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PREFACE

In the first year of calculus we study limits, derivatives, and integrals of functions
with a single input, and a single output. The transition to advanced calculus is
made when we generalize the notion of “function” to something which may have
multiple inputs and multiple outputs. In this more general context limits, derivatives,
and integrals take on new meanings and have new geometric interpretations. For
example, in first-year calculus the derivative represents the slope of a tangent line at
a specified point. When dealing with functions of multiple variables there may be
many tangent lines at a point, so there will be many possible ways to differentiate.

The emphasis of this book is on developing enough familiarity with the material
to solve difficult problems. Rigorous proofs are kept to a minimum. I have included
numerous detailed examples so that you may see how the concepts really work. All
exercises have detailed solutions that you can find at the end of the book. I regard
these exercises, along with their solutions, to be an integral part of the material.

The present work is suitable for use as a stand-alone text, or as a companion
to any standard book on the topic. This material is usually covered as part of a
standard calculus sequence, coming just after the first full year. Names of college
classes that cover this material vary greatly. Possibilities include advanced calculus,
multivariable calculus, and vector calculus. At schools with semesters the class may
be called Calculus III. At quarter schools it may be Calculus IV.

The best way to use this book is to read the material in each section and then try
the exercises. If there is any exercise you don’t get, make sure you study the solution
carefully. At the end of each chapter you will find a quiz to test your understanding.
These short quizzes are written to be similar to one that you may encounter in a
classroom, and are intended to take 20–30 minutes. They are not meant to test every

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



xii Advanced Calculus Demystified

idea presented in the chapter. The best way to use them is to study the chapter until
you feel confident that you can handle anything that may be asked, and then try the
quiz. You should have a good idea of how you did on it after looking at the answers.
At the end of the text there is a final exam similar to one which you would find at
the conclusion of a college class. It should take about two hours to complete. Use it
as you do the quizzes. Study all of the material in the book until you feel confident,
and then try it.

Advanced calculus is an exciting subject that opens up a world of mathematics.
It is the gateway to linear algebra and differential equations, as well as more
advanced mathematical subjects like analysis, differential geometry, and topology.
It is essential for an understanding of physics, lying at the heart of electro-magnetics,
fluid flow, and relativity. It is constantly finding new use in other fields of science
and engineering. I hope that the exciting nature of this material is conveyed here.
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CHAPTER 1

Functions of
Multiple Variables

1.1 Functions
The most common mental model of a function is a machine. When you put some
input in to the machine, you will always get the same output. Most of first year
calculus dealt with functions where the input was a single real number and the output
was a single real number. The study of advanced calculus begins by modifying this
idea. For example, suppose your “function machine” took two real numbers as its
input, and returned a single real output? We illustrate this idea with an example.

EXAMPLE 1-1
Consider the function

f (x, y) = x2 + y2

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



2 Advanced Calculus Demystified

For each value of x and y there is one value of f (x, y). For example, if x = 2 and
y = 3 then

f (2, 3) = 22 + 32 = 13

One can construct a table of input and output values for f (x, y) as follows:

x y f (x, y)

0 0 0
1 0 1
0 1 1
1 1 2
1 2 5
2 1 5

Problem 1 Evaluate the function at the indicated point.

1. f (x, y) = x2 + y3; (x, y) = (3, 2)

2. g(x, y) = sin x + cos y; (x, y) = (0, π
2 )

3. h(x, y) = x2 sin y; (x, y) = (2, π
2 )

Unfortunately, plugging in random points does not give much enlightenment as
to the behavior of a function. Perhaps a more visual model would help....

1.2 Three Dimensions
In the previous section we saw that plugging random points in to a function of two
variables gave almost no enlightening information about the function itself. A far
superior way to get a handle on a particular function is to picture its graph. We’ll
get to this in the next section. First, we have to say a few words about where such
a graph exists.

Recall the steps required to graph a function of a single variable, like g(x) = 3x .
First, you set the function equal to a new variable, y. Then you plot all the points
(x, y) where the equation y = g(x) is true. So, for example, you would not plot
(0, 2) because 0 �= 3 · 2. But you would plot (2, 6) because 6 = 3 · 2.

The same steps are required to plot a function of two variables, like f (x, y).
First, you set the function equal to a new variable, z. Then you plot all of the points
(x, y, z) where the function z = f (x, y) is true. So we are forced to discuss what
it means to plot a point with three coordinates, like (x, y, z).
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x

y

z

Figure 1-1 Three mutually perpendicular axes, drawn in perspective

Coordinate systems will play a crucial role in this book, so although most readers
will have seen this, it is worth spending some time here. To plot a point with two
coordinates such as (x, y) = (2, 3) the first step is to draw two perpendicular axes
and label them x and y. Then locate a point 2 units from the origin on the x-axis
and draw a vertical line. Next, locate a point 3 units from the origin on the y-axis
and draw a horizontal line. Finally, the point (2, 3) is at the intersection of the two
lines you have drawn.

To plot a point with three coordinates the steps are just a bit more complicated.
Let’s plot the point (x, y, z) = (2, 3, 2). First, draw three mutually perpendicular
axes. You will immediately notice that this is impossible to do on a sheet of paper.
The best you can do is two perpendicular axes, and a third at some angle to the
other two (see Figure 1-1). With practice you will start to see this third axis as a
perspective rendition of a line coming out of the page. When viewed this way it
will seem like it is perpendicular.

Notice the way in which we labeled the axes in Figure 1-1. This is a convention,
i.e., something that mathematicians have just agreed to always do. The way to
remember it is by the right hand rule. What you want is to be able to position
your right hand so that your thumb is pointing along the z-axis and your other
fingers sweep from the x-axis to the y-axis when you make a fist. If the axes are
labeled consistent with this then we say you are using a right handed coordinate
system.

OK, let’s now plot the point (2, 3, 2). First, locate a point 2 units from the
origin on the x-axis. Now picture a plane which goes through this point, and is
perpendicular to the x-axis. Repeat this for a point 3 units from the origin on the
y-axis, and a point 2 units from the origin on the z-axis. Finally, the point (2, 3, 2)

is at the intersection of the three planes you are picturing.
Given the point (x, y, z) one can “see” the quantities x , y, and z as in Figure 1-2.

The quantity z, for example, is the distance from the point to the xy-plane.
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x

y

z

(2, 3, 2)

Figure 1-2 Plotting the point (2, 3, 2)

Problem 2 Which of the following coordinate systems are right handed?

(a) (b)

(c) (d)

x

x

xx

yy

y

y

z

z

z

z

Problem 3 Plot the following points on one set of axes:

1. (1, 1, 1)

2. (1, −1, 1)

3. (−1, 1, −1)

1.3 Introduction to Graphing
We now turn back to the problem of visualizing a function of multiple variables.
To graph the function f (x, y) we set it equal to z and plot all of the points where
the equation z = f (x, y) is true. Let’s start with an easy example.
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EXAMPLE 1-2
Suppose f (x, y) = 0. That is, f (x, y) is the function that always returns the number
0, no matter what values of x and y are fed to it. The graph of z = f (x, y) = 0 is
then the set of all points (x, y, z) where z = 0. This is just the xy-plane.

Similarly, now consider the function g(x, y) = 2. The graph is the set of all
points where z = g(x, y) = 2. This is a plane parallel to the xy-plane at height 2.

We first learn to graph functions of a single variable by plotting individual points,
and then playing “connect-the-dots.” Unfortunately this method doesn’t work so
well in three dimensions (especially when you are trying to depict three dimensions
on a piece of paper). A better strategy is to slice up the graph by various planes.
This gives you several curves that you can plot. The final graph is then obtained by
assembling these curves.

The easiest slices to see are given by each of the coordinate planes. We illustrate
this in the next example.

EXAMPLE 1-3
Let’s look at the function f (x, y) = x + 2y. To graph it we must decide which
points (x, y, z) make the equation z = x + 2y true. The xz-plane is the set of all
points where y = 0. So to see the intersection of the graph of f (x, y) and the xz-
plane we just set y = 0 in the equation z = x + 2y. This gives the equation z = x ,
which is a line of slope 1, passing through the origin.

Similarly, to see the intersection with the yz-plane we just set x = 0. This gives
us the equation z = 2y, which is a line of slope 2, passing through the origin.

Finally, we get the intersection with the xy-plane. We must set z = 0, which
gives us the equation 0 = x + 2y. This can be rewritten as y = − 1

2 x . We conclude
this is a line with slope − 1

2 .

The final challenge is to put all of this information together on one set of axes.
See Figure 1-3. We see three lines, in each of the three coordinate planes. The graph
of f (x, y) is then some shape that meets each coordinate plane in the required line.
Your first guess for the shape is probably a plane. This turns out to be correct. We’ll
see more evidence for it in the next section.

Problem 4 Sketch the intersections of the graphs of the following functions with
each of the coordinate planes.

1. 2x + 3y

2. x2 + y

3. x2 + y2
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y

xx y

z z

Figure 1-3 The intersection of the graph of x + 2y with each coordinate plane is a line
through the origin

4. 2x2 + y2

5.
√

x2 + y2

6. x2 − y2

1.4 Graphing Level Curves
It’s fairly easy to plot the intersection of a graph with each coordinate plane, but
this still doesn’t always give a very good idea of its shape. The next easiest thing
to do is sketch some level curves. These are nothing more than the intersection of
the graph with horizontal planes at various heights. We often sketch a “bird’s eye
view” of these curves to get an initial feeling for the shape of a graph.

EXAMPLE 1-4
Suppose f (x, y) = x2 + y2. To get the intersection of the graph with a plane at
height 4, say, we just have to figure out which points in R

3 satisfy z = x2 + y2 and
z = 4. Combining these equations gives 4 = x2 + y2, which we recognize as the
equation of a circle of radius 2. We can now sketch a view of this intersection from
above, and it will look like a circle in the xy-plane. See Figure 1-4.

The reason why we often draw level curves in the xy-plane as if we were looking
down from above is that it is easier when there are many of them. We sketch several
such curves for z = x2 + y2 in Figure 1-5.

You have no doubt seen level curves before, although they are rarely as simple
as in Figure 1-5. For example, in Figure 1-6 we see a topographic map. The lines
indicate constant elevation. In other words, these lines are the level curves for the
function which gives elevation. In Figure 1-7 we have shown a weather map, with
level curves indicating lines of constant temperature. You may see similar maps in
a good weather report where level curves represent lines of constant pressure.
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4

(a)

x

x

y

y

z

(b)

Figure 1-4 (a) The intersection of z = x2 + y2 with a plane at height 4. (b) A top view
of the intersection

EXAMPLE 1-5
We now let f (x, y) = xy. The intersection with the xz-plane is found by setting
y = 0, giving us the function z = 0. This just means the graph will include the
x-axis. Similarly, setting x = 0 gives us z = 0 as well, so the graph will include
the y-axis. Things get more interesting when we plot the level curves. Let’s set
z = n, where n is an integer. Solving for y then gives us y = n

x . This is a hyperbola
in the first and third quadrant for n > 0, and a hyperbola in the second and fourth
quadrant when n < 0. We sketch this in Figure 1-8.

5 −2.5 0 2.5 5

−3

−2

−1

1

2

3

y

x

Figure 1-5 Several level curves of z = x2 + y2
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2.5

−2.5

−2.5

5 2.5 5

y

x

Figure 1-8 Level curves of z = xy

Problem 5 Sketch several level curves for the following functions.

1. 2x + 3y

2. x2 + y

3.
√

x2 + y2

4. x2 − y2

Problem 6 The level curves for the following functions are all circles. Describe
the difference between how the circles are arranged.

1. x2 + y2

2.
√

x2 + y2

3. 1
x2+y2

4. sin(x2 + y2)

1.5 Putting It All Together
We have now amassed enough tools to get a good feeling for what the graphs of
various functions look like. Putting it all together can be quite a challenge. We
illustrate this with an example.
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(a) (b)

Figure 1-9 Sketching the paraboloid z = x2 + y2

EXAMPLE 1-6
Let f (x, y) = x2 + y2. In Problem 4 you found that the intersections with the
xz- and yz-coordinate planes were parabolas. In Example 1-4 we saw that the
level curves were circles. We put all of this information together in Figure 1-9(a).
Figure 1-9(b) depicts the entire surface which is the graph. This figure is called a
paraboloid.

Graph sketching is complicated enough that a second example may be in order.

EXAMPLE 1-7
In Figure 1-10 we put together the level curves of f (x, y) = xy, found in Example
1-5, to form its graph. The three-dimensional shape formed is called a saddle.

Problem 7 Use your answers to Problems 4 and 5 to sketch the graphs of the
following functions:

1. 2x + 3y

2. x2 + y

3. 2x2 + y2

4.
√

x2 + y2

5. x2 − y2
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Figure 1-10 Several level curves of z = xy piece together to form a saddle

1.6 Functions of Three Variables
There is no reason to stop at functions with two inputs and one output. We can also
consider functions with three inputs and one output.

EXAMPLE 1-8
Suppose

f (x, y, z) = x + xy + yz2

Then f (1, 1, 1) = 3 and f (0, 1, 2) = 4.

To graph such a function we would need to set it equal to some fourth variable,
say w, and draw a picture in a space where there are four perpendicular axes, x ,
y, z, and w. No one can visualize such a space, so we will just have to give up
on graphing such functions. But all hope is not lost. We can still describe surfaces
in three dimensions that are the level sets of such functions. This is not quite as
good as having a graph, but it still helps give one a feel for the behavior of the
function.

EXAMPLE 1-9
Suppose

f (x, y, z) = x2 + y2 + z2

To plot level sets we set f (x, y, z) equal to various integers and sketch the surface
described by the resulting equation. For example, when f (x, y, z) = 1 we have

1 = x2 + y2 + z2
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This is precisely the equation of a sphere of radius 1. In general the level set
corresponding to f (x, y, z) = n will be a sphere of radius

√
n.

Problem 8 Sketch the level set corresponding to f (x, y, z) = 1 for the following
functions.

1. f (x, y, z) = x2 + y2 − z2

2. f (x, y, z) = x2 − y2 − z2

1.7 Parameterized Curves
In the previous sections of this chapter we studied functions which had multiple
inputs, but one output. Here we examine the opposite scenario: functions with one
input and multiple outputs. The input variable is referred to as the parameter, and
is best thought of as time. For this reason we often use the variable t , so that in
general such a function might look like

c(t) = ( f (t), g(t))

If we fix a value of t and plot the two outputs we get a point in the plane. As t
varies this point moves, tracing out a curve, C . We would then say C is a curve that
is parameterized by c(t).

EXAMPLE 1-10
Suppose c(t) = (cos t, sin t). Then c(0) = (1, 0) and c

(
π
2

) = (0, 1). If we continue
to plot points we see that c(t) traces out a circle of radius 1. Indeed, since

cos2 t + sin2 t = 1

the coordinates of c(t) satisfy x2 + y2 = 1, the equation of a circle of radius 1. In
Figure 1-11 we plot the circle traced out by c(t), along with additional information
which tells us what value of t yields selected point of the curve.

EXAMPLE 1-11
The function c(t) = (cos t2, sin t2) also parameterizes a circle or radius 1, like the
parameterization given in Example 1-10. The difference between the two param-
eterizations can be seen by comparing the spacing of the marked points in Figure
1-11 with those of Figure 1-12. If we think of t as time, then the parameterization
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x

y

t = 0

t = 4

2

t =

t =

3π
4

t = π

π
π

Figure 1-11 The function c(t) = (cos t, sin t) parameterizes a circle of radius 1

depicted in Figure 1-12 represents a point moving around the circle faster and
faster.

EXAMPLE 1-12
Now let c(t) = (t cos t, t sin t). Plotting several points shows that c(t)parameterizes
a curve that spirals out from the origin, as in Figure 1-13.

x

y

t = 0

t = 4
t = 2

t = 3
4

π
π

π

Figure 1-12 The function c(t) = (cos t2, sin t2) parameterizes a circle of radius 1 in a
different way
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x

y

t = 0

t =

t =

t = π

3π
4

π
2

t = π
4

Figure 1-13 The function c(t) = (t cos t, t sin t) parameterizes a spiral

Parameterizations can also describe curves in three-dimensional space, as in the
next example.

EXAMPLE 1-13
Let c(t) = (cos t, sin t, t). If the third coordinate were not there then this would
describe a point moving around a circle. Now as t increases the height off of
the xy-plane, i.e., the z-coordinate, also increases. The result is a spiral, as in
Figure 1-14.

Figure 1-14 The function c(t) = (cos t, sin t, t) parameterizes a curve that spirals
around the z-axis
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Problem 9 Sketch the curves parameterized by the following:

1. (t, t)

2. (t, t2)

3. (t2, t)

4. (t2, t3)

5. (cos 2t, sin 3t)

Problem 10 The functions given in Examples 1-10 and 1-11 parameterize the same
circle in different ways. Describe the difference between the two parameterizations
for negative values of t .

Problem 11 Find a parameterization for the graph of the function y = f (x).

Problem 12 Describe the difference between the following parameterized curves:

1. c(t) = (cos t, sin t, t2)

2. c(t) = (cos t, sin t, 1
t )

3. c(t) = (t cos t, t sin t, t)

Quiz
Problem 13

1. Determine if the coordinate system pictured is left or right handed.

y

x

z

2. Let f (x, y) = y
x2+1 .

a. Sketch the intersections of the graph of f (x, y) with the xy-plane, the
xz-plane, and the yz-plane.

b. Sketch the level curves for f (x, y).

c. Sketch the graph of f (x, y).

3. Sketch the curve parameterized by c(t) = (2 cos t, 3 sin t).
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CHAPTER 2

Fundamentals of
Advanced Calculus

2.1 Limits of Functions of Multiple Variables
The study of calculus begins in earnest with the concept of a limit. Without this
one cannot define derivatives or integrals. Here we undertake the study of limits of
functions of multiple variables.

Recall that we say lim
x→a

f (x) = L if you can make f (x) stay as close to L as

you like by restricting x to be close enough to a. Just how close “close enough” is
depends on how close you want f (x) to be to L .

Intuitively, if lim
x→a

f (x) = L we think of the values of f (x) as getting closer and

closer to L as the value of x gets closer and closer to a. A key point is that it should
not matter how the values of x are approaching a. For example, the function

f (x) = x

|x |

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



18 Advanced Calculus Demystified

does not have a limit as x → 0. This is because as x approaches 0 from the right
the values of the function f (x) approach 1, while the values of f (x) approach −1
as x approaches 0 from the left.

The definition of limit for functions of multiple variables is very similar. We say

lim
(x,y)→(a,b)

f (x, y) = L

if you can make f (x, y) stay as close to L as you like by restricting (x, y) to be
close enough to (a, b). Again, just how close “close enough” is depends on how
close you want f (x, y) to be to L .

Once again, the most useful way to think about this definition is to think of the
values of f (x, y) as getting closer and closer to L as the point (x, y) gets closer
and closer to the point (a, b). The difficulty is that there are now an infinite number
of directions by which one can approach (a, b).

EXAMPLE 2-1
Suppose f (x, y) is given by

f (x, y) = x

x + y

We consider lim
(x,y)→(0,0)

f (x, y).

First, let’s see what happens as (x, y) approaches (0, 0) along the x-axis. For all
such points we know y = 0, and so

f (x, y) = x

x + y
= x

x
= 1

Now consider what happens as (x, y) approaches (0, 0) along the y-axis. For all
such points we have x = 0, and so

f (x, y) = x

x + y
= 0

y
= 0

We conclude the values of f (x, y) approach different numbers if we let (x, y)

approach (0, 0) from different directions. Thus we say lim
(x,y)→(0,0)

f (x, y) does not

exist.

Showing that a limit does not exist can be very difficult. Just because you can
find multiple ways to come at (a, b) so that the values of f (x, y) approach the
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same number L does not necessarily mean lim
(x,y)→(a,b)

f (x, y) = L . There might be

some way to approach (a, b) that you haven’t tried that gives a different number.
This is the key to the definition of limit. We say the function has a limit only when
the values of f (x, y) approach the same number no matter how (x, y) approaches
(a, b). We illustrate this in the next two examples.

EXAMPLE 2-2
Suppose f (x, y) is given by

f (x, y) = xy

x2 + y2

As we let (x, y) approach (0, 0) along the x-axis (where y = 0) we have

f (x, y) = xy

x2 + y2
= 0

x2
= 0

Similarly, as we let (x, y) approach (0, 0) along the y-axis (where x = 0) we have

f (x, y) = xy

x2 + y2
= 0

y2
= 0

But if we let (x, y) approach (0, 0) along the line y = x we have

f (x, y) = xy

x2 + y2
= x2

2x2
= 1

2

So once again we find lim
(x,y)→(0,0)

f (x, y) does not exist.

Our third example is the trickiest.

EXAMPLE 2-3
Let

f (x, y) = x2 y

x4 + y2

As (x, y) approaches (0, 0) along the x-axis (where y = 0) we have

f (x, y) = x2 y

x4 + y2
= 0

x4
= 0
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As (x, y) approaches (0, 0) along the y-axis (where x = 0) we have

f (x, y) = x2 y

x4 + y2
= 0

y2
= 0

If we approach (0, 0) along the line y = x we get

f (x, y) = x2 y

x4 + y2
= x3

x4 + x2
= x

x2 + 1

As x approaches 0 we have

lim
x→0

x

x2 + 1
= 0

So far it is looking like perhaps

lim
(x,y)→(0,0)

x2 y

x4 + y2
= 0

since, as (x, y) approaches (0, 0) along the x-axis, the y-axis, and the line y = x ,
the values of f (x, y) approach 0. But what happens if we let (x, y) approach (0, 0)

along the curve y = x2? In this case

f (x, y) = x2 y

x4 + y2
= x4

x4 + x4
= 1

2

We can evaluate the limit of this function as x approaches 0 by dividing the numer-
ator and denominator by x4.

lim
x→0

x4

x2 + x4
= lim

x→0

1
1
x2 + 1

= 1

So again the limit does not exist.

Problem 14 Show that the following limits do not exist:

1. lim
(x,y)→(0,0)

x2

x2+y3

2. lim
(x,y)→(0,0)

x2 y
x3+y3

3. lim
(x,y)→(0,0)

x+y√
x2+y2

4. lim
(x,y)→(0,0)

x2 y2

x3+y3



CHAPTER 2 Fundamentals of Advanced Calculus 21

2.2 Continuity
We say a function f (x, y) is continuous at (a, b) if its limit as (x, y) approaches
(a, b) equals its value there. In symbols we write

lim
(x,y)→(a, b)

f (x, y) = f (a, b)

Most functions you can easily write down are continuous at every point of their
domain. Hence, what you want to avoid are points outside of the domain, where
you may have

1. Division by zero.

2. Square roots of negatives.

3. Logs of nonpositive numbers.

4. Tangents of odd multiples of π
2 .

In each of these situations the function does not even exist, in which case it is
certainly not continuous. But even if the function exists it may not have a limit.
And even if the function exists, and the limits exist, they may not be equal.

EXAMPLE 2-4
Suppose

f (x, y) = x + y√
x2 + y2

There is no zero in the denominator when (x, y) = (1, 1), so f (x, y) is contin-
uous at (1, 1).

EXAMPLE 2-5
Evaluate

lim
(x,y)→(0,0)

x2 y3

x2 + y2 + 1

There are no values of x and y that will make the denominator 0, so the function
is continuous everywhere. Since the value of a continuous function equals its limit,
we can evaluate the above simply by plugging in (0, 0).

lim
(x,y)→(0,0)

x2 y3

x2 + y2 + 1
= 0

0 + 1
= 0
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Problem 15 Find the domain of the following functions:

1. x+y
x−y

2.
√

y − x2

3. ln(y − x)
√

x − y

Problem 16 Consider the function

f (x, y) =
{

x2+y2

sin(x2+y2)
(x, y) �= (0, 0)

1 (x, y) = (0, 0)

Is f (x, y) continuous at (0, 0)?

Quiz
Problem 17

1. Show that the function

f (x, y) = x sin y

x2 + y2

does not have a limit as (x, y) → (0, 0).

2. Is the function

f (x, y) =
{ x+y

x+y (x, y) �= (0, 0)

1 (x, y) = (0, 0)

continuous at (0, 0)?

3. Find the domain of the function

f (x, y) = ln
1

x − y2
.



CHAPTER 3

Derivatives

3.1 Partial Derivatives
What shall we mean by the derivative of f (x, y) at a point (x0, y0)? Just as in one
variable calculus, the answer is the slope of a tangent line. The problem with this
is that there are multiple tangent lines one can draw to the graph of z = f (x, y) at
any given point. Which one shall we pick to represent the derivative? The answer
is another question: “Which derivative?” We will see that at any given point there
are lots of possible derivatives; one for each tangent line.

Another way to think about this is as follows. Suppose we are at the point (x0, y0)

and we start moving. While we do this we keep track of the quantity f (x, y). The
rate of change that we observe is the derivative, but the answer may depend on
which direction we are traveling.

Suppose, for example, that we are observing the function f (x, y) = x2 y, while
moving through the point (1, 1) with unit speed. Suppose further that we are travel-
ing parallel to the x-axis, so that our y-coordinate is always one. We would like to
know the observed rate of change of f (x, y). Since the y-coordinate is always one

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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the values of f (x, y) that we observe are always determined by our x-coordinate:
f (x, 1) = x2. The rate of change of this function is given by its derivative: 2x .
Finally, when x = 1 this is the number 2.

The above is a particularly easy computation. Given any function, if you are
traveling in a direction which is parallel to the x-axis then your y-coordinate is
fixed. Plugging this number in for y then gives a function of just x , which we can
differentiate. Here’s another example.

EXAMPLE 3-1
We compute the rate of change of f (x, y) = x3 y3 at the point (1, 2), when we
are traveling parallel to the x-axis. During our travels the value of y stays fixed
at 2. Hence, the values of the function we are observing are determined by our
x-coordinate: f (x, 2) = 8x3.The derivative of this function is then 24x2, which
takes on the value 24 when x is one.

What if we wanted to repeat our computations, with different values of y? It
would be helpful to keep the letter “y” in our computations, and plug in the value at
the very end. Notice that when we plugged in a number for y it became a constant,
and was treated as such when we differentiated with respect to x . If we leave the
letter y in our computations we can still treat it as a constant.

EXAMPLE 3-2
Let f (x, y) = x + xy + y2. We wish to treat y as a constant, just as if we had
plugged in a number for it, and take the derivative with respect to x . Recall that the
derivative of a sum of functions is the sum of the derivatives. So we will discuss
the derivatives of each of the terms of x + xy + y2 individually.

There is no occurrence of y in the first term, so it is particularly easy. Its derivative
is just one.

The second term is a little trickier. Since we are treating y as a constant this is of
the form const·x . The derivative of such a function is just const . So the derivative
of xy is just y.

Finally, the quantity y2 is also a constant. The derivative of a constant is zero.
Hence our answer is 1 + y.

Notice in the above example that if we thought of x as constant, and y as the
variable, then the derivative would have been very different. We need some notation
to tell us what is changing and what is being kept constant. We use the symbols ∂ f

∂x
to represent the partial derivative with respect to x . This means x is considered a
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variable, every other letter is a constant, and we differentiate. Similarly, the notation
∂ f
∂y is the partial derivative with respect to y.

EXAMPLE 3-3
Again we let f (x, y) = x + xy + y2. We compute

∂ f

∂y
= x + 2y

There are various other ways to think of partial derivatives that are useful. One
is completely algebraic. Recall that the derivative with respect to x of a function
f (x) of one variable is defined as the limit

df

dx
= lim

�x→0

f (x + �x) − f (x)

�x

The partial with respect to x is defined similarly. Just remember that y is kept
constant, so that f (x, y) really becomes a function of just x . We then apply the
above definition to get:

∂ f

∂x
= lim

�x→0

f (x + �x, y) − f (x, y)

�x

The partial with respect to y is defined similarly

∂ f

∂y
= lim

�y→0

f (x, y + �y) − f (x, y)

�y

There is yet another way to think about the partial derivative. We began this
section by claiming that the derivative will still represent the slope of a tangent
line. In the following figure we see the graph of an equation z = f (x, y). Through
the point (x0, y0) in the xy-plane there is also drawn a vertical plane parallel to
the xz-plane. The intersection of this vertical plane with the graph is a curve.
The slope of the tangent line to this curve is exactly the value of the partial
derivative with respect to x at (x0, y0). To see the partial derivative with respect
to y we would have a similar picture, where the vertical plane is parallel to the
yz-plane.
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x

y

z

(x0, y0)

Slope= (x0, y0)
∂f
∂x

Problem 18 Compute ∂ f
∂x (2, 3) and ∂ f

∂y (2, 3) for the following functions.

1. x + xy

2. x ln y

3. x
√

xy

Problem 19 Compute ∂ f
∂x (x, y) and ∂ f

∂y (x, y) for the following functions.

1. x2 y3

2. x
y

Problem 20 For the function f (x, y) = −x + xy2 − y2 find all places where both
∂ f
∂x and ∂ f

∂y are zero.

3.2 Composition and the Chain Rule
3.2.1 COMPOSITION WITH PARAMETERIZED CURVES
Suppose we have a parameterized curve φ(t) = (x(t), y(t)) in the plane. That is,
for a given value of t we are given the numbers x(t) and y(t), which we visualize
as a point in the plane. We can also take these two numbers and plug them in to
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a function f (x, y). The result is the composition f (φ(t)). Notice that only one
number goes in to this function, and only one number comes out.

EXAMPLE 3-4
Let f (x, y) = x2 + y2. Let φ(t) = (t cos t, t sin t). Then

f (φ(t)) = f (t cos t, t sin t) = t2 cos2 t + t2 sin2 t = t2

There are various ways to visualize the composition. One is to imagine the graph
of z = f (x, y) in three dimensions. Then draw the parameterized curve φ(t) in
the xy-plane, and imagine a vertical piece of paper curled up so that it sits on this
curve. Now mark where the paper intersects the graph of f (x, y), and unroll it. The
result is the graph of f (φ(t)).

f(x, y) f(
f(
t)

)

f(t)

t

Unroll

Since f (φ(t)) is a function of one variable we can talk about its derivative just
as if we were in a first term calculus class. But what we want to do here is relate
it to the derivatives of f (x, y), x(t), and y(t). The formula we end up with is the
multivariable calculus version of the “chain rule”

d

dt
f (φ(t)) = ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt

EXAMPLE 3-5
Let f (x, y) and φ(t) be defined as in the previous example. We wish to compute
d
dt f (φ(t)) when t = π

6 . Note first that

φ
(π

6

)
=
(√

3π

12
,

π

12

)
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To use the chain rule we must compute the partial derivatives of f (x, y) at this
point. First note that

∂ f

∂x
(x, y) = 2x, and

∂ f

∂y
(x, y) = 2y

Thus,

∂ f

∂x

(√
3π

12
,

π

12

)
=

√
3π

6
, and

∂ f

∂y

(√
3π

12
,

π

12

)
= π

6

We also need the derivatives of x(t) and y(t) when t = π
6 .

x ′(t) = cos t − t sin t, and

y′(t) = sin t + t cos t

Thus,

x ′
(π

6

)
=

√
3

2
− π

12
, and

y′
(π

6

)
= 1

2
+

√
3π

12

Finally, we have

d

dt
f
(
φ
(π

6

))
= ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt

=
√

3π

6

(√
3

2
− π

12

)
+ π

6

(
1

2
+

√
3π

12

)

= π

3

Now that we have gone through the pain of using the chain rule to compute the
derivative, it should be pointed out that the same answer could have been found
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much faster directly. We know from the previous example that f (φ(t)) = t2. So the
derivative function is 2t . Plugging in t = π

6 then immediately gives (2)
(

π
6

) = π
3 .

Problem 21 Let φ(t) = (2t, t2). Suppose you don’t know what f (x, y) is, but you
know ∂ f

∂x (2, 1) = 6 and ∂ f
∂y (2, 1) = −1. Compute d

dt f (φ(1)).

Problem 22 Suppose you don’t know what φ(t) = (x(t), y(t)) is, but you know
φ(2) = (1, 3), x ′(2) = −2, and y′(2) = 1. Let f (x, y) = x2 y. Compute
d
dt f (φ(2)).

3.2.2 COMPOSITION OF FUNCTIONS OF MULTIPLE
VARIABLES

We now look at the idea of composition with more complicated types of functions,
as in our next example.

EXAMPLE 3-6
Let x(u, v) = uv and y(u, v) = u2 + v2. Suppose f (x, y) = x + y. Then we may
form the composition f (x(u, v), y(u, v)) as follows.

f (x(u, v), y(u, v)) = x(u, v) + y(u, v) = uv + u2 + v2

Notice that the result is a function whose input is a pair of numbers, u and v, and
whose output is a single number. Hence, we may talk about the partial derivatives,
with respect to u and v, of the function given by composition. The result is given
by another variant of the chain rule. As in the previous example, we will begin with
the functions x(u, v), y(u, v), and f (x, y). The following formulas give the partial
derivatives of the composition f (x(u, v), y(u, v)).

∂ f

∂u
= ∂ f

∂x

∂x

∂u
+ ∂ f

∂y

∂y

∂u

∂ f

∂v
= ∂ f

∂x

∂x

∂v
+ ∂ f

∂y

∂y

∂v

At this point it is mathematically meaningless to think of terms like “∂x” as
entities in themselves that can be canceled, but thinking this way may help you
remember the above formulas. Note that the formula for the partial derivative of f
with respect to u, for example, has two terms. If you cancel the “quantity” ∂x in
the first term, and ∂y in the second, you are left with ∂ f

∂u in both.
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EXAMPLE 3-7
Let f (x, y) = x2 + xy. Suppose we don’t know x(u, v) or y(u, v), but we know
x(1, 2) = 3, y(1, 3) = −2, ∂x

∂u (1, 2) = −1, and ∂y
∂u (1, 2) = 5. Then we may use the

chain rule to compute ∂ f
∂u (1, 2). To do this we will need to know ∂ f

∂x and ∂ f
∂y at the

point (x(1, 2), y(1, 2)) = (3, −2).

∂ f

∂x
(3, −2) = (2)(3) + (−2) = 4,

∂ f

∂y
(3, −2) = 3

We now employ the chain rule:

∂ f

∂u
= ∂ f

∂x

∂x

∂u
+ ∂ f

∂y

∂y

∂u

= (4)(−1) + (3)(5)

= 11

Problem 23 The following table lists values for a function f (x, y) and its partial
derivatives.

(x, y) f (x, y)
∂ f
∂x

∂ f
∂y

(1, 1) −3 −2 2
(1, 2) 5 1 1
(2, 1) 2 0 7
(2, 5) −1 2 3
(2, 3) 11 1 −1
(3, 2) 2 1 0

Let x(u, v) = uv and y(u, v) = u + v2. Find the following partial derivatives at
the indicated points.

1. ∂ f
∂u at (u, v) = (1, 2)

2. ∂ f
∂v

at (u, v) = (2, 1)

Problem 24 Let f (x, y) = sin(x + y), x(u, v) = u + v, and y(u, v) = u − v.
Find the following quantities when (u, v) = (π

2 , π).

1. f (x, y)

2. ∂ f
∂u

3. ∂ f
∂v
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3.3 Second Partials
In the previous sections we saw that the partial derivatives of a function f (x, y) are
also functions of x and y. We can therefore take the derivative again with respect
to either variable.

EXAMPLE 3-8
Let f (x, y) = x2 y3. The partial derivatives are ∂ f

∂x = 2xy3 and ∂ f
∂y = 3x2 y2. We

can take the partial derivative again of both of these functions with respect to either
variable:

∂

∂x

(
∂ f

∂x

)
= 2y3,

∂

∂y

(
∂ f

∂x

)
= 6xy2

∂

∂x

(
∂ f

∂y

)
= 6xy2,

∂

∂y

(
∂ f

∂y

)
= 6x2 y

As is customary, we adopt the following shorthand notations for the second
derivatives:

∂

∂x

(
∂ f

∂x

)
= ∂2 f

∂x2
,

∂

∂y

(
∂ f

∂x

)
= ∂2 f

∂y∂x

∂

∂x

(
∂ f

∂y

)
= ∂2 f

∂x∂y
,

∂

∂y

(
∂ f

∂y

)
= ∂2 f

∂y2

The quantities ∂2 f
∂y∂x and ∂2 f

∂x∂y are called the mixed partials. The above example
illustrates an amazing fact: Under reasonable conditions the mixed partials are
always equal! The “reasonable conditions” are only that the mixed partials exist
and are themselves continuous functions. The proof of this goes back to the limit
definition of the partial derivative.

Problem 25 Find all second partial derivatives of the following functions.

1. f (x, y) = xy

2. f (x, y) = x2 − y2

3. f (x, y) = sin(xy2)
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Quiz
Problem 26 Let f (x, y) = x2 y + x3 y2.

1. Find ∂ f
∂x and ∂ f

∂y .

2. If φ(t) = (t2, t − 1), then what is f (φ(t))?

3. Suppose you don’t know what ψ(t) = (x(t), y(t)) is, but you know ψ(2) =
(1, 1), dx

dt (2) = 3, and dy
dt (2) = 1. Find the derivative of f (ψ(t)) when

t = 2.

4. Suppose x and y are functions of u and v, x(u, v) = u2 + v, and y(1, 1) = 1.
What would ∂y

∂u have to be when (u, v) = (1, 1), if ∂ f
∂u = 12?



CHAPTER 4

Integration

4.1 Integrals over Rectangular Domains
The integral of a function of one variable gives the area under the graph and above
an interval on the x-axis called the domain of integration. For functions of two
variables the graph is a surface. We will interpret the act of integration as that
of finding the volume below the surface, and above some region in the xy-plane.
Eventually, we will examine how to do this with very general-shaped regions. We
begin by looking at rectangles.

x

y

R

(a, b)

Let R be the region of the xy-plane pictured above. Suppose we want to find the
volume of the region in R

3 which sits above R, and below the graph of z = f (x, y),
as in the following figure. We do this by following these steps.

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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x

y

z

z = f(x, y)

1. Begin by choosing a grid of points {(xi , y j )} in R, so that the horizontal and
vertical spacings between adjacent points are �x and �y, respectively.

