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“Pro captu lectoris habent sua fata libelli.” (It is on the reader’s 
understanding that the fate of books depends).

Terentianus Maurus, Latin writer
De litteris, De syllabis, De metris
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xv

This text is a modern treatment of system dynamics and its relation to traditional 
mechanical engineering problems as well as modern microscale devices and machines. 
It provides an excellent course of study for students who want to grasp the fundamen-
tals of dynamic systems and it covers a significant amount of material also taught in 
engineering modeling, systems dynamics, and vibrations, all combined in a dense 
form. The book is designed as a text for juniors and seniors in aerospace, mechanical, 
electrical, biomedical, and civil engineering. It is useful for  understanding the design 
and development of micro- and macroscale structures, electric and fluidic systems 
with an introduction to transduction, and numerous simulations using MATLAB and 
SIMULINK.

The creation of machines is essentially what much of engineering is all about. 
Critical to almost all machines imaginable is a transient response, which is funda-
mental to their functionality and needs to be our primary concern in their design. 
This might be in the form of changing voltage levels in a sensor, the deflection of a 
spring supported mass, or the flow of fluid through a device. The phenomena which 
govern dynamics are not simply its mechanical components but often involve the 
dynamics of transducers as well, which are often electro-mechanical or fluidic based. 
This text discusses traditional electro-magnetic type actuators, but also ventures into 
electrostatics which are the dominant form of actuators in microelectromechanical 
systems (MEMs).

This book presents an opportunity for introducing dynamic systems to  scientists 
and engineers who are concerned with the engineering of machines both at the micro- 
and macroscopic scale. Mechanism and movement are considered from the types of 
springs and joints that are critical to micro-machined, lithographic based devices to 
traditional models of macroscale electrical, fluidic, and electromechanical systems. 
The examples discussed and the problems at the end of each chapter have applicabil-
ity at both scales. In essence this is a more modern treatment of dynamical systems, 
presenting views of modeling and substructures more consistent with the variety of 
problems that many engineers will face in the future. Any university with a substan-
tive interest in microscale engineering would do well to consider a course that cov-
ers the material herein. Finally, this text lays the foundation and framework for the 
development of controllers applied to these dynamical systems.

Professor Ephrahim Garcia
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, New York

Foreword
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xvii

Engineering system dynamics is a discipline that focuses on deriving  mathematical 
models based on simplified physical representations of actual systems, such as 
mechanical, electrical, fluid, or thermal, and on solving the mathematical  models 
(most often consisting of differential equations). The resulting solution (which 
reflects the system response or behavior) is utilized in design or analysis before 
 producing and testing the actual system. Because dynamic systems are character-
ized by similar mathematical models, a unitary approach can be used to characterize 
 individual systems pertaining to different fields as well as to consider the interaction 
of systems from multiple fields as in coupled-field problems.

This book was designed to be utilized as a one-semester system dynamics text 
for upper-level undergraduate students with emphasis on mechanical, aerospace, 
or electrical engineering. Comprising important components from these areas, the 
material should also serve cross-listed courses  (mechanical-electrical) at a similar 
study level. In addition to the printed chapters, the book contains an equal number of 
chapter extensions that have been assembled into a companion website section; this 
makes it useful as an introductory text for more advanced courses, such as vibrations, 
controls, instrumentation, or mechatronics. The book can also be useful in graduate 
coursework or in individual study as reference material. The material contained in 
this book most probably exceeds the time allotted for a one-semester course lecture, 
and therefore topical selection becomes necessary, based on particular instruction 
emphasis and teaching preferences.

While the book maintains its focus on the classical approach to system dynamics, 
a new feature of this text is the introduction of examples from compliant mechanisms 
and micro- and nano-electromechanical systems (MEMS/NEMS), which are recog-
nized as increasingly important application areas. As demonstrated in the book, and 
for the relatively simple examples that have been selected here, this inclusion can 
really be treated within the regular system dynamics lumped-parameter (pointlike) 
modeling; therefore, the students not so familiar with these topics should face no 
major comprehension difficulties. Another central point of this book is proposing a 
chapter on coupled-field (or multiple-field) systems, whereby interactions between 
the mechanical, electrical, fluid, and thermal fields occur and generate means for 
actuation or sensing applications, such as in piezoelectric, electromagnetomechani-
cal, or electrothermomechanical applications.

Another key objective was to assemble a text that is structured, balanced, 
 cohesive, and providing a fluent and logical sequence of topics along the following 
lines:

1. It starts from simple objects (the components), proceeds to the objects’ assembly 
(the individual system), and arrives at the system interaction level (coupled-field 
systems).

Preface
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2. It uses modeling and solution techniques that are familiar from other disciplines, 
such as physics or ordinary differential equations, and subsequently introduces 
new modeling and solution procedures.

3. It provides a rather even coverage (space) to each book chapter.
4. While various chapter structures are possible in a system dynamics text, this 

book proposes a sequence that was intended to be systematic and consistent with 
the logical structure and progression of the presented material.

As such, the book begins with an introductory Chapter 1, which offers an over-
view of the main aspects of a system dynamics course for engineering students. The 
next four chapters—Chapters 2, 3, 4, and 5—are dedicated, in order, to mechanical 
(Chapters 2 and 3), electrical (Chapter 4), and fluid and thermal (Chapter 5) system 
modeling. They contain basic information on components, systems, and the principal 
physical and mathematical tools that make it possible to model a dynamic system and 
determine its solution.

Once the main engineering dynamic systems have been studied, Chapter 6 
presents the Laplace transform technique, a mathematical tool that allows simpli-
fying the differential equation solution process for any of the individual systems. 
This chapter is directly connected to the next segment of the book, containing 
Chapters 7, 8, and 9. Chapter 7 introduces the transfer function approach, which 
facilitates finding the time-domain response (solution) of a dynamic system after 
the corresponding unknowns have been determined in the Laplace domain. The 
complex impedance, which is actually a transfer function connecting the Laplace-
transformed input and output of a specific system element, is also introduced 
and thoroughly treated in this chapter. Chapter 8 studies the state space mod-
eling and solution approach, which is also related to the Laplace transform of 
Chapter 6 and the transfer function of Chapter 7. Chapter 9 discusses modeling 
system dynamics in the frequency domain by means of the sinusoidal (harmonic) 
transfer function.

Chapter 10 analyzes coupled-field (or multiple-field) dynamic systems, which 
are combinations of mechanical, electrical, magnetic, piezoelectric, fluid, or thermal 
systems. In this chapter, dynamic models are formulated and solved by means of 
the procedures studied in previous chapters. Because of the partial and natural over-
lap between system dynamics and controls, the majority of textbooks on either of 
these two areas contain coverage of material from the adjoining domain. Consistent 
with this approach, the companion website contains one chapter, Chapter 11, on 
introductory controls, where basic time-domain and frequency-domain topics are 
addressed.

The book also includes four appendices: Appendix A presents the solutions to 
linear differential equations with constant coefficients, Appendix B is a review of 
matrix algebra, Appendix C contains basic MATLAB® commands that have been 
used throughout this text, and Appendix D gives a summary of equations for calculat-
ing deformations, strains, and stresses of deformable mechanical components.
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The book introduces several topics that are new to engineering system dynamics, 
as highlighted here:

Chapter 3, Mechanical Systems II

•	 Lumped-parameter inertia properties of basic compliant (flexible) members.
•	 Lumped-parameter dynamic modeling of simple compliant mechanical 

microsystems.
•	 Mass detection in MEMS by the resonance shift method.

Chapter 4, Electrical Systems

•	 Capacitive sensing and actuation in MEMS.

Chapter 5, Fluid and Thermal Systems

•	 Comprehensive coverage of liquid, pneumatic, and thermal systems.
•	 Natural response of fluid systems.

Chapters 3, 4, and 5

•	 Notion of degrees of freedom (DOFs) for defining the system configuration 
of dynamic systems.

•	 Application of the energy method to calculate the natural frequencies of 
single- and  multiple-DOF conservative systems.

•	 Utilization of the vector-matrix method to calculate the eigenvalues either 
 analytically or using MATLAB®.

Chapter 6, Laplace Transform

•	 Linear ordinary differential equations with time-varying coefficients.
•	 Laplace transformation of vector-matrix differential equations.
•	 Use of the convolution theorem to solve integral and integral-differential 

equations.
•	 Time-domain system identification.

Chapter 7, Transfer Function Approach

•	 Extension of the single-input, single-output (SISO) transfer function 
 approach to  multiple-input, multiple-output (MIMO) systems by means of 
the transfer function matrix.

•	 Application of the transfer function approach to solve the forced and the 
free responses with nonzero initial conditions.

•	 Systematic introduction and comprehensive application of the complex 
impedance approach to electrical, mechanical, and fluid and thermal 
systems.

•	 MATLAB® conversion between zero-pole-gain (zpk) and transfer function 
(tf) models.

www.semeng.ir

www.semeng.ir


xx Preface

Chapter 8, State Space Approach

•	 Treatment of the descriptor state equation.
•	 Application of the state space approach to solve the forced and free responses 

with nonzero initial conditions.
•	 MATLAB® conversion between state space (ss) models and zpk or tf 

models.

Chapter 9, Frequency-Domain Approach

•	 State space approach and the frequency domain.
•	 MATLAB® conversion from zpk, tf, or ss models to frequency response data 

(frd) models.
•	 Steady-state response of cascading unloading systems.
•	 Mechanical and electrical filters.

Chapter 10, Coupled-Field Systems

•	 Formulation of the coupled-field (multiple-field) problem.
•	 Principles and applications of sensing and actuation.
•	 Strain gauge and Wheatstone bridge circuits for measuring mechanical 

deformation.
•	 Applications of electromagnetomechanical system dynamics.
•	 Principles and applications of piezoelectric coupling with mechanical 

deformable systems.
•	 Nonlinear electrothermomechanical coupling.

Within this printed book’s space limitations, attention has been directed at gen-
erating a balanced coverage of minimally necessary theory presentation, solved 
examples, and end-of-chapter proposed problems. Whenever possible, examples are 
solved analytically, using hand calculation, so that any mathematical software can 
be used in conjunction with any model developed here. The book is not constructed 
on MATLAB®, but it uses this software to determine numerical solutions and to 
solve symbolically mathematical models too involved to be obtained by hand. It 
would be difficult to overlook the built-in capabilities of MATLAB®’s tool boxes 
(really programs within the main program, such as the ones designed for symbolic 
calculation or controls), which many times use one-line codes to solve complex 
system dynamics problems and which have been used in this text. Equally appeal-
ing solutions to system dynamics problems are the ones provided by Simulink®, 
a graphical user interface program built atop MATLAB®, and applications are 
included in almost all the chapters of solved and proposed exercises that can be 
approached by Simulink®.

Through a companion website, the book comprises more ancillary support 
material, including companion book chapters with extensions to the printed book 
(with more advanced topics, details of the printed book material, and additional 
solved examples, this section could be of interest and assistance to both the instruc-
tor and the student). The sign  is used in the printed book to signal associated 
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material on the companion website. The companion website chapters address the 
following topics:

Chapter 3, Mechanical Systems II

•	 Details on lumped-parameter stiffness and inertia properties of basic compliant 
(flexible) members.

•	 Additional springs for macro and micro system applications.
•	 Pulley systems.

Chapter 4, Electrical Systems

•	 Equivalent resistance method.
•	 Transformer elements and electrical circuits.
•	 Operational amplifier circuits as analog computers.

Chapter 5, Fluid and Thermal Systems

•	 Capacitance of compressible pipes.

Chapter 6, Laplace Transform

•	 Thorough presentation of the partial-fraction expansion.
•	 Application of the Laplace transform method to calculating natural 

frequencies.
•	 Method of integrating factor and the Laplace transform.

Chapter 7, Transfer Function Approach

•	 System identification from time response.
•	 Cascading loading systems.
•	 Mutual inductance impedance.
•	 Impedance node analysis.

Chapter 8, State Space Approach

•	 State space modeling of MIMO systems with input time derivative.
•	 Calculation of natural frequencies and determination of modes.
•	 Matrix exponential method.

Chapter 10, Coupled-Field Systems

•	 Three-dimensional piezoelectricity.
•	 Energy coupling in piezoelectric elements.
•	 Time stepping algorithms for the solution of coupled-field nonlinear differen-

tial equations.

Whenever possible, alternative solution methods have been provided in the text to 
enable using the algorithm that best suits various individual approaches to the same 
problem. Examples include Newton’s second law and the energy method for the 
free response of systems, which have been used in Chapters 3, 4, and 5, or the mesh 
analysis and the node analysis methods for electrical systems in Chapter 4.
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The ancillary material also comprises an instructor’s manual, an image bank of 
figures from the book, MATLAB® code for the book’s solved examples, PowerPoint 
lecture slides, and a longer project whereby the material introduced in the chap-
ter sequence is applied progressively. After publication and as a result of specific 
requirements or suggestions expressed by instructors who adopted the text and 
 feedback from students, additional problems resulting from this interaction will be 
provided on the website, as well as corrections of the unwanted but possible errors.

To make distinction between variables, small-cap symbols are generally used 
for the time domain (such as f for force, m for moment, or v for voltage), whereas 
capital symbols denote Laplace transforms (such as F for force, M for moment, or 
V for voltage). With regard to matrix notation, the probably old-fashioned symbols 
{ } for vectors and [ ] for matrices are used here, which can be replicated easily on 
the board.

Several solved examples and end-of-chapter problems in this book resulted from 
exercises that I have used and tested in class over the last years while teaching 
courses such as system dynamics, controls, or instrumentation, and I am grateful to 
the students who contributed to enhancing the scope and quality of the original vari-
ants. I am indebted to the anonymous academic reviewers who critically checked 
this project at its initial (proposal) phase, as well as at two intermediate stages. 
They have made valid suggestions for improvement of this text, which were well 
taken and applied to this current version. I appreciate the valuable suggestions by 
Mr. Tzuliang Loh from the MathWorks Inc. on improving the presentation of the 
MATLAB® material in this book. I am very thankful to Steven Merken, Associate 
Acquisition Editor at Elsevier Science & Technology Books, whose quality and 
timely assistance have been instrumental in converting this project from its embry-
onic to its current stage.

In closing, I would like again to acknowledge and thank the unwavering support 
of my wife, Simona, and my daughters, Diana and Ioana—they definitely made this 
project possible. As always, my thoughts and profound gratitude for everything they 
gave me go to my parents.
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Resources That Accompany  
This Book

System dynamics instructors and students will find additional resources at the book’s 
Web site: www.booksite.academicpress.com/lobontiu

Available to All
Bonus Online Chapter For courses that include lectures on controls, Chapter 11, 
Introduction to Modeling and Design of Feedback Control Systems, is an online 
chapter available free to instructors and students.

Additional Online Content Linked to specific sections of the book by an identifiable 
Web icon, extra content includes advanced topics, additional worked examples, and 
more.

Downloadable MATLAB ® Code For the book’s solved examples.

For Instructors Only
Instructor’s Manual The book itself contains a comprehensive set of exercises. 
Worked-out solutions to the exercises are available online to instructors who adopt 
this book.

Image Bank The Image Bank provides adopting instructors with various electronic 
versions of the figures from the book that may be used in lecture slides and class 
presentations.

PowerPoint Lecture Slides Use the available set of lecture slides in your own course 
as provided, or edit and reorganize them to meet your individual course needs.

Instructors should contact their Elsevier textbook sales representative at  
 textbooks@elsevier.com to obtain a password to access the instructor-only resources.

Also Available for Use with This Book
Web-based testing and assessment feature that allows instructors to create online 
tests and assignments which automatically assess student responses and perfor-
mance, providing them with immediate feedback. Elsevier’s online testing includes 
a selection of algorithmic questions, giving instructors the ability to create virtually 
unlimited variations of the same problem. Contact your local sales representative for 
additional information, or visit www.booksite.academicpress.com/lobontiu to view 
a demo chapter.
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1

CHAPTER

This chapter discusses the notion of modeling or simulation of dynamic engineer-
ing systems as a process that involves physical modeling of an actual (real) system, 
mathematical modeling of the resulting physical representation (which generates 
differential equations), and solution of the mathematical model followed by inter-
pretation of the result (response). Modeling is placed in the context of either analy-
sis or design. The dynamic system mathematical model is studied in connection to 
its input and output signals such that single-input, single-output (SISO) and mul-
tiple-input, multiple-output (MIMO) systems can be formed. Systems are catego-
rized depending on the order of the governing differential equations as zero-, first-, 
second- or higher-order systems. In addition to the examples usually encountered 
in system dynamics texts, examples of compliant (or flexible) mechanisms that are 
incorporated in micro- or nano-electromechanical systems (MEMS or NEMS) are 
included here. The nature of presentation is mainly descriptive in this chapter, as it 
attempts to introduce an overview of a few of the concepts that will be covered in 
more detail in subsequent chapters.

1.1 EnginEEring SyStEm DynamicS
Engineering system dynamics is a discipline that studies the dynamic behavior 
of various systems, such as mechanical, electrical, fluid, and thermal, either as 
isolated entities or in their interaction, the case where they are coupled-field (or 
multiple-field) systems. One trait specific to this discipline consists in emphasizing 
that systems belonging to different physical fields are described by similar math-
ematical models (expressed most often as differential equations); therefore, the 
same  mathematical apparatus can be utilized for analysis or design. This similitude 
also enables migration between systems in the form of analogies as well as applica-
tion of a unitary approach to coupled-field problems.

System dynamics relies on previously studied subject matter, such as differen-
tial equations, matrix algebra, and physics and the dynamics of systems (mechani-
cal, electrical, and fluid or thermal), which it integrates in probably the first 
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 engineering-oriented material in the undergraduate course work. Engineering  system 
dynamics is concerned with physically and mathematically modeling dynamic 
systems, which means deriving the differential equations that govern the behavior 
(response) of these systems, as well as solving the mathematical model and obtaining 
the system response. In addition to known modeling and solution procedures, such 
as Newton’s second law of motion for mechanical systems or Kirchhoff’s laws for 
electrical systems, the student will learn or reinforce new techniques, such as direct 
and inverse Laplace transforms, the transfer function, the state space approach, and 
frequency-domain analysis.

This course teaches the use of simplified physical models for real-world engi-
neering applications to design or analyze a dynamic system. Once an approximate 
and sufficiently accurate mathematical model has been obtained, one can employ 
MATLAB®, a software program possessing numerous  built-in functions that simpli-
fies solving system dynamics problems. Simulink®, a graphical user interface com-
puting environment that is built atop MATLAB® and which allows using blocks and 
signals to perform various mathematical operations, can also be used to model and 
solve engineering system dynamics problems. At the end of this course, the student 
should feel more confident in approaching an engineering design project from the 
model-based standpoint, rather than the empirical one; this approach should enable 
selecting the key physical parameters of an actual system, combining them into a rel-
evant mathematical model and finding the solution (either time response or frequency 
response). Complementing the classical examples encountered in previous courses 
(such as the rigid body, the spring, and the damper in mechanical systems), new 
examples are offered in this course of compliant (flexible) mechanisms and micro- or 
nano-electromechanical systems. These devices can be modeled using the approach 
used for regular systems, which is the lumped-parameter procedure (according to 
which system parameters are pointlike).

In addition to being designed as an introduction to actual engineering course 
work and as a subject matter that studies various systems through a common prism, 
engineering system dynamics is also valuable to subsequent courses in the engineer-
ing curricula, such as vibrations, controls, instrumentation, and mechatronics.

1.2 moDEling EnginEEring SyStEm DynamicS
The modeling process of engineering system dynamics starts by identifying the fun-
damental properties of an actual system. The minimum set of variables necessary to 
fully define the system configuration is formed of the degrees of freedom (DOF). Key 
to this selection is a schematic or diagram, which pictorially identifies the parameters 
and the variables, such as the free-body diagram that corresponds to the dynamics of 
a point-like body in mechanical systems with forces and moments shown and which 
plays the role of a physical model for the actual system.

It is then necessary to utilize an appropriate modeling procedure that will result in 
the mathematical model of the system. Generally, a mathematical model  describing 
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the dynamic behavior of an engineering system consists of a differential equation 
(or a system of differential equations) combining parameters with known functions, 
unknown functions, and derivatives. The next step involves solving the mathematical 
model through adequate mathematical procedures that deliver the solution, that is, 
expressions (equations) of variables as functions of the system parameters and time 
(or frequency), and that reflect the system response or behavior. Figure 1.1 gives a 
graphical depiction of this process that connects an actual dynamic system under the 
action of external forcing to its response. There are also situations when interrogation 
of the system response results in information that is fed back to the actual system at 
the start of the chain to allow for corrections to be applied, very similar to feedback 
control systems.

1.2.1 modeling Variants
Various steps can be adopted in transitioning from the actual system to a physical 
model, then from a physical model to a mathematical one, as sketched in Figure 1.1. 
Several physical models can be developed, starting from an actual system, depend-
ing on the severity of the simplifying assumptions employed. Once a physical model 
has been selected, several modalities are available to mathematically describe that 
physical model. The application of different algorithms to the same mathemati-
cal model should produce the same result or solution, as the system response is 
unique.

