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PREFACE

THis is a text book of Pure Mathematics written to meet the needs
of the student studying for the General Certificate of Education at
Advanced level. The book assumes a knowledge of mathematics
up to Ordinary Level and covers all the Pure Mathematics necessary
for the Advanced Level examination in Mathematics (A26), of the
Northern Universities Joint Matriculation Board, together with the
great majority of the work required for the Advanced Level exam-
inations of the Southern Universities Joint Board, the Welsh Joint
Committee and London University.

The teaching method adopted is for the most part that suggested
by the various reports of the Mathematical Association. The
emphasis throughout has been on technique, although we have tried
to indicate where a particular result needs more vigorous justification
than is given in this book. In this way we hope that all students can
progress quickly in the understanding and application of these
techniques without the hindrance of having to justify everything
they do. This latter step comes at a later stage in their mathematical
development.

For convenience the book has been prepared in the order Algebra
(Chapters 1-5), Trigonometry (Chapters 6-8), Calculus (Chapters
9-16), and Co-ordinate Geometry (Chapters 17-20), but this is not
to imply that the chapters should be read in this order. For the
student at school this will be decided by the teacher; for the student
working alone we would recommend an advance on a broad front
through Chapters 1, 3, 6, 9, 10, 12 (the first two sections), 13, 17, 18.
This lays the foundations for all the main topics and this broad
advance can then be maintained. We would suggest that each of
Chapters 7, 11, 14, 15, 16 and 20 be read in at least two stages. Not
only will this make for easier digestion of the many ideas and
techniques discussed in these chapters, but will also provide for
constant revision and extension of this material.

The book includes over 350 worked examples and about 1800
examples for the student to solve. The worked examples indicate
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PREFACE

the main applications of the ideas and techniques discussed. The
exercises set at the ends of the sections within the chapters are for
the most part fairly straightforward. All our readers should attempt
these exercises. The exercises at the ends of the chapters are a
“mixed bag”. Some are of a routine type, others are more testing;
many are from past papers set by the various examining boards.
Finally there are some (indicated with an asterisk) which are of a
more difficult nature. The student should not be too dismayed if he
is unable to solve all of these.

For convenience the results and formulae obtained have been
labelled, the first number of the label identifying the chapter in
which the result is derived. Thus formula 10.7 is the seventh result
obtained in Chapter 10. It is not suggested that all these formulae be
memorized.

We should like to express our thanks to the Joint Matriculation
Board (J.M.B.), the Southern Universities Joint Board (S.U.J.B.),
the Welsh Joint Committee (W.J.C.) and London University (L.U.)
for granting us permission to use questions from their examinations
in this book. The abbreviations above have been used to indicate
the source of such questions.

Finally we should like to thank our publishers for the care and
trouble they have taken over the general presentation of the text.

B.D.B.
H. M.

vi



CONTENTS

PREFACE

1. OPERATIONS WITH REAL NUMBERS

1.1,
1.2
1.3.
1.4.
L.5.
1.6.
1.7.
1.8.
1.9.

THE REAL NUMBERS

EQUATIONS INVOLVING ONE UNKNOWN
SIMULTANEOUS EQUATIONS

INEQUALITIES

ELIMINATION

PARTIAL FRACTIONS

INDICES

LOGARITHMS

EQUATIONS IN WHICH THE UNKNOWN IS AN INDEX

2. FINITE SEQUENCES AND SERIES

2.1.
2.2.
2.3.
2.4.

SEQUENCES AND SERIES

THE ARITHMETIC SEQUENCE AND SERIES

THE FINITE GEOMETRIC SEQUENCE AND SERIES
THE INFINITE GEOMETRIC SERIES

3. THE BINOMIAL THEOREM

3.1

3.2,

3.3.

3.4.

THE BINOMIAL THEOREM FOR A POSITIVE INTEGRAL
INDEX

PROOF OF THE BINOMIAL THEOREM WHEN # IS A
POSITIVE INTEGER

THE BINOMIAL THEOREM WHEN 7 IS NOT A POSITIVE
INTEGER

MATHEMATICAL INDUCTION

vii

O NN =

16
21
24
27

32

32
35

42

48

43

53

56
59



CONTENTS

4. COMPLEX NUMBERS

4.1.
4.2.

4.3.

4.4.
4.5.

INTRODUCTION

THE RULES FOR THE MANIPULATION OF COMPLEX
NUMBERS

THE GEOMETRICAL REPRESENTATION OF COMPLEX
NUMBERS

THE GEOMETRY OF COMPLEX NUMBERS
THE CUBE ROOTS OF UNITY

5. THE QUADRATIC FUNCTION AND THE
QUADRATIC EQUATION

5.1.
5.2.
5.3.

THE GENERAL QUADRATIC EQUATION
THE QUADRATIC FUNCTION

THE RELATION BETWEEN THE ROOTS OF A QUADRATIC
EQUATION AND THE COEFFICIENTS

6. PROPERTIES OF THE TRIGONOMETRIC

FUNCTIONS

6.1. THE MEASUREMENT OF ANGLE

6.2. THE TRIGONOMETRIC RATIOS FOR AN ACUTE ANGLE
6.3. THE TRIGONOMETRIC RATIOS FOR ANY ANGLE
6.4. THE GRAPHS OF THE TRIGONOMETRIC FUNCTIONS
6.5. THE ADDITION FORMULAE

6.6. MULTIPLE AND SUB-MULTIPLE ANGLE FORMULAE
6.7. THE FACTOR FORMULAE

6.8. THE FUNCTION g cos § -+ bsin 0

6.9. THE INVERSE TRIGONOMETRIC FUNCTIONS

6.10. SMALL ANGLES

7. TRIGONOMETRIC EQUATIONS

7.1.

7.2.

THE GENERAL EXPRESSION FOR ANGLES WITH A GIVEN
TRIGONOMETRIC RATIO

TRIGONOMETRIC EQUATIONS INVOLVING DIFFERENT
RATIOS OF THE SAME ANGLE

viii

64
64

66

70
72
77

82

82
84

88

94

94

96

99
104
107
111
115
117
120
124

130

130

135



7.3.

7.4.

CONTENTS

TRIGONOMETRIC EQUATIONS INVOLVING MULTIPLE
ANGLES

THE EQUATION acos 0 4 bsinf =c¢

8. THE SOLUTION OF TRIANGLES

8.1.
8.2,
8.3.
8.4.

THE SINE FORMULA

THE COSINE FORMULA

THE AREA OF A TRIANGLE
MISCELLANEOUS APPLICATIONS

9. THE FUNDAMENTAL IDEAS OF THE
DIFFERENTIAL CALCULUS

10.

9.1.
9.2.
9.3.
9.4.
9.5.

FuNcTIONS

GRAPHICAL REPRESENTATION OF A FUNCTION
THE RATE OF CHANGE OF A FUNCTION
LIMITS AND LIMIT NOTATION

THE CALCULATION OF THE DERIVATIVE FOR SOME
COMMON FUNCTIONS

SOME TECHNIQUES OF DIFFERENTIATION

10.1.
10.2.
10.3.

10.4.
10.5.
10.6.
10.7.
10.8.
10.9.

10.10.
10.11.
10.12.
10.13.

INTRODUCTION
DIFFERENTIATION OF A CONSTANT

DIFFERENTIATION OF THE SUM OR DIFFERENCE OF
FUNCTIONS

DIFFERENTIATION OF A PRODUCT

DIFFERENTIATION OF A QUOTIENT

DIFFERENTIATION OF THE TRIGONOMETRIC FUNCTIONS
SECOND AND HIGHER DERIVATIVES
DIFFERENTIATION OF A FUNCTION OF A FUNCTION

THE DERIVATIVE OF x™ WHERE 71 IS NEGATIVE OR A
FRACTION

DIFFERENTIATION OF INVERSE FUNCTIONS
DIFFERENTIATION OF IMPLICIT FUNCTIONS
DIFFERENTIATION FROM PARAMETRIC EQUATIONS
LIST OF STANDARD FORMS

ix

137
139

146
146
147
156
159

170
170
173
174
179

182

188
188
188

188
190
192
196
197
199

203
205
209
213
214



CONTENTS

11. SOME APPLICATIONS OF DIFFERENTIATION

11.1.
11.2.
11.3.
11.4.
11.5.
- 11.6.
11.7.

THE DERIVATIVE AS A RATE MEASURER
SOME APPLICATIONS TO KINEMATICS
APPROXIMATIONS

THE TANGENT AND NORMAL TO A CURVE

THE MAXIMUM AND MINIMUM VALUES OF A FUNCTION

POINTS OF INFLEXION
CURVE SKETCHING

12. THE LOGARITHMIC AND EXPONENTIAL
FUNCTIONS

12.1.
12.2.
12.3.
12.4.

12.5.

THE LOGARITHMIC FUNCTION y = log, x
THE EXPONENTIAL FUNCTION
LOGARITHMIC DIFFERENTIATION

POLYNOMIAL APPROXIMATIONS FOR A FUNCTION AND

MACLAURIN’S SERIES
THE SERIES FOR €” AND log. (1 + x)

13. THE BASIC IDEAS OF INTEGRATION

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.

INTRODUCTION

ARBITRARY CONSTANT

STANDARD FORMS

FIVE IMPORTANT RULES

APPLICATIONS TO GEOMETRY AND MECHANICS
INTEGRATION AS A SUMMATION

14. SOME METHODS OF INTEGRATION

14.1.
14.2.
14.3.
14.4.
14.5.

INTRODUCTION

INTEGRATION OF RATIONAL ALGEBRAIC FRACTIONS
CHANGE OF VARIABLE

TRIGONOMETRICAL SUBSTITUTIONS

INTEGRATION OF TRIGONOMETRICAL FUNCTIONS

X

218

218
220
223
226
228
235
238

245

245
248
250

252
257

267

267
268
268
271
276
277

285

285
285
292
298
301



15.

14.6.
14.7.

CONTENTS

INTEGRATION BY PARTS
FURTHER INTEGRATION BY PARTS

SOME APPLICATIONS OF THE INTEGRAL

CALCULUS
15.1. FURTHER EXAMPLES ON AREA
15.2. MEAN VALUES
- 15.3. VOLUME OF A SOLID OF REVOLUTION
15.4. CENTRES OF GRAVITY

16.

17.

18.

DIFFERENTIAL EQUATIONS

16.1.
16.2.

16.3.

INTRODUCTION

FIRST ORDER DIFFERENTIAL EQUATIONS WITH VARI-
ABLES SEPARABLE

THE DIFFERENTIAL EQUATION d2x/ds® = kx

INTRODUCTION TO CO-ORDINATE GEOMETRY

17.1.
17.2.

17.3.

17.4.

17.5.
17.6.
17.7.

CO-ORDINATES

THE DISTANCE BETWEEN TWO GIVEN POINTS IN TERMS
OF THEIR CARTESIAN CO-ORDINATES

THE CO-ORDINATES OF THE POINTS WHICH DIVIDE THE
LINE JOINING TWO GIVEN POINTS, INTERNALLY AND
EXTERNALLY IN A GIVEN RATIO

THE AREA OF A TRIANGLE IN TERMS OF THE CO-
ORDINATES OF ITS VERTICES

Loct ‘
THE POINTS OF INTERSECTION OF TWO LOCI
CHANGE OF ORIGIN

THE STRAIGHT LINE

18.1.

18.2.

THE EQUATION OF A STRAIGHT LINE PARALLEL TO ONE
OF THE CO-ORDINATE AXES

THE EQUATION OF ANY STRAIGHT LINE IN TERMS OF ITS
SLOPE AND ITS INTERCEPT ON THE y-AXIS

xi

304
307

313

313
319
322
326

334
334

340
343

357

357

361

362

366
368
371
373

377

377

377



19.

20.

CONTENTS

18.3. ANY EQUATION OF THE FIRST DEGREE IN X AND y
REPRESENTS A STRAIGHT LINE

18.4. USEFUL FORMS OF THE EQUATION OF A STRAIGHT LINE

18.5. THE CO-ORDINATES OF THE POINT OF INTERSECTION
OF TWO STRAIGHT LINES

18.6. THE POSITIVE AND NEGATIVE SIDES OF A LINE

18.7. THE ANGLE BETWEEN TWO STRAIGHT LINES

18.8. THE PERPENDICULAR DISTANCE OF A POINT FROM A
STRAIGHT LINE

18.9. THE EQUATION OF A STRAIGHT LINE THROUGH THE
POINT OF INTERSECTION OF TWO GIVEN STRAIGHT
LINES

THE CIRCLE

19.1. THE EQUATION OF A CIRCLE

19.2. THE EQUATION OF A CIRCLE THROUGH THREE NON-
COLLINEAR POINTS

19.3.  THE EQUATION OF THE TANGENT AT THE POINT (Xy, J;)
ON THE CIRCLE X% + y% + 2px + 2fy + ¢ =0

19.4. THE LENGTH OF THE TANGENT FROM A POINT P(x, y)
OUTSIDE THE CIRCLE X2 + y% 4 2¢ - 2fy 4+ ¢ =0

19.5. THE POINTS OF INTERSECTION OF THE STRAIGHT LINE
Y =mx -+ ¢ AND THE CIRCLE x? 4 y% = 2

THE PARABOLA, ELLIPSE, HYPERBOLA AND

SEMI-CUBICAL PARABOLA 2 = kx3

20.1. INTRODUCTION

20.2. THE PARABOLA (e = 1)

20.3. THEEQUATIONS OF THE TANGENT AND NORMAL AT THE
POINT (xy, y1) ON THE PARABOLA }? = dax

20.4. THE POINTS OF INTERSECTION OF THE LINE J = mx +
¢ AND THE PARABOLA )2 = 4qgx

20.5. PARAMETRIC EQUATIONS OF THE PARABOLA

20.6. THE ELLIPSE (¢ < 1)

Xii

379
381

385
386
389

393

395

402
402

405

406

408

409

418
418
418
421

423
425
430



20.7.

20.8.

20.9.

20.10.
20.11.
20.12.
20.13.

20.14.
20.15.
20.16.

20.17.
20.18.

20.19.
20.20.
20.21.

INDEX

CONTENTS

THE EQUATIONS OF THE TANGENT AND NORMAL AT
THE POINT (X;, y;) ON THE ELLIPSE x%/a® + y?[b? = 1

THE POINTS OF INTERSECTION OF THE LINE y = mx +
¢ AND THE ELLIPSE x%[a? 4 y*[b? = 1

THE PARAMETRIC EQUATIONS OF AN ELLIPSE
GEOMETRICAL INTERPRETATION OF THE PARAMETER
THE HYPERBOLA (¢ > 1)

PROPERTIES OF THE HYPERBOLA Xx%/a% — y?[b? =1
PARAMETRIC EQUATIONS OF THE HYPERBOLA X%/a?
—_ y2/b2 =1

ASYMPTOTES OF THE HYPERBOLA x%/a® — y*[b® =1
THE RECTANGULAR HYPERBOLA

THE EQUATION OF A RECTANGULAR HYPERBOLA
REFERRED TO ITS ASYMPTOTES AS AXES

PARAMETRIC EQUATIONS OF Xy = c?

THE TANGENT AND NORMAL AT THE POINT (ct, ¢[t)
ON THE CURVE xy = ¢?

THE SEMI-CUBICAL PARABOLA )% = kx*
THE TANGENT AND NORMAL TO THE CURVE y? = kx*

THE PARAMETRIC EQUATIONS OF THE SEMI-CUBICAL
PARABOLA

xiii

435

436
438
439
443
446

446
449
452

452
453

454
457
458

459

519



1
OPERATIONS WITH REAL NUMBERS

1.1. THE REAL NUMBERS

ALGEBRA is concerned with operations with numbers and we shall
begin with a brief review of these operations and the numbers
involved.

The first set of numbers usually encountered is the set of positive
integers including zero: 0,1,2,3,.... These by themselves are
insufficient for the solution of many actual problems and need to be
supplemented by fractions which can all be expressed in the form
a/b, where a and b are positive integers (b non-zero). This set of
numbers includes the positive integers which arise when b = 1.

The solution of a particular problem might require the solution
of the equation x + a=>5. If a is greater than b, in order to
interpret the result x = b — a, we need to extend our number
system to include negative numbers. The integers are then the set

...—3,-2,—-1,0,1,2,3,4,....

and the rational numbers (fractions), which include the integers
are of the form a/b where a and b are integers (b non-zero).

There are still quantities which cannot be expressed in terms of the
rational numbers. For example the length of a diagonal of a square
of side 1 unit is /2 units, and /2 cannot be expressed in the form
alb where a and b are integers. Tables of square roots show
/2 ==1-414 = 1414 but this is only an approximation to the value
of /2, as the squaring of 1-414 will soon show. This property is not
unique to \/2; /3, \/5, ¥/1:6, {/11-61 etc. all have the same property.
These numbers are examples of algebraic numbers. They are all
of them solutions of algebraic equations which involve only rational
numbers. /3 is a solution of x* = 3, ¥/1:6 is a solution of x® = 1-6,
¥/11:61 is a solution of x® = 11-61, etc.

There are still other numbers which do not fall into any of the
categories mentioned so far. Such numbers, of which 7 (== 3-142),
logyo 2 (==0-301), sin 74° (==0-9613) are but three examples, are

1



OPERATIONS WITH REAL NUMBERS

called transcendental numbers. Our system of real numbers with
which we shall be mainly concerned, will consist of the rational,
algebraic and transcendental (irrational) numbers.

Tt is often convenient to represent these numbers by points on a
line (Figure 1.1), letting O be an origin on the line x'x. Conventionally
we let points to the right of 0 represent positive numbers and points
to the left of O represent negative numbers. Points on the line distant
1 unit, 2 units, ... to the right of 0 will represent the numbers
1,2,3,.... Points on the line distant 1 unit, 2 units . . . to the left
of 0 will represent the numbers —1, —2, —3,.... The rational
numbers will be represented by intermediate points.
g I ! { | | | | >

-3 -2 -1 0 1 2 3
Figure 1.1

X

The fundamental operations of algebra are addition and multi-
plication. Subtraction can be regarded as the addition of the
corresponding negative number, and division as multiplication by
the reciprocal. We are all familiar with these operations, although
it is perhaps worth reminding ourselves of the fundamental laws
governing these operations.

If a, b, c are any three real numbers:

1. a + b = b + a, the commutative law of addition
IL (a + b) + ¢ = a + (b + ¢), the associative law of addition
I1I. ab = ba, the commutative law of multiplication
IV. (ab)c = a(bc) the associative law of multiplication
V. a(b + ¢) = ab + ac the distributive law of multiplication and
addition.

1.2. EQUATIONS INVOLVING ONE UNKNOWN

Our readers will already be familiar with the solution of simple
equations and quadratic equations involving one unknown.
For the equation ax + b = 0 where a and b are real numbers

I (LD
a

For the equation ax® + bx 4- ¢ =0

.= —b + \/(bg — 4ac)
) 2a

2

....(1.2)



EQUATIONS INVOLVING ONE UNKNOWN
Example 1. Solve the equations: (i) 2x + 3(x — 1) = 4x + 12;

.. x+5 x-—1

(i) —1;= 6

U] 2x 4 3(x — 1) = 4x +12

: 2x +3x —3=4x -+ 12
5x =15+ 4x
x=15

s x+5 x-~—1

(&) 5 6

6(x+5=5x-—1)
6x +30=5x—5
= —35
Example 2. Solve the equations: (i) 2x® — llx + 12 = 0;
(@) x*—3x—5=0.
(i) The left-hand side of equation (i) can be factorized and the

equation written
2x—3)(x—4=0

2x—3=0 or x—4=0

ie. x=% or x=4
(if) The factors of the left-hand side of equation (i) are not at
all obvious and we use equation (1.2) witha = 1,b = —3,¢c = —5.
i 34 (=3 — 4 x (1) X (=] 34,29 345385
2 2 2

x=4193 or —1-193

The methods for the solution of more complicated equations in
one unknown follow the same principles as are involved in the
solution of simple and quadratic equations; viz. the isolation of
the unknown on one side of the equation. Some of the techniques
employed are illustrated by the examples which follow.

3 0

. e . _3 _
Example 3. Solve the equation x% 4 2x — 4 - o il

3



OPERATIONS WITH REAL NUMBERS
With z = x® + 2x we have

Z,—4+§=0
z
22—4z4+3=0
z—3)(z—1)=0
i.e. z=1 or 3
With z = 3,
x> +2x=3
x24+2x—3=0
x+3Nx—1)=0
x= -3 or x=1
With z =1,

x2+2x—1=0
x:—Z:I:\/(4——4>< (D x (1)
2
—24 8 —242)2
2 2
= —14./2
the solutions are 1, —3, —1 + /2, —1 — /2.

Example 4. Solve the equation

J@ — x) — /(6 + x) = /(14 + 2x).

Squaring both sides we have

4—x+6+x—2/[(4—x)6+x)] =14+ 2x
—2[(4 — )6 + D] =4+ 2x
—JI4=x)6+ 0] =2+x
On squaring both sides we now have

@4 —x)(6+x)=4+ 4x + x?

24 —2x — x* =4 + 4x + x*
2x2+6x—20=0
20x+S)(x—2)=0

x=2 or x=-—35
4



EQUATIONS INVOLVING ONE UNKNOWN

It is easy to see that it is only the value x = —35 which satisfies
the original equation. x =2 is a solution of the equation
V(@4 — x) + (6 + x) = /(14 + 2x). If we square both sides of
this equation we obtain /[(4 — x)(6 + x)] = 2 + x, which in
turn leads to 2x®+ 6x —20=0. The original equation gave
—\/ [(4 — x)(6 + x)] = 2 + x but when we square, the distinction
between the two cases is lost. Thus we must always verify the
correctness of our solutions after we have carried out such oper-
ations. As a trivial example consider the equation 2x = 2 which
has solution x = 1. If we square both sides we obtain the equation
"“4x? = 4,1i.e. x? = 1 which has solutions x =1 or x = —1!

Example 5. Solve the equation x* — 4x® 4 6x2 — 4x + 1 = 0.
The symmetry of the coefficients allows us to employ the following
technique. After dividing by x* we can arrange the equation as

x2+12—4(x+1)+6=0
X X.
Withz=x—{—1 :
X
2 2 1 : 2 1 2
zf =X +—2—|—2, ie. x+—2= -2
X X

The equation can be written

22—4z4+4=0
(z—2%=0
z=2
x+l=2

x

X*—2x+1=0
(x—-1*=0
x = 1, which is the only solution of the equation.

Exercises la

+1 x—2_2x+3
4 6

2. Solve the equation x> — 5x — 11 = 0.

5
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OPERATIONS WITH REAL NUMBERS

3. Solve the equation t1_sx—1
2x+3 Tx+3
4. Solve the equation \/x — S

Jx

5. Solve the equation y* + 5y — % _ _ 0.

y*+ Sy

6. Solve the equation x* — 25x% + 144 = 0.

7. Find the values of x which satisfy the equation 2/(x + 5) —
JCx +8) =2

8. Solve the equation /(x + 1) + /(5x + 1) = 2{/(x + 6).

9. Solve the equation x* — 2x® — 6x> — 2x + 1 = 0.

10. Solve the equation y* — 2y® — 2y* + 2y + 1 = 0.

(Hint: letz=y — —1-).
y

1.3. SIMULTANEOUS EQUATIONS

We shall assume that our readers are familiar with the procedure
for the solution of a pair of linear simultaneous equations in two
unknowns. The solution of two equations in two unknowns when
one or both of the equations contain quadratic terms is a more
interesting problem. We first consider two cases where a systematic
method of solution exists.

Example 1. Solve the equations x +y =3, x*+ xy +2y® +
X + 2y = 12 in which one equation is linear and the other quadratic.
We use the linear equation to express one unknown in terms of the

other. Thus we have
x=3—y

We now substitute this expression for x into the second equation
to obtain a quadratic equation for y. Thus

B=+C—+2$'+C—-N+y=12
9—6y+y +3y—y*+2+3—y+2y=12
22 —2y=0
yo—1D=0
. y=0 or y=1
When
y=0,x=3; wheny=1x=2. (Sincex=3—y)
Thus the solutions are x =2,y =1; x =3,y =0.

6



SIMULTANEOUS EQUATIONS

We could, of course, have used y =3 — x and obtained an
equation for x on substituting this into the second equation.

Example 2. Solve the equations x® — y2 =3, 2x2 +- xy — 2)? =4
in which the terms involving the unknowns are all quadratic in both
equations. The solution can generally be obtained by writing
y = mx and proceeding as follows:

The equations can be written

(1 —m)=3
*Q+m—2md)=4

1—m? 3

Thm_om 4
4 —4m® =6 + 3m — 6m*®
2m* —3m—2=0
Cm+1D(m—2)=0
m=2 or m=—}
With m = —3% we have §x* =3
x*=4 ie x=42

The corresponding values for y are 1. (Since y = mx.) With
m = 2, we have x%(—3) = 3; .. x2 = —1, and this equation has
no solution in the domain of real numbers. Thus the solutions are
x=2,y=—1; x=-2,y=1 ’

It is not usually possible to give general procedures for the
solution of simultaneous equations which do not fall within the
categories just mentioned. Rather each problem must be considered
on its merits and the solver must use his own ingenuity.

Example 3. Solve the equations

x+l=13
y
1
y+-=4
X

7



OPERATIONS WITH REAL NUMBERS
The equations can be rewritten in the form
xy+1l=y
xy+1=4x
y == 4x which on substitution gives
4x2 4+ 1 =4x
ie. 4x* —4x +1=0
2x—1D2=0 Sox=1%
But since y = 4x, y = 2 and the solution is x = §, y = 2.
Example 4. Solve the equations xy —x =4, xy —y = 3.
On subtracting the first equation from the second we have
x—y=—1
ie. x=y—1
If we substitute this into the first equation we have
yy—D—-@-1=4
i.e. yP—2y—3=90
G-y +1=0
y=3 or y=—1L

Sincex=y—1,wheny=23,x=2,and when y = —1, x = -2,
The solutionis x =2, y=3; x=-2, y=—L

Exercises 1b

Solve the simultaneous equations 1-10:

x4+ 2y=3,x2—xy+ 52+ 2y=".
24 y=1Lx2+xy+3x—y=4.
2x —3y=1x*+xy —4t=2.

. x% -+ 2xy = 3, 3x* — y? = 26.

. Xt 4 y? =13, x® — 3xy + 2y = 35.
xz-—xy+7y =27, x*—y:=15.

- V. RN

.ﬁ+f=5—+_=
x* 0y

wl-h -hIUI

8. x*+ y*=10,~ —|—1=
x Y



INEQUALITIES

9.x2—y2=24, 1 _|_ 3 =!‘.}.

x+y x—y 12

10.)—C+X:£,x2—4xy+y2=1.
y x 4

1.4. INEQUALITIES

In this section we shall consider the rules governing the relation-
ships between numbers which are not equal. For any two real
numbers a and b, we say that a is greater than ?a >byifa—bis
positive. We say that a is less than b (a < b) if @ — b is negative.
In terms of the representations of numbers on a line (Figure 1.7)
a > bif ais to the right of b; a < bif ais to the left of 5. Thus we
have by definition

a>b if a—b>0 and a<b if a—b<0 ....(13)
e.g. 5> —3since 5 — (—3) = 8 is positive i.e. >0. Also —3 <

—1 since —3 — (—1) = —2 is negative i.e. <O0.
1. We first show that if @ > b then
at+x>b+x (1)

where x is any real number.

Forifa>b,a—b=c¢c>0
a+x—@b+x)=a+x—b—x=a—b=c
a+x—Gb+x)=c>0

S a+x>b+x by definition.
In the same way if a < b
a+x<b+x ....(1.5)

thus, as with equations, we may add the same number to both sides
of an inequality and still preserve the inequality.
e.g. 5> —2 and after adding 6, 11 > 4.
6 < 9 and after adding —3, i.e. subtracting 3, 3 < 6.
We cannot however, treat inequalities in the same way as equations
if we multiply both sides of the inequality by the same number.
Rather we have:

IL. If a > b, ax > bx if x is positive, but ax < bx if x is negative
....(1.6a)

Similarly if a < b, ax < bx if x is positive, but ax > bx if x is negative
....(l1.6b)
We shall prove this for the case a > b.

9
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Then, a — b = ¢ where c is positive
ax — bx = cx which is positive if x is positive, but negative if
x is negative
ax—bx>0 if x>0
ax —bx <0 if x<0

which is the required result.

Thus if we multiply both sides of an inequality by a number we
must be sure that this number is positive; otherwise the inequality
sign has to be reversed.

e.g. 7>3

and 21 > 9 after multiplication by 3
. but —14 < —6 after multiplication by —2.
IMm. If a>b and ¢>d then a+c>b+d ....(1.7)

e.g. 7>3 and —4> -7 and 3> —4
(N.B. 1t does not follow thata — ¢ > b — d
e.g. 11>10 and 9>2 but 11 —-9<10-—-2)
Iv. If a>b and b>c then a>c¢ ... (1.8)
e.g. 8>7 and 7>2, and 8>2

N.B. If a>b and b < ¢ then we can say nothing about the
relative magnitudes of a and c.
e.g. 9> 2and2 < 8 and of course 9 > 8, but we could equally
well have had 9 > 2 and 2 < 11 with in this case, of course, 9 < 11.
V. Ifa> b and ¢ > d and a, b, c, d are all positive,
a

b
ac > bd and 173 ....(19)

eg 9>2and 6> 3 and of course 9 X 6 >2 X 3 ie. 54 > 6.
VI. If a > b and a and b are both positive

P SRS LN N
indeed a*>b" if n>0
at*<b" if n<0 ....(1.10)
e.g. 3>2 and 33> 28 ie. 27> 8
but 3% << 278 ie. ¥<i.

10
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Example 1. For what values of x are both the inequalities
94 2x>0and 7 — 3x > 0 true?

If94+2x>0,2x> —9ie. x> —2 If7—3x>0, —3x>
—17, i.e. x < % (Note the reversal of the sign). From Figure 1.2
we see at once that both inequalities are true for —% <x < {.

x> —% x <%
I |
-3 0 5
Figure 1.2

2x 41 1

x+2 2
We multiply both sides of the inequality by (x + 2)* which we
know is positive. Thus we can be sure that the inequality sign is
preserved correctly. Thus we have:

@2x + D(x 4+ 2) > i(x + 2)?
2(2x + D(x + 2) > (x + 2)?
x+2)@x+2)—(x+22>0
(x+2)(3x)>0

This will be trueif x > 0and x + 2 > 0,0rifx <O0andx 4+ 2 <0
i.e. both factors are positive or both factors are negative.

The first two inequalities are true if x > 0 and the latter two
inequalities are true if x < —2. This can be clearly seen if the
following table showing the signs of the factors is drawn up. The
individual factors change sign at 0 and —2.

Example 2. Find the range of values of x for which

x< —2 —2<x<0 x>0

3x —ve —ve +ve
x+2 —ve +ve +ve
Ix(x + 2) +ve —ve +ve

Thus the original inequality is true if x > 0 or x < —2.

Example 3. Determine the range of values of x for which
x24+x—2_ 1
x4 4 =3
We notice that x® -+ 4 being the sum of two squares is always

11
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positive. Thus we can multiply both sides of the inequality by
x? 4+ 4 and still preserve the sign. Thus

X+x—2>3x*4+4)
224+ 2x—4>x*+4
x242x—8>0

(x+4x—2)>0.

We draw up our table showing the signs of the individual factors.
The individual factors change sign at —4 and 2.

x < —4 4 <x<2 x>2
x+4 —ve -+ve +ve
x—2 —ve —ve +ve

x+dHx—2) +ve —ve +ve

Thus the inequality is true if x < —4 or x > 2.

x+3 < x4+ 1 .
x—2 x-—3

Here we must multiply by the positive factor (x — 2)*(x — 3)2 to
obtain

(x +3)x — D(x — 3)* > (x + D(x — 3)(x — 2)*
(r=3Nx =[x +3)x—3)—x+Dx—2)]>0
G=3Nx—DF—9—~(x?—x—2)]>0
G—3)x—Dx—-—7=>0

Again we draw up our table showing the signs of the individual
factors, which change sign at 2, 3 and 7.

Example 4. Solve the inequality

x <2 2<x<3 (3<x<7 x>17

(x—2) —ve +ve +ve +ve
(x—3) —ve —ve +ve +ve
x=17 —ve —ve —ve +ve
x—2)x—3)x—T7 —ve +ve —ve +ve

Thus the original inequality is true if 2 < x <3 or x > 7.

We shall in later chapters have cause to use the notion of the
modulus of a number x. The modulus of x is the positive number
having the same magnitude as x. It is written |x|. Thus {3| = 3,

12
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[—6] =6, |—2] =2, |—1] = 1. In general if x is positive |x| = x,
but if x is negative |x| = —x. With this notation the range of values
of x specified by the inequality —1 < x < 1 can be specified more
concisely by |x] < 1.

Example 5. Find x if |x 4+ 1] = 5.
Wehavex +1=50rx-+1= —5
‘ x=4 or x=—6

Example 6. Find x if |2x + 1] > 7.

2+ 1]>7 means 2x+1>7 or 2x+1<—7
Thus we have 2x > 6 or 2x < —8
: x>3 or x<—4

The Inequality of the Means—The arithmetic mean ath of two

2
positive numbers a and b is greater than or equal to their geometric
mean +/ab. For we have, if a and b are positive,

(Ja— b >0
a+b—2Jab>0
“;Lb>¢ab (11

which proves the result.
Example 7. 1f a, b, ¢, d are any real numbers, prove that (i)
a* + b* > 2a%b% and (i) at + b* + ¢t + d* > 4abcd.
(i) By equation (1.11) we have
4 4
‘L_Z_*.—_b > \/a"b‘ = g2h?
S a* 4 b* > 2a%h%
(i) By the previous result we have
at + bt + ¢t + d* > 2a%b® 4 2c%d?
But 2a%h? and 2¢%d? are two positive numbers and so by equation
(1.11)
2a%h® + 2c%d°
2
ie. 2a%* + 2¢*d* > 4abed
: a* + b* + c* -+ d* > 4abed by equation (1.8).

13
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Note the result will certainly be true if some of a, b, ¢, d are
negative, so that abcd is negative, since the left-hand side is certainly
positive.

Example 8. Show that if a, b, ¢, are real numbers, a® + b2 +
c® — bc — ca — ab cannot be negative.
We have
a4+ b* > 2ab

b+ c® > 2be
¢+ a® > 2ac by equation (1.11)
On adding these results we obtain by equation (1.7)
2(a® 4 b + ¢?) > 2(ab + be + ca)
. @b+ c*>ab+bc+ca  which is the required result.

Exercises Ic

1. Solve the inequalities 3x + 11 > 0 and 8 — 7x > 0.
2. Find the values of x which satisfy 2x* — 7x + 9 < x2 — 2x 4 3.

< —-1?
x —

4. For what values of x is x—1 < Z?
x+3 3
5. Solve the inequality >—1 ~ X =2
x—2 x—3
2
2x° +5x + 7 >,
3Ix+5
2
7. Solve the inequality ~2——————————M < 1 .
X2+ 2x+6 2
8. F1ndx1f|x+ 3| —2
9. 1 = 1.
x + 1
10. Find x if [x 4+ 3| > 5.
11. Find x if [2x + 3] < 1.
12. If a and b are positive numbers show that (i) a —I— > 2, and

(ii) that (a + b)( ;) S 4,

13. If a, b, and c are three positive numbers show that (a - b) X
b + ) + a) > 8abc.

3. For what values of x is

6. Solve the inequality

14
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14. Show that x® + y3 > x% + xp?if (x + y) > 0.

15. Verify that a®+ b® + ¢ —3abc =(a + b + ¢)(a® + b% +
¢® — ab — bc — ca); hente show that if a, b, ¢ are all positive, then
a® + b3 4 ¢ > 3abc.

1.5. ELIMINATION

In section 1.3 we considered methods for the solution of two
equations in two unknown quantities. If we have more equations
than unknowns, two equations in one unknown, or three equations
in two unknowns, then in order to obtain a consistent solution to the
equations the coefficients must satisfy some relationship. This
relationship is known as the eliminant of the system. It is obtained
by forming from the given equations an equation which does not
involve the unknowns. This process is known as the elimination of
the unknowns. Itisa technique which is of great value in co-ordinate
geometry.

Example 1. Eliminate ¢ from the equations x = ar?, y = 2at.
From the second equation we can solve for ¢ in terms of y, i.e.

t= EyZz . Substitution into the first equation gives

2 2
‘—a (1) _Y'a
2a 4a®
y?=4ax  which is the required result.

Example 2. Eliminate ¢ from the equations

X =—t y= £
14 ¢’ 1+
We have y/x = ¢. Substitution in the first equation gives
oYX ylx
14y (e + y)/x
. Xy
L. X = ——
' x4yt
x(x2 4+ y) =xy

Example 3. Eliminate / and m from the equations Ix + my = a,
mx—Ily=5bEB+m?=1.

The straightforward procedure would be to solve the first two
equations for / and m in terms of @, b, x and y. Substitution of these
expressions into the last equation would then provide the eliminant.
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However, in some cases (as in this case) it is possible to use more
subtle methods. In the present case if we square the first two
equations and add the results we obtain

leZ + m2x2 + m2y2 + l2y2 — a2 + b2
i.e. x4+ )+ m?) =a® + b?
and since 2 4+ m? = 1
x2+y*=a?+b*  which is the required eliminant.
Exercises 1d

1
1. Eliminate ¢ from the equations x =14 ¢,y =1+ 7

1
2. Eliminate ¢ from the equations x =3 4 13, y = 2 + 7

1 1
3. Eliminate ¢ from the equations x = ;LYY= 1.
2at b1 — 1) x®  yt

4. If x = , V= , show that — L1,
X +t2 y= 1+ 2 w a2+b2

5. Eliminate 6 from the equation x — acos =0,y — bsin0 = 0.

6. If x =1 4 %, y = 2¢, show that y% = 4(x — 1).

7.f x=1—1¢ and y=1-+ 5t — ¢ show that (x —y)? =
25(1 — x).

8. Eliminate x and y from the equations x —y = a, x? + y® =
b xy = 1.

9. Eliminate x and y from the equations x —y =a,x +y =2,
Xy = c.

10. Ifx 4 2y* = a, x — 2y% = b, xy = 2, show that

(a + b)(a® — b%) = 64.

1.6. PARTIAL FRACTIONS

Our readers will already be familiar with the technique of forming
the sum or difference of two or more algebraicfractions. Forexample:

1 n 2 +x—|—1=x+1—|—2(x—1) x4+ 1
x—1 x+1 x*41 x2—1 x4+ 1
:3x—1 x+1

x2—1 x*4+1
CEEDB =D+ x+ D1
N xt—1
4P 42x—2
T X1

16
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For the purposes of expanding such a complicated algebraic
fraction in powers of x, or for integrating such a fraction with respect
to the variable x, it is often necessary to carry out the reverse
procedure, i.e. to resolve such a fraction into the sum of two or more
partial fractions. The denominators of these partial fractions are
the factors of the denominator of the original fraction. The technique
is governed by a few simple rules:

1. If the degree of the numerator is greater than or equal to the
degree of the denominator it is possible to carry out a division to
obtain a quotient together with a fraction whose numerator is of
lower degree than its denominator. This latter fraction is then
resolved into partial fractions.

II. To each linear factor of the form x — a in the denominator

. 4 .
there corresponds a partial fraction of the form —— where 4 is
constant. ’ x—da
x4+ x* + 4x

Xt x—2
The numerator is of degree 3, the denominator is of degree 2, so we
divide

Example 1. Resolve into partial fractions

x
X2+ x—2)x3+ x2+4x
x3 4+ x% — 2x

6x
3 2
Zc+x—+4x.=x+___6x__=x+—6x___
x4 x—2 X2+ x—2 (x+2)x—1
We set 6 , 4 B

+
x+2)(x—1) x—1 x+42
To determine 4 and B we multiply throughout by (x + 2)(x — 1) to

obtain 6x = A(x + 2) + B(x — 1)
By putting x = 1 we obtain 6(1) = A(1 + 2)
ie. 6 = 34, S A=2
By putting x = —2 we obtain 6(—2) = B(—2 — 1)
i.e. —12 = —3B, ;. B=4
x® 4 x* 4 4x 2 4
X2 x—2 =x+x—1+x+2

* The sign = is to be read as “‘identically equal to.”

. 17
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(An alternative procedure for determining 4 and B is as follows.)

We can make A(x+2)+B(x—1)= (44 B)x+24— B
identically equal to 6x by choosing A and B so that the coefficient of
x, viz. (A 4+ B) is equal to 6, and the term independent of x, viz.
(24 — B) is equal to zero. Thus we would have 4 + B =6,
2A — B=0 whence 4 = 2, B = 4 as before. We shall find that

both these techniques for determining the unknown quantities are
valuable.

Example 2, Resolve into partial fractions

3x2—4x+ 5
x+Dx—=3)2x—1)

The degree of the numerator is less than the degree of the
denominator. Thus we set

3x* —4x 4§ __A4 n B 4 C
x+DEx—3)2x—1) x+1 x—3 2x—1
Multiplication by (x + 1)(x — 3)(2x — 1) gives
I —4x 4+ 5=4x—3)2x—1)
+ B(x + D@2x — 1) + Clx + 1)(x — 3)
with x = —1, we have 3(—1)? — 4(—1) + 5 = A(—4)(—3)

i.e. 12 = 124, SooA=1
With x = 3, we have 20 = 20B, . B=1
With x = §, E:c(— E), 5 C=—1
4 4
3x2—4x 4+ 5 1 1 1

GrDE—32x—1) x+1 x—3 2x_1

If we use the second technique (not so convenient in this case) to
determine 4, B, and C we obtain the equations

244+ 2B+ C=3
—74 +B—2C=—4
3—B—-3C=5
which have solutions 4 =1, B=1, C = —1.

18
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IIl. To each quadratic factor in the denominator of the form
ax?® + bx + ¢ which does not have linear factors there corresponds

. . A B
a partial fraction of the form _ch-l,L_ where 4 and B are
constants. axt+bx +c¢
2
Example 3. Resolve into partial fractions 3x +28x +13 .
(x — DE*+2x +5)
3x24-8x+13 A Bx + C

We set =
x—D*+2x+5) x—1 x24+2x +5

3324+ 8x+ 13=A(*+2x + 5)+ (x — NBx + C)
=x(4+B+x2A—B+C)+54—-C

With x = 1, we obtain 24 = 84, S, A=3
If we make the coefficients of x? equal, 4 + B = 3, ;. B=0
If we make the terms independent of x equal, 54 — C =13,
S C=2
It is easy to see that with these values for A, B, C the coefficients of
x are also equal,

3x*+8x+13 3 " 2
x—Dx*+2x+5 x—1 x*+2x+5

. ) . 2+ 2x 410
Example 4. Resolve into partial fractions GIDEFY
2x*+2x4+10 4  Bx+C
x+DxE+9 x+1 x*49
2x2 + 2x + 10 = A(x® + 9) + (x 4+ )(Bx + C)
With x = —1 we have 104 = 10, .o A=1
If we make the coefficients of x® equal, 4 + B =2, .. B
A

If we make the terms independent of x equal, 10=19
. C=1,

We set

=1
+ G,
2x*+2x+10 _ 1 x+1
x+DEE4+9 x+1 x*+9

IV. To each repeated linear factor in the denominator of the form
(x — @)? there correspond partial fractions of the form

A B
x—a (x—a?
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For repeated linear factors of the form (x — a)® there are partial

fractions of the form A -+ B + ¢ )3,etc.
a

x—a ((x—a} (x-—
V. To each repeated quadratic factor in the denominator of the
form (ax? + bx + c¢)? there correspond partial fractions of the form

Ax + B Cx+ D
ax® 4+ bx + ¢  (ax® 4+ bx + ¢)®
s 2
Example 5. Resolve into partial fractions X ox —3x 43 .
(x—=D*—1

The denominator (x — 1)(x2 — 1) = x3 — x* — x + 1 is of the
same degree as the numerator. We divide
1
X—x2—x4+1)x*—-x2—3x+5
x—x2— x+4+1

—2x+4
xa—xz——3x—|—5=1 4 — 2x
(x — D(x*— 1) (x — D*— 1)

4 — 2x

=1 —_—
+(x— Dx + 1)
4—2x A B c

We set

(x——l)z(x—l—l)zx—i—1+x—1+(x——1)2
4 —2x=Ax— 12+ Bx—Dx+ 1)+ Cx+ 1)

With x = 1, we obtain 2C = 2, S C=1
With x = —1, we obtain 44 = 6, S, A=4%
If we make the coefficients of x2equal, 4 + B = 0, J. B= -3
x*—x*—3 5 3 3 1
x = x+5 1+ _ +
(x—1D*x+1 2x+1) 2x—1  (x—1)?
. . . 7 — 2x
Example 6. Resolve into partial fractions ————=—— |
(x + D(x — 2)°
We set 7 - 2x A B C

(x+1)(x—2)2=x—|—1+x——2+(x~2)2

T—2x=A(x —2)24+ B(x + I)(x — 2) + C(x + 1)
With x = 2, 3C¢=3, S C=1
With x = —1, 94 =9, S A=1
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If we make the coefficients of x2equal, 4 + B = 0, S, B=—1
7 —2x _ 1 1 4 1
G+HDx—2?% x+1 x—2 (x-2¢

Exercises le

Resolve into partial fractions 1-10 and verify your results.

6x — 10 x*—x2—4
T P
x*—1
4x + 11 13 — 5x®
(* + 4x — 5) T —D(x+3)
x* 4 4x —7 p x2 42
x+ D2+ 4 TP 2x+3H2x+ 1)
7 2x* — 2x® + 4x? — 2x g Tx + 2
(x — D+ 1) T (2x = 3)x + 1P
2x® + 2x%2 + 2 10 x?
xR+ D) T A1)

1.7. INDICES

The product of a number with itself, @ X a, is called the second
power of a and is written a®.a X a X a, written g3, is called the
third power of @. @ X a X a X ... to m factors, written a™ is called
the mth power of . The number which expresses the power is called
the index or the exponent. Thus the index of a* is 2, the index of a®
is 3, the index of a™ is m.

When the algebraic processes of multiplication and division are
carried out with different powers of the same number the indices
combine according to certain fundamental laws. In the proofs of
these laws which follow we assume m and n are positive integers with
m > H.

I. am™ x g" = g™*" ....(1.12)

Fora™ xa"=(@ X axXaX ...tomfactors) X (a Xa X ...to
n factors) whichisclearlya X @ X @ X a X ...to(m + n)factors =
a™" by definition.

II. am = a*=ag"™" ....(113)
21
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For
a®™ axXaXaxX...tomfactors
@ axaxax...tonfactors
=aXaXaxX...to(m— n)factors
=am_n
111. @)" = a™" ....(1.14)

For (a™)" = a™ X a™ X a™ X ... to nfactors
=(a X a X aX...tom factors)
X (@ X a X a X ...tom factors)...n times

=gXaXaxaxX...tomnfactors

= g™

The laws (1.12), (1.13), (1.14) have been proved for m and n
positive integers. Indeed we have no meaning for a™ unless m is a
positive integer, the definition of a™ as the product of m factors each
equal to a being meaningless unless m is a positive integer. We shall
generalize our concept of power to include indices which are
fractional and negative. This generalization is carried out in such a
way that the rules (1.12), (1.13), (1.14) remain valid. We do not
want one set of rules for positive integer indices and another set of
rules for fractional indices. The rules stated in section 1.1 are true
whether a, b, ¢ are integers, rationals etc., indeed if they are any real
numbers. In the same way we require the rules (1.12), (1.13), (1.14)
to be universally true.

The Meaning of aV/™ where n Is a Positive Integer—Since we require
(1.12) to remain valid

at’/® , gl  gl/" to n factors = gl/"H/ntl/nt.. — g
(@' =a
" = {Va ....(1.15)

The Meaning of a™'" where m and n Are Positive Integers—Since
(1.12) is to remain valid

am’® g™ | to n factors = g™/t = gm
(am/n)n = g™
am™'* = {/a™ ....(L16)
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An alternative and equally valid interpretation is
a™'" = (yaym . (L17)

The Meaning of a"—Since we require (1.12) to remain valid for all m
and r we have with m = 0

a®.a" = g*tt = g»
a® = q"lg" =1
a® =1 for all values of g excepta =0 ....(1.18)

The Meaning of a"—Since we require (1.12) to remain valid for all
m and n we have with m = —n

a*a"=a""=q"=1
= e (119)
a

With these definitions it is easy to see that the rules (1.12), (1.13),
(1.14) remain valid for all values of m and 7.

Example 1. Evaluate (i) (81)%/*  (ii) (16)~5/4.

() (81)%/4 = (&/81) = 33 = 27

Note that it is more convenient to use (1.17) rather than (1.16):
(81)** = /813 = /531,441 which we are unlikely to recognize as
27.

@) 16754 = 1/16%/* = 1/(/16)5 = 1/25 = 1/32.

Example 2. Show from the definition that (51/4)1/2 = 51/4.1/2 — 51/8,
SU4 = /5 where (/50 =35
(SYH/2 = Y514 = Y(¢/5) = /5  where (58 =5
(5812 — 5178,
Example 3. Show that (a™)* = ™" for all m and n.
We show this by allowing m to be any value and considering in
turn the cases where # is (i) a positive integer (if) a positive fraction

(#ii) any negative value.
(9 If n is a positive integer

(a™™ = a™ . a™ to n factors
— am+m+m+... = g™n®

23



OPERATIONS WITH REAL NUMBERS

(ii) If nis a positive fraction say p/q where p, q are positive integers
@ = @y
Now [(@™)?/7f = (a™)?/4-¢ = (@™)? = a™? by ()
(@™ = Yam» = gmla = g™
(i7i) Finally if n is negative, we replace it by —k where k is positive

(am)n —_ (am —k
and (a™)* = L1 a ™ = g™  asrequired.

Exercises If
1. Evaluate (i) 275/3; (i) (36)73/%; (iii) (8)7/%; (iv) 167174,

3,—4
2. Express with positive indices (i) L2 5 93 g
s " x'y vz
(i) +abc
Ya*b3c’

3. Show that ./x —./a = (Hint: multiply by

FTve
M). Deduce that 1 = Vxt e
Jx +4/a Jx —4Ja X —a

4. Simplify (4.2"+1 — 27+8)/(2n+1 — 27),

5. Show that (xy)" = x"y". Treat separately the cases » is (i) a
positive integer (i) a positive fraction (i) a negative quantity.

1.8. LOGARITHMS

The logarithm of a positive number N to the base o is defined as the
power of g which is equal to N. Thus if

a =N (120
then x is the logarithm of N to the base a, written
x =log, N ... (121)

(1.20) and (1.21) are by definition equivalent and so we have

a'% ¥ = N .. (1.22)
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LOGARITHMS
Since we have at = @ and «° = 1 it follows that
log,a=1 ....(1.23)
log,1=0 LW (L24)
for all a (5£0).

Example 1. Evaluate (i) logs 9 (@ii) log, 3 (iii) log, 64.
(i) Since 32 =9, logs 9 =2
(if) Since 9/2 = 3,log,3 = %
(7ii) Since 43 = 64log, 64 =3
The laws for the manipulation of logarithms are derived directly
from the laws of indices:

L log, (bc) = log, b + log, ¢ ... (125)
For if log, b = x and log, ¢ = y
b=ag* and c=ga'
bc=a".a" = a*t* by (L.12)
log, (bc) = x + y =log, b + log, ¢

IL. log, (2) = log, b —log, ¢ ....(1.26)

For we now have with the notation above

b_a®_ v py13)
c a .
b
log, (—) =x—y=Ilog,b—log, ¢
4
III. log, (b%) = plog, b e (1.27)

For with the notation above
b? = (a@)? = a®™
log, b? = px = plog, b
We have just seen in Example’ 1 that the logarithm of a number
may be calculated to any base. Tables of logarithms to the base 10
(common logarithms) are in existence and are very useful for
arithmetical calculations. It is not difficult to use these tables to

calculate the logarithm of any number to any specified base. We
need the following transformation rule:

log, N =log, b.log, N ....(1.28)
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For if y = log, N, N = b¥
log, N = log, (b*) = ylog, b
R log, N =log, b .log, N
If we put N = a in (1.28) we obtain
log,a =log,b-log,a =1

log, b = 1 ....(1.29)
log, a
Another useful form for (1.28) is then
log, N = 28N ...(1.30)

log, a

Example 2. Use the table of common logarithms to evaluate

(@) log, 9; (ii) logs 16.
No. Log.

0-9542 19796
(i) log, 9 = logye 9 = 0-9542 =317 0-301 1-4786
log,s2 0301

0-5010

(ii) logy 16 = logio 16 _ 12041 _ , o, 12041 | 00806
log,,3  0-4771 04771 | 1-6786

0-4020

2
Example 3. Show that log, (a* — x*) = 2 + log, (1 — x_z) )
a
2 x*
log, (a® — x*) = log, ':a2(1 — _Z)jl
a
xB
=log, a® + log, (1 — —;)
a

2
=2 4 log, (1—)—65)

a
Example 4. Show that log, b .log, ¢ .log, a = 1.
log,b.log,c =1log,c by (1.28)
log, b.log,c.log,a=log,c.log,a
=log,a=1
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EQUATIONS IN WHICH THE UNKNOWN IS AN INDEX

Exercises 1g
1. Evaluate (i) logs 27; (ii) logys 27; (iii) logs 16; (iv) logy/s 32;
(v) log, x3; (vi) log,s y; (vii) logy, x%; (viii) logy/x X"
2
2. Show that log, (a + b)* =2 + log, (1 + 2b + %)
a a

3. Evaluate (i) loge 12; (ii) logs 24.
4. If log, b = log, ¢ = log, a show that a = b = c.
5. If u, v, s, t are all positive show that

e () ) x5 e 3 ) )

the logarithms all being to the same base.

1.9. EQUATIONS IN WHICH THE UNKNOWN
IS AN INDEX

Some of the techniques used to solve this type of equation are
illustrated by the following examples.
Example 1. Solve the equation 3** = 9°*4.
332 — 9T+ - (32)o:+4 = 32(=+4)
Taking logarithms to the base 3 we obtain
x2=2x+4)
x2—2x—8=0
x—4x+2)=0
x=4 or x=—2
Example 2. Solve the equation 23*+1 = 571,
Taking the logarithms on both sides we obtain
(Bx + Dlogp2 = (x + 1) log, 5
(3 logm 2 _— loglo S)x = loglo 5 - loglo 2
(loglo 8 _— loglo S)x = loglo 5 - loglo 2
— logie 5 — 10830 2 — loge %
logy, 8 —log;o 5  logy s

No. Log.
o2 03979 oo 03979 | T-5998
0-2900
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Example 3. Solve for x, 9° — 4 x 3°* + 3 =0.
(B —-4x3*4+3=0
3 —4x3¥+3=0
(B3)2—4x3*4+3=0
B —NDB3*—3=0
=1 or 3*=13
x=0 or x=1
Example 4. Solve for x, log, 9 4 log,» 3 = 2-5.
We first try to express all the logarithms to the same base.

( 2)1\1?:1 by (1.28) log,. 3 = log,z x. log, 3 and log,: x = % since
XD = x

log,2 3 = % log, 3 = log, 3! = log, /3
Thus the equation becomes
log, 9 + log, /3 =2'5
log, 9./3 = 2'5
9./3 = x¥%  whence by inspection we see that x = 3
Otherwise logyg 94/3 = 2-510g; x
logyy94/3  logy, 3*°
2:5 2-5

x =13

log;p x = =logyy 3

Example 5. Solve the equations 2*+? = 8, 32*=¥ = 27,
From the first equation we have, after taking logarithms to the
base 2,

x+y=3
From the second equation after taking logarithms to the base 3
2x —y=3
Thus our equations are equivalent to
x+y=3  2x—y=3.

(These equations would have resulted, after some simplification
whatever base had been chosen for the logarithms.)
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EXERCISES
On adding 3x = 6, x =2 and so y =1

the solutionis x=2 and y=1

Exercises 1h

. Find x if 3* = 7-83.

. Find x if log, 2:69 = 2.

. Solve for x (i) 3%* = 5%; (i) 7*"+2 = 9%,

. Solve the equation 2** = 187,

. Find x if 97* = 352,

. Solve the equation 52* — 5%* 4 6 = 0.

Solve the equation 4% = 261,

. Find x if log, 8 — log,. 16 = 1.

. Find x if log, 3 4 logs x = 2-5.

. Solve the simultaneous equations 2*+¥ = 6, 3*¥ =

SOV NAUNE W~

[y

EXERCISES 1

1. Solve the simultaneous equations x + 2y = 7, x2 + 2y% = 17.
(W.J.C)
2. Express (2x2 + 8x + 7)/(x* + 4x + 5) in the form

b
T otortd

and state the values of a, b, ¢, and d.

3. Solve the equation 2%. 3" = 6.

4. Show that (a -+ /b)* = a® + b + 2a,/b. Hence evaluate the
square root of 9 + 4./5 in the form ¢ + Jd.

5, Given the simultaneous equations x* — 6xy + 11y? = 3a?,
x2 — 2xy — 3y = 5a? derive an equation in x and y only, and hence
solve the equations for x and y in terms of a. (N.U.J.M.B., part)

6. Express in partial fractions (8x + 15)/(x* + 4)(x — 3).

7.If X = Y= -%_:—tt)show that (Y + a)® = 4aX.
8. Solve completely the equation (x? + x)? = 5x* + 5x — 6.

a

t2

_ 2 L.U., part
9. Express in partial fractions &——J)—y—z . ( part)
G =1 -y
10. Find the range of values of x for which x_(x_f?Z) > 2.
pe
11. For what values of x is Mx —1) > 0?

X
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12. By putting y =x + pE solve the equation 2x* — 9x3 +
14x2 — 9x + 2 = 0

13. Solve the equation \/(Zx —-D—Jx—-1)=1

14. If p? = gr show that log, p + log, p = 2log, p log, p.

15. Solve the equation logs x -+ log, 3 = 2.

16. Solve the mequahty x—2 X 3
-3 x —I—

17. Verify that (2 + m? + n?)(x? + y? 4 28 — (Ix + my +nz)* =
(ly — mx)? + (mz — ny)® + (nx — Iz)®. Deduce that (Ix + my + nz)? <
(2 + m? + n®)(x? 4 y2 + 22).

18. If @, b and c are positive and unequal show that

(@ + b+ )? < 3(a®+ b2+ c¥).

19. If a, b, ¢ are positive and unequal show that

(a+b+c)(i+i+i) ~9
20. Solve the equation 2773 =3 X 9°2,
21. By making the substitution y = x + ;lc , solve the equation
x4+ 8x34+17x24-8x+1=0. (W.J.C., part)
22. Solve for x: log,, (x2 + 24) =1
23. Solve for x: 2% X 3"+1x= 524,

2 2
24. If u_ +2- =12 and 1 —{-l =§ find the values of uv and
u

v

hence solve the equations.
25. Solve the equation /(2x + 3) — \/(x —2) = 2.

2 2
26.Ifx=a(1+t), = 2bt showthat——y——
1—7 1-— b?
27. If a and b are two real numbers such that a-b =1 prove
that 4ab < 1. Hence or otherwise show that a%+ b® > 4.
(J.M.B,, part)

28. Fmdylf ‘ <2.

29. Use the result of question 17 to show that (a® +- b® + ¢%)® <
(@ + b® + (@ + b* + ).

30. Solve the equation logyy (x® -+ 9) — 2logy, x = 1.

31. Solve the equations x + 2y = 3, 3x® + 4y* 4+ 12x = 7.
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EXERCISES
32. Solve the equations 3**+¥ = 12, 2% = 4,

(x—2)(x—3)>0?
x—4

34. Solve the equation 22#2* 4- 3 x 2* — 1 = 0.
35. If a® + b® = 23ab show that log a + log b = 2log (“ + b)_

5
36. Solve the inequality 3y + 17 > 1.

33. For what values of x is

1 1
37.If x=p+=—, y= 4+ — show that y2 —2 =
AR Vet V=P y

*38. By putting « = loga, f = log b, y = log ¢ in the identity
a(f — )+ By — «) + y(e — B) = 0, show that

(b)loga (c)logb (a)logc .
c ) a ’ ;) o

where the logarithms are taken to any base.
*39. Given the simultaneous equations x + yz =y - zx =z +
xy, X2+ y2 4 22=6, show that x=1 or y =2z and hence

solve the equations. (J.M..B,, part)
*40. Find in terms of k, a solution of the equations
x+y+kz=4
x—2y—z=1

kx+ 7y +5z=10

For what values of k is this solution not valid ?
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2
FINITE SEQUENCES AND SERIES

2.1, SEQUENCES AND SERIES

Sequences

A sequence, or progression, is a set of numbers in some definite
order, the successive terms (or numbers) of the sequence being
formed according to some rule.

For the following sequence, the sequence of positive integers
1,2,3,4,... the rth term is the integer r; for the sequence 1, 4, 9,
16, . .. the rth term is the number 72,

It is usual to denote the rth term of a general sequence by «,, and
the sequence by uy, u, ... %,.... The rule defining a sequence
is often given in the form of some formula for #, in terms of r although
this is not necessarily so. (See Example 2.) Thus for our first
sequence u, = r; for the second sequence u, = r2.

Example 1. Find u, in terms of r for the sequences:
# 3,517,9,... '
@) Ly dor- 1
(i) 1,4,3,16,5,36,7,64, . ..
(v) —-1,1,—1,1,—1,1,...
®1,-2,3,—4,5 —6,...
() By inspection we see that the terms can be written

2x14+1,2%x2+1,2x34+1,2x441,...
u,=2r 4 1.
(if) By inspection we see that the terms can be written

1 1 1 1
B

" 1
="
r?
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(iii) If r is odd, u, =r, if r is even u, = r%. Since 2r is always
even and 2r 4 1 always odd, us,y = 2r 4 1, u,, = 4r? adequately
describes the sequence.

(iv) The odd terms are —1, the even terms +1. Thusu,.; = —1,
us, = 1. However, the sequence may be described quite adequately
by one formula in this case, viz. 4, = (—1)".

(v) By using the result (iv) we have

ty = (=1)(=r) = (=D)*r.

Example 2. Find the first 5 terms of the sequence defined as
follows: the first two terms are 1 and 3 respectively; each later
term is formed by multiplying its predecessor by 3 and subtracting
the next previous term, i.e.

U, = 3“1‘—-1 — Up_g

ul = 1, u2 = 3

Us=3u, —uy; = 8

Uy =3uy —u,=24—-3=21

g =3uy —u3=3xX21 —8=63—-8=255
The first five terms are thus 1, 3, 8, 21, 55. (N.B. This rule adequately

defines a sequence although it would not be easy to find a formula
for u, in terms of r.)

Series

A series is obtained by forming the sum of the terms of a sequence.
A finite series is obtained if a finite number of terms of the sequence
are summed. The sum of the first » terms of the sequence uy, us, . . .
is generally denoted by S,,;

Sn=u1+u2+u3+...un -...(2.1)

S, is the sum of the first n terms of the series u; 4w +u3 + ...,
or as it is sometimes put S, is the sum to n terms of the series
#; + us + uy + . ... The rth term of the series is ,, the corresponding
term of the sequence from which the series is derived by summation.

S,=uy + g+ uz+...u,
is often denoted by

Su,=u;+ug+ ... U, ....(22)

r=1
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FINITE SEQUENCES AND SERIES

> is the Greek letter ‘sigma’ and the symbol above means evaluate
u, for all values of r from 1 to n and sum the results. The specific
form for u, may be inserted. Thus with u, (the general term of the
series) = r

3

u,=§n:r=1+2+3+...+n
1 r=1

T

In the same way

Z:u,=um—|—um+l-1—...-}—u,l [n>m] ....Q23)

r=m

Example 3. The sum of the first n terms of a series is given by the
formula S, = n? + 3n for all values of #n. Find an expression for
the rth term of the series.
If u, denotes the rth term
u,. = Sf - Sf—l oo .(2.4)
=y tu+ ...+ u]— [+ u+ .. .0yl
=ri+3r—[(r— 1)+ 30— D]
=ri4+3r—[r2+r—2]
u.=2r+2

4 7
Example 4. Evaluate (i) ¥ r* (i) X 2~
r=1 r=3
4
() Zr=1"+2243"4+4"=14+4+9 416 =30
r=1

7
@) 227=224+20 4254204+ 27
r=3
=8+ 16 + 32 + 64 + 128 = 248

Exercises 2a

1. Evaluate the first 5 terms of the sequences whose rth terms
(u,) are (i) 3r — 1 (&) (—Pr Gii) 27 + r2.

2. Find a formula for u, for the sequences

() 1,8,27,64,125...

() 1, —4,9, —16,25. ..

(iii) 3,2,8,32,128.. ..

3. Asequenceisdefined by therulew; = 1,4, = 2andw, = u,_, +
U,_s forr > 3. Find the first 7 terms of this sequence (the Fibonaccii
sequence).
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4, Ifuy = —1,u, = —5and u, = a + br find a, b and u;.
5. Evaluate %, for the sequences:
(#) 0,7,26,63,124...
(i) 2,4,6,8,10...
@) 2, 11,32, 71,134 ...
(i) 3,9,27,81,243 ...
@) 2, —4,8, —16,32...
(i) 5,5, 35, 65,275 .. ..
(vii) 6, —36, 216, —1296. ..
6. Find the first 6 terms of the sequence defined by u; = 0,
6

u, = 2 and 4, = u,_, — u,_, for r > 2. Hence evaluate Y u,.

r=1
7. u,=0, u,=3, u3=12, and u, = a + br + cr®. Find a, b,
¢ and 5 7
® Zlu, (i) z“u,.

8. Evaluate (i) S for the series1 +3 + 6 4+ 9 4+ 12 4 ... (i) S;
for the series 3 49 4+ 27 481 4-...
9. The sum of the first n terms of a series is given by S, = n® — 2n
for all values of n. Find u,. 10 10
10. Ifu, = log;o r, show that > u, = > log,, r = logy, 3,628,800
r=1 r=1

2.2. THE ARITHMETIC SEQUENCE AND SERIES

If the consecutive terms of a sequence differ by a constant number,
their terms are said to form an arithmetic sequence or an arithmetic
progression. Thus for example the numbers 1, 3, 5, 7, ... are in
arithmetic progression, the difference between consecutive terms
being 2.

An arithmetic sequence is completely defined by its first term
(conventionally denoted for the general arithmetic sequence by a)
and the common difference (the difference between consecutive
terms) denoted by d. The general arithmetic sequence is then

a,a+da-t+2dat+3d,...a+@¢—Dd, ... ....Q25)
and the rth term of the sequence is
u=a+ (@ —1)d ....02.6)

If the numbers u;, u,, U, U, - - - Up_y, U, are in arithmetic progression,
Us, Us, . . - Uy, are said to form (r — 2) arithmetic means between
u; and u,. This is simply an extension of the usual notion of an
arithmetic mean (or average). The three quantities a — d,a,a + d
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are in arithmetic progression and a is the arithmetic mean of the
other two.

The sum of the terms of an arithmetic sequence form an arithmetic
series. For the general sequence (2.5) the sum of the first »n terms is
S,=a+@+d+@+2d+...at+@m—0Dd ....27)

For this particular series we can obtain a closed formula in terms of
nfor S,

S,=a+@+d) +@+2d)+...la+ (n—2)d] +[a+ (n — 1)d]
and
S,=a+m—Dd+la+@m—2dl+...a+d+a
and on addition, since corresponding pairs add to 2a + (n — 1)d
28, =2a+m—1Dd+2a+n—1d+... n times
= n[2a + (n — 1)d]

S, =z [2a+ (n — 1)d] .28

(NS TR

This result can be written in another useful form. Since a is the
first term and [/ = a@ + (n — 1)d is the last term of the arithmetic
series above and since

a+l=2a+@m—1)d
we have

S,=xz(@+1 X

NS

Example 1. Find three numbers in arithmetic progression whose
sum is 21 and whose product is 315. Let the numbers be a — d,
a,a+d Then a—d+a-+a+d=21, ' 3a=2l, so that
a=1.

ala — d)(a + d) = a(a® — d?) = 315

a>— d* =45 [since a = T}
d? =4, sothat d= 42
and the required numbers are 5, 7, 9.
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Example 2. Find 6 arithmetic means between —3 and 18. We
require 8 terms in arithmetic progression, —3 being the first and
18 the eighth. If their common difference is d

18= —347d sothat d=13
The arithmetic means are 0, 3, 6, 9, 12, 15.
Example 3. Evaluate the nth term and the sum of the first n terms
of the arithmetic series: 3+ 7 + 11 + 15+ .... Evaluate uy,

and S,,.
The first term is 3 and the common difference 4.

By (2.6) U, =3+m—D4=4n—1
For S, we have, by (2.8)

Su =3 00) + (= D4 =7 (4n +2) =20* + n

upy = 4(11) — 1 =43
Sao = %[2(3) + 19(4)] = 820.

Example 4. The first two terms of an arithmetic series are —2
and 3. How many terms are needed for the sum to equal 306?

The first two terms (a,a + d) are —2 and 3 so that a = —2
and d = 5. The sum of the first n terms is thus

sn=’5’[—4+5(n—1)1

n
> [5n — 9)]
If S, = 306, 5n% — 9n = 612
5n* —9n — 612 =20
(Gn+5S)n—12)=0
n=12 or —351

Thus 12 terms are required.

..

Example 5. Obtain a formula for > r in terms of n. (The sum of
the first n positive integers.) =1

Sr=14+2+43+...+n

r=1
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is the sum of the first n terms of an arithmetic series, first term 1
and common difference 1.

3 r=210 + @ -0y

Sp_totl ....(2.10)
r=1 2

This result can be used to obtain the sum of any arithmetic series.
For the series of Example 3

S,=3+7+411415...tonterms
=Y@r—-1) [u =4 —1]

r=1
n n
=4>r—>1
r=1 r=1

="i("2Ll)_n [Notei1=1+1+1—|—...ntimes=n]
r=1

=2n*+2n—n=2n+n as before.

Exercises 2b

1. Find 3 numbers in arithmetic progression whose sum is 3
and whose product is —15.

2. The sum of three numbers in arithmetic progression is 18 and
the sum of their squares is 206. Find the numbers.

3. Find 12 arithmetic means between —5 and 60.

4. Find the sum of the first 16 terms of the series 3} 4 4% +-
64+T7++...

5. The first term of an arithmetic series is 7, the last is 70 and the
sum is 385. Find the number of terms in the series and the common
difference.

6. Find the sum of the first » terms of the series —1 + (—3) +

»H+ED+. ..
7. Evaluate (i) > (3r +2) (i) i (5r — 7 (iid) 2”: 2 —3r)
r=1 r=1 r=1iii

8. The third term of an arithmetic progression is 18, the seventh
term is 30. Find the sum of the first 33 terms.
9. Sum the first 2n terms of the series
@Os+11+17423 ...
i) a+3b-+2a4-6b+3a+9+...
(i) 3a—2b+4a—4b+ Sa—6b + ...
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10. Evaluate (i) the sum of the positive integers less than 100;
(if) the sum of the positive integers less than 100 which are multiples
of 3; (iii) the sum of the positive integers less than 100 which are
not multiples of 7.

2.3. THE FINITE GEOMETRIC SEQUENCE AND SERIES

If the consecutive terms of a sequence are all in the same ratio,
the terms are said to form a geometric sequence or a geometric
progression. Thus for example the numbers 1, 2, 4, 8, 16 .. . are in
geometric progression, the ratio of any pair of consecutive terms
being 2.

A geometric sequence is completely defined by its first term
(conventionally denoted for the general geometric progression by a)
and the common ratio (the ratio of consecutive terms) denoted by r.
The general geometric sequence is then

a,ar,ar®, ar®, .. .ar* 1, ... veel(2.11)
The nth term of the sequence is
u, = ar*1 . (212)

If the numbers w, u,, s, . . . #,_;, u, are in geometric progression
Uy, Uy, . . . U,y are said to form (n — 2) geometric means between
u, and u,,. This is simply an extension of the usual meaning for the
geometric mean (G) of two numbers ¢, d. (G = \/cd.‘) The three
quantities a/r , a, ar are in geometric progression and a is the geo-
metric mean of the other two.

The sum of the terms of a geometric sequence form a geometric
series. For the general sequence (2.11) the sum of the first # terms is

S, =a-+ar+a?+...ar™1 ....(2.13)

As with the arithmetic series we can obtain a closed formula for
S, in terms of n.

S,=a+ar+ar*+ ...+ a2 4 @™}
rS,=ar+ ar*+...ar" 1+ ar
on subtraction, all terms cancel except the first and last.
S,(1—r)=a—ar
_al—r") _a(”—1)
1—r r—1
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Example 1. Find 3 numbers in geometrical progression whose sum is
28 and whose product is 512.
Let the numbers be a/r, a, ar

¢ a.ar=a=512 S a=38
r

§—l—8-|—8r=28
r

8r* + 8r + 8 = 28r

ie. 2 —5r+2=0
Q@r—1D)(r—2)=0
r=%orr=2

The required numbers are §, 8, 8 X 2i.e. 4,8, 16.

Example 2. Find 4 geometric means between 2 and 486. We
require 6 numbers in geometric progression such that the first is 2
and the sixth 486. Let r be the common ratio.

Thus, by (2.12) 2r5 = 486
R ré =243
whence r= 243 =3

. the required geometric means are 2 X 3, 2 X 3%, 2 x 3,
2 X 3% i.e. 6, 18, 54, 162.

Example 3. Find the sum of the first n terms of the series 1 — § +
3 -1+ & — & +.... The series is a geometric series first term
1 and common ratio —14.

By 214) 5, = L=
1—(=%
S, =31 —(—D"1=%—35-D"
Example 4. The first and last terms of a geometric series are 2 and

2048 respectively. The sum of the series is 2730. Find the number
of terms and the common ratio.
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Let the number of terms be » and the common ratio r.

Then by (2.12) 2r"t = 2048
and by (2.14) 07— _ 2730,
1 = 1024 and rr __ 11 = 1365, and these are the simultaneous

equations we must solve for r and n. Substituting from the first
into the second we obtain

1024r — 1 _ 4365
—
1024r — 1 = 1365 r — 1365
1364 = 341r
r=4
471 — 1024

n—1=5 ie. n=6

The number of terms is 6 and the common ratio 4.

Exercises 2c

1. Find three numbers in geometric progression whose sum is
13 and whose product is —64.

2. The product of three numbers in geometric progression is 1,
their sum is —%. Find the numbers.

3. Find 3 geometric means between 5 and 80.

4. The third term of a geometric sequence is —1, the seventh
term is —81. Find the ninth term.

5. The second term of a geometric sequence is 24, the fifth term
is 81. Find the seventh term.

6. Find the sum of the first 8 terms of the series ¥ + 4% + 24 ....

7. Evaluate 1 + /3 +3 +3,/3 + ...+ 81/3.

8. The first term of a geometric series is 3, the last term 768. If
the sum of the terms is 1533 find the common ratio and the number
of terms.

9. The pth, gth and rth terms of an arithmetic sequence are in

geometric progression. Show that the common ratio is 177 o
p—4 P4
g—r
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10. The sum of the first # terms of a geometric series is 127 and
the sum of their reciprocals is 127. The first term is 1. Find » and
the common ratio.

2.4. THE INFINITE GEOMETRIC SERIES

Consider the geometric series (with common ration %) 1 + £ +
t+3+...

n
s, == o — =2 -
1—1
Thus the sum of the first 4 terms is 1%, the sum of the first 8 terms
is 13427, From these results we see that as we add more and more
terms the sum of the series gets nearer and nearer to 2. Indeed the
difference between the S, and 2 is just (3)*%, and as n increases so
this number decreases and approaches zero. We see that S, tends
to 2 as n tends to infinity, since we can make S, as near to 2 as we
please by choosing n large enough. The limit of S, as n tends to
infinity is 2, which we write Limit S, =2, or §,—2 as n— c.
n—0

We say that the series above is convergent to sum 2, or “‘the sum to
infinity” of the series is 2.

For the general geometric series @ + ar + ar® + ...

_ all —r") __4a _ _a
1—r 1—r 1—r
Now if —1 < r << 1, r® becomes smaller and smaller as n becomes

larger and larger. We say that the limiting value of r* is zero. Thus
as n increases, S, approaches the limiting value (denoted by §)

S, r®

a . a
T We say that the series converges to the sum = the

sum to infinity of the series.
Thus if —1 <r <1, the sum to infinity of the geometric

seriesa +ar +ar?+...1s

Limit S, = § = —2

n=* 0 1—r

....(2.15)

(The condition —1 << r < 1 is often written in the form |r] < 1.
7], the modulus of r is the positive number having the same magni-
tude as r. Thus [} = 4, {—3}| = }, |—3| = 3 etc. See section 1.4.)

The result (2.15) is only valid if |r| << 1. For the series 1 + 2 +
4 4 8 4 ... for which r = 2, §,, increases indefinitely as » increases,
and so S, has no finite limit.
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Example 1. To what sum does the following series converge:
I1—3+3— 24 +...?7 Thisis a geometric series with common
ratio —%. |—%| == %4 is less than 1.

by (2.15) the series converges to sum

Example 2. Express 0-777 recurring as a fraction
0-777 recurring = % + 185 + 1360 + 10000 + .-

i.e. it is the limit of the sum of the geometric series whose first
term is % and whose common ratio is & (<1).

2z

By (2.15)  0-777 recurring = ——— =}

1'_'10

Example 3. For what values of x does the series

X x X
+ +...
1+x (A+xP A+xP°

converge? And to what sum does it then converge?

x +

The series is a geometric series with common ratio i _:_ rE
The series will thus converge if l—t{!—-_} ‘ < L
This we write as Ix+ 1] > 1.
Thus x+1>1 ie. x>0
or x+1<—1, ie x<-—2

Thus the series converges if x > 0 or x < —2.
The limit of the sum of the series is then

x __x

1 — 1 x
14+x 1+4+x
=1+ x.
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We also observe that the series will converge if x = 0, for then
each and every term is zero. The sum will of course also be zero.

Exercises 2d
1. Find the sum to which the following series converge
H1l—x+x2—x4+... (-l<x<])
@) E+ & + ks +ads + -
G +3E° 3@ ..
2. Show that the series
2 3
T (G Jr ()
x*+4 x2t+4 x?+ 4
is always convergent and find the limit of its sum.
3. Express 0-232323 recurring as a fraction.

4. Show that if 0 is an acute angle between 0 and z , the limit of

the sum of the series cos 6 - cos @sin? 0 + cos Osin* 0 + ... is
sec 6.

5. Determine the range, or ranges of values of x for which
[3x — 5] > 7. If x has a value which satisfies this condition show
that the infinite series

1+( 7 )+( 7 )2+( 7 )3+...
3x — 5 3x —5 3x — 5

3x —5
3x —12°

has sum

EXERCISES 2

1. The sum of the squares of three positive numbers in arithmetic
progression is 155. The sum of the numbersis 21. Find the numbers.

2. The sum of the first » terms of a geometric series is 364. The
sum of their reciprocals is 3%. If the first term is 1, find » and the
common ratio.

3. If the tenth term of a geometric progression is 2 and the
twentieth term is 13 find the first term, the common ratio and the
sum to infinity.

4. If g and r are both positive, prove that the series log a -+
logar + logar? + ... + logar®! is an arithmetic series and find
the sum of the terms.

5. The nth term of a certain series is of the form a + bn + ¢2*
where a, b, ¢ are constants. The first three terms are 2, —1 and —3.
Find a, b, ¢ and the sum of the first n terms.
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6. Find the sum of each of the following:
(?) All the odd numbers with three digits of which the first digit
is not zero.
(i) All the odd numbers less than 1000.
(iii) All the numbers less than 100 which end in 5 or 7.
7. If mis a positive integer prove that

A+x+x24+. . 4+ x2)(1 — x4 x2— x4 ...+ x2™)
=0 +x2+xt+ ... 4+ x2m),

8. Write down the nth term of the arithmetic series with first
term @ and common difference d.

In each of a set of n separate arithmetic series, the first term is 1.
The common difference of the first series is 1, of the second 2, of the
third 22, and so on. Find, in its simplest form a formula for the
sum of the nth terms of the n series. (J-M.B., part)

9. The third, sixth and seventh terms of a geometric progression
(whose common ratio is neither O nor 1) are in arithmetic progression.
Prove that the sum of the first three terms is equal to the fourth term.

10. The first term of an arithmetic series is 3, the common differ-
ence is 4 and the sum of all the terms is 820. Find the number of
terms and the last term. (J.M.B.)

11. The sum to infinity of a geometric series is S. The sum to
infinity of the squares of the terms is 2S. The sum to infinity of the
cubes is $34S. Find S and the first three terms of the original series.

L.U)

1 1 1
12, Find how many terms of the series 1 + 3 —+ 5 + 5 “+ ...

must be taken so that the sum will differ from the sum to infinity
by less than 105,

13. A ball when dropped from any given height loses 20 per cent
of its previous height at each rebound. If it is dropped from a height
of 40 ft, find how often it will rise to a height of over 8 ft. How far
does the ball travel before coming to rest?

14, Find the sum of all the positive integers less than 1000 that
are not multiples of 3.

15. The third term of a geometric progression is equal to the
sum of the first two terms. Find the possible values for the common
ratio. If the first term is 2 find the sum to infinity of the series in
the case when this sum exists.

16. (i) Inanarithmetical progression the sum of the squares of five
consecutive terms equals 20 times the square of the middle term and
the product of the five terms equals 80. Find the middle term.
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(i) A nail, 2in. long is driven into wood by blows of a hammer.
The first blow drives it in 1} in. and each successive blow drives it in
two fifths of the previous distance (except the last for which the
distance is less). Find how many blows must be used.

If the blows are reduced, the ratio of successive distances being
maintained, find the least initial distance through which the first
blow must drive the nail in order that the nail may ultimately be
driven home. (L.U)

17. The nth term of a series is (an -+ 5r™) where a and r are con-
stant with r 7= 0 or 1. Find the sum of the first n terms. The nth
term of the series 18 -+ 36 + 64 + . . . is of the form stated above.
Find a and r and the sum of the first 10 terms.

18. The first term of a geometric series is 18 and the sum to infinity
is 20. Find the common ratio and the sum of the first 6 terms.
Find also in its simplest form the ratio of the nth term to the sum
of all the subsequent terms of the infinite series. (J.M.B.)

19. If S, denotes the sum of the first » terms of a geometric pro-
gression whose first term is @ and whose common ratio is r, show
that:

(l) Sn(SSn - Szn) = (S2n - Sn)z

iy o = Smin = Sm

Sn+p - Sn

20. For what values of x do both the series

1—x+x2—x+xt+4+...

2
1+ = +( Z )+
1+ x 1+x
converge?

If for any value of x in this range, the limits of the sum of the
two series are S; and S,, show that 5,5, = 1.

21. Write down the sum of the natural numbers from m to
n (n > m) inclusive. The natural numbers are arranged in groups
thus: 1+QRQ4+3H+@+5+6)+T+8+9+10)+..., so
that the rth group contains r numbers. Find (i) the first number
in the rth group, (ii) the sum of the numbers in the rth group.
Show that the sum of the numbers in the (2r — 1)th group is

rt—(r— DA (W.J.C)
2 3 4
22. Show that the series ¢ -+

c c c
+ + +
1+c Q+c® (+o°
converges for all values of ¢ greater than —1.
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If ¢, and ¢, are two possible values of ¢ for which the series
converges and S; and S, are the corresponding sums, show that
if ¢; > ¢g, S; > S,.

23. Fmd for what values of x the series

@) 1—x +(l—x)3 (1— x)?

1+x T+x2 A+x2 Q4+ x

@) 1+ x A+x2 (A4 xP

i + T O30 T U0 T T
converge, and prove that the sum to infinity of the first series is 3.
Lr.u
24. In an arithmetic progression of 2n terms the middle terms are

a and b. Find the first term, the last term and the sum of all the
terms.

25. If p,q,r, s, are successive terms of an arithmetic sequence

1 1
show that — , — , — | — are also successive terms in an arithmetic
qrs’rsp’ spq’ pqr
sequence.

*26. The pth, qth and rth terms of a sequence are P, Q and R
respectively. Show that:

(i) if the sequence is arithmetic,
P@—nN+Qr—p+Rp—q9=0
(i) if the sequence is geometric,
(g—nlogP+(r—p)logQ+(p—g)logR=0
*27. The sum of the first p, ¢, r terms of an arithmetic series are
P, Q, R respectively. Show that
Pgr(g —r) + Qpr(r — p) + Rpg(p — 9) = 0.
*28. Find the sum of the first n terms of the series 1 4 (1 + b)r +

A+b+b)r*+ (A +b+22+b)3+.... If [rf < 1 and |b| <
1 find the sum to infinity of the series.

*29. The sum of three real distinct qQuantities in geometric pro-
gression is p, and the sum of their squares is g. Show that the

2 _
middle one is equal to £ P 9 , and that p?/g must be in one or other

4+ ...

2 2
of the ranges: } < P - 1,1 < £ 3 W.J.C)

q q . .
*30. If the reciprocals of x;, X3, . . . X,, are in arithmetical pro-
gression show that

X1 Xg 4 XoXg + XaXg + . . . Xp_1X, = (1 — Dxyx,,.
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3
THE BINOMIAL THEOREM

3.1. THE BINOMIAL THEOREM FOR A POSITIVE
INTEGRAL INDEX

In this section we shall obtain a formula for the expansion, in
terms of powers of x, of (1 4 x)” where n is a positive integer.
First we observe that by ordinary multiplication

d4+x)=1+4+x
A+x2=>0+x10+x)=1-+2x+ x®
A4+ x=(014+2x+xD)1+ x) =1+ 3x+3x*+ x°
A+ x)t =1+ x%1 + x) =1+ 4x + 6x% + 4x> + x*
A+ %=1+ x)*(1 + x) =1+ 5x + 10x?

+ 10x3 4 5x* 4 x5
etc. :

From these few results we notice that in each case the first and
last coefficients are unity. Further we notice that each of the other
coefficients in (1 4 x)*+ is the sum of the corresponding coefficient
and the preceding one in the expansion of (1 4 x)". Thus we can
lay out the coefficients for successive powers in the form of a triangle
(Pascal’s Triangle) using these two rules. The last two rows which
are obtained in this way are, as is readily verified, the coefficients in
the expansion of (1 + x)® and (1 + x) respectively.

11

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 71 etc.
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In order to be able to write down the expansion of (1 + x)* in
powers of x, we need a formula for the coefficient of x" in the
expansion of (1 + x)". We shall denote this by the symbol "C,
so that

A+ x)"=14+"Cx +"Cox®+..."Cx" + ... "Cpyx" 1 4 x"
.30

Our problem is then to find a formula for »C, in terms of » and r.
It can be seen that the coefficients in the row corresponding to
nn—1) an— DE—2)

(1 4+ x)* follow the pattern 1, n, 3 123 , etc.
Thus 6C3=6_(6_1)(6___2)=5_4___20
1.2.3
4C:,,=‘—t—(—‘1—_—12=‘L§=6 and so on.
1.2 1.2

We shall show that

,,C'=n(n—1)(n—2)—(n—r+1) . .G2)
rr—1)(r—2)3.2.1.

is the appropriate result for the general case. There are r factors in
both numerator and denominator. In the numerator the factors
begin at n and decrease by one each time to n — r + 1, in the
denominator they begin at r and decrease by one each time to
1. (3.1) and (3.2) constitute the binomial theorem when n is a
positive integer.

Before proving this somewhat complicated result we shall verify
its correctness for some of the cases already considered.

Example 1. Use (3.2) to evaluate the coefficients of (i) x, x2, x3, x*,
x5 in (1 + x)% and (i) x, x%, X3, x%, X%, x%in (1 + x)5.

5 5.4
D3, =>=35; °C, =—";
"G =1 P21
5C3=5'4'3=10; 5C4:5.4.3.2=5
3.2.1 4.3.2.1
which are the results we had before.
Note °C; = 3.4.3.2.1 , so that the result is true for the last
5.4.3.2.1

coefficient as well.
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6
i)8C,===6; °C,=—= =15; C; = = 20;
i) "¢, 1 P a1 ®T3.2.1
“C4=6'5'4'3:15;“C5—6'5'4'3'2=6
4.3.2.1 5.4.3.2.1
which are the results we had before
Further "C6=6'5'4 3.2.1__1
6.5.4.3.2.1
Indeed we see that
,,Cn=n(n——1)...3.2.1=1 for all n.
nn—1)...3.2.1

Thus (3.1) and (3.2) would give
14+ xP®=1-F 5x 4 10x2 + 10x® 4+ 5x% + x5
and (1 4+ x)*=1 -+ 6x 4 15x2 4 20x3 4 15x* + 6x° + x®

which we know to be correct. It is readily verified that (3.1) and
(3.2) also give the correct expansions for (1 + x)2, (1 + x)3, (1 + x)*

We also observe that our formula for "C, satisfies the result that
a coefficient in (1 4 x)™*! is the sum of the corresponding coefficient
and the preceding one in the expansion of (1 + x)". In symbols this is

e, ="C, 4+ "C, ....(33
and with "C, as given by (3.2)
nn—1Dn—2)...(n—r +1)
rtr—1)...3.2.1
nn—1)...n—r+2)
r—D@Fr—2)...2.1
nm—Dnr—2)...n—r+1)
+rm)n —1)...(n —r +2)
r(r—1...3.2.1
_nn—=1)(n—=2).. n—r+2n—r+1+7r
rir—1)...3.2.1
z(n-l—l)(n)(n——l)...(n—r-i—2)
r(r —1)(r—2)...3.2.1
_ @+l —Dm+1-2)..n4+1—r41)
(fr—1...3.2.1

"C +"Con =

+

— n+1C
T

which proves the result.
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The Expansion of (a + x)*
Assuming for the moment the validity of (3.1) and (3.2), we notice

that (@ + x)* can be expanded in terms of powers of x and @ with
the same coefficients.

For (a+x)"= [a(l + i)]n = a"(l + E)ﬂ

2 T n
=a"[1+"le+"czx—2+..."c,3‘—+...i]
a a a, a,

(a + x)n = g" + nclxan—-l + "szza"‘z
+..."Cxa™"+ ... x" ...(3.4)

Example 2. Expand (2 + x)® in powers of x.
Using the coefficients as given by Example 1

Q+xyp=204+5.20.x+10.2%x2 4 10.22x® 4 5.2x* + x°
= 32 4 80x - 80x2 -+ 40x® + 10x* 4 x5
The Evaluation of "C,
nC =n(n—l)...(n——r-l—l)
” r—1...3.2.1
=n(n—l)...(n—r—l—l) m—rnar—r—1...3.

2.1

rr—1D...3.2.1 "m—nNm—r—1...3.2.1
" oM

= ..(35)

where n! (factorial n) is used to denote the product of the integers
from n down to 1. Thus 2!=2.1=2; 3!'=3.2.1=6,

4! =4.3.2.1 = 24 etc. From (3.5) we see that

nC - n! _ n!
- m—hr—m—01! A H-—0
ﬂC =ﬂC'

n—r

..(3.6)

a result which merely expresses the symmetry of the coefficients which
was apparent for the numerical cases considered earlier.

51
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We use this symmetry to define

"Cy="C, =1 .3

Then
1+ x)"="Cy + "Cyx + "Cox® + ... "Cx" + ... "C,x"

— 3 nCx ....(3.8)

r=0

using the notation of the previous chapter.

Example 3. Evaluate (i) 2°C, (ii) 2°C,, (iii) 8C;

(i) By (3.2) *°C, — %’—'% — 190

(if) We first use (3.6)¥Cyy — 2C, — 207'129;118 — 60.19 — 1140
(Had we used (3.2) for #°C;, we should have 17 factors in the

numerator and denominator.)

8.7.6
iif) 8Cy =8C, = — =
(i) °Cs ®T3.2.1

56

Example 4. Expand (1 — 2x)* in powers of x.
We write (1 — 2x) as [1 4+ (—2x)]

(I —=2x)'=[1 + (=201
= 14 4C(—2x) + 4Cy(—2x)" + *Cy(—2x)* 4 (—2x)*
=14 4(—2x) + 6. 4x> + 4(—8x%) + 16x*
=1 — 8x + 24x* — 32x® + 16x*

Example 5. Expand (x + 3y)°

6. 6.5.4
8C, =°Cy = 6; °C, = °C, = —> = 15; °C, —
! i z T2 13,201

(9]

=20

By (3.4),
(x 4 3p)® = x8 + 6x5(3p) + 15x%(3y)? + 20x3(3y)3
+ 15x*(3y)* + 6x(3y)® + (3y)°
= x% + 18x% + 135x%% + 540x3)® 4- 1215x2yt
+ 1458xy5 4 729y8
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Exercises 3a

Assume the validity of (3.1) and (3.2).

1. Obtain the expansions in powers of x of (i) (1 -+ x)%
@) (A + x)® ) (1 + x)*

2. Use the rules described at the beginning of this section to
obtain the coefficients in the expansions of (1 4+ x)® and (1 4 x)?,
i.e. obtain the next two rows of Pascal’s Triangle.

Use (3.1) and (3.2) to verify the results obtained in question 2.
. Evaluate (i) 18C,q (ii) 11C, (iii) 13Cs (iv) °C,.

Expand () (1 4 3x)* (i) (1 — x)® (i) (1 — 2x)".

. Expand (i) 3 + x)* (i) (2 — x)&.

. Expand (i) 2x + 3y)® (i) 2x — Sp)*.

. Obtain the fourth term in the expansion, in ascending powers
of x, of (2 4 3x)11.

9. Calculate q if the coefficient of x3 in (a + 2x)° is 320.

10. Calculate the coeflicient of x3y* in (2x — 3y)".

NN AW

3.2, PROOF OF THE BINOMIAL THEOREM WHEN r IS
A POSITIVE INTEGER

The results of the previous section suggest that the results (3.1)
and (3.2) are true for all positive integer values of n. We shall now
prove this by a method of proof known as mathematical induction.

We assume that for a particular value of n, say n = N, the results
(3.1) and (3.2) are correct. (This is not so unreasonable since we have
seen that thisis so when n =2, n=3, n=4,n=5,and n =6
among others.)

Thus we assume

A+ =14+"C;x +VCx? +...NCx"
- 4+ VO XN XY
en
(I + )" =1+ )0 +x)Y
=0 +x)(1+¥C, +VCpx? 4 ... YCx" + ... xN)
(1 + )M =1+ "C; + Dx + (VCy + VCx*?
+ . (C, +VC, DX L XN

by ordinary multiplication.
Now

NC, +1 =N 41 =N+¢,
and by (3.3) we have
NC' + NC 1 =N+1Cr
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Thus our initial assumption inevitably leads to
(1 + x)N+1 =1 + N+1C1x + N+1C2x2 +... N+1Crxr
+ . VRGN 4 XN
Thus we have proved that if the results (3.1) and (3.2) are true for a
given value n = N, then they are true for the next value of n, i.e.
n= N - 1. But we have seen that the result is true for n = 2,
therefore it is true for n = 3, therefore it is true for » = 4 and so on
for all other positive integral values of n. Thus we have shown that
(3.1) and (3.2) are true for all positive integer values of n. We have
also proved (3.4) and (3.8) for such values of n.
Example 1. Expand (1 + x 4 x?)? in powers of x.
U+ x4 2 = [L+ & + xDP
=14 3(x + x?) + 3(x + x»2 + (x + x?)3
=14 3x + 3x2 4+ 3(x% 4 2x3 + x%)
+ (x® + 3x* + 3x5 4 x8)
=1+ 3x 4+ 6x2 + 7x® -+ 6x% 4+ 3x5 4 x®
2y

10
Example 2. Find the coefficient of x® in (x2 + —;) .

2 10
The (» + 1)th term in the expansion of (x2 + ;y) is

IOC,(JC2)10—' (z_y )" _ 10Cr2ryrx20——2r—r — IOCrzryrxzo—sr
X

Thus for the term in x8,
20— 3r=38, ie. r=4
The required coefficient is 1°Cy2%*

_10.9.8.7

- 16y* = 210.. 16y* = 3360y"
4.3.2.1 7 y y

Example 3. Find the values of a if the coefficient of x? in the
expansion of (1 + ax)*2 — x)?is 6.