2. Connect these grid points to break up R into rectangles. Note that the area
of each rectangle is �x�y.

x

y

(xi, yj)

∆x

∆y

3. We now draw a box of height f (xi , y j ) above each such rectangle to get a
figure which approximates the desired volume. The volume of each box is
its length × width × height, which is f (xi , y j )�x�y.

x

y

z

f(xi, yj)
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4. We now add up the volumes of all of these boxes to obtain the quantity∑
j

∑
i

f (xi , y j )�x�y

5. Finally, we repeat this process indefinitely, each time using a grid with �x and
�y smaller and smaller. The corresponding figures that we get approximate
the desired volume more and more. In the limit we get what we’re after,
which we denote as

∫ ∫
R

f (x, y) dx dy:

∫ ∫
R

f (x, y) dx dy = lim
�y→0

lim
�x→0

∑
j

∑
i

f (xi , y j )�x�y

Basic properties of summation and limits allow us to rearrange the above equation
as follows:

∫ ∫
R

f (x, y) dx dy = lim
�y→0

∑
j

[
lim

�x→0

∑
i

f (xi , y j )�x

]
�y

The quantity in the brackets lim
�x→0

∑
i

f (xi , y j )�x is exactly the definition of

what you get from f (x, y) when you fix y and integrate x , as in the following
example.

EXAMPLE 4-1
Let f (x, y) = x2 + y3. If we fix y = 3 then this is the function f (x) = x2 + 27.
We may now integrate this function over some range of values of x , such as [0, 2]:

lim
�x→0

∑
i

f (xi , y j )�x =
2∫

0

x2 + 27 dx = 1

3
x3 + 27x

∣∣∣∣
2

x=0

= 8

3
+ 56

If we don’t substitute the value 3 for y, but we still think of y as a constant, very
little changes:

2∫
0

x2 + y3 dx = 1

3
x3 + y3x

∣∣∣∣
2

x=0

= 8

3
+ 2y3

In the above example, notice that when we think of y as a constant and we
integrate with respect to x , our answer is a function of y. We may now integrate
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this new function with respect to y. This is precisely what we are instructed to do
in the limit we obtained for

∫∫
R

f (x, y) dx dy.

∫ ∫
R

f (x, y) dx dy = lim
�y→0

∑
j

[
lim

�x→0

∑
i

f (xi , y j )�x

]
�y

= lim
�y→0

∑
j

⎡
⎣ a∫

0

f (x, y) dx

⎤
⎦�y

=
b∫

0

⎡
⎣ a∫

0

f (x, y) dx

⎤
⎦ dy

EXAMPLE 4-2
Let f (x, y) = xy2. Suppose Q is the rectangle with vertices at (1, 1), (2, 1), (1, 4),
and (2, 4). To find the volume under the graph of f and above this rectangle we
wish to compute

∫ ∫
Q

xy2 dx dy =
4∫

1

⎡
⎣ 2∫

1

xy2 dx

⎤
⎦ dy

We work inside the brackets first. To do this integral we must pretend y is a
constant.

2∫
1

xy2 dx = 1

2
x2 y2

∣∣∣∣
2

1

= 2y2 − 1

2
y2 = 3

2
y2

We now have

4∫
1

⎡
⎣ 2∫

1

xy2 dx

⎤
⎦ dy =

4∫
1

3

2
y2 dy = 1

2
y3

∣∣∣∣
4

1

= 32 − 1

2
= 63

2

Note that in the definition of
∫ ∫
R

f (x, y) dx dy we could have rearranged the

terms so that the integral with respect to y was inside the brackets. The fact that the
answer does not depend on what order you integrate is called Fubini’s Theorem.
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EXAMPLE 4-3
Let S be the rectangle with vertices at (1, 0), (2, 0), (1, 1), and (2, 1). We integrate
the function f (x, y) = e

y
x . We compute the integral of f (x, y) over S by doing the

integral with respect to y first:

∫ ∫
S

e
y
x dx dy =

2∫
1

⎡
⎣ 1∫

0

e
y
x dy

⎤
⎦ dx

=
2∫

1

[
xe

y
x

∣∣∣1
y=0

]
dx

=
2∫

1

[
xe

1
x − x

]
dx

= −xe−x − e−x − 1

2
x2

∣∣∣∣
2

1

= − 3

e2
+ 2

e
− 3

2

To save space the integral
∫ b

a [
∫ d

c f (x, y)dx]dy is often written as∫ b
a

∫ d
c f (x, y) dx dy.

Problem 27 Compute the following:

1.
1∫

0

3∫
2

x + xy2 dx dy

2.
1∫

−1

1∫
0

x2 y2 dy dx

3.

π
2∫

0

π
2∫

0
cos(x + y) dx dy

Problem 28 Let R be the rectangle in the xy-plane with corners at (−1, −1),
(−1, 0), (2, −1), and (2, 0). Find the volume below the graph of z = x3 y and
above R.
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Problem 29 Let R be the rectangle with vertices at (0, 0), (1, 0), (0, 1), and (1, 1).
Find a formula for

∫ ∫
R

xn ym dx dy.

Problem 30 Let V be the volume below the graph of e−xy2
, and above the rectangle

with corners at (0, 0), (2, 0), (0, 3), and (2, 3). Find the area of the intersection of
V with the vertical plane through the point (1, 1) which is parallel to the xz-plane.

4.2 Integrals over Nonrectangular Domains
In the previous section we saw how to compute the volume under the graph of a
function and above a rectangle. But what if we are interested in the volume which
lies above a nonrectangular area? For example, suppose now that R is the region
of the xy-plane that is bounded by the graph of y = g(x), the x-axis, and the line
x = 1. We would like to find the volume of the figure V which lies below the graph
of z = f (x, y) and above the region R.

x

x

y

y

z

z = f(x, y)

R

1

In the previous section we computed volume by breaking up the region in question
into small boxes. Our strategy here is to cut it into “slabs” parallel to the yz-plane.
To specify the location of each slab we must give a value of x . Hence, the volume
of each slab, calculated as an integral with respect to y, is a function of x . Adding
the slabs up is just like integrating with respect to x .

We follow these steps:

1. Choose points {xi } in the interval [0, 1].

2. Compute the area A(xi ) of the intersection of V with the plane x = xi . We
do this by plugging xi in for the variable x in the function f (x, y) and
then integrating with respect to y. Notice that y ranges from 0 to g(xi ) on
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this domain. So the requisite area is given by

A(xi ) =
g(xi )∫
0

f (xi , y) dy

x

x

y

y

z

xixi

g(xi)

1

A(xi)

3. The volume of a thin slab is then given by

A(xi )�x =
g(xi )∫
0

f (xi , y) dy �x

x

y

z

∆x
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4. Adding up the volumes of all of the slabs thus gives

∑
i

g(xi )∫
0

f (xi , y) dy �x

5. Finally, the desired volume is obtained from this quantity by choosing smaller
and smaller slabs. This is equivalent to taking a limit as �x tends toward 0.

V = lim
�x→0

∑
i

g(xi )∫
0

f (xi , y) dy �x =
1∫

0

g(x)∫
0

f (x, y) dy dx

The key to understanding this formula is the limits of integration. Each slab is
parallel to the y-axis. The area of the side of the slab is thus computed as an integral
with respect to y. But the range of values that y can take on depends on what the
value of x is. Hence, the limits of integration of the inner integral depend on x .

EXAMPLE 4-4
Let R be the region in the xy-plane bounded by the graph of y = x2, the x-axis,
and the line x = 1. We compute the volume below the graph of z = xy2 and above
R as follows:

Volume =
1∫

0

x2∫
0

xy2 dy dx

=
1∫

0

1

3
xy3

∣∣∣∣
x2

0

dx

=
1∫

0

x7 dx

= 1

8

EXAMPLE 4-5
We now use the above ideas to compute a more complicated volume. Let Q be the
region of the xy-plane bounded by the graphs of y = x2 and y = 1 − x2. We wish
to determine the volume that lies below the graph of z = x3 + y and above Q.
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x

y

x0

1 x2
0

x2
0

−

The above figure depicts the region Q. Notice that for a fixed value x0 of x the
values of y range from x2 to 1 − x2. This tells us the limits of integration for the
inner integral. Now notice that the smallest and largest possible values of x are
where the graphs of x2 and 1 − x2 coincide. To find this we solve

x2 = 1 − x2

Which implies

2x2 = 1

And hence,

x = ±
√

2

2

This tells us the limits of integration for the outer integral. We now compute the
desired volume

Volume =

√
2

2∫
−

√
2

2

1−x2∫
x2

x3 + y dy dx

=

√
2

2∫
−

√
2

2

x3 y + 1

2
y2

∣∣∣∣
1−x2

x2

dx

=

√
2

2∫
−

√
2

2

−2x5 + x3 − x2 + 1

2
dx
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= −1

3
x6 + 1

4
x4 − 1

3
x3 + x

2

∣∣∣∣
√

2
2

−
√

2
2

=
√

2

3

Sometimes the problem is set up so that integrating with respect to x first is more
natural, as the following example illustrates.

EXAMPLE 4-6
Let S be the region of the xy-plane bounded by the graph of y = x2, the y-axis,
and the lines y = 1 and y = 2. We will integrate the function f (x, y) = x over this
domain.

The domain S is pictured in the following figure. Notice that for a fixed value
y0 of y the range of values that x can take on goes from 0 to

√
y0. This tells us the

limits of integration for the inner integral. The smallest value y0 can be is 1 and the
largest value is 2. These are the limits for the outer integral.

x

y

y0

y0

2

1

We now compute

2∫
1

√
y∫

0

x dx dy =
2∫

1

1

2
x2

∣∣∣∣
√

y

0

dy

=
2∫

1

1

2
y dy
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= 1

4
y2

∣∣∣∣
2

1

= 3

4

Often you can set up an integral in two ways: one so that dx comes first, and one
so that dy comes first. Sometimes you’ll find that only one of these ways makes
the problem accessible. We illustrate this in the next example.

EXAMPLE 4-7
Let P be the region of the xy-plane bounded by the graph of y = x , the x-axis, and
the line x = 1. We wish to integrate the function f (x, y) = e−x2

over P .

xx

yy

y0

y0

x0

x0 11

The region P is depicted above twice. Notice from the figure on the left that if
we fix a value y0 of y then x can range from y0 to 1. The smallest possible value
for y0 is 0 and the biggest is 1. This tells us the limits of integration when we set
up the integral with dx first.

1∫
0

1∫
y

e−x2
dx dy

If, on the other hand, we fix a value x0 of x then y can range from 0 to x , as in
the figure on the right. The smallest possibility for x is 0 and the largest possibility
is 1. This tells us that the integral can also be set up as

1∫
0

x∫
0

e−x2
dy dx
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It is only possible to do the second of these integrals, which we compute as
follows:

1∫
0

x∫
0

e−x2
dy dx =

1∫
0

ye−x2
∣∣∣x
0

dx

=
1∫

0

xe−x2
dx

= −1

2
e−x2

∣∣∣∣
1

0

(by u-substitution)

= 1

2

(
1 − 1

e

)

Problem 31 Evaluate:

1.
1∫

0

y2∫
0

2xy3 dx dy

2.
2∫

0

2x∫
x

ex+y dy dx

Problem 32 Let T be the region of the xy-plane bounded by the graph of y =
x2 − x − 2 and the x-axis. Integrate the function f (x, y) = x2 over T .

Problem 33 Let R be the region of the positive quadrant of the xy-plane bounded
by y = x and y = x3. Set up two different integrals for f (x, y) over R.

Problem 34 Evaluate the following integral by switching the order of integration:

π2∫
0

π∫
√

x

sin(y3) dy dx

4.3 Computing Volume with Triple Integrals
The cylindrical figure pictured below has a base with area A and has height 1. The
volume is therefore the product of these quantities, namely A · 1 = A. But the top
surface of this figure is the graph of the equation z = 1. The integral of this function
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gives the volume below the graph, which we just found out was A. In other words,
if you want to find the area of a region R of the xy-plane, you just need to compute
the integral of the function f (x, y) = 1 over R:

Area(R) =
∫ ∫

R

1 dx dy

x

y

z

1

EXAMPLE 4-8
Suppose R is the region below the graph of y = g(x), above the x-axis, and between
the lines x = a and x = b. Then we can find the area of R by evaluating the double
integral:

Area(R) =
b∫

a

g(x)∫
0

1 dy dx

But this just reduces to

b∫
a

y|g(x)

0 dx =
b∫

a

g(x) dx

which should, of course, be familiar from first term calculus as the area under the
graph of y = g(x).

Just as one can compute area by evaluating the double integral of the function
f (x, y) = 1, one can also compute volume by a triple integral of the function
f (x, y, z) = 1. The tricky part usually involves finding the limits of integration.



46 Advanced Calculus Demystified

EXAMPLE 4-9
Let V be the region of R

3 bounded by the planes y = x , z = x + y, z = 0, y = 0,
and x = 1, as pictured below.

x

y

z

x = 1

y = 0 z = x + y

y = x

z = 0

We set up a triple integral to compute the volume of V . The order of integration
will be dz dy dx . To find the limits for the innermost integral (the one with respect
to z) we fix x and y and observe that z can range from 0 to x + y. For the second
integration we just fix x , and observe that y can vary from 0 to x . Finally, the
smallest value that x can take on is 0 and the largest is 1, determining the limits of
the outermost integral. We now compute

Volume(V ) =
1∫

0

x∫
0

x+y∫
0

1 dz dy dx

=
1∫

0

x∫
0

z|x+y
0 dy dx

=
1∫

0

x∫
0

x + y dy dx
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=
1∫

0

xy + 1

2
y2

∣∣∣∣
x

0

dx

=
1∫

0

3

2
x2 dx

= 1

2
x3

∣∣∣∣
1

0

= 1

2

Problem 35 Use a triple integral to find the volume of the solid bounded by the
graph of z = 1 − y2, and the planes z = 0, x = 0, and x = 1.

Problem 36 Find the volume of the solid bounded by the graph of z = 1 − x − y2,
and the coordinate planes z = 0 and x = 0.

Problem 37 Set up a triple integral to find the volume which lies below the
paraboloid z = 1 − x2 − y2 and above the xy-plane.

Problem 38 Write a triple integral which will compute the volume bounded by the
sphere x2 + y2 + z2 = 1.

QUIZ
Problem 39

1. Evaluate the following integrals:

a.
2∫

1

3∫
2

cos(2x + y) dx dy

b.
1∫

0

1∫
x

√
1 + y2 dy dx

2. Set up an integral for the volume which lies between the cone
√

1 − x2 − y2

and the xy-plane.
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CHAPTER 5

Cylindrical and
Spherical Coordinates

5.1 Cylindrical Coordinates
A coordinate system is a systematic way of locating a point in (some) space by
specifying a few numbers. The coordinate system you are most familiar with is
called rectangular coordinates. In R

3 this works by specifying x , y, and z, which
represent distances along the x-, y-, and z-axes, respectively.

Rectangular coordinates are extremely cumbersome when trying to define certain
common shapes, such as cylinders or spheres. A second way to determine the
location of a point is to adapt polar coordinates to three dimensions. In this case
we give a location in the xy-plane by a value of r and θ , and then the height off of
the xy-plane by a value of z.

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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x

y

z

z

rq

Converting from cylindrical coordinates to rectangular coordinates is as easy as
it is in polar coordinates. The z coordinate is exactly the same in both systems. To
get x and y you just use the formulas

x = r cos θ

y = r sin θ

EXAMPLE 5-1
We locate the point r = 2, θ = π

6 , and z = 7 in rectangular coordinates:

x = 2 cos
π

6
=

√
3

y = 2 sin
π

6
= 1

So the desired point is at (
√

3, 1, 7).

Problem 40 Write the rectangular coordinates of the following points.

1. (r, θ, z) = (2, π
4 , −1)

2. (r, θ, z) = (0, π
7 , 3)

3. (r, θ, z) = (4, π
3 , 0)
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5.2 Graphing Cylindrical Equations
To get a real feel for cylindrical coordinates it is helpful to look at the graphs of a
few simple equations. The graph of something like z = 3 in cylindrical coordinates
is the same as the graph of z = 3 in rectangular coordinates (it’s the same z!): a
horizontal plane that hits the z-axis at 3. The next two examples are a bit more
interesting.

EXAMPLE 5-2
Consider the cylindrical equation r = 3. This is the set of all points in R

3 which are
exactly 3 units away from the z-axis. The shape is a cylinder of radius 3 centered
on the z-axis.

EXAMPLE 5-3
We now examine the cylindrical equation θ = π

4 . This describes the set of all points
that make an angle of π

4 with the xz-plane. The shape is a plane through the z-axis
that is halfway between the xz-plane and the yz-plane.

x

y

z

π
4

More complicated equations involve relationships between r , θ , and z, as in the
next example.

EXAMPLE 5-4
Consider the equation z = r2. To visualize the graph we are being instructed to
find all of the points in R

3 whose z-coordinate is the square of their distance to
the z-axis. The most relevant feature of the equation, however, is the lack of the
coordinate θ . This tells us that no matter what θ is we will see the same picture.
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Following this observation we consider the half plane which meets the z-axis at
some arbitrary angle. Take this plane out of the picture and look at it head-on, as
in the figure below. As you move left and right in this plane it is the quantity r that
is changing. As you move up and down it is z that changes. Hence, it makes sense
to label our axes r and z in this plane.

x

y

z

z

r

In the half plane at the right we have depicted the graph of z = r2, a famil-
iar parabola. Now, the key to understanding the complete picture is to place this
parabola in every half plane at the left. The result is the surface that you get when
you rotate the graph of y = x2 (in R

2) around the y-axis. It is called a paraboloid,
and is depicted below (see also Figure 1-9 for a computer-generated picture).

x

y

z

Problem 41 Describe the shape of the following cylindrical equations.

1. θ = 0

2. θ = π
2

3. z = 0
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4. z = r

5. z2 + r2 = 1

Problem 42 Sketch the graphs of the following equations.

1. z = 1
r

2. r2 − z2 = 1

3. z2 − r2 = 1

5.3 Spherical Coordinates
Cylindrical coordinates are very convenient for describing cylinders and other sur-
faces of revolution. In this section we explore spherical coordinates, which are
useful for describing many other shapes.

To locate a point using spherical coordinates you need to know three quantities:
ρ (pronounced “Row”), θ , and φ (pronounced “Fee”). The quantity θ is precisely
the same as in cylindrical coordinates. ρ is the distance from the origin. φ is the
angle with the z-axis, as pictured below.

x

y

z

rf

Given the spherical coordinates of a point we would like to be able to convert to
rectangular coordinates. The easiest quantity to find is z. Consider the triangle in
the figure below. The side adjacent to the angle φ is precisely z. The hypotenuse is
ρ. So cos φ = z

ρ
. Solving for z then gives

z = ρ cos φ
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z = r cos f

f
r

x

y

z

z

r

To find x and y it is helpful to first find the quantity r from cylindrical coordinates.
Going back to the triangle in the above figure, we see that the side opposite the
angle φ is precisely r . Hence, sin φ = r

ρ
, and thus

r = ρ sin φ

We know from the previous section that x = r cos θ and y = r sin θ . Substituting
for r gives

x = ρ sin φ cos θ

y = ρ sin φ sin θ

EXAMPLE 5-5
We find the rectangular coordinates of the point where ρ = 2, θ = π

3 , and φ = π
6 .

x = 2 sin
π

6
cos

π

3
= 1

2

y = 2 sin
π

6
sin

π

3
=

√
3

2

z = 2 cos
π

6
=

√
3
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Problem 43 Convert the following to rectangular coordinates.

1. (ρ, θ, φ) = (0, π
2 , π

6 )

2. (ρ, θ, φ) = (3, π, π
2 )

3. (ρ, θ, φ) = (4, π
4 , π

3 )

5.4 Graphing Spherical Equations
We now explore the graphs of several equations in spherical coordinates.

EXAMPLE 5-6
The simplest equation to understand is something like ρ = 2. This describes the
set of all points that are precisely 2 units away from the origin. In other words, this
is a sphere of radius 2.

If θ is a constant then the equation is the same in spherical coordinates and
cylindrical coordinates; a plane through the z-axis. The previous example shows
that when ρ is constant we get a sphere. In the next example we see what happens
when φ is held constant.

EXAMPLE 5-7
Consider the equation φ = π

6 . This describes the points which make an angle of π
6

with the z-axis. This is a circular cone, centered on the z-axis.

x

y

z

6
π
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As with cylindrical coordinates, things get more difficult when equations involve
relationships between multiple coordinates.

EXAMPLE 5-8
We graph the equation ρ = φ. Notice that the coordinate θ does not appear in
the equation. This tells us that the intersection of the graph with every half plane
incident to the z-axis is the same. (Recall that we encountered a similar type of
graph when we looked at some cylindrical equations.) This, in turn, tells us that the
graph is a surface of revolution.

In the following figure we have sketched one half plane. In this half plane we
have indicated how a spiral is the graph of ρ = φ.

z

r

r

To form the complete graph we must now take this spiral and rotate it about the
z-axis.

In the previous example we saw that when θ did not appear in a spherical equation
the graph was a surface of revolution. In the next example we explore what happens
when φ does not appear in a spherical equation.

EXAMPLE 5-9
We now explore the graph of ρ = θ . We do this again by investigating various half
planes incident to the z-axis. This time the pictures are not all the same. When
θ = 0, for example, we are looking at the graph of ρ = 0, which is just a point.
When θ = π

2 we are looking at ρ = π
2 , which is half of a circle of radius π

2 . As θ

increases we see larger and larger half circles incident to the z-axis, as in the figure
below.
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x

y

z

Putting it all together is challenging. We have done this for you in the computer-
generated picture below. The result is reminiscent of a sea shell.

Problem 44 Describe the graphs of the following spherical equations.

1. ρ = 0

2. φ = π
2

3. φ = π

4. ρ sin φ = 2

5. ρ cos φ = 2

Problem 45 Sketch the graphs of the following spherical equations.

1. ρ = sin φ

2. ρ = cos θ
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Quiz
Problem 46

1. Give rectangular coordinates for the following points:

a. The point with cylindrical coordinates r = 1, θ = π
6 , and z = 2.

b. The point with spherical coordinates ρ = 2, θ = π
6 , and φ = π

4 .

2. Sketch the graphs of the following:

a. The cylindrical equation r = cos θ .

b. The spherical equation θ = φ.



CHAPTER 6

Parameterizations

6.1 Parameterized Surfaces
In Chapter 1 we encountered parameterized curves. These were functions that
had one input (the parameter) and multiple outputs. One visualizes such curves
by drawing the range of the function. In this section we introduce parameterized
surfaces. These are functions which have two inputs and multiple (usually three)
outputs. Again, we visualize such functions by picturing their range. This is most
often some surface in R

3.

EXAMPLE 6-1
We explore the parameterization given by

ψ(u, v) = (u, v, u2 + v2)

Note that for each point in the range of ψ the z-coordinate is obtained from the
x and y coordinates by squaring them and adding. In other words, if a point is in
the range of ψ then it is also on the graph of z = x2 + y2. This is the paraboloid
depicted in Figure 1-9.
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EXAMPLE 6-2
We now look at a slight modification of the previous example.

ψ(u, v) = (2u, v, u2 + v2)

Note that this parameterization is obtained from the previous one by doubling
the x-coordinate of every point. This has the effect of stretching the graph in the
x-direction. Intersections with horizontal planes will thus be ellipses, as opposed
to circles as in the previous example.

Example 6-1 illustrated another important idea. Suppose we want to represent the
graph of a function z = f (x, y) as a parameterized surface. Then we may simply
write

ψ(u, v) = (u, v, f (u, v))

Note that the z-coordinate of every point in the range is obtained from the x- and
y-coordinates by plugging them into f . Hence, each point in the range is indeed
on the graph of f .

It is not much more difficult to represent graphs in other coordinate systems as
parameterized surfaces. The trick is to always translate to rectangular coordinates.

EXAMPLE 6-3
Suppose we want to write the graph of the cylindrical equation z = r2 as a parame-
terized surface. First, we write down the translation from cylindrical to rectangular
coordinates:

x = r cos θ

y = r sin θ

z = z

Now we substitute r2 for z:

x = r cos θ

y = r sin θ

z = r2

Hence, a parameterization may be written as follows:

ψ(r, θ) = (r cos θ, r sin θ, r2)
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EXAMPLE 6-4
Suppose we want to find a parameterization for the graph of the spherical equation

ρ = cos φ

First we write down the translation from spherical to rectangular coordinates:

x = ρ sin φ cos θ

y = ρ sin φ sin θ

z = ρ cos φ

Now we substitute cos φ for ρ:

x = cos φ sin φ cos θ

y = cos φ sin φ sin θ

z = cos φ cos φ

This gives us the parameterization

ψ(θ, φ) = (cos φ sin φ cos θ, cos φ sin φ sin θ, cos φ cos φ)

Problem 47 Find parameterizations for the graphs of the following equations.

1. z = x2

2. r = θ2

3. ρ = θ2

Problem 48 The following are parameterizations of the graphs of rectangular,
cylindrical, or spherical equations. Find these equations.

1. φ(ρ, θ) = (ρ sin θ cos θ, ρ sin2 θ, ρ cos θ)

2. φ(x, z) = (x, x + xz, z)

3. φ(r, θ) = (r cos θ, r sin θ, sin r)
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6.2 The Importance of the Domain
When you are trying to specify a particular shape, the domain of the parameteriza-
tion can be just as important as the function. We illustrate this with an example.

EXAMPLE 6-5
Suppose we want to parameterize the part of a sphere of radius 1 that lies in the
first octant (i.e., the region of R

3 where x, y, z ≥ 0). The equation of a sphere is
particularly simple in spherical coordinates, so we start here. Such an equation is
ρ = 1. Writing down the translation to rectangular coordinates and substituting 1
for ρ then yields the parameterization

ψ(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

But how do we make sure we just get the part of the sphere we want? The answer
is to restrict the values of θ and φ that can be plugged into φ:

0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

These ranges constitute the domain of φ.

EXAMPLE 6-6
We parameterize the portion of the graph of z = r2 that lies inside the cylinder
x2 + y2 = 1. The equation whose graph we are interested in is given in cylindrical
coordinates, so it is natural to start there. The restriction on the domain can also be
naturally expressed in cylindrical coordinates, so we do not anticipate any problems.
In Example 6-3, we found a parameterization for the desired surface:

ψ(r, θ) = (r cos θ, r sin θ, r2)

The points of R
3 that lie inside the cylinder x2 + y2 = 1 all have r ≤ 1. Hence, we

restrict the domain of our parameterization to

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π
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Problem 49 The function

ψ(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

parameterizes a sphere of radius 1. How would you restrict the values of θ and φ

to just get the portion of the sphere where

1. x, y ≥ 0

2. x ≤ 0, y ≥ 0, z ≤ 0

Problem 50 Describe the difference between the shapes with the following param-
eterizations.

1. �(x, y) = (x, y,
√

x2 + y2); 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

2. �(r, θ) = (r cos θ, r sin θ, r); 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

3. �(r, θ) = (r cos θ, r sin θ, r); 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

6.3 This Stuff Can Be Hard!
Parameterizations are extremely powerful tools that can describe very complicated
surfaces. But with such great power can come great difficulty. There may be no
obvious way to look at a complicated parameterization and know what shape it
describes. For example, consider the parameterization

φ(t, u) = ((4 + cos t + 2 sin u) cos(2u),

(4 + cos t + 2 sin u) sin(2u), sin t + 2 cos u)

0 ≤ t ≤ 2π, 0 ≤ u ≤ 2π

No expert would be able to look at an equation so complicated and immediately
know what it looks like. This is where computers become an invaluable tool. Plug-
ging this equation into a standard graphing program reveals the following beautiful
picture.
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Despite the apparent difficulty in understanding such complicated functions,
there are a few tricks that can help. These are basic ways in which you can take
a parameterization and modify it to suit your needs. For example, if you multiply
some coordinate by a constant, this has the effect of stretching the parameterized
shape by that factor. If you add a constant to some coordinate the shape is moved
in that direction.

EXAMPLE 6-7
Consider the following parameterization:

�(θ, φ) = (2 sin φ cos θ + 1, 3 sin φ sin θ − 2, cos φ)

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

This looks much like a parameterization of a sphere from spherical coordinates.
But the x-coordinate was multiplied by 2, and then 1 was added to it. Similarly,
the y-coordinate was multiplied by 3 and then 2 was subtracted from it. Thus the
parameterized shape is an ellipsoid with center at (1, −2, 0).
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Problem 51 Describe how the following parameterizations are related to graphs
of functions in rectangular, cylindrical, or spherical coordinates.

1. �(y, z) = (y2 + z, 2y, z − 1)

2. �(x, y) = (y, x, x + sin y)

3. �(θ, z) = (2 cos θ, 3 sin θ + 1, z − 1)

Problem 52 Parameterize the surface whose level curves are the ellipses shown
below.

x

y

2

3

z = .25

z = .5

z = .75

z = 1

z = 0

6.4 Parameterized Areas and Volumes
Earlier in the text we looked at parameterized curves in R

2 and R
3. This chapter

began with parameterized surfaces in R
3. Now we look at parameterized areas in

R
2 and parameterized volumes in R

3. Often these types of parameterizations begin
with writing down the translation from some coordinate system to rectangular
coordinates, and then restricting the domain.
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EXAMPLE 6-8
The translation from polar coordinates to rectangular coordinates is given by

x = r cos θ

y = r sin θ

We can use this to parameterize the area that is both inside the unit circle and in the
first quadrant:

�(r, θ) = (r cos θ, r sin θ)

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2

Note that it is the restriction on the domain that guarantees that the correct area is
parameterized.

EXAMPLE 6-9
Let R be the region below the graph of y = f (x), above the x-axis, and between
the lines x = a and x = b. Then R is parameterized by

�(x, t) = (x, t f (x))

a ≤ x ≤ b, 0 ≤ t ≤ 1

In three dimensions one usually begins with rectangular, cylindrical, or spherical
coordinates.

EXAMPLE 6-10
Consider the parameterization

�(r, θ, z) = (r cos θ, r sin θ, z)

1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

The function itself is just the translation from cylindrical to rectangular coordinates.
The restriction on the domain means that we have only parameterized the region
between cylinders of radii 1 and 2, and between the planes z = 0 and z = 1.
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Of course, as in the previous section, one can distort and move shapes by multi-
plying and adding constants to each coordinate.

EXAMPLE 6-11
We examine the parameterization

�(ρ, θ, φ) = (2ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)

0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

Without the 2 in the first component of the parameterization this would be one-
eighth of a solid ball. The 2 just stretches it in the x-direction, making it one-eighth
of an ellipsoid.

Problem 53 Sketch the areas of the plane parameterized by the following.

1. �(r, θ) = (r cos θ, r sin θ) , 0 ≤ r ≤ 1, 0 ≤ θ, ≤ π

4
2. �(r, θ) = (r cos θ, 2r sin θ), 1 ≤ r ≤ 2, 0 ≤ θ, ≤ π

Problem 54 Describe the volumes given by the following parameterizations.

1. �(ρ, θ, φ) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ),1 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π,

0 ≤ φ ≤ π
2

2. �(r, θ, z) = (r cos θ, r sin θ, 2z + 1), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

Problem 55 Find a parameterization for the volume which lies below the cone
z = r , above the xy-plane, and inside the cylinder x2 + y2 = 1.
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Quiz
Problem 56

1. Find a parameterization for the portion of the cylinder of radius 2, centered
on the z-axis, which lies below the graph of z = 2r and above the xy-plane.

2. Sketch the region in R
3 parameterized by the following:

ψ(ρ, θ, φ) = (2ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)

where 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π
2 , and 0 ≤ φ ≤ π .



CHAPTER 7

Vectors and Gradients

7.1 Introduction to Vectors
Mathematically, there is very little difference between a vector and a point. In two
dimensions, for example, a point is really just a pair of numbers. We visualize this
pair as a dot in a plane. A two-dimensional vector is similar. Technically, it is also
just a pair of numbers. But this time we visualize it as an arrow (Figure 7-1). This
arrow does not have a preferred location. The two numbers that specify it only
give its magnitude (i.e., size) and direction. This can be convenient, since certain
algebraic operations with vectors can be seen visually by moving them around.

Some differences between points and vectors are purely cosmetic. For example,
the numbers that you give to specify a point are called its coordinates. The numbers
that specify a vector are its components. The main difference between points and
vectors is that we can do algebra with vectors. This is a topic studied in detail in a
class on linear algebra. We will need some of the ideas from linear algebra here.

The first algebraic operation we will study with vectors is addition. This is very
easy: to add two vectors we simply add its components.

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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1

2

Figure 7-1 The point (1, 2) and the vector 〈1, 2〉

EXAMPLE 7-1
We compute the sum of the vectors 〈2, 3〉 and 〈−1, 2〉 as follows:

〈2, 3〉 + 〈−1, 2〉 = 〈2 − 1, 3 + 2〉 = 〈1, 5〉

We can visualize the operation of addition as follows. To add a vector V to a
vector W we slide W so that its “tail” (the base of the arrow) coincides with the
“tip” of V . The result of V + W is then the vector whose tail is at the tail of V and
whose tip is at the tip of W .

VV

W

V + W

− V

Negatives are equally easy. If V is a vector then we let −V denote the vector
whose components are the negatives of the components of V . The picture, of course,
is a vector which has the same length as V , but points in the exact opposite direction.
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EXAMPLE 7-2
If V = 〈2, 3〉 then −V = 〈−2, −3〉.

Finally, we define subtraction by combining addition and negatives:

V − W = V + (−W )

The result of subtraction is therefore exactly what you would expect: the vector
whose components are the difference between those of V and W .

The magnitude (or length) of a vector is easily computed by the Pythagorean
Theorem. We denote the magnitude of a vector V by the absolute value bars | · |.
Hence,

|〈a, b〉| =
√

a2 + b2

EXAMPLE 7-3

∣∣∣∣∣
〈√

2

2
,

√
2

2

〉∣∣∣∣∣ =
√√√√(√

2

2

)2

+
(√

2

2

)2

=
√

1

2
+ 1

2
= 1

A vector whose length is one is often called a unit vector.

Another common operation is multiplying a vector by a number. This is referred
to as scalar multiplication. Like addition and subtraction, this is done component-
wise. That is, the product of a scalar (i.e., a number) c and a vector V is a vector
whose components are c times the components of V . That is,

c 〈a, b〉 = 〈ca, cb〉

Geometrically, scalar multiplication produces a vector which points in the same
direction, but whose magnitude has been altered by the given scale factor. For
example, if we multiply a vector by the scalar 2, then we get a new vector, pointing
in the same direction, which is twice as long.

EXAMPLE 7-4
Suppose we would like to find a unit vector that points in the same direction as
〈3, 4〉. The trick is to multiply it by some scalar, and arrange it so that the resulting
vector has length one. In other words, we would like to find a number c such that

|c 〈3, 4〉 | = 1
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A quick computation gives us

|c〈3, 4〉| = |〈3c, 4c〉|
=
√

(3c)2 + (4c)2

=
√

25c2

= 5c

Hence, 5c = 1, and so c = 1
5 . We now multiply the vector 〈3, 4〉 by this number

to get the answer
〈

3
5 ,

4
5

〉
.

Problem 57 For the following vectors V and W compute V + W , −V , and V − W .

1. V = 〈1, 6〉, W = 〈6, 1〉
2. V = 〈0, 0〉, W = 〈1, 2〉
3. V = 〈−1, 1〉, W = 〈1, −2〉

Problem 58 Find the magnitude of the following vectors.

1. 〈2, 3〉
2. 〈1, 3〉

Problem 59 Find a unit vector that points in the same direction as 〈2, 1〉.

Problem 60 Find a unit vector that is perpendicular to the vector 〈5, 12〉.

7.2 Dot Products
After we have mastered the basic operations of addition and subtraction we move on
to multiplication. Unfortunately, we do not have anything quite as straightforward.
It is tempting to define the product of V and W as the vector whose components are
the products of the components of V and W . This particular operation, however,
does not turn out to be terribly useful.

Instead we define the product of two vectors V and W to be the sum of the
products of the components. This means the result of multiplication is a single
number, as opposed to a vector. This product is called the dot product, since it is
always denoted with a dot. In symbols, we write

〈a, b〉 · 〈c, d〉 = ac + bd
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EXAMPLE 7-5

〈2, 3〉 · 〈3, 4〉 = 6 + 12 = 18

The usefulness of the dot product comes from the fact that it has a nice geometric
interpretation. Suppose the angle between vectors V and W is θ . Then,

V · W = |V ||W | cos θ

This follows from some tricky trigonometry as follows. Consider the following
triangle:

W

V

V − W

Now recall the Law of Cosines, which says that if a triangle has side lengths a, b,
and c, and the angle between a and b is θ , then

c2 = a2 + b2 − 2ab cos θ

If we apply this to the above triangle we get

|V − W |2 = |V |2 + |W |2 − 2|V ||W | cos θ

which we can rearrange to

|V ||W | cos θ = |V |2 + |W |2 − |V − W |2
2

Now suppose V = 〈v1, v2〉 and W = 〈w1, w2〉. Then,

|V |2 + |W |2 − |V − W |2
2

= v2
1 + v2

2 + w2
1 + w2

2 − (v1 − w1)
2 − (v2 − w2)

2

2

= 2v1w1 + 2v2w2

2
= v1w1 + v2w2
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And so

V · W = v1w1 + v2w2 = |V ||W | cos θ

In retrospect, this formula is very reasonable. Consider two extreme cases:

Case 1. Suppose we take the dot product of V with itself. By definition,

V · V = v1v1 + v2v2 = v2
1 + v2

2

But in this case θ = 0, so cos θ = 1. Hence,

|V ||V | cos θ = |V ||V | =
√

v2
1 + v2

2

√
v2

1 + v2
2 = v2

1 + v2
2

Case 2. The other extreme case is when V and W are perpendicular. The slope
of the line containing V is v2

v1
. Similarly, the slope of the line containing W is

w2
w1

. If these lines are perpendicular then their slopes are negative reciprocals, so
v2
v1

= −w1
w2

. Cross multiplying and bringing everything to one side of the equation
then gives v1w1 + v2w2 = 0. But the quantity on the left is precisely the definition
of V · W . To verify the cosine formula just note that if V and W are perpendicular
then cos θ = 0, so |V ||W | cos θ = 0 as well.