In the case of a car that runs on even terrain, the car vertical motion has a 
direct impact on its passengers. A basic physical model is shown schematically in 
Figure 1.2, which indicates the car mass is lumped at its center of gravity (CG) and 
the front and rear suspensions are modeled as springs. Because the interest here lies 
only in the car vertical motion and the terrain is assumed even (perfectly flat), it is 
safe to consider, as a rough approximation conducing to a first-level physical model, 
that the impact points between the wheels and the road surface are fixed points. 
Under these simplifying assumptions, the parameters that define the car’s proper-
ties are its mass, its mechanical moment of inertia about an axis passing through 
the CG and perpendicular to the drawing plane, and the stiffness (spring) features 
of the two suspensions. What is the minimum number of variables fully describing 
the state (or configuration) of this simplified system at any moment in time? If we 

FigUrE 1.1

Flow in a Process Connecting an Actual Dynamic System to Its  Response.
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attach the system motion to the CG, it follows that knowing the vertical motion of 
the CG (measured by the variable x) and the rotation of the rigid rod (which symbol-
izes the car body) about a horizontal axis and measured by an angle i are sufficient 
to specify the position of the car body at any time moment. Of course, we have used 
another simplifying assumption, that the rotations and vertical displacements are 
relatively small and therefore the motions of the suspensions at their joining points 
with the car (the rod) are purely vertical.

It follows that the system parameters are the car mass m and its moment of inertia 
J, the suspension spring constants (stiffnesses) k1 and k2, as well as the distances 
l1 and l2, which position the CG of the car. Generally, all these parameters have 
known  values. The variables (unknowns or DOFs) are x, the vertical motion of the 
CG, and i, the rotation of the body car about its CG. The next step is deriving the 
mathematical model corresponding to the identified physical model, and this phase 
can be achieved using a specific modeling technique, such as Newton’s second law 
of motion, the energy method, or the state space representation for this mechanical 
system—all these modeling techniques are discussed in subsequent chapters. The 
result, as mentioned previously, consists of a system of two differential equations 
containing the system parameters m, J, k1, k2, l1, l2 and the unknowns x, i together 
with their time derivatives. Solving for x and i in terms of initial conditions (for this 
system, these are the initial displacements when t = 0, namely x(0), i(0), and the 
initial velocities xo(0), io(0)) provides explicitly the functions x(t) and i(t), and this 
constitutes the system’s response. The system behavior can be studied by plotting, for 
instance, x and i as functions of time.

More complexity can be added to the simple car physical model of Figure 1.2, 
for instance by considering the wheels are separate from the mechanical suspension 
through the tire elasticity and damping. The assumption of an uneven terrain surface 
can also be introduced. Figure 1.3 is the physical model of the car when all these 
system properties are taken into account—please note that the masses of wheels and 

FigUrE 1.2

Simplified Physical Model of a Car That Moves over Even Terrain. Shown Are the Degrees 
of Freedom of the Center of  Gravity and Pitch of the Body.
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5 1.2 Modeling Engineering System Dynamics

tires and suspensions are included and combined together (they are denoted by m1 
and m2 in Figure 1.3) and that the two wheels are considered identical. It can now be 
seen that two more DOFs are added to the existing ones, so that the system becomes 
a four-DOF system (they are x, i, x1, and x2), whereas the input is formed by the two 
displacements applied to the front and rear tires, u1 and u2.

Dynamic modeling is involved in two apparently opposite directions: the analysis 
and the design (or synthesis) of a specific system. Analysis starts from a given sys-
tem whose parameters are known. The dynamic analysis objective is to establish the 
response of a system through its mathematical model. Conversely, the design needs 
to find an actual dynamic system capable of producing a specified  performance or 
response.

In analysis we start from a real-world, well-defined system, which we attempt 
to characterize through a mathematical model, whereas in design (synthesis), we 
embark with a set of requirements and use a model to obtain the skeleton of an actual 
system. Figure 1.4 gives a graphical representation of the two processes.

FigUrE 1.3

Simplified Physical Model of a Car Moving over Uneven Terrain, with the Degrees of 
 Freedom of the  Suspensions Shown.
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CHAPTER 1 Introduction6

1.2.2 Dynamical Systems lumped-Parameter modeling 
and  Solution

Lumped-Parameter Modeling
It is convenient from the modeling viewpoint to  consider that the parameters defin-
ing the dynamic behavior of a system are located at well-specified stations, so they 
can be considered pointlike. The mass of a rigid body, for instance, is considered 
to be concentrated at the center of mass (gravity) of that body so that the center of 
mass becomes representative for the whole body, which simplifies the modeling task 
substantially without diminishing the modeling accuracy. Similar lumping consider-
ations can be applied to springs or dampers in the mechanical realm but as well in the 
electrical domain, where resistances, capacitances, and inductances are considered 
lumped-parameter system properties.

Also, in some cases, the lumped-parameter modeling can be used for components 
that have inherently distributed properties. Take the example of a cantilever, such as 
the one sketched in Figure 1.5(a). Both its inertia and elastic properties are distrib-
uted, as they are functions of the position x along the length of the cantilever. Chapter 3  
shows how to transform the actual distributed-parameter model into an equivalent 
lumped-parameter model, as in Figure 1.5(b). That approach provides the tip mass me 
and stiffness ke that are equivalent to the dynamic response of the original cantilever.

Caution should be exercised when studying complex flexible systems, where the 
lumping of parameters can yield results that are sensibly different from the expected 
and actual results, as measured experimentally or simulated by more advanced 
(numerical) techniques, such as the finite element method. However, for the rela-
tively simple compliant device configurations analyzed in subsequent chapters, 
lumped-parameter modeling yields results with relatively small errors.

Modeling Methods
Several procedures or methods are available for deriving the mathematical model of 
a specified lumped-parameter physical model. Some of them are specific to a certain 
system (such as Newton’s second law of motion, which is applied to mechanical 

FigUrE 1.5

Cantilever Beam: (a) Actual, Distributed-Parameter Inertia and Stiffness; (b) Equivalent, 
Lumped- Parameter Inertia and Stiffness.

(a)

y

x

(b)

y

ke

me

www.semeng.ir

www.semeng.ir


7 1.3 Components, System, Input, and Output

systems; Kirchhoff’s laws, which are used in electrical systems; or Bernoulli’s law, 
which is employed to model fluid systems) but others can be utilized more across the 
board for all dynamic systems, such as the energy method, the Lagrange’s  equations, 
the transfer function method, and the state space approach. These methods are 
detailed in subsequent chapters or in companion website material.

Solutions Methods
Once the mathematical model of a dynamic system has been obtained, which con-
sists of one  differential equation or a system of differential equations, the solution 
can be obtained mainly using two  methods. One method is the direct integration of 
the differential equations, and the other method uses the direct and inverse Laplace 
transforms. The big advantage of the Laplace method, as will be shown in Chapter 6, 
consists in the fact that the original, time-defined differential equations are trans-
formed into algebraic equations, whose solution can be found by simpler means. 
The Laplace-domain solutions are subsequently converted back into the time-domain 
solutions by means of the inverse Laplace transform. The transfer function and the 
state-space methods are also employed to determine the time response in Chapters 7 
and 8, respectively.

System Response
Solving for the unknowns of a mathematical model based on differential equations 
provides the solution. In general, the solution to a differential equation that describes 
the system behavior is the sum of two parts: One is the complementary (or homoge-
neous) solution, yc(t) (which is the solution when no input or excitation is applied to 
the system) and the other is the particular solution, yp(t) (which is one solution of the 
equation when a specific forcing or input acts on the system):

 ( ) ( ) ( )y t y t y tc p+=  (1.1)

The complementary solution is representative of the free response and usually 
 vanishes after a period of time with dissipation present; thus, it is indicative of the 
transient response. The particular solution, on the other hand, persists in the overall 
solution and, therefore, defines the forced or steady-state response of the system to a 
particular type of input.

1.3 comPonEntS, SyStEm, inPUt, anD oUtPUt
A system in general (and an engineering one in particular in this text) is a combi-
nation of various  components, which together form an entity that can be studied 
in its entirety. Take for instance a resistor, an inductor, a capacitor, and a voltage 
source, as shown in Figure 1.6(a); they are individual  electrical components that can 
be combined in the series connection of Figure 1.6(b) to form an electrical system. 
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CHAPTER 1 Introduction8

Similarly,  mechanical components such as inertia (mass), stiffness, damping, and 
forcing can be combined in various ways to generate mechanical systems. There 
are also fluid systems, thermal systems, and systems that combine  elements from at 
least two different fields (or domains) to generate coupled-field (or multiple-field) 
systems, such as electro-mechanical or thermo-electro-mechanical, to mention just 
two possibilities.

The response of a dynamical system is generated by external causes, such as 
forcing or initial  conditions, and it is customary to name the cause that generates 
the change in the system as input whereas the resulting response is known as output. 
A system can have one input and one output, in which case it is a single-input, single-
output system (SISO), or it can have several inputs or several outputs, consequently 
known as multiple-input, multiple-output system (MIMO).

A SISO example is the single-mesh series-connection electrical circuit of 
Figure 1.6(b). For this example the input is the voltage v whereas the output is the 
current i. A MIMO mechanical system is sketched in Figure 1.7, where there are 
two inputs, the forces f1 and f2, and two outputs, the displacements x1 and x2. The car 
models just analyzed are also MIMO systems, as they all have more than one input 
or output.

The input signals (or forcing functions and generally denoted by u) that are 
applied to dynamic systems can be deterministic or random (arbitrary) in nature. 
Deterministic signals are known functions of time whereas random signals show 
no pattern connecting the signal function to its time variable. This text is concerned 

FigUrE 1.6

(a) Individual Electrical Components; (b) Electrical System Formed of These Components.
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9 1.4 Compliant Mechanisms and Microelectromechanical  Systems

with deterministic input signals only. Elementary input signals include the step, 
ramp, parabolic, sine (cosine), pulse, and impulse functions; Figure 1.8 plots these 
functions.

1.4 comPliant mEchaniSmS anD 
 microElEctromEchanical  SyStEmS

In addition to examples that are somewhat classical for dynamics of engineer-
ing systems, this text discusses several applications from the fields of compliant 
mechanisms and micro- and nano- electromechanical systems, so a brief presenta-
tion of these two domains is given here. The effort has been made throughout this 
book to demonstrate that, under regular circumstances, simple applications from 
compliant mechanisms and MEMS can be reduced to lumped-parameter (most 
often) linear  systems that are similar to other well-established system dynamics 
examples.

Compliant (flexible) mechanisms are devices that use the elastic deformation 
of slender, springlike portions instead of classical rotation or sliding pairs to cre-
ate, transmit, or sense mechanical motion. The example of Figure 1.9 illustrates 
the relationship between a classical translation (sliding) joint with regular springs 

FigUrE 1.8

A Few Input Functions: (a) Step; (b) Ramp; (c) Parabolic; (d) Pulse; (e) Impulse;  
(f) Sinusoidal.
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CHAPTER 1 Introduction10

and the corresponding compliant joint formed of flexure hinges (slender portions 
that bend and enable motion transmission). The compliant device of Figure 1.9(a) 
is constrained to move horizontally because the four identical flexure hinges bend 
identically (in pairs of two) whenever a mechanical excitation is applied about the 
direction of motion. The lumped-parameter counterpart is drawn in Figure 1.9(b), 
where the four identical flexure hinges have been substituted by four identical trans-
lation springs, each of stiffness k.

Another compliant mechanism example is the one of Figure 1.10(a), which pic-
tures a  piezoelectrically-actuated, displacement-amplification device. Figure 1.10(b) 
is the schematic representation of the actual mechanism, where the flexure hinges 

FigUrE 1.9

Realizing Translation: (a)  Compliant Mechanism with Flexure Hinges; (b) Equivalent 
Lumped-Parameter Model.
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Flexure-Based Planar Compliant Mechanism for Motion Amplification: (a) Photograph of 
Actual Device; (b) Schematic Representation with Pointlike Rotation Joints.
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11 1.4 Compliant Mechanisms and Microelectromechanical  Systems

are replaced by classical pointlike rotation joints. The schematic shows that the input 
from the two piezoelectric actuators is amplified twice by means of two lever stages. 
The mechanism is clamped to and offset above the base centrally, as  indicated in 
Figure 1.10(a) and is free to deform and move in a plane parallel to the base plane.

As monolithic (single-piece) devices, compliant mechanisms present several 
advantages over their classical counterparts, such as lack of assembly, no moving 
parts, and therefore no losses due to  friction between adjacent parts, no need for 
maintenance, and simplicity of fabrication (although at costs that are higher gener-
ally compared to classical manufacturing procedures). Their main drawback is that 
the range of motion is reduced because of the constraints posed by limited deforma-
tions of their compliant joints.

Compliant mechanisms are encountered in both macro-scale applications (with 
dimensions larger than millimeters) and micro- or nano-scale ones (when the 
device dimensions are in the micrometer or nanometer range (1 nm = 10-6 m, 
1 nm = 10-9 m), particularly in microelectromechanical systems. In many situa-
tions, compliant mechanisms are built as single-piece (monolithic) devices with 
techniques such as wire electro-discharge machining (wire EDM), through water 
jet machining, or by microfabrication techniques (for MEMS) such as surface or 
bulk micromachining.

MEMS applications, such as sensors, actuators, pumps, motors, accelerom-
eters, gyroscopes, electrical or mechanical filters, electronic or optical switches, 
GPS devices (to mention just a few), are encountered in the automotive, defense, 
medical, biology, computing, and communications domains. Figure 1.11 is the 
microphotograph of a flexure-hinge thermal microactuator whose motion is 
sensed electrostatically by several pairs of capacitors. The entire device floats 
over a substrate on which it is attached by four anchors (two are shown in the 
figure).

FigUrE 1.11

Top View of Compliant MEMS with  Thermal Actuation and Electrostatic Sensing of  Motion.
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CHAPTER 1 Introduction12

A similar application, where both actuation and sensing are performed electro-
statically, is the microcantilever shown in the side view of the three-dimensional 
rendition of Figure 1.12. Out-of-plane bending of the microcantilever can be used to 
realize switching in an electrical circuit, for instance.

Another MEMS application is sketched in Figures 1.13(a) and 1.13(b). It rep-
resents a torsional micro-mirror, which can be used in several applications such as 
dynamic redirectioning of incoming optical signals. External actuation on the side 
of and underneath the central plate (the mirror) through attraction/repulsion forces 
that can be produced electrostatically or magnetically generates partial rotation of 
the plate about the axis that passes through the two elastic end hinges. The hinges 
deform in torsion, hence the name torsional mirror. Figure 1.11(c) shows the equiva-
lent lumped-parameter model of the actual torsional mirror. Several other MEMS 
devices are analyzed in subsequent chapters as mechanical, electrical, or coupled-
field systems.

FigUrE 1.13

MEMS Torsional  Micromirror: (a) Top View; (b) Side View (from A); (c)  Equivalent 
 Lumped-Parameter Model.
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Side View of a Microcantilever with Electrostatic Actuation and Sensing.
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13 1.5 System Order

1.5 SyStEm orDEr
As mentioned previously, an engineering system is described by a  mathematical 
model that consists of a differential equation (for SISO systems) or a system of 
differential equations (the case of MIMO systems). The order of the differential 
equation(s) gives the order of the system, as is shown next.

For a SISO system, the relationship between the input and the output is described 
by a differential equation of the type

 
( )

( )a
dt

d y t
bu ti

i

n

i

i

0
=

=

/  (1.2)

where ai (i = 0 to n) and b are constant factors, and the input function, u(t), can also 
include derivatives. The maximum derivation order of the output function y(t) in a 
system of the nth order is n such that, a second-order system for instance is defined 
by a maximum-order input derivative of 2 and so on.

1.5.1 Zero-order Systems
A zero-order system is defined by the equation

 a y t bu t( ) ( )0 =  (1.3)

which is also written as

 y t Ku t( ) ( )=  (1.4)

where K = b/a0 is the constant gain or static sensitivity. The static sensitivity con-
stant reflects the storage nature of a zero-order system, and this is illustrated in the 
following example. The electrostatic MEMS actuator sketched in Figure 1.14(a) can 
be regarded as a zero-order system in the following circumstances. A force f that 

FigUrE 1.14

MEMS with Electrostatic  Actuation and Beam-Spring Elastic Support: (a)  Actual  System; 
(b) Mechanically Equivalent Lumped-Parameter Model.
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CHAPTER 1 Introduction14

can be generated electrostatically attracts the mobile armature to the right until it 
is statically balanced by the elastic reactions of the two side beam springs. If only 
the mechanical domain is of interest, the lumped-parameter equivalent model of 
Figure 1.14(b) can be employed to describe the quasistatic behavior of the MEMS. 
The static equilibrium requires f = fe, the elastic force being produced by two springs 
as fe = 2ky. As a consequence, the following equation is produced:

 y
k

u
2
1

=  (1.5)

where the static sensitivity is K = 1/(2k) and the input is f = u.

1.5.2 First-order Systems
First-order systems are described by a differential equation:

 
( )

( ) ( )a
dt

dy t
a y t bu t1 0+ =  (1.6)

which can also be written as

 
( )

( ) ( )
dt

dy t
y t Ku tx + =  (1.7)

where the new constant, x, is the time constant and is defined as

 a
a

0

1
x =  (1.8)

It can be seen that the input-system interaction of a first-order system is described 
by two constants: the static sensitivity K and the time constant x—this latter one 
displays the dissipative side of a first-order system. The thermal system sketched in 
Figure 1.15 is a first-order system, as shown next.

The heat quantity exchanged between the bath and the thermometer during 
 contact is

 ( )Q mc t bi i-= 6 @ (1.9)

FigUrE 1.15

Bath-Thermometer Thermal System.
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15 1.5 System Order

where c is the specific heat of the thermometer, m is its mass, ib is the bath tempera-
ture (assumed to be constant here), and i is the thermometer temperature. At the 
same time, it is known that convective heat exchange between the bath and thermom-
eter is governed by the equation

 ( )Q hA tbi i= -o
6 @ (1.10)

where h is the convection heat transfer coefficient and A is the thermometer area in 
contact with the fluid. Applying the time derivative to Eq. (1.9) and combining the 
resulting equation with Eq. (1.10) results in

 
( )

( )
hA
mc

dt

d
t

t
b

i
i i+ =  (1.11)

which indicates that x = mc/(hA) and K = 1. The input is the bath  temperature ib and 
the output is the thermometer temperature i(t). Figure 1.16 displays a typical first-
order system response for the particular case where x = 10 s and ib = 80°C.

For a first-order system, the response to a step input can be characterized by the 
steady-state response, y(3), the rise time (time after which the response gets to 90% 
of the steady-state response, but other definitions are also applicable), and the settling 
time (time necessary for the response to stay within 2% of the steady-state response 
values); more details on this topic are given in the website Chapter 11, which studies 
dynamics of control systems.

FigUrE 1.16

Thermometer Temperature as a Function of Time (Typical First-Order System Time Response).
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1.5.3 Second- and higher-order Systems
Second-order systems are defined by the following differential equation:

 
( ) ( )

( ) ( )a
dt

d y t
a

dt

dy t
a y t bu t2 2

2

1 0+ + =  (1.12)

Division of Eq. (1.12) by a0 then rearrangement of the resulting equation yields

 
( ) ( )

( ) ( )
dt

d y t

dt

dy t
y t Ku t2 n n n2

2
2 2p~ ~ ~+ + =  (1.13)

where the new constants, the natural frequency ~n and the damping ratio p are 
defined as

 
a
a

a
a

1

2
n

n

2 0

2

0

1

~

~

p

=

=

Z

[

\

]]

]]
 (1.14)

Let us prove that the mechanical system of Figure 1.17 operates as a second-order 
system.

The equation of motion is derived by means of Newton’s second law of 
motion as

 
( )

( )
( )

( )m
dt

d y t
f t c

dt

dy t
ky t

2

2

= - -  (1.15)

which can be rearranged as

 
( ) ( )

( ) ( )
dt

d y t
m
c

dt

dy t
m
k

y t m f t
1

2

2

#+ + =  (1.16)

where f = u; therefore, the three coefficients defining the second-order system are

 ; ;m
k

mk

c
K

k2

1
n~ p= = =  (1.17)

FigUrE 1.17

Mechanical System with Mass, Spring, and Damper.
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17 1.5 System Order

Based on this mechanical system, Figure 1.18 shows the time response of a typi-
cal second-order system for f = 50 N, p = 0.5, ~n = 100 rad/s, and K = 1. The main 
characteristics of the time response of a second-order system to a step input are the 
steady-state response, the rise time, the peak time (time required for the response to 
reach its maximum value) and the peak response (the maximum response), and the 
settling time; all these parameters are studied in more detail in the website Chapter 11 
in the context of controls.

