Solutions to Chapter 3 Exercise Problems

Problem 3.1
In the figure below, points A and C have the same horizontal coordinate, and $\omega_{3}=30 \mathrm{rad} / \mathrm{s}$. Draw and dimension the velocity polygon. Identify the sliding velocity between the block and the slide, and find the angular velocity of link 2.

Position Analysis: Draw the linkage to scale.

Velocity Analysis:
${ }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{A}_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B}_{3} / \mathrm{A}_{3}} \Rightarrow\left|{ }^{1} \mathbf{v}_{\mathrm{B}_{3}}\right|=\left|{ }^{1} \omega_{3}\right|\left|\mathbf{r}_{\mathrm{B}_{3} / \mathrm{A}_{3}}\right|=30(2.2084)=66.252 \mathrm{in} / \mathrm{sec}$
${ }^{1} \mathbf{v}_{\mathrm{B}_{4}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{3}}$
${ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}} / \mathrm{C}_{2}={ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B}_{2}} / \mathrm{C}_{2}$
Now,
${ }^{1} \mathbf{v}_{\mathrm{B}_{3}}=66.252 \mathrm{in} / \mathrm{sec}$ in the direction of $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$
${ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}} \quad\left(\perp\right.$ to $\left.\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right)$
${ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{3}}$ is on the line of AB
Solve Eq. (1) graphically with a velocity polygon. From the polygon,
${ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{3}}=15.63 \mathrm{in} / \mathrm{sec}$
Also,
$\left|1 \omega_{2}\right|=\frac{\left|\mathbf{v}_{\mathrm{B}_{2} / \mathrm{C}_{2}}\right|}{\left|\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{68.829}{3}=22.943 \mathrm{rad} / \mathrm{sec}$
From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{2}=22.943 \mathrm{rad} / \mathrm{sec} \mathrm{CW}
$$

Problem 3.2
If $\omega_{2}=10 \mathrm{rad} / \mathrm{s} C C W$, find the velocity of point B_{3}.

Position Analysis

Draw the linkage to scale.

Velocity Analysis

$$
\begin{align*}
& { }^{1} \mathbf{v}_{A_{2}}={ }^{1} \mathbf{v}_{C_{2}}+{ }^{1} \mathbf{v}_{A_{2} / C_{2}}=0+{ }^{1} \omega_{2} \times \mathbf{r}_{A / C} \Rightarrow\left|{ }^{1} \mathbf{v}_{A_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|\mathbf{r}_{A / C}\right|=10(1.5)=15 \mathrm{in} / \mathrm{s} \tag{1}\\
& { }^{1} \mathbf{v}_{E_{3}}={ }^{1} \mathbf{v}_{A_{3}}+{ }^{1} \mathbf{v}_{E_{3} / A_{3}}={ }^{1} \mathbf{v}_{A_{2}}+{ }^{1} \mathbf{v}_{E_{3} / A_{3}} \\
& { }^{1} \mathbf{v}_{E_{3}}={ }^{1} \mathbf{v}_{E_{4}}+{ }^{1} \mathbf{v}_{E_{3} / E_{4}} \\
& { }^{1} \mathbf{v}_{E_{4}}={ }^{1} \mathbf{v}_{D_{4}}+{ }^{1} \mathbf{v}_{E_{4} / D_{4}}=0+{ }^{1} \omega_{4} \times \mathbf{r}_{E / D}
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{A_{2}}=15 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{A / C}\right) \\
& { }^{1} \mathbf{v}_{E_{3} / A_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{E / A} \quad\left(\perp \text { to } \mathbf{r}_{E / A}\right) \\
& { }^{1} \mathbf{v}_{E_{4} / D_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{E / D} \quad\left(\perp \text { to } \mathbf{r}_{E / D}\right)
\end{aligned}
$$

and $\quad \omega_{3}=\omega_{4}$, need to get ω_{3} to find ${ }^{1} \mathbf{v}_{B_{3}}$.

Define the point F where $\overline{A F} \perp \overline{D F}$ in position polygon.

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{F_{3}}={ }^{1} \mathbf{v}_{A_{3}}+{ }^{1} \mathbf{v}_{F_{3} / A_{3}} \\
& { }^{1} \mathbf{v}_{F_{3}}={ }^{1} \mathbf{v}_{F_{4}}+{ }^{1} \mathbf{v}_{F_{3} / F_{4}} \\
& { }^{1} \mathbf{v}_{F_{4}}={ }^{1} \mathbf{v}_{F_{3}}+{ }^{1} \mathbf{v}_{F_{4} / F_{3}} \\
& { }^{1} \mathbf{v}_{F_{4}}={ }^{1} \mathbf{v}_{F_{4} / D_{4}}
\end{aligned}
$$

$10 \mathrm{in} / \mathrm{s}$

After finding point " f 3 ", construct the velocity image to find the point "b3"
a line \perp to $\overline{A B}$ through the point "a"
a line \perp to $\overline{B F}$ through the point " f 3 "
fine the point "b3"

From the polygon,

$$
{ }^{1} \mathbf{v}_{B_{3}}=9.4 \mathrm{in} / \mathrm{s}
$$

Problem 3.3
If $\omega_{2}=100 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$, find $\boldsymbol{v}_{\mathrm{B} 4}$.

Position Analysis

Draw the linkage to scale.

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{G_{2}}={ }^{1} \mathbf{v}_{A_{2}}+{ }^{1} \mathbf{v}_{G_{2} / A_{2}}=0+{ }^{1} \omega_{2} \times \mathbf{r}_{G / A} \\
& { }^{1} \mathbf{v}_{G_{3}}={ }^{1} \mathbf{v}_{C_{3}}+{ }^{1} \mathbf{v}_{G_{3} / C_{3}}={ }^{1} \mathbf{v}_{C_{4}}+{ }^{1} \omega_{3} \times \mathbf{r}_{G / C} \\
& { }^{1} \mathbf{v}_{G_{3}}={ }^{1} \mathbf{v}_{G_{2}}+{ }^{1} \mathbf{v}_{G_{3} / G_{2}} \\
& { }^{1} \mathbf{v}_{C_{4}}={ }^{1} \mathbf{v}_{C_{3}}={ }^{1} \mathbf{v}_{D_{4}}+{ }^{1} \mathbf{v}_{C_{4} / D_{4}}=0+{ }^{1} \omega_{4} \times \mathbf{r}_{C / D}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left|{ }^{1} \mathbf{v}_{G_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|\mathbf{r}_{G / A}\right|=100(3.44)=344 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{G / A}\right) \\
& { }^{1} \omega_{3}={ }^{1} \omega_{2} \\
& \left|{ }^{1} \mathbf{v}_{G_{3} / C_{3}}\right|=\left|{ }^{1} \omega_{3}\right|\left|\mathbf{r}_{G / C}\right|=100(2.65)=265 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{G / C}\right) \\
& { }^{1} \mathbf{v}_{G_{3} / G_{2}} \\
& \text { is on the line of EG } \\
& { }^{1} \mathbf{v}_{C_{4} / D_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{C / D} \quad\left(\perp \text { to } \mathbf{r}_{C / D}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon.

Velocity scale

To find the point " b_{4} " use velocity polygon

$$
\left|{ }^{1} \mathbf{v}_{C_{4} / D_{4}}\right|=612.14 \mathrm{in} / \mathrm{s}
$$

Problem 3.4
If $\omega_{2}=50 \mathrm{rad} / \mathrm{s} C C W$, find $v_{\mathrm{D}_{4}}$.

Position Analysis

Draw the linkage to scale.

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{2}}={ }^{1} \mathbf{v}_{A_{2}}+{ }^{1} \mathbf{v}_{B_{2} / A_{2}}=0+{ }^{1} \omega_{2} \times \mathbf{r}_{B / A} \\
& { }^{1} \mathbf{v}_{B_{3}}={ }^{1} \mathbf{v}_{D_{3}}+{ }^{1} \mathbf{v}_{B_{3} / D_{3}}={ }^{1} \mathbf{v}_{D_{4}}+{ }^{1} \omega_{3} \times \mathbf{r}_{B / D} \\
& { }^{1} \mathbf{v}_{B_{3}}={ }^{1} \mathbf{v}_{B_{2}}+{ }^{1} \mathbf{v}_{B_{3} / B_{2}} \\
& { }^{1} \mathbf{v}_{D_{4}}={ }^{1} \mathbf{v}_{D_{3}}
\end{aligned}
$$

Now,

$$
\left|{ }^{1} \mathbf{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|\mathbf{r}_{B / A}\right|=50(2.39)=119.5 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{B / A}\right)
$$

$$
{ }^{1} \omega_{3}={ }^{1} \omega_{2}
$$

$$
\left|{ }^{1} \mathbf{v}_{B_{3} / D_{3}}\right|=\left|{ }^{1} \omega_{3}\right|\left|\mathbf{r}_{B / D}\right|=50(3.06)=153 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{B / D}\right)
$$

${ }^{1} \mathbf{v}_{B_{3} / B_{2}}$ is on the line of AB

$$
{ }^{1} \mathbf{v}_{D_{4}}={ }^{1} \mathbf{v}_{D_{3}} \quad\left(/ / \text { to } \mathbf{r}_{D / A}\right)
$$

Solve Eq. (1) graphically with a velocity polygon.

From the velocity polygon

$$
\left|\left.\right|^{1} \mathbf{v}_{D_{4}}\right|=164.34 \mathrm{in} / \mathrm{s}
$$

Problem 3.5
Determine the velocity and acceleration of point B on link 2.

Position Analysis

Draw the mechanism to scale.

Velocity Analysis

$$
\left|\mathrm{r}_{\mathrm{B} / \mathrm{A}}\right|=3 / \cos 30 \mathrm{E}=3.4641
$$

The velocity of B_{2} is given by

$$
\begin{equation*}
{ }^{{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{1}}={ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{1}}+{ }^{1} \boldsymbol{\omega}_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} .} \tag{1}
\end{equation*}
$$

and
$\left|{ }^{1} \omega_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=1 \cdot 3.4642=3.4642\left(\perp\right.$ to $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$ in the direction indicated by the cross product $)$
The direction for the velocity ${ }^{1} \mathbf{V}_{\mathrm{B}_{2}} / \mathrm{A}_{1}$ must be vertical. Equation (1) can be solved for the unknowns. From the polygon,

$$
\begin{aligned}
& { }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{A}_{1}}=4.0278 \mathrm{in} / \mathrm{sec} \uparrow \\
& { }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{1}}=2.0148 \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

Acceleration Analysis
The acceleration of B_{2} is given by

$$
\begin{equation*}
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{1}}={ }^{4} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{1}}+{ }^{1} \boldsymbol{\alpha}_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}+{ }^{1} \omega_{4} \times\left({ }^{1} \omega_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right)+2^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{1}} \tag{2}
\end{equation*}
$$

The individual vectors are:

$$
\begin{aligned}
& \mid{ }^{1} \omega_{4} \times\left({ }^{1} \omega_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=(1)^{2} \cdot 3.4642=3.4642 \mathrm{in} / \mathrm{sec}^{2}\left(\text { opposite to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right)\right. \\
& { }^{1} \boldsymbol{\alpha}_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}=0 \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}=0 \\
& 2^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{1}}=2(1) 2.0148=4.0296 \mathrm{in} / \mathrm{sec}^{2}\left(\perp \text { to }{ }^{4} \mathbf{v}_{\mathrm{V}_{2} / \mathrm{A}_{1}} \text { in the direction up and to left }\right) \\
& { }^{1} \boldsymbol{\alpha}_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\left(\text { vector } \perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{4} \mathbf{a}_{\mathrm{B}} / \mathrm{A}_{1}(\text { vector along the slot })
\end{aligned}
$$

Equation (2) has only two unknowns and can be solved. From the polygon, the acceleration of B_{2} is $4.666 \mathrm{in} / \mathrm{sec}^{2}$ upward

Problem 3.6
If ${ }^{1} \omega_{2}=100 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$, find ${ }^{1} \omega_{6}$.

Position Analysis

Draw the linkage to scale.

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{2}}={ }^{1} \mathbf{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{B / A} \Rightarrow\left|{ }^{1} \mathbf{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|\mathbf{r}_{B / A}\right|=100(1.2)=120 \mathrm{in} / \mathrm{s} \\
& { }^{1} \mathbf{v}_{C_{3}}={ }^{1} \mathbf{v}_{B_{3}}+{ }^{1} \mathbf{v}_{C_{3} / B_{3}}={ }^{1} \mathbf{v}_{B_{2}}+{ }^{1} \omega_{3} \times \mathbf{r}_{C / B} \\
& { }^{1} \mathbf{v}_{C_{4}}={ }^{1} \mathbf{v}_{D_{4}}+{ }^{1} \mathbf{v}_{C_{4} / D_{4}}=0+{ }^{1} \omega_{4} \times \mathbf{r}_{C / D} \\
& { }^{1} \mathbf{v}_{F_{6}}={ }^{1} \mathbf{v}_{F_{5}}+{ }^{1} \mathbf{v}_{F_{6} / F_{5}} \\
& { }^{1} \mathbf{v}_{F_{6}}={ }^{1} \mathbf{v}_{E_{6}}+{ }^{1} \mathbf{v}_{F_{6} / E_{6}}=0+{ }^{1} \omega_{6} \times \mathbf{r}_{F / E}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{2}}=120 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \mathbf{r}_{B / A}\right) \\
& { }^{1} \mathbf{v}_{C_{3} / B_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{C / B} \quad\left(\perp \text { to } \mathbf{r}_{C / B}\right) \\
& { }^{1} \mathbf{v}_{C_{4} / D_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{C / D}\left(\perp \text { to } \mathbf{r}_{C / D}\right) \\
& { }^{1} \mathbf{v}_{F_{6} / F_{5}}\left(/ / \text { to } \mathbf{r}_{E / F}\right) \\
& { }^{1} \mathbf{v}_{F_{6} / E_{6}}={ }^{1} \omega_{6} \times \mathbf{r}_{F / E} \quad\left(\perp \text { to } \mathbf{r}_{F / E}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon.

To find the point " f_{3} " construct the velocity image by

$$
\overline{B C}: \overline{B F}=\overline{b c}: \overline{b f}
$$

and ${ }^{1} \mathbf{v}_{F_{3}}={ }^{1} \mathbf{v}_{F_{5}}$

From the polygon,

$$
{ }^{1} \mathbf{v}_{F_{6} / E_{6}}=25.2 \mathrm{in} / \mathrm{sec}
$$

and

$$
\left|{ }^{1} \omega_{6}\right|=\frac{\left|{ }^{1} \mathbf{v}_{F_{6} / E_{6}}\right|}{\left|\mathbf{r}_{F / E}\right|}=\frac{25.2}{4.549}=5.54 \mathrm{rad} / \mathrm{sec} C W
$$

Problem 3.7
If $\omega_{2}=50 \mathrm{rad} / \mathrm{s} C C W$, find the velocity of point G_{5}.

Position Analysis

Draw the linkage to scale.

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{2}}={ }^{1} \mathbf{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{B / A} \Rightarrow\left|{ }^{1} \mathbf{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|\mathbf{r}_{B / A}\right|=50(1.16)=58 \mathrm{in} / \mathrm{s} \\
& { }^{1} \mathbf{v}_{C_{3}}={ }^{1} \mathbf{v}_{B_{3}}+{ }^{1} \mathbf{v}_{C_{3} / B_{3}}={ }^{1} \mathbf{v}_{B_{2}}+{ }^{1} \omega_{3} \times \mathbf{r}_{C / B} \\
& { }^{1} \mathbf{v}_{C_{4}}={ }^{1} \mathbf{v}_{C_{3}}={ }^{1} \mathbf{v}_{D_{4}}+{ }^{1} \mathbf{v}_{C_{4} / D_{4}}=0+{ }^{1} \omega_{4} \times \mathbf{r}_{C / D} \\
& { }^{1} \mathbf{v}_{E_{4}}={ }^{1} \mathbf{v}_{D_{4}}+{ }^{1} \mathbf{v}_{E_{4} / D_{4}}=0+{ }^{1} \omega_{4} \times \mathbf{r}_{E / D} \\
& { }^{1} \mathbf{v}_{G_{5}}={ }^{1} \mathbf{v}_{E_{5}}+{ }^{1} \mathbf{v}_{G_{5} / E_{5}}={ }^{1} \mathbf{v}_{E_{4}}+{ }^{1} \omega_{5} \times \mathbf{r}_{G / E} \\
& { }^{1} \mathbf{v}_{F_{5}}={ }^{1} \mathbf{v}_{F_{6}}+{ }^{1} \mathbf{v}_{F_{5} / F_{6}}=0+{ }^{1} \mathbf{v}_{F_{5} / F_{6}}
\end{aligned}
$$

Now,

$$
{ }^{1} \mathbf{v}_{B_{2}}=58 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{B / A}\right)
$$

$$
{ }^{1} \mathbf{v}_{C_{3} / B_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{C / B} \quad\left(\perp \text { to } \mathbf{r}_{C / B}\right)
$$

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{C_{4} / D_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{C / D}\left(\perp \text { to } \mathbf{r}_{C / D}\right) \\
& { }^{1} \mathbf{v}_{G_{5} / E_{5}}={ }^{1} \omega_{5} \times \mathbf{r}_{G / E}\left(\perp \text { to } \mathbf{r}_{G / E}\right) \\
& { }^{1} \mathbf{v}_{F_{5} / F_{6}}\left(/ / \text { to } \mathbf{r}_{G / E}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon.

From the polygon,

$$
{ }^{1} \mathbf{v}_{C_{4} / D_{4}}=46 \mathrm{in} / \mathrm{sec}
$$

and

$$
\left|{ }^{1} \omega_{4}\right|=\frac{\left|{ }^{1} \mathbf{v}_{C_{4} / D_{4}}\right|}{\left|\mathbf{r}_{C / D}\right|}=\frac{46}{1.45}=31.72 \mathrm{rad} / \mathrm{sec} C C W
$$

To find the point " g " construct the velocity image by

$$
\overline{E F}: \overline{E G}=\overline{e f_{5}}: \overline{e g}
$$

From the polygon,

$$
\left|{ }^{1} \mathbf{v}_{G_{5}}\right|=32.5 \mathrm{in} / \mathrm{sec}
$$

Problem 3.8
If $\omega_{2}=5 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$, find ω_{6}.

Position Analysis

Draw the linkage to scale.

Position

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{2}}={ }^{1} \mathbf{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{B / A} \Rightarrow\left|{ }^{1} \mathbf{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|\mathbf{r}_{B / A}\right|=5(1)=5 \mathrm{in} / \mathrm{s} \\
& { }^{1} \mathbf{v}_{B_{4}}={ }^{1} \mathbf{v}_{B_{3}}+{ }^{1} \mathbf{v}_{B_{4} / B_{3}} \\
& { }^{1} \mathbf{v}_{B_{4}}={ }^{1} \mathbf{v}_{C_{4}}+{ }^{1} \mathbf{v}_{B_{4} / C_{4}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{2}}=5 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{B / A}\right) \\
& { }^{1} \mathbf{v}_{B_{4} / C_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{B / C} \quad\left(\perp \text { to } \mathbf{r}_{B / C}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon.

$$
\left|\mathbf{r}_{B / C}\right|=1.33 \mathrm{in}
$$

From the polygon,

$$
{ }^{1} \mathbf{v}_{B_{4} / C_{4}}=4.5 \mathrm{in} / \mathrm{sec}
$$

and

$$
\left|{ }^{1} \omega_{4}\right|=\frac{\left|{ }^{1} \mathbf{v}_{B_{4} / C_{4}}\right|}{\left|\mathbf{r}_{B / C}\right|}=\frac{4.5}{1.33}=3.38 \mathrm{rad} / \mathrm{sec} C W
$$

With the value of ω_{4}

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{D_{4}}={ }^{1} \mathbf{v}_{C_{4}}+{ }^{1} \mathbf{v}_{C_{4} / D_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{C / D} \Rightarrow\left|{ }^{1} \mathbf{v}_{D_{4}}\right|=\left|{ }^{1} \omega_{4}\right|\left|\mathbf{r}_{C / D}\right|=3.38(3.88)=13.12 \mathrm{in} / \mathrm{s} \\
& { }^{1} \mathbf{v}_{D_{5}}={ }^{1} \mathbf{v}_{D_{4}} \\
& { }^{1} \mathbf{v}_{D_{5}}={ }^{1} \mathbf{v}_{E_{5}}+{ }^{1} \mathbf{v}_{D_{5} / E_{5}} \\
& { }^{1} \mathbf{v}_{E_{6}}={ }^{1} \mathbf{v}_{E_{5}} \\
& { }^{1} \mathbf{v}_{E_{6}}={ }^{1} \mathbf{v}_{F_{6}}+{ }^{1} \mathbf{v}_{E_{6} / F_{6}}=0+{ }^{1} \mathbf{v}_{E_{6} / F_{6}}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{D_{5} / E_{5}}\left(\perp \text { to } \mathbf{r}_{D / E}\right) \\
& { }^{1} \mathbf{v}_{E_{6} / F_{6}}\left(\perp \text { to } \mathbf{r}_{E / F}\right)
\end{aligned}
$$

Solve graphically with a velocity polygon.
Velocity Scale

From the polygon,

$$
{ }^{1} \mathbf{v}_{E_{6} / F_{6}}=15.4 \mathrm{in} / \mathrm{sec}
$$

and

$$
\left|{ }^{1} \omega_{6}\right|=\frac{\left|{ }^{1} \mathbf{v}_{E_{6} / F_{6}}\right|}{\left|\mathbf{r}_{E / F}\right|}=\frac{15.4}{1.5}=10.267 \mathrm{rad} / \mathrm{sec} C W
$$

In the mechanism below, $\omega_{2}=10 \mathrm{rad} / \mathrm{s}$. Write the velocity equations and determine the following: $\mathbf{v}_{\mathrm{D}_{4}}, \omega_{4}, \mathbf{v}_{\mathrm{F}_{6}}, \omega_{6}$.

Position Analysis

Draw the linkage to scale. First locate the pivots A, E, and G. Next draw link 2 and locate B. Then locate point D and point C . Draw the line CF as shown, and finally locate point F .

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{A}_{2} \\
& { }^{1} \mathbf{v}_{\mathrm{D}_{4}}={ }^{1} \mathbf{v}_{\mathrm{D}_{3}}={ }^{1} \mathbf{v}_{\mathrm{D}_{4} / \mathrm{E} 4}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{D}_{3} / \mathrm{B} 3} \tag{1}\\
& { }^{1} \mathbf{v}_{\mathrm{F}_{5}}={ }^{1} \mathbf{v}_{\mathrm{F}_{6}}={ }^{1} \mathbf{v}_{\mathrm{F}_{6} / \mathrm{G}_{6}}={ }^{1} \mathbf{v}_{\mathrm{F}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{F} /} / \mathrm{F}_{3} \tag{2}
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{V}_{\mathrm{D}_{4} / \mathrm{E} 4}={ }^{1} \omega_{4} \times\left.\mathbf{r}_{\mathrm{D}_{4} / \mathrm{E} 4} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{D}_{4} / \mathrm{E} 4}\left|=\left.\right|^{1} \omega_{4}\right| \cdot\left|\mathbf{r}_{\mathrm{D}_{4} / \mathrm{E} 4}\right|\left(\perp \text { to } \mathbf{r}_{4} / \mathrm{E}_{4}\right) \\
& { }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \omega_{2} \times\left.\mathbf{1}_{\mathrm{B}_{2} / \mathrm{A}_{2}} \Rightarrow\right|^{1} \mathbf{V}_{2} / \mathrm{A}_{2}\left|=\left.\right|^{1} \omega_{2}\right| \cdot\left|\mathbf{n}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\right|=10 \cdot 1=10 \mathrm{in} / \mathrm{sec}\left(\perp \text { to } \mathbf{r}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\right) \\
& { }^{1} \mathbf{V}_{\mathrm{V}_{3} / \mathrm{B}_{3}}={ }^{1} \omega_{3} \times\left.\mathbf{r}_{\mathrm{D}_{3} / \mathrm{B}_{3}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{D}_{3} / \mathrm{B}_{3}}\left|=\left.\right|^{1} \omega_{3}\right| \cdot\left|\mathbf{r}_{\mathrm{D}_{3} / \mathrm{B}_{3}}\right|\left(\perp \text { to } \mathbf{r}_{3} / \mathrm{B}_{3}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

or

$$
\left.\right|^{1} \omega_{4} \left\lvert\,=\frac{\left|1 \mathbf{v}_{\mathrm{D} 4 / \mathrm{E} 4}\right|}{\left|\mathbf{r}_{\mathrm{D} 4 / \mathrm{E} 4}\right|}=\frac{17.034}{4}=4.259 \mathrm{rad} / \mathrm{sec} \mathrm{CW}\right.
$$

Also, using velocity image

$$
{ }^{1} \mathbf{V}_{F_{4}}=20.994 \mathrm{in} / \mathrm{sec}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{V}_{\mathrm{F}_{3}}=22.227 \mathrm{in} / \sec \text { (using velocity polygon) } \\
& { }^{1} \mathbf{V}_{\mathrm{F}_{6} / \mathrm{G}_{6}}={ }^{1} \omega_{6} \times\left.\mathbf{r}_{\mathrm{F}_{6} / \mathrm{G}_{6}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{F}_{6} / \mathrm{G}_{6}}\left|=\left.\right|^{1} \omega_{6}\right| \cdot \mid \mathbf{r}_{\mathrm{F}_{6} / \mathrm{G}_{6}}\left(\perp \text { to } \mathbf{r}_{\mathrm{F}_{6} / \mathrm{G}_{6}}\right)
\end{aligned}
$$

${ }^{1} \mathbf{V}_{\mathrm{F}_{6} / \mathrm{G}_{6}}$ along the slot
Solve Eq. (2) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{v}_{\mathrm{F}_{6} / \mathrm{G} 6}=26.171 \mathrm{in} / \mathrm{sec}
$$

or

$$
\left.\right|^{1} \omega_{6} \left\lvert\,=\frac{\left|1 \mathbf{v}_{6} / \mathrm{G}_{6}\right|}{\left|\mathbf{r}_{\mathrm{r}_{6} / \mathrm{G} 6}\right|}=\frac{26.171}{3.35}=7.812 \mathrm{rad} / \mathrm{sec} \mathrm{CW}\right.
$$

Problem 3.10
If the velocity of point A on link 2 is $10 \mathrm{in} / \mathrm{s}$ as shown, find the velocity of point C on $\operatorname{link} 5$.

Position Analysis

Draw the linkage to scale.

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{B_{3}}={ }^{1} \mathbf{v}_{A_{3}}+{ }^{1} \mathbf{v}_{B_{3} / A_{3}}={ }^{1} \mathbf{v}_{A_{2}}+{ }^{1} \omega_{3} \times \mathbf{r}_{B / A}(1) \\
& { }^{1} \mathbf{v}_{B_{4}}={ }^{1} \mathbf{v}_{B_{3}}={ }^{1} \mathbf{v}_{B_{4} / E_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{B / E} \\
& { }^{1} \mathbf{v}_{G_{5}}={ }^{1} \mathbf{v}_{G_{4}}+{ }^{5} \mathbf{v}_{G_{5} / G_{4}} \\
& { }^{1} \mathbf{v}_{G_{6}}={ }^{1} \mathbf{v}_{G_{5}}={ }^{1} \mathbf{v}_{G_{6} / F_{6}}={ }^{1} \omega_{6} \times \mathbf{r}_{G / F}
\end{aligned}
$$

$$
{ }^{1} \mathbf{v}_{C_{5}}={ }^{1} \mathbf{v}_{G_{5}}+{ }^{1} \mathbf{v}_{C_{5} / G_{5}}={ }^{1} \mathbf{v}_{G_{6}}+{ }^{1} \omega_{5} \times \mathbf{r}_{C / G}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{A_{2}}=10 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \mathbf{r}_{A / D}\right) \\
& { }^{1} \mathbf{v}_{B_{3} / A_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{B / A} \quad\left(\perp \text { to } \mathbf{r}_{B / A}\right) \\
& { }^{1} \mathbf{v}_{B_{4} / E_{4}}={ }^{1} \omega_{4} \times \mathbf{r}_{B / E} \quad\left(\perp \text { to } \mathbf{r}_{B / E}\right) \\
& { }^{1} \mathbf{v}_{G_{5} / F_{6}}={ }^{1} \omega_{6} \times \mathbf{r}_{G / F} \quad\left(\perp \text { to } \mathbf{r}_{G / F}\right) \\
& { }^{5} \mathbf{v}_{G_{5} / G_{4}}\left(/ / \text { to } \mathbf{r}_{B / E}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon.

From the polygon,

$$
{ }^{1} \mathbf{v}_{B_{4} / E_{4}}=8.1 \mathrm{in} / \mathrm{sec}
$$

and

$$
\left|\omega_{4}\right|=\frac{\left|{ }^{1} \mathbf{v}_{B_{4} / E_{4}}\right|}{\left|\mathbf{r}_{B / E}\right|}=\frac{8.1}{1.5}=5.4 \mathrm{rad} / \mathrm{sec} \quad C C W
$$

With ${ }^{1} \omega_{5}={ }^{1} \omega_{4}$

$$
\left|{ }^{1} \mathbf{v}_{C_{5} / G_{5}}\right|=\left|{ }^{1} \omega_{5}\right|\left|\mathbf{r}_{C / G}\right|=5.4(0.26)=1.404 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{C / G}\right)
$$

To find the point " g_{4} " construct the velocity image by

$$
\overline{B E}: \overline{E G}=\overline{b e}: \overline{e g_{4}}
$$

From the polygon,

$$
\left|{ }^{1} \mathbf{v}_{C_{5}}\right|=10.75 \mathrm{in} / \mathrm{sec}
$$

Problem 3.11

In the clamping device shown, links 3 and 4 are an air cylinder. If the opening rate of the air cylinder is $5 \mathrm{~cm} / \mathrm{s}$ and the opening acceleration of the cylinder is $2 \mathrm{~cm} / \mathrm{s}^{2}$, find the angular velocity and acceleration of link 2, and the linear velocity and acceleration of point D on Link 2.