(1 4 ax)*t =1 + 4(ax) + 6(ax)® + 4(ax)® + (ax)*
Q—xP =2+ (0P =2°+3.2%(~x) + 3Q(—x)* + (—x)°
=8 — 12x + 6x% — x°
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The coefficient of x? in the expansion of (1 4 ax)%2 — x)3is the
coefficient of x% in

(1 + dax 4 6ax% 4 4a®x® + a*x*) X (8 — 12x + 6x% — x%)
This coefficient is 6 — 48a + 484%. If this is equal to six,
4842 —48a+ 6 =6
8a2 — 8a =10
8a(a—1)=0
a=0 or a=1
Example 4. Expand (x + 5y)°. Hence evaluate (1-05)5 correct to
3 decimal places.
5C, =5C, = 5; 5Cy = °C, = 222 — 10
2.1
(x + 5)° = x® + 5x%(5p) + 10x3(5p) + 10x%(5p)?
+ 5x(5y)t + (5p)°
= x5 4 25x%y + 250x3y2 + 1250x2y®
+ 3125xy% 4+ 3125)5
With x = 1, y = 0-01 we obtain
(1-05)®* = 1 4 25(0-01) 4 250(0-0001) + 1250(0-000001)
- 3125(0-00000001) + 3125(0-0000000001)
==1 + 0-25 + 0-025 +- 0-00125
where we have omitted the last two terms since they do not effect
the first five decimal figures.
: (1-05)° = 1-27625
to 3 decimal places
(1-05)° = 1-276

Exercises 3b
1. Expand in powers of x, (1 4- 2x - 2x%)8,
2. Expand in powers of x, (1 — x + 2x%)%
3. Find the coefficient of x3 in the expansion of (1 + x + 2x2)%.
4. Expand (1 4 2x 4 x?)2. (You might be able to obtain this
result in an easier way.) 18
5. Find the coefficient of x® in the expansion of (}—2 - X

x4 2\10
6. Find the term independent of y in the expansion of (}7_,‘ + év} ) .
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8

3
7. Find the term independent of x in the expansion of (Zx - %)

8. Find the coefficient of x?2 in the expansion of (1 — 3x)(1 + x3)°.
9. Find q if the coefficient of x in the expansion of

(1 4 ax)*(l + 308 — (1 + 01 + 2x)*

is zero. What is the coefficient of x2?
10. Expand (x + 2y)’. Hence evaluate (1-02)? correct to 4
significant figures.

3.3. THE BINOMIAL THEOREM WHEN » IS NOT A
POSITIVE INTEGER

It can be shown (although the proof is beyond the scope of this
book) that if —1 < x < 1 and » has any value

"1 n(n_l) 2 n(n—l)(n——2)3 .
A +x)"=14mx+ ===y~ F
.39)

(3.9) is known as the binomial theorem. If n is in fact a positive
integer, the coefficients, after the coefficient of x”, are all zero since
they each contain the factor (n — n). Thus for this case we see that
the expansion terminates with x". We obtain of course the same
result as was given by (3.1) and (3.2) and for this particular case the
requirement that —1 << x < 1 is not necessary.

If n has a value other than a positive integer the expansion will
not terminate and the requirement —1 <<x <1 is absolutely
essential. This latter requirement is often written, following the
notation of the last chapter, |x| < 1. Although the expansion does
not terminate in this case, it can still be used with great effect to
approximate (as accurately as we like) the value of (1 + x)* when
x has a value such that |x] < 1.

Example 1. Obtain the first five terms in the expansion of (1 + x)'/2
Hence evaluate /1-03 to 5 significant figures.
For this case n = % and so by (3.9)

v _ G- , E-DF -2
47 =14 @x + T e
G-DE -3 —-3) ,

+ 1.2.3.4 ¥

=1+ x — x* 4 fox® — 15sx* +.
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With x = 0-03 which is certainly between —1 and +1,
(1-03)1/2 = \/ 1:03 = 1 4 4(0-03) — %(0-0009) + 2,(0-000027). ..

and since we only require the result to 4 decimal places, we need in
fact only consider the first three terms.

(1-:03)¥/2 =1 + 0-015 — 0-0001125 + 0-0000017 + . ..
==1-0148892
J1:03 = 10149 correct to 5 significant figures.

Example 2. Expand (i) 2 + x)™ (i) 1—1—— .

e TR
2

“ireni+ D) (2

1.2 2
(—1)(—2)(—3)(5)3 ] ol x
+ 1 2.3 5 + ... prov1ded2 <1
1 x x2 x* xt
2y t=s XX X X i 2
2 +x b + s 1 + 2 provided |x] <
. 1
(i) =[14(—=x)]"
1—x

=1 4 (—1)(—x) + (—11—)(2“2—)(—@2

(=D(=2X=3) s
Tt o e
1

1—x

=14x+x2+x*+4x*4... provided |x] < 1
[ef (2.15) with a = 1]

If we ignore the requirement |x| < 1 and put x = 2 in the left hand
side we obtain —1. On the right hand side we obtain 1 + 4 +
8 4 ... which is quite meaningless and is certainly not —1. The
point to realise is that the expansion is only valid if —1 < x < 1.
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Example 3. Show that if x is so small that x® and higher powers of
(1 +2x)%% —4(1 +x)M*

x can be neglected, then T = —3 + x 4 5x%
8 2
(I +2x) =1+ g 2x + (2)(1%#- as far as terms in x2

A +x)"P=14+3ix+ &;(——;2%) x*  asfar as terms in x2

(1 4+x»r=1—x® asfaras terms in x?
(A +2x)" — 401 + x)'*
14+ x%
= (1 — X[l + 3% + 3x* — 41 + 3x — 3xY)]

Simplifying and retaining only terms which involve x? and lower
powers of x we have

(1 + 2x)%% — 4(1 + x)¥?
1+ x2
=1 —x)(—3 +x+2x = —3 +x + 5x%
3—x

(1 = 2x)(1 + x7)

Example 4. Expand in ascending powers of x as

far as the term in x3,
We first resolve (1—_;);(—1)6_*_)62) into partial fractions:
3—x 2 14+x 1
200+ %) 1—2x 14w 2472
+ (4 x)(1 + X
=201 +2x +4x*+8x*+..)+ U + x)
XA —=x24+xt—x24+x8..)
=2+ 4x+8xF 4 16x°+..)
41 dx—xP—x34+ ...
=34 5x + Tx®2 4+ 15x3 ...

This expression is valid only if both —2x and x2? lie between —1
and +1.

< -2x<1lif -I<x<}; —l<x<lif ~1<x<1
For the expansion to be valid x lies between —% and %, i.e.
[x] < 3.
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Exercises 3¢

1. Obtain the first four terms of the expansion of (1 4 3x)'/3 in
ascending powers of x. Hence evaluate /1-03 to 5 significant
figures.

2. Evaluate (0-95)'3. Use logarithms to check your result.

3. Show that (i) T ) =1+42x+3x244x3+. and

1 4.5x3
3x
(l—x)s 14 + -!- > + -

4. Obtain the expansions in ascending powers of x of R
1 1 1+ x

T+ T

5. Use the results above to expand in ascending powers of x

1
(1)14_3 () 8)2, )(3+)3-
6. Show that \/(9 + x?) =3 + Lx? — zlgx% For what values of
x is the expansion valid ?

@)

7. Show that
1 1 b B, b,
a+bx a a2x+a3x a‘x e

For what values of x is the expansion valid ?
8. Show that if x is so small that x® and higher powers of x may

3/2 3
be neglected (4 +x) (A +3x)° )
Ja —x) )
— 4x
9. Obtain the expansion of ———————
x as far as the term in x4, 1 —3x 4 2x

10. Show that if x is so small that x® and higher powers of x can

1
be neglected A/ ( i ii) =1+ x -+ $x2. By putting x = { show

that \/3 =128,

in ascending powers of

3.4. MATHEMATICAL INDUCTION

In section 3.1 we proved the binomial theorem for n a positive
integer using the method of mathematical induction. This method is
very useful where particular cases suggest that some result is true
quite generally. The following examples are further illustrations of
the method.
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Example 1. Show that if n is a positive integer,
1+2+3+4+”.+n=ﬂ%?9 [ef (2.10)]

We observe that the result is true for the particular casesn = 1,n = 2

1:l(l—f—i) 22+ 1)
2 2
We assume the result is true for a particular value say n = N
NN +1)
2

, 1+2=3=

i.e. 14+24+34+...4+N=

Then for the next value of n,n =N + 1

N(N +1)
2

=(N+1)(§+1)

= #(N + 1)(N +2)

=iN+DIN+1+1)

Thus if the result is true for any particular value of n, it is also
true for the next value of n. But we have seen that it is true for
n = 1, therefore it is true for n = 2, therefore it is true for n = 3
and so on for all positive integer values of .

14+42+34+...+N+N+1= +N+1

Example 2. Show that for all positive integer values of n, 5% +
3n — 1 is an integer multiple of 9.
We first observe that for n = 1

52L3,1—-1=27 is a multiple of 9
We assume the result to be true forn = N
ie. 52¥ + 3N —1=9M  where M is some integer
then for n = N - 1 we obtain
SN L3N+ 1) —1=25.5¥ L 3N 42
=25(9M — 3N+ 1)+ 3N+ 2
since 52 = 9M — 3N + 1
=9 .25M — 75N +25+ 3N+ 2
=9.25M — 72N + 27
= 9(25M — 8N + 3)

.. this proves that 5*¥+1 4 3(N 4+ 1) — 1 is a multiple of 9 if
52¥ 4+ 3N — 1 is a multiple of 9.
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The required result is true when n = 1, therefore it is true when
n = 2 and so on for all positive integer values of .

Exercises 3d

Use the method of mathematical induction to prove that if n
is a positive integer:
2" > n.
S22 4324 4 n? = fn(n + D2+ 1).
1 +34+-54+...+2n—1=n
. n(n + D(n + 2) is an integer multiple of 6.
72#+1 + 1 is an integer multiple of 8.

“nbhwh=

EXERCISES 3

1. Expand (1 — x + 2x?) in ascending powers of x as far as
the term in x*.

2. Use the binomial theorem to evaluate /99 correct to 5
significant figures.

3. Expand (1 — %)™ — 2(1 — 2x)7¥/2 4 (1 — 3x)"'3in ascending
powers of x, up to and including the term in x3.

4. If p=ab and s, stands for g 4 b" show that s} =55 4
5ps; + 10p%sy, and hence that sy = s} — 5ps? 4+ 5p2%;. Obtain a
similar formula for s in terms of s, and p. (8.U.J.B.)

2 3

5. Show that 7(—1-1_—)5 — JA 4+ x) = % + % if x* and higher
powers of x may be neglected.

6. If x is small show that (1 — x?)~1/3 == 1 + 1Ix? 4 §x%

7 — 23x + 48x2
(2 + x)(1 — 3x)
coefficient of x® when the expression is expanded in ascending powers
of x when —%3 < x < } (L.U,, part)
8. Prove by induction that n(n + 1)(2n 4 1) is a multiple of 6.
9. If x* and higher powers of x can be neglected show that

1—x
—_— =1 3,
A/(l—kx—l—xz) Xt

10. In the expansion in powers of x of the function (1 4- x) x
(a — bx)"? the coefficient of x? is zero. Find in its simplest form the
value of a/b.

11. Show that "*®C, = "C,_, + 2"C,_, + "C, where n > r > 2.

12. Show that 112® — 1 is always exactly divisible by 120 when
n is a positive integer.

7. Express in partial fractions and find the
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13. If x is small show that

JQ A+ 6x) —————

1
Ja +3x)—m

14. Use the method of induction to show that

1 1 1 1 n
1.2+2.3+3.4+"'n(n+1)_n+1

15. Expand (1 4 4x2)!/2 in ascending powers of x up to the term
in x8. Hence evaluate /1-04.

16. Evaluate the term independent of x in the binomial expansion
9

of (x” et ZC .

17. Show that if x is so small that x* and higher powers can be

14 2x 4 3x2
neglected then D)
A + Bx + Cx® + Dx®and find 4, B, C, D.

18. Write down the first few terms in the expansion in ascending
powers of x of (1 + 4x)'/2, and simplify the coefficients. Hence by
putting x = —xkg, calculate \/6 correct to four decimal places.

(J.M.B., part)
. 3x  3x* 1

19. If x is small show that (1 + x)¥2==1 + > + AT x3,
Evaluate /11.

20. Find p and q if the coefficients of x and x* in the expansion
of (1 + px + gx® + 4x%)(1 + x)® are both zero.

21. If |x] <l prove that the sum to infinity of the series

can be expressed in the form

14 3x
(1 —x?*

(J.M.B,, part)
22. Show that 34m+2 4 2, 43"+ js exactly divisible by 17 if nis a
positive integer.
*23. Use the binomial theorem to show that the expansion of

1+5x+9x%*+...(4n + Dx™ is

3.

1 1.3.5
2.4.6

(—1—-—-_36)_1/—2 x4+... (x| <.

1 1.3
. 1 = 2
s 14ox+o v+
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Show that 1+ +4 12+4.12.20+“

16.20 10.20.30

1 1.3 1.3.5 )
(+ +10 20+10.20.30+"'

(J.M.B., part)

*24. If a— L+ x)2 is expanded in ascending powers of x, where
—1 < x < 1, show that the coefficient of x"* is 2n — 1 and that the
(2n 4+ Dx* 2xmH
1—x a—x2
(L.U., part)
*25. Show that n* 4- 4n% 4 11 is a multiple of 16 for all odd
positive integers n.

sum of the terms after the nth term is
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4
COMPLEX NUMBERS

4.1. INTRODUCTION

IN section 1.1 we discussed the necessity for the introduction of
other types of real number apart from the natural integers which are
used for counting. The solution of an equation such as 5x = 4
requires the introduction of rational numbers; the solution of an
equation such as 3x + 4 = 0 requires the introduction of negative
numbers. Then we can say that without exception every linear
equation has one and only one solution.

Some quadratic equations such as x* = 2 require the introduction
of the irrational numbers into our number system before we can
give a meaning to their solution. There are other equations such as
x% 4+ 16 = 0 which still do not have a solution within the system of
real numbers. To solve the equation above we require a number
whose square is —16 and such a number does not exist within the
system of real numbers. Thus we have a breakdown of the general
rule that quadratic equations have two solutions. (If the two
solutions are equal, we say that the equation has a repeated root,
i.e. two equal roots.)

This situation is not peculiar to the equation above. Indeed the
squations x% 4+ 1 = 0, x* + 2x + 5 = 0, whose solutions we might
formally write as

oot x e T2ENA 4O

2

—2 4 ,/—16
2

have no solutions within the realm of the real numbers. In each case
we require the existence of a number whose square is negative
before we can give a meaning to the solutions.

This situation calls for yet another extension of our number
system. We can achieve this extension by the introduction of a new
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number, generally denoted by i whose square is —1. The number

i has the property
2= —1 S (4)

This new number i having the property (4.1) need give no cause
for concern. Itis new in the sense that up to now it has been outside
our experience, but so at one stage were fractions, and negative
numbers.

The solution of the equation x* 4 1 = 0 is then

x = +.—1, ie. x= i
The solution of the equation x2 4 16 = 0 is then
x = 4,/—16 = +./16(—1) = +.,/16\/—1 = 4.
The solution of the equation x* 4 2x + 5 = 0 is then

24 J—16 —2 4+ 4i
. = iz\/ — j:lz—li%.

A number of the form a + bi where a and b are real numbers is
called a complex number. Our real numbers can be regarded as
complex numbers for which b is zero. Thus we need only consider
complex numbers since our real numbers will be contained within
the system of complex numbers. This will require us to consider
carefully the rules for the addition, and multiplication of complex
numbers, so that these rules, when applied to real numbers of the
form (a + 0i) give us the correct results, within the real number
system. This we shall do in the next section. For the present we
observe that higher powers of i can be reduced to +4-1 or 4i.

Thus since i* = —1

d=1i%.i= —i, H=8.i=—i.i=—(—D=1
P=it.i=1 etc.

Exercise 4a

1. Express the solution of the following equations in the form
a + bi

O3x—7=0 @) x*—9=0

(i) x*+30=0 (iv) 4+ 3x+10=0
) x*+49=0 W) x2+2x+8=0
(vii) x* +4x+40=0 (viii) x2 —x+1=0

2. Show that (i) i? = —i; @) =1i; @)l 4+ i— 324" = 4.
65



COMPLEX NUMBERS

3. Show that i® 4 21! 4 13 = 0,
4. Show that the cubic equation x* — 1 = 0 has three solutions viz.

x=1’x=_%+%—3’x=_%_?—\£_'3
[x* —1=(x — D(x* + x + 1]

5. Show that the quartic equation x* — 1 = 0 has four solutions
vizzx=Lx=—l,x=ix=—ix*—1= (2 — D&+ D]

4.2. THE RULES FOR THE MANIPULATION OF
COMPLEX NUMBERS

In this section we shall consider the rules governing the addition,
subtraction, multiplication and division of complex numbers. These
rules are defined so that they become the rules of algebra for real
numbers when applied to complex numbers of the form a + Oi.
First we define what is meant by the equality of two complex numbers
a + bi and ¢ + di where a, b, ¢, d are real numbers.

We say

a+bi=c+di ifandonlyif a=c and b=d ....(4.2)

This definition is very reasonable and is consistent with treating i
as an ordinary algebraic quantity. For if @ + bi = ¢ + di we would
expect @ — ¢ = i(d — b) which yields on squaring both sides

(a — )t = i¥(d — b
ie. (@a— o)t = —(d — by ....(43)

Now a — cand d — b are both real numbers and so their squares are
positive or zero. If both their squares are positive (4.3) says that a
positive number is equal to a negative number which can be rejected
as absurd. If one is positive and the other zero then either a positive
number is equal to zero or zero is equal to a negative number.
Both these situations are absurd and can be rejected. Indeed the
only possible and sensible situation is that both the squares are
zero, i.e. (@ — ¢)? = 0 and (d — b)? = 0, which results in ¢ = ¢ and
b=d. Thus we see that the equality of two complex numbers
implies two relations of equality among real numbers.

Most of the mathematical literature speaks of a as being the
real part and b as being the imaginary part of the complex number
a + ib. The terminology which perhaps indicates the hesitation
with which complex numbers were first used can be quite convenient
provided we do not interpret it too literally. There is nothing
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imaginary about i, although it is perhaps a little unfamiliar to most
of us at this stage. In words, (4.2) can be put in the form: two
complex numbers are equal if their real parts and their imaginary
parts are equal.

The addition of two complex numbers is defined by

at+ib+ct+id=a+c+ilb+4d) ....(4.4

This rule if applied to the numbers a + i0 and ¢ -+ i0 (i.e. the real
numbers @ and c) yields a + ¢ + i0 (i.e. the real number a + ¢)
and so is a natural extension of the rule for adding real numbers.
Similarly for subtraction

a+ib—(c+id)=a—c+ilb—d) ....(4.5

In words, to add (or subtract) two complex numbers add (or
subtract) their real and their imaginary parts.

Example 1. Express in the form g + ib:
@6+3i+7—i; ()T+2i+3—4i—G+0).
@6+3i+4+7—i=13+2i
G)7+2+3—4i—~G+d)=10—-2i—GS+)=5—-3i
Multiplication of two complex numbers is defined by the rule

(a + ib)(c + id) = ac — bd + i(bc + ad) ....(4.6)

This rule, if applied to the numbers a + i0 and ¢ 4 {0 (i.e. the real
numbers a and c) yields ac — 0 + i0 = ac + i0 (i.e. the real number
ac) and so is a natural extension of the rule for multiplying real
numbers. The rule is consistent with treating i like any other
algebraic quantity and this in practice is how we normally multiply
complex numbers. On this basis

(a + ib)(c + id) = ac + i*bd + ibc + iad
= ac — bd + i(bc + ad) (since i2 = —1)
which is the result (4.6).

Example 2. Express in the form a + ib:
() @+ 30 )2+ D2 — i)+ G+ 2)03 — 2.
OEC+3E=Q+3)Q2+3)=2.2—-3.3+i2.3+2.3)
= —5 4 12i.

@) @+ 2 — i)+ (G + 203 — 2i)

=4 — (=D +i[2.1 4+ 2(—=D]+9 —2(—2)

+i[3.2 + 3(—2)]
=44+14i049+4+4+4i0
=18 4 i0.
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Before defining division for complex numbers it is useful to
introduce the notion of a complex conjugate. Two complex numbers
which differ only in the sign of their imaginary part are called
complex conjugates. The complex conjugate of a 4 ib is thus
a —ib. a — ib is the complex conjugate of ¢ 4 ib. Two numbers
which are complex conjugates have the property that their sum and
product are both real numbers. For

a-+ib+a—ib=2a-+}i0 RN - W)
(a + ib)(@ — ib) = a®* — b(—b) + i[ab + a(—b)]
=a*+ b%+i0 ....(4.8)

The {0 may of course be omitted from (4.7) and (4.8). It has been

written in to emphasize that the real numbers are just a subset (with
imaginary part zero) of the complex numbers.

Division of two complex numbers is defined by

a—i—ib___ac—}—bd ibc—ad

c+id &+ 4P &+ d?

This rule, if applied to the numbers @ 4 i0 and ¢ 4 {0 gives

ac+0 . 0+4+0 a .
i == +i0
2+0 ¢t4+0 ¢
so that once again, (4.9) complicated as it may appear, is just a
natural extension of the rule for division for real numbers.

As with (4.6) the rule is consistent with treating i as an ordinary
algebraic quantity. The following working, which in practice is the
way in which we normally carry out division, illustrates this.

atib_a+ib c—id

c+id c¢+id ¢c—id
on multiplying top and bottom by the conjugate of the denominator.
a+ib _ (a+ib)c —id)

e (49)

ot id ? 4 using (4.8)
_ac + bd + i(bc — ad)
¢+ d
zac—l—bd i(bc—ad)
¢ 4 d? 4+ d

which is just the result (4.9).
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Example 3. Evaluate in the form a + ib:

N 140 3 — A4l
@y W5
(i)1+i=(l+i)(2+i)=2——1+i(2—|—1)=1+i§'
2—i @2—DC2+1) 4+1 55
(ii)3—4i=(3—4i)(5—2i):15——8+i(—20——6)
542i (54205 —2i) 25 +4
_1 %6
29 29 .
Example 4. Evaluate X and Yif X 4 iY = 30 . We could find

141
X and Y by (4.9). However, by way of illustration we proceed as
follows
X +iy = 2=
L+
3—i=(1+iXX+iY)=X—-Y +i(X+7Y)
by42) 3=X-—-Y
—1=X+Y
We solve these two equations for X and Y. On addition we obtain
2 =2X,i.e. X =1, and on subtraction ¥ = —2.

3—1i
1+

It is readily verified that (4.9) gives the same result. (4.2), (4.4),
(4.5), (4.6) and (4.9) define the algebriac operations for complex
numbers. Our readers should verify that under these rules complex
numbers obey the rules I to V described in Section 1.1.

=1—2i

Exercises 4b

1. Express in the form a4 ib: (i) (1 +1i) + 53 —i) +
2 +1); @) 2i(0 — 3i) + 3(4 —i).

2. Evaluateintheforma + ib: (i) (3 + i)(4 — 2i); (i) (6 + 2i) X
{1 — 30).

3. Find the solutions of the equation x® 4 6x + 18 = 0in the form
a + ib. Verify their correctness by substitution into the equation.

4. Evaluate (i) (1 + 0)?; Gi) (1 4 )% @) (1 + D)

5. Use (3.1) and (3.2) with x = i to calculate (1 -+ )%, (1 + )%,
(1 )% Verify that the results are in agreement with your answers
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to question 4. (This suggests that the binomial theorem remains
valid when complex numbers are involved.)
. 2 —35i 1—35i
6. Express in the form a + ib: (i) ——; iy ——.
P 0 T O 3
7. Show that (i) (cos 0 + i sin 6)2 = cos 20 + i sin 20
(i) (cos @ + isin 6)~ = cos § — isin 0.
8. Find real numbers x and y such that (x -4 iy)? = 40 - 42i.
Hence evaluate /(40 + 42i). Calculate also /(35 — 12i).
9. Evaluate in the form a +- ib:
. . o 3—4 (1—;‘)3
i —i)°® iii
@) x-—1 ) @t i (i) o

(iv) 14 2i ) 2+ (i) 1 —2i

-~

31 — 3i) G —i? 4 — 3¢
a -+ ib , .
10. If par> b X + iY show, following the method of Example

4 that X and Y satisfy the equations cX — dY = a,dX -+ cY = b.
Solve these equations and show that the results are consistent with
4.9).

4.3. THE GEOMETRICAL REPRESENTATION OF
COMPLEX NUMBERS

It was shown in section 1.1 that the real numbers could be
represented by the points of a line. For convenience we recall this
representation. Figure 4.1 shows a line, on which we choose a point

0

-3 —2 —1 1 2 3
Figure 4.1

’

X

X

0 as origin. Positive numbers are represented by points to the right
of 0, or displacements to the right of 0, and negative numbers by
points or displacements to the left of 0.

The real numbers, integers, rationals, irrationals and transcen-
dental numbers completely fill the line, from which it is clear that
we shall not be able to represent the complex numbers by further
points of the line. A complex number of the form x + iy is specified
by the two real numbers x and y. The natural way in which to
represent a complex number is thus by a point in the plane whose
cartesian co-ordinates are the numbers x and y. The complex
number x +- iy is thus represented by the point P(x, y) or by the
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vector or displacement OP (Figure 4.2). Our real numbers which are
of course just particular complex numbers (with imaginary part
zero) are confined to the line x'Ox, but complex numbers can be
anywhere in the complex plane. This representation which is not
necessarily the only possible representation of complex numbers
was originally due to J. R. ARGAND and for this reason the complex
plane of Figure 4.2 is often called the Argand diagram.

YA
P(xy)

k)

y
x' 0 1 ‘ > X
e— x ——>|

Figure 4.2

The length of OP, where OP is the vector representing the complex
number x + iy is known as the modulus of the complex number.
By Pythagoras’ theorem we see that OP = ,/(x2 + y?). The modulus
of a complex number is represented by the symbol |x -+ iyl. Thus

Ix + iyl = /(x? + y?) ....(4.10)
It is conventional to represent a complex number by the single
letter z, i.e. z = x + iy and so also |z| = |x + iy| = /(x® + »?.

Example 1. Represent the complex numbers (i) 2 + i (if) i (iii)
—i (iv) —3 — 2i by points in the complex plane (Argand diagram).

In Figure 4.3 the numbers (i), (ii), (i) and (iv) are represented by the
points A, B, C, D respectively or by the vectors 0A, 0B, 0C, 0D.

YA

B(0,1) A(2,1
b

— X
4' C(0,-1)
D(-3,-2)

Figure 4.3
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1
Example 2. If z =1 4 i, mark the points (i) 1 4 z (ii) T3 in

the complex plane.
O14+z=14+14+i=2+i

. 11 2—=i 2 1
@ T3 2r1757 75

Thus the numbers (i) and (if) are represented by the points Q and R
(in Figure 4.4) or by the vectors 0Q, OR.

y
Q2,1
0 > X
R(Z.-1)
Figure 4.4

Exercises 4c

1. Mark the points corresponding to the complex numbers
() 2 4 3i (i) 4 — i (iii) —3 — 6i (iv) —1 + i in the complex plane.

2. Find the modulus of each of the complex numbers in question
L.

3. z = 2 — 3i. Mark the points (i) z (i) iz (i) i?z in the complex
plane.

4. Show that |z| = |iz| where z is any complex number.

5. z is the complex number x + 7i. If |z| = 25 find x.

44. THE GEOMETRY OF COMPLEX NUMBERS

The representation of complex numbers described in section 4.3
enables us to give a geometrical interpretation of the rules for the
addition and multiplication of complex numbers.

Consider the two complex numbers 2 4- 3i and 3 + i. These may
be represented by the vectors 0P and 0Q (Figure 4.5).

Their sum is the complex number 5 + 4 which may be represented
by the vector OR and we see from Figure 4.6 that OR is the vector
sum of OP and 0Q. (i.e. starting from O draw OP, from P draw a
line parallel to 0Q and of magnitude 0Q. We then arrive at the
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point R; OR is the diagonal of the parallelogram with adjacent
sides OP, 0Q.)

If we consider the complex number 4 - 6i, multiplication by (i) 2,
(@) 4, (i) —1 and (iv) i produces the complex numbers (i) 8 + 12i
(@) 2 + 3i (#ii) —4 — 6i and (iv) —6 + 4i. These numbers and the

R(5,4)
y P(2,3)

Qe

Figure 4.5

original number are represented by the vectors 0A, 0B, 0C, 0D and
OP respectively. (Figure 4.7.)

Thus we see that multiplication by a positive number (2 or § in
our case) dilates or shrinks a vector, 0A = 20P; 0B = 30P. This
is in agreement with our results for real numbers which were all
represented along the one direction x'0Ox. Multiplication merely
increases or decreases a number. Multiplication by —1 rotates a

YA R(5,4)
P(2,3 ol
,I
4
7’
4
—"".Q
O =" —x
Figure 4.6

vector through 180° but does not change its length. 0C = —OP.
This again corresponds with results for real numbers. Multiplication
of 4 say by —1 produced the number —4 which lies to the left of 0
and is obtained by rotating the vector of length 4 units drawn in the
direction of the positive x axis through 180°. Multiplication by
(—1)? i.e. by 1 of course will rotate a vector through 180° + 180° =
360° and so will leave it unchanged.

[y
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Of particular interest is the interpretation of multiplication by i.
From Figure 4.7 we see that the vector 0D is perpendicular to the
vector OP but has the same length as this vector. Thus multiplication
by i rotates a vector through 90° in an anticlockwise direction. Of
course multiplication by i will rotate a vector through 90° 4 90° =
180°. But this is equivalent to multiplication by —1. This is
consistent with (4.1) viz. i2 = —1.

YA
A(8,12)
D (-6,4) P(4,6)
B(2,3)
X 5 > X
C(4,-6)
Figure 4.7

The results of this section have been obtained by reference to
particular examples. However, the results are perfectly general. The
addition of complex numbers is equivalent to vector addition.
Multiplication by a positive number merely increases (or decreases)
the length of a vector representing a number; multiplication by —1
and i rotate the vector representing a number through 180° and 90°
respectively.

yA P(x,y)
> X
0
P I( Xy_y)
Figure 4.8

Example 1. If z = x + iy, the conjugate complex number x — iy
is conventionally represented by 2. What is the geometrical repre-
sentation of z?
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With reference to Figure 4.8 we see that Z is represented by the
reflection of the point representing z in the real axis.

Example 2. 'Where must the complex number represented by z lie
if |zl = 1? Find the cartesian equation of all points satisfying this
condition.

If |z| = 1, the length of the vector representing z is unity. Thus
the point lies on a circle whose centre is the origin and radius is 1.
(See Figure 4.9.)

Figure 4.9

If z=x+41iy, |zZ2=x*+4p»*=1 and this is the equation
required.

Example 3. What is the geometrical significance of |z — (2 + 3i)|?
If z is the complex number x + iy
Z—Q+3)=@x—2) +i(y —3)
Iz — 2+ 30 = Jlx — 2+ (y — 3]
and so represents the distance between the points in the complex
plane representing z and 2 + 3i. (Cf. section 17.5.) See Figure 4.10.

[ $4
Z= X+tIy
p
2431 -f
y
3 !
0|2 e
[——— X

Figure 4.10
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Example 4. Find the cartesian equation of the locus of the points
in the complex plane such that [z — i| = |z 4- {|. What is the geo-
metrical interpretation of this locus?

If z =x iy, z—i=x+i(y—1, z+i=x+iy+1)
If |z—i2=1z4il% X+ —-1=x24(+ 1)

ie. X242 =2y +1=x2+24 2y 41

ie. 4y =0  which is the x axis.

The locus is the locus of points equidistant from the points (0, 1)
and —i(0, —1), i.e. the perpendicular bisector of the line joining
these points which is the x-axis. See Figure 4.11.

(0,1)e 1

(0,-1) ¢ -1

Figure 4.11

It is important to realize that as far as complex numbers are
concerned the notion that ‘one complex number is greater than a
second complex number’ is meaningless. This applies to the notion
that a complex number may be greater than or less than zero.
There is no classification of complex numbers into positive and
negative, this latter notion applying only to the real numbers which
either lie to the right or left of 0. However, the complex number i
for example is neither to the right nor to the left of 0, indeed it is
directly above 0. This perhaps serves to remove some of the mystery
that surrounds complex numbers. The idea that the square of a
number is always positive is derived from the usual rule of signs as
they apply to the real numbers. But the notion of ‘sign’ has no
place as far as complex numbers are concerned, so it is not sur-
prising that the squares of such numbers should be negative.

Exercises 4d
1. If z = 3 — 4i, evaluate (i) z (if) z + 3 (iii) z — 3/ and interpret
the results geometrically in the complex plane.
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2. z =2 — |, evaluate (§) 2z (ii) —3z (iii) 4iz and interpret the
results geometrically in the complex plane.

3. Evaluate (i) 3(4 + 5i) (i) 2i(4 + 5i) and interpret the results
on the Argand diagram.

4. Evaluate (3 4 2i{)(4 4 5i) and interpret the result on the
Argand diagram. (Connect this with the results of question 3.)

5. If z = x 4 iy, show that |z|? = zzZ.

6. If z = 3 — 2i evaluate Z and interpret the result geometrically.

1
7. Show that |- | = i .
z| |z

8. If z = Z find the locus of the point represented by z.

9. If |z — 2| = |z + 2] find the locus of the point represented by z.

10. If [z — 3i] = 2 |z — 3| find the locus of the point represented
by z.

4.5. THE CUBE ROOTS OF UNITY

We have already seen (Exercise 4 of 4a) that the cubic equation
x3 = 1,1i.e. x®* — 1 = 0 has 3 roots.

X—1l=x—-Dx24+x4+1
Hx*—1=0,
x—1=0 or x24+x4+-1=0

—li\/(1—4):_%ii_\/3
2

x=1 or x= 5

The three roots of the equation are thus 1, 2 l\/3 and — -3
l-; . By direct multiplication we see that the square of the second

(third) root equals the third (second) root.

(=5+ 05T = (354

23 23]
Nl

!
22
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and (—%—i\ﬁ)z:(—l_i_\ﬁ)(_l_i\_/_j’)

BN ENETE)
i

Thus we may denote the three cube roots of unity by 1, w, w? where
J3 1 J3 \/ 3¥
w———+z—-or—§—z—2— Then |w| = ( =)i=1

by

—3 X

Figure 4.12

and if we represent the three roots by points in the complex plane
we see that they are equally spaced round a circle centre the origin
and unit radius (Figure 4.12). We also observe that the sum of the

three cube roots
l+wtw= 1+(——+1§-/—3)+(»—%—i—\§)=0

l4+w+w=0 co..(4.11)

Example 1. If w is one of the complex cube roots of unity show
that (1 4+ w??* = w. By (4.11)

L4+ w2=—w
A4+ w=(Cwi=w=w.w
A+wd=w since w? =1
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Example 2. 1f w is one of the complex cube roots of unity show that
(a + wb + wPc)(a + w*h + we) = a® + b? + ¢® — ab — bc — ca.
(a + wb + wec)(a -+ w?b + we) = a® + w?b? + wi3c® + ab(w + w?)
+ be(W? + w?) + ca(w? 4+ w)
= g% 4 b% + ¢ 4 ab(—1)
+ be(W? + w) + ca(—1)
=q2 4 b%+ ¢ — ab — bc — ca
Exercise 4e
If w is one of the complex cube roots of unity show that:
Ld+w—wpPE—0—ww2)d=0.
2.(l —w 4+ w1 +w— n?) =4,
. (14 we=1.
4. @@ + b® = (a + b)(a + wb)(a + w2b).
5. 6xy = (x + ) + (wx + wh)? + (wy + wix)2

EXERCISES 4

1. Express in the form a + ib:
~3—i 4 4 3i (1 + 1)
i) — ;
<)2+. @55 i (7
2. If (x 4+ iy)? = a + ib show that x? — y2 =a, 2xy = b. Hence
evaluate /(8 + 6i).
3. Find the solutions of the equation x2 4 7x + 20 = 0 in the

form a +4- ib. Find the sum and product of the roots.
4. If z2 = 1, find the possible values for 1 + z + 22,

I
5. If z=cos 0 4 isin 0, find the modulus of ;:'_- 1

0<6<Z.
2

if

1
6. If z = x 4- iy, find the real and imaginary parts of (i) z* (ii) -

7. Show how to represent geometrically the sum of two complex
numbers z, and z,. What is the meaning of |z; -+ z,|?
8. Use the result of question 7 to show that |z, + z,| < |z;] +

EAR
9. Find the locus of a point z which moves so that z+1

-~
10. If w is one of the cube roots of unity evaluate

@) (1 — w1 —w?

(i) (a + b)(wa + w2b)(w?a + bw).
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11. Solve the equation x% + 4x -+ 20 = 0 giving the roots in the
form p + iq where p and g are real. (J.M.B,, part)
12 If a + if = /(4 + iB)(C -+ iD)] show that
— 2= AC — BD, 208 = AD + BC and that
2a? = AC — BD + /[(4* + B¥(C? + D?].
13. Express in the form X +-{Y
, N8 gy 2—31 .. 2—1 @ -
M@= )T D5 @) S

14. Find two real numbers x and y so that
x(3+4i)—y(1 +2)45=0.

15. If (x + iy)® = a + ib show that a® +- b = (x* 4~ y®)3.

16. If w is one of the complex cube roots of unity show that

Oa+whr=1

@) (1 — w1 — w1 — wH(l — wH(I — w1 — w8) = 27.

17. Show that the square roots of unity are equally spaced round
the unit circle. Show that this is the case for the cube and four roots
of unity. Where do you suppose the fifth or the sixth roots of unity
lie in the complex plane? Verify by actual multiplication that the
complex sixth root in the first quadrant is indeed a sixth root of
unity. What is this complex sixth root?

18. (i) Find the real and imaginary parts of i T il..

(i) If the complex number 4 + 7i is represented by the point P
on the Argand diagram, write down the complex numbers which are
represented by (i) the reflection of P in the x-axis (i) the reflection
of P in the line y = x (i) the reflection of P in the line y = —x.

(J.M.B., part)

19. (@) Show that 1 + iis a fifth root of —4 — 4i,

(b) Show that if a, b, ¢, d and (@ + ib)/(c + id) are real, then

2
ad = bc. Hence show that if z = x | iy and 2—:_ 7 is real, the
point represented by z lies on the real axis or on a certain circle.
(J.M.B)

20. Show that
(a + b+ c)a + wb + wic)a + w2b + we) = a® + b® + ¢ — 3abe
where w is a complex cube root of unity.

2
*21. Solve the equation (u_—i) =1
Z —
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*22. P represents the complex number z. Q represents z + iz.
Show that OPQ is a right angled triangle where 0 is the origin.

*23. The points A, B, C, D on the Argand diagram correspond to
the complex numbers a, b, ¢, d respectively. Prove that

(i) ifa — b + ¢ — d = 0 then ABCD is a parallelogram

(i) if also a + ib — ¢ — id = O then ABCD is a square.

(J.M.B,, part).
*24. P represents the complex number z. Q represents the complex

1
number z + i Show that if P moves on the circle |z| = 2, Q moves
yr_1
9 4
*25. ABCD is a square in the complex plane. If A represents

3 + 2i and D represents 4 + 3i, what complex numbers are repre-
sented by B and C?

xR
on the ellipse 5 +



5

THE QUADRATIC FUNCTION AND THE
QUADRATIC EQUATION

5.1. THE GENERAL QUADRATIC EQUATION

WE have already used the formula (1.2) in order to solve a quadratic
equation. The result (1.2) can be obtained as follows:

For the general quadratic equation ax? + bx -+ ¢ = 0 where g, b,
c are any real numbers with a at least non-zero, we have after
division by @ and a slight rearrangement of the terms

x2 4 b x = —¢
a a

The addition of the quantity 5%/4a2 to both sides makes the left hand
side a perfect square, viz. [x + (b/2a)]%

b )2 b? ¢ b*—4dac
Th —_ )= 2 = 7t
us (x + 2a/ 4a® a 44°
b b — 4ac) 4/ (b* — 4ac)
x+ 2a + ( 44° - 2a

—— 2 —

x = ZhE VO — dac) (5.1

2a

(5.1) enables us not only to solve quadratic equations but also to
investigate the dependence of the roots on the relative values of
a, b and c. In particular the type of roots which arise depend on the
quantity b — dac whose square root is involved in (5.1). This
quantity is called the discriminant of the equation and is often
denoted by the symbol D:

D = b* — dac ... .(5.2)

If b* — 4ac > 0, then the square root in (5.1) will be a real number
and we shall obtain two real distinct roots of the equation.
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If b2 — dac = 0, so is its square root, and both roots of the
equation will be real and equal. They will both equal —b/2a.

If b® — dac < 0, the square root involved in (5.1) is that of a
negative number. Such a square root cannot be a real number,
Indeed we have seen that it is a complex number. In this case we say
that the equation has no real roots or the equation has complex roots.

Example 1. Find the values of a for which the equation(3a+ 1)x®+
(a@ + 2)x + 1 = 0 has equal roots.
The discriminant

D=@+2?*—4@a+ 1.1
=g +4a+4—12a—4
=a%— 8a

For equal roots D =0
: a*—8a=0

ala—8 =0
a=0ora=38.
Example 2. Show that the roots of the equation (x — a)(x — b) =

k2 are always real if 4, b and k are real.
We first write the equation in the form

x*—(a+b)x+ab—k*=0
The equation has real roots provided its discriminant is not a
negative number.

The discriminant D = (a + b)? — 4(ab — k?). We require to show
that D > 0. Now

D = (a+ b)* — 4ab — k?)
= a® + 2ab + b® — 4ab + 4k®
= a? — 2ab + b® + 4k?
= (a — b)? + 4k*

We have been able to express D as the sum of the squares of two real
numbers. This proves D > 0 which is the condition for real roots.
(N.B. A standard technique for proving a number to be non-
negative is to express it as the sum of the squares of one or more
real numbers.)

Example 3. Find the values of A for which the roots of the equation
x2— (BA+ Dx+ 42— 1 =51 are real.
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The equation can be written in the form
X—BA+Dx+R2—-51—-1=0
The discriminant
D= (314 1) —4(1)(42 — 54 — 1)
=92+ 61+ 1 — 422 + 204 + 4

= 5242615
For real roots
D=0, ie. 5A24+26A+-5>0

A+ DA+ 5 >0

This inequality is satisfied if both factors have the same sign. If
this sign is positive 4 > —#%; if this sign is negative 1 < —5. Thus
the equation has real roots if A < —50r 1 > —1.

Exercises Sa

1. Find q if the equation (5a + 1)x? — 8ax -+ 3a = 0 has equal
roots.

2. If the equation (7p + 1)x2+ (Sp — )x + p =1 has equal
roots find p.

3. For what values of k does the equation x2 — (4 + k)x + 9 =0
have real roots?

4. Find the greatest value of A for which the equation (A — 1)x? —
2x 4+ (A — 1) = 0 has real roots.

5. Show that the equation x — 2px + p? — ¢2 = 0 has real roots
provided p and g are both real.

6. Show that the equation x* — 2ax - 342 + b% = 0 cannot have
real roots if @ and b are real.

7. Show that the roots of the equation x + 2x = (2a + 2b + 1) X
(2a + 2b — 1) are integers if @ and b are integers.

8. The equation x2 4 2px + p® + g% = r2 has real roots. Show
that r2 > g%

9. Find the values of a if the equation (@ + 3)x2 — (11a + Dx +
a = 2(a — 5) has equal roots.

10. Show that the roots of the equation x2 — 2x = (b — ¢)? — 1
are rational if b and ¢ are rational numbers.

5.2. THE QUADRATIC FUNCTION

In this section we shall examine the values of the quadratic
function y = ax?® + bx + ¢ as x takes on different real values.
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First we notice that for large positive or large negative values of x,
the dominant part on the right hand side is ax® Since x? is always
positive we see that y will have the same sign as a for large positive
or large negative values of x.

y = ax® + bx + ¢ may be written as

a(xz—{—b—x—}—f)

y =
a a
Y BT S A _E_)
a(x + a +4a2+a 4q®
=4 2)2_ lﬁ:_“a_c}
— L.(x + 2a 4q®
. i b D
ie. y=aL(x+2—a)-—Ez] ....(83)
2 2 2
_ ar(x +_l_;_)_ (\/(b —4ac)”
L 2a 2a /
_ b J@? ——4ac)][ b J? —4ac)]
—al:x+2a+ 2a x+2a 2a
y=ax?+bx +c=alx —a)x —fp) .59
_ 2 —h— f(p2 —
where o = b+ \/2(2 dac) and § = b \/Z(Z 4ac) are the

roots of the equation ax? + bx + ¢ = 0.

Thus we see that y = a(x — «)(x — p) is zero for the two values
x = « and x = f as we would expect.

We may suppose without any loss of generality that one root say
o is not less than B i.e. « > f. Then for any value of x the sign of y
is the same as the sign of a(x — x)(x — B).

Then (x — &)(x — B) is positive when x > « since both factors
are then positive, and (x — «)(x — ) is also positive for x <
since both factors are then negative. For f < x < « however,
(x — «)(x — P) is negative since one factor is then negative and the
other positive. To sum up we have the important result:

The sign of y = ax? + bx + ¢ is the same as the sign of a except
for those values of x which lie between the roots of the equation
ax? 4+ bx 4+ ¢ = 0.
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This result combined with the procedure for determining the
nature of the roots enables us to make a sketch of the graph of the
function y = ax? + bx 4 c¢. There are six cases to consider (see
Figure 5.1).

AY 4
a>0 a<0
bz-loac>0 0 b2—40c>0 5
AN/ e X e 3‘—“’ X
(a) Two real roots (b) Two. real roots
| y ﬂ y
a=>0 a<Q
b2-100C= 0 b2—40c: 0
0 > X 0 X
(c) Real equal roots / ;
{ y (d) Real equal roots
y
a>0 a<0
2 2
b°-4ac<Q 0 _ b ~4ac<Q 0 _
X X
(e) No real roots (f) No real roots
Figure 5.1

Example 1. Show that 3x? 4 6x - 20 is always positive.
3x% + 6x + 20 = 3(x® + 2x + 22)
=3x*+2x+14+19
= 3[(x + 1 + 3]
which, being the sum of two positive quantities, is always positive.

86



THE QUADRATIC FUNCTION
Example 2. Show that if @ > 0, y = ax? + bx -+ ¢ has a minimum
value when x = — = .

2a

We have seen

- i)z 4ac——b2:l
y—a[(x—}—za + 44°

4ac — b? bY
=o(*5Y) +alx+52)

2
Now a(x + 2_a) is never negative, if a is positive, and has a

minimum value of zero when x = —b/2a. Thus y has a minimum
value of

(4ac — bz) 4ac — b? b
a = when x = ——.
4q4° 4q 2a

x2+x+1

Example 3. If x is real show that y = > T 1

< —3.

2
We have y=x__+x_+__1
x+1

This we rewrite as a quadratic in x so that
xXX+x+1=xy+y
i.e. X+x(l—»+1—y=0

Since x is always real, the discriminant of this equation is greater than
or equal to zero

is either >1 or

ie. A—y2—41—3»)>0
A=(=3—-»=>0
O-DO+3H>0

Now, the roots of the equation (y — I)(y +3) =0 are y =1 and
y = —3, and the coefficient of y2 for the function(y — 1)(y + 3)is 1.

@ — D+ 3) >0 (thesame signas 1) for
y=>1 or y< —3
y=>1 or < —3 whatever the value of x.
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Exercises 5b

1. Show that x* + 4x + 13 > O for all values of x.

2. Show that 16x2 — 24x 4 10 > 0 for all values of x.

3. Prove that 6x — 4 — 9x2 can never be greater than —3.

4. Show that if ¢ < 0, y = ax?® 4 bx + ¢ has a maximum value
when x = —b/2a. What is this maximum value of y?

5. Find the maximum value of 5 4 6x — x2. .

6. Find the minimum value of 12x2 + 24x + 13.

2—12
7. Show that if x is real, %’T‘i can have no real values between
3 and 4.
(x—2)2%4 16

8. If x is real show that can take on any real value

2(x+2)
which does not lie between —4(,/2 + 1) and 4(,/2 — 1).
X+ px+p
9. If p and g are both rea_l_and q > 4, show that P Fqxtq

when x is real.

2+ 3x—4
10. Find the possible values of & if %f—k-— may be capable of

cannot be between p/q and{; —7

taking on all values when x is real.

5.3. THE RELATION BETWEEN THE ROOTS OF A
QUADRATIC EQUATION AND THE COEFFICIENTS

We have seen that the roots of the quadratic equation ax? +

— 2 _ 4
bx+c¢=0 are the two numbers b+ \/(b ac)
—b — /(b — 4ac) 2a
% . If we denote these roots by « and g in some

order we see that

b 4 JOB*—4ac) b J(b* — 4ac) b

2a 2a 2a 2a a

and «f = [_ 5% L \_/U’T;“a_ﬂ [, 513; _ \/(b22; 4ac)]

_ (_ﬁ)z_ (.1’2—_406) _dac_ ¢
2a 44° 44> q

Thus we have the important results:

x+pf=—
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THE ROOTS OF A QUADRATIC EQUATION AND THE COEFFICIENTS
If « and f§ are the roots of the quadratic equation ax? + bx + ¢ =0

b
the sum of the roots equals — P

atp=—2 ....(5.5)
a

c
the product of the roots equals P

of =§ ....(5.6)

This same result would have been obtained by using (5.4). For
then we have

ax®? + bx + c=a(x — )(x — P)
ax? 4 bx + ¢ = ax* — a(a + P)x + aaf.

These two expressions are identical and on equating the coefficient
of x, and the term independent of x we obtain:

b= —a(ea+ ) and c=axf
ie. a+f=— b , =< asbefore.
a a
(We notice that the coefficients of x are both equal to a.)

Example 1. If « and B are the roots of the equation ax? 4 bx 4
¢ = 0 obtain in terms of a, b, and ¢ the values of (i) «® + 2 (i)

% + %(iii) o + fo.
We express (i), (if) and (jii) in terms of « 4 f and «f.
For (i) a4+ B2 =a® 4+ 208 + B% — 208
=(x+ B’ — 2e8
_ (_ ’2)2_ 2
a a
a2+ﬁ2__l)_2_2_c:b2—2ac
a® a a?
For (ii)
2 2 2
¢4 b_L+p_ b — 2ac/£ by the previous result
g« of at a
@ g _ b*—2ac
g a ac

89
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For (iii) 4B =(a+ B)e® —af + 8%

2 —
- _ é(b z2ac _ _(_:) by (0
a a a
2 _ 8
oc3+ﬂs=—-lz(b 23ac)=3abc3 b
a a a

Example 2. If one root of the equation px? 4 gx + r = 0 is three
times the other root show that 3¢* = 16pr.

Suppose the roots are « and 3a(8). Then from (5.5) and (5.6)
oc+3oc=4oc=—-q- and «.3x =32 =1
p p

We eliminate « from these two equations. From the first equation
o« = —(g/4p)

Example 3. The roots of the equation x>+ px +¢ =0 are p

and 6. Form the quadratic equation whose roots are ¥ + 8 and
l/y + 1/6.
Let the required equation be x2 4 Px - Q =0

By (5.5) P=—(y+6+i+1) =—(y+a+y———+‘5)

_@+o_p
70 q
the required equation is x% + p/g(1 + g)x + p*/g =0
ie. gx* +p(l +q)x +p2=0
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Exercises 5c

1. If « and B are the roots of the equation 3x2 — 7x — 1 = 0 find
the values of (i) (x — B)? (ii) o + B2 (iii) «* 4 p*.

2. If x and B are the roots of the equation 5x2 — 3x — 1 = 0, form
the equations with integral coefficients which have the roots (i)
1/o2 and 1/p2 (i) «?/8 and f%[a.

3. Find the condition that the roots of the equation px® + gx +
r = 0 should be (i) equal in magnitude and opposite in sign, (ii)
reciprocals.

4. One root of the equation px? + gx -+ r = 0 is twice the other
root. Show that 242 — 9rp = 0.

5. v and 8 are the roots of the equation px%+gx + r=0.
Find in terms of p, ¢ and r (i) y — 6, (i) y* — &2, (iii) »* — &
[= (y — &)(¥* + yd + 69)], (iv) y* — %

6. One root of the equation x* — px + ¢ = 0 is the square of
the other. Show that p* — g(3p + 1) — ¢* = 0 provided ¢ - 1.

7. If « and B are the roots of the equation ax® + bx + ¢ = 0, form
the equation whose roots are /8% and B/«

8. If one root of the equation px? + gx -+ r = 0 is four times the
other show that 4¢2 — 25pr = 0.

9. Find the relationship which must exist between 4, b and c if the
roots of equation ax? + bx -+ ¢ = 0 are in the ratio p/q.

10. Form the quadratic equation for which the sum of the roots
is 5 and the sum of the squares of the roots is 53.

EXERCISES 5

1. Find in their simplest rational forms the quadratic equations
whose roots are: (i) 3 + /5, (i) —2 %= 3/2, (iii) @ & 2b.

2. Prove that if a, b and ¢ are real the roots of the equation
(@® + bY)x2 + 2(a® + b® + Ax + (b2 + ¢*) = 0 are also real.

3. Show that if x is real (x = D(x = 3) cannot lie between 1 and

x—2)(x—4)

4. Can it attain these two values and if so for what values of x?

4. If the roots of the equation px% — 6gx — (9p — 10g) = 0 are
20 — 3 and 28 — 3, find the equation whose roots are « and f.

(L.U., part)

5. For what values of k has the equation (x 4 1)(x 4 2) =
k(3x 4+ 7) equal roots?

6. Show that the roots of the equation (@ — b + 1)x® + 2x +
(b — a -+ 1) = 0 are both real if @ and b are real.

7. If « and B are the roots of the equation 2p%x% + 2pgx +
q? — 3p% = 0, show that «* 4 B2 is independent of p and g.
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8. Show that the equation (x + 1)(x — 4) = mx has two distinct
roots for all real values of m.

; x4+ 2
9. Prove that, for real values of x, the function FI3x 16
cannot be greater than §, nor less than —%. Find for what values
of x, if any, it attains these values. (S.U.J.B)

10. Show that the roots of the equation 2bx% 4 2(a + b)x +
3a = 2b are real when @ and b are real. If one root is double the
other show that a = 2b or 4a = 11b.

11. For what values of k& does the equation 10x% 4 4x + 1 =
2kx(2 — x) have real roots?

(x + 2

| cannot lie

12. Show that the value of the expression

between 0 and 4 if x is real.

13. Find the ranges of values of k for which the equation x2 4-
(k — 3)x + k = 0 has (i) real distinct roots (ii) roots of the same
sign. (J.M.B., part)
aTx=57°
shall have roots equal in magnitude but opposite in sign.

15. If @ and b are real prove that the roots of the equation
(3a — b)x* 4 (b — a)x — 2a = 0 are real.

16. o and B are the roots of the equation x2 4 px 4+ ¢ = 0. Form
the equation whose roots are o + f§ and « — f.

17. Show that for all real values of « and f the value of the
x2

14. Find the condition that the equation 3 i

e .
function _F—af cannot lie between « and f.
2x —a—f

(J.M.B,, part)
18. If p and q are non-zero find the condition that the roots of the
equation (x — p)(x — g) = px are both real whatever the value of

H.
19. Show that if the roots of the equation 3x2 4 6x — 1 +
m(x — 1) = 0 are real, then m is not greater than §. Find m if one
root is the negative of the other.
20. Find the condition that the quadratic equations /,x% 4
myx + n; = 0 and L,x® 4+ myx + ny = 0 have a common root.
21. Find the values of k for each of which the quadratic equations
x% + kx — 6k = 0 and x% — 2x — k = 0 have a common root.
(J.M.B,, part)
22. If the quadratic equations x2 + ax + b = 0 and x2 4 bx +
a =0 (a #~ b) have a common root, show that the solutions of
2x*+(@a+bx=(@+ barex=1and x = —4. (L.U., part)
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23. If « and o are the roots of the equation (x — f)(x — f) = »,
show that  and #’ are the roots of the equation (x — a)(x — «') +
y=0.

24. If the roots of the equation x? + bx -+ ¢ = 0 are « and § and
the roots of the equation x% + Abx + A%c = 0 are y and & prove
that: ’

(@) (ay + BOY@d + By) = 22%(b* — 2¢)

(ii) the equation whose roots are «y + 0 and od + By is
X2 — Ab%x + 22%c(b? — 2¢) = 0. (J.M..B., part)

25. Find the limits between which k& must lie in order that
kx? —6x 44

I 6x Lk MY be capable of all values when x is real.
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6

PROPERTIES OF THE
TRIGONOMETRIC FUNCTIONS

6.1. THE MEASUREMENT OF ANGLE

When a line OP rotates from a position OX to some other
position OP, the angle POX is said to be positive if the sense of
rotation is anticlockwise, and negative if the sense of rotation is
clockwise. Thus in Figure 6.la ZPOX = 115° and in Figure 6.1
ZPOX = —49°,

Angles are generally measured in degrees (360° = one revolution)
or radians, this latter unit being defined as follows. Let AB be an
arc of a circle, centre O, equal in length to the radius r of the circle
(Figure 6.2a). Then £ AOB is one radian. If CD (Figure 6.2b) is

X

0
49

(b)
Figure 6.1

o

== S_

“/ \\
N\

‘\

(a) (b)
Figure 6.2
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THE MEASUREMENT OF ANGLE
an arc of length s, then ZCOD is defined to be

= 2 radians c..(61)
r

From (6.1) one complete revolution is equivalent to 27r/r = 27
radians. Thus we have the relationship between the two units

27 radians = 360°

a radians = 180° ....(6.2)

1 radian = (@) = 57-2958° = 57° 17" 45" ....(6.3)
™

and 1° = - radians ....(6.4)
180

Example 1. Express the following angles in radians: (i) 37° (i)
—143° 10'.
()) By (6:4),

37° = 3L X T 2 dians — 0-6458 radians
180
(i) —143° 10’ = —1431° = —143-166°
—143°10' = — m—%ﬂ radians = —2-499 radians-

Example 2. Express the following angles in degrees and minutes
correct to the nearest minute: (i) 2-1 radians (i) #/12 radians.

(i) By (6.3),
21 radians = 23 X180 4eorees — 120-316°

T

= 120° 19" (correct to the nearest minute)

(id) Z radians = (—’1 X @) = 15°
12 12 T
Although an understanding of the relationship between the units
concerned is desirable, in practice the conversions of the examples
above are best carried out with the aid of tables.

Exercises 6a

1. Express the following angles in degrees and minutes correct to
the nearest minute: (i) 3-2 radians (i) —1-58 radians (iii) =(S
radians.
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PROPERTIES OF THE TRIGONOMETRIC FUNCTIONS

2. Express in radians (i) 235° (i) 14° 4’ (iii) —128° 10",

3. Which is the larger of the following pairs? (i) 129° or 2:16
radians (i) 19° or } radian.

4. Verify the correctness of the following useful equivalents:

(i) g radians = 90° (ii) 41’ radians = 45° (iii) g radians = 60°

(i0) ¥ radians =30° () 2?" radians = 120°,

5. For which of the following angles will the positions of OP
coincide? ZPOX = (i) —120° (i) 135° (iii) 600° (iv) 240° (v) —225°
(vi) 30°.

6.2. THE TRIGONOMETRIC RATIOS FOR AN ACUTE

ANGLE

For an acute angle § the trigonometric ratios are defined as follows
(see Figure 6.3).

sinB:X, cos0=§, tan 0 = ¥ ....(6.5)
r r X

cosec0=r, se00=r, cotf =% ....(6.6)
y X y

Figure 6.3

Thus we have immediately the following relationships between the
six ratios

cosecB:-.—l—, secB=L, cot6=—1— ....(6.7)
sin 6 cos 0 tan 0
Also tan0=¥=X/Z=£1£Q
x rlr cosf
and cote=’—‘=5/¥=°_ﬁ9 ... (6.8)
y rlr sinf



THE TRIGONOMETRIC RATIOS FOR AN ACUTE ANGLE

Furthermore x2 -+ y* = r?

x2 y2
A
i.e. cos2 B + sin? 6 =1 ....(6.9

This may be written in either of the forms
sin2 § = 1 — cos? 0, cos?f =1—sin20 ....(6.10)

In addition we have
2

2
fhtantg =145 =EEY _ T
x X X
14 tan? 6 =sec® 0 .. (61D
2 2 2 2
and 1—l—co’c26—1—{———y—t—)i=r-2
y? y y
1 + cot? § = cosec? 0 ....(6.12)

The relationships (6.5) to (6.12), which are true quite generally for
any acute angle, enable us to calculate all the trigonometric ratios
if one is known, and are of value in rewriting trigonometric ex-
pressions in alternative and simpler forms.

Example 1. 1f sin6 = 1/,/3 and 0° < 6 < 90° find the values of
the other trigonometric ratios of the angle 6.

From (6.10)
cos?0=1—sin20=1—3%=3%
cos 6 = /%
By (6.8)
in 0
tan 6 = 20 —
& cos 0 \/2
and by (6.7)

sec 0 = /3, cosecf=.,/3 and cotf =./2

Example 2. Show that sin? 6 + (1 + cos 6)% = 2(1 + cos 0).
The left hand side (L.H.S.) = sin? § + (1 + cos 0)?
=sin?0 + 1+ 2cos 0 + cos? 6
=24 2cosf
(since cos? 0 + sin%? 0 = 1)
= 2(1 + cos 0)
= right hand side (R.H.S.) as required.
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Example 3. Show that (1 x s1nx)( 1+ secx ) =tan x
1 -+ cos x/ \1 + cosec x
_1_ cosx + 1
L.HS. = (1 + sin x) cosx | _1+sinx cos x
1+ cos x 1+ - 1+ cosx\sinx+1
sin x sin x
_l+sinx 1+cosx _sinx _ sinx — tan x

1+cosx cosx 1+4sinx cosx
Trigonometric identities may often be proved by reducing one
expression (usually the more complicated) to the second. In other
cases we may proceed by
(i) showing that L.H.S. — R.H.S. = 0 or

L.
(#) showing that ——— RIS, H S =1

sing 14 cosé
1—cos¢  sing
LHS.  sin¢ sing __sin¢ _ sin®¢ _
RHS. 1—cos¢ 1+cos¢ 1—cos®¢ sin*¢
sing 14 cos¢
1—cos¢  sing

Example 4. Show that

L.HS. =R.HS. ie.

Exercises 6b

1. If cos 0 =12 and 0° < 0 < 90° evaluate sin 0, tan 0, cot 6,
sec 8, cosec 6.

2. If tan 0 = % and 0° < 0 < 90° evaluate sin 6 and cos 6.

2\5/2
3. If x = a cos 8, simplify (i) a® — x* (i) (1 — Zc—) .

. . 1
4. If x = a tan 0, simplify (i) m (i) A/(1 + = )

5. If ¢=cos0, express in terms of ¢ (i) 3sin? 0 — 2 cos 6,
(ii) tan? 6 + 2 cos 0, (iii) cosec 6 + sin 0.
6. If 6 cos® 0 + 2 sin? 6 = 5 show that tan2 6 = 1.

7. If acos? 0 -+ b sin? 0 = ¢ show that tan2 6 =Z:‘;.
8. If cot? @ + 3 cosec? 8 = 7 show that tan 6 = 1.
Show that:
9. tan 6 + cot 6 = sec 6 cosec 0.
10. 4 — 3 cos?0 = 3sin?2 @ + 1.
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1+ cosé sec(9——1_1
1 —cosf secf+1

12. (1 + sin 6)% + cos? @ = 2(1 + sin 6).
13. (sin 0 + cos 0)2 4 (sin 6 — cos 6)% = 2.
14. (cosec x — cot x) (cosec x + cot x) = 1.
15. cost A — sin* 4 = cos? A — sin® 4.

1 —sin6
16, ——4—M8 = # — tan 6)%
1+ sinf (sec an 0)
17 1—|—tanA—secA=1+secA—tanA
"secA+tanAd—1 secAd+tand+1
18, cos 0 1+s1n0=2sece_

1-+sin6 cos 0
19. If x’ = x cos 6 + ysin 6 and y' = x sin § — y cos 0 show that
x’2 +),'2 = x2 +y2
20. If x =rsinfcos ¢, y = rsin 0 sin ¢, z = r cos 0 show that
x4+ yR 422 =1r2

6.3. THE TRIGONOMETRIC RATIOS FOR ANY ANGLE

The definitions of the trigonometric ratios given in the previous
section can only apply to acute angles, since they involve the ratio of
the sides of a right-angled triangle containing the given angle. In
this section we shall define the trigonometric ratios in such a way as

Y

R R =
~

N X

<-x-*0

Y'

Figure 6.4
to be applicable to angles of any size. These new definitions, if
applied to acute angles will of course yield the same resuits as before.

We shall measure angles from a fixed line X’OX on the plane.
Y'OY is a line in the plane perpendicular to X'OX (Figure 6.4).
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This pair of lines divides the plane into four quadrants, XOY,
YOX', X'0OY’, Y'OX (the first, second, third and fourth quadrants
respectively). Let OP be any line in the plane through O and let
£POX = 0. This is defined in accordance with the sign convention
of section 6.1.

Let x and y be the cartesian co-ordinates of P, referred to the
axes X'OX, Y'OY, also defined with the usual sign conventions. Let
OP = r be measured as positive for all positions of P. Then the
trigonometric ratios for ZPOX are defined as

sin9=-}i, cos(9=§, tan 6 =2 ....(6.13)
r r x
and
cosec0=-—1—, sec § = 1 s cot0=—1— ....(6.14)
sin 0 cos 0 tan 0
Y P
A
L x
X' ol -5 \'k X
[ ———- y-———>
Yl
Figure 6.5

If these definitions are applied to an acute angle, i.e. one which
lies in the first quadrant, the results are identical with those given in
section 6.2 (see Figure 6.5).

For other angles, however, we must take account of the signs of
x and y. If P is in the first quadrant then x, y and r are all positive,
so that the sine, cosine and tangent are all positive. If P is in the
second quadrant y is positive and x is negative, so that the sine is
positive but the cosine and tangent are negative. If P is in the third
quadrant x and y are negative so that the sine and cosine are negative
but the tangent is positive. If P is in the fourth quadrant x is
positive and y is negative, so that the sine and tangent are negative
but the cosine is positive. These results may be memorized with the
aid of the following diagram which shows which of three ratios
(sine, cosine and tangent) are positive in each quadrant.

sin | all

tan | cos
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With the definitions (6.13) and (6.14) it is clear that the identities
(6.9) to (6.12) will remain valid for angles in either of the four
quadrants since the relation x? 4 y? = r? is true whatever the signs
of x and y.

The definitions (6.13) and (6.14) enable us to define the trigono-
metric ratios for any angles. Tables of the trigonometric functions
only exist for angles in the range 0° to 90°. These tables are however,
quite sufficient, for the trigonometric ratios of any angle may be
expressed in terms of the trigonometric ratios of an acute angle.

Y
P
x_ (P« 16\ X
0|-6
P J
YI
Figure 6.6

The following general relationships proved below are of value in such
transformations. '

First we observe that if ZPOX = 6 and ZP'OX = —0, then
P and P’ are the mirror images of each other in the line X'OX
(Figure 6.6). Thus OP = OP’ = r, say.

Also, the abscissae of P and P’ are the same, but their ordinates
though equal in magnitude are opposite in sign, thus by (6.13)

sin (—0) = — Y sinb
r
x
cos(—0)= == cosf ....(6.15)
r
tan (—0) = — 2~ —tan0
X

If P and P’ are the ends of a diameter of a circle radius r, and
ZPOX = 6, then ZP'OX = 180° + 6. But we can see (Figure 6.7)
that in this case the abscissae and ordinates of P and P’ are equal in
magnitude but opposite in sign.
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Thus by (6.13)

\
sin (180° + 6) = =Y~ _sinb
r

cos (180° + ) = — = —cos 0 ....(6.16)
r

tan (180°+ 6) = —2 =¥ —tan 6
—X X

Y

v
Figure 6.7
If we replace 6 by —6 in (6.16) we obtain, after using (6.15)
sin (180° — 0) = —sin(—0) = sin0
cos (180° — ) = —cos(—0) = —cos § ....(6.17
tan (180° — §) = tan(—0) = —tan 0

. /{

(o)

vl
Figure 6.8

If ZPOX = 6 and ZP'OX = 90° + 0 then P and P’ lie on the

ends of perpendicular radii of a circle centre O and radius r (Figure
6.8).
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Thus if P is the point (x,y), P’ is the point with co-ordinates
(—y, x). Thus

sin (90° 4+ 0) = X —cos |
r
cos (90° + ) = — = —sin 6 .. (6.18)
r
tan (90° + 6) = —2 = —cot 6
x )

<

360°+0

I3

Yl
Figure 6.9
If we replace 0 by —6 in (6.18) we obtain after using (6.15)
sin (90° — 0) = cos (—0) = cos 6
cos (90° — 6) = —sin (—0) = sin 0 ....(6.19)
tan (90° — 0) = —cot (—6) = cot 0
If ZPOX == 0 and £ZP'OX = 360° L 6, then P and P’ coincide

and if P is the point (x, y) P’ is also the point (x, y) (Figure 6.9).
Thus

sin (360° + 6) =sin 6
cos (360° + 0) = cos 0 .. ..(6.20)
tan (360° 4 0) = tan 6
If we replace 6 by —6 in (6.20) we obtain
sin (360° — 0) = sin (—60) = —sin
cos (360° — 0) =cos (—0) = cosh ....(6.21)
tan (360° — 0) = tan (—0) = —tan 0
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Example 1. Evaluate (i) sin 150° (if) cos 210° (iii) tan 300° (iv)
cos 420°

() sin 150° = sin (180° — 150°)

= sin 30° = 05
(i) cos 210° = cos (180° + 30°)

= cos 30° = —0-866 From
(iii) tan 300° = —tan (360° — 300°) [ tables

= —tan 60° = —1-732
(iv) cos 420° = cos (360° + 60°)
= ¢cos 60° = 0-5 )

Example 2. Express in terms of the trigonometric ratios of positive
acute angles (i) cos —170° (ii)tan 210° (iii)cos —300° (iv)sin —500°.
(i) cos —170° = cos 170° = —cos (180 — 170°) = —cos 10°

(ii) tan 210° = tan (180° + 30°) = tan 30°

(iii) cos —300° = cos 300° = cos (360° — 300°) = cos 60°

(iv) sin —500° = —sin 500° = —sin (360° + 140°)
= —sin 140° = —sin (180 — 140°) = —sin 40°
Exercises 6¢

1. Evaluate (i) sin 160° (if) cos —400° (iii) tan 520° (iv) sin —200°.

2. Express in terms of the trigonometric ratios of positive acute
angles (i) cos 190° (if) tan —410° (iii) cos 300° (iv) sin —740°.

3. Show that sin (270° — 6) = —cos 0, cos (270° — §) = —sin §,
tan (270° — 6) = cot 0.

4. Show that sin (270° — 0) + sin (270° 4+ 0) = —2 cos 0.

5. Show that cos 210° cos 150° — sin 210° sin 150° = 1.

6. Evaluate (i) sin 37/2 (ii) cos —9/4 (iii)tan 117/3 (iv)sin —8/3.

7. Evaluate (i) sin 180° (if) sin 270° (iii) sin 360° (iv) cos 180° (v)
cos 270° (vi) cos 360°,

8. If sin 6 = 1/,/3 and 0 is obtuse find cos 0 and tan 0.

9. tan 6§ = $ and 6 is in the third quadrant; calculate sin 6 and
cos 0.

10. If 4, B and C are the angles of a triangle, show that (i)

C

sin (90° + A) = —cos (B + C)and (i) sin A%B = 0S5 .

6.4. THE GRAPHS OF THE
TRIGONOMETRIC FUNCTIONS

For angles in the range 0° to 90° the trigonometric ratios have
been tabulated. Thus the graphs of these ratios may be plotted very
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accurately for acute angles. The results of the previous section then
enable us to plot the graphs for other values of the angle.

Less accurately we may obtain the graph of the function y = sin x
as follows. Consider a circle of unit radius with centre O. Let
X’'0OX and Y'OY be two perpendicular axes. Then if ZPOX = x

Y y y=sin x

v \,ﬂ\ /AN 7/\\ .

Figure 6.10

and P is on the circumference of the circle, sin x is equal to the
projection of OP on the axis Y'OY. In Figure 6.10 several positions
of OP corresponding to different angles are shown together with the
projection of OP on Y'OY. These enable us to obtain the graph
shown.

AY y=cos x

ANV

—180° -90° 90° 180° 270° 360° 450° 51.0°

Figure 6.11

From Figure 6.10 the maximum value of sin x is seen to be 1 and
the minimum value —1. The graph crosses the x-axis at x = 0°,
1-180°, 4-360°, etc.

The graph for the function y = cos xcan be obtained from
Figure 6.10 by means of the relation

cos x = sin (90° + x) [From (6.18)]

Thus the ordinate of the sine curve at x + 90° is the ordinate of the
cosine curve at x. The cosine curve is thus the sine curve moved 90°
along to the left. This is shown in Figure 6.11 from which we see that
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cos x has maximum and minimum value +1 and —1 respectively.
The curve crosses the x-axis at x = +90°, 4-270°, +450°, etc.

For the function y = tan x, let C be the centre of a circle of unit
radius at unit distance from a vertical line Y'OY. Let CP be a
radius of this circle. Produce CP (or PC) to meet Y'OY at Q. Then
OQ (with appropriate sign) represents the tangent of angle PCO.
In Figure 6.12 various positions of P and Q are shown and the graph
of y = tan x is obtained from this.

Y \y
!
. P
R %

-180° -90° > 90° 180° 270° 360° 450°

ystanx

P4

Figure 6.12

From the graph we see that y = tan x is unbounded at x = +90°,
4+270°, etc. and crosses the x-axis at x == 0°, 1-180°, 4-360°, etc.

The graphs above, or more accurately the tables of the trigono-
metric functions, enable us to evaluate the trigonometric ratio of any
angle. The ratios for the particular angles 30°, 60° and 45° can
however be obtained exactly from considerations of an equilateral
triangle and an isosceles right angled triangle. Thus in Figure 6.13
OPN is an isosceles right angledtrianglein which ON = PN = 1 unit.
Then / OPN = 45° and by Pythagoras’ theorem OP = ,/2 units.
Thus

Sin45°=—oi\I=L, cos45°=lﬁz__1_. and
oP .2 oP /2
tan 45° =9E =1 ....(6.22)
PN
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In Figure 6.14 OPQ is an equilateral triangle of side 1 unit, ON
being an altitude. Thus PN = NQ = } unit and ZOPN = 60°.
ZPON = 30°. Now ON?=0P2 —PN2=1—}=4%.

on =2
2
sin 30° = EN _ o5 60° = L
oP 2
o ON . /3
cos 30" = — ==35in 60" = —
op 2 ....(6.23)
tan 30° = PN = cot 60° = L
ON
tan 60° = cot 30° = /3
0 0
V2 1
o ] " o A e
Figure 6.13 Figure 6.14

The results (6.22) and (6.23) are often useful and are worth the
trouble of memorizing.

Exercises 6d

1. Plot the graphs of (i) y = sec 0 (ii) y = cosec 6 (iii) y = cot §
for all values of 0 in range —720° to +720°.

2. Plot the graph of (i) y = sin2x (if) y = cos (x + 45°) (iii)
y = tan (2x + 30°).

3. Plot the graph of (i) y = 3 cos x 4 4sinx and on the same
scale (if) y = 5 sin (x 4 36° 52’). What do you notice?

4. Plot the graph of (i) y = cos x — sin x and on the same scale
(i) y = 1//2 cos (x + 45°). What do you notice?

5. Without using tables write down the values of (i) sin 120° (ii)
tan —135° (iii) tan 315° (iv) cos —240° (v) sin 3w/4 (vi) tan —27/3
(vii) tan — 5=/4 (viii) cos 5n/4.

6.5. THE ADDITION FORMULAE

In this tection we shall obtain formulae for the trigonometric
ratios of the sum and difference of two angles in terms of the
trigonometric ratios of those angles.
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We shall prove these results to be valid for any pair of angles A
and B. We first obtain an expression for cos (4 — B) in terms of
cos 4, cos B, sin 4 and sin B. Suppose P and Q are two points on the
circumference of a circle centre O and radius r and such that
/POX = 4, /QOX == B. Then from the definitions of the sine
and cosine (6.13) P is the point (r cos 4, r sin 4) and Q is the point
(r cos B, r sin B).

Figures 6.15a and b show two possible configurations. In
Figure 6.15a /POQ = A — B, in 6.15b /POQ = 360° — (4 — B).

Y Y
I )

!

Y

(a) (b)
Figure 6.15

In both cases (and all other cases, as our readers should easily
verify) cos POQ = cos (4 — B) by virtue of (6.20) and (6.21).
Thus on applying the cosine rule (8.3) to the triangle OPQ,

PQ2 = OP2 4 0Q?% — 20P . OQ cos POQ
=r2 42 —2r2cos(4 — B) = 2r2 — 2r2cos (4 — B)

The triangle PQN obtained by drawing parallels to the axes
through P and Q has ZPNQ =90°, PN =rsin A4 — rsin B,
QN =rcos 4 — rcos B.

By Pythagoras

PQ?2 = PN2 + QN2
= r2sin2 A — 2r?sin A sin B + r?sin? B + r2cos? 4
— 2r2cos A cos B + r:cos? B
= r¥(sin? A -+ cos? A) -+ r*(sin* B + cos? B)
— 2r¥cos A cos B + sin 4 sin B)
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On equating these two expressions for PQ? we obtain
-cos(4d —B)=cosAcosB+sindsinB ....(6.24)
If in (6.24) we replace B by —B (i.e. —B by +B) we obtain
cos (A4 + B) = cos (A4) cos (—B) + sin 4 sin (—B)
which by (6.15) gives
cos (4 + B)=cosAcos B—sinAsinB ....(6.25)
In (6.24) replace 4 by (90° — A)
€08 (90° — A4 — B) = cos [90° — (4 + B)]
= co0s (90° — A) cos B + sin (90° — A) sin B
by (6.19) we have
sin(A + B) =sinAcos B+ cosAsinB ....(6.26)
In (6.26) replace B by —B
sin (4 — B) = sin 4 cos (—B) + cos 4 sin (—B)
and so by (6.15)
sin(4A —B)=sindcosB—cosAdsinB ....(6.27)

From these results we obtain by division the corresponding
formulae for tan (4 + B) and tan (4 — B)

sin (4 + B) _ sin A cos B + cos 4 sin B
cos(4A+ B) cosAcosB —sin Asin B

On dividing numerator and denominator by cos 4 cos B we obtain

tan A 4+ tan B
1 —tan Atan B

tan (4 + B) =

tan (4 + B) = ....(6.28)
In the same way

sindcosB—cosAsinB  tan4 —tan B
cosAcosB+4sinAsinB 14 tan Atan B

tan (4 — B) =

Example 1. Given sin45° = cos45° =1/,/2, sin30°=1/2,
cos 30° = ,/3/2, calculate sin 15°.
By (6.27),

sin 15° = sin (45° — 30°) = sin 45° cos 30° — cos 45° sin 30°

Ly3_ 11 31

T2 2 Ty 22
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PROPERTIES OF THE TRIGONOMETRIC FUNCTIONS
1+tan 4
1—tand

tan45°+tan4 _1-+tan4

1 —tan45°tan4 1 —tan4d
since tan 45° =

Example 2. Show that tan (45° 4+ A) =

By (6.28) tan (45° + A) =

Example 3. Show that sin (x + y) sin (x — y) = sin® x — sin®y.
L.H.S. = (sin x cos y + cos x sin y) (sin x cos y — cos x sin y)
= sin? x cos? y — cos? x sin® y
= sin? x (1 — sin? y) — (1 — sin® x) sin? y

= sin? x — sin? y = R.H.S.

Exercises 6e

1. If sin 4 = # and cos B = {% evaluate without using tables (i)
sin (4 -+ B) (ii) cos (4 — B) (iii) tan (4 + B), if A and B are acute.
Is (4 + B) an acute angle?

2. If tan (x + y) = 4 and tan x = }, evaluate tan y.

3. Evaluate without tables (i) cos 75° (ii) sin 75°.

4. Use (6.25) to show that (i) cos(90° + A) = —sin A (ii)
sin (90° + A) = cos A.

5. Show that (i) sin (180° — A4) =sin A (ii) cos (180° — 4) =
—cos 4.

6. Simplify (i) sin 40° cos 30° — cos 40° sin 30°

(ii) cos 50° cos 60° — sin 50° sin 60°.
7. Simplify (i) cos 40° cos 30° + sin 40° sin 30°
(i) sin 150° cos 160° + cos 150° sin 160°.

8. Simplify (7) tan 30° 4 tan 40 (i) tan 60° — tan 30 '

1 — tan 30° tan 40° 1 4 tan 60° tan 30°

9. Show that sin x + sin (x + 2—32') -+ sin (x + 4?”) =0.
Show that:

sin (4 + B)
cosAcosB

cotxcoty —1
11. cot (x + y) = —————..
( ») cot x + cot

y
12. (cos 8 + cos $)? + (sin 6 +sin §)2 = 2 + 2 cos (6 — §).
13. tan (x-}-’-r) __c0sx + sin x
' 4

10. tan A + tan B =

cos X — sin x
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MULTIPLE AND SUB-MULTIPLE ANGLE FORMULAE
14. cos (4 + B)cos (A — B) = cos? A — sin? B.

15. tan (= )t (Z—)=1.
an(4+x an4 X

sin @ + ucosf

cos — usin 6 -
17, sin (x — o) = cos (x — «). Show that

16. If tan A = u show that tan (6 + 4).

18. Express in terms of the sines and cosines of 4, B and C (i)
sin (4 + B + C) (i) cos (4 + B + C).

19. Show that
tan (4 + B + C) = tan 4 4+ tan B -}-tan C —tan Atan Btan C

1 —tanAtanB —tanBtanC —tanCtan 4

20. If 4, B and C are the angles of a triangle show that
(#) cos A + cos(B— C)=2sin Bsin C

@) cos S+ sin A8 _ 2 gincos B
il cos2+s1n 2 = sm500s2.

6.6. MULTIPLE AND SUB-MULTIPLE ANGLE
FORMULAE

If we put B = A in (6.26) and (6.25) we obtain
sin 24 = sin Acos A + cos A sin 4
ie. sin 24 = 2 sin A cos 4 ....(6.30)
and cos 24 = cos2 A — sin? 4 ....(6.31)

Since cos2 4 =1 —sin? 4 and sin® 4 = 1 — cos® A this result
can be put in either of the forms

cos24 =2cos? 4 — 1 ....(6.32)
or cos24=1—2sin? 4 ....(6.33)
1 —tanAtan A
ie. tan24 = 21204 .. (6.34)
1 —tan* A4
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We can use these important results to obtain expressions for
sin 34, cos 34 and tan 34, etc.
sin 34 = sin (24 + A4) = sin 24 cos A + cos 24 sin A
= 2sin A cos? A + (cos* A — sin% 4) sin 4
= 2sin A cos? A + sin 4 cos? A — sin® 4
= 3sin A cos® A — sin® 4
= 3sin 4 (1 — sin?2 4) — sin* 4
c. sin34=3sin4d —4sin®4 ....(6.35)
cos 34 = cos (24 + A) = cos 24 cos A — sin 24 sin A
= (2cos24 — 1)cos A — 2sin* A cos A
= 2cos3 A — cos A — 2 cos A(1 — cos? 4)
=4cos®4 —3cos 4 ....(6.36)
tan 24 4 tan A

tan34 =tan (24 + A) =
an an (24 + 4) 1 —~tan2Atan 4

2tan 4
4 tan 4
=l—tan“’A
1 —tan® A4

_2tand4 +tanA4 —tan’ 4
1 —tan*4d —2tan* 4
3tan A —tan® A4

tan3d =——F7——— ....(6.37)
1 —3tan° 4
If we replace 4 by x/2 in (6.30),(6.31),(6.32), (6.33) and (6.34) we have
sin x = 2 sin > cos = ....(638)
2 2
cos x = cos® X — sin?Z ....(6.39)
2 2
=2cos?X — 1 ... .(6.40)
2
=1— 2sin2)2—c ....(6.41)
2 tan g
tan x = —— ....(6.42)
1 —tan®Z
2

112
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These results enable us to express sin x, cos x and tan x in terms
of tan x/2. For with tan x/2 = ¢ we have immediately from (6.42)

2t

1—1¢

tan x = ....(6.43)

. . X b
sin x = 2 sin = cos —
2 2

. X x
2 sin 5 cos —
. X .2 X
= —=—=_ since cos’>= 4 sin’==1
2X . 2 X 2 2
cos” = -+ sin” =
2 2
sin x/2
cos x/2  on dividing the numerator and

- 2
Sin® /2 Jenominator by cos® =
cos® x/2 2
. 2t
sin x — ....(6.44
e (6.44)
.2
cos?> _ sin? - sm2 X2
Cos X = 2 2= w2
= == )
s X . aX sin® x/2
cos®= +-sin®= 1 + ——
2 + 2 cos? x/2
2
S .. .(6.45)
142

Example 1. 1If tan 6 = % and 0 is acute, calculate tan 6/2.
We have from (6.43) with £ = tan /2

24 2
7 1—1#¢
24 — 24¢% = 14¢
2412+ 14t — 24 =0
ie. 12247t —12=10
“4—3)3+49=0
t=% or t=-—%
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but since 0 is acute so is 6/2 so that tan 6/2 is positive

tang=3
2 4

Example 2. Show that _sin26 tan 6.

1+ cos 20
sinfcos@  2sinficosf sinh

L.H.S. = = —
14+ 2cos®6 —1 2cos® 0 cos 0

Example 3. Prove that cos* 4 — sin* A = cos 2A4.
L.H.S. = cos* 4 — sin* 4 = (cos? A — sin? 4) (cos® 4 + sin? 4)
=cos? 4 —sin? 4
(since cos® 4 + sin? 4 = 1)
cost 4 — sin* 4 = cos 24 = R.H.S.

Exercises 6f

1. If tan 6 = $ calculate the possible values of tan 6/2.
2. Show that tan 224° = ,/2 — 1, without using tables.
3. If cos 4 = # find without tables sin 24, cos A/2 and tan A4/2.

4. Given cos 30° = ,/3/2 show that sin 15° = ﬂz—;ﬁ .

5. From the values of cos 30° and sin 30° deduce those of cos 60°
and sin 60°.
Show that:

sin 24

"1 —cos24
7. tan 26 — tan 6 = tan 0 sec 20.

3 1 4 cos x 4 cos 2x
" sinx 4+ sin 2x
9. M = 16 cos 0 cos 20 cos 46 cos 86.
sin
10. (cos 8 — sin 0)2 == 1 — sin 20.
1 1+tan*4 1

"(1+tanA? 1-4sin24’
12. sin%2¢ + 2 cos? ¢ cos 2¢ = 2 cos® ¢.

13. tan® (3~9) —Ll—sinb
' 4 2/ 1+4sin6’
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14. If tan? x = 1 + 2 tan® y show that cos 2x + sin?y = 0.
15. Express in terms of t = tan 6/2 (i) 1 4- sin 0 (i) 1 + sin 6 +
cos 0 (iii) sec 6 — tan 0.

6.7. THE FACTOR FORMULAE

The sums and differences of sines and cosines may be expressed as
products of sines and cosines and vice-versa.
From (6.26) and (6.27) we have

sin (4 + B) = sin A cos B+ cos Asin B
sin (4 — B) = sin 4 cos B — cos 4 sin B
so that on addition
2sin A cos B =sin{4 + B) +sin(4 — B) ....(6.46)
and on subtraction
2cos Asin B=sin{(4 + B) —sin(4 — B) ....(647)
Similarly from (6.24) and (6.25)
cos (A — B) = cos A cos B + sin A sin B

cos (4 + B) = cos A cos B — sin 4 sin B
so that
2cos Acos B=cos (4 + B) +cos(4d — B) ....(6.48)

2sin A sin B=cos(4 — B) —cos(4 + B) ....(6.49)

These formulae enable us to express a product of sines and cosines
as a sum or a difference.

If we put A + B=C and A — B= D, so that 4 = }(C + D)
and B = }(C — D) we obtain

sin C -+ sin D = 2 sin 3(C + D) cos 3(C — D)
sin C — sin D = 2 cos §(C + D) sin {(C — D)
cos C + cos D = 2 cos 3(C + D) cos ¥(C — D)
cos C — cos D = —2sin }(C + D)sin ¥(C — D)

These formulae enable us to express a sum or a difference of two
sines or cosines as a product. Note the minus sign in the last result.

.. ..(6.50)

Example 1. Showthatsin 24 cos 44 + sin 34 cos 94 = }(sin 124 —
sin 24).
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By (6.46)
sin 24 cos 44 = §sin (24 + 44) + 4 sin 24 — 44)
= }sin 64 + }sin (—2A4)

= }sin 64 — %sin 24
Similarly

sin 34 cos 94 = 4 sin (34 + 94) + % sin (34 — 94)
= 4§ sin 124 — }sin 64
On addition we have
sin24 cos 44 4 sin34 cos 94 = % (sin 124 — sin24) asrequired.
Example2. Showthatsin 7x + sin x — 2 sin 2x cos 3x = 4 cos® 3x
sin x.
L.H.S. = sin 7x + sin x — 2 sin 2x cos 3x

= 2sin $(7x 4+ x) cos $(7x — x) — 2 sin 2x cos 3x

= 2 sin 4x cos 3x — 2 sin 2x cos 3x

= 2 cos 3x (sin 4x — sin 2x)

= 2 cos 3x. 2 cos 4(4x + 2x) sin }(4x — 2x)

= 4 cos? 3x sin x

Example 3. 1f sin 6 + sin ¢ = @ and cos 0 +- cos ¢ = b show that

cost? ; ¢ _ Ha® + b

b+ 0—¢

We have 2 sin 5 $—5

On squaring and adding we obtain

6+¢ 0—¢
T COos 2

=g, 2 cos =b.

4 cos? b ; ¢(sin2 6——}2;9—6 + cos? sz‘_‘ﬁ) =a?+ p?

ot =% _a+P
2 4
Exercises 6g
Show that:
1. sin 50° + sin 40° = /2 cos 5°.
2. cos 70° + cos 20° = /2 cos 25°.
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13.
15.
16.
17.
18.

19.
20.

21.

22.
. sin4A sin 54 4 sin 24 sin 114 = sin 74 sin 6A4.
24,
25.

THE FUNCTION ¢ cos 6 + bsin 0

sin 70° + sin 50° = /3 cos 10°.
cos 75° — cos 15° = —1/,/2.

. cos 54 4 cos 34 = 2 cos A cos 4A.
. sin 6x — sin 2x = 2 cos 4x sin 2x.

. cos A — cos 134 = 2 sin 74 sin 64.
. 2 sin 30 cos 0 = sin 46 4+ sin 26.

2 sin 76 sin 6 = cos 60 — cos 80.

. 2 cos 58 cos O = cos 60 - cos 40.

cos 70 4 cos 360 sin 6 + sin 50

- - =cot 50. 12. = tan 30.
sin 76 + sin 36 cos 0 4 cos 50
cc.>s70 —C‘OSSO _ _\/3. 14 sin 0 -+ sin ¢ =tan0 + qS
sin 70° — sin 50° cos 0 -+ cos ¢ 2
sin 6 — sin ¢ =tan0—¢.
cos 6 + cos ¢ 2
cos 70° -+ cos 20° _
sin 70° + sin 20°

sin § + sin 38 + sin 58 — tan 38.
cos 8 4+ cos 3p + cos 58
cc?s 20 + c?s S0 + c?s 8a — cot 5

sin 2« + sin 5« + sin 8«

2sin A
tan 3(4 — B tan{(A+B)=—-+—+—.
K )+ {4+ B cos A + cos B

cos? (a0 + f) + cos? (x — ) == 1 4 cos 2a cos 2.
4 cos A cos (A + 2?7) cos (A + 137—7) = cos 34.
sin A cos 34 — sin 34 cos 54 = } (sin 44 — sin 84).

cos x + 2 cos 2x + cos 3x = 4 cos? (x/2) cos 2x.
sin « + sin (« + 3x) + sin (« + 5x) + sin (x + 8x)

3
=4 sin(oc+4x)cos—2)-ccos5—2x.

6.8. THE FUNCTION acos 8 + bsin 0

Expressions of the form a cos § 4 b sin 0 arise in many practical
problems. We shall show that this expression may be written

in a

form involving either the sine or the cosine of some other

angle. We saw this in two particular cases (Exercises 6d, numbers

3 and 4).
If we set acos 0 + bsin 0 = Rsin (0 + «) then R and « can be
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found by the following reasoning. We require a cos § + b sin 6 to be
identical with

Rsin 0 cos « + Rcos O sin o [= Rsin (0 + «) by (6.26)]

This will be so if R cos « = b and R sin & = a. If we square and add
these equations we obtain

R? (cos? o + sin? &) = a® - b?
ie. R= \/(az + b?)
On division we obtain

Rsina a
Rcosa b

. a
1.€. tan o0 = —
b

acos 6 + bsin 0 = ,/(a® + b®)sin (0 + «) where tana =gl;

....(6.51)

If we choose R to be positive, then « is determined by the signs of
Zi/];) « and cos « (which are those of @ and b respectively) and tan a =
8 csam——l
J@+ b3’ J@® + b%

Alternatively if we set

acos 0 4 bsinf = Rcos (6 — f)
= RcosOcos f + Rsin0sin f
then Rcos f = a and Rsin f = b.
on squaring and adding we have

R= /(@ + b?)

sina =

on dividing we have
tan f = b
a
acos 0 + bsin 0 = ,/(a® + b cos (0 — f) where tan f = g

... (6.52)
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Example 1. Express in the form Rsin (6 + «), 2 cos 6 4 3 sin 0.
By (6.51)
2cos 0 + 3sin 0 = /(2% + 3?) sin (6 + «)

wheretan o = %, sin 4 = 2/\/13 and cos o = 3/\/13 so that « is acute
(See Figure 6.16).

Figure 6.16

From tables « == 33° 41’
2cos 0 + 3sin 6 = /13 sin (6 + 33° 41")

Example 2. Express in the form Rcos (0 — o), cos @ — 2sin 0.
By (6.52)

cos 6 — 2 sin 6 = /(12 4 2?) cos (6 — «)

where tan « = —3 = —2, sina = —%, cos « = 1 so that « lies in
the fourth quadrant (Figure 6.17). From tables o = —63° 26’

cos § — 2sin 0 = /5 cos [0 — (—63° 26")]
= /5 cos (0 + 63° 26")

A5

Figure 6.17

Example 3. Express in the form R sin (6 — «), cos & — sin 0.
We notice that by (6.27)

Rsin (0 — o) = Rsin 0 cos ¢ — Rcos 0 sin «
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If this is to be identical with cos 8 — sin 6 we need to choose R and «
so that
Rcosa=—1 and —Rsina=1

On squaring and adding we obtain
R?%(cos? o + sin 2a) = (—1)2 4 (1)2 = 2
R =./2 (N.B. We take the positive root)

On division we have tan a = 1, but since sin « = cos « = —1/,/2,
a is in the third quadrant. From tables o = 225° (see Figure 6.18).

cos 0 — sin 0 = /2 sin (0 — 225°)

24

Yl

V2

Figure 6.18

Exercises 6h

1. Express cos 0 + sin 0 in the form
(i) Asin (60 + o) (i) B cos (0 — p).

2. Express 3 cos 0 — 4 sin § in the form R cos (6 + ).

3. Express 2 sin 6 — 3 cos 0 in the form R sin (6 — «).

4. Express 3 cos 20 + 4 sin 20 in the form R sin (260 4 «). Hence
state the maximum value of 3 cos 20 + 4 sin 26,

5. By expressing sin 0 4+ 3 cos 6 in the form Rsin (6 + ) cal-
culate the maximum value of this expression. Find an acute angle
0 for which this maximum is attained.