EXAMPLE 7-6
The cosine of the angle between vectors 〈2, 3〉 and 〈−1, 2〉 can be found using the
dot product

〈2, 3〉 · 〈−1, 2〉 = −2 + 6 = 4

= |〈2, 3〉||〈−1, 2〉| cos θ

= √
4 + 9

√
1 + 4 cos θ

=
√

65 cos θ

Hence,

cos θ = 4√
65

= 4
√

65

65

EXAMPLE 7-7
Since the cosine of the angle between two vectors is zero if and only if the vectors
are perpendicular, the dot product can be used to detect this. For example,

〈2, 3〉 · 〈−6, 4〉 = −12 + 12 = 0

so these vectors must be perpendicular.
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Problem 61 Compute the dot product of the following pairs of vectors.

1. V = 〈2, 4〉, W = 〈−3, 1〉
2. V = 〈0, 7〉, W = 〈5, 2〉
3. V = 〈−2, −1〉, W = 〈6, −3〉

Problem 62 Compute the cosine of the angle between the following pairs of vectors.

1. V = 〈2, 4〉, W = 〈−3, 1〉
2. V = 〈−2, −1〉, W = 〈6, −3〉

Problem 63 Suppose V and W are vectors of length 3. What are the smallest and
largest possible values for V · W ? What is the smallest possible value of |V · W |?

Problem 64 Use the dot product to decide if each of the following pairs of vectors
are perpendicular.

1. V = 〈2, 4〉, W = 〈−4, 8〉
2. V = 〈2, 4〉, W = 〈8, −4〉
3. V = 〈−2, −1〉, W = 〈−3, 6〉
4. V = 〈−2, −1〉, W = 〈6, −3〉

7.3 Gradient Vectors and Directional
Derivatives

In this section we return to the concept of differentiation of functions of two vari-
ables. Recall that the partial derivative ∂ f

∂x was the rate of change of the function
f (x, y) if you walk in the positive x-direction with unit speed. Similarly, the partial
derivative ∂ f

∂y is the rate of change if you walk in the positive y-direction with unit
speed. We are left with the obvious question, “What is the rate of change of f (x, y)

if you walk in some other direction?”
Let V = 〈a, b〉 represent a vector which points in the direction of travel. The

length of V will be one, to reflect the fact that we are walking with unit speed. We
already know two things:

Rate of change of f (x, y) in direction 〈1, 0〉 = ∂ f

∂x
= 1

∂ f

∂x
+ 0

∂ f

∂y

Rate of change of f (x, y) in direction 〈0, 1〉 = ∂ f

∂y
= 0

∂ f

∂x
+ 1

∂ f

∂y
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It is reasonable, then, to expect

Rate of change of f (x, y) in direction 〈a, b〉 = a
∂ f

∂x
+ b

∂ f

∂y

EXAMPLE 7-8
Suppose f (x, y) = xy2. Then the rate of change of f (x, y), at the point (2, 1), in

the direction
〈√

2
2 ,

√
2

2

〉
is

√
2

2

∂ f

∂x
(2, 1) +

√
2

2

∂ f

∂y
(2, 1) =

√
2

2
1 +

√
2

2
4 = 5

√
2

2

The rate of change of f (x, y), in the direction of V , is called a directional
derivative, and is denoted as ∇V f (x, y). Hence, we have the formula

∇V f (x, y) = a
∂ f

∂x
+ b

∂ f

∂y

But notice that the right side of this equation can be rewritten as a dot product:

∇V f (x, y) = 〈a, b〉 ·
〈
∂ f

∂x
,
∂ f

∂y

〉

We can further shorten this equation by coming up with new notation for
〈
∂ f
∂x ,

∂ f
∂y

〉
.

Henceforth we will call this vector the gradient of f , and denote it as ∇ f . The
equation for ∇V f then becomes

∇V f = V · ∇ f

EXAMPLE 7-9
The gradient of the function f (x, y) = x2 y3 at the point (x, y) is

∇ f (x, y) = 〈2xy3, 3x2 y2
〉

The gradient at the point (1, 1), then, would be ∇ f (1, 1) = 〈2, 3〉.

Recall that the rate of change of a function is also the slope of a tangent line to its
graph, as long as you are traveling with speed one. Here’s a nice way to think about
the situation. Suppose you are climbing a mountain, and you have a good trail map
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in your hands. Let (x, y) be your coordinates when you locate yourself on the map.
The function f (x, y) is your elevation at that point. Now turn your body to face the
direction V (on your map). If you sight up or down so that your gaze just grazes
the mountainside then you are looking along the tangent line whose slope is given
by ∇V f .

V

You are here

Acme Trail Map

Recall that the dot product is given by the product of the magnitudes of the two
vectors, times the cosine of the angle between them. If we fix the point we are at
then ∇ f is a fixed vector. If |V | = 1, then the only way to change ∇V f = V · ∇ f
is to change the angle between V and ∇ f . The largest this quantity can be is when
the value of cos θ is largest. This happens when θ = 0. We conclude that the largest
value of ∇V f is given by

∇V f = V · ∇ f = |V ||∇ f | cos θ = |∇ f |

and that this value is attained when V (the direction we are facing) coincides with
the direction of ∇ f . In other words, if you are on the mountainside and you want
to face directly uphill you should point yourself in the direction of the gradient
vector. When you do this and sight along the mountainside the slope you see is the
magnitude of the gradient vector.

EXAMPLE 7-10
Let f (x, y) = exy2

. At the point (x, y) the gradient vector is

∇ f (x, y) =
〈
y2exy2

, 2xyexy2
〉
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So, at the point (2, 3) we have ∇ f (2, 3) = 〈9e18, 12e18〉. The largest slope of any
tangent line to the graph at the point (2, 3) is then given by

|〈9e18, 12e18〉| =
√

(9e18)2 + (12e18)2 = 15e18

What if you were standing on the mountainside and wanted to face the direction
you would have to travel to keep your elevation constant? In other words, how would
you find the direction of your level curve? If you were facing such a direction you
would be looking along a horizontal line, i.e., a line whose slope is zero. The only
way for ∇V f = V · ∇ f to be zero is for V and ∇ f to be perpendicular.

EXAMPLE 7-11
Suppose again f (x, y) = exy2

. In the previous example we saw ∇ f (2, 3) =
〈9e18, 12e18〉. A vector which points in a direction perpendicular to this would be
〈4, −3〉 (Check this!). Hence, this vector is tangent to a level curve at the point (2, 3).

Problem 65 For each of the functions f (x, y) below answer the following ques-
tions:

• Find the gradient vector ∇ f (x, y).

• Calculate the rate of change of f (x, y) at the point (1, 1) in the direction〈
3
5 ,

4
5

〉
.

• Find a unit vector that points in the direction of the maximum rate of change
at the point (1, 1).

• Find the largest slope of any tangent line at (1, 1).

• Find a unit vector that lies in a line tangent to a level curve through (1, 1).

1. x ln y

2. 2x + 3y

3. x2 y + xy3

7.4 Maxima, Minima, and Saddles
At a local maximum or a local minimum of a graph the tangent plane is horizontal.
Another way to say this is that the slope of every tangent line to a local maximum
or minimum is zero. But recall that the slope of a tangent line at (x, y) in direction
V is given by V · ∇ f . The only way for this to be zero for every possible V is if
∇ f is the zero vector.
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EXAMPLE 7-12
We show that f (x, y) = x2 y3 cannot have a maximum or minimum at any point
where x and y are nonzero. The gradient is

∇ f (x, y) = 〈2xy3, 3x2 y2
〉

If x and y are nonzero then this is not the zero vector. This tells us that there is
a direction where the slopes of tangent lines are nonzero, and hence we cannot be
at a local maximum or minimum.

Unfortunately, just because the gradient is the zero vector it does not necessarily
mean that there is a local maximum or minimum.

EXAMPLE 7-13
The gradient of f (x, y) = x2 + y2 and g(x, y) = x2 − y2 is 〈0, 0〉 at the origin.
The function f (x, y) has a minimum there, while g(x, y) has a saddle.

In a first-semester calculus class you learned to detect local maxima and minima
by a second-derivative test. We would like to do the same thing here. The problem,
of course, is that there are four second partial derivatives! To keep track of all this
information we often write them in a matrix, as follows:⎡

⎢⎢⎣
∂2 f

∂x2

∂2 f

∂x∂y
∂2 f

∂y∂x

∂2 f

∂y2

⎤
⎥⎥⎦

Now we examine this matrix for several functions whose graph is familiar. Each
of these has a gradient vector equal to zero at the origin.

1. x2 + y2. This function has a local minimum at the origin. The matrix of

second partials is

[
2 0
0 2

]
.

2. −x2 − y2. This function has a local maximum at the origin. The matrix of

second partials is

[−2 0
0 −2

]
.

3. x2 − y2. This function has a saddle at the origin. The matrix of second

partials is

[
2 0
0 −2

]
.

4. xy. This function also has a saddle at the origin. The matrix of second

partials is

[
0 1
1 0

]
.
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The first two give us a clue as to the quantity we would like to look at. Consider
the product of the upper-left and lower-right entries of the matrix. For the maximum
and minimum above this quantity is positive and for the first of the above saddles
it is negative. However, this alone would not be enough to distinguish maxima and
minima from saddles, as the second of the saddles shows. To compensate we must
subtract the product of the upper-right and lower-left entries, yielding the formula

∂2 f

∂x2

∂2 f

∂y2
− ∂2 f

∂x∂y

∂2 f

∂y∂x

However, since the mixed partials are equal we can shorten this to

∂2 f

∂x2

∂2 f

∂y2
−
(

∂2 f

∂x∂y

)2

This is indeed the right quantity to look at, in the sense that if it is greater than
zero you have a maximum or minimum, and if it is less than zero you have a saddle.
Unfortunately, if it is zero you have no information; you may be at a maximum,
minimum, saddle, or something much more bizarre. Nonetheless, we will single
this out as our first test.

Test 1

Let D(x, y) = ∂2 f
∂x2

∂2 f
∂y2 −

(
∂2 f
∂x∂y

)2
. Suppose that at some point (x0, y0)we have∇ f (x0, y0) =

〈0, 0〉.

D(x0, y0) > 0 ⇒ f (x, y) has a local max or min at (x0, y0).

D(x0, y0) < 0 ⇒ f (x, y) has a saddle at (x0, y0).

D(x0, y0) = 0 ⇒ No information about f (x0, y0).

EXAMPLE 7-14
We find the location of all saddles of the function f (x, y) = x2 + 2xy + 3y3. First,
we will need to narrow down the possibilities by finding the critical points. To do
this we find the gradient.

∇ f = 〈2x + 2y, 2x + 9y2
〉
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Setting this equal to the vector 〈0, 0〉 gives us the system of equations

2x + 2y = 0

2x + 9y2 = 0

The first equation tells us that x = −y. Plugging this into the second equation
then gives

−2y + 9y2 = 0

Either y = 0 (and hence x = 0) or we can divide both sides of this equation by y
to get

−2 + 9y = 0

Solving then gives us y = 2
9 . Hence, we have critical points at (0, 0) and

(− 2
9 ,

2
9

)
.

To determine which of these are saddles we compute the matrix of second partials:⎡
⎢⎢⎢⎣

∂2 f

∂x2

∂2 f

∂x∂y

∂2 f

∂y∂x

∂2 f

∂y2

⎤
⎥⎥⎥⎦ =

[
2 2

2 18y

]

And so

D(x, y) = 36y − 4

We now check each critical point:

D(0, 0) = −4 < 0 ⇒ (0, 0) is a saddle.

D

(
−2

9
,

2

9

)
= 4 > 0 ⇒

(
−2

9
,

2

9

)
is a local max or min.

When D(x0, y0) > 0 it would be nice to have a second test to determine whether
(x0, y0) is a local maximum or a local minimum. Such a test can be easily guessed
from our prototypical examples, f (x, y) = x2 + y2 and f (x, y) = −x2 − y2.
Notice that in both cases ∂2 f

∂x2 and ∂2 f
∂y2 have the same sign. When this sign is positive

we have a local minimum and when it is negative we have a local maximum. This
is precisely our second test.



82 Advanced Calculus Demystified

Test 2

Let D(x, y) = ∂2 f
∂x2

∂2 f
∂y2 −

(
∂2 f
∂x∂y

)2
. Suppose that at some point (x0, y0) we have ∇ f (x0, y0) =

〈0, 0〉 and D(x0, y0) > 0.

∂2 f

∂x2
(x0, y0) > 0 ⇒ f (x, y) has a local min at (x0, y0).

∂2 f

∂x2
(x0, y0) < 0 ⇒ f (x, y) has a local max at (x0, y0).

EXAMPLE 7-15
Recall the function f (x, y) = x2 + 2xy + 3y3 from the previous example. We
found critical points at (0, 0) and

(− 2
9 ,

2
9

)
, and determined that at

(− 2
9 ,

2
9

)
there

was a local maximum or a local minimum. To determine which we need only look
at ∂2 f

∂x2 . Since this was 2, and 2 > 0, we conclude that at this critical point there is a
local minimum.

It is important to keep in mind that if D(x0, y0) = 0 then we have no information
about the nature of f (x0, y0). We illustrate this in the next example.

EXAMPLE 7-16
Consider the following functions:

1. f (x, y) = x4 + y4

2. f (x, y) = −x4 − y4

3. f (x, y) = x2 y2

In each case the only critical point is at (0, 0) and D(0, 0) = 0. But at (0, 0) in the
first case there is a local minimum, in the second there is a local maximum, and in
the third there is a saddle.

Problem 66 Find the local maxima, minima, and saddles of the following functions.

1. xy + 2x − 3y − 6

2. x3 − xy + y2

Problem 67 For the function sin(x + y) show that D(x, y) = 0 at every point
(x, y). Does this function have maxima, minima, or saddles?
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Problem 68 If, for some point (x0, y0) you know D(x0, y0) > 0 and ∂2 f
∂x2 (x0, y0) >

0 then show that ∂2 f
∂y2 (x0, y0) > 0. (This tells us that you may use ∂2 f

∂y2 (x0, y0) instead

of ∂2 f
∂x2 (x0, y0) when distinguishing maxima from minima.)

7.5 Application: Optimization Problems
An important application of the mathematics of the previous section is to optimiza-
tion problems. You encountered several such problems in a first semester calculus
class. You can now handle much more complicated situations. We illustrate this
with an example.

EXAMPLE 7-17
We find the largest volume of a box with an open top, and surface area 100 m2.
First, we let the dimensions of the box be a, b, and c, with c the height. Then the
surface area is given by

S.A. = 100 = ab + 2ac + 2bc

Solving this equation for c gives

c = 100 − ab

2(a + b)

The volume, of course, is the quantity abc. Substituting for c then gives us

Volume = ab
100 − ab

2(a + b)

Thinking of volume, then, as a function V (a, b) we now search for critical
points. The gradient is a bit tedious to compute, but with some work you can show
it simplifies to

∇V (a, b) =
〈−2a2b2 + 200b2 − 4ab3

4(a + b)2
,
−2a2b2 + 200a2 − 4a3b

4(a + b)2

〉

Each component of this vector can only be zero if the numerators are zero, so
we get two equations:

0 = −2a2b2 + 200b2 − 4ab3

0 = −2a2b2 + 200a2 − 4a3b
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We may safely assume that neither a nor b are zero. Dividing the first equation
by 2b2 and the second by 2a2 then gives

0 = −a2 + 100 − 2ab (7-1)

0 = −b2 + 100 − 2ab

Solving both equations for 2ab and setting them equal to each other gives us

−a2 + 100 = −b2 + 100

and thus (since we are only interested in positive values of a and b) we may conclude
a = b. Combining this with Equation 7-1 tells us

0 = −a2 + 100 − 2a2

Solving this for a reveals

a = 10
√

3

3

The fact that a = b then gives us

b = 10
√

3

3

Finally, our expression for c in terms of a and b above yields

c = 5
√

3

3

The volume is thus

Volume = abc = 500
√

3

9

7.6 LaGrange Multipliers
Suppose you wanted to look for the maximum value of f (x) = 1

3 x3 − x , on the
interval [−2, 3]. This function has two critical points, and the one at x = −1 is a
local maximum. But to conclude that f (−1) = 2

3 is the maximum value of f (x) on
the indicated domain would be incorrect. This is because the maximum is attained
at one of the endpoints of the domain, namely at x = 3. At this point f (3) = 6.
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Dp

q

Figure 7-2 The function f (x, y) has a local maximum at the point q, but the
absolute maximum on the domain D is the point p on the boundary

The same kind of thing can happen with functions f (x, y) of two variables. Using
techniques of the previous section we can look for, and analyze, critical points in
the interior of the domain D of f . But if we are interested in the maximum value
that f attains on D we may have to look at the points around the boundary of D,
as in Figure 7-2. In the one-variable case this was easy, since it was just a matter of
checking two points. When there are multiple variables there are an infinite number
of points around the boundary of D, so we need some technique other than just
plugging values into f .

In Figure 7-3 we see the contours for the function f (x, y) of Figure 7-2, super-
imposed on the domain D. As is customary, we will denote the points around the
boundary of D as ∂ D. (Don’t get this confused with a partial derivative.) Notice
that the maximum and minimum values of f on ∂ D occur at the places where the
level curves of f are tangent to ∂ D.

The key fact that we will use is that the vectors ∇ f are always perpendicular to
the level curves of f . So, at a point p = (x0, y0) where a level curve of f is tangent
to ∂ D we will see ∇ f (x0, y0) perpendicular to ∂ D.

The next step is to find a new function, g(x, y), for which ∂ D is a level curve. The
vector ∇g is always perpendicular to all of its level curves. In particular, ∇g(x0, y0)

will be perpendicular to ∂ D at (x0, y0). See Figure 7-4.



86 Advanced Calculus Demystified

q

p

Figure 7-3 The contours of f (x, y) and the domain D. The absolute maximum of
f on D is at the point p where a level curve is tangent to ∂ D

Since ∇ f (x0, y0) and ∇g(x0, y0) are perpendicular to the same curve they must
be parallel to each other. If vectors V and W are parallel, then one is a scalar multiple
of the other. In other words, there is a constant λ such that V = λW . Putting all this
together, we find that if a maximum (or minimum) of f occurs at a point (x0, y0)

of ∂ D then there must be a constant λ such that ∇ f (x0, y0) = λ∇g(x0, y0). Using
this information we get a finite number of candidate points at which to look for
maxima and minima.

EXAMPLE 7-18
Let f (x, y) = 2x2 + 3y3, and suppose D is the set of points (x, y) in R

2 satisfying
x2 + y2 ≤ 1. We will look for the largest value attained by f (x, y) on ∂ D.

∆f

∆g

Figure 7-4 The vector ∇ f is a scalar multiple of the vector ∇g
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To use the “method of Lagrange multipliers” the first step is to find a function
g(x, y) for which ∂ D is a level curve. This is very easy: g(x, y) = x2 + y2. Then the
level curve g(x, y) = 1 is the curve x2 + y2 = 1, which is precisely the boundary
of D.

The next step is to look for points (x0, y0), and values ofλ, such that∇ f (x0, y0) =
λ∇g(x0, y0). We thus compute

∇ f = 〈4x, 9y2〉
∇g = 〈2x, 2y〉

So if
〈
4x, 9y2

〉 = λ 〈2x, 2y〉 we have 4x = λ2x and 9y2 = λ2y. The first of
these equations tells us that either x = 0 or λ = 2.

Case 1. x = 0. The boundary of D is the set of points satisfying x2 + y2 = 1.
So if x = 0 then y = ±1. This means that we must check the points (0, 1) and
(0, −1) for maxima and minima.

Case 2. λ = 2. Combining this with the equations 9y2 = λ2y then tells us 9y2 =
4y. So again there are two cases: either y = 0 or 9y = 4, in which case y = 4

9 .
Subcase A. y = 0. Similar to Case 1 above, the boundary of D is the points

satisfying x2 + y2 = 1. If y = 0 then x = ±1. So we get two more points to check:
(1, 0) and (−1, 0).

Subcase B. y = 4
9 . Plugging this into x2 + y2 = 1 gives us x2 + 16

81 = 1.

Solving for x then gives x = ±
√

64
9 . Thus we get two more points: (

√
64
9 , 4

9) and

(−
√

64
9 , 4

9).
We now have six points at which to look for maxima and minima of f . We do

this simply by plugging them in:

f (0, 1) = 3 f (0, −1) = −3

f (±1, 0) = 2 f

(
±

√
64

9
,

4

9

)
= 454

243

So the maximum value of f on ∂ D is at (0, 1) and the minimum value is at
(0, −1).

Problem 69 Let f (x, y) = x2 + y2 + 2y − 1 and D = {(x, y)|x2 + y2

4 ≤ 1}.

1. Find the locations of all critical points of f (x, y) on D.

2. Find the absolute minimum of f (x, y) on D.
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7.7 Determinants
In the previous chapter we saw that the dot product was a way to take two vectors
and produce a meaningful number. In two dimensions there is another such way.
Suppose V = 〈a, b〉 and W = 〈c, d〉 are vectors and consider the parallelogram
formed by two parallel copies of each.

V

V

W

W

We wish to determine the area of this parallelogram. Notice in the figure below
that there are four triangles and two small rectangles inside a larger rectangle. The
area of the desired parallelogram is found by subtracting these areas.

a

b

c

d

a + c

b + d

The area of the large parallelogram is (a + c)(b + d). The area of each small
rectangle is bc. The area of two of the triangles is 1

2ab and the other two is 1
2 cd.

Thus the desired area is

Area = (a + c)(b + d) − 2bc − 2

(
1

2
ab

)
− 2

(
1

2
cd

)
= ab + ad + bc + cd − 2bc − ab − cd

= ad − bc

We often organize the information contained in a set of vectors by writing them
in a matrix. The area of the parallelogram between them is then the determinant of
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the matrix. We write this as follows:∣∣∣∣a b

c d

∣∣∣∣ = ad − bc

Notice that there is a bit more information in the determinant than just the area,
since our answer may be negative. The sign of the answer tells us the order of
V and W . If we go counterclockwise to get from V to W then the sign of the
determinant is positive. Otherwise it is negative. For this reason we call the value
of the determinant the signed area of the parallelogram spanned by V and W .

EXAMPLE 7-19
We compute the (signed) area of the parallelogram spanned by the vectors 〈1, 2〉
and 〈4, 3〉.

∣∣∣∣1 2

3 4

∣∣∣∣ = 1 · 4 − 2 · 3 = −2

In three dimensions there is also a determinant, but it is slightly more complicated.
If we take four parallel copies of three vectors then they span a 3-dimensional figure
called a parallelepiped. You should think of this as a cube that has been stretched,
skewed, and rotated. The determinant of the matrix that is comprised of these vectors
is then the volume of this figure.

V
W

U

A matrix containing the vectors U = 〈a, b, c〉, V = 〈d, e, f 〉, and W = 〈g, h, i〉
would be written like this ⎡

⎢⎣
a b c

d e f

g h i

⎤
⎥⎦
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To write the determinant of this matrix it is helpful to copy the entire matrix next
to the original one. Then add up all the “right-slanting” products and subtract all
the “left-slanting” products.

aa

dd

gg

bb

ee

hh

cc

ff

ii

= aei + bfg + cdh − − −afh bdi ceg

Once again this answer may be negative, indicating the way in which U , V ,
and W are situated. The sign is positive if, when we sweep the fingers of our right
hand from U to V , our thumb points in the direction of W . Once again, this is the
“right-hand rule,” that we encountered earlier.

A second way to remember how to compute the determinant of a 3 × 3 matrix
is to reduce it to computing the determinants of three 2 × 2 matrices:

∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣ = a

∣∣∣∣ e f

h i

∣∣∣∣− b

∣∣∣∣d f

g i

∣∣∣∣+ c

∣∣∣∣d e

g h

∣∣∣∣
Notice that each term on the left is preceded by one element from the top row

of the matrix, with alternating signs. The 2 × 2 matrix in each term is the one you
get from the original matrix by deleting the corresponding row and column. So, for
example, the first term is preceded by a, since that is the first element of the top
row. The 2 × 2 matrix in the first term is the one you get by eliminating the row
and column containing a.

EXAMPLE 7-20
We compute the (signed) volume of the parallelepiped spanned by 〈1, 2, 3〉,
〈1, −1, 1〉, and 〈0, 2, 2〉.

∣∣∣∣∣∣∣
1 2 3

1 −1 1

0 2 2

∣∣∣∣∣∣∣ = 1(−2 − 2) − 2(2 − 0) + 3(2 − 0) = −4 − 4 + 6 = −2

Problem 70 Find the (signed) area of the parallelogram spanned by

1. 〈1, 3〉 and 〈−1, 2〉
2. 〈1, 6〉 and 〈1, 1〉
3. 〈2, 3〉 and 〈6, 9〉
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Problem 71 Suppose V and W are parallel vectors in R
2. Let M be the matrix

whose rows are V and W . Show that the determinant of M is zero.

Problem 72 Calculate the (signed) area of the parallelepiped spanned by

1. 〈1, 2, 3〉, 〈1, 0, 2〉, and 〈−2, 2, −3〉
2. 〈0, 1, 3〉, 〈−1, 2, 1〉, and 〈2, 0, −1〉

7.8 The Cross Product
A challenging problem is to find the area of a parallelogram defined by two vectors
in three dimensions. If the vectors are V = 〈a, b, c〉 and W = 〈d, e, f 〉 then this
area is given by

Area(V, W ) =
√

(b f − ec)2 + (cd − a f )2 + (ae − bd)2

The general form of this equation looks a lot like the Pythagorean Theorem: some
quantity is the square root of the sum of squares. We can employ this observation
to make the above formula a bit more compact:

Area(V, W ) = |〈b f − ec, cd − a f, ae − bd〉|

Note that we started with two vectors, V and W , and ended up with a third
that was somehow related. This gives us a new kind of product, called the cross
product:

V × W = 〈b f − ec, cd − a f, ae − bd〉

Recall that the dot product was a way to take two vectors and multiply them, with
the result being a scalar. The cross product, by comparison, is a way to multiply
and get a third vector.

The astute reader will notice that each component of the cross product is the
determinant of a 2 × 2 matrix. We may thus write its formula like this:

V × W =
〈∣∣∣∣b c

e f

∣∣∣∣ ,
∣∣∣∣ c a

f d

∣∣∣∣ ,
∣∣∣∣a b

d e

∣∣∣∣
〉
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It is traditional to define the vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉.
Using this we may rewrite the definition of the cross product as

V × W = i

∣∣∣∣b c

e f

∣∣∣∣− j

∣∣∣∣a c

d f

∣∣∣∣+ k

∣∣∣∣a b

d e

∣∣∣∣
We introduced a negative sign in the second term and switched the order of the

columns of the second matrix. Now our formula looks just like a determinant:

V × W =

∣∣∣∣∣∣∣
i j k

a b c

d e f

∣∣∣∣∣∣∣
This last formula is probably the easiest way to remember how to compute the

cross product of two vectors.

EXAMPLE 7-21
We compute the area of the parallelogram spanned by the vectors 〈1, 1, 0〉 and
〈1, 2, 3〉. To do this we first compute the cross product:

〈1, 1, 0〉 × 〈1, 2, 3〉 =

∣∣∣∣∣∣∣
i j k

1 1 0

1 2 3

∣∣∣∣∣∣∣
= i(3 − 0) − j(3 − 0) + k(2 − 1)

= 3i − 3j + k

= 〈3, −3, 1〉

The desired area is now the magnitude of this vector:

|〈3, −3, 1〉| =
√

32 + (−3)2 + 12 =
√

19

We have already seen that the magnitude of the cross product has some geometric
significance. What about its direction? To get a clue we compute V · (V × W ).
Suppose V = 〈a, b, c〉 and W = 〈d, e, f 〉. Then, we compute:

V · (V × W ) = 〈a, b, c〉 · 〈b f − ec, cd − a f, ae − bd〉
= a(b f − ec) + b(cd − a f ) + c(ae − bd)

= ab f − aec + bcd − ba f + cae − cbd

= 0
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From this we may conclude that V × W is perpendicular to V . A similar compu-
tation shows W · (V × W ) = 0, and hence V × W is perpendicular to W as well.
We conclude V × W is perpendicular to the plane containing V and W .

EXAMPLE 7-22
We find a unit vector that is perpendicular to both 〈1, 1, 0〉 and 〈1, 2, 3〉. From the
previous problem we know that the cross product of these two vectors is the vector
〈3, −3, 1〉, and that the magnitude of this vector is

√
19. To get a unit vector which

points in the same direction we just divide by the magnitude:

〈3, −3, 1〉√
19

=
〈

3
√

19

19
,
−3

√
19

19
,

√
19

19

〉

Problem 73 Find the area of the parallelogram spanned by the vectors

1. 〈1, 2, 3〉 and 〈−1, 0, 1〉
2. 〈1, 1, 0〉 and 〈1, 0, 1〉
3. 〈1, 2, 3〉 and 〈3, 1, 2〉

Problem 74 Find a unit vector which is perpendicular to each of the following
pairs of vectors.

1. 〈1, 2, 0〉 and 〈1, 1, 1〉
2. 〈1, 1, 2〉 and 〈1, 1, 1〉

Problem 75 Show that V × W = −W × V .

Problem 76 Let U, V , and W be three vectors in R
3. Let M be the 3 × 3 ma-

trix whose rows are these vectors. Show that the determinant of M is equal
to U · (V × W ).

Problem 77 Show that the area of the parallelogram spanned by V and W is equal
to |V ||W | sin θ , where θ is the angle between V and W .
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Quiz
Problem 78

1. Let f (x, y) be the following function:

f (x, y) = x2 + 3xy

a. Find the largest slope of any tangent line to the graph of f (x, y) at the
point (1, 1).

b. Find the critical point(s).

c. Compute the value of

∣∣∣∣∣∣∣∣
∂2 f

∂x2

∂2 f

∂x∂y
∂2 f

∂y∂x

∂2 f

∂y2

∣∣∣∣∣∣∣∣
for each critical point found.

d. Does the graph have a max, min, or saddle at the critical point(s)?

2. Let V = 〈1, 2, 3〉 and W = 〈1, 1, 1〉. Find

a. a unit vector which points in the same direction as V.

b. the cosine of the angle between V and W.

c. a unit vector which is perpendicular to both V and W.



CHAPTER 8

Calculus with
Parameterizations

8.1 Differentiating Parameterizations
Suppose φ(t) = ( f (t), g(t)) is a parameterization of some curve in R

2. What
should it mean to differentiate φ at t = t0? Obviously, the answer will involve
two numbers, f ′(t0) and g′(t0). The best way to make sense out of this pair of
numbers is as a vector:

d

dt
φ(t0) = 〈 f ′(t0), g′(t0)

〉
If this vector is drawn with its base at the point φ(t0) then it is tangent to the

parameterized curve. In addition, if t really represents time, and φ(t) the coordinates
of a particle, then the length of this vector tells how fast the particle is moving at
time t0.

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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EXAMPLE 8-1
At time t the coordinates of a car are φ(t) = (t2, t3). We wish to determine how
fast, and in what direction, the car is heading at time t = 2. First, we differentiate
the parameterization:

φ′(t) = 〈2t, 3t2〉
Thus,

φ(2) = 〈4, 12〉
The direction of the car is thus the direction that this vector is pointing. Its speed is
given by the magnitude of this vector:

|〈4, 12〉| =
√

42 + 122 = 4
√

10

Nothing significant changes in three dimensions, as in our next example.

EXAMPLE 8-2
We find the speed of a particle moving along the helix φ(t) = (cos t, sin t, t). First,
we find the tangent vector:

φ′(t) = 〈− sin t, cos t, 1〉
To find the speed we compute the magnitude of this vector:

|〈− sin t, cos t, 1〉| =
√

(− sin t)2 + (cos t)2 + 12 =
√

2

Note that our answer does not depend on t , telling us a particle moving along the
spiral by the given parameterization travels with constant speed.

Differentiating parameterizations of surfaces is a bit more complicated, since
now there are two variables. For example, consider the general parameterization

�(u, v) = ( f (u, v), g(u, v), h(u, v))

We can take the partial derivative of � with respect to u, say, simply by taking the
partial derivatives of f , g, and h with respect to u. Our answer is again a vector:

∂

∂u
� =

〈
∂ f

∂u
,
∂g

∂u
,
∂h

∂u

〉

Geometrically, ∂�
∂u (u0, v0) is a tangent vector to the surface parameterized by �

at the point �(u0, v0). Another such vector is given by ∂

∂v

(u0, v0).
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EXAMPLE 8-3
We find two vectors tangent to the graph of z = x2 + y3 at the point (2, 1, 5). This
surface is parameterized by

�(x, y) = (x, y, x2 + y3)

The desired point is at �(2, 1). To find two tangent vectors we simply take the
partial derivatives of � and evaluate at (2, 1).

∂�

∂x
= 〈1, 0, 2x〉

and so,

∂�

∂x
(2, 1) = 〈1, 0, 4〉

Similarly,

∂�

∂y
= 〈0, 1, 3y2〉

and so,

∂�

∂y
(2, 1) = 〈0, 1, 3〉

We conclude 〈1, 0, 4〉 and 〈0, 1, 3〉 are two vectors tangent to the graph of
z = x2 + y3 at the point (2, 1, 5).

EXAMPLE 8-4
If (θ, φ) represents your longitude and latitude, then your position on the Earth’s
surface is given by

�(θ, φ) = (R cos φ cos θ, R cos φ sin θ, R sin φ)

where R represents the radius of the Earth (assuming the Earth is a perfect sphere).
Note the similarity to spherical coordinates. We explore the geometric meaning of
the derivatives of this parameterization.

First, we differentiate with respect to φ

∂�

∂φ
= 〈−R sin φ cos θ, −R sin φ sin θ, R cos φ〉
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The magnitude of this vector is thus∣∣∣∣∂�

∂φ

∣∣∣∣ = √(R sin φ cos θ)2 + (R sin φ sin θ)2 + (R cos φ)2

=
√

R2 sin2 φ + R2 cos2 φ

= R

Notice that the result is constant, i.e., it does not depend on your longitude or
latitude. The significance of this is that if you change your latitude by roughly
1 radian then you change your position on the Earth by a constant amount. We will
see in a moment that this is very different than changing your longitude. Let’s try
differentiating with respect to θ .

∂�

∂θ
= 〈−R cos φ sin θ, R cos φ cos θ, 0〉

The magnitude of this vector is thus∣∣∣∣∂�

∂θ

∣∣∣∣ = √(R cos φ sin θ)2 + (R cos φ cos θ)2 = R cos φ

This says that if you change your longitude by 1 radian, then the actual change
in distance on the Earth’s surface is proportional to the cosine of your latitude.

Now let’s take the cross product of the vectors we have found:

∂�

∂θ
× ∂�

∂φ
=

∣∣∣∣∣∣∣
i j k

−R cos φ sin θ R cos φ cos θ 0

−R sin φ cos θ −R sin φ sin θ R cos φ

∣∣∣∣∣∣∣
= 〈R2 cos2 φ cos θ, R2 cos2 φ sin θ, R2 cos φ sin φ

〉
The magnitude of this vector is∣∣∣∣∂�

∂θ
× ∂�

∂φ

∣∣∣∣ = √(R2 cos2 φ cos θ)2 + (R2 cos2 φ sin θ)2 + (R2 cos φ sin φ)2

= R2 cos φ

This says that if you stake out a parcel of land that is 1 radian of longitude by
1 radian of latitude, then its area is proportional to the cosine of your latitude.
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Problem 79 Find a function s(t) which gives the speed of a particle at time t if its
coordinates at time t are given by (sin t2, cos t2).

Problem 80 A curve in R
3 is parameterized by c(t) = (t3, t4, t5). Find a unit vector

which is tangent to this curve at the point (1, 1, 1).

Problem 81 Let S be the paraboloid parameterized by

�(r, θ) = (r cos θ, r sin θ, r2)

0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π

1. Find two (nonparallel) vectors tangent to S at the point �
(
1, π

6

)
.

2. Find a vector which is perpendicular to S at the point �
(
1, π

6

)
. (Hint: Use

the cross product.)

Problem 82 Let �(t) = (cos t, sin t, t).

1. Find a parameterization 
 of the curve parameterized by � in which∣∣ d

dt

∣∣ = 1.

2. We may think of d

dt as itself a parameterized curve. For every value of

t we picture the vector d

dt as being based at the origin, and pointing to

some point in R
3. We may thus differentiate this parameterization to obtain

another vector d2

dt2 . Show that d


dt is perpendicular to d2

dt2 . (Hint: Compute

d2

dt2 and show that the dot product with d


dt is zero.)

3. Find κ so that d2

dt2 = κ N, where N is a unit vector. (The number κ is called

the curvature of the parameterized curve and N is called the normal.)

4. Compute B = d

dt × N and show |B| = 1. (The vector B is called the

binormal.)

5. Compute dB
dt .

6. Find τ such that dB
dt = −τ N. (The number τ is called the torsion.)

7. Show that

dN

dt
= −κ

d


dt
+ τB
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8.2 Arc Length
Suppose C is a curve, in R

2 or R
3, which is parameterized by the function �(t),

where a ≤ t ≤ b. We would like to find the length of C . We do this by sampling
C at various points, looking at the length of the line segment connecting adjacent
points, and adding these lengths. The result will be an approximation of the length
of C . This approximation will get better and better as we sample more and more
points along C . In the resulting limit, we obtain an integral which represents the
length.

The steps are very straightforward.

