30)(0.12) D

Pand  0.5 3(0.134) 0.902
D

ρ

ρ

Δ
= ≈ ≈ − ≈

Ω Ω

≈ + ≈
Ω

With the dimensionless pressure rise and dimensionless power known, we thus find 
2 2p (3.85)(680)(30) (0.12)  (a)Ans.Δ = ≈ 34000 Pa  

3 5P (0.902)(680)(30) (0.12)  (b)Ans.= ≈ 410 W  

5.62 A prototype water pump has an impeller diameter of 2 ft and is designed to pump 12 ft3/s 
at 750 r/min. A 1-ft-diameter model pump is tested in 20°C air at 1800 r/min, and Reynolds-number 
effects are found to be negligible. For similar conditions, what will the volume flow of the model be 
in ft3/s? If the model pump requires 0.082 hp to drive it, what horsepower is required for the 
prototype? 

Solution: For air at 20°C, take ρ ≈ 0.00234 slug/ft3. For water at 20°C, take ρ ≈ 1.94 
slug/ft3. The proper Pi groups for this problem are 3 5 3 2P/ D fcn(Q/ D , D / ).ρ ρ μΩ = Ω Ω  Neglecting 
μ: 

3 5 3
P Qfcn if Reynolds number is unimportant

D Dρ
⎛ ⎞= ⎜ ⎟Ω Ω⎝ ⎠

3
3

model p m p m p
1800 1.0Then Q Q ( / )(D /D ) 12
750 2.0

Ans.⎛ ⎞⎛ ⎞= Ω Ω = ≈⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

ft3.6
s

3

p m p m p m p m
3 5 1.94 750 2.0Similarly, P P ( / )( / ) (D /D ) 0.082

0.00234 1800 1.0
ρ ρ ⎛ ⎞⎛ ⎞ ⎛= Ω Ω = ⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠ ⎝

3 5
⎞
⎟
⎠

 

protoor P Ans.≈ 157 hp  

5.63 The pressure drop per unit length Δp/L in smooth pipe flow is known to be a function only of 
the average velocity V, diameter D, and fluid properties ρ and μ. The following data were obtained 
for flow of water at 20°C in an 8-cm-diameter pipe 50 m long: 
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Q, m3/s 0.005 0.01 0.015 0.020 
Δp, Pa 5800 20,300 42,100 70,800 

Verify that these data are slightly outside the range of Fig. 5.10. What is a suitable power-law 
curve fit for the present data? Use these data to estimate the pressure drop for 
flow of kerosene at 20°C in a smooth pipe of diameter 5 cm and length 200 m if the flow rate is 
50 m3/h. 

Solution: For water at 20°C, take ρ ≈ 998 kg/m3 and μ ≈ 0.001 kg/m⋅s. In the spirit of Fig. 
5.10 and Example 5.7 in the text, we generate dimensionless Δp and V: 

Q, m3/s: 0.005 0.010 0.015 0.020 
V = Q/A, m/s: 0.995 1.99 2.98 3.98 
Re = ρVD/μ: 79400 158900 238300 317700 
ρD3Δp/(Lμ2): 5.93E7 2.07E8 4.30E8 7.24E8 

These data, except for the first point, exceed Re = 1E6 and are thus off to the right of the plot in Fig. 
5.10. They could fit a “1.75” Power-law, as in Ans. (c) as in Ex. 5.7 of the text, but only to ±4%. 
They fit a “1.80” power-law much more accurately: 

1.803

2
pD VD0.0901  1%

L
ρ ρ

μμ
⎛ ⎞Δ

≈ ±⎜ ⎟
⎝ ⎠

 

For kerosene at 20°C, take ρ ≈ 804 kg/m3 and μ ≈ 1.92E−3 kg/m·s. The new length is 200 m, the 
new diameter is 5 cm, and the new flow rate is 50 m3/hr. Then evaluate Re: 

D2
50/3600 m VD 804(7.07)(0.05)V 7.07 , and Re 148100

s 1.92E 3( / )(0.05)
ρ

μπ
= ≈ = = ≈

−4

3
3 1.80

2
(804) p(0.05)Then pD /(L ) 0.0901(148100) 1.83E8
(200)(1.92E 3)

ρ μ2 Δ
Δ ≈ ≈ =

−
 

Solve for Ans.Δp 1.34E6 Pa≈
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5.64 The natural frequency ω of vibra-tion of a 
mass M attached to a rod, as in Fig. P5.64, depends 
only upon M and the stiffness EI and length L of the 
rod. Tests with a 2-kg mass attached to a 1040 
carbon-steel rod of diameter 12 mm and length 
40 cm reveal a natural frequency of 0.9 Hz. Use 
these data to predict the natural frequency of a 1-
kg mass attached to a 2024 aluminum-alloy rod of 
the same size. 

Fig. P5.64 
Solution: For steel, E ≈ 29E6 psi ≈ 2.03E11 Pa. If ω = f(M, EI, L), then n = 4 and j = 3 (MLT), 
hence we get only 1 pi group, which we can evaluate from the steel data: 

3 1/2 3 1/2

1/2 1/2
(ML ) 0.9[(2.0)(0.4) ]constant 0.0224
(EI) [(2.03E11)( / )( ) ]

ω
π 4= = ≈

4 0.006
 

For 2024 aluminum, E ≈ 10.6E6 psi ≈ 7.4E10 Pa. Then re-evaluate the same pi group: 

3 1/2 3 1/2

1/2 1/2
(ML ) [(1.0)(0.4) ]New 0.0224 , or
(EI) [(7.4E10)( )( ) ]

Ans.ω ω
π 4= =

/4 0.006
ω alum 0.77 Hz≈

5.65 In turbulent flow near a flat wall, the local velocity u varies only with distance y from the 
wall, wall shear stress τw, and fluid properties ρ and μ. The following data were taken in the University 
of Rhode Island wind tunnel for airflow, ρ = 0.0023 slug/ft3, μ = 3.81E−7 slug/(ft·s), and τw = 0.029 
lbf/ft2: 

y, in 0.021 0.035 0.055 0.080 0.12 0.16 
u, ft/s 50.6 54.2 57.6 59.7 63.5 65.9 

(a) Plot these data in the form of dimensionless u versus dimensionless y, and suggest a suitable 
power-law curve fit. (b) Suppose that the tunnel speed is increased until u = 90 ft/s at y = 0.11 in. 
Estimate the new wall shear stress, in lbf/ft2. 