6.9. THE INVERSE TRIGONOMETRIC FUNCTIONS

If sin y = x we say that y is the number of radians in the angle
whose sine is x. This we write as

y=Sinlx
y is called the inverse sine of x. The statements
siny=x and y=Sinlx ... .(6.53)
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THE INVERSE TRIGONOMETRIC FUNCTIONS

are equivalent. Figure 6.19 shows the graph of the function y =
Sin~! x. It is easily derived from the graph x = sin y. From the
graph we see that to any value of x there correspond many possible
values for y. This ambiguity can be avoided (see section 9.1) by

Figure 6.19

confining our attention to the value which lies in the range —=/2 to
7[2. This value is called the principal value of the inverse sine and is
conventionally denoted by sin™! x written with a small ‘s’.

In the same way if x = cosy then y = Cos™! x is the inverse

| Ay ;

e 1z |
!

| !

| \’

-1 1

| [
|
i 2 —>x
| e

| 1
! |

L. -~

Figure 6.20

cosine of x. y is the number of radians in the angle whose cosine is
x. The principal value of the inverse cosine is the value of y in the
range 0 to 7 and is written cos™! x with a small ‘c’. The graph of
cos™! x is shown in Figure 6.20.
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PROPERTIES OF THE TRIGONOMETRIC FUNCTIONS

In the same way y = Tan! x is called the inverse tangent of x
and means that x = tan y. The principal value of y is the value in
the range —/2 to =2 and is denoted by tan~! x with a small ‘t’.
The graph of tan— x is shown in Figure 6.21.

Care should be taken to avoid confusing the inverse functions
with the reciprocals of the trigonometric functions which should
always be written

1 1 1
sin x~ cos x  tan x
er
e y=tan~!x
_______ 2..._..___-—.__
9 — X
-
_— @ — — — — 4 2_.——..—._.__4
Figure 6.21

It follows as a direct consequence of the definitions above that

sin (sin~'x) = cos (cost x) =tan (fan'x) = x ....(6.54)
and
sin7! (sin y) = cos!(cos y) =tan!(tany) =y ....(6.55)

provided y lies in the appropriate principal value range.

Although they are not used so much as the inverse functions
already defined, it is possible to define the inverse functions Sec™? x,
Cosec™! x, Cot~! x. The principal value cosec™ x is taken to lie in
the range —=/2 to 7/2, while the principal values sec™* x and cot™ x
are taken to lie in the range 0 to .

Example 1. Show that tan™! x = sin™" —x; .
JA+ %)
With tan~lx = «, x = tan 2. Now by (6.55) a = sin™? (sin o)
so we express sin o in terms of x. Since

_ 1+

coseczoc=1—{—cot2cx=1—!—l2 5

X X
2

. x
that =
g so that sin« Ji+
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The sign of the square root is in accordance with our conventions
for the principal value. If x is positive a will lie between 0 and /2
so that sin « is positive. If x is negative « will lie between —/2
and 0 and so sin « will also be negative.

o = tan"! x == sin™} ( _x__)
Ja+ )
Example 2. Show that sin™* (—x) = —sin™ x.

We consider the cases x positive, x negative and x zero separately.
If x is positive and « = sin~! x then « lies in the range 0 to /2
and sin « = x.

: —x = —sin o = sin (—o)

sin"!(—x) = —a = —sin~1 x
If x is negative put x = —y so that y is positive. Then sin™! (—y) =
—sin~ (y) be the above. Rearranging this we have
sin™! (y) = —sin~! (—y)
ie. sin™! (—x) = —sin1 (x)

If x is zero sin™' 0 = 0 = sin~! (—0). Thus we have proved the
result for all values of x.

Example 3. Show that tan™'x + tan™' y = tan™" ( lxﬁ) )

Lettan x = a, tan™' y = fso thattan « = x, tan § = y.

Now tan'x 4+ tan'y =a + B =tan™'[tan (x + B)] by (6.55)

= tan~! ( M) by (6.28)
1 —tanatan g

tan™' x + tan™' y = tan™? (f%:;%,) ....(6.56)

Exercises 6i
1. Write down the value of (i) cos~1(1/,/2)(if) tan™ 1 (iii) tan~1,/3.
2. Evaluate (i) tan—* (—1) (if) sin? (—$) (i) cos™* (/3/2).
3. Show that 2 tan=! x = tan™? I 2_xx2.
4. Show that sin™* } = cos™(,/3/2).
5. Show that cos™! (—x) = 7 — cos™! (x). (Consider the 3 cases
x positive, x negative, x zero and proceed as in Example 2.)
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6. Show that if cos™ x, cos™ y and cos™ x + cos™! y are all in
the range 0 to /2 then
cos x 4 costy = cos {xy — /[(1 — x®)(1 — y»]}
7. Find x if tan"' x + tan~ (1 — x) = tan™14,
8. Show that 2 sin~* x = sin™! [2x\/ (1 — x¥»)]ifsin™! x < =/4.
9. Show that 2 sin™ % = tan™' 122,
10. Show that tan~1 } + tan~! 2 = tan™? L.

6.10. SMALL ANGLES

From the definition of the radian we see that if s is the length of an
arc of a circle radius r which subtends an angle 0 at the centre then

s ==rf (measured in radians) ....(6.57)
[Cf. (6.1)]

Figure 6.22

Also if A4 is the area of the sector defined by the arc s and the
bounding radii (See Figure 6.22) then

4  _90
area of circle 27
A= ar’ b = }r%0 ....(6.58)

27
We shall use these results to obtain useful approximations to
sin 6, cos 6 and tan 6 when 6 is small.
In Figure 6.23 PR is a chord of a circle radius r subtending an
acute angle 6 at the centre O of this circle. PT is the tangent at P.
It is clear that area APOR < area sector POR < area APOT.
Thus since OP = OR =r and PT =rtan 0

Ir2sin 0 < 3r20 < $r¥tan 0

sinf < 6 < tan 0 ....(6.59)

]
Thus 1 < — <

in 6
i < cosd °F 1> 51_0_ > cos 0, which is equivalent.
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Now let 6 — 0 when cos § — 1 so that we have

s_m_@ —1 as 00
sin 0 0
Thus o == 1 for small values of 0

i.e. sin =0 if 0 is small ....(6.60)

In practice this approximation is valid to about four decimal
places for values of 6 less than 6°, although to use the approximation
we emphasize that the units for 6 must be radians.

P
8
5 N R T
Figure 6.23

Since cos § = 1 — 2 sin? 46 and since sin 30 = 36 for small values
of g wehave  cp1_ 162 if0issmall ....(6.61)
This approximation is more accurate than the coarser approximation
cos@==1 if 0 is small ....(6.62)

From (6.60) and (6.62) we obtain by division
tan 0 =0 if 0 is small ....(6.63)

Example 1. Find an approximate value of 6 if sin 6 = 0-48.

Since sin 6 is nearly 0-5, 6 must be approximately /6 radians. We
can improve on this first approximation by letting 6 = (7/6) — «
where o is small. Then

0-48 = sin (7—7 — oc) —sin = cos o — cos = sin o
6 6 6

Thus since
3 1
cosz—_:_\-/—, sinzz—, cosa==1, sin o0 ==,
6 2 6 2
we have 1 /3
0'48 _i — —5' [+

2 .
o == 73 x 0-02 = 0-0231 radians

a==1°19" so that 6 =:28°4l’
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Example 2. The diameter of a halfpenny is one inch. At what
distance will it subtend an angle of 15 minutes?
Let AB be a diameter of the halfpenny, C its centre (Figure 6.24).

Then AB = 1in. = 20C tan AOC

1 .
But tan AOC = / AOC = 3130 radians

oC £7—29in. = -G—Oft. = 19-1 ft.
v w
o] 15° C
B
Figure 6.24

Exercises 6]

1. Use tables to evaluate sin § for 6 = 1°, 2°, 3°, 4°, 5° 10°
Convert 6 to radians and compare the values.

2. Calculate tan 6 for the values of 6 in question 1. Compare the
values of sin 0, 6 and tan 6 [See (6.58)].

3. Find an approximate value for 0 if sin § = 0-51.

4. A hill 15 miles away has an angle of elevation of 30’. Find its
approximate height in feet.

5. Find the angle subtended by a building 150 ft. high at a distance
of 5 miles.

EXERCISES 6

1. Show that tan® ¢ — sin? 6 = sin? 6 tan2 6,

2. Evaluate (i) cos 386° (ii) sin — 429° (iii) tan — 819° (iv) sin 881°.

3. If 90° < x < 180° and sin x = 0-8 evaluate (i) cos x (if) tan x
(iii) sin 2x (iv) cos 2x.

4. If sin 0 = s and 0 is acute express all the other trigonometric
ratios of 0 in terms of s.

5. Show that sin® 6 + cos?§ = 1 — 2 sin2 6 cos? 6.

6. Show that (sec® 6 -+ tan 0) (cosec? 0 — cot §) = 1 - tan2 6 +
cot? 6.

7. Prove without tables that sin™!  — cos1¢2 = 2 tan-11,

8. Show that sin 4 + 2 sin 54 + sin 94 = 4 cos? 24 sin 54.

9. If 4, B, C are the angles of a triangle show that

(i) sin 4 4 sin B + sin C = 4 cos }4 cos 1B cos 1C.

(if) sin 24 -} sin 2B -+ sin 2C == 4 sin A4 sin Bsin C.

10. If tan6 =1/p and tané =1/g and pg=2 show that
tan (0 + ¢) =p +gq.
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11. Show that

2 __ t 2
(@) sin24 + cos24 = (1 + tan 4)° — 2 tan® 4

1+ tan® 4
cos 2P —3Q) +cos3Q
) sin 2P — 3Q) + sin 30 cot P, (L.U., part)
12. Show that L FSRX Foosx o x.

1+ sinx —cosx 2
13. Show thatsin 6 4 sin (0 + x) + sin (0 4 2x) 4 sin (6 - 3x) =
4 cos (x/2) cos x sin (0 + 3x/2).

14. Given that sin 2« - sin 2§ = p, cos 2a + cos 28 = g prove
; 4p sin (« + f)
that p/g = tan (« 4 §)' Prove also thatP2 T4 ¥ 27 coswcos

and deduce an expression for tan « tan § in terms of p and q.
(J.M.B., part)

15. Prove that

(i) cotAd—tanA = 2cot24

(@) cotA —tan A — 2tan24 = 4 cot44.
16. Show that tan‘1 12 — 2tan™'%.

17. If sin 6 = 1 e ~ show that tan( ) Jx.

l1+sinx—cosx 14 sinx 4 cosx 2 .
14+sinx—+cosx ' 1-+sinx—cosx sinx

19. If 0 is not a multiple of =2, and if x, y, z are given as sums of
the following infinite series

x=1+4cos?0 - cos*f+...

y=1+45sin20 4 sin*6 ...

z=14 cos20sin20 + costfsinth + ...
provethat () x + y = xy (i) x + y + z = xyz.

18. Show that

(J.M.B,, part)
20. Given that tan 30 = 2 evaluate without using tables

sin O + sin 30 + sin 50
cos 0 4 cos 30 4+ cos 50

(J.M..B,, part)

A
21, If sin (« + B) = A sin (¢ — B) show that tan « = 7 i- : tan B.

22. If sin « + sin 8 = p and cos « + cos § = g show that

. 2pq @ —p
() sin(a+p) = +q2,cos(oc—{—ﬂ) ( 2+q2)'
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23, If «, B, v are all greater than =/2 and less than 27 and sin o =
3, tan B = /3, cos y = 1//2 find the value of tan (« + § + y) in
surd form. (W.J.C)

24. (i) Express tan 34 and cosec 44 + cot 44 in terms of tan 4.
(i) If cos 0 + cos 30 = k cos ¢ and sin 6 4 sin 30 = k sin ¢ show
that cos 8 = 1k and find the values of tan ¢ and cos 2¢ in terms
of k. (L.U)

25. Show that
) . 2tan 2 tan 2
sin x sin y 2 2

cos x 4 cos y

1 —tan? X tan??
2 2

(1 — tan® 5) (1 — tan® X)
Cosxcosy 2 2

cos x + cos y 2(1 — tan?® g tan? %)

)

26. If 0 is an acute angle such that cos § = 1 — x, where x is
so small that x* is negligible compared with unity, prove that
cos 20 = 1 — 4x and cos 30 = 1 — 9x approximately. (L.U., part)

27. Show that tan (B— C)-+tan(C — A4) +tan(4 — B) =
tan (B — C)tan (C — A) tan (4 — B).

28. Evaluate sin~? (1//5) + sin~t (1/4/10).

29. (i) Prove theidentity asinnf — 2(a — 1)sin(n — 1)6 cos 6 4
(a — 2)sin (n — 2)6 = 2 sin 6 cos (n — 1)6.

(i) Prove that, if 0 < x < 1/{/2, 2sin™! x = sin1 2x,/(1 — x?).
(Note sin~* x means “the principal value of the inverse sine of x”,
and “,/(1 — x2)” means the positive square root.) State the corre-
sponding formula if 1/,/2 < x < 1.

Express 2 cos™ x as an inverse cosine, considering all values of x

between 0 and 1. (S.U.J.B)
30. If tan 2¢ — sin 2¢ = x and tan 2¢ + sin 2¢ = y show that
(@) x/y = tan? ¢ (b) (x* — y?)% = 16xy. (L.U)

31. Prove that 4 tan~*{ — tan™! 33 = /4.

32. Find x if tan™! 2x -+ tan~! 3x = «/4.

33. Express the functions 6cos?6 4- 8sinfcos 6 in terms of
cos 26 and sin 2§. . Deduce an expression for the function in the
form A + 5cos (20 — o) where A and o« are constants. Hence
write down the greatest and least values of the function and find
correct to the nearest minute, one value of 6 corresponding to each.

(J.M.B)
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34. If sin 6 + sin ¢ = p and cos 6 + cos ¢ = g prove that

. 8pq
(i) tan 0 + tan ¢ = ———,
¢ @+ 45 —4p°
2 8\ p2 2 _
(ii) cos 20 + cos 2¢ = @ —p )gp +2q 2) .
r+aq
35. If sin x = a sin 0 where « =1, show that x =0 + (x — 1)

tan 0.
36. Show thatsin 34 = 3 sin A — 4 sin® 4. Deduce thatsin® 4 +
sind (120° -+ A) -+ sin3 (240° + A) == —$ sin 34.
(J.M.B,, part)
*37. Ifsin 0 4 sin w = 4, cos 0 -+ cos w = b, and cos 0 cos w =
¢, show that (a2 + b%)(a® + 5% — 4c) = 4a’.
*38. If 4, B, C are the angles of a triangle show that

sin® A + sin® B+ sin® C =3 cos‘g— coslzE cosg

34 3B 3C
-+ cos = cos — cos — .
2 2 2

*39, If 4, B, C are the angles of a triangle show that
cotécot—Bcot-(2 = cot—4 + cot§+ cotg.
2 2 2 2 2 2

*40. Prove that sin (x + f)sin (¢ — f) = sin?« — sin? 8. By
using this result or otherwise, prove that
sin(@a+B+y)sin(B+y—o)sin(y +a— pfsin(a+ §—»)

=(@a+ b+ )b+ c— a)c+ a— bfa+ b — c) — 4a?h*c?

where @ = sin «, b = sin f, ¢ = sin p. (J.M.B)
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7
TRIGONOMETRIC EQUATIONS

7.1. THE GENERAL EXPRESSION FOR ANGLES WITH
A GIVEN TRIGONOMETRIC RATIO

IN this chapter we shall consider equations in which the trigono-
metric ratios of the unknown quantity occur. We shall show that
the solution of such equations can be reduced to the solution of
one or more equations of the type sin x = «,cos x = a,ortan x = «
where « is known and x is to be found. We first consider these
particular equations.

As an example consider the equation tan x = 1. One solution
is x = 45°, but this is not the only solution. From (6.16)

tan (0 4+ 180°) = tan 6
so that tan (45° -+ 180°) = tan 45° = 1

Thus x = 225° is also a solution. Again tan (225° 4 180°) =
tan 225° = tan 45° = 1 so that x = 405° is also a solution. It is
clear that we can proceed indefinitely in this way and obtain as
solutions x = 45°, x = 45° 4 180°, x =45°+ 2 x 180°, x =
45° 43 x 180° etc. From (6.17)

tan (6 — 180°) = —tan (180° — 0) = tan 6
so that

tan (45° — 180°) =1, tan (45° — 2 X 180°) =1 etc,
so that x = 45° — 180°, x = 45° — 2 x 180°,
x = 45° — 3 x 180° etc.

are also solutions. All the solutions above may be expressed in the
one form
x = 45° -+ n180°

where 7 is an integer, either positive, negative or zero. By giving n
different values we obtain the different solutions of the equation.
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For the equation tan x = « suppose that 6 is any angle such that
tan 6 = «. (In practice § is found with the aid of tables of tangents.)
Then any angle x = 6 -+ n180° where n is an integer will satisfy
tan x = tan 6 = a.

Thus all solutions of the equation tan x = « are of the form

x =0 4 nl180° ....(1.1)

where » is an integer, positive, negative or zero.

My
B’/ B/ A/ A'/’ /
K
o !
y O | x
-360° -180° 6 180° 3800 7,00
Figure 7.1

Reference to the graph y = tan x which is reproduced in Figure
7.1 may help to clarify this. The horizontal line y = « is drawn on
the same scale and intersects the tangent curve at points A, A’, B,
A", B" etc.

If the abscissa of A is 0, that of A’ is 6 -+ 180° of A”, 8 4+ 2 X
180°, etc. and that of B’, 8 — 180°, of B” § — 2 x 180° etc. If the
angles are expressed in radians (7.1) assumes the form

x=0+nm ....(12)

where # is an integer, positive, negative or zero.

For the equation cos x = a« we first observe that if « is numerically
greater than one no solution will exist. If « is numerically less than
one we proceed as follows. Figure 7.2 shows the graph of y = cos x
and y = o drawn on the same scale. The abscissae of the points of
intersection will give the solutions of the equation cos x = a.

If 0 is an angle (the smallest) for which cos @ = « the abscissa
of A is 0. The abscissae of A’, A”, A” etc. are 360° — 0, 360° + 6,
2 X 360° — 6, 2 X 360° + 6, etc. The abscissae of B’, B”, B” etc.
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are —0, —360° -+ 6, —360° — 6 etc. These are all particular cases
of the formula n360° 4- 6 where n is an integer. Thus the general
solution of the equation cos x = « (= cos 0) is

x = n360° L+ 0 ....(7.3)
or x = 2nw 4 0 (if angles are measured in radians) where n is an
integer, positive, negative or zero.
1y
/\B 8/T\a A\ IV
M\ /S N/,

1
] i \ t It 1
/ - \my 1 \187 ” W

Figure 7.2

We treat the equation sin x = o in the same way. Figure 7.3
shows the graph y =sinx and y = 2 (—1 < « << 1). From the
graph we see that if sin 6 = & (0 is the abscissa of A) the other
solutions are given by the abscissae of A’, B’, A", B” etc, i.e.
180° — 6, —180° — 6, 360° + 6, —360° + 6, 540° — 0, —540° — 6
etc. These are particular cases of the formula n180° 4 (—1)"6
where n is an integer.

N:S B/ \8' A/\A VAN
N /N NN

|
|
-540° -360°  -180° 6 180° 360° 54Q°

Figure 7.3

Thus if sin 6 = o, the general solution of the equation sin x = «
is
x = nl80° 4 (—1)*6 (7.9
or x = nw + (—1)"0 (if angles are measured in radians) where »
is an integer, positive, negative, or zero.
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Example 1.  Find the solutions of the equation sin x = 0-515 which
lie in the range 0° to 360°. State the general solution.

From tables sin 31° = 0-515, hence x = 31° is a solution. Thus
by (7.4) the general sotution is x = n180° 4 (—1)" 31°. Withn =0
or 1 we obtain the solutions in the range 0° to 360°,

ie. x=31° or x=180°— 31° = 149°
Example 2. Solve the equation tan x = —./3 giving the general

solution and the solutions which lie in the range 0° to 360°,
From tables, or by (6.23), tan 60° = \/ 3. Thus by (6.17)

tan (180 — 6) = —tan  so that tan 120° = —.,/3
one solution is 6 = 120°. By (7.1) the general solution is
x = 120° + n180°
With n = 0 or 1 we obtain solutions in the range 0° to 360°.
ie. x=120° or x = 300°

Example 3. Find in radians the general solution of the equation
cos 20 = cos (9 — Z)
4
From (7.3) the general solution is such that
20 = 2nmw + (6 — i—r) where n is an integer
Thus with the positive sign we have
20 =2nw 46 —=
i 4
so that 0 =2nm — f
With the negative sign we have

20 =2nmr—0+Z
nmw —|—4

2nm ™
so that = —
3 + 12
2nm T . .
0 =2nm —= or L T where nis any integer
T4 3 T v InieE
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Example 4. Solve the equation sin 260 = cos 36 giving the general
solution and solutions in the range 0° to 360°.
Since cos 360 = sin (90° — 30) the equation is

sin 20 = sin (90° — 30)
so that by (7.4)
20 = n180° - (—1)*(90° — 36) where n is an integer
012 + 3(—1)"] = n180° + (—1)"90°
g 180° + (=1)"90°
2+ 3(—1)"

Solutions in the range 0° to 360° are obtained by giving n particular
values.

(where n is an integer)

With 7 = 0, 0 =952 =18
With n = 2, 0 = 48° — 90°
With n = 4, 0 = 84 — 162°
With n = 6, o = 1520 — 234°
With n = 8, 6 = 1530 — 306°

Other positive values of » (all the odd values) lead to solutions
outside the range 0° to 360°.
—180° — 90°
Withn= —1,60 =1
of n lead to solutions outside the range 0° to 360°. The required
solutions are thus 18°, 90°, 162°, 234°, 270°, 306°.

= 270° but other negative values

Exercises 7a

Find the general solutions of the following equations. (Find all
solutions in the range 0° to 360°.%)

1. sin x = 0-831. 2. cos x == 0-7125.

3. tan x = 2-1155. 4, cos x = —0-5577.

5. sin x = —0-4775. 6. tan x = —0-300.

7. sin 3x = 0-500. 8. tan 6x = —1:23.

3

9. cosix = \—/2_ . 10. cos (2x — 30°) = 0-564.
11, sin (x 4 18° 3’) = 0-813.
12. sin 4x = sin 2x. 13. tan 60 = tan 9.
14. cos 3x = —cos x. 15. cos 2x = sin 3x.

16. tan 2x = cot 3x. 17. sin 26 cos 36 = 0.

* At first reading it is suggested that only solutions in the range 0° to 360° be
considered.
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18. tan 26 cot 46 = 0.

19. (i) cos 6 = —4} (ii) tan 6 = /3.

20. From the result of question 19 find the general value of 6 and
the values in the range 0° to 360° which satisfy simultaneously
tan 0 = /3, cos 0 = —4.

7.2. TRIGONOMETRIC EQUATIONS INVOLVING
DIFFERENT RATIOS OF THE SAME ANGLE

Trigonometric equations which involve more than one ratio of the
same angle are generally solved by obtaining an equation which
involves just one trigonometric ratio. This generally calls for the use
of some of the identities (6.5) to (6.12). This latter equation is
then solved for the particular ratio involved. This will result in one
or more equations of the type considered in the previous sections.
The following examples will illustrate some of the techniques
commonly used.

Example 1. Find the general solution and all solutions in the range
0° to 360° of the equation 2 cos x — 3 sin x = 0.
We have 2cosx — 3sinx =0

sin x
cos x
(Provided cos x 7% 0, which is so for our solutions but we must
check this point.)
: tan x = % (= tan 33° 41’ from tables)
x = 33°41’ 4 nl180°

.. the solutions in the range 0° to 360° are, with n =0 and 1,
33° 41" and 213°41’.

2
3

Example 2. Find x in the range 0° to 360° if 2 cos® x = 2 — sin x,
Since cos? x = 1 — sin® x we have

2 —sinx = 2 — 2sin?x which involves only sin x
2sinfx —sinx =0
sin x (2 sin x — 1) = 0*

sinx=0 or 2sinx—1=0 ie. sinx=1%
. x = 0, 180°, 360°. . .n180°
or x = 30°, 150°, . ..n180° 4+ (—1)"30°

the required solutions are thus 0°, 30°, 150°, 180°, 360°.
* Note that we do not divide by sin x since we should then lose the solutions

which result from sin x = 0.
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Example 3. Find 0 in the range 0° to 360° if
2sin 20 4+ 3 cosec 20 = 7.
We have 2 sin 26 + s1_n3-2—(9 = 7 which involves only sin 20
2sin%220 — 7sin20 +3 =0
(2sin20 — 1)sin20 —3) =0
2sin20 —1=0 or sin20 —3=0
Le. sin20 =% or sin20 =23

The second alternative gives no values for 6. If'sin 260 = }, 26 = 30°,
180° — 30°, 360° + 30°, 540° — 30°, 720° 4 30°. Since we require
values of 6 in the range 0° to 360° we must find all values for 26
in the range 0° to 720°. From the above we see that the required
values for 0 are 15°, 75°, 195°, 255°.

Example 4. Solve for 0, 3sec?0 = 2tan 0 + 4
We have 3 sec20 —2tanf — 4 =0

3(1 +tan20) —2tan 0 — 4 =0, which involves only tan 0
3tan?0 —2tan6 — 1 =0
(tanf — N@Btan 0+ 1) =0
C. tanf=1 or tanf = —1
If tan 6 = 1 = tan 45°,
6 = 45° + nl180°
If tan 6 = —} = tan (—18° 26/)(tan 18° 26’ = } from tables)
0 = n180° — 18° 26’

Example 5. Solve for x in the range 0° to 360°
3cos?x — 3sinxcosx + 2sin? x = 1.
On division by cos? x we have
3—3tanx 4 2tan®*x = sec? x
(We must check that our solutions do not give cos x = 0.)
3—3tanx + 2tan®x =14-tan?x which involves only tan x
tan?x — 3tanx +2=0
(tanx — D(tanx — 2) =0
tanx=1 or tanx =2
x = 45° 4 n180° or x = 63°26' 4+ n180°
the required solutions are thus 45°, 225°, 63° 26, 243° 26’.
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Exercises 7b

Find the general solution, together with all the solutions in the
range 0° to 360° of the equations:*
1. 2tan?x — 3tanx -1 =0,
2. 7tan% x — 3 sec?x = 9.
3. 8sin20 — 6cos 6 = 3.
4. 9cos 8§ =4sin 6.
5. 4cos x = 3 tan x + 3 sec x.
6. 3sin20 = cos? 0.
7. 4cos20 + Ssin2 0 = 5.
8. tan x cosec x = 5.
9. cot? x 4 2 cosec? x = 6.
10. 9sin® x + 10sin xcos x — 2cos? x = 1.
11. 7sec?0 = 6tan 0 4 8.
12. 2 tan 260 4 3 sec 20 = 4 cos 26.
13. sin 26 (1 4 2 cos 26) = 0.
14. 6 sin 6 = tan 6.
15. 3sin 36 — cosec 3¢ + 2 = 0.

7.3. TRIGONOMETRIC EQUATIONS
INVOLVING MULTIPLE ANGLES

If the equation for x involves trigonometric ratios of 2x, 3x,
etc. we still seek an equation involving a single trigonometric ratio
of a single angle be this x, 2x, 3x etc. This will generally require us
to use the identities of sections 6.6 and 6.7.

Example 1. Find x if tan2x 4 3tanx = 0.
From (6.34) we have

2 tan x + 3tan x =0 which involves only tan x

1 —tan®x
2tanx + 3tanx — 3tan3x =0
3tan®x — S5tanx =0
tanx (3tan®x — 5) =0
tanx =0 or 3tan*x —5=0
tanx =0 or tanx =./§ or tanx= —./%
x = 0°, 180° —180° etc; in general x = n180° if tan x = 0.

* At first reading it is suggested that only solutions in the range 0° to 360°
be considered.
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If tan x = /§ = 1-291 = tan 52° 14’
x = nl180° + 52° 14’
If tan x = —\/§ = —1-291 = tan (—52° 14')
x = nl80° — 52° 14’
The general solution is thus n180° or n180° 4= 52° 14’,

Example 2. Find all values of 0 in the range 0° to 360° for which
cos 26 —cos § — 2 =0.
We have 2cos?@ — 1 —cos —2 =0 which involves only
cos B
) 2cos?0 —cosf —3=0
(2cos O — 3)cosG + 1) =0
2c080 —3=0 or cosf+1=0

cosf =% or cosf=—1

cos § = —1 gives 6 = 180°, cos § = £ gives no solution for 0.

Example 3. Find 0 if sin 0 4+ sin 50 = sin 30.
We have by (6.50)

sin5¢9—{—sin0=2sin0+5600s5t9_t9

2

= 2 sin 30 cos 20
The equation becomes

2 sin 36 cos 26 = sin 30
sin30(2cos 20 — 1) =0
sin30 =0 or cos20 =1}

If sin30 =0, 360 =0, 180°, 360° 540° etc. (in general n180°).
If cos20 =4, 20 = 460°, 360° 4+ 60°, 720° 4+ 60° (in general
n360° 4- 60°). Thus the general solution of the equation is 0 = n60°
or § = n180° 4 30° where n is an integer.

Example 4. Find all values of x in the range 0° to 360° for which
sin 3x sin x = 2 cos 2x + 1.
By (6.49)

sin 3x sin x = #[cos (3x — x) — cos (3x + x)]
the equation becomes
cos 2x — cos 4x = 4 cos 2x -+ 2
cosdx +3cos2x +2=0
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But cos 4x = 2 cos? 2x — 1
2cos?2x + 3cos 2x + 1 =0 which involves only cos 2x
(2cos2x + 1)(cos2x +1)=0
2cos2x = —1 or cos2x = —1
If cos 2x = —3} = cos 120°, 2x = n360° £ 120°
x = nl180° + 60°
If cos 2x = —1 = cos 180°, 2x = n360° 4+ n180°
x = n180° 4 90°

.. the solutions in the range 0° to 360° are 90°, 270°, 60°, 120°,
240°, 300°,

Exercises 7c

Find the general solution together with all solutions in the range
0° to 360° of the equations:*
1. cos2x +sin2x = 1.

2. 2cos?0 — 3sin20 — 2
. 2c0s20 4- 2sin O cos 6
. tan 20 — 1 = 6 cot 20.
. cos 6 4 cos 56 = cos 26.

0.
3 1.

4

5

6. sin x -+ sin 3x = sin 2x -+ sin 4x.
7

8

9

. cos $x cos x = 1 + cos x.
. 2cos 3xcos x = cos 2x + sin 2x + 1.
.sin30 = cos20 — 1 4+ sin 0.

10. tan 26 tan 40 = 1.

7.4. THE EQUATION acos 0 4 bsinb =c¢

Equations of the type acos 0 + bsin 0 = ¢ where a, b, ¢ are
constants may be solved by first expressing a cos 0 4 b sin 6 in the
form A cos (0 F «) [see (6.52)] or A sin (0 + ) [see (6.51)]. If we
always write the equation with a positive, we need only use the first
form. Alternatively, by expressing cos & and sin 6 in terms of
t = tan 6/2 [see (6.44), (6.45)] we can obtain an equation for tan 6/2
from which 6 may be found.

* At first reading it is suggested that only solutions in the range 0° to 360° be
considered.
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TRIGONOMETRIC EQUATIONS

Example 1. Solve the equation 3 cos 0 — 4sin 0 = —2-5.
We have

3cos 0 — 4sin 0 = /(3% + 42)(% cos 0 — % sin 0)
= 5(3 cos 6 — % sin 6)
= 5(cos 0 cos o — sin 0 sin &)

where tan « = % [cf. (6.52)]
= 5cos(0 + o)

where o« = tan~14 = 53°§’
5cos (0 4 53°8") = —2:5
cos (0 + 53°8) = —%1 (= cos 120°)
6 + 53° 8" = n360° 4 120°
6 = n360° + 66° 52" or O = n360°— 173°8’

If we tackle this problem by the second method we have with
t = tan 0/2

2
3(11+ ttz) - 144}2:2 =
3 -32—8t=—-25—252
6 — 682 — 16t = —5 — 5¢°
#4116t —11=0
,_ 16 4 J256 + 44)  —164 /300 _ —16 + 17-321
2 2 2

t= tang =0-6605 or —16-6605

4

g = nl180° 4 33°26’ or 5= n180° — 86°34’

6 =n360° 4 66°52' or 0 =n360° — 173°8" as before
An alternative method is to proceed as follows. We have
4sin 0 =3cosf 4 25
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THE EQUATION acosf + bsinf =¢
On squaring both sides

16sin2 8 = 9 cos2 9 4+ 15¢cos & + 6-25
ie. 64 sin? 6 = 36 cos? 8 + 60 cos 0 + 25

64(1 — cos? 0) = 36 cos? 0 + 60 cos 6 + 25
100 cos2 6 + 60cos @ — 39 =0

~ —60 4 /(3600 + 15600)

200

—60 + /19200
200

_ —6 £ 13-856
20

cos 0 = 03928 or cos O = —0-9928
0 = n360° + 66° 52" or 6 = n360° 4 173°8’

cos

In fact, as is readily verified, only the solutions
6 = n360° + 66°52° and 6 = n360° — 173° 8’

satisfy the equation 3cos @ — 4sinf = —2:5. The two other
solutions are solutions of the equation 3 cos 6 4 4 sin § = —2-5,
equivalent to —4sin @ == 3 cos ¢ + 2-5 which on squaring gives
16 sin%2 6 = 9 cos? 6 4 15 cos 6 -+ 6:25 as before.

Thus if we adopt this method for solving this type of equation we
must check our solutions (cf. section 1.2).

Exercises 7d

Find the general solution together with a// solutions in the range
0° to 360° of the equations:
.2cos8 4 sinf =1.
3cosx +4sinx = 5.

24 cos x — 7 sin x, = 12-5.
. 2cos 0f2 + 3sin 02 = 2.
5cos 2x — sin 2x = 2.

. cosec§ =3 4+ 4cot .

. sin3x —cos3x = 1.

. 5c0820 — (/2sin 20 = 3.
. sin 36 — 4 cos 360 = 4.
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10. cos 6 +sinf 4 1 = 0. (Write cos 6 and sin 8 in terms of
t = tan 6/2 and notice how part of the solution is lost if this method
of solution is used.)

EXERCISES 7

1. Find all solutions in the range 0° to 360° of the equations:
(i) sin 20 = 0-8799
(i) cos 40 = 0-5659
(iii) tan 6 = —1-7699
(iv) sin 3x = sin 2x
(v) cos 3x = sin x.
2. Find all angles in the range 0° to 360° which satisfy (/) tan 6 +
sec 0 = 2 (ii) cos 6 — cos 20 = 1.
3. Find x if 3sin2x = 7 — 8 cos® x.
4. Find 0 in the range 0° to 360° if

3(cos 20 — 1) = 4 sin 6 cos? 0

5. Find the values of x between 0° and 180° for which (i) sin 3x =
sin x (i) 2 cos? x — sin® x = 1 (jii) sin 2x + cos x = 0.

6. Find the general value of 6 if 3 tan® 6 — Tsec +5=0.

7. If 3cos 6 — 4sin § — 2 = 0 find all values for 6 which lie in
the range 0° to 360°.

8. Find the general solution and all solutions in the range 0° to
360° of the equations (i) sin @ - cos 6 = sin 26 + cos 20 (i)
3(sec § — tan 6) = 1.

9. Solve completely the equation cos 36 = 2 cos 26. [First use
(6.36) to express cos 38 in terms of cos 6.] (W.J.C., part)

10. Solve the following equations, giving all solutions within the
range 0° < x < 360°:

(i) 2sin x = 2 + cos 2x (i) 3sin® x = 1 + sin 2x

(iii) sin (x -+ 30°) + sin (x 4 60°) = cos (x 4- 45°) 4
cos (x -+ 75°). (L.U.)

11. Find the general value of x if 3tan®x — Ssecx + 1 = 0.

12. Express the equation 2 cos 34+ 3cos24 +cosA=0asa
cubic equation in cos 4. If one of the roots of this cubic is cos 4 =
—1, find general expressions for all values of A satisfying the
equation.

13. (i) Express tan 2x and tan 3x in terms of tan x, and solve the
equation tan x + tan 2x -+ tan 3x = 0.

(i) Solve the equation cos x + cos 2x = sin 3x. (Ineach equation
give all solutions between 0° and 180° inclusive.) (S.U.J.B)
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14, State and prove a formula for sin A — sin B in terms of the
angles (4 4 B) and }(4 — B). [You may, if you wish, quote
formulae for sin (x + y).]

Prove that sin 7x cos 2x — sin 5x cos 4x = sin 2x cos 3x and
obtain a similar simpification of the expression

sin 7x sin 2x — sin 5x sin 4x
Give all the solutions between 0° and 180° of the equation
sin 7x cos 2x = sin 2x cos 3x (S.U.J.B.)

15. Find the values of 6 in the range 0° to 360° which satisfy the
equation tan 6 — 3 cot 6 = 2 tan 30.

16. Solve the equation cos x - cos 5x = cos 3x.

17. Solve the equations (i) 3 sin x — 4 cos x = 2 (ii) 24 sin x +
7cosx = 3.

18. Find the general solution of the equation tan 2x = 2 sin x.

_ (J.M.B., part)
Sl? X0 . Hence find all the
sin 6

values of 6 in the range 0° to 180° inclusive for which cos 6 cos 360 =
—3. (J.M.B., part)
20. Find the general solution of the equation

sin (30 — i7) — sin (0 + iw) = 2 cos 20

21. Find all values of 6 in the range 0° < & < 360° for which
tan®6 = 5 - sec 0.

22. Solve the following equations, giving the general solutions:

(i) cos2x + 3cosx = —2

(i) cos3x =sinx

(#ii) sin (2x + 30°) cos (2x — 20°) = 4. (S.U.J.B.)

23. Find in the range —180° < x < 180° the solutions of the
equation

19. Prove that 4cosfOcos30 4+ 1 =

cos 5x = cos x (J.M.B,, part)

24. Given that 5cos 8 + 12sin § = R cos (§ — a), where R and
« are independent of 6 and R is positive, obtain the values of R and a.
Hence find the values of 6 between —180° and 180° which satisfy
the equation 5 cos 6 + 12sin 6 = 3-25, giving the answers to the
nearest minute. (J.M.B,, part)
25. Find the complete solution of the equation

16tanx 4+ 6 cot x + 17secx = 0.
26. Solve the equation 5cos 6§ — 12sin 6 4 10 = 0.
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27. Solve for x, tan™! x + tan~! (x — 1) = tan~' 3 [use (6.56)].
28. Find all angles between 0° and 360° for which

3sin30 + 2cos20 —sinf =2

29. Find the values of 6 in the range 0° to 360° for which
sin 56 + 2 cos 20 + sin6 =0

30. Find x if tan-1(2x + 1) — tan* (2x — 1) = tan™1 .

31. Find to the nearest minute the values of 6 between 0° and
360° that satisfy the equation

4cos20 +sin@ = 4sin?0 + 3 (J.M.B,, part)

32. Solve the equation
5sin (x + 60°) — 3cos (x + 30°) =4

giving all solutions between 0° and 360°. (L.U.,, part)
33. Ifsin (« + 6)sin (B + ¢) = sin (« + ¢)sin (B -+ 6) prove that
either « and B or 6 and ¢ differ by a multiple of =. (L.U., part)
34. By putting ¢ = tan 6 find the general solution of the equation

(1 —tan6)(1 +sin20) =1+ tan 0
35. The acute angle 0 satisfies the equation
sin (20 + &) = /3 cos (0 — o)

If « is zero show that 6 = #/3. If a is so small that its square may

be neglected and 6 = #/3 4 A, prove that 4 is approximately 4o.

(J.M.B,, part)

36. (@) Find two values of 0 between 0° and 180° satisfying the
equation 6 sin? 6 = 5 + cos 0.

(b) Find a value of x between 0 and = satisfying the equation

sin (x + ;—T) = co$ (x — ;—T) (J.M.B.)

*37. Show that the equation acos 6 + bsin 6 = ¢ will have in
general two solutions in the range 0° to 360° if a® + b2 > c% «
and B are two roots of the equation 8 cos § — sin § = 4 and both
lie in the range 0° to 360°. Form the quadratic equations whose
roots are sin « and sin §.

*38. If o and B are two unequal values of 6 which satisfy the
equation a cos 0 + b sin @ = ¢ show that

(i) sin §(« + B) sec §(8 — @) = blc

" 1 _c—a
(ii) tan 3atan 3 = cTa
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*39. Show that the equation
pcos?x + 2g cos x sin x + rsin® x = s (r # )

has a real solution only provided ¢* > (s — p)(s — r) and that in
this case there are in general two solutions which are in the range
0° < x < 180°. 2
If 6 and ¢ are these solutions show that tan (0 + ¢) = — re
*40. If ¢ = tan 6/2, write down expressions for sin 6 and cos 0
in terms of #. Use these to show that the equation

acos?f + bsin20 + 2gcos 0 + 2fsinf +¢c =0

can be written as a quartic equation in £. Write down an expression
for tan (6, 4 6, -+ 0; + 8,) in terms of tan 46, tan 10,, tan §6, and
tan 6,. Deduce that the sum of the values of 6 which satisfy the
equation above is an even multiple of .

6 145



8
THE SOLUTION OF TRIANGLES

8.1. THE SINE FORMULA

THE usual notation for a triangle is used. A4, B, C denote the angles;
a, b, c, the sides opposite these angles. R is the radius of the circle
through the points A, B, C, the circumscribed circle, and
2s (= a + b + ¢) the perimeter of the triangle.

(a) (b)
Figure 8.1

Let R be the radius and O the centre of the circumcircle of
AABC. Draw the diameter BOD and join CD.
In ABDC,

ADCB = 90°  (angle in a semicircle)
LBDC=4A or 180°— A  (see Figure 8.1a and b)
since ABDC is a cyclic quadrilateral. Thus

Be = sin A or sin (180° — A)
BD

BC = BDsin 4
a=2RsinA (BD is a diameter)
2 _ 2R
sin A
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THE COSINE FORMULA

Similarly ‘b = 2R, - ¢ _ 2R
sin B sin C
a b ¢
Hence = 2R ....(8.1)

sin4Ad sinB sinC

a result generally known as the sine formula.

8.2. THE COSINE FORMULA

In AABC draw a perpendicular AL from A to meet BC, or BC
produced at L. Consider these two cases separately:

Figure 8.2
Figure 8.2a Figure 8.2b
BC=BL +LC BC =BL — LC
thence thence
BC =ccos B+ bcos C BC = ccos B — bcos (180° — C)
ie. i.e.
a=ccos B+ bcosC a=ccosB+ bcosC

This result is common to both cases.

By drawing the perpendiculars from B and C to the opposite
sides two similar results can be obtained. Collecting these together
we have

a=bcosC+ ccos B
b=ccosAd+acosC ....(8.2)

| c=acosB+ bcosA
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THE SOLUTION OF TRIANGLES

By multiplying these equations by —a, b, c, respectively and
adding them we obtain

b2+ ¢ — a2 = 2bccos 4

which gives a* = b+ ¢* — 2bccos A
Similarly bt = c*+ a* — 2cacos B ....(8.3)
and ¢ =aqa?+ b* — 2abcos C

These results are known as the cosine formula.
Note that any one of the formulae (8.2) or (8.3) generates the
others by a cyclic permutation of

?(a Y A\
K b ( B
c.(,/ C‘/

Example 1. The point P divides the side AB of a triangle ABC

internally in the ratio m:n. If LZACP =« /BCP = f and
£/ BPC = 0 prove that m cot « — n cot § = (m + n) cot 0.

c
a/ B
6
A P B
Figure 8.3

Referring to Figure 8.3 and using the sine formula for the triangles
ACP, BCP we have

AP CpP AP sina .
_——= hence — ="— ..(1)
sinoe sin A CP sind

and BP _ P hence LB .. (i)

sinf  sin B BP sinfg
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THE COSINE FORMULA
From (i) and (i)
m__ AP AP CP _ sina sinB . .....(iid)
n PB CP PB sind sinf
Also 6=A+4+a« and 6 =180°—B—f RN (17
Eliminating 4 and B from (iii) by means of (iv) we have

m sine sin (180° — 8 — 6)

n sin(f — «) sin B
_ sinae  sin(f -+ 6)
sin (0 — o) sin

_ sin a(sin § cos 0 + cos f sin 6)
sin S(sin 0 cos & — cos 0 sin «)

Dividing above and below by sin « sin § sin 0 we obtain

m __cotf +cotf

n cota—cotf
i.e. mcota —mcot =ncotd 4+ ncotf
so that mcoto —ncotf = (m -+ n)cotf
Example 2. In a triangle ABC when b, ¢ and £ C are given there
may be none, one or two solutions. Obtain rules for discriminating
between the three cases giving a geometrical explanation each time.

Which of the two following cases is ambiguous? Find the two
possible values of @ in the ambiguous case.

(@) b=4063, c¢=2894, C=37°44
(i) b =3557, ¢ = 5649, C = 68° 14
Since b, ¢ and C are given we note that

b c

so that

sin B = Zsin C L .(8.4)
C

Generally there are two values of £ B less than 180°, the one
obtuse, the other acute. Three cases need to be considered.
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(a) bsinC > ¢
Hence sin B = b sin C/c > 1 which is impossible
no solutions exist.

Geometrically

bsin Cis the length of the perpendicular from A and is greater than
the side ¢. Hence the circle centre A radius ¢ does not cut CP
(Figure 8.4).

Figure 8.4
(b) bsinC=c¢
bsinC
— =

and so B =90°. Thus there is only one possible value for B.
(i) If C < 90° the triangle exists and is right angled.
. one solution exists.
(it) If C > 90° then B 4 C > 180°.
no solution exists.

sin B = 1

Geometrically

Since b sin C = ¢ the circle centre A radius ¢ touches CP at P
(Figure 8.5).

Figure 8.5
(¢0) bsinC< ¢

bsin C
—_—
c
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Hence there are two possible values of ZB; one acute and the
other obtuse [see (7.4)].

(i) If b < c then B < C and hence B can only be acute, because

if B is obtuse (>>90°) then C is obtuse (>>90°) and B + C > 180°.
one solution exists.

Geometrically

and bsinC<c

Figure 8.6

@) If b > c then B > C and provided C < 90°, B can be acute
or obtuse.
.. two solutions exist.
If C > 90° neither value is admissible since B > C > 90°.
no solutions exist.

Geometrically

b sinC<c, b>c, C<9Q°

Figure 8.7

(iii) b = ¢ then B = C or 180° — C. For this latter value two
sides of the triangle are coincident. Hence B = C gives the only
solution, but it is only admissible if C < 90°.

one solution exists.
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THE SOLUTION OF TRIANGLES

If bsinC>c
bsinC=c¢ and C <90°
s as a3 s C>90°
bsinC<c¢ and b <c

3 29 s , b=c C<90°
s v s ., b=c C=>90°
s 2y s , b>c C<90°
5 23 3 . b>c C>90°

no solutions

one solution

no solutions

one solution

one solution

no solutions

two solutions

no solutions

In both the given cases bsin C < ¢, but only in the first case
is b > c. Therefore the first case b = 4063, ¢ = 2894, C = 37° 44/
is the ambiguous case.

Hence

Now

Hence

Figure 8.8

sinB=-lzsinC
¢

406-3

sin 37°44’

= (0-8590
B =159°12" or 120°48’
A=1283°4" or 21°28%
csin 4
a=-—"
sin C
a=4695 or 1731
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No. Log.
406-3 2-6088
sin 37° 44’ 1-7867
2:3955
289-4 2-4615
0-8590 1.9340
289-4 24615
sin 37° 44’ 17867
2:6748
sin 83° 4’ 1-9968
469-5 2:6716
2-6748
sin 21° 28’ 1-5634
1731 2-2382




THE COSINE FORMULA

Example 3. Given a triangle whose sides are in the ratio 4:5:6
prove, without use of tables, that one angle is twice another angle.
Since the sides are in the ratio 4:5:6 their lengths are 4k, 5k, 6k
(a, b, c say) where k is a constant.
Formulae (8.3) can be rewritten

2, 2 2
cos A == b—|—chg_ with similar results for cos B, cos C
c
Hence cos A = 25K* + 36k* — 16k* _ 3
60k> 4
cos B — 36k? + 16k® — 25k® _ 9
48k*® 16
cos C  16K? + 25K — 36K° _ 1
40k? 8

Consider the smallest angle 4

cos24 =2cos24 — 1

=29 — 1
=13
=cos C
Hence 24 =2nm + C

but since 4 and C are angles of a triangle

24 = C is the only solution

Example 4. A vertical tower stands on a river bank. From a point
on the other bank directly opposite and at a height 4 above the
water level, the angle of elevation of the top of the tower is « and
the angle of depression of the reflection of the top of the tower is 5.
(Assume the water is smooth and the reflection of any object in the
water surface will appear to be as far below the surface as the object
is above it.) Prove that the height of the top of the tower above the
water is A sin (« + ) cosec (8 — «) and the width of the river is
2h cos « cos f§ cosec (f — «).
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THE SOLUTION OF TRIANGLES

Refer to Figure 8.9. AB is the tower, O the observer, OP, OQ
the horizontal and vertical through O. Let x be the height of the

tower, and y the width of the river.
A'B = AB = x, OP=BQ =y
In AAPO AP =POtan «

X —h=ytana ..(3)
In AA’PO A'’P =POtan g
x+h=ytanf (i)
A

A
|
X
: = o OA
| ﬂ vh
¥ y Water surface

—->Q

Figure 8.9

Subtracting equation (i) from equation (ii) (to eliminate x)
2h = y(tan § — tan o)
sin sin
_ y(_é _ _.01)

cosfi cosa

_ y(sin B cos « — sin « cos ,8)

cos e cos 3

zysin(ﬂ—a)'

cos o cos f§
Hence Yy = 2hcos a cos f§ cosec (f — )
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To obtain the length of the tower x, multiply equation (i) by tan f3,
equation (ii) by tan « and subtract

xtanf — htanf — xtana — Atana =0
x(tan 8 — tan «) = h(tan « + tan )
x(smﬁ _smoc) =h(smoc +s1nﬂ)
cosfi cos«x cosa cosf
x(sin B cos o — sin a cos ﬁ) _ h(sin @ cos B + cos a sin ,B)

cos a. cos cosacos f8
x sin (8 — &) = hsin (a + f)
whence x = hsin (« + B) cosec (§ — o).

Exercises 8a

1. The point P divides the base AB of a triangle ABC in the ratio
m:n. If ZBPC = 6, prove that

ncot A — mcot B= (m -+ n)cot 0.

2. Without using tables prove that there is a triangle whose
angles are cos™ £%, cos™ §, cos7! (—3).
3. The median AD of a triangle ABC makes angles 8, y respec-
tively with AB, AC and ZADB = . Show that 2 cot 6 = cot y —
cot . If AD = 15ft, B = 35°, y = 30° find B, C, a as accurately
as the tables permit. (W.J.C)

4. If in any triangle ABC
cos 4 cos B 4 sin 4 sin Bsin C = 1
prove that 4 = B = 45°.

5. In a triangle ABC the angle C is 60°. Show that ¢ = a* —
ab + b2 If g, b are the roots of the equation 4x2 — 10x +3 =0
find the value of ¢ and show that the length of the perpendicular
from C to AB is (3,/3)/16. (N.U.J.M.B)

6. In the triangle ABC the perpendiculars AL, CN from A, C to
the opposite sides intersect at H. R is the circumradius and O is the
circumcentre of the triangle ABC.,

(i) Prove that NA = b cos 4, and ZNHA = B, and hence that
AH = 2R cos A.

(ii) Prove that / OAH = C — B and hence by using the result
in part (i) and applying the cosine rule to AOAH prove that OH? =
R*(1 — 8cos A cos Bcos C).

7. Starting from the sine formula for a triangle ABC or otherwise,
b—c sin}B—0C)

a cos 34
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A, B and C are three towns. C is due south of A, and the bearing of
B from A is 30° west of south. B is 50 miles from C, and 10 miles
nearer to A than C. Calculate the bearing of B from C.
(S.U.JB.)
8. In the tetrahedron ABCD the three angles at A are each 60°
and AB, AC, AD are of lengths 2, 3, 4 in. respectively. Find the
angles of the triangle BCD. 2 3 _
9. Prove that, in any triangle ABC, a 2 b = 51-n (4 — B)
c sin (4 + B)

10. Where possible solve the following triangles:
(1) c=2-718,b = 3-142, L C = 56° 18’

(@) c=413,b=562, LC = 61°23

(iii) ¢ = 562, b = 562, L C = 67° 54’

(iv) a=651,c=1792, LC=73°22

v) a =587, ¢c=632, LA=60°

8.3. THE AREA OF A TRIANGLE

In triangle ABC let AD be the perpendicular from A to BC.
Let A denote the area of the triangle. Referring to Figure 8.10 we
have, since AD = c¢sin B,

A
B D C
Figure 8.10
A = {BC. AD = lacsin B ....(895)
From (8.1) b
sin B=—
2R
and hence on substituting in (8.5) we have
abc
= LAY 8-6
4R (8.6)
The area of the triangle can be found in terms of the sides alone.
From (8.5) 2acsin B = 4A

and from the cosine formulae (8.3)
2accos B = ¢? + g? — b?
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On squaring and adding noting that cos® B + sin®* B =1 we have

4a2c? = 16A2 + (¢ + a® — b%)?
or 16A2 = 4g%c% — (c* + a® — b?)?

16A? = (2ac — ¢® — a® + b*)(2ac + * + a* — b%)

= [0 — (@ — Pli(@ + 0 — ]

=(—a+b+c)b+a—-c)at+b+cYa—b+c)

Nowifweleta+ b+ c=2s

16A2 = (25 — 2a)(2s — 2¢)(25)(2s — 2b)

A2 = s(s — a)(s — b)(s — ©)
A = Jls(s — a)(s — b)(s — O]

...(87

(Hero’s formula)

Example 1. Given that the sides of a triangle are of length a =
3-57 in., b = 2-61 in., ¢ = 4-72 in. find its area and the radius of its

circumcircle,

28=a-+b+c=357+ 261 +472
= 10-90
s = 545

Hence using formula (8.7)

A = /[5:45(5-45 — 3-57)(545 — 2:61)(5:45 — 472)]

= /(545 x 1-88 x 2-84 x 0-73)
= 4-609 in.2
From (8.6)
_ abc
4R
_ abc
T 4A
357 X 2:61 X 472
o 4 X 4609
R = 2-385in.
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No. Log.
545 0-7364
1-88 0-2742
2:84 0-4533
0-73 1-8633
1-3272
4-609 0-6636

No. Log.
3-57 0-5527
2-61 0-4166
472 0-6739
1-6432
18-436 1-:2656
2-385 0-3776
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Example 2. 1In the triangle ABC, b, ¢ and B are given and have
such values that two distinct solutions are possible. Show that the
difference between the two possible values of the third sides of the
two triangles is 2,/(b* — ¢?sin? B). Also show that the difference
between the areas is ¢ sin B\/(b® — ¢?sin? B).

From the cosine rule for a triangle

b2=4a%+ ¢ — 2accos B

and since b, ¢ and B are given this is a quadratic in a giving two
possible values a;, a,. Rewriting the equation as

a® —2accos B+ (2 —b%) =0

Figure 8.11

we have a; + a, = 2ccos B (sum of the roots)
aa; = ¢ — b? (product of the roots)
Hence ay — a = \[(a; — a,)?
= \/ [(a1 + a5)* — daya,]
= /[4c? cos? B — 4(c® — b?)]
= 2,/[6® — ¢*(1 — cos? B)]
= 2,/(b® — c?sin® B)
The two areas are (see Figure 8.11) given by }a,c sin B and }a,c sin B.

Hence the difference in areas is given by 4(¢; — a,)c sin B. On using
the above result we can write this as ¢ sin B,/(b2 — ¢? sin? B).

Exercises 8b

L. In a triangle ABC, b, ¢ and C are given and have such values
that two distinct solutions are possible. The areas of the two triangles
are in the ratio 2:3. Prove that 25(b% — ¢%) = 24h2cos? C. (Hint:
refer to section 8.3, Example 2.)
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2. The median CC’ of a triangle ABC meets the side AB in the
point C'. If 0 is the angle AC'C prove that

2ccosf csinf 1
a® — b? 2A ccC’
3. If A is the area and R the radius of the circumcircle of the
triangle ABC prove that cos 4 + cos (B — C) = 2A/aR.

4. If E is the middle point of the side CA of the triangle ABC and
if A is the area of the triangle prove that

BC® — BA®
cot AEB = B¢ — B4 L.U.
© 4A (L.U.)

5. If py, ps, ps are the lengths of the altitudes of a triangle and R
the radius of its circumcircle prove that (i) 8A% = p,p,p; abc and

(i) A = J(GRp,pspy).

8.4. MISCELLANEOUS APPLICATIONS
We shall end the chapter with some typical examples.

(J.M.B)

Example 1. Show that, in any triangle ABC, tan (B — C) =
b—c
b+ ¢
(8.3), to solve the triangle in which b = 15-32, ¢ = 286 and 4 =
39° 52",

From the sine formula (8.1) we have that b = 2Rsin B, ¢ =
2R sin C. Hence after cancelling 2R

cot 4. Use this formula, rather than the cosine formula

b—c=sinB—sinC
b+¢ sinB+sinC
__2cos ¥B 4 C)sin ¥(B — C)

=_— by (6.50)
2sin $(B + C)cos (B — C)
=coti(B + C)tan {(B — O)
Hence tan3(B— C) = b—¢ian 3B +0O
b+c
But since (B + C) == 90° — }A4 this can be rewritten
b—¢ or3a ....(88)

tané(B——C)=b+c

159



THE SOLUTION OF TRIANGLES
Since b = 15-32, ¢ = 28-6 it is better to write the formula as

c—b

tan 3(C — B) = cot 34
3 ) o 3
Hence
tan }(C — B) — ;Z'—:_—is'”cot 19°56’
+15:32 No. Log
_ 1328 ot 19056 13-28 11232
43-92 cot 19° 56’ 0-4405
= 0-8337 1-5637
so that 43-92 1-6427
#(C — B) = 39°49’ () 0-8337 19210
Also 1532 1-1853
3C +B)=90°— 14 sin 39° 52 1-8069
= 90° — 19°56’ _ 0-9922
sin 30° 15° T1-7022
= 70°4' ....(i)
B o s o e 19-50 1-2900
From (i) and (ii), C = 109° 53’, B = 30° 15'-
Now
a = bsinA  15-325sin 39°52’
sin B sin 30°15’
= 19-50

and the required solution is B = 30° 15’, C = 109° 53/, a = 19-50.

Example 2. A, B are two points on the same level. The distance
ABis c. The angles of elevation of the top T of a vertical tower from
A and B are « and j respectively. If T, the foot of the tower, is on
the same level as A and B then ZT'AB =y and ZT'BA = 6.
Find an expression for the height of the tower in terms of c, y, §
and either « or 8. Also prove that sin & tan « = sin y tan .
From the triangle ABT’ (Figure 8.12)

AT BT’ _ _ AB

sind siny sin AT'B
Since the angle AT'B is 180° — y — 6 then

AT’ BT c

sind siny sin(y + 9)
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From the right angled triangle AT'T
TT' = AT tan «

¢ sin 6 tan .
csmolanx .. (1)

Hence from (i) ' = sin (y + 6)

=%

Figure 8.12

Similarly from the right angled triangle BT'T

TT' =BT tan 8
Hence from (i) TT = £siny tan f ... (i)
sin (y + 9)

Equating (i) and (iii) and simplifying

sin d tan o = sin o tan §
Example 3. A point Q is in a direction §° N of E from a point O.
P is a point between O and Q such that OP = x. R is due north of

Q and QR subtends angles o and § at O and P respectively. Prove
that

_ xsinasinf
QR = sin (8 — ) cos §

Refer to Figure 8.13. In AORP

or RP
sin ORP sina«
but ZORP=f—a
Hence PR = —_—x—ﬁa— )]
sin (8 — &)
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QR __PR
sin §  sin PQR
Now /PQR = 180° — £ 0QS = 180° — (90° — 0)
=90°+ 6

In A PRQ

PRsin §

Hence QR = m . (ll)

Figure 8.13

From (i) and (ii)
X sin & sin £
sin (8 — &) cos 6

QR =

Example 4. Prove that in any triangle ABC (i) cot Bcot C +
cot C cot 4 - cot A cot B =1 and (ii) assuming

(s —b)s—o)
T s(s—a)
where 2s =a+ b+ ¢ prove that if the cotangents of the half-angles

are in arithmetical progression then the sides will also be in arith-
metical progression.

(7)) cot Beot C + cot Ccot 4 + cot 4 cot B

cosB  cos A
sin B sin A

= tC( )+cotAcotB

sin (4 -+ B)
sin 4 sin B
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which, since C = 180° — 4 — B,
sin C cos Acos B
sin AsinB sin A4 sin B

= cot C

1
= —— (cos C + cos A cos B
sinAsinB( + )

= — L (cos[180° — (4 + B)] + cos A cos B}
sin Asin B

1

= ————[—cos (4 + B) + cos A cos.B]
sin A sin B

= -1— (sin 4 sin B)
sin A sin B

=1
(ii) Since tang— — J [W]

s(s — a)

s(s — a) tan?—: s(s — a)A/li(S—b)__(s-—_C)}

s(s — a)
= /Is(s — a)(s — b)(s — ¢)]

=A (Hero’s formula)

Similarly s(s — b) tan f— =A
s(s — c)tanzg=A

Hence s(s — a) tang— = s(s — b) tanlz—3 = s(s — ¢) tang-

t—a (—b (=0

of A B C
cot — cot — cot —
2 2

Therefore

A B C
s — (s —b):(s —c)=cot—:cot— :cot—
(s—a):(s—Db):(s—0) > > 5
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But cot 4/2, cot Bf2, cot C/2 are in arithmetical progression (given),
hence (s — @), (s — b), (s — ¢) are in arithmetical progression.
Hence —a, —b, —c or a, b, c, are in arithmetical progression.

EXERCISES 8

1. The sides a, ¢ of a triangle ABC are of length 3 cm and 7 cm
respectively, and the angle C is 76°. Find the angles 4 and B and
the side 5. Can there be two solutions?

2. Prove that for a triangle of area A

ab = 2A cosec C, a+b2=c+4AcotC

(You may assume the cosine formula for a triangle.) Find the re-
maining sides of a triangle in which one side is 5 in., the opposite
angle is 45°, and the area is 15 in.2 (L.U)

3.If in any triangle ABCsin6 = i\fi
b+ c)cos = a.

For the case b = 123, ¢ = 41:2, A = 40° 50’, find the value of
sin 6 and hence the value of a.

4. Two triangles ABC, PBC stand on the same side of the base
BC of length 10 cm. If the angles ABC, PBC, ACB, PCB, are
respectively 60°, 45°, 30°, 60°, calculate the distance AP.

5. In a triangle ABC, b =20-3in., ¢ = 15-8in., B =94°12".
Show that there can be only one such triangle. Calculate the values
of a, 4, C and find the area of the triangle.

6. If p is the altitude from A to BC of a triangle ABC, prove that

(b + ¢) = a? + 2ap cot 34
(b — ¢)? = a® — 2ap tan $4

Hence, or otherwise, given a = 80, p = 50, 4 = 37°, calculate
b, c. W.J.C)

7. The length of the sides of a cyclic quadrilateral ABCD are
given by AB = 3, BC = 4, CD = 5, DA = 6. Calculate the angles
B and D and the length of the diagonal AC.  (N.U.J.M.B,, part)

8. A column is & ft. high. A man is standing at a horizontal
distance g ft. from the base of the column, his eye level being at b
ft. He notices that a statue on top of the column subtends an angle
0 at his eye. Find the height of the statue.

9. An observer O standing on top of hill finds that the angles of
depression to two points A and B on the same horizontal level are
« and f respectively. If he is 300 ft. vertically above AB and the
angle AOB is y, find the distance AB in terms of «, §, y.
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. . a b c
10. In anZ _It—rll.';uﬁli ABC assuming that Snd _snB=sncC
T e tanl
prove that atb e tan 34 tan 3B. Calculate the value of ¢
for the triangle in which a -+ b= 185in., 4 =72°14, B=
45° 42’

11. In a triangle ABC the angle 4 is 60°, and the side a is the
arithmetic mean of the sides b and c¢. Prove that the triangle is
equilateral.

12. Prove that in any triangle ABC

()a=bcosC+ccos B

(ii) sin }(4 — B) = — L ic

(iii) sin® B + sin? C = 1 + cos (B — C)cos 4. (I.M.B.)

13. In a triangle ABC, the lengths of the sides BC, CA, AB, are in
the ratio 8:5:9. A point P is taken on BC such that BP:PC = 1:3.
Prove that angle ACP = 2 X angle APC,

14. In the triangle ABC, the sides AB, AC are equal and contain
an angle 20. The circumscribed circle of the triangle has radius R.
Show that the sum of the lengths of the perpendiculars from A,
B, C to the opposite sides of the triangle is

2R(1 + 4 sin 0 — sin® § — 4 sin® §) (J.M.B., part)

15. The side BC of the triangle ABC is divided internally at a
point A, such that BA,; = s — b, where s = ¥(a + b + ¢). Show that
AC=s—c

Points B, and C, are taken on CA and AB such that CB, = s — ¢
and AC,=s5—a respectlvely Show that £B,A,C, = ¥(B + C)
and prove that if A, is the area of the triangle A;B,C,

A; = 2(s — b)(s — ¢) sin }B sin 3C cos 34
Deduce that if A is the area of the triangle ABC
52 A} = Atsin A sin Bsin C sin 34 sin B sin }C

(J.M.B))
16. If the area of the triangle ABCis A and 2s = a 4 b + ¢ prove
that

s2

" cot 34 + cot 3B + cot 3C
Hint: assume tan 34 = A/ [(s - b)(s — C):]

s — a)
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17. The medians AD, BE, CF of the triangle ABC meet at G.
Prove that

cot ZAGF - cot ZBGD + cot ZCGE =cotA + cotB + cot C

18. A sloping plane bed of rock emerges at ground level in a
horizontal line AB. At a point C on the same level as AB and such
that BC = 1200 ft. and the angle ABC is 60° a vertical shaft CD of
depth 300 ft. is sunk reaching the rock at D. Calculate the inclination
of the plane of the rock to the horizontal. Another vertical shaft is
sunk at M, the mid-point of BC, and reaches the rock at N. Given
that AB is 1000 ft. calculate the inclination of AN to the horizontal.
(Give answers to the nearest degree.) (I.M.B)

19. Solve completely the triangle ABC in which g = 2-818,
b = 3162, A = 56° 18’. Show that there are two solutions and find
the area in each case.

20. D and E are points dividing the side BC of triangle ABC
internally and externally in the ratio p:g. If ZADC= 6 and
LAEC= ¢ prove that (p+ q)cot=gcotB— pcotC, and
write down the corresponding result for cot ¢. Hence prove that
/DAE=90°onlyifp:g=c:b. (8.U.J.B)

21. If 4, B, C are the angles of a triangle and the products
cos 24 cos 2B cos 2C,sin 24 sin 2B sin 2C
have given values p, g respectively, prove that
P —qcot24 = cos? 24
and deduce that tan 24, tan 2B, tan 2C are the roots of the equation
pt—q2+ 1D =1

Show that if p = 4 and ¢ = 0, then the angles of the triangle are
in the ratios 1:3:4. (L.U.)

22. In the triangle ABC, AC =5, BC =7 and angle CAB is
60°. Prove that AB = 8. If D is a point on the circumcircle of the
triangle on the side of BC away from A, and the angle CBD is 30°,
show that sin ABD = 12 and find AD. (J.M.B)

23. Without using tables show that there is a triangle ABC whose
angles are such that tan 44 = £, tan }B = %, tan }C = 4.

24, Establish the sine rule for a triangle.

A vertical tower AB stands on top of a hill which may be assumed
to be a plane inclined at 8° to the horizontal. BCD is the line of
greatest slope of the hill through B, the foot of the tower. The
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angles of elevation above the horizontal of A from C and D are
29° and 20° respectively and the length CD is 125 ft. Find the
height of the tower. r.u)

25. Ris the radius of the circumcircle of a triangle ABC of area A.
Show that A = }bc sin 4 and that R = abc/4A. D is the mid-point
of BC and P and Q are the feet of the perpendiculars from D to AC
and AB respectively. Find the area of the triangle DPQ in terms of
a, A and R. Show that the area of the triangle APQ is

A
16b%2

26. A point P is due south of a wircless mast and the angle of
elevation of the top of the mast from P is «. A second point Q is
due east of P and the angle of elevation of the top of the mast from
Qs f. The horizontal distance between P and Q is ¢ and the vertical
height of P above Q is h. If x is the height of the top of the mast
above P, prove that

x¥(cot? § — cot®a) + 2hxcot2 B + hcot?f — 2= 0
Calculate the height to the nearest foot when
x=16°, p=16°, h=235ft, c=2340ft (J.M.B.)

27. The base of a pyramid of vertex V is a square ABCD of side
2a. Each of the slant edges is of length a./3. Find
(i) the angle between a slant face and the base
(ii) the perpendicular distance of D from the edge VA
(iii) the angle between two adjacent slant faces (J.M.B.)
28. If « 4+ B + y = 90° prove that

1 —sin?a —sin?f —sin?y — 2sinasin fsiny =0

(3b% + 2 — a®(3c® + b® — a?) (L.U)

A convex quadrilateral ABCD is inscribed in a circle of which DA
is a diameter. If @ = AB, b = BC, ¢ = CD, d = DA prove that
d® — (a® + b% 4 ¢?)d — 2abc = 0. (J.M.B)

29. Points P, Q and R are taken on the sides of a triangle ABC
(P on BC, Q on CA, R on AB) and lines are drawn through these
points at right angles to the sides on which they lie. Prove that they
will be concurrent if

BP? — PC? + CQ? — QA2 - AR* — RB?=0

Hence or otherwise prove that the altitudes of any triangle are
concurrent.

If the altitudes of the triangle ABC are AD, BE, and CF and if
A’, B, and C’ are the mid-points of BC, CA and AB respectively,
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prove that A'D . BC 4 B'E. CA + C'F . AB = 0, where the prod-
ucts are counted plus or minus according to the directions indicated
by the order of the letters. (S.U.J.B)

30. From a mountain peak P, 2000 ft. above sea level, observa-
tions are taken of two further peaks, A and B. The horizontal
distance of A from P is 3 miles, its angle of elevation from P = 10°,
and its bearing from P is N 20° E. The horizontal distance of B
from P is 1 mile, its angle of depression from P is 15°, and its bearing
from P is N 80° E. Find

(i) the horizontal distance of A from B

(i) the heights of A and B above sea level

(iii) the angle of elevation of A from B (I.M.B))

31. A tent covers a rectangular piece of ground of length I and
breadth . Each of the long sides of the tent is a trapezium inclined
at « to the ground and each of its ends is an isoceles triangle inclined
at § to the ground. Prove that

(?) the height of the tent is b tan «

(i) the length of the top edge is / — b tan « cot §.

Find the total area of the tent. (J.M.B.)

*32. The lengths of the sides AB, BC, CD, DA, of a quadrilateral
ABCD are a, b, ¢, d respectively. The lengths of the diagonals
AC, BD are x, y respectively. The sides AB, DC produced meet
at an angle 6. Prove that b + d2 = x? -+ y* — 2ac cos 0.

Further if P, Q, R, S, are the mid-points of the sides in the above
order and if p = PR, ¢ = QS, prove that p? — ¢* = bd cos ¢ —
ac cos 0, where ¢ is the angle of intersection of the sides BC, AD
produced.

*33, From a point on the side line of a football field at a distance
2h from the corner flag the angle between the directions to the goal
posts at the same end as the flag is «. Denoting the angle between
the directions to the nearest post and the flag by 6, show that

1d 1d
tan’0 +-—tan6 +1 —==cota =10
an +2h an 0 + 2hcoczz

where d is the distance between the posts. If, when the distance 24
is changed to 4, the angle « changes to 2«, determine d in terms of &
and tan . (J.M.B.)

*34. A long square peg with cross section of side @ and with flat
ends perpendicular to its axis is placed in a round cylindrical hole of
diameter d (>a./2) and uniform depth A. The peg rests with its
axis making an angle 6 with the axis of the hole. The edge CD of the
end face ABCD of the peg rests on the bottom of the hole, and
the corners A and B are in contact with the wall of the hole. Also
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the long edges through C and D rest against the upper rim of the hole.
Show that the depth of the hole is given by the equation

htan 0 = \/(d*> — a?) —acos § (I.M.B.)

*35, Two vertical cliff faces are at right angles and intersect in
the line AOB, with B above A. A thin plane stratum of rock passes
through O and intersects the cliff face in lines OL and OM respectively,
each of which makes an acute angle 6 with OB. Prove that

(i) the angle between the two lines of intersection is cos™ (cos? )

(ii) the angle of inclination of the stratum to the horizontal is
tan1 (/2 cot 0). (J.M.B)
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9

THE FUNDAMENTAL IDEAS OF
THE DIFFERENTIAL CALCULUS

9.1. FUNCTIONS

THE calculus has at its foundations the notion that the value of one
quantity may depend on the value of another quantity. For example,
the volume of a sphere depends on the radius of the sphere, the
relationship between the two quantities being expressed by the
formula V = §#r®, where r is the radius in some units of length
and V is the volume, measured in appropriate units. The area, 4
square units, of a square is related to the length / units of one of the
sides by the formula 4 = [2, These are two fairly simple examples
and our readers will probably be able to provide many more.

When the value of one quantity depends on the value of a second
quantity we shall say that the first quantity is a function of the second
quantity. For the above examples we would say that ¥ is a function
of r, and A is a function of /. In both the examples given, the two
quantities have been related by means of a mathematical formula,
expressing one in terms of the other. This will often be so when one
quantity is a function of another but it is not essential. The weight
W 1b. of an individual depends on the age a years of that individual
and so W is a function of g, but it is not possible to express W in
terms of a. Other examples of this type of situation could be given,
and we emphasize the point that the real criterion for saying that
one quantity is a function of another, is that the first depends in
some way on the second quantity.

Unless we are dealing with a particular example we shall generally
use the symbols y and x to denote the two related quantities. The
statement “y is a function of x”’ is expressed mathematically by

writing y = f(x) .00

The “f”’ is used to indicate dependence on the bracketed quantity
(x). Other letters can be used to distinguish between different
functions, the more commonly used symbols being F(x), #(x), O(x).
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As the value of x varies the value of y varies in a way determined
by the particular function. The value of y depends on the value of x.
For this reason y is called the dependent variable. x is called the
independent variable. The value of y or f(x) when x has the value 2
say is denoted by f(2), and in general when x has the value a the
value of f(x) is denoted by f(a). If f(x) is expressible as some formula
involving x, these values can be calculated by substitution into this
formula.

Example 1. If f(x) = x* — 3x evaluate f(2), f{(3), f(—5), f(a).
f2Q)=22—3 x2=-2; f3)=32—-3x3=0;
f(—5) = (—5)2 — 3 x (—5) =40, f(@) = a® — 3a.

As we have indicated above x is called the independent variable
and may be given any value. It does not, however, necessarily
follow that to each and every value of x there corresponds a value for
y. A function y = f(x) is said to be defined for a certain value q,
of x, if a definite value of y = f(4) corresponds to this value of x.

Example 2. For what values of x are the following functions
1
defined? (@) f(x) = 2x — 5; (i) fix) = X
(i) y = f(x) = 2x — 5 is defined for all values of x since to any
value of x we obtain a value of y.

@) y =1f(x) = o l 3 is defined for every value of x except x = 2

since if we try to evaluate y when x = 2 we obtain § which is meaning-
less since division by zero is not a valid operation.*

If the functional relationship between y and x is expressed by a
formula giving y in terms of x we say that y is an explicit function
of x. The functions just considered, y = x2—3x, y=2x—35,

1 . .
Y= are all cases where y is an explicit function of x. It

may be that the relationship between the quantities y and x is
expressed by means of an equation of the type for example 3y -+
4x — 5 =0 or x3 - y® = 27. In this situation we say that y is an

* Our readers will soon convince themselves that it is not possible to obtain a
consistent arithmetical system if division by zero is allowed. Paradoxes such as

1x0=2x%x0
1 =2

result if division by zero is valid which, we repeat, it is not.
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implicit function of x. Itis in fact possible to express y as an explicit
function in both these cases. Thus for the first example y = (5 —
4x), and for the second example y = /(27 — x%). This will not,
however, always be the case. If y5 + xy 4 x% = 3 is the equation
which defines y as an implicit function of x, then to express y explicitly
in terms of x we should have to solve the quintic equation y° +
xy + x* — 3 = 0, and this is not possible for a general value of x.

We shall call a function a single valued function of x if to any
given value of x there is one and only one value for y. Thus y=x2
is a single valued function of x since to any value of x, say x = 9,
there is just one value for y, (y = 92 = 81). This is not true of the
function y = \/x since corresponding to x = 9 say, there are two
possible values for y, y = +3 or y = —3. We call the function
¥y = {/x a two-valued function of x. In general, if to a value of x
there corresponds more than one value of y, we shall say that yisa
many-valued function of x. It is clear that serious ambiguities can
arise in dealing with many valued functions. There is no way of
telling for example when dealing with the function y = /x whether
the positive root or the negative root should be chosen. To avoid
this type of confusion mathematicians prefer to work with single-
valued functions. In the example given we would work with either
of the two single-valued functions of x; y = +x or y = —/x.
It is conventional that the square root sign on its own refers to the
positive square root. We shall adhere to this, so that y = Jx will
mean the positive root of x, and so, with this convention, is a single-
valued function of x.

Exercises 9a

1. A rectangular enclosure is made using 100 yd. of fencing. The
fencing is used on three sides only the fourth side consisting of a
stone wall. If the length of wall used for the enclosure is x yd. find
the area of the enclosure 4 yd.? as a function of x.

2. A cylindrical can open at one end is constructed so that its
combined length and girth is 20 cm. If the height of the can is 4
cm, express the volume of the can as a function of 4. If the radius of
the can is r cm, express the surface area of the can as a function of r.

3. In the triangle ABC, AB= AC = 10 cm. If ZABC = x°,
express the height 4 of the altitude from A to BC as a function of x.

4. f(x) = x* — 3x. Evaluate f(1), f(2), f(—1).

5. ¢(x) = x2 — 5x + 6. Evaluate ¢(0), #(1). For what values of
x is ¢(x) = 07?

6. F(6) = cos 6 — sin 0. Evaluate F(0), F(w/2). For what values
of 0 is F(6) = 0?

172



GRAPHICAL REPRESENTATION OF A FUNCTION

7. For what values of x is the function ¢(x) = 2x/(x — D(x — 2)
defined ?

8. For what values of x is the function (x — 3)(x — 7) negative?
For what values of x is the function \/ [(x — 3)(x — 7)] defined ?

9. Define y as an explicit function of x (if possible) when (7)
xy+4dy=x3% (i) x+y+ y*=x% (i) x* + y* + xy = 3.

10. If y is defined as an implicit function of x by the relations
@) xy + y® = 2; (ii) xy* + y* + 1 = 0, evaluate y when x = 1 and
when x = 2 (if possible) in each case.

9.2. GRAPHICAL REPRESENTATION OF A FUNCTION

It is very helpful to represent the variation of a function by
drawing its graph. The graph of the function y = x2, with which
our readers are probably familiar, is shown in Figure 9.1.

y

y=x?

0
Figure 9.1

The graph of the function y = x? is a smooth continuous curve
over the range of values of x for which the function is defined (in
this case for all values of x). We say that the function y = x?
is a continuous function of x.

J

Figure 9.2

Figure 9.2 shows the graph of the function y = 1/x. There is a
break in the curve when x = 0. Indeed the function is not defined
when x = 0. The graph is discontinuous at this point, and we apply
this same description, discontinuous, to the function at this point.
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The function is of course continuous for any range of values of x
which does not include zero.

The word “smooth” was applied to the curve in Figure 9.1.
However, continuity does not necessarily imply a smooth curve.
Consider the following function of x defined as “y is the positive
number having the same magnitude as x”’ (i.e. y = |x|, the modulus
of x. See section 1.4). This function may be expressed in the form
y=xifx>0,y= —xif x < 0. Its graph is shown in Figure 9.3.
The graph is not smooth near the point on it where x = 0, but it is
continuous.

4

y= A

Figure 9.3

9.3. THE RATE OF CHANGE OF A FUNCTION

If y is a function of x, as x changes y will in general change.
We relate the change in y to the corresponding change in x by
defining the average rate of change of the function to be the change
in the function divided by the corresponding change in x. If x; and
X, are two values of x, the corresponding values of y being y, and y,
then the average rate of change of the function as x changes from
X, to X, is

L= h ...92)
Xy — X1

Example 1. Find an expression for the average rate of change of the
functions (§) y = 2x + 5 (ii) y = x? in the interval x, to x,.
(i) For y = 2x + 5 by (9.2) the average rate of change is
(2x3 +5) — (2%, + 5) _ 2(x3 — x5) —
Xy — Xy T o Xy—xy
We notice that this is the same for each interval x; to x,.
(i) By (9.2) the average rate of change is

2

3‘22 — x12 — (x2 — x)(x5 + %)
Xg = X1 X — X1
which is different for different intervals.

=X, + X
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If we represent the function graphically the average rate of change
of the function in the interval x, to x, may be interpreted geometrically
as being the gradient of the chord joining the points on the graph
with abscissae x, and x,. For the function y = 2x + 5 the graphisa
straight line (Figure 9.4a) and the gradient of any chord is always 2.

QN _ QN .
PN PN — 2. But for the graph of y = x2, (Figure 9.4b), the

gradient of the chord PQ is different from the gradient of P'Q’ etc-

Ay QR y=2x+S 194 y=x2
Q
P Q
N
P’/ N’ P!
L P k-
0 X 0 > X
(a) (b)
Figure 9.4

A practical application of this idea arises in connection with
“space-time” graphs. Suppose a body moves so that the distance s
moved after time £ is s = f(f). Then the average rate of change of s
as f changes from £, to f,, viz. (s; — 5)/(f2 — t,), is just the average
velocity of the body in the interval £ to ¢, and is the gradient of the
appropriate chord on the space-time graph.

Equation (9.2) expresses algebraically the gradient of the chord
joining the points with abscissae x, and x, on the graph of y = f(x).
Can the gradient of the tangent to the curve be given a similar
algebraic interpretation? Geometrically we feel no difficulty in
drawing the tangent to a curve at a particular point, but in order to
interpret this process algebraically we need to consider the process in
some detail.

Suppose we consider the definite problem of finding the gradient
of the tangent at the point with abscissa 1 on the curve y = x*. The
gradient of the chord joining the points on this curve with abscissae
1 and x, is from the result of Example 1(ii) equal to 1 4 x,. Consider
the chords PQ, PQ,, PQ,, PQ; where P has abscissa 1 and Q, Q,
Q,, Q; have abscissae 1-5, 1-1, 1-01, 1-00001. These chords (pro-
duced) are becoming nearer and nearer to being the tangent to the
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curve at P (Figure 9.5 shows the curve in the region of P magnified
many times). Indeed we can imagine that as we try to draw the
tangent at P we rotate our ruler through the positions of these
chords before finally drawing the tangent at P.

Geometrically as Q approaches P so PQ approaches the position
of the tangent at P. Algebraically the gradient of the chord is
1 + x; (x, the abscissa of Q) and as x, gets nearer and nearer to the
value 1, this expression will become nearer and nearer to the gradient

Figure 9.5

of the tangent at P. The gradients of the chords PQ, PQ;, PQ,,
PQ; are 2-5, 2-1, 2-01 and 2-:00001. These are approaching the value
2 which we say is the gradient of the tangent at P.

Quite generally the gradient of the chord joining the points R and S
with abscissae x; and x, on the curve y = x2, is x; 4 x,. If we allow
the abscissa of S to approach the abscissa of R, the chord RS
becomes nearer and nearer to being the tangent at R. Algebraically
the expression x, + x, takes values closer and closer to the value 2x,
as x, takes values closer and closer to the value x;, and so the
gradient of the tangent to the curve y = x? at the point with abscissa
Xy is 2.

The same procedure enables us to find the gradient of the tangent
at the point with abscissa x, on the graph of the function y = f(x).
The gradient of the chord joining the two points with abscissae x;

and x, is i‘"——% This expression will depend on x, and x, and
27 Al
on the particular function f(x) being considered. As x, takes values

which approach x;, so the chord approaches the tangent at the
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point with abscissa x;. The gradient of this tangent is then the
value approached by (y, — yy)(x; — x;) as x, takes values nearer and
nearer to xy.

An immediate application of the gradient of the tangent occurs in
connection with space-time graphs. Just as the gradient of a chord
on such a graph represents the average velocity in a certain time
interval so the gradient of the tangent represents the velocity at a
particular instant.

Example 2. Find the gradient of the chord joining the points with
abscissae 2 and x, on the curves (i) y = 1/x and (if) y = 3/x®. What
is the gradient of the tangents at the points with abscissa 2 on these
two curves ?

O y=1x
By (9.2) the gradient of the chord is
1_1
X2 2 _ 2 _ x2 _'_'_1

X — 2 B 2x5(x5 — 2) - 2x,

—1
As x, approaches the value 2, —1/2x, approaches the value a5z =

—% which is the gradient of the tangent as required.
(i) By (9.2) the chord has gradient

3 3
X3 4 3(4—x3
Xo— 2 4x5(xy — 2)

— 3(2 — x)(2 + x3)

4x5(xy — 2)
— —3(2 + xy)
4x3
-3
As x, approaches the value 2, ——(4x+x2) approaches the value
— 2
Z—i—_>(<2)42 = — 2 which is the gradient of the tangent as required.

Example 3. The distance s ft. of a particle (which moves along a fixed
line X'OX) from the point O, after time ¢ sec is given by s = ¢ +

I Find its speed after 1 sec.
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The average speed of the particle in the time interval 1 to ¢ sec
is given by

1 1
+t+1_( +1+1)=t——1 t4+1 2

t—1 t—1 t—1
—pp2—t—1
20+ Dt —1)
=1—- 1 ft/sec
2t +1)
As t approaches 1 this approaches the value
-1 1 —l=§ft/sec
2041 4 4

The speed of the particle after 1 sec is thus  ft/sec.

Exercises 9b

1. Plot the graph of the function 4 = f(x) obtained in question 1
of Exercise 9a. From your graph determine the value of x which
maximizes 4. What is the maximum value of 4?

2. Plot the graphs of the functions y = 2x* —4x — 3and y =
x — 5 on the same scale. Hence solve the equation 2x% — 5x 4- 2 =
0. Verify the correctness of your solutions.

3. Plot on the same scale the graphs of the functions y = tan x
and y = 1/x. Hence find an acute angle x so that xtanx =1 (x
measured in radians).

4. Find the gradient of the chord joining the points with abscissae
3 and x, on the curve y = x? 4 5x. What is the gradient of the
tangent to the curve at the point with abscissa 3?7

5. A particle moves so that the distance s ft. travelled after ¢ sec
is given by s = ¢ 4 5¢. Find the average speed of the particle
during the 4th second and its speed after 3 seconds.

6. Find the gradient of the chord joining the points with abscissae
1 and x, on the curve y = (x -+ 1)%. Find the gradient of the tangent
to the curve at the point with abscissa 1.

7. Find the gradient of the tangent at the point with abscissa 1
on the curve y = 3(x 4 1) — 2(x + 1).

8. Verify by multiplication that x§ — x} = (x, — xl)(x2 + x5 +

x3). Hence show that the gradient of the chord _]ommg the two
points with abscissae x; and x, on the curve y = x®is x3 + x;x, + x7.
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What is the gradient of the chord joining the two points with abscissae
x; =1 and x, = (i) 2 (@) 1-1 (i) 1-01 (iv) 1-00001? What is the
gradient of the tangent to the curve at the point with abscissa (i) 1
(i) x?

9. Show that the gradient of the chord joining the points with

1. —1
abscissae x, and x, on the curve y = o is ol Deduce the gradient
142
of the tangent at the point with abscissa (i) 1 (i) x.
10. A particle is dropped from the top of a tall tower. The
distance s ft. fallen after f sec is given by s = 162 Find its speed
after 1 sec and after it has fallen 64 ft. ‘

9.4. LIMITS AND LIMIT NOTATION

We have just seen that the gradient of the tangent at the point
with abscissa x, on the curve y = f(x) is the value approached by
(y2 — yI)/(xs — x;) as x, takes values closer and closer to x;. A
notation has been developed which enables us to avoid rather
cumbersome expressions like “x, takes values closer and closer to

x,”. This we write as x, — x;. The value approached by y;_2 — i !
2 A1
is called the limiting value or the limit as x, tends to x; of this

expression. This we abbreviate to

Limit 2272 o Limit 2= g4

zy—rx1 Xg — Xy 2z—x1 Xg — Xy
which is read as the limit (or the value approached by) i:i-_——iﬁ
27 A

f(xg) — f(xp)
xz - x1
gradient of the tangent at the point with abscissa x;.

It is convenient to use the values x and x + déx for the abscissae of
the end points of a chord instead of x, and x,. The symbol dx(Delta x)
represents the change or the increment in x and dx — 0 is equivalent
to x, — x;. (Note dx is one symbol. It is not x multiplied by some
quantity .) In the same way we use y and y + dy instead of y,
and y, where Jy represents the change or increment in y. The
gradient of the chord joining the points with co-ordinates (x, y),
(x + dx, y 4 dy), i.e. the average rate of change of the function is
then

ie. as x, gets nearer and nearer to x, and this is the

y+dy—y flx+dx)—fx) dy
x +0x —x ox ox
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and the gradient of the tangent at the point with abscissa x is

Limit &9 =109 _ 1009 . ..(9.5)

dx—0 0x sz—0 O0X

The limiting value of dy/dx is called the differential coefficient of y
with respect to x and is denoted by the one symbol dy/dx. The
process of finding this limiting value is called differentiation. The
form of (9.5) will depend on the function f(x) and for this reason
the differential coefficient of y with respect to x is sometimes called
the derived function or the derivative of f(x) and may be written

;; [f(x)] or f'(x).

Thus we have the following equivalent expressions

4 _ 4 (0] = £/(x) = Limit 90 =)
dx dx 520 ox
— Limit ....(9.6)
020 X

f'(x) represents the rate of change of the function f(x) at the value
x or the gradient of the tangent to the curve y = f(x) at the point
with abscissa x. The gradient of the tangent at the point with
abscissa a is f’(@) and is best obtained by substituting x = g in f'(x).
It can of course be calculated by evaluating

Limit f(a + dx) — f(a)

520 x

Example 1. Find the derivative of the function y = 3x? and the
gradient of the tangent to the curve y = 3x? at the point with
abscissa 3.

3(x -+ 6x)® — 3x?

f’(x) = Limit
dz—0 0x
2
— Limit 6x0x + 3(6x)
d—0 ox

= Limit (6x 4 3dx)

ox—0

£'(x) = 6x
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Thus the gradient of the tangent at the point with abscissa 3 is just
f'3)=6x3=18
This could have been calculated by evaluating

2 __ 2
Limit 33+ d0x)*—3.3
ox—0 ox

However exactly the same algebra would be used to evaluate this
limit as in the general case and it is clear that once we have f'(x) = 6x,
the rate of change of the function or the gradient of the tangent for
any value of x is easily obtained without considering the limiting
process again.

It can happen that the derivative of a function although it is
defined to the right or to the left of a particular point, is not defined
at the point itself. The function y = f(x) = |x| whose graph was
shown in Figure 9.3 is an example of this. For values of x < 0,
f'(x) = —1, for values x > 0, f’(x) = 1 and for x = 0, f'(x) does
not exist.

The difficulty is fairly obvious geometrically. To the left of the
value x = 0, the graph has gradient —1, and to the right its gradient
is +1, but at the point where x = 0 the situation is ambiguous. In
terms of the definition in terms of limits

Limit 0% — 1O

Sz—0 Ox
from the left

exists and equals —1

This limit is often written
£ _
Limit (00 = f©@ _
Sz—0— ox
The limit from the right
Limit f(éx) — £(0) = 41
x>0+ X
It is not possible, however, to discuss
Limit f_____(éx) — f(0)
dx—0 6)6

since as dx approaches zero, we obtain one of the numbers —1 or
-1 according as dx is just less than or just greater than zero. The
derivative f'(x) is in this case discontinuous at the point with

181



THE FUNDAMENTAL IDEAS OF THE DIFFERENTIAL CALCULUS

abscissa x = 0, although as we have mentioned f(x) itself is con-
tinuous at this point. The graph of f'(x) is shown in Figure 9.6.
There is no value of f'(x) when x = 0, not a possible two.

y

-1

Figure 9.6

9.5. THE CALCULATION OF THE DERIVATIVE FOR
SOME COMMON FUNCTIONS

The process of calculating the derivative or differential coefficient
is called differentiation. More specifically the process of calculating
the derivative directly from (9.6) is called differentiation from first
principles. The need for this phrase may puzzle our readers. For
the time being we remark that in the next chapter we shall develop
techniques which enable us to differentiate a function without having
to deal directly with the expression (9.6). We shall, however, need
certain standard results some of which we shall derive now.

The Derivative of ax™ where a is a Constant and nis a Positive Integer.
If y = ax®

y + 8y = a(x + ox)*
which by the Binomial Theorem

= a[x" + nx"Y0x + p(nT—l_) x"H(0x)E 4 ... (6x)"j|

by subtraction

8y = anx™ dx + an(n — 1) x"3(6x)® + ... a(dx)"
Sy _ anx™' + ann — 1) cu-25, + ... a(éx)*!
dx 2

. .0 . . .
Limit <2 = anx"* since all the other terms on the right contain
3x—0 6x
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positive powers of dx which approach zero as dx approaches zero.
Thus for y = f(x) = ax® where a is a constant and n a positive
integer
dy = f'(x) = anx™* ....(9.7D
dx
We have only proved this result for n a positive integer, the proof for
other values of n is deferred to the next chapter.
The Derivative of sin x. - If y = sin x

y + 8y = sin (x 4 dx)
dy = sin (x + 6x) — sin x

6x) .
=2 — - by (6.50
cos (x + 2 sin 2 y (6.50)

2 cos (x + 6_x) sinéJE
oy _ 2 2
ox ox
s sin —2—
X
= C —_— .
0s (x + 2) éf
2
. Ox
d 5 sx) g
& Limit Y Limit cos (x + ——)
X S50 OX sz—0 2 Qc
2
. 0x
5 sin —
= Limit cos (x -+ _x) Limit
oz—0 2/ sz-0 OX
2

We have assumed the result that the limit of a product is the pro-
duct of the two limits (The proof of this apparently obvious result is
beyond the scope of this course).

. X
sin —

The Limit cos (x -+ 925) = cos x and for Limit

Sx—0 Sz—0 ox

2
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we obtain the value 1. [Refer to (6.59) and sequel to (6.60).]

dy
dx

=cosx X 1

Thus if y = sin x
d—y=cosx ....09.8)
dx

The Derivative of cos x. If y = cos x

dy == cos (x + dx) — cos x

= —2sin (x -+ 6_x) sin dx by (6.50)
2 2

. X
d 5 sx\ o
& _ Limit 2 — Limit — sin (x n —5‘-) .
dx sz—0 OX sx—0 2 é_)g

2
Y _ _ginx ... (9.9
X

Example 1. Differentiate from first principles y = x? + 3x.
y + 8y = (x + 6x)* + 3(x + 6x)
8y = (x + 0x)® + 3(x + 8x) — x* — 3x

= 2x 0x + (8x)® 4 30x
6—J-}=2x—|—3+6x
dx

dy =Limit6—y=2x +3
dx  sz—o0 Ox

We note that the differential coefficient of the sum of the two functions
x? and 3x is just the sum of their separate differential coefficients, a
result which we shall prove to be true quite generally, in the next
chapter.
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Example 2. Differentiate from first principles sin 3x. If y = sin 3x

dy = sin 3(x + dx) — sin 3x

. 36x
8 3ax) 2
&Y — 2cos (3x +—)
dx 2 dx
. 36x
3ox) 2
y
B _ 3005 (3¢ +12)
i cos ( x + > 30x
2
34 34
(N.B. We adjust the final part of the expression sin Tx ( Tx) to
be of the form sin 6/6 which tends to 1 as 6§ — 0.)
. 36x
3 dx o 2
—= = Limit 3 cos (3x + ——-)
X a0 2 3 dx
2

=3cos3x X 1 =3cos 3x

Exercises 9c

Ox)3 — x8
1. By considering Limit (x 1 02 — »° , show that the derivative

0x—0 ox
of the function y = f(x) = x® is {'(x) = 3x2. Evaluate f’(2) and
check your results by calculating the appropriate limits.
2. The function y = f(x) is defined as follows: y = —x2? for
x <0, y=2x for x > 0. Sketch the graph of y = f(x). Is f(x)
continuous at x = 0?