1. Choose n points in the interval [a, b]. We will call these points {ti }n
i=0.

2. Note that �(ti ) is a point of C . For each i we connect �(ti+1) to �(ti ) by a
line segment to approximate C .

3. The length of each line segment is precisely the length of the vector �(ti+1) −
�(ti ).

x

y

C

ψ(ti)

ψ(ti+1)

ψ(ti+1) ψ(ti)

4. We now add up the lengths of all the approximating line segments to get an
approximation for the length of C :

n∑
i=0

|�(ti+1) − �(ti )|
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A little algebraic trick will be useful in the next step:

n∑
i=0

|�(ti+1) − �(ti )| =
n∑

i=0

|�(ti+1) − �(ti )| �t

�t

=
n∑

i=0

∣∣∣∣�(ti+1) − �(ti )

�t

∣∣∣∣�t

5. Finally, we take the limit of this quantity as n → ∞. Note that we can also
view this as a limit as �t → 0. But, by definition,

lim
�t→0

�(ti+1) − �(ti )

�t
= d�

dt

Hence, the desired limit is

lim
n→∞

n∑
i=0

∣∣∣∣�(ti+1) − �(ti )

�t

∣∣∣∣�t =
b∫

a

∣∣∣∣d�

dt

∣∣∣∣ dt

EXAMPLE 8-5
Let C be the curve parameterized by

�(t) = (t cos t, t sin t), 0 ≤ t ≤ 1

Then the length of C is given by

1∫
0

∣∣∣∣d�

dt

∣∣∣∣ dt =
1∫

0

|〈cos t − t sin t, sin t + t cos t〉| dt

=
1∫

0

√
(cos t − t sin t)2 + (sin t + t cos t)2 dt

=
1∫

0

√
1 + t2 dt

= 1

2
t
√

1 + t2 + 1

2
ln
∣∣∣t +

√
1 + t2

∣∣∣∣∣∣∣
1

0

=
√

2

2
+ 1

2
ln(1 +

√
2)
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Problem 83 Calculate the length of the curve in R
3 parameterized by

�(t) = (cos t, sin t, t)

0 ≤ t ≤ 1

Problem 84 Show that the curve in R
3 parameterized by

�(t) =
(

cos t, sin t,
1

2
t2

)
0 ≤ t ≤ 1

has the same length as the curve in R
2 parameterized by

(t cos t, t sin t), 0 ≤ t ≤ 1

8.3 Line Integrals
Let C represent some parameterized curve in R

2. Let f (x, y) be a function on R
2.

In this section we make some sense of the integral of f (x, y) over C . First, let’s
take a step backward and recall the steps used to define the integral of a function
of one variable, f (x), over an interval [a, b].

1. Choose n points in [a, b], which we denote as {xi }.
2. Let �xi = xi+1 − xi .

3. For each i compute f (xi )�xi .

4. Sum over all i .

5. Define
b∫

a
f (x) dx to be the limit of the sum from the previous step as n → ∞.

The trick to defining the integral of f (x, y) over a parameterized curve C is to
follow the above steps as closely as possible. As we will see presently, the most
difficult step is probably the one that seems most innocent—the second.

1. Choose n points along the curve C , which we denote as {pi }. (Note that pi

is a label for a point of R
2, and as such will have two coordinates.)

2. Let δpi denote the length, along C , from pi to pi+1.

3. For each i compute f (pi )δpi .

4. Sum over all i .

5. Define
∫
C

f (x, y) ds to be the limit of the sum from the previous step as

n → ∞.
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The resulting integral is called the line integral of f (x, y). Unfortunately, in
practice the above steps are impossible to carry out. To make things easier we
employ a parameterization of C to translate the problem to an integral of a function
of one variable over an interval of R

1. To this end, let �(t), where a ≤ t ≤ b, be a
parameterization of C . We now repeat the above steps as closely as possible, this
time using �.

1. Choose n points in the interval [a, b]. We denote these points as {ti }. The set
{�(ti )} is then a collection of n points on C .

2. Let �ti = ti+1 − ti . Let δti denote the length, along C , from {�(ti )} to
{�(ti+1)}.

3. For each i compute f (�(ti ))δti . A little algebraic trickery yields

f (�(ti ))δti = f (�(ti ))δti
�ti
�ti

= f (�(ti ))
δti
�ti

�ti

4. Sum over all i .

5. The integral
∫
C

f (x, y) ds is defined to be the limit of the sum from the

previous step as n → ∞. But as n → ∞ it also follows that �ti → 0. Our
integrand contains the term δti

�ti
. As �ti → ∞ this converges to

∣∣ ∂�
∂t

∣∣. Hence,
our integral has become

∫
C

f (x, y) ds =
b∫

a

f (�(t))

∣∣∣∣∂�

∂t

∣∣∣∣ dt

Note that if f (x, y) = 1 then the line integral of f over C gives precisely the
length of C . This gives us one way to think about line integrals. Imagine a vast
plane. At every point of the plane there is a number which represents how fast a
point moving through that point will travel. If this number is always one, then a
point moving along in the plane will always travel with unit speed. Its total travel
time will then be exactly the same as the total distance it travels. But if the number
at each point isn’t always one then its travel time may be different than the total
distance traveled. The line integral gives the total travel time.

EXAMPLE 8-6
We integrate the function f (x, y) = y over the top half of the circle of radius 1.
This curve is parameterized by

�(t) = (cos t, sin t), 0 ≤ t ≤ π
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We now compute

∫
C

f (x, y) ds =
π∫

0

f (cos t, sin t) |〈− sin t, cos t〉| dt

=
π∫

0

sin t |〈− sin t, cos t〉| dt

=
π∫

0

sin t
√

sin2 t + cos2 t dt

=
π∫

0

sin t dt

= − cos t |π0
= 2

Problem 85 Let f (x, y) = y3. Compute the line integral of f (x, y) over the curve
C parameterized by

�(t) =
(

1

3
t3, t

)
, 0 ≤ t ≤ 1

8.4 Surface Area
One of the most interesting applications of multiple integrals is the computation of
surface area. Let R be a rectangle in the xy-plane. The problem is to find the area
of the portion of the surface parameterized by �(u, v). Let R denote the domain
of �. To find the area we follow similar steps that we used to derive the formula
for the volume under f (x, y).

1. We begin by choosing a grid of points {(ui , v j )} in R.

2. For each grid point locate the point �(ui , v j ) in R
3. Connecting adjacent

points produces a bunch of parallelograms that piece together to form an
approximation of the parameterized surface.
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x

y

z

3. We now compute the area of each parallelogram.
Observe that each parallelogram is spanned by the vectors

Vu = �(ui+1, v j ) − �(ui , v j )

and

Vv = �(ui , v j+1) − �(ui , v j )

The desired area is thus the magnitude of the cross product of these vectors:

Area = |Vu × Vv|

We now do some algebraic tricks:

|Vu × Vv| = |Vu × Vv|�u�v

�u�v

=
∣∣∣∣ Vu

�u
× Vv

�v

∣∣∣∣ �u�v

4. The surface area is the limit, as �u and �v tend toward zero, of the sum of
this quantity over all i and j :

S.A. = lim
�u,�v→0

∑
i, j

∣∣∣∣ Vu

�u
× Vv

�v

∣∣∣∣ �u�v
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But notice that as �u tends toward zero the quantity Vu
�u = �(ui+1,v j )−�(ui ,v j )

�u

converges on ∂�
∂u . Similarly for �v → 0. In the end our summation becomes

the integral:

S.A. =
∫ ∫

R

∣∣∣∣∂�

∂u
× ∂�

∂v

∣∣∣∣ du dv

EXAMPLE 8-7
We will use the surface area formula derived above to show that the area of a sphere
of radius R is 4π R2. The most natural parameterization of the sphere comes, of
course, from spherical coordinates:

�(θ, φ) = (R sin φ cos θ, R sin φ sin θ, R cos φ)

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

The partial derivatives of this parameterization are

∂�

∂θ
= 〈−R sin φ sin θ, R sin φ cos θ, 0〉

∂�

∂φ
= 〈R cos φ cos θ, R cos φ sin θ, −R sin φ〉

The cross product of these two vectors is thus

∂�

∂θ
× ∂�

∂φ
=

∣∣∣∣∣∣∣
i j k

−R sin φ sin θ R sin φ cos θ 0

R cos φ cos θ R cos φ sin θ −R sin φ

∣∣∣∣∣∣∣
= −R2 sin2 φ cos θ i − R2 sin2 φ sin θ j

−(R2 sin φ cos φ sin2 θ + R2 sin φ cos φ cos2 θ)k

= −R2 sin2 φ cos θ i − R2 sin2 φ sin θ j − R2 sin φ cos φk
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The magnitude of this vector is

∣∣∣∣∂�

∂θ
× ∂�

∂φ

∣∣∣∣
=
√

(−R2 sin2 φ cos θ)2 + (−R2 sin2 φ sin θ)2 + (−R2 sin φ cos φ)2

=
√

R4 sin4 φ cos2 θ + R4 sin4 φ sin2 θ + R4 sin2 φ cos2 φ

= R2
√

sin4 φ + sin2 φ cos2 φ

= R2 sin φ

√
sin2 φ + cos2 φ

= R2 sin φ

The desired surface area is thus computed as follows:

S.A. =
π∫

0

2π∫
0

∣∣∣∣∂�

∂θ
× ∂�

∂φ

∣∣∣∣ dθdφ

=
π∫

0

2π∫
0

R2 sin φ dθdφ

= 2πR2

π∫
0

sin φ dφ

= 2πR2 (− cos φ)|π0
= 2πR2(1 + 1)

= 4πR2

There are lots of special cases where one may want to compute surface area. In
each of these cases we can derive an appropriate formula. The first case we consider
is the surface area of the portion of the graph of z = f (x, y) that lies above some
domain R. Such a graph can be parameterized as follows:

�(x, y) = (x, y, f (x, y))
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The partial derivatives of this parameterization are

∂�

∂x
=
〈
1, 0,

∂ f

∂x

〉

∂�

∂y
=
〈
0, 1,

∂ f

∂y

〉

The cross product of these vectors is

∂�

∂x
× ∂�

∂y
=

∣∣∣∣∣∣∣
i j k

1 0 ∂ f
∂x

0 1 ∂ f
∂y

∣∣∣∣∣∣∣
= −∂ f

∂x
i − ∂ f

∂y
j + k

The magnitude of this vector is

∣∣∣∣∂�

∂x
× ∂�

∂y

∣∣∣∣ =
√(

∂ f

∂x

)2

+
(

∂ f

∂y

)2

+ 1

The desired formula for the surface area of a graph is thus

S.A. =
∫ ∫

R

∣∣∣∣∂�

∂x
× ∂�

∂y

∣∣∣∣ dx dy

=
∫ ∫

R

√(
∂ f

∂x

)2

+
(

∂ f

∂y

)2

+ 1 dx dy

EXAMPLE 8-8
We will use the surface area formula derived above for the graph of a function to
once again show that the area of a sphere of radius r is 4πr2. An equation for the top
half of the sphere is z =

√
r2 − x2 − y2. We will compute the area of this surface

and double it to get the total area of the sphere.
The tricky part of this computation is the limits of integration. Notice that the

domain of integration is the region inside a circle of radius r in the xy-plane. For a
fixed x the value of y can range from −√

r2 − x2 to
√

r2 − x2. Hence, we may set
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up a double integral to compute surface area as follows:

r∫
−r

√
r2−x2∫

−√
r2−x2

√(
∂ f

∂x

)2

+
(

∂ f

∂y

)2

+ 1 dy dx

=
r∫

−r

√
r2−x2∫

−√
r2−x2

√√√√( −x√
r2 − x2 − y2

)2

+
(

−y√
r2 − x2 − y2

)2

+ 1 dy dx

=
r∫

−r

√
r2−x2∫

−√
r2−x2

√
x2 + y2 + r2 − x2 − y2

r2 − x2 − y2
dy dx

=
r∫

−r

√
r2−x2∫

−√
r2−x2

r√
r2 − x2 − y2

dy dx

=
r∫

−r

r sin−1

(
y√

r2 − x2

)∣∣∣∣
√

r2−x2

−√
r2−x2

dx

= r

r∫
−r

sin−1(1) − sin−1(−1) dx

= r

r∫
−r

π dx

= πr x |r−r

= 2πr2

As this is the area of just the top half of the sphere we double it to obtain 4πr2,
the correct formula.

Another special case of a surface area formula is for a surface of revolution. This
formula is typically covered in a second semester calculus class. We will show here
how this formula can be derived from the one above.

Suppose we begin with the graph of a function z = f (x), where 0 ≤ a ≤ x ≤ b,
and get a surface by revolving it around the z-axis. The resulting surface is best
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parameterized with cylindrical coordinates, since it has the equation z = f (r).

�(r, θ) = (r cos θ, r sin θ, f (r))

a ≤ r ≤ b, 0 ≤ θ ≤ 2π

The partial derivatives are

∂�

∂r
=
〈
cos θ, sin θ,

df

dr

〉

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

The cross product of these vectors is

∂�

∂r
× ∂�

∂θ
=

∣∣∣∣∣∣∣∣
i j k

cos θ sin θ
df
dr

−r sin θ r cos θ 0

∣∣∣∣∣∣∣∣
= −r cos θ

df

dr
i − r sin θ

df

dr
j + (r cos2 θ + r sin2 θ)k

= −r cos θ
df

dr
i − r sin θ

df

dr
j + rk

The magnitude of this vector is

∣∣∣∣∂�

∂r
× ∂�

∂θ

∣∣∣∣ =
√(

−r cos θ
df

dr

)2

+
(

−r sin θ
df

dr

)2

+ r2

=
√

r2 cos2 θ

(
df

dr

)2

+ r2 sin2 θ

(
df

dr

)2

+ r2

=
√

r2

(
df

dr

)2

+ r2

= r

√(
df

dr

)2

+ 1
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The desired surface area is now computed as an integral:

S.A. =
b∫

a

2π∫
0

∣∣∣∣∂�

∂r
× ∂�

∂θ

∣∣∣∣ dθ dr

=
b∫

a

2π∫
0

r

√(
df

dr

)2

+ 1 dθ dr

= 2π

b∫
a

r

√(
df

dr

)2

+ 1 dr

EXAMPLE 8-9
We compute the surface area of a sphere one final time. This time we think of the
sphere as a surface of revolution and use the formula just derived. As in the previous
example we will compute the area of the top half and double it.

To think of the top half of the sphere as a surface of revolution we begin with a
function which gives part of a circle:

f (x) =
√

R2 − x2, 0 ≤ x ≤ R

Applying the above formula for the surface area of a surface of revolution gives
the following integral:

S.A. = 2π

R∫
0

x

√( −x√
R2 − x2

)2

+ 1 dx

= 2π

R∫
0

x

√
x2

R2 − x2
+ 1 dx

= 2π

R∫
0

x

√
R2

R2 − x2
dx
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= 2π

R∫
0

Rx√
R2 − x2

dx

= πR

R∫
0

2x√
R2 − x2

dx

= −πR

0∫
R2

u− 1
2 du (where u = R2 − x2)

= −2πRu
1
2

∣∣∣0
R2

= 2πR2

As this is just the top half of the sphere we must double it to get the correct
formula, 4πR2.

Problem 86 Find the area of the portion of the plane z = 2x + 3y that lies above
the square with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0).

Problem 87 Find the area of the portion of the graph of z =
√

x2 + y2 that lies
above the domain

1. R = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
2. D = {(x, y)|x2 + y2 ≤ 1}

Problem 88 Derive a formula for the graph of the spherical equation ρ =
f (φ).

Problem 89 Find the area of the surface pictured below, parameterized by

�(r, θ) = (r cos θ, r sin θ, θ)

−1 ≤ r ≤ 1, 0 ≤ θ ≤ π
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8.5 Surface Integrals
Just as we could integrate a function over a parameterized curve, we can also
integrate functions over parameterized surfaces. The resulting integrals are called
surface integrals. Here’s a way to think about surface integrals. Imagine that there
is a fog permeating all of R

3. As the fog may not be uniform there is some function
f (x, y, z) which gives the density of the water droplets at each point. Now imagine
we have some surface in R

3 cutting through the fog. We wish to find out the total
amount of water droplets in the surface. If f (x, y, z) = 1, then this will just be the
area of the surface. If not, then the answer will be the surface integral of f .

Recall the relationship between the arc length of a curve C parameterized by a
function �(t) and the line integral of a function f (x, y) over C :

Arc Length Line Integral
b∫

a

∣∣ ∂�
∂t

∣∣ dt
b∫

a
f (�(t))

∣∣ ∂�
∂t

∣∣ dt

The relationship between the surface area of a surface S parameterized by
a function �(u, v) and the surface integral of a function f (x, y, z) over S is
the same:

Surface Area Surface Integral∫ ∫
R

∣∣ ∂�
∂u × ∂�

∂v

∣∣ du dv
∫ ∫
R

f (�(u, v))
∣∣ ∂�

∂u × ∂�
∂v

∣∣ du dv

The surface integral of f (x, y, z) over the surface S is denoted as∫
S

f (x, y, z) dS



114 Advanced Calculus Demystified

EXAMPLE 8-10
Let f (x, y, z) = z

x2+y2 . We calculate the surface integral of f over the cylinder of
radius 1, centered on the z-axis, and lying between the plane z = 0 and z = 1.

First, the surface is parameterized using cylindrical coordinates as follows:

�(θ, z) = (cos θ, sin θ, z)

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

To compute the surface integral we will next need the partial derivatives of this
parameterization:

∂�

∂θ
= 〈− sin θ, cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉

The cross product of these vectors is

∂�

∂θ
× ∂�

∂z
=

∣∣∣∣∣∣∣
i j k

− sin θ cos θ 0

0 0 1

∣∣∣∣∣∣∣ = 〈cos θ, sin θ, 0〉

Finally, the magnitude of the cross product is then∣∣∣∣∂�

∂θ
× ∂�

∂z

∣∣∣∣ = √cos2 θ + sin2 θ = 1

We are now ready to compute the surface integral:

∫
S

f (x, y, z) dS =
1∫

0

2π∫
0

f (�(θ, z))

∣∣∣∣∂�

∂θ
× ∂�

∂z

∣∣∣∣ dθ dz

=
1∫

0

2π∫
0

z

cos2 θ + sin2 θ
· 1 dθ dz

=
1∫

0

2π∫
0

zdθ dz

= π
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Problem 90 Calculate the surface integral of the function f (x, y, z) = x + y + z
over the portion of the plane z = x + y that lies above the square in the xy-plane
where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

Problem 91 Calculate the surface integral of the function f (x, y, z) = z over the
top half of the sphere of radius 1.

8.6 Volume
In this section, we revisit the calculation of volumes of regions in R

3. If the region
is nice enough, we can just compute a triple integral of the function f (x, y, z) = 1
over the region. However, if the region is complicated we may want to employ a
parameterization to help calculate its volume. The steps to define the volume by
way of integrating a parameterization are similar to those used to define arc length
and surface area. To this end, we suppose �(u, v, w) is a parameterization of a
volume V in R

3, with domain Q. We now derive a formula for the volume of V by
executing the following steps:

1. Choose a lattice of points {(ui , v j , wk)} in Q. This defines a lattice
{�(ui , v j , wk)} in V .

2. Connecting adjacent lattice points breaks up V into a bunch of paral-
lelepipeds.

3. We compute the volume of each parallelepiped. The edges are given by the
vectors

Vu = �(ui+1, v j , wk) − �(ui , v j , wk)

Vv = �(ui , v j+1, wk) − �(ui , v j , wk)

Vw = �(ui , v j , wk+1) − �(ui , v j , wk)

The desired volume is then given by the determinant of the 3 × 3 matrix
whose rows are Vu, Vv, and Vw. We denote this as

|Vu VvVw|

The usual algebraic trickery transforms this as follows:

|Vu VvVw| = |Vu VvVw| �u�v�w

�u�v�w

=
∣∣∣∣ Vu

�u

Vv

�v

Vw

�w

∣∣∣∣�u�v�w
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4. The desired volume is now the limit, as �u, �v, and �w tend toward 0, of
the sum of this quantity over all i, j, and k:

Volume = lim
�u,�v,�w→0

∑
i, j,k

∣∣∣∣ Vu

�u

Vv

�v

Vw

�w

∣∣∣∣�u�v�w

But, as in the computation of surface area,

lim
�u→0

Vu

�u
= lim

�u→0

�(ui+1, v j , wk) − �(ui , v j , wk)

�u
= ∂�

∂u

Hence, after taking the limit the above summation becomes

Volume =
∫ ∫ ∫

Q

∣∣∣∣∂�

∂u

∂�

∂v

∂�

∂w

∣∣∣∣ du dv dw

EXAMPLE 8-11
We show that the volume bounded by a sphere of radius R is 4

3πR3. One way
to do this is to note that the top half of the sphere can be realized as the graph
of the equation z =

√
R2 − x2 − y2. The desired volume can thus be obtained by

doubling a double integral:

Volume = 2

1∫
−1

√
R2−x2∫

−
√

R2−y2

√
R2 − x2 − y2 dx dy

However, this integral is difficult to evaluate.
Instead, we employ a parameterization. The sphere is best parameterized in the

usual way by using spherical coordinates:

�(ρ, θ, φ) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)

0 ≤ ρ ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

We now compute all three partials of the parameterization:

∂�

∂ρ
= 〈sin φ cos θ, sin φ sin θ, cos φ〉

∂�

∂θ
= 〈−ρ sin φ sin θ, ρ sin φ cos θ, 0〉

∂�

∂φ
= 〈ρ cos φ cos θ, ρ cos φ sin θ, −ρ sin φ〉
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The integrand that we will need is the determinant of the 3 × 3 matrix whose
rows are the above vectors:

∣∣∣∣∂�

∂ρ

∂�

∂θ

∂�

∂φ

∣∣∣∣ =
∣∣∣∣∣∣∣

sin φ cos θ sin φ sin θ cos φ

−ρ sin φ sin θ ρ sin φ cos θ 0

ρ cos φ cos θ ρ cos φ sin θ −ρ sin φ

∣∣∣∣∣∣∣
= −ρ2 sin φ (Check this!)

We now get the desired volume by integrating:

Volume =
π∫

0

2π∫
0

R∫
0

∣∣∣∣∂�

∂ρ

∂�

∂θ

∂�

∂φ

∣∣∣∣ dρ dθ dφ

=
π∫

0

2π∫
0

R∫
0

−ρ2 sin φ dρ dθ dφ

=
π∫

0

2π∫
0

−ρ3 sin φ

3

∣∣∣∣
R

ρ=0

dθ dφ

=
π∫

0

2π∫
0

−R3 sin φ

3
dθ dφ

= 2πR3

3

π∫
0

− sin φ dφ

= 2πR3

3
cos φ|π0

= −4π R3

3

The negative sign is an unfortunate artifact of the fact that the determinant of a
matrix will change sign if you swap two rows or two columns. We will see in later
sections that this can be used to our advantage. For now, though, just note that a
volume must always be positive. Hence, we take the absolute value of the above
answer to recover the correct formula, 4

3π R3.
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Although this method may seem very complicated at first, observe that it has a
significant virtue: each step in the integration was very easy. This is the advantage of
using parameterizations to compute volumes. Any volume problem can be solved
by a double or triple integral. But employing a parameterization may transform
difficult integrals into easy ones.

Problem 92 Show that the volume bounded by a cylinder of radius R and height
h is π R2h by integrating with a parameterization from cylindrical coordinates.

Problem 93 Calculate the volume under the cone z = 1 − x2 − y2, and above the
xy-plane by employing the parameterization

�(r, θ, z) = ((1 − z)r cos θ, (1 − z)r sin θ, z)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

8.7 Change of Variables
In Calculus I and II you learn how to integrate a function of one variable over a
domain in R

1. In Chapter 4, we learned how to integrate a function of two variables
over a domain in R

2, and a function of three variables over a domain in R
3:∫ ∫ ∫

V

f (x, y, z) dx dy dz

If the domain V has a convenient parameterization then it may be easier to use
this than to directly perform the integral. This is very similar to the relationship
between line integrals and arc length, or surface integrals and surface area. As usual,
we let � denote a parameterization of V , with domain Q. If V is two dimensional
we have ∫ ∫

V

f (x, y) dx dy =
∫ ∫

Q

f (�(u, v))

∣∣∣∣∂�

∂u

∂�

∂v

∣∣∣∣ du dv

And if V is three dimensional∫ ∫ ∫
V

f (x, y, z) dx dy dz =
∫ ∫ ∫

Q

f (�(u, v, w))

∣∣∣∣∂�

∂u

∂�

∂v

∂�

∂w

∣∣∣∣ du dv dw
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EXAMPLE 8-12
Recall the functions

cosh t = et + e−t

2
, sinh t = et − e−t

2

These functions conveniently satisfy

cosh2 t − sinh2 t = 1
d
dt cosh t = sinh t, d

dt cosh t = sinh t

The first of these identities means that (cosh t, sinh t) are the coordinates of a
point on the hyperbola x2 − y2 = 1. Suppose, we want to find the area of the region
pictured below.

(coshT, sinhT )

(cosh(− T ), sinh(− T ))

Area=?

x2 − y2 = 1

This region is parameterized by

�(r, t) = (r cosh t, r sinh t)

0 ≤ r ≤ 1, −T ≤ t ≤ T

The area of a region R of R
2 is computed by integrating the function f (x, y) = 1:

Area =
∫ ∫

R

1 dx dy
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However, to calculate this integral directly would entail finding complicated
limits of integration. Instead we use the parameterization �. To do this, we will
need the partial derivatives of �:

∂�

∂r
= 〈cosh t, sinh t〉

∂�

∂t
= 〈r sinh t, r cosh t〉

The determinant of the matrix of partials is thus

∣∣∣∣∂�

∂r

∂�

∂t

∣∣∣∣ =
∣∣∣∣ cosh t sinh t
r sinh t r cosh t

∣∣∣∣
= r cosh2 t − r sinh2 t

= r

We now compute the area:

∫ ∫
R

1 dx dy =
T∫

−T

1∫
0

1

∣∣∣∣∂�

∂r

∂�

∂t

∣∣∣∣ dr dt

=
T∫

−T

1∫
0

r dr dt

=
T∫

−T

r2

2

∣∣∣∣
1

0

dt

= 1

2

T∫
−T

dt

= T
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EXAMPLE 8-13
We evaluate the integral

1∫
0

1∫
0

√
1−y2∫

0

x2 + y2 + z dx dy dz

Doing this directly is difficult, so we employ a parameterization. The domain
of integration is the intersection of a cylinder of height 1 and radius 1, centered
on the z-axis, with the positive octant. This can be parameterized with cylindrical
coordinates by

�(r, θ, z) = (r cos θ, r sin θ, z)

0 ≤ r ≤ 1, 0 ≤ θ ≤ π
2 , 0 ≤ z ≤ 1

The derivatives of this parameterization are

∂�

∂r
= 〈cos θ, sin θ, 0〉

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉

To do the integral we will need the determinant of the 3 × 3 matrix whose rows
are these vectors: ∣∣∣∣∣∣∣

cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r

We denote the function x2 + y2 + z in the original integral by f (x, y, z). Then

1∫
0

1∫
0

√
1−y2∫

0

x2 + y2 + z dx dy dz =
1∫

0

π
2∫

0

1∫
0

f (�(r, θ, z))

∣∣∣∣∂�

∂r

∂�

∂θ

∂�

∂z

∣∣∣∣ dr dθ dz

=
1∫

0

π
2∫

0

1∫
0

((r cos θ)2 + (r sin θ)2 + z)r dr dθ z
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=
1∫

0

π
2∫

0

1∫
0

r3 + r z dr dθ dz

=
1∫

0

π
2∫

0

1

4
r4 + 1

2
r2z

∣∣∣∣
1

0

dθ dz

=
1∫

0

π
2∫

0

1

4
+ 1

2
z dθ dz

=
1∫

0

π

8
+ π

4
z dz

= π

8
z + π

8
z2
∣∣∣1
0

= π

4

Problem 94 Calculate the integral of the function f (x, y) = 2x − y over the
elliptical region in R

2 parameterized by

�(r, θ) = (2r cos θ, r sin θ)

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

Problem 95 Calculate the integral of the function f (x, y, z) = 1
1+z2 over the region

V of R
3 parameterized by

�(r, θ, ω) = (r cosh ω cos θ, r cosh ω sin θ, sinh ω)

1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, −2 ≤ ω ≤ 2

(The region V is between two hyperboloids, as depicted below.)
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Problem 96 Let V be the region inside the cylinder of radius 1, centered around the
z-axis, and between the planes z = 0 and z = 2. Integrate the function f (x, y, z) =
z over V .

Problem 97 Let R be the region in the first quadrant of R
2, below the line y = x,

and bounded by x2 + y2 = 4. Integrate the function

f (x, y) = 1 + y2

x2

over R.

Quiz
Problem 98

1. a. Find a parameterization for the set of points in R
2 that satisfies the equa-

tion x = sin y.

b. Find a unit tangent vector to this curve at the point (0, 0).

2. Let Q be the region under the graph of f (x, y) = x2 + y2 and above the
square with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0).

a. Find a parameterization for Q of the form �(x, y, t), where
0 ≤ x, y, t ≤ 1.

b. Use the parameterization � to integrate over Q the function

f (x, y, z) = z

x2 + y2

3. Let R be the region of R
2 parameterized by

φ(r, t) = (r cosh t, r sinh t), 0 ≤ r ≤ 1, −1 ≤ t ≤ 1

Integrate the function f (x, y) = x2 − y2 over R.
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CHAPTER 9

Vector Fields
and Derivatives

9.1 Definition
A vector field is simply a choice of vector for each point. So, for example, a vector
field on R

2 would have some vector at the point (1, 2), some other vector at the
point (−1, 1), etc. We often draw vector fields by picking a few points and drawing
the vector based at those points.

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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More formally, a vector field is a function from R
2 to R

2. What goes in to this
function are the coordinates of the point where you are. What comes out are the
components of the vector at that point.

EXAMPLE 9-1
Consider the vector field 〈xy, x + y〉. At the point (1, 1) this vector field con-
tains the vector 〈1, 2〉. At the point (2, 4) it contains the vector 〈8, 6〉. If we use a
computer to draw it we would see something like

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

1

2

3

x

y
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EXAMPLE 9-2
The vector field 〈sin x, sin y〉 is depicted below.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

1

2

3

Problem 99 Sketch the following vector fields.

1. 〈x, y〉
2. 〈x, −y〉
3. 〈y, −x〉

9.2 Gradients, Revisited
We have already seen many vector fields, although we did not use this language.
Whenever we take a function f and compute its gradient ∇ f at a point we get
a vector. The set of all such vectors is then a vector field, which we now call
“grad f .”

EXAMPLE 9-3
Suppose f (x, y) = xy2. Then the gradient of f (x, y) at the point (x, y) is
∇ f (x, y) = 〈y2, 2xy〉. If we draw this vector at various values of x and y, we get
the picture depicted below.
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−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

1

2

3

EXAMPLE 9-4
Let f (x, y, z) = xy2z3. Then ∇ f = 〈y2z3, 2xyz3, 3xy2z2

〉
.

Problem 100 For each of the following functions, f , compute ∇ f .

1. f (x, y) = x + y

2. f (x, y, z) = x + yz

3. f (x, y, z) = xy + xz + yz

9.3 Divergence
In the previous section, we saw that the gradient operator gives us a way to take a
function f (x, y) and get a vector field. In this section, we explore a way to take a
vector field and get a function. Eventually, we will see that the value of this function
at a point is a measure of how much the vector field is “spreading out” there.

Suppose 〈 f (x, y, z), g(x, y, z), h(x, y, z)〉 is a vector field V on R
3. Then we

define the divergence of V, “Div V,” to be the function

∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z

Note that the first term is associated with the first component of V, the second term
with the second component, and the third term with the third component. This,
and the fact that the terms are being added, should remind you of the dot product.
This gives us a purely notational way to remember how to calculate the divergence
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of a vector field. We let ∇ denote the “vector”
〈

∂
∂x , ∂

∂y ,
∂
∂z

〉
. This, of course, is only

a vector in a notational sense. But if we suspend our disbelief for a moment and
allow such absurdities, we can write the formula for the divergence of a vector field
in a very compact way:

Div V = ∇ · V

EXAMPLE 9-5
Let V be the vector field

〈
x2 y, x + yz, xy2z3

〉
. Then the divergence of V is calculated

as follows:

Div V = ∇ · V

=
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
· 〈x2 y, x + yz, xy2z3

〉

= ∂

∂x
(x2 y) + ∂

∂y
(x + yz) + ∂

∂z
(xy2z3)

= 2xy + z + 3xy2z2

Problem 101 Compute the divergence of the following vector fields.

1. 〈y, z, x〉
2. 〈x + y, x − y, z〉
3.
〈
x2 + y2, x2 − y2, z2

〉
Problem 102 Let f (x, y, z) be a function. What is ∇ · ∇ f ?

Problem 103 Show that

∇ · (F × G) = G · (∇ × F) − F · (∇ × G)

9.4 Curl
There are many useful ways to apply partial derivatives to vector fields. We have
already seen that gradients give us a way to take a function and get a vector field.
Then we saw that divergence is a way to take a vector field and get a function. Here,
we define a way to use partial derivatives to transform one vector field into another.

First, recall our notational absurdity, ∇ =
〈

∂
∂x , ∂

∂y ,
∂
∂z

〉
. In the previous sec-

tion, we defined a new operation by using ∇ in a dot product. Here, we define
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an operation called curl by using ∇ in a cross product. As before, let V =
〈 f (x, y, z), g(x, y, z), h(x, y, z)〉. Then we define

curl V = ∇ × V

=

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣∣
=
(

∂h

∂y
− ∂g

∂z

)
i −
(

∂h

∂x
− ∂ f

∂z

)
j +
(

∂g

∂x
− ∂ f

∂y

)
k

=
〈
∂h

∂y
− ∂g

∂z
,
∂ f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂ f

∂y

〉

EXAMPLE 9-6
Let V be the vector field

〈
x2 y, x + yz, xy2z3

〉
. Then the curl of V is calculated as

follows:

curl V = ∇ × V

=

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2 y x + yz xy2z3

∣∣∣∣∣∣∣
= 〈2xyz3 − y, −y2z3, 1 − x2

〉
Later we will see that the curl of a vector field measures how much it “twists” at

each point.

Problem 104 Find the curl of each of the following vector fields.

1. 〈x + y, x − z, y + z〉
2. 〈yz, −xz, xy〉

Problem 105 Let f (x, y, z) be a function and V a vector field on R
3. Compute

1. ∇ × (∇ f )

2. ∇ · (∇ × V)
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Quiz
Problem 106

1. Find the curl of the following vector field:

〈 −y

x2 + y2
,

x

x2 + y2
, 0

〉

2. Find the divergence of the following vector field:

〈
x2 + y2, y2 − x2, 0

〉
3. Find the gradient of

f (x, y, z) = x2 sin(y − z)

4. Find two vector fields whose curls are
〈
0, 0,

y
x

〉
.
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CHAPTER 10

Integrating
Vector Fields

In the previous chapter we introduced the concept of a vector field, and looked at
various concepts of differentiation in relation to these objects. In this chapter, we
look at ways to integrate a vector field. From calculus you should suspect that when
we combine integration and differentiation something amazing will happen, akin
to the Fundamental Theorem of Calculus. This is the topic of the next chapter.

10.1 Line Integrals
We will always integrate a vector field over a domain that can be parameterized by
a line, surface, or volume. In this section, we look at the first of these situations,
integrals over parameterized curves. As in Section 8.3, these will be called line
integrals. However, the definition of the integral of a vector field over a parameter-
ized curve is a bit different than the definition of a function over the same curve, so
there is potential for confusion here.

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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Before giving the definition, it may help to give a physical motivation for line
integrals. Drop a leaf into a flowing stream and follow it. Eventually, you may see it
encounter a stick caught on some rocks. If the stick is perpendicular to the flow of
water, the leaf will get stuck. If the stick is parallel to the flow, then the leaf rushes
by as the force of the flowing water pushes it along. But if the stick is at some angle
to the flow the leaf may hit it, and then slowly work its way past.

One can explain this by looking at the force the water can exert on the leaf. The
leaf can only travel in a direction parallel to the stick, which we can represent as a
vector, L . The water flowing under the stick exerts some force on the leaf, which can
also be represented as a vector, W . If these vectors are perpendicular then the leaf
does not move, so the net force F on the leaf must be zero. On the other hand, the leaf
moves the fastest when L and W are parallel, so F must be greatest in this situation.
It should be no surprise, then, that F is proportional to the dot product, L · W .

L

W

Before proceeding further, we must dispense with an important technicality. In
the above figure, there were two choices for the vector L . One of these is depicted
in the figure, and the other points in the exact opposite direction (but still along the
stick). If the other choice was made, then the value of L · W would have exactly the
opposite sign. Which is the correct choice? There is no right answer to this. We just



CHAPTER 10 Integrating Vector Fields 135

have to declare, before we do any problem, which is correct. Such a declaration is
called an orientation. We will say more about this idea shortly. For now, just note
that if the wrong choice was made then we can correct things by changing the sign
of our final answer.

Now we suppose that somehow the leaf is confined to some parameterized curve,
C , as the water rushes past. Sometimes the water may be perpendicular to the curve,
and sometimes it may be parallel. The problem is to evaluate the total force that
the water exerts on the leaf as it travels along the curve. (If the leaf always moves
with unit speed then this is called the work done by the water.)

Let �(t) be a parameterization of C . Let W be a vector field that gives the
direction and speed of the water at each point of the stream. The direction that the
leaf is moving at the point �(t) is the vector d�

dt . Let W(�(t)) be the vector of
the vector field W that is based at the point �(t). Then the quantity we want to
evaluate is ∫

W(�(t)) · d�

dt
dt

This integral is called the line integral of W over C , and is often denoted as∫
C

W · ds

Our answer, unfortunately, is still incomplete. Recall that at some point we must
make a choice, called an orientation. This amounts to deciding if the vector d�

dt points
the “right way” or the “wrong way.” An orientation can be denoted pictorially just
by an arrow along C , showing the correct choice. But this does not mean that to do
the integral, we must choose a parameterization whose derivative points the right
way. If it does not then we just need to change the sign of our final answer.