Systems of orders larger than two are also encountered in engineering applica-
tions, such as the  following example, which results in a third-order system model. 
The electromechanical system of Figure 1.19 consists of a dc (direct-current) motor 
and load shaft. The dynamic model of a motor consists of equations that describe the 
mechanical, electrical, and mechanical-electrical (coupled-field) behavior. Essentially, 
the electromechanical system sketched in Figure 1.19 is formed of a mobile part (the 
rotor armature), which rotates under the action of a magnetic field produced by the 

FigUrE 1.18

Mass Displacement as a Function of Time (Typical Second-Order System Time Response).
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Schematic of a dc Motor as an Electromechanical System.
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CHAPTER 1 Introduction18

electrical circuit of an armature (the stator). The electrical circuit is governed by 
Kirchhoff’s second law, according to which

 ( )
( )

( ) ( )R i t L
dt

di t
v t v ta a a

a
a b+ = -  (1.18)

where the subscript a indicates the armature and vb is the back electromotive force 
(voltage). The mechanical part of the system is governed by the equation

 ( )
( ) ( )

J
dt

d
m t c

dt

dt t
l a2

2i i
= -  (1.19)

where ma is the torque developed due to the stator-rotor interaction. It is also known 
that the following equations couple the mechanical and electrical fields:

 
( ) ( )

( )
( )

m t K i t

v t K
dt

d t
a t a

b e

i

=

=
*  (1.20)

with Kt (measured in N-m/A) and Ke (measured in V-s/rad) being constants. By com-
bining Eqs. (1.18), (1.19), and (1.20), the following third-order differential equation 
is produced:

 ( )
( ) ( ) ( )

K

L J

dt

d
K

L c

K

R J

dt

d
K

R c
K

dt

d
v t

t t t

t

a l

t

a

t

a l

t

a
e a3

3

2

2

#
i i i

+ + + + =e eo o  (1.21)

The order of Eq. (1.21) can be reduced to two by using the substitution ~(t) = di(t)/dt.
When neglecting the armature inductance, that is La = 0 in Eq. (1.18), the follow-

ing equation can be written using the connection Eqs. (1.20):

 m
R

K K

R

K
va

a

e t

a

t
a~=- +  (1.22)

Equation (1.22) indicates a linear relationship between the actuation torque ma and 
the angular velocity ~ for a specified armature voltage, as shown in Figure 1.20. Any 

FigUrE 1.20

Actuation Torque versus Shaft Angular Frequency in a dc Motor.
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19 1.6 Coupled-Field (Multiple-Field) Systems

operation point defined by an angular velocity and a delivered torque is located on 
this characteristic curve.

The torque-angular velocity curve generated by an armature voltage va1 intersects 
the coordinate axes at ~0—the free (no-load) angular velocity, when basically the 
dc motor shaft spins freely with no external load acting on it, and at ma,b—the block 
(stall) torque, where an external load torque equal to ma,b stalls the shaft rotation 
altogether. These two parameters are obtained from Eq. (1.22) as

 ;
K

v
m

R

K
v,

e

a
a b

a

t
a0~ = =  (1.23)

For a different armature voltage, say va2 > va1, the torque-angular velocity char-
acteristic shifts up but preserves its slope for constant values of Kt, Ke and Ra, as 
indicated in Eq. (1.22).

1.6 coUPlED-FiElD (mUltiPlE-FiElD) SyStEmS
The previous example illustrated the interaction between mechanical and electrical 
elements and systems that resulted in an electro-mechanical system. The correspond-
ing mathematical model is formed of equations pertaining to a single domain or field 
(either mechanical or electrical) and equations combining elements from both fields. 
Such a mathematical model is representative of coupled-field (or multiple-field) sys-
tems. Another example is presented in a descriptive manner and more details on 
coupled-field systems are given in Chapter 10. Consider the system of Figure 1.21, 
which is formed of a piezoelectric (PZT) block with a strain gauge attached to it.

Each of these two subsystems has its own electrical circuit. Piezoelectric  materials 
essentially deform when an external voltage is applied to them due to the piezoelec-
tric effect. A voltage applied at the end points of the bloc sketched in Figure 1.21 

FigUrE 1.21

Coupled-Field System with Mechanical, Electrical, and Piezoelectric Elements.
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CHAPTER 1 Introduction20

 generates an axial deformation, which is proportional to the applied voltage. 
Assuming now that the strain gauge (which is a resistor) is affixed longitudinally to 
the block, the resistor incurs the same axial deformation as the block; therefore, its 
resistance changes by a quantity proportional to the mechanical deformation. This 
resistance change can be sensed in the external circuit. To summarize, an equation is 
obtained that combines electrical, piezoelectric, and mechanical elements; therefore, 
this system is a coupled-field one.

As illustrated by this example, the piezoelectric block behaves as an actuator 
when supplied with a voltage generating the mechanical motion. The dc motor is 
another actuator (or motor) example, where the armature voltage is the source of 
shaft angular rotation. More generically, an actuator transforms one form of energy 
(such as electrical, most often) into mechanical energy. For a piezoelectric block 
working against a translatory spring, as sketched in Figure 1.22(a), the characteristic 
curve connecting the delivered force to the tip displacement is similar to that of the 
dc motor, see Figure 1.22(b). Without a spring, the piezoelectric actuator deforms by 
a quantity y0—the free displacement, which (more details to come in Chapter 10) is 
produced by an actuation voltage va as

 y dva0=  (1.24)

where d is a material constant. The maximum force preventing the piezoelectric actu-
ator from deforming is the block force, fb, which is calculated as

 f k y
h

EA
yb PZT

PZT
0 0= = c m  (1.25)

E is the longitudinal (Young’s) modulus of the piezoelectric material, A is the block 
cross-sectional area, and h is the original (undeformed) length. The linear force-
deformation characteristic curve of Figure 1.22(b) has the equation

 orf my n f
h

EA
y

h
EA

dv
PZT PZT

a= + =- +c cm m  (1.26)

FigUrE 1.22

Linear Piezoelectric Actuation: (a) Against Spring; (b) Force- Displacement  Characteristics.
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21 1.7 Linear and Nonlinear Dynamic Systems

which is similar to the dc equation relating the developed torque to the angular 
 velocity—Eq. (1.22). The force-displacement characteristic of the spring is indicated 
with dotted line in Figure 1.22(b) and, because there is permanent contact between 
the piezoelectric actuator and the spring, a nominal (or operation) point lies at the 
intersection of the actuator and spring characteristics. For a specified actuator, a fam-
ily of parallel lines is obtained for various actuation voltages.

As mentioned in this section, a piezoelectric block can also produce voltage when 
subjected to mechanical pressure or deformation, a case where it behaves as a sensor 
(or generator) by  converting one form of energy (mechanical in this particular situa-
tion) into electrical energy to perform a measurement (quantitative assessment) opera-
tion. A sensor generally aims at measuring the variation of a  physical parameter, such 
as displacement, velocity, acceleration,  pressure, electrical resistance, also named 
measurand, by converting that variation into another parameter’s variation, which can 
subsequently be processed more easily; the two parameters are usually connected by 
a linear relationship which is  typical of zero-order systems, see Eq. (1.4) where the 
input is the quantity to be measured and the output is the parameter that measures (the 
converted quantity). The two parameters are related by the static sensitivity K, as illus-
trated in Figure 1.23. Being methods of converting one form of energy into another 
one, actuation and sensing are known collectively as transduction (although in many 
instances transduction substitutes for sensing). More on transduction is discussed in 
Chapter 10 and in texts  specialized in measurement and instrumentation.

1.7 linEar anD nonlinEar Dynamic SyStEmS
Linearity or nonlinearity of a dynamic system is associated with the differential equa-
tion that defines the behavior of that specific system. A SISO system for instance is 
linear when

1. The coefficients ai of Eq. (1.2) do not depend on the unknown function 
(response) y(t).

2. The unknown function and its derivatives in the left-hand side of Eq. (1.2) are 
first-degree polynomial functions.

FigUrE 1.23

Sensing Characteristics in a Linear Measurement Process.

K

Quantity to be measured

C
on

ve
rt

ed
 q

ua
nt

ity
 

www.semeng.ir

www.semeng.ir


CHAPTER 1 Introduction22

Systems where the coefficients ai are not constant (are time variable, for instance) 
still preserve their linear character. In a SISO mechanical system, nonlinearity can be 
produced by several factors connected to either mass, stiffness, or damping. Consider 
the mass of Figure 1.24, which is attached by two identical springs of stiffness k and 
of undeformed length l.

When the body moved a distance x to the right from the equilibrium position, the 

elongation of each of the two identical springs is equal to l x l2 2+ - . By applying 

Newton’s second law of motion and projecting the two identical spring forces on the 
horizontal motion direction, the following equation results:

 ( ) ( )mx t k x t2 0eq+ =p  (1.27)

with the equivalent stiffness being

 
( ) ( )

k
x t
kl

l x t

l
1eq 2 2

= -
+

e o (1.28)

which indicates the stiffness is nonlinear and therefore the whole mechanical system 
is nonlinear.

The stiffness increase is produced is by a “hardening” effect, whereby the stiff-
ness and its slope increase with x. Another variant, where the slope decreases with 
x, is generated by a “softening” effect. Both behaviors are nonlinear and sketched in 
Figure 1.25 alongside the characteristic of a linear spring.

Two other types of nonlinearities, saturation and hysteresis, mostly related to 
 material behavior in mechanical and electrical components, are briefly mentioned 
next. The phenomenon of saturation is predominantly encountered in electrical com-
ponents. Figure 1.26 shows the voltage-current characteristic curve of an inductor; it 
can be seen that the linear relationship between the voltage and the current changes 
past a central zone, as the voltage decreases (saturates) when the current increases past 

FigUrE 1.24

Mass with Two Springs in a  Deformed  Position as a Nonlinear  Mechanical System.
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23 1.7 Linear and Nonlinear Dynamic Systems

FigUrE 1.25

Linear, Hardening, and Softening Spring  Characteristics.
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FigUrE 1.26

Saturation-Type Nonlinearity.
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the linearity limits. As known from electromagnetism, the voltage across an inductor 
is defined as

 ( )
( )

v t L
dt

di t
L =  (1.29)

Obviously, when the current is confined within the -ilin and +ilin bounds, the slope 
di/dt is constant, and the voltage-current relationship is linear. This actually is the 
range utilized in the majority of electrical system calculations.

Hysteresis nonlinearities are encountered in deformable solids, magnetic mate-
rials, and electrical materials. Hysteresis consists mainly in a path-dependence of 
the load-response characteristic curve depending on whether loading or unloading is 
applied. The curve of Figure 1.27(a) shows no  dependence on the path as the load-
ing and unloading curves are identical. However, for the material of Figure 1.27(b), 
there is a path dependence as there are different curves for the loading and unloading; 
therefore, hysteresis has to be accounted for.
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CHAPTER 1 Introduction24

At a load of l1, a response r1 is registered for this phase (loading meaning the 
increase in the applied load or excitation), whereas for the same load, the response 
is r2 (r2 < r1) during unloading (the phase where the load and excitation decrease), 
Figure 1.27(b). Evidently, r1 is the only response at both loading and unloading for a 
material showing no hysteresis effects. One good example to illustrate the hysteresis 
phenomenon is to gradually increase the force pulling a rubber wire and measur-
ing the deformations that correspond to various forces. When the force is reduced 
gradually, it can be seen that, for a force level that is equal to the one used at loading, 
the corresponding deformation at unloading is larger. However, in many applica-
tions, the effect of hysteresis (particularly for metals) is generally small and can be 
neglected, as is the case in this text.

FigUrE 1.27

Hysteresis-Type Nonlinearity: (a) Material with No Hysteresis; (b) Material with Hysteresis.
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25

Objectives

In this chapter you will learn about

•	 Inertia, stiffness, damping, and forcing as lumped-parameter mechanical 
elements for translation and rotation.

•	 Application of Newton’s second law of motion to formulate the mathematical 
models of basic, single degree-of-freedom, dynamic mechanical systems.

•	 Analysis of natural, free-damped, and forced vibrations of single degree-of-freedom  
mechanical systems.

•	 Use of MATLAB® as a tool for symbolic calculation and plotting of basic 
mechanical system response.

•	 Utilization of Simulink® as a computing environment for graphical modeling and 
solving differential equations representing dynamic models of basic mechanical 
systems.

intrOductiOn
The main objective of this chapter is to derive time-domain mathematical models 
describing the dynamics of mechanical systems that consist of the basic elements 
of inertia, damping, stiffness, and forcing (or actuation). The lumped-parameter 
modeling approach is utilized, according to which these basic element properties 
are  considered pointlike. Studied here are single degree-of-freedom (single-DOF) 
mechanical systems that depend on one variable and whose mathematical model 
consists of one  differential equation.

Translatory and rotary mechanical motions are modeled by using Newton’s sec-
ond law of motion. The resulting mathematical models are used to analyze the free-
undamped (natural), free-damped, and forced responses of single-DOF mechanical 
systems. Analytical methods as well as MATLAB® and Simulink® are used to solve 
several examples that complement the theory, including mechanical lever and gear 
system applications.

Mechanical Systems I

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-240-81128-4.00002-7
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26 CHAPTER 2 Mechanical Systems I

2.1  basic Mechanical eleMents: inertia, stiffness, 
daMping, and fOrcing

This section introduces the mechanical elements of inertia, stiffness, damping, and 
forcing for both translatory and rotary motion.

2.1.1 inertia elements
For rigid bodies, inertia properties can be considered pointlike; therefore, inertia fea-
tures corresponding to either translatory or rotary motion are naturally lumped. Inertia 
is represented by mass (usually denoted by m) in translatory motion and mechani-
cal (or mass) moment of inertia (generally symbolized by J ) in rotary motion, as 
sketched in Figure 2.1.

The mechanical moment of inertia of a point mass m rotating about a fixed point at 
a distance l as in the simple pendulum of Figure 2.1(b), and the mechanical moment 
of inertia of a body of mass m rotating about an axis, Figure 2.1(c), are calculated as

 ;J ml J r dm
m

2 2= = #  (2.1)

where r is the distance from the rotation axis to an element of mass dm.
The parallel-axis theorem, which is illustrated in Figure 2.2, gives the mechani-

cal moment of inertia of a rotating body about an axis that does not coincide with the 
body’s centroidal axis in terms of the distance d between axes and the body mass m as

 J J md2= +D  (2.2)

where J is the mechanical moment of inertia of the body about its centroidal axis.

figure 2.1

Lumped-Parameter Mechanical Inertia and Related Symbols: (a) Translatory;  
(b) and (c) Rotary.
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 2.1 Basic Mechanical Elements 27

Example 2.1
Calculate the mass moment of inertia about the centroidal (symmetry) axis of the right 
circular cone frustum shown in Figure 2.3(a) in side view and defined by R1, R2, and h. 
Use the obtained result to also calculate the mass moment of inertia of a cylinder, both 
about its centroidal axis and about a parallel axis that is offset at a distance d = 2R2 from 
the centroidal axis.

Solution
For a homogeneous cone frustum of mass density t, the mechanical moment of inertia 
is expressed as

 J r dV r dA dx
V A

h
2 2

0

t t= = d n# ##  (2.3)

As shown in Figure 2.3(b), the area of an elementary circular strip of width dr and inner 
radius r is

 dA rdr2r=  (2.4)

figure 2.2

Schematic for the Parallel-Axis Theorem.
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figure 2.3

Frustum of a Right Circular Conical Solid: (a) Side View; (b) Isolated Cross-Section.
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28 CHAPTER 2 Mechanical Systems I

By substituting Eq. (2.4) into Eq. (2.3), the mass moment of inertia of the cone frustum 
becomes

 J r dr dx R dx2
2

Rh

x

h
3

00

4

0

x

rt
rt

= =f p## #  (2.5)

The variable external radius, as sketched in Figure 2.3(a), can be calculated as

 R R
h

R R
xx 1

2 1
= +

-
 (2.6)

Symbolic mathematical calculations can be performed by using MATLAB® Sym-
bolic Math ToolboxTM. Integrals are evaluated by means of the int(expr, x, a, b) 
 MATLAB® command, where expr is the integrand (the expression to be integrated), x 
is the integration variable and a, b are the integration limits. The following MATLAB® 
sequence is used to calculate the mass moment of inertia of Eq. (2.5):

>> syms r1 r2 r h x rho
>> rx = r1+(r2−r1)/h*x;
>> da = 2*pi*r;
>> J = simplify(rho*int(int(r^2*da, r, 0, rx), x, 0, h))

which returns

 J
h

R R R R R R R R
10 1

4
1
3

2 1
2 2

1 2
3

2
4

2

rt
= + + + +_ i (2.7)

When R1 = R2 = R, the cone frustum becomes a cylinder and Eq. (2.7) simplifies to

 ( ) ( )J
h

R hR R h R mR
10

5
2
1

2
1

2
14 4 2 2 2rt

rt r t= = = =  (2.8)

with m being the mass of the cylinder. The cylinder’s mass moment of inertia about an 
axis situated at d = 2R2 from its centroidal axis is found from Eq. (2.8) by means of the 
parallel-axis theorem, Eq. (2.2), as

 ( )J mR m R mR
2
1

2
2
92 2 2= + =  (2.9)

For translation, the mass is included in the inertia force, which is proportional to 
acceleration (the second time derivative of displacement) and is calculated as

 ( )
( )

f t m
dt

d x t
mxi 2

2

= = p (2.10)
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 2.1 Basic Mechanical Elements 29

where fi has the same direction as x in Figure 2.1(a). Similarly, an inertia moment (or 
inertia torque) is defined in rotary motion as a function of the mechanical moment of 
inertia and the angular acceleration (the second time derivative of rotation angles):

 ( )
( )

m t J
dt

d
J

t
i 2

2i
i= = p (2.11)

where mi has the same direction as i in Figure 2.1(b).
Bodies in motion possess kinetic energy, denoted by T, which is expressed for 

translation and  rotation as a function of the corresponding velocity:

 
( )

T m
dt

dx t
mx

2
1

2
1

2
2= = o< F  (2.12)

 
( )

T J
dt

d
J

t

2
1

2
1

2
2i

i= = o< F  (2.13)

 2.1.2 spring elements
Springs serving as elastic supports for translatory and rotary motion are studied in 
this section in relation to their lumped stiffness (or spring constant), denoted by k. 
Springs are mechanical elements that generate elastic forces in translatory motion 
and elastic torques in rotary motion that oppose the spring deformation; these elastic 
reactions are proportional to the spring deformation (linear or angular displacement). 
Figure 2.4 sketches a helical spring and gives the stiffness equations corresponding 

figure 2.4

Helical Spring and Symbols for Translatory or Rotary Motion: Translatory Stiffness,  
kt = Gd 4/(64nR 3); Rotary Stiffness, kr = Ed 4(1 + 2G/E )/(64nR).

Translation Rotation
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30 CHAPTER 2 Mechanical Systems I

to either axial (translatory) motion or to torsion-generated (rotary) motion. The 
 parameters defining the helical spring are the radius R, the wire diameter d, the num-
ber of active turns n, and the material shear and Young’s modulii, G and E (more 
details on these quantities are given in Appendix D).

For a spring whose end points undergo the displacements x1 and x2 (as shown 
in Figure 2.4), the elastic force developed in the spring is proportional to the spring 
deformation, which is the difference between the two end point displacements, and 
can be expressed as

 ( ) ( ) ( ) ( )f t k x t k x t x t2e 1D -= = 6 @ (2.14)

Similarly, an elastic torque is generated by a spring in rotation whose end points 
undergo the rotations i1 and i2, the elastic torque being expressed as

 ( ) ( ) ( )( )m t k k t tte 1 2ii iD= = -6 @ (2.15)

These equations assume the springs are linear; therefore, the stiffness is constant. 
Stiffness equations are given in the companion website Chapter 2 for other transla-
tory and rotary springs. A spiral spring, for instance, such as the one sketched in 
Figure 2.5 and whose total length is l, is used in rotary motion applications.

For a translatory spring, the elastic energy stored corresponding to a deformation 
D x is

 ( )U k x t
2
1

e
2D= 6 @  (2.16)

Similarly, for a rotary spring, the elastic energy relative to an angular deformation 
Di is

 ( )U k t
2
1

e
2iD= 6 @  (2.17)

Springs can be combined in series or in parallel, as sketched in Figure 2.6, where 
it has been assumed that the serial and parallel chains are clamped at one end.

figure 2.5

Spiral Torsion Spring for Rotary Motion; Spring  Stiffness Is k = rEd 4/(64l ).
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For serial springs, the force is the same in each component and is equal to f in 
Figure 2.6(a), whereas the total deformation is the sum of individual deformations. 
Conversely, for parallel spring  combinations, the displacements are identical for all 
springs, whereas the sum of individual spring forces equals the externally applied 
force f at equilibrium. The equivalent series stiffness ks and the parallel stiffness kp 
corresponding to n spring elements are derived in the companion website Chapter 2; 
their equations are

 k k k k
k k k k

1 1 1 1

s n

p n

1 2

1 2

g

g

= + + +

= + + +
*  (2.18)

Example 2.2
Four identical translatory helical springs are combined in two arrangements such that, in 
each of the two combinations, there are both series and parallel connections. When the 
same force is applied separately to each spring arrangement at the free end (the other 
one being fixed), it is determined that the ratio of the free-end displacements is 25/4. 
Identify the two spring combinations and calculate the equivalent stiffness for each when 
d = 1 mm, R = 6 mm, n = 10, and G = 160 GPa.

Solution
The largest displacement is obtained when all four springs are coupled in series, because 
the stiffness is minimal, see first Eq. (2.18). Conversely, the smallest displacement cor-
responds to a full parallel spring connection when the stiffness is maximal, as indicated by 
the second Eq. (2.18). However, these connections are not allowed in this example. Two 
combinations are sketched in Figure 2.7, which are candidates satisfying this example’s 
requirement to mix series and parallel pairs.

The equivalent stiffnesses of the spring connections shown in Figure 2.7 are

 
k

k
k k k

k k k k k

2 2
5

1 1 1
2
1

2
5

1

2

= + + =

= + + =

Z

[

\

]]

]]
 (2.19)

figure 2.6

Translatory Spring Combinations: (a) Serial; (b) Parallel.
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Because f = k1x1 = k2x2, Eqs. (2.19) yield

 
k

k
x
x

4
25

2

1

1

2
= =  (2.20)

which is indeed the displacement ratio given in this example; as a consequence, the 
spring arrangements are the ones shown in Figure 2.7. By using the equation of a trans-
latory helical spring, as given in the caption of Figure 2.4, and the specified numerical 
values, the following results are obtained: k = 1157.4 N/m, k1 = 5k/2 = 2893.5 N/m, and 
k2 = 2k/5 = 462.96 N/m.