Evaluate Limit fix + dx) — f(x) for x < 0, and for x > 0.

dx—0 6x
Evaluate Limit M nd Lim M
dx—>0— (S 6z—>0+ 6x

Sketch the graph of f’(x). Is f'(x) continuous at x = 07?7
3. The function y = f(x) is defined as follows: y = —x2 for
x <0, y=x® for x > 0. Sketch the graph of y = f(x). Is f(x)
continuous at x = 07?
8x) —
Evaluate Limit w

for x << 0 and for x > 0.
82—0 6x
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f(6x)6x £(0) and Limit f(éx)ax f(0) .
Sx—0— Sz—0+
Sketch the graph of f'(x). Is f’(x) continuous at x = 0?
4. Differentiate from first principles: (i) 7x? (i) x* — 2x* (iii)
sin 2x (iv) cos 3x (v) sin x — x2,

Evaluate Limit

1 -2
5. Show that the derivative of P is = and the derivative of
1. —3

= is — . (The two derivatives obtained here show that the result
x x

dy . s
y=x", = nx™1, which we have proved for n a positive integer
is also true forn = —2 and n = —3.)

EXERCISES 9

1. An isosceles triangle is circumscribed about a circle of radius 7.
Express the area A4 of this triangle as a function of 6 one of the
equal angles of this triangle.

2. A right circular cone of semi-vertical angle § is circumscribed
about a sphere of radius r. Show that the volume V of the cone is
given by

V = ixr® (1 + cosec 0)3 tan® 0

3. f(x) = x tan~* x. Evaluate f(0), (1), f(—1).

4. $(x) = logye x. Evaluate ¢(10), $(100). For what value of x
is ¢(x) = —37?

5. Express y explicitly as a function of x if (i) xy +4x 4 y =3
@) x*+2xy +y2=0.

6. Express y explicitly as a function of x if x*y + 3xy — 6x =0
and evaluate y when x = 1.

7. y = f(x) is a quadratic function of x. Iff(0) = —2, f(1) = —2
and f(2) = 0 calculate f(x) explicitly and evaluate f(3).

8. Find the gradient of the chord joining the points with abscissae
x, and x, on the curve y = x® + 3x. Deduce an expression for the
gradient of the chord joining the points with abscissae 1 and x and
the gradient of the tangent at the point with abscissa 1.

9. The distance s ft. travelled by a particle after £ seciss = 2 — ¢.
Find the average speed of the particle in the time interval from 3
to 31, sec. Find the speed of the particle after 3 sec.

10. For what value of x is the tangent to the curve y = 2x* —
8x + 3 parallel to the x-axis?

11. Calculate the gradient of the curve y = x(x — 1)(x — 2) at
each of the points where it crosses the axis of x.
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12. The distance s ft. travelled by a particle after ¢ sec is given by
s == ut + }ar®. Show that the speed of the particle after time ¢
is v =u -+ af. What is the initial speed of the particle? What
is the acceleration of the particle?

13. Find the value of the constant a such that the tangent at the
origin to the curve y = ax(1 — x) makes an angle of 60° with the
x-axis.

14. Differentiate from first principles (i) x2 + x 4 1 (@) 1/x%

15. Differentiate from first principles (i) sin ax (ii) cos ax where a
is a constant.

16. Differentiate from first principles (i) tan x (i) sin? x. (Hint:
express sin x in terms of cos 2x.)

17. Show that the gradient of the chord joining the points with
abscissae x and x + dx on the curve y = /x can be expressed in the

1
form m . Deduce that the derivative of this function

A |
182—\/—x.

. . 1 dy —1
18. Show from first principles that if y = % then dx = 585
d
These last two examples show that the result y = x*, éj = nx"1,
proved for n a positive integer, is also true for n = } and n = —1.

19. If f(x) = log, x where a is a constant show that f(x,x,) =
fx) + f(xy).

20. If f(x) = a* where a is a constant show that f(nx) = [f(x)]"
where 7 is a positive integer.
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10
SOME TECHNIQUES OF DIFFERENTIATION

10.1. INTRODUCTION

IN the previous chapter we have shown how to calculate the
derivative of a function by evaluating dy/dx and then calculating the
limiting value of this quantity, as x approaches zero. This method
was quite satisfactory for the simple functions considered. It could,
however, be extremely laborious if we happened to be dealing with a
rather complicated function. Fortunately it is possible to prove
several general theorems, which, together with a knowledge of the
derivatives of a comparatively few basic functions, enable us to
differentiate most functions without having to use the method of
differentiation from first principles.

10.2. DIFFERENTIATION OF A CONSTANT

If y = ¢, a constant, whatever the value of x, then y + dy = ¢,
and so dy is identically zero. Hence dy/dx is identically zero, and so
dy/dx its limiting value is also zero.

If y=p¢, dy/dx=10 ....(10.1)

The differential coefficient of a constant is zero.
Geometrically, the graph of the function y = ¢ is a straight line
parallel to the x-axis and so has zero gradient.

10.3. DIFFERENTIATION OF THE SUM OR DIFFERENCE
OF FUNCTIONS

If y = u + v where u and v are both functions of x, then if x is
increased to x + Ox, u and v will change to u + du and v + dv
respectively. Hence y will change to y + dy where

y+oy=u+43du+v+dv

dy = du + v
by _du v
0x 6x  Ox
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DIFFERENTIATION OF THE SUM OR DIFFERENCE OF FUNCTIONS

Thus for the limiting values as dx — 0

dy _du  do

dx dx dx

(We have assumed that the limit of a sum is the sum of the limits).
The above work could be carried out for the difference of two
functions, y = u — v and the result

obtained. Thusify =u 4 v,

dy du  dv
—~=—4 = ....(10.2
dx dx + dx ( )

The differential coefficient of the sum or difference of two functions is
the sum or difference of their differential coefficients.

It is straight-forward to extend this result to deal with sums and
differences of three or more functions.

If u, v, w,...s, t are all functions of x and

y=udtvt+w4d...s54+1
0y =0u +dvd6w+ ...+ s+ Ot

by_du, dv dw, b &

bx oxToxTox T ox T ox

dy du dv , dw ds = dt
d so T T e e e ....(10.3
anas dx dx:tdxidxi dx dx ( )

Example 1. Find the differential coefficient of x¢ — 7x3 — 6x 4 4.
The differential coefficient of ax™ is nax™!. Thus (10.3) gives

d 3 d d 3 d d

g — Ix® — 6x - 4) = — ~ 2y — S 6 L@

dx(x x X ) dx(X) dx(x) dx(x) dx()
=6x*—21x*—6

Example 2. Find the derivative of cos x — sin x.
(10.2) and the basic results for the derivatives of cos x and sin x
give for the derivative — sin x — cos x.
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10.4. DIFFERENTIATION OF A PRODUCT

If y = uv where u and v are both functions of x, then if x is given
the increment dx, u, v and y will receive the increments du, dv and
Jy where

dy = (u + du)(v + 6v) — uv
dy = udv -+ véu -+ ou év

oy ov du

oy __ 0 S0y 2¢

ox u6x+(v + v)éx
dy dv
Now as dx approaches zero, dv approaches zero, and 3’ 3%
and Ou tend to their limiting values d_y (—12 and =¥ res eéctive]x
ox & dx’ dx’ ax P Y-
Hence i"-)=ugl-)—l—v-d—l-t ....(10.4)

dx dx dx

The differential coefficient of the product of two functions is equal to
the first multiplied by the differential coefficient of the second plus
the second multiplied by the differential coefficient of the first.

In the particular case when one of the functions say # is a constant

du .
u=c, == 0 and so for y = cv where ¢ is a constant and v a

function of x

dy _ v ....(10.5)
dx dx

The differential coefficient of a constant multiple of a function is that
same constant multiple of the differential coefficient of the function.

(10.5) can be combined with (10.3) to give the result: ifa, b,...c
are constants and u, v, ... w functions of x* and y = au + bv 4+
...cwthen

u dv dw
dy _ 4y pdv, ¥ (106
Tl (106)

The differential coefficient of the sum of constant multiples of a finite
number of functions is the sum of the same constant multiples of the
differential coefficients of these functions.

* It is conventional to denote constants by the letters at the beginning of
the alphabet and variables by letters near the end of the alphabet.
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DIFFERENTIATION OF A PRODUCT

The result (10.4) can be extended to deal with the product of three
or more functions. If y = uvw we may consider y as the product of
the two functions (uv) and w. Thus by (10.4)

= =yv— +w—(uv
dx de+ dx( )
dw ( dv du)
=uv— +wlu— +v—
“ dx+ dx+ dx
=uv—w+uw@+vwd—u
X X dx
In general if y =uow ... s
dy ds dw do du
—_—=Uw...,— e S uw...s— +ow...s—
X dx+ e sdx+ dx dx
....(10.7)

The differential coefficient of the product of any number of functions
is obtained by differentiating each function in turn, multiplying by the
remaining functions and summing the results.

Example 1. Find the differential coefficient of (i) 6 sin x (if) 8 cos x +
3sinx

() L(6sinx)=6L(sinx)= 6cosx by (10.5)
dx dx
. d . d d, .
(i)) — (Bcosx 4 3sinx) =8 — (cos x) + 3 — (sin x)
dx dx dx

= —8sinx + 3cosx by (10.6)
d
Example 2. Find d—i) if () y = x%cos x (ii) y = sin® x
(@) y=x%cosx
by (10.4)
dy ¢ d d s
— = x®*—(cos x) + cos x — (x
dx * dx( )+ dx( )
= —x%sin x 4 6x° cos x
= x*(6 cos x — x sin x)
(i) y =sin? x = sin xsin x
by (10.4)
dy . d, . . d .
== = sin x — (sin x) - sin x — (sin x
dx ' dx( )+ dx ( )
= 2 sin x cos x
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d
Example 3. Find d—y if y = 6x2 sin x cos x
By (10.7) *
dy

= 6x2sin x 4 (cos x) + 6x%cos x d (sin x)
dx dx dx

- sin x cos x 4 (6x%)
dx
= —6x%sin?x -+ 6x%cos®x + 12x sin x cos x
= 6x2(cos®x — sin®x) 4 12x sin x cos x
= 6x%cos 2x - 6x sin 2x

= 6x(sin 2x + x cos 2x)

Exercises 10a

Differentiate with respect to x
1. 7x5 — 3x* -+ x2. 2. 8x% — sinx + 6.
3. 6cosx —8(x2+ x). 4. (x4 D(xt+1).
5. sin x (1 — cos x). 6. x(3x + 4 cos x).
7. (x® + x + D2x% 4+ 3x + 1).
8. 8x2 (1 + sin x)(1 + cos x).
9. xcosx + 3(x + D(x — 1).
10. 4x%sin x — 3x%cos x.
11. (x% + 1) 12. (x4 1)22x + 1).
13. (x2 — 1)3. 14. 3x sin x cos x.
15. 3x(x? 4 1) sin x cos x.

10.5. DIFFERENTIATION OF A QUOTIENT
If y = u/v where u and v are both functions of x, an increment dx
in x will result in increments du, v and dy in u, v, and y respectively.
_ufou_u
v+dv v

_ v(u + ou) — u(v + ov)
v(v + dv)

__ vdu — udv
v(v + 6v)
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bu_ b
therefore oy _ _0x Ox
ox  v(v + 6v)

du du dv dv

As 6x—0, soauaoandaaa,aaa}

—_= —— ....(10.8)

The differential coefficient of the quotient of two functions is equal to
the denominator multiplied by the differential coefficient of the
numerator minus the numerator multiplied by the differential coefficient
of the denominator all divided by the square of the denominator.

In the case where u =1, i.e. y = 1fv is the reciprocal of the
function v, du/dx = 0 and so we have

_d
d(l) dx
—|-) = ....(10.9
dx\v v? (10.9)

The differential coefficient of the reciprocal of a function is minus the
differential coefficient of that function divided by the square of the
Sunction.

Example 1. Find the derivative of

; X . sinx N
@ y_x—l-l (@ y x% -+ cos x (@) y x4
. X

@ =

(x + 1)di(x)—xdi<x 1)
= X d by (10.8)
(x +1)°

Q-ID-
= I<

____x—}—l—x= 1
x4+ x+D
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(i) y=— sin x
X" -+ cos x
2 d . N
(x* + cos x) — (sin x) — sin x — (x* + cos x)
dy dx dx
LA by (10.8)
dx (x? + cos x)*
_ (x? 4 cos x) cos x — sin x(2x — sin x)
(x* + cos x)?
_ x%cos x + cos®x — 2xsin x + sin®x
(x% + cos x)*
=1+ x((:zcjsczs_x)i sin x) (since sin® x -} cos® x = 1)
1
(iii) y = 4
dy —2x
—_——= by (10.9
dx (x*+4)? y (10.9)
Example 2. Find
du . ~BGcosb 0 cos 0
Gl “=Dg3 O Grosmo
. 6 cos 0
U= —
U 513
d d
@ +3)—(Ocosl) —Ocos§—(6+3)
du _ df d9 by (10.8)
a6 © + 3)° v
_ (0 + 3)(cos @ — Osin 0) — O cos 6 (1)
6 +3)°
=3cos€—(0 +- 3)8sin 0
0+ 3y
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N 0 cos 6
W) u= G T Tysmd

d_uZ(e+1)sined%(ecos0)—ocosed—dé[(o+1)sine]

de (0 + 1)?sin26

(6 +1)sin 0 (cos 6 — Osin )
— B cos O[(0 4 1) cos 6 + sin 0]
(6 4 1)%sin? 6

(0 + 1) sin 6 cos 6 — 6( + 1) sin®6
. — 00 + 1) cos®0 — Bsin O cos b
(6 4 1)?sin®8
_sinfcosf — 66 + 1)
(0 + 1)*sin®6

' 2
Example 3. Find the gradient of the tangent to the curve y =

at the point with abscissa 1. dy x+1
We first find the general expression for 3= f'(x) with y =
x2
f(x) = —~
() =5
d , 2o1)2x —x%.2x 2x
_1 :f (x) = (x + )2 2 ES 2 2
dx x*+ 1D x*+1
2 1
’ 1 = — == -
fQ) 55
the gradient of the tangent is 3.
Exercises 10b
Differentiate with respect to x:
2
12—, 2, —%
x+1 x +sinx
3. X tsnx . 4, ———_1 .
1 +cosx sin x
CR—— 6. —>—.
1+ cosx x+1
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q __Xsinx x® + 3x
"cosx +sinx 4D 42
9 x?sin x 10 x
DD (& + D(x +2)(x +3)
1 sin? x 1 x(x + 1)
" cos x(cos x +sinx) T2 +3)
13. Find the gradient of the tangent to the curve w = ] _,_ 7t the
point with abscissa 3. sin 0
14. Find the gradient of the tangent to the curve v = —————
- cos § - sin 6
at the point where 0 = 7
3
15. Find the gradient of the tangent to the curve y = X _I)_C 73t the

point with abscissa 2. At what points on the curve is the tangent to
the curve parallel to the line y = 3x + 77

10.6. DIFFERENTIATION OF THE TRIGONOMETRIC
FUNCTIONS

The results of the preceding section enable us to obtain the
derivatives of the remaining four basic trigonometric functions:
viz. tan x, cot x, sec x and cosec x. We already have the results

dy . ly .
3y = COS X and if y = cos x, I —sin x. Thus

for y = tan x = sin x/cos x

that if y = sin x

dy cosx.cosx — sin x(—sin x)

dx cos® x by (10.8)
_cos’x +sin®x 1
cos®x cos® x
gd- (tan x) = sec®x ....(10.10)
X
cos x | L.
y=cotx = —-—Is treated in just the same way.
dy —sin®x —cos®x —1
B 10.8 _—= =
y (108) dx sin® x sin® x
di(cot X) = —cosec®x ....(10.11)
X
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The derivatives of sec x and cosec x are obtained by treating them
as the reciprocals of cos x and sin x respectively and using (10.9).

Thus 4 (sec x) = _(}_( 1 )
dx dx\cos x
(=sinx) 1 sin x
cos®x Cos X COSX
4 (sec x) = sec x tan x ....(10.12)
dx

We leave it to our readers to show that
di (cosec x) = —cosec X cot x ....(10.13)
x

(N.B. Of the six basic trigonometric functions those which begin
with “co’” have a negative sign in their derivatives.)

10.7. SECOND AND HIGHER DERIVATIVES

If y=1f(x) is a function of x then in general the derivative
dy/dx = f'(x) will be some other function of x. The derivative
expresses the rate of change of f(x) with respect to x, as a function of
x. We might well enquire what is the rate of change of this derivative
with respect to x, i.e. calculate the differential coefficient of dy/dx
or f'(x).

An immediate application of this situation arises if we are dealing
with a space-time graph, s = f(f). Then ds/d¢ represents the velocity
of the body at any time ¢, and the rate of change of ds/dt, the
acceleration of the body.

The derivative of dy/dx is called the second derivative or the
second differential coefficient of y with respect to x and is written
d?p/dx?. d?y/dx® will in general be a function of x and so may be
differentiated to form the third differential coefficient of y with
respect to x, or the third derivative of y which is denoted by d®y/dx?,
and so on. The nth differential coefficient of y with respect to x is
denoted by d"y/dx". If the notation f(x) is used, the first, second,
third . . . nth derivatives are denoted by '(x), f"(x), £"(x) . . . f"(x).

In general the process of calculating the nth derivative of a
function is a tedious business and can only be achieved by calculating
the successive derivatives in turn. It is generally worth while to
consider briefly whether it is possible to simplify the function
dy/dx before calculating d?y/dx? and in turn to try to simplify this
before calculating d®y/dx® etc.
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: d?y d?y
Example 1. If y = sin x show that pr Rl S o e
y =sin x

cl'Z=COS.7C

dx

Q.
<

= —sinx = —y as required

(=N
o

X

%
<

|

= —CO0sS X

(=N
@

X
4

dx

o
<

.|
I

—(—sinx) =sinx = y as required
sin 6
1+ cosb’
—f( )__(1 + cos 0) cos 0 — sin 8(—sin 6)
(1 -+ cos 6)*
__cos’6 + cos O + sin* 8
B (1 +cos 6)?
14cosf 1
=(1 +cos ) 1-+cosb
— (6) = (=sinb) _ sin 0
(1 + cos ) (1 + cos 6)®

Example 2. Find the second derivative of y = f(0) =

d’
de?

d2
Example 3. If y = tan 6 show that d—e)—; =2y (1 + 3.
y=tan0

gl:seczﬁz sec O .secl
do

2

By (10.4) dy_ =sech.secOtan 0 | sec 0 .secOtan§

de®
= 2tan 0 sec®
= 2 tan 6(1 + tan®6)
d2
= 2y(1 2
a0 y(1 + y%
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Exercises 10c
Differentiate with respect to x

1. sec x + tan x. 2. sec x tan x. 3. cosxcot x.
4. sec?x + tan x. 5. sec? x 4~ tan? x.
6. (cos x + sin x)(sec x 4 tan x).
sec x sec x 9 1 —tanx
‘sinx 4 cosx’ " 14secx’ "1+ tanx’

10. A particle moves so that the distance s ft. travelled after ¢
sec is given by s = f(¢). Find expressions for the velocity and
acceleration of the particle after time ¢ sec, and the velocity and
acceleration after 1 sec if (i) s = 4t2 — 3t and (i) s = cos 2=t +
sin 2mt.

2
11. Find g-}—; if(@)y=rcos?x (i) y= _Co8 X
x 1 —sinx d
12. If y = 6" where n is a positive integer show that (i) 0 9 ny
a2 a9
and (i) 62 3= n(n — 1)y.
d"y

13. If y = u™ where n is a positive integer show that s nl.

dzy
14. If y = sec 6 show that a0t = y(2y? — 1).
15. If y = sin x show that

~dy ( 17)
= =sin |x + =
@ dx ' + 2
.s dzy . ( 17)
—= == sin 2-
(i) T in {x + 5
L Oy ™
(iii) 3= sin (x 43 5)
. dy
What is the value of —, ?
dx

10.8. DIFFERENTIATION OF A FUNCTION OF A
FUNCTION

The function y = (2x -+ 1)3 is a function of 2x + 1 which in turn
is a function of x. More specifically y is the cube of the function
- 2x + 1. We say that y is a function of a function in this case. Asa
second example consider the function sin x?; y is the sine of the
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SOME TECHNIQUES OF DIFFERENTIATION

function x2, and so is another example of a function of a function.
Functions of this type frequently occur in mathematics and in this
section we shall develop rules for evaluating their derivatives. In
general a function of a function is expressible as follows: y is a
function of some quantity which in turn is a function of x. In
symbols
y = F() where v=f(x)

y=02x+13, y=1® where v=2x+1
y=sinx?;  y=sinv where v = x2

The general rule for differentiating a function of a function can
be obtained as follows.

If y = F(v) where v = f(x), then if x is given the increment dx,
v will be given the increment v [since v = f(x)] which in turn
generates the increment dy in y [since y = F(v)]. It is convenient

.. Oy, dy v ... . .
to write ox in the form o Y I which is possible provided dv # 0.
Then
Y Limit? = Limit® < 8
dx sz-0 O0X =0 O  OXx
= Limit 9y X Limit@
dx—0 v ox—-0 5.)5

(We have again used the result mentioned earlier, viz. the limit of a
product is the product of the limits.)
Now as dx — 0, dv — 0 so the first term of the above is equivalent

.0y, dy
to%:%ta—v, i.e. P

2 _8 4 ....(10.14)

We shall apply this rule to the two examples already considered.
Thus for y = (2x + 1)3 = v® where v = 2x + 1

4y _ 3% — =2
dov dx

Y _ 352 % 2 = 6(2x + 1)?
dx
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DIFFERENTIATION OF A FUNCTION OF A FUNCTION
We can verify this particular result by writing
y=(@x+D@x + D@x + 1)
and using (10.7). In this way we obtain
d

2x +1
dx(x+)

2 (2x + 17 @x 1) + @x + 1
dx dx

Fex+ 0L 0x+1)
dx
=3Q2x + 1)?x 2=6Q2x + 1)> as before

For y = sin x? = sin v where v = x*

gl)=cosv, j——v=2x

dv b
Q=2xcosx2
dx
. dy N rae aren . (X1
Example 1. Fmdawhen @ODy=0x—4@)y= (x+ 1),
() y = (3x% — 4)* = v* where v = 3x% — 4
Q=4v3, 9 _ 6x
dv dx
Q=4(3x2—4)3>< 6x = 24x(3x* — 4)®
dx
. x—l)2 2 x—1
0)y= = here v =
@) y (x 1 v* where v 1
d d
+D—Ex—D-Cx-—D—=E+1D
_d_y_2v dv dx dx
= 20, = .
dv dx x+1 by (10.8)
=(x«l—l)—(x—l)
(x + 17
——2
(x +1)*

d_y=2(x—1)>< 2 :4(x——1)
dx (x+1) x+1) x+1°
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d d
Example 2. Find (i) o [sin (4x? + 3x)] (i) 30 (sec? 40).
(i) Let v = 4x% + 3x. Then
f; [sin (4x% 4 3x)] = ;—x (sin v) = (% (sin v) X ‘(11—';
= cos v(8x -+ 3)
= (8x - 3) cos (4x® + 3x)
(i) With y = sec? 40, y = v where v = sec 40
dy _dy, do_, dv
dd dv df do

r is still a function of a function; v = sec u where u = 40.

dv dov du
— =—,==secutanu X 4
dé du db

:—g:Zsec40 X sec40tan 40 x 4

= 8 sec?40 tan 40

We have here an example of a function of a function of a function.

y is a function of v, which in turn is a function of u which is a function

of 6. The extension of (10.14) which enables us to deal with this
situation is

dy _dy, do du

d0 dv du db

Our readers will find as they gain experience that they do not need

to introduce the auxiliary variables v or u specifically. However, at
first it is probably wise (even at the cost of a little time) to use them.

... .(10.15)

Exercises 10d
Differentiate with respect to x

1. (x — 1) 2. (2x — 1)5. 3. (2x% — 3x).
4, (x2 +2x 4+ DA 5. sec 3x. 6. tan 5x.
7. x sin 4x. 8. x2cos 3x. 9. sind x.
10. sin x3. 11. sec (3x2 + 1). 12. tan® (3x — 4).
13. sin? (x2 + 1). 14. (x + D@x — D
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15. sind x tan 2x. 16. (1 + sin? x)(1 — sin? x).
cosx ¥ 1 — x3\?
o () () sin2x
19. (1 — cos*x)(1 + cos® x). 20, (———)
sin® x 1 + cos 2x
21 22. sec® (tan? 3x).

"2+ sin?x’

23. Find du/df if u = (i) sin™ 0 (i) cos™ 6 (iii) sin™ 6 cos™ O
where m and n are positive integers.

24. If y = sin mf show that d?y/d6? - m?y = 0.

25. y = (sec @ + tan 6)" where n is a positive integer. Show that
dy/d0 = ny sec 6.

10.9. THE DERIVATIVE OF x" WHERE =# IS
NEGATIVE OR A FRACTION

In the previous chapter we saw that if n is a positive integer then
the derivative of x™ is nx™1. We shall show this result to be true for

all values of n.
(i) If n is a negative integer, let n = —m so that m is a positive
integer. Then if y = x", we have

w1
y =X = _1n
x
m—1
by (10.9) v_ _ mx2 = —mx ™1
x x°m
=nx™1  (since —m = n)
d . et o .
Thus d_ (x™) = nx if n is any integer
X

(i) If n is a fraction, let n = p/q where p and q are integers (not
necessarily positive). Then

y= X/ = (x1/9)P
With x'/? = u, y = u® where x = u? so that

dy_ pu* and g_)_c =qu®' by(d
u

du
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SOME TECHNIQUES OF DIFFERENTIATION

These two results enable us to obtain dy/dx, for, by the rule for
differentiating a function of a function

dy _dy dx
du dx du
put = vy qu
dx
QJ_’ —_ 2 u?P? — _IZ (xllq)p—a
dx ¢
d_._y — E xn/q—l
dx ¢
= nx""'  sincen = p/q
Thus for all values of n
d (A n—1
—(x™) = nx ....(10.16)

dx

Example 1. Find (i) % (> (i) % (xl4)

0 e = 1/2 —1/2 1_
@ (\/ ) = (x ) = 2\/x
. A1y _d & _ _,5_—4

) dx (x“) T dx S 4 x°

(cli—izwhen @y= (x2—é)2 (ii)y=A/(1 ix

(1')y=112wherev=3c2—x——x2—2x—2

Example 2. Find

Y2 and Lo —oy—oxrtoam+ 2
dx x®

2 s+ oo+
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DIFFERENTIATION OF INVERSE FUNCTIONS

x

i) y = /v = v/ —.

(i) y = /v = v!/2 where v >

dy_ 1 wp_ 1 do_(xDi—x.1_ 1
v 2 2. /v dx (x +1)2 (x + 1)?

g_leA/(th) 1 1
dx 2 x T +x)? 2y x(1 + x)*?

Exercises 10e

Find dy/dx when y =

1. x3/2, 2. x. 3. (/%)

4. (x3 - ;35) 5. (2x—21—_§)_3 6. J2x* — x).
7. (x2 + 1), 8. 1//(2 + 1).

9. (1 + x)/(1 — ). 10. /x(1 + x)*.  11. sec/x.

12. /sec x. 13. J( +sinx). 14, A/ (x———i)
A/(1 + cos x) x+

15. [(SX)

1 — cosx

10.10. DIFFERENTIATION OF INVERSE FUNCTIONS

We have already encountered in Chapter 6 the inverse trigono-
metric functions y = sin™! x, y == cos™ x, y = tan™! x etc. (which
mean x = sin y, x = cos y, x = tan y respectively). These functions
do not fall into any of the categories (product, quotient) so far
considered in this chapter and we shall develop a new technique in
order to calculate their derivatives.

This we shall do for the general inverse function and then apply
the technique to the inverse trigonometric functions. Itisimportant
to realize that the notion of an mverse function is not confined to the
trigonometric functions. In general if y = f(x) then the value of x
will depend on the value of y and so x is a function of y; x = g(y),
the inverse function to f(x). (E.g. if y = x2 then x = \/y, and the
square root function is the inverse to the square function; if y =
sin x, then x = sin™' y and the inverse sine function is the inverse
to the sine function.)

Thus in general, if y = f(x), x = g(y) and we shall show how to
find the derivative dx/dy of g(y) in terms of the derivative dy/dx of
f(x).

205



SOME TECHNIQUES OF DIFFERENTIATION

We may regard y = f(x) where x = g(») as being a function of a
function. Thus on diﬁ'erentiating with respect to y we obtain

d d
40 _ ey )] by (10.14)
dy
_d_y dx
dx dy
dy _1/d" or d—x=1/‘1¥ ....(10.17)
dx dy dy dx
y
P
w I X
) /T o
.—/
¢
thure 10.1

Geometrically if we draw the graph of y = f(x) then at the same
time we draw the graph of x = g(y) (Figure 10.1).

If PT is the tangent at any point P on this curve and PT makes an
angle y with the positive direction of the x-axis and an angle ¢
with the positive direction of the y-axis, then:

y dx
—= == tan yp; — = tan
ax Y g T e

1
tan y

dx =1 / dy as before
d dx

Butsince¢=7—£—zp,tan¢=cotw=

(N.B. This result is only true for the first derivative.)
We shall now apply the general result (10.17) to the inverse
trigonometric functions.
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DIFFERENTIATION OF INVERSE FUNCTIONS

Ify=tanlx, x = tan y
dx _ sec® y
dy
=1-4tan’y
=1+ x?
dy _ /jdx_ _1 ....(10.18)
dx dy 1+x*
If y =sin1x, .
X =siny
dx _ cos y
d
= /(1 — sin®y)
=/ —x%
dy 1
Fray T ....(10.19)
Ify=costx, x=cosy
9 _ _sin y = —/1 —cos’y) = — /(1 — x?)
dy
dy —1
oy g ....(10.20)

N.B. The results (10.19), (10.20) are in accordance with our con-
vention regarding the square root sign and principal values of the
inverse trigonometric functions. Reference to Figure 6.19 and 6.20
shows that the gradient of y = sin~ x is everywhere positive and
the gradient of cos™ x is everywhere negative.

d
ind — -1
Example I. Find I (sec™1x).

If y = sec™?
Y * X =secy

dx
—~ =secytany

dy
= sec p/(sec’y — 1)
=x/(x*—1)
d(sec'x) dy 1
dx  dx  x/&F—1)
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SOME TECHNIQUES OF DIFFERENTIATION

Example 2. Find % if (i) u = sin™* 360 (if) u = tan (363).

(i) u = sin~! 30 = sin~! v where v = 30

du _du dv_ 1
dd  do d8 J1—vH
_——3
Ja— 989
(i) u = tan—1 (30°) = tan~! v where v = 36°
du_dudo_ 1o
dd dv df 1 +0°
96
1+ 96°
2
Example 3. Find ii-[sin—l (l;x—)il
dx 1+4x?
1 — x 1 — x?
= i -—1 p——g i —1 = e
Let y = sin (1 - x2> sin~ 4 where u T2
dy _dy du _ 1 (1 4 x®)(—2x) — (1 — xH(2x)
dx du dx J(1—u®)’ (1 + x%?

_ 1 % —4x
JIL—= @ = x4+ %71 (1 +xP?

. —4x 1+ x»?
T+ )2 % A/ [(1 +x3:— (1 — x2)2:|
. > « (14+x? __—2
(1 + x?? 2% (1 + %9
Exercises 10f

1+ x2°
2. Show th ti( ec1 )———_1———
. a dx cCOoseC™ X —x\/(x2__1).

d
—_— ~1 —
1. Show that I (cot™1x) =

3. Use the technique employed in this section to show that if
, dy
- = 2 ——
y = +/x (i.e. x = y?) then ax 2%
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dy
4. Show that if y = +/x, then == by the method of this

section. y dx ~ 3x 2/3

Find Ix ify=

5. sin~t x2, 6. cos™ 6x. 7. tan71(x + 1).

8. sec™t x2 9. tan—! x2, 10. x sin™t x.
I—x

n—1

11. sin (1 T x)'
1

12. tan™? i i— i) (Can you explain this result?)

13. Show that if ¢ is a constant

o Al

@) & [S‘“_l (x)] J(azl— 5

14. Show that — P (2 tan! 0) = d [ta (1—?2_9;0-2)] Why are
the two results equal ?

15. If y = /(1 — 6% sin~ § show that (I — 02)— =1—62—
6y.

10.11. DIFFERENTIATION OF IMPLICIT FUNCTIONS

The rules which we have established in this chapter have been
applied thus far only to explicit functions. In this section we shall
develop the techniques necessary for the differentiation of implicit
functions.

Suppose for example that y is defined as an implicit function of x
by the equation

x24 =1

We differentiate each term of the equation above with respect to x
and so obtain

d oy don_d
E;(Y)-l-dx(x) dx(l)

4 omrax=0
dx
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SOME TECHNIQUES OF DIFFERENTIATION

Now y? is a function of y which is itself a function of x. Thus by

10.14
o Lon=207. L=y ¥
dx dy dx dx

dv__x
dx y
In this particular example it is possible to express y explicitly

in terms of x; y = /(1 — x?), i.e. y = u'/2 where y = 1 — x?

ZyQ +2x=0 so that
x

—X
ooy

Generally however, when it is not possible to express y explicitly
in terms of u we shall have to use the first method.
Example 1. Find dy/dx if x* + y* + siny = 3.

We have on differentiating the equation with respect to x,

2x +i<y2) n £1—(siny) ~0

2x+ (y2) dy ~ o (sm y) 5 =0

dy

2x 2— cosy—==20
+ydx+ ydx

dy 2x

dx 2y +cosy

Example 2. Find dy/dx and d?y/dx?if x 4+ y + siny = 3.
On differentiating the equation above with respect to x, we obtain

1+ +—(s1ny)——0

1+4—= —I—cosy-g—)-’ 0

1-}--!(1 +cosy)=20
dx

dy =1
dx 1 +4cosy

210



DIFFERENTIATION OF IMPLICIT FUNCTIONS

To find d?y/dx?* we differentiate this expression with respect to x.

dy _ d(dy) d( —1 ) d( —1 )dy
dx®  dx\dx dx\1 +cosy dy\1 + cos y/dx
d% _ —1(—=1)( —sin )] % —1 _ __siny

dx? (1 + cos y)? 14+cosy (1+4cosy)®
Alternatively we may ﬁnd dzyldx2 by differentiating with respect to

x the equation 1 + + cos y = 0 which we obtained earlier.

In this way we obtam
d? (
0+—+ —~= COS
T T ax Y

=0
—(cos y) +cosy ——((—1-}-))

d’  dy
ay = by (10.4
e + = ot y (10.4)
d*% dy d¥y
@—l—a ——(cosy) —-+cos (—1-—2=0

d? y (dy) d?%

—= —sin cos &y 0

dxt Max) T &

o )
2 sin yl 5 .
dy = dx = SIny as before

dax*? 1+cosy (1+4cosy)

(. dy —1 )
since — = ———|.
dx 1-+cosy

Example 3. Find dy/dx and d?y/dx? at the point (1,1) on the curve
x4yt =2,
On differentiating the equation with respect to x we have

3+ 2% =0
dx
2 d 4 dy
— ==0
+dy(y) Ix
2 2 dy .
3x" 4 3y*—==0 ()
dx
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SOME TECHNIQUES OF DIFFERENTIATION

d 3d
Thus when x = 1, y = 1,—iissuchthat3+—&£j=0

dy

= —1  atthe point(1,1)
dx

If we differentiate (i) with respect to x we obtain

6x +— ( 2dy):0

dx

d2 dy d
2y+y

6x 1+ 3
Y e T e O

—(GyH=0 by (10.4)

dy dy
6x + 3 by—==0
yd e Y
d2
Now when x =1,y =1, g—y = —1 and so the value of—-y at this
point is such that dx*

2
3dg}+6=0

dy
dx?

Thus we see that nothing new in the way of differentiation is
involved in applying these techniques. Care must be taken, however,
to apply the function of a function rule when differentiating a
quantity which involves y or its derivatives, with respect to x.

= —4  atthe point (1, 1)

Exercises 10g
Find dy/dx when:

x+y+cosx+cosy—2.

xy +siny = 1.

x-+y+sinxy =2

Find dy/dx at the point (1,1) if x2 4 »? + xy =3.

Find dy/dx and d?y/dx® if 3xy + x% 4 y2 = 5.

. Find dy/dx and dzy/dx2 at the origin on the curve x? + y2 -+
x —I— 3y=0.

CONAUA W
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DIFFERENTIATION FROM PARAMETRIC EQUATIONS

10. Find dy/dx and d?y/dx? at the point (1,1) on the curve
3x+22 4+ xy+x—7=0.

10.12. DIFFERENTIATION FROM PARAMETRIC
EQUATIONS

It is often convenient to define y as a function of x by expressing
both y and x in terms of a third variable 7, known as a parameter.
(See sections 20.5, 20.9, 20.13 and 20.17.)

Thus in general y = f(f), x = ¢(¢) defines y as a function of x.
This follows since y is a function of # which in turn is a function of x.
By eliminating ¢ from the two relationships above, we can obtain
y as a function of x. (See section 1.5.)

Thus if y = ¢2, x = 1/t, we have, since t = 1/x, y = 1/x2. Some-
times it will be difficult or even impossible to carry out this elimina-
tion although it is always true that y is a function of x since the
value of y will depend on x. In such cases the differential coefficient
of y with respect to x can be obtained by regarding y as being a
function of a function; y is a function of # and ¢ is a function of x.
Thus

dy _dy dt
dx dt “dx
d—y=9-y/d—x ....(10.21)
dx dt/ dt

Example 1. Find dy/dx when (i) y =12, x=1/t, (ii) y =sin 0
x =cos 6.

. dy 2t
() By (10.21) dy_ 2t _ _,p
¥ dx —1/f
(i) By (1021) ¥ _€s0 _ 4
dx —sinf

Example 2. Find dy/dx and d%y/dx? in terms of ¢ when y = 2¢,
x=0 dy dyfdx 2 1

Qi_i(iz)zi(d_l’) d

dx? dx\dx de\dx/ “dx

2

dy d(dy) dx ....(10.22)

(This result is true generally.)



SOME TECHNIQUES OF DIFFERENTIATION
d%y d (1) / —1 / —1
—Z ==} /2="—/2 = —
dxt dit\t 12 268

Example 3. Find dy/dx and d%y/dx® at the point with abscissa 1
on the curve y = 1/t, x = 2t.
The point with abscissa 1 corresponds to ¢ = }

Whent—3,% — —13 = —2
dx

2
Whent=4},g—y=—1—=4
dx

Exercises 10h

Find dy/dx in terms of the parameter when:

Ly=eex=1z 2. y=2sin6, x =3 cos 6.
3. y =cos 4, x = sin 2t. 4. y=12cost, x = tsint.
5.y= £ X = ! . 6. y= £ x = ! .
1+1¢ 1+¢ 1+ 1+
Find dy/dx and d®y/dx® in terms of ¢ when
2t 1— ¢

1
1. y= 8.y=t,x==t—2.

1re 1y

9. If x = £* 4+ tand y = 2¢%find dy/dx in terms of f and show that
when dy/dx =1, x = 2 or x = }3.

10. The position of a projectile referred to horizontal and vertical
axes is given by x = 8¢, y = 40¢ — 16¢* after time ¢ sec. Find at
what times the projectile is moving (i) horizontally (ii) at an angle
of 45° to the horizontal.

10.13. LIST OF STANDARD FORMS

The rules of differentiation and the differential coefficients of
the important basic functions are listed below. They should be
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EXERCISES

memorized. u, v, w are functions of x; a, b...c are constants.

d du dw
—(au +bv+...c —a—+b~—— e C—
dx( + ") dx * dx
d du
— (uv —u— —
dx( ) dx + vdx
d dw do du
— (uow) = uv — w— -+ ow—
dx (uow) dx tu dx + dx
du dv
V— —u—
i(g) _ _dx dx
dx\v v?
dy _dy du
dx du dx
dx _,/dy
dy dx
d n n—1
L") =
dx( ) = nx
d (sin x) = cos x 4 (sec x) = sec x tan x
dx
d . d
— (cos x) == —sin x d_ (cosec x) = —cosec x cot x
x
d (tan x) = sec®x 4 (cot x) = —cosec® x
dx
d - d 1 1
—(sin"" x — (tan =
4 S = \/(1~x o=
dy _ dy [dx
dx dt/ dt

EXERCISES 10
1. Fmd(z)—(gx —3x24+2) (,,) (2t3’2 12 g gy
2. Find (i) < [ + x)G3x* + %] (ii) — [sec 6 (1 + cot H)].
dx de
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. N X x*—x
3. Find (l)dx(xz - 1) ¢ )dx(x + 1) Jx
4. Find the derivatives of the following functions (i)
14 /x L+
(”) \/x
5. Find d6/d¢ when (i) 0 = sin ¢ sin 3¢ (ii) 6 = t*sin™ ¢.
(L.U., part)
x—Dx—2)

6. Differentiate with respect to x (z) - 1 6 (i) GFDxT2)

7. Find dy/df when (i) y = cos ¢ cos 5¢ (ii) y = t tan™1 .

8. Find the derivatives of the following functions: (i) sin®x
(i) sec® x.

9. Find du/d0 if (i) u = sec® 60 (ii) u = cot® 6%

10. Find (i) d/d0 (0 sec 0 tan 0) (if) d/dx (x sin x cos 2x).

11. Find dy/dx when (i) y = sin 1/x (i) y = {[sin (1/x)]/x}.

d
i 7Y — | ——— i) — (sin—1 #3
12. Find (i) B\ (i) T (sin™ £3).
13. Differentiate with respect to 6 (i) sin—* \/(1 — 63)

(if) tan -1 l;/?l_—e)'}
14. Find dy/dx when (i) y = sin* (tan x) (if) y = tan™ (sin x).

15. Find (i)(%[cos‘l A—md (i) d%[cot‘l(itTt)].

1 — y2
16. Differentiate with respect to x (i) cos 1/x2 (i) cos™? ( x )

14 x2
17. If y = tan x show that d?y/dx? = 2y 4- 2)%.
18. If y = cot? § show that d2y/d6* = 2(1 + y)(1 + 3y).
19. If y == tan x + % tan3 x prove that dy/dx = (1 4 tan® x)2.

20. Find dy/dx when () y = tan™! ( " il 5
(fi) y = sin™1 (2x — 5). —-x

21. Find dy/dx when (i) y = x" tannx (ii) y = tan™! (sin x/2).

22. If y is a function of x find the derivative with respect to x of
@) xy? (i) x[y (iii) y/x (iv) sin® y.

23. Find dy/dx when (i) x® + y® — 3xy 4 1 = 0(ii) x® — 2x%* +

4

24. Find dy/dx when (i) y* + x?=6x +4y + 1 (i) y® + x® =
3(x + ).

25. (i) If siny = tan x, find dy/dx in terms of x. (i) If x3 4
y® = 3axy, find dy/dx in terms of x and y, and prove that dy/dx
cannot be equal to —1 for finite values of x and y, unless x = y.

(S8.U.JB)
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26. Find the slope of the tangent to the curve yx® — 3x%* +
x3 — 2x = 0 at the point where x = 2, y = 1.
27. Find dy/dx and d2y/dx? at the origin on the curve x% +

yx=xy+y.

28. Find dy/dx and d2y/dx? at the point (1,1) on the curve 2xy —
2% — 3+ x%2=0.

29. If x8 4+ y® = xp express d2y/dx? in terms of x and y.

(W.J.C., part)

30. Find dy/dx if y = b sin 0 and x = a cos 6.

31. Find dy/dx and d%/dx® for the curve x =asecl, y=
btan 6.

32. Finddy/dxand d?y/dx*forthecurvex = a cos® 0, y = a sin® 0.

33. Find an expression for dy/dx for the cycloid x = a (¢t -+ sin 1),
y =a(l — cos ).

34. A curve is given by the parametric equations

x=a(tsint+cost—1), y=a(sint—tcost).

Find dy/dx and d2y/dx2 in terms of . (J.M.B,, part)
35. The equations of a curve in parametric form are

x=4cosf+3sinf+2, y=3cosf—4sinf—1

Find dy/dx at the point where § = /2. *r.u)
36. If y = (w2 — 1)" show that (w? — 1) dy/dw — 2nwy = 0.
37. If y = sin (m sin™* x)showthat (1 — x?) d%/dx® — x dy/dx +
miy =0,
38. If y = /(4 + 3 sin x) prove that

2 2
2y &2y 2(9) +y'=4 (S.UJB,part)
dx dx

39. If y = cos 6 find dy/df and d?y/d6?, and prove that

02 °
d’ dy
02— 4- 40 —= 2 +2)y=0
08 + 6 +(6* + 2)y
40, If z = [v + /(1 + v)]? show that

2,
a +v2)§;§+v§§—p2z=o
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11
SOME APPLICATIONS OF DIFFERENTIATION

11.1. THE DERIVATIVE AS A RATE MEASURER

IN this chapter we shall apply our knowledge of the derivative of a
function to a variety of problems. Most of the applications are
based on one of two interpretations of the derivative, viz. as
measuring the rate of change of the function with respect to the
variable, or as measuring the gradient of the tangent to the graph of
the function at a particular point. We begin by using the first
interpretation.

Example 1. At what rate is the area of a circle changing with
respect to its radius when the radius is 1 cm?
If r cm denotes the radius and 4 cm? the area of the circle,

A= ar’
d4 = 27r
dr
d4

when r = 1 c¢m, =2wcm’cm  (Note the units)
r
Example 2. The radius of a circle is increasing at the rate of 0-1
cm/sec. At what rate is the area increasing at the instant when
r=5cm?

As before A4 = #r? and is given as a function of r, which itself is a
function of the time ¢ (since r changes with time)

dA _d4 dr
dt  dr “dt
= 27r.01
when r = 5cm,
dA

— =27 X 5 X 0-1 cm?sec
dt

= 7 cm?/sec
the rate of change of area when r = 5 cm is 7 cm?/sec.
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THE DERIVATIVE AS A RATE MEASURER

Example 3. Water is poured into a vessel, in the shape of a right
circular cone of vertical angle 90°, with the axis vertical, at the rate
of 8in.3/sec. At what rate is the water surface rising when the
depth of the water is 4 in.?

Let the depth of the water after ¢ sec be x in., and the volume of
water in the vessel at this time ¥ in.3. Let the radius of the water
surface at this time be y in. (Figure 11.1.)

The volume of water in the vessel is ¥ in.? = }wy%x, but since the
semi-vertical angle is 45°, x = y.

V = }mx®

Figure 11.1

The rate of increase of ¥ with respect to # is 8 in.%/sec
ie.
aw_ 8 in.%/sec.
dt
But

dv 4V dx o dx
Tx: =
dt dx dt dt

the value of dx/ds when x = 4 in. is such that

1671-4)-6 =8
dt
de 1 in./sec = 0-159 in.[sec when x = 4 in.
dt 2w

Exercises 1la

1. The length / ft. of a particular rod at temperature °C is given
by I = 2 + 0-0000274z + 0-0000000446s>. Find the rate at which
Iis increasing with respect to ¢ when ¢ = 100°C.

2. A spherical balloon is inflated by pumping air into it at the
rate of 80 ft.3/min. Find the rate at which the radius is increasing
when the radius is 4 ft.
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SOME APPLICATIONS OF DIFFERENTIATION

3. The radius of a sphere is increasing at the rate of 0-1 cm/sec.
When r = 5cm find the rates at which the surface area and the
volume are increasing.

4. A gas expands according to the law pv = constant where p is
the pressure and v the volume of the gas. Initially v = 1000 m?
and p =40 N/m? If the pressure is decreased at the rate of
5N/m®. min* find the rate at which the gas is expanding when its
volume is 2000 m3,

5. The distances # and v of an object and its image from a lens of
focal length f are related by the formula 1/v + 1/u =1/ f. An
object 5cm from a lens whose focal length is 2:5cm is moved
towards the lens at a speed of 10 cm/sec. Find the speed with which
the image begins to recede from the lens.

6. Gas is escaping from a spherical balloon at the rate of 30
m®/min. How fast is the radius decreasing when the radius is 3 m?

7. At what rate is the surface area of the balloon decreasing in
Exercise 6?7

8. Water is running out of a conical funnel at the rate of 1
in.%/sec. The radius of the base of the funnel is 5 in. and its height
is 10 in. Find the rate at which the water level is falling when it is
4 in. from the top.

9. A kite, 100 ft. above the ground is being carried horizontally
by the wind at a speed of 12 ft./sec. At what rate is the inclination of
the string to the horizontal changing when 200 ft. of string are out?

10. The radius of a sphere is r in. after ¢ sec. Find the radius
when the rate of increase of r and the rate of increase of the surface
area are numerically equal.

11.2. SOME APPLICATIONS TO KINEMATICS

If a body, moving in a straight line, has travelled a distance s
after time ¢, then the rate of change of s with respect to time will be
the speed v of the body

ds
= — .L(11a
v=7 (1L1)

In the same way the rate of change of the speed with respect to time
will be the acceleration a of the body

2
a=@=£(£1§)=d_s .(112)
dt dt\ds de?

An alternative expression for a may be obtained as follows:
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SOME APPLICATIONS TO KINEMATICS

We may regard v as a function of s, which is a function of 7.
Thus by the function of a function rule for differentiation

g v _dv ds
dt ds dt
dv

a=v— ....(11.3
s (11.3)

It is conventional in dynamics to denote differential coefficients
with respect to time by dots placed above the dependent variable.
Thus ds/dt is denoted by $, d2s/ds? by §. With this notation

dv

v=§; a=13=s"=vd
s

Example 1. A body moves in a straight line so that the distance

moved s ft. after time ¢ sec is given by s = 2 — 21 + ¢. Find an

expression for the speed of the body at time ¢, and find the times

at which the body is at rest. What is the acceleration of the body

at these times? :
s=8—-2241t

v=§=32—4t+41
When v = 0, ¢ satisfies the equation
3 —4r4+1=0
BGt—D—1)=0
t=1%1 or t=1

The body is at rest after times § sec and 1 sec.
The acceleration of the body after time ¢ sec is given by @ =
v=6t—4

when ¢ = §, a=2— 4= —2ft[sec?
when f = 1, a=6—4=2ft/sec?
Example 2. The speed of a body varies inversely as the distance

it has moved. Show that its acceleration is proportional to the
cube of its velocity.
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With the usual notation

v = — where k is some constant
s
a_v@_v(:ﬁ> _ _ bk
s s? s?
vk .
= - since s = -
() "
v
03
a=— ;c— which proves the result.

So far we have dealt with a body moving along a straight line.
The same mathematics can be applied to a body rotating about a
fixed axis. If 6 is the angle through which the body has turned
after time ¢, the angular speed of the body is given by

== .14
=7 (11.4)

The angular acceleration Q is given by
=——=—=u— ....(1L5)

Exercises 11b

1. A body moves a distance s ft. in ¢ sec along a straight line
where s = 3¢%. Find the speed and acceleration of the body after
2 sec and after ¢ sec.

2. The speed v ft./sec at time ¢ sec of a body moving along a
straight line is proportional to #:. Find the speed of the body
after 2 sec if its acceleration is then 12 ft./sec2.

3. The distance s ft. moved by a body after ¢ sec is given by s =
#* — 3. Find its speed after # sec. After what time(s) is the body
at rest?

4. Find the acceleration @ of the body in Exercise 3 at any time
t sec. When is the acceleration zero ?

5. A body moves in a straight line so that the distance s ft.
travelled after time ¢ sec is given by s = 3 — 4¢2 4 4. Find the
two positions of the particle when it is momentarily at rest. What
is the acceleration of the body at these times?

6. A particle moves along a straight line so that its distance s ft.
from a fixed point after time ¢ sec is given by s = sin n¢ where n
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is a constant. Show that its acceleration is proportional to s and
directed towards the fixed point.

7. Show that the speed of the particle of Exercise 6 is given by
nJ(l — s?).

8. The distance s, moved along a straight line by a particle, after
time 7 is given by s = }#%. Show that its speed v and acceleration
a satisfy the relation, a® = 27v%

9. If the speed of a body is proportional to the cube of the
distance it has travelled, show that its acceleration is proportional
to the fifth power of the distance travelled.

10. A body is rotating about a fixed axis so that the angle 0,
through which it has rotated after time ¢ sec is given by 6 = bt +
at®. If o denotes the angular speed of the body and € the angular
acceleration of the body show that

w? — b2 = 2Qf

11.3. APPROXIMATIONS
The derivative of a function is defined to be

Figure 11.2

It follows that if we write dy/dx = dy/dx + « then the quantity «
approaches zero as dx approaches zero, so that if dx is small so
also is «. Thus we may write

6y=d—y.6x+oc6x
dx

The second term on the right, being the product of two small
quantities, will be negligible in comparison with the first term. Thus

sy ==Y sx ....(1L6)
dx

Figure 11.2 shows the graph of the function y = f(x). P is the
point (x, y), Q the point (x -+ dx, y + dy). Thus the change in the
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function dy as x changes to x + dx is given by the length of QN.
If PT is the tangent to the curve at P, then provided dx is small
TN == QN, so that dy == TN and since

TN = PN tan TPN = §x f'(x)

0y =1f'(x) x = dy ox as before.
dx

Example 1. Given cos 45° = 1/,/2 = 0-7071 calculate the value of
cos 45° 1’,
Consider the function y = f(x) = cos x
f'(x) = —sinx (provided x is measured in radians)

Thus if x = =/4,

Ix=1 = L . — radians
60 180
.o 1 x
0y = —sin—- . —.—
4 60 180
v
= — ———— = —0-0002
10800,/2
cos45° 1" =y + Jy
= 0-7071 — 0-0002

cos 45° 1’ = 0-7069 approximately.

Example 2. The strength of the magnetic field due to a current 7
amp in a wire in the form of a circle of radius r cm, at a point x cm
from the centre of the circle and on the axis of the circle is given by
Ir?
H=—""—— gauss
S(rz + x2)3/2 g
If 7=10 and r =4 find the approximate change in H when x
changes from 3 cm to 2-9 cm.

wlr?

H=-—"T"___
5(,.2 +x2)3/2

iI_i . 3al rix
dx 5(r® -+ x%)%2
3xlrix

~_ _TIrX __ 4

GRS
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APPROXIMATIONS
When x = 3,dx = —01,r=4and I =10

SH = _3mX10x16x3, 1
5 x 25%% 10
=_L440L = 0-0289
5 x 31250

Thus the magnetic field increases by approximately 0-029 gauss.

Example 3. The value of g the acceleration due to gravity is
determined by means of a simple pendulum of length / cm. The
period T sec of the pendulum is measured and g is calculated from

the formula T = 2«7 ! . The experimenter feels that he is able to

measure / accurately but realizes that his measurement of T is
subject to an error of 1 per cent. What is the percentage error in the
calculated value of g?
4n?]
&= e

where [ is the length and T the time period. However, since T is
subject to the error 6T = T X 1é35 the experimenter will calculate
the value g + 8g where Jg is the error in g.

dg
0g == = 6T
£ 4T
472l T
dg = —2 X X —
& ™ " 100
2 47 2
= — — X —_ — — g
100 T2 100

the percentage error in g is thus approximately 29, and is
opposite in sign to the error in 7.

Exercises 1lc

1. tan 45° = 1, cos 45° = sin 45° = 1/,/2. Evaluate tan 45° 1’ to
four decimal places.

2. Using the values sin 45° = cos 45° = 0-7071, determine the
values of sin 45° 1’ and cos 45° 1’. Use these two values to determine
sin 45° 2’ and cos 45° 2’ and then calculate sin 45° 3’ and cos 45° 3'.
(In this way we could construct a complete table for sin 6 and
cos § at 1’ intervals for . In fact the same calculation is carried out
each time with slightly different numbers. This is just the type of
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calculation which an electronic computer can handle very rapidly
and efficiently.)

3. The radius of a circle increases from 2 in. to 2-03 in. Find the
approximate increase in its area. Find the actual increase.

4. The volume of water in a hemispherical bowl of radius 12 in.
is given by V = {m(36x% — x®) where x in. is the greatest depth of
the water. Find the approximate volume of water necessary to
raise the depth from 2 in. to 2-1in. If the water is poured in at the
constant rate of 3 in.%/sec, at what rate is the level rising when the
depth is 3 in.?

5. Find the approximate percentage change in the volume of a
cube of side x in. caused by increasing the sides by 1 per cent.

6. The radius of a spherical balloon is decreased from 10 cm to
9-9 cm. Find the approximate change in its volume.

7. Find the approximate change in the surface area of the balloon
of Exercise 6.

8. The volume of a gas expanding adiabatically is related to its
pressure p by the law pv? = constant (where » is a constant). If
dp and dv denote corresponding small changes in p and v respectively,

op ov
show that 7= —r -

9. The area of a triangle is calculated from the formula A =
3ab sin C with the usual notation. The sides @ and b are measured
accurately as 10 in. and 12 in., but C is subject to an error of any-
thing up to }° about the measured value of 40°. Find approximately
the maximum error in A.

10. y = x% If x is decreased by 0-2 per cent find the approximate
percentage decrease in y. Hence find an approximate value for
(99-8)2.

11.4. THE TANGENT AND NORMAL TO A CURVE

f'(x) measures the gradient of the tangent to the curve y = f(x)
at the point with abscissa x. The gradient of the tangent at the point
with abscissa x; is then f'(x;). Thus the equation of the tangent to
the curve at the point (x,, y,) on the curve is by (18.6)

¥y — = f'(x)x — xp) ....(aL7

The normal to the curve at the point (x;, y;) on the curve is the

line through this point perpendicular to the tangent to the curve.

The gradient of the normal is thus —1/f"(x,) and the equation of the
normal is by (18.6) 1

o f "(x1)
226
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THE TANGENT AND NORMAL TO A CURVE

Example 1. Find the equation of the tangent and normal to the curve
y = 3x® — 5x at the point (1, —2).

y=f(x) = 3x2— 5x
f'(x)==6x—5
fd)y=6.1—-5=1
the tangent at (1, —2) has equation
y=—(=2)=1x—-1
ie. y+2=x—1
ie. y=x—3
The normal at (1, —2) has equation
y—(=2)=-1(x~-1)
i.e. y=—x-—1

Example 2. Find the equation of the tangent to the circle x2 4
y? = 2a? at the point (g, a).

x? + y? = 2q®
—( )+ (yz)—O
w+2y¥P o
dx
. dy_ _x
dx y
at the point (g, a),
y_
dx

the tangent to the circle at (, a) has equation
y—a=—(—a)
ie. y=—x-+2a

Example 3. Find the equation of the tangent to the curve y = 2x2 —
x 4 3 which is parallel to the line y = 3x — 2.
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With y=f(x)=2x*—x+3
dy
dx
The line y = 3x — 2 has gradient 3
f'(x) =3 when 4x—1=23, ie. x=1

Thus the point of contact of the required tangent is (1, 4).
the equation of this tangent is

y—4=3x—1)
ie. y=3x+41

1d1Exercises

1. Find the equation of the tangent and normal to the curve

= 3x% — 6x -+ 1 at the point (2, 1).

2. Find the equation of the tangent and normal to the curve
y = x% — 3x% + 2 at the point (1, 0).

3. Find the equations of the tangents to the curve y =
x(x — 1)(x — 2) at the points where it crosses the x-axis.

4. Find the equation of the tangent to the hyperbola x* — y* = 16
at the point (5, 3).

5. Find the equation of the tangent and normal to the curve
x% 4 xy + y? = 3 at the point (1, 1).

6. Find the equations of the tangent and normal to the curve
y* = 4ax at the point (a, 2a).

7. Find the equations of the tangents to the curve y = x? — 6x% -
9x + 4 which are parallel to the x-axis.

8. Find the equations of the tangents to the curve y = x3 —
5x? -+ 8x + 1 which are parallel to the line y = 5x — 7

=f'(x) = 4x — 1

9. Find the equation of the tangent to the curve y = + T Wthh
is perpendicular to the tangent at the point (I, —1) to the curve
y=x%—4x - 2. x

10. Find the equations of the tangents to the curve y = I

which are parallel to the line y = x. X

11.5. THE MAXIMUM AND MINIMUM VALUES OF A
FUNCTION

Figure 11.3 shows the graph of a function y = f(x).
The point A is called a local maximum of this function. The value
of the function at A exceeds its values in a certain neighbourhood of
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A. Similarly C is a local maximum and B a local minimum. As
can be seen B is not the absolute minimum value of the function,
the value at D for example being less than the value at B. This is the
reason for the term “local” minimum, although in much of the
literature this word is omitted although generally implied.

94 C

N\ o —
/N

B y=1(x)
D

Figure 11.3

The positions of the points A, B, C may be determined by using
the property that the derivative is zero (the tangent is parallel to
the x-axis) at local maxima or minima.

To distinguish between local maxima and local minima we shall
examine the derivative in the neighbourhood of A and B respectively.
Near A the derivative is positive to the left of A, zero at A and

Figure 11.4

negative to the right of A, i.e. it changes sign from negative to
positive as x increases. Near B the derivative is positive to the
left of B, zero at B, and negative to the right of B, i.e. it changes
sign from negative to positive as x increases. Figure 11.4 shows the
graph y = f(x) together with the sign (or zero’s) of its derivative
marked on it.
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In those regions in which f'(x) is positive we say that f(x) is an
increasing function of x; in those regions in which f'(x) is negative
we say that f(x) is a decreasing function of x, and at A, B, C where
f’(x) is zero we say that f(x) is stationary. A, B, C are often referred
to as the stationary points of f(x).

The observations above enable us to state the following rules for
determining the stationary points (or turning points) of a function
and distinguishing between (local) maxima and minima.

I At a turning point f'(x) = 0.
II At a local maximum, f’(x) changes from positive to negative
as x increases.
At a local minimum, f'(x) changes from negative to positive as
x increases.

In practice we evaluate (or at least examine the sign of) f'(x) for
values of x just less than and just greater than its value at the turning
point.

Example 1. Find the nature of the turning points of the function
y=x—2x*+x+4.

Y32 _ax 1
dx

At the turning points dy/dx =0,

ie. 3x2—4x +1==0

Bx—Dx—1)=0
x=4% or x=1
Consider the value x = 3. When x = } (a convenient value just
less than %)
dy 1 3

1
—3X ——4X=41="=
dx 16 FRIEET:

When x = } (a convenient value just greater than ¥)

DS SVE SRS S g
dx 4 2 4

Thus since dy/dx changes sign from positive to negative, when
x == }, y is a maximum, the value of y being

R R R T
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For the value x = 1. When x = 0-09,
dy

d— =3 X081 —-4x%x094+1=—017 is negative
x
When x = 1-1
g—y =3 X121 -4 x11+1=023 is positive
x

Thus when x = 1, y is a minimum, the value of y being 1 — 2 4-
1+4=4

A second procedure for distinguishing between maximum and
minimum values may be obtained as follows. In the region of a
maximum f"(x) changes sign from positive to negative as x increases.
Thus f'(x) is a decreasing function of x in the region so that f "(x) is
negative. Near a local minimum, f'(x) is an increasing function so
that £(x) is positive.

Hence at turning points giving maximum values f"(x) < 0 and at
turning points giving minimum values f”(x) > 0.

If at a turning point £"(x) = 0, ro conclusions can be drawn using
the above argument and we have to resort to our original criterion
for distinguishing between maximum and minimum values.

For the example just considered,

d%
f(x) === =6x —~ 4
) Tt

When x = },

d?y . .

—~=2—4=-2 is negative

dx? 8
When x = 1, PE

Yo 6—4=2 is positive

dx?

Thus x = } gives a maximum and x = 1 gives a minimum for y.

Example 2. Find the maximum and minimum values of y =
x% — 6x2% + 9x.

dy =3x*—12x +9
dx
= 3(x? — 4x + 3) = 3(x — 1)(x — 3)
dy = whenx=1 or x=3 and these give the
dx turning values.
2
99 _x—12
dx?
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When x =1,

2
% =—-6<0 and so gives a maximum value of 4 for y.
x
When x = 3,
d?y ..
— =18—-12= 6>0 and so gives a minimum value of
dx 0 for y.

Example 3. Rectangles are inscribed in a circle of radius r. Find
the dimensions of the rectangle which has maximum area.

Figure 11.5 shows the circle with one such rectangle ABCD
inscribed in it. O is the centre of the circle.

. oE_E

<>
N
>

Figure 11.5

Let BC = 2x. Let E and F be the mid points of BC and AB.
Then since FB? = OB? — BE? = r? — x2, FB = ,/(r? — x2).

AB = 2./(r? — x?)

the area of ABCD = 4 = 4x,/(r? — x?).
For the maximum value of 4, d4/dx =0

4x*
4/ — %) — ————=0
4(r* — x> — 4x* 0
\/(rZ _ x2)
2 2
40 — 2x) = 0 so that
J =)
rP—2x*=0, ie x= —LZ (only the positive value is valid)
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When x < r[/2, d4/dx is positive since then r?2 > x*. When x >
rl\/2, d4/dx is negative. Thus 4 is a maximum when x = r/\/2.
(This method for distinguishing between maximum and minimum
values is more convenient in this example than calculating d24/dx2.)

Thus 4 has a maximum when the rectangle has dimensions
\J2r by /2r; ie. itis a square.

Example 4. The point X is 21 miles south of the point Y. At
noon a boy starts from X and cycles due east at 9 m.p.h. At the
same time a second boy starts from Y and cycles south at 12 m.p.h.
Find their least distance apart.

YA
2t
v

—_

N
-

- ———
o]

X<gt>a
Figure 11.6

At time ¢ hours after noon the first boy is at A 9¢ miles east of X,
and the second boy is at B, 12¢ miles south of Y (Figure 11.6).
If d is their distance apart,

dz = BX? + AX?
d? = (21 — 12¢) + (9¢)?
= 22512 — 504t + 441
d is a minimum when d2 is a minimum, i.e, when
(%(dz) = 450t — 504 =0
i.e. when t=3508—§8

2
(% (d®) = 450  which is always positive

t = &% gives a minimum for 42 of

2
aag S04 X6 oo 56 . 1008 x 56 , 56 x 504
50 502 100 100
— 441 — 8 x504 _ 15876
100

the minimum value of d == 12-6 miles.
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A Further Note on Maxima and Minima Although in most cases
f'(x) will be zero at a maximum or minimum value, the essential
property of such points is that f'(x) should change sign. Figure
11.7 shows the graph of the function y =1 — x%/3; the sign of
dy/dx is marked on the graph. This function has a maximum at
x =0 but dy/dx = §x~/3, although it changes sign as x passes
through 0, is not defined for x = 0!! This is also true for the
function y = |x| whose graph is shown in Figure 9.3.

y
(01

o 0 o~ *

Figure 11.7

Exercises 1le

L. If y = (x — 1)(x + 2)?find the maximum and minimum values
of y.

2. Find the maximum and minimum values of y = x(x — 1)2.

3. Find the maximum and minimum values of y = x—zj— 1

4. Find the maximum and minimum values of sin 7 + } cos 2¢.

5. Show that the maximum value of @ cos 6 + b sin 0is./(a® + b?%).
Can you show this without using the calculus? What is the minimum
value?

6. Find the dimensions of the largest right circular cylinder which
can be cut from a sphere of radius r.

7. An isosceles triangle of vertical angle 20 is inscribed in a circle
of radius r. Find an expression for the area of the triangle as a
function of 6, and show that this is a maximum when the triangle is
equilateral.

8. A right circular cone is constructed to have a total surface area
4. Show that its volume V = }r./(42 — 2wAr?) where r is the
radius of its base. Hence show that the largest such cone has
semi-vertical angle tan—* (1/2,/2).

9. The force exerted on a small magnet placed at a distance x
from the centre of a plane circular coil of radius a, and along the
axis of the coil is proportional to x/(x* + a2)5’* when an electric
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current flows in the coil. Show that the force is a maximum when
x = 3a.

10. A man is situated at A, a miles from a road XY (Figure 11.8).
He wishes to reach the point Y where XY = & miles. His speed on
the road is # m.p.h., and his speed across country is v m.p.h. (4 > v).
If he wishes to reach Y as quickly as possible find the position of the
point P where he joins the road.

A
A
' N
al
[}
¥
X P Y
- —————— ->
b
Figure 11.8

11.6. POINTS OF INFLEXION
Consider the function y = x3(x — 4) = x* — 4x3.

Y 48— 125 = 4x¥(x — 3)
dx
dy
dx

Near x = 3, dy/dx changes sign from negative to positive as x
increases through the value 3. Thus x = 3 gives a minimum value
of —27 for y. Near x = 0, dy/dx is negative for x just below zero,
is zero when x is zero, and is negative again for x just greater than
zero. Thus although dy/dx is zero, since dy/dx does not change
sign as x passes through this value, this point gives neither a maximum
nor a minimum value for y.

Figure 11.9 shows the graph of the function y = x3(x — 4).
The sign of dy/dx is indicated on the graph.

At B the function has a minimum value and at the origin thereis a
point called a point of inflexion. At such a point the graph of the
function changes from being concave up to concave down or vice
versa. (In our particular case it is the former.) As the value of x
increases through zero, the derivative changes from negative to
zero, and then to negative again, i.e. at O the derivative has a
maximum. This is true quite generally; at a point of inflexion
the derivative has a maximum value or a minimum value. This
latter condition enables us to give a criterion for finding points of
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inflexion, for at points at which dy/dx is a maximum or a minimum

2
Q—J; = and changes sign.
dx
This is the case in our present example where
2
9Y 1230 — 24x = 12x(x — 2)
dx
- k y +
i _ +
© 3 (] 4,0/
ol > +
- +
- +
- h 0 A
B
Figure 11.9

which vanishes and changes sign at the origin from positive to

negative.
Although it was so in the example chosen it is not necessary that
dy/dx be zero at a point of inflexion (see Figure 11.10). In Figure

I y

7 (A

(a) (b)
Figure 11.10

11.10a the curve has a point of inflexion at A. dy/dx is a maximum.
In Figure 11.10b the curve has a point of inflexion at B. dy/dx
is a minimum. In both cases d?y/dx? = 0 and changes sign but

dy/dx £ 0.
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To sum up the results of this and the previous section:

@)

' 2
If dy =0 and d—}; < 0, there is a maximum value.
dx dx
(i)
2
If dy =0 and dy > 0, there is a minimum value.
dx dx®
(iii)
. d¥ , . . . .
If Qs 0 and changes sign, there is a point of inflexion.
X

....(119)

Example 1. Find the maximum and minimum values and the
points of inflexion of y = x3 — 6x2% ++ 9x + 1.

Y3k 1% 49 = 3(x — 1)(x — 3)
dx
dy/dx is zero when x = 1 or when x = 3
2
Y 6x—12
dx
2
When x = 1, & _6<o0
dx
2
When x = 3, d—)—;=6>0
dx
d?y/dx? = 6x — 12 is zero when x = 2 and changes sign. Thus
when x =1, y has a maximum value of 5,
when x =3, y has a minimum value of 1;

and there is just one point of inflexion at the point (2, 3).

Exercises 11f

1. Find the position of the point of inflexion of the curve y =
2x3 — 5x* — 4x + 1.

2. Find the positions of the points of inflexion of the curve
y = 3x% — 4x3 4 2,

3. Find the positions of the turning values and the point of
inflexion of the curve y = x® — 2x2 + x -+ 3.
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4. Show that for the curve y = x%, d?y/dx? = 0 and changes sign
at the origin. Plot the graph.

3. Show that for the curve y = x4, d2y/dx® = 0 but does not
change sign at the origin. Plot the graph.

11.7. CURVE SKETCHING

On many occasions it is useful to make a rough sketch of a curve
without plotting a large number of its points. Outlined below is a
systematic procedure which should enable the shape of the curve to
be obtained. It is not always necessary to consider every point
detailed below.

(/) Determine if the curve is symmetrical about either of the
co-ordinate axes. If its equation involves only even powers of x
it will be symmetrical about the y-axis; if only even powers of y
are involved it will be symmetrical about the x-axis.

(if) Examine the behaviour of the function for large positive and
large negative values of x, i.e. examine y as x — 4-c0.

(iii) Seek values of x for which y is not defined. Some common
examples will be values of x which make the denominator of a
rational function zero or which make y* negative.

(iv) Find the value of y when x = 0, and if convenient the value(s)
of x when y = 0. This will give the points where the curve crosses the
axes.

(v) Calculate dy/dx and examine its sign. Where dy/dx is positive
the graph will slope up from left to right, where dy/dx is negative
the graph will slope down from left to right.

(vi) Find the turning points and points of inflexion.

Example 1. Sketch the curve y = x* — 24x% 4 64x + 10.
(?) There is no symmetry about either axis.
(if) When x — 40, y — oo, the dominant term being x*.
(iii) y is defined for all x.
() y =10 when x =0. y =0 when x satisfies x* — 24x2 +
64x -+ 10 = 0 and this equation is not easily solved.
(v) dy/dx = 4x® — 48x + 64 = 4(x® — 12x + 16)
=4(x —2)%x + 4
dy/dx is positive for x > —4 and negative for x < —4 since
(x — 2)?is always positive.
(vi) dy/dx is zero when x = 2 or x = —4
2
% — 125 — 48 = 12(x — 2)(x + 2)
x
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When x = —4, d?p/dx? = 144 > 0 so x = —4 gives a minimum
value of —374 for y.

When x = 2, d?y/dx? is zero and change sign. Thus x = 2 gives
a point of inflexion with the tangent parallel to the x-axis. x = —2
gives a second point of inflexion. The curve is sketched in Figure
11.11.

y A

Figure 11.11

Example 2. Sketch the curve y? = x.

(i) The curve is symmetrical about the x-axis.

(i) when x — o0, y — co; when x — — 00, y is not defined.

(iii) y is defined only if x is positive.

(i) y = 0 when x = 0. The curve passes through the origin.

(v) With y? = x, 2ydy/dx = 1, i.e. dy/dx = 1/2y. Thus when y
is positive (negative) dy/dx is positive (negative).

AY

Figure 11.12

(vi) dy/dx is never zero so there are no turning values, but at the
origin dy/dx — o as y — 0, i.e. the curve is vertical. It is shown in
Figure 11.12.

2x + 1
x—1"
() There is no symmetry about either axis.

Example 3. Sketch the curve y =
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SOME APPLICATIONS OF DIFFERENTIATION

(i) When x — 400, y— 2. For large (positive or negative)
values of x the graph approaches the line y = 2. (A horizontal
asymptote.)

(iii) y is defined for all x except x = 1. When x is just less than
one y is large and negative; for x just greater than one y is large and
positive. x = 1 is a vertical asymptote.

(v) Whenx =0,y= —1land wheny =0, x = —}.

dy _(@x—1—2x—1_ 3
dx (x — 12 (x — 1)?

dy/dx is always negative, and since it is never zero there are no
turning values. The curve is shown in Figure 11.13.

@)

y

(0,2) \\

T~ 0 .

01,0)
\

Figure 11.13

Exercises 11g

Sketch the curves:

L@ y=x% () y=2x% (i) y=—2x (iv) y=x2+1 (v)
y=x2—-3@)y=6x2+41@i)y= —3x*+ 1(viii)y = —2x% —
4 (ix) y = ax?® + b.

2@ y=0— 12 @) y=20x— 1) @i y=—2(x — 1)? (iv)
y=Gx—1+1 @) y=x—2 @) y=x+1)* (i) y=
6(x 4 1) (iid) y=—2(x — 22 (ix) y=2(x —2)2+3 (x) y =
3x —2P4+8x)y=—(x—52+4(xii)y =alx — b2+ c.

3. Dy=x2@)y=x2(i)y=x(@{v)y = xb

4. Dy=2x@)y=-33G)y=x*+2@{)y=x*—6(v)
y=x+ b))y = ax® + b@i)y = 3x* — 4 iii)y = 3(x — 1)? +
4(@x)y=6(x —2*+3(xX)y=(x—13—17.

5.0 y=x(x—1) @) y*=x(x—1) (i) y=x%x—1) (iv)
Y=x¥x—1) () y=x(x — D(x —2) @) )* = x(x — )(x — 2)
il) y = x(x — 2)? (viii) y* = x(x — 2)2.

6. Dy=x2—6x—T()y=3—"Tx+ 4x%
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7. ()y=x*—6x+ 4 (ii) y = x® — 5x* + 5x% — 2.
8. y* = x3 (pay particular attention to the form of the curve near
the origin).

9. Wy=—= ()y——— ) y=—=
<fv)y=2x"_1 ©y=2H eny=13
(vid) y = iﬁ (o) y =X

- :
N

10. Sketch the curve y = x" Consider four cases (i) n is a
positive even integer, (i) n is a positive odd integer, (iii) n is a
negative even integer and (iv) n is a negative odd integer.

EXERCISES 11

1. Water is poured into a hemispherical bowl of radius 6 in. at a
rate of 5 in.3/sec. At what rate is the water rising in the bowl when
the depth of water is 2in.? (The volume of a cap, of a sphere of
radius R, whose height is A is #h*(R — h/3).)

2. The distances # and v of a point and its image from a lens of
focal length f are connected by the relation 1f/u + 1jv = 1/f. If
f =10 cm and the object is moved towards the lens at 2 cm/sec find
the speed of its image when this is 25 cm from the lens.

3. The efficiency of an engine is given by E = 100(1 — r~1/%)
where r is the compression ratio. Find the rate at which E is
changing with respect to r when r = 7.

4. A pipe delivers V' m? of water in ¢ sec, where V' = 12t — #2[10.
At what rate is the water delivered after 10 sec?

5. Sand falling from a chute forms a conical pile whose height is
aIways 2 times the radius of the base. How fast is the radius of the
base increasing when it is 3 ft. if the sand falls at the rate of 24
ft3/min ?

6. A body moves along a line according to the law s = * —
9¢2 -+ 24¢. Find the positions of the body when its speed is zero and
when its acceleration is zero.

7. A particle moves along a straight line Ox in the time interval
0 < t < m; after ¢ sec its distance from O is x ft. where x = ¢ 4

sin 2z.

Calculate the values of ¢ between O and = when the direction of
motion changes, and show that the particle always remains on the
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SOME APPLICATIONS OF DIFFERENTIATION

same side of O. Find also the times at which the acceleration is
zero. Sketch the graph of x for 0 < ¢ < m, and state the largest
value of x in this interval. (J.M.B))

8. A vehicle moves from rest on level ground in such a way that its
speed is v ft/sec; when it has covered a distance x ft, x is given by

) 20?
the relation x = %0 —2"
Sketch a graph showing v as a function of x, and show that the
. ., . (60 —v)y .
acceleration of the vehicle is 3(120 — o) ft./sec?. (J.M.B))

9. The period of oscillation of a pendulum is calculated from the
formula T = 2m./(I/g) where [ is the length of the pendulum and g
the acceleration due to gravity. Find the percentage error in the calcu-
lated value of T if g is taken to be 32 ft./sec? instead of 32-2 ft./sec*.

10. The side of a triangle is calculated by means of the formula
a? = b% 4 ¢ — 2bc cos A. If an error of 1° is made in the measure-
ment of 4 find the approximate error in the calculated value of a
when b = 10cm, ¢ = 15¢cm and 4 = 60°.

11. The pressure p units and the volume v units of an expanding
gas are related by the law pv'-4 = k, where k is a constant. If the
volume increases by 0-3 per cent, estimate the percentage change in
the pressure. (J.M.B., part)

12. Prove that the gradient of the curve y = x® + 6x? + 15x +
36 is positive for all values of x. Show that the curve has a point of
inflexion when x = —2, and state the gradient of the curve at this
point.

Write down the equation of the tangent to the curve at the point
where x = 0, and find the co-ordinates of the point where this
tangent meets the curve again. (J.M.B))

13. Find the abscissae of the points on the curve y = x* — 3x% —
2x + 1 at which the tangent is equally inclined to the co-ordinate
axes.

14. Find the equation of the tangent to the curve y* = 3x*x + 1)
at the point (2, 2). Show that this tangent intersects the curve again
at a point R and that it is the normal to the curve at R.

15. The curves (i) x2 — y® == 15 (ji) xy = 4 intersect at a point
in the first quadrant. Find the equations of the tangents to both
curves at the point, and show that they are at right angles to one
another. (W.J.C)

16. If y is such that dy/dx = x%(x — 1)*(x? + 1), find the values
of x for which y has stationary values and state the nature of the
stationary values. (W.J.C, part)
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17. The curve whose equation is y = ax® 4 bx* 4 c¢x + d has a
point of inflexion at (—1, 4), has a turning point when x = 2 and
passes through the point (3, —7). Find the values of a, b, ¢, d and
the position of the other turning point.

x+4)
18. Show that (x—zr——lz)z/a

approximately, and find its minimum value. W.J.C)
19. (i) Find the maximum and minimum values of the function
tan 2x cot? x, and the values of x, in the range 0 < x < =, at which
they occur.
(i) Find the maximum and minimum values of y, and the corre-
sponding values of xif 9y 4 6xy 4 4x2 — 24y — 8x + 4 =0.
WJ.C)
20. A right circular cone is inscribed in a sphere. Prove that the
volume of the cone cannot exceed & of the volume of the sphere.
21. Show that the function of y = x1/*(1 — x *"1/%)1/2 where
2 v/l
v+ 1)
22. Find the maximum and minimum values and the points of

has a maximum value of 0-945

y (>1) is a constant, has a maximum when x = (

inflexion of the function xZL—i—l , and show that the points of

inflexion lie on the line 4y = x.

23. Find the stationary values of the function f(x) =1 —
;CQ_Z + %; and determine their nature. Sketch the curve y = f(x). (L.U.)

24. A tree trunk is in the form of a frustrum of a right circular
cone, the radii of the end faces being a and b respectively (¢ > b)
and the distance between these faces being /. A log in the form of a
right circular cylinder is cut out of the trunk, the axis of the cylinder
being perpendicular to the end faces of the frustrum. Show that,
if & < 2a/3, the volume of the log is a maximum when its length is
al{3(a — b). If b > 2af3, what is the length of the log when its
volume is as great as possible. Lr.u)

25. Aright circular cone of semi-vertical angle 6 is circumscribed
about a sphere of radius R. Show that the volume of the cone is
V = inR3(1 + cosec 0) tan? 0 and find the value of 0 when Visa
minimum.

26. If y =2 sin x 4 tan x, prove that d2y/dx® = 2 sin x (sec® x — 1).
Show that for 0 < x < /2 the gradient of the function is greater
than 3, and that for #/2 < x < = the function has a turning point
and is zero for a value of x other than =. Sketch these two branches
of the graph of the function. (S.U.J.B)
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27. Find the maximum and minimum values of the function
x/(x® + 3x + 1). Sketch the graph of the function. (S.U.L.B)

28. Find the abscissa of the point of inflexion on the curve
y = ax® 4+ bx® -+ ¢x + d where a, b, ¢ and d are constants.

29. Sketch the graphs of (i) y = oot L () y =213

9. Sketch the graphs of (i) Y =373 (i) y=31T7
x*—12x + 27 | 2x2 4+ 4x + 7

@ y=a 5 W= w5

30. Find the equation of the tangent to the curve y = 1/x at the
point (1, 1) and the equation of the tangent to the curve y = cos x
at the point (72, 0). Deduce that 1/x > cos x for 0 < x < /2.

(J.M.B,, part)

31. Sketch with the same pair of axes the graphs of the functions
y=x—=2¥ y=x—2?*+4; y=(x— 2)2— 4. Indicate on
each graph the co-ordinates of the turning point and of the points
where the graph crosses the axes. (J.M.B))

*32. A straight line of variable slope passes through the fixed
point (g, b) in the positive quadrant. Its intercepts on the co-
ordinate axes are p and q. (p,q both positive). Show that the
maximum value of p + ¢ is (\/a + /b)*

*33. Show that there is just one tangent to the curve y = x® —
x - 2 which passes through the origin. Find its equation and point
of contact with the curve.

*34. A right circular cone is inscribed in a sphere of radius a.
If its volume is a maximum, show that its altitude is 4a/3. In the
cone of maximum volume a right circular cylinder is inscribed.
Show that the maximum volume of this cylinder is 32/243 of the
volume of the sphere. tan 0

*35. The efficiency of a jack is given by E = tan @+ 4) where

0 is acute and A is constant. Show the maximum value of E is
1 —sinA
1+ sin A

and find the value of 0 for which this occurs.
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12

THE LOGARITHMIC AND
EXPONENTIAL FUNCTIONS

12.1. THE LOGARITHMIC FUNCTION y = log, x

Figure 12.1 shows the graph of y = log,, x . y is only defined for
positive values of x. As x approaches zero y becomes large and
negative, changing very rapidly with respect to x. Thus when
x =001, y = —2, when x = 0-0000001, y = —7 etc. As x takes

y

|

on large positive values y increases but only very slowly with respect
to x. Thus when x = 100, y = 2, when x = 1000, y = 3, when
x = 10,000, y = 4 etc. When x =1, y = 0. The general charac-
teristics described above and the sketch of Figure 12.1 are true for
the function y = log, x where a is any constant.

We shall now evaluate precisely the derivative of the logarithmic
function as opposed to the rather vague statements above. None
of the methods of Chapter 10 are applicable to the function y =
log, x and we have to resort to the method of differentiation from
first principles.

If y =1log, x,y + dy = log, (x + 6x)

dy = log, (x + 6x) — log, x
— loga(x -+ 5)6) — loga(l - 6_x)
b

X

y=log, X

Figure 12.1
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THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS

ox X x

= l.—x—loga(l + éf)

x Ox
L2
él = 1 log, (1 -+ éﬁ)
ox x X
x/dx

Y Limit? — L timitlog, (1 +9’-‘) (A
dx 5220 0X X sw—0

To evaluate ant log, (1 + 8x/x)*/** we replace x/dx by n. Then
ox—0is eqmvalent to n approaching “infinity” (n — oo) and the

1 3
required limit may be written log, | Limit { I + ) ] *

n—o

A full investigation of Limit (1 + ) is beyond the scope of this

fn—>0

course. For the present we shall content ourselves with the evalua-
tion of (1 + %) for n = 10, 100, 1000, 10000. With the aid of six

figure logarithms we have
(1 + #5)'° = 2:5936

a+ —ﬁ)m = 27046
(1 + 1d55)1%0 = 2:7164
(1 + Toboe) ™™ = 27182

A brief study of these results should convince our readers that

n
as n increases {1 - - is going to approach a limiting value

between 2:5 and 3-0. A fuller study of the problem reveals that
1" . .
Limit (1 + -) = 2-71828 to five decimal places. This number.

n— o0

holds a very important place in all higher mathematics and is
denoted by the symbol “e.” Although the above argument is at
best tentative the conclusion is correct and we have

¢ = Limit (1 -+ l) ==2-71828 .12
n—+ n

* We have written Limit (Log . ..) = Log (Limit . ..). To prove this ‘“appar-
ently obvious” result is beyond the scope of this course.
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THE LOGARITHMIC FUNCTION y = log, x
Thus if we return to (A) we see that

£ (log, x) = 1 log, e ....(12.2)
dx x

For a given value of a, log, ¢ is of course just a constant. If a = e
so that loge @ = 1 we have the result

9 logex) =1 ...(12.3)
dx X

¥ = loge x is called the natural logarithm of x. We may of course
calculate the logarithm of x to any base, (logarithms to the base 10
are very convenient for calculations, natural logarithms are very
important for the theoretical aspects of mathematics) but it is only
when the base is e, that the derivative of the logarithmic function is
1/x, otherwise it is 1/x log, e.

Example 1. Find dy[dx if (i) y = loge 1/x (ii) y = loge sec x.
(i) y = loge 1/x = loge u where u = 1/x

G _dy g 1 1) (o) =t
dx du dx u\ x? x? x

[i (loge l) __ 4 (loge x) - loge 1_ —loge x]
dx X dx x
(i) y = loge sec x = loge u Where u = sec x
d-—y=g).-d—u:l.secxtanx
dx du dx u
QX = tan x
dx
Example 2. Find dy[dx if y = log,, x?
By (1.28)
y = log;o x® = log;s € X loge x* = 0-4343 loge x2
= 0-8686 loge x
dy  0-8686
dx x

Example 3. Find dy/dx if y = loge f(x)
y = loge f(x) = loge u where u = f(x)
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d f'(x)
— [loge fi = — ....(12.4
™ [loge f(x)] £00) (12.4)
Exercises 12a
Find dy/dx when:
1. y =loge 2x. 2. y=1loge1/x*. 3. y =logesin x.
4. y =loge(ax +b). 5. y=Iloge(x—1).
6. y = loge tan x. 7. y = loge (sec x 4+ tan x).
8. y = loge sin® x. 9. y=xlogex — x.
loge x 1 —x
10.y——)—c——. 11.y—loge1+x.

12. y = cos x loge sin x.

13. Find dy/dx if x + y + loge xy = 2.

14. If y = loge x/x, show that dy/dx is zero when x = e.
15. If y = x loge x, find d%y/dx2.

12.2. THE EXPONENTIAL FUNCTION

The exponential function is the inverse of the logarithmic function.
Thus if y = e®, x = logey. Figure 12.2 shows a sketch of the
function y = e®. The function y = a® possesses the same general
characteristics. Figure 12.2 may be obtained directly from Figure 12.1.

The derivative of the function y = € is obtained using (10.17).
Thus if

y=¢e
x = loge y
dx _ 1 pya23)
dy vy
-d;y =
d
d(e%)
= —e® ....(125
ix (12.5)

For the function y = ¢® it is convenient to write the constant a
in the form a = e'°%*. Then

y = a% = (emgea)z — evlogea
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THE EXPONENTIAL FUNCTION

To differentiate y with respect to x we need the rule for differentiating
a function of a function

y=¢e>  where v=uxlogea

_ Q do_ loge a . e®198°
dx dv dx

ie. ‘—i‘—v- = logea.a® ....(12.6)
dx

/(0,1

Figure 12.2

Example 1. Find dy/dx when (i) y = e**¢ (ii) y = sin 2xe?".
(i) y = %% = e% where u = cos x

dy dy du u

e e*. (—sin x) = —sin xe®*”
@) y = sin 2x e®*
By (10.4) dy = sin 2x — (e2"') + e“ — (sm 2x)

c;-ix (ez”) = c;c (e*)  where u = 2x

=i(”) du_ o v X 2= 2e™
du dx

4 (sin 2x) = 4 (sin u) where u = 2x
dx dx

=—d—(sinu).c—lg=cosu X 2 = 2cos2x
du dx

dy

1 = 2e2sin 2x + 2e2*cos 2x = 2e**(sin 2x + cos 2x)
X
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Example 2. If y = €3 show that d?y/dx® — 5dy/dx 4 6y = 0.
With y = ¢%*

d_y=i(e").9ﬂ where u = 3x
dx du dx
— 3e3x
d?y d
—= == 3 — (e%%) = 9¢®*
dx? dx( )
d? d
d_x};‘— (1_;15]+6y=9e”——5 X 3¢% + 6e® =0

Example 3. Find dy/dx if y = ef*®),

y=e" =¢*  whereu =f(x)

dy_dy & peo
dx du dx
ad; 6] — f(x)et® (127

Exercises 12b

Find dy/dx when

1. y = e, 2. y=¢e*, 3.y =esinz,

4. y=¢e—" 5. y = e, 6. y=2"

7.y =3, 8. y = cos x €% 9. y=xe".

10. y = ﬁé—:& . 11. y =¢e®loge x. 12. y =e*sin x2.

13. If y = a e?® 4 b ¢ ?® show that d2y/dx? = p?y.
14. If y = e*® show that d?y/dx? — 3 dy/dx + 2y = 0.
15. Find m if y = €™ is such that d?y/dx® — 3 dy/dx — 4y = 0.

12.3. LOGARITHMIC DIFFERENTIATION

Logarithmic differentiation is the name given to a particular
technique which can be very useful in helping us to obtain the
derivatives of certain functions. The technique is illustrated by the
following examples.

Example 1. Find dy[dx if y = .
With y = ¢*, we first take logarithms on each side to give

loge y = loge (6*°) = x3
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" LOGARITHMIC DIFFERENTIATION
On differentiating this with respect to x we have

d d
=q = 2 (x%) = 3x?
5 doge ) = = () = 3x

d dy 2
—(lo == == 3x
dy( 2e ¥) o

Ldy* _
y dx

3x?

so that dy_ y X 3x* = 3x? e

dx

This same result can be obtained by (12.7). Consider however a
second example:

Example 2. Find dy/dx if y = x®, where (12.7) cannot be used
directly.
We have loge y = loge x* = x loge x by (1.27)

d
= (loge ) = f)—c (x loge x)

14y _ v 9 (logex) +logex - (x) by (10.4)
ydx dx dx
1dy = x(-l-) + loge x(1) = 1 + loge x
y dx b
dy 2
Ix = y(1 + loge x) = x*(1 + loge x)

In order to apply (12.7) we would first have to write x in the form
x = el°e?, Then (cl°%:%)® = e™oge = (12.7) then yields the result
above.

These examples indicate one class of function for which the
technique of logarithmic differentiation is appropriate, viz. those
functions which contain a power that involves the variable, although
if powers of e are involved (12.7) is more direct. The properties of
logarithms sometimes make the method of value in dealing with
algebraic functions.

* The result d/dx (loge y) = 1/y dy/dxshould be memorized once it is thoroughly
understood how to obtain it.
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THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS
x — 1\/3
x+1)
The complications involved in differentiating this function arise
from the cube root, and the quotient. The technique of logarithmic
differentiation removes them, for with

(x_l)l/a
y= x+1
x—1

1 I ("_1)1/3 1
0gey =loge{——| =-1lo
Boy =108 \ L 11 3 81

Example 3. Find dy/dx if y = (

by (1.27)

loge y — % [loge (x — 1) — loge (x - 1)] by (1.26)

1_d_)_)=1< 1 . 1 ): 2

ydx 3\x—1 x+1/ 3x—Dx+D
gz_—z—(x_l)l/:i

dx  3(x*—D\x +1

Our readers should verify this result by other methods.

Exercises 12¢

Find dy/dx if:
1. y = etanz, 2. y=¢". 3. y = xsina,
4. y = (sin x)". 5. y = (loge x)*. 6. y = x*1,
2 2 + 13
7. y =¢e* 4+ x= 8. y=¢e" + x* 9, y= 1) .
10 X2 — 1\L/4 x —
=)

12.4. POLYNOMIAL APPROXIMATIONS FOR A
FUNCTION AND MACLAURIN’S SERIES

. . 1 . 1
Consider the function f(x) = —%" Provided x # 1, ===
1+ 1 j 5. a8 is readily verified by simple algebra. Multiplication

of this identity by x gives




POLYNOMIAL APPROXIMATIONS AND MACLAURIN’S SERIES

so that on substitution we obtain

1 x?
—— =1+x
I—x + +1—x

2
1 =14+x with error d
1—x 1—x

ie.