EXAMPLE 10-1
Let W = 〈xy, x + y〉. Let C be the oriented curve depicted below.
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The orientation is given by the direction of the arrow in the figure. The curve is
parameterized by

�(t) = (t2, 3t), 0 ≤ t ≤ 2

At the point �(1) one can easily check that d�
dt = 〈2, 3〉. This vector points in

the direction opposite to the orientation. This just means that after we integrate we
will have to flip the sign of our final answer.

We now calculate the line integral of W along C using �. First, note that

W(�(t)) = 〈(t2)(3t), t2 + 3t
〉 = 〈3t3, t2 + 3t

〉
and

d�

dt
= 〈2t, 3〉

∫
W(�(t)) · d�

dt
dt =

2∫
0

〈
3t3, t2 + 3t

〉 · 〈2t, 3〉 dt

=
2∫

0

6t4 + 3t2 + 9t dt

= 6

5
t5 + t3 + 9

2
t2

∣∣∣∣
2

0

= 64
2

5

As the orientation disagrees with � we must now flip the sign, obtaining our
final answer, −64 2

5 .

An easy way to give an orientation on a curve parameterized by a function �(t)
is to simply declare that d�

dt points in the right direction. In this case, we may go
ahead and use � to evaluate the integral of W without any further considerations.
In this case, we say the orientation of C is the one induced by �.
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EXAMPLE 10-2
Let C be the curve parameterized by

�(t) = (cos t, t2), 0 ≤ t, ≤ π

4

with the orientation induced by �.
Let W = 〈 1x , 0

〉
. We integrate W over C .

First, note that

W(�(t)) =
〈

1

cos t
, 0

〉

Next, observe

d�

dt
= 〈− sin t, 2t〉

We now integrate

∫
C

W · ds =
π
4∫

0

〈
1

cos t
, 0

〉
· 〈− sin t, 2t〉 dt

=
π
4∫

0

− tan t dt

= − ln | sec t ||
π
4
0

= − ln
√

2

As the orientation of C is chosen to agree with � we do not need to worry about
changing the sign of our answer.

One may wonder about the connection between line integrals of vector fields
as defined here and line integrals of functions defined previously. Let f denote a
function on R

n and C a curve in R
n parameterized by �(t). Let W be a vector field

chosen so that at the point �(t) of C the vector W(�(t)) is tangent to C (i.e., it
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points in the same direction as d�
dt ) and has length f (�(t)). Then we have

W(�(t)) = f (�(t))
d�
dt∣∣ d�
dt

∣∣
The definition of the line integral of W over C then gives

∫
C

W · ds =
∫

W(�(t)) · d�

dt
dt

=
∫

f (�(t))
d�
dt∣∣ d�
dt

∣∣ · d�

dt
dt

=
∫

f (�(t))∣∣ d�
dt

∣∣ d�

dt
· d�

dt
dt

=
∫

f (�(t))∣∣ d�
dt

∣∣
∣∣∣∣d�

dt

∣∣∣∣
2

dt

=
∫

f (�(t))

∣∣∣∣d�

dt

∣∣∣∣ dt

This last equality is precisely the definition of the line integral of f over C .

Problem 107 Calculate the line integral of 〈−y, x〉 over the circle of radius 1,
oriented counterclockwise.

Problem 108 Let W = 〈xy, xz2, y + z
〉
. Let C be the curve parameterized by

�(t) = (t2, t, 1 − t), 0 ≤ t ≤ 1

with the induced orientation. Calculate the line integral of W over C.

Problem 109 Let f (x, y) = xy2. Let C be the portion of the parabola y = x2

parameterized by

�(t) = (t, t2), −1 ≤ t ≤ 2

with the induced orientation.
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1. Calculate the integral of the vector field ∇ f over C.

2. Calculate f (�(2)) − f (�(−1)).

Problem 110 Let C be the subset of the graph of y = x2 where 0 ≤ x ≤ 1 (oriented
away from the origin). Let W be the vector field

〈−x4, xy
〉
. Integrate W over C.

10.2 Surface Integrals
In Section 8.3 we defined line integrals of functions, and in the previous section
of this chapter we defined line integrals of vector fields. By analogy we will now
define surface integrals of vector fields, just as we had defined surface integrals of
functions.

The physical motivation for surface integrals of vector fields can again be seen
by looking at a river of flowing water. Imagine a net placed vertically in the river.
Suppose you wanted to calculate the amount of water flowing through the net at
some particular moment in time. Let W denote a vector representing the flow of
water at some point of the net. Let N be a vector which is perpendicular to the net.
If the net is parallel to the direction of flow, then no water passes through it. In this
situation, N is perpendicular to W . The most water passes through the net when the
net is perpendicular to the flow. In this case, N and W are parallel. It stands to reason,
then, that the amount of water flowing through the net is proportional to W · N .
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N

W

Once again we encounter here a technical difficulty. Why did we draw the vector
N in the figure the way we did? If the only condition on N is that it is perpendicular
to the net, then why couldn’t N point in the exact opposite direction? The answer
is that it can! Which choice is “correct” will again depend on a choice, called an
orientation. We will discuss this more shortly.

Now let S be a surface (representing the net), parameterized by �(u, v). The
vectors d�

du and d�
dv

are both tangent to S. Hence, the vector d�
du × d�

du is perpen-
dicular, or normal, to S. Let W be a vector field representing the water flow, and
W(�(u, v)) the vector of W at the point �(u, v). Then the total amount of water
flowing through S is given by the integral

∫ ∫
W(�(u, v)) ·

(
d�

du
× d�

du

)
du dv

We call this the surface integral of W over S, and denote it by

∫
S

W · dS

But this formula isn’t the whole story. We still must deal with the issue of
orientations. Otherwise, two people evaluating

∫
S W · dS may get different answers,

depending on which parameterization of S they use to evaluate the integral. One
way to give an orientation is to say which way is “up” at each point of S. This
can be done by giving a vector O which is perpendicular to S at some point. Our
parameterization � “agrees” with the choice of orientation if the vector d�

du × d�
du

points in the same direction as O . If our parameterization does not agree with
the specified orientation then we can remedy things simply by negating our final
answer.
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EXAMPLE 10-3
Let W = 〈y, x, z〉. Let S be the portion of a cylinder parameterized by

�(θ, z) = (cos θ, sin θ, z)

0 ≤ θ ≤ π

4
, 0 ≤ z ≤ 1

The vector 〈−1, 0, 0〉 defines an orientation on S at the point (1, 0, 0). We now
compute the integral of W over the surface S with this orientation.

First, we compute the partials,

∂�

∂θ
= 〈− sin θ, cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉

And so,

∂�

∂θ
× ∂�

∂z
=
∣∣∣∣∣∣

i j k
− sin θ cos θ 0

0 0 1

∣∣∣∣∣∣ = 〈cos θ, sin θ, 0〉

Now notice that the point (1, 0, 0) = �(0, 0). The vector ∂�
∂θ

× ∂�
∂z is equal to

〈1, 0, 0〉 at this point. This is exactly opposite to the specified orientation of S.
Hence, if we use the parameterzation � to compute the integral of W over S we
will have to remember to negate our final answer.

We now integrate

∫
S

W · dS =
1∫

0

π
4∫

0

W(�(θ, z)) ·
(

∂�

∂θ
× ∂�

∂z

)
dθ dz

=
1∫

0

π
4∫

0

〈sin θ, cos θ, z〉 · 〈cos θ, sin θ, 0〉 dθ dz

=
1∫

0

π
4∫

0

2 sin θ cos θ dθ dz

=
1∫

0

π
4∫

0

sin 2θ dθ dz
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=
1∫

0

−1

2
cos 2θ

∣∣∣∣
π
4

0

dz

=
1∫

0

1

2
dz

= 1

2

As the parameterization � disagreed with the specified orientation the correct
answer is − 1

2 .

Problem 111 Let W = 〈x, y, z〉. Integrate W over the unit sphere, with orientation
given by the vector 〈1, 0, 0〉 at the point (1, 0, 0).

Problem 112 Let W = 〈xz, yz, 0〉. Integrate W over the surface S paramaterized
by

�(u, v) = (u, v, u2 + v2)

0 ≤ u ≤ 1, 0 ≤ v ≤ 1

Use the induced orientation.

Problem 113 Let S be the surface given by the following parameterization:

�(θ, φ) = (cos φ cos θ, cos φ sin θ, sin φ)

0 ≤ θ ≤ 2π, −π

4
≤ φ ≤ π

4

(Note that this is not quite spherical coordinates.)
Integrate over S the vector field

W =
〈

1

x
,

1

y
, 0

〉

Problem 114 Let W = 〈xz, yz, 0〉. Let S denote the intersection of the unit sphere
with the positive octant. An orientation on S is given by the vector 〈0, −1, 0〉 at the
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point (0, 1, 0). Compute ∫
S
(∇ × W) · dS

Quiz
Problem 115

1. Let C be the portion of the graph of x = y2 where 0 ≤ x ≤ 1, as depicted in
the figure. Integrate the vector field 〈1, 1〉 over C with the indicated orienta-
tion.

x

y

C

2. Let S be the frustum parameterized by

�(r, θ) = (r cos θ, r sin θ, r), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π

Integrate the vector field
〈

1
x , − 1

y , z
〉

over S with the induced orientation.
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CHAPTER 11

Integration Theorems

A centerpiece of the calculus is the “Fundamental Theorem.” This important result
says that when you take a function, differentiate it, and then integrate the result
something special happens. In this chapter, we explore what happens when we do the
same with vector fields. As there are many different ways to both differentiate and
integrate a vector field this gives us many different theorems. It should be pointed
out that all of these results (including the Fundamental Theorem of Calculus) are
special cases of the generalized Stokes’ Theorem, which we will not cover here.
This approach uses the theory of differential forms, rather than vector calculus, and
can be found in the book A Geometric Approach to Differential Forms, published
by Birkhäuser, 2006.

11.1 Path Independence
The first way we saw vector fields related to derivatives was through the gradient. In
this section we see what happens when you start with a function f , take its gradient
to get a vector field, and then perform a line integral along a curve C on this field.
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Formally, we study integrals of the form∫
C

∇ f · ds

To really understand what is going on we need to go back to the definition of
a line integral. Suppose C is parameterized by �(t), and the domain of � is the
interval [a, b]. The steps to define the integral of ∇ f over C are then

1. Choose n evenly spaced points in the interval [a, b]. Call these points {ti }.
This gives us n point {�(ti } on the curve C .

2. Let �t = ti+1 − ti .

3. For each i compute ∇ f · d�

dt �t at the point �(ti ).

4. Sum over all i .

5. The integral
∫

C ∇ f · ds is defined to be the limit of the sum from the previous
step, as n → ∞.

Let us now focus on the quantity computed in Step 3 above. To estimate ∇ f · V
at a point p we may substitute

∇ f · V ≈ f (p) − f (p + V �t)

�t

This approximation gets better and better as �t approaches zero. Furthermore, if
�t is small one can also make the approximation

d�

dt
≈ �(ti+1) − �(ti )

ti+1 − ti

Putting these together we have

∇ f · d�

dt
≈ f (�(ti+1)) − f (�(ti ))

�t

Hence, the term ∇ f · d�

dt �t computed in Step 3 above can be approximated by
f (�(ti+1)) − f (�(ti )).

We now shift our attention to Step 4:

∑
i

∇ f · d�

dt
�ti ≈

∑
i

f (�(ti+1)) − f (�(ti ))
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But this last expression telescopes:

∑
i

f (�(ti+1)) − f (�(ti )) = f (�(tn)) − f (�(t0)) = f (�(b)) − f (�(a))

We conclude with the following theorem:

Suppose � is a parameterization of C with domain [a, b] which agrees
with the orientation on C . Then for any function f we have∫

C

∇ f · ds = f (�(b)) − f (�(a))

This should look a lot to you like the Fundamental Theorem of Calculus. There
is no such convenient name for it. Often it is referred to as the path independence
of line integrals of gradient fields. This is because it says that the result of a line
integral of a gradient field only depend on the endpoints of the curve, and not the
path used to get from one endpoint to the other.

EXAMPLE 11-1
Suppose f (x, y) = x3 + y2. Let C be the top half of the unit circle, oriented
counterclockwise. We compute

∫
C ∇ f · ds.

All we really have to know is the endpoints of the curve C . The first is (1, 0) and
the second is (−1, 0). (Which one is which is determined by the orientation on C .)
Hence,

∫
C

∇ f · ds = f (−1, 0) − f (1, 0) = (−1) − (1) = −2

There is an important application of the independence of path of line integrals of
gradient fields that may be familiar. Recall that a line integral of a vector field says
something about how much work you have to do to move an object along a curve C
in the presence of a force W. Let’s say you want to know how much work you have
to do against the force of gravity to get a heavy package up a mountain. Suppose
the mountain is represented by the graph of a function f (x, y). That is, at the map
cooridnates (x, y) the function f (x, y) gives you your altitude. Then the force of
gravity at the point (x, y) is proportional to the vector ∇ f (x, y) (i.e., the steeper
the mountain, the harder you have to work to get up it). Let’s suppose you have
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identified your route on a map. You start at the point (x0, y0), follow some curve
C , and end up at (x1, y1). Then the work you have to do to overcome gravity is∫

C

∇ f · ds = f (x1, y1) − f (x0, y0)

Notice that the result is just the difference in elevation between your beginning and
ending point, and doesn’t matter what path you take to get from one to the other!

(x0, y0)

(x1, y 1)

EXAMPLE 11-2
Let W be the vector field 〈y2z3, 2xyz3, 3xy2z2〉. We would like to integrate W over
the curve C parameterized by

�(t) = (t3, t2, t), 1 ≤ t ≤ 2

with the induced orientation.
This integral can be done directly, but the astute reader will notice that

W = ∇(xy2z3)

Hence, we may use the independence of path of line integrals:∫
C

∇ f · ds = f (�(2)) − f (�(1)) = f (8, 4, 2) − f (1, 1, 1) = 1024 − 1 = 1023
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Problem 116 Let W = 〈1, 1, 1〉. Suppose C is some curve that goes from (1, 0, 1)

to (1, 1, 1). Calculate the integral of W over C.

Problem 117 Let C be the curve pictured below. Let W = 〈sin y, x cos y〉. Calcu-
late

∫
C W · ds.

π
2

2 x

y

Problem 118 Suppose f (x, y) = x2 − 4x + 4 + y2 + 2y + 1. Let C be a curve
that starts at (2, −1) and ends at some other point. Show that

∫
C ∇ f · ds is (strictly)

larger than zero.

Problem 119 Suppose C is a closed curve, i.e., one whose beginning and ending
points are the same. Show that the integral of any gradient field over C is zero.

Problem 120 Deduce the Fundamental Theorem of Calculus from the indepen-
dence of path of line integrals of gradient fields. (Hint: Begin by letting C be a
curve in R

1 from a to b.)

Problem 121 In this section we saw that the work you must do to carry a package
halfway up a mountain is just proportional to the difference in your starting and
ending altitudes, and does not depend on the path you take. But it certainly seems
like if you started at the bottom of a mountain, went to the top, and then came down
to the halfway point, you’d be doing more work than if you just went straight up to
the halfway point. Explain.

11.2 Green’s Theorem on Rectangular
Domains

The next theorem that relates derivatives, integrals, and vector fields is special to
R

2. Recall that the curl of a vector field

V = 〈 f (x, y, z), g(x, y, z), h(x, y, z)〉
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in R
3 is defined to be the quantity

∇ × V =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
f g h

∣∣∣∣∣∣∣∣∣
Although the curl is only defined for vector fields in R

3, we can use it to define
a natural (and important!) operation on vector fields in R

2. First, given a vector
field W = 〈 f (x, y), g(x, y)〉 on R

2 we can easily create a vector field on R
3:

〈 f (x, y), g(x, y), 0〉. We will abuse the notation and continue to call this new
vector field W. We now compute its curl:

∇ × W =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
f (x, y) g(x, y) 0

∣∣∣∣∣∣∣∣∣
=
(

−∂g

∂z

)
i −
(

−∂ f

∂z

)
j +
(

∂g

∂x
− ∂ f

∂y

)
k

=
(

∂g

∂x
− ∂ f

∂y

)
k

Hence,

|∇ × W| = ∂g

∂x
− ∂ f

∂y

So, if W is a vector field on R
2 then the result of |∇ × W| is a function on R

2.
This function acts much like the derivative of W. We now ask, what happens when
we integrate the result of such a derivative? That is, if Q is some domain in R

2,
then what can we say about

∫ ∫
Q

|∇ × W| dx dy =
∫ ∫

Q

∂g

∂x
− ∂ f

∂y
dx dy

For simplicity, we will assume here that the domain of integration Q is a rect-
angle. In the next section, we will explore more general domains.

To understand what is going on here, we will have to go all the way back
to the definition of a multiple integral. Recall the steps to define the value of∫∫
Q

h(x, y) dx dy:
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1. Choose a lattice of evenly spaced points (xi , y j ) in Q.

2. Define

�x = xi+1 − xi , �y = y j+1 − y j

3. For each i and j compute h(xi , y j )�x�y.

4. Sum over all i and j .

5. Take the limits of the resulting number as �x and �y approach zero.

To define the value of
∫∫
Q

∂g
∂x − ∂ f

∂y dx dy we follow the above steps, with h(x, y) =
∂g
∂x − ∂ f

∂y . Hence, in Step 3 above we compute

(
∂g

∂x
− ∂ f

∂y

)
(xi , y j )�x�y

If �x and �y are small, we may make the following approximations:

∂g

∂x
(xi , y j ) ≈ g(xi+1, y j ) − g(xi , y j )

�x

and

∂ f

∂y
(xi , y j ) ≈ f (xi , y j+1) − f (xi , y j )

�y

Hence, the quantity computed in Step 3 can be approximated by(
∂g

∂x
− ∂ f

∂y

)
(xi , y j )�x�y

≈
(

g(xi+1, y j ) − g(xi , y j )

�x
− f (xi , y j+1) − f (xi , y j )

�y

)
�x�y

= (g(xi+1, y j ) − g(xi , y j )
)
�y − ( f (xi , y j+1) − f (xi , y j )

)
�x

We now assume Q is the rectangle pictured in Figure 11-1. As in the figure, let
L , R, B, and T denote the Left, Right, Bottom, and Top sides of this rectangle,
with the indicated orientations.

We now move on to Step 4. In this step, we are instructed to compute the sum of
the values in Step 3. Using our approximation of each term, we can approximate
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Q RL

T

B

x0

y0

xn

ym

Figure 11-1 The rectangle, Q

this sum by
n∑

i=0

m∑
j=0

(g(xi+1, y j ) − g(xi , y j ))�y − ( f (xi , y j+1) − f (xi , y j ))�x

=
m∑

j=0

n∑
i=0

(g(xi+1, y j ) − g(xi , y j ))�y −
n∑

i=0

m∑
j=0

( f (xi , y j+1) − f (xi , y j ))�x

=
m∑

j=0

(g(xn, y j ) − g(x0, y j ))�y −
n∑

i=0

( f (xi , ym) − f (xi , y0)) �x

=
m∑

j=0

g(xn, y j )�y −
m∑

j=0

g(x0, y j )�y −
n∑

i=0

f (xi , ym)�x +
n∑

i=0

f (xi , y0)�x

Note that each term in the final expression is a sum involving values of f or g
at points on the sides of Q. For example, in the first sum we see the expression
g(xn, y j ). The number n is a constant, and represents the largest index of the
x-values. Hence, a point of the form (xn, y j ) must lie on R, the Right side of Q.

We are now prepared to consider Step 5, where we take limits as �x and �y go
to zero. We do this for each term in the above sum. For example, consider the limit
of the first term:

lim
�x,�y→0

m∑
j=0

g(xn, y j )�y = lim
�y→0

m∑
j=0

g(xn, y j )�y

ym∫
y0

g(xn, y) dy
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But this integral is the same as the integral of W over R with the orientation
indicated in Figure 11-1. To see this, first parameterize R by

�(y) = (xn, y), y0 ≤ y ≤ ym

Then,

d�

dy
= 〈0, 1〉

and so

∫
R

W · ds =
ym∫

y0

〈 f (xn, y), g(xn, y)〉 · 〈0, 1〉dy

=
ym∫

y0

g(xn, y) dy

The other three terms in the sum from Step 4 give similar integrals over the
remaining sides of Q. We are now ready for the conclusion:∫ ∫

Q

∂g

∂x
− ∂ f

∂y
dx dy =

∫
R

W · ds +
∫
L

W · ds +
∫
T

W · ds +
∫
B

W · ds

The sides R, L , T , and B of Q, with the orientations as indicated in Figure 11-1,
when taken together are referred to as its boundary. The usual notation for this is
∂ Q. Using this notation we can write our conclusion much more succinctly:

∫ ∫
Q

∂g

∂x
− ∂ f

∂y
dx dy =

∫
∂ Q

W · ds

This final equation is known as “Green’s Theorem.”

EXAMPLE 11-3
Let Q be the rectangle in the plane with corners at (0, 0), (2, 0), (0, 3), and (2, 3).
Let W = 〈xy, x2 + y2〉. We will use Green’s Theorem to evaluate the integral of
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W over ∂ Q.

∫
∂ Q

W · ds =
∫ ∫
Q

2x − x dx dy

=
3∫

0

2∫
0

x dx dy

=
3∫

0

2 dy

= 6

Green’s Theorem enables us to see the geometric significance of the value of
∂g
∂x − ∂ f

∂y at a point (x0, y0). Let Q denote a very small rectangle around this point.

Then at each point of Q the value of ∂g
∂x − ∂ f

∂y is roughly constant, and equal to its
value at (x0, y0). Hence,

∫ ∫
Q

∂g

∂x
− ∂ f

∂y
dx dy ≈

(
∂g

∂x
(x0, y0) − ∂ f

∂y
(x0, y0)

)∫ ∫
Q

dx dy

=
(

∂g

∂x
(x0, y0) − ∂ f

∂y
(x0, y0)

)
Area(Q)

But Green’s Theorem says

∫ ∫
Q

∂g

∂x
− ∂ f

∂y
dx dy =

∫
∂ Q

W · ds

Putting these together gives us

(
∂g

∂x
(x0, y0) − ∂ f

∂y
(x0, y0)

)
Area(Q) ≈

∫
∂ Q

W · ds
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or,

∂g

∂x
(x0, y0) − ∂ f

∂y
(x0, y0) ≈ 1

Area(Q)

∫
∂ Q

W · ds

So, the function ∂g
∂x − ∂ f

∂y is a measure of the “circulation” of W around each
point. There is a way to experience such a function for yourself. Many people enjoy
going “tubing”—floating down a river in an inner tube. Suppose you are tubing and
decide you want to stop somewhere to enjoy the scenery, so you drop an anchor.
Then you notice that the water on your left is rushing past you faster than the
water on your right. What happens? Your inner tube starts to turn. This turning is
a measure of the strength of ∂g

∂x − ∂ f
∂y .

Problem 122 Let Q be the rectangle {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Use Green’s
Theorem to evaluate the integral of 〈−y2, x2〉 over ∂ Q.

Problem 123 Let C be the curve pictured below. Show that the integral of W =
〈y, x〉 over C does not depend on b.

x

y

(a, b)
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11.3 Green’s Theorem over More General
Domains

Although we have only demonstrated the validity of Green’s Theorem for rectan-
gular regions, it holds in much more generality. For other shaped regions Q the
expression ∂ Q should generally be interpreted as the “edge” of Q, with a counter-
clockwise orientation. But there is an important technical restriction on the types
of regions Q for which this is valid.

We begin by examining what happens when we look at Green’s Theorem applied
to two neighboring rectangles.

Q1 R1L1

T1

B1

Q2 R2

T2

B2

L2

We apply Green’s Theorem to the rectangle Q1 ∪ Q2:

∫ ∫
Q1∪Q2

∂g

∂x
− ∂ f

∂y
dx dy =

∫ ∫
Q1

∂g

∂x
− ∂ f

∂y
dx dy +

∫ ∫
Q2

∂g

∂x
− ∂ f

∂y
dx dy

=
∫

∂ Q1

W · ds +
∫

∂ Q2

W · ds

But the integral of W along R1 will cancel with the integral of W along L2, so
the last integral equals

∫
∂(Q1∪Q2)

W · ds

as Green’s Theorem would predict.
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The cancellation of the integrals over R1 and L2 illustrates an important phe-
nomenon. For example, suppose Q is the following region.

Q

We can use Green’s Theorem to analyze the integral of ∂g
∂x − ∂ f

∂y over Q by break-
ing it up into rectangles. The boundary of each rectangle then gets an orientation.
When we add up the integral of W over the boundary of every rectangle, there is
much cancellation, as in the following figure.

We end up with the integral of ∂g
∂x − ∂ f

∂y being equal to the integral of W over the
squares depicted in the following figure, with the indicated orientations. Hence, we
say that this is the appropriate boundary of Q.
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In general, we may use the following rule-of-thumb to figure out the orientation
on each loop of its boundary:

If Q is a connected region in R
2 then the “outermost” loop of its boundary is

oriented counterclockwise and all other loops of the boundary are oriented
clockwise.

EXAMPLE 11-4
We use Green’s Theorem to integrate the function x2 + y2 over the inside of the
unit circle. If we denote this region as Q, then the boundary of Q is the unit circle
itself, with a counterclockwise orientation. This can be parameterized in the usual
way by

�(t) = (cos t, sin t), 0 ≤ t ≤ 2π

To use Green’s Theorem we must find functions f and g so that

∂g

∂x
− ∂ f

∂y
= x2 + y2 = y2 − (−x2)

A suitable choice for g(x, y) can be found by integrating y2 with respect to x ,
yielding the function xy2. Similarly, we may find f (x, y) by integrating −x2 with
respect to y, yielding −x2 y. So

〈 f (x, y), g(x, y)〉 = 〈−x2 y, xy2〉
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Finally, we integrate

∫ ∫
Q

x2 + y2 dx dy =
∫
∂ Q

〈−x2 y, xy2〉 · ds

=
2π∫

0

〈− cos2 t sin t, cos t sin2 t〉 · d�

dt
dt

=
2π∫

0

〈− cos2 t sin t, cos t sin2 t〉 · 〈− sin t, cos t〉 dt

=
2π∫

0

cos2 t sin2 t + cos2 t sin2 t dt

=
2π∫

0

2 cos2 t sin2 t dt

=
2π∫

0

1

2
sin2 2t dt

=
4π∫

0

1

4
sin2 u du

= 1

4

(
1

2
u − 1

4
sin 2u

)∣∣∣∣
4π

0

= π

2

Problem 124 Let W = 〈−y2, x2〉. Let σ be the region in R
2 parameterized by the

following:

φ(u, v) = (2u − v, u + v)

where 1 ≤ u ≤ 2 and 0 ≤ v ≤ 1. Calculate
∫
∂σ

W · ds.
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Problem 125 Calculate the area enclosed by the unit circle by integrating some
vector field around its boundary.

Problem 126

1. Suppose W = 〈 f (x), g(x)〉 is a vector field which is defined everywhere
except at (0, 0). If ∂g

∂x − ∂ f
∂y = 0 then show that the integral of W along every

circle centered on the origin, oriented counterclockwise, is the same.

2. If W = 〈 −y
x2+y2 ,

x
x2+y2 〉 then show that the integral of W along every circle

centered on the origin, oriented counterclockwise, is the same.

3. Calculate the integral of 〈 −y
x2+y2 ,

x
x2+y2 〉 over the unit circle.

Problem 127 Let σ be the region parameterized by

φ(r, θ) = (r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

Suppose W = 〈x2, ey〉.

1. Use Green’s Theorem to show that
∫
∂σ

W · ds = 0.

2. Let C be the horizontal segment connecting (−1, 0) to (1, 0). Calculate∫
C W · ds.

3. Use your previous answers to determine the integral of W over the top half
of the unit circle (oriented counterclockwise).

11.4 Stokes’ Theorem
In the previous section, we saw that if W is a vector field in R

2, then we can view
|∇ × W| as a kind of derivative. When we integrated this “derivative” we saw
something special happen, namely Green’s Theorem:

∫ ∫
Q

|∇ × W| dx dy =
∫
∂ Q

W · ds

We now move our attention to R
3, and explore a similar phenomenon. Sup-

pose now W is a vector field in R
3, and S is a surface. Then we wish to explore∫

S(∇ × W) · dS. A reasonable guess, based on our experience from the previous
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section, would be

∫
S

(∇ × W) · dS =
∫
∂S

W · ds

This turns out to be the case, and is called Stokes’ Theorem. We will not prove
it here, as the proof is extremely similar to that of Green’s Theorem. The strategy,
once again, is to choose a lattice of points in S. This breaks up S into a bunch
of parallelograms, and we can chase through the definition of

∫
S(∇ × W) · dS on

each. At every parallelogram, we see that we get the same as the integral of W over
the boundary of the parallelogram. But, because of orientation considerations, the
integrals over the boundaries of neighboring parallelograms cancel. The result is
the integral of W over the boundary of S.

One potential complication in using Stokes’ Theorem is determining the bound-
ary of the surface S in question. To get the proper orientation on ∂S you need
to know the orientation of S. Recall that this is often given by an outward-
pointing normal vector, v . To get the orientation on the boundary, we use the
“right-hand rule.” To do this point the thumb of your right hand in the direction
of v . Your fingers will then curl in the sense that determines the orientation on the
boundary.

S
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EXAMPLE 11-5
Let S denote the top half of the unit sphere, with orientation given by the normal
vector 〈1, 0, 0〉 at the point (1, 0, 0). We use Stokes’ Theorem to integrate the curl
of the vector field 〈−y, x, 0〉 over S.

First, note that Stokes’ Theorem says that the answer will be the same as the
integral of 〈−y, x, 0〉 around ∂S. The boundary of S (with proper orientation) is
parameterized by

�(t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π

Thus, we may integrate

∫
S

(∇ × 〈−y, x〉) · dS =
∫
∂S

〈−y, x, 0〉 · ds

=
2π∫

0

〈− sin t, cos t, 0〉 · 〈− sin t, cos t, 0〉 dt

=
2π∫

0

dt

= 2π

EXAMPLE 11-6
Let S denote the portion of the paraboloid z = 2 − x2 − y2 that lies above the plane
z = 1, with an orientation determined by an upward pointing normal. Let W =
〈cos z, sin z, 0〉. We will use Stokes’ Theorem indirectly to find

∫
S(∇ × W) · dS.

First, let D be the disk in the plane z = 1 bounded by the unit circle, with
orientation given by an upward pointing normal. Then ∂S = ∂ D. Stokes’ Theorem
says that the integral of ∇ × W over both D and S is equal to the integral of W
over ∂S. So, to get an answer to the original problem we may evaluate the integral
of ∇ × W over D instead of S.

To do the integral, note that

∇ × W = 〈− cos z, sin z, 0〉
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So, on the plane z = 4 we have ∇ × W = 〈− cos 1, sin 1, 0〉. A parameterization
for D is given by

�(r, θ) = (r cos θ, r sin θ, 1), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

The reader may check that

∂�

∂r
× ∂�

∂θ
= 〈0, 0, r〉

We now integrate

∫
D

(∇ × W) · dS =
1∫

0

2π∫
0

〈− cos 1, sin 1, 0〉 · 〈0, 0, r〉 dr dθ

= 0

Problem 128 Let W = 〈xy, xz, y〉. Let S be the surface parameterized by

�(r, θ) = (0, r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

with the induced orientation. Calculate
∫

S(∇ × W) · dS.

Problem 129 Suppose W = 〈 f (x, y), g(x, y), 0〉 and S is a region of R
3 that lies

in the xy-plane. Show that Stokes’ Theorem applied to W and S is equivalent to
Green’s Theorem.

Problem 130 Let S be the portion of the cylinder x2 + y2 = 1 that lies between
the planes z = 0 and z = 1, with orientation given by the normal vector 〈1, 0, 0〉 at
the point (1, 0, 0). Let W = 〈−yz, xz, 0〉. Calculate the integral of ∇ × W over S.

Problem 131 If W is a vector field defined on all of R
3, then show that the

integral of ∇ × W over the unit sphere is zero.
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11.5 Geometric Interpretation of Curl
Just as Green’s Theorem gave us a way to interpret the function ∂g

∂x − ∂ f
∂y geometri-

cally, we can use Stokes’ Theorem to give a geometric interpretation of the curl of
a vector field. Let W = 〈 f, g, h〉 be a vector field on R

3 and p a point of R
3. Our

goal is to understand the meaning of the vector ∇ × W(p).
Let D be a small, flat disk centered on p. If D is small enough, then ∇ × W is

roughly constant at every point of D. Let �(u, v) denote a parameterization of D,
with domain R, in which ∣∣∣∣∂�

∂u
× ∂�

∂v

∣∣∣∣ = 1

In particular, this implies

Area(D) =
∫ ∫

R

∣∣∣∣∂�

∂u
× ∂�

∂v

∣∣∣∣ du dv

=
∫ ∫

R

du dv

= Area(R)

Since D is part of a plane the vectors normal to D are all parallel. Hence, our
assumption that the magnitude of ∂�

∂u × ∂�
∂v is constant implies

∂�

∂u
× ∂�

∂v
= N

for some fixed unit vector N which is normal to D.
We now examine the integral of the curl of W over D:

∫
D

(∇ × W) · dS =
∫ ∫

R

∇ × W(�(u, v)) ·
(

∂�

∂u
× ∂�

∂v

)
du dv

=
∫ ∫

R

∇ × W(�(u, v)) · N du dv

≈ (∇ × W(p)) · N
∫ ∫

R

du dv
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= (∇ × W(p)) · NArea(R)

= (∇ × W(p)) · NArea(D)

Recall that the dot product of two vectors is the product of their magnitudes times
the cosine of the angle between them. Hence, if we choose D so that N points in
the same direction as ∇ × W(p) we get

(∇ × W(p)) · N = |∇ × W(p)|

and hence

∫
D

(∇ × W) · dS ≈ |∇ × W(p)| Area(D)

To go further we must appeal to Stokes’ Theorem:

∫
D

(∇ × W) · dS =
∫
∂ D

W · ds

Putting these together then gives

∫
∂ D

W · ds ≈ |∇ × W(p)| Area(D)

or,

|∇ × W(p)| ≈ 1

Area(D)

∫
∂ D

W · ds

Our conclusion is that the magnitude of ∇ × W at the point p is a measure of how
much W circulates around it. The direction of ∇ × W is the same as the direction
of N , which was chosen to be perpendicular to the plane in which this circulation
is greatest. In this sense, the curl of a vector field is the three-dimensional version
of the function ∂g

∂x − ∂ f
∂y , which appears in Green’s Theorem.
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EXAMPLE 11-7
Let W = 〈−y, x, 0〉. Then

∇ × W =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
−y x 0

∣∣∣∣∣∣∣∣
= 〈0, 0, 2〉

This is a vector that points up. Notice that a plane perpendicular to an upward
pointing vector is the plane that contains the “circulation” of W. In contrast, the
circulation in a plane which contains ∇ × W would be zero.

Problem 132 Among all circles C in R
3 centered at the origin with radius 1,

suppose the circulation
∫

C W · ds is greatest when C lies in the xz-plane. Suppose,
furthermore, that when C is such a loop,∫

C

W · ds = .5

Estimate ∇ × W at the origin.

Problem 133 Suppose some vector field has the property that the direction of every
vector is up, and in any vertical plane parallel to the xz-plane the vector field is
constant. Then what direction would the curl of this vector field point?

11.6 Gauss’ Theorem
We know that one way to “differentiate” a vector field is to take its curl. It is then not
surprising that the integral of the curl of a vector field should be special. Another
way to “differentiate” a vector field in R

3 is to take its divergence. In this section,
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we explore what happens when we integrate the divergence of a vector field. To
this end, suppose

W = 〈 f (x, y, z), g(x, y, z), h(x, y, z)〉

Recall the definition of divergence:

Div W = ∇ · W = ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z

The result is a function on R
3. We may thus integrate this function over

volumes V : ∫ ∫ ∫
V

∇ · W dx dy dz

As in the previous sections, we might guess that there is a relationship between
this and the integral of W over the boundary of V :

∫ ∫ ∫
V

∇ · W dx dy dz =
∫
∂V

W · dS

This equality is in fact true, and is known as Gauss’ Divergence Theorem.
The proof is again similar to the proof of Green’s Theorem. We choose a three-
dimensional lattice of points in V , and approximate

∫ ∫ ∫
V

∇ · W dx dy dz as a sum

over the points of this lattice. The lattice breaks up V into little cubes, and we find
that the integral of ∇ · W over each cube is approximately equal to the integral of
W over the boundary of each cube, with suitable orientations. But faces of cubes
inherit opposite orientations from neighboring cubes, so in the sum all that is left
are the faces of the cubes on the boundary of V .

To properly orient ∂V , we simply choose a normal vector that points “out” of V .

EXAMPLE 11-8
Let W = 〈x, y, z〉. We would like to find the value of the integral of ∇ · W over the
volume V bounded by the unit sphere. According to Gauss’ Theorem, this is equal
to the integral of W over the unit sphere S.
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To evaluate this, we first parameterize the unit sphere in the usual way with
spherical coordinates:

�(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

Now we compute

∂�

∂θ
× ∂�

∂φ
= 〈− sin φ sin θ, sin φ cos θ, 0〉 × 〈cos φ cos θ, cos φ sin θ, − sin φ〉

= 〈− sin2 φ cos θ, − sin2 φ sin θ, − sin φ cos φ〉

To check orientations, note that at �(0, π
2 ) = (1, 0, 0) this vector is equal to

〈1, 0, 0〉, which does indeed point out of V . Hence, we do not need to worry about
negating the value of an integral that is computed using �.

Finally, we integrate:∫ ∫
V

∫
∇ · W dx dy dz

=
∫
S

W · dS

=
π∫

0

2π∫
0

〈sin φ cos θ, sin φ sin θ, cos φ〉

×〈− sin2 φ cos θ, − sin2 φ sin θ, − sin φ cos φ〉 dθ dφ

=
π∫

0

2π∫
0

− sin3 φ − sin φ cos φ dθ dφ

=
π∫

0

2π∫
0

− sin φ dθ dφ

= 2π

π∫
0

− sin φ dφ

= −4π
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EXAMPLE 11-9
Let W = 〈0, 0, z2〉. We integrate ∇ · W over the volume V which is inside the
cylinder x2 + y2 = 1, above the plane z = 0, and below the plane z = 1.