Position Analysis

Draw the linkage to scale. Start by locating the pivots A and C. Then locate point B
Velocity Analysis
Consider the points at location B.

$$
\begin{align*}
& \boldsymbol{v}_{B_{2}}=1 \boldsymbol{v}_{B_{3}}=1 \boldsymbol{v}_{B_{2} / A_{2}} \\
& { }^{1} \boldsymbol{v}_{B_{3}}=\boldsymbol{v}_{B_{4}}+\boldsymbol{v}_{B_{3} / B_{4}} \tag{1}
\end{align*}
$$

Where

$$
\begin{aligned}
& \boldsymbol{v}_{\boldsymbol{b}_{2} / A_{2}}=1 \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{B / A}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& \boldsymbol{v}_{\boldsymbol{v}_{4}}=\boldsymbol{v}_{\boldsymbol{v}_{B 4} / C_{4}}={ }^{1} \boldsymbol{\omega}_{4} \times \boldsymbol{r}_{B / C}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right) \\
& \left|\boldsymbol{v}_{\boldsymbol{v}_{3} / B_{4}}\right|=5 \mathrm{~cm} / \mathrm{s} \text { along } \boldsymbol{r}_{B / C}
\end{aligned}
$$

Solve Eq. (1) using a velocity polygon, and determine the velocity of D_{2} by image.

$$
\begin{aligned}
& { }^{1} v_{D_{2}}=5.79 \mathrm{~cm} / \mathrm{s} \\
& \left|\omega_{2}\right|=\frac{\left|v_{B_{2} / A 2}\right|}{\left|r_{B / A}\right|}=\frac{5.81}{17}=0.342 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
\end{aligned}
$$

and

$$
\left|1 \omega_{4}\right|=\frac{\left|v_{B 4 /}\right|}{\left|r_{B / d}\right|}=\frac{3.018}{35}=0.0862 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

Acceleration Analysis

Again, consider the points at location B.

$$
\begin{aligned}
& { }^{1} \alpha_{B_{2}}={ }^{1} \alpha_{B_{3}}={ }^{1} \alpha_{B_{2} / A_{2}}={ }^{1} \alpha_{B_{2} / A_{2}}^{r}+{ }^{1} \alpha_{B_{2} / A_{2}}^{t} \\
& { }^{1} \alpha_{B 3}={ }^{1} \alpha_{B 4 / A 4}+{ }^{1} \alpha_{B 3 / B 4}={ }^{1} \alpha_{B 4 / A 4}+{ }^{1} \alpha_{B 4 / A 4}+{ }^{4} \alpha_{B 3 / B 4}^{t}+{ }^{4} \alpha_{B 3}^{n} / B 4+{ }^{1} \alpha_{B 3 / B 4}
\end{aligned}
$$

Combining the equations,

$$
\begin{equation*}
{ }^{1} \alpha_{B 2 / A 2}^{*}+{ }^{1} \alpha_{B 2 / A 2}^{t}={ }^{1} \alpha_{B 4 / A 4}^{*}+{ }^{1} \alpha_{B 4 / A 4}^{t}+{ }^{4} \alpha_{B 3 / B 4}^{*}+{ }^{4} \alpha_{B 3 / B 4}^{n}+{ }^{1} \alpha_{B 3 / B 4}^{E_{B 4}} \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \left|{ }^{1} \boldsymbol{\alpha}_{B_{2} / A 2}\right|={ }^{1} \boldsymbol{\omega} \boldsymbol{\omega}^{2}\left|\boldsymbol{r}_{B / A}\right|=0.342^{2}(17)=1.99 \mathrm{~cm} / \mathrm{s}^{2}\left(\text { opposite to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{\alpha}_{B 2 / A 2}={ }^{1} \boldsymbol{\alpha}_{2} \times \boldsymbol{r}_{B / A}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right)
\end{aligned}
$$

$b_{2} \quad b_{3}$

$\left|{ }^{1} \boldsymbol{\alpha}_{B 4 / C_{4}}^{r}\right|=\left|{ }_{1} \omega_{4}\right|^{2} \boldsymbol{r}_{B / d} \mid=0.0862^{2}(35)=0.260 \mathrm{~cm} / \mathrm{s}^{2}$ (opposite to $\left.\boldsymbol{r}_{B / C}\right)$
${ }^{1} \boldsymbol{\alpha}_{B 4 / A 4}^{*}={ }^{1} \boldsymbol{\alpha}_{4} \times \boldsymbol{r}_{B / C}\left(\perp\right.$ to $\left.\boldsymbol{r}_{B / C}\right)$
$\left.\right|^{4} \boldsymbol{\alpha}_{B_{3} / B_{4}}^{t} \mid=10 \mathrm{~cm} / \mathrm{s}^{2}\left(\right.$ along $\left.\boldsymbol{r}_{B / C}\right)$
$\left|{ }^{4} \alpha_{B_{3} / B_{4}}^{n}\right|=\frac{\left|v_{B_{3} / B_{4}}\right|^{2}}{\infty}=0$

$$
{ }^{1} \alpha_{B_{3} / B_{4}}=2 \cdot{ }^{1} \omega_{4} \times\left.\left.{ }^{4} v_{B_{3} / B 4} \Rightarrow\right|^{1} \alpha_{B_{3} / B_{4}}^{c}|=2|^{1} \omega_{4}\right|^{4} v_{B_{3} / B 4} \mid=2(0.0862)(5)=0.862
$$

The direction for ${ }^{1} \alpha_{B_{3} / B_{4}}$ is perpendicular to BC and in the direction defined by rotating ${ }^{4} \boldsymbol{v}_{B_{3} / B_{4}}$ 90° in the direction of ${ }^{1} \omega_{4}$. This direction is generally down and to the left.

Solve Eq. (2) using an acceleration polygon, and determine the acceleration of D_{2} by image.

$$
\begin{aligned}
& \boldsymbol{a}_{D_{2}}=4.39 \mathrm{~cm} / \mathrm{s}^{2} \\
& \left|\boldsymbol{\alpha}_{2}\right|=\frac{\left|\boldsymbol{\alpha}_{B_{2} / A_{2}}^{t}\right|}{\left|\boldsymbol{r}_{B / A}\right|}=\frac{3.23}{17}=0.190 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
\end{aligned}
$$

Problem 3.12
In the mechanism shown, link 4 moves to the left with a velocity of $8 \mathrm{in} / \mathrm{s}$ and the acceleration is $80 \mathrm{in} / \mathrm{s}^{2}$ to the left. Draw the velocity and acceleration polygons and solve for the angular velocity and acceleration of link 2.

Position Analysis

Draw link 2 at 45° to the horizontal lineand $4^{\prime \prime}$ long. Construct link 2 at an angle of 120° to the horizontal and through point B.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{4}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}}={ }^{1} \mathbf{v}_{\mathrm{B}_{4}}+{ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B} 4} \tag{1}\\
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \omega_{2} \times \mathbf{1}_{\mathrm{B}_{2}} / \mathrm{A}_{2} \Rightarrow| |^{1} \mathbf{v}_{\mathrm{B}_{2}}\left|=\left.\right|^{1} \omega_{2}\right| \mathbf{1}_{\mathrm{B}_{2}} / \mathrm{A}_{2} \mid
\end{align*}
$$

Now,
${ }^{1} \mathbf{V}_{B 4}=8 \mathrm{in} / \mathrm{sec}$ in the horizontal direction to the left

$$
\begin{aligned}
& { }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}} \text { along the link } 4 \\
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \quad\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,
${ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B}_{3}}={ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=15.2 \mathrm{in} / \mathrm{sec}$

Also,

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{2}=5.1572 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

Acceleration Analysis:

$$
\begin{equation*}
{ }^{1} \mathbf{a}_{\mathrm{B} 2}={ }^{1} \mathbf{a}_{\mathrm{B} 4}+{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}={ }^{1} \mathbf{a}_{\mathrm{B} 4}+{ }^{4} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}+2^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B} 2 / \mathrm{B} 4} \tag{2}
\end{equation*}
$$

But, ${ }^{1} \omega_{4}=0$. Therefore,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 2}={ }^{1} \mathbf{a}_{\mathrm{B} 4}+{ }^{4} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}
$$

Also,

$$
\mathbf{a}_{\mathrm{B} 2}={ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}={ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}
$$

Therefore,

$$
\mathbf{a}_{\mathrm{B} 2 / \mathrm{A}_{2}}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}={ }^{1} \mathbf{a}_{\mathrm{B} 4}+{ }^{4} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}
$$

Now,
${ }^{1} \mathbf{a}_{\mathrm{B} 4}=80 \mathrm{in} / \mathrm{sec}^{2}$ in the horizontal direction to the left
${ }^{4} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}$ is along the link 4

$$
\begin{aligned}
& \left.\mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}=\left.{ }^{1} \omega_{2}\right|^{2}\left|\mathbf{r}_{\mathrm{B} / \mathrm{A}}\right| \text { (opposite to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{1} \mathrm{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \text { and is } \perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}
\end{aligned}
$$

From the acceleration polygon,

$$
{ }^{1} \mathrm{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}=89 \mathrm{in} / \mathrm{sec}^{2}
$$

Therefore,

$$
\left.\right|^{1} \alpha_{2} \left\lvert\,=\frac{\left|\mathrm{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}\right|}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{A}}\right|}=\frac{89}{4}=22.25 \mathrm{rad} / \mathrm{sec}^{2}\right.
$$

From the directions given on the acceleration and position polygons,

$$
{ }^{1} \boldsymbol{\alpha}_{2}=22.25 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

Problem 3.13
In the mechanism below, the angular velocity of Link 2 is $2 \mathrm{rad} / \mathrm{s}$ CCW and the angular acceleration is $5 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CW}$. Determine the following: $\mathbf{v}_{\mathrm{B} 4}, \mathbf{v}_{\mathrm{D} 4}, \omega_{4}, \mathbf{a}_{\mathrm{B} 4}, \mathbf{a}_{\mathrm{D}_{4}}, \boldsymbol{\alpha}_{4}$,

Position Analysis

Draw the mechanism to scale. Locate the pivots A and C. Draw link 2 and locate point B. Then draw line CBD.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{2}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{4}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}} \tag{1}\\
& { }^{1} \mathbf{v}_{\mathrm{B}_{4}}={ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{C}_{4}}
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \omega_{2} \times\left.\mathbf{r}_{\mathrm{B} / \mathrm{A}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{A}_{2}\left|=\left.\right|^{1} \omega_{2} \| \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=2 \cdot 6=12 \mathrm{in} / \mathrm{sec}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{1} \mathbf{v}_{\mathrm{B} 4 / \mathrm{C} 4}={ }^{1} \omega_{4} \times\left.\mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B} 4} / \mathrm{C} 4|=|^{1} \omega_{4} \| \mathbf{r}_{\mathrm{B} / \mathrm{C}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right) \\
& { }^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{B} 4 \\
& \text { in the direction of } \mathbf{r}_{\mathrm{B} / \mathrm{C}}
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

or

$$
\left.\right|^{1} \omega_{4} \left\lvert\,=\frac{\left|\|_{\mathrm{V}_{3} / \mathrm{C}_{4}}\right|}{\left|\mathrm{I}_{3} / \mathrm{C}\right|}=\frac{8.156}{6.8476}=1.191 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}\right.
$$

Also,

$$
{ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B} 4}=8.802 \mathrm{in} / \mathrm{sec}
$$

Also,

$$
{ }^{1} \mathbf{v}_{\mathrm{D} 4}=11.91 \mathrm{in} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }_{\mathbf{a}}^{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{4}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2}} / \mathrm{B}_{4} \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{4}}={ }^{1} \mathbf{a}_{\mathrm{B}_{4} / \mathrm{C} 4} \\
& \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B}_{4} / \mathrm{C}_{4}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{4} / \mathrm{C}_{4}}^{\mathrm{t}}+{ }^{4} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}+2 \cdot{ }^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{C}_{4}} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \Rightarrow| |^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}\left|=\left|\left.\right|^{1} \omega_{2}\right|^{2} \cdot\right| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=2^{2} \cdot 6=24 \mathrm{in} / \mathrm{sec}^{2}
$$

in the direction opposite to ${ }^{\mathrm{B}_{2} / A_{2}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \Rightarrow\left|\mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}\right|=\left.\right|^{1} \boldsymbol{\alpha}_{2}|\cdot| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=5 \cdot 6=30 \mathrm{in} / \mathrm{sec}^{2}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C}_{4}}^{\mathrm{r}}={ }^{1} \omega_{4} \times\left({ }^{1} \omega_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{r}}\right|=\left.\left.\right|^{1} \omega_{4}\right|^{2} \cdot\left|\mathrm{rr}_{\mathrm{B}} / \mathrm{C}\right|=1.191^{2} \cdot 6.848=9.713 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction opposite to ${ }^{r_{B} / C_{3}}$

$$
\mathbf{a}^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\left|\mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}\right|=\left|{ }^{1} \boldsymbol{\alpha}_{4}\right| \cdot \mid \mathbf{r}_{\mathrm{B} / \mathrm{C}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right)
$$

${ }^{4} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{4}}$ in the direction of ${ }^{\mathbf{B}_{4}} / \mathrm{C}_{4}$

$$
2 \cdot{ }^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}}=2 \cdot 1.191 \cdot 8.802=20.966 \mathrm{in} / \mathrm{sec}^{2}
$$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}=23.75 \mathrm{in} / \mathrm{sec}^{2}
$$

or

$$
\left|\boldsymbol{\alpha}_{4}\right|=\frac{\left|\mathbf{1}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}\right|}{\left|\mathrm{r}_{\mathrm{B} 4 / \mathrm{C} 4}\right|}=\frac{23.752}{6.8476}=3.469 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

Also,

$$
{ }^{1} \mathbf{a}_{B_{4}}=25.66 \mathrm{in} / \mathrm{sec}^{2}
$$

Also,

$$
{ }^{1} \mathbf{a}_{\mathrm{D} 4}=37.47 \mathrm{in} / \mathrm{sec}^{2}
$$

To find the center of the curvature of the path that B_{4} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{2} \mathbf{a}^{\mathrm{n}} \mathrm{B}_{4} / \mathrm{B}_{2}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}=-\mathbf{a}_{\mathrm{B} 4 / \mathrm{B}_{2}}
$$

therefore,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}^{\mathrm{t}}=-1 \mathbf{a}_{\mathrm{B} 4 / \mathrm{B} 2}^{\mathrm{t}}
$$

and

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}^{\mathrm{n}}=-\mathbf{a}_{\mathrm{B}_{4} / \mathrm{B}_{2}}^{\mathrm{n}}
$$

Also,

$$
\begin{equation*}
{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{4}}+2 \cdot{ }^{1} \boldsymbol{\omega}_{4} \times{ }^{1} \mathbf{v}_{2} / \mathrm{B}_{4}=-{ }^{2} \mathbf{a}_{\mathrm{B}_{4} / \mathrm{B}_{2}}^{\mathrm{n}}-2 \cdot{ }^{1} \boldsymbol{\omega}_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{2}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange Eq. (3) as

$$
{ }^{2} \mathbf{a}_{\mathrm{B}_{4} / \mathrm{B} 2}=-\left({ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B} 4 / \mathrm{B} 2}+2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{B}_{4}\right)
$$

Now,

$$
\begin{aligned}
& { }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}^{\mathrm{n}}=\frac{\left|\left.\right|^{3} \mathbf{v}_{\mathrm{B} 2} \mathrm{~B} 4\right|}{\infty}=0 \\
& 2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2}} / \mathrm{B}_{4}=2 \cdot 1.191 \cdot 8.802=20.97 \mathrm{in} / \mathrm{sec}^{2}(\perp \text { to DC }) \text { down and to the left. } \\
& 2 \cdot{ }^{2} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B} 4} / \mathrm{B}_{2}=2 \cdot 2 \cdot 8.802=35.20 \mathrm{in} / \mathrm{sec}^{2}(\perp \text { to DC }) \text { up and to the right }
\end{aligned}
$$

Let E be the location of the center of curvature of B_{4} on link 2 . If we choose up and to the right as the positive direction,

$$
{ }^{2} \mathbf{a}^{\mathrm{n}} \mathrm{~B}_{4} / \mathrm{B}_{2}=\frac{\left|\mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{2}}\right|^{2}}{\mathbf{r}_{\mathrm{B} / \mathrm{E}}}=-(35.20-20.97+0)=-14.24 \mathrm{in} / \mathrm{sec}^{2}
$$

Because ${ }^{2} \mathbf{a}^{n_{B}} / \mathrm{B}_{2}$ is negative, ${ }^{2} \mathbf{a}^{n_{B}}{ }^{3} / \mathrm{B}_{2}$ points down and to the left which is the direction of E . The magnitude of the distance is given by

$$
\left|\mathrm{r}_{\mathrm{B} / \mathrm{E}}\right|=\frac{\left|\left|\mathbf{v}_{\mathrm{B} 4 / \mathrm{B} 2}\right|^{2}\right.}{14.24}=\frac{8.8022}{14.24}=5.44 \mathrm{in}
$$

The direction of E is shown on the drawing.

Problem 3.14
Resolve Problem 3.13 if $\omega_{2}=2 \mathrm{rad} / \mathrm{sec}$ (constant)

Position Analysis

Draw the mechanism to scale. Locate the pivots A and C. Draw link 2 and locate point B. Then draw line CBD.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{4}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}} \tag{1}\\
& { }^{1} \mathbf{v}_{\mathrm{B}_{4}}={ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{C}_{4}}
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{A} 2={ }^{1} \omega_{2} \times\left.\mathbf{1}_{\mathrm{B} / \mathrm{A}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{A} 2\left|=\left.\right|^{1} \omega_{2} \| \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=2 \cdot 6=12 \mathrm{in} / \sec \left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{1} \mathbf{v}_{\mathrm{B} 4 / \mathrm{C} 4}={ }^{1} \omega_{4} \times\left.\mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B} 4} / \mathrm{C} 4|=|^{1} \omega_{4}\| \|_{\mathrm{B} / \mathrm{C}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right)
\end{aligned}
$$

${ }^{1} \mathbf{V B}_{2} / \mathrm{B}_{4}$ in the direction of $\mathbf{r}_{\mathrm{B} / \mathrm{C}}$
Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{v}_{\mathrm{B} 4}=8.156 \mathrm{in} / \mathrm{sec}
$$

or

$$
\left|1 \omega_{4}\right|=\frac{\mid \mathbf{l}_{\mathrm{v}_{4} / \mathrm{C}_{4} \mid}}{\left|\mathrm{n}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{8.156}{6.8476}=1.191 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \mathbf{V B}_{2} / \mathrm{B}_{4}=8.802 \mathrm{in} / \mathrm{sec}
$$

Also,

$$
{ }^{1} \mathbf{V}_{\mathrm{D}_{4}}=11.91 \mathrm{in} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }_{\mathbf{a}}^{\mathrm{a}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B} 4}+{ }^{1} \mathbf{a}_{\mathrm{B} 2} / \mathrm{B} 4 \\
& { }^{1} \mathbf{a}_{\mathrm{B} 4}={ }^{1} \mathbf{a}_{\mathrm{B} 4} / \mathrm{C}_{4} \\
& \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A} 2}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A} 2}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}+{ }^{4} \mathbf{a}_{\mathrm{B} 2} / \mathrm{B} 4+2 \cdot{ }^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B} 4 / \mathrm{C} 4} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A}_{2}}^{\mathrm{r}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}\right|=\left|{ }^{1} \omega_{2}\right|^{2} \cdot\left|\mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=2^{2} \cdot 6=24 \mathrm{in} / \mathrm{sec}^{2}
$$

in the direction opposite to ${ }^{\mathrm{B}_{2} / A_{2}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \Rightarrow\left|\mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{t}}\right|=\left.\right|^{1} \boldsymbol{\alpha}_{2}|\cdot| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=0 \cdot 6=0 \\
& { }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{r}}={ }^{1} \omega_{4} \times\left({ }^{1} \omega_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{r}}\right|=\left.\left.\right|^{1} \omega_{4}\right|^{2} \cdot\left|\mathrm{r}_{\mathrm{B}} / \mathrm{C}\right|=1.191^{2} \cdot 6.848=9.713 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction opposite to ${ }^{\mathrm{B}_{3} / \mathrm{C}_{3}}$

$$
\mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{4} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\left|\mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}\right|=\left.\right|^{1} \boldsymbol{\alpha}_{4}|\cdot| \mathbf{r r}_{\mathrm{B}} / \mathrm{C}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right)
$$

${ }^{4} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{4}}$ in the direction of ${ }^{\mathrm{B}_{4} / C_{4}}$
$2 \cdot{ }^{1} \omega_{4} \times{ }^{4} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}}=2 \cdot 1.191 \cdot 8.802=20.966 \mathrm{in} / \mathrm{sec}^{2}$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}=3.515 \mathrm{in} / \mathrm{sec}^{2}
$$

or

$$
\left|\boldsymbol{\alpha}_{4}\right|=\frac{\left|\mathfrak{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}\right|}{\left|\mathbf{r}_{\mathrm{B} 4 / \mathrm{C} 4}\right|}=\frac{3.515}{6.8476}=0.513 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

Also,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 4}=10.29 \mathrm{in} / \mathrm{sec}^{2}
$$

Also,

$$
{ }^{1} \mathbf{a}_{\mathrm{D}_{4}}=15.06 \mathrm{in} / \mathrm{sec}^{2}
$$

To find the center of the curvature of the path that B_{4} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{2} \mathbf{a}^{n^{n}}{ }_{B_{4} / B_{2}}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{4}}=-1 \mathbf{a}_{\mathrm{B}_{4} / \mathrm{B}_{2}}
$$

therefore,

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{4}}^{\mathrm{t}}=-1 \mathbf{a}_{\mathrm{B} 4 / \mathrm{B}_{2}}^{\mathrm{t}}
$$

and

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}=-{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{B}_{2}}^{\mathrm{n}}
$$

Also,

$$
\begin{equation*}
{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{4}}+2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{4}}=-{ }^{2} \mathbf{a}_{\mathrm{B}_{4} / \mathrm{B}_{2}}^{\mathrm{n}}-2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{2}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange Eq. (3) as

$$
{ }^{2} \mathbf{a}_{\mathrm{B} 4 / \mathrm{B} 2}^{\mathrm{n}}=-\left({ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 4}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B} 4 / \mathrm{B} 2}+2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B} 4}\right)
$$

Now,

$$
{ }^{3} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 4}^{\mathrm{n}}=\frac{\left|\mathbf{v}_{\mathrm{B} 2 / \mathrm{B} 4}^{\mathrm{n}}\right|}{\infty}=0
$$

$2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \mathbf{v B}_{2} / \mathrm{B}_{4}=2 \cdot 1.191 \cdot 8.802=20.97 \mathrm{in} / \sec ^{2}(\perp$ to DC$)$ down and to the left.
$2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B} 4 / \mathrm{B}_{2}}=2 \cdot 2 \cdot 8.802=35.20 \mathrm{in} / \mathrm{sec}^{2}(\perp$ to DC$)$ up and to the right

Let E be the location of the center of curvature of B_{4} on link 2 . If we choose up and to the right as the positive direction,

$$
{ }^{2} \mathbf{a}^{\mathrm{n}} \mathrm{~B}_{4} / \mathrm{B}_{2}=\frac{\left|{ }^{1} \mathbf{v}_{\mathrm{B}_{4} / \mathrm{B}_{2}}\right|^{2}}{\mathbf{r}_{\mathrm{B} / \mathrm{E}}}=-(35.20-20.97+0)=-14.24 \mathrm{in} / \mathrm{sec}^{2}
$$

Because ${ }^{2} \mathbf{a}^{n^{n}}{ }_{B} / \mathrm{B}_{2}$ is negative, ${ }^{2} \mathbf{a}^{n^{n}}{ }_{B 4} / \mathrm{B}_{2}$ points down and to the left which is the direction of E . The magnitude of the distance is given by

$$
\left|\mathrm{r}_{\mathrm{B} / \mathrm{E}}\right|=\frac{\left\lvert\, \mathrm{v}_{\mathrm{B}_{4} /\left.\mathrm{B}_{2}\right|^{2}}^{14.24}=\frac{8.8022}{14.24}=5.44 \mathrm{in}\right., 0}{}
$$

The direction of E is shown on the drawing. Note that the location of E does not depend on the acceleration of link 2.

Problem 3.15
In the mechanism below, the velocity and acceleration of Point B are given. Determine the angular velocity and acceleration of Links 3 and 4. On the velocity and acceleration diagrams, locate the velocity and acceleration of Point E on Link 3.

Position Analysis

Draw the linkage to scale. Locate both pivots and start with link 2. Locate point B and draw line BC. Then locate point D . Construct point E on a line perpendicular to the line BD.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{v}_{B_{3}}=\boldsymbol{v}_{B_{2}} \\
& { }^{1} \boldsymbol{v}_{C_{3}}={ }^{1} \boldsymbol{v}_{C_{4}}+{ }^{1} \boldsymbol{v}_{C_{3} / C_{4}} \\
& { }^{1} \boldsymbol{v}_{C_{3}}=1 \boldsymbol{v}_{B_{3}}+1 \boldsymbol{v}_{C_{3} / B_{3}} \tag{1}
\end{align*}
$$

Now,

$$
\boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{C_{3} / C_{4}} \text { in the direction of } \boldsymbol{r}_{C_{3} / B_{3}}
$$

$$
{ }^{1} \boldsymbol{v}_{C_{3} / B_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{C_{3} / B_{3}} \Rightarrow\left|\boldsymbol{v}_{C_{3} / B_{3}}\right|=\left|{ }^{1} \omega_{3}\right| \cdot \mid \boldsymbol{r}_{C_{3} / B_{3}}\left(\perp \text { to } \boldsymbol{r}_{C_{3} / B_{3}}\right)
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{C_{3} / B_{3}}=21.6 \text { in } / \mathrm{s}
$$

or

$$
\left|1 \omega_{3}\right|=\frac{\left|v_{C_{3} / B_{3}}\right|}{\left|r_{C_{3} / B_{3}}\right|}=\frac{21.6}{8.59}=2.51 \mathrm{rad} / \mathrm{sCCW}
$$

Also,

The velocity of E_{3} can be found by image. The magnitude is

$$
{ }^{1} \boldsymbol{v}_{E_{3}}=18.6 \mathrm{in} / \mathrm{s}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{B_{3}} \\
& { }^{1} \boldsymbol{a}_{C_{3}}={ }^{1} \boldsymbol{a}_{C_{4}}+{ }^{1} \boldsymbol{a}_{C_{3} / C_{4}} \\
& { }^{1} \boldsymbol{a}_{C_{3}}={ }^{4} \boldsymbol{a}_{C_{3} / C_{4}}+2 \cdot{ }^{1} \omega_{4} \times{ }^{4} \boldsymbol{v}_{C_{3} / C_{4}} \\
& { }^{1} \boldsymbol{a}_{C_{3}}={ }^{1} \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{C_{3} / B_{3}} \\
& { }^{4} \boldsymbol{a}_{C_{3} / C_{4}}+2 \cdot{ }^{\cdot 1} \omega_{4} \times{ }^{4} \boldsymbol{v}_{C_{3} / C_{4}}={ }^{1} \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{r}+{ }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{t} \tag{2}
\end{align*}
$$

Now,
${ }^{4} \boldsymbol{a}_{C_{3} / C_{4}}$ in the direction of $\boldsymbol{r}_{C_{3} / B_{3}}$
$2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \boldsymbol{v}_{C_{3} / C_{4}}=2 \cdot 2.51 \cdot 21.6=108 \mathrm{in} / \mathrm{s}^{2}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{r}={ }^{1} \boldsymbol{\omega}_{3} \times\left({ }^{1} \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{C_{3} / B_{3}}\right) \Rightarrow\left|{ }^{1} \boldsymbol{a}_{C_{3 / B 3}}^{r}\right|=\left|1 \omega_{3}\right|^{2} \cdot\left|\boldsymbol{r}_{C_{3} / B_{3}}\right|=2.512 \cdot 8.59=54.1 \mathrm{in} / \mathrm{s}^{2} \\
& { }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{t}={ }^{1} \boldsymbol{\alpha}_{3} \times \boldsymbol{r}_{C_{3} / B_{3}} \Rightarrow\left|\boldsymbol{a}_{C_{3} / B_{3}}^{t}\right|=\left|1 \boldsymbol{\alpha}_{3}\right| \cdot| |_{C_{3} / B_{3}} \mid\left(\text { to } \boldsymbol{r}_{(3 / B 3}\right)
\end{aligned}
$$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{C / B 3}^{t}=43.2 \mathrm{in} / \mathrm{s}^{2}
$$

or

$$
\left|1 \alpha_{3}\right|=\frac{\left|\boldsymbol{a}_{C 3 / B 3}^{t}\right|}{\left|\boldsymbol{r}_{C_{3} / B 3}\right|}=\frac{43.2}{8.59}=5.03 \mathrm{rad} / \mathrm{s}^{2}
$$

Also,

$$
{ }^{1} \boldsymbol{\alpha}_{3}={ }^{1} \boldsymbol{\alpha}_{4}
$$

The acceleration of point E_{3} is given by image. The magnitude is

$$
{ }^{1} \boldsymbol{a}_{E_{3}}=149 \mathrm{in} / \mathrm{s}^{2}
$$

Problem 3.16
In the figure below, $\omega_{2}=500 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$ (constant). Find $\omega_{4},{ }^{2} \omega_{4}, \omega_{3},{ }^{6} \omega_{5},{ }^{3} \omega_{5}, v_{\mathrm{D}}, \alpha_{4}{ }^{2} \alpha_{4}, \alpha_{3}$, ${ }^{6} \boldsymbol{\alpha}_{5}$, and $\boldsymbol{a}_{\mathrm{D}}$.

Position Analysis

Locate the relative position of points A and E and the line of motion of point D . Next locate point B . Draw the line EB and locate point C . Then locate point D by drawing an arc centered at C and with a radius of 3.2 .