 2.1.3 damping elements
Damping is associated with energy losses, and for mechanical systems, the damping 
mechanisms are mainly viscous, frictional, or internal (hysteretic). We briefly study 
the viscous and friction losses next.

Viscous Damping
In viscous damping, damping forces (or torques) that are proportional to the relative 
velocity are set whenever there is relative motion between a structural member and 
the surrounding fluid (liquid or gas). For a translatory relative motion, such as the 
one sketched in Figure 2.8(a), the damping force opposes the direction of motion and 
is expressed as

 ( ) ( )
( )

f t cv t c
dt

dx t
cxd = = = o (2.21)

whereas for a rotating body, such as the one sketched in Figure 2.8(b), the damping 
torque opposes the relative rotation direction and is equal to

 ( ) ( )
( )

m t c t c
dt

d t
cd ~

i
i= = = o (2.22)

The viscous damping coefficient c can be determined as a function of geometrical and 
material parameters for either translatory or rotary dampers. In both cases, Newton’s 
law of viscous flow is applied, which establishes that shear stresses x (more details 

figure 2.7

Translatory Spring Combinations: (a) Three Parallel Branches; (b) Three Series Branches.
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on stresses are given in Appendix D) are set up between adjacent layers of fluid, 
according to the equation

 
( )

dz

dv z
x n=  (2.23)

where n is the coefficient of dynamic viscosity and dv(z)/dz is the gradient of the rela-
tive velocity between the moving surface and the fixed one.

Example 2.3
Derive the coefficient of viscous damping c corresponding to a plate that moves parallel 
to another fixed plate with fluid in between, as sketched in Figure 2.9. Known are the two 
plates superposition area A = 1000 mm2, the plates gap g = 0.1 mm, and the coefficient 
of dynamic viscosity n = 0.001 N-s/m2. Assume the fluid velocity varies linearly from zero 
at the interface with the fixed plate to the velocity of the mobile plate at the interface with 
it (Couette flow model).

Solution
Figure 2.9 illustrates the velocity gradient under the assumptions of Couette’s flow model. 
For this type of flow, the velocity v (z ) at a distance z from the fixed surface is determined 
as a function of the maximum velocity v and the gap g as

 ( )v z g
z

v=  (2.24)

As a consequence, Newton’s law for viscous flow, Eq. (2.23), becomes

 g
v

x n=  (2.25)

By considering now that the contact area between the moving plate and the fluid is A, the 
damping ( dragging) force that acts on the moving plate is shear stress times area:

 f A g
A

vd x
n

= =  (2.26)

figure 2.8

Damping through Structure-Fluid Relative Motion: (a) Translatory; (b) Rotary.
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Comparison of Eqs. (2.26) and (2.21) indicates that the damping coefficient is

 c g
An

=  (2.27)

For the numerical values of this problem, a damping coefficient c = 0.01 N-s/m is 
obtained.

The damping coefficient ct of a piston of diameter Di and length l, which translates 
in a cylinder of diameter Do filled with fluid of density t and coefficient of dynamic 
viscosity n, as well as the damping coefficient cr corresponding to the rotary motion 
of the piston inside the cylinder, are derived in the companion website Chapter 2 as

 

( )

c
D D

D l
R

D

c
D D

D l

2

16

2

t
o i

i i

r
o i

i

2 4

3

rn r
t

rn

=
-

+

=
-

Z

[

\

]
]

]
]

 (2.28)

R being a fluid resistance (more on this topic will follow in Chapter 5).
Figure 2.10 illustrates the symbols used for viscous damping elements in transla-

tion and rotation.
The energy dissipated through viscous damping is equal to the work done by the 

damping force in  translation and the damping torque in rotation:

 U c xdx c x dtd
2= =o o# #  (2.29)

 U c d c dtd
2i i i= =o o# #  (2.30)

figure 2.9

Linear Profile of Velocity for Couette Flow between Parallel Plates.
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Dampers can be combined in series (cascade) or in parallel, similarly to springs. 
The corresponding series and parallel equivalent damping coefficients are derived in 
the website companion Chapter 2, and their equations are

 ;c c c c c c c c
1 1 1 1

s n
p n

1 2
1 2g g= + + + = + + +  (2.31)

Dry-Friction (Coulomb) Damping
Dry friction (or Coulomb) damping occurs at the interface between two bodies in rel-
ative motion with contact. As indicated in Figure 2.11, the friction force opposes the 
relative velocity direction and depends on the normal force that acts on the body.

The friction force ff is proportional to the normal force n, the proportionality con-
stant being the kinematic friction coefficient nk

 f nf kn=  (2.32)

and is constant when n is also constant. The energy dissipated through dry-friction 
damping is simply the work done by the force ff over a distance x:

 U W f x nxd d f kn= = =  (2.33)

2.1.4 actuation (forcing)
Mechanical systems that are formed of inertia, spring, and damping elements are set 
into motion by external factors that are the actuation or forcing elements.

For lumped-parameter modeling, the actuation is represented by forces and 
torques, as illustrated in Figure 2.12. In translation, the force f (the cause of motion) 
generates a displacement x (the effect), both in the same direction; similarly, in 
 rotation, the moment (torque) m causes the disc to rotate by an angle i about a fixed 

figure 2.10

Viscous Damping Representation for 
 Translatory and Rotary Motions.
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pivot point, the torque and angle having the same direction. A large variety of actua-
tion sources for translation or rotation exist, comprising mechanical, electrical, and 
electromechanical means, to cite just a few.

2.2 basic Mechanical systeMs
Now that the main mechanical elements have been introduced, basic mechanical sys-
tems formed of various inertia, spring, damping, and actuation elements are modeled 
and analyzed for both translatory and rotary motion. The motion of these systems is 
defined by one time-dependent variable (a translatory or rotary displacement) and 
therefore are single degree-of-freedom systems; a more systematic discussion on the 
degrees of freedom is given in Chapter 3.

2.2.1  newton’s second law of Motion applied to Mechanical 
 systems Modeling

Newton’s second law of motion states that the acceleration of a particle 
( ) /a x d x t dt22= =p^ h is proportional to the force applied to it and is in the direction 

of this force. The proportionality constant is the mass m for a constant-mass particle 
or a rigid body undergoing translatory motion whose inertia can be reduced to a 
point. In cases where several external forces act on the particle in the motion direc-
tion, the acceleration is proportional to the algebraic sum of external forces fj

 mx f
j

j

n

1
=

=

p /  (2.34)

An equation similar to Eq. (2.34) can be derived from Newton’s second law of motion 
(which is formulated for translation), expressing the dynamic equilibrium of a body 
of constant mass moment of inertia J rotating about a fixed axis:

 J m
tj

j

n

1
i =

=

p /  (2.35)

where mtj are the torques acting on the rotating body and the rotary acceleration is 
( ) /d t dt2 2i i=p  (the symbol mt has been used for moments to avoid confusion with 

figure 2.12

Actuation (Forcing) Produced by: (a) Force in Translatory Motion; (b) Torque in Rotary Motion.
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the mass symbol m). Equation (2.35) is also valid for a particle rotating about an 
external axis.

Equation (2.34) for translation and Eq. (2.35) enable deriving mathematical mod-
els formed of the differential equation(s) connecting the input and the output through 
system component parameters. Instrumental to correctly applying these equations is 
the free-body diagram, which isolates a mechanical element from its system using 
external forcing as well as reaction forces and moments from the elements that have 
been separated from the studied element. The equations based on Newton’s second 
law of motion and the free-body diagrams are utilized for the remainder of this chap-
ter, as well as in Chapter 3, to determine the free and forced responses of mechanical 
systems. Other methods, such as the energy method (which is utilized in subsequent 
chapters) or d’Alembert principle (equation) can also be applied to derive math-
ematical models for mechanical systems.

 2.2.2 free response
In the free response, no forcing is applied to a mechanical system, which conse-
quently undergoes free vibrations when excited externally by an initial displacement 
or initial velocity. The natural (undamped) response and the damped response are 
studied in this section.

Natural Response of Conservative Systems
As illustrated next, the natural response of single DOF mechanical systems is con-
cerned with  determining the natural frequencies (which are the vibration frequencies 
of free undamped mechanical systems).

Free undamped vibrations and the related response are characteristic of the sim-
plest mechanical systems undergoing vibrations and are formed of a rigid body 
with inertia and a spring, as shown in Figure 2.13 for a translatory-motion example. 
According to Newton’s second law of motion and based on the free-body diagram of 
Figure 2.13, the equation of motion is

 mx kx= -p  (2.36)

which can be written as

 x m
k

x 0+ =p  (2.37)

figure 2.13

Mass-Spring System with Free-Body Diagram.

Physical Model Free-Body Diagram
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The mathematical model of the free undamped response for a single-DOF system is 
represented by either Eq. (2.36) or Eq. (2.37).

The solution to a differential equation with no forcing (a homogeneous equation) 
consists only of the natural part, and the theory of ordinary differential equations 
shows (see Appendix A) that this solution is of the type

 ( )sinx X t~=  (2.38)

Equation (2.38) produces a relationship between acceleration and displacement of 
the same type as that of Eq. (2.37):

 x x2~= -p  (2.39)

Comparison of Eqs. (2.37) and (2.39) yields

 m
k

n~ ~= =  (2.40)

The parameter ~n, which is based on the physical characteristics of the single DOF 
mass-spring system, is named natural frequency and plays an important role in 
defining the free undamped response of mechanical systems. Equations (2.38) and 
(2.40) illustrate that the body motion corresponding to the natural response, also 
known as modal motion, is harmonic, has a frequency of oscillation equal to the 
natural frequency ~n, and is generated by nonzero initial conditions (displacement 
or velocity).

The notion of natural frequency can be extended to any second-order homoge-
neous differential equation of the type

 
( )

( )a
dt

d x t
a x t 02 2

2

0+ =  (2.41)

whose natural frequency is

 a
a

n
2

0
~ =  (2.42)

The amplitude X of Eq. (2.38) can be determined from a known initial condition 
(usually the displacement x0 or velocity v0):

 
)( (

( (

sin ) sin

cos ) cos )

x X t X t

v X t X t

n n

n n n

t t

t t n

0 0

0 0

0

0

~ ~

~ ~ ~ ~

= =

= =

=

=

*  (2.43)

When the initial displacement is known, the amplitude is found from the first Eq. (2.43) as

 
( )sin

X
t

x

n 0

0

~
=  (2.44)
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When the initial velocity is provided, the amplitude is calculated from the second 
Eq. (2.43) as

 
( )cos

X
t

v

n n 0

0

~ ~
=  (2.45)

Lever systems and gear shaft transmissions are analyzed next in relation to their 
natural response.

Lever Systems
Mechanical levers are employed to change motion characteristics, such as displace-
ments and forces or moments. For a rotation angle i of the rod, the free end point C 
displaces to the position Cl in Figure 2.14(a) by following an arc of a circle centered 
at O. For small angles (normally smaller than 5°), it can be approximated that the 
length of the arc CCl is equal to the vertical distance zc (or the length CCm), which is 
obtained by extending the displaced rod OCl to the intersection with the vertical line 
taken from C; this means that

 z CC CC lC C. i= =m l  (2.46)

This approximation, which is known as the small-angle (or small-rotation) approxi-
mation, enables transforming the actual rotation motion of the rod into a translation 
of the end point.

Consider the rigid rod of Figure 2.14(b), which is pinned at O and acted upon 
by the forces fA and fB. Under the assumption of small angular motions, the lever 
position after the loads fA and fB have been applied quasi-statically is determined by 
points Al and Bl, whose displacement from the original state is related as

 z
z

l

l
a

A

B

A

B
= =  (2.47)

where a is the displacement amplification (also known as mechanical advantage). 
Equation (2.47) indicates that the displacement at B is a times larger than the one at A. 
Since the forces fA and fB act antagonistically, the work done by the two forces is equal:

 f z f zA A B B=  (2.48)

figure 2.14

Single-Stage Lever System: (a) Small-Rotation Approximation; (b) with Two Opposing Forces.
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From Eq. (2.47) it follows that the force fB is a times smaller than the force fA:

 f z
z

f a f
1

B
B

A
A A= =  (2.49)

such that the lever mechanism of Figure 2.14(b) operates as a force-reduction device.
The actual lumped inertia and stiffness properties can be moved (transferred) 

from their original positions to the mobile end of a lever, for instance. The compan-
ion website Chapter 2 gives the derivation for moving masses and stiffnesses using 
energy principles.

The mass mB that is dynamically equivalent to the original mass mA of   
Figure 2.15 is

 m
l

l
mB

B

A
A

2

= e o  (2.50)

The original stiffness kA is transferred into the stiffness kB, see Figure 2.16:

 k
l

l
kB

B

A
A

2

= e o  (2.51)

figure 2.15

Equivalent Lever-Mass Systems: (a) Original; (b) Transformed.
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figure 2.16

Equivalent Lever-Spring Systems: (a) Original; (b) Transformed.
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Example 2.4
Calculate the natural frequency of the lever system of Figure 2.17(a) by transferring the 
lumped-parameter stiffness and inertia from their locations to the free end point of the 
rigid lever, as shown in Figure 2.17(b), by assuming that

a. The lever is massless.
b. The lever has a mass ml = mB /4. Plot the rotation angle i of the rod in terms of time for 

i(0) = 4° at t (0) = t 0 = 0.1 s.

Known are lA = 0.5 m, lB = 1 m, lC = 1.5 m, kA = 1000 N/m, and mB = 1 kg. Assume 
small lever  rotations.

Solution
a. According to Eqs. (2.50) and (2.51), the equivalent mass and stiffness at points C are

 ;m
l

l
m k

l

l
kC

C

B
B C

C

A
A

2 2

= =e eo o  (2.52)

The natural frequency of the equivalent mass-spring system is therefore

 m
k

l

l
m
k

n
C

C

B

A

B

A
~ = = e o  (2.53)

with a numerical value of 15.81 rad/s.

b. The free-body diagram of the rod is shown in Figure 2.18, where fe is the elastic force 
produced by the equivalent spring kA.

The following equation describes the rotation of the mechanical system around the 
pivot point O:

 J f lO e Ci = -p  (2.54)

figure 2.17

Lever-Mass-Spring System: (a) Actual; (b) Transformed.
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The total mechanical moment of inertia with respect to point O contains contributions 
from the rod and the lumped-mass mC, while the elastic force uses the small-angle 
approximation, which results in

 
J

m l
m l

m l
m l l l m

f k z k l k
l

l
l k

l

l
3 12 12

1
O

l
C C

e C

C
C

B C
C C B B

C C C A
C

A
C A

C

A

2
2

2
2 2 2

2

2 2

i i i

= + = + = +

= = = =

c m

Z

[

\

]
]

]
]

 (2.55)

By substituting Eq. (2.55) in Eq. (2.54), the latter becomes

 
l

l
k

l

l
m 12 01 12

C

A
A

C

B
B 2

2

2

2

i i+ + =pf p  (2.56)

Equation (2.56) indicates that the natural frequency of the analyzed system is

 
( / )

( / )

l l

l l
m
k

1 12

2 3*
n

B C

A C

B

A

2
~ =

+
 (2.57)

and its numerical value is 14.51 rad/s, which is obviously smaller than ~n of point (a), 
where less mass was accounted for. As shown in Eq. (2.44), the rotation angle is the 
solution to Eq. (2.56) when the initial rotation is nonzero:

 ( )
( )

sin
sint

t
t

0
*

*

n

n

0

i
~

i
~=

_
_

i
i (2.58)

and Figure 2.19 displays i as a function of time. The following MATLAB® code enables 
drawing the plot of Figure 2.19:

>> omn = 14.51;
>> t0=0.1;
>> theta0=4;
>> t = 0:0.001:2;
>> theta = theta0/sin(omn*t0)*sin(omn*t);

figure 2.18

Free-Body Diagram of a  Rotating Rod.
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figure 2.19

Free Undamped Response of Mechanical Rod System with Nonzero Initial Rotation  
Angle.
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>> plot(t,theta)
>> xlabel('Time (sec)')
>> ylabel('\theta (deg)')
>> grid on

Geared Shafts Transmissions
Rotary motion is transmitted through toothed gears from one shaft to another in 
many mechanical engineering applications. Part of a geared wheel is shown in 
Figure 2.20(a). The median circle is the pitch circle (of radius R) and the distance 
measured on this circle between two consecutive teeth is known as the circular 
pitch, denoted by p. Two gears that mesh (or engage) are schematically shown in 
Figure 2.20(b) with their pitch circles being tangent.

The following relationships apply between the parameters of the two gears (see 
the companion website Chapter 2 for derivation):

 
N

N

R

R
m
m

t

t

2

1

2

1

1

2

1

2

1

2

2

1

i

i

i

i

i

i
= = = = =

o

o

p

p
 (2.59)

where N is the number of teeth; R, the radius of the pitch circle; mt, the torsion 
moment; and i, the rotation angle. The sequence of Eq. (2.59) is instrumental in 
transferring inertia, stiffness, and damping properties from one shaft to another as 
shown in the following example.
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Example 2.5
Two elastic shafts of negligible inertia are connected through two meshing gears, as shown 
by the spring- inertia lumped-parameter model of Figure 2.21(a). Known are N1 = 32,  
N2 = 26, J1 = 0.001 kg-m2, J2 = 0.0008 kg-m2, k1 = 80 N-m, and k2 = 200 N-m. 
Find the natural frequency of this system. Graphically analyze the change in the natural 
frequency when k1 increases gradually up to 120 N-m and k2 decreases to 140 N-m. 
Assume small rotations to preserve shaft integrity.

Solution
The potential elastic energy of this system is stored by the two deforming springs and is

 U k k
2
1

2
1

e 1 1
2

2 2
2i i= +  (2.60)

From Eq. (2.59) it follows that

 
N

N
2

2

1
1i i=  (2.61)

which, substituted in Eq. (2.47), results in

 U k
N

N
k

2
1

e 1
2

1
2

2 1
2i= + e o> H  (2.62)

Equation (2.62) suggests that, from the viewpoint of stiffness, the actual system is equiva-
lent to another system that is reduced (or transferred) to the first shaft and whose equiva-
lent stiffness is

 k k
N

N
k,e 1 1

2

1
2

2= + e o  (2.63)

figure 2.20

Toothed Gears: (a) Main Parameters of a Toothed Gear; (b) Schematic of Meshing Gears.
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When i1 is expressed in terms of i2 from Eq. (2.59) and then substituted into Eq. (2.62), 
a similar result is obtained and the equivalent stiffness transferred to the second shaft is

 k k
N

N
k,e 2 2

1

2
2

1= + e o  (2.64)

The kinetic energy of the shaft-gear system is

 T J J J J
2
1

2
1

2
1

2
1

1 1
2

2 2
2

1 1
2

2 2
2~ ~ i i= + = +o o  (2.65)

The angular velocity ~2 is expressed as a function of ~1 and the number of teeth N1 and 
N2 from Eq. (2.59) and substituted in Eq. (2.65), resulting in

 T J
N

N
J

2
1

1
2

1
2

2 1
2i= + oe o> H  (2.66)

which indicates that the actual system’s inertia is equivalent to the following inertia when 
reduction to the first shaft is utilized:

 J J
N

N
J,e 1 1

2

1
2

2= + e o  (2.67)

A similar result is obtained when the actual inertia is reduced to the second shaft by 
expressing the angular velocity ~1 as a function of ~2 and the number of teeth N1 and N2 
from Eq. (2.59):

 J J
N

N
J,e 2 2

1

2
2

1= + e o  (2.68)

Equations (2.63), (2.64), (2.67), and (2.68) indicate a simple rule of transferring iner-
tia or stiffness from one shaft to another: Either of these properties can be transferred  

figure 2.21

Two Shaft-Gear System: (a) Actual Lumped-Parameter Model; (b) Equivalent  
Lumped-Parameter Model.

(a) (b)

N1

N2

k1

k2

J1

J2

θ1

ke

Jeθ

θ2

www.semeng.ir

www.semeng.ir


46 CHAPTER 2 Mechanical Systems I

on a connecting shaft through multiplication of the original amount by the square of the 
ratio of the destination gear teeth number to the source gear teeth number. The  transferred 
parameter algebraically adds to the corresponding parameter that resides on the  destination 
shaft.

When stiffness and inertia reduction is applied to the same shaft, say shaft 1, the 
actual system is equivalent to the one sketched in Figure 2.21(b), which consists of a 
spring of stiffness ke,1 and a gear of equivalent mechanical moment of inertia Je,1. This 
also proves that the two-shaft, two-gear actual system is a single DOF system, and its 
natural frequency corresponding to torsional vibration is
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 (2.69)

A numerical value of 416.1 is obtained for ~n. The variation of ~n of Eq. (2.69) in terms of 
k1 and k2 is plotted in Figure 2.22. As expected, an increase in k1 results in an increase 
of ~n, whereas a decrease in k2 produces smaller natural frequencies. The MATLAB® 

figure 2.22

Three-Dimensional Plot of Natural Frequency as a Function of the First Shaft Diameter  
and Length.
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commands meshgrid and surf (or mesh), and the following code have been used to 
produce Figure 2.22:

>> j1=0.001;
>> j2=0.0008;
>> n1=32;
>> n2=26;
>> [k1,k2] = meshgrid(80:2:120,140:2:200);
>> omn = sqrt((k1+n1^2/n2^2*k2)/(j1+n1^2/n2^2*j2));
>> surf(k1,k2,omn)
>> colormap(gray)
>> xlabel('k_1 (N-m)')
>> ylabel('k_2 (N-m)')
>> zlabel('\omega_n (rad/s)')

Free Damped Response
When viscous damping is added to a mass-spring setting, a mechanical system such 
as the one sketched in Figure 2.23(a) is obtained.