Multiplication by x shows that

3

X
= x + x?
1—x * +1—x
1 2
so that —=1+x+x*+
1—x 1—x
3
i.e. L 14+x+x?  with error X
1—x 1—x

In this way we may obtain the successive polynomial approxima-

tions 1, 1 4+ x, 1 + x + x2, 1 + x -+ x? + x3, etc. to the function
x? x3 x4
l—x’1—x"1—x"1—x

For |x| < 1, the errors involved by using the approximations will be
small. Thus if x = 0-1, the error involved in using the approxima-

1 . O hich i
1_lxlS'—()?'WlC s a
percentage error of 100 (0-1)4, i.e. 0-01 per cent. This is not so if
x > 1 and the approximations are no longer so useful.

The first polynomial above (viz. 1) is equal to f(x) when x = 0.
The second polynomial (1 + x) and its first derivative are equal to
f(x) and its first derivative respectively, when x = 0. The third
polynomial and its first and second derivatives are equal to the
function and its first and second derivatives respectively when
x =0 etc.

This suggests that in general we may be able to find a polynomial
approximation to any function f(x) by setting

f(x) =ay+ ax + ax? + ... +ax* ....(12.8)

and choosing the a’s so that the function and its first » derivatives
when x = 0 equal the polynomial and its first » derivatives respec-
tively when x = 0.

1 . .
= with respective errors

i etc.

tion 1 + x 4 x* + x® for the function
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The first n derivatives of the right hand side of (12.8) are:

a; + 2a,x + 3azx® + ... + na,x"?!
2a; + 3tagx +4.3ax2 4 ... 4 n(n — Da,x"?
3lag+4lax +...n(n — 1)(n — 2)a"x"2

when x = 0, these derivatives have the values
ay, 2! ay, 3l a, 4! ay, . . . n! a, respectively.

On equating these to f'(0), £"(0), £”(0) . . . f*(0) we have

a4 =), ag =9 o "Q O _{0O
21 31 rl n!

a, is determined by making the polynomial of (12.8) when x = 0
equal to f(0), i.e. a, = f(0).
Thus we obtain

2 fll(()

£(x) == £(0) + x£'(0) + x 72 +oF ....(12.9)

x"f™(0)
n!
We can now see immediately that for this procedure to be possible
f(x) and its first # derivatives must exist and be continuous at x = 0.
The method will fail for example for the function f(x) = loge x,
since neither this function nor its derivatives are defined at x = 0.
In order to obtain a satisfactory approximation the difference
between f(x) and the polynomial (12.9) must decrease with increasing

n. For the function S e saw that this was the case provided

1—
|x| < 1. In general it is not easy to evaluate the difference between
f(x) and the polynomial (12.9). Further consideration of this
difficult problem is beyond the scope of this course and we shall only
record the following very important result; that there exist many
functions f(x) which together with all their derivatives are defined
and continuous at x =0, and for which (for some values of x)
the infinite series

£(0) + x£'(0) +

is convergent.

2en 3em rer
xf(0)+xf (O)+.“+xf(0)+”
2 3! r!

254




POLYNOMIAL APPROXIMATIONS AND MACLAURIN’S SERIES

For such functions f(x), the limit of the sum of this series is f(x),
provided x lies within the interval for which the series is convergent,
and we may write

f(x) =£(0) + xf'(0) +

x2f 11(0) + } xSf/r/(O)

x"7(0)
2! 3! !

+...+ +...

....(12.10)

The series on the right of (12.10) is known as the Maclaurin
series for f(x).

is

1
Example I. Show that the Maclaurin series for —
1

—— =14 x x4 x4
1—x

With  f(x) = ﬁ =A—x7 - f0)=1

fx) =010 —x7 s £0) = 1!
f7(x) =1.2(1 — %) s (0) = 2!
f"(x)=1.2.3(1 — x)—* o 70y = 3!
ff(x) =1.2.3...r(1 — x)~tr+0 s f7(0) = r!
By (12.10)
1 _ 2 2! o 3 1!
l_x-l—l—x.l—f—x.2!+x.3!+...+xr!—{—..
=14+x4+x>+...+x+..
1 —x

This is an infinite geometric series and is convergent for —1 < x < 1
(see section 2.4).

Example 2. Assuming the series below is convergent show that

X2 X X

s1nx=x—3—!+§i—ﬂ+...
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With f(x) = sin x, f(0)=0
fi(x) = cos x, fil0) =1
fii(x) = sin x, fi(0) =0
flii(x) = —cos x, fii(0) = —
fiv(x) = sin x, fiv(0) =1 etc.

We can now see that the values of the successive derivatives
when x = 0 are going to repeat the sequence 0, 1,0, —1,0, 1, 0,
—1 etc. Thus by (12.10)

a(=1)

0 Q)
31 IRRT]

sinx =0 +x. ———]—x + + x 5|—|—..

3 5 x7 9

. x®  x X
smx—x—i—}—g—!—ﬂ—l—-g—!—}-...

It can be shown that this result is true for all x (in radians).

Exercises 12d

1. Show that
2 3
L —l—x+-2—=1—x+x2—
1 +x 1+ x 1+ x 14 x
=1—x+x*—x*+
+ 1+x
2. Show that the Maclaurin series for ——— is
1+ x
1 =1—x+x2—x®+.. . (=% +...
1+ x
For what values of x will this result be valid?

x3 x3 x5 x3 X8 x7?

3. Evaluate x, x — 3 X 3'—|— is X — 3'_;_5_% for

x = m[6. Compare the values with sin 7/6 = 0-5. (Compare with
Example 2.)
4. Assuming the convergence of the series below, show that
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5. Using the previous question and Example 2, obtain polynomial
approximations for sin x and cos x. Compare these with (6.60) and
(6.61).

6. Starting with the inequality sin x < x [see (6.59)] show by

integration* from O to x that cos x > 1 — and then by integra-

i s
3
tion from 0 to x that sin x > x — 2, and then by integration from

2 g4 3!

0 to x that cos x <1 — 37T 71 Ste- Compare with the previous
examples. )

7. Show that if n is a positive integer (12.9) gives the polynomials
I, L+nx, 1+n +”(" D 14n +( Dy ..
nx™! 4+ x™ as successive approx1mat10ns to (1 + x)”. The last
approximation is of course exact. What is the Maclaurin series for
(1 + x)» when (i) nis a positive integer (i{) n is not a positive integer ?

8. For f(x) =tan x show that fi(x) = sec?x, fi(x) = 2sec? x
tanx, fii(x) =4sec®xtan?x - 2sectx, f¥(x) = 8 tan x (sec®x
tan? x + 2 sect x), f¥(x) = 8 sec? x (sec® x tan? x + 2 sectx) + 8 tan x
d/dx (sec? x tan? x 4 2 sec? x). Hence show that (12.9) gives as

. o . x®

successive approximations to the function tanx: x, x4 3
n x3  2x°
T

9. Evaluate the polynomials of Exercise 8 for x = =/6. Compare
the values obtained with tan «/6.

10. Show that for the polynomial f(x) =a + bx -+ cx® +
dx3 4 ex* (12.9) gives as successive approximations (n = 1, 2, 3, 4),
a-—+ bx,a+ bx + cx?a+ bx 4 cx® + dx3,a + bx + cx? + dx® +
ex®. What is the Maclaurin series for f(x)?

12.5. THE SERIES FOR ¢®* AND log, (1 + x)

In this section we shall use (12.10) to obtain the Maclaurin series
for the functions €” and loge (1 4+ x). [We have already mentioned
that the method of (12.9) will fail for the function loge x but as we
shall see it is satisfactory for loge (1 + x).]

Iff(x) = ¢
) =f"x)="x)=...="(x)=...=¢"
O =f"0)="0)=...=f"0)=...=1

* See next chapter.
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by (12.10)
e _ e 1, s 1 r 1
ef=1+x.14+x .2!—|-x .3!+...+x .r!—{—...

3

@ x® X Xt X
e=1+x+T T+ Tk 21

It may be shown (although the methods required are beyond the
scope of this book) that this series is valid for all values of x.
If we replace x by (—x) we obtain

(= X)2 =%, =0
=1+ (—x)+ tegr g T
2 3 4 5 A
ie. _1—-x+5-'—3°—+——’5‘!+...+(-—-1)—x+..
..(12.12)
For the function loge (1 4 x) we have
f(x) = loge (1 + x) S f(0) =loge 1
=0
fi(x) = (1 + x)? s fio) =1
fii(x) = —1(1 + x)2 S i) = —1
flii(x) = (—1)(—2)(1 + x)~3 s fii) = 21
fY(x) = (—1)(—2)(—3)(1 + x)~* o f(0) = —3!

......................................

') = (—1)(=2)...[-@~DIA +x)™" .. 0=
= (=)™ — DI+ 9 (=1 — 1!
Thus the Maclaurin series for loge (1 4 x) is

loge(1 +x) =04 x.1+ x2. (= 1)+ 8 §'+x4(::’5!)+
i.e. !
Eoxt X X°

loge(l+x)=x—’f+£-————!—————+...
2 3 4 5 6
It may be shown that this series is convergent only if —1 < x < 1.
Thus more precisely we have
xs x4 (__ 1)r+1xr

2
loge (1 +x)=x—%+?——+...

4 +...

for -1<x<1 ....(1213)
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If we replace x by (—x) in (12.13) we obtain

(=% (=x)° _ (=0
2 T3 4

loge(1 — %)= —x — for -1 < x<1

ie.

x2
loge (1 — x) — —(x +2 4

3 4

® o x X X )
+4+5+...—|—r—i—...

3
for —1<x<1 ....(12.19

Example 1. Calculate e to 3 decimal places.
From (12.11)

x2

x2 x4
=1 X XX L
M Y TR
With x = 1,

1 1,1 1 1
e—1+1+2—!+§+:!+'5—!+a+...

== 1-0000 +- 1-0000 - 0-50000 + 0-1667 + 0-0417
=+ 0-0083 4~ 0-0014 + 0-0002 +. ..
=2:718...

and this result is accurate to 3 decimal places since the remaining
terms of the series do not affect these places. (Compare this value
with the value obtained in section 12.1.) For values of x < 1
(or >1) it will require fewer (or more) terms of the series (12.11) to
obtain the same accuracy for ¢*.

Example 2. Find the Maclaurin series for e3*,
From (12.11)

Xz x3 xt

x -

€ —1+X+2!+3!+4!+---
with X = 3x,
sz __ (x| (3x)®
e —-1+3x+—2! +—-—3! +...

ox?  27x*  8ix* 3%
—1+3x+a+-37+ m +...+ - +...
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Example 3. Evaluate loge (1-1) to 4 decimal places.

x3

xt %
—— = 4+=—... for—1<xx1
3 4+5 <

x2
loge (1 +x)=x—5 +
with x = 1%, which is within the range of convergence,

loge (1-1) = 0-1 — Q;)_l | 0001 _ 0:0001

0-00001
3 4 t 5 "'

= 01 — 0-005 + 0-00033 — 0-000025 + 0-000002 — ...
= (0-100335) — (0-005025) + . ..
= 0-0953 to 4 decimal places

Example 4. Show that for small values of x
2 3
(1 +2x)6 + loge (1 + 2x) == 1 + 3x —7% +Z;‘—
By (12.12) and (12.13)
(1 + 2x)e™® + loge (1 4 2x)

2 3
=(1 +2x)(1——x+x5—%+...)

) @) @
+[2x 2 + 3 4 +}

2 3 3
=1—x+x5—2;——}—2x—2x2—}—x3+2x—2x2+8?x-+...

=1 +3x—%x”+%x3 as far as terms in x°.

The Calculation of Logarithms—The series (12.13) and (12.14) for
loge (1 + x) and loge (1 — x) are convergent for —1 < x < 1, and
—1 < x < 1 respectively. They will therefore only allow us to
calculate the natural logarithms of numbers from just above zero

to two.
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Some simple manipulations of these series enable us to extend
this range. Provided —1 < x < 1

log, (%‘C) — log, (1 + x) — log, (1 — x)

— X

loge(i+)—2(x—{— x® = x—f— x+ x+ )

....(12.15)
With x = §,

3
loge(i) =2(;+ +ﬁ)+ +ﬁ+ )
log, 3 == 2(0-5 + 0-041667 + 0-00625 - 0-0011161
+ 0-00021702)
== 2(0-54929)
== 1-0986
Example 5. Show that if n is positive
R EETRE (e~ REICEY P

From (12.15)

1 1 1 1
loge(1+i) =2(x+§x3+§x5+;7x7+...)

1+x

with — n,x = =L hich is less than 1 if n is positive.
- X n+1

Iogn—Z[ 1+1<"_1)3+1("_1)5+ ]
¢ n+1 3\n4+1/ 5\n4+1/ 7

..(12.16)
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This series is quite useful for calculating logarithms However,

for large values of n, is near to one and a large number of

.
n+1
terms of the series (12.16) will be needed to obtain a satisfactory
approximation to loge n.

With n = 2 we have
1,11

11
log, 2 2(3-!—3.33-}-5.35-1-...)

This series is clearly a better way of calculating loge 2 than the

series (12.13) with x = 1, viz.
10g92=1_%+%_i+%_%+--
Exercises 12e

1. Use the series (12.11) to evaluate Jeand 1 [e correct to four
places of decimals. Check your results from tables.

2. Use the series (12.13) to evaluate loge (1-2) and loge 0-9 correct
to four places of decimals. Check your results from tables.

3. Use (12.11) to write down the first few terms of the Maclaurin
series for (i) €2 (i) €% (jii) e*".

4. Use (12.13) to write down the first few terms of the Maclaurin
series for (i) loge (1 + 2x) (i) loge (1 — 3x) (iii) loge (1 + x2). For
what values of x are these series valid?

5. Show that loge (3 + 4x) =loge3 - 4x — 5x® -+ §4x3 — ...
and state the limits between which x must lie for the expansion to be
valid.

6. Show that

1 1) 1,1 1 1
He—=)=14+=4+=+=4...
2(e e BT TR T

1 1
and write down similar series for 3 (e -+ E)'

7. If x is so small that x* and higher powers of x can be neglected
show that €® + loge (1 — x) = 1 — 1x® approximately.
tan*x tan®x tan®x
2 T3 T s
.. For what values of x is the expansion valid?
9. If x > 1 show that

x+1 1 1 1
‘°ge( )=2(;+§+§+---)

x—1

8. Show that loge sec? x = tan®x —

By putting x = 3 evaluate loge 2.
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10. Show that if x is so small that x* and higher powers of x may
be neglected

loge (1 — 2x — 3x2) = —2x — 5x% — 28x3,
[Hint: loge (1 — 2x — 3x2) — loge (1 _ 3x)(l + x)
= loge (1 — 3x) -+ loge (1 + x)]

EXERCISES 12

1. Differentiate the following functions with respect to x
(&) 3x® — 1) loge x (ii) e” loge 2x (iii) e 2% cos 4x.

2. Differentiate with respect to ¢ (¥) loge (1 + €%%) (ii) loge (tan }7)
(#ii) loge (cot ¢ -+ cosec f).

3. If y = x"loge x show that x dy/dx = x™ -+ ny.

4. If yloge y = x find dy/dx in terms of x and y.

(J.M.B., part)

5. If y=e*¥cosd4x find dy/dx and express it in the form
Re?* cos (4x - «), where R is a positive constant; state the cosine
and sine of the constant angle «. Hence write down d2y/dx? in a
similar form. (J.M..B., part)

. ~df € ) . d ( log 0 )
6. Find — ——).
n L dt(l — % (i) do\6 +log 6

7.Find (i) dix (e*™"®) (i) dix[sin (loge X)].

8. If y = sin (loge x), show that

o4y dy
x dx® +x dx ty=0
9. Show that
N 2 -1
Ol {loge [x + /(x* + D]} = N
ood 2 _ 1
(1) 3 (ke [ + (3 = DI} = 75—

10. Differentiate with respect to x (i) loge./(x + 1) (if)
loge [./(x + 1) + /(x — D).

11. Show that if y = xe~%, d?y/dx? 4 2dy/dx + y = 0.

12. Show that if y = e~**sin 5x, d2y/dx? + 4 dy/dx + 29y = 0.
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13. If y = 2e~* — &% show that d?y/dx? + 2 dy/dx — 8y = ke*®
where k is a constant, and state the value of k. (J.M.B., part)
14, If y = loge (1 + cos x), show that

d3y/dx® + d?y/dx?.dy/dx = 0.
15. If y = e**7" 2 gshow that
(1 + x?) d%y/dx?* — (1 — 2x) dy/dx = 0.

16. If y = e~2®cos 4x show that d2y/dx? +- 4 dy/dx + 20y = 0.
17. If y = tan™! (%) show that d2y/dx? = 2(dy/dx)? cot 2y.

18. If x =1#%, y =loget, find dy/dx and d?y/dx in terms of ¢
19. If x = ¢?, y = loge ¢, find dy/dx and d?y/dx? in terms of ¢.

1
20. Find the stationary value of Oie x.

21. Show that y == xe™® has one maximum value which occurs
when x = 1.

22. innd the positions of the points of inflexion of the curve
y = e/

23. Find the equation of the tangent to the curve y = e* at the
point (0, 1).

24. Find the position of the point of inflexion on the curve

= xe~®. Sketch the graph.

25. The speed of signalling in a submarine cable is given by
Kx%log (1/x) where K is a constant and x is the ratio of the radius
of the core to the thickness of the insulating material. Show that the
speed of signalling is a maximum when x = 1/,/e.

26. Show that if v = 100p(1 4 loge r) — 100gr where p and g are
constants then v is a maximum when r = p/q.

27. Find the position of the point of inflexion on the curve

2
y = loge x + E Sketch the graph.

28. For what values of x is the derivative of xe~** zero?
29. Differentiate with respect to x (i) (loge x)'°%e % (ji) x® + etanz,
x
31. Find the gradient of the tangent from the origin to the curve
y =loge x. Hence, by considering a sketch of the curve find the
range of values of the constant K for which the equation loge x =
KXx has two unequal roots.
Draw a graph of y = loge x from x = 1 to x = 19 and use it to
find to two decimal places the smaller root of 4 loge x = x.
(J.M.B)
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32. Show that 1 < e® < e® for 0 < x < ¢. By integrating* this
inequality from 0 to x show that: x < e* — 1 < e°x and then by

x2 x2 x8
the same method that 21 <et—x—1<e° 2 and that 3 <
I - ! ! !
L< __ —_ C o
€ 51 X 1<e3!etc.,to
x'n+1 xn x’n—l x2 xn+1
< —— — e — = —x—1<e¢° .
(n+ D! n! (n—1)! 2 (n + D!
x? x?
Deduce that the difference between ¢* and 1 + x + 21 +.. e

tends to zero with increasing n.
33. Show that €* loge (1 + x2)==x2 + x* + §x® for x < 1.
0.1

Find the approximate value of J s log (1 + x?) dx*.

0
34. Assuming the convergence of the series below show that
(@) secx=14+ x>+ Lext 4 ...

(i) loge cos x = —§x? — Joxt — Jex® + . ..

(iii) loge (1 + %) =loge2 + $x -+ $x* — ggex* + .. ..

35. Write down the expressions in powers of x, as far as the term
in x2, of (i) e~2 (if) (1 — 4x)'/2. Use your series to find to five
decimal places the difference in the values of these two functions
when x = 0-01. (S.U.J.B.)

36. Show that if —4 << x < 3§ then

3 4
loge(l+x—2x2)=x——;x2+7?x—11—x-+... (L.U., part)

37. Obtain the expansion of loge (1 + x + x%) (f x < 1) in

powers of x. State the coefficients of x5, x®", x%"*1,
— y3
Hint: 1+x+x2=11_);.

38. (a) Expand logecos 6 in a series of ascending powers of
sin? 0, giving the terms up to sin® §, and the general term. For what
values of 6, in the interval 0 < 6 < m, is the expansion valid ?

(b) Given that y = (2 + x)2e¢, find the expansion of y in
ascending powers of x as far as the term in x® Find also the ex-
pansion of loge y in ascending powers of x as far as the term in x?,
and state the coefficient of x™. (J.M.B))

39. (a) Expand the function e2%/(1 — x)* in a series of ascending
powers of x up to and including the term in x°.

* See next chapter.
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1+ cos@

(b) Prove that T —oosd = cot? 0. Write down the first three

terms in the expansion of loge (1 + x) in ascending powers of x.

Express loge cot® 36 as a series of powers of cos 6, giving the first

three terms and the nth term. (J.M.B)
40. Use (12.15) to show that

1 i 1 ¥ 1/ 1 ¥
1 n ):2[ —( ) _( ) -..}
oge(n—-1 m—1 31 Tse =)t

provided n > 1. Hence evaluate in succession loge 2, loge 3, loge 4,
loge 5, loge 6. (Some of these may be checked using the first two
values.)
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13
THE BASIC IDEAS OF INTEGRATION

13.1. INTRODUCTION

IN the preceding chapters we have been considering the problem of
finding the differential coefficient or rate of change of a given
function. The integral calculus to which we now turn our attention
is concerned with the inverse problem, viz. given the rate of change of
a function, to find the function. In symbols we require to find f(x)
where

df(x) = g(x) ....(13.1)
dx

and g(x) is given. It is more usual to write

f(x) =fg(x) dx ....(13.2)

and we define integration as follows.

Definition—The integral of a function g(x) with respect to x is the
function whose differential coefficient with respect to x is g(x) and it is
written { g(x) dx.

The reason for this notation will be explained later (see section
13.6); meanwhile (13.2) is to be regarded as an alternative way of
writing (13.1).

If we are required to find § 3x2dx then { 3x%dx = x® because

3
de) = 3x2, Similarly

dx
fsin xdx = —cos x because d(—cosx) _ gn x
dx
f dx _ log, x because 4 (log, x) = !
X dx x

267



THE BASIC IDEAS OF INTEGRATION

13.2. ARBITRARY CONSTANT

We recall that the differential coefficient of a constant is zero ;
hence there is not a perfectly definite value for the integral. In the
previous three cases we have the more general results.

f X*dx=x*+C because di (x* 4+ C) = 3x?
b
fsin xdx = —cosx 4 C because c—ld— (—cosx + C) = sin x
x

f(—l—)f =log,x +C because 4 (logex + C) = L .
X dx x
An arbitrary constant can always be added to the result and hence

fg(x) dx = f(x) +C
This is known as the indefinite integral of g(x).

13.3. STANDARD FORMS

To find f{(x) given g(x) means that we have to retrace the steps we
made in the process of differentiation and then add an arbitrary
constant. Unfortunately there is no general method for doing this,
but a few of the more common integrals can be stated from our
knowledge of differential coefficients. These results are known as
standard forms.

fsinxdx = —cosx -C
fcosxdx =sinx + C
fe’” dx =e* 4+ C
n xm+l )
x™ dx = +C provided n % —1
n+1
%C)—C =log,x 4 C
dx 1. _;x
=—tan"" -+ C
faz—!— x? a a + )
doc a 1s a constant
N sin!Z + C




\ STANDARD FORMS

The ‘dx’ which appears in all these integrals indicates that the
integration is with respect to x. Thus while we have that { cos x dx =
sin x + C, { cos x dy cannot be evaluated unless more information
is available to enable us to change the integral with respect to y
into one with respect to x.

It cannot be emphasized too much that the ‘x’ in the above list
stands for any variable quantity and could just as well be written
as y, z, u, v etc. Thus

fe"dy=e”+C
du 1. U
= = tan +C
fu2+9 3

fgz=logez +C
z

Example 1. Integrate the following functions with respect to x:

() x® (i) ¥/x (i) 1/x8 (i) 1/\/x3 (@) 1//(O — x?) (vi) 1/(25 + x?)

(vii) sin? {x.
9
¢)) fx dx = J;— +C
i) f{’/x dx =fx”3 dx = =

4/3

ro=3xrc

43 4
(i) f—dx—f “*dx———-+c_ _—1—5+c
Sx

(iv) f——adx -—f X" dx = _1/2+C= :—2~]—C
v —3% N

(v) f;/TQ——-—x_z)-dxzsnl 13 +C

1 1 x
vi =-tan = 4+ C
(D) J 25+ x% 5 5
(vii) For § sin? $x dx we notice that this integral is not included
in our list of standard forms. However, and this is not an uncommon

device, it is possible to rewrite sin® x by means of a trigonometric
identity in a form which is immediately integrable. Thus since

cosx =1 — 2sin®ix

.ax 1
sin“==>(1 —cos x
) 2( )
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and fsinz X dax =f(1 — 1cos x) dx
2 2 2

=%x—;%sinx+c

Example 2. Find y in terms of x if d®y/dx? = 6x — 4 and further
y = 0 when x = 0 and dy/dx = 3 when x = 0.
Since d?y[dx? = 6x — 4

Q:f(6x—4)dx= 3x2—4x + C
dx

Since dy/dx = 3 when x = 0
3=¢C
so that dy/dx = 3x2 — 4x - 3

y=J‘(3x2—-4x+3)dx=x3——2x2+3x+D

But since y = 0 when x =0, D = 0, so that y = x® — 2x% - 3x.

Exercises 13a
Integrate the following functions with respect to x:
1. x5/3 xu’ x—z/s’ 3 xz, x-—l’ \4/x5’ x2
1 1 1 1 1 1 1
X3 x2Tx 7 x T X1 Yt xR
3 1 1 1 1 1
V16 =371 =X G - x) G — 36— x)
1 1 1 1 1

4’ k4 b b 3 .
X441 X9 x4+ F x4k
5. sec?x, cosec®x, cos?4x (see Example 1 (vii) above), tan®x
(Hint: use sec? x = 1 - tan® x), cot? x.
54x—2x% 1 4 3x — 5x°

6. ,
x8 VX
7 ax® 4+ bx + ¢ 2x" 4 3x® 1 + 3x + 5x*
¢ x7 4 x5 ’ xn °
2
8. (1 — X%, (1 + 5w, @20
P

6
" cosec x’ sec x’

8 cos x — 6 sin x.
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10. Find y in terms x if dy/dx = 3x® — 6x + 2 and y = 7 when
x =0. .

11. Find v in terms of ¢ given that dv/df = 5 — 2kt where k is a
constant. If v = 0 when ¢ = 0 and v = 1 when ¢ = 1 find the value
of k.

12. Given d2x/d#? = 3 sin ¢ and that when ¢t = 0, dx/d? = —3 and
2

d
x =0, find x in terms of ¢. Hence show that _&ti: +x=0.

13. The slope of a curve at any point (x, y) is equal to sin x and
the curve passes through the point (0, 2). Find its equation.

14. What curve passing through the origin has its slope given by
the equation dy/dx = (x* — x)2?

15. A particle starts from rest at the origin and moves along the
x-axis. The acceleration of the particle after time ¢ is given by

d2x/ds? = 121> — 60t +- 32
Find an expression for x at time 7. Hence find the times at which
the particle again passes through the origin.
134. FIVE IMPORTANT RULES

All these rules follow from the definition of integration as the
reverse of differentiation. The first two rules will just be stated.
I. The integral of a sum of a finite number of functions is the
sum of their separate integrals. (““‘Sum” includes the addition of
negative quantities i.e. “difference.”)
Example 1.
f(xz + sinx + /x) dx =Jx2 dx —{—fsin x dx +f\/x dx

3

X 2 s
=— —CcosXx +-Xx C.
3 3 +

Example 2. J‘(e“E —cos x)dx = fe“ dx — fcos xdx

=¢e*—sinx + C.

II. A constant factor may be brought outside the integral sign,
Example 3. f6x4 dx =6 fx“ dx = &5 + C.
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Example 4. fé du = SJ‘E = 5log.u + C.
u u

Example 5. f(6 cosx —4x¥H)dx =6 f cosxdx — 4 fxz dx

=6sinx — x4+ C.

The third and fourth rules extend the applications of our standard
forms.

Consider { cos (x + 3) dx. From our standard forms the result
is possibly sin (x - 3), On differentiating sin (x + 3) with respect
to x, we do, in fact, obtain cos (x + 3).

Therefore | cos(x + 3)dx =sin(x + 3) 4- C and similarly fe*~2dx =
e 2 4 C.

f dx =log,(x +a) +C (a is a constant)

X +a

dx 1 x—2
—_—  — —tan C
f(x—2)2+9 3 3 +

hence the rule:

III. The addition of a constant to the variable makes no difference
to the form of the result.

Now consider § cos 5x dx. From our standard forms the result
sin 5x is suggested but on differentiating this latter function we
obtain 5 cos 5x. Since this only differs by a constant factor 5 and
not a variable factor from the required sin 5x we find that 1 sin 5x
when differentiated gives the required result. Therefore

fcos Sxdx = %sin5x + C
Similarly f e®dx=—ge® 4+ C

J‘coszdxz (sin)—c)/l=3sin£—l—c
3 3/13 3

1. ,2x
==-sinT—+C
2 3

f dx _ f dx
\/(9 — 4x%) \/ 9 — (2x)%
hence the rule:
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IV. Multiplying the variable by a constant makes no difference
to the form of the result but we have to divide by the constant.
Rules IIT and IV may be applied together.

Example 6. fe‘““ dx = 3e¥ 4 C.
dx

Example 7. Jé— = —log(2 — x) + C.
— X

Example 8. f\/(Sx +3)dx =f(5x + 3)2dx

_ (Sx + 3)3/2 1

+ C.
H 5
dx _ 4—-3x"(1
E le 9. J_:f4—3 5d =————-(—-—) C
xample @— 30y ( x)"°dx 2 - -+
1
-———+cC.
12(4——3x)4+
Example 10. |[o—2 . w the denominat
xample 10. | -3~ We express e denominator as a

sum of squares.

dx _ dx 1 L(x+2)
fx2+4x+13“ GFFFE 3@ 3 TG

d
Example 11. fm We express the expression under

the root sign as the difference of two squares.

1. ,3x—2
= - §In - C.
3 2

J‘ dx =f dx
J2x —9x%)  J /12* — (3x — 2)*]

Another useful rule is obtained by considering the derivative of
loge [f(x)]

4 _ 1 d. . _fX®
oy loge {1 =2 1) =4y
hence f % dx = log, [f(x)] + C.
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V. The integral of a fraction whose numerator is the derivative
of its denominator is the logarithm of the denominator.

4x3 — 1

Example 12. f———
P x*—x+2

dx = loge (x* — x +2) + C.

2
Example I3, f 3x -dx = loge (+* + 1) + C.
X

In some cases a constant factor has to be inserted to make the
numerator exactly equal to the derivative of the denominator.

Example 14.
f x 41 _ f 2x +2
x? 4+ 2x + 5 x® 4 2x + 5
= %loge (x*+2x +5) 4+ C.
Example 15.

e% 1 3e*
d dx——-lo e® — 1)+ C.
[eme=ifET @~ D

The separation into f'(x)/f(x) may not always be obvious.

Example 16.
d 1 dx
f X f = — Joge (loge x) + C.
x loge x loge x
Example 17.
jtan x dx =fm = _J"—sm Xdx = ~—loge cos x 4+ C.
COS X COsS X
Example 18.

B dx = loge (tan™ x) + C.
f(l-l—xz)tan 1x ftan a3, 0ge (tan™ x) +
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Exercises 13b

Evaluate:
1. (i) J‘(Zx + D0dx (i) f(S —x)dx (i) J.\/(7t + 5)dt
(iv) f(3u — 52 du.

. dx . dx dx
2@ f Gx+ )15 (&) f Jox+n 0 f 1 —xp
@) f V(1 — 3y)

3. (D) fsm (3x + 3)dx (ii) fcos (5u — 1) du (iii) fsin (1 —y)dy

(iv) f sin? x dx (v) f cos? x dx. (Express sin? x and cos® x in terms

of cos 2x.)
4. (i) f =% dx (ii) fe“‘*” dt (iii) Je““" du.
. dx
5. () fz 1 (ii) fl o (iii) fcotxdx
(w)fx25_)|c_1dx ()f 2x—|—1

xe®
. 4
(v fe"" +3 ¥ fx log, 3x

) fcosx +sinx d.

cosx—smx

dx
6. f____
(l)f 2 +5 ()Jl6t2+1 (i) x*4+x+ 4%

dx
7@ f Ja= 1602) ) f J{5 — 4x — 4x¥)

du
9 f\/(s F2u— )
8. (i) f x J‘:"l (i) f(z — 314t

9(')f1+42 ()flifi—drz (”)f\/(l

10. ()J'Ztanxsec X dx ()J' sin 2u
1+ tanZx 1—smu
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d 1
Note on log, x—Consider fax i =7 log, (ax — b) + C. Alter-

b
. dx dx 1 .
natively fat_b = 17— —a log, (b — ax) + C. Either of
these forms may be valid and the correct result is a 1/a log [ax — b]
where [ax — b| is the positive numerical value of ax — b (the
modulus of ax — b). While the modulus sign will not always be used
it must be remembered especially for definite integration (see

section 13.6).

13.5. APPLICATION TO GEOMETRY AND MECHANICS

The problem of finding a function when its differential coefficient
is given has many applications in geometry and mechanics. Generally
the arbitrary constant which arises can be evaluated by referring to
the initial conditions or to some specific value the function must

possess.

Example 1. A curve passes through the point (1, 6) and is such
that its slope at any point equals twice the abscissa of that point;
find its equation. Here we have dy/dx = 2x. Therefore, on inte-
grating, we have y = x% + C. But the point (1, 6) lies on the curve;

hence 6=12+C
5=C
the required equation is y = x2 + 5.
Example 2. A particle starts from rest with an acceleration (10 — 2¢)
ft./sec? at any time . When and where will it come to rest again?
Since acceleration is the rate of change of speed (v) with respect to
time

gg=10—~2t
dt

Hence v =f(10 — 2t)dt

=10t — 2+ C

But the particle starts from rest so that v = 0 when ¢ = 0; hence
C =0and v — 10t — 2

ie. v=1(10 — 1)
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The body is at rest when v = 0, that is when t(10 — £) = 0 or when
t = 0 or 10 sec. If s is the distance travelled in ¢ sec

s =f(10t —)dt=52—4*+ D

where D is an arbitrary constant. If s is the distance measured
from the starting point s = 0 when ¢ = 0; hence D = 0. Thus

s =52 — 13
and when ¢ = 10
s=75.10%2 — }108

i.e. s = 1663 ft. is the distance travelled before the particle comes to
rest again.

Exercises 13c

1. Find the equation of the curve whose gradient is 1 — 2x2 and
which passes through the point x =0, y = 1. r.u)

2. At a point on a curve the product of the slope of the curve and
the square of the abscissa of the point is 2. If the curve passes
through the point x = 1, y = —1, find its equation. (L.U)

3. A particle starts with an initial speed of 20 ft./sec. Its
acceleration at any time ¢ is 18 — 21 ft.[sec®. Find the speed at the
end of 6 sec and the distance travelled in that time.

4. A particle starts with an initial speed u. It moves in a
straight line with an acceleration which varies as the square of the
time the particle has been in motion. Find the speed at any time
t, and the distance travelled.

5. A particle is projected upwards with a velocity of 96 ft./sec. In
addition to being subject to gravity* it is acted on by a retardation
of 16t where ¢t is the time from the commencement of the motion.
What is the greatest height the particle will reach?

13.6. INTEGRATION AS A SUMMATION

We shall now show that an alternative way of regarding integration
is as the limiting value of a summation. This method of approach is
of great value in applying integration to physical problems. Inci-
dentally, it also explains the use of the symbol { which is an elongated
“S” for “sum”.

* The acceleration due to gravity should be taken as 32 ft./sec® in the down-
wards direction.
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Consider Figure 13.1 where K and B are the points (a, 0) and
(b, 0) respectively.

DC is an arc of the curve y = f(x), P is a variable point on the
curve with co-ordinates (x, y). Q is a neighbouring point on the
curve whose co-ordinates are (x + dx, y 4 dy). We denote the area
DPLK by 4. Since D and K are fixed, 4 depends on the position
of P (x, y) and is therefore a function of x, A(x) The area PQML
can be denoted by d4, the increase in 4 due to an increase dx in x,
Referring to the diagram we have

Area rectangle PRML << 64 < area rectangle SQML
J

¢/
sr-_cwﬁA
P I L%
R
E
(6]
K{x=a) L M B{x=b)
Figure 13.1

(If the slope of the curve is negative both inequality signs are
reversed.)

PL.LM < 64 < QM .LM
ie. yox < 84 < (v + 0y) 6x ....(13.3)

Now let KB be subdivided into n equal parts each of length éx
(such as LM). Then by drawing ordinates at all the points of sub-
division n strips like SQML are obtained. Summing over all such
strips we have

@=b a=b
2 yox <areaDKBC < 3 (y +6y)8x ....(13.4)

Now consider the difference between the two extreme quantities
in the inequality (13.4)

2=b a2=b x=b
2.y +0y)ox — 3 ydx =73 dydx
a2=b
=dx x Y dv
x=a
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since dx is the same for all points of sub division
=d0x.CE  (see Figure 13.1)

Now since 6x—]—3E——b——a

n n

..(13.5)

dx may be made arbltranly small by i mcreasmg n sufficiently. Hence
=h
the difference between Z (y + dy) 6x and z y 0x can be made

arbitrarily small. Since the area DKBC lies between these two it
follows that

x=b
Area DKBC = Limit Y y dx ....(13.6)

Sz—0 a=a

Returning to the inequality (13.3), since we are dealing with small
but finite quantities, we may divide throughout by dx and hence

SA
y<—<y-+9dy
8x

Now as dx — 0, 64 — 0, and dy — 0, so we have

Limit o4 =y
sz-0 Ox
a4 _
dx

hence A = § y dx from our definition of integration as the reverse
of differentiation.

We note that, as yet, there is no definite value for the area because
§ ydx involves an arbitrary constant. This is because 4, as we
remarked earlier, is a function of x. Thus | y dx gives the area
measured from an arbitrary origin to the point x. Referring to
Figure 13.1

Area DKBC = area up to CB (x = b) — area up to DK (x = a)
= A(b) — A(a)

Thus to find the area between the curve y = f(x) and the x-axis
we first find the indefinite integral { y dx or f f(x) dx. We then
substitute x = b, and x = a respectively in the indefinite integral
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and subtract the two results. The notation adopted for this definite

z=b b b
integral is f f(x) dx or more shortly f f(x) dx or f ydx. Thus
z=b a a
b
Area DKBC = f ydx ....(13.7)

Finally we note from (13.6) and (13.7) that

x=b b
Area DKBC = Limit } y éx = f ydx ....(13.8)

éz—0 w=a

Example 1. Find the area between the curve y = x3, the x-axis
and the ordinates x = 2 and x = 6.

[
Area =f x% dx
2

== 320 square units

Ve x
Example 2. Evaluatef .
s x*+4

Example 3. Find the area between the curve y = x(6 — x) and the
line y = 5.
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Figure 13.2 shows the curve and the line. The area required is the
shaded region. The abscissae of A and B are given by the solutions

of the equation X6 —x) =35
ie. x2—6x+5=0
. x—Dx—5=0
ie. x=1 or x=35

y

A B /5

0
c@1,0) D(5,0)
¥=x(6-x)
Figure 13.2

5
Thus required area = f x(6 — x) dx — area ABCD
1

375
=Pf—i]—4x5

3.1
=(75-_ﬁ)_(3_1)_zo

3 3

124

=72 — —3— —20 = %2‘ square units

Exercises 13d
Evaluate the following definite integrals:

1 3
1. () f x%dx (i) f x*dx th) lx5 dx.
] 2 -1

1 3 1
2. () f yEdy (ii)fy”dy (iii)f y* dy.
0 2 -1
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3. (i) J.4\/x dx (ii) f 1\3/x dx (iii) J. 8xmdx.
40 oxzd—{Ji 9 —
5. (i) __322—" (i) f T (iii) f —2—‘:.
6. (i) J- V& +5)dx (i) f \/(x + 5) dx.
7. (D) f 1r/3cos 3xdx (i) e sin (Sx + ;—T) dx
8. () J e® dx (i) fo e dx (iii) J.le‘z” dx.
9. (i) fl d—x" (i) L ‘% (iii) fl ‘l—-".

L (2 xdx N
10. (i) _34x2 5 (i) fo\/_—(4 —

(ifi) f 4
1/(8 + 2x — x?)

11. Find the area between the curve y = x® 4 9x, the x-axis, and
the ordinates at x = 0 and x = 3.

12, Find the area between the curve y = x* -+ x?, the x-axis
and the ordinates at x = 0 and x = 1.

13. Find the area between the curve y = sin x and the x-axis
between x = 0 and x = #.

14. Find the area between the curve y = T
the ordinates at x = —1 and x = +1. +x

15. Find the area between the curve y = 3 4+ 7x — x2 and the
line y = 9.

the x-axis and

EXERCISES 13

1. Evaluate (i) f (2x — 1)3dx (i) § 2x — 1)1 dx.

2. Evaluate (i)  (2x% — 1)*dx (i) [ 2x* — 1)% dx.

3. Find the indefinite integrals with respect to x of: (i) \/x(x — 1)
(u) (x —a)b — x) (a, b constants).

4, Evaluate
4 2
() f O tx=x94, (ii) f 1+ 2x +2x 2\’; 2% 4%
X B
2
(iii) [ S—J“—l% dx.
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5. Evaluate
/3

(i) f (sin 2x + cos 4x) dx (ii) J/ (sec® x + cosec® x) dx.

6. Find the equation of the curve whose slope at any point is
2x — 3x? and which passes through the point (1, 1).

7. The gradient of a curve at the point with abscissa x is given by
dy/dx = a + bx. If the curve passes through the origin and has
slope 1 at this point find the value of a. If the curve also passes
through the point (1, 3), find its equation.

8. From any point P on a curve, PA is drawn perpendicular to
the y-axis. The tangent at P meets the y-axis at B. If PA . AB = k?
find the equation of the curve.

9Ifdz =4 —1- dQ*O hen x = &, find y as a functio
e +x3an T Wi X =1z, yasa n

of x, given y = $ when x = 1.
10. Find the area between the curve y = cos x, the y-axis,
the x-axis and the ordinate at x = =/4.

1
11.* The gradient of a curve at the point (x, y) is (x - ;) and the

curve passes through the point (1,2). Find the equation of the
curve. Show that the area enclosed by the curve, the x-axis and
the ordinates x = 1, x = 2 is & — 2 log, 2. (L.U)

12. Find the area between the curve y = (sin x 4 cos x)?, the
x-axis and the ordinates at x = 0 and x = =/2.

13. Find the area between the curve y = 1 4+ 9x — x? and the
liney = 9.

14. Find the area between the curve y = 5x — 2x2 and the line
y=Xx

15. A body moves under a constant acceleration f. If its initial
velocity is # and it starts from some origin at time ¢ = 0, show that its
velocity and displacement s from the origin are given byv=u-ft,

s = ut |- {ft®. By writing its acceleration as § & (v®) show that
v? = u® + 2fs.
16. Show that the expression for acceleration dv/dz can be

1
rewntten 55 (v2) Hence, if the acceleration of a particle is equal to

16s and v = 4 ft./sec when s = 1 ft., find the velocity of the particle
in terms of s.

17. The equation of a curve is of the form y = ax® 4 bx + c.
It meets the x-axis where x = —1 and x = 3; also y = 12 when

* Note that | loge x dx = x loge x — x
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x = 1. Find the equation of the curve and the area between it and
the x-axis. ®.U)

18. A particle is subject to retardation equal to 32 -+ 16¢ at any
time ¢. Initially its velocity is 40 ft./sec. Find how long it takes to
come to rest and how far it is then from its starting point.

19. Verify the following results:
H

1 dx Ok -
i —_— =./3 -1 (i f —_—
@ fo G- Y @)y Ja—3 15
20. Show that sin 3x = 3 sin x — 4sin3 x and hence evaluate

/2 /2
f sin® x dx. In a similar manner evaluate 2 cos® x dx.
0 0
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14
SOME METHODS OF INTEGRATION

14.1. INTRODUCTION

IN the previous chapter we introduced the basic ideas of integration.
The examples used involved only simple integrals, which were
obtained from the inverses of differential coefficients (section 13.3)
or the simple extensions made possible by the five rules (section
13.4). The object of this chapter is to examine several ways in which
more involved integrals can be resolved into simpler forms which can
then be recognized as standard integrals. While several important
methods of integration will be examined it must be realized that not
all available methods are covered here.

Ability to integrate readily only comes with experience and the
student is well advised to work through as many exercises as possible.

14.2. INTEGRATION OF RATIONAL ALGEBRAIC
FRACTIONS

We now consider the integration of rational algebraic functions,
by which we mean fractions whose numerator and denominator
each contain only positive integral powers of x with constant
coefficients. In all cases, if the numerator is of the same or higher
degree than the denominator, we first divide out. Thus we shall
have one or more terms (in x, x2, etc. or a constant) which can be
immediately integrated and a fraction whose numerator is of a
lesser degree than the denominator. It is with such fractions that we
shall now be concerned.

Denominator of the First Degree—In this case, after any necessary
division, the integral can be immediately evaluated.

Example 1.

2% — x?—x J(z 3 )
& o dx = 1 dx
f C2x—3 * At +2x—3

xs

XX 3=+ C
372 2
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T
Example 2. J‘7+_x§c_dx =J(2x +3 4+ 1 )dx
2—x 2—x

=x?43x—log(2—x)+C
Exercises 14a

Evaluate:
2 3
1.J‘xdx 2'fxdx 3.fxdx
x—1 x—1 x—1
2 —_—
4.f !4 s.f "4 e fz * dx
1— 3t 1— 3¢t 1 —x
Y2 ap __ 2p2 19, _ gy2
7, f 20 =345 s, f L @ o f 2x — 8y,
0 1—0 14 4¢ o 1+ 4x

10.f X dx
a + bx

Denominator of the Second Degree and which does nat Resolve
into Rational Factors—We shall discuss two cases here; (a) in
which the numerator is a constant and (b) in which the numerator
is a linear expression in x.

. k . .
(@) Consider f T b T o dx. This can always be put in the

k dx .

form p J‘m We shall restrict ourselves to the case

“+p2.>” In this case

k(__dx k1 (x+a)
af(x+oc)2+ﬁ2 g™ g €

by our standard form for tan—! x and its extension (rule III, section
13.4).

Example 1.

2% 4+ 11 f( 3 ) 3. ,x
2T dx= {12 dx =2x +>tan'= + C
fx2+4 * ta g Tyt
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Example 2.
[ f s (5
1 x° —2x+10 (x—1)2+9 3 3 1
-1 2 —1
=3 (tan 1 — 3 (tan 0)
_5n
12
Example 3.

J' dx =ZJ' dx
¥tx+i 2/ e

f 7 7
—  _ax=
2x% +2x -5 2
7
2

1. _,(x+ 7. _40@x+1
— -Et 1( S %)=—tan 1_(______)+C'
2 z 3 3
Exercises 14b
Evaluate:
R S— 2 [l
x“+2x+2 x® — 6x 4 13
4 2
3.f——d—~x— 4.f5x + 9 4x
ox? —4x + 8 x4+ 1
3
5. f_______@c___ 6.f —i-——dx
9x* — 6x + 37 —22x% —2x 413
1 2 4
7.f X +2x g s.f dx
—1x? 4+ 2x 42 x2+9
2
9. f"————+"+2dx 1o.f l6x* +6x + 8,
x2+x 41 s 8x2 —4x + 5

(b) If the numerator is a linear expression in x we put it equal
to k X (the derivative of the denominator) + [ where k, / can be
determined by inspection. The integral now splits into two parts,
in the first of which the numerator is the derivative of the denomi-
nator, and hence this integral is the logarithm of the denominator;
the second is of the type considered above.

12(x) + 3
Example 1. f +25 f . +25

f +25der f 24 25

loge (x? + 25) + ntX

> S +C.
2
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Example 2.
f 3x—2 J.I(4x+2)"—2dx
2x* +2x+5 2x% +2x + 5

(4x +2) dx __Zf dx
2x2 4+ 2x4+5 2J2x2+2x + 5

—-—lo 2x? +2x 4+ 5 ——f———«———
B Y e
=§10ge(2x2+2x+5)

1 tan + C.

_ T @&+ D
6 3

Exercises 14c
Integrate the following functions with respect to x:

x 47 3x—5 2x 4+ 3
. 2. 3, m—/——
x% 416 x? + 36 x? 4 2x + 10
4 3x -+ 5 s, 1—3x 6. X
x%— 6x + 10 x% — 8x + 25 x*—x+1
7 x® 5%x +1 x?
" x*—6x + 10 "3x2—12x +13 T x*4-2x+5
2x® 4 4x?
"ox242x 45

Denominator which Resolves into Rational Factors of the First and

Second Degree—If the denominator factorizes we use the technique

of partial fractions to express the integrand in a form suitable for
1

ax + b’

We have just considered the first two

integration. The three possible types of fraction are
px +gq 1

ax?® 4+ bx + ¢’ (ax + b)?’

types and the third type integrates to

alax + b)°

Ix — 4
Example 1. f——-———
P 2% — 3% — 2

We note that 2x2 — 3x — 2 = (x — 2)(2x 4+ 1). Put
x—4 _ _A i B
2% —3x—2 x—2 2x+1
288
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INTEGRATION OF RATIONAL ALGEBRAIC FRACTIONS
On multiplying throughout by the common denominator we obtain
Tx — 4 = AQRx + 1) + B(x — 2)

With x = 2, 10=54+0
Hence 2=A
With x = —4, —73=0—2}B
Hence 3=8B

Rewriting the integrand in partial fractions we have

f—B;de=f 2 dx—l—f 3 dx
2x% — 3x — 2 x—2 2x +1

=2loge(x —2) +3loge(2x +1) +C

622 — 5x° — 5x4d
3 (x — D(x +2)

We must first divide out because the numerator is of higher
degree than the denominator. This division can be carried out
using the technique of partial fractions. By inspection we see that
the highest power of x obtained by division is x* and we allow for
this and all lower powers of x including the constant in the partial
fractions. Thus we set

Example 2.

22 — 5x% — 5x* D E
Lo T s T = Ax? B C —_—
(x—D(x+2) X Bxt +x——1+x+2

22 — 5x — 5x = (Ax® + Bx + O)(x — D)(x +2)
+ D(x +2) + E(x— 1)

With x = 1, 12=0+3D+0 .. D=4

Withx = —2, —18=0+0—3E .. E=6

The other constants are found by equating the coefficients of
various powers of x.

For coefficient of x* —~5=4

For the constant term 22 = —2C+ 2D — E
=-2C+8—6

AN C=-10
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SOME METHODS OF INTEGRATION
Then with x = —1

22 =(4 — B+ O)(—2)(1) + D(1) + E(-2)
22 = (—B — 15(—2) + 4 — 12

30=2B-+30
B=0
Hence
8 T 6 6
f (22 — 5x7 — 5x )dx =f (—5x* — 10) dx + dx
3 (x— D(x+2) 3 3 {x—1)

+J: (x j— 2)

= [—§x® — 10x + 4 log, (x — 1)
+ 6log, (x + 2)l5
= (—420 4 4 log, 5 + 6 log, 8)
— (=75 +4log. 2 + 6log, 5)
(Since loge 8 = loge 2% = 3 loge 2)
= (—345 — 2loge 5 + 14 loge 2)
= —338-5 approx.

2 p——
Example 3. f__g{__l()_x__z X.
(x +3)x—1)
Set 2x*—10x A B C

(J€+3)(36—1)2=(3€+3)+(J€~1)+(x—li)2

dx

[Note the partial fractions for the repeated linear factor (x — 1)?]

2x? — 10x = A(x — 12 4 B(x + 3)(x — 1) + C(x + 3)
With x = 1, —8=0+0+44C S C=-2
Withx = —3, 48=1644+0+0 S A=3
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INTEGRATION OF RATIONAL ALGEBRAIC FRACTIONS
Equating the coefficients of x* gives2 =4 + B = —1

2x% — 10x 2dx
(x + 3)(x — 1) dx f(x 1 3) _j(x—~ 1) f(x— 1)?
= 3log, (x +3) —loge (x — 1)
— Zf(x — 1) %dx

= 3loge (x + 3) — loge (x — 1)

— +C
+ _1+

Gx +1) dox = f Gx+1D 4

xX+2xE+x+2 x4+ D(x +2)

Set 3x+1 _Ax+B C
CHDE+2) X+l o x42

o 3x 4+ 1 = (dx + B)(x +2) + C(x* + 1)

Withx = —2, —5=0+5C .. C=-—I

Example 4. f

Equating coefficients of x* gives0 =4 + C ", A=1
Equating constant terms gives 1 = 2B + C .. B=1
f 23x—i—1 dxe [GED 4 f 1 4

(=* + D(x +2) (x +1) (x+2)

2x dx
*+1) f(x +1) f(x+2)

= }loge(x* +1) +tan™' x
—loge(x +2)+C

Exercises 14d
Integrate the following functions with respect to x:

x -+ 1 ” 1
"x24+5x+6 T6x2—5x 41
3.x-{—52 4-4x2—2x—7

X — X 2x% — 3x — 2
. 2x% + Tx* + 2 6. x 4 62
2%+ x (B3x — 1)’(2x + 3)
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SOME METHODS OF INTEGRATION

4x%> — 3x + 5

(x + 2)(x — 1)?
6x3 - 10x* — 13x — 6

7.

9.
3x® 4+ x?
(x* + 4)(x* + 8)
_7\2
13, =2
x4+ 1
15 10

(x — DG2 +9)
17. 1

x*—(p+qx + pq
X

19.
(x — a)(x — b)(x — ¢)

6x* + 5x —A

T (2x + 1)%(x — 1)
X

(x4 4)(x? + 8)

8x% +3x — 3
T (2xE—1)(2x +3)

1
14, ———
x*4+5x2+4
5

" (x f 1)(x® + 4)

18. —=
x2—9

10

12

16

X

20.
(=* + a’)(=* + b?)

14.3. CHANGE OF VARIABLE

Another widely used device in integration is to change the in-
dependent variable, say x, to another one u where the relation
between x and u is known. Suppose

1 =f2x cos x° dx

du

Let u = x? so that du/dx = 2x. Then [ = f 3 cos ¢ dx and

since integration is the inverse of differentiation

dI
— = —cosu
dx

dI dx

— .~ =cosu

dx du

ie. 8 cos u [by (10.14)]
du
I =fcos udu

which is recognizable as a standard form

I=sinu+ C=sinx?+C
292
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CHANGE OF VARIABLE

In general we have that

ff(u) du dx =ff(u) du ....(14.1)
dx
. du
For with I =ff (w) — dx
dx
dI du
— = f(u) —
dx () dx
dI dx
— . —==f
arde T
dI
S =t
” (w)
I =ff (u)du

The difficulty of the method lies in finding the relation u = ¢(x)
which simplifies the integral. It must be remembered that:
(a) One part of the integrand supplies the du/dx which has to be

introduced.
(b) The rest of the integrand must be easily expressible in terms

of u.

Example 1. Evaluate  \/(x* — 5)3x? dx.

I =0~ 5)3x*dx
¥

Letu=x3—3 .. du/dx = 3x? which we note is part of the
integrand. In fact it is because we foresaw this that we choose the
substitution.

2
3
=3("— 95" +C

Occasionally k du/dx (k a constant) may be included in the integrand
instead of just du/dx.
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SOME METHODS OF INTEGRATION

Example 2. Evaluate | e=*°x® dx.
I =J‘e"”3x2 dx

Letu = —x3 ;o dufdx = —3x?
I = fe"(— 1 @) dx
3dx
-1 fe" du dx
3 dx
e“du

3

= —%e* + C
=——%e‘”a+C
3
Example 3. I=f-——-4x——di;.
(3x*—5)
Letu=3x*—35 c.oo dufdx = 12x3
f_ ddu
12 dx
=— lu"*du
12
1 b
=—,— +C
12 —5+
—1 1
=—_,=4C
60 u5+
—1 1
=——4C
60 (3x4—5)5+

It is the more usual practice to make the substitution u = ¢(x),
differentiate it to obtain du/dx = ¢’(x) and then replace dx by

du/d'(x) (dx = du/d—u = gdu).
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CHANGE OF VARIABLE
Example 4. I =f(x — DY/(x® — 2x + 3)dx.

letu=x2—-2x4+3 S dufdx =2x —2

du
2x — 2

du
2x—1)

I =f(x — D¥u

= [ — v

= lfu”"‘ du
2

u4/3 + C

CO 1L DN | =
1w

x2—2x+3)"*+C

It will be noted that of the five rules given earlier III, IV and V
are special cases of integration by substitution.

Example 5. fe’”‘z dx.
Letu=(x—2) S o dufdx=1

Je”‘z dx =fe“ du=e*+C=¢"2+C

Example 6. fsin Sx dx.

Let u = 5x oo duf/dx = 5.
fsin 5x dx =fsinuéy = lJ‘sinudu
5 5
= — 1 cosu +C
5
)
= — gcos 5x +C
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dx
Example 7. fm‘a
Letu=4—3x S du/dx = —3
_dx_zfi(_z)du?lfu—adu
4—-3xP Ju*\ 3 3
1u™? 1
= = C——— —— + C
32 + +C 6(4—-3)2+

w4

Example 8. f cot x dx.
/6
Consider the indefinite integral I = { cot x dx

cos X
I =f - dx
sin x

Let u = sin x . dufdx = cos x

I_fcosx du
% COSX

=f91'

u

=logeu + C

= log, (sin x) 4 C

/4
7/4

Hence f cot x dx = [log, (sin x)]7%
=/6
= log, (sin Z) — loge(sin 7—7)
4 6
= log, — — log 1
¢ \/2 °2
g (_L l)
\J2/ 2

= log, /2
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CHANGE OF VARIABLE

An alternative approach when dealing with definite integrals is to
change the limits of integration for the variable x into corresponding
limits for the variable #. Thus for the above example, with u =
sin x, when

T .om 1
X==—, u=sin—=-
6 6 2
and when x=2Z, we—sinZ =L
4 4 /2
w/4 1/ve
f cotxdx = du = [lo geumg’z
/8 1/2 u

= log, /2  as before

Two devices may sometimes be necessary.

3
Example 9. f 2? dx .
2 (x*—1)
Let u = x? s dufdx = 2x.

When x =2, u=4; whenx=3,u=9

f32xdx_j° __J' du
2 x*—1 4u—1

(Now we use partial fractions)

- %F[(u i D) (u Jlr 1)]d”

[2 loge (u — 1) — = loge (u + 1):|9

1
=3 [(loge 8 — loge 10) — (loge 3 — loge 5)]
1
=£(logeS—loge 10 — log, 3 + log, 5)
Ly BXS 1y 4
2 °3x10 2 °3
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Exercises 14e
Integrate the following functions with respect to x:

2 X
1. xe™® 2. x/(a® — x? 3. ——
1 cos X sin X cos X
4. = (log, x)* . — 6.
X (log, ») (1 — sin x) (cos® x 4 2 sinx)
x! loge x
7. 8. x(x +1 9, —==
o 16y J& A+ 1) .
1 5 2 el/”
10. 11. tan® x sec” x 12.
x log, x x?
2 se—1
13, ——> 14, x%(x® — ) 15 X
(1 +x*)(2 + x) Ja —x
Evaluate the following definite integrals:
/4 /4 SCCz 0
16. tan® x sec® x dx 17. f —_—
) o (1+tan6)

2 n 1 2u
18.f Uogex)' 4y (n> 1) 19.f — du
1 ox o (3™ +2)

2

2 Y 2 dx

20. f A d 21. S
e =1 Y 1 (¢ — 25" 4 10)
2 x 1/v?2 s —1

22, f S dx 23, S0
11(1—6 ) 1/2 \/(1—0)

t dt ¢ 1.

24.f —_— 25. f - sin (log, x) dx

-1 (t4 - 4) ot X ( Eo )

14.4 TRIGONOMETRICAL SUBSTITUTION

If the integrand involves:

(1) /(@® — x®, we try x = asin because then ,/(a? — x?) =
(@ — a?sin? 6) = ,/(a? cos? 6) = a cos 0.

(i) \/(a® + x?), we try x = atan 6 because then V@ + x?) =
J(@® + a*tan? ) = ,/(a? sec? 0) = asec .

(#if) \/(x® — a?), we try x = a sec 0 because then /(x* — a?) =
J(@®sec 6 — a?) = ,/(a® tan? 6) = a tan 0.

2vV3
Example 1. f . .
e XS4+ 2
Let x =2tan @ d
. x

— = 2sec?0
do
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CHANGE OF VARIABLE

When x = 2, tan 6 =1 L 0=mn/4
When x = 2,/3,tan 6 = /3 S 6=a[3

2v3 w/3 2
Hence j dx _ f 2 sec? 0
2 x%/(4 +x% Jaa 4tan®f2sech

/3

sec 0

[0
=4 tan® 0

/3 cos 6

/4 sin® 0

7/3
cosec 6 cot 8 d6

I

dé

I

—

I

) 4
-

—cosec 0]7/2

— \—/2—3 + \/2))

——

© Bim bl pim A= B

A~

(=
wn

I}

Example 2. f J(a® — x?) dx.
0

Let x = asin 0,

j—;-:acosﬂ
When x = 0,sin =0 S 6=0
When x = a,sin § =1 S 6=a2
a 7/2
Hence f\/(az—xz)dx=f acos@.acos0db
0 0
/2
:azf cos® 6 db
a2 01r/2
=——f (1 + cos 26)do
2 Jo
azl: sin20]”/2
=—\6
2 * 2 o
at(m )
=4(Z10)=-0
5 2+ (1))
_ ma’
4

Some times other trigonometrical substitutions can be used.
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2 X
Example 3. f A/( ) dx.
0 4 —x

Let x = 4 sin2 6@ (;—);=8sin0cost9
When x = 2, sin? 0 = } S 0=a/4
When x =0, sin2 = Q c. 0=0
Hence

2 w/4 2
fA/( X )dx=f A/(ﬂ_e—)Ssinﬁcosﬁd()
0 4 — x 0 4 —45in%0

7/4 .
=f 2—8—1-13—(-9-.8sin6cos6d0
o 2cosf@

w/4
= 8f sin® 0 do
0
7/4
= f (1 — cos 20)do
0

4[0 __sin 20:"’/4
2 o

i)

=a—2

I

Integration by substitution is a fairly straightforward technique.
The question of what is the correct substitution for any particular
integral is not quite so straightforward. We have mentioned, at the
beginning of this section three substitutions which often prove
helpful. Some other useful substitutions were mentioned in the
preceding section. We mention two others which are generally
very satisfactory. If the integrand involves e'® put u = f(x). If the

integrand involves \/(a + x) put u = \/(a + x).

Exercises 14f
Integrate with respect to x:

L x/(x* — a) 2. xJ("+4) 3. l/_qu—_xZ)
X
x 14+ x . _
4. \/—————(1 ) 5. A/(———1 — x) (Hint: put x = cos 26)

6. x/(x + 1) 7. x%[(x — 1)
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CHANGE OF VARIABLE
Evaluate the following definite integrals:
1 1
8. j x/(1 — x?) dx 9. f xy/(4 + x*) dx
0

1/v2 x2dx

10. , \/(1——x—2)
14.5 INTEGRATION OF TRIGONOMETRICAL FUNCTIONS
fsinaxdx= ——icosax +C
fcosaxdx=isinax+c .

Jsec2 ax dx = 1 tan ax + C
a

1 .
J‘cosec2 axdx = ——=cotax + C (a is a constant)
a

Certain trigonometric functions may be integrated after we have
used the identities of Chapter 6 to express the integrand in terms of
the standard forms given above. Of some importance are the two
results

fsin‘“’ x dx =f%(1 —cos2x)dx = }(x — }sin2x) + C
=4x — }sin2x + C
fcoszxdx =Jé(l + cos 2x) dx = §(x + sin 2x) + C

=3x 4+ $sin2x +C

If the integrand is a product of a sine and/or a cosine of a multiple
angle, it may be expressed as a sum by means of the identities [see
(6.46) to (6.49)]

sin mx cos nx = }[sin (m + n)x 4 sin (m — n)x]
cos mx cos nx = 4[cos (m + n)x + cos (m — n)x]
sin mx sin nx = i[cos (m — n)x — cos (m + n)x]
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Example 1. fsin 3x cos x dx =f%(sin 4x -+ sin 2x) dx

—cos4x  cos2x
= — C.
8 4 +

Example 2. fsin 5x sin 2x dx = %f(cos 3x — cos 7x) dx

sin 3x  sin 7x
= — C
6 14 +

The integral { sin™ x cos™ x dx can be evaluated quite easily if m
or nis an odd integer. If m is odd the substitution # = cos x is used,
if n is odd the substitution # = sin x is used.

Example 3. | sin® x cos? x dx.
Putu = cos x s, dufdx = —sinx

. . . du
fsm3 x cos? x dx = —fsm xsin® x . u? —
sin x

= —fsin2 x.u?du

= ——f(l — uHutdu (sin® x = 1 — cos® x)

ut Ut
= — =4 =4 C
3 5
cos®x , cos®x
-+ + C
3 5
/2 3
Example 4. f c.ose X dx.
-4 sin® x
Put u = sin x
du
— = COs X
dx
T T
Whenx=-2-,u=s1n§—1
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CHANGE OF VARIABLE

T .o 1
Whenx=z,u=s1nz~72

a/a sin® x viz u® cosx

1 1 2
— U
S —-—6 du
vi/2 u

"2 o8 x 1 cos®x du
dx _—

(Notecos®x =1 — sin®x = 1 — u?)
1
= f @ — udu
1/v2
—1 1 1 17
NEFIENY
5 u 3 ulyve

= [~} + 3] — [-}2) + 3(/2)"]

2 2
RN/
15 + 15 \/
Example 5. { +Y/(cos x) sin® x dx.
Put u = cos x .. du/dx = —sin x
. 3 .3 3/10 ind du
o | Y(cosx)sin x*dx = | Yusindx | — —
sin x

= ——ful/"(l — u?)du

(Note sin?x = 1 — cos®* x = 1 — u?)
— _f(ulls _ u7/3) du
—3ut® L HuB L C

= —3(cos x)** + 1% (cos x)'*® + C

Exercises 14g

Integrate with respect to x:
1. sin 7x cos 2x.
3. cos 5x cos 6x.
5. cos? x sin% x.

7. /(sin x) cos x.

. sin 3x cos 8x.
sin 7x sin 5x.
cos® x sin® x.
sin® x
cos®x’

© RN
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SOME METHODS OF INTEGRATION
Evaluate the following definite integrals:

27 /2 5
. COos™ X
9. f sin 5x cos 3x dx. 10, f 2> = dx.
0 /3 SI° X

14.6. INTEGRATION BY PARTS
This is a method for integrating a product of two functions. From
d du dv
— W) =v— 4+ u-—
dx (o) dx + dx
On integrating both sides with respect to x we have

uv =fv du dx +fu dv dx
dx dx
fu@dx = uv —J‘vgydx ....(142)
dx dx

The product to be integrated is # X dv/dx and to obtain a slightly
different version of the above result we consider # and dv/dx as
being the “first” and ‘‘second” parts of the product, noting that if
dv/dx is “2nd function” v = { “2nd function.” The formula is then

whence

flst X 2nd = Ist X ond —J(Derivative of 1st xf2nd) ....(14.3)

(a) one function, *“2nd” must be integrable,

(b) the other function *“Ist” is never integrated.
Thus if this method is used to integrate the product of two functions
we first look for a function which can be integrated immediately;
if there is only one this is taken to be the “2nd” function; if both
functions are integrable we generally choose as the “Ist” function
the one which simplifies most on differentiation.

Example 1. | x e dx.
Both x and ¢*" are easily integrable, but as x becomes simpler on
differentiation we use them in the given order.

fxe“ dx = xfe” dx —f l:d—d;c (x)fe” dx:l dx

3 "3
xeSa: eax
= —=— 4+cC
3 9
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Example 2. [ x*sinxdx. By the same reasoning as before we
treat this product in the order given.

fxz sin x dx = xzfsin x dx —J. [di (xz)fsin X dx:| dx
x

= —x%cos x +f2x cos x dx

We now apply the rule to the second integral, taking care to keep
the trigonometric function as the “2nd” function

fxz sin x dx = —x%cos x + 2xfcos xdx —f |:d£ (2x)fcosx dx] dx
X

= —x%cos x —I—2xsinx—2fsinxdx
= —x%cosx +2xsinx +2cosx +C

Example 3. [ x3loge x dx. Of the two functions involved we see
that x2 is the only one which is immediately integrable.

fxs loge x dx =floge x x®dx

= loge xJ‘x3 dx —J l:di (loge x)fx3 dx] dx
x

1 xt
= loge x -——f—.—d
ge x 4
x? x?
= =logex —=+C
4 5 16

Example 4. fx tan~t x dx ==ftan_1 x.xdx

= tan! xfx dx

[ [Erofe] s
an x—f1+x fd

x_fP_1+x]

tan lx —4x +3tan*x + C

f

l

(CREN le NIX
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Example 5. floge x dx =floge x X 1.dx.

flogex X 1dx = logexfl .dx _f[:id— (loge x) xfl . dx} dx
X

=xlogex—f-1-xdx
x

=xlogex — x 4+ C
Example 6.

fsin‘1 x dx =fsin“1 x X 1dx

= sin™! xfl dx — f [i (sin™! x) xfl . dx} dx
dx

- X
= X Sin lx—fmdx

(For the latter integral let u = 1 — x2, du/dx = —2x)

wours-{ (4

=sin"'x + } \/u
=xsin"'x 4+ /u +C
=xsin'x + /(1 —x)+C
Exercises 14h
Find the following integrals:

z/2
1. fxe‘“” dx. 2. f xcos2x dx. 3.

4. f x%e”. 5.

6% cos 206 d9.

2

fx sin x dx. 6. ftlogetdt
x/s
7. fx sin” x dx. 8. fx loge 3xdx. 9. f tan™! 6 d6.
1
10. f@ sin mf df. 11, f xsec® x dx. 12. f(loge x)? dx.
13. f X F sin x dx. fx CRX4 15, fsecs x dx.
1 +cosx sin? x
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14.7. FURTHER INTEGRATION BY PARTS

The following examples indicate some useful ways of proceeding.

Example 1. fe“ sin x dx = e“fsin x ——f I:e”fsin x dx]dx

= —e%Ccos X —}—fe“” cos x dx

fe“ sin x dx = —e®*cosx + e”fcos xdx —f [e“‘fcos X dx:] dx

= —e®cos x + e*sinx — ] e®sin x dx

We note that on the R.H.S. we have the original integral

ZJe” sin x dx = ¢®(sin x — cos x)

fe”““xdx=ew(smx—___2_°°&)+c

Example 2. § ./(9 — x?) dx. We have previously used a trigono-
metric substitution for this integral.

f\/(9 — x*)dx =f\/(9 — X x ldx
=0 — xz)fl dx —f[i JO — x2).f1 dx:,dx
= x/(9 — x%) ——f \/(_g—xz_di%)

=x\/(9—x2)—f9\7?9—x—2_29dx

2y _ _dx
= x/(9 — x% f \/(9 d + 9f Jo—
f\/(9 — xHdx = x,/(9 — x?) —f\/(9 —x¥)dx +9 s.in‘lgC

2[J(9 —x¥)dx = x/(9 — x*) +9 sin_lg
2
JJ(9 —x)dx = ’&/—(22_—)‘-) + -92- sin_lg +C
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Exercises 14i

Integrate the following functions with respect to x:
1. e*cos x. 2. e ®gin 3x. 3. e cos §x.
4. /(16 + x?). 5. cosec? x.

EXERCISES 14
1. Show that (i) f cos xsin®?xdx = §sin®x 4 C
(@) ftan®xsec® xdx = ttan®x + C
@) §2x(x* 4+ 1®dx = }(x2 + 1)* + C.
2. Find the following indefinite integrals:

0} f(Zx + 1)*2dx (i) fsec‘ 0 d6

(iv) ftan"' x sec x dx

@ J‘\/(3~2x—x

cos x dx

“”fm (v >f3+smx

(x) fJ(l 2) sin™ x

(x) fcos 5x sin 2x dx  (xi) f sin x dx (xii) fsin3 x cos® x dx.

3. Find the following 1ntegrals

x +1 (x —1)(x +2)
()fx2 3x+2dx (zz)f x(x + 1) dx
. 2 dx

(iid) f (x + 1)2(x2 T4 (iv) " 16

(3x +2)dx . x dx

© e = D6 D @D f & T DO £9)
(vii) — 3x - 4x%) dx

(1 —x)(2—x— x%)
4. At any point P(x, ) on a curve the product of x2 and the slope
of the curve is 2. If the curve passes through the point (1, 4) find

its equation,
5. Show that

2
f ¥log, (x2 + 1) dx = $log, 5 —log,2— 3  (W.J.C., part)
N
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EXERCISES
6. Evaluate

/2 dx J‘u/tl .
i DE—— i x sec” x dx
@ fo 1 4 cosx (i) 0
(iii) f " tan1 x dx (iv) f anTlx
0 o1 4 x?
7. Evaluate
3 3.2
() ‘f x dx (ii) 3x 1 dx
o (x + 2)(x* 4- 8) 2 x(x*—1)
/2 Fd
(iii) J- sin® x dx (iv) f x? sin x dx.
0 0

8. (@) Evaluate

1
'6)) f sin 5x cos 3x dx (i) f xe 3 dx.
0
{b) Show that

/4
(tan® x +tan x) dx = }
0
Hence evaluate

n/4
f tan® x dx (J.M.B.)

0
9. (@) Use the substitution y = sin x to evaluate

-4
f _cosxdx o erea = sin~t (3)
02cos2x — 1

(b) Evaluate

I sin™!x
S X gy (J.M.B)
0 /(1 + x)

10. (i) Evaluate:

(a) f (x dx (b) f sin 3x sin 2x dx

3
(i) Find f dx (L.U)
x*+1

11. Evaluate to three significant figures, the integrals
2 1
[ f dx fxlogxdx (S.UJ.B)
Jix(x +1) Jox?4+x +1
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SOME METHODS OF INTEGRATION
12. Find

mJQﬂs—mdx ogfx'tijl

(i) fsinz x(2 —cos x)dx (W.J.C., part)
13. Show that 1 + sin 20 = (sin 0 + cos 6)2. Hence evaluate

f” J(1 + sin 26) d6
w/2

14. Prove that cos mx cos nx = }[cos (m + n)x + cos (m — n)x].
Hence show that

27
f cos mx cos nx dx = 0 m#£n
o

Find the value of the integral when m = n.
15. Use the substitution x = a cos? § + b sin? 6 to evaluate

f dx
(x — a)(x — b)

Evaluate the following integral

dx
Lﬂwwﬂ—ﬂ (@<b)

16. Use the substitution # = ¢ — 1/t to show that

2
J't—l—ldt:f du
1 u®+2

and use the substitution v = ¢ + 1/t to show that

2_.
ft 1dt=j do .
41 -2

Hence evaluate f dt
|
in terms of u and ».
17. Evaluate f log x dx
xn

considering separately the three cases n =0, n=1,and n % Oor 1.
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EXERCISES
18. Prove by two different methods that

J‘\/(x2 — a®) dx = }x/(x* — a®) — }a’log {x + /(x* — a%)}

19. Evaluate the following definite integrals

1 -1 T
f tan ): dx (ii) J. sin x cos” x dx
ol 4+ x 0 '

1 2
20. Show that f 23 e dx = 1 — 2
0

e
21. Show that

J‘e"”” cos bx dx = ;;%—_bé [b sin bx + a cos bx]

/2

Hence evaluate j e®®cos 3x dx

0
/2 2

22. Prove that f x%cos x dx = % -2

0

23. Use the substitution x = cos 26 to prove that

f A/(l + x) =
24. Evaluate f J (1 = x) dx

25. Evaluate

. 3x +4 x2 45
@ f\/S—Zxdx @) f( "o — )™

26. Evaluate the following integrals

/2 /2 ]
6) f costxsinxdx (i) f Jcos x sin® x dx
0 o

3v3/2
(iif) f 2 \/(9x

27. Prove that 4 {log (tan E)} — L
dx 2
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SOME METHODS OF INTEGRATION

Hence show that
f 1——————.& dx = 2log (sec f)
sin x 2

Verify this result by using the formulae 1 — cos x = 2 sin?® x/2
and sin x = 2 sin x/2 cos x/2.
28. Evaluate

f\/(l — xHdx

29. Integrate x3/(x® 4 1)® with respect to x, by the substitutions
(a) x = tan 6, (b) x* + 1 = u. Verify that the two results agree.
30. Prove that

/2 2
f xzsinxcosxdx=1—l
0 16 4
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15

SOME APPLICATIONS OF THE
INTEGRAL CALCULUS

15.1. FURTHER EXAMPLES ON AREA

Example 1. Find the area under the curve y = sin (3x + /3)
between x = —=/18 and x = /9.

yy

y

[T~ ]
O
=R
o]

>

Figure 15.1

/9
Area = ydx (see Figure 15.1)

—7/18
/9

= sin(3x + -7-;) dx

—n/18

1 ( w):lrr/!)
—>cos |3 -
[ 3 *+3) e

1 27

1 T

= — — C0§ — - COS —

39953 T3e08
143
6

Example 2. Find the area contained between the two parabolas
4y = x? and 4x = 2,
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

From Figure 15.2 the area required is OABC. We first find the
point of intersection of the two curves i.e. B. At B, 4y = x% and
4x = y* and we solve these two simultaneous equations. From the
first equation y = x2/4 and substituting in the second equation we
have

4x ==
16

ie. x* — 64x =0
x(x* —64)=0

x=0 or x®=64 giving x = 4

B(4,4)

Figure 15.2

The points of intersection of the two curves are thus the origin (0, 0)
and B, (4, 4). If BD is the ordinate at B

area OABC = area OABD — area OCBD

4 4x2
=f J4x dx —f = dx
0 o 4

Note: the positive square root is taken because we are dealing with
the top half of the curve 4x = »2.
4

4
area OABC = Zf xV2dx — if x2dx
(1]

(1}

-l
3 o 4L3de



FURTHER EXAMPLES ON AREA

When the area between the y-axis and a curve is required the
integral is, by symmetry
v=d
f xdy ....(15.1)
v=C

Example 3. Find the area between the curve y = x3, the axis of y
and the lines y = 1, y = 8 (Figure 15.3).

Ay y=x3
or
8 x=yh
! ] X
(0] i 2
Figure 15.3

8
Area =f xdy
1

8
:f y1/3 dy

1
-3 4/3]8

4 y 1
= 31847 — 41147
=2.16 — %
= 11}

We note that in representing the area under a curve between the
b .
ordinates x = g and x = b by | y dx we have assumed that b > a

and that the ordinates are positize throughout the range of integra-
tion. If this is not so it is clear from Figure 15.4 that the integral

b
f y dx gives the numerical value of the area but with a positive or

n‘égative sign according as the area is to the right or left of the curve,

which is supposed described in the direction from P to Q.
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

If the curve cuts the axisin the range, the integral gives the difference
(positive or negative) between the area to the right and that to the
left.

p dx >0 Ty §x <0

Figure 15.4

Example 4. Find the area included between the curve y = x* —
4x2 4- 3x and the x-axis.

From the sketch of the curve (Figure 15.5) we see that we have to
find the areas of the two parts 4 and B separately.

The curve cuts the x-axis where y = 0

i.e. x3—4x2 4+ 3x=0
x(x2—4x +3)=0
x(x —Dx—3)=0

x =0, 1 or 3
Lymém
A
1W3/ =X
0
/‘ .

Figure 13.5

1
AreaA=f ydx
0

1
= f (x* — 4x® + 3x) dx

9

x4 33:2]1
"[4 3 T2
=[t—-%+3-0=+
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FURTHER EXAMPLES ON AREA
3 3
Area B =J y dx =f (x® — 4x® + 3x) dx
1 1

[,

4 3 2 h
=[%—36+%] - [F—%+1]
— -2
= 22
Therefore the total area = % + 2%
= 3%

Example 5. Find the area of the curve x* + 3xy + 3y = 1.
The area is the limit of the sum of the areas of strips like PQ of
width 6x. Now if P has ordinate y, and Q ordinate y,, noting that

y

Figure 15.6
neither upward nor downward movement of Ox alters the length
PQ, we have
Area = Limit > PQ 6x

5x—0

= Limit 3 (y; — y) 6x
dx—0

=J‘(y1 — yp dx with the appropriate limits.
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

The two values of y are found, in general, by solving the equation
as a quadraticin y, viz. 32 + 3xy 4+ x2—1=0
_=3x 4 /9% — 12(x* = 1))
B 6
= 3x 412 —3x7)
6

The two values of y are
—3 12 — 3x* —3x — /(12 — 3x?
X+ 2 =3 =3x = (12— 35

6 6
2/(12 — 3x? 3(4 — x*
Hence Y1 = Ve = \/( x)=\/[( 2l
6 3
Now the limits of x are the values for which y; — y, =0
i.e. 4 — x*=0, x = 42

area =

[ o=,
—2 3

= :/%f—: J@ — x?)dx

To evaluate this integral let x =2sin 0

w/2
area = 2cosB-2cos0db

\/ —7/2

= f 2cos?6do
—7/2

f (1 + cos 26) d0O
/2
[ sin 26]"’2
—7/2
w
- (2 ) ( * ) Js
Exercises 15a

1. Find the area between the curve y = tan x, the x-axis and the

ordinates x = 0 and x = =/4.
2. Find the area between the curve y = x? -+ 1/x, the x-axis and

the ordinates x = 1 and x = 3.
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MEAN VALUES

3. Find the area between the curve y = —x% 4 5x and the line
y==©6.

4. A (2, 8) is a point on the curve y = x3, O is the origin. Lines
AB, ACare drawn from A perpendicular to Ox and Oy and meet these
lines at B and C respectively. Find the areas OCA and OBA and
verify that their sum is the same as the area of the rectangle OBAC.

5. Find the area contained between the parabola 9y = x? and
the line 3y = x + 6.

6. Find the area enclosed between the curve 9y = xZ%, the y-axis,
the line y = 4 and the line x = —1.

7. Find the area enclosed between the parabolas y® = x and
x2 =y.

8. Find the area of the two segments bounded by the x-axis and
each of the curves () y = x® — x (i) y = x® + 2x% — 3x.

9. Find the area of each of the curves (i) 2x% + 6xy + 6y% =1
(i) 5x% — 12xy + 12p% = 2 (iii) 3x% + 10xy 4 10y2 = 2.

10. Find the area of the loop of the curve y% = x%(x — 1)%

15.2. MEAN VALUES

Suppose that the function ¢(x) is continuous, single valued, and
finite in the range x = a to x = b. Divide the range b — g into »n
equal parts each of length dx. Hence

néx=®b—a ....(15.2)

Let ¢(xy), é(xs).. . d(x,) be the values of the function at some
convenient point in each interval, say the middle (sometimes the
beginning is taken), then

. .1
lelt; [d(xy) + P(xa) + ... + S(x)]  ....(15.3)
is known as the mean value of the function ¢(x) over the range a to
b with respect to x. It is a natural extension of the usual average.

Since from (15.2) 1 = bx
n b—a
Mean value of ¢(x), over the range a to b with respect to x

= Limit;a—j—a [f(x) + . .. 4+ H(x,)]

n-rw

=3 1 Limit Eb: &(x) dx [(b — a) is constant]

— a dz—-0 @
1
b—a

f "4 dx  (by (13.8) ....(15.4)
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

b
Geometrically J ¢(x) dx is the area BCNK under the curve (see

a
Figure 15.7) and b — a is the distance KN. If LMNK is a rectangle
whose area is equal to the area under the curve then the mean value
is represented by the height MN of this rectangle.
If it is possible to express ¢(x) as a function of another variable
say u, the mean value with respect to u will, in general, differ from the
mean value with respect to x, and it is important to notice which

mean value is required.
u /’C
L M

4

B

>

o] K N

Figure 15.7

Example 1. When a particle falls freely from rest its velocity at any
time ¢ sec from the commencement of its motion is given by v = 32¢
or v? = 64s, where s is the distance fallen. If its velocity on impact
is 80 ft./sec find its mean velocity (@) with respect to time (b) with
respect to distance.

(@) Since v = 32¢ on impact 80 = 32T where T is the time taken

to fall. Therefore the time of falling is 2% sec.

1 25
mean velocity = — f vdt
2:5Jo

1 25
= — f 32t dt
250
1
= —[16673°
L e

= 40 ft.[sec

(b) Since »® = 64s (given) on impact 80° = 64s where s is the
distance fallen

s = 100 ft.
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MEAN VALUES

. 1 [0
mean velocity = —— f vds
100 Jo

100
L f f64sds
0

100
100
= —1—J‘ 852 ds
100 Jo
R
100 3 0
1 8.2 1000—-0
100 °°3
= 53% ft./SCC

Another mean value which is used particularly in electrical engineer-
ing is the root mean square or R.M.S. value of a function over a

given interval R,M.S.=A/:;%;Lb[¢(x)]2dx} ....(15.5

and is the square root of the mean value of the square of the function.

Example 2. An alternating current is given by i = I'sin (5t + 7/3).
Find the R.M.S. value for i taken over the interval 0 to 2m/5 sec.

27/5
(R.M.S. value)® = —5—f I? sin2(5t + ZT-) dt
27w Jo 3

2 2a/5
= L 1[1 — cos(lOt —+ gﬂ)] dt
27 Jo 2 3

2 27/5
= i[t — 1 sin(lOt -+ EZH
A 10 3/ Je

1
2 2 2
=£——§I—s'n2—ﬂ—0+ = sin —
2 O 3 407 3
I2
2

Hence R.M.S. value is I/{/2.
321



SOME APPLICATIONS OF THE INTEGRAL CALCULUS

In practical problems the values of the function ¢(x) can often
be found only at isolated points. If the intervals between these
points are all equal then an approximate mean value is found by

i [3x) + $(x) + - - . + bx)]

If the intervals are not all equal the values may be plotted on a
graph. Then a smooth curve is drawn through the points and a set
of values of ¢(x) at equal intervals, read off from the graph. These
latter values may then be used to find an approximate mean value.

Exercises 15b

1. A quantity of steam follows the law pu*'% = 10,000, p being
measured in Ib wt/in.2 Find the mean pressure as v increases from
1in.3to 16 in3

2. Find the mean value and the R.M.S. value in each of the
following cases:

(#) sin 0 in the range O to .

(#) sin 6 in the range 0 to 2.

(#i) sin 6 + cos 6 in the range 0 to 2.

(iv) Isin (10t + /4), the values of ¢ being taken over one period
t = 0to t = 27/10.

3. A body is dropped from a height of 144 ft. Show that the mean
value of its velocity until just before it hits the ground is (a) 48 ft./sec
with respect to time and (b) 64 ft./sec with respect to distance.

4. Show that the mean value of the ordinates of a semicircle of
radius ¢ drawn through equidistant points on the diameter is
}ma.

5. The following table gives the values of a current i amps in a
circuit at various times, ¢ sec. Find the mean value of the current.

¢ 0 6 81 11 17 20| 23 28 33 37 40

i 0 | 510 | 640 | 800 | 975 | 1000 | 975 | 840 | 580 | 275 0

15.3. VOLUME OF A SOLID OF REVOLUTION

Consider the volume swept out when the area enclosed by the
curve y = ¢(x), the x-axis, and the ordinate x = @, x = b is rotated
through 27 radian about Ox.
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VOLUME OF A SOLID OF REVOLUTION

Let KB and NC be the ordinates at the points x = g and x = b
respectively. Divide KN into n parts each of width ox. Let L, M
be two consecutive points of subdivision LP, MQ the respective
ordinates. Complete the rectangles PGML, FQML.

Then all such rectangles as PGML will sweep out thin circular
discs of area my? and thickness dx, i.e. of volume 7y? éx. The sum
of all such discs will be less than the volume required. Similarly all
such rectangles as FQML will sweep out thin circular discs of volume

\
>

e Z

Figure 15.8

m(y + 6y)? 6x and the sum of all such discs will be greater than the
volume required (note the curve has been taken as increasing from
x = a to x = b). Thus

b b
S wy® 8x < required volume of revolution < 3, 7(y + dy)? ox

a a

Now in the limit as éx — 0, 8y — 0 and we have that

b
required volume of revolution = Limit >, 7y*® éx
dx—=0 ¢

b
=J- my®dx ....(15.6)

Example 1. To find the volume cut from a sphere of radius a by
two parallel planes distances £, h; from the centre (h, > h;) and
both measured in the same direction.
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

A sphere is swept out by the rotation through 27 radians of a
semicircle about its bounding diameter. Take the centre of the circle

as origin and the bounding diameter as the x-axis. Then by
equation (15.6)

ha
required volume = f 7y® dx
h1

Y

Figure 15.9

The equation of the semicircle is x2 - 32 = g2

ke
required volume = 7| (a® — x?)dx
h1

37h
= 7T|:a2x — x_] 2
3 h1

= 77'[“2(112 — hy) — %(hg — h?)]

= § (hs — h[3a® — (B2 + hyhy + h2)]

Note that if we put &, = @ and b, = a — k we obtain the volume of a
spherical cap of height %,

i.e. volume = g[a —(a— k)] {302 — [aﬂ +a(a—k)+ (a— k)z:”

=;—Tk(3a2—-a2—a2—l—ak—a2+2ak—k2)
= T k3ak — k%)
3
= nkz(a — 'S‘) ....(15.7)
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VOLUME OF A SOLID OF REVOLUTION

When any portion of the area contained between a curve and the

y-axis is rotated about the y-axis the volume swept out will, by
y=d
symmetry, be f mx? dy but in other cases we may not be able to

v=¢
quote these formulae but have to return to first principles. Consider
the following:

Example 2. Find the volume swept out by revolving the area
between the curve y = e, the x-axis and the ordinates x =1,
x = 2, through 2= radians about Oy.

N\

~
~

!

"

>
1
1
|
|
!
t
1
t
1
1

e = el
mT =7

h ~—
]
1
]
|
1
1
I

Figure 15.10

Divide the volume into the shells by cylinders whose axes are the
y-axis and whose radii are at equal intervals dx from x =1, to
x = 2. The volume of a typical shell contained between two cylinders
of radii x and x + &x can be obtained if we consider the shell cut
and flattened into a plate which will be approximately of length y,
width 27x and thickness éx. That is of volume 2mxy dx.

=2
required volume = Limit > 2mwxy dx
ox—0 =1

2
=f 27xy dx see (13.8)
But y = ¢* thus '

2
the required volume = 27 f xe®® dx
1

2% 2271 2
= 277[x62 — e;] (by integration by parts)
1

21
— 2m(et — deby — 2 (e___ 2)
m(e* — }%) "3 "2 e
= 2m(fe* — }e?)
== 245-7
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

Exercises 15¢

1. Find the volume swept out when the area between the parabola
y = x% + 1, the x-axis and the ordinates at x =2 and x = 3 is
rotated through 27 radians about the x-axis.

2. Show that the volume of a sphere of radius a is $ma®.

3. Find the volume generated by rotating, the area bounded by
the axes and the curve y = cosx between x = 0 and x = /2,
through 27 radians about the x-axis.

4. The portion of the curve y = x% 4- 2 between the points (0, 2)
and (1, 3) is rotated through 2= radians about the y-axis to form the
surface of a bowl. Find the volume of the bowl.

5. Find the volume swept out when the area between the parabola
»? = dax, the x-axis and the ordinate x = h rotates through 2=
radians about the x-axis.

6. Find the volume of a cylinder of height A, radius of base a.

7. The ellipse x%[a® 4 y*/b® = 1(a > b) is rotated through =
radian about its major axis. Find the volume swept out. What would
the volume be if the ellipse were rotated about the minor axis?

8. Show that in the solid generated by the revolution of the
rectangular hyperbola x> — y* = a® about the x-axis, the volume of a
segment of height @ measured from the vertex is £7a3.

9. Find the volume generated by rotating a loop of the curve
¥ = x*¥(x — 1)? about the x-axis.

10. Find the volume swept out when the area between the curve
y = €%, the x-axis, the y-axis, and the ordinate x = 3 is rotated
through 27 radians about Oy.

15.4. CENTRES OF GRAVITY

Consider a number of particles of masses, m,, m,, . . . situated at
points whose co-ordinates are (x;, 1), (Xa, ¥2) . .. . Then the point
G(%, y) whose co-ordinates are given by the equations

)_C_mlxl—i—mzxg—}—..._me

mytme ... 3m ....(15.8)
ot Myt 3 my

my 4+ my 4 ... Sm

is defined as the centre of gravity or centre of mass of the system.
We have assumed that the masses all lie in a plane. If they are
not coplanar then each point will have a third co-ordinate z;, z, . . .

and G will also have a third co-ordinate defined by 7 = i’;’f
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CENTRES OF GRAVITY

In the case of a solid body we consider it split up into a large
number of very small elements each of mass dm and then the centre
of gravity is defined as the point G whose coordinates (X, 7, Z) are

given by:
Limit > x 6m fx dm
% =m0 = by (13.8)
Limit ¥ om fdm
am=0 ....(15.9)
ydm fz dm
Similarly j=, 5 —
fdm fdm

The summations and integrals are taken throughout the whole body.
y

S GRS
Y
ol - > X

Figure 15.11

Example 1. A circular arc of radius g, subtends an angle 2a at its
centre. Find the centre of gravity of the arc.

Take the centre of the circle as the origin and the x-axis along
the medial line. Let p be the mass of the arc per unit length, then
the length of a small element of the arc is @ 66 and its mass is pa 86

(Figure 15.12).
0=a
J‘ xpa do
0=—a
O=a
J pa do
f=—a

[ a cos Hpa do

X = (7 = 0 by symmetry)

) pa db

—o
__alsin 1%,
[01%,
__asin«
o o
Note that for a semicircle = /2 and X = 2a/.
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

Our small elements of mass dm have been taken as small arcs of
length a 66 and mass ap 86. Their moment about the y-axis (x om)
has been expressed in the form @ cos 6pa 66 which is a suitable
expression for integration with respect to 6.

Figure 15.12

In general when we are dealing with a lamina or a solid the small
elemental masses dm, and their moments x ém or y ém about the
axes, are expressed in the form f(0) 660 where 6 is some convenient
variable for which the integrations can be carried out. We shall
find it convenient to make use of the symmetry of the body (if it
exists) in choosing the variable § and the elemental masses. It is
important to notice that the “x™ in (15.9) is now the distance of the
centre of gravity of the elemental mass from the y-axis. Similarly
the “y” is the distance of the centre of gravity of the elemental mass
from the x-axis.

Example 2. A sector of a circle of radius a subtends an angle 2o
at the centre of the circle. Find its centre of gravity.

R
Figure 15.13

We take the centre of the circle as origin and the x-axis along
the medial line. By symmetry § = 0.
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CENTRES OF GRAVITY

We divide the sector by a large number of concentric arcs into
sections such as PQRS (Figure 15.13). Let OP =r, OQ =r + dr.

Area PQRS == 2ra dr
Mass PQRS == 2rap or

where p is the surface density of the sector.
Now by the result of Example I the centre of gravity of PQRS is

) r sin .
at a distance * from O along Ox. Its moment about Oy is
sin
thus 2rap or z " *
@ rsin a
2rop dr
(] o
x= -
J‘ 2rop dr
0
(Since p is assumed to be constant)
a
. f r*dr
__sina/y
a
* f rdr
[}
a
__sina 3
2
2 sina
=-q—
3 o
For a semi-circle « = 72 and
PR ....(15.10)
3

Example 3. Find the centre of gravity of a uniform solid hemisphere.
Take the centre of the hemisphere as origin and its axis of sym-
metry as Ox. Let p be its density.
Divide the hemisphere into elemental discs of width dx by planes
parallel to its plane end. The mass of a disc is approximately
my?p dx and the distance from the origin to the centre of gravity of a
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SOME APPLICATIONS OF THE INTEGRAL CALCULUS

discis approximately x. Since by symmetry j = 0 = z, we have that

a
f xmy?p dx
vo_____

X = -
j wy?p dx
(1}

<
€t

O fe—x~>f

B

Figure 15.14

The equation of the bounding circle is x2 + y? = 4% Thus
wpf x(a® — x?) dx
0

rer; (a® — x*) dx

Exercises 15d

1. Find the centre of gravity of the following (in all cases the
mass per unit area is assumed to be constant):

(@) the area enclosed by the parabola y? = 4x and by the line
x =1
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(b) the area between the curve y = sin x and the x-axis from
x=0tox=m.

(c) the area formed by one loop of the curve ¥® = x(x — 1)%

2. If the loops of the curves in Exercise 1(a), (b) and (¢) are each
rotated through 2 radians about Ox, find the centres of gravity
of the solids so formed.