To use Gauss’ Theorem we will have to parameterize each “side” of V . First,
the cylinder, C :

�(θ, z) = (cos θ, sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

Then the bottom, B:

�−(r, θ) = (r cos θ, r sin θ, 0), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

And finally the top, T :

�+(r, θ) = (r cos θ, r sin θ, 1), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

Now we must check orientations by computing normal vectors:

∂�

∂θ
× ∂�

∂z
= 〈− sin θ, cos θ, 0〉 × 〈0, 0, 1〉 = 〈cos θ, sin θ, 0〉

This vector points out of V .

∂�−
∂r

× ∂�−
∂θ

= 〈cos θ, sin θ, 0〉 × 〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉

This vector points “up,” which is into V . We will have to remember to negate the
value of any integral that is computed using �−.

∂�+
∂r

× ∂�+
∂θ

= 〈cos θ, sin θ, 0〉 × 〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉

This vector again points “up,” but at the top this is pointing out of V .
Gauss’ Theorem says

∫ ∫
V

∫
∇ · W dx dy dz =

∫
∂V

W · dS

=
∫

C∪B∪T

W · dS

=
∫
C

W · dS +
∫
B

W · dS +
∫
T

W · dS
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We compute each of these integrals individually:

∫
C

W · dS =
1∫

0

2π∫
0

〈0, 0, z2〉 × 〈cos θ, sin θ, 0〉 dθ dz

= 0

∫
B

W · dS = −
2π∫

0

1∫
0

〈0, 0, 0〉 × 〈0, 0, r〉 dr dθ

= 0

∫
T

W · dS =
2π∫

0

1∫
0

〈0, 0, 1〉 × 〈0, 0, r〉 dr dθ

=
2π∫

0

1∫
0

r dr dθ

= π

Hence,

∫ ∫
V

∫
∇ · W dx dy dz = π

Problem 134 Integrate W = 〈x2 yz, xy2z, xyz2〉over the boundary of the unit cube
in R

3.

Problem 135 Let W = 〈0, 0, ez〉. Calculate the integral of ∇ · W over the ball
bounded by the unit sphere.

Problem 136 Let W = 〈x3, y3, 0〉. Let V be the region between the cylinders of
radii 1 and 2 (centered on the z-axis), in the positive octant, and below the plane
z = 2. Calculate

∫
∂V

W · dS
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Problem 137 The surfaces C and D are defined by

1. C is the graph of the cylindrical equation r = cos θ in R
3, where 0 ≤ θ ≤ π

and 0 ≤ z ≤ 1.

2. D is the set of points in the plane z = 1, which are within 1
2 of a unit away

from the point ( 1
2 , 0, 1).

Let W be the vector field 〈0, xyz, 0〉. Calculate
∫

C+D W · dS.

Problem 138 Suppose ∇ · W = 0, and S1 and S2 are oriented surfaces with the
same oriented boundary. Show that

∫
S1

W · dS =
∫
S2

W · dS

(For simplicity you may assume that S1 and S2 only meet in their boundary.)

11.7 Geometric Interpretation of Divergence
Recall that Green’s Theorem gave us a geometric interpretation of ∂g

∂x − ∂ f
∂y and

Stokes’ Theorem gave us a geometric interpretation for ∇ × W. We now use Gauss’
Theorem to give a geometric interpretation of ∇ · W. This will be completely
analogous.

Let W denote a vector field on R
3. Let p be a point in R

3 and let B be a small ball
centered on p. If B is chosen small enough then the function ∇ · W is approximately
equal to ∇ · W(p) on all of B. Hence,

∫ ∫
B

∫
∇ · W dx dy dz ≈ ∇ · W(p)

∫ ∫
B

∫
dx dy dz

= ∇ · W(p)Volume(B)

Now, Gauss’ Theorem says

∫ ∫
B

∫
∇ · W dx dy dz =

∫
∂ B

W · dS
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Combining these we get

∇ · W(p)Volume(B) ≈
∫
∂ B

W · dS

or,

∇ · W(p) ≈ 1

Volume(B)

∫
∂ B

W · dS

The quantity
∫
∂B W · dS is a measure of the net amount of W which leaves the

ball B. So, if the same amount of W enters and leaves B then this integral will
be zero. One way to think about this is that

∫
∂B W · dS, and hence ∇ · W(p), is a

measure of how much W “spreads out” at p.

EXAMPLE 11-10
The vector fields pictured below have more “leaving” each point than “entering,”
and so have positive divergence. For example, the second one pictured might be
something like 〈x, y, z〉, whose divergence is 3. The third one might be 〈0, 0, z〉,
whose divergence is 1. Can you think of a vector field like the first one?
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EXAMPLE 11-11
The vector fields pictured below have zero divergence. The first one is a constant
vector field. The second might be something like 〈y, −x, 0〉.

Problem 139 Suppose B is a ball of radius 1 centered around the origin. Let W
be a vector field and suppose∫ ∫

B

∫
∇ · W dx dy dz = .5

Estimate the value of ∇ · W at the origin.

Quiz
Problem 140

1. Let C be any curve in R
3 from (0, 0, 0) to (1, 1, 1). Let W be the vector field

〈y2z2, 2xyz2, 2xy2z〉. Calculate
∫

C W · ds.

2. Let σ be the region parameterized by the following:

φ(u, v) = (uv2, u3v), 1 ≤ u ≤ 2, 1 ≤ v ≤ 2

Calculate ∫
∂σ

〈1, − ln x〉 · ds
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3. Let C1 and C2 be curves given by the following parameterizations (with the
induced orientations):

C1 : φ(t) = (t, 0, 0), 2π ≤ t ≤ 4π

C2 : ψ(t) = (t cos t, t sin t, 0), 2π ≤ t ≤ 4π

Show that for any vector field W such that ∇ × W = 〈0, 0, 0〉 the following
is true: ∫

C1

W · ds =
∫
C2

W · ds



Final Exam

Problem 141

1. Let f (x, y) be the following function:

f (x, y) = xy + x − 2y + 4

a. Sketch the intersections of f (x, y) with the xz- and yz-planes.

b. Find the critical point(s) and compute the value of∣∣∣∣∣∣∣∣∣

∂2 f

∂x2

∂2 f

∂x∂y

∂2 f

∂y∂x

∂2 f

∂y2

∣∣∣∣∣∣∣∣∣
Can you say if the graph has a max, min, or saddle at the critical point(s)?

c. Find the slope of the tangent line to the graph of f (x, y), in the direction
of 〈1, 2〉, at the point (0, 1).

d. Find the volume under the graph of f (x, y), and above the rectangle in
the xy-plane with vertices at (0, 0), (1, 0), (0, 2), and (1, 2).

Copyright  © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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2. Parameterize the portion of the graph of z = 4 − x2 − y2 that lies above the
xy-plane.

3. Parameterize the curve that lies on a sphere of radius 1 such that θ = φ.

4. Let W = 〈xz2, 0, xz2〉. Calculate ∇ · W and ∇ × W.

5. Let V be the volume in the first octant, inside the cylinder of radius 1, and
below the plane z = 1. Integrate the function

f (x, y) = 2
√

1 + x2 + y2

over V .

6. Let C be the curve parameterized by the following:

φ(t) = (2 cos t, 2 sin t, t2), 0 ≤ t ≤ 2

Integrate the vector field 〈0, 0, x2 + y2〉 over C.

7. Let F be the vector field 〈0, −z, 0〉. Let P be the portion of a paraboloid
parameterized by

φ(r, θ) = (r cos θ, r sin θ, r2)

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2

Calculate
∫
P

F · dS.

8. Let W = 〈yz, xz, xy〉. Let C be the curve parameterized by

φ(t) =
(

4t

π
cos t,

4t

π
sin t,

4t

π

)
, 0 ≤ t ≤ π

4

with the induced orientation. Evaluate
∫

C W · ds without integrating!

9. Let S be the can-shaped surface in R
3 whose side is the cylinder of radius 1

(centered on the z-axis), and whose top and bottom are in the planes z = 1
and z = 0. Let W = 〈0, 0, z2〉. Use Gauss’ Theorem to calculate

∫
S W · dS.



Answers to Problems

Chapter 1: Functions of Multiple Variables
Problem 1

1. f (3, 2) = 32 + 23 = 9 + 8 = 17

2. g(0, π
2 ) = sin(0) + cos(π

2 ) = 0 + 0 = 0

3. h(2, π
2 ) = 22 sin(π

2 ) = (4)(1) = 4

Problem 2

(b), (d)

Problem 3

x

y

z

(1,1,1)(1,− 1,1)

(− 1,1,− 1)
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Problem 4

1.

y

xx y

z z

2.

y

xx y

z z

3.

y

xx y

z z

4.

y

xx y

z z

5.

y

xx y

z z

6.

y

xx y

z z
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Problem 5

1. −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0.5

1

1.5

y

x

2. −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0.5

1

1.5

y

x

3.
5 −2.5 0 2.5 5

−2.5

2.5

y

4. .5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.

−1.5

−1

−0.5

0.5

1

1.5

y

x
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Problem 6

1. The circles get larger as z increases, but they begin to “bunch up.”

2. The circles get larger as z gets larger, and their spacing does not change.

3. The circles get smaller as z gets larger, eventually becoming very close to the
origin.

4. At z = 0 the level set consists of infinitely many circles. For |z| > 1 there are
no level curves.

Problem 7

1. 2. 3.

4. 5.

Problem 8

1. 2.
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Problem 9

1.
x

y

2.
x

y

3.
x

y

4.
x

y
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5.
x

y

Problem 10

The function (cos t2, sin t2) describes a point moving clockwise around the circle,
and slowing down until t = 0. (It then reverses direction when t becomes positive.)
In contrast, the function (cos t, sin t) describes a point moving counterclockwise
around the circle, at uniform speed, no matter what t is.

Problem 11

c(t) = (t, f (t))

Problem 12

1. The curve spirals around the z-axis, rising faster and faster, so that there is more
and more space between successive coils.

2. The curve spirals around the z-axis, descending, becoming closer and closer to
the xy-plane.

3. The curve spirals up around the cone z =
√

x2 + y2.

Chapter 1 Quiz
Problem 13

1. Left handed

2.(a) The intersection with the xy-plane looks like the x-axis. The intersection
with the xz-plane also looks like the x-axis. The intersection with the
yz-plane is the line z = y, pictured here.

z

y
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(b)
x

y

(c)

3.
x

y

Chapter 2: Fundamentals of Advanced Calculus
Problem 14

1. Along the y-axis we have

lim
(x,y)→(0,0)

x2

x2 + y3
= lim

(x,y)→(0,0)

0

y3
= 0

Along the x-axis

lim
(x,y)→(0,0)

x2

x2 + y3
= lim

(x,y)→(0,0)

x2

x2
= 1

2. Along the y-axis

lim
(x,y)→(0,0)

x2 y

x3 + y3
= lim

(x,y)→(0,0)

0

y3
= 0

Along the line y = x

lim
(x,y)→(0,0)

x2 y

x3 + y3
= lim

(x,y)→(0,0)

x3

2x3
= 1

2
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3. Along the y-axis

lim
(x,y)→(0,0)

x + y√
x2 + y2

= lim
(x,y)→(0,0)

y

y
= 1

Along the line y = x

lim
(x,y)→(0,0)

x + y√
x2 + y2

= lim
(x,y)→(0,0)

2x√
2x

=
√

2

4. Along the y-axis

lim
(x,y)→(0,0)

x2 y2

x3 + y3
= lim

(x,y)→(0,0)

0

y3
= 0

Along the curve y = x2

lim
(x,y)→(0,0)

x2 y2

x3 + y3
= lim

(x,y)→(0,0)

x6

x3 + x6
= 1

Problem 15

1. y �= x 2. y ≥ x2 3. The domain is empty.

Problem 16

Yes. For small values of t the function sin(t) is approximately equal to t . The value
of x2 + y2 is the square of the distance from (x, y) to (0, 0), which is small for
points near the origin.

Chapter 2 Quiz
Problem 17

1. On the x-axis we know y = 0, and so the function f (x, y) = 0 (as long as x is
not also 0). Similarly, on the y-axis we know x = 0, and so again the function
f (x, y) = 0. But when x = y we have

f (x, y) = x sin x

2x2
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To evaluate the limit of this as x → 0 we use L’Hopital’s rule twice

lim
x→0

x sin x

2x2
= lim

x→0

sin x + x cos x

4x

= lim
x→0

2 cos x − x sin x

4

= 1

2

Hence, the limit does not exist.

2. As long as both x and y are not zero, the function x+y
x+y = 1. Hence, the function

f (x, y) = 1 for every value of x and y. The function f (x, y) is thus a constant
function, which is continuous everywhere.

3. The first problem we may encounter is a zero in the denominator, in which case
x − y2 = 0. The second problem is taking the log of a nonpositive number, in
which case 1

x−y2 ≤ 0. But this second situation implies x − y2 ≤ 0, and hence
includes the first.

If x − y2 ≤ 0, then x ≤ y2. Hence, the domain of f (x, y) is all the points
(x, y) such that x > y2.

Chapter 3: Derivatives
Problem 18

1. ∂ f
∂x (2, 3) = 4, ∂ f

∂y (2, 3) = 2

2. ∂ f
∂x (2, 3) = ln 3, ∂ f

∂y (2, 3) = 2
3

3. ∂ f
∂x (2, 3) = √

6 +
√

6
2 , ∂ f

∂y (2, 3) =
√

6
3

Problem 19

1. ∂ f
∂x = 2xy3, ∂ f

∂y = 3x2 y2 2. ∂ f
∂x = 1

y , ∂ f
∂y = −x

y2

Problem 20
∂ f
∂x = −1 + y2 and ∂ f

∂y = 2xy − 2y. Setting these both equal to zero gives the system
of equations

0 = −1 + y2

0 = 2xy − 2y
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The first equation tells us y2 = 1, or y = ±1. If y = 1 then the second equation
becomes 0 = 2x − 2, so x = 1. If y = −1 then the second equation becomes
0 = −2x + 2, so x = 1. Hence, the solutions are (1, 1) and (1, −1).

Problem 21

First, note that φ(1) = (2, 1). So

∂ f

∂x
(φ(1)) = ∂ f

∂x
(2, 1) = 6, and

∂ f

∂y
(φ(1)) = ∂ f

∂y
(2, 1) = −1

Now, note that x(t) = 2t , so dx
dt = 2. Similarly, y(t) = t2, so dy

dt = 2t and
dy
dt (1) = 2. Finally, we compute

d

dt
f (φ(1)) = ∂ f

∂x
(φ(1))

dx

dt
(1) + ∂ f

∂y
(φ(1))

dy

dt
(1)

= 6 · 2 + (−1) · 2

= 10

Problem 22

First, note that ∂ f
∂x = 2xy and ∂ f

∂y = x2. Now we compute:

d

dt
f (φ(2)) = ∂ f

∂x
(φ(2))

dx

dt
(2) + ∂ f

∂y
(φ(2))

dy

dt
(2)

= ∂ f

∂x
(1, 3)

dx

dt
(2) + ∂ f

∂y
(1, 3)

dy

dt
(2)

= 2(1)(3)
dx

dt
(2) + 12 dy

dt
(2)

= (6)(−2) + (1)(1)

= −11
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Problem 23

1. First, note that x(1, 2) = 2 and y(1, 2) = 5. Hence, if (u, v) = (1, 2) then
(x, y) = (2, 5). Next, note that ∂x

∂u = v and ∂y
∂u = 1, and so ∂x

∂u (1, 2) = 2 and
∂y
∂u (1, 2) = 1. We now compute:

∂ f

∂u
(1, 2) = ∂ f

∂x
(2, 5)

∂x

∂u
(1, 2) + ∂ f

∂y
(2, 5)

∂y

∂u
(1, 2)

= (2)(2) + (3)(1)

= 7

2. x(2, 1) = 2 and y(2, 1) = 3. Hence, if (u, v) = (2, 1) then (x, y) = (2, 3).
Next, note that ∂x

∂v
= u and ∂y

∂v
= 2v, and so ∂x

∂v
(2, 1) = 2 and ∂y

∂v
(2, 1) = 2. We

now compute:

∂ f

∂v
(2, 1) = ∂ f

∂x
(2, 3)

∂x

∂v
(2, 1) + ∂ f

∂y
(2, 3)

∂y

∂v
(2, 1)

= (1)(2) + (−1)(2)

= 0

Problem 24

1. First, note that x(π
2 , π) = π

2 + π = 3π
2 and y(π

2 , π) = π
2 − π = −π

2 . Now,

f (x, y) = f

(
3π

2
, −π

2

)
= sin

(
3π

2
− π

2

)
= sin(π) = 0

2. First, note that ∂ f
∂x (x, y) = cos(x + y), so ∂ f

∂x ( 3π
2 , −π

2 ) = cos(π) = −1. Simi-
larly, ∂ f

∂y (x, y) = cos(x + y), so ∂ f
∂y ( 3π

2 , −π
2 ) = cos(π) = −1. Finally, note that

∂x
∂u = 1 and ∂y

∂u = 1. Hence,

∂ f

∂u
= ∂ f

∂x

∂x

∂u
+ ∂ f

∂y

∂y

∂u
= (−1)(1) + (−1)(1) = −2

3. Note that ∂x
∂v

= 1 and ∂y
∂v

= −1, so

∂ f

∂v
= ∂ f

∂x

∂x

∂v
+ ∂ f

∂y

∂y

∂v
= (−1)(1) + (−1)(−1) = 0
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Problem 25

1. ∂2 f

∂x2
= 0,

∂2 f

∂y∂x
= 1

∂2 f

∂x∂y
= 1,

∂2 f

∂y2
= 0

2. ∂2 f

∂x2
= 2,

∂2 f

∂y∂x
= 0

∂2 f

∂x∂y
= 0,

∂2 f

∂y2
= −2

3. ∂2 f

∂x2
= −y4 sin(xy2),

∂2 f

∂y∂x
= 2y cos(xy2) − 2xy3 sin(xy2)

∂2 f

∂x∂y
= 2y cos(xy2) − 2xy3 sin(xy2),

∂2 f

∂y2
= 2x cos(xy2) − 4x2 y2 sin(xy2)

Chapter 3 Quiz
Problem 26

1. ∂ f
∂x = 2xy + 3x2 y2 and ∂ f

∂y = x2 + 2x3 y.

2. f (φ(t)) = (t2)2(t − 1) + (t2)3(t − 1)2

= t4(t − 1) + t6(t2 − 2t + 1)

= t8 − 2t7 + t6 + t5 − t4

3. First note from Question 1 that ∂ f
∂x (1, 1) = 5 and ∂ f

∂y (1, 1) = 3. Now,

d f (ψ(t))

dt
= ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt

= (5)(3) + (3)(1)

= 18
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4. Since x(u, v) = u2 + v, it follows that x(1, 1) = 2. Hence, when (u, v) =
(1, 1), (x, y) = (2, 1). Now, note

∂ f

∂x
(2, 1) = 4 + 12 = 16

∂ f

∂y
(2, 1) = 4 + 16 = 20, and

∂x

∂u
(1, 1) = 2(1) = 2

Now, we have

12 = ∂ f

∂u

= ∂ f

∂x

∂x

∂u
+ ∂ f

∂y

∂y

∂u

= (16)(2) + 20
∂y

∂u

And so,

12 = 32 + 20
∂y

∂u

from which it follows that

∂y

∂u
= −1

Chapter 4: Integration
Problem 27

1.

1∫
0

3∫
2

x + xy2 dx dy =
1∫

0

1

2
x2 + 1

2
x2 y2

∣∣∣∣
3

x=2

dy

=
1∫

0

9

2
+ 9

2
y2 − 2 − 2y2 dy
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=
1∫

0

5

2
+ 5

2
y2 dy

= 5

2
y + 5

6
y3

∣∣∣∣
1

0

= 5

2
+ 5

6

= 10

3

2.

1∫
−1

1∫
0

x2 y2 dy dx =
1∫

−1

1

3
x2 y3

∣∣∣∣
1

y=0

dx

=
1∫

−1

1

3
x2 dx

= 1

9
x3

∣∣∣∣
1

−1

= 1

9
−
(

−1

9

)

= 2

9

3.

π
2∫

0

π
2∫

0

cos(x + y) dx dy =
π
2∫

0

sin(x + y)

∣∣∣∣∣
π
2

x=0

dy

=
π
2∫

0

sin
(π

2
+ y
)

− sin y dy

= − cos
(π

2
+ y
)

− cos y
∣∣∣ π

2

0

= − cos π − cos
π

2
+ cos

π

2
+ cos 0

= 2



Answers to Problems 191

Problem 28

Volume =
0∫

−1

2∫
−1

x3 y dx dy

=
0∫

−1

1

4
x4 y

∣∣∣∣
2

x=−1

dy

=
0∫

−1

4y − 1

4
y dy

= 2y2 − 1

8
y2

∣∣∣∣
0

−1

= −2 + 1

8

= −15

8

Problem 29

Volume =
1∫

0

1∫
0

xn ym dx dy

=
1∫

0

1

n + 1
xn+1 ym

∣∣∣∣
1

x=0

dy

=
1∫

0

1

n + 1
ym dy

= 1

(n + 1)(m + 1)
ym+1

∣∣∣∣
1

0

= 1

(n + 1)(m + 1)
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Problem 30

To find the answer just set y = 1 and integrate with respect to x

Area =
2∫

0

e−x ·1dx = −e−x

∣∣∣∣
2

0

= 1 − 1

e2

Problem 31

1.
1∫

0

y2∫
0

2xy3 dx dy =
1∫

0

x2 y3

∣∣∣∣
y2

x=0

dy

=
1∫

0

(y2)2 y3 dy

=
1∫

0

y7 dy

= 1

8
y8

∣∣∣∣
1

0

= 1

8

2.
2∫

0

2x∫
x

ex+y dy dx =
2∫

0

ex+y

∣∣∣∣
2x

x

dx

=
2∫

0

e3x − e2x dx

= 1

3
e3x − 1

2
e2x

∣∣∣∣
2

0

= 1

3
e6 − 1

2
e4 + 1

6
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Problem 32

The graph of y = x2 − x − 2 is depicted below.

−1.5 −1 −0.5 0 0.5 1 2 2.5 3

−2

−1.5

−1

0.5

1.5
yy xx

−0.5

−2.5

The x-intercepts of the graph are x = −1 and x = 2. Fixing a value of x in between
these two numbers, y will range from x2 − x − 2 to 0. This tells us how to set up
the integral

2∫
−1

0∫
x2−x−2

x2 dy dx =
2∫

−1

x2 y
∣∣0
x2−x−2 dx

=
2∫

−1

−x2(x2 − x − 2) dx

=
2∫

−1

−x4 + x3 + 2x2 dx

= −1

5
x5 + 1

4
x4 + 2

3
x3

∣∣∣∣
2

−1

= −32

5
+ 16

4
+ 16

3
− 1

5
− 1

4
+ 2

3

= −33

5
+ 15

4
+ 18

3
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Problem 33

The region R is depicted below

−0.5 0 1

x

y

0.5

1

−0.5

0.5 1.5

• The range of possible x-values is 0 to 1. If we fix a value of x between these
numbers, then y can vary from x3 to x . So the integral can be set up as

1∫
0

x∫
x3

f (x, y) dy dx

• The range of possible y-values is also 0 to 1. If we fix a value of y between these
numbers, then x can vary from y to 3

√
y. Hence, the integral can be set up as

1∫
0

3√y∫
y

f (x, y) dx dy

Problem 34

The original limits of integration tell us the shape of the region over which we
are integrating the function sin(y3). The outside limits tell us that the domain of
integration lies between the vertical lines x = 0 and x = π2. Fixing a value of x
between these numbers, y can vary from

√
x to π (the inside limits of integration).
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This tells us the shape of the domain of integration is

0 2.5 5 7.5 10

−1

1

2

3

4

5

y

x

Now notice from the figure that the possible range of y values is from 0 to π .
Fixing a value of y between these numbers, x can range from 0 to y2. Hence, we
may rewrite the integral and evaluate as follows:

π∫
0

y2∫
0

sin(y3) dx dy =
π∫

0

x sin(y3)
∣∣y2

x=0 dy

=
π∫

0

y2 sin(y3) dy

= −1

3
cos(y3)

∣∣∣∣
π

0

= −1

3
(cos π3 − cos 0)

= 1

3
(1 − cos π3)

Problem 35

x

y

z
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The solid is pictured above. To find its volume, note that if we fix x and y then z
varies from 0 to 1 − y2. If we fix y then x varies from 0 to 1. Finally, the range of
values that y can take on goes from −1 to 1. Hence, we have the triple integral:

1∫
−1

1∫
0

1−y2∫
0

1 dz dx dy =
1∫

−1

1∫
0

z

∣∣∣∣
1−y2

0

dx dy

=
1∫

−1

1∫
0

1 − y2 dx dy

=
1∫

−1

1 − y2 dy

= y − 1

3
y3

∣∣∣∣
1

−1

= 4

3

Problem 36

The volume can be computed with a triple integral as follows:

1∫
−1

1−y2∫
0

1−x−y2∫
0

1 dz dx dy =
1∫

−1

1−y2∫
0

1 − x − y2 dx dy

=
1∫

−1

x − 1

2
x2 − xy2

∣∣∣∣
1−y2

0

dy

=
1∫

−1

1

2
(1 − y2)2 dy

= 1

2

(
y − 2

3
y3 + 1

5
y5

)∣∣∣∣
1

−1

= 8

15
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Problem 37

1∫
−1

√
1−y2∫

−
√

1−y2

1−x2−y2∫
0

1 dz dx dy

Problem 38

1∫
−1

√
1−z2∫

−√
1−z2

√
1−z2−x2∫

−√
1−z2−x2

1 dy dx dz

Chapter 4 Quiz
Problem 39

1.(a)

2∫
1

3∫
2

cos(2x + y) dx dy =
2∫

1

1

2
sin(2x + y)

∣∣∣∣
3

2

dy

= 1

2

2∫
1

sin(6 + y) − sin(4 + y) dy

= 1

2
(cos(4 + y) − cos(6 + y))|21

= 1

2
(cos 6 − cos 7)

(b) The trick with this integral is to reverse the order of integration:

1∫
0

1∫
x

√
1 + y2 dy dx =

1∫
0

y∫
0

√
1 + y2 dx dy

=
1∫

0

y
√

1 + y2 dy

=
2∫

1

1

2

√
u du
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= 1

3
u

3
2

∣∣∣∣
2

1

= 1

3
(2

3
2 − 1)

2. The domain of integration is a disk of radius 1 in the xy-plane. Hence, if we fix x
then y can vary from −√

1 − x2 to
√

1 − x2. The biggest and smallest possible
values of x are −1 and 1. Hence, the desired volume can be computed by the
integral

1∫
−1

√
1−x2∫

−√
1−x2

√
1 − x2 − y2 dy dx

Chapter 5: Cylindrical and Spherical Coordinates
Problem 40

1. (
√

2,
√

2, −1) 2. (0, 0, 3) 3. (2, 2
√

3, 0)

Problem 41

1. The xz-plane. 2. The yz-plane. 3. The xy-plane.

4. A right circular cone centered on the z-axis. 5. A sphere of radius 1.

Problem 42

1. 2. 3.

Problem 43

1. (0, 0, 0) 2. (−3, 0, 0) 3. (
√

6,
√

6, 2)
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Problem 44

1. A single point at the origin.

2. The xy-plane.

3. The negative z-axis.

4. A cylinder of radius 2, centered on the z-axis. (Recall that ρ sin φ = r , so this
is just the graph of the cylindrical equation r = 2.)

5. A horizontal plane at height 2. (Recall that ρ cos φ = z, so this is just the graph
of the rectangular equation z = 2.)

Problem 45

1. 2.

Chapter 5 Quiz
Problem 46

1.(a) x = r cos θ = cos
π

6
=

√
3

2

y = r sin θ = sin
π

6
= 1

2
z = z = 2

(b) x = ρ sin φ cos θ = 2 sin
π

4
cos

π

6
= 2

√
2

2

√
3

2
=

√
6

2

y = ρ sin φ sin θ = 2 sin
π

4
sin

π

6
= 2

√
2

2

1

2
=

√
2

2

z = ρ cos φ = 2 cos
π

4
= 2

√
2

2
=

√
2

2.(a) In polar coordinates the equation r = cos θ describes a circle of radius 1
2 ,

centered on the point ( 1
2 , 0). In cylindrical coordinates, we see the same

picture no matter what z is. Hence, the graph is the cylinder pictured below.
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(b) Consider the sphere of radius 1. On this sphere the points where θ = φ forms
a curve which starts at the top (where z = 1), ends at the bottom (where
z = −1), and passes through the point where y = 1. Now we see the same
picture no matter what φ is, so we see this curve on a sphere of every radius,
as in the figure below.

Chapter 6: Parameterizations
Problem 47

1. ψ(x, y) = (x, y, x2)

2. ψ(θ, z) = (θ2 cos θ, θ2 sin θ, z)

3. ψ(θ, φ) = (θ2 sin φ cos θ, θ2 sin φ sin θ, θ2 cos φ)

Problem 48

1. φ = θ 2. y = x + xz 3. z = sin r

Problem 49

1. 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ π 2. π

2 ≤ θπ, π
2 ≤ φπ

Problem 50

1. A portion of a cone that lies above a square.

2. A portion of a cone that lies above a circle.

3. A portion of a cone that lies above half of a circle.
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Problem 51

1. Start with the graph of x = y2 + z. Now stretch this graph in the y-direction by
a factor of 2. Finally, translate the entire picture −1 unit in the z-direction.

2. Start with the graph of z = x + sin y. Now reflect in the plane y = x , switching
the roles of x and y.

3. Start with the cylinder r = 1. Stretch in the x-direction by 2 and the y-direction
by 3, so that cross sections are now ellipses. Now move the central axis 1 unit
in the y-direction and −1 unit in the z-direction. Note that this last translation
does nothing to the shape.

Problem 52

If the curves shown were circles, with the one corresponding to z = 1 having radius
1, then the uniform spacing of the level curves would tell us that the shape is a cone.
Such a cone would be the graph of the cylindrical equation z = r , and would thus
be parameterized by

�(r, θ) = (r cos θ, r sin θ, r)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

The actual level curves we are given are ellipses. These can be obtained from
circular level curves by multiplying the x- and y-coordinates by a factor which will
stretch them the appropriate amount:

�(r, θ) = (2r cos θ, 3r sin θ, r)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

Problem 53

1. 2.
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Problem 54

1. The region between spheres of radii 1 and 2, and above the xy-plane.

2. The region inside a cylinder of height 2 and radius 1, between the planes z = 1
and z = 3.

Problem 55

�(r, θ, t) = (r cos θ, r sin θ, tr)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ t ≤ 1

Chapter 6 Quiz
Problem 56

1. For each point on a cylinder of radius 2, we know r = 2. If such points are also
on the graph of z = 2r , then z = 2(2) = 4. Hence, the problem is asking for the
points of a cylinder of radius 2 for which 0 ≤ z ≤ 4. This is most easily done
by utilizing cylindrical coordinates:

�(θ, z) = (2 cos θ, 2 sin θ, z)

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2

2. If the 2 were not at the x-coordinate then this parameterization would look just
like spherical coordinates. The restrictions on ρ, θ , and φ would then specify
one-quarter of a ball. The factor of 2 then stretches this shape in the x-direction.
The result is the figure below.
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Chapter 7: Vectors and Gradients
Problem 57

1. V + W = 〈7, 7〉, −V = 〈−1, −6〉, V − W = 〈−5, 5〉
2. V + W = 〈1, 2〉, −V = 〈0, 0〉, V − W = 〈−1, −2〉
3. V + W = 〈0, −1〉, −V = 〈1, −1〉, V − W = 〈−2, 3〉

Problem 58

1.
√

13 2.
√

10

Problem 59

The magnitude of 〈2, 1〉 is
√

22 + 12 = √
5. To get a unit vector that points in the

same direction we just divide by the magnitude:

1√
5
〈2, 1〉 =

〈
2
√

5

5
,

√
5

5

〉

Problem 60

The vector 〈5, 12〉 lies on a line of slope 12
5 . A perpendicular line will have a slope

which is the negative reciprocal of this, −5
12 . A vector that lies in this line is 〈−12, 5〉.

To get a unit vector that points in the same direction, we divide by the magnitude:

1√
122 + 53

〈−12, 5〉 = 1

13
〈−12, 5〉 =

〈
−12

13
,

5

13

〉

Problem 61

1. (2)(−3) + (4)(1) = −2

2. (0)(5) + (7)(2) = 14

3. (−2)(6) + (−1)(−3) = −9

Problem 62

1. cos θ = 〈2, 4〉 · 〈−3, 1〉
|〈2, 4〉||〈−3, 1〉| = −2√

20
√

10
= −

√
2

10

2. cos θ = 〈−2, −1〉 · 〈6, −3〉
|〈−2, −1〉||〈6, −3〉| = −9√

5
√

45
= − 6

15



204 Advanced Calculus Demystified

Problem 63

V · W = |V ||W | cos θ = 9 cos θ . So V · W is largest when the value of cos θ is
largest. Since the largest possible value of cos θ is one (when θ = 0), the largest
possible value of V · W is 9. Similarly, the smallest possible value for cos θ is −1,
so the smallest possible value for V · W is −9. If V and W are perpendicular then
cos θ = 0, so the smallest possibility for |V · W | is zero.

Problem 64

1. No, V · W = 4 �= 0. 2. Yes, V · W = 0.

3. Yes, V · W = 0. 4. No, V · W = −9 �= 0.

Problem 65

1. • ∇ f (x, y) = 〈ln y, x
y 〉

• ∇ f (1, 1) · 〈 3
5 ,

4
5〉 = 〈0, 1〉 · 〈 3

5 ,
4
5〉 = 4

5

• The direction of the maximum rate of change at (1, 1) is ∇ f (1, 1) = 〈0, 1〉.
This is already a unit vector.

• |∇ f (1, 1)| = 1

• Such a line is perpendicular to ∇ f (1, 1) = 〈0, 1〉. Such a vector is 〈1, 0〉.
2. • ∇ f (x, y) = 〈2, 3〉

• ∇ f (1, 1) · 〈 3
5 ,

4
5〉 = 〈2, 3〉 · 〈 3

5 ,
4
5〉 = 18

5

• The direction of maximum rate of change is ∇ f (1, 1) = 〈2, 3〉. A unit vector
that points in this direction is found by dividing by

√
13, the magnitude of

this vector. The result is 〈 2
√

13
13 , 3

√
13

13 〉.
• |∇ f (1, 1)| = √

13

• A line perpendicular to the one containing ∇ f (1, 1) = 〈2, 3〉 would have
slope −2

3 . A vector in this line is 〈−3, 2〉. A unit vector pointing in the same

direction is 〈− 3
√

13
13 , 2

√
13

13 〉.
3. • ∇ f (x, y) = 〈2xy + y3, x2 + 3xy2〉

• ∇ f (1, 1) · 〈 3
5 ,

4
5〉 = 〈3, 4〉 · 〈 3

5 ,
4
5〉 = 5

• The direction of maximum rate of change is ∇ f (1, 1) = 〈3, 4〉. A unit vector
that points in the same direction is 〈 3

5 ,
4
5〉.

• |∇ f (1, 1)| = 5

• A line perpendicular to the one containing ∇ f (1, 1) = 〈3, 4〉 would have
slope −3

4 . A vector in this line is 〈−4, 3〉. A unit vector pointing in the same
direction is 〈− 4

5 ,
3
5〉.
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Problem 66

1. First, we find the critical points by looking for places where ∇ f (x, y) = 〈0, 0〉.
Setting the vector ∇ f (x, y) = 〈y + 2, x − 3〉 equal to 〈0, 0〉, we see that x must
be 3 and y must be −2. So the only critical point is at (3, −2). Now note that
D(x, y) = −1 for all (x, y). In particular, D(3, −2) = −1 < 0, so the critical
point corresponds to a saddle.

2. Setting ∇ f (x, y) = 〈3x2 − y, −x + 2y〉 equal to 〈0, 0〉, we see that the coor-
dinates of any critical point must satisfy the system

3x2 − y = 0

−x + 2y = 0

The second equation tells us x = 2y. Plugging this into the first equation gives
3(2y)2 − y = 0. Solving for y then gives solutions at y = 0 and y = 1

12 . Plug-
ging these numbers back into x = 2y gives us x values of 0 and 1

6 . So the
coordinates of the critical points are (0, 0) and ( 1

6 ,
1
12).

We now compute

D(x, y) = (6x)(2) − (−1)2 = 12x − 1

We conclude D(0, 0) = −1 < 0, so (0, 0) is a saddle. On the other hand,
D( 1

6 ,
1

12) = 2 − 1 = 1 > 0, so there is either as maximum or a minimum at

( 1
6 ,

1
12). As ∂2 f

∂x2 ( 1
6 ,

1
12) = 1 > 0, it must be a minimum.

Problem 67

All second partials are equal to − sin(x + y), so

D(x, y) = ∂2 f

∂x2

∂2 f

∂y2
−
(

∂2 f

∂x∂y

)2

= sin2(x + y) − sin2(x + y) = 0

Inspection of the graph, pictured below, shows that there are infinitely many maxima
and minima, but no saddles.
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Problem 68

Recall that D(x, y) = ∂2 f
∂x2

∂2 f
∂y2 − (

∂2 f
∂x∂y )

2. Since (
∂2 f
∂x∂y )

2 is always bigger than or equal

to zero, ∂2 f
∂x2

∂2 f
∂y2 − (

∂2 f
∂x∂y )

2 can only be positive if ∂2 f
∂x2

∂2 f
∂y2 is positive. But if the product

of two numbers is positive, and you know the first of those two is also positive, then
the second must also be positive.