By applying Newton’s second law of motion to the free-body diagram of the 
mechanical system of Figure 2.23(b), the following equation is obtained:

 mx cx kx= - -p o  (2.70)

After dividing the left- and right-hand sides of Eq. (2.70) by m and utilizing the defi-
nitions of the natural frequency ~n and damping ratio p (c/m = 2p~n, as introduced 
in Chapter 1), Eq. (2.70) changes to

 x x x2 0n n
2p~ ~+ + =p o  (2.71)

Three cases of damping are possible, depending on how the damping coefficient 
relates to 1. The cases of overdamping (p > 1) and critical damping (p = 1) are 
analyzed in the companion website Chapter 2. Underdamping, which is frequently 
encountered in engineering applications, refers to situations where 0 < p < 1 and in 
this case, the solution to Eq. (2.71) is:

 ( ) sinx t Xe t1t
n

2n p ~ {= - +p~- _ i (2.72)
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figure 2.23

Free Mechanical System: (a)  Lumped-Parameter Model; (b)  Free-Body Diagram.

(b)(a)

x
k

c

m

x

fe

fd
m

www.semeng.ir

www.semeng.ir


48 CHAPTER 2 Mechanical Systems I

Details on deriving Eq. (2.72) are given in the companion website Chapter 2. Using 
known initial conditions for this solution, such as initial displacement x0 and velocity 
v0, the amplitude X and phase angle { can be determined as

 

tan
v x

x

X
v v x x
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 (2.73)

The quantity ~d, defined as

 1d n
2~ p ~= -  (2.74)

is the damped frequency of the mass-dashpot system, and it can be seen that ~d < ~n 
since p < 1.

Figure 2.24 shows the plot of the free response given in Eq. (2.72) for some arbi-
trary values of p = 0.2, ~n = 100 rad/s, x0 = 0.05 m, and v0 = 0. The plot displays an 
amplitude-decaying sine curve having a (damped) period Td equal to

 T
2

1

2
d

d
n

2~
r

p ~

r
= =

-
 (2.75)

which is equal to 0.064 s for the particular numerical values of the plot.
An amount that characterizes the underdamping is the logarithmic decrement, 

which is defined as the natural logarithm of two successive decaying ampli-
tudes:

 ln
X

X

k

k 1
d =

-
 (2.76)

The two successive amplitudes of Eq. (2.76) can be written by means of Eq. (2.72) as

 
X Xe

X Xe
k

t

k
t T

1
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n k

k d

1

1

=

=

-
-

-

p~

p~ +

-

-^ h
*  (2.77)

and therefore the logarithmic decrement of Eq. (2.76) becomes

 T
1

2
n d 2

d p~
p

rp
= =

-
 (2.78)

Equation (2.78) shows that the logarithmic decrement depends only on the damping 
ratio.

www.semeng.ir

www.semeng.ir


 2.2 Basic Mechanical Systems 49

Example 2.6
A single DOF mass-damper-spring system undergoes free damped vibrations, which are 
relatively fast. A sensing system is utilized to measure the vibration amplitudes, which 
can capture successive data only every five vibration cycles, whereby a constant decay of 
50% is noted between two consecutive measurements. Determine the damping ratio that 
corresponds to this system’s vibrations.

Solution
The ratio of two consecutively measured amplitudes can be written as

 
X

X

X

X

X

X

X

X

X

X

X

X

k

k

k

k

k

k

k

k

k

k

k

k

5 1 2

1

3

2

4

3

5

4
=

+ + +

+

+

+

+

+

+

+
e e e e eo o o o o (2.79)

Applying the natural logarithm to Eq. (2.79) results in
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l 5n ln d+ =e eo o  (2.80)

figure 2.24

Plot of Free Underdamped Response.
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On the other hand, according to the given data, Xk /Xk+5 = 1/0.5 = 2 and ln2 = 0.693. 
Equation (2.80) results in d = 0.139 and Eq. (2.78) yields the damping ratio–logarithmic 
decrement relationship:

 
4 2 2

p
r d

d
=

+
 (2.81)

Using the value of d = 0.139 in Eq. (2.81) results in a damping ratio of p = 0.022.

Example 2.7
For the geared shaft system of Figure 2.25(a), with N1 = 48 and N2 = 36, determine the 
total (equivalent) viscous damping coefficient reduced to the second shaft when the two 
shafts are supported on bearings with viscous damping of coefficients c1 = 20 N-m-s and 
c2 = 40 N-m-s.

Solution
The damped mechanical system is sketched in Figure 2.25(a) and its single-DOF lumped-
parameter counterpart is shown in Figure 2.25(b).

Equation (2.59) is the relationship between the angular velocities and the numbers 
of teeth for two meshing gears, whereas Eq. (2.30) expresses the energy lost through 
viscous damping. The total viscous-damping-type energy being lost by the mechanical 
system of Figure 2.25(a) is therefore

 U c dt c dt c
N

N
dt c dtd 1 1

2
2 2

2
1

1

2
2

2
2

2 2
2i i i i= + = +o o o oe o# # # #  (2.82)

The total equivalent viscous-damping energy reduced to the second shaft is

 U c dt,d e e 2
2i= o#  (2.83)

figure 2.25

Two-Shaft Gear System with Damping: (a) Actual Representation; (b) Transformed 
Lumped-Parameter Model.
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By equating Eqs. (2.82) and (2.83), the following equivalent damping coefficient is 
obtained:

 c c
N

N
ce 1

1

2
2

2= +e o  (2.84)

with a numerical value of 51.25 N-m-s, and Figure 2.25(b) illustrates the lumped-param-
eter damped mechanical model. Equation (2.84) shows that damping can be transferred 
from one shaft to another similarly to the rule that applied for inertia or stiffness relocation. 
The transferred damping coefficient is equal to the original damping coefficient multiplied 
by the square of the ratio of the destination gear teeth number to the source gear teeth 
number. The transferred damped coefficient algebraically adds to the one existing on the 
destination shaft.

2.2.3 forced response with simulink®

This section studies the forced response of first- and second-order single DOF 
mechanical systems. Solutions and time-domain solution plots of the resulting math-
ematical models are obtained using the program Simulink®, which is a graphical user 
interface (GUI) module built atop of MATLAB® that employs diagrams with various 
signal-connected operators (or blocks).

First-Order Mechanical Systems
As introduced in Chapter 1, first-order systems are described by the differential 
equation:

 ( ) ( ) ( )x t x t Kf tx + =o  (2.85)

where x is the time constant and K is the static sensitivity (or gain). The input (or 
forcing) is f (t) and the output is x(t) in Eq. (2.85).

Example 2.8
Derive the mathematical model of the lumped-parameter mechanical system sketched in 
Figure 2.26(a), and use Simulink® to draw the simulation diagram corresponding to the 
mathematical model and to plot the system response for f = 40 N. Consider zero initial 
conditions and three spring-damper combinations: k1 = 100 N/m, c1 = 20 N-s/m; k2 = 
200 N/m, c2 = c1 = 20 N-s/m; and k3 = k1 = 100 N/m, c3 = 10 N-s/m.

Solution
Based on the free-body diagram of Figure 2.26(b), the following equation can be written 
by applying  Newton’s second law of motion:

 f f f0 d e= - -  (2.86)
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where the damping force and the elastic force are

 ;f cx f kxd e= =o  (2.87)

Combining Eqs. (2.86) and (2.87) yields the following first-order differential equation:

 cx kx f+ =o  (2.88)

which can be written in the generic form of a first-order system as given in Eq. (2.85) with 
the time constant and static sensitivity being

 ;
k
c

K
k
1

x = =  (2.89)

The units of the time constant are seconds, as expected, because (Ns/m)/(N/m) = s, 
whereas the static sensitivity of the first-order mechanical system is measured in N−1m. 
Equation (2.88) is reformulated as

 x c
k

x c f
1

= - +o  (2.90)

which is particularly useful for obtaining the Simulink® solution.
To access Simulink®, type the word simulink at the  MATLAB® prompt, then click 

on File, New, and Model to open a new model window. By using blocks dragged into 
the model window from the  Simulink Library Browser, the simulation diagram 
of  Figure  2.27 can be constructed, which solves the differential Eq. (2.90) and plots the 
solution x(t).

Before explaining the construction of the diagram, please note that the diagram inte-
grates the differential Eq. (2.90) to get and plot the response x(t). At the summing point 
(the circle with two inputs and one output), the signals 0.05 f (this is f/c1 of Eq. (2.90)) and 
-100 (which is -k1/c1 of Eq. (2.90)) do arrive, and the result of this  algebraic summation 
is the derivative of x, in accordance with the same Eq. (2.90). This signal is subsequently 
passed through the  integrator (it is shown in Chapter 6 that integration in the time domain 
corresponds to  division by the complex variable s in the Laplace domain, which explains 
the symbol used for the integration operator, but  Simulink® actually applies integration in 
the time domain with this integration operator) to obtain the output x. The effect of a Gain 
block is to multiply the input to obtain a specific output.

figure 2.26

Spring-Damper Mechanical System under the Action of a Force: (a) Lumped-Parameter 
Model; (b) Free-Body Diagram.
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The diagram contains five blocks that are dragged from different sections of the 
Library Browser and subsequently defined and connected as shown in Figure 2.27. 
The Step block is dragged from the Sources section of the library. Double clicking on 
the block symbol opens a window where a Step time of 0 and a Final value of 40 
need to be specified. A nonzero value of the Step Time would consider that the step 
input is applied using a delay equal to that time value. The gain blocks come from the 
Commonly Used Blocks section of the library. A value of 0.05 is specified for the top 
Gain block and a value of -5 for the bottom one; the bottom Gain block needs to be 
first flipped by clicking  Format, Flip Block in the model window. The Sum block, as 
well as the Integrator and the Scope blocks, are dragged from the same Commonly 
Used Blocks library. No parameter specifications for those blocks need be made. The 
blocks are then connected by arrows: left click on the source block and then on the 
destination block while pressing down the Control (Ctrl) key. To generate the branch con-
nection to the bottom Gain block, left click on a point on the existing top arrow and, while 
holding down Ctrl, move the mouse (while pressing the left mouse button) to the right side 
of the bottom Gain block, then release the left mouse button. By double clicking on each 
arrow, text can be input, as seen in Figure 2.27. Once the diagram is completed, select 
Simulation, Configuration Parameters, Stop Time, and select a value of 
1.5 s. Click Simulation again, then Start. To visualize the results of the  simulation, 
double click the Scope block in the model window, and the plot of Figure 2.28(a) is 
obtained (you need to click the binoculars icon on the plot window to get the conveniently 
scaled plot). The other simulations are shown in Figure 2.28(b) and 2.28(c). As Figure 
2.28(b) shows, increasing the spring constant from 100 N-s/m to 200 N-s/m reduces 
both the sensitivity (together with the output level) and the time constant, such that the 
steady-state response levels at 0.2 m instead of 0.4 m and the time constant reduces by 

figure 2.27

Simulink® Diagram for Solving and Plotting the Time-Response Corresponding to a 
 First-Order Differential Equation Defining a Mechanical System.
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half. Figure 2.28(c) corresponds to a damping coefficient, which is half its original value, 
and displays a response with the same steady-state value of 0.4 s as the original one but 
with a time constant that is half the original time constant. The plots of Figure 2.28 are 
typical first-order system responses for step (constant) input. Instead of using the Scope 
to directly plot the time response, the time history is exported to MATLAB® Workspace by 
means of the To Workspace block dragged from the Source library. Its parameters 
needing configuration are Variable name: simout (this is the default, but a different 
name can be used), Save format: Array. Also under Configuration Param-
eters, Data Import/Export, Save to workspace: check the time box and 
use a variable to name time (such as “tout”), then check output box and use simout 
to name the output. After running the simulation, saved on the workspace will be the time 
vector and the charge vector. A simple command plot (tout, simout), plus the 
axes labeling commands, generate the plot of Figure 2.28.

Second-Order Mechanical Systems
Second-order systems, as introduced in Chapter 1, are defined by the following dif-
ferential equation:

 ( ) ( ) ( ) ( )x t x t x t Kf t2 n n n
2 2p~ ~ ~+ + =p o  (2.91)

figure 2.28

Plots of Time Response for First-Order Mechanical System: (a) k1 = 100 N/m, c1 = 20 N-s/m;  
(b) k2 = 200 N/m, c2 = 20 N-s/m; (c) k3 = 100 N/m, c3 = 10 N-s/m.

(a) 

0 0.5 1 1.5

Time (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x 
(m

)

Time (sec)

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x 
(m

)

(b)

Time (sec)

0 0.5 1 1.5

0.05

0

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x 
(m

)

(c)

www.semeng.ir

www.semeng.ir


 2.2 Basic Mechanical Systems 55

where p is the damping ratio, ~n is the natural frequency, and K is the static sensitiv-
ity. The input (or forcing) is f(t) and the output is x(t) in Eq. (2.91).

Example 2.9
Derive the mathematical model of the mechanical system shown in Figure 2.29, which 
contains a rotary two-disc pulley, a horizontally translating body with a spring and a 
damper attached to it, and two rigid massless rods (the vertical one has a spring con-
nected to it). The pulley is formed of two concentric disks that form a solid piece. Assume 
that the pulley and the translatory body undergo small motions.

Solution
Figure 2.30 presents the free body diagrams of the rotary cylinder and translatory mass.

Newton’s second law of motion is applied to the rotary disc and the translatory mass 
by taking into account the coordinates and forces shown in Figure 2.30, which results in

 
J f R f R

m x f f f f
t

t

e

d e

1 1 2

3 2

i = -

= - - -

p

p
*  (2.92)

figure 2.29

Mechanical System with Disc Pulley, Translatory Mass, Linear-Motion Springs, and 
Damper.
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figure 2.30

Free-Body Diagrams of the Rotary Disc and Translatory Mass.
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where ft is the tension in the horizontal rod, fe1, fe2 are spring elastic forces, and fd is the 
damping force. For small rotations i of the disc, the tangential displacements x and y can 
be approximated as

 ;x R y R1 2. .i i (2.93)

By using these approximations, the elastic and damping forces of Eqs. (2.92) are 
 formulated as

 

f k y k R

f k x k R

f cx cRd

e

e

1 1 1 2

2 2 2 1

1

i

i

i

= =

= =

= = oo

Z

[

\

]]

]]
 (2.94)

The tension ft is substituted from the second Eq. (2.92) into the first Eq. (2.92) and Eqs. 
(2.94) are also used, which yields the differential equation

 m m R m R cR k R k R fR
2
1

2
1

1 3 1
2

2 2
2

1
2

1 2
2

2 1
2

1i i i+ + + + + =p oc _m i< F  (2.95)

Equation (2.95) can be written in short form as

 a a a ma2 1 0i i i+ + =p o  (2.96)

where ma = fR1 is the actuation moment and plays the role of f (t) in the generic Eq. (2.91). 
The natural frequency, damping ratio, and static sensitivity are obtained by comparing 
Eqs. (2.91), (2.95), and (2.96):

 ;
m m R m R

k R k R
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2
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 (2.97)

Example 2.10
Determine the static sensitivity, the natural frequency, and the damping ratio values 
 corresponding to the  mechanical system of Example 2.9 and sketched in Figure 2.29 for 
m1 = 0.5 kg, m2 = m3 = 1 kg, k1 = 120 N/m, k2 = 100 N/m, R1 = 0.02 m, R2 = 0.04 m,  
c = 25 N-s/m, and f = 0.25 N. Use Simulink® to plot the disc rotation angle i(t) for  
i(0) = -5°.
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Solution
For the given numerical parameters, the coefficients of Eq. (2.96) assume the values  
a0 = 0.232, a1 = 0.01, and a2 = 0.0013. Equations (2.97) yield the following values for 
the quantities of interest: ~n = 13.36 rad/s, p = 0.58, and K = 4.31.

To use Simulink®, Eq. (2.96) is reformulated as

 a
fR

a
a

a
a

2

1

2

1

2

0
i i i= - -p o  (2.98)

With the numerical parameters of the example, Eq. (2.98) becomes

 3.8462 7.69 178.46i i i= - -p o  (2.99)

Figure 2.31 displays the Simulink® block diagram corresponding to the integration of 
Eq. (2.99); this time two integrations are necessary to ultimately obtain and plot i(t). To 

figure 2.31

Simulink® Diagram for Solving and Plotting the Time-Response Corresponding to a 
Second-Order Differential Equation Defining a Mechanical System.

Integrator 1

Simout

To Workspace

+
−

−

1
s

Integrator 2

1
s

a1/a2

Step

f*R1/a2 d2θ/dt2

a1/a2*dθ/dt

Gain 2

Gain 3

Gain 1

dθ/dt θ (rad)

θ (deg)

a0/a2

180/π

a0/a2*θ

figure 2.32

Plot of Time-Response for Second-Order Mechanical System.
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obtain the three input ports of the summing point of Figure 2.31, the following sequence 
-|+|- needs to be input in the Function Block Parameters: Sum, where the ver-
tical lines indicate port separators. The nonzero angle initial condition has to be specified 
in the Integrator1 operator under Initial condition. The angle i is converted 
to degrees by means of the 180/r Gain block and its variation with time as displayed in 
Figure 2.32. The time response is typical for a second-order system that is subject to a 
step (constant) input.

suMMary
This chapter introduces the mechanical elements (inertia, stiffness, damping, and 
forcing) that are the main components in the dynamic modeling of mechanical 
systems. By using the lumped-parameter approach, you have learned to model the 
dynamics of basic, single degree-of-freedom mechanical systems. Newton’s second 
law of motion is applied to derive the mathematical models for the natural, free-
damped, and forced responses of basic translatory and rotary mechanical systems. 
The MATLAB® code is introduced for solving problems through symbolic calcula-
tion and plotting time responses. You also learned how to use Simulink® as a graphi-
cal user interface program to model single degree-of-freedom mechanical system 
dynamic models, to solve the corresponding differential equations, and to plot the 
resulting time response. A similar approach is pursued in Chapter 3, where mechani-
cally compliant devices and multiple degree-of-freedom systems are analyzed.

prObleMs
2.1 Calculate the mass moment of inertia of the pulley shown in Figure 2.33 for  

R1 = 2 cm, R2 = 1 cm, h1 = 0.8 cm, h2 = 2 cm, h3 = 3 cm, and t = 7800 kg/m3.

2.2 The plate of Figure 2.34 has a width w = 40 mm and a thickness h = 2 mm. 
The mass moment of inertia of the plate with respect to the central axis x is 20 
times smaller than it needs to be. The necessary increase in the mass moment 
of inertia can be realized by either enlarging the width (no more than 50% 
width increase is allowed) or calculating the moment with respect to a parallel 
axis D situated at a distance d from x (d can be no larger than w) or by a com-
bination of these two methods. Select a method that will result in the neces-
sary mechanical moment of inertia and determine the corresponding parameter 
changes to realize this condition.

2.3 A rigid bar has two identical helical torsion springs at its ends. The system is 
subjected to a torque that causes the bar to rotate about its longitudinal axis. 
To save space, the regular helical springs are replaced by planar spiral springs. 
Consider that both springs are made of the same material, their total wire length 
is the same, and the circular cross-sections are also identical. Study the relative 
change in stiffness when Poisson’s ratio ranges between 0.25 and 0.5. Hint: 
Use connection between the E and G modulii (see Appendix D).
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2.4 For small rotations of the rod sketched in Figure 2.35, determine the stiffness 
of a spring to be placed at point A and deforming about the z direction that is 
equivalent to the actual springs  acting on the rod. Known are k1 = 80 N/m,  
k2 = 130 N/m, and k3 = 60 N/m.

2.5 A piston of length l = 30 mm and diameter Di, which is not known precisely, can 
move in a very long cylinder of inner diameter Do = 14 mm. When the piston 
cylinder translates into the cylinder with a velocity of 0.5 m/s, the damping force 
is 0.05 N, and when the piston rotates with n = 2000 rot/min, the damping torque 
is 9.2 # 10-4 N-m. Evaluate the dynamic viscosity of the liquid in the cylinder, as 
well as the piston diameter.

figure 2.33

Three-Dimensional View and Front View with Dimensions of a Pulley.
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figure 2.35

Springs Acting on a Small-Rotation Pinned Rod.
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figure 2.34

Plate with Modified Axial Mass Moment of Inertia.
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2.6 A long shaft is supported by three identical hydraulic bearings and meshes 
through gears with a shorter shaft supported on two identical bearings, as 
shown in Figure 2.36. Calculate the total damping moment acting on the long 
shaft, knowing N1 = 64, N2 = 42, the bearing dynamic  viscosity n = 0.002 
N-s/m2, shaft diameters Di = 1 cm, interior bearing diameters Do = 1.1 cm, the 
length of long shaft bearings l1 = 3 cm, the length of short shaft bearings l2 = 
2 cm, and  angular velocity of short shaft n2 = 200 rot/min.

2.7 The parallelipipedic plate of Figure 2.37 slides in a fluid within a similar chan-
nel of very large width. Study graphically the variation of the viscous damping 
coefficient with the transverse position of the plate in the channel and deter-
mine the specific positions that yield extreme values of the damping coeffi-
cient. Known are the dynamic viscosity n = 0.002 N-s/m2, the plate length  
l = 0.05 m, the width w = 0.008 m, the thickness h = 0.001 m, and the chan-
nel thickness g0 = 0.01 m. It is also known that the minimum gap between the 
body and the internal wall of the channel is  (g0 - h)/20.