Velocity Analysis:

$$
\begin{align*}
& \boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}=1 \boldsymbol{v}_{B_{4}}+{ }^{1} \boldsymbol{v}_{B_{2} / B_{4}} \tag{1}\\
& { }^{1} \boldsymbol{v}_{B 4}=\boldsymbol{v}_{B 4 / E 4} \\
& { }^{1} \boldsymbol{v}_{D_{5}}={ }^{1} \boldsymbol{v}_{D_{6}}={ }^{1} \boldsymbol{v}_{C_{5}}+1 \boldsymbol{v}_{D_{5} / C_{5}} \tag{2}\\
& \boldsymbol{v}_{C_{5}}={ }^{1} \boldsymbol{v}_{C_{4}}=1 \boldsymbol{v}_{C 4} / E 4
\end{align*}
$$

Now,

$$
\begin{aligned}
& \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{B_{2} / A_{2}}\right|=\left|{ }^{1} \omega_{2}\right| \cdot\left|\boldsymbol{r}_{B_{2} / A_{2}}\right|=500 \cdot 0.03=15 \mathrm{~m} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{B_{2} / A_{2}}\right) \\
& \boldsymbol{v}_{B_{4} / E_{4}}={ }^{1} \omega_{4} \times \boldsymbol{r}_{B_{4} / E_{4}} \Rightarrow\left|\boldsymbol{v}_{B_{4} / E_{4} \mid}\right|={ }^{1} \omega_{4}|\cdot| \boldsymbol{r}_{B_{4} / E_{4}} \mid\left(\perp \text { to } \boldsymbol{r}_{B_{4} / E_{4}}\right)
\end{aligned}
$$

${ }^{1} \boldsymbol{v}_{B_{2} / B_{4}}$ in the direction of $\boldsymbol{r}_{B 4 / E_{4}}$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\boldsymbol{v}_{B_{2} / B_{4}}=14.4 \mathrm{~m} / \mathrm{s}
$$

Also,

$$
{ }^{1} \boldsymbol{v}_{B 4 / E 4}=4.22 \mathrm{~m} / \mathrm{sec}
$$

or

$$
\left|\omega_{4}\right|=\frac{\left|v_{B 4 / E 4}\right|}{\left|r_{B 4 / E 4}\right|}=\frac{4.22}{0.044}=95.9 \mathrm{rad} / \mathrm{s} \mathrm{CW}
$$

Also,

$$
{ }^{1} \omega_{3}={ }^{1} \omega_{4}
$$

Now,

$$
{ }^{1} \boldsymbol{v}_{\boldsymbol{C}_{4} / E_{4}}={ }^{1} \omega_{4} \times \boldsymbol{r}_{C_{4} / E_{4}} \Rightarrow\left|\boldsymbol{v}_{C_{4} / E_{4}}\right|=\left|{ }^{1} \omega_{4}\right| \cdot\left|\boldsymbol{r}_{C_{4} / E_{4}}\right|=95.8 \cdot 0.08=7.66 \mathrm{~m} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{C_{4} / E_{4}}\right)
$$

${ }^{1} \boldsymbol{v}_{D_{5}}$ in horizontal direction

$$
\boldsymbol{1}^{1} \boldsymbol{v}_{D_{5} / C_{5}}=1 \omega_{5} \times \boldsymbol{v}_{D_{5} / C_{5}} \Rightarrow\left|\boldsymbol{v}_{D_{5} / C_{5}}\right|=\left|\omega_{5}\right| \cdot| |_{D_{5} / C_{5}} \mid\left(\perp \text { to } r_{D_{5} / C_{5}}\right)
$$

Solve Eq. (2) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{D_{5} / C_{5}}=3.88 \mathrm{~m} / \mathrm{s}
$$

or

$$
\left|\omega_{5}\right|=\frac{\left|v_{D_{5} / C_{5}}\right|}{\left|\left.\right|_{D_{5} / C_{S}}\right|}=\frac{3.88}{0.032}=121 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

And,

$$
{ }^{1} \boldsymbol{v}_{D_{5}}=\boldsymbol{v}_{D_{6}}=3.18 \mathrm{~m} / \mathrm{s}
$$

For the relative angular velocities,

$$
\begin{aligned}
& { }^{2} \boldsymbol{\omega}_{4}={ }^{1} \boldsymbol{\omega}_{4}-1 \boldsymbol{\omega}_{2}=95.8 C W-500 \mathrm{CCW}=595.8 \mathrm{CW} \\
& { }^{6} \boldsymbol{\omega}_{5}={ }^{1} \boldsymbol{\omega}_{5}-1 \boldsymbol{\omega}_{5}=121 \mathrm{CCW}-0=121 \mathrm{CCW} \\
& { }^{3} \boldsymbol{\omega}_{5}={ }^{1} \boldsymbol{\omega}_{5}-{ }^{-1} \boldsymbol{\omega}_{3}=121 \mathrm{CCW}-95.8 \mathrm{CW}=216.8 \mathrm{CCW}
\end{aligned}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B 3}={ }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{a}_{B 4}+{ }^{1} \boldsymbol{a}_{B 2 / B 4} \\
& { }^{1} \boldsymbol{a}_{B 4}={ }^{1} \boldsymbol{a}_{B 4 / E_{4}} \\
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{a}_{B 4 / E 4}^{r}+{ }^{1} \boldsymbol{a}_{B 4}^{t} / E_{4}+{ }^{4} \boldsymbol{a}_{B_{2} / B 4}+2 \cdot{ }^{1} \omega_{4} \times{ }^{4} \boldsymbol{v}_{B_{2} / B 4} \tag{3}\\
& { }^{1} \boldsymbol{a}_{D_{5}}={ }^{1} \boldsymbol{a}_{D_{6}}={ }^{1} \boldsymbol{a}_{C_{5}}+{ }^{1} \boldsymbol{a}_{D_{5} / C_{5}} \\
& { }^{1} \boldsymbol{a}_{C_{5}}={ }^{1} \boldsymbol{a}_{C 4}={ }^{1} \boldsymbol{a}_{C 4} / E_{4} \\
& { }^{1} \boldsymbol{a}_{D_{5}}={ }^{1} \boldsymbol{a}_{C 4 / E 4}^{r}+{ }^{1} \boldsymbol{a}_{C 4 / E_{4}}^{t}+{ }^{1} \boldsymbol{a}_{D 5}^{r} / C_{5}+{ }^{+1} \boldsymbol{a}_{D 5}^{t} / C_{5} \tag{4}
\end{align*}
$$

Now,

$$
{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{B_{2} / A_{2}}\right) \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{r}\right|=\left|1 \omega_{2}\right|^{2} \cdot\left|r_{B_{2} / A_{2}}\right|=500^{2} \cdot 0.03=7500 \mathrm{~m} / \mathrm{s}^{2}
$$

in the direction opposite to $\boldsymbol{r}_{B_{2} / A_{2}}$

$$
\begin{aligned}
& \boldsymbol{a}_{B_{2} / A_{2}}^{t}=1 \alpha_{2} \times \boldsymbol{r}_{B_{2} / A_{2}} \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{t}\right|=\left|1 \alpha_{2}\right| \cdot\left|r_{B_{2} / A_{2}}\right|=0 \\
& { }^{1} \boldsymbol{a}_{B 4 / E 4}^{r}={ }^{1} \omega_{4} \times\left({ }^{1} \omega_{4} \times \boldsymbol{r}_{B 4 / E_{4}}\right) \Rightarrow\left|\boldsymbol{a}_{B 4 / E 4}^{r}\right|=\left|\omega_{4}\right|^{2} \cdot\left|\boldsymbol{r}_{B_{4} / E_{4}}\right|=95.82 \cdot 0.044=404 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction opposite to $\boldsymbol{r}_{B 4 / E 4}$

$$
{ }^{1} \boldsymbol{a}_{B 4 / E 4}^{t}=1 \alpha_{4} \times \boldsymbol{r}_{B 4 / E_{4}} \Rightarrow\left|\boldsymbol{a}_{B 4 / E_{4}}^{t}\right|=\left|1 \alpha_{4}\right| \cdot\left|\boldsymbol{r}_{B 4 / E 4}\right|\left(\perp \text { to } \boldsymbol{r}_{B 4 / E 4}\right)
$$

${ }^{4} \boldsymbol{a}_{B_{2} / B 4}$ in the direction opposite to $\boldsymbol{r}_{B_{4} / E_{4}}$

$$
{ }^{1} \boldsymbol{a}_{B_{2} / B_{4}}^{c}=2 \cdot 1 \omega_{4} \times{ }^{4} \boldsymbol{v}_{B_{2} / B 4}=2 \cdot 95.8 \cdot 14.4=2760 \mathrm{~m} / \mathrm{s}^{2}\left(\perp \text { to } \boldsymbol{r}_{B 4 / E 4}\right)
$$

Solve Eq. (3) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{B 4 / E 4}^{t}=9960 \mathrm{~m} / \mathrm{s}^{2}
$$

or

$$
\left|1 \boldsymbol{\alpha}_{4}\right|=\frac{\left|\boldsymbol{a}_{B 4 / E_{4}}^{t}\right|}{\left|r_{B 4 / E 4}\right|}=\frac{9960}{0.044}=226,000 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CW}
$$

Also,

$$
{ }^{2} \alpha_{4}={ }^{1} \alpha_{4}-1 \alpha_{2}=226,000-0=226,000 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CW}
$$

And,

$$
{ }^{1} \boldsymbol{\alpha}_{4}={ }^{1} \boldsymbol{\alpha}_{3}
$$

Also, using acceleration image

$$
{ }^{1} \boldsymbol{a}_{C_{4}}=18,100 \mathrm{~m} / \mathrm{s}^{2}
$$

Now,
${ }^{1} \boldsymbol{a}_{D_{5}}$ in horizontal direction

$$
{ }^{1} \boldsymbol{a}_{D_{5} / C_{5}}^{r}={ }^{1} \omega_{5} \times\left({ }^{1} \omega_{5} \times \boldsymbol{r}_{D_{5} / C_{5}}\right) \Rightarrow\left|\boldsymbol{a}_{D_{5} / C_{5}}^{r}\right|=\left|{ }^{1} \omega_{5}\right|^{2} \cdot\left|{r_{D_{5} / C_{5}} \mid}\right| 212 \cdot 0.032 \mathrm{~m} / \mathrm{s}^{2}
$$

in the direction of $-\boldsymbol{r}_{D_{5} / C_{5}}$

$$
{ }^{1} \boldsymbol{a}_{D_{5} / C_{5}}^{t}={ }^{1} \alpha_{5} \times \boldsymbol{r}_{D_{5} / C_{5}} \Rightarrow\left|\boldsymbol{a}_{D_{5} / C_{5}}^{t}\right|=\left|1 \alpha_{5}\right| \cdot\left|\boldsymbol{r}_{D_{5} / C_{5}}\right|\left(\perp \text { to } \boldsymbol{r}_{D_{5} / C_{5}}\right)
$$

Solve Eq. (4) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{D 5 / C_{5}}^{t}=8640 \mathrm{~m} / \mathrm{s}^{2}
$$

or

$$
\left|1 \alpha_{5}\right|=\frac{\left|\boldsymbol{a}_{D_{5} / C_{S}}^{t}\right|}{\left|\boldsymbol{r}_{D_{5} / C_{5}}\right|}=\frac{8640}{0.032}=270,000 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
$$

Also,

$$
{ }^{6} \boldsymbol{\alpha}_{5}={ }^{1} \boldsymbol{\alpha}_{5}-{ }^{1} \boldsymbol{\alpha}_{6}=270,000 C C W-0=270,000 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
$$

And,

$$
{ }^{3} \alpha_{5}={ }^{1} \alpha_{5}-{ }^{1} \alpha_{3}=270,000 C C W-226,000 C W=496,000 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \boldsymbol{a}_{D_{5}}=19,400 \mathrm{~m} / \mathrm{s}^{2}
$$

Problem 3.17
In the mechanism below, the angular velocity of Link 2 is 60 rpm CCW (constant). Determine the acceleration of Point C_{6} and the angular velocity of Link 6.

Position Analysis

First locate pivot A and the line of action (through A) of the slider. Next draw link 2 and locate point B. Then locate point D and finally locate point C.

Velocity Analysis:

$$
\begin{align*}
& \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}=\boldsymbol{v}_{B_{3}}=1 \omega_{2} \times \boldsymbol{r}_{B / A} \\
& { }^{1} \boldsymbol{v}_{D_{3}}={ }^{1} \boldsymbol{v}_{D_{4}}=1 \boldsymbol{v}_{B_{3}}+{ }^{1} \boldsymbol{v}_{D_{3} / B_{3}} \tag{1}
\end{align*}
$$

Compute ${ }^{1} \boldsymbol{v}_{C_{3}}$ by inage.

$$
\begin{equation*}
{ }^{1} \boldsymbol{v}_{C_{6}}={ }^{1} \boldsymbol{v}_{C_{5}}={ }^{1} \boldsymbol{v}_{C_{6} / A_{6}}={ }^{1} \boldsymbol{v}_{C_{3}}+{ }^{1} \boldsymbol{v}_{C_{6} / C_{3}} \tag{2}
\end{equation*}
$$

Now,

$$
\left|1 \omega_{2}\right|=60 \mathrm{rpm}=60 \frac{2 \pi}{60} \mathrm{rad} / \mathrm{s}=6.28 \mathrm{rad} / \mathrm{s}
$$

$$
\left|v_{B_{3}}\right|=\left|\omega_{2}\right| r_{B / A} \mid=6.28 \cdot 3.6=22.6 \mathrm{ft} / \mathrm{s}\left(\perp \text { to } r_{B / A}\right)
$$

${ }^{1} \mathbf{V}_{D_{3}}$ in horizontal direction

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{D_{3} / B_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{D / B} \Rightarrow\left|\boldsymbol{v}_{D_{3} / B_{3}}\right|=\left|{ }^{1} \omega_{3} \boldsymbol{v}_{D / B}\right|\left(\perp \text { to } \boldsymbol{r}_{D / B}\right) \\
& { }^{1} \boldsymbol{v}_{C_{6} / A_{6}}={ }^{1} \omega_{6} \times \boldsymbol{r}_{C / A} \Rightarrow\left|\boldsymbol{v}_{C_{6} / A_{6}}\right|=\left|{ }^{1} \omega_{d} \|\left.\right|_{C / A}\right|\left(\perp \text { to } \boldsymbol{r}_{C / A}\right) \\
& { }^{1} \boldsymbol{v}_{C_{6} / C_{3}} \text { along } B D
\end{aligned}
$$

Solve Eqs. (1) and (2) graphically with a velocity polygon. From the polygon,

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{C_{6}}=5.85 \mathrm{ft} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{D_{3} / B_{3}}=16.5 \mathrm{ft} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{C_{6} / C_{3}}=16.7 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

and

$$
\left|\omega_{3}\right|=\frac{\left|v_{D_{3 / B} / B}\right|}{\left|r_{D / B}\right|}=\frac{16.5}{9.3}=1.77 \mathrm{rad} / \mathrm{s} \mathrm{CW}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t} \\
& { }^{1} \boldsymbol{a}_{D_{3}}={ }^{1} \boldsymbol{a}_{D_{4}}={ }^{1} \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{D_{3} / B_{3}}={ }^{1} \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{D_{3} / B_{3}}^{r}+{ }^{1} \boldsymbol{a}_{D_{3} / B_{3}}^{t} \tag{3}
\end{align*}
$$

Compute ${ }^{1} \boldsymbol{a}_{C_{3}}$ by image.

$$
\begin{array}{ll}
& { }^{1} \boldsymbol{a}_{C_{6}}={ }^{1} \boldsymbol{a}_{C_{5}}={ }^{1} \boldsymbol{a}_{C_{6} / A_{6}}={ }^{1} \boldsymbol{a}_{C_{3}}+1 \boldsymbol{a}_{C_{5} / C_{3}} \\
\text { or } & { }^{1} \boldsymbol{a}_{C_{6} / A_{6}}^{r}+{ }^{1} \boldsymbol{a}_{C_{6} / A_{6}}^{t}={ }^{1} \boldsymbol{a}_{C_{3}}+{ }^{1} \boldsymbol{a}_{C_{5} / C_{3}}^{c}+{ }^{3} \boldsymbol{a}_{C_{5} / C_{3}}^{t}+{ }^{3} \boldsymbol{a}_{C_{5} / C_{3}}
\end{array}
$$

Now,
${ }^{1} \boldsymbol{a}_{D_{3}}$ in horizontal direction

$$
{ }^{1} \boldsymbol{a}_{B_{2} / A 2}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\right) \Rightarrow\left|\boldsymbol{a}_{B_{2} / A 2}^{r}\right|=\left|\omega_{2}\right|^{2} \cdot\left|\boldsymbol{r}_{B / A}\right|=6.282 \cdot 3.6=142 \mathrm{ft} / \mathrm{s}^{2}
$$

in the direction opposite to $\boldsymbol{r}_{B / A}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{\alpha}_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{t}\right|=\left|\boldsymbol{\alpha}_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|=0 \cdot 3.6=0 \mathrm{ft} / \mathrm{s}^{2} \\
& { }^{1} \boldsymbol{a}_{D_{B} / B_{3}}^{t}={ }^{1} \boldsymbol{\alpha}_{3} \times \boldsymbol{r}_{D / B} \Rightarrow\left|\boldsymbol{a}_{D_{3} / B_{3}}^{t}\right|=\left|{ }^{1} \boldsymbol{\alpha}_{2}\right| \cdot\left|\boldsymbol{r}_{A / D}\right|\left(\perp \text { to } \boldsymbol{r}_{A / D}\right) \\
& { }^{1} \boldsymbol{a}_{D_{B / B 3}}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{D / B}\right) \Rightarrow\left|\boldsymbol{a}_{D_{3} / B 3}^{r}\right|=\frac{\left|\boldsymbol{v}_{D_{3} / B_{3}}\right|^{2}}{\left|\boldsymbol{r}_{D / B}\right|}=\frac{16.462}{9.3}=29.1 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction opposite to $\mathbf{r}_{\mathrm{D} / \mathrm{B}}$

$$
{ }^{1} \boldsymbol{a}_{C 6 / A A_{6}}^{t}=\boldsymbol{\alpha}_{6} \times \boldsymbol{r}_{C / A} \Rightarrow\left|\boldsymbol{a}_{C 6 / A 6}^{t}\right|=\left|{ }^{1} \boldsymbol{a}_{6} \cdot\right| \cdot\left|\boldsymbol{r}_{C / A}\right|\left(\perp \text { to } \boldsymbol{r}_{C / A}\right)
$$

$$
{ }^{1} \boldsymbol{a}_{C 6 / A 6}^{r}={ }^{1} \omega_{6} \times\left({ }^{1} \omega_{6} \times \boldsymbol{r}_{C / A}\right) \Rightarrow\left|\boldsymbol{a}_{C 6 / A_{6}}^{r}\right|=\frac{\left|\boldsymbol{v}_{C 6 / A 6}\right|^{2}}{\left|\boldsymbol{r}_{C / A}\right|}=\frac{5.852}{6}=5.70 \mathrm{ft} / \mathrm{s}^{2}
$$

in the direction opposite to $r_{C / A}$

$$
{ }^{1} \boldsymbol{a}_{C 5 / C_{3}}^{c}=2 \cdot{ }^{c} \boldsymbol{\omega}_{5} \times 3 \boldsymbol{v}_{C_{5} / C_{3}} \Rightarrow\left|\boldsymbol{a}_{C_{5} / C_{3}}^{c}\right|=2\left|{ }^{1} \omega_{3}\right| \cdot\left|{ }^{3} \boldsymbol{v}_{C_{5} / C_{3}}\right|=2(1.77)(16.66)=58.97 \mathrm{ft} / \mathrm{s}^{2}
$$

in the direction perpendicular to BD and in the direction obtained by rotating ${ }^{3} \boldsymbol{v}_{C_{5} / C_{3}} 90^{\circ}$ in the direction of ${ }^{1} \omega_{3}$. The direction is shown on the acceleration polygon.

$$
\begin{aligned}
& { }^{3} \boldsymbol{a}_{C_{5} / C_{3}}^{t} \text { is along the slide }(\text { line } B D) \\
& \left|{ }^{3} \boldsymbol{a}_{C_{5} / C_{3}}^{n}\right|=\frac{\left|1 v_{C_{5} / C_{3}}\right|}{\infty}=0
\end{aligned}
$$

Solve Eqs. (3) and (4) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{C_{6}}=172 \mathrm{ft} / \mathrm{s}^{2}
$$

Also,

$$
\left|1 \boldsymbol{\alpha}_{\phi}\right|=\frac{\left|\boldsymbol{a}_{\boldsymbol{a}_{6} / A_{6} \mid}^{t}\right|}{\left|\boldsymbol{r}_{C / A}\right|}=\frac{171}{6}=28.5 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CW}
$$

Problem 3.18

In the position shown AB is horizontal. Draw the velocity diagram to determine the sliding velocity of link 6. Determine a new position for point C (between B and D) so that the velocity of link 6 would be equal and opposite to the one calculated for the original position of point C .

Position Analysis: Draw the linkage to scale.

Velocity Analysis:

The equations needed for the analysis are:

$$
\begin{align*}
& { }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right| \boldsymbol{r}_{B_{2} / A_{2}} \mid=5(2.9)=14.5 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{3}}=\boldsymbol{v}_{\boldsymbol{v}_{2}} \\
& { }^{1} \boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{B_{3}}+{ }^{l} \boldsymbol{v}_{C_{3} / B_{3}} \tag{1}\\
& { }^{1} \boldsymbol{v}_{C_{3}}=1 \boldsymbol{v}_{C_{4}}+{ }^{1} \boldsymbol{v}_{C_{3} / 4} \\
& { }^{1} \boldsymbol{v}_{C_{4}}=0 \\
& \boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{C_{3} / C_{4}}={ }^{4} \boldsymbol{v}_{C_{3} / C_{4}}={ }^{4} \boldsymbol{v}_{C_{3}} \\
& \boldsymbol{v}_{D_{3}}={ }^{1} \boldsymbol{v}_{D_{5}}=\boldsymbol{v}_{B_{3}}+\boldsymbol{v}_{D_{3} / B_{3}} \\
& { }^{1} \boldsymbol{v}_{D_{5}}=\boldsymbol{v}_{D_{6}}+\boldsymbol{v}_{D_{5} / D_{6}} \tag{2}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \boldsymbol{v}_{B_{2}}=14.5 \text { in } / \mathrm{s} \quad\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{v}_{C / B 3}={ }^{1} \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{C / B} \quad\left(\perp \text { to } \boldsymbol{r}_{C / B}\right)
\end{aligned}
$$

${ }^{1} \boldsymbol{v}_{C_{3}}$ is on line of $\boldsymbol{r}_{C / B}$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{C_{3} / B_{3}}=6.90 \mathrm{in} / \mathrm{s}
$$

or

$$
\left|1 \omega_{3}\right|=\frac{\left|v_{C_{3} / B_{3}}\right|}{\left|r_{C / B}\right|}=\frac{6.90}{1.37}=5.04 \mathrm{rad} / \mathrm{s}
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{3}=5.04 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \boldsymbol{v}_{G_{3}}=\boldsymbol{v}_{\mathcal{C}_{3} / C_{4}}=12.6 \mathrm{in} / \mathrm{s}
$$

Using velocity image theorem,

$$
\boldsymbol{v}_{D_{3}}={ }^{1} \boldsymbol{v}_{D_{5}}=15.25 \mathrm{in} / \mathrm{s}
$$

Now,
${ }^{1} \boldsymbol{v}_{D_{6}}$ is on the vertical axis,
${ }^{1} \boldsymbol{v}_{D_{5} / D_{6}}$ is on the horizantal axis.
Solve Eq. (2) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{D_{6}}=6.85 \mathrm{in} / \mathrm{s}
$$

also,

$$
{ }^{1} \boldsymbol{v}_{D_{5} / D_{6}}=13.62 \mathrm{in} / \mathrm{s}
$$

To find the new location of point C which will make the velocity of link 6 change signs, plot a new velocity polygon with the velocity of d_{6} in the direction indicated.

using velocity image theorem,

$$
\left|r_{C / B}\right|=\left|r_{D / B}\right| \cdot \frac{\left|v_{C^{2} / B_{B}}\right|}{\left|\boldsymbol{v}_{D_{3} / B_{3}}\right|}=(3.1) \cdot \frac{6.90}{43.7}=0.48 \text { in }
$$

The location of C is shown on the following figure.

Problem 3.19
The scotch-yoke mechanism is driven by crank 2 at $\omega_{2}=36 \mathrm{rad} / \mathrm{s}$ (CCW). Link 4 slides horizontally. Find the velocity of point B on Link 4.

Position Analysis: Draw the linkage to scale.

Velocity Analysis:
${ }^{1} \boldsymbol{v}_{A_{2}}=\boldsymbol{v}_{A_{2} / C_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{A_{2} / C_{2}} \Rightarrow\left|\boldsymbol{v}_{A_{2}}\right|=\left|{ }^{1} \omega_{2}\right| \boldsymbol{r}_{A_{2} / C_{2}} \mid=36 \cdot(2)=72 \mathrm{in} / \mathrm{s}$
$\boldsymbol{v}_{A_{3}}=\boldsymbol{v}_{A_{4}}+\boldsymbol{v}_{\boldsymbol{v}_{3} / A_{4}}$
$\boldsymbol{v}_{A_{3}}=\boldsymbol{v}_{A_{2}}$
Now,

$$
{ }^{1} \boldsymbol{v}_{A_{2}}=72 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \boldsymbol{r}_{A / C}\right)
$$

${ }^{1} \boldsymbol{v}_{A_{3} / A 4}$ is along the slider
${ }^{1} \boldsymbol{v}_{A 4}$ moves on a horizontal axis, and because 4 is a rigid body

$$
\boldsymbol{v}_{\boldsymbol{v}_{44}}=\boldsymbol{v}_{B 4}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon, ${ }^{1} \boldsymbol{v}_{A 4}=1 \boldsymbol{v}_{B_{4}}=37.5 \mathrm{in} / \mathrm{s}$

Problem 3.20

The circular cam shown is driven at an angular velocity $\omega_{2}=15 \mathrm{rad} / \mathrm{s}(\mathrm{CW})$ and $\boldsymbol{\alpha}_{2}=100 \mathrm{rad} / \mathrm{s}^{2}$ (CW). There is rolling contact between the cam and the roller, link 3. Find the angular velocity and angular acceleration of the oscillating follower, link 4.

Position Analysis:

Draw the linkage to scale. Note that because of rolling contact and because we are to find the velocity and acceleration of link 4 only, we can model the system as a four-bar linkage. If we were asked for the kinematic properties of link 3, we would have to model the system using rolling contact directly.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|{ }^{1} \boldsymbol{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right| r_{B / A} \mid=15 \cdot(1.22)=18.3 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{5}}={ }^{1} \boldsymbol{v}_{B_{2}} \\
& { }^{1} \boldsymbol{v}_{D_{5}}={ }^{1} \boldsymbol{v}_{B_{5}}+{ }^{1} \boldsymbol{v}_{D_{5} / B_{5}} \tag{1}\\
& { }^{1} \boldsymbol{v}_{D_{5}}={ }^{1} \boldsymbol{v}_{D_{4}}={ }^{1} \omega_{4} \times \boldsymbol{r}_{D / E} \Rightarrow\left|{ }^{1} \boldsymbol{v}_{D_{4}}\right|={ }^{1} \omega_{4}\left|\boldsymbol{r}_{D / E}\right|
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{D_{5} / B_{5}}={ }^{1} \omega_{5} \times \boldsymbol{r}_{D / B}\left(\perp \text { to } \boldsymbol{r}_{D / B}\right) \\
& { }^{1} \boldsymbol{v}_{D_{5}}={ }^{1} \omega_{4} \times \boldsymbol{r}_{D 4 / E 4}\left(\perp \text { to } \boldsymbol{r}_{D / E}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. The velocity directions can be gotten directly from the polygon. The magnitudes are given by:

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{5}=4.56 \mathrm{rad} / \mathrm{s} C C W
$$

Also,

$$
\left|v_{D_{4} / E_{4}}\right|=14.6 \mathrm{in} / \mathrm{s} \Rightarrow\left|1 \omega_{4}\right|=\frac{\left|v_{D_{d} / E_{4}}\right|}{\left|r_{D / E}\right|}=\frac{14.6}{3.5}=4.17 \mathrm{rad} / \mathrm{s}
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{4}=4.17 \mathrm{rad} / \mathrm{s} C W
$$

Acceleration Analysis:
For the acceleration analysis, use the same points in the same order as was done in the velocity analysis.

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t} \\
& { }^{1} \boldsymbol{a}_{B_{5}}={ }^{1} \boldsymbol{a}_{B_{2}} \\
& { }^{1} \boldsymbol{a}_{D_{5}}={ }^{1} \boldsymbol{a}_{B_{5}}+{ }^{1} \boldsymbol{a}_{D_{5} / B_{5}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}+{ }^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{r}+{ }^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{t} \\
& { }^{1} \boldsymbol{a}_{D_{5}}={ }^{1} \boldsymbol{a}_{D_{4}}={ }^{1} \boldsymbol{a}_{D_{4} / E_{4}}={ }^{1} \boldsymbol{a}_{D_{4} / E_{4}}^{r}+{ }^{1} \boldsymbol{a}_{D_{4} / E_{4}}^{t}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
{ }^{1} \boldsymbol{a}_{D_{4} / E_{4}}^{r}+{ }^{1} \boldsymbol{a}_{D_{4} / E_{4}}^{t}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}+{ }^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{r}+{ }^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{t} \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}=\left|{ }^{1} \omega_{2}\right|^{2} \cdot\left|r_{B / A}\right|=15^{2} \cdot 1.22=274.5 \mathrm{in} / \mathrm{s}^{2} \text { in a direction opposite to } \mathrm{r}_{\mathrm{B}} / \mathrm{A} . \\
& { }^{1} \boldsymbol{a}_{D 4 / E 4}^{r}=\left|{ }^{1} \omega_{4}\right|^{2} \cdot\left|r_{D / E}\right|=4.172 \cdot 3.5=60.8 \mathrm{in} / \mathrm{s}^{2} \text { in a direction opposite to } \mathrm{m} / \mathrm{E} . \\
& { }^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{r}=\left|{ }^{1} \omega_{5}\right|^{2} \cdot \psi_{D / B} \mid=4.56^{2} \cdot 2.5=52.0 \mathrm{in} / \mathrm{s}^{2} \text { in a direction opposite to } \mathrm{r}_{\mathrm{D}} / \mathrm{B} . \\
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{\alpha}_{2} \times \boldsymbol{r}_{B / A} \Rightarrow| |^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}\left|={ }^{1} \boldsymbol{\alpha}_{2}\right| \cdot \boldsymbol{r}_{B / A} \mid=100 \cdot 1.22=122 \mathrm{in} / \mathrm{s}^{2}\left(\perp \text { to } r_{B / A}\right) \\
& { }^{1} \boldsymbol{a}_{D_{4} / E_{4}}^{t}={ }^{1} \boldsymbol{\alpha}_{4} \times\left.\boldsymbol{r}_{D / E} \Rightarrow\right|^{1} \boldsymbol{a}_{D_{4} / E}^{t}\left|=\left.\right|^{1} \boldsymbol{\alpha}_{4}\right| \cdot \boldsymbol{r}_{D / E}\left(\perp \text { to } r_{D / E}\right) \\
& { }^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{t}={ }^{1} \boldsymbol{\alpha}_{5} \times\left.\boldsymbol{r}_{D / B} \Rightarrow\right|^{1} \boldsymbol{a}_{D_{5} / B_{5}}^{t}\left|=\left.\right|^{1} \boldsymbol{\alpha}_{5}\right| \cdot \mid \boldsymbol{r}_{D / B}\left(\perp \text { to } r_{D / B}\right)
\end{aligned}
$$

Solve Eq. (2) graphically with an acceleration polygon. The acceleration directions can be gotten directly from the polygon. The magnitudes are given by:

$$
\left|1 \mathbf{a}_{D 4 / E 4}^{t}\right|=120.6 \text { in } / \mathrm{s}^{2} \Rightarrow\left|1 \alpha_{4}\right|=\frac{\left|1 \mathbf{a}_{D / E 4}^{t}\right|}{\left|\mathbf{r}_{D / E}\right|}=\frac{120.6}{3.5}=34.5 \mathrm{rad} / \mathrm{s}^{2}
$$

From the directions given in the position and acceleration polygons

$$
{ }^{1} a_{D_{4} / E_{4}}^{t}=34.5 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
$$

Problem 3.21

For the mechanism shown, assume that link 2 rolls on the frame (link 1) and link 4 rolls on Link 3. Assume that link 2 is rotating CW with a constant angular velocity of $100 \mathrm{rad} / \mathrm{s}$. Determine the angular acceleration of link 3 and link 4.