3. Find the centres of gravity of the following:

(@) a plane equilateral triangle

(b) a quadrant of a circle

(¢) a solid cone

(d) afrustrum of a cone height A, radii of its ends a and b (a > b).

4. By dividing the sector of a circle of angle 2« into elemental
sectors of angle 60, find the position of its mean centre. [Use the
result of Exercise 3(a).] Compare your result with that of Example
2, section 15.4.

5. Find the position of the centre of gravity of the area contained
between the positive co-ordinate axes and the astroid X33
Y213 = g?/3,

EXERCISES 15

1. Show that the curve y* = x%(4 — x) possesses a loop and find
the area of the loop. (W.J.C)

2. Find the area of one loop of the curve 4y% = x*(4 — x%).
Also find the position of the mean centre of this area.

3. Sketch the curves y? = 2x, x3 = 4y giving the co-ordinates of
the points of intersection. Find the area they enclose and the
volume this area sweeps out when revolved through 2z radians about
Ox.

4. The area enclosed by the parabola y* = 4ax, the x-axis, and
the ordinate x = k is rotated through 2= radians about the x-axis.
Show that the volume swept out is 2mah®.

5. PAQ is an arc of the curve y = sin x from x = 27 to x = 37,
A being the midpoint of the arc. Show that, if P and Q are the
points on the curve where x = 2, and x = 37 respectively, the
area between the arc and the x-axis is divided by the line PA
approximately in the ratio 0-12:1.

6. Determine the mean value of the function x(4 — x) between
x=0and x =4.

7. Find the R.M.S. value of I = sin (wt + =/3) the value of ¢
being taken over one period fromt =0 tot = 2m|w.

3. Sketch the curve y? = (x — 1)%(x + 1). If the curve is rotated
about the x-axis through an angle =/2, find the volume enclosed by
the surface swept out by the loop of the curve.
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9. Find the area of the portion of the plane enclosed by the curve
y =1 4 sin x, the axis of p, and the axis of x from 0 to 7. Find
also the volume of the solid obtained by rotating this area about the
axis of x. (S.UJB)

x
24 x
enclosed by the curve, the lines x = 0, x = 1 and the line y==1.
Also find the volume generated when this area revolves through 27
radians about the line y = 1.

11. Find the mean centre of the area between the curve y =
(x — 1)(4 — x) and the axis of x.

12. Find the area enclosed by the two parabolas ay = 2x2
¥* =4ax. Also find the position of the mean centre of this area.

13. Find: (i) the area bounded by the axes and the part of the
curve y = cos 2x between x = 0 and x = #/4

(if) the volume described when that area is rotated through four
right angles about the x-axis

(iif) the centre of gravity of that area. (S.U.J.B)

14. Prove that the area common to the two parabolas 3% = 4ax
and x? = 4ay is 164%/3. Find the centroid of the common area.
Show that if the area is rotated, through four right angles about the
x-axis, the volume generated is 967a3/5. (JM.B)

15. Sketch the curve whose equation is

10. Sketch the graph of y =

for x > 0. Find the area

aty® = 4x%(a? — x?)

Prove that the area contained by one loop of the curve is 4a?/3.
Find the volume swept out when one loop is rotated through two
right angles about the x-axis. (J.M.B)

16. The curves y = 7 — x% and xy = 6 intersect at the points A
and B in the first quadrant. Find the co-ordinates of A and B.
Find the area contained between the two curves. This area is
rotated through four right angles about the y-axis. Prove that the
volume swept out is 37/2. (I.M.B))

17. ABC is a triangular lamina in which AB = AC and the
perpendicular distance of A from BC is . The density of a thin
strip of the lamina which is parallel to BC and at a distance x from
A is kx. Prove that the centre of gravity of the lamina is at a distance
2h from A.

18. Prove that the area bounded by the two parabolas 3y = 2x2,
¥® = 12x is 6 square units. Find the co-ordinates of the centroid
of this area.

19. The co-ordinates of a variable point P are given by the
equations x =4 — ¢, y = 1 4 3¢, where ¢ is a parameter. Find
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the value of ¢ for which the tangent to the locus of P is parallel to
the y-axis.

Find also the x co-ordinate of the centroid of the area bounded by
the curve and the y-axis.

20. A curve whose equation has the form y = x(x — 2)(ax + b)
touches the x-axis at the point where x = 2 and the line y = 2x at
the origin. Find the values of @ and b, sketch the curve and prove
that the area enclosed by an arc of the curve and a segment of the
line y = 2x is 82. (L.U)

21. Sketch the graph of y = x?sin2x (x being measured in
radians) from x = 0 to x = =, and prove that the ratio of the two

2
areas bounded by the curve and the axis of x is 5%:—% .
(8.U.1.B.)

22. In a triangle ABC the angle C = 2m/3. Express c? in terms of
aand b. The triangle is rotated about A in its own plane, through an
angle 6 (<w). Find, in terms of 4, b and 0, the area swept out by
() AC (i) BC. (J.M.B)

23. Draw a rough sketch of the curve defined by the equations
x =2(6 — sin 6), y = 2(1 — cos 0) as B increases from O to 2m.
Evaluate for this curve the integrals

o[ge o UG+ E)]e

24. Sketch the curve given by the parametric equations x =
2 — 12, y = 13, The area enclosed by this curve and the axis of y
is rotated about the axis through four right angles. Find the volume
of the solid so described. (S.U.1.B.)

25. The points A(c, @) B(0, b) and C(—c, a) where (b > a > 0)
lie on a curve of the type y = Px% + Ox + R. Determine the
constants P, Q and R and hence show that the equation of the curve
is ¢y + (b — a)x? = bc®.. AM and CN are ordinates. Find the
volume of the solid formed by revolving the area bounded by the
curve, the x-axis and these ordinates through four right angles about
the x-axis. (L.U.)
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16
DIFFERENTIAL EQUATIONS

16.1. INTRODUCTION

We have seen in section 13.1 that an equation of the type

do
—=6 ....(16.1)

dt (
can be solved by integration (integration is the inverse of differentia-
tion) to give as its solution

v=~6t+ C ....(162)

This is also known as the general solution of the equation (16.1)
because it contains the arbitrary constant of integration.

Such equations which involve differential coefficients are known
as differential equations and they occur very often when practical
problems are expressed in mathematical symbols. The equation
(16.1) arose from the question: if the acceleration of a particle is
constant and equal to 6 ft./sec?, what is its velocity? We now see the
practical importance of the constant of integration, two objects may
have the same acceleration but different velocities depending on the
initial conditions. For example if we know that initially (¢ = 0)
the velocity is 11 ft./sec then substituting in (16.2)

11=6.04+C
we have Cc=11
v==6¢t4 11 ....(16.3)

This is known as a particular solution of the differential equation
(16.1).

As another example of how differential equations arise consider
one of the laws of chemical reaction.
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Example 1. In a certain chemical reaction the amount x of one
substance at any time ¢ is related to the velocity of the reaction,
dx/dt by the equation

dx

m = k(a — x)(b — x) (a, b, k constants)

Find a relation between x, a, b, k and ¢.
To solve the equation we rewrite it in the form

e 1
dx k(a — x)(b — x)

TR -
kJ(a — x)b — x)

kt:(b-l—a)f[(aix)_(bix)]dx

[—IOge (a - x) + loge (b - x)] -+ C

)
b—x

= lo ( ) +C
(b —a) Be a—x
Although we now have a relation between ¢ and x, the three
original unknown constants and the arbitrary constant of integration

are also involved, and more information is needed before the result
is of practical value.

Example 2. A beaker containing water at 100° C is placed in a
room which has a constant temperature of 20° C. The rate of
cooling at any moment is proportional to the difference between the
temperature of the room and theliquid. If after 5 min the temperature
of the water is 60° C, what will it be after 10 min?

The law stated here is the physical reality known as Newton’s Law
of Cooling.

Let the temperature of the water at any time ¢ min be 6°C.
Then the rate of change of temperature is d6/d¢ (see section 11.1),
thus the rate of cooling is —df/ds. Hence

dé

—=—ocf—20
dt

99 o —20) ....(16.4)
d

which is the mathematical expression of Newton’s law.
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For this case, considering the reciprocal of both sides we have
dt 1

do k(9 — 20)

_1(__do
_t_kf(e—zo)

—kt = logy (6 — 20) - C
—C — ki = log, (6 — 20)
e 0 =0 —20
e Ve * =9 — 20
Ae™ =0 —-20 where A =¢C

} 20 + Ade*t =0
Now initially # = 0 and § = 100
: 20 + 4 =100
A4 =280
6 = 20 + 80e~** ....(16.5)

Also when t = 5, 0 = 60
: 60 = 20 4+ 80e—5*
e% = (-5 ....(16.6)

Itis possible to find k exactly from this equation but it is not necessary
in this example for when ¢ = 10, substituting in (16.5) we have

0 = 20 -+ 8010k

= 20 4 80(e~%)2
which from (16.6) gives

0 = 20 + 80(0-5)2
ie. 0 =40°C after 10 min

Applications to Mechanics Problems in mechanics often involve
acceleration which may be expressed in any of the following three
forms:

® —
o d%s . _ds
(ii) (smce v= dt)

v . dv ds do dv
(iii) v— since — = — . — =p—
dt dt ds ds
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Example 3. A particle moves in a straight line with constant
acceleration a. If at any time ¢ sec its velocity is v ft./sec and the
distance travelled is s ft. find expressions for

(i) vin terms of a and ¢

(i) s in ternis of @ and ¢
(#ii) v in terms of a and s.
Assume that when t =0, s =0 and v = u.

(9 In this case since v and ¢t are to be linked we use dv/dt = a

v=at+C
But whent=0,v=u

u=0+0C

v=u-+at

(i) From the preceding result

% =u -+ at
hence s=ut + }at®* + A.
Now whent =0, s =0, hence A =0
and so s = ut + }ar.

(éii) In this case since v, s and a are to be linked we use

v
L
ds
1,2
ie. d@v?) =aq
ds
hence 0 =as + B
Butwhens=0,v=u
hence $4u2=0-+ B
and so $30? = as + Lt
i.e. v? = u? + 2as

A differential equation sometimes expresses a physical relation
better than its general solution. To illustrate this point, and also
to show that, given a general solution, the differential equation can
be formed by differentiation and elimination of the arbitrary con-
stants consider the following example.
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Example 4. Given that a particle moves so that its distance (s)
from a fixed point at time ¢ is given by s = A sin (3t + €) where
A, € are constants, find the original differential equation governing
the motion of the particle.

Since there are two constants we shall find that” the original
differential equation involves second order differential coefficients.

s=Asin (3t + ¢) ....(16.7
4 34cos (3t + )
dt
d2
d_té = —9A4sin (3t + ¢€) ....(16.8)
From (16.7) and (16.8)
d2
— = 05
de®

i.e. acceleration = —9s.

Thus the acceleration is proportional to the distance s from the
point and (since it is negative) directed towards that point. This
kind of motion is known as simple harmonic motion.

In subsequent sections of this chapter a systematic approach will
be made to the solution of differential equations generally. It is,
however, always worth while considering if some of the usual
mathematical processes will help.

Example 5. Solve the differential equation

2
(- G-
dx x dx
and interpret the result geometrically.
In this case the equation will factorize giving

e -
(dx+ dx x

dy_ oo 1 ....(16.9)
X

Hence either —=
dx dx

2
y=-xE+A or y=1logex -+ B
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Note that although the two constants are both arbitrary they may
have different values.

To interpret the result geometrically we note that as A4 is given
different values, (say 0, +1, +2,...), y = —(x?/2) + A gives rise
to a family of parabolas all with thelr vertices on the y-axis and with
their axes coincident with the y-axis (see Figure 16.1).

Similarly as the value of B varies y = loge x + B gives a family of
logarithmic curves (see Figure 16.1).

In this example it is interesting to note that from (16.9) the slopes
of the two families of curves are —x and 1/x, and that the product of
these slopes is —1, so that the curves cut at right angles.

f

/— y:——§2—2+/4

y

y=logex +8

Figure 16.1

Two such families of curves in which every member of one family
cuts every member of the other family at right angles are said to be
orthogonal trajectories.

Exercises 16a
1. Solve the following differential equations:

~ dy . . dx 2
i) = =sinx i) ——t"+2=0
® 3 () -
. dx . d2y
iii) — = 3x i) — =35
(i) dt (i) de?
2. Form the differential equations whose complete solutions are:
(i) y=A4x (ii) y = Ae®*®
(iii) y = Ax? + B (iv) y = Ae®® + Be™®
X

3. Prove that for any straight line through the origin dy/dx = y/x
and interpret this result geometrically.
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4. The rate of decay of a radio-active substance at any time is
proportional to the amount remaining at that time, the constant
of proportionality being k. If initially the amount of substance is
10 g find an expression for the amount remaining after ¢ sec.

5. A particle moves in a straight line so that its acceleration is
always towards a fixed point and varies inversely as the square of its
distance x from that point. Show that its velocity » is given by
$0? = p/x + C (u and C being constants).

This law is true for the case of the earth attracting a meteorite.
If x is measured in ft. and v in miles/sec, then y = 517 x 108,
Neglecting the effect of the earth’s atmosphere and assuming its
radius is 4000 miles, find with what velocity a meteorite would reach
the earth after moving from a very great distance under its attraction.

6. A particle falls from rest in air. If the resistance of the air is
assumed to vary as its velocity v then it can be shown that its
acceleration a is given by @ = 32 — kv (where k is a constant).
Show that v = 32(1 — e *%)/k and hence find the limiting value to
which v tends as ¢ increases (known as the terminal velocity).

7. Find the two general solutions of (dy/dx)? + (x + y) dy/dx +
xy = 0 and illustrate the results geometrically.

8. The current i flowing in a circuit at any time 7 is given by

g
L d—; +Ri=E (L, R, E constant)

where L is the self inductance of the circuit, R its resistance and E
the external electromotive force. Find i in terms of E, R, L and ¢,
and given that initially the current is zero find the value of the current
as ¢ becomes very large.

9. Find V if d[r¥(dV/dr)]/dr=0and V=V, at r=a, V=10
atr = b. (Vis the potential at a distance r from the common centre
of two spherical conductors radii a, b at potentials ¥, and 0
respectively.)

10. The ordinate and normal through a point P on a curve meet
the x-axis in N and G respectively, and NG = kKNP? where & is a
constant. Find the equation of the curve if it passes through the
point (1, 1) with gradient 2.

16.2. FIRST ORDER DIFFERENTIAL EQUATIONS

WITH VARIABLES SEPARABLE

The order of a differential equation is the order of the highest
differential coefficient contained in the equation. In this section
we shall consider only first order differential equations, i.e. equations
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which contain only a first order differential coefficient dy/dx, dy/d¢
etc. and no higher derivatives. Functions of x and y or x and ¢
will also figure in the equations. First order equations with variables
separable are equations which may be put into the form

g_y — f(x)g() .. .(16.10)
X

i.e. dy/dx is equal to an expression which can be resolved into two
factors, one containing x only, the other y only. (16.10) can be

rewritten
1 d dy

g dx
Integration with respect to x gives

f—L dy = f f(x) dx (see section 14.3)
g(»)

We have separated the variables whence the name of this type of
equation.

f(x)

Example 1. Find the general solution of the differential equation
x2y(dy/dx) = x + 1.

dy

—=x+41
xydx +
ydy +—

s+ 2o

J'y dy =J‘(x‘1 + x7Hdx

- 32
5 y
It will be noted that although there are two separate integrations

only one arbitrary constant is necessary, because the sum or difference
of two arbitrary constants is another arbitrary constant.

=logex—-1——|—C
x

Example 2. During a fermentation process the rate of decom-
position of a substance at any time ¢ varies directly as the amount of
substance y and also as the amount of active ferment x. If the
constant of proportionality is 0-5, the value of x at any time ¢ is
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4/(1 + ), and initially y = 10, find y as a function of . Also deduce
the amount of substance remaining as ¢ becomes very large.
The rate of change of the substance is dy/dt,

the rate of decomposition is —(dy/d?)

Hence _ oc xy
dt
but the constant of proportionality is given as 0-5, thus
dy )
i —0-5xy
but X = 4
a4+
&y _ g5y 4,
dt 1+
1y 2
ydt A+ t)2

figa- f
ydt 1402
[
y 141t

2
logey =——+C

1+t
— C+2/(1+t)
y =
y = ele?/+0
y = Ae?/0+d) (4 = €€ is a convenient form for the arbi-

trary constant).
Now initially z = 0 and y = 10

10 = Ae?
. 102 =
Thus y= 10e"2e2/ -+

= 10e 2/(1+8)—2 _ 10e-—2t/1+t

Ast— o0, — — —2 and so y — 10e72 = 1-36.

2t
1+¢

If we now reconsider the examples in section 16.1 it will be seen
that they could nearly all be treated by this method.
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Exercises 16b
1. Solve the differential equations

o~ dy ¥ .. dy
dy _ _»* &y _ 0,
Orniaange () 32 =x0 —2)
@+ rpot () P
dx dx

2. A particle moves in a straight line in a resisting medium so that
its acceleration a is given by a =10 (v® + 9v). If the particle
passes through the origin with a velocity  find an expression for its
distance s from the origin in terms of # and v.

. d( df
3. Solve the equation T (r E;) =0.

4. Show that the general solution of the equation (1 + »?) -
(1 + x?)(dy/dx) = O can be writtenintheformy = (k — x)/(1 + kx)
where k is the arbitrary constant. Hence find the particular solution
for which y = § when x = 1.

5. The normal and the ordinate at any point P on a curve meet
the x-axis at G and N respectively. The difference between the
length of GN and the x co-ordinate of P is one unit. Find the general
equation of the curve.

6. Show that the equation y = 2x(dy/dx) represents a family of
parabolas with a common axis and a common tangent at the vertex.

7. Find a function whose rate of change is proportional to the
square of its value and whose value is 1 when x = 0 and 3 when
x=1

8. In a suspension bridge with a uniform horizontal load the form
of the chain is determined by the equation 2y = x(dy/dx) where the
lowest point is taken as the origin of co-ordinates and the tangent
at this point as the x-axis. Show that the form of the chain is a
parabola with its axis vertical.

9. Find the curve such that the normals all pass through the
origin.

10. In a reservoir which is discharging over a weir, it is known

b dt 90

M IE=—m
sill of the weir at any time ¢ min. If initially H = 1ft. find an
expression for H.

where H ft. is the height of the surface above the

16.3. THE DIFFERENTIAL EQUATION d2x/ds® = kx

The equation d2x/df? = kx is a very simple example of a second
order differential equation but it is of intrinsic importance in

343



DIFFERENTIAL EQUATIONS

kinematics. It arises when the acceleration of a particle is propor-
tional to its distance from a fixed point.

i.e. acceleration oc distance

SX  kx ....(16.11)

If the acceleration is directed away from the point, k is positive and
can be written as n2. Hence
d2x
—_ — 2
g = " ....(16.12)
If the acceleration is directed towards the point, k is negative and can
be written as —n2. Hence
d%x 2
— = —nx ....(16.13
O ( )
The method of solution is to multiply both sides by 2(dx/df). Thus
equation (16.11) becomes
2
2 dx . dx _ 2kx dx
dt dr dt
which can be written

2
(&
t k X

—_— = 2kx—=

dt dt
2
Hence (d_x) = kax dx dt
dt dt
2
Le. (g—f) = kax dx (see section 14.3)
. dx)2 2
ie. — )} = kx ¢
() =+
dx 2
d_t = :t\/(kx +C)
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This is a separable differential equation and by section 16.2
dx
t= — ....(16.14
:tf J(kx* + C) ( )

General Solutions—If k is positive and equal to »? [see (16.12)] the
integral (16.14) becomes

dx
s
J(’x?* + C)
and the solution of this integral is beyond the scope of this volume.

However, if we return to equation (16.12), the solution of the differen-
tial equation can be obtained as follows:

d%x 2
— =nx
de?
Subtract n(dx/d¢) from both sides of the equation then
d®x dx dx 2
— —n—= —n— +n’%
ds? dt d +
. d (dx ) (dx )
ie. —{—= —nx) = —n|— — nx
de\d: dt
If we now set z = dx/d¢z — nx we have
dz
— = —nz
dt

This is a separable differential equation (see section 16.2) and we

have that
f dz_ f—n dt
z

logez= —nt + A

from which z = Ce™™,
Resubstituting for z

dX _ px = e ....(16.15)
dt
Reconsider the original equation
d%x .
— =n’x
ar
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and this time add n(dx/dr) to both sides of the equation; then

d%x dx dx 9
— — =n— +n%
e T"a et

' ) = (5
1.e. \ar + nx n I + nx
If we now set z = (dx/df) + nx we have

dz

— = nz

dt

This is again a separable differential equation and we have that

J‘2=J‘ndt
z

logez = nt + B
from which z = De™.
Resubstituting for z

% + nx = De™ ....(16.16)

We now subtract equation (16.15) from equation (16.16) to eliminate
dx/dt and we have

2nx = De™ — Ce™™

x=—¢e"— Ze™
2n 2n
x = Ae™ + Be™™ ....(16.17)
(4 = D|2n, B = —C/2n are convenient forms for the arbitrary

constants.)
If k is negative and equal to —n? [see equation (16.14)] then the
solution is

9
t= if\/(C — n%?

t=;{:lf dx

n C 2

J(G-%)
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If we let p? = C/n? the solution to this is

t = j:lsin’13—c+K
n p
or nt — nK = +sin~1Z
p
ie. nt + €= +tsin71Z (putting € = —nK)
p

Hence x = -+|p| sin (nt + ¢).

The ambiguous sign can be absorbed by changing the sign of p,
since p is arbitrary, or by replacing e by ¢ 4 = since ¢ is arbitrary;
hence the solution is

x=psin(nt + ¢ ....(16.18)

This may be rewritten

Xx = p sin nt cos € + p cos nt sin €
ie. x = Asinnt -+ Bcosnt ....(16.19)

where A =pcose, B=psine (see also sections 6.8 and 16.1,
Example 4).

Note that x is a periodic function, period 27 /n.

The solutions (16.17), (16.18), (16.19) should be remembered.

Example 1. Solve the equation d2x/ds? = 4x, given that when ¢ = 0,
= 5 and dx/dt = 2.
From (16.17) the solution of d?x/ds? = 4x is

x = Ae~%  Be¥ ()
Hence :—f = —2A4e™ % 4 2Be* (1))

We are given that when ¢ = 0, x = 5 and dx/d¢ = 2. Substituting in
(i) and (ii) we have that

5S=A4A-+ B
and 2= —24-+ 2B
Hence A=2, B=3

X = 2¢7% + 3¢
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Example 2. The velocity of a particle is given by v = 4/(16 — 9x2).
Find an expression for its acceleration in terms of x. Thus given that
x = 0 when ¢ = 0 find an expression for x.

v =./(16 — 9x%)
dv —9x
dx /(16 — 9x%)
Now acceleration = v dv
dx
—9x
= f(16 — 9x%) ———
VA6 =9 e o
Thus acceleration = —9x
or dx _ o,
de?

From (16.19)
x == Asin 3t + Bcos 3t

Initially t =0, x =0
’ x = A sin 3¢

Now v = dx/df = 34 cos 3¢ and from the given expression when
=0(@=0),v=4

) 4=3
ie. A=4%
giving x=%

Example 3. The acceleration of a particle is proportional to its
distance from a fixed point O and is directed towards that point.

B i Becm -——-~--—~~ >
0 A
p—— X

Figure 16.2

The particle starts from rest at a point A distance 16 cm from O.
If after 3 sec the particle reaches O, find when it was at a distance of
8 cm from O.
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THE DIFFERENTIAL EQUATION d2x/ds* = kx

Measure the distance x from O in the direction OA. Because the
acceleration is directed towards O we have

_dx

v o x
g:_;c = —n’
From (16.18) the general solution of this is
x = psin (nt + €) ()}
Thus the velocity v (= dx/dr) is given by
v = pncos (nt + €) R 1))

From the initial conditions when = 0, x = 16 and v = 0.
Substituting in (i) and (ii) we have that

16 =psine RN (1))
0=pncose RN 9]

From the equation (iii) and (iv)
=16 and e==
p € 5
Thus x = 16 sin (nt -+ -;—T)
Now when ¢t = 3, x = 0, hence

0 = 16 sin (3n +;—7)

ie. 3n + ;—’ =0, 4w +2m,...
The only acceptable solution is
I+ Z=a
thus » = /6 giving as the complete solution
x=165in(zt—|—-7—r) e (v
6 2 N
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To find when the particle was at a distance of 8 ¢cm from O
substitute x = 8 in (v), then

8 = 16si (Zt 3)
nlgf Ty

. ) 1
1.€. sin (Zt Z—T) = =~
6 + 2 2

g t -+ .27Z = nw -+ (—)"76—7 (see 7.4)

The value n = 1 gives the smallest value for ¢ for which x = 8,
thus
w
6 6
ie. t == 2 sec.
Example 4. A particle of mass m is suspended from a light elastic
string. Its acceleration is given by g — (Ax/ma) where g, A and a are
constants and x is the distance of the particle from a fixed point A.
Find an expression for x at any time 7.

Acceleration = g — A
ma
2
ie. A
de® ma
This can be written
d?x y) ( mag) .
— = ——\x—-—= e
de ma A ®
Now let z = x — (mag/2). Then d2z/d® = d2x/ds? and equation (i)
becomes 9
d z_ A
—_—=——2Z
dr? ma
This is the same as equation (16.13) with
A
= =n®

Thus its solution is

ST
ie. =—/1—g+ s1n[A/( )t+e}
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Exercises 16¢

1. Find the solution of the equation d2x/df* = 25x given that
when ¢ = 0, x = 12 and dx/dt = 10.

2. Find the solution of the equation dx/ds® + 4x = 0 given that
when t = 0, x = 4 and dx/dt = 6.

3. A particle starts from rest and moves towards a fixed point O
under the influence of a force which is directed towards O, and which
varies as the distance of the particle from O. Initially the particle
was 10 ft. from O and its acceleration was 10 ft./sec? towards O.
Find:

(i) its velocity when 8 ft. from O

(ii) its velocity at O

(i) its distance from O after =3 sec.

4. A particle moves so that its equation of motion is d%x/ds® =
—16x. Initially v = —16 ft./sec and x = 3 ft. Find:

(i) its velocity when x = 5 ft.

(if) its velocity when x = 4 ft.

(iii) the value of x when its velocity is 20 ft./sec.

5. Solve the equation d2x/ds2 = 36x — 72 given that when
t =0, x = 7 and dx/dt = 32.

EXERCISES 16
1. Obtain the general solution of the following differential
equations:
dy dy 2
(a) tanx — =cot y by =+ y=x%
dx dx

d
© y—xL=xy.
dx

2. Obtain the differential equation for which y = Ax | 4% is the
general solution.
3. Solve the equation

dy)2 dy
=Yy — =
(dx (x+y)dx+xy

and interpret the results geometrically.
4, Find the general expression for y given that it satisfies the
equation

m+ﬂ%—mhﬁb0
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5. The horizontal cross-section of a tank has a constant area
Ain? Water is poured into the tank at the rate of K in.3/sec. At the
same time water flows out through a hole in the bottom at the rate of
H,/y in3[sec, where y in. is the depth of the water. Show that at
time £ sec, 4 (dy/df) = K — H,/y. By putting y = x2 find the general
solution of this equation when H, K are constants. If y = 0 when
t = 0 deduce that

K K
. loge( )_H\/y

24K C\k—HJy! Kk
If 4 = 1000, H = 100, K = 600 show that when y = 25, the value
of tis 115 approximately. (Take loge 6 = 1-79180.) (I.M.B)

6. Show that the solutions of the differential equation

dy)2 2 ady
xpl—=)] —(x"—y)— —xy=0
4 (dx =T
are the two families of curves
xy=A4 and x2— ="

Show that these two sets of curves are orthogonal trajectories.

7. Given that y = (sin™ x)? prove that (1 — x2)(dy/dx)? = 4y.
Deduce that (1 — x?)(d?y/dx?) — x(dy/dx) = 2.

8. If y = A tan (x/2) where 4 is a constant, prove that

(1 + cos x)(d?y/dx?) = y.

9. Write down the general solution of the differential equation
dy/dt = —ky where k is a constant.

A radio-active substance disintegrates at a rate proportional to
its mass. If the mass remaining at time ¢ is m, show that

m = mye"

where my is the initial mass and k is a constant.

One third of the original mass of the substance disintegrates in
70 days. Calculate, correct to the nearest day, the time required for
the substance to be reduced to have half its original mass. If the
original mass was 100 g, calculate correct to the nearest g the mass
remaining after 210 days. (J.M.B)

10. Find the curves such that the portion of the tangent included
between the co-ordinate axes is bisected at the point of contact.

11. Prove that if y = e~*¢ (A4 sin pt + B cos pt) where k, p, A
and B are constants then

dzy dy 2 2
— 4+ 2k— k)y =0
I + ar + (" + Ky
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12. Solve the differential equation

dy 1(dy¥ . 1{dy¥
emr (9) AT L2
dx/ " 21\dx/ " 3t\dx
. dy y+9%
13. Given that x - yFx
obtain an equation expressing dz/dx in terms of z and x. Solve this
equation and deduce that

Gx+yBx =y =C

where C is an arbitrary constant. J.M.B)
14. A rectangular tank has vertical sides of depth 4 and a horizon-
tal base of unit area. An inlet supplying water at a constant rate
fills the tank in time T when running alone. An outlet, through
which water flows at a rate proportional to the square root of the
depth of water in the tank, empties the tank in time 47 when
running alone. Show that, if x is the depth of water at time ¢ when
both outlet and inlet are running then dx/d¢ = p — g4/x, where
p = h|T and g = 4/h/2T. Deduce that if both inlet and outlet are
running, the initially empty tank will befilled in time 47/(2 log, 2 — 1).
(J.M.B.)

15. A particle is moving in a straight line and its distance at
time ¢ from a fixed point O in the line is x. Its speed is given by

dx
50 = = (40 — — 20
& ( x)(x )

use the substitution y = zx to

and x = 25 when ¢t = 0. Find an expression for x in terms of ¢.
Find the greatest speed in the interval 20 < x < 40 and the value
of t when the greatest speed is attained. (J.M.B)
16. Show that the substitution y = vx (where v is function of x)
reduces the equation
dy _  dy
YR T Y !

to a separable equation for » and hence show that its solution is
loge (x* + y*) = 2 tan™? Lic
x

17. Use the substitution y = vx, where v is a function of x, to
reduce the differential equation
dy 1, 2
X—= —y=-XxX" —
ax T a7
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to a differential equation involving v and x. Hence find y as a
function of x given that y = 0 when x = 1.
18. By using the substitution y = xz, or otherwise, solve the
differential equation .
2 _y . ¥ (J.M.B.)
dce x x*

19. If d%/dx2 + s =1 and when s =2, ds/dx =0 prove that
(ds/dx)* =25 — 5% If s =0 when x =0 prove also that s —
1 — cos x.

20. Show that, by means of the substitution y = ¢ — x2, the
equation 4

| d_xyz +x4+y+2=0

d®
becomes — +t=0
dx?
Solve this latter equation and hence obtain the general solution of
the original equation.
21. The rate of cooling of a body is given by the equation
KT 10)
ds
where T is the temperature in degrees centigrade, & is a constant, and
t is the time in minutes.
When t=0, T=90 and when t =5, T=60. Show that
T =41} when ¢ = 10. (J.M.B.)
22. The motion of a particle P, whose co-ordinates are (x, y)
referred to a pair of fixed axes through a point O, satisfies the
equations

dx 9 d%y .
— = —wx; — = —W
de? ds? ¥
The initial conditions are
X =a, y=0, d_x= and d—f:bw when t=0

dt
Prove that the path of the particle is the ellipse

x\2 ( y)z
- ) = 1
(a) + b
(The general solutions of d?x/df? = —w2x, d2y/dx2 = —w?y may be

quoted.) (J.M.B.)
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23. A particle of mass m is projected with speed V' vertically
upwards from a point on horizontal ground. Its subsequent motion
is subject to gravity and to a resistance kmyv?* where v is the speed and
k is a constant. If its acceleration is equal to —g — kv* show that

. o1 &
the greatest height attained is % log, (1 +k E)

24. The horizontal cross-section of a tank is of constant area
A ft2. Water is flowing into the tank at a constant rate of B ft.3/sec
and at the same time water is leaking out from the bottom of the
tank at the rate of Cx ft.3/sec, where x ft. is the depth of water at
time ¢ sec. Show that A(dx/df) = B — Cx. If x = O when ¢t = 0,
find x in terms of z. If 4 =40, B =1, C = # find the value of ¢
when x = 2. (J.M.B))

25. (a) In the differential equation

d
(x—l-y)d—i=x2+xy+x+l

change the dependent variable from y to z, where z=x + .
Deduce the general solution of the given equation.
(b) The normal at the point P(x, y) on a curve meets the x-axis
1 2
at Q and N is the foot of the ordinate of P. If NQ = %%5) ,
find the equation of the curve, given that it passes through the point
@G, . (J.M.B,)
26. A particle is projected vertically upwards with a speed
g/k, where g, k are constants. If the subsequent motion is subject to
gravity and to a resistance to motion per unit mass of k times the
speed, then the acceleration is given by
d*x
—=—g—kv
ds? g

Find expressions for the speed v and the height x reached after
time ¢. Also show that the greatest height H the particle can reach
is given by

k*H = g(1 —log, 2)

27. A particle moving along a straight line OX is at a distance x
from O at time ¢ and its speed is given by

812 :—t’f = (1 — ®)x*
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If x = 4 when ¢ = 1 prove that x = 8¢/(1 + 2). Find
(i) the speed when t =0
(ii) the maximum distance from 0
(¢i) the maximum speed towards O for positive values of z.
(IM.B)
28. The equation of motion of a particle is

2
2¢(1 + sin 6) (3—?) = g[2(cos & — cos 0) — (cos 2o — cos 26)]

If « and 0 are small show that this equation reduces approximately
to

2
2c (d—e) = g(a® — 6%)
dt

If initially £ = 0 and 6 = « deduce that

o=esn[Jlg)+3]

29. The displacement of a particle at time ¢ is x, measured from a
fixed point and dx/d¢ = a(c® — x?) where a and ¢ are positive
constants and x = 0 when # = 0. Prove that

. (CZact . 1)
(GZact + 1)
If x = 3 when ¢ = 1 and x = £} when ¢ = 2 prove that ¢ = 5 and
find the value of a. (J.M.B)

30. A mass is moving horizontally against a resistance which is
proportional to its speed. If at any time ¢ its speed is v and x is the
distance moved its equation of motion is known to be

P(V? — v%) = TV%? dv
dx
P, V being constant.
Find an expression for x in terms of v and from this expression

show that the distance covered by the mass while its speed increases

N . V3 .
from {V to 3V is m,(6 log, £ — 5).
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17

INTRODUCTION TO CO-ORDINATE
GEOMETRY '

17.1. CO-ORDINATES

Cartesian Co-ordinates—When drawing graphs it is necessary to
have two fixed reference lines. These are known as the axes, Ox
and Oy and are normally at right angles to each other. The axes
enable us tolocate any point P in a plane by means of its perpendicular
distances from Oy and Ox.

Referring to Figure 17.1 the lines PL, PM, perpendicular to the
axes define the position of P. The lengths PM, PL are known as

y
ML P
nl 1
) L X

Figure 17.1

the cartesian co-ordinates of P. The length PM (x) is known as the
abscissa and the length PL () is known as the ordinate. The pair
are written in order as (x, y). We note that if P is the point (x, y)
then it is also true that OL = x, and OM = y.

The usual sign convention is used. For points to the right of Oy
the abscissa is positive, and for points to the left of Oy the abscissa
is negative. For points above and below Ox the ordinate is positive
or negative respectively. Thus the points A(4, 3), B(—2, 5), C(—4,
—3), D1, —3) are as shown in Figure 17.2.

Polar Co-ordinates—The position of a point P in a plane can be
described by other methods. Consider a fixed line Ox, O, the origin,
being a fixed point on it. Referring to Figure 17.3 we see that the
position of P is known if the angle POx and the distance OP are
given. The angle POx (6 in Figure 17.3) is called the vectorial angle
and is considered positive when measured in an anticlockwise
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INTRODUCTION TO CO-ORDINATE GEOMETRY

direction. The distance OP (r in Figure 17.3) is called the radius
vector and is considered positive when measured from O along the
line bounding the vectorial angle and negative in the opposite
direction. Then (r, 6) are known as the polar co-ordinates of P.

B(-2,5) 5
A (4,3)
5 0 5 X
C(-4,-3) D(+1;3)
1-5
Figure 17.2

In Figure 17.3 if OP is produced backwards to P’ so that OP = OP”
then P’ is the point (r, 0 -+ 7). Note that its polar co-ordinates could
be given as (—r, 0), (r, 6 + 3#) or in many other forms. To avoid
confusion it is usual to take r as positive and the angle 6 between
—a and +7, thus P’ is the point [r, —(7 — 0)].

_,"VP
—”r,’
_9= i x
P /,/”\_/
-~ -(r7-6)
Figure 17.3

Example 1. Show on a diagram the position of the points A(4, 7/6),
B(@3, —5n[4), C(—S5, 7/9), D(—2,2n/3) and where necessary give
alternative polar co-ordinates for each point with r positive and 0
between —a and . Figure 17.4 shows the points A, B, C, D. From
the figure it can be seen that, if r is to be positive and 6 between —
and =, A(4, w/6) is unaltered but B(3, —57/4) becomes (3, 3=/4),
C(—S, 7[9) becomes (5, —8n/9), D(—2, 27[3) becomes (2, —/3).

The Transformation from Polar Co-ordinates to Cartesian Co-
ordinates or Vice Versa—Consider Figure 17.5 where the point P
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has cartesian co-ordinates (, y) and polar co-ordinates (r, §). Then
x = ON = OP cos 0 == rcos 0 ....(17.1)
y=PN=OPsin0 =rsin0 ....(17.2)

C¢579) D(-2,2%)
(b)
Figure 174

Example 2. Find the cartesian co-ordinates of the points P(3, /6)
and Q(5, 37 /4).

P is the point (3 cos (=/6), 3 sin (w/6)) i.e. (2598, 1-5).

Q is the point [5 cos (—3m/[4), 5 sin (—3=[4)]i.e.(—3-536, —3-536).

From (17.1) and (17.2) we have by squaring and adding (or direct
from Figure 17.5)

r2 = x? 4 )2 ....(17.3)
and by division tan § = f—c ....(17.4)
y TP
L A
P i
0 i —NV > X
e
X
Figure 17.5

Example 3. Find the polar co-ordinates of the points A(—4,4)
B(—3, —3).

—4
ForA, rP=(—42+4? and 0=tan™ (—4)

3
and for B, 7=(—3)7+ (=3 and 6= tan? (__3)
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It is best to draw a figure to find which value of 6 is required and
from Figure 17.6 it can be seen that: A is the point (4,/2, 37/4) and
B is (3,/2, —37/4).

A(-4,4)
am
LY
-4 % y
i 1 _~37
| 3 4
B(_3v-3)
Figure 17.6

Exercises 17a

1. Indicate on a diagram the positions of the points whose cartesian
co-ordinates are: A(3, 4), B(—5, 2), C(0, 6), D(6, 0), E(—1, —2),
F(6, —35), G(—3, 0), H(0, —3).

2. Indicate on a diagram the positions of the points whose polar co-
ordinates are A(3, 7/4), B(4, 2=[3), C(5, —=[4), D(3, ), E(5, —u[2),
F(4, —5=/6), G(2, 0).

3. By means of a diagram rewrite the polar co-ordinates of the
points A(—2, 3#/4), B(5, 17%/9), C(3, 4w), D(—2, —5x/4), E(—6,
107(9), F(—4, —5n/4), G(—6, —137/6) with the radii vectors all
positive and the vectorial angles between — and .

4. What are the cartesian co-ordinates of the points whose polar
co-ordinates are (3, 7/2), (4, —=/3), (5, n), (2, —57/6), (3, —=/2).

5. Find the polar co-ordinates of the points whose cartesian co-
ordinates are (2, 2), (—3, —4), (0, 5), (—12, 5), (3, 0), (6, —3).

6. Find which of the following points coincide A(3, 3), B(—6,
7[3), C(3\/2,57/4), D(3, —3), E(—3, —5196), F(3./2, —7x/4),
G(3./2, —5m/4), H(—3, —3), J(—3,/2, 3=/4).

7. The six points A, B, C, D, E, F, are equally spaced on the
circumference of a circle radius 2, centre the origin. If A is the
point (,/2, \/2) write down the polar co-ordinates of the six points.

8. On which line does the point P lie if its cartesian co-ordinates
are (4, B) and its polar co-ordinates are (A, B)?

9. A point P is such that its x and y co-ordinates are equal both
in magnitude and sign. Plot on a diagram several possible positions
of P and deduce on which line P must lie. If P is such that its x and
Y co-ordinates are equal in magnitude but opposite in sign on which
line must P lie?
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10. ABCD is a square, AC is a diagonal. If the co-ordinates of
A, C are (—5, 8), (7, —4) find the co-ordinates of B and D.

17.2. THE DISTANCE BETWEEN TWO GIVEN POINTS
IN TERMS OF THEIR CARTESIAN CO-ORDINATES

Let P(x,, y,) and Q(x,, ¥;) be the two given points. Draw PA,
QB parallel to Oy, and QL parallel to Ox. The angle PLQ (see
Figure 17.7) is a right angle.

Then QL=BA=0A—-0B =x; —x;
PL=PA—AL=PA-QB=y,— )
and since PLQ is a right angle

Ay
P (X))

Q(x2x?)

Figure 17.7

PQ = ./(PL? + LQ?
PQ = \/[(x1 — %)% + (O — »2)*] ... (17.5)

In the above case we have assumed that all the co-ordinates are
positive but, if due regard is paid to the usual sign convention, the
formula is true in all cases.

Example 1. Show that the points A(5, —6), B(—3,0), C(—1,2)
form an isosceles triangle.
Substituting in the formula (17.5) we have that

BC = J/{[(=3) — (—DP + [0 — 2P} = /8 =2,/2
AB = J{[5 — (=3I + [(—6) — 0]t} = /100 = 10
AC = J{[5 — (—D* + [(—6) — 2]} = /100 = 10
since AB = AC the triangle ABC is isosceles.
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Exercises 17b

1. Show that the points A(6, 2), B(3, 6), C(—1, 3) and D(2, —1)
are the vertices of a square.

2. If P is the point (3, 4) and the reflections of P in Ox and Oy
are A and B respectively find the distance AB.

3. Show that the points A(%, %)’ B(15—2’ % ’ C(%: _%): D(_%’ %)
are the vertices of a parallelogram.

4. Find the lengths of the sides of the triangle ABC where A, B, C
are the points (0, 4), (4, 10) and (7, 8) respectively. Hence show that
(a) ABC is right angled. (Hint: use Pythagoras.) (b) AB = 2BC.

5. The points A(x, 1) and B(—6, —5) are equidistant from the
point C(3, —2). Find two possible values for x.

6. Find the distances between the following pairs of points:

(l) (a’ b)’ (_a’ _b)
(i) (2a, 2b), (0, 0)

(iii) (3a, 3b), (a, b)

@) (@a+b,a—b),(b—a,a-+b).

7. Show that the points A(5, 4), B(8, 1), C(6, 3) lic on a straight
line. (Hint: show that AC 4+ CB = AB).

8. The points P(x,y), A4, 3) and B(—1, —3) are such that
PA = PB. By equating the expressions for PA2 and PB2 show that
10x 4+ 12y — 15 =0,

9. Show, from first principles, that the distance between the two
points whose polar co-ordinates are (r,, 6,) and (r,, ;) is given by
JIr2 + rf — 2rry cos (6, — 0,)].

10. Find the co-ordinates of the point P which is equidistant from
the three points A(1, —1), B(9, 7), C(1, 7).

17.3. THE CO-ORDINATES OF THE POINTS WHICH
DIVIDE THE LINE JOINING TWO GIVEN POINTS
INTERNALLY AND EXTERNALLY IN A GIVEN RATIO

Internal division. In Figure 17.8 R divides PQ internally in the ratio
k:l.

External division. In Figure 17.9 R divides PQ externally in the
ratio k:/.

In both cases let P, Q and R be the points (x;, y1), (xs, ,) and
(X, Y) respectively. Then

AC:CB = PM:MN = PR:RQ = k:/;

AC &k
hence —_— =

CB |
that is IAC — kCB =0
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Internal division External division
AC=X—x;; CB=x,— X AC=X—x;; CB=X—x,
hence hence
whence whence

. lx1 + kX2 _ lxl - kx2
T % ....(17.6) X_ﬁ ....(11.3)
similarly similarly
Iyt ky, b= kys
Y = Tk ....(17.7 Y————I_k ....(17.9)
Ay
Q(x3 y2)
RIXY)
P(x /
v N
o A ¢ B X
Figure 17.8

It is useful to remember that the formulae for external division
are obtainable from those for internal division by changing the
sign of either / or k.

Y
Qery) B
- 1
Playy) !
N ~‘:.-.
i
I
i
Of A B c ¥
Figure 17.9

Example 1. The points A and B divide the line joining P(3, 2) and
Q(7,9) internally and externally in the ratio 5:4. Find the co-
ordinates of A and B.
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A is the internal divisor; therefore using (17.6) and (17.7)

¥ _4X3+5x7_47

4-+5 9
4xX2+5x9 53 .

Y=—"—"""==;  Aispoint (4,352

415 9 p %5

B is the external divisor; therefore using (17.8) and (17.9)

X = 4xXx3—-5x%x1 23

4—5
Y= 4_><_‘21—*§><9 —37;  Bis the point (23, 37)

Example 2. A, B, C, are respectively the three points (—S5, 2),
(3,4), (7, 5). Find (a) the ratio in which B divides AC and (b) the
ratio in which C divides AB.

(@) Let k:1 be the required ratio. Then using the equations (17.6)
and (17.7) and noting that (x,, y;) and (x,, y,) are the points (—35, 2)
and (7, 5) respectively we have

Tk +(—5)l=3 and k20 _
k+1 k+1
From the first of these two equations

7k — 51 = 3k + 31

hence 4k = 81
k_2
l 1

As a check substitute in the second equation

LHS =2X2+2x1_12_,

(b) Again let k:/ be the required ratio and again use the equations
(17.6) and (17.7) but this time (x;, y,) and (x,, J2) are the points
(—5,2)and (3, 4) respectively, hence

3k + (=9, 4k+2
k+1 ’ k41
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From the first of these two equations
3k —5l=7k + 11

—4k = 121
k__3
11
As a check substitute k = —3, / = 1 in the second equation
L.H.S.=‘1(——3)LX1=_—1(-)=5
-3 +1 —2

Note that in part (b) the formulae for the internal divisors were used
but gave a negative value for the ratio indicating that C is an
external divisor of AB.

Exercises 17¢

1. A and B are the points (3, 5) and (—5, —7) respectively. Find
the co-ordinates of the points which divide AB internally and
externally in the ratio 3:1.

2. Find the co-ordinates of the midpoint of the line joining the
points A(S, 6), B(11, 2).

3. P and Q are the points dividing the line joining A(—3, —4),
B(5, 12) internally and externally in the ratio 5:3. Find the co-
ordinates of P and Q.

4. A, B, C are the points (5, —3), (—4, 9), (14, —15) respectively.
Given that ABC is a straight line find the ratios in which (a) B
divides AC (b) A divides BC and (c) C divides AB.

5. The line joining the points A(3, 4) and B(7, 6) meets the line
joining C(1, 3) and D(11, 8) at the point P. Given P is the midpoint
of AB, find its co-ordinates and hence find the ratio CP:PD.

6. The three points A(5, 6), B(—3, 2), C(—8, —5) form a triangle.
Find the co-ordinates of the A’, the midpoint of BC. If G is a point
on AA’ such that AG:GA’ = 2:1, find the co-ordinates of G.

7. The line joining A(a, b) and B(p, g) is divided into six equal
parts by the points P, Py, Py, Py, P;. Find the co-ordinates of P,
and P;.

8. The two points A(4, 3) and B(8, —6) together with the origin
O form a triangle OAB. Find the co-ordinates of the point P in
which the external bisector of AOB meets AB. (Hint: find the
lengths OA and OB; then the external bisector of an angle of a
triangle divides the opposite sides externally in the ratio of the sides
containing the angle.) Deduce that the internal bisector of the angle
AOB is the x-axis.

365



INTRODUCTION TO CO-ORDINATE GEOMETRY

9. If A(x1, 1), B(xa, y2), C(x3, y5) are the vertices of the triangle
ABC write down the co-ordinates of A’ the midpoint of BC. Hence
find the co-ordinates (X, y) of G the point which divides AA’
internally in the ratio 2:1 (G is known as the centroid).

10. Find in what ratio the point (40 — 2a, 9¢ — a) divides the line
joining the points (a + b, 3¢ + 5a) and (56 — 3a, 11c — 3a).

174. THE AREA OF A TRIANGLE IN TERMS OF
THE CO-ORDINATES OF ITS VERTICES

Let the triangle be ABC where A, B and C are the points (x;, y,),
(%3, ¥2), (x3, ys) respectively.

y A(X1y|)
Clx3y3)

B(Xzyz)
of P Q R X

Figure 17.10

Draw AP, BQ, CR, perpendicular to Ox (see Figure 17.10). Then
area AABC = area of trapezium APRC — area of trapezium

APQB — area of trapezium BQRC.
= }(AP + CR) . PR — }(AP + BQ) . PQ
—3(BQ + CR).QR
= 301 + ya)(xs — x1) — 301 + ya)(xa — x,)
— 3(ye + ya)(xs — x3)
which when simplified gives
area AABC = §(x,y; — Xop; + Xa¥s — XsYVp + Xa¥1 — X1¥s)
....(17.10)

The numerical value for the area is independent of the order in
which the vertices are taken. However, if the order is such that on
going round the triangle the area is always on the left hand the area
will be positive.
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Condition for Three Points to be Collinear—If the three points
A(x;, 1), B(xs, 5) and C(xs, y5) are collinear then the area of the
triangle ABC is zero. Hence from (17.10) the condition for the
three points to be collinear is

XYs — XaP1 +XoPs — Xa¥g + Xapy — Xys = 0 ....(17.11)

Example 1. Given the four points A(3,4), B(9, 7), C(7, 6) and
D(5, —3). Show that A, B and C are collinear and find the area of
the triangle ABD. Consider the area of ABC, by substituting the
co-ordinates of A, B, C in (17.10)

Area AABC=13XxT7—4x94+9Xx6—Tx7T+T7x4—6X3)
=321 — 36 + 54 — 49 4 28 — 18)
=0

Hence A, B, C are collinear.

The area of AABD, using the co-ordinates of A, B, D in (17.10),
is given by

Area AABD =3[3 X 7—4 X949 x(=3)—7X35
+ 5 x4 —(-3) x 3]
=321 —36—-27—35+2049)
== 24 square units

Exercise 17d

1. Find the area of the triangle ABC where A, B and C are the
points (5, 6), (3, 2), (8, —1).

2. Show that the points A(l,5), B(—3,9) and C(—2,8) are
collinear.

3. Find the areas of the triangles whose vertices are:

(l) (3, 4)’ (5’ 6)’ (_2s 0)

(lU) (4’ 7)9 (0’ 2)9 (_3’ 0)

4. A, B, C are the points (0, 4), (4, 10), (7, 8) respectively. Using
Pythagoras’ theorem prove that angle ABC is a right angle. Find
the area of the triangle ABC by means of the formula (17.10) and
verify your result by using the formula for the area $AB . BC.

5. Show that the four points A(—7,5), B(l,1), C(5, —1),
D(13, —5) all lie on a straight line.

6. If the points A(5, 6), P(x, y) and B(2, 3) are collinear show that
x—y+1=0.
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7. The points A(3, 4), B(S, 3), C(—1, —1) and D(—3, 0) form a
quadrilateral. Show that the midpoint P of AC lies on the line
BD. Show also that the area of triangle PAB is equal to the area
of the triangle PCD.

8. Find the area of the quadrilateral ABCD where A, B, C and D
are the points (1, 1), (5, 4), (4, —1) and (—3, —12) respectively.

9. The four points A(0, 0), B(5,1), C(—4,4) and D(—1, —5)
form a quadrilateral. Find the areas of the triangles ABC and ACD
and hence find the area of the quadrilateral by adding the two
results. Draw a figure and explain why the sum of the areas of
triangles ABD and CBD do not equal the area of the quadrilateral.
Y1—=DY2  Ya—DYs

10. Show that the condition
1 Xo Xg — X3

the condition (17.11) for the three points (x5, 1) (X2, ¥2) (s, ¥a) to
be collinear.

is equivalent to

17.5. LOCI

If a curve can be defined by a geometrical property common to
all points on it then there will be an algebraic relation which is
satisfied by the co-ordinates of all points on the curves. Such an
algebraic relation is called the equation of the curve. Conversely
all points whose co-ordinates satisfy a given algebraic relation are on
a curve known as the locus of the given equation.

Example 1. A given circle has its centre C at the point (3, 4) and
its radius is 5 units. Find its equation.

In order to find the equation of the circle we have to find the
algebraic relation satisfied by all points on the curve.

Let P(x, y) be any point on the curve

Then PC is a radius of the circle
hence PC=35

thus Ji=32+@—44=5
or (x—324+(y—42=25

which is the required equation.

Example 2. A point C moves so that its distances from two fixed
points A(5, 3) and B(7, 4) are always equal. Find the equation of the
locus of C.
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Let C be the point (x, y)

Since CA = CB.

CA? = CB?
x=P+0-3=x-T7+0-4" [sec(17.9)]
x2—10x +25+ 32— 6y + 9

=x%— 14x + 49 4 y* — 8y 4- 16
thus 4x 4 2y = 31 which is the required equation.
Example 3. A circle of radius 6 units passes through O the origin

of co-ordinates and has the x-axis as a diameter. Find its polar
equation.

Figure 17.11

Since the polar equation is required let any point P on the circle
have polar co-ordinates (r, 6) (see Figure 17.11).
Since OA is a diameter, angle OPA is a right angle hence OP/OA =
cos 0, thus
OP = OA cos 0

or r=12cos

which is the required equation.

The equation of the curve need not be a direct relation between
the co-ordinates (r, 8) or (x, y) of any point on the curve. The
co-ordinates can be obtained in terms of a third variable known as a
parameter.

Example 4. A circle has its centre C at the point (10, 8) and its
radius is 7 units. Find its equation.
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Referring to Figure 17.12, CLD is parallel to Ox. P(x, y) is any
point on the circle and PCD = 6. As 0 varies P describes the

circle.
y=PB=PL 4 1LB=PL 4+ CA

= PCsinf0 + 8
=Tsin@ + 8
x=0B=0A+ AB=0A + CL
=10+ PCcos 0
= 10 + 7 cos 6
Hence x=T7cos0+10, y=7sin0+8 ....(17.12)

Ay
P(lxy)

7

20

C(10,8) > D
]

0] A B
Figure 17.12

are the parametric equations of the circle and for any value of 6 the
equations (17.12) give the x and y co-ordinates of a point on the
circle.

The x, y equation can be obtained by eliminating the parameter 6.
From equation (17.12)

x — 10 = 7cos 0; y—8=7sin0
Squaring and adding gives
(x—102+(y— 82 =49 (cos? 0 + sin2 8 = 1)
which is of the same form as the circle in Example 1.

Exercises 17e

1. Find the equation of the circle centre (3, —4) radius 7.
2. A point P moves so that PA = 2PB where A, B are the fixed
points (—2, 1), (5, 6) respectively. Find the locus of P.

370



THE POINTS OF INTERSECTION OF TWO LOCI

3. A(3, 2) and B(6, 4) are two fixed points and the point C moves
so that the angle ACB is always a right angle. Using Pythagoras’
theorem find the locus of C. )

4. A circle of radius 4 units passes through O the origin and has the
y-axis as a diameter. Find its polar equation.

5. Find the equation of the circle on AB as diameter where A and
B are the points (—3, —4) and (7, 20).

6. Find the equations of the curves whose parametric equations are

O x=c, y=cft

(ii) x=acos b, y =bsin0.

7. A point P moves so that its perpendicular distance from the
y-axis is always equal to its distance from the point (2, 3). Find the
equation of the locus of P.

8. A point P moves so that its distance from the axis of x is half
its distance from the origin. Find the locus of P.

9. A point P moves along a line parallel to the axis of x at a
distance 6 units from it. Find the polar equation of the locus of P.

10. A(0,2) and B(0, —2) are two fixed points. The point P
moves so that PA + PB = 8. Find the equation of the locus of P.
(Hint: use the result (17.5) but before simplifying, rewrite the given
condition in the form PA = 8 — PB.)

17.6. THE POINTS OF INTERSECTION OF TWO LOCI

In order to find the points of intersection of two loci we note that
where they intersect, there is a point common to both curves. The
co-ordinates of this point will satisfy the equations of both curves
simultaneously. Thus if the equations are solved simultaneously the
solutions will be the co-ordinates of the common points.

Example 1. Find the point of intersection of the two loci 3x —
y—5=0and 12x +y —25=0.
3x—y—5=0
12x+y—25=0
Adding these equations eliminates y and gives
15x —30=0
Thus x = 2, and by substituting in the first equation y = 1. The
required point is (2, 1).
Example 2. Find the points of intersection of the circle (x — 3)% 4
(y — 4) = 25 (see section 17.5, Example 1) and the locus
y+x—12=0
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The equation of the circle simplifies to

x4+ —6x—8y=0 ceea(d)
and from the second equation .
y=12 —x RN 1))

Substituting (ii) in (i)

x4+ (12 —-xP—6x—8(12—x)=0
c 232~ 2x + 48 =0
Thus 2x — 3)(x—8) =0
x=3 or 8
and substituting in (ii) the two points are (3, 9) and (8, 4).
Example 3. Find the points of intersection of the two circles
r=12cos §, and r = 6.

A6,%)
r=12cos 4

r=6

X

] oy

B(6,-F)
Figure 17.13

Since r = 12 cos 6 and r = 6, at the points of intersection 6 =
12 cos 0, thus cos 0 = }
6=

i or r

3 3

Hence the required points are A(6, 7/3) and B(6, —=/3) (see Figure
17.13).

Exercises 17f

1. Find the points of intersection of the twoloci3x + 2y — 1 =0,
2x — 3y +21=0.

2. Find the points of intersection of the circle (x — 5)% 4
(y — 6)* =49 and the locus y + x — 18 = 0.

3. Find the points of intersection of the two circles x2 4+
+1)2=2and(x+ 1)2+ (y +2)2=4.

4. Find the points of intersection of the circle » = 10 and the
locus r cos § = 5./3.

5. Show that the three loci whose equations are x +y + 1 = 0,
3x + 2y + 6 =0, 2x + 5y — 7 = 0 have a common point.
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6. Find the point or points common to the two loci whose
equations are x2 4 y2 4 6x + 8y =0and 4x 4+ 3y — 1 = 0.

7. Show that the two circles (x — 3)2+ (y — 4)2=25 and
(x — D2+ (y — §)? = 56} touch each other.

8. Find the points common to the two loci whose equations are
r=6cosf, r = 6,/3sin 6.

9. Find the points common to the two loci whose equations are
y2P—6y—4x+1=0,2y —x—11=0.

10. Find the point of intersection of the loci x —y =3, x +
3y = 7. Show that the locus whose equationis X — xy — 3x =0
passes through this point.

17.7. CHANGE OF ORIGIN

Let Ox, Oy be the original axes, O’ the new origin and (A, k) the
co-ordinates of O’ referred to the original axes.

y '

Q' (h k) N ,

O
b ) S,
<
>

Figure 17.14

Through O draw O’x" and O’y’ parallel to and in the same sense
as Ox and Oy respectively (see Figure 17.14).
Suppose P is any point whose co-ordinates referred to the old

axes are (x,y). We require to find its co-ordinates, say (X, Y),
referred to the new axes.

Draw PM parallel to Oy cutting Ox in M and O’x’ in N.
Then x = OM = OK + KM (see Figure 17.14)
= OK + O'N
=h+ X
and y = MP = MN + NP
= KO’ 4 NP
=k-+Y
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The old co-ordinates are given in terms of the new co-ordinates by
the two equations.

x=h+4 X; y=k+Y ....(17.13)

If we use the equations (17.13) to substitute for x and y in a given
equation, the equation of the curve referred to the new axes will be
obtained.

Example 1. Find the equation of the straightline3x +2y 4+ 1 =10
referred to axes through the pomt (1 —2).
Inthiscase h =1,k =

from equation (17.13) x =14 X, y=-—-2+4Y
Substituting in the given equation we have that
x+2y+1=0
becomes 3+X)+2(-24+Y)+1=0
i.e. 3X+2Y=0
(a straight line through the new origin).

Exercises 17g
Change the origin of co-ordinates in each of the following cases:

1. 3x — 2y +4=0; new origin (3, 2)
2. 5x + Yy - 7= O; 2 2 (‘-23 ——5)
3.2y—-5x—-3=0; v » (@1,—1
4. x+5vy—2=0; v » (3,1
5.2x —3y=0; ' » (5,2)
6. 2 =da(x — 1); v ,» (1,0)
(x—1)2 (y—3)p
7' 4 + 16 - 1’ 2 2 (1’ 3)
8. (x - 3)2 + (y - 3)2 = 25; » i (3’ 3)
G+ -2
9. n — g = 1; v » (=12
10- xZ + y2 — 8x + 6}’ = 0; ’ 2 (4’ —3)

EXERCISES 17

1. Find the cartesian co-ordinates of the points whose polar
co-ordinates are (6, —=/2), (/2,37/4), (2,7/6), (8, 7[2), (\/2,
—3m/4), (5, m).

2. Find the polar co-ordinates of the points whose cartesian
co-ordinates are (5, —5), (—/3, —1), (=3, 3),(1, \/3), (0, 2), (3, 0).
Draw a diagram of the points.
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3. Given the cartesian co-ordinates of A, B, C, D are (4, 4),
(—4, —4), (—5,5), (3, —1) and the polar co-ordinates of E, F, G,
H, J are (2, 7[6), (—4/2, 57[4), (42, —57[4), (—5\/2, —u]4),
(4,/2, 117/4), find which points coincide.

4, Find the lengths of the sides of the quadrilateral whose vertices
are the points A(5, 3), B(6, 7), C(8, 1), D(5, —3). Also find its area.

5. Show that the four points A(6, 7), B(7, 10), C(0, —3), D(—1,
—6) form a parallelogram.

6. Show that the three points A(7, 4), B(10, 2), C(6, —4) form a
right angled triangle. Find the co-ordinates of a point D such that
ABCD is a rectangle.

7. Rewrite the following polar co-ordinates with the radii vectors
all positive and the vectorial angles between — and =; A(=5, m),
B(—3, —3x/2), C(—5,7=[2), D@, 6n), E(—S5,3n), F(—1,in),
G(3, in).

8. Find the points P and Q which divide the line joining A(3, 2)
and B(10, 16) internally and externally in the ratio 3:4.

9. Show that the four points A(3,4), B(9, 13), C(11, 16) and
D(15, 22) all lie on a line. Find the ratios in which B and D divide
the line joining A and C.

10. Find the equation of the locus of a point which always moves
so that its distance from the x-axis is always twice its distance from
the point (2, —3).

11. The points A(3, 4), B(24, 5), C(6, a) form a triangle whose area
is 193 square units. Find the two possible values of a.

12. Find the co-ordinates of the point which is equidistant from the
three points A(3, 4), B(13, 6), C(3, 4).

13. The polar co-ordinates of the vertices of a triangle are given
by the following table.

0 /6 —/3 273

r 12 16 9

Find the lengths of the sides of the triangle and its area.

14. Show that the following points A(S, 6), B(—1, 8), C(—5, —2)
are collinear and find the ratios: (}) AB:BC (ii) AC:CB (iii)
BA:AC.

15. Find the co-ordinates of the centroid and of the circumcentre
of the triangle ABC where A, B, C are the points (—2, —3),
(8, 11) and (—4, 9) respectively.

16. Find the area of the quadrilateral whose vertices are the
points A(5, 4), B8, 5), C(6, —2), D(—3, —1) respectively.
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17. Find the equation of the locus of a point which moves so that
the sum of the squares of its distances from the points (3, 0) and
(—3, 0) is equal to 72 units.

18. Find the ratios in which the line joining the points A(8, 2),
B(—2, 7) is divided by the points (12, 0) and (0, 6).

19. The straight lines 3x +-by 4+ 1=0 and ax 46y +1=0
intersect at the point (5, 4). Find the values of a and 5. If the first
line meets the x-axis at A and the second meets the y-axis at B, find
the length AB.

20. O is the origin of co-ordinates and B is the point (0, 6). Find
the polar equation of the circle on OB as diameter.

21. The line 3y = ax + 9 touches the curve y* = 4x. Find the
value of a.

22. Show that the co-ordinates of the point common to the curve
y? = 4ax and the line ty — x = ar? are (at?, 2at).

23. 5 and s’ are two circles of radii 1 and 3 respectively and
centres A(0, 0) and B(—1, 3) respectively. If s and s meet at the
points P and Q, show that ZAPB = Z AQB = 90°.

24. A point moves so that its distance from the axis of x is equal
to its distance from the point (1, 1). Find the equation of its locus.

25. Given that P is the point (4, 7), write down the co-ordinates of
the points which are (i) the reflection of P in the x axis (ii) the
reflection of P in the line y = x (jii) the reflection of P in the line
y=—x

26. Find the equation of the loci whose parametric equations are

(i) x =4, y = 16t; (i) x=4+1 y=6—1/t

27. Show that the point P with co-ordinates [(1 — k)x; + kx,,
(1 — k)yy + ky.] lies on the line joining A(x;, y;) and B(x,, y,) and
that AP = kAB.

28. The points A, B, C have the co-ordinates (2, 3), (—11, 8)
and (—4, —5) respectively. The point D is such that ABCD is a
parallelogram having AC as diagonal. Find the co-ordinates of the
midpoint of AC and deduce the co-ordinates of D.

29. A variable line meets the axes at A, B. O is the origin. If AB
moves so that the area of AAOB is constant, find the locus of the
midpoint of AB.

30. A point P moves along the straight line which passes through
the point A(5, 0) and makes an angle of 45° with the x-axis. Find
the equation of the locus of P. (Hint: use the sine rule on the
triangle OAP.)
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18
THE STRAIGHT LINE

18.1. THE EQUATION OF A STRAIGHT LINE
PARALLEL TO ONE OF THE CO-ORDINATE AXES

IN Figure 18.1 let P(x, y) be any point on the line. Since the
ordinate PN is equal to OA for all positions of P then

y=2>b ....(18.1)

is true for all points on the line and is the required equation.

Y
P(x ¥)

[ — =~
o

0 N X

Figure 18.1

Similarly x = ais the equation of a line parallel to Oy and distance
a from it. In particular the axes Ox and Oy have the equations
¥y = 0 and x = 0 respectively.

18.2. THE EQUATION OF ANY STRAIGHT LINE IN
TERMS OF ITS SLOPE AND ITS INTERCEPT ON
THE y-AXIS

Consider Figure 18.2; ABP is the straight line, OB = c, and angle

BAO = 6. P(x y)is any point on the line, PN is its ordinate and
BM is parallel to Ox. Then

LPBM = LBAO =0
thus PM =BMtan6
: y—c=xtan

y=xtan0 + ¢
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tan 0 is the slope of the line and is generally denoted by m. Hence
the required equation is

y=mx-+c ....(18.2)
y‘ _P/(X:}’)
B 5 %) M
e ¢
Y O
- 0 N g
Figure 18.2

Example 1. Write down the equation of the line which makes an
angle of 45° with Ox and cuts Oy at a distance of 3 units above the
origin.
From (18.2) the required equation is
y=xtan45° 4 3

that is y=x+3  (see Figure 18.3)

J

1350
A
450 0

>

Figure 18.3
Example 2. Write down the equation of the line which makes an
angle of 150° with Ox and an intercept of —3 units on Oy.
1
In this case ¢ = —3 and m = tan 150° = — —z. Hence the

J3
required equation is y = — 715 x — 3 (see Figure 18.3).
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Example 3. Sketch the line whose equation is y = —x — 2.

Comparing y = —x — 2 with y = mx -} ¢ we have that tan 6 =
m= —1and ¢ = —2; hence § = 135° and ¢ = —2.

Thus the line makes an angle of 135° with the positive direction of
Ox and cuts Oy at a distance of 2 units below the origin (see Figure
18.3).

It will be noticed that so far all the equations of a straight line are
of the first degree in x and y. We shall now prove that any equation
of the first degree in x and y represents a straight line.

18.3. ANY EQUATION OF THE FIRST DEGREE IN
x AND y REPRESENTS A STRAIGHT LINE

The most general form of the equation of the first degree is
Ax+By4C=0 ....(18.3)

In order to prove that this equation represents a straight line it
is sufficient to show that the area of the triangle formed by joining
any three points on the locus is zero.

Let (x5, »1), (%3 ¥2), (X3, ys) be any three points on the locus.
Since the points are on the locus of the equation (18.3) their co-
ordinates must satisfy the equation; thus

Axl+By1+C=O
Ax, + By, + C=0

Subtracting the first of these equations from the second and third
in turn we obtain

A(xy — x1) + B(y; — y) =0
A(x3 — x;) + B(ys — y1) =0

By considering the value of the ratio 4/B obtained from each of these
equations we have

22—y _ A - (ys — yo)

(xg —x) B (x3 — xy)
thus 2 — y)s — x1) = (3 — y)xa — x1)
whence  x1p; — Xpp1 + XaVs — XgVy + Xayy — X1 y5 =0

which [see (17.11)] proves that the area of the triangle formed by
the three points is zero. Hence the locus is a straight line.
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The equation Ax 4 By + C = 0 appears to involve three con-
stants, but we can divide throughout the equation by any constant
(which is not zero). Dividing by B we have

A C
=X -=20

B +y+B
that is y=-—i1x——g
B B

and comparing this with

=mx + C [see (18.2)]
we have that

m:._—; C = — - ..-.(18.4)

Example 1. Find the slopes of the lines 3x 4 12y — 3 =0,
5x — 2y — 4 = 0 and the lengths of their intercepts on Oy.
Rewriting the two equations we have

12y=—3x+3 and 2y=5x—4
thus y=—%x+%1 and y=3%x—2

On comparing these equations with y = mx 4 ¢ we see that their
slopes are
tan 01 - '—% (01 - 1650 58’)
5
2

tan 02 = (02 = 680 12’),

and their intercepts on Oy are
=1t Cg = —2
Exercises 18a

1. Write down the equations of the following lines:

(i) the line making an angle of 20° with Ox and an intercept of
-+ 5 units on Oy

(if) the line making an angle of 150° with Oy and an intercept of
—4 units on Oy

(iii) the line through the origin making an angle of 50° with Ox

(#v) the line through the origin making an angle of 20° with Oy.

2. Find the equations of:

(#) the line through the origin parallel to the line y = 5x + 2

(#i) theline through the origin parallel to theline3x +2y 44 =10

(iii) the line which makes an intercept of 44 units on Ox and
whose slope is §
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(iv) the line parallel to Ox and passing through the point of
intersection of 2y — 3x + 4 = 0 and the y-axis.

3. Find the slopes, and the lengths of the intercepts the following
lines make on Oy:

(H3y—4x+6=0

(i) 2y+2x—3=0

(i) 5x — 3y =0

(iv) y— 6=0.

4. Plot the two points A(0, 5) and B(3, 9) on a diagram. Hence
show that the slope of the line AB is 4. Write down the equation of
AB. What is the slope of the line if A and B are the points (x,, ;)
and (x,, y,) respectively?

5. Plot the two points A(0, 3) and B(—2, 7) on a diagram. Hence
show that the slope of the line AB is —2. Write down the equation
of AB. If A and B are the points (x,, y;) and (x,, y,) what is the
slope of AB? Does this agree with the result in Exercise 4?

18.4. USEFUL FORMS OF THE EQUATION OF A
STRAIGHT LINE

The Equation of the Straight Line Making Intercepts a and b on
Ox and Oy Respectively—P(x, y) is any point on the line, PN is the

y

Figure 184

ordinate (see Figure 18.4). Now

AMPO + ALPO = ALOM
Hence tay + }bx = %ab
Divide throughout by 1ab, then

LR ....(18.5)
a b

This is called the intercept form of the equation of the straight line.
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Example 1. Write down the equations of the lines making intercepts
a and b on Ox and Oy respectively, and rewrite the equations in the
form y = mx -+ ¢ where

(@) a=2, b=3

@) a=—1, b=4

(@ii)a=5 b=-2

@iv) a= —3, b= —4

@ x2+y/3=1thus3x +2y=6

i.e. y=—4%x+3

(i) x/—1 + y/4=1thus4x — y = —4
ie. =4x 44

@iii) x{5 4+ y/—2 =1, thus —2x 4 5y = —10
ie. y=%x-—2

@) x/|—3 + y/—4 =1, thus —4x — 3y =12
ie. y=—4x—4

The Equation of a Straight Line with Given Slope m and Passing
Through a Given Point P(x,, y;)—The equation of a line with slope
m is by (18.2) y = mx + c¢. In this case ¢ is unknown, but since
P(x; y;) lies on the line, y, = mx; + ¢ and so, by subtraction

Yy —y=m(x — x) ....(18.6)
which is the required equation.
Example 2. Write down the equation of the line with slope —2%

and passing through the point (—3, 4), and simplify the equation.
By (18.6) the equation is (y — 4) = —§(x + 3), that is
3Jy—12=—-2x—6
. 3y+2x—6=0
The Equation of a Line Passing Through Two Given Points (xy, y,)
and (x,, ys)—The equation of a line through a given point (x,, y,) is
by (18.6) y — y; = m(x — x,). In this case mis unknown. However

(%3, ¥2) also lies on line. Hence on substituting in the equation we
have y, — y; = m(x; — x,), whence by division

Y= h X=X ..(187)
Ye—= 1 Xp— X
which is the required equation.
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Example 3. What is the simplified form of the equation of the
lines through the following pairs of points (i) (3,4), (6,8); (i)
5,3), (7, —2)?

(i) On substituting in (18.7) we have

y—4_x-—-3
8—4 6-3
that is y—4_x-—3
4 3
Jy—12=4x— 12
thus 3y =4x

Figure 18.5

(i) On substituting in (18.7) we have

y—3 x—35

—2—-3 7-—5
thatis XL_3=X_—5
—5 2
2y — 6 = —5x + 25,
ie. 2y +5x—31=0

The Equation of a Line such that the Length of the Perpendicular
from the Origin to the Line is p, and the Angle that Perpendicular
Makes withOxisa Referringto Figure 18.5, PO is the perpendicular
from the origin to the line. Since ZOPM = 90°

OM
—— =secu
OP
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Thus OM = OP sec a = p sec « (@
also ZLOP =90° —«
so that oL = sec (90° — )
(0) %
OL = OP sec (90° — o) = psec (90 — ) ..(ii)

But OM, OL are the intercepts the line makes on the axes Ox and
Oy. Hence by (18.5) its equation is

X y _

pseca  psec(90° — o) -

that is xcos a + ycos (90° — &) =
: xcosoa -+ ysina=p ..(18.8)

ThlS is called the perpendicular form of the equation of a stralght
line.

Example 4. If in Figure 18.5 OP = 5 units and ZPOL = 20°,
find the equation of the line LM. In (18.8)

o= /POM = 90° — ZPOL
= 90° — 20°
= 70°
and OP = p = 5 units
Hence LM is the line x cos 70° - y sin 70° = 5.
Example 5. If in Figure 18.5 the equation of PLM is 3x + 4y —
12 = 0; put this equation into both (i) the intercept and (i) the

perpendicular form.
0] 3x+4y—12=0

If we divide by 12, ch -+ % =1 as required.

(if) If instead we divide by /(32 + 4%) = 5 then
tiy=3
which is the perpendicular form because £, # are the cosine and sine
of some angle since the sum of their squares in unity.

Exercises 18b

1. Find the equations of the following lines:
(i) passing through the points (5, 3), (—2, 1)
(ii) passing through the points (6, —2), (3, 7)

384



THE CO-ORDINATES OF A POINT OF INTERSECTION

(#ii) making an angle of 135° with Ox and passing through the
point (—2, 5)

(iv) parallel to 2y + 3x — 4 and passing through the point
(55 _2)

(v) passing through the points (—5, 0) (0, —2)

(vi) such that the length of the perpendicular to the line from the
origin is 6 units and the perpendicular makes an angle of 45° with Oux.

2. Write down the equation of the line making intercepts of
—5, 43 on the x- and y-axes respectively. Put the equation into
the perpendicular form.

3. Find the slope of the line through the points (5, 3), (7, —2).
Also find (i) the perpendicular form (ii) the intercept form, of its
equation.

4. O is the origin and a line OA of length 2a makes an angle «
with the x-axis. Find the equation of the perpendicular bisector of
OA.

5. A line makes an obtuse angle 6 with the positive direction of
Ox. If « is the angle the perpendicular to the line from the origin
makes with the positive direction of Ox, find the relation between
« and 6. Does the same relation hold when 0 is acute?

18.5. THE CO-ORDINATES OF THE POINT OF
INTERSECTION OF TWO STRAIGHT LINES

Let the equations of the lines be
ax + by 4+ ¢, =0; asx + by + ¢, =0

. As we have noted in section 17.6 to obtain the point of intersection
we solve these equations simultaneously. Eliminating x and then
y we obtain

X =y 1 ....(18.9)
bycs — baey @y — azer @iy — azhy
The values of x, y for the point of intersection are
x=M_ = — %aCs " OeCy ....(18.10)

ab, — asb, ' ab; — asb,

We note that if a;b, — a,b, = 0 there is no solution. But this may
be written
aby = ash,

4G %

bl b2
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and thus the slopes [see (18.4)] of the two lines are equal. That is the
lines are parallel and have no point of intersection.
If in addition either by,c, — byc; = 0, or a,¢; — ayc; = 0 then

=== (= ksay) ....(18.11)

and from this we see that all three of the quantities in (18.9) are zero
and x and y are indeterminate. The geometrical explanation is that
since from (18.11) a; = kay; b, = kb,; ¢, = ke, one equation is a
multiple of the other and the lines coincide.

Example 1. Find a general solution for the point of intersection
of the lines ax + 5y +b=0; 2x+ y 4+ 3 = 0 and discuss the
three cases (§) a = 10 (ii) a = 10; b £ 15 (fii) a = 10; b = 15.
From equations (18.9) the solution is given by
X =y _ 1
15—b 3a—2b a—10
15—b —3a +2b
x = ;5 y=—
a—10 a—10
Case (i): since g # 10,

a—10+#0

and hence a real point of intersection exists.
Case (ii): since a = 10, b # 15

a—10=0 but 15—bH=£0

hence the lines are separate but parallel.
Case (iii): if a = 10, b = 15 then the equations are

10x 4+ 5y 4 15=0
and 2x+y+3=0

and the first equation is a multiple of the second and the lines are
not distinct.

18.6. THE POSITIVE AND NEGATIVE SIDES
OF A LINE

Consider any straight line and let its equation be ax - by + ¢ = 0.
Let P(x,, 1) be any point and let the line through P parallel to the
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y-axis cut the line in the point Q whose co-ordinates are (xy, ys).
Then it is clear from Figure 18.6 that so long as P remains on the
same side of the straight line PQ is drawn in the same direction.
If P is a point on the other side of the line then PQ is drawn in the
opposite direction. That is PQ is positive for all points on one side
of the line and negative for all points on the other side.

Now PQ=y,—» U )]
and since the point Q(x,, y,) lies on the line

ax, + by, +¢c=0

ie. Ja= — STt e ... .(i)

b

0
Figure 18.6
From (i) and (ii)
PQ = y, — (_ mis)
b
_ 4% +by, +c¢ (iii)
r— e

Since the sign of PQ changes as P crosses the line then it follows from
(iii) that the sign of ax, + by; -+ ¢ (b is fixed) must alter as P crosses
the line. Thus the line divides the co-ordinate plane into two parts
such that ax + by + c is greater than or less than zero. If ¢ >0
the origin is on the positive side of the line. If ¢ < 0 the origin is on
the negative side of the line.
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Example 1. The co-ordinates (x, y) of a point P satisfy all three of
the inequalities
2x+3y—6>0

x—y+6>0
y+5x—-20<0

Draw a diagram to show the area within which P must lie. Figure
18.7 shows the required area.

6}

Figure 18.7

Exercises 18¢

1. Show that the three lines 3x — 2y -1 =0, x + 2y + 3 =0,
7x — 2y + 5 = 0 pass through the same point.

2. Find the points of intersection of the following pairs of lines.

(@2x+3y—13=0; 3x—y—3=0

B 2x+y—2=0; 4x+5v4+5=0

(c) x/a+-y/b =1; x/b+ yla=1

(d) y=4x; y=3x-+2.

3. Show that the following three lines do not form a triangle
() 18x — 12y + 9 =0, (ii) 12x + 8y — 6 = 0, (iii) 8y = 12x + 6.

4. What must be the value of k in order that the lines (i) 2x +
y—3=0, (i) kx4+3y+1=0, (/i) x+y+7=0 may meet
in a point. Discuss the cases when k = 3 and k = 6.
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5. Find the equation of the line joining the origin to the point
of intersection of the lines x + 2y + 5=0,3x — 2y — 13 =0.

6. A point P has co-ordinates (x, y). Draw separate sketches
showing the area in which P must lie in the following cases.

@O3x+2y—1>0

@ 2x—y—4<0

@) x+y+5>0

(iv) 2x —y+7<0.

7. A point P(x, y) is such that its co-ordinates satisfy all the
inequalities x +y —6<0, y—2x+6>0, 4x+y >0, y—
2x — 6 < 0; show in a sketch the area within which P must lie.

8. If in Exercise 7 all the inequality signs are reversed, in which
area must P(x, y) lie?

9. Show that for one particular value of k all the lines kx —
3y—3=0, —x+2y—k=0,9%—4y—11=0, 13x — ky —
19 = 0 pass through one point and state the co-ordinates of the

oint.
P 10. A point P(x, y) lies within the triangle formed by the three
lines 5x + 7y — 35 =0, 4x — 11y — 28 =0, 14x - 3y - 68 = 0.
Write down with the aid of a sketch the three inequalities its co-
ordinates must satisfy.

18.7. THE ANGLE BETWEEN TWO STRAIGHT LINES

If the equations of the lines are given in the perpendicular form
[see equation (18.8)]

Ay
o-f

4

Figure 18.8
xcosa + ysina —p; =0, xcosﬂ+y'Sinﬂ—Pz=0

Then referring to Figure 18.8 the required angle is either o« — B
or = — (& — f). Because « and B are the angles the perpendiculars
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from the origin to the two lines make with Ox, then the angle
between the perpendiculars is « — 5. Also the angle between any
two lines is equal or supplementary to the angle between two lines
perpendicular to them. Hence the required angle is

(x—p or #—(x—p) ....(18.12)
If the equations of the lines are given in the form y = m;x 4+ ¢;;
¥y = myx + ¢, and 8,, 0, are the angles the lines make with Ox then

my; = tan 0,, my = tan 0, vee(d |
4y
616,
/AFGT 6 "
/ o / A

Figure 18.9

Referring to Figure 18.9 it can be seen that the required angle is
0, — 0,. Now
tan 0, — tan 6,

tan (6, — 0,) =
@ 2) 1 + tan 0, tan 6,

=7 fom ()
1+ mym,
Thus the required angle is

tan (ZL=12) L (18.13)
1+ mym,

If the equations of the lines are given in the form a;x + b,y +
¢1=0; ayx + by + ¢, =0 then from (18.4) m, = — 1071 , My =
a . . 1
e Hence the required angle is

2
al a2
—_— + =
b, b,
aUF)

14 22
bib,

tan™!

that is tan~! (%_—"_11’2) ... .(18.14)
a.a; + b.b,
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Referring to equation (18.13) it should be noted that if
mymy = —1 ....(18.15)
1

that is m=——
my

then the angle between the lines is /2, and the lines are perpen-
dicular.

Similarly from (18.14) the lines are perpendicular if
alaz + b1b2 = O s .(18.16)

Example 1. Find the angle between the lines y =3ix + 4; y=
ix+ 3.

The slopes of the lines are m; = } and m, = . Hence from
(18.13) the required angle is

wi( A1)

1+3%.3

that is tan—! (—31).

The negative sign indicates that the obtuse angle between the lines

is being found; hence the required acute angle is tan'(3) =
8° 8.

Example 2. Find the equation of the line which is perpendicular
to the line 2x + 3y — 1 =0 and passes through the point (4, 3).
From (18.4) the slope of the given line is

m1 = _g-
Hence the slope of a perpendicular line is

1

my=——

—3

e

Since the required line passes through the point (4, 3) its equation is
[see (18.6)]

0—3=3ix—49
that is 2y —3x+6=0

Example 3. OA and OB are the equal sides of an isosceles triangle
lying in the first quadrant. OA and OB make angles 6, and 0,
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respectively with Ox. Show that the gradient of the bisector of the
acute angle AOB is cosec § — cot § where 0 = 6, - 0,.
Referring to Figure 18.10

Let LAOP=a= /ZPOB
Hence LPOx =10, +a or B,—a
2/POx =0, + 0,
=0 (given)
£LPOx = —z

Figure 18.10

Now

the gradient of PO = tan ZPOx

= tan —

= cosec f — cot 6
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Exercises 18d

1. Find the acute angles between the following pairs of lines:
(@y=3x+4;, y=2x—1
®b)3x+4y+7=0; 4x—5y+2=0
(c) x cos (o — 7[4) 4 ysin (¢« — w[4) = 3;
xcos(x + 7f4) + ysin(x + w4y =17
d)5x—6y+7=0; 6x+5y—3=0.
2. Find the equation of the line perpendicular to the line 3x -
2y 4 4 = 0 and passing through the point (5, 6).
‘ 3. Find the equation of the line passing through the points (1, 4)
} and (—2, 7) and show that it is perpendicular to the line x — y +
3=0.
‘ 4, Given the two lines x +y+7=0 and \/3x —y + 5 =0,
put their equations into the perpendicular form and hence find the
acute angle between them. Verify your result by using (18.14).
5. Find the equations of the sides of the triangle ABC where
A, B, C are the points (5, 7), (3, 3), (7, 1) respectively. Hence show
that the triangle ABC has angles of 90°, 45° and 45°. Verify this
result by finding the lengths of the sides of the triangle.

18.8. THE PERPENDICULAR DISTANCE OF A POINT
FROM A STRAIGHT LINE

Let P(x,, ;) be the point and the equation of the line be
xcosa + ysina=p ....(18.17)
Referring to Figure 18.11, any line parallel to the given line is
xcosa -+ ysina=p'

and this passes through the given point P(xy, y,) if

X1 COs & -+ y;sina = p’ ....(18.18)
Now the required distance is
PC = AB
= OB — OA
=p —p

= X;CO8 &t + y; sinox — p {from (18.18)]
Hence the required result is

x;cose+ yysine —p ....(18.19)
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If the equation of the line is given as ax 4 by 4 ¢ = 0 it may be
rewritten

a b c
J@ + bz)x +\/(a2 n bz)y +\/(a2 1 bY) =0
which is in the perpendicular form because
— %  and _ b
\/(a2 + bz) \/(az + b2)
are the sine and cosine of an angle since the sum of their squares is
unity. Hence from (18.19) the length of the perpendicular is

ax; + by, +¢
- ....(18.20)
J(@® + b?) (
y
\ B
~ A P(Xl .yl)
Cos
C Ly Sin
@ 20
0 4 COSQ, >X
*y s/,.,
0

Figure 18.11

If the denominator \/(a® + 5?) is always taken as positive, then
the length of the perpendicular from any point on the positive side
of the line will be positive and from any point on the negative side
of the line it will be negative (see section 18.6).

Example 1. Find the length of the perpendicular from the point
P(2, —4) to the line 3x + 2y — 5 = 0 and state which side of the
line P is on.

From (18.20) the length of the perpendicular is

3IX@+F2X(=H=5_ 7

J3? 429 BV EN
Thus the length of the perpendicular is 7/,/13 and it is on the negative
side of the line. Substituting the co-ordinates (0, 0) of the origin in
the equation of the line 3x + 2y — 5 we obtain —5. Thus the origin
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is also on the negative side of the line. Hence P is on the same side
of the line as the origin.

Exercises 18e

1. Find the lengths of the perpendiculars from the point P to the
line L in the following cases:

(@) P3,4),L=3x-+4y4+6=0

® P(—2,—1),L=3x+4y+6=0

() P5,6),L=3x—6=0

(d) P(—3,—-2),L=5x—12y-+1=0.

2. Find the lengths of the perpendiculars from P(3, 4) to the two
lines 7x + 24y — 1 = 0 and 3x 4+ 4y — 36 = 0 and state on which
sides of the lines the point P is situated.

3. Show that the point P(1, 1) is equidistant from the three lines
5x+ 12y +9=0,3x+4y —17=0,3x —4y — 9 = 0. Is P the
incentre of the triangle formed by the three lines?

4. The point P(a,2) is equidistant from the two lines 4x —
3y + 7 =0 and 7x + 24y — 30 = 0; find the value of a.

5. Find the incentre of the triangle formed by the three lines
12x — 5y +9=0,3x+4—27=0,5x+ 12y —45=0.

18.9. THE EQUATION OF A STRAIGHT LINE
THROUGH THE POINT OF INTERSECTION OF
TWO GIVEN STRAIGHT LINES

Let the equations of the straight lines be
ax +by-+c¢ =0, ax + by +¢c,=0 ....(18.21)
Consider the equation
(ax + by + ¢) + Magx + byy + ) =0 ....(18.22)

where A is any constant.

This is the equation of a straight line since it is of the first degree
in x and y. Further it is satisfied by the co-ordinates of the common
point of the two given lines, since these co-ordinates satisfy simul-
taneously the equations (18.21) and hence must satisfy the equation
(18.22). Thus it is the required line.

This is an example of a more general device used in co-ordinate
geometry; namely if S; = 0 and S, = 0 are the equations of any
two loci then S} + AS; = 0 is the equation of a locus through the
common points of §; = 0 and S; = 0.

In the case of the straight line (18.22) a second condition is
required to find A.
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Example 1. Find the equation of the line drawn through the point
of intersection of the lines 3x +-2y —3 =0, 5x —y +8=0
which also passes through the point (2, 2).

Any line through the point of intersection is given by (3x +
2y —3)+ A5x—y+8)=0.

If this passes through the point (2, 2) its co-ordinates satisfy the
equation and hence

©6+4—-—3)+A(10—-—2+8=0
7+ 16A=0

A= —3%
Hence the required equation is

BGx+2y—3)—1%5x—y+8=0

Le. 163x +2y —3)—75x—y+ 8 =0
i.e. 13x +39y — 104 =0
i.e. x4+3y—8=0

Example 2. Find the equation of the line drawn through the point
of intersection of 3x — y — 13 = 0 and x — 4y + 3 = 0 and which
is perpendicular to 5y + 2x = 0.

Any line through the point of intersection is given by (3x —
y—13)+Ux—4y+3)=0, that is 3+ Hhx — (1 + 4y —

. 344
13 + 34 =0. Its slope is T743
5y + 2x = 0 whose slope is —2 if

Hence it is perpendicular to

A2 [see(18.19)
1+41 5

ie. 6+ 20 — 5 4+ 204

whence A=1s

Therefore the required equation is
BGx—y—13)+1s(x—4y+3)=0
ie. 55x — 22y —231=0
i.e. Sx -2y —21=0
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In the particular cases when A has either of the values
Y(ai + bD

J(@; + b))
equation (18.22) may be written

+

+ b3
(@x + by +c) =+ jgal—f-b%( 2% 1+ bay + ¢3)
as
. by + ¢ a;x + by + ¢
that is X+t oy ta_  aXThyte g9
Jiat + b) J@ + 5 (152

which shows that the perpendiculars from the point (x, y) to either
of the lines a;x + b,y + ¢; = 0 or a;x + byy 4 ¢, = 0 are equal in
magnitude. Hence (18.23) gives the equations of the bisectors of the
angles between the lines.

To distinguish between the two bisectors, write the equations of
the lines with their constants both positive and take both the
denominators positive. Then taking the positive sign in (18.23) gives
the bisector of the angle in which the origin lies.

Example 3. Write down the equations of the bisectors between the
lines3x —y—2=0and 2x — 2y + 7 =0.

Rewriting the first equation —3x + y 4 2 = 0, the equations of
the bisectors are given by

—3x+y+2 2x — 2y +17
J10 V8
Thus 2,/2(—3x + y + 2) = +/10(2x — 2y + 7) is the equation
of the bisector of that angle in which the origin lies; that is
@J5+6)x—20+-/5y+7J5—4=0
and the other bisector is
QJ5—6x+2(1—/Sy+7/5+4=0
Exercises 18f

1. A line passes through the point of intersection of the lines
3x +2y — 1 =0and 5x 4 6y + 1 = 0. Find its equation in the
following cases:

(@) if it also passes through the origin

(b) if it is perpendicular to4x — y =0

(¢) if it is parallel to 2x 4- 3y — 1 = 0.

=+
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2. Find the equations of the bisectors of the angles between the
lines 2x +4y — 3 =20 and 2x — y + 7 =0 and verify that the
bisectors are at right angles to one another.

3. Show that one of each pair of bisectors of the angles between
thelines3x — 4y —4=0,12x — 5y + 6 =0,7x + 24y — 56 =0
taken in pairs, pass through the point (1, 1).

4. Two lines through the origin have a combined equation
2y® — xy — 6x% = 0. Factorize this in order to find the separate
equations of the two lines and hence show that the combined equation
of the internal bisectors of the angles between the two lines is x2 —
I6xy — y*=0.

5. Find the equation of the two lines through the point of inter-
section of the lines 3x + 2y — 1 = 0 and 2x — y + 7 = 0 which
are also

(@) perpendicular to 3x 42y — 1 =0

(b) perpendicular to 2x — y + 7 = 0.

EXERCISES 18

1. P, Q, R are the three points with co-ordinates (1, 0), (2, —4),
(—35, —2) respectively. Find:

(a) the equations of PQ, QR, PR

(b) the equation of the line through P perpendicular to QR

(c) the equation of the line through Q perpendicular to PR

(d) the point of intersection of the lines () and (c)

(e) the area of the triangle PQR.

2. Find the equation of the perpendicular bisector of AB where
A, B are the points (3, 2), (5, 1) respectively.

3. Sketch on the same diagram the lines whose equations are:

(@) y=3x

() y=—3x

©2x+3y—12

d)3x—5y+75
d)3x—5y+75

&)x—7=0

(fNNy+8=0.

4. Find the equation of the lines through the point (6, 5) which are

(a) perpendicular to 3x — 4y =0

(b) parallel to 3x — 4y = 0.

5. Find the equation of the line joining the points (3, 6), (5, 7)
and show that it is perpendicular to the line joining the points
(=3,49,(-2,2).

6. Rewrite the equation of the line 5x — 4y — 20 = 0 in (a)
intercept form (b) perpendicular form.
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7. The co-ordinates of the three points L, M, N are (a, a), (—a, —a)
and (0, —a) respectively. A point X is taken on MN such that the
ratio of MX to XN is #:1 and a point Y is taken on LX such that
the ratio of LY to YX is also #:1. Prove that the co-ordinates of
X and Y are respectively

[_1it’_a} and [(lit)z’a(ll;t)]

(J.M.B,, part)

8. Show that the three equations x + 2y —k =0, x4 ky —
2 = 0and kx + 4y — 4 = O are consistent whenk = —4 or2. Give
a geometrical interpretation in either case. Discuss the case when
k= -2

9. Find the co-ordinates of the incentre and of the three excentres
of the triangle formed by the lines y = 0, 3x — 4y = 0, 4x + 3y = 20.
Prove that the area of the triangle formed by the three excentres is
five times that of the triangle formed by the three given lines.

10. The lines L,, L,, L; have the equations x +y 4 1 =0,
y+2x+2=0, 3y —9x + 11 = 0 and meet the y-axis at the
points A, B, C respectively. If D is the point (—2, —3) prove that
DA, DB and DC are perpendicular to L,, L,, L, respectively.