Solution: Given that u = fcn(y, τw, ρ, μ), then n = 5 and j = 3 (MLT), so we expect  
n − j = 5 − 3 = 2 pi groups, and they are traditionally chosen as follows (Chap. 6, Section 6.5): 

1/2
w

u u*yfcn , where u* ( / ) the ‘friction velocity’
u*

ρ τ ρ
μ

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
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We may compute = (τu* w /ρ)1/2 = (0.029/0.0023)1/2 = 3.55 ft/s and then modify the given data 
into dimensionless parameters: 

 y, in: 0.021 0.035 0.055 0.080 0.12 0.16 
u* y/ :ρ μ  38 63 98 143 214 286 

u/u*:  14.3 15.3 16.2 16.8 17.9 18.6 

When plotted on log-log paper as follows, they form nearly a straight line: 
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The slope of the line is 0.13 and its intercept (at yu*/ 1ν = ) is 8.9. Hence the formula: 

0.13u/u* 8.9(yu*/ ) 1%  (a)Ans.ν≈ ±  

Now if the tunnel speed is increased until u = 90 ft/s at y = 0.11 in, we may substitute in: 
0.13

90 0.0023(0.11/12)u*8.9 , solve for u* 4.89 ft/s
u* 3.87E 7

⎡ ⎤
≈ ≈⎢ ⎥−⎣ ⎦

2 2
wSolve for u* (0.0023)(4.89) /  (b)Ans.τ ρ= = ≈ 20.055 lbf ft  

5.66 A torpedo 8 m below the surface in 20°C seawater cavitates at a speed of 21 m/s when 
atmospheric pressure is 101 kPa. If Reynolds-number and Froude-number effects are negligible, at 
what speed will it cavitate when running at a depth of 20 m? At what depth should it be to avoid 
cavitation at 30 m/s? 

Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and pv = 2337 Pa. With Reynolds and 
Froude numbers neglected, the cavitation numbers must simply be the same: 

a v
2 2

p gz p 101000 (1025)(9.81)(8) 2337Ca for Flow 1 0.396
V (1025)(21)

ρ
ρ

+ − + −
= = ≈  
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(a) At z = 20 m:  2
a

101000 1025(9.81)(20) 2337Ca 0.396 ,
1025V

+ −
= =

aor V   (a)Ans.≈
m27.2
s

 

(b) At b
b 2

101000 1025(9.81)z 2337mV 30 : Ca 0.396 ,
s 1025(30)

+ −
= = =

bor z . (b)Ans≈ 26.5 m  

5.67 A student needs to measure the drag on a prototype of characteristic length dp moving at 
velocity Up in air at sea-level conditions. He constructs a model of characteristic length dm, such 
that the ratio dp/dm = a factor f. He then measures the model drag under dynamically similar 
conditions, in sea-level air. The student claims that the drag force on the prototype will be identical 
to that of the model. Is this claim correct? Explain. 

Solution: Assuming no compressibility effects, dynamic similarity requires that 

, : ,p p p pm m m m
m p

m p p m

U d dU d URe Re or whence f
U d

ρρ
μ μ

= = = =  

Run the tunnel at “f ” times the prototype speed, then drag coefficients match: 
2 2

2 2 2 2 , :  !pm m m m

p p pm m m p p p

FF F U d for drags are the same
F U d fU d U dρ ρ

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

1 Yes,

5.68 Consider viscous flow over a very small object. Analysis of the equations of motion shows 
that the inertial terms are much smaller than viscous and pressure terms. Fluid density drops out, and 
these are called creeping flows. The only important parameters are velocity U, viscosity μ, and body 
length scale d. For three-dimensional bodies, like spheres, creeping-flow analysis yields very good 
results. It is uncertain, however, if creeping flow applies to two-dimensional bodies, such as 
cylinders, since even though the diameter may be very small, the length of the cylinder is infinite. 
Let us see if dimensional analysis can help. (a) Apply the Pi theorem to two-dimensional drag 
force 2-D as a function of the other parameters. Be careful: two-dimensional drag has dimensions of 
force per unit length, not simply force. (b) Is your analysis in part (a) physically plausible? If not, 
explain why not. (c) It turns out that fluid density ρ cannot be neglected in analysis of creeping flow 
over two-dimensional bodies. Repeat the dimensional analysis, this time including ρ as a variable, 
and find the resulting nondimensional relation between the parameters in this problem. 

F
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Solution: If we assume, as given, that  = fcn(μ,U,d), then the dimensions are 2-DF

2
2-{ } { / }; { / ; { } { / }; { } { }DF M T LT U L T d Lμ Μ= } = { } = =  

Thus n = 4 and j = 3 (MLT), hence we expect n − j = only one Pi group, which is 

2-
1 , :   (aDF )Ans.

Uμ
Π = = Const or F U2-D = Const μ

(b) Is this physically plausible? No, because it states that the body drag is independent of its size 
L. Therefore something has been left out of the analysis: ρ. Ans. (b) 
(c) If density is added, we have  = fcn(ρ,μ,U,d), and a second Pi group appears: 2-DF

,2
Ud ;  .Ansρ
μ

⎛ ⎞
Π = = ⎜ ⎟

⎝ ⎠
dRe Thus, realistically 2 DF Ud

U
- = fcn ρ

μ μ
 (c)  

Experimental data and theory for two-dimensional bodies agree with part (c). 

5.69 A simple flow-measurement device for 
streams and channels is a notch, of angle α, cut 
into the side of a dam, as shown in Fig. P5.69. The 
volume flow Q depends only on α, the acceleration 
of gravity g, and the height δ of the upstream water 
surface above the notch vertex. Tests of a model 
notch, of angle α = 55°, yield the following flow 
rate data: Fig. P5.69

δ, cm: 10 20 30 40 
Q, m3/h: 8 47 126 263

(a) Find a dimensionless correlation for the data. (b) Use the model data to predict the flow 
rate of a prototype notch, also of angle α = 55°, when the upstream height δ is 3.2 m. 

Solution: (a) The appropriate functional relation is Q = fcn(α, g, δ) and its dimensionless form is 
Q/(g1/2δ5/2) = fcn(α). Recalculate the data in this dimensionless form, with α constant: 

Q/(g1/2δ5/2) = 0.224 0.233 0.227 0.230 respectively Ans. (a) 

(b) The average coefficient in the data is about 0.23. Since the notch angle is still 55°, we may use 
the formula to predict the larger flow rate: 
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1/2

ns1/2 5/2 5/2
20.23 0.23 9.81 (3.2 ) . (b)prototype

mQ g m A
s

δ ⎛ ⎞= = ≈⎜ ⎟
⎝ ⎠

313.2 m /s  

5.70 A diamond-shaped body, of characteristic length 9 in, has the following measured drag 
forces when placed in a wind tunnel at sea-level standard conditions: 

V, ft/s: 30 38 48 56 61 
F, lbf: 1.25 1.95 3.02 4.05 4.81

Use these data to predict the drag force of a similar 15-in diamond placed at similar orientation in 
20°C water flowing at 2.2 m/s. 