Position Analysis

Draw the linkage to scale. Start with link 2 and locate point A. Locate point C and draw link 4. Then draw a line corresponding to the path of point C . Then locate point C and draw a circle $1.3^{\prime \prime}$ in radius. Draw a line from point A tangent to the circle centered at C . Then locate point B on the radial line from the tangent point to C .

Velocity Analysis:

Find angular velocity of link 2,

$$
\begin{align*}
& \boldsymbol{v}_{A_{2}}=\boldsymbol{v}_{A_{2} / D_{2}}={ }^{1} \boldsymbol{v}_{A_{3}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{A / D} \\
& { }^{1} \boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{v}_{A_{3}}+{ }^{1} \boldsymbol{v}_{B_{3} / A_{3}}={ }^{1} \boldsymbol{v}_{B_{4}}={ }^{1} \boldsymbol{v}_{B_{4} / C_{4}} \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \left|\boldsymbol{v}_{A 2}\right|=\left|{ }^{1} \omega_{2}\right|\left|\boldsymbol{r}_{A / D}\right|=100 \cdot 0.5=50 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{A / D}\right) \\
& { }^{1} \boldsymbol{v}_{B_{3} / A_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{v}_{B_{3} / A_{3}}\right|=\left.\right|^{1} \omega_{3}\left|\boldsymbol{r}_{B / A}\right|\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& \boldsymbol{v}_{B 4 / C_{4}}={ }^{1} \omega_{4} \times \boldsymbol{r}_{B / C} \Rightarrow\left|\boldsymbol{v}_{B 4 / C_{4}}\right|={ }^{1} \omega_{4} \mid \boldsymbol{r}_{B / d}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{B_{3} / A_{3}}=27.5 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{4} / C_{4}}=44.6 \mathrm{in} / \mathrm{s}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|1 \omega_{3}\right|=\frac{\left|\left|v_{B_{3} / A_{3}}\right|\right.}{\left|r_{B / A}\right|}=\frac{27.5}{3.91}=7.03 \mathrm{rad} / \mathrm{s} \\
& \left|1 \omega_{4}\right|=\frac{\left|v_{B 4 / C 4}\right|}{\left|r_{B / d}\right|}=\frac{44.6}{1}=44.6 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

To determine the direction of ${ }^{1} \boldsymbol{\omega}_{3}$, determine the direction that $\mathbf{r}_{\mathrm{B}} / \mathrm{A}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{v}_{B_{3} / A_{3}}$. This direction is clearly counterclockwise.

To determine the direction of ${ }^{1} \boldsymbol{\omega}_{4}$, determine the direction that $\mathbf{r}_{B / C}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{v}_{B_{4} / C_{4}}$. This direction is clearly clockwise.

Acceleration Analysis:

$$
{ }^{1} \boldsymbol{a}_{A_{3}}={ }^{1} \boldsymbol{a}_{A 2}={ }^{1} \boldsymbol{a}_{D_{2} / D 1}+{ }^{1} \boldsymbol{a}_{A 2 / D_{2}}
$$

Because of rolling contact on a flat surface,

$$
{ }^{1} \boldsymbol{a}_{D_{2} / D_{1}}=1 \boldsymbol{a}_{D_{2} / D_{1}}^{n}=1 \boldsymbol{a}_{D_{2} / A_{2}}^{r}
$$

Also,

$$
{ }^{1} \boldsymbol{a}_{A_{2} / D_{2}}={ }^{1} \boldsymbol{a}_{A 2 / D_{2}}^{r}+{ }^{1} \boldsymbol{a}_{A_{2} / D_{2}}^{t}
$$

Combining the equations,

$$
{ }^{1} \boldsymbol{a}_{A 2}=1 \boldsymbol{a}_{D_{2} / A_{2}}^{r}+\boldsymbol{a}_{A_{2} / D_{2}}^{r}+{ }^{1} \boldsymbol{a}_{A_{2} / D_{2}}^{t}=1 \boldsymbol{a}_{A_{2} / D_{2}}^{t}={ }^{1} \boldsymbol{\alpha}_{2} \times \boldsymbol{r}_{A / D}=0
$$

Going to point B,

$$
{ }^{1} \boldsymbol{a}_{B_{3}}=1 \boldsymbol{a}_{A_{3}}+{ }^{1} \boldsymbol{a}_{B_{3} / A_{3}}={ }^{1} \boldsymbol{a}_{A_{3}}+\boldsymbol{a}_{B_{3} / A_{3}}^{r}+\boldsymbol{a}_{B_{3} / A_{3}}^{t}
$$

also,

$$
{ }^{1} \boldsymbol{a}_{B 3}={ }^{1} \boldsymbol{a}_{B 4}+{ }^{1} \boldsymbol{a}_{B 3 / B 4}={ }^{1} \boldsymbol{a}_{B 4 / C 4}+{ }^{1} \boldsymbol{a}_{B 3 / B 4}
$$

Then,

$$
{ }^{1} \boldsymbol{a}_{B 4 / C_{4}}+{ }^{1} \boldsymbol{a}_{B 3 / B 4}={ }^{1} \boldsymbol{a}_{A 3}+{ }^{1} \boldsymbol{a}_{B 3} / A_{3}
$$

Expanding the terms,

$$
{ }^{1} \boldsymbol{a}_{B 4 / C_{4}}^{r}+\boldsymbol{a}_{B 4 / C_{4}}^{t}+{ }^{1} \boldsymbol{a}_{B 3 / B 4}^{n}=1 \boldsymbol{a}_{A_{3}}+{ }^{1} \boldsymbol{a}_{B 3 / A 3}^{r}+\boldsymbol{a}_{B 3 / A 3}^{t}
$$

Expanding ${ }^{1} \boldsymbol{a}_{B 3 / B 4}^{n}$ recognizing that there is rolling contact between a circle and flat surface, and that ${ }^{\mathbf{a}_{\mathrm{A}_{3}}}=0$,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B} 4 / \mathrm{C} 4}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{C} 4 / \mathrm{B} 4}^{\mathrm{n}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{A}_{3}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B} 3 / \mathrm{A}_{3}}^{\mathrm{t}}
$$

which simplifies to

$$
\begin{equation*}
\mathbf{a}_{\mathrm{B}_{4} / \mathrm{C}_{4}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{A}_{3}}^{\mathrm{r}}+\mathbf{a}_{\mathrm{B}_{3} / \mathrm{A}_{3}}^{\mathrm{t}} \tag{3}
\end{equation*}
$$

Now,

$$
{ }^{1} \boldsymbol{a}_{B_{3} / A_{3}}^{r}=\boldsymbol{\omega}_{3} \times\left({ }^{1} \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{B / A}\right) \Rightarrow\left|{ }^{1} \boldsymbol{a}_{B_{3} / A_{3}}^{r}\right|=\left|\boldsymbol{\omega}_{3}\right|^{2} \cdot| |_{B / A} \mid=7.042 \cdot 3.91=194 \mathrm{in} / \mathrm{s}^{2}
$$

in the direction opposite to $\boldsymbol{r}_{B / A}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B 3 / A_{3}}^{t}={ }^{1} \boldsymbol{\alpha}_{3} \times \boldsymbol{r}_{B / A}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{a}_{B_{4} / C_{4}}^{t}={ }^{1} \boldsymbol{\alpha}_{4} \times \boldsymbol{r}_{B / C}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right)
\end{aligned}
$$

Solve Eq. (3) graphically with an acceleration polygon. From the polygon,

$$
\begin{aligned}
& \left|\left|\boldsymbol{a}_{B_{3} / A_{3}}^{t}\right|=17.2 \mathrm{in} / \mathrm{s}^{2}\right. \\
& \left|\boldsymbol{a}_{B 4 / C 4}^{t}\right|=194 \mathrm{in} / \mathrm{s}^{2}
\end{aligned}
$$

Then

$$
\left|1 \boldsymbol{o}_{3}\right|=\frac{\left|\boldsymbol{a}_{B_{3} / A_{3}}^{t}\right|}{\left|\boldsymbol{r}_{B / A}\right|}=\frac{17.2}{3.91}=4.41 \mathrm{rad} / \mathrm{s}^{2}
$$

and

$$
\left|1 \alpha_{A}\right|=\frac{\left|\boldsymbol{a}_{B /}^{t} \boldsymbol{a}_{C}\right|}{\left|\left.\right|_{B / d}\right|}=\frac{194}{1}=194 \mathrm{rad} / \mathrm{s}^{2}
$$

To determine the direction of ${ }^{1} \alpha_{3}$, determine the direction that $\boldsymbol{r}_{B / A}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{a}_{B_{3} / A_{3}}^{t}$. This direction is clearly counterclockwise.

To determine the direction of ${ }^{1} \boldsymbol{\alpha}_{4}$, determine the direction that $\boldsymbol{r}_{B / C}$ must be rotated to be parallel to $\boldsymbol{a}_{B 4 / C_{4}}^{t}$. This direction is clearly counterclockwise.

Problem 3.22
For the mechanism shown, assume that link 4 rolls on the frame (link 1). If link 2 is rotating CW with a constant angular velocity of $10 \mathrm{rad} / \mathrm{s}$, determine the angular accelerations of links 3 and 4 and the acceleration of point E on link 3 .

Position Analysis

Draw the linkage to scale. Start with link 2 and locate point B. Then draw a line corresponding to the path of point C . Then locate point C and draw link 4 . Then locate point E .

Velocity Analysis:

Find angular velocity of link 2,

$$
\boldsymbol{v}_{B_{2}}=\boldsymbol{v}_{B_{2} / A_{2}}=\boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{B_{B} / A}
$$

${ }^{1} \boldsymbol{v}_{C_{3}}={ }^{1} \boldsymbol{v}_{B_{3}}+{ }^{1} \boldsymbol{v}_{C_{3} / B_{3}}$

$$
\begin{equation*}
\boldsymbol{v}_{C_{3}}={ }^{1} \boldsymbol{v}_{C_{4}} \tag{1}
\end{equation*}
$$

Velocity Scale $\stackrel{5 \mathrm{in} / \mathrm{s}}{ }$

Now,

$$
\left|\left|\boldsymbol{v}_{B_{2}}\right|=\left|1 \omega_{2}\right|\right| r_{B / A} \mid=10 \cdot 0.95=9.5 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right)
$$

${ }^{1} \boldsymbol{v}_{C_{3}}$ along the line of motion of C.

$$
{ }^{1} \boldsymbol{v}_{C^{\prime} / B_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{C / B} \Rightarrow\left|\boldsymbol{v}_{C_{3} / B 3}\right|=\left|\omega_{3}\right| r_{C \mid B} \mid\left(\perp \text { to } r_{C / B}\right)
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{C_{4}}=7.53 \mathrm{in} / \mathrm{s}
$$

Also,

$$
{ }^{1} \boldsymbol{v}_{\mathcal{C}_{3} / B_{3}}=4.81 \mathrm{in} / \mathrm{s}
$$

or

$$
\left|1 \omega_{3}\right|=\frac{\left|v_{C_{3} / B_{3}}\right|}{\left|r_{C / B}\right|}=\frac{4.81}{3.25}=1.48 \mathrm{rad} / \mathrm{s}
$$

To determine the direction of ${ }^{1} \boldsymbol{\omega}_{3}$, determine the direction that $\boldsymbol{r}_{B / A}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{v}_{B_{3} / A_{3}}$. This direction is clearly counterclockwise.

For link 4,

$$
\boldsymbol{v}_{C_{4}}=\boldsymbol{v}_{D_{4}}+{ }^{1} \boldsymbol{v}_{C_{4} / D_{4}}={ }^{1} \boldsymbol{v}_{C_{4} / D_{4}}={ }^{1} \omega_{4} \times \boldsymbol{r}_{C / D}
$$

or

$$
\left|1 \omega_{4}\right|=\frac{\left|v_{C 4 / D_{4}}\right|}{\left|v_{C / D}\right|}=\frac{7.53}{1.2}=6.28 \mathrm{rad} / \mathrm{s}
$$

To determine the direction of ${ }^{1} \omega_{4}$, determine the direction that $\mathbf{r}_{C / D}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{v}_{C_{4} / D_{4}}$. This direction is clearly counterclockwise.

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B_{2}}=1 \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / E_{2}}^{t} \\
& { }^{1} \boldsymbol{a}_{C_{3}}={ }^{1} \boldsymbol{a}_{C 4}={ }^{1} \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{C_{3} / B_{3}} \\
& { }^{1} \boldsymbol{a}_{C_{3}}=1{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / E_{2}}^{t}+{ }^{1} \boldsymbol{a}_{C 3 / B_{3}}^{r}+{ }^{1} \boldsymbol{a}_{C 3 / B_{3}}^{t} \tag{3}\\
& { }^{1} \boldsymbol{a}_{D_{4}}={ }^{1} \boldsymbol{a}_{C_{4}}+{ }^{1} \boldsymbol{a}_{D_{4} / C_{4}}={ }^{1} \boldsymbol{a}_{D_{4} / D_{1}}={ }^{1} \boldsymbol{a}_{D_{4} / D_{1}}^{n} \\
& { }^{1} \boldsymbol{a}_{D_{4} / D_{1}}^{n}={ }^{1} \boldsymbol{a}_{C 4}+{ }^{1} \boldsymbol{a}_{D_{4} / C_{4}}^{r}+{ }^{+} \boldsymbol{a}_{D_{4} / C_{4}}^{t}={ }^{1} \boldsymbol{a}_{D_{4} / C_{4}}^{n}+{ }^{1} \boldsymbol{a}_{C 4 / F_{1}}^{n}+{ }^{1} \boldsymbol{a}_{F 1 / D_{1}}^{n}
\end{align*}
$$

Where F is the center of curvature of the line. Consequently, F is at infinity and both $\boldsymbol{a}_{C 4 / F_{1}}^{n}$ and ${ }^{1} \boldsymbol{a}_{F 1 / D_{1}}^{n}$ are zero. Also, ${ }^{1} \boldsymbol{a}_{D 4}^{n} / C_{4}$ and ${ }^{1} \boldsymbol{a}_{D 4 / C_{4}}^{r}$ cancel. Therefore, the acceleration equation reduces to

$$
{ }^{1} \boldsymbol{a}_{C 4}+{ }^{1} \boldsymbol{a}_{D_{4} / C_{4}}^{t}=0
$$

or

$$
{ }^{1} \boldsymbol{a}_{D_{4} / C_{4}}^{t}={ }^{-1} \boldsymbol{a}_{C_{4}}
$$

Now,
${ }^{1} \boldsymbol{a}_{C_{3}}$ along the line of motion of point C .

$$
{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}={ }^{1} \boldsymbol{\omega}_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\right) \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{r}\right|=\left|{ }^{1} \omega_{2}\right|^{2} \cdot\left|\boldsymbol{r}_{B / A}\right|=10^{2} \cdot 0.95=95 \mathrm{in} / \mathrm{s}^{2}
$$

in the direction opposite to $\boldsymbol{r}_{B / A}$

$$
\begin{aligned}
& \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{\alpha}_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{t}\right|=\left|{ }^{1} \boldsymbol{\alpha}_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|=0 \cdot 1=0 \mathrm{in} / \mathrm{s}^{2} \\
& { }^{1} \boldsymbol{a}_{C 3 / B_{3}}^{r}={ }^{1} \boldsymbol{\omega}_{3} \times\left({ }^{1} \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{C / B}\right) \Rightarrow\left|{ }^{1} \boldsymbol{a}_{C_{3} / B 3}^{r}\right|=\left|{ }^{1} \boldsymbol{\omega}_{3}\right|^{2} \cdot\left|\boldsymbol{r}_{C / B}\right|=1.482 \cdot 3.25=7.12 \mathrm{in} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction opposite to $r_{C / B}$

$$
{ }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{t}={ }^{1} \alpha_{3} \times \boldsymbol{r}_{C / B} \Rightarrow\left|\boldsymbol{a}_{C_{3} / B_{3}}^{t}\right|=\left|{ }^{1} \boldsymbol{\alpha}_{3}\right| \cdot|\cdot|_{C / B} \mid\left(\perp \text { to } \boldsymbol{r}_{C / B}\right)
$$

Solve Eq. (3) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{C_{3}}=65.8 \mathrm{in} / \mathrm{s}^{2}
$$

and by image,

$$
{ }^{1} \boldsymbol{a}_{E_{3}}=122 \mathrm{in} / \mathrm{s}^{2}
$$

in the directions shown. Also,

$$
{ }^{1} \boldsymbol{a}_{C / B / B 3}^{t}=84.2 \mathrm{in} / \mathrm{s}^{2}
$$

or

$$
\left|\boldsymbol{\alpha}_{3}\right|=\frac{\left|\boldsymbol{a}_{C / / B_{3}}^{t}\right|}{\left|\boldsymbol{r}_{C / B}\right|}=\frac{84.2}{3.25}=25.9 \mathrm{rad} / \mathrm{s}^{2}
$$

To determine the direction of ${ }^{1} \alpha_{3}$, determine the direction that $\boldsymbol{r}_{C / B}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{t}$. This direction is clearly clockwise.

Also,

$$
\boldsymbol{a}_{D_{4} / C_{4}}^{t}=\boldsymbol{\alpha}_{4} \times \boldsymbol{r}_{D / C}=-{ }^{1} \boldsymbol{a}_{C_{4}} \Rightarrow\left|\boldsymbol{a}_{D_{4} / C_{4}}^{t}\right|=\left|1 \boldsymbol{\alpha}_{4}\right| \cdot \mid \boldsymbol{r}_{D / d}
$$

or

$$
\left|1 \alpha_{4}\right|=\frac{\left|\boldsymbol{a}_{D 4 / C_{4}}^{t}\right|}{\left|\boldsymbol{r}_{D /}\right|}=\frac{65.8}{1.2}=54.8 \mathrm{rad} / \mathrm{s}^{2}
$$

To determine the direction of ${ }^{1} \boldsymbol{\alpha}_{4}$, determine the direction that $\boldsymbol{r}_{D / C}$ must be rotated to be parallel to ${ }^{1} \boldsymbol{a}_{D_{4} / C_{4}}^{t}$. This direction is clearly counterclockwise.

Problem 3.23
If $\boldsymbol{v}_{\mathrm{A}_{2}}=10 \mathrm{in} / \mathrm{s}$ (constant) downward, find $\boldsymbol{\omega}_{3}, \boldsymbol{\alpha}_{3}, \boldsymbol{v}_{\mathrm{C}_{3}}$, and $\boldsymbol{a}_{\mathrm{C}_{3}}$.

Velocity Analysis

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{A_{2}}+{ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{v}_{A_{2}}+{ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A} \\
& { }^{1} \boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{v}_{B_{2}}+{ }^{1} \boldsymbol{v}_{B_{3} / B_{2}}={ }^{1} \boldsymbol{v}_{B_{3} / F_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{B / F}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\boldsymbol{v}_{B_{3} / F_{3}}={ }^{1} \boldsymbol{v}_{A_{2}}+{ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}+{ }^{1} \boldsymbol{v}_{B_{3} / B_{2}} \tag{1}
\end{equation*}
$$

Because of rolling contact,

$$
{ }^{1} \boldsymbol{v}_{B_{3} / B_{2}}=0
$$

Also,

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{B_{3} / F_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{B / F}\left(\perp \text { to } \boldsymbol{r}_{B / F}\right) \\
& { }^{1} \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right)
\end{aligned}
$$

Therefore, we can solve Eq. (1) using the velocity polygon. Using the velocity polygon,

To determine the direction of ${ }^{1} \omega_{2}$, determine the direction that we must rotate $\boldsymbol{r}_{B / A} 90^{\circ}$ to get the direction of ${ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}$. This is CCW. Also,

$$
\left|\omega_{3}\right|=\frac{\left|v_{B 3 / F 3}\right|}{\left|r_{B / F}\right|}=\frac{10.14}{1.0}=10.14 \mathrm{rad} / \mathrm{s}
$$

To determine the direction of ${ }^{1} \omega_{3}$, determine the direction that we must rotate $\mathbf{r}_{\mathrm{B} / \mathrm{F}} 90^{\circ}$ to get the direction of ${ }^{1} \boldsymbol{v}_{B / F 3}$. This is CW.

The velocity of point C_{3} is found by image. The magnitude is

$$
\left|\boldsymbol{v}_{C_{3}}\right|=10 \mathrm{in} / \mathrm{s}
$$

and the direction is given by the velocity polygon.

Acceleration Analysis

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{A_{2}}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{a}_{A_{2}}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}={ }^{1} \boldsymbol{a}_{A_{2}}+{ }^{1} \boldsymbol{\alpha}_{2} \times \boldsymbol{r}_{B / A}+{ }^{1} \omega_{2} \times\left({ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B_{2}}+{ }^{1} \boldsymbol{a}_{B_{3} / B_{2}}^{n}
\end{aligned}
$$

and

$$
{ }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B 3 / F_{3}}={ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{t}+{ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{r}={ }^{1} \boldsymbol{\alpha}_{3} \times \boldsymbol{r}_{B / F}+{ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \boldsymbol{r}_{B / F}\right)
$$

Compute the normal component of acceleration at the rolling contact point.

$$
{ }^{1} \boldsymbol{a}_{B_{3} / B_{2}}^{n}={ }^{1} \boldsymbol{a}_{B_{3} / O_{3}}^{r}+{ }^{1} \boldsymbol{a}_{O_{3} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{A_{2} / B_{2}}^{r}
$$

where O_{3} is at infinity in the direction of AB . Then,

$$
\begin{aligned}
\boldsymbol{a}_{B_{3} / F_{3}}^{t}+{ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{r} & ={ }^{1} \boldsymbol{a}_{A_{1}}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{3} / O_{3}}^{r}+{ }^{1} \boldsymbol{a}_{3_{3} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{A_{2} / B_{2}}^{r} \\
& =\boldsymbol{a}_{A_{2}}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}+{ }^{1} \boldsymbol{a}_{B_{3} / O_{3}}+{ }^{1} \boldsymbol{a}_{O_{3} / A_{2}}
\end{aligned}
$$

The known information can be summarized as follows:

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{A_{2}}=0 \\
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \alpha_{2} \times \boldsymbol{r}_{B / A}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{a}_{B_{3} / O_{3}}^{r}=\frac{\left|v_{B_{3} / O_{3}}\right|^{2}}{\left|\boldsymbol{r}_{B / O_{3}}\right|^{2}}=\frac{\left|v_{B_{3 /} / O_{3}}\right|^{2}}{|0|}=0 \\
& { }^{1} \boldsymbol{a}_{O_{3} / A_{2}}^{r}=\frac{\left|v_{O_{3} / A_{2}}\right|^{2}}{\left|\boldsymbol{r}_{O_{3} / A_{2}}\right|}=\frac{\left|v_{O_{3} / A 2}\right|^{2}}{|\alpha|}=0 \\
& { }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{t}={ }^{1} \alpha_{3} \times \boldsymbol{r}_{B / F}\left(\perp \text { to } \boldsymbol{r}_{B / F}\right) \\
& \left|\boldsymbol{a}^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{r}\right|=\frac{\left|v_{B_{3} / F_{3}}\right|^{2}}{\left|\boldsymbol{r}_{B / F}\right|}=\frac{10.142}{1}=103 \mathrm{in} / \mathrm{s}^{2} \text { opposite to } \boldsymbol{r}_{B / F}
\end{aligned}
$$

Note that ${ }^{1} \boldsymbol{a}_{A_{2} / B_{2}}^{r}$ and ${ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}$ are in opposite directions and cancel each other. Therefore, the acceleration equations can be combined into the following simple equation

$$
\begin{equation*}
{ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{t}+{ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{r}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t} \tag{2}
\end{equation*}
$$

and solved for the unknown magnitudes of ${ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{t}$ and ${ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}$. Using values from the acceleration polygon,

$$
\left|\alpha_{3}\right|=\frac{\left|\boldsymbol{a}_{B 3 / 5}^{t}\right|}{\left|\boldsymbol{r}_{B / F}\right|}=\frac{104}{1.0}=104 \mathrm{rad} / \mathrm{s}^{2}
$$

To determine the direction of ${ }^{1} \boldsymbol{\alpha}_{3}$, determine the direction that we must rotate $\boldsymbol{r}_{B / F} 90^{\circ}$ to get the direction of ${ }^{1} \boldsymbol{a}_{B_{3} / F_{3}}^{t}$. This is CCW. The acceleration of point C_{3} is found by image. The magnitude is

$$
\left|{ }^{1} \mathbf{a}_{C_{3}}\right|=148 \mathrm{in} / \mathrm{s}^{2}
$$

and the direction is given by the polygon.

Problem 3.24
In the figure shown below, points A, B, and C are collinear. If $\boldsymbol{v}_{\mathrm{A}_{2}}=10 \mathrm{in} / \mathrm{s}$ (constant) downward, find $\boldsymbol{v}_{\mathrm{C}_{3}}$, and $\boldsymbol{a}_{\mathrm{C}_{3}}$.

Velocity Analysis

$$
\begin{equation*}
{ }^{1} \mathbf{v}_{\mathrm{C}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{A}_{2}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}} \tag{1}
\end{equation*}
$$

This can be solved using velocity polygons as shown since we know the directions of ${ }^{1} \mathbf{v}_{\mathrm{A}_{2}}$ and ${ }^{1} \mathbf{v}_{\mathrm{B}_{2}}$. Therefore, ${ }^{1} \mathbf{v}_{\mathrm{C}_{2}}=10 \mathrm{in} / \mathrm{sec}$.

Acceleration Analysis
Differentiate Eq. (1) to solve for ${ }^{1} \mathbf{a}_{C_{2}}$.

$$
{ }^{1} \mathbf{a}_{\mathrm{C}_{3}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}
$$

and

$$
\begin{equation*}
{ }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }^{1} \mathbf{a}_{\mathrm{A}_{2}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{O}_{3}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{O}_{3} / \mathrm{A}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{A}_{2} / \mathrm{B}_{2}}^{\mathrm{r}} \tag{2}
\end{equation*}
$$

where O_{3} is at infinity in the direction of AB .

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{A}_{2}}=0 \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}=\frac{\left|1 \mathrm{~V}_{\mathrm{B} 2} / \mathrm{A}_{2}\right|^{2}}{\left|\mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|} \text { opposite to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{2} \times \mathbf{r B}_{\mathrm{B}} \mathrm{~A}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{O}_{3}}^{\mathrm{r}}=\frac{\left|\mathrm{l}_{\mathrm{VB}_{3} / \mathrm{O}_{3}}\right|^{2}}{\left|\mathrm{n}_{\mathrm{B} / \mathrm{O}_{3}}\right|}=\frac{{ }^{1} \mathrm{VB}_{3} /\left.\mathrm{O}_{3}\right|^{2}}{|\mathrm{p}|}=0 \\
& { }^{1} \mathbf{a}_{\mathrm{O}_{3} / \mathrm{A}_{2}}^{r}=\frac{\mid \mathrm{l}_{\mathrm{V} \mathrm{O}_{3} /\left.\mathrm{A}_{2}\right|^{2}}^{\mid}}{\left|\mathrm{rO}_{3} / \mathrm{A}_{2}\right|}=\frac{\|^{\mathrm{l} \mathrm{VO}_{3} /\left.\mathrm{A}_{2}\right|^{2}}}{|\infty|}=0 \\
& { }^{1} \mathbf{a}_{\mathrm{A}_{2} / \mathrm{B}_{2}}=\frac{\|\left.^{1} \mathrm{~V}_{\mathrm{A}_{2} / \mathrm{B}_{2}}\right|^{2}}{\left|\mathbf{r}_{\mathrm{A} / \mathrm{B}}\right|}
\end{aligned}
$$

Note that ${ }^{1} \mathbf{a}_{\mathrm{A}_{2} / \mathrm{B}_{2}}^{\mathrm{r}}$ and ${ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}$ are in opposite directions and cancel each other. Therefore, all of the terms on the right hand side of Eq. (2) are either zero or cancel each other except for ${ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}$. Therefore,

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}
$$

However, ${ }^{1} \mathbf{a}_{\mathrm{B}_{3}}$ must be horizontal and ${ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}$ is perpendicular to $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$ which is not horizontal. Because the directions are different, the magnitudes must be zero. Therefore, ${ }^{1} \mathbf{a}_{\mathrm{B}_{3}}$ must be zero.

Problem 3.25

Part of an eight-link mechanism is shown in the figure. There is rolling contact at location B and the velocity and acceleration of points A_{6} and C_{5} are as shown. Find ω_{8} and α_{7} for the position given. Also find the velocity of E_{7} by image.