11. Find the co-ordinates of the foot of the perpendicular from
the point (x,, ;) to the line ax + by + ¢ = 0 and deduce that the
co-ordinates of the image of the point in the line are

2 2b
Xy = r —|‘-lb2 (ax; + by +¢), y— ﬂ—i)—z(tm1 + by, +¢)

(J.M.B,, part)

12. The vertices B, C of a triangle ABC lie on the lines 3y = 4x,

y = 0 respectively, and the side BC passes through the point (%, §)'

If ABOC is a rhombus where O is the origin of co-ordinates, find the

equation of the line BC and prove that the co-ordinates of A are

@ 3)- (L.U)

13. A point P lies in the plane of the triangle ABC and G is the
centroid of this triangle. Prove that

PA? + PB? 4 PC? = 3PG? 4 }(BC? + CA®? 4 AB?)

What is the least value of PA2 -+ PB? 4 PC? as P varies in the plane ?

14. Given the four points (a/m,, am,), (r =1,2,3,4) find the
condition that the line joining any two of the four points is per-
pendicular to the line joining the other two.
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15. A, B, C are the points (—4, —2), (3, 1), (—2, 6). D is a point
on the opposite side of AB to C which moves so that the area of the
triangle ADB is always 50 square units. Find the equation of the
loeus of D. If CD meets AB at the point Q verify that the ratio
CQ:QD is constant for all positions of D.

16. A, B, C, D are the points (xy, y1), (X2, ¥2), (X3, ¥s) (Xs ¥o)-
Show that ABCD is a parallelogram provided that x; + x; =
Xs + x4 and y; -+ y3 = y3 + ¥, Show also that the parallelogram
is a rectangle if
X1X3 + Y1Vs = XgXs + YoVa

17. Without drawing a figure determine whether the point (4, 3)
is inside or outside the triangle formed by the lines y = x + 6
3y+4x—-24=0,y+8=0.

18. The altitudes AD, BE, CF of a triangle ABC are x + y = 0,
x — 4y = 0 and 2x — y = O respectively. If the co-ordinates of A
are (k, —k) find the co-ordinates of B and C. Find also the locus of
the centroid of the triangle ABC as k varies.

19. Find the equations of the lines through the point (2, 3) which
make angles of 45° with the line x — 2y = 1. (L.U)

20. Obtain the equation of the straight line through the point
P(h. k) perpendicular to the line ax + by + ¢ = 0. PA, PB are the
perpendiculars from P to the lines y = x, y = 3x. Find the co-
ordinates of M, the middle point of AB, and show that if P moves on
the line 5x + 4y + 10 = 0 then M will move on the line x —
Ty = 5. wJ.c)

21. Show that the area of the parallelogram formed by the lines
3x +4y=17Tp, 3x+4y=Tq, 4x+3y=Tr, 4x4+3y="7Ts is
p — q) (r — 9).

22. The length of the perpendicular to a line from the origin is
5 units, The line passes through the point (3, 5). Find its equation.

23. Show that any point on the line 4x + 7y — 26 = 0 is equi-
distant from the two lines 3x + 4y — 12 = 0and 5x 4+ 12y — 52 =0.

24. Find the values of k for which the lines 2x + ky 4+ 4 =0,
4x — y — 2k = 0, 3x 4+ y — 1 = O are concurrent.

(J.M.B,, part)

25. Show that the line y(m 4 1) = x(m — 1) + 4 always passes
through a fixed point and find the co-ordinates of that point.

*26. OA and OB are the equal sides of an isosceles triangle lying
in the first quadrant. The slopes of OA and OB are % and 1 and the
length of the perpendicular from O to ABis \/13. Find the equation
of AB. (Use the result of Example 3 in section 18.7.)

*27. The points P, Q are such that the line x cos « + ysina = p
is the perpendicular bisector of PQ. If the co-ordinates of P are
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(x, y) find the co-ordinates of Q. If the line is fixed find the locus of
Q as P moves along the y-axis.

*28. The vertices O, A, B of a square OABC are the points
(0, 0), (1, 0) and (1, 1) respectively. P is a variable point on the side
BC. OP produced meets AB produced at Q and a line through B
parallel to CQ meets OP at R. Prove that R lies on the diagonal AC
when CP = (\/ 5 — 1)/2. Find the equation of the locus of R as P
varies and give a rough sketch of the locus. (L.U)

*29. (@) Find the gradients of the bisectors of the angle between
thelinesy — 7x =0, x + y = 0.

() If A, B, C and D are the points on the x-axis with abscissae
2, 4, 6 and 8 respectively, find the co-ordinates of the two points P
and Q in the first quadrant which are such that '

tan APB = tan CPD = tan AQB =tan CQD =} (J.M.B))
*30. Find the condition that the lines
ax+ by-+c¢, =0, a,x + by + ¢, =0, asx +byy +c3=0

are concurrent.
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THE CIRCLE

19.1. THE EQUATION OF A CIRCLE

Ler C(a, b) be the centre and r the radius of the circle. Let
P(x, y) be any point on the circumference of the circle then (see
Figure 19.1)

CP=r
thus CP2 = r2
94
P(x,y)
5 X
Figure 19.1

Now referring to equation (17.5) which gives an expression for the
distance between two points, we have

(x —a) +(y — bz =rt ....(19.D

which is the required equation.
If we let a = b = 0 the centre of the circle will be the origin and
the equation reduces to
x4 yP =yt ....(19.2)

Equation (19.1) may be written
x2 4 y® — 2ax — 2by + a® + b2 = r?
The equation of a circle is thus of the form
XE+yE4-2gx +2fy +c=0 ....(19.3)
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THE EQUATION OF A CIRCLE

where g, f, ¢ are constants. Conversely equation (19.3) can be
rewritten

AA2x e+ U =g A
that is x+g2+(+fE=g+ft—c
Comparing this with (19.1) we see that
(19.3) represents a circle centre (—g, —f) radius /(g + f2 — ¢)
....(19.9)

In general the equation of a circle is such that
(i) the coefficients of x* and y* are equal
(i) there is no term in xy.

Example 1. Find the equation of the circle centre (—3, 4) radius 7.
The equation is
3+ =T
or x24y2+6x—8 —24=0
Example 2. Find the centre and radius of the circle 4x2 4- 4% —
12x +5=0.

In order to put the given equation into the standard form (19.1)
it is first necessary to divide throughout by 4, thus

¥+yr—3x+i=
that is XR=3x+ (D +yr=0-d-1%
i.e. x—282+yt=1
Thus the circle has centre (3, 0) radius 1.

Example 3. Find the equation of the circle centre (44, —7)
which touches the line 3x 4- 4y — 9 = 0.

Since the line is a tangent then the radius of the circle is equal to
the perpendicular distance from the centre to the line. Thus

34 +4=1—9
J3* + 4
~25

5

radius =



THE CIRCLE
Thus the equation of the circle is
(x— 4 +(y + 7 =25
that is x4+ —8x+ 14y 4+40=0
Example 4. Find the equation of the circle with AB as diameter.
A, B are the points (xy, y1), (x2, ¥a).

Let P(x, y) be any other point on the circumference of the circle
(see Figure 19.2).

y
B (%, »)

7

Alxy' 5) P(x,y)
X
0
Figure 19.2
The slopes of AP and BP are
Y= g Y=V
X —x X — Xy

respectively.
Since AB is a diameter £ APB = 90°; thus AP and PB are
perpendicular; hence by (18.15) the product of their slopes is —1.

Thus
(=)=
X — X/ \x — X,
or x—x)x —x) + (@ —y)y—y)=0 ....(19.5)
which is the condition satisfied by the co-ordinates of any point on
the circle and is therefore the required equation.

Exercises 19a

1. Write down the equations of the following circles:
(i) centre (3, 7) radius 5

(ii) centre (—3, —7) radius 6

(iif) centre (5, 0) radius 5

(iv) centre (0, —3) radius 4.
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2. Find the centre and radius of the following circles:
@) x2+y2+2x46y4+6=0

() 9% +9y2 +27x + 12y +-19=0

@iy x®++y2—5x=0

(iv) 4x2 4-4y2 — 28y 433 =0

) x* 4 y2 — 2ax + 2by 4202 =0 (a, b constant)

(vi) x* + y® 4+ 2ax —2ay =0  (a constant)

3. Find the equation of the circle centre (7, —6) which touches
the line 3x — 4y 4+ 5 = 0.

4. Find the equation to the circle which has the points (3, 2)
(0, —1) as ends of a diameter.

5. Find the equation of the circle centre (3, —2) touching the line
x4+y—3=0.

6. Show that the circle x2 4 y* — 2x — 2y + 1 = 0 touches both
Ox and Oy.

7. Show that the circle x? + y* — 2ax — 2ay +-a>=0 (a is a
positive constant) lies wholly in the first quadrant and touches both
Ox and Oy.

8. Use the result of Exercise 7 to find the equation of the circle
lying in the first quadrant which touches both axes and also the line
5x + 12y — 52 =0.

9. Find the equation to the diameter of the circle x? + y* —
8x + 6y + 21 = 0 which when produced passes through the point
@, 5).

10. Find the equation of the circle which passes through the point
(1, 1) has a radius of 4,/10, and whose centre lies on the line y =
3x —17.

19.2. THE EQUATION OF A CIRCLE THROUGH
THREE NON-COLLINEAR POINTS

Let the equation of the circle be x2 4 y* + 2gx +2fy +¢=0
and the three points be (x1, y1) (X3, ¥2) (X5 ys). Since the circle
passes through all three points the co-ordinates of each point must
satisfy the equation of the circle. Hence

x4+ + 2%+ 20 +c=0
x2+y: 4+ 2gx 421 +¢c=0
X2+ 3+ 2g% +2fys +¢c=0

are three simultaneous equations which can be solved for g, £, and c.

Example 1. Find the equation of the circle through the points
6,1),(3,2)(2,3).
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THE CIRCLE
Let the equation of the circle be x* + y? 4 2gx + 2fy + ¢ = 0.
Then since (6, 1) lies on the circle
36414122 +2f4c=0
similarly 9+44+6g+4+c=0

and 4494+4g4+6f4+c=0
Solving these simultaneous equations we have

f=—6, g=—6, c =47
Hence the required equation is
X242 —12x — 12y +-47=0

Exercises 19b

Find the equations of the circles passing through the following
points and state the length of the respective radii.

1. (0,0), (3, 1) and (5, 5)

2. (5,0),(6,0) and (8, 1)

3.(3,2),(1,1)and (1, 0)

4. (2,1),(—2,5) and (-3, 2)

5. Find the equation and radius of the circumcircle of the tri-
angle formed by the three lines 2y — 9x 4 26 = 0; 9y + 2x +
32=0; 1ly—7x —27=0.

19.3. THE EQUATION OF THE TANGENT AT
THE POINT (x,,y;) ON THE CIRCLE
x4+ y24+2ex+ 2y +c=0

Differentiating the equation with respect to x we have

2 + 2y Y 4 og 4oy
dx dx

dy _ _G&+e
dx O+
Hence the i : . atg)
gradient of the tangent at the point (x,, y,) is — .
Hence by (18.6) the equation of the tangent is 0 +)

_ (xl + g) (x — xl)
o+
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EQUATION OF THE TANGENT AT POINT (X, ;)
or WY = —nf=—xx+xi—gx +gn
Le. xx+yy+gx +fy=x1+yi+gx+hn
Now add gx; + fy; + ¢ to both sides to obtain

xxy+yy +8(x +x) @ +y) o= +yi+28x + 2 +e
=0
because (x;, y;) lies on the circle. Hence the required equation is

xx,+y+8x +x) +f(+y) +e=0 ....(19.6)*

Example 1. Find the equation of the tangent at the point (—4%, 1)
on the circle 4x2 + 4y% — 12x 4 24y — 55 = 0.

When using equation (19.6) to find the equation of the tangent it is
not necessary to reduce the coefficient of x% and y* to unity, as it was
when the centre and radius had to be found (see section 19.1,
Example 2).

Hence the equation of the tangent is

x(—2) +4y. 1 —-6(x—H+12(y +1)—-55=0
that is 8y —6x—17=0

Example 2. Find the equation of the tangent at the point (1, 0)
on the circle x2 + y2 — 5x —y + 4 = 0.
The equation of the tangent is

x.14+y.0—4x+D—3p+0+4=0
that is Ix+y—3=0

Exercises 19¢

Find the equations of the tangents to the following circles at the
given points.

1. x2 4+ y*—10y =0; (3,9)

2.2x2 422+ x— 11y — 1 =0; (—2,5)

3.x24+324+3x—3y—38=0; (—7,—2)

4, 9x2 4- 9y% — 12x + 42y — 236 = 0; (—2,%)

5. Verify that the point (8, 6) is common to both the circles
x24+y2—1lx— Ty +30=0 and x% +y* —x + 3y — 110=0.

* Note that this equation can be obtained from the general equation of a
circle by replacing x? by xxy, y* by yy1, 2x by (x + xy), and 2y by (y + y1).
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Find the equations of the tangents to each of the circles at the point
(8, 6) and hence deduce that the circles touch each other.

19.4. THE LENGTH OF THE TANGENT FROM
A POINT P(X, Y) OUTSIDE THE CIRCLE
x4+ y2+-2ex 4+ 2fy+c=0
Referring to Figure 19.3, C is the centre of the circle and T the

point of contact of the tangent. PT is perpendicular to the radius
TC.

P(X,Y)

Figure 19.3

Hence PT? = PC% — CT? ...

From (19.4) C is the point (—g, —f) and P is the point (X, Y)
hence
PC?= (X +g)P +(Y + /) ... (i)
Also from (19.4)
TC = radius = /(g + f2 — ¢) ... (i)

Hence substituting (iii) and (ii) in (i)
PT2 = (X + g0t + (Y +2) — (g +/2— o)
= X2+ Y2+ 2gX +2fY +¢ ....(19.7

Thus the square of the length of the tangent is obtained by sub-
stituting the co-ordinates of the point in the left-hand side of the
equation of the circle. Note that if PT? has a negative value it
indicates that P is inside the circle.

Example 1. Find the length of the tangent from the point (5, 6)
to the circle x? 4~ y* 4 2x 4y — 21 = 0.
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POINT OF INTERSECTION OF THE LINE AND THE CIRCLE

From (19.7)
PP =5 +6*4+2x5+4x6—21

= 74
hence PT = /74

19.5. THE POINTS OF INTERSECTION OF THE
STRAIGHT LINE y = mx + ¢ AND THE
CIRCLE x% -+ y*=r2%

The co-ordinates of the points of intersection will satisfy the
equations of the line and the circle simultaneously

i.e. x? 4 y2 =r2? @)
and y=mx-+c ... (i)
Substituting in (i) from (ii) we have
X2 - (mx + )t =r?
or (A +m)x® 4 2mex +c2—r2=0 ....(19.8)

“This equation has real, coincident or complex roots according to
whether the discriminant of this quadratic viz.

(2mec)* — 41 + m?)(c? — r?) = 4(r*(1 + m?®) — ¢?)

is positive zero or negative [i.e. according as ¢? is less than, equal to,
or greater than ri(1 4 m?)].

Example 1. Find for what values of ¢ the line y = 2x + ¢ meets
the circle x* 4 y2 = 9 in two real, coincident and imaginary points.
Illustrate with a diagram.
Substituting y = 2x - ¢ in the equation of the circle x* 4 y2 = 9,
we obtain
x% 4+ (2x + ¢)? =9

5x2+4cx +c2—9=0

The discriminant of this quadratic is 16¢2 — 20(c? — 9) = 180 — 4¢2,
Hence

if 180 — 4¢2 >0 ie. c? <45 we have real roots;

if 180 — 4¢2=0 1ie. ¢®2=45 we have coincident roots;

if 180 — 4c2 <0 ie. ¢*>45 we have complex roots
(see Figure 19.4).
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The geometrical interpretation of these results is quite generally:
if 2 < r*(1 4 m?®) the line cuts the circle in two distinct points; if
c? = r¥(1 4+ m?) the line is a tangent to the circle; if we obtain
c? > r¥(1 + m?) the line and circle do not meet.

Referring back to (19.8) the condition for y = mx +c to be a
tangent to the circle x2 + y% = r2is ¢® = r¥(1 + m?

i.e. ¢ = 4r/(1 + m?

Thus the two lines

y =mx £+ r/(1 + m?) ....(19.9)
are always tangents to the circle x* + y* = r2
' 4
w2 A2
\g/ 13 m’—"‘b
C

Figure 19.4

Example 2. Find the equations of the tangents to the circle x* +
y? = 25 which pass through the point (15, —5).

The radius of the given circle is 5 units. Hence from (19.9),
y = mx £ 5,/(1 + m?) are always tangents to the circle. These
lines pass through the point (15, —5) if these co-ordinates satisfy

the equation,
—5=15m 4 5\/(1 -+ m?)

ie. (=5 —15m) = 45./(1 + m?)

On removing the common factor 5 and squaring we have
A+3mE=1+m
8m24+6m=20

which has two roots m = —% or 0.
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Hence the two tangents are

y=—ix+5/1 + %)

and y=0-—-5J/1+40)
ie. 4y +3x=250ry=—5
Exercises 19d

1. Find the lengths of the tangents from the point (5, —2) to (i)
the circle x% 4 y® +2x — 3y =0 and (i) the circle x® 4 y? —
x—5+9=0.

2. Find if the points A(2, —1), B(—2, —1), C(3, —2) are inside,
outside, or on the circle x 4- y* —2x +y — 5=0.

3. The length of the tangent from the point (3, 2) to the circle
x2 + y* — 2x — 3y 4+ k = 0 is 9 units. Find the value of k.

4. Find the points of intersection of the line x 4y — 3 = 0 and
the circle xX2 4-y? 4-x — 5y +4=0.

5. Find the equations of the tangents to the circle x2 4 y2 = 289
which are parallel to the line 8x — 15y = 0.

6. Write down the equation of the tangent to the circle x2 +
Y2 — 3x + 5y = 0 at the point (0, 0).

7. Show that the line 3x — 4y — 10 = 0 is a common tangent of
the two circles x2 4+ 32 = 4 and x% + y® — 22x — 24y 4 240 = 0.

8. Given the three circles

x2 4yt —16x+60=0
x2+y2—12x4+20=0
x4yt —16x — 12y +84=0

find (i) the co-ordinates of a point such that the lengths of the
tangents from it to each of the three circles are equal (i) the length
of each tangent. L.u)

9. (i) Find the radius and co-ordinates of the centre of the circle
x2 + y® — 2x — 6y + 6 = 0. (ii) If the line x = 2y meets the circle
x% +y? —8x 4+ 6y — 15=10 at the points P, Q, find the co-
ordinates of P and Q and the equation to the circle passing through
P, Q and the point (1, 1). (L.U)

10. A circle touches the y-axis at (0, 3) and passes through (9, 0).
Find its equation. Find also the equation of the other tangent from
the origin. (W.J.C)

EXERCISES 19

1. A circle, the co-ordinates of whose centre are both positive,
touches both axes of co-ordinates. If it also touches the line
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3x +4y — 60 =0 find its equation and the co-ordinates of its
point of contact with this line.

2. Show that the distance between the centres of the following
circles is equal to the sum of their radii: x2 4 y2 —2x — 4y — 20 =
0, x 4y — 26x — 22y + 190 = 0.

3. Prove that the line 3x 44y = 13 is a tangent to the circle
x% + y? — 2x — 3 = 0 and find the equations of the two tangents
perpendicular to this one. (L.U)

4. Find the radii and the co-ordinates of the centres of the two
circles which touch the x-axis and which pass through the points
(3, —2) and (2, —1).

5. Determine the two values of ¢ for which the line 3x + 4y +
¢ = 0 is a tangent to the circle x + y — 6x — 2y — 15 =0.

6. Show that for all values of 6 the line xcos0 + ysin0 =a
is a tangent to the circle x® + y? = 42 and find the point of contact in
terms of 6.

7. Find the equation of the circle through the three points A(1, 3),
B4, 2), C(5, 1), also the length of the chord of this circle which
passes through the origin and makes an angle of 135° with the
positive direction of the x-axis.

8. A, B are the points of contact of the tangents from the point
P(1, 1) to the circle x2 4- > — 4x — 6y + 12 = 0. Find the centre
and radius of the circle and the length PA. Hence if the chord AB
subtends an angle 20 at the centre of the circle find the values of
tan 6.

9. Find the equation of the circle of radius 12§ which touches
both the lines 4x — 3y = 0 and 3x 4 4y — 13 == 0 and intersects
the positive y-axis.

10. Show that the pair of tangents from the point (23, 7) to the
circle x? - y* = 289 are mutually perpendicular.

11. Show that the line x — 5 = 0 always cuts the circle x2
V2—(@6+Ax—6y+(5A—11)=0 in the same two points,
whatever the value of 2. Find the co-ordinates of these points.

12. Find the equation of the circle that passes through the points
(0, 1), (0, 4), (2, 5). Show that the axis of x is a tangent to this circle
and determine the equation of the other tangent which passes through
the origin. (J.M.B.)

13. Mark the three points A(0, 2), B(0, —2), C(—4,2) in a
sketch and write down the co-ordinates of the centre, the length of
the radius and the equation of the circle through the three points.
Show that the line x 4y + 6 = 0 is a tangent to the circle. Also
obtain the equation of a second circle that passes through the two
points A, B and touches the line x +y + 6 = 0. (I.M.B.)
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14. A circle touches both the x-axis and the line 4x — 3y + 4
Its centre is in the first quadrant and lies on the line x — y — 1
Prove that its equation is x2 4 y2 — 6x — 4y 4+ 9 = 0.
(J.M.B., part)
15. If P(x,, y;) is a point outside the circle x? + y? 4 2gx +
2fy + ¢ = 0 show that the length of the tangent PT from P to the
circle is given by

PT? = x} + yf + 2gx, + 2fn + ¢

Two circles have centres A(1, 3) and B(6, 8) and intersect at C(2, 6)
and D. Find the equation of each of the circles and that of the
line CD.

The tangents to the circles from a point P are of equal length.
Verify that P lies on CD. (J.M.B)

16. Find the equation of the circle which has as the ends of a
diameter the points where the line x — y = 1 meets the locus
x2+4+2y> —4x —4y +4=0. [Hint: show that the equation
(19.5) can be written x% 4 y* — x(x; + xp) — y(y1 + yo) + x1%5 +
nYys =0 and remember that the sum of the roots of a quadratic
equation equal “—b/a” and the product “c/a”.]

17. A(2, 1) and B(6, 4) are the ends of a diameter of a circle. Find
the equation of the circle and show that it touches the x-axis at the
point P(4, 0). The line joining the origin O to the point A meets the
circle again at C. Find the length of the chord AC.

18. Prove that the circles

x2 4+ y? —20x — 14y +-113=0
4x* + 4y% + 16x — 16y —49 =0

lie entirely outside each other and find the length of the shortest
distance from a point on one circle to a point on the other.
19. Prove that the circles

x4 32 —10x — 8y — 59 =0
x4 32— 16x — 16y +119=0

lie one entirely inside the other and find the length of the shortest
distance from a point on one circle to a point on the other.

20. Prove that the circle which has as a diameter the common
chord of the two circles x2 + y* — 14x — 6y + 33 =0, x® - y2 |-
2x — 6y — 15 = 0 touches the axes of co-ordinates.

21. Show that the circumcircle of the triangle formed by the x-axis
and the pair of perpendicular lines 2x +y — )(x — 2y +2) =0
passes through the points (0, 1), (0, —1).
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THE CIRCLE

22. The two circles x* 4 y* +2ix +3 =0 and x?+ )%+
2y — 3 = 0 have centres C, and C, respectively. If P is one of their
points of intersection show that C,C2 = C;P% 4 C,P2 for all values
of A.

23. The equations of the sides of a triangle are x + y — 4 =0,
xX—y—4=0, 2x +y —5=0. Prove that for all numerical
values of p and ¢ the equation p(x +y —4)(2x 4y —5) +
gx —y —42x +y —5) = (x —y — 4H(x + y — 4) represents a
curve passing through the vertices of this triangle.

Find the values of p and g which make this curve a circle and so
determine the centre and radius of the circumcircle of the triangle.

(J.M.B.)

24. A point moves in such a way that the lengths of the tangents
from it to the circles x2 4 y? + 14x + 25 =0, x2 + 32— 16x +
25 = 0 are in the ratio 2:1. Show that the point describes a circle
and find its radius and the co-ordinates of its centre. (W.J.C.)

25. Find the equation of the circle circumscribing the triangle
whose sides are x =0, y =0, Ix + my = 1. If / and m can vary
so that 2 + m? = 4/m* find the locus of the centre of the circle.
(Hint: if Ix 4 my = 1 meets the axes at P, Q then PQ is a diameter
of the required circle.)

26. Prove that the circles

x2+y24+2x—8 +8=0
x2+y2410x —2y +22=0
touch one another. Find (i) the point of contact, (/i) the equation
to the common tangent at this point and (i) the area of the triangle
enclosed by this common tangent, the line of centres and the y-axis.
(L.U)

27. Find the co-ordinates of the centre and the radius of the circle
x? + y® — 4x — 2y 4- 4 = 0. Find the equations of the tangents to
this circle from the origin.

Show that theline 5x 4 12y = 35is a tangent to the circle and find
the co-ordinates of the centre of the circle which is the reflection of
the given circle in this line. (J.M.B)

28. Prove that for different values of 6 the locus of the point
[(5cos 6 + 3), (5sin 6 — 4)] is a circle passing through the origin.
Find the equation of the tangent at the origin.

29. Find the condition that the two circles x2 + y2 + 2g;x +
2fiy+ =0, x4 y* 4 2g,x + 2foy + ¢ =0 may touch, and
prove that, if they touch, the point of contact lies on each of the lines

Aen—gx+2fi—fy +e1—c=0
Nh—fox—(@1— gy +fig82— fug1=0
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30. Find the equation of the circle with centre at the point (2, 3)
and radius 5. Find the equation of the tangent at the point (5, 7)
and verify that it is parallel to the diameter through the point
(—2, 6). Write down the co-ordinates of the point of contact of the
other tangent parallel to this diameter. (J.M.B.)

31. The co-ordinates of the points A and B are (—2,2) and (3. 1)
respectively. Show that the equation of the circle which has AB as
a diameter is x> + y* — x — 3y — 4 =0.

If A and B are opposite corners of a square, find the co-ordinates of
the other corners. (J.M.B.)

32. Ois the origin and a line OA, of length 2a, makes an angle «
with the x-axis. Find the equation of the perpendicular bisector of
OA.

A circle is drawn through O, A and the point P(24, 0). Find the
co-ordinates of the centre of the circle.

If h varies, find the equation of the locus of the point of inter-
section of the tangents at O and P to the circle. (L.U)

33. A is the point (2, 3), B is the reflection of A in the line PQ
given by y = 1 and C is the reflection of B in the line PR given by
4y = 6x — 3. Find the co-ordinates of C and the length of AC.

Show that A is the reflection of C in the line perpendicular to CA

and passing through P.
Find the equation of the circumcircle of the triangle ABC,
simplifying your result. r.u)

34. Show in a sketch the part of the x,y plane in which the fol-
lowing three inequalities are all true.

x24+y2—100<0
1y —7x—-77>0
9 +8x—80>0

If the last two inequalities are reversed what is the area?
35. Prove that the circles which touch both the lines y = x tan «

and y = —x tan « have equations of one of the forms
x2 4+ y* — 2px + p*cosfa =0
or x4+ 2 — 29y +¢%sin*a =0

where p and g may take any values.
Deduce the equations of the circles through (2, 6) which touch the
lines y = 2x and y = —2x. (S.U.J.B)
36. Two circles S, and S,, of radius #; and r,, touch each other at
the origin and their centres C, and C, are at (ry, 0) and (r,,0)
respectively. A point P moves so that the lengths of the tangents
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THE CIRCLE

from P to S, and S, are in the ratio k:1. Prove that the locus of P
is a circle whose centre divides C,C, in a certain ratio and find the
ratio. (S.U.J.B)

*37. The co-ordinates of the vertices of a triangle are A(2t, 0),
B(0, 4), C(z, 2¢%). Obtain the co-ordinates of its orthocentre in the
form

x=t8 =33/t - 1), y=>532(*—1)

assuming ¢ % 0 or 4 1.

Also obtain the equation of the locus of the orthocentre as ¢
varies in the form 8y(y — 4)? = x*(2y — 5). (W.J.C)

*38. The tangents from the origin to the circle x* +- 2+ 2gx +
2fy 4 ¢ = 0 touch it at P, Q. Obtain the equation of the circle on
PQ as diameter in the form

(? +&90 + ) + 2cgx + 2¢fy = o(f* + g° — 2c)

Find the relation of inequality which holds between g, £, c if this
second circle encloses the origin.

*39. Two circles have centres (a, 0) and (—a, 0) and radii b, ¢
respectively where @ > b > c. Prove that the points of contact of
the exterior common tangents lie on the circle x2 4 yE=a*+ be.

Find the corresponding result for the points of contact of the
interior common tangents. (L.U)

*40. Show thatthe co-ordinates of a point P on the circle (x — a)? +
(y — b)* = r? may be written in the form x =a +rcosb, y =
b -+ rsin 0, where 0 is the angle which the radius to P makes with
the x-axis. Prove that the equation of the tangent at P is (x — a)
cos 0 + (y — b)sin 0 = r. Prove also that, if N is the foot of the
perpendicular from the origin to this tangent, the co-ordinates of
N satisfy the equation y cos @ — x sin 6 = 0, and deduce that the
locus of N as P moves round the circle is

[x(x — a) + y(y — D)2 = ri(x2 4 »?). (L.U)

*41. Show that if the circle x2 4 y2 4 2gx + 2fy + ¢ = 0 cuts
the x-axis, its intercept on that axis is of length 2,/(g? — c).

Show that the locus of the centre of a circle which makes intercepts
84/6, 16 respectively on the x- and y-axis is the curve x* — y* = 32.

Show that, if the abscissa of the centre of such a circle is 6, there
are two circles satisfying the conditions and find their equations.

w.J.C)

*42. Prove that the equations of two given circles can always be
put in the form x2 4 y2 +2Ax + ¢=0, X2+ + 2ux +c =0
and that one circle will lie entirely inside the other if both Ax and ¢
are positive.
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EXERCISES

*43. Show that the line 4x + 3y = 25 touches every circle of the
system x2 + 32 — 25 + k(4x + 3y — 25) = 0 at the same point,
and find the co-ordinates of the point.

Find the equations of two circles of the system that touch the line
y = 7. Determine the co-ordinates of the point of intersection of
the line of centres with the tangent y = 7. Hence, or otherwise,
obtain the equation of the other direct common tangent to these
circles. (J.M.B))
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20

THE PARABOLA, ELLIPSE, HYPERBOLA,
AND SEMI-CUBICAL PARABOLA j? = kx?

20.1. INTRODUCTION

THE locus of a point P(x, y) which moves so that the ratio of its
distances from a fixed point S (the focus), and from a fixed straight
line ZQ (the directrix), is a constant (e, known as the eccentricity), has
different forms according as e is less than, equal to, or greater than
unity. The locus is known as a parabola when e = 1, an ellipse when
e <1 and a hyperbola when e > 1. We shall see in the sections
that follow that the loci are all given by second degree equations
in x and y.

20.2. THE PARABOLA (e = 1)

Let SZ be the line through the focus perpendicular to the directrix
ZQ (see Figure 20.1).

M Pixy)

4 O\S(a,O)

Figure 20.1

By the definition of the locus it passes through the point midway
between S and Z.

The form of the equation of the locus depends on the choice of
axes. The simplest form of the equation is obtained by taking the
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THE PARABOLA (e = 1)

origin O, as the point midway between S and Z and axes perpendicular
and parallel to ZQ.

Let SO = OZ = a referred to these axes. The focus 8 is the point
(a, 0) and the directrix ZQ is the line x = —a. If P(x, y)is any point

on the locus PS = PM

Hence Jix—aP +y1l=x+a

i.e. x— a4+ y*=(x +a)*

Hence yE = dax ....(20.1)

This is the simplest form of the equation of a parabola and is
obtained because of our choice of axes.

To trace the parabola (assuming a > 0) we first observe that
y is not defined if x is negative so that the curve lies wholly to the
right of the origin. Since we can rewrite the equation y = +2.\/ax,
the curve is symmetrical about Ox and this line is often referred
to as the axis of the parabola. If x is zero, y2 = 0 showing that the
y-axis meets the curve in two coincident points at the point (0, 0),
known as the vertex. Hence the y-axis is the tangent at the vertex.
The general shape is shown in Figure 20.1.

The double ordinate LSL' through the focus is known as the
latus rectum. Since the abscissa of the point L is x = a, substituting
in the equation (20.1) we have that the ordinate LS has length 2a.

Hence LSL’ = 2LS = 4a ....(20.2)
x=3
107
5r Axis
i v\ 5(5,4)

Figure 20.2

Example 1. Find the equation of the parabola with focus (5, 4)
and directrix x = 3.

Refer to Figure 20.2. Let P(X, Y) be any point on the parabola,
then P is equidistant from the focus and the directrix.
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PARABOLA, ELLIPSE, HYPERBOLA, AND SEMI-CUBICAL PARABOLA
Hence SP = PM = PN — MN
ie. JIEX =52+ (Y —41=X-3
’ (X =352+ (Y -4 = (X3
X2— 10X 4254 Y2 —-8Y +16=X2—6X+9

s Y2—8Y—4X4-32=0
Hence the required equation is

yP—8y—4x +32=0
This may be rewritten

(— 4 =4 — 9)

Referring to Figure 20.2 the vertex V is the point (4, 4). If the origin
of co-ordinates is moved to this point the equation becomes
% = 4x which is the same as equation (20.1) with a = 1.

Example 2. Find the equation of the parabola with focus (—3, 2)
and directrix x —y +1 = 0.

Figure 20.3

Let P(X, Y) be any point on the parabola. Then P is equidistant
from the focus and the directrix. Hence

SP = PM
X—Y+1
1?2
[see (17.5) and (18.20)]

VIX +37 +(Y — 2] =

AXT+6X+9+ Y2—4Y + 4)
= X?—2XY 4 Y2 42X —2Y +1
that is X2 4 2XY + Y24+ 10X — 6Y +25=0
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THE EQUATIONS OF THE TANGENT AND THE NORMAL

Hence the required equation is
x4+ 2xy + 2+ 10x — 6y +25=0

To reduce this equation to its simplest form [see equation (20.1)]
we should need to change the origin and rotate the axes. This
latter technique is beyond the scope of this book.

Example 3. A telephone wire hangs from two points P, Q distance
60 yd. apart. P, Q are on the same level. The midpoint of the
telephone wire is 3 yd. below the level of PQ. Assuming that it hangs
in the form of a parabola* find its equation.

r}'
p T ————— 0yd. —— — =0
|
Oy .
Figure 204 )

With axes as shown in Figure 20.4 the required equation is of the
form x* = 4ay.
The point Q has co-ordinates (30, 3) and lies on the curve, so that

3=4xax3
S 75=a
Therefore the required equation is x2 = 300y.

20.3. THE EQUATIONS OF THE TANGENT AND
NORMAL AT THE POINT (x,,y;) ON
THE PARABOLA j* — dax

Differentiating the equation of the parabola, with respect to x
we have d
y

dx

Hence the gradient of the tangent at the point (x;, yp) is 2a/y,
and the equation of the tangent is

2y —= = 4a

. 2a
O—y)=—0x—x)
N
or Yy — yi = 2ax — 2ax,
* The true shape of such a chain is a catenary but this approximation is
often of practical use.
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PARABOLA, ELLIPSE, HYPERBOLA, AND SEMI-CUBICAL PARABOLA
However, since (x,, yy) lies on the curve, y? = 4ax;. Hence
yy, — 4ax; = 2ax — 2ax,
and the required equation is
yn = 2a(x + xy) ....(20.3)

It should be noted that the equation of the tangent can be
obtained from the original equation of the parabola by replacing
y* by yy, and 4ax by 2a(x + x,). This is a similar rule to the one
used for a tangent to a circle.

The normal to a curve at a point is the line passing through the
point and perpendicular to the tangent at the point. Hence since
the slope of the tangent is 2a/y, [see (20.3)] the slope of the normal
is —y1/2a. Hence the equation of the normal is

y— =L (x — x) ....(20.4)
2a

Example 1. Find the equations to the tangents to the parabola
y? = 48x at the points (3, 12) (48, —48). Show that these tangents
are at right angles and find their point of intersection. Here

4a = 48; S.ooa=12

For the tangent at the point (3, 12), x; = 3, y; = 12. Hence sub-
stituting in (20.3) we have

Yy X 12 =24(x + 3)
or y=2x-+6 ceee(d
Similarly for the tangent at the point (48, —48)

y(—48) = 24(x + 48)
or y=—x—24 .. (il)

From (i) and (ii) the slopes of the tangents are 2 and —3} and the
product of these is —1. Hence by (18.15) the tangents are at right
angles.

From equations (i) and (ii), at the point of intersection
2X+6=y=—4x—24
4x +12= —x — 48
x=—12 and y= —18
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POINTS OF INTERSECTION OF THE LINE AND PARABOLA

Note that since “a” = 12 in this case, x = —12 is the equation
of the directrix and this point lies on the directrix.

Exercises 20a

1. Sketch the following parabolas showing foci and directrices:
(i) y? = 8x (i) y* = —24x (iii) x*= —y (i) x** =12y (v) 3)®* +
8x =0.

2. The parabola y® = 4ax passes through the point (2, —4).
Find the co-ordinates of the focus.

3. A rod rests on two horizontal supports 12 ft. apart and the
maximum sag is 1 ft. If the supports are at the same level and the
rod is in the shape of a parabola find its equation in its simplest form.

4. Find the equations of the tangent and normal (i) to the parabola
y? = 4x at the point (1, 2), (if) to the parabola x? = —12y at the
point (—6, —3).

5. The normal to the parabola y? = 12x at the point (3, 6)
is produced to meet the curve again at the point Q. Find the co-
ordinates of Q.

6. Find the equations of the parabolas with the following foci
and directrices:

(i) focus (2, 1), directrix x = —3

(i) focus (0, 0), directrix x + y = 4

(iii) focus (—2, —3), directrix 3x + 4y — 3 =0.

7. The normal at a point P(2, 4) on the parabola y* = 8x meets
the axis of x at G. N is the foot of the perpendicular from P to the
axis. Prove that NG = 4 units.

8. PSQ is a chord of the parabols y2 = 24x. S is the focus and
P is the point (, 6). Find the co-ordinates of the point Q, and show
that the tangents at P and Q are at right angles.

9. A circle with centre (3,0) and radius 6 units meets the pa-
rabola y% = 12x at the points P, Q. Prove that the tangents to the
parabola at P and Q meet on the circle.

10. The tangent to the parabola x? = 8y at the point P(12, 18)
meets the tangent at the vertex at the point V. If S is the focus prove
that SV and VP are perpendicular.

20.4. THE POINTS OF INTERSECTION OF THE
LINE y = mx 4+ ¢ AND THE PARABOLA j* = 4ax
In order to find the points of intersection we solve the two
equations simultaneously.
From y = mx + ¢ and y* = 4ax we have
(mx + ¢)*= 4ax
or mx? | 2(mec — 2a)x + 2 =0 ....(20.5)
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PARABOLA, ELLIPSE, HYPERBOLA, AND SEMI-CUBICAL PARABOLA
The discriminant of this quadratic equation is

[2(mc — 2a)]? — 4m3c?
or 8a? — 8ame = 8a(a — mc)

Thus the quadratic equation (20.5) has real, equal or complex
roots according as 84 — 8amc is greater than, equal to or less than
zero.

Thus if ¢ < a/m the line meets the parabola in real points, if
¢ > afm the line does not meet the parabola, if ¢ = a/m the line
touches the parabola. Thus we have that

y=mx+< ...(20.6)
m

touches the parabola y? = 4ax for all values of m.

Example 1. Find the equation of the tangent to the parabola
y? = —12x which is parallel to the line y 4 x = §.

Since the tangent is parallel to the line y 4+ x = 5 it has the same
slope as thisline. Hence m = —1. Since y2 = —12x is the equation
of the parabola

da = —12, S, oa=—3
Substituting for @ and m in equation (20.6) the required equation is
-3
y=(0x +—
—1
ie. y+x=3

Example 2. Show that the point of intersection of two perpendicular
tangents to a parabola always lies on the directrix.

Let the equation of the parabola be y* = 4ax. Then the line
y = mx + a/mis always a tangent. If in place of m we write —1/m
then the line y = —x/m — am is also a tangent and is perpendicular
to y = mx 4 a/m. By subtraction the abscissa of the point of
intersection of these two tangents is given by

(mx+£) — (—lx—am) =0
m m
(m—l—i)x —{—a(l—i—m) =0
m m
that is by x + a = 0 and this is the equation of the directrix.
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PARAMETRIC EQUATIONS OF THE PARABOLA

Example 3. Find the equations of the tangents from the point
(2, 4) to the parabola y? = 6x.

The equation of the parabola is y* = 6x, hence 4a = 6 i.e.
a = $%. Hence any tangent to the parabola is of the form y =
mx + 3/2m. This tangent passes through the point (2,4) if 4 =
2m + 32m

i.e. dm2 —8m +3 =0
or @m — 1)2m —3) =0
Hence m=14 or %

Therefore the tangents from the point (2, 4) are

ie. 2y=x-+6

=
I

[
*
+

ie. 2y=3x+2

<
I
rejos
=
+

wefes | eofed rop= 1 pofeo

Exercises 20b

1. The tangent to a parabola at any point P meets the directrix
at R. If S is the focus prove that Z RSP is a right angle.

2. The tangent to a parabola at any point P meets the axis of
the parabola at T. PN is drawn perpendicular to the axis to meet it
at N and V is the vertex. Prove that TV = VN.

3. P is any point on a parabola whose focus is S. PM is drawn
parallel to the axis of the parabola. Prove that the tangent at P
bisects £ SPM.

4. Show that the equations of the tangents from the point (4, 6)
to the parabola y* = 5x are 4y = 5x + 4 and 4y = x 4 20.

5. A point source of light is placed at the focus of a parabolic
mirror. Show that all the rays will be reflected parallel to the axis
of the parabola.

20.5. PARAMETRIC EQUATIONS OF THE PARABOLA
For all values of ¢ the equation y? = 4ax is always satisfied by
x=at?, y=2at ....(20.7)

These are known as the parametric equations of the parabola.
(at?, 2at) can be used as a general point on the parabola y* = 4ax.
t has any value.
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PARABOLA, ELLIPSE, HYPERBOLA, AND SEMI-CUBICAL PARABOLA

Substituting the co-ordinates of the general point (ar?, 2at) in
(20.3) we have that
y.2at = 2a(x + at?)
i.e. ty = x + at® ....(20.8)
is the equation of the tangent at (az2, 2at). Also

y — 2at = at (x — at®

ie. y + tx = 2at + at® ....(20.9)
is the equation of the normal at (at?, 2at).

Example 1. Sketch the parabola whose parametric equations are
x = 5t2, y = 10¢.

50

O)\ 50 100

-50

Figure 20.5

This example can be done immediately by eliminating ¢ and
obtaining the cartesian equation of the curve viz. y* = 20x. How-
ever, to illustrate the method of sketching from parametric equations
we proceed as follows.

Welet z have the values —5, —4, . ..4-5 and find the corresponding
values of x and y from the given equations. Thus we can construct
the following table.

5| —4¢ =3| =2} —-1}0 1 2 3 4 5

125 80 45 20 510 5 20 45 80 | 125

-50) —40; —30| ~20| —10| 0| 10 20 30 40 50

\:lk’“‘

The last two lines of the table enable us to plot the points and
hence sketch the curve. (Figure 20.5)
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Example 2. The tangent to the parabola y? = 4ax at the point P
meets the directrix at Q. M is the midpoint of PQ. Find the co-
ordinates of M in terms of the parameter of the point P and the
locus of M as P moves on the parabola.

Let P be the point (ap?, 2ap). Then by (20.8) the equation of the
tangent at P is

y==+ap
p
Q has co-ordinates (—a, :p—a +a p)

M has co-ordinates [2 (P* - 1), g(3 p— 1)]
2 2 P
If M is the point (X, Y) we have

x=%p"—1) and Y=E(3p—-1-)
2 2 P
We obtain the locus of M by eliminating p from these equations.

P
Y
M
o
-q o x
Figure 20.6
Thus we have p:= (X + a)la
2
y — _(3_p;1)
2\ p
(6X +3a 1)
a a

(6X + 2a) \/a

2 A/(zx n a) T 2/0X +a)
a
the locus of M has equation

2y/(2x + a) = (6x + 2a)\/a
i.e. y*(2x + a) = a(3x -+ a)?
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Example 3. PSP’ is a focal chord of a parabola, S the focus. If
P is the point (a2, 2at), find the point P’ and hence show that the
tangents at P and P’ are at right angles.

Since P is the point (a2, 2at) the cartesian equation of the curve
is y* = 4ax. Hence S is the point (a, 0).

Let P’ be the point (at’? 2at’). Since PSP’ is a straight line the
slopes of PS and SP’ are the same.

2at _ —2at
at®>—a a—at?
ie. 2a% — 2a°tt'? = —2a%'t* + 2a%'
AY
(a2, 2at)
ON /S(a,0) X
P’
Figure 20.7
Simplifying we have
t—t =121
ie. (t—tY=t'(t' — 1)
Since ¢ £ ¢’
—1 =1
—1

.. P’is the point (a/t2, —2aft).

From (20.8) the slope of the tangent at P(ar?, 2ar) is 1/t. Hence
the slope of the tangent at P’ is 1/(—1/¢) i.e. —¢, and the product of
these two slopes is —1. Hence the tangents at P, P’ are at right
angles.

Exercises 20c

1. Sketch the following parabolas: (i) x = 12, y = 2¢ (ii) x = 10¢,
y=52—=3 (i) x=3124+4, y=—61 (iv) x=—-8—2, y=
4r2 - 1.
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2. Find the length of the latus rectum of the parabola 4x = r2,
2y =1t

3. Find the equations of the tangent and normal at any point on
the parabola x = 6¢, y = 3¢%.

4, Show that the point of intersection P of the tangents at the
points A(ari, 2at;) B(at3, 2aty) on the parabola y® = 4ax has co-
ordinates X = at,t,, Y = a(t; + ty). If t; — t, = 3 find the locus of
P as A and B vary.

5. The normal at any point P on the parabola y* = 12x meets the
axis of the parabola at G. Show that the co-ordinates of M, the
midpoint of PG are (3 + 32, 3t). Hence show that the locus of M
as P moves round the parabola is > = 3x — 9.

Exercises 20d

1. A point moves in such a way that its distance from the point
S(5, 12) is always equal to its perpendicular distance from the line
y = 13. Show that the equation of its locus takes the form y =
ax — bx? and find the constants a, b.

Show that the curve passes through the origin O; find the equation
of the tangent at that point; and show that the tangent bisects the
angle between OS and the positive direction of the y-axis. (W.J.C.)

2. Obtain the equation of the normal to the parabola y? = 4ax
at the point (ar?, 2at). The normal at a point P makes an angle of
60° with the x-axis and meets the parabola again at the point Q.
Show that PQ = 324/3.

3. Prove that the line ax + by + ¢ + Ma'x + b’y +c')=0isa
tangent to the parabola y? = 4x if A*a’c’ — b'?) + Mac’ + a'c —
2bb’) -+ ac — b* = 0. Hence, or otherwise, find the equations of the
two tangents to the parabola y? = 4x which pass through the inter-
section of the linesx —y +1=0,2x +3y — 5=0.

4. The points P, Q on the parabola y* = 4ax have co-ordinates
(ap®, 2ap) (ag?, 2aq) respectively. Show that if PQ passes through the
focus (a, 0) of the parabola then pg = —1. Express the co-ordinates
of the midpoint M of the chord PQ as functions of pg and p-¢, and
find the equation of the locus of the midpoints M of all focal
chords. Show that the locus is another parabola and state the co-
ordinates of its vertex and focus. Give on one diagram a rough
sketch of this locus and of the given parabola. (J.M.B)

5. Prove that the equation of the chord joining the points (a#f,
2at,), (at?, 2at,) on the parabola y* = 4dax is y(t, + ;) — 2x = 2at,t,.

A variable chord of this parabola always passes through the point
(4a, 0). Show that the locus of the middle point of the chord is the
parabola y* = 2a(x — 4a).
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6. The tangent and normal at P(at?, 2at), a point on the parabola
y? = dax, meet the x-axis at T and G respectively. Prove that P,
T and G are equidistant from the point (a, 0). Hence prove that the
tangent at P to the parabola is inclined to the tangent at P to the
circle through P, T and G at an angle tan= ¢, (L.U)

7. The chord joining two variable points A, B on a parabola
always passes through a fixed point on the axis. Show that the locus
of the point of intersection of the normals at A and B is another
parabola.

8. The two parabolas

yP=4x and (y+41P2= —4(x—412—2)

meet at the points A and B. Show that the line AB passes through the
focus of the first parabola for all values of A.

9. The line y = k(x — 2) meets the parabola y? = —8x in the
two points P and Q. Find the co-ordinates of the midpoint M of
PQin terms of k. Hence show that as k varies M lies on the parabola
yE=4(2 — x).

10. Prove that, in a parabola, the portion of any tangent between
the point of contact and the axis of the curve is bisected by the tangent
at the vertex.

20.6. THE ELLIPSE (e < 1)

We recall that S is the focus and ZQ the directrix. If P(x, )
is any point on the curve and PM is perpendicular to ZQ then

SP = ePM

Take Z'SZ perpendicular to the directrix ZQ. Let the points A,
A’ divide SZ internally and externally in the ratio e:1. Thus A,
A’ are points on the ellipse.

The form of the equation, like the parabola, depends on the
choice of axes. The simplest form is obtained by taking the origin
O as the midpoint of AA’ and axes perpendicular and parallel to
AA’

Let AA" = 2a; then OA = OA’ = a. Since A, A’ are points on
the locus, by definition, SA = eAZ; SA’ = eA’Z. Hence

SA’ — SA = e(A'Z — AZ) = eAA’

that is (OS + OA’) — (OA — OS) = 2qe
Hence 208 =2ae  (OA = OA’)
. OS = ae ....(20.10)
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THE ELLIPSE (¢ < 1)
Thus the focus S is the point (—ae, 0). Also
SA’ 4 SA = e(A'Z + AZ),
AA’ = ¢[(OA’ 4 OZ) 4 (OZ — OA)]

ie.
Hence 2a = 2¢0Z (OA’ = 0A)
s OZ = qgfe ....(20.11)
Thus the directrix ZQ is the line x = —afe. Now
PS = ePM
2
Hence (x + ae)® + y? = e* ( x -+ %)
Q 1
Y
/—"‘B'\PEX,}')
M / /]L\
z A\ S(-ge,0) O S'(ge,0) A z7 X
LI
B
Figure 20.8
x? - 2aex 4 a%¢® 4 y? = e2x? 4 2aex + a*
X1 — e?) 4 y2 = a*(1 — €?)
2 2
that is X,y
at + a’(l — &»
and writing b? = a1 — &) ....(20.12)
h . b x2 yZ
the equation becomes = + e ....(20.13)

To trace the ellipse we note that since only even powers of both
x and y occur in the equation the curve is symmetrical about both

axes.
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Also since the equation can be rewritten

y2
x2=a2(1~—) then —b< y<b

b2

2
or y2:b2(1_£2) then —a<x<a
a
The symmetry of the curve enables us to deduce the existence of
a second focus S’(ae, 0) and a second directrix Z'Q’(x = afe).
To summarize, the curve |

2 2

X y
ERET

is an ellipse of eccentricity e (<C1) given by the equation b* =
a® (1 — e?). The foci are the points (4-ae, 0), the directrices the lines
x = 4-afe, AA’ = 2a is the major axis, BB’ = 2b is the minor axis,
and O is the centre of the ellipse. The chord LS'L’ through §’
perpendicular to the major axis is known as the latus rectum.

The area of an ellipse can be found by the method of integration
(see Chapter 15).

From Figure 20.8 it can be seen that, by symmetry

Area =4 x A’OB’L

= 4fy dx
0

X y
Now ;1_2+b—2=
y2 x2
m=1—5
2
-
y pr
b 2 2
== /(a® — x
a\/( )
b oo e
Thus area = 4| =./(a® — x%)dx
0 a
_ 4 J(@® — x*) dx
a



THE ELLIPSE (e < 1)
Referring to section 14.4, Example 2 we have that

a 2
f V(@ — x)dx = Ll
o 4

2
area of an ellipse = 4b ma’
a 4

= mab ....(20.14)
Example 1. Find (i) the eccentricity (i) the co-ordinates of the foci
(#ii) the equations of the directrices of the ellipse x%/25 4 y*/16 = 1.
(i) Comparing the given equation with (20.13) we have that

a =5, b = 4. Substituting in (20.12) we have

16 = 25(1 — e?)
25¢2 =9

thus e =

oo

(ii) The co-ordinates of the foci are (4-ae, 0), that is (4-3, 0).
(iii) The equations of the directrices are x = J-afe, that is
X = i'gaé.

Example 2. Show that the length of the latus rectum of the ellipse
x%a® + y?[b® = 1 is 2b?/a.

Referring to Figure 20.8 the latus rectum is the line through the
focus S'(ae, 0) perpendicular to the major axis AA’. Hence its
equation is x = ge. The ordinate of the point L(LS’) is therefore
obtained by solving the two equations

2 2

X = ae, z—z -+ %2 =1
a2e2 y2
Thus 72— -+ b_2 =1
ie. y2 = b1 — e?)
Now LS =y =>5/(1—¢€?
From (20.12) /(1 — €?) = bja
;b2
LS =—
a

the latus rectum 2LS’ = 2b%a.
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Example 3. Show that the ellipse with eccentricity /5/3, focus
— J/5)?
(0,2) and directrix x = —4,/5/5 has the equation (i% +
-2 _,
7= L

Let P(x, y) be any point on the ellipse and let PM be perpendicular
to the directrix. Hence SP? = ¢*PM?

Ay
xz -4A48 /\

M 5 4 P(x,y)

[

% $(0,2) C(~5,2)

£

qQ

o\ > X
Figure 20.9
4./5\¢
ie 5 X \5/
o X+ —-2)p=\—
-2 5 n

Therefore X+ —2)7= gxz + 8_‘9/.§ x + 16

9
Rearranging we have
4 , 85 s 16
=X x4+ (y—2)y ==
9 g XtU-D =75
i.e. g(x2 —2/5x) +(y — 2= 156

“Completing the square” of the terms in x we have
4
=V -2 =4

- 2 — 2
s (=S =2
9 4
Referring to Figure 20.9, if the origin of co-ordinates is moved to
the point C(,/5, 2) the equation becomes x2/9 + y2/4 = 1 which is
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the same as the equation (20.13) with g = 3, b = 2. It follows that
C({/5, 2) is the centre of the ellipse.
Exercises 20e

Find (i) the eccentricities (i) the co-ordinates of the foci (iii) the
equations of the directrices (iv) the areas and (v) sketch the ellipses:

XY e
100 64 64 100
4x2 4y2 x2 yz
3 _=1 —_— —_— =
25 + 9 6 + 4
. 2 2
5.2x2+y2=2 6.(x 1) +(Y+2)_:1

5
7. Find the length of the latus rectum of the ellipse x*/169 +
%144 = 1. Hence find the co-ordinates of the four points in which
the latera recta meet the ellipse. Verify that these co-ordinates
satisfy the equation of the ellipse.

8. Find the equation of the ellipse which has the co-ordinate axes
as its principal axes and passes through the points (—1, 3), (2, —1).
Find also its eccentricity.

9. An ellipse has eccentricity e = #. Its foci are the points
(0, +4). Find the lengths of its semi-major and semi-minor axes
and hence write down its equation

10. An ellipse of eccentrlcxty has the points (3, 2) (7, 2) as foci.
Find the lengths of the major and minor axes, the equations of the
directrices, the co-ordinates of its centre, and the equation of the
curve.

20.7. THE EQUATIONS OF THE TANGENT AND
NORMAL AT THE POINT (x,,y,) ON THE
ELLIPSE x%a® + y?/b? = 1

Differentiating the equation of the ellipse with respect to x
2x  ydy
b*dx
Hence the gradient of the tangent at the point (x;, y,) is —b2x,/a?y,
and the equation of the tangent is

2
X
Yy—h=—"7 L(x —xp)
M1
2
or W —xn A
b b® a® a?
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that is W X%
b2 (12 3 b2
or since (x;, y;) lies on the ellipse
%+%=1 ....(20.15)

We again note that the equation of the tangent is obtained from
the equation of the curve by replacing x? by xx; and y2 by yy,.

Since the normal is perpendicular to the tangent and passes
through (x;, y,) its equation is

‘12)"1
— y) = X —x
Yy —y) ble( W)
Yy — W X—X
or = ....(20.16
J’1/b2 xl/a2 ( )

Example 1. Find the equation of the tangent and normal to the
ellipse 3x? +4- 14y? = 138 at the point (—2, 3).
The equation of the tangent is by (20.15)

3x(—2) + 14y(3) = 138
ie. Ty —x=23
To find the equation of the normal, instead of finding “a” and

“b” and using (20.16) we can proceed as follows:
The slope of the tangent is %, hence the slope of the normal is
-17.
Since the normal also passes through the point (—2, 3) its equa-
tion is
y—3)=-7x+2)
or y+ix+11 =0

20.8. THE POINTS OF INTERSECTION OF THE LINE
y=mx+c¢ AND THE ELLIPSE x%/a® + y?/b® = 1

In order to find the points of intersection we solve the two
equations simultaneously. Substituting y = mx + ¢ in x2/a? +
y?[b* = 1 we have

x?  (mx + ¢)?
o !
or x¥a®m? + b%) + 2cmax + a¥(c® — b2 =0 ... .(20.17)
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The discriminant of this quadratic is
(2ema?)? — 4[a*(c? — b¥)(a*m?® + b%)] or 4a?bi(b® + a*m?® — cP)

Thus the quadratic (20.17) has real, equal or complex roots according
as ¢? is less than, equal to, or greater than b2 + a®m?.
If ¢ = a®*m?® - b? the line is a tangent to the ellipse; thus the lines

y = mx + \/(a®m® 4 b?) ....(20.18)
always touch the ellipse.

Example 1. Find the equations of the tangents to the ellipse
x? 4 2y? = 19 which are parallel to the line x + 6y = 5.

Since the tangents are parallel to the line they have the same slope
as the line, that is m = —#§; hence by (20.18) the required equations -
are

y = —#x £ /(a%% + b?)

Rewriting the given equation of the ellipse in the form x2/19 +
y2/%® = 1 we have that a® = 19, b? = %2, Hence the equations of the
tangents are

y=—dx+J19 .55+ %
that is y=—tx+%
i.e. 6y +x =419

Example 2. The pair of tangents from the point P to the ellipse
x%/a? 4 y?[b? = 1 are always at right angles. Show that the locus
of P is the circle x2 4 y = a% + b2,

The line y = mx + \/(a*n* + b?) is always a tangent to the given
ellipse. This line passes through a point P(X, Y)if

Y =mX 4 J(a®m® + b?)

Since X, Y, a, b are given this is a quadratic equation in m giving
the slopes of the two tangents from P to the ellipse. This quadratic
equation can be written in the form

(Y — mX)? = a®m*® + b*
i.e. mi( X2 — a?) — 2mXY + (Y2 —5%) =0

The two tangents are at right angles if their slopes are m and

—1/m, that is if the product of their slopes is —1. Thus for

perpendicular tangents the product of the roots of this equation
Yz — b?

must be —1. Hence ——— = —1 is the required condition or
X?—a
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X2+ Y?= a® 4 b® which is the condition for the point P(X, Y) to
lic on the circle x? + y2 = a? 4 b?, which is known as the director
circle of the ellipse.

Exercises 20f

Find the equations of the tangents and normals to the following
ellipses at the points stated:

1. 3x% -+ 2y% =30,(2,3)

2. 4x* 5y =24,(1,2)

3. a%x® 4 b%*y? = 24%b%, (—b, a)

Write down the equations of the tangents to the following
ellipses, with the given gradients:

4. x3/3 4 y?/2 = 1, gradient 2

5. x* + 2y* = 8, gradient 2

6. 4x? 4 5y® = 20, gradient 3

7. Show that the pair of tangents from the point (3, 4) to the
ellipse x%/16 + y2/9 == 1 are at right angles.

8. The normals to the ellipse x?4- 4y* =100 at the points
A(6,4) and B(8, 3) meet at N. If P is the midpoint of AB and O
is the origin show that OP is perpendicular to ON.

9. Show that the slopes of the tangents from the point (4, k) to
the ellipse x%/a® 1 y?/b? = 1 are given by the quadratic equation

m*(h? — a®) — 2mhk + (k2 — %) =0 (see Example 2).

By considering the condition for these roots to be complex show that
(h, k) lies inside the ellipse if A%[a® - k2/b® — 1 is less than zero.

10. Find the locus of a point P which moves so that the sum of
its distances from two fixed points A and B 8 units apart is always
14 units. Take AB and its perpendicular bisector as the axes of x
and y respectively.

20.9. THE PARAMETRIC EQUATIONS OF AN ELLIPSE

For all values of 0 the equation x%/a® 4 y*/b® =1 is always
satisfied by
x=gacosl, y=bsinb ....(20.19

These are the parametric equations of the ellipse. (a cos 8, b sin 6)
can be used as a general point on the ellipse x2/a? + y?/b? = 1,

Example 1. Find the equations of the tangent and normal at any
point on the ellipse x%/a? + y?/b% = 1.
Any point on the ellipse is (a cos 6, bsin 6). Hence by (20.15)
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the equation of the tangent is

xacos@ , ybsin0
a® + R !
or xcos0+ysin0=1
a b

The slope of the tangent is —b/a cot 9, hence the slope of the normal
is a/b tan 0 and the equation of the normal is

(y — bsin 6) = a/b tan 0 (x — a cos 6)
or by cos 0 — b2 sin 6 cos § = ax sin 6 — a®sin 6 cos 0
that is by cos 6 — ax sin 0 = (b® — a%) sin 0 cos 6
20.10. GEOMETRICAL INTERPRETATION
OF THE PARAMETER 6

Consider Figure 20.10. ABA'B’ is the ellipse x*/a® -+ y3/b®* = 1
and on AA’ as diameter a circle has been drawn. The equation of

A 0 N
BI

Figure 20.10

the circle is x2 + y® = a? and it is known as the auxiliary circle of
the ellipse.

Let the ordinate NP meet the auxiliary circle at Q. On comparing
the equations of the circle and the ellipse it can be seen that NP =
b/a NQ. Hence if ZQON = 6, since the radius OQ is equal to a,

NP=éasin0
a
C NP = bsin 8
and ON =acosf

Hence if P is the point (a cos 0, b sin 6) the i)arameter 6 is the angle
QON, the eccentric angle.

439



PARABOLA, ELLIPSE, HYPERBOLA, AND SEMI-CUBICAL PARABOLA

Example 1. Show that if P and P’ have parameters 6 and = 4 0
the chord PP’ passes through the centre of the ellipse.

y

m+6

‘6

Figure 20.11

If Q,Q’ are the points on the auxiliary circle corresponding to
P, P’ it can be seen from Figure 20.11 that Q, Q’ are opposite ends
of a diameter. It is clear from the symmetry of the figure that PP’
also passes through the centre.

Alternatively P is the point (acos 6, bsin 0) and P’ the point
[a cos (7 + 0), b sin (7 + 6)] i.e. (—a cos 0, —b sin 6).

The slope of OP is

bsin 0 — étan 0
acosf a
and the slope of OP’ is
_ _bsmozétanﬁ
acosf a

Hence POP’ is a straight line.

Example 2. If S and S’ are the foci of an ellipse and P any point on
its circumference show that SP 4+ PS’ = 24, where 24 is the length
of the major axis.

Let the equation of the ellipse be x%/a? + y*/b* = 1.

Any point P on it has co-ordinates (a cos 8, b sin §) and the foci
are S(—ae, 0), S’(ae, 0). Hence

SP2? = (a cos 8 + ae)? - b2 sin2 6
= a® cos? 0 + 2a% cos 0 + a%?® + a*(1 — &%) sin2 6
== a%(cos? § 4 sin® 0) 4 2a%e cos 6 - a%e?*(1 — sin? 6)
= a® + 2a% caes 0  a%® cos?
= a*(1 + e cos 6)?
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Hence SP = a(1 + ecos 0) ....(20.20)
Similarly S'P = a(l — ecos 6) ....(20.21)
whence SP+SP=2q ....(20.22)

/ P(a cos 6,b sin6)

S(-ae,0) G S'(ge,0)

Figure 20.12

Example 3. If PG is the normal at P. Show that PG bisects the
angle SPS’ where S, S’ are the foci (see Figure 20.12).

Let P be the point (acos 6, bsin f). By equation (20.16) the
equation of PG is

y —bsind x—acosf
b sin 6/b* a cos 0/a®

cos()(y—bsin0)=sm——b—€(x——acosO)

ie.
This meets the x-axis where y = 0 that is

bcosGsin0=sin0

(x —acosf)

a
b%cos 6
————— =x—acosh
a

2 _ 2

_b 2 cosb=x
a

ae®cos§ = x  [since b® = a*(1 — e)]
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Referring to Figure 20.12

SG == ae? cos 0 +- ae

S'G = ae — ae* cos 0

S_G__l-l—ecos@_g
SG 1—ecosf S'P

PG is the internal bisector of the angle SPS'.

Hence [from (20.20), (20.21)]

Exercises 20g

1. Find the equation of the tangent at any point (a cos 0, b sin 6)
on an ellipse x2/a? + y?/b® = 1. Hence show that the equation of the
normal can be written in the form X b_y = g% — b

cos@ sinb

2. Show that the equation of the line joining two points whose
eccentric angles are 0 and ¢ is given by x/acos$(0 4 ¢) +
y/bsin (0 + ¢) = cos }(0 — ¢). Deduce the equation of the tan-
gent at the point 0.

3. PG, PN and PT are respectively the normal, the ordinate and
the tangent at P any point on an ellipse. Also if G, N, T are the
points where they cut the major axis prove that (i) ON . OT = OA®
and (i) OG = e20ON (O is the origin).

4. Q(—asin 0, b cos 6) and QY(asin 6, —bcos 0) are any two
points on an ellipse x2/a® + y*/b* = 1. Show that QQ! passes through
the origin.

5. Show that the tangents to the ellipse x%/a®+ y?/b* =1 at
points whose eccentric angles differ by 90° meet on the ellipse
x%a® 4 y*b? = 2.

Exercises 20h

1. Find the equation of the tangent to the ellipse 4x* + 9y* = 72
at the point (3, 2). Also find the equations of the tangent perpendicu-
lar to this one.

2. The tangent at the point 0 to the curve x = acosf, y =
b sin 0 meets the x-axis at A and the y-axis at B. If O is the origin
find the minimum area of triangle AOB.

3. In the preceding question find the locus of the midpoint of AB.

4. Plot the points on the curve given by the equations x = cos ¢,
y = cos 2t for the values 0°, 30°, 60°... 180° of ¢ and sketch the
curve.

Prove that the distance of any point of the curve from the point
(0, —7) is the same as its distance from the line y = —3. (L.U)
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5. Show that, for every value of ¢, the point P(a cos ¢, b sin ¢)
lies on the ellipse x%/a% -+ y%/b® = 1. Obtain the equation of the
tangent at P in the form x/acos ¢ + y/bsin ¢ = 1.

If the tangent at P meets the axes in TT* and the diameter through
P meets the ellipse again at P* show that
tan TP'T? = 2 OT . OTY/(a%? + b% + OP?) (O being the origin).

WJ.C)

6. (a) Find the equations of the tangents of gradient % to the
ellipse x2 4 6y* = 15.

(b) If the normal at a variable point P on the ellipse x%/a® +
»*[b® = 1 meets the x-axis in Q show that the locus of the midpoint
of PQ is an ellipse concentric with the given ellipse. Find the
eccentricity of this ellipse if that of the given ellipse is 1.

(J.M.B)

7. Show that the equation of the tangent to the ellipse x%/a? +-
¥2[b® = 1 at the point P(a cos 0, b sin 0) is x/a cos 6 + y/bsin 6 = 1.

If RR! are the feet of the perpendiculars from the foci S, S on
to the tangent at P, prove that SR . S'R! = 2. Show also that

RR! a
SSt  /(a® + b®cot® 0)

8. The tangent and normal at the point P(a cos 6, b sin 0) on the
ellipse x%/a? + y2/b® = 1 meet the axis of x at (x,,0) and (x;,0)
respectively. If 0 is small show that x; = a 4 4a0? approximately.
Find a similar approximation for x,. (J.M.B,, part)

9. A perpendicular is drawn, from the point (0, —b) on the
ellipse x%/a® 4- y?[b% = 1, to the tangent at any point P(a cos 6,
bsin 0) on the same ellipse. Write down an expression for the
length of this perpendicular, and prove that the length hasa stationary
value when P is at either end of the minor axis, but has no other
stationary value unless 252 < a2 (L.U.)

10. Find the equation of the normal to the ellipse x2/a% 4
%6 =1 at the point P whose eccentric angle is 0.

The tangent and normal at P cuts the y-axis at T and G respectively.
Prove that the circle on TG as diameter passes through the foci.
Find the centre and radius of this circle. (S.U.J.B))

(J.M.B)

20.11. THE HYPERBOLA (e > 1)

We obtain the simplest equation of the hyperbola in a similar
manner to that used in (20.6) to obtain the equation of the ellipse.
Referring to Figure 20.13, S is the focus, ZQ the directrix, P(x, y)
any point on the curve and PM is perpendicular to ZQ.
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SZS' is perpendicular to the directrix ZQ. A and A’ are the
points dividing SZ internally and externally in the ratio e:1. Thus
A, A’ are points on the hyperbola. O is the midpoint of AA’ and
the axes are as shown in Figure 20.13. Let AA’ = 2a.

Following the method used for the ellipse OS == ae, OZ = ae;
thus S is the point (—ae, 0) and ZQ is the line x = —aje.

’

Q Y Q

M M Pix,y)
/
| ;

Figure 20.13

PS = ePM
(x + ae)? 4 y? = ¥(x + aje)?
x2 4 2aex + a%? + y? = €*x? + 2aex + a?
a*(e® — 1) = x¥e® — 1) — y?
2 2

thus x Y
a®  a¥ef—1)

and writing b*> = a%(e®> — 1) the equation becomes

x2 2
a—z—i’-ﬁ ....(20.23)

To trace the hyperbola we note that only even powers of x and y
occur in the equation. Hence the curve is symmetrical about both
axes. Also by this symmetry there is a second focus S'(ae, 0) and a
second directrix x = afe.

Further, since the equation can be rewritten y?/b? = x2/a® — 1
and the left hand side is always positive, x?/a® — 1 must be positive,
hence there is no part of the curve for values of x between --a and
—a. On the other hand since x%/a? = 1 -+ »%/b%, y can have all
values.

To summarize, the curve

2 2
* Y _q
a® b
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THE HYPERBOLA (e > 1)
is a hyperbola of eccentricity e (>1) given by the equation
b2 =a%e?— 1) ....(20.29)

The foci are the points ({-ae, 0) the directrices the lines x = +-afe;
AA’ = 2a is the transverse axis and O is the centre. The chord
LS’L’ through S’ perpendicular to the major axis is the latus
rectum.

Example 1. Find (i) the eccentricity (if) the co-ordinates of the foci
(m) the equations of the directrices of the hyperbola x%/9 — y2/16 =

(l) Comparing the equat1on with (20.23) we have that g% =9,
b% = 16. Substituting in (20.24) we have

16 = 9(e2 — 1)
25 = 9¢?
$=e

(ii) The co-ordinates of the foci are (4-ae, 0), thatis (-5 x £,0) or
(%% 0).

(iii) The equations of the directrices are x = +afe, that is
x = 43.

Example 2. Show that the length of the latus rectum of the hyper-
bola x2/a* — y?[b? = 1 is 2b?/a.

Referring to Figure 20.13 since LS’ is the value of y when x = ae
and from the equation of the hyperbola

vl
S

= b /(" — 1)
From equation (20.24) \/ (e2 — 1) = b/a hence
= b%a
2b’

latus rectum LS'L’ = ..(20.25)

a
Exercises 20i
Find (i) the eccentricities (i) the co-ordinates of the foci (iii) the

equation of the directrices and (iv) sketch the hyperbolae.
1. x2/4 — y?[23 =1 2. 39 — x21 =1
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3. x%4 — 4y*33 =1 4, 56x* — 25y% = 1400

5.2 —x*=1 6. x* — y2 =25

7. Find the length of the latus rectum of the hyperbola x2/9 —
Y2[7 = 1. Hence find the co-ordinates of the four points in which the
latera recta meet the hyperbola. Verify that these co-ordinates
satisfy the equation of the hyperbola.

8. The foci of a hyperbola are the points (£7,0). Find the
equation of the curve if e = §. If the eccentricity is unaltered but
the foci are the points (0, 4-7), what is the equation?

9. The centre of a hyperbola is at the origin and its transverse axis
lies along the x-axis. Find the equation of the hyperbola if it passes
through the points (6, %) and (-5, 0).

10. Referring to Figure 20.13 show that PS = ex + a and that
PS8’ = ex — a. Hence prove that the difference of the focal distances
is constant and equal to the length of the transverse axis. (Hint:
PS = ¢PM and PS' = ¢PM’))

20.12. PROPERTIES OF THE HYPERBOLA
x%a? _yZ/bz =1
Many of the results for the hyperbola can be obtained from the
corresponding results for the ellipse by writing —52 in place of b2
(a) The equation of the tangent at the point (x,, y,) is

XX I
a—;__b_z_l ....(20.26)
(b) The equation of the normal at the point (x,, y,) is
y—h _ X—X
= ...(20.27
»/—b® x,/a® ( )
(¢) Theline y = mx + ¢ meets the hyperbola in real, or coincident
points or not at all, according as ¢? is greater than, equal to or less
than a?m? — b2
(d) The lines

y = mx &+ /(a®m® — b% always touch the hyperbola ....(20.28)

20.13. PARAMETRIC EQUATIONS OF THE HYPER-
BOLA x%/a? — y2[p? =1

The most usual forms of the parametric equations are
x=asecl, y=btan ....(20.29

(see also Exercise 5, Exercises 20j.)
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Example 1. Find the equations of the tangent and normal at any
point on the hyperbola x*/a® — y?/b? = 1.
Any point on the hyperbola is (asec0, btant). Hence by
(20.26) the equation of the tangent is

xasecl ybtan _

a2 b2 1

that is Lsech — %tan 6=1 ....(20.30)
a
bsecl b

The slope of this tangent is - ¢ or2 — . Hence the equation

of the normal is atanf " asin 6

(y —btan ) = _azme(x—asece)
which reduces to

axsin 0 + by = (a* + b*) tan 6 ....(20.31)

Example 2. P is any point on a hyperbola centre C. The normal at
P meets the major axis at G and the ordinate at P meets the major axis
at N. Prove that CG = ¢*CN.

y

(a sec 6,b tan 9)

X

Figure 20.14

Let P be the point (¢ sec 6, btan 6). CN is the abscissa of P and
therefore CN = asec b )
From (20.31) the equation of PG is

ax sin 6 + by = (a® + b tan 6
G lies on the x-axis (y = 0) and therefore its abscissa is given by
ax sin 6 = (a® + b®) tan 0
oG = & btand
a sind

2 2
=g:——bsec6 ... (i)
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From (i) and (ii)

CG_a*+¥p
CN a?
2 2r 2
—e el — D e 20.24]
a
= eZ
CG = ¢’CN

Example 3. 1f P is any point on a hyperbola whose foci are S and

St, prove that S'P — SP is constant.
Let P be the point (asec 6, btan 0) on the hyperbola x2/a% —

yib? = 1.
The foci S and S are the points (—ae, 0) and (ae, 0) respectively.

Thus
SP?% = (asec 0 — ae)* + b%tan? 0
= a®sec? @ — 2a%e sec § + a?e® + a*(e® — 1)(sec?0 — 1)
= a?sec? § — 2a% sec 0 + a%e® 4 a%e®sec? 0 — a%sec? 0
—_— aZeZ + a2
= g% — 2a%e sec 0 -+ a2e?sec?
= a*(esec O — 1)?
SP = a(esec 6— 1)
(Since e > 1 and sec 6 > 1, this cannot be 1 — esec0.) Similarly
SP = a(esec 6 + 1)
SIP — SP =24
Exercises 20f
1. Find the equations of the tangent and normal to the hyperbola.
9x% — 4y = 36 at the point (4, 3./3).
2. Show that the equation of the chord joining the points (a sec 0,

btan ) and (asec ¢, btan ¢) on the hyperbola x*/a? — y2/b? = 1
is

;—ccos%(ﬁ — ) — isin%(ﬁ + é) =cos—;—(0 + &)
Deduce the equation of the tangent at the point (a sec 8, b tan 6).

448



ASYMPTOTES OF THE HYPERBOLA x2[a? — y?[b% = 1

3. Show that the two tangents to the hyperbola x2/4 — y? =1
which are parallel to the line y = 2x — 3 are a distance 2,/3 apart.

4. Find the condition for the line /x 4+ my = n to touch the
hyperbola x%/a? — y?/b* = 1. By writing 5% in place of —b®
deduce the condition for the same line to meet the ellipse x%/a% +
yi[b? = 1.

5. Show that the point

]

always lies on the hyperbola x2/a? — y%/b? = 1 for all values of ¢
Derive the equation of the tangent at this point.

6. Pis any point on a hyperbola whose foci are S, S’. The tangent
and normal at P meet the axis of the hyperbola at T and N respec-
tively. Prove that PT, PN are the internal and external bisectors of
the angle SPS’.

7. The pair of tangents from the point P to the hyperbola x?/a® —
»?%/b? = 1 are always at right angles. Show that the locus of P is the
circle x® 4 y% = q® — b* (the director circle). (Hint: refer to
section 20.8 Example 2.)

8. Show that the eccentricities e, and e, of the hyperbolas x?/a® —
y2b2 =1 and —x%[a®+ y*b?® =1 satisfy the relation 1/ef +
1/e2 = 1.

9. The tangent and ordinate at the point P on the hyperbola
x%/a® — y*[b® = 1 meet the x-axis at T and N respectively. If Cis
the centre of the hyperbola, show that CT . CN = a2

10. Find the equations and the points of contact of the tangents
to the hyperbola 2x? — 3y? = 5 which are parallel to 8x = 9y.

20.14. ASYMPTOTES OF THE HYPERBOLA
x?a® — y2[b? =1
The definition of an asymptote is that it is a straight line which
meets a curve in two points at infinity, but which is not altogether
at infinity.
The abscissae of the points of intersection of the line y = mx + ¢
and the hyperbola x2/a® — y*/b? = 1 are given by the equation
x* (mx +¢)? 1
T

or rearranged as a quadratic in 1/x

A + b L 4 2a'med 4 (@mt— b)) =0 ....(2032)
X X
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This equation has two zero roots if both 2a*mc = 0 and a®m?® —
b? = 0, that is, if m == 4-b/a and ¢ = 0, the line y = mx + ¢ meets
the hyperbola in two points such that 1/x =0. If 1/x =0, x is
infinite, and thus

y=+2x and y=——lzx ....(20.33)
a a
both meet the curve in two points at infinity and are thus the
asymptotes.

The lines both pass through the origin and are equally inclined to
the x-axis at angles 4-tan™ b/a. Their combined equation is

ot +24) -

ie. L_Y_o ....(20.34)

Figure 20.15

The lines are shown in Figure 20.15 as LOL" and KOK'.

Example 1. Show that any straight line parallel to an asymptote
will meet the curve in one point at infinity and one finite point. Any
line parallel to an asymptote has the equation

y=:i:§x+k (k % 0),

that is, its slope m = 4-b/a.
Hence from equation (20.32) the abscissae of the points of inter-
section of the line with the hyperbola are given by

b

a(k? + b‘“’)l2 + 2a2(;{: —)k1 +0=0
X a X
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The roots of this equation are

l=0 and 1 2bk

=F = _
x X a(k? + b®
that is one value of x is infinite, and since k 5= 0, the other is finite.

Example 2. P is any point on the hyperbola x2/a® — »?/b% = 1 and
the tangent at P meets the asymptotes in A and B. Show that P is
the midpoint of AB.

Let P be the point (asec 6, btan §). The tangent at P is [see
equation (20.26)]

Lsect ~2tang =1 RN 6]
a b

The combined equation of the asymptotes is

2

2
;—‘rfﬁo .. (i)
. b (x
From (i) y=—\=sectb —1
tan O0\a

Substituting (i)

2 2
%—cotze(fsecﬂ—l) =0
a a

2
that is J—cé (1 — cosec® 0) + 2 cot?Osec —cot’ 0 =0
a a

2
or —%cotze -{—2—xcot208ecﬂ—cot20=0
a a
2
that is ié——gjfsect9—|—1=0
a a

which is a quadratic in x whose roots x,, x, are the abscissae of the

points A and B. Now
xl+x2=2secﬁ/%
a la

= 2a sec f
that is 3(x; + x3) = asec 0

which is the abscissa of the point P.
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Similarly if x is eliminated from (i) and (ii) half the sum of the
ordinates of A and B is equal to the ordinate of the point P. Hence
P is the midpoint of AB.

20.15. THE RECTANGULAR HYPERBOLA

If the asymptotes of a hyperbola are at right angles it is known as
a rectangular hyperbola. The asymptotes will each be .inclined at
45° to the x-axis. Hence from equations (20.33)

b,

a
and the equation of the hyperbola can be written

X_y_y
a® a°
x*—yt=a? ....(20.35)

Example 1. Show that the eccentricity of any rectangular hyperbola
is /2. Any rectangular hyperbola has the equation

x2 y2

a® a®

Hence from equation (20.24)

whence e=./2

20.16. THE EQUATION OF A RECTANGULAR
HYPERBOLA REFERRED TO ITS
ASYMPTOTES AS AXES

Referring to Figure 20.16, P(x, y) is any point on the curve. PM
is perpendicular to the asymptote OK. MQ and PN are perpendic-
ular to the x-axis. If the co-ordinates of P referred to the asymptotes
as axes are (X, Y) then

OM = X, and PM =Y.

Now ON = 0Q + QN
= OM cos 45° 4- PM cos 45°
that is x=&E+tV )
2
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Also NP = PM sin 45° — OM sin 45°
that is y=&=X .. (i)
J2
Since the hyperbola is rectangular its equation is
x? —yt=2qt ....(ii)

Substituting from (i) and (ii) in (iii) we have

X+¥ (¥ —XP_

a
2 2
or 2XY = a?
L
y
Pixy)
45°N 6
x
o N
45 M
K

Figure 20.16

Hence the equation of a rectangular hyperbola referred to its
asymptotes as axes is

=

<

i
N8,

xy = c* ....(20.36)
20.17. PARAMETRIC EQUATIONS OF xy = ¢?
The equation xy = c? is always satisfied if
x = ct, y=ft ....(20.37)

where ¢ is a parameter. These are the parametric equations.
(ct, c/t) is any point on the curve, as  varies.
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20.18. THE TANGENT AND NORMAL AT THE
POINT (ct,c/t) ON THE CURVE xy = c*

If xy = c?
cZ
=3
y__ ¢
dx  x° |
the gradient of the tangent at (ct,cft) is —c?[c2® = —1/t2. |

Hence the equation of the tangent is

)=t

t
or t’y + x = 2ct ....(20.38)
The equation of the normal is

(y — Et) = t%(x — ct)

or ty —t’x =c — ct* ....(20.39)

Example 1. Show that the equation of the tangent at the point
(%1, »1) to the curve xy = ¢2 can be written x,y -+ xy, = 2¢2. Verify
that this agrees with equation (20.38). From

xy = c?
v__ ¢
dx x?

Hence at the point (x;, y,) the slope of the tangent is —c?/x2 and its
equation is

02
—y= —"Z'(x — X).
X1
Since the point lies on the curve, ¢% = x,,
*1
or X1y + nx =2xy
that is Xy + yix = 2¢?
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To verify that this agrees with equation (20.38) let x, = c#, and
y1 = ¢/t then

cty —{—Etx=2c“3

that is ty +%—x=2c

or t’y +x=2ct  asin(20.38)

Example 2. Find the co-ordinates of the vertices and the foci of
the curve xy = 18.
Comparing the given equation with xy = 4a® it follows that

y

sl

Figure 20.17

a = 6. Referring to Figure 20.17 we have OA = OA’ == 6. Also
since the hyperbola is rectangular e = /2. Hence OS = OS' =
ae = 6/2. Because SAOA'S' is inclined at 45° to the axes it follows
that A, A’ are the points (i3J2, i3\/2) and S, S’ are the points
(&6, £6).

Exercises 20k

1. Find the equations of the asymptotes and the co-ordinates of
the vertices of the hyperbolae (i) x2/9 — y?/4 = 1 and (ii) —x*(9 +
y*/4 = 1 and sketch the two curves on the same diagram.

2. For what values of m does the line y = mx meet the hyperbola
x%/a® — y?/b% = 1 in real and finite points?

3. Find the cartesian form of the equations of the following loci
and sketch the curves.

(i)x=4t,y=?

(il x=ty=—

L Y
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3
(ii) x=1+3t,y=;

(iv)x=2t——1,y=—tz—|—1

4. Find the equations of the tangents and normal at the point
(4, 1) on the curve xy = 4.

5. Show that the equation of the line joining the points P(z, 1/¢)
and Q(u, 1/u) on the rectangular hyperbola xy =1 is x + tuy =
t + u. Deduce the equation of the tangent at P.

6. Find the equations of the tangents to the rectangular hyperbolae
x2 — y? = 3, xy = 2 at their points of intersection. Hence show that
the curves cut at right angles.

7. Show that the normal to the hyperbola xy = ¢? at the point
(¢p, c/p) cuts the hyperbola again at the point (—c/p?, —cp®).

8. Show that the tangents to the rectangular hyperbola x = ct,
y = c[t at the points with parameters ¢, and #, meet at the point

t]_tg 4

fo(écl; Syz)fv;)l.lere x=2c Pt st If 1, =1/t, find the

9. Find the equation of the tangents to the hyperbola x2 — y2 = 7
which are parallel to 3y = 4x and find their points of contact. Find
the area of the triangle which one of these tangents makes with the
asymptotes.

10. Prove that the straight line /x + my = n touches the rectan-
gular hyperbola xy = ¢2, if n* = 4Imc?. Find the co-ordinates of the
point of contact.

Exercises 201

1. Find the locus of the midpoint of a straight line which moves so
that it always cuts off a constant area k? from the corner of a square.

2. If A, A? are the vertices and P is any point on a rectangular
hyperbola, show that the internal and external bisectors of the angle
APA! are parallel to the asymptotes. ,

3. Show that if the line y = mx - cis a tangent to the rectangular
hyperbola x* — y* = 42 then ¢? = a%(m?® — 1) and the co-ordinates
of the point of contact T are (—ma?/c, —a?/c).

If the line meets the asymptotes at P, Q, show that T is the mid-

point of PQ.
If the normal through T meets the principal axes of the hyperbola
in R, S, show that T is also the midpoint of RS. (J.M.B)

4. Show that the equation of the chord joining the points

P(cp, ¢[p) Q(cq, c/q) on the curve xy = c? is pgy + x = c(p + 9.
Hence or otherwise find the equation of the tangent at P.
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Find the co-ordinates of the point of intersection T of the tangents
at P, Q. If p and ¢ vary so that the chord PQ passes through the
point (a, 0), find the equation of the locus of T. (J.M.B))

5. Sketch on the same diagram the hyperbola x> — y? = 4 and the
circle x* 4 y? = 9. Indicate on a diagram the portion of the plane
where

@ x*—y*—4>0andx*+)y?—9<0

@ x*—)y*—4<0andx*+3)»*—9>0

6. A, B are the points (a,0), (—a, 0) and P is a point such that
PA = PB - b where b is constant (0 < b < 2a4). Prove that the
locus of P is one branch of an hyperbola and find the eccentricity and
the length of the major axis of this hyperbola. (W.J.C)

7. Prove that the equation of the normal to the rectangular
hyperbola xy = ¢ at the point (ct, c/t) is xt®> — yt = c(* — 1).

Four normals to the curve from a point meet the curve at P, Q, R,
S. Prove that the pairs of lines PQ, RS; PR, QS; PS, QR are such
that the lines in each pair are perpendicular to each other.

(S.U.J.B.)

8. Verify that the point (1 4 3¢, 3 4 3/¢) lies on the curve xy —
3x — y — 6 = 0 for all values of the parameter ¢, and prove that the
equation of the tangent to this curve at the point defined by 7 is
x + 12y = 32 4 6t + 1.

Deduce that the tangent to this curve forms with the lines x = 1
and y = 3 a triangle whose area is constant.

Two tangents to this curve intersect at the point (3, —5). Find the
angle between these tangents. (L.U)

9. Show that if the line y = mx -+ ¢ touches the hyperbola
x? — 3y =1, then 3m? = 3c* 4 1.

Obtain an equation for the gradients of the two tangents to the
hyperbola from the point P(x,, y;). Show that if these tangents are
perpendicular then P lies on the circle x* + y? = £. (J.M.B))

10. Find the equation of the normal at the point (ct, ct~?) on the
rectangular hyperbola xy = c2.

The normal at the point P on xy = ¢? meets the hyperbola
x* — y*=a? at Q and R. Prove that P is the midpoint of QR.
Interpret this result geometrically when P is a point of intersection
of the two curves. (J.M.B))

20.19. THE SEMI-CUBICAL PARABOLA )? = kx®

If k > O then since y? is positive, x® (that is x) must be positive.
The curve lies wholly to the right of the y-axis.

The equation may be written y = +./(kx®) which shows that the
curve is symmetrical about the x-axis.
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Differentiating the equation y = +4./(kx%)
o 3 ...(20.39)
dx 2

Thus dy/dx = 0 only when x = 0, when the tangent to the curve is
horizontal and is the x-axis. Finally x = 0, y = 0 is a point on the
curve which is shown in Figure 20.18.

Y

Figure 20.18

If k < 0 then the curve lines wholly to the left of the y-axis and is
the mirror image in the y-axis of the above curve.

20.20. THE TANGENT AND NORMAL TO THE CURVE

y2 = kx®
From equation (20.39) the slope of the curve is given by
dy 3,12 170
—=4-k"x
dx 2
: Y ? e_ J
Since k—-F, k”—;w—z
and the above expression can be written
dy _¥ ....(20.40)
dx 2x

Note that the “ 1 is now omitted. This is because for any value of
x there are two values of y and thus two possible values for the slope
of the curve or the tangent.

At any point (x,, y;) the equation of the tangent is

3
- =2—x&(x — X))
which on simplifying becomes '

2%y = 3px + %y, =0 ....(20.41)
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The equation of the normal is

(y—ya=~_37’“(x—xl)

1

or 3y, + 2x,x — 2x] — 3y; =0 ....(20.42)

Example 1. The tangent at any point P on the curve y* = kx®
meets the x-axis at T. The ordinate at P meets the x-axis at N. If
O is the origin show that OT = 1ON.
From (20.41) the equation of the tangent at any point P(x;, ;)
on the curve is
2x1y — 3px 4 X1y, == 0

This meets the x-axis where
—3px 4+ x1=0
or x = ix,

Hence the abscissa of the point T is §x,.
Since PN is an ordinate, N is the point (x;, 0) hence

OT = ON

20.21. PARAMETRIC EQUATIONS

x =at? y =br® is, for all values of ¢, a point on the curve
y*[b? = x3[a®. Therefore y? = (b%*/a®)x® has parametric equations

x=at’t, y=>0b ....(20.43)
Substituting in (20.41) and (20.42) respectively we have that
2at’y — 3bt®x 4+ abt’ =0
or 2ay — 3btx 4 abt® =0 ....(20.44)
is a tangent to x = at2, y = b3 for all values of #. Similarly
3bt3y + 2at?x — 2at* — 3628 =0
or 3bty + 2ax — 2a%% — 3b%* =0 ....(20.45)

is a normal for all values of z.

Example 1. Three tangents can be drawn from the point (7, 6) to
the curve x = 3¢2, y = 22 One of the tangents touches the curve
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at the point where t = 2. Find the equations of the tangents and their
points of contact.
Comparing x = 3%, y = 2¢3 with the general case we have that
a =3, b = 2; hence from equation (20.44)
6y —61x + 6= 0
or y—tx+13=0 , ....0)
is always a tangent to the curve. This passes through the point
1, 6) if
6 —Tt+13=0 sl (i)

which is a cubic in ¢ giving three values. One of the values is given
as ¢t = 2; hence (ii) becomes

-2 +2t—3)=0
or t—2)¢+3)(t—1)=0

Hence equation (i) is a tangent if ¢ = 2, —3 or 1, giving as the three
tangents

y—2x+8=0
y+3x—27=0
y—x+1=0

Since x = 3¢%, y = 213, the three points of contact are respectively
(12, 16), (27, —54), (3, 2).

Exercises 20m

1. Sketch on the same diagram the curves (i) y% = x3, (i) y* =
8x3, (iif) y2 = —x8, (iv) 8y = —x3.

2. Sketch on the same diagram the curves (7) y® = x% (i) y* =
—x3 (iif) y* = x%. Give the co-ordinates of any points of inter-
section.

3. Verify that the two curves x = 473, y = 37% and x = 12¢2,
y = t3intersect at the point P where T'= 3 = ¢. Find the equations
of the tangents to the two curves at P. Hence find the angle of
intersection.

4. Show that the line y — 3x 4+ 4 = 0 is a tangent to the curve
% = x® and also that it cuts it at the point (1, —1). Find the point
of contact.

5. Show that there are only two distinct tangents which may be
drawn from the point (4, 16) to the curve x = ¢%, y = 2¢%. Find
their-equations and points of contact.
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6. Show that in general four normals can be drawn from a point
P to the curve x = at?, y = bt>.

Given that P is the point (0,29) and that a = b = 1, show that
two of the normals are real and two are “imaginary.” Find the
equations of the real normals and their points of contact.

7. P(at?, bt3), and Q(at}, bt3) are two points on the curve y* =
(b%/a®)x®. Show that the equation of the chord PQ is

203+t + 1) — % (0 + 1) = ik

Deduce the equation of the tangent at the point P.

8. P(3t2,21}) and Q(312, 2t}) are two points on the curve y? =
#%x3%. Find the co-ordinates of the point of intersection T of the
tangents at P, Q. If t; + t, = 4 show that T lies on the line y +
4x = 64.

9. The normals to the curve y? = x* at the points (p2, p®), (¢ ¢°)
meet at N. Show that the co-ordinates of N(x, y) are given by

3y =(p + PIi2 + 3(p* + ¢7]
2x = —pql2 + 3(p* + pq + ¢%)]

If p + ¢ = 1, find the locus of N.

10. Show that the equation to the tangent to the curve x = 372,
y = 218 at the point P(3p?, 2p®) is px — y = p®. If Q is the point
(34% 24°) find the co-ordinates of the point of intersection T of the
tangents at P and Q.

If the tangents at P and Q make angles 6 and /2 — 0 respectively
with the x-axis, find the relation between p and g. Hence find the
(x, y) equation of a curve on which T lies for all values of 6.

Show in a sketch the given curve. Show in the same sketch the
curve on which T lies, and indicate the part of this curve which is the
locus of T as 0 varies. (J.M.B))

11. Sketch the semi-cubical parabola ay® = 3%(x — 2a)®. Show
that for all values of m the point P[a(3m® + 2), —2am?®] lies on the
curve. Also sketch on the same diagram the parabola y* = 4ax
and show that for all values of m the point Q(am?, 2am) lies on the
parabola. Prove that the line QP is a normal to the parabola at Q
and also touches the semi-cubical parabola at P, If Q moves over the
part of the parabola for which y > 0 indicate in your diagram the
locus of P.

12. Show that for all values of m the parabolas y2 = m*(x — m)
each touch the semi-cubical parabola y? = #%x® at one point. Find
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the co-ordinates of this point and the equation of the common
tangent in terms of m.