Solution: For sea-level air, take ρ = 0.00237 slug/ft3, μ = 3.72E−7 slug/ft·s. For water at 20°C, 
take ρ = 1.94 kg/m3, μ = 2.09E−5 slug/ft·s. Convert the model data into drag coefficient and 
Reynolds number, taking Lm = 9 in = 0.75 ft: 

Vm, ft/s: 30 38 48 56 61 

F/(ρV2L2): 0.667 0.649 0.630 0.621 0.621 
ρVL/μ:  143000 182000 229000 268000 291000 

An excellent curve-fit to this data is the power-law 
0.111

F LC 2.5Re 1%−≈ ±  

Now introduce the new case, Vproto = 2.2 m/s = 7.22 ft/s, Lproto = 15 in = 1.25 ft. Then 

L,proto
1.94(7.22)(1.25)Re 837000,

2.09E 5
= ≈

−
 which is outside the range of the model data. Strictly 

speaking, we cannot use the model data to predict this new case. Ans. 
If we wish to extrapolate to get an estimate, we obtain 

protoF2.5C 0.550 ,≈ ≈ ≈F,proto 0.111 2 2

proto

(837000) 1.94(7.22) (1.25)

or: F Approximately≈ 87 lbf

5.71 The pressure drop in a venturi meter (Fig. P3.165) varies only with the fluid density, pipe 
approach velocity, and diameter ratio of the meter. A model venturi meter tested in water at 20°C 
shows a 5-kPa drop when the approach velocity is 4 m/s. A geometrically similar prototype meter is 
used to measure gasoline at 20°C and a flow rate of 9 m3/min. If the prototype pressure gage is 
most accurate at 15 kPa, what should the upstream pipe diameter be? 
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Solution: Given Δp = fcn(ρ, V, d/D), then by dimensional analysis Δp/(ρV2) = fcn(d/D). For 
water at 20°C, take ρ = 998 kg/m3. For gasoline at 20°C, take ρ = 680 kg/m3. Then, using the 
water ‘model’ data to obtain the function “fcn(d/D)”, we calculate 

pm
p2 2 2 2

m m p p p

pp 5000 15000 m0.313 , solve for V 8.39 
sV (998)(4.0) V (680)Vρ ρ

ΔΔ
= = = = ≈  

3
2

p p p
9 mGiven Q  V A (8.39) D , solve for best .

60 s
Ansπ

= = =
4 pD 0.151 m≈

5.72 A one-fifteenth-scale model of a parachute has a drag of 450 lbf when tested at  
20 ft/s in a water tunnel. If Reynolds-number effects are negligible, estimate the terminal fall 
velocity at 5000-ft standard altitude of a parachutist using the prototype if chute and chutist together 
weigh 160 lbf. Neglect the drag coefficient of the woman. 

Solution: For water at 20°C, take ρ = 1.94 kg/m3. For air at 5000-ft standard altitude (Table 
A-6) take ρ = 0.00205 kg/m3. If Reynolds number is unimportant, then the two cases have the 
same drag-force coefficient: 

m
Dm Dp2 2 2 2 2 2

m m m p p p

F 450 160C C
V D 1.94(20) (D /15) 0.00205V D

solve  .Ans

ρ
= = = =

p
ftV 24.5
s

≈

,

5.73 The power P generated by a certain windmill design depends upon its diameter D, the air 
density ρ, the wind velocity V, the rotation rate Ω, and the number of blades n. 
(a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm, develops 
2.7 kW at sea level when V = 40 m/s and when rotating at 4800 rev/min. (b) What power will be 
developed by a geometrically and dynamically similar prototype, of diameter 5 m, in winds of 12 
m/s at 2000 m standard altitude? (c) What is the appropriate rotation rate of the prototype? 

Solution: (a) For the function P = fcn(D, ρ, V, Ω, n) the appropriate dimensions are {P} =
{ML2T−3}, {D} = {L}, {ρ} = {ML−3}, {V} = {L/T}, {Ω} = {T−1}, and {n} = {1}. Using (D, ρ, 
V) as repeating variables, we obtain the desired dimensionless function: 

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (a)AnsP Dfcn n
VD Vρ 2 3 ,Ω

=

www.20file.org

http://www.semeng.ir


Chapter 5 • Dimensional Analysis and Similarity 415 

(c) “Geometrically similar” means that n is the same for both windmills. For “dynamic similarity,” 
the advance ratio (ΩD/V) must be the same: 

(5 )(4800 /min)(0.5 ) 1.0 ,
(40 / ) 12 /

or: . (c)

proto

model proto

proto

mD r m D
V m s V

Ans

ΩΩ Ω⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Ω =
rev144
min

m s  

(b) At 2000 m altitude, ρ = 1.0067 kg/m3. At sea level, ρ = 1.2255 kg/m3. Since ΩD/V and n are the 
same, it follows that the power coefficients equal for model and prototype: 

2 3 2 3 2 3
2700 ,

(1.2255)(0.5) (40) (1.0067)(5) (12)

5990  . (b)

protoPP W
D V

solve W Ans

ρ
= =

= ≈protoP 6 kW

5.74 A one-tenth-scale model of a supersonic wing tested at 700 m/s in air at 20°C and  
1 atm shows a pitching moment of 0.25 kN·m. If Reynolds-number effects are negligible, what will 
the pitching moment of the prototype wing be flying at the same Mach number at 8-km standard 
altitude? 

Solution: If Reynolds number is unimportant, then the dimensionless moment coefficient 
M/(ρV2L3) must be a function only of the Mach number, Ma = V/a. For sea-level air, take ρ = 1.225 
kg/m3 and sound speed a = 340 m/s. For air at 8000-m standard altitude (Table A-6), take ρ = 0.525 
kg/m3 and sound speed a = 308 m/s. Then 

pm
m p

m

VV 700 mMa 2.06 Ma , solve for V 634 
a 340 308 s

= = = = = ≈p

2 3 2 3⎛ ⎞p p p
p m 2 3

m m m

V L 0.525 634 10Then M M 0.25 .
1.225 700 1V L

Ans
ρ
ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
88 kN m⋅  
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P5.75     According to the web site USGS Daily Water Data for the Nation, the mean flow rate in 

 the New River near Hinton, WV is 10,100 ft3/s.  If the hydraulic model in Fig. 5.9 is to  match 
this condition with Froude number scaling, what is the proper model flow rate? 

Solution:  For Froude scaling, the volume flow rate is a blend of velocity and length terms: 

.30.0)
65
1)(10100(;651:9/5.

or)(

3
2/5

3

2/52/52

:

)(

Ans
s

ft
s

ftQFig

L
L

L
L

L
L

A
A

V
V

Q
Q

model

p

m

p

m

p

m

p

m

p

m

p

m

==∴=

===

α

α

5.76 A 2-ft-long model of a ship is tested in a freshwater tow tank. The measured drag may be 
split into “friction” drag (Reynolds scaling) and “wave” drag (Froude scaling). The model data are 
as follows: 

Tow speed, ft/s: 0.8 1.6 2.4 3.2 4.0 4.8 
Friction drag, lbf: 0.016 0.057 0.122 0.208 0.315 0.441 
Wave drag, lbf: 0.002 0.021 0.083 0.253 0.509 0.697 

The prototype ship is 150 ft long. Estimate its total drag when cruising at 15 kn in seawater at 20°C. 