Position Analysis

Draw the mechanism to scale. Vectors are:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{B} / \mathrm{C}}=2 \mathrm{in} \\
& \mathrm{r}_{\mathrm{B} / \mathrm{A}}=2 \mathrm{in} \\
& \mathrm{r}_{\mathrm{D} / \mathrm{B}}=1 \mathrm{in}
\end{aligned}
$$

Velocity Analysis

Velocity analysis:

The basic equations are:

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{B} 7}={ }^{1} \mathbf{v}_{\mathrm{B} 7 / \mathrm{A} 7}+{ }^{1} \mathbf{v}_{\mathrm{A} 7} \\
& { }^{1} \mathbf{v B}_{8}={ }^{1} \mathbf{v}_{\mathrm{V}_{8} / \mathrm{C}_{8}}{ }^{+}{ }^{1} \mathbf{v}_{\mathrm{C}}{ }_{8} \\
& { }^{1} \mathbf{v}_{\mathrm{B}_{8}}={ }^{1} \mathbf{v}_{\mathrm{B} 7}+{ }^{1} \mathbf{v}_{\mathrm{B} 8} / \mathrm{B} 7
\end{aligned}
$$

Combining the equations,

$$
{ }^{1} \mathbf{v}_{\mathrm{B} 8 / \mathrm{C} 8}+{ }^{1} \mathbf{v}_{\mathrm{C} 8}={ }^{1} \mathbf{v}_{\mathrm{B} 7 / \mathrm{A} 7}+{ }^{1} \mathbf{v}_{\mathrm{A} 7}+{ }^{1} \mathbf{v}_{\mathrm{B} 8} / \mathrm{B} 7
$$

where

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{B} 8 / \mathrm{C} 8}={ }^{1} \omega_{8} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}(\perp \text { to } \mathrm{BC}) \\
& { }^{1} \mathbf{v}_{\mathrm{B} 7 / \mathrm{A} 7}={ }^{1} \omega_{7} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}(\perp \text { to } \mathrm{BA}) \\
& { }^{1} \mathbf{v}_{\mathrm{B} 8 / \mathrm{B} 7}=0(\text { rolling contact }) \\
& { }^{1} \mathbf{v}_{\mathrm{C}_{8}}={ }^{1} \mathbf{v}_{\mathrm{C}_{5}}=10 \angle 0 \mathrm{p} \\
& { }^{1} \mathbf{v}_{\mathrm{A}_{7}}={ }^{1} \mathbf{v}_{\mathrm{A}_{6}}=10 \angle 60 \mathrm{p}
\end{aligned}
$$

The solution is given on the polygon. The velocity of E_{7} is found by image. Then,

$$
\begin{aligned}
& { }^{1} \mathbf{V}_{\mathrm{E}_{7}}=18.89 \mathrm{in} / \mathrm{sec} \\
& { }^{1} \mathbf{V}_{8} / \mathrm{C}_{8}=2.687 \mathrm{in} / \mathrm{sec} \\
& { }^{1} \mathbf{V}_{\mathrm{B} 7 / \mathrm{A}_{7}}=9.428 \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

Therefore,

$$
\left|\omega_{8}\right|=\frac{\left|\mathbf{v}_{\mathrm{B} 8 / \mathrm{C} 8}\right|}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{2.687}{2}=1.34 \mathrm{rad} / \mathrm{sec}
$$

To determine the direction of ${ }^{1} \omega_{8}$, determine the direction that we must rotate $\mathbf{r}_{\mathrm{B} / \mathrm{C}} 90^{\circ}$ to get the direction of ${ }^{1} \mathbf{V B}_{8} / \mathrm{C}_{8}$. This is CW.

Acceleration Analysis

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B} 7}=1 \mathbf{a}_{\mathrm{B} 7 / \mathrm{A}_{7}}+{ }^{1} \mathbf{a}_{\mathrm{A} 7} \\
& { }^{1} \mathbf{a}_{88}={ }^{1} \mathbf{a}_{\mathrm{B}_{8} / \mathrm{C}_{8}+{ }^{1} \mathbf{a}_{8} 8} \\
& { }^{1} \mathbf{a}_{\mathrm{B} 88}={ }^{1} \mathbf{a}_{\mathrm{B} 77}+{ }^{1} \mathbf{a}_{\mathrm{B} 8} / \mathrm{B} / \mathrm{B}_{7}
\end{aligned}
$$

Combining the equations,

$$
{ }^{1} \mathbf{a}_{88} / \mathrm{C}_{8}+{ }^{1} \mathbf{a}_{\mathrm{C}}^{8}={ }^{1} \mathbf{a}_{\mathrm{B}_{7} / \mathrm{A}_{7}}+{ }^{1} \mathbf{a}_{\mathrm{A}_{7}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{8} / \mathrm{B}_{7}}
$$

In component form:

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 8 / \mathrm{C} 8}^{\mathrm{r}}+\mathbf{a}_{\mathrm{B} 8 / \mathrm{C} 8}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{C} 8}={ }^{1} \mathbf{a}_{\mathrm{B} 7 / \mathrm{A} 7}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B} 7 / \mathrm{A} 7}^{\mathrm{t}}+1 \mathbf{a}_{\mathrm{A} 7}+{ }^{1} \mathbf{a}_{\mathrm{B} 8 / \mathrm{C} 8}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{C} 8 / \mathrm{D}_{7}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{D} 7 / \mathrm{B} 7}^{\mathrm{r}}
$$

Computing the individual terms,

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{8}={ }^{1} \mathbf{a}_{\mathrm{C}}=20 \angle 270 \mathrm{p} \\
& { }^{1} \mathbf{a}_{\mathrm{A} 7}={ }^{1} \mathbf{a}_{\mathrm{A} 6}=20 \angle 180 \mathrm{~F} \\
& { }^{1} \mathbf{a}_{\mathrm{B} 8 / \mathrm{C}_{8}}^{\mathrm{r}}=\frac{\left|\mathrm{l}_{\mathrm{B} 8} / \mathrm{C} 8\right|^{2}}{\left|\mathrm{r}_{\mathrm{B}} / \mathrm{C}\right|}=\frac{(2.687)^{2}}{2}=3.610 \frac{\text { in }}{\sec ^{2}} \text { B to C } \\
& { }^{1} \mathbf{a}_{\mathrm{B} 7 / \mathrm{A}_{7}}^{\mathrm{r}}=\frac{\left|{ }^{1} \mathrm{v}_{\mathrm{B} 7 / \mathrm{A} 7}\right|^{2}}{\left|{ }^{1} \mathrm{r}_{\mathrm{B} 7 / \mathrm{A} 7}\right|}=\frac{(9.428)^{2}}{2}=44.444 \frac{\text { in }}{\sec ^{2}} \quad \mathrm{~B} \text { to } \mathrm{A} \\
& { }^{1} \mathbf{a}_{\mathrm{B} 8 / \mathrm{C}_{8}}^{\mathrm{r}}=\frac{\left|{ }^{1} \mathrm{VB}_{8} / \mathrm{C}_{8}\right|^{2}}{|\mathrm{q}|}=0 \\
& { }^{1} \mathbf{a}_{\mathrm{C} 8 / \mathrm{D}_{7}}^{\mathrm{r}}=\frac{\mid \mathrm{l}_{\mathrm{V}_{8} /\left.\mathrm{D}_{7}\right|^{2}}^{\mathrm{p} \mid}}{\mathrm{p} \mid}=0 \\
& { }^{1} \mathbf{a}_{\mathrm{D} 7 / \mathrm{B} 7}^{\mathrm{r}}=\frac{\left|\mathrm{l}_{\mathrm{D} 7 / \mathrm{B} 7}\right|^{2}}{\left|\mathrm{r}_{\mathrm{D} / \mathrm{B}}\right|}=\frac{(4.544)^{2}}{1}=20.653 \frac{\mathrm{in}}{\sec ^{2}} \mathrm{D} \text { to } \mathrm{B} \\
& { }^{1} \mathbf{a}_{\mathrm{B8} / \mathrm{C}_{8}}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{8} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}(\perp \text { to } \mathrm{BC}) \\
& { }^{1} \mathbf{a}_{\mathrm{B} / \mathrm{A}_{7}}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{7} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}(\perp \text { to } \mathrm{BA})
\end{aligned}
$$

From the acceleration polygon,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 7 / \mathrm{A}_{7}}^{\mathrm{t}}={ }^{1} \alpha_{7} \times{ }_{\mathrm{B} / \mathrm{A}}=7.81 \mathrm{in} / \mathrm{sec}^{2}
$$

Then,

$$
\left\lvert\, 1 \alpha \lambda=\frac{\left|\mathfrak{a}_{\mathrm{B} 7 / \mathrm{A} 7}^{\mathrm{t}}\right|}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{A}}\right|}=\frac{7.81}{2}=3.91 \mathrm{rad} / \mathrm{sec}^{2}\right.
$$

To determine the direction of ${ }^{1} \alpha_{7}$, determine the direction that we must rotate $\mathbf{r B}_{\mathrm{B}} / \mathrm{A} 90^{\circ}$ to get the direction of ${ }^{1} \mathbf{a}_{\mathrm{B} 7 / \mathrm{A} 7}^{\mathrm{t}}$. This is CW .

In the mechanism shown below, link 2 is turning CW at the rate of $20 \mathrm{rad} / \mathrm{s}$, and link 3 rolls on link 2. Draw the velocity and acceleration polygons for the mechanism, and determine $\boldsymbol{a}_{\mathrm{C} 3}$ and α_{3}.

Position Analysis

Draw the linkage by scale. Locate the relative positions of A and D. Locate point B and then draw the circle arc centered at B . Locate point C by finding the intersection of a circle arc of 10 inches centered at D and a second circle of 6.8 inches centered at B . Finally draw the circle centered at C and of radius 4.0 inches.

Velocity Analysis:

The equations required for the velocity analysis are:

$$
\begin{align*}
& \boldsymbol{v}_{E_{2}}=\boldsymbol{v}_{E_{2} / A_{2}} \\
& { }^{1} \boldsymbol{v}_{E_{3}}=\boldsymbol{v}_{\boldsymbol{v}_{2}}+\boldsymbol{v}_{E_{3} / E_{2}} \\
& { }^{1} \boldsymbol{v}_{E_{3}}={ }^{1} \boldsymbol{v}_{C_{3}}+\boldsymbol{v}_{E_{3} / C_{3}} \tag{1}\\
& { }^{1} \boldsymbol{v}_{C_{3}}={ }^{2} \boldsymbol{v}_{C_{4}}=\boldsymbol{v}_{C_{4} / D_{4}}
\end{align*}
$$

Because ${ }^{1} \boldsymbol{v}_{E_{3} / E_{2}}=0, \boldsymbol{v}_{E_{3}}=\boldsymbol{v}_{E_{2}}$ and

$$
\boldsymbol{v}_{E_{2} / A_{2}}=1 \omega_{2} \times \boldsymbol{r}_{E_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{E_{2} / A_{2}}\right|=\left|1 \omega_{2}\right| \cdot \boldsymbol{r}_{E / A} \mid=20 \cdot 5.94=118.8 \text { in } / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{E / A}\right)
$$

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{E}_{3} / \mathrm{C}_{3}}={ }^{1} \omega_{3} \times\left.\mathbf{r}_{\mathrm{E}_{3} / \mathrm{C}_{3}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{E}_{3} / \mathrm{C}_{3}}\left|=\left.\right|^{1} \omega_{3}\right| \cdot\left|\mathbf{r}_{\mathrm{E}_{3} / \mathrm{C}_{3}}\right|\left(\text { to } \mathbf{r}_{\mathrm{E}_{3} / \mathrm{C}_{3}}\right) \\
& { }^{1} \mathbf{v}_{\mathrm{C}_{4} / \mathrm{D}_{4}}={ }^{1} \omega_{4} \times\left.\mathbf{r}_{\mathrm{C}_{4} / \mathrm{D}_{4}} \Rightarrow\right|^{1} \mathbf{v}_{4} / \mathrm{D}_{4}\left|=\left.\right|^{1} \omega_{4}\right| \cdot \mid \mathbf{r}_{\mathrm{C}_{4} / \mathrm{D}_{4}}\left(\perp \text { to } \mathbf{r}_{\mathrm{C}_{4} / \mathrm{D}_{4}}\right)
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{E_{3} / C_{3}}=104 \mathrm{in} / \mathrm{s}
$$

or

$$
\left|\omega_{3}\right|=\frac{\left|v_{E_{3} / C_{3}}\right|}{\left|r_{E_{3} / C_{3}}\right|}=\frac{104}{4}=26.0 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

Also,

$$
\boldsymbol{v}_{C_{4} / D_{4}}=69.33 \mathrm{in} / \mathrm{s}
$$

or

$$
\left|1 \omega_{4}\right|=\frac{\left|v_{C_{4} / D_{4}}\right|}{\left|r_{C 4 / D_{4}}\right|}=\frac{69.3}{10}=6.93 \mathrm{rad} / \mathrm{s} \mathrm{CW}
$$

Acceleration Analysis:

The equations required for the acceleration analysis are:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{E_{2}}=1 \boldsymbol{a}_{E_{2} / A_{2}} \\
& { }^{1} \boldsymbol{a}_{E_{3}}={ }^{1} \boldsymbol{a}_{E 2}+{ }^{1} \boldsymbol{a}_{E_{3} / E_{2}} \\
& { }^{1} \boldsymbol{a}_{E_{3}}={ }^{1} \boldsymbol{a}_{C_{3}}+{ }^{1} \boldsymbol{a}_{E_{3} / C_{3}} \\
& { }^{1} \boldsymbol{a}_{C_{3}}={ }^{1} \boldsymbol{a}_{C_{4}}={ }^{1} \boldsymbol{a}_{C_{4} / D_{4}} \\
& { }^{1} \boldsymbol{a}_{E_{2} / A_{2}}^{r}+{ }^{+1} \boldsymbol{a}_{E_{3} / E_{2}}^{n}=1{ }^{1} \boldsymbol{a}_{C 4 / D_{4}}^{r}+{ }^{1} \boldsymbol{a}_{C 4 / D_{4}}^{t}+1{ }^{t} \boldsymbol{a}_{E_{3} / C_{3}}^{r}+{ }^{1} \boldsymbol{a}_{E 3 / C_{3}}^{t} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \boldsymbol{a}_{E_{2} / A_{2}}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{E_{2} / A_{2}}\right) \Rightarrow\left|\boldsymbol{a}_{E_{2} / A_{2}}^{r}\right|=\left|\omega_{2}\right|^{2} \cdot\left|r_{E_{2} / A_{2}}\right|=202 \cdot 5.94=2360 \mathrm{in} / \mathrm{s}^{2}
$$

in the direction opposite to $\boldsymbol{r}_{E_{2} / A_{2}}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{E_{3} / E_{2}}^{n}=\boldsymbol{a}_{E_{3} / C_{3}}^{n}+\boldsymbol{a}_{C_{3} / B_{2}}^{n}+\boldsymbol{a}_{B_{2} / E_{2}}^{n} \\
& \left|\boldsymbol{a}_{E_{3} / E_{2}}^{n}\right|=\frac{\left|\boldsymbol{v}_{E_{3} / C_{3}}\right|^{2}}{\left|\boldsymbol{r}_{E_{3} / C_{3}}\right|}-\frac{\left|\boldsymbol{v}_{C_{3} / B_{2}}\right|^{2}}{\left|\boldsymbol{r}_{C_{3} / B_{2}}\right|}+\frac{\left|\boldsymbol{v}_{B_{2} / E_{2}}\right|^{2}}{\left|\boldsymbol{r}_{B_{2} / E_{2}}\right|}=\frac{1042}{4}-\frac{48.32}{6.8}+\frac{56^{2}}{2.8}=3500 \mathrm{in} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction opposite to $\boldsymbol{r}_{E_{3} / C_{3}}$

$$
{ }^{1} \boldsymbol{a}_{C / / D_{4}}^{r}={ }^{1} \omega_{4} \times\left({ }^{1} \omega_{4} \times \boldsymbol{r}_{C 4 / D_{4}}\right) \Rightarrow\left|\boldsymbol{a}_{C 4 / D_{4}}^{r}\right|=\left|{ }^{1} \omega_{4}\right|^{2} \cdot\left|r_{C 4 / D_{4}}\right|=6.932 \cdot 10=480 \mathrm{in} / \mathrm{s}^{2}
$$

in the direction opposite to $\mathbf{r}_{\mathrm{C}_{4} / \mathrm{D} 4}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{C} 4 / \mathrm{D} 4}^{\mathrm{t}}={ }^{1} \alpha_{4} \times \mathbf{r}_{\mathrm{C} 4 / \mathrm{D} 4} \Rightarrow\left|\mathbf{a}_{\mathrm{C} 4 / \mathrm{D} 4}^{\mathrm{t}}\right|=\left|{ }^{1} \alpha_{4}\right| \cdot\left|\mathbf{r}_{\mathrm{C} 4 / \mathrm{D} 4}\right|\left(\perp \text { to } \mathbf{r}_{4} / \mathrm{D}_{4}\right) \\
& { }^{1} \boldsymbol{a}_{E_{3} / C_{3}}^{r}={ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \boldsymbol{r}_{E_{3} / C_{3}}\right) \Rightarrow\left|\boldsymbol{a}_{E_{3} / \mathrm{C}_{3}}^{r}\right|=\left|\omega_{3}\right|^{2} \cdot\left|\boldsymbol{r}_{E_{3} / C_{3}}\right|=26.02 \cdot 4=2700 \mathrm{in} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction opposite to $\boldsymbol{r}_{E_{3} / C_{3}}$

$$
{ }^{1} \boldsymbol{a}_{E_{3} / C_{3}}^{t}={ }_{1} \alpha_{3} \times \boldsymbol{r}_{E_{3} / C_{3}} \Rightarrow\left|\boldsymbol{a}_{E_{3} / C_{3}}^{t}\right|=\left|1 \alpha_{3}\right| \cdot\left|\boldsymbol{r}_{E_{3} / C_{3}}\right|\left(\perp \text { to } \boldsymbol{r}_{E_{3} / C_{3}}\right)
$$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{E 3 / C_{3}}^{t}=770 \mathrm{in} / \mathrm{s}^{2}
$$

or

$$
\left.\left|1 \alpha_{3}\right|=\frac{\left|\boldsymbol{i}_{E_{3} / C_{3}}^{t}\right|}{\left|\boldsymbol{r}_{E_{3} / C_{3}}\right|} \right\rvert\,=\frac{770}{4}=192 \mathrm{rad} / \mathrm{s}^{2}
$$

To find the direction, determine the direction that $\mathbf{r}_{\mathrm{E}_{3} / \mathrm{C}_{3}}$ must be rotated 90° to get the direction of $\boldsymbol{a}_{E_{3} / C_{3}}^{t}$. The direction is clearly CCW.

Also from the polygon,

$$
{ }^{1} \boldsymbol{a}_{C_{3}}=1290 \mathrm{in} / \mathrm{s}^{2}
$$

Problem 3.27

In the mechanism shown below, Link 2 is turning CW at the rate of 200 rpm . Draw the velocity polygon for the mechanism, and determine $\boldsymbol{v}_{\mathrm{C}_{3}}$ and $\boldsymbol{\omega}_{3}$.

Position Analysis: Draw the linkage to scale.

Velocity Analysis:

$$
\begin{aligned}
& \left|1 \omega_{2}\right|=200 \frac{2 \pi}{60}=20.94 \mathrm{rad} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B_{2} / A_{2}} \Rightarrow\left|v_{B_{2}}\right|=\left.\left|{ }^{1} \omega_{2}\right|\right|_{B_{2} / A_{2}} \mid=20.94 \cdot(1)=20.94 \mathrm{in} / \mathrm{s}
\end{aligned}
$$

$$
\begin{align*}
& \boldsymbol{v}_{E_{2}}=\boldsymbol{v}_{E_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{v}_{E_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{E_{2}}\right|=\left.\left|1 \omega_{2}\right|\right|_{E_{2} / A_{2}} \mid=20.94 \cdot(1.46)=30.57 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{E_{3}}=\boldsymbol{v}_{E_{2}} \\
& { }^{1} \boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{E_{3}}+{ }^{l} \boldsymbol{v}_{C_{3} / E_{3}} \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \boldsymbol{v}_{E_{3}}=30.57 \text { in } / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{E / A}\right) \\
& { }^{1} \boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{C_{4}}={ }^{1} \boldsymbol{\omega}_{4} \times \boldsymbol{r}_{C / D}\left(\perp \text { to } \boldsymbol{r}_{C / D}\right) \\
& { }^{1} \boldsymbol{v}_{E_{3} / C_{3}}={ }^{1} \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{E / C}\left(\perp \text { to } \boldsymbol{r}_{E / C}\right) \text { tangent to two circles. }
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. The velocity directions can be gotten directly from the polygon. The magnitudes are given by:

$$
\left|\left|v_{E_{3} / C_{3}}\right|=27 \mathrm{in} / \mathrm{s} \Rightarrow\right| \omega_{3} \left\lvert\,=\frac{\left|v_{E_{3 / C}}\right|}{\left|r_{E / d}\right|}=\frac{27}{1}=27 \mathrm{rad} / \mathrm{s}\right.
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{3}=27 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

Also, from the velocity polygon,

$$
\left|v_{C_{3}}\right|=18.29 \mathrm{in} / \mathrm{s}
$$

Problem 3.28
Assume that link 7 rolls on link 3 without slipping and find ω_{7}.

Problem 3.29
In the two degree-of-freedom mechanism shown, ω_{2} is given as $10 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$. What should the linear velocity of link 6 be so that $\omega_{4}=5 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$?

Position Analysis:

Draw the linkage to scale. Locate A and C first. Then draw the two circles and locate point D. Draw the horizontal line on which E is located and locate E $1.65^{\prime \prime}$ from D.

Velocity Analysis:
Compute the velocity of points B_{3} and D_{3}.

$$
\begin{aligned}
& \boldsymbol{v}_{B_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right| \cdot\left|\boldsymbol{r}_{B_{2} / A_{2}}\right|=10 \cdot 0.5=5 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \omega_{3} \times{\boldsymbol{B _ { 3 3 }} / C_{3}} \Rightarrow\left|{ }^{1} \omega_{3}\right|=\frac{\left|v_{B_{3}}\right|}{\left|r_{B_{3} / C_{3}}\right|}=\frac{5}{1}=5 \mathrm{rad} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{D_{3}}={ }^{1} \boldsymbol{v}_{D_{4}}={ }^{1} \omega_{3} \times \boldsymbol{v}_{D_{3} / C_{3}} \Rightarrow\left|{ }^{1} \boldsymbol{v}_{D_{4}}\right|=\left|{ }^{1} \omega_{3}\right| \cdot\left|\boldsymbol{r}_{D_{3} / C_{3}}\right|=5 \cdot 0.8=4 \mathrm{in} / \mathrm{s}
\end{aligned}
$$

Next consider the coincident points at E .

$$
\begin{align*}
& \boldsymbol{v}_{E_{4}}=\boldsymbol{v}_{E_{5}}={ }^{1} \boldsymbol{v}_{D_{4}}+{ }^{1} \boldsymbol{v}_{E_{4} / D_{4}} \\
& { }^{1} \boldsymbol{v}_{E_{4}}=\boldsymbol{v}_{E_{6}}+{ }^{1} \boldsymbol{v}_{E 4 / E 6} \\
& { }^{1} \boldsymbol{v}_{E_{6}}+{ }^{1} \boldsymbol{v}_{E_{4} / E_{6}}={ }^{1} \boldsymbol{v}_{D_{4}}+{ }^{1} \boldsymbol{v}_{E_{4} / D_{4}} \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \boldsymbol{v}_{D_{4}}=4 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{D_{3} / C_{3}}\right) \\
& \left|\boldsymbol{v}_{E_{4} / D_{4}}\right|=\left|{ }^{1} \omega_{4}\right| \cdot\left|r_{E_{4} / D_{4}}\right|=5 \cdot 1.65=8.25 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{E_{4} / D_{4}}\right)
\end{aligned}
$$

${ }^{1} \mathbf{V}_{6}$ is in the vertical direction,
${ }^{1} \mathbf{V}_{E_{4} / \mathrm{E}_{6}}$ is in the horizontal direction.
Solve Eq. (1) graphically with a velocity polygon. From the polygon
${ }^{1} \boldsymbol{v}_{E_{6}}=1.28 \mathrm{in} / \mathrm{s}$ in the direction shown on the polygon.

Problem 3.30

In the mechanism shown, $\omega_{2}=10 \mathrm{rad} / \mathrm{s}$. Determine $\boldsymbol{v}_{\mathrm{C}_{3} / \mathrm{C}_{2}}$ and $\boldsymbol{v}_{\mathrm{C}_{3}}$ using two approaches: 1) Equivalent linkages and 2) Coincident points at C

Solution (Equivalent Linkage)

The equivalent linkage is shown below. For the equivalent linkage, we need only find the velocity and acceleration of point B_{2}.

The velocity equations which must be solved are:

$$
{ }^{1} \boldsymbol{v}_{A 2}={ }^{1} \boldsymbol{v}_{A 2} / B_{2}={ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{A / B}
$$

and

$$
\begin{equation*}
\boldsymbol{v}_{A_{2}}={ }^{1} \boldsymbol{v}_{A_{3}}+{ }^{1} \boldsymbol{v}_{A_{2} / A_{3}} \tag{1}
\end{equation*}
$$

Here we have written the velocity equation in terms of the velocity of B_{2} relative to B_{3} rather than vice versa because we can easily identify the direction of the velocity of B_{2} relative to B_{3}. We also know the direction for the velocity (and acceleration) of B_{3}.
${ }^{1} \boldsymbol{v}_{\boldsymbol{A}_{2}}=10(0.5)=5 \mathrm{in} / \mathrm{s}(\perp$ to $A B)$
${ }^{1} \boldsymbol{v}_{A_{3}}$ is along the slide direction between link 3 and the frame
$\boldsymbol{v}_{A_{2} / A_{3}}$ is along the slide direction between link 4 and link 3
From the velocity polygon,
${ }^{1} \boldsymbol{v}_{A 3}=3.61 \mathrm{in} / \mathrm{s}$ in the direction shown.

Solution (Direct Approach)

To analyze the problem, we can determine the velocity and acceleration of any point on link 3 because all points on link 3 have the same velocity and the same acceleration. The point to choose is the contact point C_{3}. To solve for the velocity and acceleration of C_{3}, first find the velocity of point C_{2}. Then write the relative velocity expression between points C_{2} and C_{3} and solve for the velocity of C_{3}.

Velocity Analysis

The relevant equations are:

$$
{ }^{1} \boldsymbol{v}_{C_{2}}={ }^{1} \boldsymbol{v}_{C_{2} / B_{2}}={ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{C / B}
$$

and
${ }^{1} \boldsymbol{v}_{C_{3}}={ }^{1} \boldsymbol{v}_{C_{2}}+{ }^{1} \boldsymbol{v}_{C_{3} / C_{2}}$
${ }^{1} \boldsymbol{v}_{C_{2} / B_{2}}=10(0.737)=7.37$ in $/ \mathrm{s}(\perp$ to $A C)$
${ }^{1} \boldsymbol{v}_{C_{3}}$ is along the slide direction between link 3 and the frame
$\boldsymbol{v}_{C_{3} / C_{2}}$ is along the face of link 3

From the velocity polygon,

$$
\boldsymbol{v}_{C 3}=35 \mathrm{in} / \mathrm{s} \text { in the direction shown. }
$$

Problem 3.31

In the mechanism shown, $\omega_{2}=20 \mathrm{rad} / \mathrm{s} C C W$. At the instant shown, point D, the center of curvature of link 3 , lies directly above point E, and point B lies directly above point A. Determine $\boldsymbol{v}_{C_{3} / C_{2}}$ and ω_{3} using: 1) equivalent linkages and 2) Coincident points at C.

Position Analysis

Draw the linkage to scale. First locate pivots A and E. Then locate point B and draw link 2. Next locate point D and draw link 3.

Solution (Equivalent Linkage)

The equivalent linkage is a fourbar linkage involving points $\mathrm{A}, \mathrm{B}, \mathrm{D}$, and E . For the equivalent linkage, we need only find the velocity of point B_{2}.

The velocity equations which must be solved are:

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{B^{\prime} / A} \\
& { }^{1} \boldsymbol{v}_{D_{x}}={ }^{1} \boldsymbol{v}_{B_{x}}+{ }^{1} \boldsymbol{v}_{D_{x} / B_{x}}={ }^{1} \boldsymbol{v}_{D_{3}}={ }^{1} \boldsymbol{v}_{E_{3}}+{ }^{1} \boldsymbol{v}_{D_{3} / E_{3}}
\end{aligned}
$$

Where x is the imaginary link between points B and D . Simplifying and combining terms

$$
\begin{equation*}
{ }^{1} \boldsymbol{v}_{D_{3} / E_{3}}={ }^{1} \boldsymbol{v}_{B_{2}}+{ }^{1} \boldsymbol{v}_{D_{x} / B_{x}} \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \left|v_{B_{2}}\right|=\left|{ }^{1} \omega_{2}\right|\left|r_{B / A}\right|=20(0.75)=15 \mathrm{in} / \mathrm{s}(\perp \text { to } A B) \\
& \boldsymbol{v}_{D_{3} / E_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{D / E} \text { is perpendicular to DE }
\end{aligned}
$$

$$
\boldsymbol{v}_{D_{x} / B_{x}} \text { is perpendicular to } \mathrm{BD}
$$

From the velocity polygon,

$$
{ }^{1} \boldsymbol{v}_{D_{3} / E_{3}}=\boldsymbol{v}_{B_{2}}=15 \mathrm{in} / \mathrm{s}(\perp \text { to } A B)
$$

Therefore,

$$
\left|1 \omega_{3}\right|=\frac{\left|v_{D_{3} / E_{3}}\right|}{\left|r_{D / E}\right|}=\frac{15}{3.5}=4.28 \mathrm{rad} / \mathrm{s}
$$

To determine the direction of $\left|\omega_{3}\right|$, determine the direction that we must rotate $\boldsymbol{r}_{D / E} 90^{\circ}$ to get the direction of $\boldsymbol{v}_{D_{3} / E_{3}}$. This is counterclockwise

To find ${ }^{1} \boldsymbol{v}_{C_{3} / C_{2}}$, compute ${ }^{1} \boldsymbol{v}_{C_{2}}$ and $\boldsymbol{v}_{C_{3}}$ and use

$$
\boldsymbol{v}_{C_{3} / C_{2}}=\boldsymbol{v}_{C_{3}}-\boldsymbol{v}_{C_{2}}
$$

Both ${ }^{1} \boldsymbol{v}_{C_{2}}$ and ${ }^{1} \boldsymbol{v}_{C_{3}}$ may be determined by velocity image (or computed directly). From the polygon,

$$
\boldsymbol{v}_{C_{3} / C_{2}}=44.8 \mathrm{in} / \mathrm{s}
$$

in the direction indicated by the polygon.

Solution (Direct Approach)

First find the velocity of point C_{2}. Then write the relative velocity expression between points C_{2} and C_{3} and solve for the velocity of C_{3}.