2.8 The pendulum of Figure 2.38 is formed of a rigid rod and a point body of mass 
M = 0.5 kg. Assume small displacements and calculate the natural frequency 
of this mechanical system when known are the rod’s length l = 0.03 m, its 
cross-sectional diameter d = 0.005 m, as well as the rod’s material mass den-
sity t = 7800 kg/m3.

figure 2.36

Meshing Gears with Shafts and Hydraulic Bearings.
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figure 2.37

Body Sliding in a Channel with Viscous 
Damping.
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figure 2.38

Pendulum with Rigid Rod and Point Mass.
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 2.9 The mass m is relocated to a different position on the rod to increase the natural 
frequency of the two-lever mechanical system sketched in Figure 2.39 by 20%. 
Determine the new position of the mass m. Consider small displacements and 
ignore gravitational effects.

 2.10 Consider the mechanical system sketched in Figure 2.40, consisting of a hori-
zontal massless rod that connects at one end (through another massless rod) to 
a wheel of radius R, mass m, and mass moment of inertia J, and at the other 
end to a vertical spring of stiffness k2. The wheel can roll without slippage on a 
vertical wall under small angular motions of the rod. A pointlike body of mass 
m is also placed on the horizontal rod. At the rod’s pivot point is a torsional 
(spiral) spring of stiffness k1. Ignoring gravitational effects and considering 
small motions, derive the mathematical model for this system.

figure 2.39

Two-Lever Mechanical System.
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figure 2.40

Mechanical System with Planar Motion.

l ll

x

x

x y

m, J

k1 mϕ
k2

R

θ

www.semeng.ir

www.semeng.ir


62 CHAPTER 2 Mechanical Systems I

 2.11 Calculate the natural frequency of the mechanical system shown in Figure 2.40 
for m = 1 kg,   l = 0.5 m, k1 = 50 N-m, and k2 = 110 N/m. What change in the 
mass m reduces the natural frequency by 10%?

 2.12 Find the natural frequency of the gear shaft mechanical system of Figure 
2.41 by reducing the relevant parameters to the middle rigid shaft. Known are  
N1 = 48, N2 = 24, N3 = 32, N4 = 26, J1 = 0.008 kg-m2, J2 = 0.001 kg-m2, J3 =  
0.006 kg-m2, J4 = 0.002 kg-m2, k1 = 100 N-m, and k2 = 140 N-m. What 
change in k1 increases the natural frequency by 2%?

 2.13 Use Newton’s second law of motion to derive the mathematical model of the 
mass-spring system shown in Figure 2.42 by considering gravity and ignoring 
the friction between the body and the incline.

 2.14 A mechanical system consists of a translating mass m and a linear spring k 
whereby the mass is subjected to dry-friction (Coulomb) damping of coef-
ficient n. Considering an initial displacement x(0) = x0 and no initial veloc-
ity, demonstrate that the amplitude decay is linear when the system vibrates 
freely.

figure 2.41

Lumped-Parameter Model of Three-Shaft Geared System.
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figure 2.42

Mass-Spring Mechanical System on an Incline.
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 2.15 A mass m = 1 kg slides with friction (the kinematic coefficient of friction is  
nk = 0.5 and the static coefficient of friction is ns = 0.6) on a horizontal sur-
face. The mass is connected by means of a spring of constant k = 1200 N/m to 
a fixed vertical wall, and is displaced initially by a distance x0 = 0.02 m. Find 
the total distance traveled by the mass until it stops.

 2.16 The rotary mechanical system shown in Figure 2.43 is composed of a cylinder, 
a torsional damper, and a torsional spring. Calculate the damped frequency of 
the system, as well as the number of vibration cycles of the cylinder  necessary 
to reduce the amplitude of the free vibrations by a factor of n. Known are  
J = 0.01 kg-m2, ct = 1.5 N-m-s, kt = 600 N-m, and n = 100.

 2.17 Consider a translatory mechanical system that is composed of rigid body of 
mass m and a helical spring with n = 10 turns, G = 1.6 GPa, d = 1 mm, and 
R = 5 mm. The spring is anchored at one end and connects to the body at the 
other end. When placed in vacuum, the natural period of the system is 0.7 
s, and when placed in a fluid of unknown viscous damping coefficient, the 
period of the free vibrations becomes 0.75 s. Calculate the viscous damping 
coefficient of the fluid.

 2.18 Derive a mathematical model for the translatory mechanical system of 
 Figure 2.44. Use  Simulink® to plot the time variation of coordinate x for  
k1 = 90 N/m, k2 = 120 N/m, k3 = 100 N/m, c1 = 12 N-s/m, and c2 = 5 N-s/m 
when the system is subjected to

(a) The initial condition x(0) = 0.02 m.

(b) The force f = 50 N (acting at coordinate x) and zero initial conditions.

 2.19 Derive the mathematical model for the small-motions mechanical system of 
Figure 2.45. Determine the equivalent natural frequency, the damping ratio, 

figure 2.43

Mechanical System Undergoing Damped Rotary Vibrations.
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figure 2.44

Spring-Damper Mechanical System.
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and the static sensitivity, knowing the mass of the rod mr = 0.6 kg, m = 0.4 kg, 
l = 0.2 m, k1 = 110 N/m, k2 = 80 N/m, and c = 16 N-s/m. Use Simulink® to 
model and plot the time response of the system when an initial rotation angle 
i(0) = 3° is applied to the rod.

 2.20  For the small-motion pulley-rods system of Figure 2.46, 

(a) Derive the mathematical model. Use Simulink® to find the system’s time 
response when known are the mass moments of inertia of the upper pulley, 
JAB = 0.0003 kg-m2 and of the lower pulley, JCD = 0.001 kg-m2, the radii 
RA = 0.05 m, RB = 0.07 m, RC = 0.06 m, RD = 0.09 m, the stiffness k = 160 
N/m, and the force fA, which varies linearly from 0 to 80 N in 1 s and then 
drops to 0 and remains constant. Hint: Use the Wrap to Zero function 
from the Discontinuities library. 

(b) Find the system’s natural frequency when the force fA is removed.
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Lever-Based Mechanical System.
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 Disc-Pulleys, Rods, and Spring.
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Objectives

Developing the concepts of basic mechanical systems modeling introduced in 
Chapter 2, this chapter focuses on

•	 Equivalent inertia and stiffness of compliant (flexible) mechanical elements, such 
as beams and bars.

•	 Modeling simple compliant (flexible) mechanisms and micro or nano (very  
small-scale) devices as lumped-parameter mechanical systems.

•	 Calculation of the natural frequencies of single degree-of-freedom (DOF) 
compliant mechanisms.

•	 Application of Newton’s second law of motion and the energy method to 
formulate the mathematical models of conservative multiple-DOF mechanical 
systems.

•	 Application of Newton’s second law of motion to derive mathematical models of 
forced  multiple-DOF mechanical systems.

•	 Analysis of free undamped (natural) and forced vibrations of multiple-DOF 
mechanical systems.

•	 Introduction to the notions and calculation of natural frequencies (eigenvalues) 
and modal motions (eigenmodes) of multiple-DOF mechanical systems by means 
of MATLAB®.

•	 Using Simulink® for graphical modeling and solution of differential equations 
systems corresponding to multiple-DOF mechanical systems.

intrOductiOn
Compliant (or flexible) mechanical systems, which are increasingly utilized in pre-
cision devices and small-scale systems such as micro- and nano-electromechanical 
systems (MEMS and NEMS), can also be modeled as lumped-parameter systems 
through an energy equivalence process, as illustrated in this chapter. Specifically, 
lumped inertia and stiffness properties can be used to approximate the actual corre-
sponding distributed parameters of beams in bending and bars in torsion. The natural 
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CHAPTER 3 Mechanical Systems II66

response of a few single-DOF compliant mechanical microsystems is studied, includ-
ing mass detection by the frequency shift method.

Mathematical models are derived for conservative multiple-DOF mechanical 
systems by means of Newton’s second law of motion and the energy method, while 
Newton’s second law of motion is  utilized to generate the forced response mathemati-
cal models of mechanical systems. MATLAB® and the eigenvalue matrix method are 
applied to determine the natural response, whereas Simulink® is used to graphically 
model and solve the forced response of multiple-DOF mechanical systems.

3.1  Lumped inertia and stiffness Of cOmpLiant 
 eLements

Compliant mechanical systems, as shown in the introductory Chapter 1, comprise or 
are entirely formed of flexible parts that elastically deform during motion and vibra-
tions. Compliant mechanisms are  frequently utilized in precision mechanical devices, 
as well as in a wide variety of micro- and nano-electromechanical systems, where 
they operate as mechanical, electrical, electromagnetic, piezoelectric, thermal, opti-
cal actuators, and sensors. Compliant elements have a continuous structure, as their 
inertia and stiffness properties are inherently distributed. Through an energy method, 
it is possible to obtain approximate pointlike inertia and stiffness properties that are 
equivalent to the original, distributed-parameter properties. Consider, for instance, the 
fixed-free elastic member of Figure 3.1, which can bend out-of-the-plane (and behave 
as a cantilever) or can torque about the x axis (and be a bar in torsion).

With regards to the out-of-plane bending, the distributed-parameter cantilever 
can be converted in a lumped-parameter system (as shown in Figure 3.2), which is 
formed of an equivalent mass me and a spring of equivalent stiffness ke, both placed 
at the free end. The main condition is that that the z-axis deflection of the cantilever’s 
free end (denoted by u in Figure 3.1) is identical to the motion of the lumped mass, 
denoted by u in Figure 3.2.

When the same elastic structure of Figure 3.1 is subjected to torsion, it under-
goes angular deformations (rotations) about the x axis. The distributed-parameter  
bar in torsion can be transformed into a lumped-parameter rotary mechanical system 

fiGure 3.1

Fixed-Free Elastic Member with Translatory and Rotary Motions at the Free End.

z
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u
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Anchor (fixed support)
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67 3.1 Lumped Inertia and Stiffness of Compliant Elements

comprising a body of equivalent mass moment of inertia Je and a torsional spring of 
equivalent stiffness ke, both placed at the bar’s free end, as shown in Figure 3.3. The 
condition, again, is that the actual and equivalent systems have the same  rotation i 
at the free end.

Values of the equivalent inertia and stiffness properties (which are determined 
from the actual  system’s parameters) are provided next for several boundary con-
ditions in addition to the fixed-free one. Details on the derivation of these lumped 
parameters are given in the companion website Chapter 3.

 3.1.1 inertia elements
For elastic members it is possible to transform the distributed inertia into an approxi-
mate equivalent lumped-parameter inertia parameter by equating the kinetic ener-
gies of the actual and equivalent systems.

Table 3.1 illustrates the result of substituting the distributed inertia of beams in 
bending and bars in torsion by equivalent pointlike (lumped-parameter) inertia prop-
erties, which are located at convenient points on the original flexible members. The 
corresponding inertia fractions (mass me for beams and mass moment of inertia Je for 
bars) are formulated in the last column of Table 3.1 and are derived in the companion 
website Chapter 3. They depend on the member total mass m (for bending beams) 
and mechanical moment of inertia J about the longitudinal axis (for torsion bars).

fiGure 3.2

Distributed-Parameter Bending Cantilever and Its Equivalent  Lumped-Parameter 
Translatory Dynamic System.
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fiGure 3.3

Distributed-Parameter Fixed-Free Bar in Torsion and Its Equivalent Lumped-Parameter 
Rotary Dynamic System.
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Table 3.1 Inertia Properties of Beams and Bars

Member Distributed Inertia Lumped Inertia Equivalent Inertia

B
ea

m
s

l

Cantilever (fixed-free beam)

l
me

m m
140
33

e =

Fixed-guided beam 

l

m m
35
13

e =
Bridge (fixed-fixed beam)

l
l

l /2

me

B
ar

s

l

Fixed-free bar 

l
Je

J J
3
1

e =

l

Fixed-fixed bar 

l

l /2

Je

Example 3.1
The microsensor of Figure 3.4, which is formed of two flexible end segments and a central 
rigid plate, is used to sense vibrations that occur rotationally about the x and y directions. 
Calculate the rotation inertia about each of the two axes taking into account inertia contri-
butions from the flexible parts; compare these values to the ones that do not consider the 
flexible members inertia contributions. The circular cross-section bars have a diameter  
d = 20 nm; the other parameters are l = 310 nm, a = 150 nm, b = 320 nm, h = 50 nm 
(plate thickness), and t = 5600 kg/m3 (mass density).

Solution
The plate rotation about the x-axis involves torsion of the two end bars; therefore, 
the equivalent mass moment of inertia is composed of the plate’s own mass moment 
of inertia and inertia contributions from the two bars undergoing torsion, as given in 
Table 3.1:
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69 3.1 Lumped Inertia and Stiffness of Compliant Elements

fiGure 3.4

Mechanical Microsensor with Flexible Segments and Central Rigid Plate.
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fiGure 3.5

Inertia Contributions by the End Beams and the Central Plate for the y-Axis Rotation.
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where the subscripts p and b denote plate and bar, respectively; the plate’s and cylinder’s 
mass moments of inertia are given in Appendix D. When the bar’s inertia is not accounted 
for, the x-axis rotation inertia comes only from the plate and is

 
( )

J J
abh a h

12,
*

,e x p x

2 2t
= =

+
 (3.2)

With the numerical values of the example, the mass moments of inertia given in 
Eqs. (3.1) and (3.2) are Je,x = 2.802 # 10-17 kg-m2 and J*

e,x = 2.8 # 10-17 kg-m2; it 
can be seen that the bars inertia contribution is very small.

The total inertia in the system’s rotation about the y-axis results from the two end 
beams bending about this axis, as well as from the plate’s own mass moment of inertia 
about that axis. This case is depicted in Figure 3.5, which shows a side view of the plate 
and the two equivalent point masses (me) corresponding to the distributed inertia of the 
two beams.

The equivalent mass moment of inertia corresponding to the rotation about the 
y-axis is
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Table 3.2 Stiffness Properties of Beams and Bars

Member Distributed Stiffness Lumped Stiffness Equivalent Stiffness

B
ea

m
s

l

Cantilever (fixed-free beam)

l

ke

k
l
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e 3
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l
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EI192
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13
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where the plate’s mass moment of inertia has been calculated again as indicated in Appendix D  
and the equivalent mass corresponding to the bending of a clamped-guided beam, me,y, is 
given in Table 3.1. The y-axis rotation inertia without the beams considered is simply

 
( )

J J
abh b h

12,
*

,e y p y

2 2t
= =

+
 (3.4)

By using the numerical values of this problem, the mass moment of inertia of Eqs. (3.3) 
and (3.4) are Je,y = 1.28 # 10-16 kg-m2 and J *

e,y = 1.17 # 10-16 kg-m2; this time, as can 
be seen from these figures, the inertia contribution by the beams in the total inertia is 
more significant.
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fiGure 3.6

Microspring for Translatory Motion: (a) Spring Configuration; (b) Serpentine Unit; 
(c) Equivalent Lumped-Parameter Model.
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 3.1.2 spring elements
For bending beams and torsion bars, equivalent lumped-parameter stiffness proper-
ties are available, as summarized next in Table 3.2. The particular equations of these 
equivalent stiffnesses formulated in the last column of the table are derived in the com-
panion website Chapter 3 using an equivalence process involving the elastic potential 
(strain) energy. In Table 3.2, E is the modulus of elasticity (or Young’s modulus), G 
is the shear modulus—these are material properties, I is the area moment of inertia, 
and It is the torsion area moment of inertia; details on these parameters are provided 
in Appendix D.

Example 3.2
Determine the lumped-parameter stiffness of the MEMS spring shown in Figure 3.6(a) 
about its midpoint and the x direction. The spring is formed of two serpentine units, 
one is shown in Figure 3.6(b), each consisting of three flexible beams of circular cross-
section with diameter d = 2 nm. Known are also l = 100 nm and Young’s modulus E = 
160 GPa.

Solution
The three beams making up the serpentine spring unit of Figure 3.6(b) act as springs 
in series, and because the two serpentine units have the same displacement at their 
connection point, they behave as springs in parallel. As a consequence, the lumped-
parameter spring model is that of Figure 3.6(c). The stiffness of one serpentine unit is

 
k k k
1 2 1

,e s s l

= +  (3.5)

where ks and kl are the stiffnesses of the short and long beams, respectively, calculated 
according to the fixed-guided beam condition of Table 3.2:

 ;
( )

k
l

EI
k

l

EI

l

EI
12 12

2 2

3
s

y

l

y y

3 3 3
= = =  (3.6)
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By combining Eqs. (3.5) and (3.6), the stiffness of one serpentine spring is

 k
l

EI

5

6
,e s

y

3
=  (3.7)

The parallel-combination total (equivalent) stiffness of the microspring of Figure 3.6(c) is 
obtained as

 
rEd

k k k
l

EI

l
2
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12

80
3

, ,e e p e s

y
4

3 3
= = = =  (3.8)

In Eq. (3.8), the area moment of inertia of the circular cross-section has been calculated 
as Iy = rd 4/64 (see Appendix D). With the given numerical values of this example, the 
stiffness is ke = 0.3 N/m.

Example 3.3
The torsional microspring of Figure 3.7(a) can be used in redirecting incoming rays in 
MEMS applications; it is composed of four flexible bars assembled symmetrically with 
respect to the midpoint O. The short bars have a diameter d1 = 2 nm and a length l1 = 
100 nm whereas the long ones have a diameter d2 = 1 nm and a length l2 = 140 nm. The 
shear modulus is G = 110 GPa. Calculate the torsion moment mx that has to be applied 
at O to produce a maximum rotation angle ix,max = 5° at the same point.

Solution
The two bars on the left of point O are serially connected, and the same applies for the two mir-
rored bars on the right of O; the stiffness of each of these two segments with respect to O is

 k
k k

k k
s

1 2

1 2
=

+
 (3.9)

fiGure 3.7

Torsional Microspring for Rotary Motion: (a) Schematic Configuration; (b) Equivalent 
Lumped-Parameter Model.
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73 3.2 Natural Response of Compliant Mechanical Systems

Because these two segments are jointed at O, they undergo the same rotation and therefore 
are coupled in parallel. The lumped-parameter model illustrating these connections is shown in 
Figure 3.7(b), and the equivalent stiffness of the microspring with respect to the midpoint is

 k k
k k

k k
2 2e s

1 2

1 2
= =

+
 (3.10)

Table 3.2 gives the torsional stiffness of the long and short flexible bars as

 ;k
l

GI
k

l

GIt t
1

1

1
2

2

2
= =  (3.11)

where the torsion-related area moments of inertia of the two bars are (see Appendix D)

 ;I
d

I
d

32 32t t1
1
4

2
2
4r r

= =  (3.12)

By substituting Eqs. (3.12) and (3.11) in Eq. (3.10), the spring equivalent stiffness becomes

 k
I l I l
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l d l d
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The maximum torque to be applied at the midpoint O is

 m k
l d l d

Gd d
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max max

max

x e x
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4
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 (3.14)

With the numerical values of this example, the equivalent stiffness is ke = 1.48 # 10-10 N-m  
and the  maximum moment is mx,max = 1.29 # 10-11 N-m (or 12.9 nN-nm).

3.2 naturaL respOnse Of cOmpLiant sinGLe 
 deGree-Of-freedOm mechanicaL systems

The natural response of compliant mechanical systems that can be modeled as sin-
gle-DOF lumped-parameter systems is studied here based on a couple of examples. 
One particular example studies the detection of minute amounts of mass that deposits 
on micro and nano flexible members and alter their natural frequencies.

Example 3.4
The MEMS accelerometer of Figure 3.8(a), to sense mechanical motion, is formed of 
two pairs of beams and a shuttle mass. Determine the corresponding lumped-parameter 
 physical model corresponding to the x direction taking into account the inertia  contributions 
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from the long beams in addition to the shuttle mass. All beams have square cross-sections 
with a side length a = 3 nm. Known also are m = 8 # 10-11 kg, l1 = 220 nm, l2 = 80 nm, 
Young’s modulus E = 160 GPa, and mass density t = 5200 kg/m3.

Solution
One long beam and the corresponding short beam on each part of the symmetry (dashed) 
line in  Figure 3.8(a) are coupled in series. The resulting pairs are connected in parallel, as 
illustrated in  Figure 3.5(b). As a consequence, the equivalent stiffness of the microdevice 
of Figure 3.8(a) is

 k
k k

k k
2e

1 2

1 2
=

+
 (3.15)

The beams are fixed-guided, and therefore, as seen in Table 3.2, the stiffnesses k1 and 
k2 are

 ;k
l
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k
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EI12 12

1
1
3 2

2
3

= =  (3.16)

where I is the cross-sectional area moment of inertia, I = a 4/12. By substituting the 
 stiffnesses of Eqs. (3.16) together with the particular moment of inertia, the equivalent 
stiffness becomes
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 (3.17)

The equivalent mass me is

 m m m2 ,e b e= +  (3.18)

where mb,e is the bending-equivalent mass of a long beam, which is provided in Table 3.1 as

 m m a l
35
13

35
13

,b e b
2

1t= =  (3.19)

fiGure 3.8

Spring-Mass Microaccelerometer for Translatory Motion: (a) Schematic Representation; 
(b) Lumped-Parameter Model.
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75 3.2 Natural Response of Compliant Mechanical Systems

and the equivalent mass of Eq. (3.18) becomes

 m m a l
35
26

e
2

1t= +  (3.20)

The natural frequency is therefore expressed by means of Eqs. (3.17) and (3.20) as

 m
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The natural frequency that does not include inertia contributions from the beams is

 m
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m l l
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e 2
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3

2
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~ = =
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 (3.22)

By using the numerical values of this example, the natural frequencies of Eqs. (3.21) 
and (3.22) are ~n = 162,780 rad/s, ~*

n = 170,390 rad/s. The relative error that occurs by 
not considering the inertia contribution from the long beam is therefore (~*

n - ~n)/~*
n =  

0.045 or 4.5%. It is of interest to note that the bending-equivalent mass is 2mb,e =  
7.65 # 10-12 kg, which is one order of magnitude smaller than the shuttle mass.