Solution: For fresh water at 20°C, take ρ = 1.94 slug/ft3, μ = 2.09E−5 slug/ft⋅s. Then 
evaluate the Reynolds numbers and the Froude numbers and respective force coefficients: 

Vm, ft/s: 0.8 1.6 2.4 3.2 4.0 4.8 
Rem = VmLm/ν: 143000 297000 446000 594000 743000 892000 
CF,friction: 0.00322 0.00287 0.00273 0.00261 0.00254 0.00247 
Frm = Vm/√(gLm): 0.099 0.199 0.299 0.399 0.498 0.598 
CF, wave: 0.00040 0.00106 0.00186 0.00318 0.00410 0.00390 
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For seawater, take ρ = 1.99 slug/ft3, μ = 2.23E−5 slug/ft⋅s. With Lp = 150 ft and Vp =
15 knots = 25.3 ft/s, evaluate 

p p p
proto p 1/2

p

V L 1.99(25.3)(150) 25.3Re 3.39E8; Fr 0.364
2.23E 5 [32.2(150)]

ρ
μ

= = ≈ = ≈
−

F,waveFor Fr 0.364, interpolate to C 0.0027≈ ≈  

Thus we can immediately estimate Fwave ≈ 0.0027(1.99)(25.3)2(150)2 ≈ 77000 lbf. However, as 
mentioned in Fig. 5.8 of the text, Rep is far outside the range of the friction force data, therefore we 
must extrapolate as best we can. A power-law curve-fit is 

F,friction F,proto0.144 0.144
0.0178 0.0178C , hence C 0.00105
Re (3.39E8)

≈ ≈ ≈  

Thus Ffriction ≈ 0.00105(1.99)(25.3)2(150)2 ≈ 30000 lbf. Ftotal ≈ 107000 lbf. Ans. 

5.77 A dam spillway is to be tested by using Froude scaling with a one-thirtieth-scale model. The 
model flow has an average velocity of 0.6 m/s and a volume flow of 0.05 m3/s. What will the 
velocity and flow of the prototype be? If the measured force on a certain part of the model is 1.5 N, 
what will the corresponding force on the prototype be? 

Solution: Given α = Lm/Lp = 1/30, Froude scaling requires that 

m m
p p1/2 / 5/2

V 0.6 Q 0.05V ; Q
(1/30) (1/30)

Ans
α α5 2= = ≈ = = ≈

√
m m3.3 246
s s

 . (a)
3

The force scales in similar manner, assuming that the density remains constant (water): 
2 2 2 2

p p p 3
p m m

m m m

V L 1 1F F F (1) (1.5)(30) . (b)
V L

Ans
ρ
ρ αα

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = ≈⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟√ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
40500 N  

5.78 A prototype spillway has a characteristic velocity of 3 m/s and a characteristic length of 10 
m. A small model is constructed by using Froude scaling. What is the minimum scale ratio of the 
model which will ensure that its minimum Weber number is 100? Both flows use water at 20°C. 

Solution: For water at 20°C, ρ = 998 kg/m3 and Y = 0.073 N/m, for both model and prototype. 
Evaluate the Weber number of the prototype: 

2 2
p p p

p
p

V L 998(3.0) (10.0)We 1.23E6; for Froude scaling,
Y 0.073

ρ
= = ≈
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2
p 2 2m m m m

p p p p m

YWe V L 100(1)( ) ( 1) if 0.0090
We V L Y 1.23E6

ρ α α α α
ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = )( = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

=  

Thus the model Weber number will be ≥100 if α = Lm/Lp ≥ 0.0090 = 1/111. Ans. 

5.79 An East Coast estuary has a tidal period of 12.42 h (the semidiurnal lunar tide) and tidal 
currents of approximately 80 cm/s. If a one-five-hundredth-scale model is constructed with tides 
driven by a pump and storage apparatus, what should the period of the model tides be and what 
model current speeds are expected? 

Solution: Given Tp = 12.42 hr, Vp = 80 cm/s, and α = Lm/Lp = 1/500. Then: 

m p
12.42Froude scaling: T T 0.555 hr (a)

500
Ans. α= = = ≈ 33 min  

m pV V 80 (500) . (b)Ansα= = ≈ 3.6 cm/s  

5.80 A prototype ship is 35 m long and designed to cruise at 11 m/s (about 21 kn). Its drag is to be 
simulated by a 1-m-long model pulled in a tow tank. For Froude scaling find (a) the tow speed, (b) 
the ratio of prototype to model drag, and (c) the ratio of prototype to model power. 

Solution: Given α = 1/35, then Froude scaling determines everything: 

tow m pV  V  V 11/ ( )α= = √ = √ 35 ≈  1.86 m/s

2 2 2 2 3
m p m p m pF /F (V /V ) (L /L ) ( ) ( ) (1/35) .Ansα α α3= = √ = = ≈

1
42900

3.5 3.5
m p m p m pP /P (F /F )(V /V ) ( ) 1/35α α α3= = √ = = ≈

1
254000

 

5.81 An airplane, of overall length 55 ft, is designed to fly at 680 m/s at 8000-m standard altitude. 
A one-thirtieth-scale model is to be tested in a pressurized helium wind tunnel at 20°C. What is the 
appropriate tunnel pressure in atm? Even at this (high) pressure, exact dynamic similarity is not 
achieved. Why? 

Solution: For air at 8000-m standard altitude (Table A-6), take ρ = 0.525 kg/m3, μ = 
1.53E−5 kg/m⋅s, and sound speed a = 308 m/s. For helium at 20°C (Table A-4), take gas 
constant R = 2077 J/(kg·°K), μ = 1.97E−5 kg/m·s, and a = 1005 m/s. For similarity at this 
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supersonic speed, we must match both the Mach and Reynolds numbers. First convert Lp =
55 ft = 16.8 m. Then 

m
p m model

680 V mMa 2.21 Ma , solve for V 2219 
308 1005 s

= = = = ≈  

He
p p m

(2219)(16.8/30)VL 0.525(680)(16.8)Re 3.91E8 Re
1.53E 5 1.97E 5

ρρ
μ

= = = = =
− −

|
3 Hepp

HeSolve for 6.21 kg/m ,
RT (2077)(293)

or Ans.

ρ ≈ = =

Hep 3.78 MPa 37.3 atm≈ =

Even with Ma and Re matched, true dynamic similarity is not achieved, because the specific heat 
ratio of helium, k ≈ 1.66, is not equal to kair ≈ 1.40. 