The relevant equations are:

$$
{ }^{1} \boldsymbol{v}_{C_{2}}={ }^{1} \boldsymbol{v}_{C_{2} / A_{2}}={ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{C / A}
$$

and

$$
{ }^{1} \boldsymbol{v}_{C_{3}}={ }^{1} \boldsymbol{v}_{C_{2}}+{ }^{1} \boldsymbol{v}_{C_{3} / C_{2}}={ }^{1} \boldsymbol{v}_{C_{3} / E_{3}}
$$

Where
${ }^{1} \boldsymbol{v}_{C_{2} / A_{2}}=20(2.158)=43.16$ in $/ \mathrm{s}(\perp$ to $A C)$
$\boldsymbol{v}_{C_{3} / E_{3}}$ is perpendicular to CE
$\boldsymbol{v}_{C_{3} / C_{2}}$ is along the tangent to the contact point (perpendicular to BD)
From the velocity polygon,

$$
{ }^{1} \boldsymbol{v}_{G_{3} / C_{2}}=44.8 \mathrm{in} / \mathrm{s}
$$

and

$$
\boldsymbol{v}_{C_{3} / E_{3}}=9.84 \mathrm{in} / \mathrm{s}
$$

Therefore,

$$
\left|\omega_{3}\right|=\frac{\left|\boldsymbol{v}_{C_{3} / E_{3}}\right|}{\left|\boldsymbol{r}_{C / E}\right|}=\frac{9.84}{2.30}=4.28 \mathrm{rad} / \mathrm{s}
$$

To determine the direction of $\left|\omega_{3}\right|$, determine the direction that we must rotate $\boldsymbol{r}_{C / E} 90^{\circ}$ to get the direction of $\boldsymbol{v}_{C_{3} / E_{3}}$. This is counterclockwise

In the position shown, find the velocity and acceleration of link 3 using: 1) equivalent linkages and 2) Coincident points at C

Solution (Equivalent Linkage)

This problem is similar to Example 2.11 except for a nonzero value for the acceleration. The equivalent linkage is shown below. For the equivalent linkage, we need only find the velocity and acceleration of point B_{2}.

Velocity Analysis

The velocity equations which must be solved are:

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}
$$

and

$$
\begin{equation*}
{ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B} 3} \tag{1}
\end{equation*}
$$

Here we have written the velocity equation in terms of the velocity of B_{2} relative to B_{3} rather than vice versa because we can easily identify the direction of the velocity of B_{2} relative to B_{3}. We also know the direction for the velocity (and acceleration) of B_{3}.
${ }^{1} \mathbf{V}_{\mathrm{B}_{2}}=100(0.5)=50 \mathrm{in} / \mathrm{s}(\perp$ to AB$)$
${ }^{1} \mathbf{V}_{B_{3}}$ is along the slide direction between link 3 and the frame
${ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B} 3}$ is along the slide direction between link 4 and link 3

From the velocity polygon,

$$
\mathbf{v}_{\mathrm{B} 3}=35 \mathrm{in} / \mathrm{s} \text { in the direction shown. }
$$

Acceleration Analysis

The acceleration equations which must be solved are:

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}, \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}+\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{c}}+{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}},
\end{aligned}
$$

and

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{c}}=2{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=0
$$

The Coriolis term is a function of velocities only and can be computed; however, Links 3 and 4 simply translate making ${ }^{1} \omega_{3}=0$. Therefore, the acceleration expression becomes

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}+{ }^{3} \mathbf{a}_{\mathrm{B}_{2}} / \mathrm{B}_{3}
$$

Therefore, the equation has only two unknowns (once ${ }^{1} \mathbf{a}_{\mathrm{B} 2}$ is computed), and the equation can be solved for ${ }^{1} \mathbf{a}_{\mathrm{B} 3}$ and ${ }^{3} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 3}$.

$$
\begin{aligned}
& \left|\mathbf{a}_{\mathrm{B}_{2} / \mathrm{A} 2}\right|=\left|{ }^{1} \omega_{2}\right|^{2}\left|\mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=100^{2} \cdot 0.5=5000 \text { in } / \mathrm{sec}^{2} \text { opposite to } \mathbf{r}_{\mathrm{B} / \mathrm{A}} \\
& \left|{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\right|=\left|1 \alpha_{2}\right| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=20000 \cdot 0.5=10000 \text { in } / \mathrm{sec}^{2}(\perp \text { to } \mathrm{AB})
\end{aligned}
$$

${ }^{1} \mathbf{a}_{B_{3}}$ is along the slide direction between link 3 and the frame
${ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}$ is along the slide direction between link 4 and link 3
Therefore, the equation has only two unknowns (once ${ }^{1} \mathbf{a}_{\mathrm{B} 2}$ is computed), and the equation can be solved for ${ }^{1} \mathbf{a}_{\mathrm{B} 3}$ and ${ }^{3} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 3}$.

The result is shown in the acceleration polygon. From the polygon,

$$
\mathrm{a}_{\mathrm{B} 3}=10,200 \mathrm{in} / \mathrm{sec}^{2} \text { in the direction shown. }
$$

Solution (Direct Approach)

This problem is similar to Example 2.10 except for a nonzero value for the acceleration. To analyze the problem, we can determine the velocity and acceleration of any point on link 3 because all points on link 3 have the same velocity and the same acceleration. The point to choose is the contact point C_{3}. To solve for the velocity and acceleration of C_{3}, first find the velocity of point C_{2}. Then write the relative velocity expression between points C_{2} and C_{3} and solve for the velocity of C_{3}.

Velocity Analysis

The relevant equations are:

$$
{ }^{1} \mathbf{v}_{\mathrm{C}_{2}}={ }^{1} \mathbf{v}_{\mathrm{C}_{2}} / \mathrm{A}_{2}={ }^{1} \boldsymbol{\omega}_{2} \times \mathbf{r}_{\mathrm{C} / \mathrm{A}}
$$

and
${ }^{1} \mathbf{v}_{\mathrm{C}_{3}}={ }^{1} \mathbf{v}_{\mathrm{C}_{2}}+{ }^{1} \mathbf{v}_{\mathrm{C}_{3}} / \mathrm{C}_{2}$
${ }^{1} \mathbf{v}_{C_{2}}=100(1.52)=152 \mathrm{in} / \sec (\perp$ to AC$)$
${ }^{1} \mathbf{V}_{C_{3}}$ is along the slide direction between link 3 and the frame
${ }^{1} \mathbf{v}_{\mathrm{C}_{3} / \mathrm{C}_{2}}$ is along the face of link 3
Solve the velocity equation and then solve for the velocity of B_{2} by image. This will be needed for the acceleration analysis.

$$
\mathbf{v}_{\mathrm{C} 3}=35 \mathrm{in} / \mathrm{s} \text { in the direction shown. }
$$

Acceleration Analysis

The acceleration equations which must be solved are:

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{C}_{2}}={ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{A}_{2}}^{n}+{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}, \\
& { }^{1} \mathbf{a}_{\mathrm{C}_{3}}={ }^{1} \mathbf{a}_{\mathrm{C}_{2}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}={ }^{1} \mathbf{a}_{\mathrm{C}_{2}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{n}},
\end{aligned}
$$

and

$$
\mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{n}}={ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{D}_{3}}^{\mathrm{n}}+{ }^{1} \mathbf{a}_{\mathrm{D}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{C}_{2}}^{n}=\frac{\left|{ }^{1} \mathbf{v}_{\mathrm{C}_{3} / \mathrm{D}_{3}}\right|^{2}}{\mid \mathrm{a}^{2}}+\frac{\left|{ }^{1} \mathbf{v}_{\mathrm{D}_{3} / \mathrm{B}_{2}}\right|^{2}}{|\infty|}+\frac{\left|{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{C}_{2}}\right|^{2}}{\left|\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{\left|{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{C}_{2}}\right|^{2}}{\left|\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right|}
$$

Where D_{3} is the center of curvature of the cam follower surface and is located at infinity. The final equation which must be solved is

$$
{ }^{1} \mathbf{a}_{C_{3}}={ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{A}_{2}}^{\mathrm{n}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{t}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{C}_{2}}^{\mathrm{n}}
$$

where

$$
\begin{aligned}
& \left|\mathbf{a}_{\mathrm{C}_{2} / \mathrm{A} 2}\right|=\left|1 \omega_{2}\right|^{2}\left|\mathbf{r}_{\mathrm{C} / \mathrm{A}}\right|=100^{2} \cdot 1.52=15,200 \text { in } / \mathrm{sec}^{2} \text { opposite to } \mathbf{r}_{\mathrm{C} / \mathrm{A}} \\
& \left|{ }^{1} \mathbf{a}_{\mathrm{C} 2 / \mathrm{A} 2}^{t}\right|=\left|1 \alpha_{2}\right| \mathbf{r}_{\mathrm{C} / \mathrm{A}} \mid=20000 \cdot 1.52=30,400 \text { in } / \mathrm{sec}^{2}(\perp \text { to } \mathrm{AC})
\end{aligned}
$$

${ }^{1} \mathbf{a}_{C_{3}}$ is along the slide direction between link 3 and the frame

$$
\left|\mathbf{a}_{\mathrm{B}_{2} / \mathrm{C}_{2}}\right|=\frac{\left|\mathbf{v}_{\mathrm{B}_{2} / \mathrm{C}_{2}}\right|^{2}}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{|112.9|^{2}}{1.11}=11,480 \text { in } / \mathrm{s}^{2} \text { from } \mathrm{B} \text { to C }
$$

${ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{t}$ is along the along the face of link 3
Therefore, the equation has only two unknowns (once ${ }^{1} \mathbf{a}_{\mathrm{C} 2}$ is computed), and the equation can be solved for ${ }^{1} \mathbf{a}_{\mathrm{C} 3}$ and ${ }^{1} \mathbf{a}_{\mathrm{C} 3 / \mathrm{C}_{2}}^{t}$.

The result is shown in the acceleration polygon. From the polygon,

$$
\mathrm{a}_{3}=10,200 \mathrm{in} / \mathrm{sec}^{2} \text { in the direction shown. }
$$

Problem 3.33

Locate all of the instant centers in the mechanism shown below. If the cam (link 2) is turning CW at the rate of 900 rpm , determine the linear velocity of the follower.

Position

Position

Velocity of the Follower

Convert the angular velocity from "rpm" to "rad/s"

$$
{ }^{1} \omega_{2}=900 \mathrm{rpm}=\frac{900(2 \pi)}{60 \mathrm{sec}}=94.25 \mathrm{rad} / \mathrm{s} \mathrm{CW}
$$

and

$$
\begin{aligned}
& \mathbf{v}_{P_{2}}=\mathbf{v}_{A_{2}}+\mathbf{v}_{P_{2} / A_{2}} \\
& \mathbf{v}_{P_{3}}=\mathbf{v}_{P_{2}}+\mathbf{v}_{P_{3} / P_{2}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathbf{v}_{P_{2}}=\mathbf{v}_{A_{2}}+\mathbf{v}_{P_{2} / A_{2}}=0+\omega_{2} \times \mathbf{r}_{P / A}=(94.25 \mathrm{rad} / \mathrm{s})(2.18 \mathrm{in})=205.47 \mathrm{in} / \mathrm{s} \quad\left(\perp \text { to } \mathbf{r}_{P / A}\right) \\
\mathbf{v}_{P_{3}}: \perp \text { to the follower face }
\end{aligned}
$$

$\mathbf{v}_{P_{3} / P_{2}}: / /$ to the follower face

Velocity Scale

$0, a, d$

From the polygon,

$$
\left|\mathbf{v}_{P_{3}}\right|=81.17 \mathrm{in} / \mathrm{s}
$$

In the mechanism shown, $\boldsymbol{v}_{\mathrm{A}_{2}}=20 \mathrm{in} / \mathrm{s}$. Find ω_{5} and ${ }^{3} \omega_{4}$. Indicate on link 4 the point which has zero velocity. In the drawing, H and G are the centers of curvature of links 4 and 5 , respectively, corresponding to location $D . F$ is the center of curvature of link 3 corresponding to C. Also, point G lies exactly above point E.

$$
\begin{aligned}
& C F=0.7^{\prime \prime} \\
& B F=0.84 " \\
& A F=1.85^{\prime \prime} \\
& B H=1.88^{\prime \prime} \\
& D H= \\
& 1.14^{\prime \prime} \\
& D G=1^{\prime \prime} \\
& E G=0.6^{\prime \prime}
\end{aligned}
$$

Position Analysis

Locate point points A and E. Draw a line 1.3 inches below A and locate point F at a distance of $1.85^{\prime \prime}$ from A. Next locate C by drawing a circle arc about F. Then locate B at an angle of 20° from the line AF. Locate center G and then locate center H. Draw the two circle arcs to locate D.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{v}_{A_{3}}=\boldsymbol{v}_{A_{2}} \\
& { }^{1} \boldsymbol{v}_{F_{3}}={ }^{1} \boldsymbol{v}_{A_{3}}+{ }^{1} \boldsymbol{v}_{F_{3} / A_{3}} \tag{1}
\end{align*}
$$

Now,
${ }^{1} \boldsymbol{v}_{\boldsymbol{F}_{3}}$ in horizontal direction

$$
{ }^{1} \boldsymbol{v}_{F_{3} / A_{3}}={ }^{1} \omega_{3} \times\left|\boldsymbol{r}_{F / A}\right| \Rightarrow\left|\boldsymbol{v}_{F_{3} / A_{3}}\right|=\left|{ }^{1} \omega_{3}\right| \cdot\left|\boldsymbol{r}_{F / A}\right|\left(\perp \text { to } \boldsymbol{r}_{A / F}\right)
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\left|v_{F_{3} / A_{3}}\right|=28.11 \mathrm{in} / \mathrm{s}
$$

Continuing with the analysis

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{D}_{4}}={ }^{1} \mathbf{v}_{\mathrm{D}_{5}} \\
& { }^{1} \mathbf{V}_{\mathrm{D}_{4}}={ }^{1} \mathbf{V}_{\mathrm{B}_{4}}+{ }^{1} \mathbf{V}_{\mathrm{D}_{4} / \mathrm{B}_{4}} \\
& { }^{1} \mathbf{v}_{\mathrm{D}_{5}}={ }^{1} \mathbf{v}_{\mathrm{E}_{5}}+{ }^{1} \mathbf{v}_{\mathrm{D}_{5} / \mathrm{E}_{5}}
\end{aligned}
$$

and

$$
\begin{equation*}
{ }^{1} \mathbf{v}_{5} / \mathrm{E}_{5}={ }^{1} \mathbf{v}_{\mathrm{B}_{4}}+{ }^{1} \mathbf{v}_{\mathrm{D}_{4} / \mathrm{B}_{4}} \tag{2}
\end{equation*}
$$

Now,

$$
{ }^{1} \boldsymbol{v}_{D 4 / B 4}={ }^{1} \omega_{4} \times \boldsymbol{v}_{D / B} \Rightarrow\left|\boldsymbol{v}_{D 4 / B 4}\right|=\left|1 \omega_{4}\right| \cdot| |_{D / B} \mid\left(\perp \text { to } r_{D / B}\right)
$$

$$
\boldsymbol{v}_{D_{5} / E_{5}}={ }^{1} \omega_{5} \times \boldsymbol{r}_{D / E} \Rightarrow\left|\boldsymbol{v}_{D_{5} / E_{5}}\right|=\left|\omega_{5}\right| \cdot v_{D / E} \mid\left(\perp \text { to } \boldsymbol{r}_{D / E}\right)
$$

Solve Eq. (2) graphically with a velocity polygon. From the polygon,

$$
\begin{aligned}
& \left|v_{D_{4} / B}\right|=10.30 \mathrm{in} / \mathrm{s} \\
& \left|v_{D_{5} / E}\right|=6.91 \mathrm{in} / \mathrm{s}
\end{aligned}
$$

Solving for the angular velocities

$$
\begin{aligned}
& \left|1 \omega_{3}\right|=\frac{\left|\boldsymbol{v}_{F_{3} / A_{3}}\right|}{\left|\boldsymbol{r}_{F / A}\right|}=\frac{28.11}{1.85}=15.19 \mathrm{rad} / \mathrm{s} \\
& \left|1 \omega_{4}\right|=\frac{\left|\boldsymbol{v}_{D_{4} / B_{4}}\right|}{\left|\boldsymbol{r}_{D / B}\right|}=\frac{10.3}{2.495}=4.128 \mathrm{rad} / \mathrm{s} \\
& \left|1 \omega_{5}\right|=\frac{\left|\boldsymbol{v}_{D_{5} / E_{5}}\right|}{\left|r_{D / E}\right|}=\frac{6.91}{1.354}=5.10 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

To determine the direction for ${ }^{1} \omega_{3}$, determine the direction that $\mathbf{r}_{\text {F }}$ A must be rotated to be in the direction of $\boldsymbol{v}_{F_{3} / A_{3}}$. From the polygon, this direction is CW.

To determine the direction for ${ }^{1} \omega_{4}$, determine the direction that $\mathbf{r}_{\mathrm{D} / \mathrm{B}}$ must be rotated to be in the direction of $\boldsymbol{v}_{D_{4} / B_{4}}$. From the polygon, this direction is CW.

To determine the direction for ${ }^{1} \omega_{5}$, determine the direction that $\mathbf{r}_{\mathrm{D}} / \mathrm{E}$ must be rotated to be in the direction of $\boldsymbol{v}_{D_{5} / E_{5}}$. From the polygon, this direction is CCW .

To find ${ }^{3} \omega_{4}$ use the chain rule for angular velocities. Then,

$$
{ }^{3} \omega_{4}={ }^{1} \omega_{4}-{ }^{1} \omega_{3}=4.128 C W-15.19 C W=-11.06 \mathrm{rad} / \mathrm{s} C W
$$

or

$$
{ }^{3} \omega_{4}=11.06 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

To find the point on link 4 which has zero velocity, use the velocity image. The resulting location is shown in the figure.

Problem 3.35
On the mechanism shown, link 4 slides on link 1, and link 3 slides on link 4 around the circle arc. Link 2 is pinned to links 1 and 3 as shown. Determine the location of the center of curvature of the path that point P_{4} traces on link 2.

Velocity Analysis:

The center of curvature of the path involves only velocity and position information. Therefore, we need perform only a velocity analysis.

$$
\begin{equation*}
{ }^{1} \boldsymbol{v}_{P_{2}}={ }^{1} \boldsymbol{v}_{P_{3}}={ }^{1} \boldsymbol{v}_{P_{2} / A_{2}}={ }^{1} \boldsymbol{v}_{P_{4}}+1 \boldsymbol{v}_{P_{2} / P_{4}} \tag{1}
\end{equation*}
$$

Now,

$$
\boldsymbol{v}_{P_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{P_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{P_{2} / A_{2}}\right|=\left|\omega_{2} \| \boldsymbol{r}_{P / A}\right|=10 \cdot 0.75=7.5 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{P / A}\right)
$$

${ }^{1} \boldsymbol{v}_{D_{4}}$ in the horizontal direction

$$
{ }^{1} \boldsymbol{v}_{P_{2} / P_{4}}\left(\perp \text { to } \boldsymbol{r}_{P / C}\right)
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\boldsymbol{v}_{P_{2} / P_{4}}=4.675 \mathrm{in} / \mathrm{s}
$$

Also,

$$
{ }^{1} \boldsymbol{v}_{P_{4}}=3.536 \mathrm{in} / \mathrm{s}
$$

To find the center of the curvature of the path that P_{4} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{1} \boldsymbol{a}_{P_{4} / R_{2}}^{n}$ and it can be evaluated from the following:

Velocity Polygon

$$
{ }^{1} \boldsymbol{a}_{P_{4} / R_{2}}={ }^{-1} \boldsymbol{a}_{P_{2} / P_{4}}
$$

therefore,

$$
{ }^{1} \boldsymbol{a}_{P_{4} / R_{2}}^{t}={ }^{-1} \boldsymbol{a}_{P_{2} / P_{4}}^{t}
$$

and

$$
{ }^{1} \boldsymbol{a}_{P_{4} / P_{2}}^{n}=-1 \boldsymbol{a}_{P_{2} / P_{4}}^{n}
$$

Also,

$$
\begin{equation*}
2 \boldsymbol{a}_{P_{4} / P_{2}}^{n}+2 \cdot 1 \omega_{2} \times{ }^{1} \boldsymbol{v}_{P_{4} / R_{2}}=-4 \boldsymbol{a}_{P_{2} / P_{4}}^{n}-2 \cdot 1 \omega_{4} \times 1 \boldsymbol{v}_{P_{2} / P_{4}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange Eq. (3) as

$$
{ }^{2} \boldsymbol{a}_{P_{4} / P_{2}}^{n}=-\left(4 \boldsymbol{a}_{P_{2} / P_{4}}^{n}+2 \cdot 1 \omega_{2} \times{ }^{1} \boldsymbol{v}_{P_{4} / P_{2}}+2 \cdot 1 \omega_{4} \times{ }^{1} \boldsymbol{v}_{P_{2} / P_{4}}\right)
$$

Now,

$$
{ }^{4} \boldsymbol{a}_{P_{2} / P_{4}}^{n}=\frac{\left|\boldsymbol{v}_{P_{2} / P_{4}}\right|^{2}}{\boldsymbol{r}_{P / C}}=\frac{(4.675)^{2}}{1}=21.86 \mathrm{in} / \mathrm{s}^{2}(\text { from } P \text { to } C)
$$

$2 \cdot{ }^{1} \omega_{2} \times{ }^{1} v_{P_{4} / R_{2}}=2 \cdot 10 \cdot 4.675=93.5 \mathrm{in} / \mathrm{s}^{2}($ from C to $P)$
$2 \cdot{ }^{1} \omega_{4} \times{ }^{1} \boldsymbol{v}_{P_{2} / P_{4}}=2 \cdot 0 \cdot 4.675=0 \mathrm{in} / \mathrm{s}^{2}$
If we choose $\mathbf{r}_{\mathrm{C} / \mathrm{P}}$ as the positive direction,

$$
{ }^{2} \boldsymbol{a}_{P_{4} / P_{2}}^{n}=\frac{\left|1 \boldsymbol{v}_{P_{4} / P_{2}}\right|^{2}}{\boldsymbol{r}_{B / E}}=-(21.86-93.5)=66.9 \mathrm{in} / \mathrm{s}^{2}
$$

So,

$$
\left|r_{B / E}\right|=\frac{\left|v_{P_{4} / / 2}\right|^{2}}{66.9}=\frac{(4.675)^{2}}{66.9}=0.327 \mathrm{in}
$$

Therefore, the center of the curvature of the path that B_{3} traces on link 2 is in same direction of $\boldsymbol{r}_{C / P}$ as shown in the drawing.

Problem 3.36
For the mechanism shown, find $\omega_{2}, \boldsymbol{\alpha}_{2}, \boldsymbol{v}_{\mathrm{B}_{2}}, \boldsymbol{a}_{\mathrm{B}_{2}}, \boldsymbol{v}_{\mathrm{D}_{3}}, \boldsymbol{a}_{\mathrm{D}_{3}}$, and the location of the center of curvature of the path that point B_{3} traces on link 2.

$$
\begin{array}{ll}
A B=A C=10 \mathrm{~cm} & C D=14 \mathrm{~cm} \\
\omega_{3}=1 \mathrm{rad} / \mathrm{s} \mathrm{CCW} & \alpha_{3}=1 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CW}
\end{array}
$$

Position Analysis

Locate points A and C. Construct link 2 at an angle of 60° from the line AC. Draw the line CD from C and through B .

Velocity Analysis:

$$
\begin{equation*}
{ }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \boldsymbol{v}_{B_{3}}+{ }^{1} \boldsymbol{v}_{B_{2} / B_{3}} \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \boldsymbol{v}_{B_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A} \quad\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{v}_{B_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{B / C} \Rightarrow\left|\boldsymbol{v}_{B_{3}}\right|=\left|\omega_{3}\right| \cdot \mid r_{B / d}=1 \cdot 0.1=0.10 \mathrm{~m} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right)
\end{aligned}
$$

${ }^{1} \boldsymbol{v}_{B_{2} / B_{3}}$ in the direction of $\boldsymbol{r}_{B / C}$
Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\boldsymbol{v}_{B_{2}}=0.200 \mathrm{~m} / \mathrm{s}
$$

or

$$
\left|\omega_{2}\right|=\frac{\left|v_{B}\right|}{\left|r_{B / A}\right|}=\frac{0.200}{0.1}=2.00 \mathrm{rad} / \mathrm{s}
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{2}=2.00 \mathrm{rad} / \mathrm{s} \mathrm{CCW}
$$

Also,

$$
\boldsymbol{v}_{B_{2} / B_{3}}=0.173 \mathrm{~m} / \mathrm{s}
$$

The velocity of D_{3} can be computed directly because it is located on the driver link.

$$
{ }^{1} \boldsymbol{v}_{D_{3}}={ }^{1} \boldsymbol{\omega}_{5} \times \boldsymbol{r}_{D / C} \Rightarrow\left|\boldsymbol{v}_{D_{3}}\right|=\left|\omega_{3}\right| \cdot\left|\boldsymbol{r}_{D / C}\right|=1 \cdot 0.14=0.14 \mathrm{~m} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{D / C}\right)
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{B_{2} / B_{3}} \\
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{r}+{ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{t}+3 \boldsymbol{a}_{B_{2} / B_{3}}+2 \cdot 1 \omega_{3} \times{ }^{3} \boldsymbol{v}_{B_{2} / B_{3}} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\right) \Rightarrow\left|\boldsymbol{a}_{B 2 / A 2}^{r}\right|=\left|\omega_{2}\right|^{2} \cdot\left|\boldsymbol{B}_{B / A}\right|=2.00^{2} \cdot 0.1=0.400 \mathrm{~m} / \mathrm{s}^{2}
$$

in the direction of $-\boldsymbol{r}_{B / A}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B 2 / A 2}^{t}={ }^{1} \alpha_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{a}_{B 2 / A 2}^{t}\right|=\left|1 \alpha_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{a}_{B 3 / C_{3}}^{r}={ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \boldsymbol{r}_{B / C}\right) \Rightarrow\left|\boldsymbol{a}_{B 3 / C 3}^{r}\right|=\left|\omega_{3}\right|^{2} \cdot \mid \boldsymbol{r}_{B / d}=12 \cdot 0.1=0.1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction of $-\boldsymbol{r}_{B / C}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{t}={ }^{1} \boldsymbol{\alpha}_{3} \times \boldsymbol{r}_{B / C} \Rightarrow\left|\boldsymbol{a}_{B_{3} / C_{3}}^{t}\right|=\left|\cdot \alpha_{3}\right| \cdot\left|\boldsymbol{r}_{B / C}\right|=1 \cdot 0.1=0.1 \mathrm{~m} / \mathrm{s}^{2}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right) \\
& { }^{1} \boldsymbol{a}_{B_{2} / B_{3}}^{c}=2 \cdot 1 \omega_{3} \times{ }^{3} \boldsymbol{v}_{B 2 / B_{3}}=2 \cdot 1 \cdot 0.173=0.346 \mathrm{~m} / \mathrm{s}^{2}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right)
\end{aligned}
$$

${ }^{3} \boldsymbol{a}_{B_{2} / B_{3}}$ in the direction of $\boldsymbol{r}_{B / C}$
Solve Eq. (2) graphically with a acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{B_{2} / A 2}^{t}=0.201 \mathrm{~m} / \mathrm{s}^{2}
$$

and

$$
\left|1 \alpha_{2}\right|=\frac{\left|\boldsymbol{a}_{B 2 / A 2}^{t}\right|}{\left|\boldsymbol{r}_{B / A}\right|}=\frac{0.201}{0.1}=2.01 \mathrm{rad} / \mathrm{s}^{2}
$$

From directions given in the polygon,

$$
{ }^{1} \alpha_{2}=2.01 \mathrm{rad} / \mathrm{s}^{2} C W
$$

The acceleration of D_{3} can be computed by image or directly since it is on the driver link. The magnitude of the acceleration is

$$
{ }^{1} \boldsymbol{a}_{D_{3}}=0.200 \mathrm{~m} / \mathrm{s}^{2}
$$

If $\omega_{2}=10 \mathrm{rad} / \mathrm{s}$ (constant), find $\mathbf{v}_{\mathrm{B}_{2}}, \mathbf{v}_{\mathrm{B}_{3}}, \mathbf{a}_{\mathrm{B}_{3}}$, and $\mathbf{a}_{\mathrm{C}_{4}}$.

Position Analysis

Draw the mechanism to scale. Start by drawing points A and C. Then locate point B. Locate point D to be 2.84 inches above A and 2 inches from B.

Velocity Analysis:

$$
\begin{align*}
& \boldsymbol{v}_{B_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{v}_{B_{2}}\right|=\left|\omega_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|=10 \cdot 2.01=20.1 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{v}_{B_{4}}=\boldsymbol{v}_{B_{2}}+\boldsymbol{v}_{B_{3} / B_{2}} \tag{1}
\end{align*}
$$

Now,

$$
\boldsymbol{v}_{B_{2}}=20.133 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right)
$$

${ }^{1} \boldsymbol{v}_{B_{3}}$ in the direction of $\boldsymbol{r}_{B / C}$

$$
{ }^{1} \boldsymbol{v}_{B_{3} / B_{2}} \quad\left(\perp \text { to } \boldsymbol{r}_{B / D}\right)
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\boldsymbol{v}_{B_{3}}=23.9 \mathrm{in} / \mathrm{s}
$$

Also,

$$
\boldsymbol{v}^{1} \boldsymbol{v}_{3 / B 2}=12.8 \mathrm{in} / \mathrm{s}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B 3}={ }^{1} \boldsymbol{a}_{B 4} \\
& { }^{1} \boldsymbol{a}_{B 3}={ }^{1} \boldsymbol{a}_{B 2}+{ }^{1} \boldsymbol{a}_{B 3 / B 2} \\
& { }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B 2}^{r} / A_{2}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}+{ }^{2} \boldsymbol{a}_{B 3 / B 2}^{r}+{ }^{r} \boldsymbol{a}_{B_{3} / B_{2}}^{t}+2 \cdot{ }^{1} \boldsymbol{\omega}_{2} \times{ }^{1} \boldsymbol{v}_{B_{3} / B_{2}} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B 4} \text { in the direction of } \boldsymbol{r}_{B / C}
$$

${ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\right) \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{r}\right|=\left|\omega_{2}\right|^{2} \cdot\left|\boldsymbol{r}_{B / A}\right|=10^{2} \cdot 2.01=201 \mathrm{in} / \mathrm{s}^{2}$ in the direction of $\boldsymbol{r}_{B / A}$

$$
\boldsymbol{a}_{B_{2} / A 2}^{t}=1 \alpha_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{a}_{B 2 / A 2}^{t}\right|=\left|\alpha_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|=0\left(\perp \text { to } \boldsymbol{r}_{B / A}\right)
$$

$$
\left|2 \boldsymbol{a}_{B / B / B 2}^{r}\right|=\frac{\left|\boldsymbol{v}_{B_{3} / B_{2}}\right|^{2}}{\left|\boldsymbol{r}_{B / D}\right|}=\frac{12.82}{2}=81.9 \mathrm{in} / \mathrm{s} 2 \text { in the direction of }-\boldsymbol{r}_{B / D}
$$

${ }^{2} \boldsymbol{a}_{B 3 / B 2}^{t}$ tangent to the path that B_{3} traces on link 2.

$$
{ }^{1} \boldsymbol{a}_{B_{3} / B_{2}}^{c}=2 \cdot 1 \omega_{2} \times 1 \boldsymbol{v}_{B_{3} / B_{2}}=2 \cdot 10 \cdot 12.8=256 \mathrm{in} / \mathrm{s}^{2} \text { in the direction of } \boldsymbol{r}_{B / D}
$$

Solve Eq. (2) graphically with a acceleration polygon. From the polygon,

$$
{ }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B 4}={ }^{1} \boldsymbol{a}_{C 4}=203 \mathrm{in} / \mathrm{s}^{2}
$$

Problem 3.38

In the mechanism shown, $\omega_{2}=10 \mathrm{rad} / \mathrm{s} \mathrm{CW}$ (constant). Determine the angular acceleration of link 3 .