Mass Detection by the Natural Frequency Shift Method in MEMS
An interesting application in micro- and particularly nano-systems regards the pos-
sibility of detecting very small amounts of substance that deposits on a cantilever or 
bridge and changes its natural frequencies in bending or torsion.

Comparison between the original and altered natural frequencies enables detect-
ing the quantity of deposited mass. More details on how this method can physi-
cally be implemented using the frequency response are offered in Chapters 9 and 10. 
Suppose, for instance, that a particle lands on a cantilever, such as the one sketched 
in Figure 3.9(a). The corresponding lumped-parameter model of this system with 

fiGure 3.9

Cantilever with Added Particle: (a) Three-Dimensional View; (b) Equivalent 
 Lumped-Parameter Model.
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respect to out-of-plane bending consists of a spring and mass contributions from the 
original  cantilever, plus the added mass, as modeled in Figure 3.9(b).

Example 3.5
A particle of unknown mass attaches to the paddle portion of a nanobridge as shown in 
Figure 3.10. The out-of-plane bending and torsional natural and modified frequencies are 
monitored experimentally. Determine the mass of the attached particle, as well as its posi-
tion parameter b. Consider that the paddle is rigid and parallelipipedic having a thickness 
h; the nanowires are circular of diameter d. Known are l1 = 100 nm, h = d = 20 nm, l = 
200 nm, w = 100 nm, E = 180 GPa, G = 140 GPa, and t = 5000 kg/m3. Through mass 
addition, the altered bending frequency is 4.1139 # 106 rad/s and the altered torsional fre-
quency is 5.0222 # 106 rad/s. Ignore inertia contributions from the end flexible segments.

Solution
Figure 3.11 shows the equivalent lumped-parameter model of the bridge-particle system 
undergoing out- of-plane bending vibrations. The equivalent mass consists of the plate mass 
m and the particle mass mp. The two springs represent the stiffness contributions of the two 
nanowires. The original bending natural frequency is

 m
k2

,n b
b

~ =  (3.23)

fiGure 3.11

Side View of Equivalent Lumped-Parameter Model in Bending.
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Top View of Paddle Nanobridge with Attached Particle.
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77 3.2 Natural Response of Compliant Mechanical Systems

where kb is given in Table 3.2 for a fixed-guided beam with Iy = rd 4/64, and the mass is 
m = tlwh. Numerically, the natural bending frequency is ~n,b = 4.1188 # 106 rad/s. The 
modified bending frequency is

 
m m
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*
n b
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b
~ =

+
 (3.24)

Combining Eqs. (3.23) and (3.24) yields the mass of the added particle as
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with a numerical value of mp = 4.78 # 10-12 kg.
Torsion, whose vibrations are also monitored experimentally, can be modeled by the 

equivalent lumped-parameter model of Figure 3.12. By using a reasoning similar to the 
one applied in bending, the mechanical moment of inertia expressing the torsion contribu-
tion of the added particle, Jp, is related to the plate’s mechanical moment of  inertia J as
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where

 
k

J

2
,n t

t
~ =  (3.27)

The spring constant is given in Table 3.2 with It = rd 4/32. The numerical value of the 
natural  frequency in torsion is ~n,t = 5.0373 # 106 rad/s. The mechanical moment of 
inertia of the particle with respect to the rotation axis is

 J m bp p
2=  (3.28)

fiGure 3.12

Equivalent Lumped-Parameter Model in Torsion.
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Combining Eqs. (3.26) and (3.28) results in
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The numerical value of the offset is therefore b = 46.75 nm, which indicates the particle 
deposited almost at the edge of the middle plate (whose half width is of 50 nm).

3.3  muLtipLe deGree-Of-freedOm mechanicaL 
 systems

Systems defined by more than one variable are known as multiple degree-of-freedom 
systems. The notion of degrees of freedom is discussed followed by derivation of 
mathematical models for conservative mechanical systems by means of the energy 
method and for nonconservative ones using Newton’s second law of motion. The nat-
ural and forced responses of multiple-DOF mechanical systems (including  compliant 
ones) are further investigated employing MATLAB® and Simulink®.

3.3.1 configuration, degrees of freedom
The notion of degrees of freedom is extremely important in correctly modeling 
dynamic systems. In general, the DOFs represent the minimum number of indepen-
dent parameters that fully define the configuration of a system. Consider for instance 
a simple system made up of a mass with a spring and a damper in parallel, such as the 
one of Figure 3.13. The configuration of this system is fully defined by the parameter 
x, which locates the mass m at all times. As a consequence, this system has one DOF 
(it is called a single-DOF system).

A particle in three-dimensional space is defined by three parameters—its coordi-
nates x, y, and z—therefore, this system has three DOFs. Similarly, a system of two 
particles possesses 2 # 3 = 6 DOFs. However, if the two particles are connected by 
means of a segment whose length is l, the following constraint does apply:

 ( ) ( ) ( )l x x y y z z1 2
2

1 2
2

1 2
2= - + - + -  (3.30)

fiGure 3.13

Single-DOF Mechanical System.
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so that, for this system, the number of independent parameters fully defining 
its configuration is 6 - 1 = 5, and therefore the system is a five-DOF one. This 
remark can be generalized by concluding that the number of DOFs of a system is 
equal to the number of apparent (candidate) DOF parameters minus the number 
of constraints relating those apparent DOF parameters.

Figure 3.14 shows a system composed of a spring and a damper connected in 
series; the system is a two-DOF one, as it needs two parameters to define its configu-
ration at any moment in time (the  displacements x1 and x2 that are measured from the 
fixed positions shown in the figure).

Example 3.6
Establish the DOFs of the mechanical system sketched in Figure 3.15, which is formed 
of a two-cylinder pulley rolling without slippage on a horizontal surface, a lever-rod 
acting on the inner pulley cylinder, another rod and mass rigidly acting on the outer 
pulley cylinder, and a horizontal spring attached to the pulley’s center. Assume small 
 displacements.

Solution
The apparent coordinates that describe the motion of the mechanical system of Figure 3.15 
are the rotation angles { (vertical lever) and i (pulley) and the linear motions x1 (pulley 
center), x2 (lever-rod  connection point), and y (mass), which indicates there are five appar-
ent DOFs. The following constraints can be written between these coordinates under the 
assumption of small motions and based on the fact that various points on the wheel undergo 
pure rotations with respect to the instant center of rotation (the contact point between the 
pulley and the horizontal surface):

 
( )

x l

x R R

x R

y R2

2

2 1 2

1 1

1

i

i

i

{=

= +

=

=

Z

[

\

]
]

]
]

 (3.31)

Because the difference between the apparent number of DOFs (five) and the number of 
constraints (four) is 1, this system is a single-DOF system.

fiGure 3.14

Two-DOF Mechanical System with Series  Spring-Damper Connection.
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 3.3.2 conservative mechanical systems
This section introduces the energy method to derive mathematical models for 
multiple-DOF conservative (free undamped) mechanical systems. The result-
ing mathematical models are further utilized to calculate the natural frequen-
cies and qualify the corresponding modal motions either analytically or using 
MATLAB®.

Mathematical Modeling by the Energy Method
Mathematical models for conservative mechanical systems can also be derived 
by means of energy methods based on kinetic and potential energies (as shown 
here in a direct approach and for conservative systems but also in the companion 
website Chapter 3, where Lagrange’s equations method is introduced). Energy 
methods are particularly advantageous to apply to mechanical systems formed 
of several bodies where all kinetic energy contributions are collected in one total 
kinetic energy and all potential energy fractions are summed in one potential 
energy; the result is one equation stating that the total energy is constant. On the 
other hand, application of Newton’s second law of motion in such cases appears 
to be somewhat more difficult, as it implies formulating a number of equations 
equal to the number of DOFs and also using the reactions resulting from adja-
cent DOFs—this method is applied exclusively to study the forced response of 
multiple-DOF mechanical systems.

In the case of bodies changing their vertical position and when the gravitational 
effect is taken into account, the gravitational potential energy needs to be consid-
ered. A body of mass m situated above a datum line (an arbitrary reference line) at a 
distance h, see Figure 3.16, has a gravitational potential energy of

 U mghg =  (3.32)

It is known from dynamics that, for systems acted upon only by elastic-type and 
gravitational forces, the total energy conserves. For such systems, which are called 
conservative, the total energy is

fiGure 3.15

Pulley-Lever-Rod-Body Mechanical System.
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 E T U Ue g= + +  (3.33)

where T stands for kinetic energy, Ue is the elastic (spring-type) potential energy, and 
Ug is the gravitational potential energy. A direct consequence of Eq. (3.33) is that the 
time derivative of the total energy for a conservative system is zero:

 ( )
dt
dE

dt
d

T U U 0e g= + + =  (3.34)

Equation (3.34), as shown next, provides the mathematical model of multiple-DOF 
mechanical systems.

Example 3.7
Derive the mathematical model for the cart-pendulum shown in Figure 3.17 using the 
energy method under the assumption of small motions. Known are the masses of the cart, 
m1, and of the bob, m2, the spring  stiffness, k, and the pendulum length, l. The system is 
in a vertical plane and the cart moves horizontally.

Solution
The system has two DOFs: the linear motion coordinate x and the angular coordinate i. 
The total (absolute) velocity v of the bob has two components: the tangential (horizontal) 
velocity of the cart vt and the one resulting from the pendulum rotation about the cart, 
denoted vr and perpendicular to the pendulum rod, as illustrated in Figure 3.17.

The kinetic energy of the mechanical system is

 T m x m v
2
1

2
1

1
2

2
2= +o  (3.35)

According to the cosine theorem, the total bob velocity is

 ( )cos cosv v v v v v v v v2 2t r t r t r t r
2 2 2 2 2r i i= + - - = + +  (3.36)

fiGure 3.16

Body in a Gravitational Field.
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It is also known that

 
x

v l

vt

r i

=

=

o
o*  (3.37)

Equations (3.36) and (3.37) are now combined and the result is substituted into the 
kinetic energy of Eq. (3.35). Considering small angular displacements (which lead to the 
approximation cos i b 1 - i2/2) result in the following expression of the kinetic energy 
(where the term in i2, which is very small, has been neglected):

 ( ) 2T m m m l m lx x
2
1

1 2
2

2 2
2 2i i= + + +o oo o8 B (3.38)

The total potential energy is produced by elastic and gravitational contributions:

 ( )cosU U U kx m gl kx m gl
2
1

1
2
1

2
1

e g
2

2
2

2
2.i i= + = + - +  (3.39)

The total energy E of the mechanical system is determined by summing the kinetic energy 
component of Eq. (3.38) and the potential energy of Eq. (3.39). The mechanical system 
of Figure 3.17 is conservative; therefore, the time derivative of the total energy is zero, 
which yields

 ( )
dt
dE

dt
d

T U= +

 ( )m m x m l kx x m lx m l m gl1 2 2 2 2
2

2i i i i= + + + + + +p p o p p o
8 8B B  (3.40)

fiGure 3.17

Cart-Pendulum Mechanical System.

Datum line

Fixed guide

m2

m1

k

vr

vt

v

ll

h

x

θ

www.semeng.ir

www.semeng.ir


83 3.3 Multiple Degree-of-Freedom Mechanical Systems

Because the velocities xo, io cannot be zero at all times, Eq. (3.40) is valid when

 
( ) 0m m x m l kx

x l g 0
1 22 i

i i

+ + + =

+ + =

p p

p p*  (3.41)

The two Eqs. (3.41) form the mathematical model of the cart-pendulum mechanical 
 system.

Natural Response and the Modal Problem
As introduced in Chapter 2, the natural response of single-DOF mechanical systems 
is concerned with determining the natural frequencies (which are the frequencies 
of free undamped mechanical vibrations). For multiple-DOF mechanical systems, 
the number of natural frequencies is equal to the number of DOFs, except for the 
repeated natural frequencies. At each natural frequency, the ensemble of bodies 
vibrates at that particular frequency and the resulting system motion is a combination 
of individual motions performed by system components. The overall system motion 
corresponding to a natural frequency is called modal motion or mode shape. Unless 
initial conditions are specified, the absolute motion amplitudes of each component 
are not known; only their relative ratios can be determined precisely. Discussed next 
are the analytical and the MATLAB® modal approaches.

Analytical Approach
The following example takes you through the main steps involved in formulating and 
solving a modal problem (which consists in calculating the natural frequencies and 
characterizing the corresponding modal motions).

Example 3.8
The mechanical system of Figure 3.18 consists of two rigid disks and two torsional springs 
(which are modeling two elastic shafts). Find its natural frequencies and determine the 
corresponding modes for k1 = 884 N-m, k2 = k1/2, J1 = 0.002 kg-m2, J2 = J1/2.

Solution
The system is a two-DOF one because the two angular parameters i1 and i2, which indicate 
the absolute angular positions of the disks, fully define the configuration of the system.

fiGure 3.18

Rotary Mechanical System with Two Disks and Two Torsional Springs.
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The energy method is applied to derive the mathematical model of this mechanical 
system. The sum of kinetic and potential energy of the mechanical system is

 ( )T U J J k k
2
1

2
1

2
1

2
1

1 2 1 1 2
2

2 2
2

1
2 2

2i i i i i+ = + + - +o o  (3.42)

The mechanical system is conservative and therefore the time derivative of the total 
energy of Eq. (3.42) is zero:

 ( ) ( )J k J k k 01 1 1 1 1 2 2 2 1 1 2 2 22i i i i i i i i i+ - + - + =-o p o p
6 6@ @  (3.43)

Because the angular velocities of the two discs cannot be zero at all times, Eq. (3.43) is 
valid only when the two brackets are zero, and this results in

 
( )

J k k

J k k k

0

0
1 1 1 1 1 2

2 2 1 1 1 2 2

i i i

i i i

+ - =

- + + =

p

p
*  (3.44)

which form the mathematical model of the two-DOF mechanical system of Figure 3.18.
Newton’s second law can also be applied and written for the two disks undergoing 

rotary motion, based on the free-body diagrams of Figure 3.19.
The two dynamic equations are

 
J m

J m m
e

e e

1 1 1

2 2 1 2

i

i

= -

= -

p

p*  (3.45)

The elastic torques are expressed as

 
( )m k

m k
e

e

1 1 1 2

2 2 2

i i

i

= -

=
)  (3.46)

Substituting Eqs. (3.46) into Eqs. (3.45) results in Eqs. (3.44), which have already been 
obtained using the energy method.

As shown in the section dedicated to the free undamped vibrations of single-DOF 
systems in Chapter 2, the solution i1 and i2 of Eqs. (3.44) needs to be harmonic:

 
(

(

sin )

sin )

t

t
1 1

2 2

i ~

i ~

H

H

=

=
*  (3.47)

fiGure 3.19

Free-Body Diagrams of the Two-Disk Mechanical System of Figure 3.18.
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Equations (3.45) and (3.47) are combined, which results in

 
( )

( ) ( )

(

sin

sin )

J k k t

J k k tk
0

0

2
1 1 1 1 2

1 1
2

2 1 2 2

~ ~

~ ~

H H

H H

- + - =

- + - + + =

7

7

A

A

*  (3.48)

Equations (3.48) could be satisfied at all times only when

 
( )

( )

k

k k k

J

J

k 0

0

2
1 2

2
2 2

1 1 1

1 1 2 1

~

~

H H

H H

- + - =

- + - + + =
*  (3.49)

The unknowns in the algebraic Eqs. (3.49) are the amplitudes H1 and H2, and they are 
nonzero when

 
J k
k

k
J k k

0
2

1 1

1

1
2

2 1 2

~

~

- +

-

-

- + +
=  (3.50)

Equation (3.50), known as characteristic equation (or frequency equation), can be solved 
for the natural frequencies. Expanding the determinant of Eq. (3.50) results in the alge-
braic equation

 [ ( ) ]J J J k k J k k k 01 2
4

1 1 2 2 1
2

1 2~ ~- + + + =  (3.51)

For the particular parameters of the example, the solution to Eq. (3.51) is

 
. rad s

. rad s

/

/
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n
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1
2

2

2
2

2

~

~

= - =

= + =

^
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h

h

Z
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\

]
]

]
]

 (3.52)

It can be seen that ~n2/~n1 = 3.732; therefore the second natural frequency is almost four 
times larger than the first one.

As mentioned at the beginning of this section, for each of the two natural frequen-
cies of Eq. (3.52), the two disks undergo rotary vibrations at that frequency. The relative 
directions of motion and  amplitudes can be determined by analyzing the ratio H1/ H2 from 
either of the Eqs. (3.49):
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 (3.53)

where the natural frequencies of Eqs. (3.52) have been used. The fact that, once the 
natural frequencies are determined, Eqs. (3.49) yield only the amplitude ratio and not 
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the amplitudes themselves, is a direct consequence of the fact that the amplitudes are 
dependent, so one can be chosen arbitrarily.

The ratios of Eqs. (3.53) allow qualifying the modal motions of the mechanical 
system for each natural frequency. The ratio r1 of the first Eq. (3.53) is a positive num-
ber, which suggests that both disks rotate in the same direction (either the positive 
direction identified in the diagrams of Figure 3.19 or the opposite direction). Because 
r1 > 1, the amplitude H1 is always larger than amplitude H2 during the system’s rotary 
vibrations at the first natural frequency ~1. The ratio r2 indicates the two disks rotate in 
opposite directions and the amplitude H1 is smaller than the amplitude H2. Since one 
amplitude can be chosen arbitrarily, the value of 1 rad can be assigned to H2 for each 
of the two modes, which results in the amplitude of H1 being

 

.
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3 1

1
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0 366
3 1

1

1

1
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1
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.

.
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H

=
-
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=
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~ ~

~ ~

Z
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\

]]

]]
 (3.54)

As a consequence, the following two vectors (also named eigenvectors) can be formu-
lated: {V}1 = {1.366   1}t for the first natural frequency and {V}2 = {-0.366   1}t for the 
second natural frequency. The two disks’ vibrations during the first modal motion can 
therefore be expressed as

 
(

(

sin )

sin )

t

t
3 1

1
n

n

11 1

21 1

i ~

i ~

=
-

=

*  (3.55)

whereas during the second modal motion, the two disks’ vibrations are described by

 
( )

( )

sin

sin

t

t
3 1

1
n

n

12 2

22 2

i ~

i ~

= -
+

=

*  (3.56)

The two modal motions of Eqs. (3.55) and (3.56) are plotted in Figure 3.20, which 
uses the  following MATLAB® code:

>> om1=344;
>> om2=1284;
>> t=0:0.00001:0.06;
>> theta11=180/pi/(sqrt(3)-1)*sin(om1*t);
>> theta21=180/pi*sin(om1*t);
>> subplot(1,2,1)
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>> plot(t,theta11,t,theta21,'--')
>> xlabel('Time(sec)')
>> ylabel('Rotation angles (deg)')
>> legend('\theta_1_1','\theta_2_1')
>> t=0:0.00001:0.012;
>> theta12=-180/pi/(sqrt(3)+1)*sin(om2*t);
>> theta22=180/pi*sin(om2*t);
>> subplot(1,2,2)
>> plot(t,theta12,t,theta22,'--')
>> xlabel('Time(sec)')
>> legend('\theta_1_2','\theta_2_2')

MATLAB® Approach—the Dynamic Matrix and the Eigenvalue Problem
The natural response of multiple-DOF systems can also be formulated as an eigen-
value problem (see Appendix B for more details). This topic is studied more thor-
oughly in disciplines such as vibrations, but provided here is an introduction aiming 
to facilitate understanding a modeling procedure that utilizes a vector-matrix for-
mulation and also is implemented in MATLAB®. Let us reformulate the example of 
the two-disk system of Figure 3.18, by pointing out that the dynamic equations of 
motion, Eqs. (3.44), can be written in vector-matrix form as

 [ ]{ } [ ]{ } { }M K 0i i+ =p  (3.57)

where [M ] and [K ] are the mass (inertia) and stiffness matrices, collected from 
Eqs. (3.44) as

fiGure 3.20

Modal Vibrations of Two Disks at the (a) First Natural Frequency; (b) Second Natural 
Frequency.
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 [ ] ; [ ]M
J

J K
k
k

k
k k0

01

2

1

1

1

1 2
= =

-
-
+

< <F F (3.58)

The coordinate vector is

 { } { }t
1 2i i i=  (3.59)

A sinusoidal solution for Eq. (3.57) of the following form is sought:

 { } { } ( )sin ti ~H=  (3.60)

which substituted in Eq. (3.57) yields

 ( [ ]{ } [ ]{ }) ( ) { }sinM K t 02~ ~H H- + =  (3.61)

As per a previous discussion, sin(~t) cannot be zero at all times; therefore,

 [ ]{ } [ ]{ } { }M K 02~ H H- + =  (3.62)

Left multiplication in Eq. (3.62) by [M ]-1 and rearranging of the resulting equation 
produces

 [ ] [ ]{ } { }M K1 2~H H=-  (3.63)

Equation (3.63) is a typical eigenvalue formulation of the type

 [ ]{ } { }D mH H=  (3.64)

The matrix [D] = [M ]-1[K] is the dynamic matrix and m = ~2 is the eigenvalue. 
Equation (3.64) further leads to

 ([ ] [ ]){ } { }D I 0m H- =  (3.65)

Equation (3.65) can have a nontrivial solution only when

 ([ ] [ ])det D I 0m- =  (3.66)

and this is another form of the characteristic equation given for this particular case in 
Eq. (3.50). It can be checked that Eq. (3.66) results in Eq. (3.50) when m = ~2.