5.82 A prototype ship is 400 ft long and has a wetted area of 30,000 ft2. A one-eightieth-scale 
model is tested in a tow tank according to Froude scaling at speeds of 1.3, 2.0, and  
2.7 kn (1 kn = 1.689 ft/s). The measured friction drag of the model at these speeds is 0.11, 0.24, and 
0.41 lbf, respectively. What are the three prototype speeds? What is the estimated prototype friction 
drag at these speeds if we correct for Reynolds-number discrepancy by extrapolation? 

Solution: For water at 20°C, take ρ = 1.94 slug/ft3, μ = 2.09E−5 slug/ft·s. Convert the 
velocities to ft/sec. Calculate the Reynolds numbers for the model data: 

Vm, ft/s: 2.19 3.38 4.56 
Rem = ρVL/μ: 1.02E6 1.57E6 2.12E6 
CFm = F/ρV2L2: 0.000473 0.000433 0.000407 

The data may be fit to the Power-law expression CFm ≈ 0.00805/Re0.205. The related prototype
speeds are given by Froude scaling, Vp = Vm/√α, where α = 1/80: 

Vm, ft/s: 2.19 3.38 4.56  
Vp, ft/s: 19.6 30.2 40.8 Ans. (a) 

Then we may compute the prototype Reynolds numbers and friction drag coefficients: 

Rep = ρVL/μ: 7.27E8 1.12E9 1.51E9 
Estimate the friction-drag coefficients by extrapolating the Power-law fit listed previously: 
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CFp = F/ρV2L2: 0.000123 0.000112 0.000106  

Fp = CFpρVp2Lp2: 14600 lbf 31800 lbf 54600 lbf Ans. (b) 

Among other approximations, this extrapolation assumes very smooth surfaces. 

5.83 A one-fortieth-scale model of a ship’s propeller is tested in a tow tank at 1200 r/min and 
exhibits a power output of 1.4 ft·lbf/s. According to Froude scaling laws, what should the 
revolutions per minute and horsepower output of the prototype propeller be under dynamically 
similar conditions? 

Solution: Given α = 1/40, use Froude scaling laws: 

p m m p p 1/2
1200/ T /T thus  . (a)
(40)

AnsαΩ Ω = = √ , Ω = ≈
rev190
min

 

3 5 3
p p p 5D 1ρ Ω⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

p m
m m m

P P (1.4)(1) (40)
D 40

567000 550 . (b)Ans
ρ

= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
= ÷ = 1030 hp

5.84 A prototype ocean-platform piling is expected to encounter currents of 150 cm/s and waves 
of 12-s period and 3-m height. If a one-fifteenth-scale model is tested in a wave channel, what 
current speed, wave period, and wave height should be encountered by the model? 

Solution: Given α = 1/15, apply straight Froude scaling (Fig. 5.6b) to these results: 

m p
150Velocity: V V

15
α= √ = =

√
cm39
s

 

m p m p
12 3Period: T T  ; Height: H H

1515
Ans.α α= √ = = = = =

√
3.1 s 0.20 m  

*P5.85     As shown in Ex. 5.3, pump performance data can be non-dimensionalized.  

Problem P5.62 gave typical dimensionless data for centrifugal pump “head”, H  = Δp/ρg, as 

follows: 
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2
322 )(1200.6

nD
Q

Dn
Hg

−≈

where Q is the volume flow rate, n the rotation rate in r/s, and D the impeller diameter.  This 

type of correlation allows one to compute H when (ρ, Q, D) are known.  (a) Show how to 

rearrange these Pi groups so that one can size the pump, that is, compute D directly when (Q, 

H, n) are known.  (b)  Make a crude but effective plot of your new function.  (c) Apply part 

(b) to the following example: When H = 37 m, Q = 0.14 m3/s, and n = 35 r/s, find the pump 

diameter for this condition. 

Solution:  (a) We have to eliminate D from one or the other of the two parameters.  The writer 

chose to remove D from the left side.  The new parameter will be 

3/23/4
3/2

3

223 )(
Qn
Hg

Q
nD

Dn
gH

==Π

)( 3/23/4

3

Qn
Hgfcn

Q
Dn

=

For convenience, we inverted the right-hand parameter to feature D.   Thus the function 

will enable one to input  (Q, H, n) and immediately solve for the impeller diameter.    Ans.(a) 

(b)  The new variable hopelessly complicates the algebra of the original parabolic formula.  

However, with a little (well, maybe a lot of) work, one can compute and plot a few values: 
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y = 4.41e0.0363x

0

5

10

15

20

0 10 20 30 40 50

Part (c)

nD 3/Q = 6.76

nD 3/Q

gH/(n4/3Q2/3)

It fits a least-squared exponential curve quite well, as you see.      Ans.(b) 

).(30.0,
14.0

3576.6)]76.11(0363.0exp[41.4

76.11
)/14.0()/35(

)37)(/81.9(

33

3/233/4

2

3/23/4

cAnsmDSolveD
Q

nD

Hence
smsr

msm
Qn

gH

≈==≈

==

(c)  For the given data, H = 37 m, Q = 0.14 m3/s, and n = 35 r/s, calculate Π3: 

A 30-cm pump fits these conditions.  These Π value solutions are shown on the crude plot above.  

[NOTE: This problem was set up from the original parabolic function by using D = 30 cm, so the 

curve-fit is quite accurate.] 

5.86 Solve Prob. 5.49 for glycerin, using the modified sphere-drag plot of Fig. 5.11. 

Solution: Recall this problem is identical to Prob. 5.85 above except that the fluid is glycerin, 
with ρ = 1260 kg/m3 and μ = 1.49 kg/m·s. Evaluate the net weight: 

3
2

F 1260(0.525)W (7800 1260)(9.81) (0.025) 0.525 N, whence 298
6 (1.49)
π ρ

μ2= − ≈ = ≈  

From Fig. 5.11 read Re ≈ 15, or V = 15(1.49)/[1260(0.025)] ≈ 0.7 m/s. Ans. 
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5.87 In Prob. 5.62 it was difficult to solve for Ω
because it appeared in both power and flow 
coefficients. Rescale the problem, using the data of 
Fig. P5.61, to make a plot of dimensionless power 
versus dimension-less rotation speed. Enter this plot 
directly to solve Prob. 5.62 for Ω. 

Fig. P5.61 

Solution: Recall that the problem was to find the speed Ω for this pump family if D = 12 cm, 
Q = 25 m3/hr, and P = 300 W, in gasoline, ρ = 680 kg/m3 and μ = 2.92E−4 kg/m·s. We can 
eliminate Ω from the power coefficient for a new type of coefficient: 

3 9

3 3 5 3 3
P D Q, to be plotted versus

D Q Dρ
Ω

Π = ⋅ =
Ω Ω3

PD
Qρ

4

The plot is shown below, as computed from the expressions in Fig. P5.61. 