Position Analysis

Draw the linkage to scale. Locate the pivots A and C and the line of motion of point D . Next draw link 2 and locate B. Then draw link 3 and locate point D .

Velocity Analysis:

$$
\begin{equation*}
\boldsymbol{v}_{B_{2}}=\boldsymbol{v}_{B_{3}}+\boldsymbol{v}_{B_{2} / B_{3}} \tag{1}
\end{equation*}
$$

Now,

```
\({ }^{1} \boldsymbol{v}_{B_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\left(\perp\right.\) to \(\left.\boldsymbol{r}_{B / A}\right) \Rightarrow\left|\boldsymbol{v}_{B_{2}}\right|=\left|\omega_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|=10 \cdot 2=20 \mathrm{in} / \mathrm{s}\)
\({ }^{1} \boldsymbol{v}_{B 3}={ }^{1} \omega_{3} \times \boldsymbol{r}_{B / C} \quad\left(\perp\right.\) to \(\left.\boldsymbol{r}_{B / C}\right)\)
```

${ }^{1} \boldsymbol{v}_{B_{2} / B_{3}}$ in the direction of $\boldsymbol{r}_{B / C}$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
\boldsymbol{v}_{B_{3}}=15.1 \mathrm{in} / \mathrm{s}
$$

or

$$
\left|1 \omega_{3}\right|=\frac{\left\lvert\, \frac{\left|v_{B 3}\right|}{\left|r_{B / d}\right|}=\frac{15.1}{5.29}=2.85 \mathrm{rad} / \mathrm{s} \mathrm{CW} . .\right.}{}
$$

Also,

$$
{ }^{1} \boldsymbol{v}_{B_{2} / B_{3}}=13.1 \mathrm{in} / \mathrm{s}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{B_{2}}=1 \boldsymbol{a}_{B_{3}}+{ }^{1} \boldsymbol{a}_{B_{2} / B_{3}} \\
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{r}+{ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{t}+3 \boldsymbol{a}_{B_{2} / B_{3}}+2 \cdot 1 \omega_{3} \times 3 \boldsymbol{v}_{B_{2} / B_{3}} \tag{2}
\end{align*}
$$

where

$$
{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A}\right) \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{r}\right|=\left|1 \omega_{2}\right|^{2} \cdot\left|\boldsymbol{r}_{B / A}\right|=102 \cdot 2=200 \mathrm{in} / \mathrm{s}^{2}
$$

in the direction of $\boldsymbol{r}_{B / A}$

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}={ }^{1} \alpha_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|\boldsymbol{a}_{B_{2} / A_{2}}^{t}\right|=\left|1 \alpha_{2}\right| \cdot\left|\boldsymbol{r}_{B / A}\right|=0 \cdot 2=0 \mathrm{in} / \mathrm{s}^{2} \\
& { }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{r}={ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \boldsymbol{r}_{B / C}\right) \Rightarrow\left|\boldsymbol{a}_{B_{3} / C_{3}}^{r}\right|=\left|{ }^{1} \omega_{3}\right|^{2} \cdot \mid \boldsymbol{r}_{B / C}=2.852 \cdot 5.29=43.2 \mathrm{in} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction of $\boldsymbol{r}_{B / C}$

$$
{ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{t}=\alpha_{3} \times \boldsymbol{r}_{B / C} \Rightarrow\left|\boldsymbol{a}_{B_{3} / C_{3}}^{t}\right|=\left.\right|^{1} \alpha_{3}|\cdot| r_{B / C} d\left(\perp \text { to } r_{B / C}\right)
$$

${ }^{3} \boldsymbol{a}_{B_{2} / B_{3}}$ in the direction of $\boldsymbol{r}_{B / C}$

$$
{ }^{1} \boldsymbol{a}_{B_{2} / B_{3}}^{c}=2 \cdot 1 \omega_{3} \times{ }^{3} \boldsymbol{v}_{B_{2} / B_{3}}=2 \cdot 2.85 \cdot 13.1=74.9 \mathrm{in} / \mathrm{s}^{2}
$$

Solve Eq. (2) graphically with a velocity polygon. From the polygon,

$$
\left|1 \alpha_{3}\right|=\frac{\left|\boldsymbol{a}_{B / 2}^{t}\right|}{\left|r_{B / C}\right|}=\frac{56.1}{5.29}=10.6 \mathrm{rad} / \mathrm{s}^{2}
$$

therefore,

$$
{ }^{1} \alpha_{3}=10.6 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
$$

Problem 3.39
In the mechanism shown, slotted links 2 and 3 are independently driven at angular velocities of 30 and $20 \mathrm{rad} / \mathrm{s} \mathrm{CW}$ and have angular accelerations of 900 and $400 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CW}$, respectively. Determine the acceleration of point B, the center of the pin carried at the intersection of the two slots.

Position Analysis

Locate the pivots A and C. Then draw links 2 and 3 in the orientations shown.

$$
\begin{aligned}
& \boldsymbol{r}_{B / A}=2.58 \mathrm{in} \\
& \boldsymbol{r}_{B / C}=4.23 \mathrm{in}
\end{aligned}
$$

Velocity Analysis

Consider the points at location B.

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{B_{2}}=\boldsymbol{v}_{B_{2} / A_{2}}={ }^{1} \omega_{2} \times \boldsymbol{r}_{B / A} \Rightarrow\left|{ }^{1} \boldsymbol{v}_{B_{2} / A_{2}}\right|=\left.\right|^{1} \omega_{2}|\cdot| \boldsymbol{r}_{B / A} \mid=30(2.58)=77.4 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right) \\
& { }^{1} \boldsymbol{v}_{B_{3}}={ }^{1} \boldsymbol{v}_{B_{3} / C_{3}}={ }^{1} \omega_{3} \times\left.\boldsymbol{r}_{B / C} \Rightarrow\right|^{1} \boldsymbol{v}_{B_{3} / C_{3}}\left|={ }^{1} \omega_{2}\right| \cdot \mid \boldsymbol{r}_{B / C}=20(4.23)=84.6 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right)
\end{aligned}
$$

Call the pin link 4. Then,

$$
\begin{equation*}
{ }^{1} \boldsymbol{v}_{B_{4}}=\boldsymbol{v}_{B_{3}}+\boldsymbol{v}_{B_{4} / B_{3}}=1 \boldsymbol{v}_{B_{2}}+1 \boldsymbol{v}_{B_{4} / B_{2}} \tag{1}
\end{equation*}
$$

Where,
${ }^{1} \boldsymbol{v}_{B_{4} / B_{2}}$ is along $\boldsymbol{r}_{B / A}$
${ }^{1} \boldsymbol{v}_{B 4 / B_{3}}$ is along $\boldsymbol{r}_{B / C}$
Solve Eq. (1) using the velocity polygon. Then,

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{B 4_{4} / B_{2}}=118 \mathrm{in} / \mathrm{s} \\
& { }^{1} \boldsymbol{v}_{B_{4} / B_{3}}=113 \mathrm{in} / \mathrm{s}
\end{aligned}
$$

Acceleration Analysis
Consider the points at location B.

$$
\begin{aligned}
& { }^{1} \boldsymbol{a}_{B_{2}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}={ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{r}+1 \boldsymbol{a}_{B_{2} / A_{2}} \\
& { }^{1} \boldsymbol{a}_{B_{3}}={ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}={ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{r}+{ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}
\end{aligned}
$$

Call the pin link 4. Then,

$$
{ }^{1} \boldsymbol{a}_{B 4}={ }^{1} \boldsymbol{a}_{B 3}+{ }^{1} \boldsymbol{a}_{B 4 / B 3}={ }^{1} \boldsymbol{a}_{B 2}+{ }^{1} \boldsymbol{a}_{B 4 / B 2}
$$

or

$$
\begin{equation*}
{ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{r}+1 \boldsymbol{a}_{B_{3} / C_{3}}^{t}+{ }^{3} \boldsymbol{a}_{B_{4} / B_{3}}^{t}+{ }^{3} \boldsymbol{a}_{B_{4} / B_{3}}^{r}+\boldsymbol{a}_{B_{4} / B_{3}}^{c}=1 \boldsymbol{a}_{B_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{B_{2} / A_{2}}^{t}+{ }^{3} \boldsymbol{a}_{B_{4} / B_{2}}^{t}+{ }^{3} \boldsymbol{a}_{B_{4} / B_{2}}^{r}+\boldsymbol{a}_{B_{4} / B_{2}}^{c} \tag{2}
\end{equation*}
$$

Where,

$$
\begin{aligned}
& \left|\boldsymbol{a}_{B_{3} / C_{3}}^{r}\right|=\left|\omega_{3}\right|^{2} \mid \boldsymbol{r}_{B / C} d=20^{2}(4.23)=1690 \text { in } / \mathrm{s}^{2}\left(\text { opposite } \boldsymbol{r}_{B / C}\right) \\
& \left|{ }^{1} \boldsymbol{a}_{B_{3} / C_{3}}^{t}\right|=\left|1 \boldsymbol{o}_{3}\right| \cdot \boldsymbol{r}_{B / C} \mathrm{~d}=400(4.23)=1690 \mathrm{in} / \mathrm{s}^{2}\left(\perp \text { to } \boldsymbol{r}_{B / C}\right) \\
& { }^{3} \boldsymbol{a}_{B 4 / B_{3}}^{t} \text { along } \boldsymbol{r}_{B / C}
\end{aligned}
$$

Sol
$\left|\boldsymbol{a}_{B_{4} / B_{3}}\right|=\frac{\left|3 \boldsymbol{v}_{B_{4} / B_{3}}\right|^{2}}{\infty}=0$
$\boldsymbol{a}_{B 4 / B_{3}}^{c}=2 \cdot{ }^{1} \boldsymbol{\omega}_{3} \times{ }^{3} \boldsymbol{v}_{B_{4} / B_{3}} \Rightarrow\left|\boldsymbol{a}_{B 4 / B 3}^{c}\right|=2\left|\omega_{3}\right| \cdot\left|3 \boldsymbol{v}_{B_{4} / B_{3}}\right|=2(20)(113)=4520 \mathrm{in} / \mathrm{s}^{2}\left(\perp\right.$ to $\left.\boldsymbol{r}_{B / C}\right)$
$\left|1 \boldsymbol{a}_{B_{2} / A_{2}}^{r}\right|=\left.{ }^{1} \omega_{2}\right|^{2}\left|\boldsymbol{r}_{B / A}\right|=30^{2}(2.58)=2320$ in $/ \mathrm{s}^{2}\left(\right.$ opposite $\left.\boldsymbol{r}_{B / A}\right)$
$\left|\boldsymbol{a}_{B_{2} / A_{2}}^{t}\right|=\left|{ }^{1} \alpha_{2}\right| \cdot\left|r_{B / A}\right|=900(2.58)=2320$ in $/ \mathrm{s}^{2}\left(\perp\right.$ to $\left.\boldsymbol{r}_{B / A}\right)$

$$
{ }^{1} a_{B 2 / A 2}^{t} \text { along } r_{B / A}
$$

$$
\begin{aligned}
& \left|\boldsymbol{a}_{B 4 / B 2}^{r}\right|=\frac{\left|2 \boldsymbol{v}_{B_{4} / B_{2}}\right|^{2}}{\infty}=0 \\
& \boldsymbol{a}_{B_{4} / B_{2}}^{c_{1}}=2 \cdot 1 \boldsymbol{\omega}_{2} \times{ }^{2} \boldsymbol{v}_{B_{4} / B_{2}} \Rightarrow\left|\boldsymbol{a}_{B_{4} / B_{2}}^{c}\right|=2\left|\omega^{2}\right| \cdot\left|2 \boldsymbol{v}_{B 4 / B_{2}}\right|=2(30)(118)=7080 \mathrm{in} / \mathrm{s}^{2}\left(\perp \text { to } \boldsymbol{r}_{B / A}\right)
\end{aligned}
$$

Solve Eq. (2) using the acceleration polygon. Then,
${ }^{1} \boldsymbol{a}_{B 4}=4890 \mathrm{in} / \mathrm{s}^{2}$ in the direction shown.

Problem 3.40
For the mechanism shown, find $\omega_{3}, \alpha_{3}, a_{\mathrm{B}_{3}}$, and the location of the center of curvature of the path that point B_{3} traces on link 2.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}} \tag{1}\\
& { }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{C}_{3}}
\end{align*}
$$

Now,

$$
{ }^{1} \mathbf{V}_{2} / \mathrm{A}_{2}={ }^{1} \omega_{2} \times\left.\mathbf{r}_{\mathrm{B}_{2} / \mathrm{A}_{2}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A} 2}\left|=\left.\right|^{1} \omega_{2}\right| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=50 \cdot 2=100 \mathrm{in} / \mathrm{sec}(\perp \text { to } \mathbf{1} / \mathrm{A} / \mathrm{A})
$$

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{C}_{3}}={ }^{1} \omega_{3} \times\left.\mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B} 3 / \mathrm{C}_{3}}\left|=\left.\right|^{1} \omega_{3}\right| \mathbf{r}_{\mathrm{B} / \mathrm{C}} \mid(\perp \text { to } \mathbf{r B} / \mathrm{C})
$$

${ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B}_{3}}$ tangent to the curve
Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{3}}=60.78 \mathrm{in} / \mathrm{sec}
$$

or

$$
\left|\omega_{3}\right|=\frac{\left|1 \mathbf{v}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right|}{\left|\mathrm{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right|}=\frac{60.78}{8.286}=7.335 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=103.12 \mathrm{in} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }_{\mathbf{a}}^{\mathbf{a}_{3}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}} \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \\
& \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}+\mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}+\mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}+3 \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}+{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{t}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\right) \Rightarrow\left|\mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}\right|=\left.\left.\right|^{1} \omega_{2}\right|^{2} \cdot\left|\mathrm{r}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\right|=50^{2} \cdot 2=5000 \mathrm{in} / \mathrm{sec}^{2}
$$

in the direction opposite to ${ }^{\mathrm{B}_{2} / A_{2}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \alpha_{2} \times \mathbf{r}_{\mathrm{B}_{2} / \mathrm{A}_{2}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A}_{2}}^{\mathrm{t}}\right|=\left.\right|^{1} \alpha_{2}|\cdot| \mathrm{r}_{\mathrm{B} 2 / \mathrm{A}_{2}} \mid=0 \cdot 2=0 \mathrm{in} / \mathrm{sec}^{2}\left(\perp \text { to } \mathbf{1}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\right) \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}={ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C} 3}^{\mathrm{r}}\right|=\left.\left.\right|^{1} \omega_{3}\right|^{2} \cdot\left|\mathrm{r}_{\mathrm{B} / \mathrm{C}}\right|=7.335^{2} \cdot 8.286=445.805 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction opposite to $\mathbf{r}_{\mathrm{B} / \mathrm{C}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}={ }^{1} \alpha_{3} \times \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}\right|=\left.\right|^{1} \alpha_{3}|\cdot| \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \mid\left(\perp \text { to } \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right) \\
& \beta_{\left.\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}} \left\lvert\,=\frac{\left|\mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}\right|^{2}}{\left|\mathbf{r}_{\mathrm{B} / \mathrm{D}}\right|}=\frac{103.122}{12}=886.145 \mathrm{in} / \mathrm{sec}^{2}\right. \text { (in the direction of } \mathbf{r}_{\mathrm{B} / \mathrm{D}}\right)}^{\left.{ }^{3}\right)} \\
& { }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{t}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{D}}\right) \\
& 2 \cdot{ }^{1} \mathrm{C}_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=2 \cdot 7.335 \cdot 103.12=1513 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 3 / \mathrm{C} 3}^{\mathrm{t}}=4880 \mathrm{in} / \mathrm{sec}^{2}
$$

or

$$
\left|\alpha_{\alpha_{3}}\right|=\frac{\left|\mathbf{a}_{\mathrm{B} 3 / \mathrm{C}}^{\mathrm{t}}\right|}{\mid \mathrm{r}_{\mathrm{B}} / \mathrm{d}}=\frac{4880}{8.286}=589 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

Also, to find the ${ }^{1} \mathbf{a}_{B_{3}}$, add ${ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}$ in the acceleration polygon to ${ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}$,

$$
{ }^{1} \mathbf{a}_{3}=4900 \mathrm{in} / \mathrm{sec}^{2}
$$

To find the center of the curvature of the path that B_{3} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{2} \mathbf{a}^{n_{B}}{ }_{B} / \mathrm{B}_{2}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-1 \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}
$$

therefore,

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{t}}=-1 \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{t}}
$$

and

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}=-1 \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}
$$

Also,

$$
\begin{equation*}
{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}-2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange Eq. (3) as

$$
{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}=-\left({ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B} 3}\right)
$$

Now,

$$
\begin{aligned}
& { }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=886 \text { in } / \mathrm{sec}^{2}(\text { from B to } \mathrm{D}) \\
& 2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=2 \cdot 7.335 \cdot 103.12=1513 \mathrm{in} / \mathrm{sec}^{2}(\text { from D to }) \\
& 2 \cdot{ }^{1} \omega_{2} \times{ }^{1}{ }_{\mathbf{v}_{3}} / \mathrm{B}_{2}=2 \cdot 50 \cdot 103.12=10310 \mathrm{in} / \mathrm{sec}^{2}(\text { from } D \text { to })
\end{aligned}
$$

Let E be the location of the center of curvature of B_{3} on link 2 . If we choose $\mathbf{r}_{D / B}$ as the positive direction,

$$
{ }^{2} \mathbf{a}^{\mathrm{n}_{\mathrm{B} 3} / \mathrm{B}_{2}}=\frac{\|\left.\mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}\right|^{2}}{\mathbf{r}_{\mathrm{B} / \mathrm{E}}}=-(886-1513-10310)=10,937 \mathrm{in} / \mathrm{sec}^{2}
$$

Because ${ }^{2} \mathbf{a}^{n_{B}}{ }_{3} / B_{2}$ points from B toward E, point E must lie on the same side of B as D does. The magnitude of the distance is given by

$$
\left|\mathbf{r}_{\mathrm{B} / \mathrm{E}}\right|=\frac{\left|\mathbf{l}_{\mathrm{v}_{3} / \mathrm{B}_{2}}\right|^{2}}{10,937}=\frac{103.122}{10,937}=0.972 \mathrm{in}
$$

The location of E is shown on the drawing.

For the mechanism shown, points C, B and D are collinear. Point B_{2} moves in a curved slot on link 3. For the position given, find $\omega_{3}, \alpha_{3}, \boldsymbol{v}_{\mathrm{B}_{3}}, \boldsymbol{a}_{\mathrm{B}_{3}}, \boldsymbol{v}_{\mathrm{D}_{3}}, \boldsymbol{a}_{\mathrm{D}_{3}}$, and the location of the center of curvature of the path that point B_{3} traces on Link 2 .

$$
\begin{array}{lll}
A B=A C=5 \mathrm{~m} & C D=7 \mathrm{~m} \quad C E=5.7 \mathrm{~m} \\
\omega_{2}=2 \mathrm{rad} / \mathrm{s} \mathrm{CCW} & \alpha_{2}=3 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
\end{array}
$$

Position Analysis:

Draw the linkage to scale. Start by locating the pivots A and C. Next draw link 2 and locate point B. Next find point E and draw the arc at B. Also locate point D.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \omega_{2} \times\left.\mathbf{r}_{\mathrm{B} / \mathrm{A}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B}_{2}}\left|=1^{1} \omega_{2}\right| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=2 \cdot(5)=10 \mathrm{~m} / \mathrm{sec} \\
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{V}_{2} / \mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}} \quad \text { (1) } \tag{1}
\end{align*}
$$

or

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}}+{ }^{2} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{2}\\
& { }^{1} \mathbf{V}_{\mathrm{B}_{3}}={ }^{1} \mathbf{V}_{\mathrm{B}_{3} / \mathrm{C}_{3}}={ }^{1} \omega_{3} \times \mathbf{1}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \\
& { }^{1} \mathbf{V}_{\mathrm{D}_{3}}={ }^{1} \mathbf{v}_{\mathrm{D}_{3} / \mathrm{C}_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{D}_{3} / \mathrm{C}_{3}}
\end{align*}
$$

Now, to find ${ }^{1} \mathbf{V}_{3}$, we can use either equ. 1 or equ.2. However, to see ${ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}$, it is better to begin with Eq..(1).

$\left|\mathbf{v}_{\mathrm{B}_{2}}\right|=\left.\right|^{1} \omega_{2} \| \mathbf{r}_{\mathrm{B}_{2} / \mathrm{A} 2} \mid=2 \cdot(5)=10 \mathrm{~m} / \mathrm{sec}$ in the direction of $\mathbf{r}_{\mathrm{B}} / \mathrm{A}$
${ }^{1} \mathbf{v}_{\mathrm{B} 3}={ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}\left(\perp\right.$ to $\left.\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right)$
${ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B}_{3}}$ is tangent to the curvature on point B

Solve Eq. (1) graphically with a velocity polygon. The velocity directions can be gotten directly from the polygon. The magnitudes are given by:

$$
\left|\mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}\right|=8.66 \mathrm{~m} / \mathrm{sec} .
$$

Also,

$$
\left|\mathbf{v}_{\mathrm{B}_{3}}\right|=5 \mathrm{~m} / \mathrm{sec} \Rightarrow\left|{ }^{1} \omega_{3}\right|=\frac{\left|1 \mathbf{v B}_{3}\right|}{\left|\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{5}{5}=1 \mathrm{rad} / \mathrm{sec}
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{3}=1 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

To compute the velocity of D_{3},

$$
{ }^{1} \mathbf{v}_{D_{3}}={ }^{1} \mathbf{v}_{D_{3} / C_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{D_{3}} /\left.\mathrm{C}_{3} \Rightarrow\right|^{1} \mathbf{v}_{D_{3}}\left|=\left|{ }^{1} \omega_{3}\right|\right|_{\mathbf{B}_{3} / \mathrm{C}_{3}} \mid=1 \cdot(7)=7 \mathrm{~m} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{aligned}
& { }^{1} \alpha_{\mathrm{B}_{2}}={ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}+{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}} \\
& { }^{1} \boldsymbol{\alpha}_{\mathrm{B}_{2}}={ }^{1} \boldsymbol{\alpha}_{\mathrm{B}_{3}}+{ }^{1} \boldsymbol{\alpha}_{\mathrm{B}_{2} / \mathrm{B}_{3}}
\end{aligned}
$$

also

$$
{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \alpha_{\mathrm{B}_{3} / \mathrm{C}_{3}}+{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{B}_{3}}
$$

Expanding the equation,

$$
{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}+{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}={ }^{1} \alpha_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}+{ }^{1} \alpha_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}+{ }^{3} \alpha_{\mathrm{B}_{2} / \mathrm{B}_{3}}+{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}+{ }^{1} \alpha_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{c}}
$$

Or

$$
\begin{equation*}
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}+{ }^{3} \mathbf{a}_{\mathrm{B} 2 / \mathrm{B} 3}+2 \cdot{ }^{1} \boldsymbol{\omega}_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}} \tag{2}
\end{equation*}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A}_{2}}^{\mathrm{r}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \Rightarrow\left|\mathbf{a}^{1} \mathrm{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}\right|=\left|{ }^{1} \omega_{2}\right|^{2} \cdot\left|\mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=2.0^{2} \cdot 5=20 \mathrm{~m} / \mathrm{sec}^{2}
$$

in the direction of $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \boldsymbol{\alpha}_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}\right|=\left.\right|^{1} \boldsymbol{\alpha}_{2}|\cdot| \mathrm{r}_{\mathrm{B} / \mathrm{A}} \mid=3.0 \cdot 5=15 \mathrm{~m} / \mathrm{sec}^{2}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}={ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right) \Rightarrow\left|\mathbf{a}_{\mathrm{B} 3 / \mathrm{C} 3}^{\mathrm{r}}\right|=\left|{ }^{1} \omega_{3}\right|^{2} \cdot \mid \mathbf{r}_{\mathrm{B}} / \mathrm{d}=1^{2} \cdot 5=5 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction opposite to $\mathbf{r}_{\mathrm{B} / \mathrm{C}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}={ }^{1} \boldsymbol{\alpha}_{3} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}\right|=\left.\right|^{1} \boldsymbol{\alpha}_{3}|\cdot| \mathbf{r}_{\mathrm{B} / \mathrm{C}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B}} / \mathrm{C}\right) \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{c}}=2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=2 \cdot 1 \cdot 8.66=17.32 \mathrm{~m} / \mathrm{sec}^{2}(\perp \text { to } \mathbf{B} / \mathrm{C}) \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}=\frac{\left|\mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}\right|^{2}}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{E}}\right|}=\frac{8.66^{2}}{3}=25 \mathrm{~m} / \mathrm{sec}^{2} \text { from B to E } \\
& { }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 3} \text { in the direction of } \mathbf{r}_{\mathrm{B} / \mathrm{C}}
\end{aligned}
$$

Solve Eq. (2) graphically with a acceleration polygon. From the polygon,

$$
\left|\alpha_{3}\right|=\frac{| |_{\mathrm{a}_{\mathrm{B} 3 / \mathrm{C} 3}^{\mathrm{t}} \mid}}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{C}}\right|}=\frac{0.2131}{5}=0.0426 \mathrm{rad} / \mathrm{sec}^{2}
$$

From directions given in the polygon,

$$
{ }^{1} \alpha_{3}=0.0426 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CCW}
$$

The accelerations of D_{3} and B_{3} can be computed by image. The direction of the accelerations are given in the polygon and the magnitudes of the accelerations are

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{D}_{3}}=8.00 \mathrm{~m} / \mathrm{sec}^{2} \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3}}=5.71 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

To find the center of the curvature of the path that B_{3} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{2} \mathbf{a}^{n_{B}}{ }_{B_{3} / \mathrm{B}_{2}}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 3}=-1 \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}
$$

therefore,

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 3}^{\mathrm{t}}=-{ }^{1} \mathbf{a}_{\mathrm{B} 3 / \mathrm{B}_{2}}^{\mathrm{t}}
$$

and

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-\mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{n}
$$

Also,

$$
\begin{equation*}
{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}-2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange Eq. (3) as

$$
{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}=-\left({ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}}^{3} / \mathrm{B}_{2}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}\right)
$$

Now,

$$
\begin{aligned}
& { }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=25 \mathrm{~m} / \mathrm{sec}^{2} \text { (from B to E) } \\
& 2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=2 \cdot 1 \cdot 8.66=17.32 \mathrm{~m} / \mathrm{sec}^{2} \text { (from B to E) } \\
& 2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3}} / \mathrm{B}_{2}=2 \cdot 2 \cdot 8.66=34.64 \mathrm{~m} / \mathrm{sec}^{2} \text { (from E to B) }
\end{aligned}
$$

Let F be the location of the center of curvature of B_{3} on link 2 . If we choose $\mathbf{r}_{\mathrm{D} / \mathrm{B}}$ as the positive direction,

$$
{ }^{2} \mathbf{a}^{\mathrm{n}_{\mathrm{B}}^{3} / \mathrm{B}_{2}}=\frac{\left|\|_{\mathrm{v}_{3} / \mathrm{B}_{2}}\right|^{2}}{\mathbf{r}_{\mathrm{B} / \mathrm{F}}}=-(25+17.32-34.64)=7.68 \mathrm{~m} / \mathrm{sec}^{2}(\text { from E to } B)
$$

Because ${ }^{2} \mathbf{a}^{n^{n}}{ }^{B_{3}} / \mathrm{B}_{2}$ points from F toward B , point E must lie on the opposite same side of B than F. The magnitude of the distance is given by

$$
\left|\mathbf{r}_{\mathrm{B} / \mathrm{F}}\right|=\frac{\left.\right|^{1} \mathbf{v}_{3} /\left.\mathrm{B}_{2}\right|^{2}}{7.68}=\frac{8.66^{2}}{7.68}=9.765 \mathrm{~m}
$$

The location of F is shown on the drawing.

Problem 3.42

If the mechanism shown is drawn full scale, find ω_{3}, α_{3}, and the location of the center of curvature of the path that point B_{3} traces on Link 2. Assume that Link 2 is driven at constant velocity.