EXERCISES 20

1. Find the equation of the normal to the parabola y? = 4ax at
the point (at?, 2at). P, Q are two points on the parabola such that
the chord PQ subtends a right angle at the vertex of the parabola.
Find the locus of the point of intersection of the normals at P and Q.

2. A circle with centre at the point (a, 0) and radius greater than a
meets the parabola x = at?, y = 2at at the points P, Q. Prove that
the tangents to the parabola at P and Q meet on the circle. (L.U.)

3. AOB, COD are two straight lines which bisect one another at
right angles. Show that the locus of a point which moves so that
PA .PB = PC. PD is a rectangular hyperbola.

4. Show that the equation to the tangent to the hyperbola

x sec 6

x[a® — y?[b* =1 at the point P(asec,btan6) is
ytanf

b

The ordinate at P meets an asymptote at Q. The tangent at P
meets the same asymptote at R. The normal at P meets the x-axis
at G. Prove that the angle RQG is a right angle. (J.M.B)

5. Show that the equation to the normal at the point P(a cos 6,
b sin 6) on the ellipse x2/a® -+ y2/b® = 1is ax/cos 6 — by/[sin 6 = a® —
b?. 1If the normal at P cuts the major and minor axes of the ellipse at
G and H, show that as P moves on the ellipse the midpoint of GH
describes another ellipse of the same eccentricity. (J.M.B)

6. The eccentricity of an ellipse is greater than 1/,/2 and the point
P (a cos 0, bsin 0) lies on the ellipse. Show that there is a value of
6 between 0 and /2 such that the normal at P passes through one
end of the minor axis.

7. The tangents at two points P and Q on a parabola y? = dax
intersect at T. The normals at P and Q intersect at N. If angle
PTQ is a right angle prove that TN is parallel to the x-axis.

8. Prove that the equation of the tangent at the point (at2, 2at)
on the parabola y* =dax is x — ty + ar* =0, and deduce, by
considering the sum and product of the roots of this equation
regarded as a quadratic in ¢, or otherwise, that the tangents at
(at}, 2at,), (at},2at;) meet at the point given by x =ant,, y =
a(ty + £z). PP!is a chord perpendicular to the axis of the parabola
whose vertex is A, and Q is any other point on the curve. The
tangents at P and Q meet at T and those at P! and Q at T!. PQ
and P'Q meet the axis at R and R* respectively. Prove that A is the

= 1. Find also the equation of the normal.
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midpoint of RR! and that TR?! and T'R are both perpendicular to
the axis.

9. The tangents at the two fixed points P, Q on a parabola
intersect in T. If a variable tangent to the parabola intersects TP,
TQ (produced if necessary) in R, S respectively, prove that TR :RP ==
SQ:TS.

10. The point P(a sec ¢, b tan ) on the hyperbola x2/a® — y?[b® =
1 is joined to the vertices A(a, 0), B(—a, 0). The lines AP, BP meet
the asymptote ay = bx at Q, R respectively. Prove that the x co-

1
ol —anh (;tco_s :itn v and that the length of QR is independ-
ent of the value of ¢. (J.M.B.)

11. Show that a circle meets the parabola y? = 4ax in not more
than four points. If three of these points coincide at P(at?, 2at) and
the fourth is Q, prove that PQ and the tangent to the parabola at P
make equal angles with the axis of the parabola. Show also that the
centre of the circle lies on the curve 4(x — 2a)® = 27ay*. (L.U.)

12. A circle concentric with an ellipse of semi-axes @, b encloses
an equal area. Show that the area common to both is divided into
four equal parts by the two common diameters, and that each part
is equal to ab tan™ \/(b/a).

Show also that the curves intersect at the acute angle tan™!
[/ (a/b) — \/(ba)]. Ww.J.C)

13. Obtain the equation of the normal to the parabola y* = 4ax
at the point P(az2, 2at).

The focal chord through P meets the parabola again at Q, and the
normals at P and Q meet at R. Prove that R is the point

[a@+1+12), a@—t),

and find the equation of this locus as ¢ varies. (S.U.J.B))

14. A, A? are the vertices of a rectangular hyperbola, and P is any
point on the curve; show that the internal and external bisectors of
the angle APA? are parallel to the asymptotes.

15. Prove that every point on the parabola y® = 4ax can be
expressed in the form (au?, 2au).

A variable chord of the parabola has fixed length k. Prove that
the locus of the midpoint of the chord has equation

(4ax — y*)(y® + 4a®) = k%a? (S.U.J.B))

16. Find the equation of the tangent to the parabola y? = 4ax
at the point (a2, 2at).

Three tangents to a parabola form a triangle ABC in which BC,

CA and AB make acute angles «, 8 and y respectively with the
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tangent at the vertex. If p,q and r are the lengths of the perpendiculars
from the focus S to these tangents respectively, show that
(@) pcosa=qgcosff=rcosy =a
(b)) pSA =¢SB =rSC
2 2r2
(c) SA.SB.sc=24" (L.U.)

3

a

17. The points P(ap?, 2ap) and Q(ag?, 2ag) move on the parabola
y? = 4ax, and p | g = 2. Show that the chord PQ makes a constant
angle with the x-axis, and that the locus of the midpoint M of PQ is
part of a line which is parallel to the x-axis.

If also the point R(ar?, 2ar) moves so that p — r =2, find in
its simplest form the (x, y) equation of the locus of the midpoint N
of PR. (J.M.B))

18. Show that the equation of the chord joining the points
P(ap?, 2ap), Q(aq? 2aq) of the parabola y? =4dax is y(p +¢q) —
2x — 2apq = 0.

The variable chord PQ of the parabola y? = 4ax passes through
the fixed point (4, k). If the tangents to the parabola at P and Q
meet at T, show that T lies on a fixed straight line. (JM.B)

19. Show that the equation of the common tangent other than the
y-axis, of the curves y® = 4ax and xy = 242 is 2y + x + 4a = 0.

This common tangent touches the curves at P and Q respectively.
R is the point of intersection of the curves. Find the acute angle
between PR and QR. (L.U.)

20. Prove that the line y = mx -+ ¢ touches the ellipse x2/a? 4-
y3b* = 1, if ¢® = a*m® + b2 Find in terms of m, a, b, the distance
between the two tangents of slope m. If this distance is equal to the
distance between the pair of tangents perpendicular to the first pair,
show that it becomes /[2(a® + 4?)]. An ellipse in which the semi
axes a, b are in the ratio 3:2 touches the four sides of a square.
Find the length of a side of the square in terms of a.

**21. Prove that chords of a parabola which subtend a right angle
at a fixed point P of the parabola all pass through a fixed point Q.

If the position of P now varies on the parabola prove that the
locus of Q is another parabola. (JM.B)

**22. Given four points P, Q, R, S on the ellipse x?/a% 4 y2/b? = 1
with eccentric angles «, f, y, J, respectively. If the equation of
PQ is xfacos §(a + B) + y/bsin 3(o + f) = cos (o — B) write
down the equation of RS. Denoting the equations of PQ, RS by
# = 0 and v = 0 respectively prove that the equation

2 2

%+Z—2—1+kuv=0 .o (A)
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represents a curve of the second degree passing through the points
P, Q, R, S. If the equation (A) represents a circle prove that « -
B + v + 8 is either zero or a multiple of 27,

**23. The eccentric angles of two points P, Q on the ellipse
x2/a® 4 y?[b?2 =1 are 0 and 0 + =/2, and « is one of the angles
between the tangents at P and Q. If e is the eccentricity of the
ellipse prove that

€?sin 20 tan « = 2,/(1 — €%

If the tangents at P and Q intersect at R, prove that the locus of R
as 0 varies is an ellipse. (J.M.B)

**24. Find the equation of the locus of the point of intersection
of two tangents to the parabola x = at?, y = 2at which meet at a
constant angle 6.

Show that the vertices of equilateral triangles circumscribed to the
parabola lie on the curve y? = (3x + a)(x + 3a).

*#25. The line AB is a tangent to the parabola y* = 4ax. The
intercepts on AB by the pair of tangents from a point P to the
parabola and by another pair from another point Q are equal in
length. Prove that the intercepts on any other tangent by the pairs
of tangents drawn from P and Q are equal.
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SOLUTIONS

Exercises la

1. % 2. 6653, —1:653 3. —2,1

4.9 5.1,—2,—3,—6 6. £3,+4

7. +4 8. 3 9. —1,2 4+ /3
10, +£1,1 4 /2

Exercises 1b

lLx=1L,y=1;x=%8,y=4

2.x=1y=—1; x=5y=—9

3 x=2,y=1; x=11,y=17

4, x =43, y=F1

5. x =43, y="TF2; x=:l:—3— y=:F—11-
’ ’ J10° J10

6. x = 14,y = F1; x=:l:-ll y=:J:i
b 2 J7’ J7

7. x=41,y=42; x=42,y =41
8. x=3,y=1; x=1y=23;

L _oShyss s
T P T AT+ s
29 =25
9.x=5, =1;x=——', —_ —
Y 377773

10. x =41, y=44; x=+4,y = +1
Exercises Ic

1':3—.1—1<x<§l 2.2<x<3 3.2<x<3

4.——3<x<‘21 5.2<x<3 6.-;—5<x<—1,x>g
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7.3 <x<2
10. x >2 or x< —8
11, 2 <x < —1

Exercises 1d

8. —1,-5

9.0, -2

Lx—Dy—D=1 2. (x—3)(y—2°%=1
2 2 2 x* yz
3. xy=y"—x S.a—2+b—2=
8. a>—b2+2=0 9. b* — a®>=4c
Exercises le
1. 2 - 4 2.x—1+4 3 — 2
x—3 x+1 x+1 x—1
3. 5 n 3 4 t 2 4
20x—1) 2(x +5) x—1 x+1 x-+3
3x+1 2 6 1 1
" xP+4 x+1 "2x -1 x24+2x 43
1 x+1 1 1 2
7.2 8. —
SR T x+1° x+1 " 2x—3
2 1 1
9. 5T 3
x+1 (x+1) x?+1
10, | 2 1
x+1 (x+1DF x+1)°
Exercises If
1 1 3 y6 b13/l2
1. 243,2R, 128,5 2. 5;;;”_——a5/12c19’12 4, 4
Exercises Ig
1. 3, —-3,4,—-5,3,1 —6, —n 3. 1-386, 2-89
Exercises 1h
1. 1-87 2. 1-64 3. 1-87, —5-11 4. 1
5.4,2 6. 0-431, 0-683 7.3 8.2
9. /3,9 10. x =192,y = 066
EXERCISES 1
Lx=3y=2;x=%y=% 2a=2,b=3,c=2,d=1

3. —1'71

4.2 +./5
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5. x = t4a,y = fa; x=ﬂ:8?a,y=i§
3 3x +1
6, — — =<
x—3 x24+4
— — 1
g1, g, —L1E VI3 9, —2 4

—~ +
3—y 1—y (A—-y?
10. x>6, —6<x<—2 1l.x>1,—3%3<x<0

12. 3,1,2 13. 1,5

15. 27, ¥/3 16. -4 <x<¥,x>3

20. 6 2, 23S p— V2t
2 2

22. 4,6 23. —0-358

2. u—6,0=6; u=—?3(1:|:\/5),v=—73(1:{:\/5) 25. 3,11
28. y<<—5 or y>1 30. 1

—1 7
31. x LLy=2; x 2,y 4
32 x =142,y = 058 .
3B.2<x<3,x>4 34, —2
6. F<y<4
9.x11 1 12-22—2
y12 1-21 1422
221 -2 11 122
40. x = —2 Skl '

2w+ T ak+4 T 2ak+ A

Exercises 2a

1. ()2,5,8,11,14 ()1, —3, & — 2, & (i) 3,8,17, 32,57

2. (@)t @) (—Dre2 () J ()

3.1,2,3,5,8,13,21

4. a=3,b=—4; —17

5..0rr—1 (@)2r Gi)r*4+2r—1 (@v)3" (v) —(=2)
(i) 37 — (=2 (Ull) —(—6)

6.0,2,2,0,—2, —2; 0

7. a—3 b——6 ¢=3; 90, 258

8. (i) 85, (ii)363

9.3r2—-3r—1
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Exercises 2b
1. —-3,1,5
2. —1,6,13
3. 0,5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
4. 206
5.10,7
6. —n?
7. (i) 124 (i) (5n® — 9m)[2 (i) (n — 3n2))2
8. 1980
9. (i) 4nn + 1) ()"t 1)2(“ +35)

@@ii) ¥(a — 2b6)n* + 3(5a — 2b)n

10. (i) 4950 (ii) 1683 (iii) 4215

Exercises 2¢

1. 1, —4, 16 2. —-3,1, -3
3. 10, 20, 40 4., —729
5. 132 6. 3[1 — ()8
7. 1211 + \/3) 8.2,9
10. 7,2
Exercises 2d
1 1 ... 6 x2 44
1. () —— @i = (i) — 2,
D% @y @y X 2x +4
3. 23 5.x<—% orx>4
EXERCISES 2
1. 5,7,9
2.6,3
3. 1024, 3, 2048
4. nlog ar™ V2
S.a=5b=—4c=14%;2"—1+3n—2n®
6. (i) 247, 500 (ii) 250,000 (iii) 1020

cat+(m—1d; n+m—1D2"—-1)
. 20, 79

.S=4; 8,8 &

. 9 or more

. 7, 360 ft.

. 332, 667
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15.
16.
17.

18.
20.

21.

23.
24.

28. S

SOLUTIONS

;5 —1
(i) 2 (@) 4, ¢in.

) 510" —1
an(n + )+ r(r );
2 r—1

i, 19-99998, 9
—i<x<x<l1
+2

Mo =m0 m) )

x>0 () x>0 orx< —%
b—n(b — a), b+ (n— 1)b — a), n(a + b)
S et A ) e (1) I 1
T (l—=b1—-r (A—b{1—rb)’ 1 —r1—rb)

1445

r =

a=8,r=2,8,= 10,670

(i) 30° + 1)

Exercises 3a

1.

WA

7.

8.
9.
10.

@ 1+2x+x @) 14+3x-+3x24+x% (@) 14+4x+

6x% 4 4x® 4 x*

. ()1 4 8x + 28x% - 56x% + T0x* + 56x° + 28x® 4 8x7 - &®
@) 1 + 9x + 36x% + 84x® + 126x* 4 126x° 4 84x°
36x7 4 9x8 + x?

. () 153 (i) 55 (iii) 1287 (iv) 36

. ()14 12x + 54x% 4 108x3 + 81x?

@) 1 — 5x + 10x% — 10x3 4 S5x* — x®
(iii) 1 — 14x + 84x® — 280x® + 560x* — 672x° 4 448x® —
128x7

. () 81 4 108x + 54x* 4 12x3 4 x*

(i) 64 — 192x -+ 240x* — 160x® + 60x* — 12x5 4 x©

(7) 8x® 4 36x%y + 54xy? + 27y°

(i) 16x* — 160x3y + 600x2y? — 1000xy® -+ 625y*

1,140,480x3

+2

22680

Exercises 3b

)ou:.pwm'—

.1+ 6x + 18x2 4 32x3 - 36x* 4+ 24x5 + 8x*®
.1 —4x 1 14x% — 28x3 4 49x* — 56x5 + 56x® — 32x7 + 16x°
. 80
. 1+ 6x + 15x2 -+ 20x3 -+ 15x2 + 6x5 4 x® = (1 + x)°
. 3060 6. 105x1°/32 7. 2160 8. —360
1

. 9
—8> _8-_6
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10. x7 + 14x% + 84x5)% + 280x%® + 560x%)* + 672x%)° +
448xy8 + 128y7; 1-149

Exercises 3¢

1. 1 4+ x — x? 4 8x%; 1-0099 2. 0-9355

4. D1 —x+xP—xP+x—xP+...
(i) 1 — 2x 4 3x® — 4x® +5x%. ..

3 4 X 4'5x3—|—...

(i) 1 — 3x +— 5

5. (1)1—3x+9x —27x3+...
(l)——l-’l'&-i—a ..
(11)5;——+—+

6. |x] <3 7. |x|<'§l

9. 3 + 5x + 9x% + 17x® -+ 33x¢
EXERCISES 3

1. 1 — 5x + 20x% — 50x® + 105x*
2. 9-9499
3. 8x* 4. sg=35 — 6pst +9p%F — 2p®
5 1 2 5( 1y .
T I m A 2( 2) +(2n +1)3
10. § 15. 1-0198 16. %%
17. 1 4+ 3x 4+ 5x% + 3x° 18. 1 4+ 2x — 2x® + 4x%; 2-4495
19. 3-317 20. p= —6,q =11

Exercises 4a
1 (i) 3+ 0i (i) +3 + 0i
(i) 0 £ i\/30 (iv) —% + t\ﬁ—l
) 04+ 7i i) —1 + z\/7
wit) —2 -+ 6i (vii)) }+ i*/73
Exercises 4b
1. ()3 (i) 18 —i
2. (i) 14 — 2i (i) 12 — 16i
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3. —3 4 3i
4. (i) 2 (i) —2 +2i (i) —4
—1 — 41i —7 —17i
6. (i ..
® o (i) 5
8. (7 +3i); (6 — i)
9. (i) x° — 10x® + 5x — i(5x* — 10x* +1) (ii) ﬁ#‘—’
., —(1 +0) 1. 11420
-1 S _=
(i) (iv) 2 (v) ;i (vi) 3
Exercises 4c
2. J13, 17, /45, /2
3.()2—3i (i)3+2i (i) =2+ 3i
5. +24
Exercises 4d
1.3 +4 (G)6—4i ()3 —7i
2. ()4—2i (i) —6+3i (ii)4+8i
3. ()12 + 15 () —10 4 8i
4. 2 4 23i
6 34+ 2i
T13
8.y=0
9. x=0
10. x* 4+ 2 —8x+2y4+9=0
EXERCISES 4
.G 1—i @Gi)142i (it)) —1+0i
2. £3 +1d)
3. (=7 4 iJ31)/2; —7,20
4. 30r0
5. cotQ
2
2 ___ 42 _
6. (i) X* — 3x)% 3xty — )* (i) ——2 2xy

D M A
7. Length of a diagonal of parallelogram sides represented by z,
and z,
9.2x* + 2y —-5x 4+-2=0
10. (i) 3 (i) a® + b®
11, —2 + 4i
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13. () 2 — 118 (i) =2
14, x = —5, y = —10
17. 3 + l\/3

18. () B L1 +
19. C1rcle has equation x* +y* —4x —4 =0
21 —i(\/2 + 1), i(/2—1)

25. B(4 + i); C(5 - 2i) or B2 + 3i); C(3 + 4i)

(i) i,4 —Ti ii,7 +4i iii,—7 — 4i

Exercises 5a

1. 0,3 2. —4,5 3.k>20rk<—10
4.2 9.1, —119
125
Exercises 5b
. 2
4.4“4—1’ 5.14 6.1 10. —20 < k< 5
a

Exercises Sc
1. 9, 4, 242
2. () x* —19x +25=0
(i) 25x  +72x —5=0
3.0)q=0 () p=r

O A —— \/(q - 4rp) (i) —q \/(q2p_2 4rp)
(i) *ﬁ—p—ﬂ’i)( — ) () — J—“’—p—ﬂ( — 2pr)

7. ac*? + b(b® — 3ac)x 4+ a’c =0
9. ac(p + q)° = b®pq
0. x*—5x—14=0
EXERCISES 5
LL()x2—6x+4=0 () x2+4x—14=0
@iy x2* — 2ax + a® — 4b2 =0

. 4when x = +3 4. x2 3(p+q)x-|—7q—0
. —1, —§ 9.0,

1

L W
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SOLUTIONS

1. k< —4, k>3 13. Dk<lork>9()k>0
14. a4+b=0

16. x* + x[p — J/(p* — 49)] —P\/(P2 49) =0

18. pg <0

20. (lony — hLiny)® = (myny — m2n1)(llm2 lymy)

21.0,3,8 25. —10< k<2

Exercises 6a
1. (i) 183°21° (&) —90° 32" (i) 36°
2. (1) 4102 (3i) 0-2455 (§ii) —2-2369
3. (i) 129° (i) % radian
5. (i), (iii) and (iv); (i) and (v)
Exercises 6b

3 18
1. 13,15'2 133‘}?,15"

2
\/13 J13
3.(3) a s1n20 (ii) sin® 0
4, (i) —— cos* 8 0 (ii) sec
5. (i) 3 —2c—3c® (iD) —-ﬂ— (iii) 7 _2 5

Exercises 6¢
1. (i) 0-3420 (if) 0-7660 (iif) —0-3640 (iv) 0-3420
2. (i) —cos 10° (i) —tan 50° (iii) cos 60° (iv) —sin 20°
6. (i) —1 () 1/y2 (i) —/3 (iv)——‘—/;
7. ()0 (i) —1 @i)0 () —1 )0 (vi)l
8. — %5 _\/ %

9. —%, _%

Exercises 6d
3. They coincide 4. They coincide

5. (i)%; @1 @ —1 @) —% @) 1//2 @)3 @i)—1
(viii) —1/4/2
Exercises 6e
1. () 8¢ (i) 8¢ (i) —%8, No
2.

J3-1 /341
3. () 2\/2 (i) 2\/2
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SOLUTIONS

. (i) sin 10° (i) —cos 70°

. () cos 10° (i) —sin 50°

. () tan 70° (i) tan 30°

. (§) sin 4 cos B cos C + cos A sin B cos C -
cos A cos Bsin C — sin A4 sin Bsin C
(if) cos A cos B cos C — cos A sin B sin C —
sin 4 cos Bsin C — sin 4 sin B cos C

00 00 3N

Exercises 6f

1. 4, —2
24 3 1
1257/10°3
N (140 2(1 +8 (1=
15. (i) L (ii) e (m)—l_—t2

Exercises 6h
. (i) \/2 sin (0 + 45°) (ii) \/2 cos (6 — 45°)
.5 cos( + 53°8")
. /13 sin (8 — 56° 19')
. 5sin (26 + 36° 52")
. J/10,18°26'

“nhwh =

Exercises 6i
1. (i)% (ii)% (iii)’—;
20 =% G) =% @)%
7. 3

Exercises 6f
3.30°39" 4.691ft. 5.19:5

EXERCISES 6
2. (i) 0-8988 (ii) —0-9336 (iii) 6-3138 (iv) 0-3256

.00 —% (i) —#% (i) — 3% (i) — &
2
4. cos = /(1 — s, tan 0 = ———  cot § = Ja—s s),
Ja =) s
sec0=\7(T1Ts2),cosec0=§
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14.
20.
23.

24.

28.

29.
32.
33.

SOLUTIONS

P+4*—2q
PP+q+29
2

1—./3
1+3

3tand —tan®4 1 —tan® 4
1—3tan®4 ~ 2tan4
k4 — k) K — 4kt 42

b

kK*—2 2

()

(i)

— sin™ 2x,/(1 — x%); cos™!(2x* — 1) for all x

e BESE

6
34+3cos20 +4sin20 =3 + 5cos (20 — 53° 8%
Max 8 when § = 26°34’, min —2 when 6 = 116° 34’

Exercises 7a

et
OV WNnbAhWN -

18.

. n180° + (—1)" 56° 12"; 56° 12/, 123° 48’

. n360° 4 44° 34’; 44° 34’, 315° 26’

. n180° - 64°427; 64°42', 244° 42’

. n360° 4 123° 54'; 123°54’, 236° 6’

. n180° — (—1)»28°31'; 208°31’, 331°29’

. n180° — 16°42’; 163°18’, 343° 18’

. n60° 4 (—1)* 10°; 10°, 50°, 130°, 170°, 250°, 290°
. n30° — 8°29’; 21°31’, 51°31’...351°31'

. n1800° £ 150°; 150°

. n180° + 15° 4 27°50'; 42°50', 222° 50, 167° 10’, 347° 10’
. n180° + (—1)" 54° 24" — 18° 3’; 36° 21’, 107° 33’

12.

13.
14.

15.

16.
17.

n180° o Le] (=] e o (o] el o ©
Ty % 30% 180° 90°, 360°, 150°, 210°, 270°, 330
36n°; 0°, 36°, 72°. .. 324°, 360°
90n° 4 45° or 180n° — 90°; 90°, 270°, 45°, 135°, 225°, 315°
n180° 4 (—1)"90°

TTa 18 90° 1627, 2347, 306
(2n 4 1)18°; '18°, 54°,90° . . . 342°
90n° or (2n + 1)30°; 0°, 90°, 180°, 270°, 360°, 30°, 150°,
210°, 330°
90%° or (2n -+ 1)223°; 0°, 90°, 180°, 270°, 360°, 224°, 673°,
el 33TH°
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19.
20.

SOLUTIONS

(i) n360° 4 120°; 120°, 240°, (i) n180° 4 60°; 60°, 240°
n360° — 120°; 240°

Exercises 7b

[

—
[y

12.
13.

14.
15.

SRR - PN N N

. n180° 4 45° or n180° + 26° 34’; 45°, 225°, 26° 34’, 206° 34’
. n180° 4- 60°; 60°, 120°, 240°, 300°

. n360° 4 60°; 60°, 300°

. n180° 4 66°2'; 66°2', 246°2'

. n180° -+ (—1)" 14°29’; 14° 29", 165° 31’

n180° - 30°; 30°, 150°, 210°, 330°

. n180° 4+ (—1)" 90°; 90°, 270°

. n360° + 78° 28’; 78°28’,281° 32’

. n180° 4- 40° 54'; 40° 54',139° 6, 220° 54', 319° 6’

. n180° + 14° 2’ or n180° + 123°41’; 14°2', 194° 2/, 123° 41,

303° 41’

. n180° +45° or nl80° 4 171°52'; 45°, 225°, 171°52,

351° 52

n90° + (—1)"9° or n90° — (—1)"27°; 9°, 81°, 189°, 261°,
117°, 153°, 297°, 333°

n90° or n180° =+ 60°; 0°, 90°, 180°, 270°, 360°, 60°, 120°,
240°, 300°

n180° or n360° + 80°24’; 0°, 180°, 360°, 80°24', 279° 36’
n60° — (—1)* 30° or n60° + (—1)"6°29’; 90°, 210°, 330°,
6°29'; 53°31’,126°29’, 173° 31’, 246° 29’, 293° 31".

Exercises 7c

U N -

o0~

10.

. (2n+ 1)90° or

. n360° or n360° 4 180°; 0°, 180°, 360°

. n180° or n180° 4 108° 26'; 0, 108°26’, 180°, 288° 26’

. n180° + 45° or n180° — 18° 26'; 45°, 225°, 161° 34', 341° 34’
. n90° — 31° 43’ or n90° + 35°47'; 58°17'; 148°17',238° 17,

328°17', 35° 47', 125° 47', 215° 47', 305° 47"

. n180° 4 45° or n120° 4 20°; 45°, 135°, 225°, 315°, 20°

100°, 140°, 220°, 260°, 340°

ni80°
I3
324°, 90°, 270°, 360°

0°, 36°, 108°, 180°, 252°,

. n360° 4 180°; 180°
. n90° or n90° — (—1)* 15°; 0°, 90°, 180°, 270°, 360°, 105°,

165°, 285°, 345°

. n180°, n180° ++ (—1)" 90°, n180° — (—1)"30°; 0°, 90°, 180°,

360°, 210°, 330°
n90° + 15°%; 15°, 75°, 105°, 165°, 195°, 255°, 285°, 345°
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SOLUTIONS

Exercises 7d

1.

n360° + 26° 34" 4+ 63°26’; 90°, 323° 8’

2. n360° 4 53°8’; 53°8’

oW

[w B =)

. n360° 4+ 60° — 16° 16"; 43° 44/, 283° 44’
. n720° + 112° 38’ 4 112° 38'; 0°, 225° 16’

nl180° 4 33° 27 — 5°40°; 27°47',207° 47', 140° 53, 320° 53’

. n360° 4 36° 52 -+ 78°28'; 115°20’, 318° 24’

. n120° — 15° + 45°; 30°, 60°, 150°, 180°, 270°, 300°

. n180° — 7° 54’ - 27°22"; 19°28', 144° 44',199° 28', 324° 44’
. n120° — 4° 41’ 4- 55° 19’; 50° 38', 60°, 170° 38’, 180°, 290° 38’

300°

. n360° 4 135° + 45°; 180°,270°

EXERCISES 7

. (i) 30° 49', 59° 11', 210° 49, 239° 11’

(i) 13°53', 103°53, 193°53, 283°53, 76°7', 166°7,
256° 7', 346° 7'

(i) 119° 28', 299° 28’

(iv) 0°, 36°, 108°, 180°, 252°, 324°, 360°

(v) 222°, 1124°, 2024°, 2921°, 135°, 315°

. (i) 36° 52/, 270° (i) 36°, 324°, 108°, 252°

. 45°,225°,171° 52/, 351° 52; nw + 45°, nmw 4 171° 52/
. 0°, 180°, 360°, 210°, 330°

. (i) 0°, 45°, 135°, 180° (i) 35° 16, 144° 44/

(iif) 90°

. n360° 4 60°
. 13°17 or 240° 27’
. (i) n360° or n120° + 30°; 0°, 360°, 30°, 150°, 270°

(if) n360° -+ 71° 34’ — 18°26'; 53° 8’

. n360° + 60° or n360° 4 141° 20
. (i) 60°,120°,240°,300° (ii) 53°48',233°48’,159° 54', 339° 54’

(i) 1724°

. 360n° + 60°

. (2n 4 1) 180°; n360° 4 120°, n360° + 41° 24’

. () 0°,180°, 60°, 120°, 35°16°, 144° 44’ (i) 60°, 180°, 45°, 90°
. —sin 3x sin 2x. 0°, 36°, 72°, 108°, 144°, 180°, 22%°, 67%°, 1123°,

1574°

. 60°, 120°, 240°, 300°, 45°, 135°, 225°, 315°

. (2n + 1) 30° or n180° 4 30°

. (i) n360° — 36° 52’ -+ 113° 35’ (ii) n360° + 73° 44’ 4 78° 28’
. n180° or n120°

. 60°, 120°, 45°, 135°
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SOLUTIONS

20. (2n + 1) 45°, n180°, +(—1)*90° -+ 60°
21. 70° 32, 289° 28’, 120°, 240°
22. (i) n360° - 180°, n360° + 120° (§i) n90° - 221°, n180° — 45°
(iii) n45° — 2° 30" + (—1)" 3° 23’
23. —120°, —90°, —60°, 0°, 60°, 90°, 120°
24. R =13, 0 = 67°23’, 142° 54', —8° ¢’
25. n180° — (—1)" 30°
26. n360° — 67° 23" 4 140° 17’
27. $or —1
28. 0°, 180°, 360°, 270°, 41° 50°, 138° 10’
29, 45°, 135°, 225°, 90°, 210°, 330°, 315°
30. +2
31. 19°28’, 160° 32’, 194° 29’, 345° 31’
32. 90°, 43° 10’
34. n180°, n180° 4- 135°
36. (a) 70° 32', 120° (b) 45°
37, 655% -+ 85 — 48
40. ¢ —tane—1 t =tan& ty =tan =, ¢ =tan@
LIS 2 s b2 2 s '3 2 s 4 2 ’
b4t Aty -t — (titats + talaty + titsts + titsty)
1 — tyt, — tyty — bty — toty — toty — t5t, -+ titstst,

Exercises 8a

3. B=63°39', C =51°21', a = 19-20 or 19-21 depending on
the method of working

5.c=2

7. W 26°8' N or 296° 8’

8. Correct to nearest minute B = 70°54’, C = 65°13', D =
43° 54’

10. (i) 4 =49°3%,B=74"4, a = 2:489

or A = 17°46', B = 105° 56', a = 0-997
(#) No possible triangle
(i) A=44°12', B=67°54', a = 423
(iv) A =51°58', B=54°40', b = 6741
(v) B=51°12', C = 68° 49, b = 52-82
or B=28°48", C = 111° 12/, b = 10-37

EXERCISES 8

[y

. One solution. 4 =24°34', B = 79°26’, b = 7-09
a =3/5,b=2,/10

N
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22. AD =
24,
25.

26.
27.

30.
31

33.d=

. Height =

SOLUTIONS

. sin 6 = 0-8127, a = 957
. 434 cm
.a= 1164, A =134°53%,C=50°55. A=9172 in.?

b=117,¢ =56
AC = 594, B = 115°23", D = 64° 37’
[a? 4+ (b — h)*]tan b

a-+ (b— h)tan

. AB = 300,/(cosec a + cosec® f — 2 cosec a cosec § cos y)
. ¢=9-8in.

18.
19.

16°, 10°

B = 111°, C = 12°42', ¢ = 0-745;
B =69° C = 54°42", ¢ = 277

A =098 or 3-64

13,/3
3

60-1 ft.

atA

16 R?

118 ft.

(i) 45°; (i) J2a; (i) cos(—3

(i) 13,970 ft. (ii) A = 4793 ft., B,585ft. (iii) 16° 46’

1b° ta“; + 3b seca(2] — b tan a cot f)

6h tan «
3 + tan?«

Exercises 9a

= lx(100 —Xx)
= 4— h(20 — h)%, A = ar® + 27r(20 — 27r)
h = 10sin x

Cf(D) = —2,fQ2) =2,f(—1) =2

$(0) =6, $(1) =2; x=20r3

.F0=1,F(3)=—1.e= z
© 2 "y
. All values except 1 and 2

3<x<T7;x<3 and x> 7
4381



SOLUTIONS

3
9.(i)y=;‘—i—-’—c (i) y=—x or y=x—1

(iii) not possible
10. () y=1 or —2whenx=1,y= —1 =+ /3 when x = 2
(i7) y is not defined for x = 1 or 2

Exercises 9b

1. 50 yd, 1250 yd? 2.x=%orx=2

3. 0-86 radians 4. 3 +x, +5; 11

5. 12 ft.[sec; 11 ft.[sec 6. 3+ x,,4

7. 10

8. 7, 3-31, 3-:0301, 3-0000300001; 3, 3x2

9. () —1 (i) —;12 10. 32 ft.[sec; 64 ft.[sec

Exercises 9c
1. 12
2. Yes. —2x,2; 0,2. No
3. Yes, —2x, 3x2; 0,0, Yes
4. (i) 14x (i) 4x®* — 4x (iii) 2 cos 2x (iv) —3 sin 3x
(v) cosx — 2x

EXERCISES 9

1. A=r%1 +sec ) cotg

3.0 7, -7

T4 a4

4. 1,2; 0-001

. 3 —4dx

@)y T
6 3

34x272

y=x"—x—2; 4

Cx XX+ xE3 44 x +x% 6

. 55 ft.fsec; 5 ft.[sec

. X =2

11. 2, —1,2

12. u ft.[sec; a ft.[sec?

13. /3

b

(i) y=—x

y=

ot
Swvwa o
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14.

15.
16.

SOLUTIONS

B2 +1 () =
b

(i acosax (ii) —asinax
(i) sec®x  (ii) sin2x

Exercises 10a

0 ~J W W

. 35x* — 12x° + 2x 2. 24x% — cos x
. —6sinx — 16x — 8 4. Tx® 4 4x® + 3x2
. cosx — cos2 x + sin®x 6. 6x -+ 4cosx — 4xsinx

. 8x3 4+ 15x2 4+ 12x + 4
. 16x(1 + cos x)(1 + sin x) + 8x% (cos x — sin x)(cos x +

sinx + 1)

. cosx — xsinx + 6x

. sin x(3x2 -+ 8x) -+ cos x(4x% — 6x)

L dx(x® 4 1) 12. 2(x2 4+ D(5x2 +2x + 1)
. 6x(x2— 1)

. 3 sin x cos x 4+ 3x (cos?x — sin? x)

. (9x% 4 3) sin x cos x + 3x(x? 4 1)(cos®* x — sin? x)

Exercises 10b

1.

10.

11.

12.
13.

x4+ 2x 5 sinx — xcosx
x+1? " (x 4 sin x)?
2+2cosx + xsinx 4, —cosec x cot x
(1 + cos x)?
sin x 6. —6
" (1 + cos x)* (x +1)°

x - sin x (sin x + cos x) g x*+6x*+3x*+ 6
(cos x + sin x)? T+ 3x +2)°
cos x(x® + x* — x® — x%) — sin x(x* + x* + 2x)
(x + 1)%(x* — 1)°
—2x% —6x*+6
(x + DA(x +2)%x +3)°
2 sin x cos x + sin® x
cos? x(cos x + sin x)*
4x% +12x 4- 6
(x® + 5x + 6)°
1-08
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SOLUTIONS
2
"24+4/3
15' %5 (O’ O); (_2’ 6)
Exercises 10c

. sec x(sec x + tan x) 2. sec x(sec? x + tan? x)
—Ccos x — cot X cosec x 4. sec? x(1 + 2 tan x)

. 4sec?xtan x

. (sec x 4- tan x)(1 — sin x + cos x -} tan x)

sec x (sin x tan x + 2 sin x — cos x)

14

Naovnw—

(sin x + cos x)?
sec x tan x
" (1 + sec x)?
—2sec’x
(1 + tan x)?
10. (i) v = (8t — 3)ft.[sec; 5 ft.[sec
a = 8 ft.[sec?; 8 ft.[sec?
(i1) v =27 (cos 2t — sin 2m1) ft.[sec; 2 ft.[sec.
a = —4n”® (cos 2xrt + sin 2mt) ft.[sec?; —4n?® ft.[sec?
. . COS X
11. (i) —2cos2x (i) 4 — sin )
. nw
15. sin (x + 5 )

Exercises 10d

1. 50 — 1)* 2. 10(2x — 1)

3. 5(4x — 3)(2x® — 3x)* 4. 8(x + 1)°

5. 3 sec 3x tan 3x 6. 5sec®5x

7. sin 4x + 4x cos 4x 8. 2x cos 3x — 3x%sin 3x
9. 3sin®x cos x 10. 3x%cos x®

11. 6x sec (3x® 4 1) tan (3x% -+ 1)

12. 9 tan®*(3x — 4) sec®>(3x — 4)

13. 4xsin (x® + 1) cos (x* 4 1)

14. (10x 4 7)(2x — 1)°

15. 3 sin® x cos x tan 2x + 2 sin® x sec® 2x
16. —4sin® x cos x

17 —3cos?x 18 —8x(1 — x?)
" (1 + sin x)® T+ x?P

4 sin 2x
" (1 + cos 2x)?

484
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SOLUTIONS

21. mﬁ% 22. 18 sec® (tan? 3x) tan (tan® 3x)
(2 +sin” x) tan 3x sec®3x

23. (i) nsin® 6 cos @ (ii) —mcos™ 0 sin b
(iii) sin™ 6 cos ™ O[n cos® 6 — m sin® 6]

Exercises 10e

1/2 1
1. 3x 2. 9
3. 3(¥/x)* 4, 6(x” — %) (x2 + %)
X X
5 —12x 4x — 1
T (2x® — 3)" T 2/(2x* — %)
7. 3x (2 + 1 8, ——
x\/(x + ) (xz + 1)3/2
9 1 —x—2x% 10 (1 + x*1 + 7x)
CJ =% ' 2/x
11. 2_\1/—3;830 Jx tan \/x 12. } tan x \/(sec x)
cOS X 1
13, —m8M88 14.
2,/(1 + sin x) VI + D¥x — 1))
-1
15. 1 —cosx
Exercises 10f
5. __2.5__ 6. __"_§__._ 7. ___1_.__
Ja—x9 Ja —36x% 1+ (x + 1)?
8 2 2x
D x/(xt—1) 14 xt
. X
10. sin' x + m
—1
11, ——
(1 + x)\/x
12. 1 [tan‘l(l + x) = tan~'x + tan™' 1:]
1+ x? 1—x

14. Because 2 tan™' x = tan_l( 2x ,,)
—_— x‘
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SOLUTIONS

1. — y_ l 1_—‘2_":3’_2
x x? Tox?y —1
3 _,\/(z) 4 Sinx—1
) x "1 —siny
5 -y __ (1 + ycosxy)
" x +cosy (1 + x cos xy)
7. —1
_ (2x +3y) . 10x® + 10y* + 30xy
3x +2y (3x + 2y)®
9. —%; —#% 10. —%; —18
Exercises 10h
1. 32 2. —%coth
t
3. _4sin 2t 4 2tcost — t¥sint
) " sint+tcost
3¢
5.2t 12 6. ———
+ 1—28
233
7. %(t — tl) — (i—;s—t)- 8. —3% 3
4t N5 )
9, Wl 10.(i) gsec (ii) 1sec

EXERCISES 10

1. () 3x®—x (u)—(9t2—t~1)

arft

2. (i) 15x* +4x® + 9x* + 2x (i) sec (1 + tan @ — cosec 6)
(1 4+ x? (i) x* 4 axt—1

O ey ( a0
2./x(1 + \/x)z \/x(l Vx)?

5. (i) 3sin tcos 3t 4 cos ¢ sin 3¢
G 2t /(1 — ¥ sin™' t 4 1
Ja =
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10.

11.

12.

13.

14.

15.

16.

20.

21.

22.

SOLUTIONS
6(x%> —2)

(@)

(x4 6x+16) ..
w16 D

(x? 4+ 3x +2)°

(i) —(5 cos tsin 5t + sin t cos 5t)

+ Htanlt + ¢

. (1
(ii) L+

. (i) 4sin®x cos x

(ii) 3sec® x tan x

(i) 18 sec®60 tan 60 (i) —108 cot® 6° cosec® 6°
(i) sec O(tan 0 -+ 26 tan® 0 + 0)
(ii) sin x cos 2x -+ x cos x cos 2x — 2x sin x sin 2x

(cos 1 + x sin l)

. 1 1
(@) — Gcos (i) — X o X
~ 1 —26 i 342
O ey W Ja—m
. —1 . 1
O = () 2 e — o
. sec? x ... COSX
@ J(@ — tan®x) @) 1 4 sin®x
. 2 . —1
@ J2 -1 (i) 142t 42
~ 2 .1 .y
) -x—’" smx—2 (ii) 1+
) 32x B 1
D st e P Je—=—9)
(i) nx™* (tan nx + x sec® nx)
1 x
5 CoOs E
(i) ——
1 4 sin? >
-+ sin >
dy
y—x—=
O+ )
dx y2
dy
X—=—)
(iii) dx - (iv) sin 2y . dy
x? dx
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SOLUTIONS

2 2 _ a2
23, (i) L== iy Y= 3%
yi—x 4y° — 4x°y
~ 3 — 1 — x?
24. (i) - ’2‘ (if) o
. sec? x .\ ay — x°
25. (i ii
@ J(1 — tan®x) @ y? — ax
26. &
27. 0,0
28. 2,2
29. —(20xy -+ 432x%y%)/(6y° — x)®
30. — b cot 0
a
31. b cosec §; — —112 cot® 6
a a
32, —tan 0: sec® 0 cosec 0
) ’ 3a
t
33. tan -
2
3
34, tant; sec !
at
35. 3

—(6sin 6 + 2 cos ) = —(0% cos O — 40 sin § — 6 cos 6)
03 ? 04

39.

Exercises 1la

1. 0-00003632 ft./°C 2. 477 in./min
3. 47 cm®sec; 107 cm®[sec 4. 500 m*min
5. 10 cm/sec 6. 3:18 in./min
7. 20 ft.®/min 8. —l—in./sec
@
9. —0-03 radians/sec 10. L in.
w

Exercises 11b

1. 36 ft.[sec, 36 ft.[sec?; 912 ft.[sec, 181 ft./sec?
2. 8 ft.[sec
3. 3(12 — 1), after 1 sec
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4.
S.

Exer

10

O~ N W=

SOLUTIONS

a = 6t ft.[sect. When =0
321t.,0ft.; —4 ft./sec?, 4 ft.[sec?
cises 1lc
. 1-0006
. 0:7073, 0-7069; 0-7075, 0-7067; 0-7077, 0-7065
. 0:377 in%, 03779 in®
4-47in®; L in./sec
217
. 3% increase
. decrease of 407 cm®
. decrease of 8= cm?
. 0-4 in®
. 0:4%, 9960

Exercises 11d

l.y—6x+11=0,6y+x—8=0
2.y+3x—=3=0,3y—x+1=0
3.y=2x,y+x—1=0,y—2x+4=0
4,3y —5x+16=0
5.y+x—2=0; y=x
6.y—x——a=0,y+x—3a=0
7.y=8,y=4
8. 27y —135x —40=10; y—5x +-8=0
9.2y —x—7=0,2y—x+1=0
10. y=x,y—x—4=0
Exercises 1le
1. Max. of 0 when x = —2; min. of —4 when x =0
2. Max. of 4 when x = }; min. of 0 when x =1
3. Min. of —} when x = —1; max. of { when x =1
4. Min. of }; max. of §, min. of—2—3
5. —J(a® + b9
6. Height 2r//3, radius r/}
7. A = r?sin 26(1 + cos 26)
av
10. XP e — )
Exercises 11f
1§, —%%
2. (0,2); (3, %9)

3

. Min. (1, 3); max. (3, $%); point of inflexion (3, £%)
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10.
12.

13.

14.
15.
16.
17.
18.

19.

22.

23.
24.
25.
27.

28.
30.
31.

33.
35.

SOLUTIONS

EXERCISES 11

. 4i in/sec 2. 4-5 cm/sec away from lens
o
. 2:19 units/unit changeinr 4. 10 in®/sec
.32 & Jmin 6. 20, 16; 18 units
157
. 7_T b 2_77 ; O’ -1-7: b 11; Z + £
3°3 2 3 2
. Increased by 0-31%;
017 cm 11. Decreased by 0429
3; y=15x + 36; (—6, —54)

14+ ./2; 1:1:2‘/3

y=%x—1%
Dy=4x—15 (il y=—Ix+2
Min. when x = 0, point of inflexion whenx =1
a=4%4b=%c=—6,d=—4; (—4, 3
—0-29
5

(i) min. (% 3\/3),max. (?” _3¢3); (i) min. (1, 0),
max (—1, §)
max. (1, $), min. (—1, —3), points of inflexion (0, 0)

(1.2). (-2 L)

min. (2, —3), min. (-2, —%)
l
sin™ (3
max. (1, %), min. (—1, 1)
b

3a
y=—x+2,y=—x+§

Min. (2, 0), (2, 0), (0, 4); min. (2, 4), does not cross x axis,
(Os 8); min' (2’ _4); (0:0): (45 O)

y=2x,(1,2)
T A
4 2
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Exercises 12a

SOLUTIONS

1. 1 2. — 2
X
3. cotx 4. 4
(ax 4+ b)
5, —1 6, — 1 —
2(x—1) cos X sin x
7. sec x 8. 2cotx
9. loge x 10, L= 108 x lggex
X
—2
11.
1 —x?
12. cos x cot x — sin x log, sin x
13, =X £ 1) 15. 1
x(y + 1) x
Exercises 12b
1. 3¢* 2. —2xe~®
3. cos x e*'n® 4, —e®
5. ae®*? , 6. 2% loge 2
7. 2x loge 3 X 3% 8. e”(cos x — sin x)
2 2e2w
9. e (1 — 2x%) 10. ———
(1 +¢€*)
11. e“”(loge x + 1) 12. 2xe " (cos x® — sin x%)
X

15. 4 or —1.

Exercises 12¢

. sec? x etan®

4x%"

X

—= + cos x loge x)

. (sin x)*(x cot x + loge sin x)

1
2
- m(sin X
4
5

. (loge x)° [loge (loge x) +

x“"l(x —1 4 loge x)
x

7. €® 4+ x“(1 + loge x)

a

1
loge x
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SOLUTIONS

8. 2xe® + x*+(1 + loge x?)
9 =2 (x + 1)1/3
T3(x2—D\x —1

2 _ q\l/4a
10, —% (x 1)
x*—1\x®+1
Exercises 12d |

2. —1l<x<1 |

3. 0-5236; 0-4997, 0-5000, 0-5000 to 4 decimal figures

3 x2

. x
5. s1nx"—"x——6—; cosx=]1——=

2
3 5 2 4
s1nx-"-x—x€+1xTO,cosx-"-1-—x;—|—;—4
7WH+M+( D2+ nx"' 4 x®
(i) 1+ nx + ( D 2+n(n—1)(n—2)3+
2! 3!

9. 0-5236; 0-5714; 0-5767 to 4 decimal figures
10. a + bx + cx? + dx® + ex?

Exercises 12e
1 Je= 1~6487,§ ==0-3679
2. loge 1:2 ==0-1823, loge 09 = —0-1054
3.0 1+2x—|—2x2+£+...

2
(i) 1 — 3x —{—2x——E—}—

6
INF RIS S
(i) 1 +x +2+6+

3
4.(i)2x——2x2+§~;£——4x4—|—...;—§<x<§
. 9x? 81x* ) 1 1
i) —|3x + = 4+ 9x® + === 4 ...); —= <=
()(x+2+x+4%— 3<x3

4 (]
R 2 X X X
) x*——4+=—=+4+...; —-1l<x<l1
(iii) 2—!-3 4+
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" dx

10.
13.
18. —

19. —

20.

22.
23.

24.
217.

SOLUTIONS

EXERCISES 12

. () 3x — 1 + 6x loge x  (ii) e“”(l + loge 2x)
X X

(iii) —2e *(cos 4x 4 2 sin 4x)
2t

(iii) —cosec t

Yy
x+y
dy

2
v _ 25e% cos (4x + 2a)
dx?

el(1 +¢e*) 1 — loge 0
® (1 —e*? @ (0 + loge 6)*

() e**™%(x cos x + sin x) (i) L cos (loge X)
x

1 .. 1
Oy P
k= —17
L1
227 21t
1 1+
tet - 12e2t

Max. of1 when x = ¢
e

(1, 1//e); (—1,1/\/e)
y=2x+41

2
(2’ ;é)
(4,3 + loge4)
493

= 5¢** cos (4x + a); a = tan~ lg.cosu ==

1 1 1
—3 KT S T
L —i<x< § 6.1+2!+4!+6!+...
m w
.- - 9. 0-6931
4<x<4

,sina = -,



SOLUTIONS

1
28. £ —
£

29. (i) 408 ) 7" ") "I + loge (loge %)]
(i) x*(1 + loge x) + sec? x e"**®
30. x%(1 + loge x)(l + —-—) + X

+ 2 o4 2
1 1
.-, 0<k<=; 1443
e e
33. 0-000334

4%

35. (i) 1 — 2x + 2x* — 5 (i) 1 — 2x — 2x® — 4x%; 0-00040

5

x 2 xt oxP xt X7
37. — s =
X+2 3 +4+5 3+7+

3n—1 3n+1
+ = +x3"(—1———1)+ as +.

3n—1 3n =n In+1
‘40 :..6 i 2n
38.(a)——%(sinzﬁ%—s%—}—Sn;(9 M—F),
n

o
0<x<<—
2

2 3 __1)ntl
(b) 4—-x2—!—§x3; 2loge2—£-—i—i; =)™
4

4 12 n2m1
39. (@) 1+ x* + %8
X

2 3
(b)x—ic--f-x——z%—...;

(cos@—{— cos B—i-lcos 0+...+
40. 0-6931, 1-0986, 1- 3863, 1-6094, 1-7918

os?" 10 1, )
2n —1 +

Exercises 13a
(Arbitrary constants in these exercises have been omitted)

1.2 3 x¥3 X x' , 3x+13 —\/x loge x _\/xs x

8 12 22
1 1 3 5
2.——,~—,2 x, loge x, — ——, — — | = J/x?
2x* x V¥, loge 10x*°  ¥/x’3
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SOLUTIONS

1x

P sin™t x, sin™* 2x, sin* 3x, sin~*

X
3. sin™ -
6
4, 1 tan* %, tan~1 x, 1 tan~Z, 3 tan~? 3x, 5 tan™" 5x
2 2 3 3

5. tan x, —cot x, $x + }sin x, tan x — x, —cotx — X

6. =5 _ L ., 1. Jx(22 + 22x — 10x°)
Taxt 3x®* x?’ 11
, _4a _b .
To3x® 5% 6xt’
2 —4 4
e x*n, p, #* 4
— 2 (n, p, # 4)

—1 3 5
_ — n+1,2,3
(n—Dx"t (m—2x"?* (n— 3)x""'3( )
7 2
8. x———21-x4+)—f7-; x—}—5x2+2—35x3; 2ablogex—P—-+a2x
X
9, —6cosx; 7sinx; 8sinx + 6cosx
10 p=o% —3x2+2x + 7
11.v=5t—kt*+¢; k=4
12. x = —3sint
13. y=3 —cosx
14, y = x5 — 3x* 4 18
15. x = * — 1023 4 16¢2; 2 sec, 8 sec
Exercises 13b

0 (31‘—;73)—11 (i) J—S——i——z")lz (i) %(7: 5y
(iv) % (Bu — Syre
2. () — 0% 1 " (i) J@x + 1) (iid) TR

(iv) —3(1 —3y)*®

3. ()) —3cos(3x +3) (i) &sin(5u — 1)
(iii)cos (1 — y) (iv) ix — }sin2x
(v) 3x + %sin2x

4. (i) —e*= (if) 25D (iif) —hel-o¥

5. () tlog.(2x + 1) (i) —3loge(l — 2x) (iii) log, (sin x)
(i) 5log, (x® + 1) (v) log,(x® + x — 1) (vi) log, (2 — ™)
(vii) % log, (e** + 3) (viii) } log, (log, u) [N.B. Another form

of this is } log, (log, u%)]

(ix) log, (log, 3x) (x) —log, (cos x — sin x)
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x—1

6. (i) tan™! (
(iii) tan™ ' (x + 1)
7. (i) } sin™* 49

P o —1 u — 1
(iii) sin ( 3 )
8. (i) tloge (x®* + 1)
9. (i) $tan™' 2u
10. (i) loge (1 + tan® x)
Exercises 13c
lLy=14+x—%"

SOLUTIONS

) (ii) }tan™ 4t

(ii) % sin! (_foj—_l)

(i) — &2 — 30*%  (iii) loge (1 + &%)
(i1) %loge (1 + 4u®) (iii) }sin™'2u
(i) —loge (1 — sin®u)

2.y=— 2 +1
X
3. v =92 ft.[sec, 372 ft.
4. v = u + }kt®(k constant)
s = ut + &kt*
5. 1063 ft.
Exercises 13d
1. ()} (ii) 16} (iii) 0
2.() % (i) 16} (iii)) 0
3. (i) 43 (i) 2 (iii) 183
4. (i) % (i) ;—’ (iii) ﬁ;
5.() — (i) — 5% (ii)) — 7
6. (i) 122 (i) —12%
7. () —3% (i) &
8. (i) 4(* —¢%) (i) —3(e — %) (iii) 3(1 —e7®)
9. (i) loge 3 (ii) loge § (iii) loge 5
10. (i) 0 (i) ;—’ (iif) ;—’
11. 242 square units

—
[

. {% square units
. 2 square units

—
HW

T .
. -5 square units

Y
W

. 123 square units
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—

® No w

SOLUTIONS

EXERCISES 13
(i) 32x — 1)* (i) f2x — DY

() 8x7 — 3% F2x® — x (i) mx 8 8 4+ Ex® —x

() 3x7% — £x°2 + 3x%? (i) — = —l— ( @t )x2 — abx

3
G — é + loge x — 3‘3— (i) 2xV% + $x2 + 2,5/

(lll) L§x2/3 3 5/3 + 9 8/3

3\/3
® @) — \/3

y=x —x3+]

Ly =x+2x®
Ly=C——

X

.y=2x2—|——1——1
2x

10. —

11.

12.

13.

14.
16.
17.
18.
20. %

1
V2
2
—-5—logex +—
5 T41—1
343
6
2%
v==4s
y =9+ 6x — 3x* 32
1 sec, 213 ft.
§a'§'

Exercises 14a
(Constants of integration in these exercises have been omitted.)

x2 x3 x2
1.5+x+loge(x—1) 2.?+—2-+x-|—loge(x——1)

3. x +loge(x — 1) 4, — 3t — 5loge (1 — 30)

17,
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SOLUTIONS

5 —ﬁ—lt——ilog(1—3t)6x——log(1—x)
6 9 271 ' ¢
7. & —loge2 8. 3t — fs loge (1 + 41)
9. —}loges 10. %x — %log {a + bx)
Exercises 14b
7 x—3
1. 5tan? 1 2. =t *1(——)
an "t (x + 1) 5 an 5
3. ;—T 4, 5x 4 tanlx
5. -1—tan‘1(3—x——_-—1) 6. =
18 6 2
x° X
7.2 —2tan™'2 8. §—9x+27tan’1§
2 f2x +1 27 =«
9. x +—tan 1(—-—) 10, = 4+ —
* V3 NE 16 8

Exercises 14c

1.

10.

3 5, _
. Eloge (x% + 36) — gtan 1

. loge (x* + 2x -+ 10) +- -; tan‘l(u_—l)

] %loge (x*—x+1) + :-/% tan‘l(
. 3x% + 6x 4 13 loge (x® — 6x + 10) + 18 tan~! (x — 3)
. -65-1oge Gx® — 12x + 13) + \1/—; tan~! /3(x — 2)

-;-loge (x? + 16) + Z tan™?

ANlx IR

3

. 3 loge (x* — 6x 4 10) + 14 tan™ (x — 3)
.- gloge (x* — 8x +25) — 13—1 tan™* (%ﬁ)

=

. x — loge (x* -+ 2x + 5) — %tan’1 (XT—H)

x2 7 1, L (2x+1
pal — = loge (2x% 4 2x 4 5) — = tan 1(__)
2 "7, Be (2" +2x +3) 2 3
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SOLUTIONS

Exercises 14d

1.

—loge (x + 2) + 2 loge (x + 3)

2. loge (2x — 1) — loge (3x — 1)
3. 5loge x — 6loge (1 — x)
4. 2x +loge (x — 2) + loge 2x + 1)
2
5. x; + 3x + 2loge x —%loge(Zx + 1
6. loge (2x + 3) — loge (3x — 1) — 3(7:7:—1)
7. loge (x — 1) + 3 loge (x +2) — —2—1
x po—
t
8. loge(x — 1) 4- 3 loge (2x + 1) — ax 1 1)
9. 2x —-;-loge(3x 1)+ 5logex + 2
X
10. 3 loge (x* + 4) — % loge (x* - 8)
1 x 1 x
11, ~tan ' % — —— tan? -
g 2 82 22
12. %loge (2x + 3) + }loge (2x* — 1)
13. 3loge(x + 1) — loge (x* — x + 1)
14. 1 tan"lx — 1 tan~1 %
3 6 2
15. loge (x — 1) — 3 loge (x* +9) — g—tan-l’—;
16. loge (x + 1) — hloge (x* 4+ 4) + 3 tan—l’—;
17. —L —log, (x - ”)
(1; —q) x—dq
18. = + 9x —2—zloge (x +3)
3 x—3
b
19. —2  Joge(x — — 0 loge(x —b)
@b Tt T -
[
S — —
t e —p Ex 9
1 x% + bz)
20. 1 (
2 — b))\t

499



SOLUTIONS

Exercises 14e

1. —je 2. —¥(a? — x?)P2
3. —J(0 —xP) 4. 1(loge x)*
5. —loge (1 — sin x) 6. % loge (cos®x -+ 2 sin% x)
1 1 2 5/2 3/2
7. ——— 8. s(x + D**— 2(x +1
00° - 6 s(x + 1) 3(x +1)
9. 3(loge x)? 10. loge (loge x)
11, % tan®x 12. —el/®
1 14+ x 1
13. ~lo ( ) 14, — (x® — 2)*®
3 0\ e A
15. 3(sin™? x)* 16. }
17. loge2 18. loge 2)"*1
0ge T (loge 2)
2
19. Liog, (3° + 2) 20. L 1oge (e + 1)(e? + 1)
6 5 2
1 1+4¢°
21, < 22. 5
24 2% oy (1 +e)?
2
23. 27 24. 0
288
25. cos 4 —cos 2
Exercises 14f
1. 3(x® — a)* 2. 3(x® 4 4)*2
3. “;% J(16 — x?) — sin™? f 4. —J(1 — x
5. —cosT x — /(1 — x?) 6. Bx + 1% — ¥(x 4 1)*2
7. %‘(X o 1)7/2 4(x 1)5/2 + (x )8/2
8. 3 9. #(5./5 — 8)
T 1
10. g - Z
Exercises 14g
1 _ cos 9x  cos Sx 5 _ Cos 11x 4 cos 5x
18 10 22 10
3 Sin 11x 1 sin x 4. }sin2x — sin 12x
22 2 24
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SOLUTIONS

1.5 L4 7 9 11
s, sin®x _ sin’x 6._cos x+2cos X cos x
5 7 7 9 11
3
7. g(sin x)*'? g L +2cosx — X
3 cos X
9.0 10. +13z

Exercises 14h

1. —(x +1)e®

2. —%

3. 16%sin 20 + 16 cos 260 — } sin 26

4, e"(x® — 3x* + 6x — 6)

5. —x®cos x + 3x?sin x + 6x cos x — 6 sin x
6. 32loge2 — 8%

x? . 1. X
7. =sin'x — =sin”? =Ja — x*?
> x = o x—|—4\/( x%)

xb x8
8. —loge3x — —
6 =Y T 36

11y 1
9. (———)——lo 2
N3 a2

. 0 cos mb n sin m0

m m?

10.

o

1
11, — — =loge 2
Pt
12. x(loge x)® — 2x loge x + 2x
13. (x + sin x) tang -+ cos x or x tan )EC

14. —x cosec x + loge (cosec x — cot x)
15. {sec x tan x - } log, (sec x + tan x)

Exercises 14i
1. }e"(sin x + cos x)

2. —&e (3 cos 3x + 2 sin 3x)

501



SOLUTIONS

3. 1972 sin §x + 20 cos 3x)
4. 1x,/(16 + x*) + 8loge [x + /(16 + x7)]
5. —% cosec x cot x — % loge (cosec x — cot x)

EXERCISES 14
2. () 32x + 1)"? (i) —}loge (1 — 3x)

3
.\ sec® x
(iii) tan x + 4 tan®*x  (iv)

-~ §€C X

(v) sin"(x ;_ 1) (vi) tan™* (x + 3)
(vii) loge (3 +sin x) (viii) 3 loge (1 + &%)

(ix) loge (sin™ x) (x) —i4cos 7x + % cos 3x
1.4 L}
(xi) —2,/cos x (xii) su; x_ s1n6 XL C,
or — cost x . coz6 x c,

3. (i) 3loge(x —2) — 2loge (x — 1)

@) x +210ge(x—jc—l)
1 1 2 1
iti) — - = 1) — = loge (x* + 4
(i) 5(x+1)+ % oge(x +1) Y 0ge (x” +4)
~ 3 tap X
50 2

(iv) —%1loge9
(v) loge (x — 1) — }loge x — }loge (x* +4) — 3 tan™?!

1 1 3 X
vi) ——loge(x + 1 =1 x*4+9) 4 —=tan™1Z
(vd) 0 ge (x + )+20 oge (x* + )+10 an 3

(vii) 31loge (2 + x) + loge (1 — x) — 2
1 —x)
4 y=6-—2
X
1
6. (i) 1 i) = — =loge2
® (@) 7 o8

T 1 1 o’
i) ——=+-1 2 (iv) —
(iii) 2 6 +6 08e (iv) 3
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11.
12.

13.
14.

15.

16.
17.

19.

21.
24.

25.

26.
28.
29.

SOLUTIONS
1
3 tan™!

. () 10ge 3\/2 :/—2 (ii) loge 4

(m) 5 (iv) w* — 4

@)1 ()3 —4e7)

(b) $(1 — loge 2)

. (@) }loge5 (b) 27 — 4
10.

(i) (a) 48 + loge 2 (b) %2
(i) Hx® — log, (<2 + )]
0-287, 0-605, 1-07

(i) 6 — x"* — 4(6 — X"

(ii)x—l—%loge(x2+4)—%tan—lg
(iii) x — sin x cos x — % sin® x
0
T
1 x—a xX—a
lo (——), sin“J( ) C
a——b Be b—x b—a T &

Dt L (=)
22 Jz a2 e\t 2
n=0; xlogex — x

n =1; %(log, x)

1 1 1
n#1or0; (—) 1 [ogex (1 ——n)]
() - (,,) [1 + (—1)"]

—is(3e” + 2)

sin™ /x — /[x(1 — x)]

(i) 3(5 — 2%)*® — H(5 — 2x)'/*

(i) x +9loge(x — 2) — 6loge (x — 1)

18 2
M3 G (”1)9\/3

5

l[sin'lx + x\/(l — x%)]

@ 1(1 +x2)2

) -1 +l L tc

2(x2 4+ 1) 42+ 1)?
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SOLUTIONS

Exercises 15a

1. $loge2 2. 8% 4+ loge 3
3. % 4. OCA=12,0BA =4
5. 134 6. 3%%
7. % 8. () 11 (i) 114 15
b 2m
9. Y — 10.
() — \/3 (i) p (i) NE 3

Exercises 15b
1. 2,666% lbwt/in.2
21 1
,y—, (i) 0,—
20 75 (0.
1
iii) 0,1 iv) 0, —
(i) (iv) NG
5. 665
Exercises 15¢

77_2

1. 5518w 3. v

5. 2swrah®
6. ma’h 7. wa®b, wab?

9. T 10. 2;" (8¢° + 1)

Exercises 15d
1. (a) %
(b)

()
2. (a) %

bl
I
o DD |y oo :xlw o l:] s

<
!
o

R
o
AR
I T,
© Oy

~~
)
N’
i
[
~
I
o

(C) X = 5’ y = 0

3. (@) One third of the way up a median
(b) With the straight edges as axes % = j = 4a/3w
(¢) One quarter of the way up the axis of symmetry
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SOLUTIONS

(d) On the axis of symmetry distance

h (3a2 + 2ab + b“‘)

4\ g+ ab + b
from the smaller end
5. 5= 5= 256a
' 3157
EXERCISES 15
3
1. 391k% 2. g(%’o)
3. (0,0), (2, 2)8, 2% 6. 2
1 m
7. — 8. =z
J2 3
9 2
9.3717—%-1,3172—!—217 10. log. > , =¥
11, £ =2} 5 =13 12. %a? (fha, foa)
2
13. () % DR (;—T —é ;?T)
. (22 150)
5° 5
15. 8 7q®

16. (1, 6), (2, 3), area = (4% — 6 loge 2)
18. % = 1-35, § = 270
19.t=0,% =16
20.a=1%b=—1
22, 2 =a%+ b%+ ab
(i) b%0 (i) L(a® + ab)0

23. (i) 127 (i) 16 24. 4
25. P=2=% 00 R=0b; %(3a2+4ab + 8b%

C‘Z
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SOLUTIONS

Exercises 16a
3
1. i) y= —cosx + C (ii) x=t§—2t+C

(iii) x = Ce® (iv) y=3%t>+ At + B
. dy .. dy
2. @ = Xx— i) —=2
@y ix ( )dx y
2 2
(iii) x2%=2y (iv)j—:;—%—6y=0
4. x = 10e7*

5. 7 miles/sec

6. Terminal velocity = 32

7 y=Ae““,y=—x5+B
_Bt
8.i=—=(0—e L); i—>= ast—>o0
o y— _abVy (;_1)
' b—a)\r b
10. y = e %*
Exercises 16b
2
1. (i C—tantx)=1 ii = —
@ ¥ an™ x) @) y 1T Ao
1+y) 2 , v
i) lo ( ——=C (@(v) —e?'=¢e"4C
(iii) loge 1y +1+x (iv)
2. s=—1—(tan‘12—tan‘lt—t) 3. r= Ae
30 3 3
5—x
4, y= 5. ' =x*+2x+4
Y 14 5x Y
3 2 2
7. = 9. x* + =C
Y 3 —2x Y
6et1s — 3
10‘H=§/1_5:_—I

Exercises 16¢
1. x = 5e=5t  7e5t
2. x = 3sin2¢ 4 4 cos 2t
3. () 6 ft./sec (i) 10 ft.[sec (iii) 5 ft.
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SOLUTIONS

4 Dv=0 (@@)v=12ft[sec (ii)x=0
5. x = 5¢e% 4 2

1.

3.

4, 1 —yA +x»2=C
9. y = Ce™* 120 days, 30 g
10. xy=C
12. y=xlogex —x +C
R
13. x dz _9—2"
dx 14z
60 + 40e*/5
15. x=—3—W ,U=2,t=%10ge3
xfe*t —1
17. y = —( )
y= ea,_l + 1
— 2
18, =9 _ ¢
Xy
20. y = Acosx + Bsinx — x*
24, x = %(1 — e 0ty ¢ — 400 log. 2
x2
25@”%@+y+n=y—3+c
() A +y) =31 +x7
26. kv = g(e ™ — 1), k®x = g(2 — 2e "' —
27. () v=8 (if) x=4 (ii)v=1
29. a = }loge 2
7V2[ (V—kv)]
30. x =— — v+ V1o
x P v+ 4V log v

EXERCISES 16
(a) sinxcosy=C
b) logey——;:—x +C
(c) ye®* = Cx

(&) #G2) =

y=—2—+A,y=Ce“’

Exercises 17a

3.

A(2’ —'77/4)’ B(S’ —'77/9)’ C(3: 0)9 D(Z’ _77/4)a E(6’ 77'/9)’

F(4, —n/4), G(6, 57/6)
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\o oo

10.

SOLUTIONS

. (0,3), (2, —2/3), (=5,0), (—+/3, —1), (0, —=3)

. (242, 78, (5, —126° 52, (5, =/2) (13, 157° 23") (3, 0), (3\/5,
—26° 34")

.Aand F,Band E,Cand H,D and J

. AQ, 7/4), B2, T/12), C(2, 117/12), D2, —3=/4), EQ,

—57/12), F(2, —=/12)

. P must lie on the positive portion of the x-axis
. (a) On the whole line through the origin making an angle =/4

with Ox,

(b) On the whole line through the origin making an angle
3m/4 with Ox.

B(7a 8)’ D('—'S, __4)

Exercises 17b

1.
2.

3.

4.

1

5
6
7.
0

AB=BC=CD=DA=5; AC=BD=15,/2

A3, —4), B(—3, 4), AB = 10

AB = CD = 3,/13/5, AD = BC = /2,

AC(/137/5) # BD(/197/5), hence ABCD is a parallelogram
AB =2,/13, BC = /13, AC = ./65; hence AC? = AB® +
BC? hence ZABC = 90° and AB = 2BC

. X=120r —6

. All distances equal to 2,/(a® + %)
AB =32, AC=./2,CB =22

. P(5,3)

Exercises 17¢

®» N o

10

B

. Internal (—3, —4), external (—9, —13)
. (8,9
. P(2, 6), Q(17, 36)
(@) Externally in ratio 1:2; (b) internal bisector; (c) externally
in ratio 2:1
. CP:PD =2:3, P(5,5)
. A'(—5% —13), G(-2,1)
P (2p+4a 2q +4b)_ P (5p+a 5q -l—b)
2 H 5

) )

6 6 6 6
P(0, 12). The internal and external bisectors are at right angles
and since P(0, 12) lies on Oy then the internal bisector is Ox.

A,(x2+x3 y2+y3) G(x1+x2+x3 y1+y2+y3)
2 72 3 ’ 3

. 3:1
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SOLUTIONS

Exercises 17d

1.
3.
4.
7.

8.

9.

13 square units

(i) 1 square unit (if) 2% square units (iii) 0 (iv) 3} square units
AB? -+ BC? =52 4 13 = 65 = AC?; AABC is 13 square
units

P(1,1%). Area ABPD is zero hence P lies on line BD.
APAB = APCD = 3% square units

Area ABCD = 32 square units

AABD = AACD = 12 square units. The quadrilateral is
re-entrant.

Exercises 17e

L(x—=32+@p+4*=49

2. 3x% 4 3y* —44x — 46y 239 =0

3.x2 4P —9x —6y+26=0

4. r=28sin0

5.(x—22+(y—8)2=169

6. xy = ¢, x%a% + y*[b: =1

7.y —4x —6y+13=0

8.3)2—x2=0

9. rsinf =6
10. 4x2 + 3y —48 =0

Exercises 17f

1. (—3,5) 2. (5,13),(12,6)

3. (1,—=2)(—1,0) 4. (10, =/6), (10, —=/[6)

5. Common point is (—4,3) 6. Two co-incident points (1, —1)
7. The common points are co-incident (7,7) or the distance

8.

between centres equals the difference between the radii
(34/3, 7/6). Note that the origin does not satisfy both equa-
tions simultaneously

10. (4, 1)

Exercises 17g

1.3x—2y4+9=0 2.5x+y—22=0
3.2y—-5x—10=0 4. x+5r=0
5.2x—3y+4=0 6. y* = 4ax

7 x 12—1 8. x?+y2=25
R T SE A=

2 2
0.5 — L =1 10. x? + y? =25
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SOLUTIONS
EXERCISES 17

2. (5\/2 ——77/4) 2, —577/6) (3\/2 371/4), (2 77/3) (2 11'/2) 3,0

3. Aand F,Cand H,Gand J

4. = \/17; BC = ,/40; CD = 5; DA = 6; area 16 square
units

6. (3, —-2)

7. A(5,0), B(3, —n/[2), C(5, —/2) D3, 0), E(S, 0), F(1, 37/4),
G(@3, n/4)

8. (6, 8), (—18, —40)

9. 3:1),(3:—1)

10, 4x2 4 3y — 16x + 24y 4+ 52 =0
Il.a= —2o0r73}

12. (8, 5)

13. Sides 15, 20, 25; area 150 square units
14. (i) 3:2 (i) 5: —2 (iii) 3: —5

15. Centroid (%, 47), circumcentre (3, 4)
16. 36 square units

17. x* + y2 =27

18. 7: —2 and 1:4

19. b= —4anda= —5,AB=$%/5

20. r==6sin0

2l.a=1

24, x2—2x—2y+2=0

25. () (7, —4); (@) (7, 4); i) (=7, —4)
26. 2=1064x,(x — 46 —y) =1

28. Midpoint of AC (—1, —1), D is point (9, —10)
29. xy = constant

30. r(cos 6 —sin@)=5; x —y=35

Exercises 18a

1. @) y=036x+5 (ii)) y= —058x—4
(iii) y = 1-19x (iv) y = 2-75x

2. () y=>5x @) 3x+2y=0
(i) y=3x—3 (w)y=-2

3. (i) Slope % intercept —2
(i) Slope —1 intercept 3
(iii) Slope § intercept 0
(iv) Slope 0 intercept 6

4. Slope is 22— y !

2
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SOLUTIONS
Exercises 18b

.G Ty—2x—11=0 (@@)y+3x—16=0
(i) y+x—3=0 () 2p+3x—11=0
(®2x+5y+10=0 (@) y+x—6J2=0

5 3 15
TP U L 3
53T Y Tt T g
5. 2 5 31
Ix=—"; ——y4—x=—;x/% 31 — |
2 ) Tt T g T
4, xcosa+ ysinae=a
5.6 =a-+90°(0 < a< /2

0=90°—a(-m7< a<0)
Exercises 18¢

1. (—1, -1
2. (@) 3)b (b) (2%, —3)
a ab
©) (a+b’a +b) @ 29
. (i) and (Gii) are coincident
. k =5, k = 3, lines (if) and (iii) are parallel; k = 6, lines (i)
and (ii) are parallel
.ITx+4y =0
. k= 5; the point (3, 4)
. S5x +7y—35<0
4x — 11y — 28 <0
l4x + 3y +68>0

W

O \O h

Exercises 18d

. (a) 8°8’ (b) 75° 32’ (¢) 90° (d) 90°
2x—3y+8=0
.x+y—5=0
. 75°
.ABy —2x+43=0,,20
BC2y +x—9=0,.20
CA y+ 3x —22=0,./40
Exercises 18e
L. @6k ®)—% (©3 @iz
2. 43¢ opposite side to the origin; —2% same side as origin
3. No, it is one of the excentres
4. a=1
5.(2,4)

DR W =
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SOLUTIONS

Exercises 18f

1.
2.2x—6y+17=0,6x+2y + 11 =0
4,

5. (@) 14x — 21y + 95 =0, (b) Tx + 14y —33 =0

© o wisN

@y +x=0,B)x+4y+3=0,()2x+3y+1=0

2y43x=0,y—2x=0

EXERCISES 18

.(@PQisy+4x—4=0

QRis7y +2x+24=0
PRis3y—x+4+1=0
®B)2y—7x+7=0 ()y+3x—2=0

@) (15 — %) (e) 13 square units
L2y=4x—13 .
.@A4x+3y—39=0 O3Ix—4d+2=0
L2y —x—90=0,y+2x+2=0
X y 5 4 20
2T ST T s T
. k = —4, 3 distinct lines through the point (—2, —1)

k = 2, 3 coincident lines
k = —2, 2 of the lines are parallel

. Incentre (3, 1). Excentres (—1, 3), (6, 2), (2, —6)
a b
SRy (ax; + by + ),y — m(axl + by, +0)
L2y =2
. 3(BC? 4- CA2 + AB?)
. mymymsm, = —1
.Ty—3x+102=0
. Outside
.B(:Z—k,-—k);C(E,k), Locus x -+ S5y =0
3 6 2
Ix—y=3,x+3y=11
x—h_y—k
a b
. 15x + 8y =85
. k=30rk=—%
.(2,2)
L3x+2p=13
. xcos 2a 4 y sin 2a = 2p cos «
Ly =2x —x?
. (@) —3and $ (8) (5, 1), (5,3)

. albzcs —_ a1b302 + azbacl - aszC3 + a3b1C2 - a3b201 = 0
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SOLUTIONS

Exercises 19a

1.

1

SO bW

0
0

() x®+ y2 — 6x — 14y + 33
(i) x*+ y? + 6x + 14y + 22
(i) x2 4 y2 — 10x =0

@) x2+y*+6y—7=0

. (i) centre (—1, —3), radius 2

(ii) centre (—%, —3%), radius %

(iii) centre (%, 0), radius 3

(#v) centre (0, %), radius 2

(v) centre (a, —b), radius /(a* — b?)
(vi) centre (—a, a), radius /2a
x2+y2—14x 412y —15=0

L x2+ 2 —3x—y—2=0

Lx2 4y —6x+4y+11=0

. X2+ y? — 26x — 26y + 169 =0
.y+dx—13=0

. x24+ 2 —5x—y+4=0

Exercises 19b

O R

x4 — 10y =0,r=>5

x4yt —1lx—Ty +30=0,r=£/2
X2+ —5x—y+4=0,r=4J/10

L 2x2 2y + x — 1y — 1=0,r = 1,/130
X2yt +3x —3y - 38=0,r=14/170

Exercises 19¢

1.
3.
5.

3x+4y —45=0 2. 7x—9y 4 59=0
Ilx+7y4+91=0 4, 15y —8x — 56 =0
x + y — 14 = 0 is the equation of the common tangent

Exercises 19d

10.

e N

()t =35t =43

. A is inside, B outside, C is on the circle

k=280

. (1’ 2)’ (_1, 4)

15y — 8x = 4289
5y —3x=0
() (10, 2) (#i) 2 units

. (l) 2’ (1: 3) (ii) (69 3) (—29 _1)’

x24-y2—23x 436y —15=0
x2+y2—10x—6y+9=0; 15y +8x=0
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SOLUTIONS
EXERCISES 19

. x2 4y — 10x — 10y 4+ 25 =0; (8,9) or

x2 + y2 — 60x — 60y + 900 = 0; (12, 6)

c4x —3y+6=0; 4x -3y —14=0
. Centre (3, —1) and radius 1; centre (—1, —5) and radius 5

¢ =12 or —38

. (@cos 0, asin 6)

X4yt —2x 44y —20=0; 7,2
.(2,3); 1; PA=2; tan0 =2
Cxi 4y +2x——40y+237%;

. (Ss 8): (5’ _2)

X+ —dx—5p+4=0; 9 +40x =0

: x>+ )2+ 4x —4=0; centre (—2,0); radius 2./2;

x24+y? —28x —4=0

- X242 —2x — 6y =0; x%+ y*— 12x — 16y + 80 = 0;

x+y—8=0

. 3x% 4 32 —-12x—6y+11—0
AR5 x4y —8x—5y4+16=0

. 21 units

. 2units

. Clrcumcucle is2x242y24+3x —2=0

=%g=2%@21,.5

.(23 0), 6,/14

X2 yi=1

. (@) (—*157, 32 (i) 4x + 3y + 7 = 0 (iii) 1254 square units

. (2,1),1; y=0and 3y — 4x = 0; (213,23
.4y—3x—0

g — g+ (i —f)i= [\/(g1+f1-cl) L@+ f2—c)P?
.x2 42 —4x — 6y —12=0; 3x+4y—43=0;

(=1, —1)

(L9 O, -1

. hcosa) , .
. Xcosa + ysin « = a; centre | h,a — — , x*sin o0 — xy

cosa+ay=a Sin &

. (=1, 1); AC=,/13; 3x2+3y —Ix—6p—7=0
.x2+y — 10y + 20 = 0; x%4 y2 — 20y - 80 =0

. (kB2 — Dx? + (k2 — 1)y® + 2x(k?r, — r)) = 0; k:1, externally
co(fr 4 gH) > 22

. x? Lyt =a?— be

. x2 4 y2 4+ 12x 4 4y — 60 = 0;

x24+y? 4+ 12x — 4y — 60 =0

. (4,3); x4y — 12x — 9y 4 50 = 0;

X4+ yE48x 4+ 6y —75=0; Ty —24x 4+ 175=0
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SOLUTIONS

Exercises 20a

1. (i) (2,0),x = —2
@) (—6,0),x =6
@) (0,3),y=—3
(®) (—%,0,x=3%
. (2,0)
. Relative to axes horizontally and vertically through the
lowest point of the rod; x? = 36y
4. )y=x+1Ly=—x+3
@ x=y—3y=—x—9
. (27, — 18)
(@) yr=10x+2y + 4
(i) x2 — 2xy + y* + 8x + 8y — 16 =0
(iii) 16x% — 24xy + 9y* + 118x + 174y + 316 =0
8. (24, —24)

w N

(=24

Exercises 20c

2. 1 unit
3. Tangent y — tx + 32 =0, normal ty + x = 6f + 33
4. y? = 4ax + 9a*

Exercises 20d

x—y+1i=
—25x + 10y —4=0
4. y* = 2a(x — a). Vertex (a, 0), focus (3a/2,0)

Exercises 20e

1. e = &, (46,0), x = + 5, area = 80w
2. e =%, (0, +6), y = 4+, area = 80n

3. =%,(i2,0),x=:t%5-,area=1_51’

4
4, ¢ = ﬁ L (£4/2,0), x = +3/2, area = 2,/6m
1
5. = > (0, +1), y = +2, area = /27
6. e = &, foci (-+4, —2), (—2,—2): area 20+. Directrices
x=28and x=—%
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SOLUTIONS

13 by (:&:5 j:
8. 8x2 -+ 3y2 —35, e=J%
2 2
9. Semi-major axis 5, semi-minor axis 3; x; + ;—5 =1
10. a =3,b=./5; x=4,x=9%; (5 2);
x—5" (y—2?°
=1
9 + 5

Exercises 20f

X+ y=5x—y+1=0
c2x+S5y=12,5x—2y =1
.by—ax_2ab ay -+ bx = g% — b?
y=2x4.,/14

._y-—2xi6

y=3xL7

10 2+ =1

Exercise 20g
1. Xcos 6 —I—Xsin0= 1
a b

Exercise 20h

1. 2x 43y =12
2y —3x = 4+ V&
2. ab
3. &8y
4x®  4y°
6. e =%
8. x, == ae® — 1ae®0®

2 12
10. Centre [O 1( b _a > b sin 0)]

sin 0

radius 1(—— + — b’ sin 0‘)
sin 0 b

Exercises 20i
3
‘/  (£3¢/3,0),x = & - J3

%, (05 ﬂ:4)’ y o :[:4
%9 (:l:%’ 0)’ X == Zl:%
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SOLUTIONS

4. e =2,(£9,0),x = +%
5. e= %0, £3), y = £33
6. e = /2, (£52,0), x = £5/2
7. —s‘; (:i:42, +%
2 2
3 13 36 13
2 2
9. X X -1
5 11

Exercises 20j
L Jf3x—y=14/3; x+J3y=13
4, a® — bP*m? = n?; a®l® 4 b’m® = n®
5. bx (2 4+ 1) — ay(t®? — 1) = 2abt
10. 8x — 9y = +5; (+4, £3)

Exercises 20k

L()y=243x; (0,12
(i) y = x; (£2,0)

2. —bja < m < bla
3.(@) xy=16 @) xy=~1
iy (x—Dy=9 (@) (x+DHy—D=—4
4.4y +x=8,y—4x+15=0
5. x+ty=2
6.2x —y=3,2y+x=4and 2x —y=—3,2p+x=—4
8. y=x
9. 4x — 3y = 47, (4,3) and (—4, —3). 7 square units
(n 2c21)
10. | —,—
21 n

Exercises 201

. 2xy = k? (rectangular hyperbola)
.y =2c%a
. Major axis b, e = Z?a

. tan1 1%

(a3 — 1) — 2xopom + Y3+ 1 =0

. When P is a point of intersection of the two curves the normal
to xy = ¢ is a tangent to x* — y* = a® Hence the curves
cut at right angles.

OV AN

p—
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SOLUTIONS

Exercises 20m

VbW

OO0 % o

(1L, 1A, =1)

. 6y —3x —54 =0, 8y — 3x + 108 = 0, tan— (}9)

- (4,8)

.y —6x+8=0, (4,16); this is a double tangent

Y+ 12x — 64 =0, (16, —128)
9y 4+ 2x — 261 =0, (9, 27); x =0, (0, 0)

. 3btyx — 2ay = abt?

@R+ s + 8), (1 + ttts]

. 9E - 24x —25=0

- [P+ pg + ¢% (p + 9)pgl, pg = +1, y* = x + 1 parabola

. (3—-m,A/m?3),2\/2y=2\/mx—m\/m

2

EXERCISES 20

. y* = 16a(x + 2a)
13.
17.
18.
19.

20.

y? = a(x — 3a)
y2 = da(x — a)
ky — 2ax = 2ah
tan™ (3)
2 2 2
2/(a’m -l—b), g\/26
JA+md) 3
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INDEX

Abscissa, 357
Acceleration, forms for, 336
acos b + bsin 6, 117
Addition formulae, 109 et seq.
Angle,
between lines, 389
measurement, 94
Applications of the derivative,
as a rate measurer, 218
for approximations, 223
to kinematics, 220
Approximations, 223
for a function as a polynomial, 252
-for sin 0, cos 0, tan 6 when 0 is
small, 125
Arbitrary constant, 268, 279, 334
Area,
between parabolas, 313
between y-axis and curve, 315
of an ellipse, 433
of a loop, 317
of a quadrilateral, 368
of a sector of a circle, 124
of a triangle, 156
in terms of the co-ordinates of its
vertices, 366
positive and negative, 315
Argand diagram, 71
Arithmetic, mean, 13, 35
sequence or progression, 35
series, 36
Asymptotes of a hyperbola, 449
Axes, 357

Binomial coefficients, 49
relations between, 50, 51

Binomial theorem
for non-positive integral power, 56
for positive integral power, 48
proof by induction, 53

Bisectors of angle between lines, 397

Cartesian co-ordinates, 357
Centre,
of a circle, 403
of an ellipse, 434
of gravity, 326
of circular arc, 327
of hemisphere, 329
of sector, 329
of semi-circular arc, 327
of semi-circular sector, 329
of mass (see centre of gravity)
Centroid of triangle, 366
Change of origin, 373
Circumcircle, 146
Co-incident lines, 386
Complex conjugate, 68
Complex numbers, 64 et seq.
geometry of, 72 ef seq.
imaginary part of, 66
modulus, 71
real part of, 66
representation of, 70 et seq.
rules for, 66 er seq.
Complex plane, 71
Condition for three points to be
collinear, 367
Continuous function, 173
Cos (4 &+ B), 109
Cos 24, 111
Cos 34, 112
Cos C &+ cos D, 115
Cos 0 when 0 is small, 125
Cosine formula, 147
Cotangent formula, 148
Cube roots of unity, 77
Curve sketching, 239

Definite integral,
as an area, 280
as a sum, 280
change of limits, 297
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INDEX

Degree, unit of angle, 94

Derivative (see also differential coeffi-

cient),

applied to kinematics, 220

as a rate measurer, 218

second and higher, 197
Difference, derivative of, 188
Differential coefficient, 180

of ax™, 183

of constant, 188

of cos x, 184

of difference, 188

of exponential function, 248

of function of a function, 200

of inverse functions, 206

of inverse trigonometric functions,

207

of logarithmic function, 246

of product, 190

of quotient, 192

of sin x, 184

of sum, 188

of trigonometric functions,

197

of x», 203

second and higher, 197

standard forms, 215
Differential equations
d2x
an = kx, 343

first order, 341

formation of, 337

general solution, 334

order of, 340

particular solution, 334

variables separable, 341, 345
Differentiation, 180

from first principles, 182

from parametric equations, 213

of implicit functions, 209
Director circle,

of ellipse, 438

of hyperbola, 449
Directrix,

of ellipse, 431

of hyperbola, 445

of parabola, 418
Discontinuous function, 173
Discriminant, of quadratic equation,

82

Distance between two points,

in cartesians, 361

in polars, 362

196,

e, as a limit, 246
as a series, 259
€% as a serics, 258
Eccentric angle, 440
Eliminant, 15
Elimination, 15
Ellipse,
area, 433
centre, 434
directrix, 431
eccentric angle, 440
eccentricity, 432
equation of normal to, 436, 439
equation of tangent to, 436, 439
focus, 431
parametric equation, 438
simplest equation, 431
Equation,
in one unknown, 2
in which unknown is an index,
27
miscellaneous, 3
of circle, 368
of curve, 368
of first degree is a straight line,
379
of straight line, 377 et seq.
quadratic, 2
simultaneous, 6
special forms for a straight line,
382 et seq.
trigonometric, 130 er seq.
Equations of motion, 337
Explicit function, 171
Exponent, 21
Exponential function, 249
differential coefficient of, 248
graph of, 249
series for, 258
External division, 362

Factor formulae, 115
Factorial n, 51
Focus,
of an ellipse, 431
of a hyperbola, 445
of a parabola, 418
Function, 170,
continuous, 173
differential coefficient of, 180 et
seq.
discontinuous, 173
explicit, 171
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INDEX

Function, (contd.)
graph of, 173
implicit, 172
Maclaurin’s series for, 255
many valued, 172
maxima and minima of, 229
of a function, 197
point of inflexion of, 235
polynomial approximation for, 252
rate of change of, 174
single valued, 172
sketching graph of, 239

Geometric mean, 13, 39
Geometric sequence or progression, 39
Geometric series, 39
Gradient,
of a chord, 175
of a tangent, 177
Graph of a function, 173

Hero’s formula, 157, 163
Higher derivatives, 197
Hyperbola, asymptotes of, 449
centre, 445
directrix, 443
eccentricity, 445
equation of normal to, 446
equation of tangent to, 446
focus, 443
parametric equations, 446
simplest equation, 444

Implicit function, 172
derivative of, 209
Indices, 21
rules for, 21 et seq.
Induction, 59
Inequalities, 9
Inequality of means, 13
Infinite geometric series, 42
Integers, 1
Integration, 267
as reverse of differentiation, 267
as summation, 277
by change of variable, 302
by parts, 304, 307
by substitution, 292 et seq.
five elementary rules, 271
of rational functions, 285
of trigonometric functions, 301
et seq.
Intercept form of straight line, 381

Internal division, 362
Inverse functions, derivatives, 206, 207
Inverse trigonometric functions, defini-
tions, 120
derivatives, 207
graphs of, 121
principal values, 121
Irrational numbers, 2

Latus rectum,
of ellipse, 432
of hyperbola, 445
of parabola, 419
Length,
of arc of circle, 124
of perpendicular from a point to a
line, 394
of a tangent to a circle, 408
Limits, notation, 179
Loci, 368, 427
Logarithmic differentiation, 250
Logarithmic function, 245
derivative of, 246
graph of, 245
series for, 258
Logarithms,
calculation of, 260
definition, 24
rules for, 25
transformation rule, 26

Maclaurin’s series, 255
for cos x, 256
for e£2, 258
for log, 1 + x), 258
for sin x, 256
Mathematical induction, 59
proof of binomial theorem by, 53
Maxima and minima, 229
distinction between, 230, 231
Mean value, 319
Modulus,
of a complex number, 71
of a real number, 12
Multiple angle formulae, 111, 112

Negative side of a line 386
Normal,
to a curve, 226
to an ellipse, 436
to a hyperbola, 446
to a parabola, 421, 426
to a semi-cubical parabola, 459, 460
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Numbers,
algebraic, 1
complex, 65
irrational, 2
rational, 1
transcendental, 2

Ordinate, 357
Orthogonal trajectories, 339

Parabola,
directrix, 418
equation of,
normal to, 421, 426
tangent to, 421, 426
focus, 418
parametric equations, 425
simplest equation, 418
vertex, 419
Parallel lines, 386
Parametric equations,
of circle, 370
of ellipse, 438
of hyperbola, 446
of parabola, 425
of rectangular hyperbola, 453
of semi-cubical parabola, 459
Partial fractions, rules for, 16 er seg.
Pascal’s triangle, 48
Perpendicular,
distance of point from a line, 393
form of the equation of a line, 384
lines, 391
Point of inflexion, 235
criterion for, 237
Points of intersection,
of lines, 386
and circle, 409
and ellipse, 436
and parabola, 423
of two loci, 371
Polar co-ordinates, 357, 358
Polynomial approximation for a func-
tion, 252
Positive side of a line, 386
Product, derivative of, 190

Quadratic equation, 2
discriminant of, 82
relation between roots and coeffi-
cients, 89
solution of, 82

Quadratic equation, (contd.)
sum and product of roots, 89
type of roots, 82

Quadratic function, 84
graph of, 86
sign of, 85

Quotient, derivative of, 192

Radian, 94
Radius of a circle, 403
Radius vector, 358
Rate of change of a function, 174
Rational algebraic function, 285
Rational numbers, 1
Real numbers, 2
Rectangular hyperbola 452,
eccentricity, 452
equation of, 452
equation referred to its asymptotes
as axes, 453
parametric equations, 453
Root mean square value, 321
Roots of a quadratic equation, 82

Second derivative, 197
Semi-cubical parabola,
equation, 457
equation of normal to, 458
equation of tangent to, 458
parametric equations, 459
Sequences, 32
arithmetic, 35
geometric, 39
Series,
arithmetic, 36
geometric, 39
infinite geometric, 42
Simple harmonic motion, 338
Simultaneous equations, 6
Sin (4 4 B), 109
Sin 24, 111
Sin 34, 112
Sin C + sin D, 115
Sin 6 when 0 is small, 125
Sine formula, 146
Small angles, 124
Solid of revolution, 322
Solution of triangles, ambiguous case,
149
Square root of —1, 65
Standard forms,
for derivatives, 215
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Standard forms, (contd.)
for integrals, 268
Straight lines,
equation for, 377 ef seq.
perpendicular, 391
positive and negative sides, 386
Sub-multiple angle formulae, 112
Sum,
derivative of, 188
of arithmetic series, 36
of geometric series, 39
of infinite geometric series, 42
of positive integers, 38

Tan (4 + B), 109
Tan 24, 111
Tan 34, 112
Tan 6 when 0 is small, 125
Tan x, derivative of, 196
Tangent,
equation of tangent,
to circle, 406
to a curve, 226
to an ellipse, 436
to a hyperbola, 446
to a parabola, 421, 426
to a semi-cubical parabola, 458

INDEX

Tangent, (contd.)

length of tangent to a circle, 408
Transcendental numbers, 2
Transformation of cartesians to polars

and vice versa, 358

Trigonometric equations, 130 et seq.

general solution, 131, 132

mvolving different ratios of the

same angle, 135

involving multiple angles, 137
Trigonometric functions, 94

for any angle, 101 ef seq.

graphs of, 105, 106

relationships for, 96, 97

signs of, 100
Trigonometric identities, 96 et seq.

Variables,
dependent, 171
independent, 171
Variables separable, differential equa-
tions with, 341, 345
Vector, 71
Vectorial angle, 357
Vertex of parabola, 419
Volume of a solid revolution, 322,
325
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