Problem 69

1. First we look for critical points in the interior of D by setting the partials equal
to zero:

∂ f

∂x
= 2x = 0

∂ f

∂y
= 2y + 2 = 0

From the first equation x = 0, and from the second y = −1. So (0, −1) is a
critical point. (To find out what type we look at the matrix of second partials:

∣∣∣∣2 0

0 2

∣∣∣∣ = 4 > 0

Since ∂2 f
∂x2 = 2 is also greater than 0, the point (0, −1) represents a minimum.)

We now look for minima on the boundary of D using the method of LaGrange
multipliers. The boundary of D satisfies the equation g(x, y) = x2 + y2

4 = 1.
Hence, we must look for points (x0, y0) that satisfy this and

∇ f (x0, y0) = λ∇g(x0, y0)

Note that ∇ f = 〈2x, 2y + 2〉 and ∇g = 〈2x,
y
2 〉. Hence, we get two equations:

2x = λ(2x), 2y + 2 = λ

(
1

2
y

)

The first equation tells us either λ = 1 or x = 0. If λ = 1 then the second
equation becomes

2y + 2 = y

2
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Solving for y then gives y = − 4
3 . However, if we try to find corresponding

values for x by plugging this into x2 + y2

4 = 1 (the equation for the boundary
of D) we get imaginary answers.

If x = 0, then the equation x2 + y2

4 = 1 gives us y = ±2. So on the boundary
of D the only potential minima are at (0, 2) and (0, −2).

2. To check which critical point represents the minimum of f we just plug them in:

f (0, −1) = 1 − 2 − 1 = −2

f (0, 2) = 4 + 4 − 1 = 7

f (0, −2) = 4 − 4 − 1 = −1

So the smallest value attained by f (x, y) on D is −2, and this happens at (0, −1).

Problem 70

1.

∣∣∣∣ 1 3
−1 2

∣∣∣∣ = 5 2.

∣∣∣∣1 6
1 1

∣∣∣∣ = −5 3.

∣∣∣∣2 3
6 9

∣∣∣∣ = 0

Problem 71

Since V and W are parallel there is a number k such that V = kW . So if V = 〈a, b〉
then W = 〈ka, kb〉. We now compute

∣∣∣∣a b

ka kb

∣∣∣∣ = akb − bka = 0

Problem 72

1.

∣∣∣∣∣∣∣
1 2 3

1 0 2

−2 2 −3

∣∣∣∣∣∣∣ = 1(0 − 4) − 2(−3 + 4) + 3(2 − 0) = −4 − 2 + 6 = 0

2.

∣∣∣∣∣∣∣
0 1 3

−1 2 1

2 0 −1

∣∣∣∣∣∣∣ = 0(−2 − 0) − 1(1 − 2) + 3(0 − 4) = 0 + 1 − 12 = −11
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Problem 73

1.

∣∣∣∣∣∣∣
i j k

1 2 3

−1 0 1

∣∣∣∣∣∣∣ = |〈2, −4, 2〉| = √
4 + 16 + 4 = 2

√
6

2.

∣∣∣∣∣∣∣
i j k

1 1 0

1 0 1

∣∣∣∣∣∣∣ = |〈1, −1, −1〉| = √
1 + 1 + 1 =

√
3

3.

∣∣∣∣∣∣∣
i j k

1 2 3

3 1 2

∣∣∣∣∣∣∣ = |〈1, 7, −5〉| = √
1 + 49 + 25 = 5

√
3

Problem 74

1. First we compute the cross product:∣∣∣∣∣∣∣
i j k

1 2 0

1 1 1

∣∣∣∣∣∣∣ = 〈2, −1, −1〉

The magnitude of this vector is
√

4 + 1 + 1 = √
6. So a unit vector that points

in the right direction is

〈2, −1, −1〉√
6

=
〈√

6

3
, −

√
6

6
, −

√
6

6

〉

2. The cross product is ∣∣∣∣∣∣∣
i j k

1 1 2

1 1 1

∣∣∣∣∣∣∣ = 〈−1, 1, 0〉

The magnitude of this is
√

2. So a unit vector that points in the right direction is

〈−1, 1, 0〉√
2

=
〈√

2

2
, −

√
2

2
, 0

〉
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Problem 75

Let V = 〈a, b, c〉 and W = 〈c, d, e〉. We now compute V × W and W × V :

V × W =

∣∣∣∣∣∣∣
i j k

a b c

d e f

∣∣∣∣∣∣∣ = i(b f − ce) − j(a f − cd) + k(ae − bd)

W × V =

∣∣∣∣∣∣∣
i j k

d e f

a b c

∣∣∣∣∣∣∣ = i(ce − b f ) − j(cd − a f ) + k(bd − ae)

Problem 76

Let U = 〈a, b, c〉, V = 〈d, e, f 〉 and W = 〈g, h, i〉. Now compute:

U · (V × W ) = 〈a, b, c〉 ·

∣∣∣∣∣∣∣
i j k

d e f

g h i

∣∣∣∣∣∣∣
= 〈a, b, c〉 ·

〈∣∣∣∣ e f

h i

∣∣∣∣ , −
∣∣∣∣d f

g i

∣∣∣∣ ,
∣∣∣∣d e

g h

∣∣∣∣
〉

= a

∣∣∣∣ e f

h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e

g h

∣∣∣∣
=

∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣
Problem 77

Inspection of the following figure reveals that |W | sin θ is the height of the paral-
lelogram, and |V | is the length of the base. The area is just the product of the base
and the height.

V

W

q

|W | sin q
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Chapter 7 Quiz
Problem 78

1.(a) The gradient of f (x, y) at (x, y) is

∇ f (x, y) = 〈2x + 3y, 3x〉
The largest slope at (1, 1) is the magnitude of the gradient

|∇ f (1, 1)| = |〈2(1) + 3(1), 3(1)〉|
= |〈5, 3〉|
= √

25 + 9

=
√

34

(b) To find the critical points we set each partial derivative equal to 0:

2x + 3y = 0, 3x = 0

From the second equation x = 0. The first then implies y = 0. So the only
critical point is at (0, 0).

(c) We compute ∣∣∣∣∣∣∣∣∣

∂2 f

∂x2

∂2 f

∂x∂y

∂2 f

∂y∂x

∂2 f

∂y2

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣2 3

3 0

∣∣∣∣ = −9

(d) Since the determinant of the matrix of second partials is negative, the critical
point (0, 0) is a saddle.

λ = 1 ± √
10

2

2.(a) The magnitude of V is

|〈1, 2, 3〉| =
√

12 + 22 + 32 =
√

14

Hence, the desired unit vector is

V

|V | = 〈1, 2, 3〉√
14

=
〈√

14

14
,

√
14

7
,

3
√

14

14

〉
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(b) Since V · W = |V ||W | cos θ , it follows that

cos θ = V · W

|V ||W |

= 1 + 2 + 3√
14

√
3

= 6√
42

=
√

42

7

(c) First we find the cross product:

V × W =

∣∣∣∣∣∣∣
i j k

1 2 3

1 1 1

∣∣∣∣∣∣∣
= i(2 − 3) − j(1 − 3) + k(1 − 2)

= 〈−1, 2, −1〉

The magnitude of this vector is

|〈−1, 2, −1〉| = √
1 + 4 + 1 =

√
6

Hence, a unit vector that points in the desired direction is

〈−1, 2, −1〉√
6

=
〈
−

√
6

6
,

√
6

3
, −

√
6

6

〉

Chapter 8: Calculus with Parameterizations
Problem 79

The speed is the magnitude of the derivative of the parameterization:

|〈2t cos t2, −2t sin t2〉| =
√

4t2 cos2 t2 + 4t2 sin2 t2 = 2t
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Problem 80

A tangent vector is given by the derivative of the parameterization: c′(t) =
〈3t2, 4t3, 5t4〉. The point (1, 1, 1) = c(1). A tangent vector at this point is then
c′(1) = 〈3, 4, 5〉. The magnitude of this vector is

√
9 + 16 + 25 = 5

√
2. A unit

tangent vector is thus

〈3, 4, 5〉
5
√

2
=
〈

3
√

2

10
,

2
√

2

5
,

√
2

2

〉

Problem 81

1. The derivatives of the parameterization are

∂�

∂r
= 〈cos θ, sin θ, 2r〉 , and

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

If r = 1 and θ = π
6 these vectors are 〈

√
3

2 , 1
2 , 2〉 and 〈− 1

2 ,
√

3
2 , 0〉.

2.

∣∣∣∣∣∣∣
i j k

√
3

2
1
2 2

− 1
2

√
3

2 0

∣∣∣∣∣∣∣ = 〈−
√

3, −1, 1〉

Problem 82

1. First we compute

∣∣∣∣d�

dt

∣∣∣∣ = |〈− sin t, cos t, 1〉|

=
√

sin2 t + cos2 t + 1

=
√

2

Hence, if we multiply � by 1√
2

=
√

2
2 we get the required parameterization:


(t) =
(√

2

2
cos t,

√
2

2
sin t,

√
2

2
t

)
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2. First, note that

d


dt
=
〈
−

√
2

2
sin t,

√
2

2
cos t,

√
2

2

〉

It now follows that

d2


dt2
=
〈
−

√
2

2
cos t, −

√
2

2
sin t, 0

〉

We now compute the dot product

d


dt
· d2


dt2
=
〈
−

√
2

2
sin t,

√
2

2
cos t,

√
2

2

〉
·
〈
−

√
2

2
cos t, −

√
2

2
sin t, 0

〉

= 1

2
sin t cos t − 1

2
cos t sin t + 0

= 0

3. We compute the magnitude of d2

dt2 :

∣∣∣∣d2


dt2

∣∣∣∣ =
√√√√(√

2

2
cos t

)2

+
(√

2

2
sin t

)2

+ 0

=
√

1

2
cos2 t + 1

2
sin2 t

=
√

1

2

=
√

2

2

Hence, if we let N = √
2 d2


dt2 = 〈− cos t, − sin t, 0〉 then N is a unit vector and

d2


dt2
=

√
2

2
N

So, the required κ is
√

2
2 .
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4. We compute

B = d


dt
× N

=
〈
−

√
2

2
sin t,

√
2

2
cos t,

√
2

2

〉
× 〈− cos t, − sin t, 0〉

=

∣∣∣∣∣∣∣
i j k

−
√

2
2 sin t

√
2

2 cos t
√

2
2

− cos t − sin t 0

∣∣∣∣∣∣∣
=
〈√

2

2
sin t, −

√
2

2
cos t,

√
2

2

〉

We now compute the magnitude of B:

|B| =

√√√√(√
2

2
sin t

)2

+
(√

2

2
cos t

)2

+
(√

2

2

)2

=
√

1

2
sin2 t + 1

2
cos2 t + 1

2

= 1

5. d B
dt = 〈

√
2

2 cos t,
√

2
2 sin t, 0〉

6. Since d B
dt = 〈

√
2

2 cos t,
√

2
2 sin t, 0〉 and N = 〈− cos t, − sin t, 0〉 it must be that

τ =
√

2
2 .

7. First, notice

dN

dt
= 〈sin t, − cos t, 0〉

We now do some calculation:

−κ
d


dt
+ τB = −

√
2

2

〈
−

√
2

2
sin t,

√
2

2
cos t,

√
2

2

〉

+
√

2

2

〈√
2

2
sin t, −

√
2

2
cos t,

√
2

2

〉



Answers to Problems 215

=
〈

1

2
sin t, −1

2
cos t, −1

2

〉
+
〈

1

2
sin t, −1

2
cos t,

1

2

〉
= 〈sin t, − cos t, 0〉

= dN

dt

Problem 83

The length of �(t) is computed as follows:

1∫
0

∣∣∣∣d�

dt

∣∣∣∣ dt =
1∫

0

|〈− sin t, cos t, 1〉| dt

=
1∫

0

√
cos2 t + sin2 t + 1 dt

=
1∫

0

√
2 dt

=
√

2t
∣∣∣1
0

=
√

2

Problem 84

The length of �(t) is calculated as follows:

1∫
0

∣∣∣∣d�

dt

∣∣∣∣ dt =
1∫

0

|〈− sin t, cos t, t〉| dt

=
1∫

0

√
cos2 t + sin2 t + t2 dt

=
1∫

0

√
1 + t2 dt

This is precisely the integral we obtained for the length of (t cos t, t sin t) in
Example 8-5.
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Problem 85 ∫
C

f (x, y) ds =
1∫

0

f (t3, t)|〈t2, 1〉| dt

=
1∫

0

t3
√

t4 + 1 dt

=
2∫

1

1

4

√
u du

= 1

6
u

3
2

∣∣∣∣
2

1

= 1

6
(2

3
2 − 1)

Problem 86

Area =
1∫

0

1∫
0

√
(2)2 + (3)2 + 1 dx dy

=
1∫

0

1∫
0

√
14 dx dy

=
√

14

Problem 87

1. Area =
1∫

0

1∫
0

√(
∂ f

∂x

)2

+
(

∂ f

∂y

)2

+ 1 dx dy

=
1∫

0

1∫
0

√√√√( x√
x2 + y2

)2

+
(

y√
x2 + y2

)2

+ 1 dx dy

=
1∫

0

1∫
0

√
2 dx dy

=
√

2
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2. Note that the surface over the domain D is a surface of revolution. In cylindrical
coordinates it has the equation z = r . So the area is given by

Area = 2π

1∫
0

r

√(
d f

dr

)2

+ 1 dr

= 2π

1∫
0

r
√

12 + 1 dr

= 2
√

2π

1∫
0

r dr

=
√

2π

Problem 88

A parameterization for the surface is given by

�(θ, φ) = ( f (φ) sin φ cos θ, f (φ) sin φ sin θ, f (φ) cos φ)

The partials of this are

∂�

∂θ
= 〈− f (φ) sin φ sin θ, f (φ) sin φ cos θ, 0〉

∂�

∂φ
= 〈( f ′(φ) sin φ + f (φ) cos φ) cos θ,

( f ′(φ) sin φ + f (φ) cos φ) sin θ, f ′(φ) cos φ − f (φ) sin φ)〉

The cross product is

∂�

∂θ
× ∂�

∂φ
= ( f (φ) f ′(φ) sin φ cos φ cos θ − f (φ)2 sin2 φ cos θ)i

+( f (φ) f ′(φ) sin φ cos φ sin θ − f (φ)2 sin2 φ sin θ)j

−( f (φ) f ′(φ) sin2 φ + f (φ)2 sin φ cos φ)k
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With some work, the magnitude of this vector is

∣∣∣∣∂�∂θ × ∂�

∂φ

∣∣∣∣ = f (φ) sin φ

√
( f ′(φ))2 + f (φ)2

And so,

S.A. =
∫ 2π∫

0

f (φ) sin φ

√
( f ′(φ))2 + f (φ)2 dθ dφ

= 2π

∫
f (φ) sin φ

√
( f ′(φ))2 + f (φ)2 dφ

Problem 89

S.A. =
1∫

−1

π∫
0

∣∣∣∣∂�∂r × ∂�

∂θ

∣∣∣∣ dθ dr

=
1∫

−1

π∫
0

∣∣∣∣∣∣∣
i j k

cos θ sin θ 0

−r sin θ r cos θ 1

∣∣∣∣∣∣∣ dθ dr

=
1∫

−1

π∫
0

√
1 + r2 dθ dr

= π

1∫
−1

√
1 + r2 dr

= π
√

2 + π

2
ln

(√
2 + 1√
2 − 1

)
(An integral table helps here.)

Problem 90

The portion of the plane specified is parameterized by

�(x, y) = (x, y, x + y)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1
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We now compute

∫
S

f (x, y, z) dS =
1∫

0

1∫
0

f (�(x, y))

∣∣∣∣∂�∂x
× ∂�

∂y

∣∣∣∣ dx dy

=
1∫

0

1∫
0

x + y + (x + y) |〈−1, −1, 1〉| dx dy

=
√

3

1∫
0

1∫
0

2x + 2y dx dy

=
√

3

1∫
0

x2 + 2xy
∣∣1
0 dy

=
√

3

1∫
0

1 + 2y dy

=
√

3 (y + y2)
∣∣1
0

= 2
√

3

Problem 91

A parameterization is given by

�(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
2

Now calculate:

∫
S

f (x, y, z) dS =
π
2∫

0

2π∫
0

f (�(θ, φ))

∣∣∣∣∂�∂θ × ∂�

∂φ

∣∣∣∣ dθdφ

=
π
2∫

0

2π∫
0

cos φ|〈− sin2 φ cos θ, − sin2 φ sin θ, − sin φ cos φ〉|dθdφ
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=
π
2∫

0

2π∫
0

cos φ sin φ dθ dφ

= 2π

π
2∫

0

cos φ sin φ dφ

= π

π
2∫

0

sin 2φ dφ

= π

Problem 92

A parameterization is given by

�(r, θ, z) = (r cos θ, r sin θ, z)

0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h

The derivatives of this are

∂�

∂r
= 〈cos θ, sin θ, 0〉

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉

We now compute volume by integrating:

Volume =
h∫

0

2π∫
0

R∫
0

∣∣∣∣∣∣∣
cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ dr dθ dz

=
h∫

0

2π∫
0

R∫
0

r dr dθ dz

=
h∫

0

2π∫
0

R2

2
dθ dz
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=
h∫

0

πR2 dz

= πR2h

Problem 93

First, we calculate the derivatives of the parameterization:

∂�

∂r
= 〈(1 − z) cos θ, (1 − z) sin θ, 0〉

∂�

∂θ
= 〈−(1 − z)r sin θ, (1 − z)r cos θ, 0〉

∂�

∂z
= 〈−r cos θ, −r sin θ, 1〉

Now we integrate:

Volume =
1∫

0

2π∫
0

1∫
0

∣∣∣∣∂�∂r ∂�

∂θ

∂�

∂z

∣∣∣∣ dr dθ dz

=
1∫

0

2π∫
0

1∫
0

∣∣∣∣∣∣∣
(1 − z) cos θ (1 − z) sin θ 0

−(1 − z)r sin θ (1 − z)r cos θ 0

−r cos θ −r sin θ 1

∣∣∣∣∣∣∣ dr dθ dz

=
1∫

0

2π∫
0

1∫
0

(1 − z)2r dr dθ dz

=
1∫

0

2π∫
0

(1 − z)2

2
dθ dz

= π

1∫
0

(1 − z)2 dz

= π

(
z − z2 + 1

3
z3

)∣∣∣∣
1

0

= π

3
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Problem 94

Letting R denote the elliptical region given by the parameterization �, and
f (x, y) = 2x − y, we have

∫ ∫
R

2x − y dx dy =
π∫

0

1∫
0

f (�(r, θ))

∣∣∣∣∂�∂r ∂�

∂θ

∣∣∣∣ dr dθ

=
π∫

0

1∫
0

[2(2r cos θ) − r sin θ ]

∣∣∣∣ 2 cos θ sin θ

−2r sin θ r cos θ

∣∣∣∣ dr dθ

=
π∫

0

1∫
0

(4r cos θ − r sin θ))(2r) dr dθ

=
π∫

0

1∫
0

8r2 cos θ − 2r2 sin θ dr dθ

=
π∫

0

8

3
r3 cos θ − 2

3
r3 sin θ

∣∣∣∣
1

0

dθ

=
π∫

0

8

3
cos θ − 2

3
sin θ dθ

= 8

3
sin θ + 2

3
cos θ

∣∣∣∣
π

0

= −4

3

Problem 95

∫ ∫
V

∫
1

1 + z2
dx dy dz =

2∫
−2

2π∫
0

2∫
1

1

1 + sinh2 ω

∣∣∣∣∂�∂r ∂�

∂θ

∂�

∂ω

∣∣∣∣ dr dθ dω

=
2∫

−2

2π∫
0

2∫
1

1

cosh2 ω

∣∣∣∣∣∣
cosh ω cos θ cosh ω sin θ 0

−r cosh ω sin θ r cosh ω cos θ 0
r sinh ω cos θ r sinh ω sin θ cosh ω

∣∣∣∣∣∣ dr dθ dω
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=
2∫

−2

2π∫
0

2∫
1

r cosh3 ω

cosh2 ω
dr dθ dω

=
2∫

−2

2π∫
0

2∫
1

r cosh ω dr dθ dω

=
2∫

−2

2π∫
0

r2

2
cosh ω

∣∣∣∣
2

1

dθ dω

= 3

2

2∫
−2

2π∫
0

cosh ω dθ dω

= 3π

2∫
−2

cosh ω dω

= 3π sinh ω|2−2

= 6π sinh 2

Problem 96

The region V is easily parameterized using cylindrical coordinates:

Psi(r, θ, z) = (r cos θ, r sin θ, z)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2

To use this parameterization to evaluate the integral, we will need the determinant
of the matrix of partial derivatives of Psi:

∣∣∣∣∣∣∣
cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r
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We now integrate ∫
V

z dx dy dz =
2∫

0

2π∫
0

1∫
0

z(r) dr dθ dz

=
2∫

0

2π∫
0

1

2
z dθ dz

=
2∫

0

π z dz

= 2π

Problem 97

The region R is easily parameterized with polar coordinates:

�(r, θ) = (r cos θ, r sin θ)

0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
The determinant of the matrix of partials of � is r . Hence,

∫
R

1 + y2

x2
dx dy =

π
4∫

0

2∫
0

(
1 + (r sin θ)2

(r cos θ)2

)
(r) dr dθ

=
π
4∫

0

2∫
0

(
1 + tan2 θ

)
(r) dr dθ

=
π
4∫

0

2∫
0

r sec2 θ dr dθ

=
π
4∫

0

2 sec2 θ dθ

= 2 tan θ |
π
4
0

= 2
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Chapter 8 Quiz
Problem 98

1.(a) �(y) = (sin y, y)

(b) The point (0, 0) is �(0). So a tangent vector is given by the derivative of the
parameterization, d�

dt = 〈cos y, 1〉, at y = 0. This is the vector 〈1, 1〉. A unit
tangent vector is thus

〈1, 1〉
| 〈1, 1〉 | = 〈1, 1〉√

2
=
〈√

2

2
,

√
2

2

〉

2.(a) �(x, y, t) = (x, y, t (x2 + y2))

0 ≤ x, y, t ≤ 1

(b) We will need the partials of �:

∂�

∂x
= 〈1, 0, 2xt〉

∂�

∂y
= 〈0, 1, 2yt〉

∂�

∂t
= 〈0, 0, x2 + y2〉

Next we must compute the determinant of the matrix of partials:

∣∣∣∣∣∣∣
1 0 2xt

0 1 2yt

0 0 x2 + y2

∣∣∣∣∣∣∣ = x2 + y2

Finally, we integrate

∫ ∫
Q

∫
z

x2 + y2
dx dy dz =

1∫
0

1∫
0

1∫
0

t (x2 + y2)

x2 + y2
(x2 + y2) dx dy dt

=
1∫

0

1∫
0

1∫
0

t x2 + t y2 dx dy dt



226 Advanced Calculus Demystified

=
1∫

0

1∫
0

1

3
t + t y2 dy dt

=
1∫

0

1

3
t + 1

3
t dt

= 1

3

3. First, we compute the partials of φ:

∂φ

∂r
= 〈cosh t, sinh t〉

∂φ

∂t
= 〈r sinh t, r cosh t〉

Next we will need the determinant of the matrix of partials:

∣∣∣∣ cosh t sinh t

r sinh t r cosh t

∣∣∣∣ = r

Now we integrate

∫ ∫
R

x2 − y2 dx dy =
1∫

−1

1∫
0

((r cosh t)2 − (r sinh t)2)(r) dr dt

=
1∫

−1

1∫
0

r3 dr dt

=
1∫

−1

1

4
dt

= 1

2
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Chapter 9: Vector Fields and Derivatives
Problem 99

1. −5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

1

2

3

2. −5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

1

2

3

3. 5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

1

2

3
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Problem 100

1. 〈1, 1〉 2. 〈1, z, y〉 3. 〈y + z, x + z, x + y〉

Problem 101

1. ∂

∂x
(y) + ∂

∂y
(z) + ∂

∂z
(x) = 0 + 0 + 0 = 0

2. ∂

∂x
(x + y) + ∂

∂y
(x − y) + ∂

∂z
(z) = 1 − 1 + 1 = 1

3. ∂

∂x
(x2 + y2) + ∂

∂y
(x2 − y2) + ∂

∂z
(z2) = 2x − 2y + 2z

Problem 102

∇ · ∇ f = ∇ ·
〈
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

〉

= ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2

Problem 103

We let F = 〈 fx , fy, fz〉 and G = 〈gx , gy, gz〉. Then

F × G = 〈 fygz − fzgy, fzgx − fx gz, fx gy − fygx〉

and so

∇ · (F × G) = ∂

∂x
( fygz − fzgy) + ∂

∂y
( fzgx − fx gz)

+ ∂

∂z
( fx gy − fygx)

= ∂ fy

∂x
gz + fy

∂gz

∂x
− ∂ fz

∂x
gy − fz

∂gy

∂x

+∂ fz

∂y
gx + fz

∂gx

∂y
− ∂ fx

∂y
gz − fx

∂gz

∂y

+∂ fx

∂z
gy + fx

∂gy

∂z
− ∂ fy

∂z
gx − fy

∂gx

∂z
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= 〈gx , gy, gz〉 ·
〈
∂ fz

∂y
− ∂ fy

∂z
,
∂ fx

∂z
− ∂ fz

∂x
,
∂ fy

∂x
− ∂ fx

∂y

〉

−〈 fx , fy, fz〉 ·
〈
∂gz

∂y
− ∂gy

∂z
,
∂gx

∂z
− ∂gz

∂x
,
∂gy

∂x
− ∂gx

∂y

〉

= G · (∇ × F) − F · (∇ × G)

Problem 104

1. curl V = ∇ × V

=

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x + y x − z y + z

∣∣∣∣∣∣∣
= 〈2, 0, 0〉

2. 〈2x, 0, −2z〉

Problem 105

1. ∇ × (∇ f ) = ∇ ×
〈
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

〉

=

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

∂ f
∂x

∂ f
∂y

∂ f
∂z

∣∣∣∣∣∣∣
=
〈

∂2 f

∂y∂z
− ∂2 f

∂z∂y
,

∂2 f

∂z∂x
− ∂2 f

∂x∂z
,

∂2 f

∂x∂y
− ∂2 f

∂y∂x

〉
= 〈0, 0, 0〉

2. ∇ · (∇ × V) = ∇ ·
〈
∂h

∂y
− ∂g

∂z
,
∂ f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂ f

∂y

〉

= ∂

∂x

(
∂h

∂y
− ∂g

∂z

)
− ∂

∂y

(
∂h

∂x
− ∂ f

∂z

)
+ ∂

∂z

(
∂g

∂x
− ∂ f

∂y

)

= ∂2h

∂x∂y
− ∂2g

∂x∂z
− ∂2h

∂y∂x
+ ∂2 f

∂y∂z
+ ∂2g

∂z∂x
− ∂2 f

∂z∂y

= 0
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Chapter 9 Quiz
Problem 106

1.

∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
−y

x2 + y2

x

x2 + y2
0

∣∣∣∣∣∣∣∣∣∣∣
= 〈0, 0, 0〉

2. ∂

∂x
(x2 + y2) + ∂

∂y
(y2 − x2) + 0 = 2x + 2y

3. 〈2x sin(y − z), x2 cos(y − z), −x2 cos(y − z)〉
4. Suppose W = 〈 f, g, h〉. Then the last component of ∇ × W is ∂g

∂x − ∂ f
∂y . This

can equal y
x if either ∂g

∂x = y
x or − ∂ f

∂y = y
x . In the former case g(x, y, z) = y ln x .

In the latter case f (x, y, x) = − 1
x . So two vector fields that have the required

curl are 〈0, y ln x, 0〉 and 〈− 1
x , 0, 0〉.

Chapter 10: Integrating Vector Fields
Problem 107

The circle is parameterized by

�(t) = (cos t, sin t), 0 ≤ t ≤ 2π

Note that this parameterization agrees with the specified orientation. Now we may
integrate

∫
C

W · ds =
2π∫

0

W(�(t)) · d�

dt
dt

=
2π∫

0

〈− sin t, cos t〉 · 〈− sin t, cos t〉 dt

=
2π∫

0

sin2 t + cos2 t dt
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=
2π∫

0

dt

= 2π

Problem 108

∫
C

W · ds =
1∫

0

W(�(t)) · d�

dt
dt

=
1∫

0

〈t3, t2(1 − t)2, t + 1 − t〉 · 〈2t, 1, −1〉 dt

=
1∫

0

3t4 − 2t3 + t2 − 1 dt

= 3

5
t5 − 1

2
t4 + 1

3
t3 − t

∣∣∣∣
1

0

= 3

5
− 1

2
+ 1

3
− 1

= −17

30

Problem 109

1. First, note that ∇ f = 〈y2, 2xy〉. Now we integrate∫
C

∇ f · ds =
2∫

−1

∇ f (�(t)) · d�

dt
dt

=
2∫

−1

〈t4, 2t3〉 · 〈1, 2t〉 dt

=
2∫

−1

5t4 dt
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= t5
∣∣2
−1

= 32 − (−1)

= 33

2. f (�(2)) − f (�(−1)) = f (2, 4) − f (−1, 1)

= 32 − (−1)

= 33

Problem 110

The curve C is parameterized by

�(t) = (t, t2), 0 ≤ t ≤ 1

The derivative of this parameterization is 〈1, 2t〉.

∫
C

W · ds =
1∫

0

〈−t4, t3〉 · 〈1, 2t〉 dt

=
1∫

0

t4 dt

= 1

5

Problem 111

The unit sphere is parameterized with spherical coordinates by

�(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

The derivatives of this are

∂�

∂θ
= 〈− sin φ sin θ, sin φ cos θ, 0〉

∂�

∂θ
= 〈cos φ cos θ, cos φ sin θ, − sin φ〉
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And so,

∂�

∂θ
× ∂�

∂φ
=

∣∣∣∣∣∣∣
i j k

− sin φ sin θ sin φ cos θ 0

cos φ cos θ cos φ sin θ − sin φ

∣∣∣∣∣∣∣
= 〈− sin2 φ cos θ, − sin2 φ sin θ, − sin φ cos φ〉

Notice that at the point �(0, π
2 ) = (1, 0, 0) the vector ∂�

∂θ
× ∂�

∂φ
is 〈1, 0, 0〉, which

agrees with the specified orientation. We may thus integrate to find the correct
answer:

∫
S

W · dS =
π∫

0

2π∫
0

W(�(θ, φ)) ·
(

∂�

∂θ
× ∂�

∂φ

)
dθ dφ

=
π∫

0

2π∫
0

〈sin φ cos θ, sin φ sin θ, cos φ〉 ·
(

∂�

∂θ
× ∂�

∂φ

)
dθ dφ

=
π∫

0

2π∫
0

− sin φ dθ dφ

=
π∫

0

−2π sin φ dφ

= 2π cos φ|π0
= −4π

Problem 112

First, we calculate the partials of the parameterization:

∂�

∂u
= 〈1, 0, 2u〉

∂�

∂v
= 〈0, 1, 2v〉
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Now, the cross product is given by

∂�

∂u
× ∂�

∂v
=

∣∣∣∣∣∣∣
i j k

1 0 2u

0 1 2v

∣∣∣∣∣∣∣ = 〈−2u, −2v, 1〉

Finally, we integrate

∫
S

W · dS =
1∫

0

1∫
0

W(�(u, v)) ·
(

∂�

∂u
× ∂�

∂v

)
du dv

=
1∫

0

1∫
0

〈u(u2 + v2), v(u2 + v2), 0〉 · 〈−2u, −2v, 1〉 du dv

=
1∫

0

1∫
0

−2u2(u2 + v2) − 2v2(u2 + v2) du dv

=
1∫

0

1∫
0

−2u4 − 4u2v2 − 2v4 du dv

=
1∫

0

−2

5
− 4

3
v2 − 2v4 dv

= −2

5
− 4

9
− 2

5

= −56

45

Problem 113

First, we calculate the partials of the parameterization:

∂�

∂θ
= 〈− cos φ sin θ, cos φ cos θ, 0〉

∂�

∂φ
= 〈− sin φ cos θ, − sin φ sin θ, cos φ〉
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Now, the cross product of these vectors is

∂�

∂θ
× ∂�

∂φ
=

∣∣∣∣∣∣∣
i j k

− cos φ sin θ cos φ cos θ 0

− sin φ cos θ − sin φ sin θ cos φ

∣∣∣∣∣∣∣
= 〈cos2 φ cos θ, cos2 φ sin θ, cos φ sin φ〉

We are now ready to integrate

∫
S

W · dS =
π
4∫

− π
4

2π∫
0

〈
1

cos φ cos θ
,

1

cos φ sin θ
, 0

〉

·〈cos2 φ cos θ, cos2 φ sin θ, cos φ sin φ〉 dθ dφ

=
π
4∫

− π
4

2π∫
0

2 cos φ dθ dφ

=
π
4∫

− π
4

4π cos φ dφ

= 4π sin φ|
π
4
− π

4

= 4π
√

2

Problem 114

First, we compute ∇ × W: ∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

xz yz 0

∣∣∣∣∣∣∣∣∣
= 〈y, x, 0〉

A parameterization for S is given (via spherical coordinates) by

�(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

0 ≤ θ ≤ π

4
, 0 ≤ φ ≤ π

2
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The partials of this are

∂�

∂θ
= 〈− sin φ sin θ, sin φ cos θ, 0〉

∂�

∂θ
= 〈cos φ cos θ, cos φ sin θ, − sin φ〉

And so,

∂�

∂θ
× ∂�

∂φ
=

∣∣∣∣∣∣∣
i j k

− sin φ sin θ sin φ cos θ 0

cos φ cos θ cos φ sin θ − sin φ

∣∣∣∣∣∣∣
= 〈− sin2 φ cos θ, − sin2 φ sin θ, − sin φ cos φ〉

Now notice that at the point �(π
2 , π

2 ) = (0, 1, 0) the vector ∂�
∂θ

× ∂�
∂φ

is equal
to 〈0, 1, 0〉, which disagrees with the specified orientation. We must therefore
remember to switch the sign of our final answer. Finally, we can integrate

∫
S
(∇ × W) · dS =

π
2∫

0

π
4∫

0

∇ × W(�(θ, φ)) ·
(

∂�

∂θ
× ∂�

∂φ

)
dθ dφ

=
π
2∫

0

π
4∫

0

〈sin φ sin θ, sin φ cos θ, 0〉 ·
(

∂�

∂θ
× ∂�

∂φ

)
dθ dφ

=
π
2∫

0

π
4∫

0

−2 sin3 φ sin θ cos θ dθ dφ

=
π
2∫

0

π
4∫

0

− sin3 φ sin 2θ dθ dφ

=
π
2∫

0

1

2
sin3 φ cos 2θ

∣∣∣∣
π
4

0

dφ
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=
π
2∫

0

−1

2
(1 − cos2 φ) sin φ dφ

= 1

2
(cos φ − 1

3
cos3 φ)

∣∣∣∣
π
2

0

= −1

3

The correct answer is therefore 1
3 .

Chapter 10 Quiz
Problem 115

1. A parameterization for C is given by

�(t) = (t2, t), 0 ≤ t ≤ 1

The derivative of this is

d�

dt
= 〈2t, 1〉

Note that at the point �(0) = (0, 0) this vector is 〈0, 1〉, which disagrees with
the orientation indicated in the figure. Thus, we will have to negate our final
answer. We now integrate

∫
C

〈1, 1〉 · ds = −
1∫

0

〈1, 1〉 · 〈2t, 1〉 dt

= −
1∫

0

2t + 1 dt

= −2
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2. The partials of � are given by

∂�

∂r
= 〈cos θ, sin θ, 1〉

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

The cross product of these vectors is

∂�

∂r
× ∂�

∂θ
=

∣∣∣∣∣∣∣
i j k

cos θ sin θ 1

−r sin θ r cos θ 0

∣∣∣∣∣∣∣ = 〈−r cos θ, −r sin θ, r〉

We are now prepared to integrate

∫
S

〈
1

x
, −1

y
, z

〉
· dS =

2π∫
0

2∫
1

〈
1

r cos θ
,

−1

r sin θ
, r

〉
· 〈−r cos θ, −r sin θ, r〉 dr dθ

=
2π∫

0

2∫
1

−1 + 1 + r2 dr dθ

=
2π∫

0

1

3
r3

∣∣∣∣
2

1

dθ

=
2π∫

0

7

3
dθ

= 14π

3

Chapter 11: Integration Theorems
Problem 116

Notice that W = 〈1, 1, 1〉 = ∇(x + y + z). Hence, if we let f (x, y, z) =
x + y + z then ∫

C

W · ds = f (1, 1, 1) − f (1, 0, 1) = 3 − 2 = 1
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Problem 117

The trick is to notice that W = ∇ f , where f (x, y) = x sin y. Then

∫
C

W · ds = f
(

2,
π

2

)
− f (0, 0)

= 2 sin
π

2
− 0 sin 0

= 2

Problem 118

First, notice that f (x, y) = x2 − 4x + 4 + y2 + 2y + 1 = (x − 2)2 + (y + 1)2.
Thus the graph of f (x, y) can be obtained from the graph of z = x2 + y2

(a paraboloid) by shifting 2 units in the positive x-direction and 1 unit in the
negative y-direction. This puts the “bottom” of the paraboloid at the point (2, −1).
Hence, if (a, b) is any point other than (2, −1) then f (a, b) > 0. The result now
follows easily:

∫
C

∇ f · ds = f (a, b) − f (2, −1) = f (a, b) > 0

Problem 119

Suppose the beginning and ending point of C is p. Then

∫
C

∇ f · ds = f (p) − f (p) = 0

Problem 120

Suppose f (x) is a function. Let � be a parameterization of [a, b] given by

�(x) = x, a ≤ x ≤ b

By the theorem,

∫
C

∇ f · ds = f (b) − f (a)
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We now follow the definitions:

∫
C

∇ f · ds =
b∫

a

〈 f ′(x)〉 · d�

dx
dx

=
b∫

a

〈 f ′(x)〉 · 〈1〉 dx

=
b∫

a

f ′(x) dx

Putting this all together gives

b∫
a

f ′(x) dx = f (b) − f (a)

Problem 121

When you are coming down the mountain the force of gravity is working with you,
not against you. So the work done against gravity during this portion of the trip is
negative. This cancels out the extra positive work you did to get to the top of the
mountain.