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{B} 2}={ }^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{A} 2 \tag{1}
\end{align*}{ }^{1} \mathbf{v}_{\mathrm{B} 3}+{ }^{1} \mathbf{v}_{\mathrm{B} 2} / \mathrm{B} 310
$$

Now,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \omega_{2} \times\left.\mathbf{r}_{\mathrm{B} 2 / \mathrm{A} 2} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{A}_{2}}\left|=\left.\right|^{1} \omega_{2}\right| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=200 \cdot 1=200 \mathrm{in} / \sec \left(\perp \text { to } \mathbf{r}_{\mathrm{B} 2 / \mathrm{A}_{2}}\right)
$$

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{C}_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \Rightarrow\left|1 \mathbf{v}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right|=\left|\left.\right|^{1} \omega_{3}\right| \mathbf{| B}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \mid\left(\perp \text { to } \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right)
$$

${ }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B} 3}$ linearly along the slot
Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{3}}=123.66 \mathrm{in} / \mathrm{sec}
$$

or

$$
\left|\omega_{3}\right|=\frac{\left|1 \mathbf{v}_{3} / \mathrm{C}_{3}\right|}{\left|\mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right|}=\frac{123.66}{3.8977}=31.726 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B} 3}=201.77 \mathrm{in} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2}} / \mathrm{B}_{3} \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C} 3}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}+{ }^{3} \mathbf{a}_{2} / \mathrm{B}_{3}+2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}} \tag{2}
\end{equation*}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B} 2 / \mathrm{A} 2}^{\mathrm{r}}\right|=\left|\left.\right|^{1} \omega_{2}\right|^{2} \cdot\left|\mathrm{r}_{\mathrm{B} / \mathrm{A}}\right|=200^{2} \cdot 1=40000 \mathrm{in} / \mathrm{sec}^{2}
$$

in the direction opposite to $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \alpha_{2} \times \mathbf{r}_{\mathrm{B} 2 / \mathrm{A}_{2}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}\right|={ }^{1} \alpha_{2}|\cdot| \mathbf{r}_{\mathrm{B} / \mathrm{A}} \mid=0 \cdot 1=0 \mathrm{in} / \mathrm{sec}^{2} \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}={ }^{1} \omega_{3} \times\left({ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right) \Rightarrow\left|\mathbf{a}_{\mathrm{B} 3 / \mathrm{C}_{3}}^{\mathrm{r}}\right|=\left|{ }^{1} \omega_{3}\right|^{2} \cdot\left|\mathbf{r}_{\mathrm{B} / \mathrm{C}}\right|=31.726^{2} \cdot 3.8977=3923 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction opposite to ${ }^{\mathrm{r}_{3} / C_{3}}$

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}={ }^{1} \alpha_{3} \times \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}\right|=\left.\right|^{1} \alpha_{3}|\cdot| \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}} \mid\left(\perp \text { to } \mathbf{r}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right)
$$

${ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}$ lies along the slot

$$
2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=2 \cdot 31.726 \cdot 201.77=12803 \mathrm{in} / \mathrm{sec}^{2}(\perp \text { toslot })
$$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{a}}=45706 \mathrm{in} / \mathrm{sec}^{2}
$$

or

$$
\left|1 \alpha_{3}\right|=\frac{\left|\mathbf{a}_{\mathrm{B}_{3} / \mathrm{C} 3}^{\mathrm{t}}\right|}{\left|\mathbf{n}_{\mathrm{B}_{3} / \mathrm{C}_{3}}\right|}=\frac{45706}{3.8977}=11726 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

To find the center of the curvature of the path that B_{3} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{2} \mathbf{a}^{n_{B}}{ }_{B} / \mathrm{B}_{2}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}
$$

therefore,

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{t}}=-1 \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{t}}
$$

and

$$
\mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}=-1 \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}
$$

Also,

$$
\begin{equation*}
{ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{n}}-2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange Eq. (3) as

$$
{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}=-\left({ }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B} 3}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B} 3 / \mathrm{B}_{2}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}\right)
$$

Now,

$$
\begin{aligned}
& { }^{3} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}^{\mathrm{n}}=\frac{\left|\mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}\right|^{2}}{\infty}=0 \mathrm{~m} / \mathrm{sec}^{2} \\
& 2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=2 \cdot 31.726 \cdot 201.77=12803 \mathrm{in} / \mathrm{sec}^{2}(\perp \text { toslot and generally upward }) \\
& 2 \cdot{ }^{1} \omega_{2} \times{ }^{3} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}=2 \cdot 200 \cdot 201.77=80708 \mathrm{in} / \mathrm{sec}^{2}(\perp \text { toslot and generally upward })
\end{aligned}
$$

Let E be the location of the center of curvature of B_{3} on link 2 . If we choose "gnerally upward" as the positive direction,

$$
{ }^{2} \mathbf{a}^{n_{B} / \mathrm{B}_{2}}=\frac{\mid \|_{\mathrm{v}_{3} /\left.\mathrm{B}_{2}\right|^{2}}^{\mathbf{r}_{\mathrm{B} / \mathrm{E}}}=-(0+12803+80708)=-93511 \mathrm{in} / \mathrm{sec}^{2} .{ }^{2} .}{}
$$

Because ${ }^{2} \mathbf{a}^{n^{B}} / \mathrm{B}_{2}$ points from B toward E , point E must lie in the "generally downward" (opposite "generally upward") direction from B in a direction perpendicular to the slot. The magnitude of the distance is given by

$$
\left|\mathbf{r}_{\mathrm{B} / \mathrm{E}}\right|=\frac{\left|\mathbf{l}_{\mathrm{B}_{3} / \mathrm{B}_{2}}\right|^{2}}{1016}=\frac{201.772}{93511}=0.435 \mathrm{in}
$$

The location of E is shown on the drawing.

Problem 3.43
If $\omega_{2}=20 \mathrm{rad} / \mathrm{s}$ (constant), find ω_{3}, α_{3}, and the center of curvature of the path that C_{3} traces on Link 2.

$$
\begin{aligned}
& C D=0.6^{\prime \prime} \\
& A D=4.0^{\prime \prime} \\
& R=1.35^{\prime \prime} \\
& A B=3.22^{\prime \prime}
\end{aligned}
$$

Position Analysis

Locate the pivots A and D. Then draw link 2 and locate C. Next locate B and draw the circle arc through C .

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{v}_{\mathrm{C}_{2}}={ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{D}_{2}}={ }^{1} \mathbf{v}_{\mathrm{C}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}} \tag{1}\\
& { }^{1} \mathbf{v}_{\mathrm{C}_{3}}={ }^{1} \mathbf{v}_{\mathrm{V}_{3} / \mathrm{A}_{3}}
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{C}_{2}} / \mathrm{D}_{2}={ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{C}_{2}} /\left.\mathrm{D}_{2} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{C}_{2}} / \mathrm{D}_{2}\left|=\left.\right|^{1} \omega_{2}\right| \cdot\left|\mathbf{r}_{\mathrm{C}_{2}} / \mathrm{D}_{2}\right|=20 \cdot 0.6=12 \mathrm{in} / \mathrm{sec}\left(\perp \text { to } \mathbf{r}_{\mathrm{C}_{2}} / \mathrm{D}_{2}\right) \\
& \left.{ }^{1} \mathbf{v}_{\mathrm{C}_{3} / \mathrm{A}_{3}}={ }^{1} \omega_{3} \times\left.\mathbf{r}_{\mathbf{C}_{3} / \mathrm{A}_{3}} \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{V}_{3} / \mathrm{A}_{3}}\left|=\left.\right|^{1} \omega_{3}\right| \cdot\left|\mathbf{r}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right| \perp \text { to } \mathbf{r}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right)
\end{aligned}
$$

$$
{ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}} \text { along the slot }
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{v}_{\mathrm{C}_{3}}=9.37 \mathrm{in} / \mathrm{sec}
$$

or

$$
\left|\omega_{3}\right|=\frac{\left|\left|\mathbf{v}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right|\right.}{\left|\mathbf{r}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right|}=\frac{9.37}{3.9194}=2.391 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}}=15.66 \mathrm{in} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{align*}
& { }^{1} \mathbf{a}_{\mathrm{C}_{2}}={ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}={ }^{1} \mathbf{a}_{\mathrm{C}_{3}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}} \\
& { }^{1} \mathbf{a}_{\mathrm{C}_{3}}={ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}} \\
& { }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{\mathrm{t}}+{ }^{3} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{r}}+{ }^{3} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{t}}+2 \cdot{ }^{1} \mathrm{\omega}_{3} \times{ }^{3} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{C}_{2} / \mathrm{D}_{2}}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}^{\mathrm{r}}\right|=\left|{ }^{1} \omega_{2}\right|^{2} \cdot\left|\mathbf{r}_{\mathrm{C}_{2} / \mathrm{D}_{2}}\right|=20^{2} \cdot 0.6=240 \mathrm{in} / \mathrm{sec}^{2}
$$

in the direction of $\mathbf{r}_{\mathrm{C}_{2}} / \mathrm{D}_{2}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}^{t}={ }^{1} \alpha_{2} \times \mathbf{r}_{\mathrm{C}_{2} / \mathrm{D}_{2}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{D}_{2}}^{\mathrm{t}}\right|^{\mid}\left|{ }^{1} \alpha_{2}\right| \cdot\left|\mathbf{r}_{\mathrm{C}_{2} / \mathrm{D}_{2}}\right|=0 \cdot 0.6=0 \mathrm{in} / \mathrm{sec}^{2} \\
& { }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{\mathrm{r}}={ }^{1} \omega_{3} \times\left.\left({ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right) \Rightarrow\right|^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{\mathrm{r}}\left|=\left.\right|^{1} \omega_{3}\right|^{2} \cdot\left|\mathbf{r C}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right|=2.391^{2} \cdot 3.9194=22.407 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction of $\mathbf{r}_{\mathrm{C}_{3}} / \mathrm{A}_{3}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{t}={ }^{1} \alpha_{3} \times \mathbf{r}_{\mathrm{r}_{3} / \mathrm{A}_{3}} \Rightarrow\left|\mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{t}\right|=\left.\right|^{1} \alpha_{3}|\cdot| \mathbf{r}_{\mathrm{C}_{3} / \mathrm{A}_{3}} \mid\left(\perp \text { to } \mathbf{r}_{\mathrm{C}_{3} / \mathrm{A}_{3}}\right) \\
& \beta^{\beta} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{r}} \left\lvert\,=\frac{\left|1 \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}}\right|^{2}}{\left|\mathbf{r}_{\mathrm{C}_{3} / \mathrm{B}_{3}}\right|}=\frac{15.662}{1.35}=181.656\right. \text { in } / \mathrm{sec}^{2} \text { in the direction of } \mathbf{r}_{\mathrm{C}_{3} / \mathrm{B}_{3}}
\end{aligned}
$$

${ }^{3} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{t}}\left(\perp\right.$ to $\left.\mathbf{r}_{\mathrm{C}_{3} / \mathrm{B} 3}\right)$
$2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{C}_{2}} / \mathrm{C}_{3}=2 \cdot 2.391 \cdot 15.66=74.886 \mathrm{in} / \mathrm{sec}^{2}$
Solve Eq. (2) graphically with an acceleration velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{A}_{3}}^{\mathrm{t}}=380.49 \mathrm{in} / \mathrm{sec}^{2}
$$

or

$$
\left|{ }^{1} \alpha_{3}\right|=\frac{\left|1 a_{\mathrm{C} 3 / \mathrm{A}_{3}}^{\mathrm{t}}\right|}{\left|\mathbf{r}_{\mathrm{C} 3} / \mathrm{A}_{3}\right|}=\frac{380.49}{3.9194}=97.079 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

To find the center of the curvature of the path that C 3 traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is ${ }^{2} \mathbf{a}_{C_{3}}^{n} / C_{2}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{C}_{3}} / \mathrm{C}_{2}=-1 \mathbf{a}_{\mathrm{C}_{2}} / \mathrm{C}_{3}
$$

therefore,

$$
{ }^{1} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{t}}=-1 \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{t}}
$$

and

$$
\mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{n}}=-1 \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}
$$

Also,

$$
\begin{equation*}
{ }^{2} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{C}_{3} / \mathrm{C}_{2}}=-3 \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{n}}-2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}} \tag{3}
\end{equation*}
$$

For our purpose, we should arrange eq. 3 as

$$
{ }^{2} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{n}}=-\left({ }^{3} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{n}}+2 \cdot{ }^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{C}_{3} / \mathrm{C}_{2}}\right)
$$

Now,

$$
\begin{aligned}
& { }^{3} \mathbf{a}_{\mathrm{C}_{2} / \mathrm{C}_{3}}^{\mathrm{n}}=\frac{\left|{ }^{1} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}}\right|^{2}}{\mathbf{r}_{\mathrm{C}_{3} / \mathrm{B} 3}}=\frac{15.662}{1.35}=181.656 \mathrm{in} / \mathrm{sec}^{2} \\
& 2 \cdot{ }^{1} \omega_{3} \times{ }^{3} \mathbf{v}_{\mathrm{C}_{2} / \mathrm{C}_{3}}=2 \cdot 2.391 \cdot 15.66=74.886 \mathrm{in} / \mathrm{sec}^{2} \\
& 2 \cdot{ }^{1} \omega_{2} \times{ }^{2} \mathbf{v}_{\mathrm{C}_{3} / \mathrm{C}_{2}}=2 \cdot 20 \cdot 15.66=626.4 \mathrm{in} / \mathrm{sec}^{2}
\end{aligned}
$$

If we choose BC as positive direction,

$$
{ }^{2} \mathbf{a}_{\mathrm{C}_{3} / \mathrm{C}_{2}}^{\mathrm{n}}=\frac{\left|1 \mathbf{v}_{\mathrm{C}_{3} / \mathrm{C}_{2}}\right|^{2}}{\mathbf{r}_{\mathrm{C}_{3} / \mathrm{E}_{3}}}=-(181.656-74.886+626.4)=-733.17 \mathrm{in} / \mathrm{sec}^{2}
$$

So,

$$
\left|\mathbf{r}_{\mathrm{C}_{3} / \mathrm{E}_{3}}\right|=\frac{\left|\mathbf{v}_{\mathrm{v}_{3} / \mathrm{C}_{2}}\right|^{2}}{-733.17}=\frac{15.662}{-733.17}=-0.334 \mathrm{in}
$$

Therefore, the center of the curvature of the path that B 3 traces on link 2 is in opposite direction of BC as shown in the sketch.

If $\omega_{2}=10 \mathrm{rad} / \mathrm{s}$ (constant), find $\boldsymbol{\alpha}_{3}$.

Position Analysis

Locate points A and C . Then draw the line AB . Next locate point B at a distance of 13 cm from point C.

Velocity Analysis:

$$
\begin{equation*}
{ }^{1} \mathbf{v}_{3}={ }^{1} \mathbf{v}_{\mathrm{B}_{2}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{1}
\end{equation*}
$$

Now,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}} \Rightarrow| |^{1} \mathbf{v}_{\mathrm{B}_{2}}\left|=\left.\right|^{1} \omega_{2}\right| \cdot\left|\mathbf{r}_{\mathrm{B}} / \mathrm{A}\right|=10 \cdot 5.4088=54.088 \mathrm{~cm} / \mathrm{sec}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right)
$$

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B}} / \mathrm{C} \Rightarrow| |^{1} \mathbf{v}_{\mathrm{B}_{3}}\left|=\left.\right|^{1} \omega_{4}\right| \cdot \mid \mathbf{r}_{\mathrm{B}} / \mathrm{d} \quad\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right)
$$

${ }^{1} \mathbf{V}_{\mathrm{B}_{3} / \mathrm{B}_{2}}$ in the direction of $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$
Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{V B}_{3}=86.581 \mathrm{~cm} / \mathrm{sec}
$$

or

$$
\left|{ }^{1} \omega_{3}\right|=\frac{\left|\mathbf{v}_{B_{3}}\right|}{\mid r_{B} / \mathrm{d}}=\frac{86.581}{13}=6.66 \mathrm{rad} / \mathrm{sec}
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{3}=6.66 \mathrm{rad} / \mathrm{sec} \mathrm{CW}
$$

Also,

$$
{ }^{1} \mathbf{V}_{\mathrm{B}_{3} / \mathrm{B}_{2}}=67.532 \mathrm{~cm} / \mathrm{sec}
$$

Acceleration Analysis:

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{3}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}+{ }^{+} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}={ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}+{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}+{ }^{2} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}+2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}
\end{aligned}
$$

Now,

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}={ }^{1} \omega_{3} \times\left.\left({ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B}} / \mathrm{C}\right) \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{r}}\right|^{1} \omega_{3}\right|^{2} \cdot \mid \mathrm{r}_{\mathrm{B}} / \mathrm{d}=6.66^{2} \cdot 13=576.623 \mathrm{~cm} / \mathrm{sec}^{2}
$$

in the direction of $\mathbf{r}_{\mathrm{B} / \mathrm{C}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}={ }^{1} \alpha_{3} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}} \Rightarrow\left|{ }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{C}_{3}}^{\mathrm{t}}\right|=\left.\right|^{1} \alpha_{3}|\cdot| \mathbf{r}_{\mathrm{B}} / \mathrm{d}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right) \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}={ }^{1} \omega_{2} \times\left({ }^{1} \omega_{2} \times \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \Rightarrow\left|\mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{r}}\right|=\left.\left.\right|^{1} \omega_{2}\right|^{2} \cdot\left|\mathbf{r}_{\mathrm{B}} / \mathrm{A}\right|=10^{2} \cdot 5.4088=540.88 \mathrm{~cm} / \mathrm{sec}^{2}
\end{aligned}
$$

in the direction of $\mathbf{r}_{\mathrm{B} / \mathrm{A}}$

$$
\begin{aligned}
& { }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}={ }^{1} \alpha_{2} \times \mathbf{r B}_{\mathrm{B}} / \mathrm{A} \Rightarrow\left|\mathbf{a}_{\mathrm{B}_{2} / \mathrm{A}_{2}}^{\mathrm{t}}\right|=\left.\right|^{1} \alpha_{2}|\cdot| \mathbf{r B}_{\mathrm{B}} / \mathrm{A} \mid=0 \\
& { }^{1} \mathbf{a}_{\mathrm{B}_{3} / \mathrm{B}_{2}}^{\mathrm{c}}=2 \cdot{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}=2 \cdot 10 \cdot 67.532=1351 \mathrm{~cm} / \mathrm{sec}^{2}(\perp \text { to } \mathbf{B} / \mathrm{A})
\end{aligned}
$$

Solve Eq. (2) graphically with a acceleration polygon. From the polygon,

$$
\left|{ }^{1} \alpha_{3}\right|=\frac{\left|\mathfrak{l}_{\mathrm{B} 3 / \mathrm{C3}}^{\mathrm{t}}\right|}{\left|\mathrm{r}_{\mathrm{B} / \mathrm{d}}\right|}=\frac{1440.2}{13}=110.785 \mathrm{rad} / \mathrm{sec}^{2}
$$

From directions given in the polygon,

$$
{ }^{1} \alpha_{3}=110.785 \mathrm{rad} / \mathrm{sec}^{2} \mathrm{CW}
$$

Problem 3.45

For the linkage shown, $\omega_{2}=10 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$ and $\alpha_{2}=100 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}$. Determine ω_{3}, and α_{3}.

Position Analysis

Draw the mechanism to scale. First locate the relative position of points A and B. Next locate point C. Locate point D at the intersection of two circle arcs: one centered at C and with a 2 " radius, the other centered at point B with a $2^{\prime \prime}$ radius. Next draw a circle arc through C and centered at D and of radius $2^{\prime \prime}$

Velocity Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{v}_{C_{2}}=1 \boldsymbol{v}_{C_{2} / A_{2}}={ }^{1} \boldsymbol{v}_{C_{3}}+{ }^{1} \boldsymbol{v}_{C_{2} / C_{3}} \tag{1}\\
& { }^{1} \boldsymbol{v}_{C_{3}}=\boldsymbol{v}_{C_{3} / B_{3}}
\end{align*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \boldsymbol{v}_{C_{2} / A_{2}}={ }^{1} \mathrm{~W}_{2} \times \boldsymbol{r}_{\mathrm{C}_{2} / A_{2}} \Rightarrow\left|\boldsymbol{v}_{C_{2} / A_{2}}\right|=\left|{ }^{1} \omega_{2}\right| \cdot\left|\boldsymbol{r}_{C_{2} / A_{2}}\right|=10 \cdot 1=10 \mathrm{in} / \mathrm{s}\left(\perp \text { to } \boldsymbol{r}_{C_{2} / A_{2}}\right) \\
& { }^{1} \boldsymbol{v}_{C_{3} / B_{3}}={ }^{1} \omega_{3} \times \boldsymbol{r}_{C_{3} / B_{3}} \Rightarrow\left|\boldsymbol{v}_{C_{3} / B_{3}}\right|=\left|{ }^{1} \omega_{3}\right| \cdot\left|\boldsymbol{r C}_{C_{3} / B_{3}}\right|\left(\perp \text { to } \boldsymbol{r}_{C_{3} / B_{3}}\right)
\end{aligned}
$$

${ }^{1} \boldsymbol{v}_{C_{2} / C_{3}}$ along the path of slot
Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \boldsymbol{v}_{C_{2} / C_{3}}=8.817 \mathrm{in} / \mathrm{s}
$$

Also,

$$
\boldsymbol{v}^{1} /{ }_{C} / B_{3}=2.917 \mathrm{in} / \mathrm{s}
$$

or

$$
\left|\omega_{3}\right|=\frac{\left|v_{C_{3} / B_{3}}\right|}{\left|r_{C_{3} / B_{3}}\right|}=\frac{2.917}{1.0594}=2.753 \mathrm{rad} / \mathrm{s} \mathrm{CW}
$$

Accelration Analysis:

$$
\begin{align*}
& { }^{1} \boldsymbol{a}_{C_{2}}={ }^{1} \boldsymbol{a}_{C_{2} / A_{2}}=1 \boldsymbol{a}_{C_{3}}+{ }^{1} \boldsymbol{a}_{C_{2} / C_{3}} \\
& { }^{1} \boldsymbol{a}_{C_{3}}={ }^{1} \boldsymbol{a}_{C_{3} / B_{3}} \\
& { }^{1} \boldsymbol{a}_{C_{2} / A_{2}}^{r}+{ }^{1} \boldsymbol{a}_{C_{2} / A_{2}}^{t}={ }^{1} \boldsymbol{a}_{C 3 / B_{3}}^{r}+1 \boldsymbol{a}_{C 3 / B 3}^{t}+{ }^{3} \boldsymbol{a}_{C_{2} / C_{3}}^{r}+{ }^{3} \boldsymbol{a}_{C_{2} / C_{3}}^{t}+{ }^{1}{ }^{1} \boldsymbol{\omega}_{3} \times{ }^{1} \boldsymbol{v}_{C_{2} / C_{3}} \tag{2}
\end{align*}
$$

Now,

$$
{ }^{1} \boldsymbol{a}_{C_{2} / A_{2}}^{r}=\boldsymbol{\omega}_{2} \times\left({ }^{1} \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{C_{2} / A_{2}}\right) \Rightarrow\left|\boldsymbol{a}_{C_{2} / A_{2}}^{r}\right|=\left|\boldsymbol{\omega}_{3}\right|^{2} \cdot\left|\boldsymbol{r}_{C_{2} / A_{2}}\right|=102 \cdot 1=0 \mathrm{in} / \mathrm{s}^{2}
$$

in the direction opposite to $\boldsymbol{r}_{\mathrm{C}_{2} / A_{2}}$

$$
\begin{aligned}
& \left.{ }^{1} \boldsymbol{a}_{C_{2} / A_{2}}^{t}={ }^{1} \alpha_{2} \times \boldsymbol{r}_{C_{2} / A_{2}} \Rightarrow\left|\boldsymbol{a}_{C_{2} / A_{2}}^{t}\right|=\mid 1 \alpha_{2}\right] \cdot\left|\boldsymbol{r}_{C_{2} / A_{2}}\right|=100 \cdot 1=100 \mathrm{in} / \mathrm{s}^{2}\left(\perp \text { to } \boldsymbol{r}_{C_{2} / A_{2}}\right) \\
& { }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{r}={ }^{1} \boldsymbol{\omega}_{3} \times\left({ }^{1} \boldsymbol{\omega}_{3} \times \boldsymbol{r}_{C_{3} / B_{3}}\right) \Rightarrow\left|\boldsymbol{a}_{C_{3} / B_{3}}^{r}\right|=\left|\omega_{3}\right|^{2} \cdot\left|\boldsymbol{r}_{C_{3} / B_{3}}\right|=2.7532 \cdot 1.0594=8.029 \mathrm{in} / \mathrm{s}^{2}
\end{aligned}
$$

in the direction opposite $\boldsymbol{r}_{C_{3} / B_{3}}$

$$
{ }^{1} \boldsymbol{a}_{C_{3} / B_{3}}^{t}=\alpha_{3} \times \boldsymbol{r}_{C_{3} / B_{3}} \Rightarrow\left|\boldsymbol{a}_{C_{3} / B_{3}}^{t}\right|=\left|1 \alpha_{3}\right| \cdot\left|\boldsymbol{r}_{C_{3} / B_{3}}\right|\left(\perp \text { to } \boldsymbol{r}_{C_{3} / B_{3}}\right)
$$

$$
\begin{aligned}
& \left|\boldsymbol{a}_{C_{2} / C_{3}}^{r}\right|=\frac{\left|\boldsymbol{v}_{C_{2} / C_{3}}\right|^{2}}{\left|\boldsymbol{r}_{C_{3} / D_{3}}\right|}=\frac{8.8172}{2}=38.87 \mathrm{in} / \mathrm{s}^{2} \text { in the direction of }-\boldsymbol{r}_{C_{3} / D_{3}} \\
& { }^{3} \boldsymbol{a}_{C_{2} / C_{3}}^{t}\left(\perp \text { to } r_{C_{3} / D_{3}}\right)
\end{aligned}
$$

$$
2^{1} \boldsymbol{\omega}_{5} \times{ }^{1} \boldsymbol{v}_{C_{2} / C_{3}}=2 \cdot 2.753 \cdot 8.817=48.546 \text { in } / \mathrm{s}^{2} \text { in the direction of }-\mathbf{r}_{\mathrm{C}_{3}} / \mathrm{D}_{3}
$$

Solve Eq. (2) graphically with an acceleration polygon. From the polygon,

$$
{ }^{1} a_{C 3 / B_{3}}^{t}=164 \mathrm{in} / \mathrm{s}^{2}
$$

or

$$
\left|1 \alpha_{3}\right|=\frac{\left|\boldsymbol{a}_{C_{C} / B_{3}}^{t}\right|}{\left|\boldsymbol{r}_{C_{3} / B_{3}}\right|}=\frac{164}{1.0594}=154.8 \mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}
$$

Problem 3.46

If $\omega_{2}=10 \mathrm{rad} / \mathrm{s} \mathrm{CW}$ (constant), find
a) ω_{3}
b) The center of curvature of the path that B_{2} traces on link 3 (show on drawing).
c) The center of curvature of the path that B_{3} traces on link 2 (show on drawing).

Position Analysis

Draw the linkage to scale. Start by locating points B and C relative to A. The line $B C$ gives the direction of travel of B relative to link 3.

Velocity Analysis:

$$
\begin{equation*}
{ }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \mathbf{v}_{\mathrm{B}_{3}}+{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}}{ }_{3} \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& { }^{1} \mathbf{v}_{\mathrm{B}_{2}}={ }^{1} \omega_{2} \times\left.\mathbf{r}_{\mathrm{B} / \mathrm{A}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{A}}\right) \Rightarrow\right|^{1} \mathbf{v}_{\mathrm{B}}\left|=\left.\right|^{1} \omega_{2}\right| \cdot\left|\mathbf{r}_{\mathrm{B} / \mathrm{A}}\right|=10 \cdot 2=20 \mathrm{in} / \mathrm{sec} \\
& { }^{1} \mathbf{v}_{\mathrm{B}_{3}}={ }^{1} \omega_{3} \times \mathbf{r}_{\mathrm{B} / \mathrm{C}}\left(\perp \text { to } \mathbf{r}_{\mathrm{B} / \mathrm{C}}\right) \\
& { }^{1} \mathbf{V}_{\mathrm{B}_{2} / \mathrm{B}_{3}} \text { in the direction of } \mathbf{r}_{\mathrm{B} / \mathrm{C}}
\end{aligned}
$$

Solve Eq. (1) graphically with a velocity polygon. From the polygon,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{3}}=7.647 \mathrm{in} / \mathrm{sec}
$$

or

$$
\left|\omega_{3}\right|=\frac{\left|\mathbf{v B}_{3}\right|}{\mid r_{B} / \mathrm{d}}=\frac{7.647}{2.7827}=2.748 \mathrm{rad} / \mathrm{sec}
$$

From the directions given in the position and velocity polygons

$$
{ }^{1} \omega_{3}=2.748 \mathrm{rad} / \mathrm{sec} \mathrm{CCW}
$$

Also,

$$
{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B} 3}=18.48 \mathrm{in} / \mathrm{sec}
$$

Also, the center of curvature (Point G) of the path that B_{2} traces on link 3 is at infinity and is perpendicular to $\mathbf{r}_{\mathrm{B} / \mathrm{C}}$.

To find the center of the curvature (Point E) of the path that B_{3} traces on link 2, we must find an expression which involves that the radius of curvature of the path. This term is $\mathbf{a}^{n_{B} / B_{2}}$ and it can be evaluated from the following:

$$
{ }^{1} \mathbf{a}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-\mathbf{a}_{\mathbf{a}_{3} / \mathrm{B}_{2}}
$$

therefore,

$$
{ }^{1} \mathbf{a}^{\mathrm{t}} \mathrm{~B}_{2} / \mathrm{B}_{3}=-\mathbf{a}^{\mathrm{t}} \mathrm{~B}_{3} / \mathrm{B}_{2}
$$

and

$$
{ }^{1} \mathbf{a}^{\mathrm{n}_{2}} / \mathrm{B}_{3}=-1=\mathbf{a}^{\mathrm{n}_{\mathrm{B}_{3}} / \mathrm{B}_{2}}
$$

Also,

$$
\begin{equation*}
{ }^{3} \mathbf{a}^{\mathrm{B}_{2} / \mathrm{B}_{3}}+2^{1} \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}=-2 \mathbf{a}^{\mathrm{n}_{\mathrm{B}} / \mathrm{B}_{2}}-2{ }^{1} \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{2}
\end{equation*}
$$

Because the center of the curvature of the path that B_{2} traces on link 3 is at infinity, the first term of the left hand side of $\mathrm{Eq}(2)$ is 0 . Therefore,

$$
\begin{equation*}
{ }^{2} \mathbf{a}^{\mathrm{n}_{\mathrm{B}}^{3} / \mathrm{B}_{2}}=-2 \cdot 1 \omega_{3} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{2} / \mathrm{B}_{3}}-2 \cdot 1 \omega_{2} \times{ }^{1} \mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}} \tag{3}
\end{equation*}
$$

Now, If we choose BG as the positive direction,

$$
{ }^{2} \mathbf{a}^{n_{B_{3}} / \mathrm{B}_{2}}=\frac{\left|\mathbf{l}_{\mathrm{B}_{3} / \mathrm{B}_{2}}\right|^{2}}{\mathbf{r}_{\mathrm{B} / \mathrm{E}}}=-(101.566+369.6)=-471.166 \mathrm{in} / \mathrm{sec}^{2}
$$

So,

$$
\left|\mathrm{r}_{\mathrm{B} / \mathrm{E}}\right|=\frac{\left|\mathbf{v}_{\mathrm{B}_{3} / \mathrm{B}_{2}}\right|^{2}}{-471.166}=\frac{18.482}{-471.166}=-0.724 \mathrm{in}
$$

Therefore, the center of the curvature of the path that B_{3} traces on link 2 is in the opposite direction of BG as shown in the sketch.