Fig. P5.87 

Below Π3 < 10,000, an excellent Power-law curve-fit is 3 0.4
3(Q/ D ) 1.43/ 1%.Ω ≈ Π ±
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We use the given data to evaluate Π3 and hence compute Q/ΩD3: 
4

3
(300)(0.12) Q 1.43 25/3600273, whence 0.152Π = = ≈ ≈ =3 3 3 0.4(680)(25/3600) D (273) (0.12)

Solve for .Ans

Ω Ω

Ω ≈ 26.5 rev/s

5.88 Modify Prob. 5.61 as follows: Let Ω = 32 r/s and Q = 24 m3/h for a geometrically similar 
pump. What is the maximum diameter if the power is not to exceed 340 W? Solve this problem 
by rescaling the data of Fig. P5.61 to make a plot of dimensionless power versus 
dimensionless diameter. Enter this plot directly to find the desired diameter. 

Solution: We can eliminate D from the power coefficient for an alternate coefficient: 

5/33

3
Q

4 5 / /
P D , to be plotted versus

QD Dρ 3

⎛ ⎞Ω
Π = ⋅ =⎜ ⎟

Ω Ω⎝ ⎠
4 3 5 3
P

QρΩ
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The plot is shown below, as computed from the expressions in Fig. P5.61. 

Fig. P5.88 

Below Π4 < 1,000, an excellent Power-law curve-fit is 3 0.85
4(Q/ D ) 2.12/ 1%.Ω ≈ Π ±

We use the given data to evaluate Π4 and hence compute Q/ΩD3: 

4 4/3 5/3 3 0.85 320.8, whence 0.161
680(32) (24/3600) D (20.8) 32D

Solve for .Ans

Π = = = ≈ =
Ω

D 0.109 m≈

340 Q 2.12 24/3600

5.89 Knowing that Δp is proportional to L, rescale the data of Example 5.7 to plot dimensionless 
Δp versus dimensionless diameter. Use this plot to find the diameter required in the first row of data 
in Example 5.7 if the pressure drop is increased to 10 kPa for the same flow rate, length, and fluid. 

Solution: Recall that Example 5.7, where Δp/L = fcn(ρ, V, μ, D), led to the correlation 
1.753D p VD0.155

L
ρ ρ

μμ2
⎛ ⎞Δ

≈ ⎜ ⎟
⎝ ⎠

, which is awkward because D occurs on both sides. 

Further, we need Q = (π/4)D2V, not V, for the desired correlation, because Q is known. We form 
this by multiplying the equation by (ρQ/Dμ) to get a new “Δp vs. D” correlation: 

3 1.75 3 4.753 3

Dμ

4

⋅

3
D p Q Q p 4 Q Q Q0.155 0.236

D D DL L
ρ ρ ρ ρ ρ ρ

μ πμ μμ μ2 5

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ
Π = = ≈ ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2) 

Correlation “2” can now be used to solve for an unknown diameter. The data are the first row of 
Example 5.7, with diameter unknown and a new pressure drop listed: 

3 3L 5 m; Q 0.3 m /hr; p 10,000 Pa; 680 kg/m ; 2.92E 4 kg/m sρ μ= = Δ = = = −  
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4 3
4.75

3 5
(680) (0.3/3600) (10000)Evaluate 1.17E20 0.236( Q/D )

(5)(2.92E 4)
ρ μΠ = ≈ ≈

−

Q (680)(0.3/3600)Solve for 22700 or
D D(2.92E 4)
ρ

μ
≈ =

−
D 0.0085 m≈  

This solution is restricted to smooth walls, for which the data in Ex. 5.7 was taken. 

5.90 Knowing that Δp is proportional to L, rescale the data of Example 5.7 to plot dimensionless 
Δp versus dimensionless viscosity. Use this plot to find the viscosity required in the first row of data 
in Example 5.7 if the pressure drop is increased to 10 kPa for the same flow rate, length, and 
density. 

Solution: Recall that Example 5.7, where Δp/L = fcn(ρ, V, μ, D), led to the correlation 

1.753D p VD0.155
L

ρ ρ
μμ2

⎛ ⎞Δ
≈ ⎜ ⎟

⎝ ⎠
, which is awkward because μ occurs on both sides. 

We can form a “μ-free” parameter by dividing the left side by Reynolds-number-squared: 
3

.25

2

4 2 2 0
D p/L pD 0.155

( VD/ ) V L ( VD/ )
ρ μ

ρ μ ρ ρ μ
Δ Δ

Π = = ≈  (3) 

Correlation “3” can now be used to solve for an unknown viscosity. The data are the first row of 
Example 5.7, with viscosity unknown and a new pressure drop listed: 

3
3

kg mL 5 m; D 1 cm; Q 0.3 m /hr; p 10,000 Pa; 680 ; V 1.06 
sm

ρ= = = Δ = = =  

?
4 2 0.25

(10000)(0.01) 0.155Evaluate 0.0262 , or Re 1230 ???
(680)(1.06) (5.0) Re

Π = = = ≈  

This is a trap for the unwary: Re = 1230 is far below the range of the data in Ex. 5.7, for which 
15000 < Re < 95000. The solution cannot be trusted and in fact is quite incorrect, for the flow 
would be laminar and follow an entirely different correlation. Ans. 
_______________________________________________________________________________ 

*P5.91     The traditional “Moody-type” pipe friction correlation in Chap. 6 is of the form 

),(2 VDfcnDpf 2 DLV
ε

ρ
=

Δ
=

μ
ρ
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where  D is the pipe diameter, L the pipe length, and ε  the wall roughness.  Note that fluid 

average velocity V is used on both sides.  This form is meant to find Δp when V is known. 

(a) Suppose that Δp is known and we wish to find V.  Rearrange the above function so that V is 

isolated on the left-hand side.  Use the following data, for ε/D = 0.005, to make a plot of your 

new function, with your velocity parameter as the ordinate of the plot. 

f 0.0356 0.0316 0.0308 0.0305 0.0304 

ρVD/μ 15,000 75,000 250,000 900,000 3,330,000 

(b)  Use your plot to determine V, in m/s, for the following pipe flow:  D = 5 cm, ε = 0.025 cm,  

L = 10 m, for water flow at 20°C and 1 atm.  The pressure drop Δp is 110 kPa. 

Solution:  We can eliminate V from the left side by multiplying by Re2.  Then rearrange: 

),2(:,),Re(Re 2

3
2

DL
pDfcnVDor

D
ffcn DD

ε
μ

ρ
μ

ρε Δ
==

We can add a third row to the data above and make a log-log plot: 

f ReD
2 8.01E6 1.78E8 1.92E9 2.47E10 3.31E11
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4

5

6

7

6 7 8 9 10 11 12

log(f  ReD
2)

log(ReD)

It is a pretty good straight line, which means a power-law.  A good fit is    

005.0285.4 507.0
2

3
)( =

Δ
≈

D
for

L
pDVD ε

μ
ρ

μ
ρ

Different power-law constants would be needed for other roughness ratios. 