Problem 122

∫
∂Q

〈−y2, x2〉 · ds =
1∫

0

1∫
0

∂

∂x
x2 − ∂

∂y
(−y2) dx dy

=
1∫

0

1∫
0

2x + 2y dx dy

=
1∫

0

1 + 2y dy

= 2
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Problem 123

Let D be the horizontal line segment that connects (0, 0) to (a, 0). Then C ∪ D
bounds a rectangular region Q. Green’s Theorem says

∫
C

〈y, x〉 · ds +
∫
D

〈y, x〉 · ds =
∫

C∪D

〈y, x〉 · ds

=
∫ ∫

Q

∂

∂x
x − ∂

∂y
y dx dy

= 0

We conclude

∫
C

〈y, x〉 · ds = −
∫
D

〈y, x〉 · ds

and so the answer only depends on a.

Problem 124

By Green’s Theorem,

∫
∂σ

W · ds =
∫
σ

∂

∂x
(x2) − ∂

∂y
(−y2) dx dy

=
∫
σ

2x + 2y dx dy

To evaluate this integral we will need the determinant of the matrix of partial
derivatives of φ:

∣∣∣∣ 2 1

−1 1

∣∣∣∣ = 3
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We now integrate

∫
σ

2x + 2y dx dy =
1∫

0

2∫
1

(2(2u − v) + 2(u + v)) 3 du dv

=
1∫

0

2∫
1

18u du dv

=
1∫

0

27 dv

= 27

Problem 125

The area of any region Q in R
2 can be calculated by the integral

∫ ∫
Q

dx dy

Green’s Theorem says that this will be equal to the integral of W = 〈 f (x), g(x)〉
around ∂Q if

∂g

∂x
− ∂ f

∂y
= 1

One suitable choice for W would thus be 〈0, x〉. We now integrate this vector field
over the unit circle, by using the usual parameterization

�(t) = (cos t, sin t), 0 ≤ t ≤ 2π

∫
∂Q

W · ds =
2π∫

0

〈0, cos t〉 · 〈− sin t, cos t〉 dt

=
2π∫

0

cos2 t dt
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= 1

2
t + 1

4
sin 2t

∣∣∣∣
2π

0

= π

Problem 126

1. Let C1 and C2 be two circles centered on the origin, oriented counterclockwise.
Let Q be the region between these circles. Then ∂Q has two pieces. One is C1,
and the other is C2 with the opposite orientation. As a shorthand only we write
this as C1 − C2. Green’s Theorem now says

0 =
∫ ∫

Q

0 dx dy

=
∫

C1−C2

〈 f (x), g(x)〉 · ds

=
∫
C1

〈 f (x), g(x)〉 · ds −
∫
C2

〈 f (x), g(x)〉 · ds

And hence,
∫
C1

〈 f (x), g(x)〉 · ds = ∫
C2

〈 f (x), g(x)〉 · ds.

2. Using the previous part, we just have to show ∂g
∂x − ∂ f

∂y = 0.

∂

∂x

x

x2 + y2
− ∂

∂y

−y

x2 + y2

=
(

1

x2 + y2
− 2x2

(x2 + y2)2

)
−
( −1

x2 + y2
+ 2y2

(x2 + y2)2

)

= 2

x2 + y2
− 2x2 + 2y2

(x2 + y2)2

= 0
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3. Note that on the unit circle x2 + y2 = 1, so, on this circle the integral of W is
the same as the integral of 〈−y, x〉.

∫
C

W · ds =
∫

C
〈−y, x〉 · ds =

2π∫
0

〈− sin t, cos t〉 · 〈− sin t, cos t〉 dt

=
2π∫

0

sin2 t + cos2 t dt

=
2π∫

0

dt

= 2π

Problem 127

1. By Green’s Theorem,∫
∂σ

W · ds =
∫
σ

∂

∂x
(ey) − ∂

∂y
(x2) dx dy = 0

2. The curve C is parameterized by

�(t) = (t, 0), −1 ≤ t ≤ 1

The derivative of this parameterization is 〈1, 0〉, so

∫
C

W · ds =
1∫

−1

〈t2, e0〉 · 〈1, 0〉 dt

=
1∫

−1

t2 dt

= 2

3
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3. Let D be the top half of the unit circle (oriented counterclockwise). Then
C ∪ D = ∂σ . So we have

0 =
∫
∂σ

W · ds

=
∫

C∪D

W · ds

=
∫
C

W · ds +
∫
D

W · ds

= 2

3
+
∫
D

W · ds

Hence, ∫
D

W · ds = −2

3

Problem 128

The surface S is a disk in the yz-plane. Its boundary is thus the unit circle in the
yz-plane. The tricky part is determining the proper orientation on the boundary
circle. A normal vector giving the orientation of S is determined by

∂�

∂r
× ∂�

∂θ
= 〈r, 0, 0〉

For r �= 0 this is a vector which is parallel to the positive x-axis. The orien-
tation on ∂S is then given by the right-hand rule, as in the following figure.

x

y

z
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The usual parameterization for the unit circle in the yz-plane would be

φ(t) = (0, cos t, sin t), 0 ≤ t ≤ 2π

Notice that dφ

dt = 〈0, − sin t, cos t〉. At t = 0, φ(0) = (0, 1, 0), and dφ

dt (0) =
〈0, 0, 1〉. This agrees with the orientation given in the figure. We are now prepared
to integrate, using Stokes’ Theorem:

∫
S

(∇ × W) · dS =
∫
∂S

W · ds

=
2π∫

0

〈0, 0, cos t〉 · 〈0, − sin t, cos t〉 dt

=
2π∫

0

cos2 t dt

= 1

2
t + 1

4
sin 2t

∣∣∣∣
2π

0

= π

As the chosen parameterization φ agrees with the orientation on ∂S there is no need
to change sign.

Problem 129

Let Q be the region in R
2 such that (x, y) is in Q if (x, y, 0) is in S. Then we may

parameterize S as follows:

�(x, y) = (x, y, 0), (x, y) ∈ Q

It follows that ∂�
∂x = 〈1, 0, 0〉 and ∂�

∂y = 〈0, 1, 0〉. Thus

∂�

∂x
× ∂�

∂y
= 〈0, 0, 1〉
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By definition∫
S

(∇ × W) · dS =
∫
Q

〈
0, 0,

∂g

∂x
− ∂ f

∂y

〉
· 〈0, 0, 1〉 dx dy

=
∫
Q

∂g

∂x
− ∂ f

∂y
dx dy

Also by definition ∫
∂S

W · ds =
∫
∂Q

〈 f (x, y), g(x, y)〉 · ds

But Stokes’ Theorem says∫
S

(∇ × W) · dS =
∫
∂S

W · ds

So we get ∫
Q

∂g

∂x
− ∂ f

∂y
dx dy =

∫
∂Q

〈 f (x, y), g(x, y)〉 · ds

which is Green’s Theorem.

Problem 130

The boundary of S is parallel unit circles C0 and C1 in the planes z = 0 and z = 1,
respectively. However, the orientations on these circles are opposite, as can be seen
in the following figure.

x

y

z
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A parameterization for C0 is given by

�0(t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π

At the point �0(0) = (1, 0, 0) the derivative d�0
dt = 〈− sin t, cos t, 0〉 is the vector

〈0, 1, 0〉. This agrees with the arrow in the picture.
Similarly, a parameterization for C1 is given by

�1(t) = (cos t, sin t, 1), 0 ≤ t ≤ 2π

At the point �0(0) = (1, 0, 1) the derivative d�0
dt = 〈− sin t, cos t, 0〉 is again the

vector 〈0, 1, 0〉. This is opposite to the arrow in the picture, so we will have to
remember to negate the integral over this curve.

Stokes’ Theorem says

∫
S

(∇ × W) · dS =
∫

C0∪C1

W · ds

=
∫

C0

W · ds +
∫

C1

W · ds

We do each of these integrals separately

∫
C0

W · ds =
∫ 2π

0
〈0, 0, 0〉 · 〈− sin t, cos t, 0〉 dt = 0

∫
C1

W · ds =
∫ 2π

0
〈− sin t, cos t, 0〉 · 〈− sin t, cos t, 0〉 dt

=
∫ 2π

0
dt

= 2π

But, for orientation reasons, we have to negate our answer, yielding −2π . Our
final answer is thus ∫

S

(∇ × W) · dS = −2π + 0 = −2π
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Problem 131

We assume the sphere is oriented with an outward normal (just reverse the picture
if not). Dividing the sphere S into a northern hemisphere S+ and a southern hemi-
sphere S−, we see in the following figure that the equator gets opposite orientation
as the boundary of each.

S+

S−

As the induced orientations on the equator are opposite, it follows that

∫
∂S+

W · ds = −
∫

∂S−

W · ds

We now employ Stokes’ Theorem

∫
S
(∇ × W) · dS =

∫
S+

(∇ × W) · dS +
∫

S−
(∇ × W) · dS

=
∫

∂S+

W · ds +
∫

∂S−

W · ds

= 0

Problem 132

The direction of ∇ × W will be perpendicular to the plane containing the loop
with greatest circulation. Since this is the xz-plane, the direction of ∇ × W will be



250 Advanced Calculus Demystified

parallel to the y-axis. The magnitude of ∇ × W can be estimated by

|∇ × W(p)| ≈ 1

Area(D)

∫
C

W · ds

where D is the disk whose boundary is the loop C . Since the radius of C is .1, the
area of D is π(.1)2. This gives us

1

Area(D)

∫
C

W · ds = 1

π(.1)2
(.5) ≈ 15.92

We conclude that at the origin

∇ × W ≈ 〈0, 15.92, 0〉
Problem 133

The circulation of the vector field around any loop in a plane parallel to the xz-plane
would be zero, since the vector field is constant on such a plane. A vector V that is
perpendicular to such a loop points in the y-direction. The circulation around any
horizontal loop would also have to be zero, since the vector field is perpendicular to
such a loop. A vector W that is perpendicular to such a loop points in the z-direction.
The curl must then be perpendicular to both V and W , and so must point in the
x-direction.

One can also see this algebraically. Such a vector field must look like 〈0, 0, f (y)〉.
The curl of this is ∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
0 0 f (y)

∣∣∣∣∣∣∣∣
= 〈 f ′(y), 0, 0〉

Problem 134

Let V be the unit cube. Then Gauss’ Theorem tells us∫
∂V

W · dS =
∫ ∫

V

∫
∇ · W dx dy dz

=
1∫

0

1∫
0

1∫
0

∇ · W dx dy dz
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=
1∫

0

1∫
0

1∫
0

2xyz + 2xyz + 2xyz dx dy dz

=
1∫

0

1∫
0

1∫
0

6xyz dx dy dz

=
1∫

0

1∫
0

3yz dy dz

=
1∫

0

3

2
z dz

= 3

4

Problem 135

By Gauss’ Theorem the integral of ∇ · W over the ball B is equal to the integral of
W over the unit sphere S, with outward-pointing normal vector. The unit sphere is
parameterized in the usual way by

�(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ)

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

As in Example 11-8,

∂�

∂θ
× ∂�

∂φ
= 〈− sin2 φ cos θ, − sin2 φ sin θ, − sin φ cos φ〉

which agrees with the orientation on S.
We now compute∫ ∫

B

∫
∇ · W dx dy dz =

∫
S

W · dS

=
π∫

0

2π∫
0

〈0, 0, ecos φ〉 · 〈− sin2 φ cos θ, − sin2 φ sin θ,

− sin φ cos φ〉 dθ dφ



252 Advanced Calculus Demystified

=
π∫

0

2π∫
0

− sin φ cos φecos φ dθ dφ

= 2π

π∫
0

− sin φ cos φecos φ dφ

= 2π

−1∫
1

ueu du

= 2π(ueu − eu)|−1
1

= −4π

e

Problem 136

The region V is parameterized by

�(r, θ, z) = (r cos θ, r sin θ, z)

1 ≤ r ≤ 2, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 2

We use Gauss’ Theorem to transform the integral:

∫
∂V

W · dS =
∫ ∫

V

∫
∇ · W dx dy dz

=
∫ ∫

V

∫
3(x2 + y2) dx dy dz

We now use the parameterization to change variables:

∫ ∫
V

∫
3(x2 + y2) dx dy dz

=
2∫

0

π
2∫

0

2∫
1

3((r cos θ)2 + (r sin θ)2)

∣∣∣∣∣∣
cos θ sin θ 0

−r sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣ dr dθ dz
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=
2∫

0

π
2∫

0

2∫
1

3r2(r) dr dθ dz

=
2∫

0

π
2∫

0

2∫
1

3r3 dr dθ dz

=
2∫

0

π
2∫

0

3

4
r4

∣∣∣∣
2

1

dθ dz

=
2∫

0

π
2∫

0

45

4
dθ dz

= 45π

4

Problem 137

First, we observe that the polar equation r = cos θ is a circle of radius 1
2 , centered

on the point ( 1
2 , 0). Hence, the surface C is a cylinder of height 2. The surface D

is a disk, which caps off the top of the cylinder C , like an upside-down can. Let E
denote the “bottom” of the can. That is, E is the set of points in the xy-plane which
are within 1

2 of a unit away from the point ( 1
2 , 0, 0). We assume an orientation is

given on E so that C, D, and E together form the (oriented) boundary of V , the
points inside the “can.” Applying Gauss’ Theorem gives us

∫ ∫
V

∫
∇ · W dx dy dz =

∫
C+D+E

W · dS

=
∫

C+D

W · dS +
∫
E

W · dS

Now notice that on E the vector field W = 〈0, 0, 0〉, so

∫
E

W · dS = 0
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Putting these results together gives us

∫ ∫
V

∫
∇ · W dx dy dz =

∫
C+D

W · dS

We may thus obtain the desired answer by evaluating the integral on the left-hand
side of this last equation. The first thing we will need to evaluate this is the
divergence of W:

∇ · W = ∂

∂y
xyz = xz

Next, we will need to parameterize V . Notice that V is a solid cylinder of radius 1
2 ,

whose central axis has been translated 1
2 of a unit away from the z-axis, in the

positive x-direction. A parameterization is thus given by

�(r, θ, z) =
(

r cos θ + 1

2
, r sin θ, z

)

0 ≤ r ≤ 1

2
, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

The partials of this parameterization are

∂�

∂r
= 〈cos θ, sin θ, 0〉

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉

The determinant of the matrix which consists of these vectors is

∣∣∣∣∣∣∣
cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r
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We now use � to evaluate the integral:∫ ∫
V

∫
∇ · W dx dy dz

∫ ∫
V

∫
xz dx dy dz

=
1∫

0

2π∫
0

1
2∫

0

(
r cos θ + 1

2

)
(z)(r) dr dθ dz

=
1∫

0

2π∫
0

1
2∫

0

r2z cos θ + r z

2
dr dθ dz

=
1∫

0

2π∫
0

1

3

(
1

2

)3

z cos θ + 1

4

(
1

2

)2

z dθ dz

=
1∫

0

2π∫
0

1

24
z cos θ + 1

16
z dθ dz

=
1∫

0

π

8
z dz

= π

16

Problem 138

S1, and S2 with the opposite orientation, together bound a volume V of R
3.

Oriented surfaces with
the same oriented boundary

S1 and S2, with opposite
orientation, bound a volume V
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By Gauss’ Theorem

∫ ∫
V

∫
∇ · W dx dy dz =

∫
∂V

W · dS

=
∫

S1−S2

W · dS

=
∫
S1

W · dS −
∫
S2

W · dS

But ∇ · W = 0 implies
∫ ∫

V

∫ ∇ · W dx dy dz = 0. We conclude

∫
S1

W · dS =
∫
S2

W · dS

Problem 139

∇ · W(p) ≈ 1

Volume(B)

∫
∂B

W · dS

= 1
4
3π(.1)3

(.5)

≈ 119.36662

Chapter 11 Quiz
Problem 140

1. The key to this problem is to notice that W = ∇ f (x, y, z), where f (x, y, z) =
xy2z2. So,

∫
C

W · ds =
∫
C

(∇ f ) · ds

= f (1, 1, 1) − f (0, 0, 0)

= 1 − 0

= 1
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2. Using Green’s Theorem

∫
∂σ

〈1, ln x〉 · ds =
∫ ∫

σ

∂

∂x
(− ln x) − ∂

∂y
(1) dx dy

=
∫ ∫

σ

−1

x
dx dy

To evaluate this integral we will need the partials of the parameterization:

∂φ

∂u
= 〈v2, 3u2v〉

∂φ

∂v
= 〈2uv, u3〉

The determinant of the matrix of partials is thus

∣∣∣∣ v2 3u2v

2uv u3

∣∣∣∣ = u3v2 − 6u3v2 = −5u3v2

We now integrate:

∫ ∫
σ

−1

x
dx dy =

2∫
1

2∫
1

−1

uv2
(−5u3v2) du dv

=
2∫

1

2∫
1

5u2 du dv

=
2∫

1

5

3
u3

∣∣∣∣
2

1

dv

=
2∫

1

35

3
dv

= 35

3
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3. The curves C1 and C2 lie in the xy-plane, and are pictured below.

"

C1

C2

x

y

Let C−
1 denote the curve C1 with the opposite orientation. Then the curves C−

1
and C2 together form the (oriented) boundary of a region R of the xy-plane.
Stokes’ Theorem then says

∫
C−

1 ∪C2

W · ds =
∫
R

(∇ × W) · dS

But the statement of the problem specifies ∇ × W = 〈0, 0, 0〉, so the integral
on the right (and hence the integral on the left) is 0. Now notice

∫
C−

1 ∪C2

W · ds =
∫

C−
1

W · ds +
∫
C2

W · ds

=
∫
C2

W · ds −
∫
C1

W · ds

Since this is zero, the desired result follows.
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Final Exam
Problem 141

1.(a)
x

z

y

z

(b) To find the critical points we set the partial derivatives equal to zero:

∂ f

∂x
= y + 1 = 0

∂ f

∂y
= x − 2 = 0

The first equation tells us y = −1 and the second tells us x = 2. So (2, −1)

is the only critical point. Now we compute∣∣∣∣∣∣∣∣∣

∂2 f

∂x2

∂2 f

∂x∂y

∂2 f

∂y∂x

∂2 f

∂y2

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣0 1

1 0

∣∣∣∣ = −1

Since this is negative the critical point (2, −1) corresponds to a saddle.

(c) First, we find a unit vector that points in the desired direction:

〈1, 2〉
|〈1, 2〉| = 〈1, 2〉√

5
=
〈√

5

5
,

2
√

5

5

〉

The desired slope is the directional derivative in this direction:

∇〈
√

5
5 , 2

√
5

5 〉 f (0, 1) =
〈√

5

5
,

2
√

5

5

〉
· ∇ f (0, 1)

=
〈√

5

5
,

2
√

5

5

〉
· 〈2, −2〉

= −2
√

5

5
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(d) Volume =
2∫

0

1∫
0

xy + x − 2y + 4 dx dy

=
2∫

0

1

2
x2 y + 1

2
x2 − 2yx + 4x

∣∣∣∣
1

0

dy

=
2∫

0

1

2
y + 1

2
− 2y + 4 dy

= 1

4
y2 + 1

2
y − y2 + 4y

∣∣∣∣
2

0

= 1 + 1 − 4 + 8

= 6

2. Since r2 = x2 + y2, the desired surface has the cylindrical equation z = 4 − r2.
Where the graph hits the xy-plane we know z = 0, and hence 0 = 4 − r2, or
r = 2. A parameterization is thus given utilizing cylindrical coordinates by

�(r, θ) = (r cos θ, r sin θ, 4 − r2)

0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π

3. There are several ways to do this. We will utilize spherical coordinates, since
that is how the problem was stated. Being on a sphere of radius 1 says ρ = 1. We
now plug this, and the information θ = φ, into the usual spherical coordinates:

�(θ) = (sin θ cos θ, sin θ sin θ, cos θ)

To get the whole circle the domain should be 0 ≤ θ ≤ 2π .

4. ∇ · W = ∂

∂x
xz2 + ∂

∂z
xz2

= z2 + 2xz

∇ × W =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xz2 0 xz2

∣∣∣∣∣∣∣
= 〈0, 2xz − z2, 0〉
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5. Since the region V is cylindrical, this is best done by utilizing a parameterization.
We parameterize V in the usual way with cylindrical coordinates:

�(r, θ, z) = (r cos θ, r sin θ, z)

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 1

To do the integral we will need the determinant of the matrix of partial derivatives,
which simplifies to r . We can thus integrate as follows:

∫
V

2
√

1 + x2 + y2 dx dy dz =
1∫

0

π
2∫

0

1∫
0

2
(√

1 + (r cos θ)2 + (r sin θ)2
)

(r) dr dθ dz

=
1∫

0

π
2∫

0

1∫
0

2r
√

1 + r2 dr dθ dz

=
1∫

0

π
2∫

0

2∫
1

√
u du dθ dz

=
1∫

0

π
2∫

0

2

3
(2

3
2 − 1) dθ dz

=
1∫

0

π

3
(2

3
2 − 1) dz

= π

3
(2

3
2 − 1)

6. The derivative of the parameterization is

dφ

dt
= 〈−2 sin t, 2 cos t, 2t〉
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We now integrate:∫
C

〈0, 0, x2 + y2〉 · ds =
2∫

0

〈0, 0, (2 cos t)2 + (2 sin t)2〉 · 〈−2 sin t, 2 cos t, 2t〉 dt

=
2∫

0

〈0, 0, 4〉 · 〈−2 sin t, 2 cos t, 2t〉 dt

=
2∫

0

8t dt

= 4t2
∣∣2
0

= 16

7. First, we compute the partials of the parameterization:

∂φ

∂r
= 〈cos θ, sin θ, 2r〉

∂φ

∂θ
= 〈−r sin θ, r cos θ, 0〉

The cross product of these vectors is

∂φ

∂r
× ∂φ

∂θ
=
∣∣∣∣∣∣

i j k
cos θ sin θ 2r

−r sin θ r cos θ 0

∣∣∣∣∣∣ = 〈−2r2 cos θ, −2r2 sin θ, r〉

We now integrate:

∫
P

F · dS =
π
2∫

0

1∫
0

〈0, −r2, 0〉 · 〈−2r2 cos θ, −2r2 sin θ, r〉 dr dθ

=
π
2∫

0

1∫
0

2r4 sin θ dr dθ

=
π
2∫

0

2

5
sin θ dθ

= 2

5
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8. The key to this problem is to notice that W = ∇ f , where f (x, y, z) = xyz.
Then, using the independence of path of line integrals∫

C

W · ds =
∫
C

(∇ f ) · ds

= f
(
φ
(π

4

))
− f (φ(0))

= f

(√
2

2
,

√
2

2
, 1

)
− f (0, 0, 0)

= 1

2

9. The surface S bounds a volume V which is parameterized by

�(r, θ, z) = (r cos θ, r sin θ, z)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

To evaluate an integral over this region we will need the determinant of the
matrix of partials. We have done this calculation several times. The reader may
check that the answer is r . We now integrate

∫
S

W · dS =
∫ ∫

V

∫
∇ · W dx dy dz

=
∫ ∫

V

∫
2z dx dy dz

=
1∫

0

2π∫
0

1∫
0

2z(r) dr dθ dz

=
1∫

0

2π∫
0

z dθ dz

=
1∫

0

2π z dz

= π
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INDEX

A
algebra, using with partial

derivatives, 25
arc length, relationship to line

integral, 113
area. See also surface area

computing, 45
computing for parallelogram, 105
computing for region of xy-plane,

45, 119
determining relative to change of

variables, 119
finding for parallelograms, 88, 91
parameterizing, 65–67

axes
labeling as r and z, 52
labeling when plotting points

with multiple coordinates, 3

B
boundary, determining for

surface S, 161

C
chain rule

computing derivatives with, 28
using, 28, 30

circle of radius one, parameterizing,
12–13

components, relationship to vectors, 69
composition

of functions of multiple variables,
29–30

relationship to parameterized
curves, 26–29

visualizing, 27
constants, relationship to

derivatives, 24
continuous function, definition of, 21
coordinate planes, plotting intersection

of graphs with, 6–9
coordinate system

definition of, 49
identifying type of, 15
importance of, 3

coordinates, plotting points with, 2–3
cross product

determining, 91
versus dot product, 91
magnitude of, 92
rewriting definition of, 92
of vectors for surface of

revolution, 11
curl, geometric interpretation of,

164–166
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curl of vector fields
computing, 150
formula for, 149

curl operation, defining relative to
vector fields, 130

curves
finding lengths of, 100–101
parameterizing, 101, 103

cylindrical coordinates
converting to rectangular

coordinates from, 50
expressing restriction on domains

in, 62
parameterizing domain of

integration with, 121
parameterizing surfaces with,

109–110, 114
translating to rectangular

coordinates, 66
cylindrical equations, graphing, 51–53

D
derivatives. See also partial derivatives;

second derivatives
computing with chain rule, 28

determinant
computing, 90
for volume calculation, 115
of a 3 × 3 matrix, 90, 115, 117
relationship to parallelograms,

88–89
writing for matrix, 90

direction, finding for level curve, 78
directional derivative, explanation

of, 76
divergence

calculating for vector field V, 129
defining for V, “Div V”, 128
definition of, 167

geometric interpretation of,
171–173

positive divergence, 172
taking for vector fields, 166–171
zero divergence, 173

domain of integration
definition of, 33
parameterizing with cylindrical

coordinates, 121
restricting, 62

dot product
versus cross product, 91
definition of, 72
finding cosine of angle between

vectors with, 74
purpose of, 88
relationship to geometric

interpretation of curl, 165
source of, 77
taking, 74
usefulness of, 73
writing directional derivative

as, 76

E
earth’s surface, determining position

on, 97
equations

for cross product, 91
for curl of vector field, 149
for directional derivative, 76
for divergence of vector field, 129
for parabolas, 52
of spheres in spherical

coordinates, 62
for surface area of graph, 108

examples
continuity of functions, 21
cosine of angle between

vectors, 74
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cross product, 92
curl of vector field V, 130
direction for level curve, 78
divergence of vector field V, 129
dot product, 73
finding area of R, 45
finding gradient for saddle, 80–81
functions, 1–2
Gauss’ Divergence Theorem,

167–171
geometric interpretation

of curl, 166
geometric interpretation of

divergence, 172–173
gradient of function, 76
gradient of f (x , y) at point

(x, y), 127
gradient vector, 77–78
graphing cylindrical equations,

51–52
graphing functions, 5–6
Green’s Theorem, 153–155,

158–159
integral evaluation, 121
locating points in rectangular

coordinates, 50
optimization, 83–84
oriented curve relative to line

integral, 135
overcoming gravity, 147–148
parallelogram area

computation, 92
parameterization, 64
parameterization for graph of

spherical equation, 61
parameterizations, 66–67
parameterized surfaces, 59–60
particle speed moving along

helix, 96
rate of change for functions, 76
rectangular coordinates, 54

signed volume of
parallelepiped, 90

Stokes’ Theorem, 162–163
surface area of sphere, 106–112
surface integrals, 141–142
translation from polar to

rectangular coordinates, 66
unit vector, 71–72
vector addition, 70
vector fields, 126–127
vector subtraction, 71
volume bounded by sphere, 116
volume computations for

integration, 40–42

F
Figures

contours of f (x , y) and domain
D, 86

level curves, 7, 9
level curves forming saddle, 11
local and absolute maxima, 85
paraboloid z = x2 + y2, 10
perpendicular axes drawn in

perspective, 3
plotting points, 4
point and vector, 70
rectangle, Q, 152
topographic map related to level

curves, 8
weather map showing level

curves, 8
formulas. See equations; examples;

problems
Fubini’s Theorem, relationship to

integration, 36
function of one variable, integral of, 33
functions

change of variables related to, 118
continuity of, 21–22
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defining integrals of, 102
differentiating for variables,

75–78
evaluating at indicated

points, 2
evaluating limits of, 20
examining matrices for, 79
examples of, 1–2
graphing, 4–5
integrating, 36
integrating over parameterized

surfaces, 113
integrating via Green’s Theorem,

158–159
limits of, 19
mental model of, 1
picturing as graphs, 2
plotting for variables, 2
producing from vector fields,

128–129
of three variables, 11–12

functions of multiple variables. See
also variables

composition of, 29–30
limit for, 18

Fundamental Theorem of Calculus,
145, 147

deducing, 149
significance of, 145, 147

G
Gauss’ Divergence Theorem

applying, 166–171
example of, 171–172

Generalized Stokes’ Theorem, 145
geometric interpretation

of curl, 164–166
of divergence, 171–173

grad f vector field, producing, 127
gradient, finding for saddles, 80–81

gradient of function, example
of, 76–77

graphing
functions, 4–5
level curves, 6–9

graphs
formula for surface area of, 108
picturing functions as, 2
sketching, 10

gravity, overcoming, 147–148
Green’s Theorem

versus Gauss’ Divergence
Theorem, 167

geometric interpretation produced
by, 171

on Rectangular Domains,
149–155

relationship to Stokes’
Theorem, 160

versus Stokes’ Theorem, 165

I
i vector, defining, 92
integrals

cancellation relative to Green’s
Theorem, 156–157

computing relative to Gauss’
Theorem, 170

computing surface area of sphere
with, 109

computing surface of revolution
with, 111

computing volume with triple
integrals, 44–47

of curl of W over D, 164
defining for functions, 102
determining limits of integration

for, 41
evaluating, 121
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over nonrectangular domains,
38–44

setting up, 43
for Stokes’ Theorem, 162

integrand, determining for volume, 117
integration

act of, 33
over nonrectangular domains,

38–44
performing, 36
relationship to rectangles, 33

integration order, determining for triple
integral, 46

J
j vector, defining, 92

K
k vector, defining, 92

L
Lagrange multipliers method, using, 87
Law of Cosines, explanation of, 73
level curves

finding direction of, 78
graphing, 6–9

level sets, plotting, 11
limit properties, relationship to

integration and rectangles, 35
limits

for curve, 101
calculation for continuous

functions, 21
definition of, 18
evaluating for functions, 20
of functions, 19
proving non-existence of, 19–20
significance of, 17

surface area as, 105
volume as, 116

limits of integration
determining for outer

integral, 41
finding, 45–47
significance of, 40

line integrals
defining, 138
determining, 103
interpreting, 133, 135
physical motivation for, 134
recalculating, 136
relationship to arc length, 113
relationship to vector fields,

137–138
representing, 135
significance of, 146

local maximum and minimum,
determining, 81

M
matrix

tracking information in, 79
writing determinant of, 90

maxima
detecting via derivative test,

79–80
distinguishing from saddles, 80
determining local maximum, 81
finding, 84

minima
detecting via derivative test,

79–80
distinguishing from saddles, 80
seeking for f , 87
determining local minimum, 81

multiple integral, definition of,
150–151
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O
orientation

calculating for rectangles relative
to Green’s Theorem, 158

checking relative to Gauss’
Theorem, 168

determining for surface S, 161
example of, 136
producing, 140–141
relevance to surface integrals, 140
significance of, 135

P
parabola, equation for, 52
paraboloid

definition of, 52
example of, 10, 59–60

parallelepiped, explanation of, 89
parallelograms

computing area of, 88, 91, 92, 105
computing signed area of, 89

parameterizations
of areas and volumes, 65–67
computing partials of, 116
computing volumes with, 118
determining shapes from, 63–64
differentiating, 95–96
finding for graphs of

equations, 61
restricting domains of, 62
using with volume, 116

parameterized curves
composition with, 26–29
examples of, 12–15

parameterized surfaces, definition
of, 59

partial derivatives. See also derivatives
applying to vector fields, 129
computing for parameterization,

116

computing relative to chain
rule, 28

example of, 25–26, 31, 75
for parameterizations, 114
representing with respect to x ,

24–25
for surface area of sphere,

106, 108
for surface of revolution, 110

particle speed, determining along
helix, 96

path independence of line integrals of
gradient fields, 147–148

perpendicular vectors, detecting, 74
points

locating in rectangular
coordinates, 2-4, 50

locating with spherical
coordinates, 53

plotting for functions, 2
plotting with three coordinates,

2–4
plugging into functions, 2
versus vectors, 69

polar coordinates
adapting to three dimensions, 49
translating to rectangular

coordinates, 66
problems

area of parallelogram spanned by
vectors, 93

area of parameterized plane, 67
calculating curve length, 102
circles for level curves, 9
computing integral of f (x , y)

over parameterized
curve, 104

continuous function, 22
converting to rectangular

coordinates, 55
coordinate system, 15
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cosine of angle between
vectors, 75

curl of vector fields, 130–131
curve parameterization, 15
derivatives, 26
determinant, 91
divergence of vector fields,

129, 131
domain of functions, 22
dot product for perpendicular

vectors, 75
dot product of vectors, 75
function evaluation at point, 2
Gauss’ Divergence Theorem,

170–171
geometric interpretation of

curl, 166
graphs of equations, 53
graphs of functions, 10
graphs of spherical

equations, 57
Green’s Theorem, 155
Green’s Theorem over more

general domains, 159–160
integrals of functions,

122–123
integration, 37–38
integration and integrals, 44
intersections of graphs of

functions with coordinate
planes, 5–6

level curves, 9
line integrals, 138
local maxima, minima, and

saddles, 82
parameterization for volume

below cone, 67
parameterizations, 15, 65
parameterizations for graphs of

equations, 61
parameterized sphere, 63

parameterizing surface with level
curves, 65

partial derivatives, 30
plotting points on axes, 4
right handed coordinate

systems, 4
second partial derivatives, 31
shape of cylindrical equations,

52–53
shapes with parameterizations, 63
showing parameterized

curve, 102
signed area of parallelepiped, 91
signed area of parallelogram, 90
for Stokes’ Theorem, 163
surface integral, 115
triple integrals, 47
unit vector perpendicular to

vectors, 93
vector fields, 127
vector fields with curls, 131
vectors, 72
volume calculation, 118
volumes of parameterizations, 67
writing rectangular coordinates of

points, 50
problems, optimizing, 83–84
Pythagorean Theorem, applying to

magnitude of vectors, 71

R
r and z, labeling axes as, 52
rectangles

applying Green’s Theorem to, 156
relationship to integration, 33

rectangular coordinates
converting from cylindrical

coordinates to, 50
converting spherical coordinates

to, 53
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explanation of, 49
locating points in, 50
translating cylindrical coordinates

to, 66
translating polar coordinates

to, 66
region

computing area of, 45, 119
cutting into slabs, 38–44
finding volume of, 33–34
parameterizing relative to change

of variables, 119
revolution, determining surface of,

109–111
right hand rule, relationship to labeling

axes, 3
right handed coordinate system,

using, 3
river analogy

applying to line integrals, 134
applying to surface

integrals, 139

S
saddles

definition of, 10
determining, 81
distinguishing from minima and

maxima, 80
example of, 11, 79
finding gradients for, 80–81

scalar multiplication, relationship to
vectors, 71

second derivatives, shorthand notations
for, 31. See also derivatives

shapes
defining with rectangular

coordinates, 49
describing with spherical

coordinates, 53–55

determining from
parameterizations, 63–64

with parameterizations, 63
sphere of radius 1, equation of, 12
spheres

bounding volumes by, 116
computing surface area of,

111–112
determining surface area of,

106–108
parameterizing, 106, 116

spherical coordinates
converting to rectangular

coordinates, 53
describing shapes with,

53–55
equation of sphere in, 62
locating points with, 53
parameterizing unit sphere by

means of, 168
spherical equations, graphing, 55–57
spiral, parameterizing, 14
Stokes’ Theorem

applying, 160–163
geometric interpretation produced

by, 171
versus Green’s Theorem, 165
producing geometric

interpretation of curl with,
164–166

stream analogy
applying to line integrals, 134
applying to surface integrals, 139

summation properties, relationship to
integration and rectangles, 35

surface area. See also area
computing, 104–106
computing for sphere, 111–112
computing with double

integral, 109
determining for sphere, 106–111
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as limit, 105
relationship to surface

integral, 113
surface integrals

calculating, 114
defining for vector fields,

139–142
definition of, 113
relationship to surface area, 113

surface of revolution, determining,
109–111

surfaces
determining boundary of, 161
differentiating parameterizations

of, 96
parameterizing, 97
parameterizing with cylindrical

coordinates, 114

T
tangent plane, 78
theorems

Fubuni’s Theorem, 36
Gauss’ Divergence Theorem,

166–171
Green’s Theorem, 171
Green’s Theorem on Rectangular

Domains, 149–155
Green’s Theorem over more

general domains, 156–160
path independence of line

integrals of gradient fields,
147–148

Stokes’ Theorem, 160–166, 171
triangle, applying Law of Cosines

to, 73
trigonometry, applying to dot

product, 73
triple integrals, computing volume

with, 44–47

U
unit sphere, parameterizing relative to

Gauss’ Theorem, 168
unit vector

definition of, 71
perpendicular example of, 93
pointing in same direction, 93

V
vector fields

applying partial derivatives
to, 129

defining surface integrals for,
139–142

definition of, 125–126
differentiating, 166–167
divergence of, 129
integrating divergence of,

166–171
producing functions from,

128–129
relationship to line integrals,

137–138
vectors

adding, 69–70
computing cross product for, 92
computing magnitude of, 96
defining i, j, and k, 92
detecting perpendicular

vectors, 74
defining product of, 72
finding cosine of angles

between, 74
magnitude for surface of

revolution, 110
magnitude of, 71, 98, 107–108
multiplying by numbers, 71
versus points, 69
producing, 127
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producing from cross
product, 91

product of, 72
subtracting, 71

volumes
bounding by spheres, 116
computing for integration, 40–42
computing with

parameterizations, 118
computing with triple integrals,

44–47
determining, 117
above nonrectangular areas,

38–44

under graph and above
rectangle, 36

parameterizing, 65–67
positive state of, 117
of thin slab, 39

volumes of regions, finding, 33–35

X
xy-plane

example of, 5
finding area of region R of, 45
relationship to integration, 33

xz-plane, finding intersection with, 7
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