(b)    Given pipe pressure drop data.  For water, take  ρ = 998 kg/m3 and μ = 0.001 kg/m-s.  

Calculate the value of (f ReD
2) for this data: 

).(/93.5
001.0

)05.0()998(000,296)975.2(85.4:lawPower

975.2
)/001.0)(10(

)110000()05.0)(/998(22Re

507.0

2

33

2

3
2

bAnssmVforSolve

VEVD

E
smkgm

Pammkg
L

pDf D

≈

=≈=−

=
−

=
Δ

=

μ
ρ
μ

ρ
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers

FE5.1 Given the parameters (U, L, g, ρ, μ) which affect a certain liquid flow problem. The ratio 
V2/(Lg) is usually known as the 

(a) velocity head  (b) Bernoulli head  (c) Froude No.  (d) kinetic energy  (e) impact energy 
FE5.2 A ship 150 m long, designed to cruise at 18 knots, is to be tested in a tow tank with a model 
3 m long. The appropriate tow velocity is 

(a) 0.19 m/s (b) 0.35 m/s (c) 1.31 m/s (d) 2.55 m/s (e) 8.35 m/s 
FE5.3 A ship 150 m long, designed to cruise at 18 knots, is to be tested in a tow tank with a model 
3 m long. If the model wave drag is 2.2 N, the estimated full-size ship wave drag is 

(a) 5500 N (b) 8700 N (c) 38900 N (d) 61800 N (e) 275000 N
FE5.4 A tidal estuary is dominated by the semi-diurnal lunar tide, with a period of 12.42 
hours. If a 1:500 model of the estuary is tested, what should be the model tidal period? 

(a) 4.0 s (b) 1.5 min (c) 17 min (d) 33 min (e) 64 min 
FE5.5 A football, meant to be thrown at 60 mi/h in sea-level air (ρ = 1.22 kg/m3,  
μ = 1.78E−5 N⋅s/m2) is to be tested using a one-quarter scale model in a water tunnel  
(ρ = 998 kg/m3, μ = 0.0010 N⋅s/m2). For dynamic similarity, what is the proper model water 
velocity? 

(a) 7.5 mi/hr (b) 15.0 mi/hr (c) 15.6 mi/hr (d) 16.5 mi/hr (e) 30 mi/hr 
FE5.6 A football, meant to be thrown at 60 mi/h in sea-level air (ρ = 1.22 kg/m3,  
μ = 1.78E−5 N⋅s/m2) is to be tested using a one-quarter scale model in a water tunnel  
(ρ = 998 kg/m3, μ = 0.0010 N⋅s/m2). For dynamic similarity, what is the ratio of model force to 
prototype force? 

(a) 3.86:1 (b) 16:1 (c) 32:1 (d) 56.2:1 (e) 64:1 
FE5.7 Consider liquid flow of density ρ, viscosity μ, and velocity U over a very small model 
spillway of length scale L, such that the liquid surface tension coefficient Y is important. The 
quantity ρU2L/Y in this case is important and is called the 

(a) capillary rise (b) Froude No. (c) Prandtl No. (d) Weber No. (e) Bond No. 
FE5.8 If a stream flowing at velocity U past a body of length L causes a force F on the body 
which depends only upon U, L and fluid viscosity μ, then F must be proportional to 

(a) ρUL/μ (b) ρU2L2 (c) μU/L (d) μUL (e) UL/μ 
FE5.9 In supersonic wind tunnel testing, if different gases are used, dynamic similarity requires 
that the model and prototype have the same Mach number and the same 

(a) Euler number (b) speed of sound (c) stagnation enthalpy  
(d) Froude number (e) specific heat ratio

FE5.10 The Reynolds number for a 1-ft-diameter sphere moving at 2.3 mi/hr through seawater 
(specific gravity 1.027, viscosity 1.07E−3 N⋅s/m2) is approximately 

(a) 300 (b) 3000 (c) 30,000 (d) 300,000 (e) 3,000,000 
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COMPREHENSIVE PROBLEMS 

C5.1 Estimating pipe wall friction is one of the most common tasks in fluids engineering. For 
long circular, rough pipes in turbulent flow, wall shear τw is a function of density ρ, viscosity μ, 
average velocity V, pipe diameter d, and wall roughness height ε. Thus, functionally, we can write 
τw = fcn(ρ, μ, V, d, ε). (a) Using dimensional analysis, rewrite this function in dimensionless form. 
(b) A certain pipe has d = 5 cm and ε = 0.25 mm. For flow of water at 20°C, measurements show 
the following values of wall shear stress: 

Q (in gal/min) ~ 1.5 3.0 6.0 9.0 12.0 14.0 
τw (in Pa) ~ 0.05 0.18 0.37 0.64 0.86 1.25 

Plot this data in the dimensionless form suggested by your part (a) and suggest a curve-fit formula. 
Does your plot reveal the entire functional relation suggested in your part (a)? 

Solution: (a) There are 6 variables and 3 primary dimensions, therefore we expect 3 Pi groups. 
The traditional choices are: 

τ ρ ε
μρ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠2 ,  : , . (a)w Vdfcn or Ans

dV fC fcn
d
εRe=

(b) In nondimensionalizing and plotting the above data, we find that ε/d = 0.25 mm/50 mm = 0.005 
for all the data. Therefore we only plot dimensionless shear versus Reynolds number, using ρ = 998 
kg/m3 and μ = 0.001 kg/m⋅s for water. The results are tabulated as follows: 

  V, m/s   Re   Cf 
0.0481972 2405 0.021567 
0.0963944 4810 0.019411 
0.1927888 9620 0.009975 
0.2891832 14430 0.007668 
0.3855776 19240 0.005796 
0.4498406 22447 0.00619 

When plotted on log-log paper, Cf versus Re makes a slightly curved line. 
A reasonable power-law curve-fit is shown on 

the chart: Cf ≈ 3.63Re−0.642 with 95% correlation. 
Ans. (b) 
This curve is only for the narrow Reynolds number 
range 2000−22000 and a single ε /d. 
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C5.2 When the fluid exiting a nozzle, as in Fig. P3.49, is a gas, instead of water, 
compressibility may be important, especially if upstream pressure p1 is large and exit diameter 
d2 is small. In this case, the difference (p1 − p2) is no longer controlling, and the gas mass 
flow,  reaches a maximum value which depends upon pm, 1 and d2 and also upon the absolute 
upstream temperature, T1, and the gas constant, R. Thus, functionally,  (a) 
Using dimensional analysis, rewrite this function in dimensionless form. (b) A certain pipe has d

= 1 2 1m fcn(p , d , T, R)  .
2 = 

1 mm. For flow of air, measurements show the following values of mass flow through the 
nozzle: 

T1 (in °K) 
p1 (in kPa) 
m  (in kg/s) 

Plot this data in the dimensionless form suggested by your part (a). Does your plot reveal the entire 
functional relation suggested in your part (a)? 

Solution: (a) There are n = 5 variables and j = 4 dimensions (M, L, T, Θ), hence we expect only n 
− j = 5 − 4 = 1 Pi group, which turns out to be 

1 (a)Ans.Π = 1
2

1 2

m RT
Constant

p d
=

(b) The data should yield a single measured value of Π1 for all five points: 

T1 (in °K)    ~ 300 300 300 500 800 
2

1 1 2m (RT )/(p d ): 54.3 54.0 53.8 54.3 54.3 

Thus the measured value of Π1 is about 54.3 ± 0.5 (dimensionless). The problem asks you to plot 
this function, but since it is a constant, we shall not bother. Ans. (a, b) 
PS: The correct value of Π1 (see Chap. 9) should be about 0.54, not 54. Sorry: The nozzle diameter 
d2 was supposed to be 1 cm, not 1 mm. 

C5.3 Reconsider the fully-developed drain-ing 
vertical oil-film problem (see Fig. P4.80) as an 
exercise in dimensional analysis. Let the vertical 
velocity be a function only of distance from the plate, 
fluid properties, gravity, and film thickness. That is, w
= fcn(x, ρ, μ, g, δ). 
(a) Use the Pi theorem to rewrite this function in terms 
of dimensionless parameters. (b) Verify that the exact 
solution from Prob. 4.80 is consistent with your result 
n part (a). i
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Solution: There are n = 6 variables and j = 3 dimensions (M, L, T), hence we expect only n −
j = 6 − 3 = 3 Pi groups. The author selects (ρ, g, δ) as repeating variables, whence 

1 2 3
; ;w x

g g
3

μ
δδ ρ δ

Π = Π = Π =  

Thus the expected function is 

. (a)Ans⎜ ⎟
⎝ ⎠

w xfcn
g g

μ
δδ ρ δ

=
3

,
⎛ ⎞

(b) The exact solution from Problem 4.80 can be written in just this form: 

3

1 2 3

1( 2 ), : 2
2 2
gx w x xw x or

g g

ρ μδ
μ δ δδ ρ δ

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

Π Π Π

Yes, the two forms of dimensionless function are the same. Ans. (b) 

C5.4 The Taco Inc. Model 4013 centrifugal pump has an impeller of diameter D = 12.95 in. When 
pumping 20°C water at Ω = 1160 rev/min, the measured flow rate Q and pressure rise Δp are given 
by the manufacturer as follows: 

Q (gal/min) ~ 200 300 400 500 600 700 
Δp (psi) ~ 36 35 34 32 29 23 

(a) Assuming that Δp = fcn(ρ, Q, D, Ω), use the Pi theorem to rewrite this function in terms of 
dimensionless parameters and then plot the given data in dimensionless form. (b) It is desired 
to use the same pump, running at 900 rev/min, to pump 20°C gasoline at 400 gal/min. 
According to your dimensionless correlation, what pressure rise Δp is expected, in lbf/in2? 

Solution: There are n = 5 variables and j = 3 dimensions (M, L, T), hence we expect  
n − j = 5 − 3 = 2 Pi groups. The author selects (ρ, D, Ω) as repeating variables, whence 

ρ
Δ ⎛ ⎞Π = Π = ⎜ ⎟Ω Ω ⎝ ⎠

1 22 2 3
p ; , :Q or Ans
D D

p Qfcn
DDρ 32 2

Δ
=

ΩΩ
. (a)  

Convert the data to this form, using Ω = 19.33 rev/s, D = 1.079 ft, ρ = 1.94 slug/ft3, and use Δp in 
lbf/ft2, not psi, and Q in ft3/s, not gal/min: 
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Q (gal/min) ~ 200 300 400 500 600 700 
Δp/(ρΩ2D2):  6.14 5.97 5.80 5.46 4.95 3.92 
Q/(ΩD3):  0.0183 0.0275 0.0367 0.0458 0.0550 0.0642 

The dimensionless plot of Π1 versus Π2 is shown below. 

(b) The dimensionless chart above is valid for the new conditions, also. Convert 400 gal/min to 
0.891 ft3/s and Ω = 900 rev/min to 15 rev/s. Then evaluate Π2: 

2 3 3
0.891

15(1.079)
Q
D

Π = = =
Ω

0.0473  

This value is entered in the chart above, from which we see that the corresponding value of Π1 is 
about 5.4. For gasoline (Table A-3), ρ = 1.32 slug/ft3. Then this new running condition with 
gasoline corresponds to 

2 2 2 2 2 25.4 ,  1870  (b)
1.32(15) (1.079)

p p lbfsolve for p Ans.
D fρ t

Δ Δ
Π = = = Δ = =

Ω 2
lbf13
in
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C5.5 Does an automobile radio antenna vibrate in resonance due to vortex shedding? Consider 
an antenna of length L and diameter D. According to beam-vibration theory [e.g. Kelly [34], p. 
401], the first mode natural frequency of a solid circular cantilever beam is ωn = 
3.516[EI/(ρAL4)]1/2, where E is the modulus of elasticity, I is the area moment of inertia, ρ is the 
beam material density, and A is the beam cross-section area. (a) Show that ωn is proportional to 
the antenna radius R. (b) If the antenna is steel, with  
L = 60 cm and D = 4 mm, estimate the natural vibration frequency, in Hz. (c) Compare with the 
shedding frequency if the car moves at 65 mi/h. 

Solution: (a) From Fig. 2.13 for a circular cross-section, A = πR2 and I = πR4/4. Then the 
natural frequency is predicted to be: 

4

2 4
/43.516  (a)n

E R Const RP Ans.
R L

πω
ρπ

= = = ×21.758 E R
Lρ

(b) For steel, E = 2.1E11 Pa and ρ = 7840 kg/m3. If L = 60 cm and D = 4 mm, then 

2
2.1 11 0.0021.758 51  . (b)
7840 0.6n

E rad Ans
s

ω = ≈ ≈ 8 Hz  

(c) For U = 65 mi/h = 29.1 m/s and sea-level air, check ReD = ρUD/μ = 1.2(29.1)(0.004)/ 
(0.000018) ≈ 7800. From Fig. 5.2b, read Strouhal number St ≈ 0.21. Then, 

(0.004) 0.21, : 9600 . (c)
2 2 (29.1)
shed shed

shed
D rador Ans

U s
ω ω ω

π π
= ≈ ≈ ≈ 1500 Hz  

Thus, for a typical antenna, the shedding frequency is far higher than the natural vibration 
frequency. 
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	It is a pretty good straight line, which means a power-law.  A good fit is   