MATLAB® has the command eig(D), which returns the eigenvalues of a 
 nonsingular square matrix. The MATLAB® command [V, D] = eig(D) returns the 
modal matrix V, where the columns are the eigenvectors (each containing the relative 
vibration amplitudes), and the diagonal matrix D with the eigenvalues on the main 
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diagonal. Let us check that, indeed, the natural frequencies determined analytically 
in the previous example can also be found by using MATLAB®.

Example 3.9
Calculate the dynamic matrix corresponding to Example 3.8, then determine their 
 eigenvalues (with the related natural frequencies) and eigenvectors using MATLAB®.

Solution
Equations (3.58) provide the inertia and stiffness matrices of Example 3.8. The following 
MATLAB® code can be used to determine the natural frequencies and the  eigenvectors:

>> j1 = 0.002;
>> j2 = 0.001;
>> k1 = 884;
>> k2 = 442
>> in = [j1,0;0,j2];
>> stiff = [k1,-k2;-k2,k1+k2];
>> d = inv(in)*stiff;
>> [V,D] = eig(d)
V =
 -0.8069 0.3437
 -0.5907 -0.9391
D =
 1.0e+006 *
 0.1184 0
 0 1.6496

It can easily be checked that the eigenvalues returned by MATLAB® are the squares of 
the natural frequencies obtained in Example 3.8, namely, ~n1 = 344 rad/s and ~n2 =  
1284 rad/s. The columns of V (the eigenvectors) appear different from the ones obtained 
in Example 3.8, although the ratio of each vector’s  components are those of Eqs. (3.53). It 
is known however that the eigenvectors are not unique, because one of the eigenvector’s 
components is chosen arbitrarily. MATLAB® defines the eigenvectors by using a norm of 1; 

for instance, ( 0.8069) ( 0.5907) 12 2
- -+ =   and (0.3427) ( 0.9391) 12 2

-+ =  for this 
example. Such eigenvectors are known as unit-norm (or normalized) eigenvectors.

3.3.3 forced response with simulink®

Simulink® was introduced in Chapter 2 and is used here as a graphical tool of mod-
eling and  solving systems of ordinary differential equations that correspond to the 
forced response of multiple-DOF mechanical systems. The mathematical models are 
derived by using Newton’s second law of motion.
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Example 3.10
The mechanical filter microsystem of Figure 3.21(a) is driven by a force f = 2e-0.005t nN. Find 
a lumped-parameter physical model of the original system, and plot the system response 
consisting of the time-domain displacements of the two shuttle masses for m1 = 3.6 # 
10-10 kg, m2 = 2.5 # 10-10 kg, l1 = 160 nm, l2 = 100 nm, l = 80 nm (see  Figure 3.6(b) 
for serpentine spring dimensions), d1 = d2 = d = 2 nm (circular cross- section diameter of 
all flexible members), and E = 165 GPa. Consider zero initial conditions.

Solution
The beam springs act as two parallel springs on each of the shuttle masses of Figure 3.21(a),  
and the serpentine spring realizes the elastic coupling between m1 and m2. The lumped-
parameter physical model equivalent to the actual MEMS device is shown in Figure 
3.21(b). This system has two DOFs, the displacements x1 and x2.

Based on the free-body diagrams of Figure 3.22 and applying Newton’s second law 
of motion, the mathematical model corresponding to the lumped-parameter model of 
Figure 3.21(b) is

 
m

m

x f f f

x f f

2

2
e e

e e

1

2

1 1

2 2

= - -

= -

p
p

*  (3.67)

fiGure 3.21

Linear-Motion Mechanical MEMS Device: (a) Schematic of MEMS; (b) Lumped-Parameter 
Model.
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fiGure 3.22

Shuttle Masses Free-Body Diagrams.
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By taking into account that

 ; ( );f k x f k x x f k xe e e1 1 1 1 2 2 2 2= = - =  (3.68)

Eqs. (3.67) are rewritten in the form
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 (3.69)

The stiffnesses k1 and k2 are given in Table 3.2 for fixed-guided beams, whereas the stiff-
ness of the serpentine spring is expressed in Eq. (3.7); and based on Figure 3.6, they are

 ; ;k
l
EI

k
l
EI

k
l

EI12 12
5
6

1
1
3 2

2
3 3

= = =  (3.70)

where l is the length of the short leg of the serpentine spring and I is the circular cross-
sectional area moment of inertia, I = rd 4/64. Equations (3.69) can be written as

 
x a x a x m f

x x a xa

1
1 11 1 12 2

1

2 21 1 22 2

= - + +

= -

p

p
*  (3.71)

With the numerical values of this example, the parameters of Eqs. (3.70) and (3.71) are 
k1 = 0.38 N/m, k2 = 1.55 N/m, k = 0.304 N/m, a11 = 2.9529 # 109, a12 = 8.4369 # 108, 
a21 = 1.2149 # 109, a22 = 1.3656 # 1010, 1/m1 = 2.7778 # 109 kg-1. The block diagram 
of Figure 3.23 integrates Eqs. (3.71).

fiGure 3.23

Simulink® Block Diagram for Solving the Differential Eqs. (3.71).
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The input force on the mass m1 is produced by combining the Ramp block from the Source 
library and the Math Function from the Math Operations library. While the unit ramp 
provides the time input (which is interpreted as a variable u), the following Expression 
needs to be specified for the Math Function: 0.000002*exp(-0.005*u), which con-
stitutes f (t) of the example. The remaining blocks have been introduced to solve differential 
equations of single-DOF mechanical systems in Chapter 2. As can be seen in Figure 3.23, the 
stiffness coupling (which is realized through k) is reflected in the cross-connections between 
x1 and x2. Figure 3.24 contains the plots displaying x1 and x2 as  functions of time after they 
have been exported to MATLAB®.

Example 3.11
a. Derive the mathematical model of the gear-train mechanical system of Figure 3.25, 

where an actuation torque ma drives the input shaft and a load torque ml acts on the 
output shaft. Assume the rotary inertia of the gears is negligible.

b. Use Simulink® to generate the corresponding simulation diagram and plot ~2(t), ~(t), 
~3(t) for N1 = 44, N2 = 38, N3 = 38, N4 = 24, J = 0.002 kg-m2, c1 = c = c3 =  
240 N-m-s, k1 = k2 = 3500 N-m, ma = 10000 N-m, and ml = 200 sin(10t) N-m.

Solution
a. The equations of motion are formulated by means of Newton’s second law of motion for 

the three disks placed on the intermediate shaft:
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 (3.72)

fiGure 3.24

Time Variation of the Shuttle Masses Displacements (in Meters) for the Mechanical System 
of Figure 3.23.
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fiGure 3.25

Gear-Shaft Rotary Mechanical System.

c

θ

c1

c3

N1

N3

N4

k1 k2

N2

θ1, ma

θ4, ml

θ3Jθ2

In the first and third Eqs. (3.72), the driving and load torques, ma and ml, have been 
transferred from their original shafts to the middle shaft on the corresponding gears; 
the same procedure has been applied for the damping coefficients c1 and c3. Equations 
(3.72) can also be written in vector-matrix form as
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The first matrix on the left-hand side of Eq. (3.73) is the inertia matrix, the next one is the 
damping matrix, and the last one is the stiffness matrix. The vector on the right-hand side 
is the load vector. Similar formulations are used in subsequent chapters for other modeling 
procedures, such as transfer function (Chapter 7) and state space modeling (Chapter 8).

b. Equations (3.72) can also be reformulated in a way that would render use of Simulink® 
applicable:
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fiGure 3.26

Simulink® Diagram for Solving the Differential Eqs. (3.74) and Plotting the Time-Response 
of a  Gear-Shaft Rotary Mechanical System.
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 (3.75)

The numerical values of the coefficients given in Eq. (3.75) are a11 = 19.55, a12 = 
0.0048, b11 = 120,000, b12 = 3,500,000, b13 = b14 = 1,750,000, c11 = 5.82, c12 = 
0.0026. The Simulink® diagram corresponding to the differential Eqs. (3.75) is shown 
in Figure 3.26. Each of the three differential equations is represented by a horizontal 
chain plus the connections between chains because of the coupling. The input to 
the first chain (differential equation) is a Step block, which can be dragged from the 
Source library and simply configured by specifying the final value of 250. The sig-
nals’ names have not been specified in the block  diagram to keep the figure legible.
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FIGURE 3.27

Time Variation of the Angular Velocities for the Mechanical System of Figure 3.25.
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The three outputs are exported and plotted into MATLAB® as shown in the plots of 
Figure 3.27.

summary
This chapter utilizes the notions introduced in Chapter 2 for basic mechanical  elements 
and systems to study compliant and multiple-DOF mechanical systems. Equivalent 
inertia and stiffness parameters are derived for distributed-parameter bending beams 
and bars in torsion, which subsequently are incorporated into dynamic models of 
mechanical systems. The natural and forced responses of multiple-DOF mechanical 
systems are studied by applying MATLAB® and Simulink® in order to determine the 
corresponding time-domain solutions. Chapters 4 and 5 follow a similar approach 
and presentation to obtain the mathematical models and responses of electrical, fluid, 
and thermal systems.

prObLems
3.1 A cantilever has an equivalent mass with respect to its free end that is equal 

to the equivalent mass of a bridge with respect to its midpoint in terms of 
out-of-plane bending. Is it possible that the two members also have identical 
equivalent mechanical moments of inertia about their respective points with 
regard to torsion if they are made of the same material and have rectangular 
cross-sections and identical thicknesses?

3.2 Design the four beams of the microaccelerometer of Figure 3.28 such that their 
inertia contribution to the total (equivalent) inertia with respect to the motion about 
the y direction does not exceed 10%. The plate’s thickness is h, and the beams have 
identical circular cross-section of diameter d = h/5.

3.3 A constant circular cross-section bridge of diameter d, length l, and mass 
density t = 6300 kg/m3 is replaced by a similar bridge system formed of a 
rigid cylinder of diameter dc, length lc, mass density tc = 7800 kg/m3, and two 
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identical flexible segments having the cross-section and material properties 
identical to the original bridge and are attached to the cylinder at one end and 
clamped at the opposite end; the total length of the altered bridge remains l. 
Determine the torsional change in both stiffness and inertia with respect to the 
bridge’s midpoint that occurred through the cylinder addition by graphically 
analyzing the stiffness and inertia ratios for 0.2l < lc < 0.5l and 0.2dc < d < 
0.5dc. Calculate the respective changes for the particular case l = 4lc and dc = 
5d. Consider the inertia contribution from the flexible segments.

3.4 The planar MEMS spring of Figure 3.29 needs to have stiffness in the y direc-
tion 4 times larger than the stiffness in the out-of-plane z direction. The thicker 
segments of the spring are rigid, and the  thinner ones are flexible segments of 
identical rectangular cross-section with a thickness h = 200 nm (h is measured 
perpendicular to the figure plane). Use lumped-parameter modeling to design 
the flexible segments.

3.5 The microspring of Figure 3.30 is formed of three pairs of beams, two side 
rigid connectors, and a rigid moving part. Determine the corresponding 
lumped-parameter physical model and calculate the spring stiffness in terms 
of the moving part and about the y direction. The short beams have a diameter 
d1 = 2 nm and the long ones have a diameter d2 = 3 nm. Known also are l1 = 
100 nm, l2 = 140 nm, and Young’s modulus E = 155 GPa.

3.6 The microsensor of Figure 3.31(a) is changed into the one of Figure 3.31(b). 
Consider that the two vertical pushrods in Figure 3.31(b) are attached to the 
corresponding bridges and the plate. Compare the stiffnesses of the two designs 
in the motion direction using lumped-parameter modeling.

fiGure 3.28

Four-Beam Accelerometer.
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Planar Spring for Translatory Motions.
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fiGure 3.32

Microbridge with Central Plate and Two Side Flexible Supports.
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fiGure 3.31

Micromechanism with Plate and (a) Two Flexure Hinges; (b) Six Flexure Hinges.
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3.7 A particle can attach either at the free end of a microcantilever or at the midpoint 
of and axially on a microbridge of identical dimensions and material proper-
ties as the microcantilever. Which of these two detectors has better detection 
precision in using the out-of-plane bending natural frequency shift method? 
Consider the design with t = 6000 kg/m3, w = 20 nm, h = 2 nm (w and h 
are dimensions of the rectangular cross-section, with h being the out- of-plane 
dimension), and l = 120 nm.

3.8 A particle of unknown mass attaches to the midpoint of a rectangular cross-
section microbridge at an unknown off-axis distance. Determine the particle’s 
mass and the off-axis position knowing that the out-of-plane bending natural 
frequency shift is 25 Hz and the torsion natural frequency shift is 15 Hz. Known 
also are the geometrical and material parameters of the microbridge: l = 800 nm, 
w = 200 nm, h = 8 nm, E = 190 GPa, G = 130 GPa, and t = 6000 kg/m3.

3.9 The microbridge system of Figure 3.32 can rotate about the x axis and trans-
late about the y axis. It is composed of a rigid central plate and two identical 
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flexible hinges. Consider that the hinge cross-section is circular with a diam-
eter d = 2 nm. The plate and hinges are constructed from the same material 
with E = 160 GPa, G = 120 GPa, and t = 5600 kg/m3. Known also are  
l1 = 250 nm, l2 = 220 nm, and h = 20 nm (the plate thickness). Find the ratio 
between the natural frequency corresponding to the y-axis translation and the 
natural frequency of the x-axis rotation. Consider the effect of added inertia 
by the two hinges.

3.10 The plate of Figure 3.32 is now supported by four hinges identical to the ones 
of Problem 3.9, as shown in the top view sketch of Figure 3.33. Analyze and 
describe the plate translation (out of the plane) along the z axis as well as the 
plate (in-plane) rotation about the same axis; calculate the two natural fre-
quencies corresponding to these motions by using all the numerical parameters 
given in Problem 3.9.

3.11 Calculate the bending-related natural frequency of the cantilever beam sys-
tem of Figure 3.34 when considering the inertia and stiffness of the circular 
constant cross-section beam in addition to the spring stiffness k = 10 N-m. 
Known are the beam’s length l = 260 nm, its diameter d = 20 nm, as well as 
Young’s modulus E = 170 GPa and mass density t = 6200 kg/m3.

3.12 Derive the mathematical model of the mechanical system shown in Figure 3.35, 
which consists of a pulley, a mass, three rigid rods, and two springs. Consider 
small motions; ignore gravity and rods’ masses.

3.13 The two-DOF mechanical system shown in Figure 3.36 is the simplified 
lumped-parameter model of a car’s suspension and body. It consists of two 
point masses m1 and m2 connected by a rigid, massless rod of length l, and two 

fiGure 3.33

Microbridge with Central Plate and Four Flexible Supports.
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fiGure 3.34

Cantilever and Spring Mechanical System.
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fiGure 3.35

Pulley-Lever-Rod Mechanical System.
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Two-DOF Lumped-Parameter Model of a Car’s Suspension.
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linear springs of stiffnesses k1 and k2. Obtain the system’s mathematical model 
corresponding to the following coordinate selection:

(a) The coordinates are the mass displacements, x1 and x2.

(b) The coordinates are the displacement x of the center of gravity (CG) and 
the tilt angle i of the rod.

3.14 Calculate the natural frequencies and determine the associated modes for the 
mechanical system of Figure 3.35 of Problem 3.12, both analytically and using 
MATLAB®. Consider the following numerical values: m = 0.6 kg, k = 110 N-m, 
l = 0.15 m.

3.15 Use analytic calculation to determine the natural frequencies, describe the corre-
sponding modes, and calculate the unit-norm eigenvectors for the cart-pendulum 
mechanical system of Example 3.7, shown in Figure 3.17. Verify your results 
using MATLAB®. Known are m1 = 1 kg, m2 = 0.2 kg, k = 210 N/m, l = 0.8 m, 
and g = 9.8 m/s2.

3.16 The mechanical microdevice of Figure 3.37 comprises two identical shuttle 
masses elastically supported by several beams. Propose a lumped-parameter 
mass-spring system for the x-direction motion of this system and derive the 
mathematical model of the natural response using the energy method. Calculate 
the natural frequencies and the corresponding modes (unit-norm  eigenvectors) 
both analytically and by means of MATLAB®. The beams have identical rect-
angular cross- section with a width (in-plane dimension) w = 10 nm and thick-
ness (dimension perpendicular to the plane) h = 1 nm. Known also are m = 
1.2 # 10-10 kg, l1 = 200 nm, l2 = 120 nm, Young’s modulus E = 150 GPa, and 
mass density t = 5600 kg/m3.

3.17 (a)  Find the mathematical model of the double pendulum of Figure 3.38 
assuming small rotations. Consider that the mechanical system moves in a 
fluid that opposes the bob’s motion by a force of viscous damping nature; 
the coefficient of damping is c.

fiGure 3.37

Spring-Mass Mechanical Microsystem for Translatory Motion.
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(b) Use Simulink® to find the time response of the system for m1 = 0.5 kg,  
m2 = 1.2 kg, k = 190 N/m, c = 110 N-s/m, l = 0.8 m, g = 9.8 m/s2,  
f = 150 sin(10t) N.

3.18 Use the matrix formulation to derive the mathematical model of the mechani-
cal system shown in Figure 3.39. The pulley is formed of two concentric disks 
that form a solid piece. Known are m2 = 2m1 = 2m3 = 1 kg, k1 = 120 N/m, 
k2 = 100 N/m, c = 32 N-s/m, R2 = 2R1 = 0.03 m, and f = 5 N for the first 3 s 
and f = 0 thereafter. Plot the system’s time response by means of Simulink®. 
Hint: Use the Signal Builder block in the Sources library.

3.19 Consider that a spring of stiffness k3 = 150 N/m is placed instead of the damper 
and no force is acting on the translating body of the mechanical system shown 
in Figure 3.39 of Problem 3.18. Calculate the eigenvalues and unit-norm eigen-
vectors, and describe the modes of the mechanical system. Use the MATLAB® 
specialized command to check the analytical eigenvalues and eigenvectors.

fiGure 3.39

Mechanical System with Disc-Pulley, Rod, Translating Mass, and Linear-Motion Springs.
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fiGure 3.38

Double Pendulum with Spring and Viscous Damping.
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3.20 For the geared system shown in Figure 3.40, where ma is the actuation torque 
and ml is the load torque,

(a) Formulate the mathematical model.

(b) Use Simulink® to plot the relevant rotation angles, as well as the angular 
velocities as  functions of time when known are: N1 = 24, N2 = 30, N3 = 36, 
N4 = 42, J1 = 4 # 10-5 kg-m2, J2 = 5 # 10-5 kg-m2, J3 = 7 # 10-5 kg-m2, J4 =  
9 # 10-5 kg-m2, c = 2 N-m-s, k = 20 N-m, ma = 300 N-m, ml = 40 N-m.

suggested reading
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fiGure 3.40

Gear System with Inertia, Damping, and Stiffness Properties.
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Objectives

By using an approach similar to that used in Chapters 2 and 3, this chapter 
addresses the modeling of electrical systems by studying the following topics:

• Electrical elements—voltage and current source, resistance, capacitance, 
inductance, and operational amplifier.

• Methods of electrostatic actuation and sensing used in micro-electromechanical 
systems (MEMS).

• Application of Ohm’s law, Kirchhoff’s laws, the energy method, the mesh analysis 
method, and the node analysis method to derive mathematical models for 
dynamic electrical systems.

• Use of MATLAB® for symbolic and numerical calculation of the electrical 
systems’ eigenvalues and eigenvectors, of the free response, and of the forced 
response.

• Application of Simulink® to modeling and solving differential equations for 
electrical systems, including systems with nonlinearities.

intrOductiOn
Electrical systems, also named circuits or networks, are designed as combinations of 
mainly three  fundamental components—resistor, capacitor, and inductor—which are 
correspondingly defined by resistance, capacitance, and inductance, generally con-
sidered to be lumped parameters. In addition to these primary electrical components, 
in this chapter, we also discuss the operational amplifier. Producing the electron 
motion or voltage difference in an electrical circuit are the voltage or current sources, 
which are the counterparts of forces or moments in mechanical systems. The focus 
in this chapter is the formulation of mathematical models using methods of electri-
cal circuit analysis. Examples will be analyzed using MATLAB® and Simulink® to 
determine the natural, free, and forced responses of electrical systems.

Electrical Systems

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-240-81128-4.00004-8
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 4.1  electrical elements: vOltage and current 
sOurces,  resistOr, capacitOr, inductOr, 
 OperatiOnal amplifier

This section introduces the voltage and current sources, resistor, capacitor, inductor, 
and operational amplifier as the basic electrical elements relating the voltage and 
current variables. In addition to these basic electrical components, the companion 
website Chapter 4 presents the electrical transformer.

4.1.1 voltage and current source elements
Similar to mechanical systems, where forces for translation and torques for rotation 
generate the system dynamics (mechanical motion), voltage and current sources are 
the elements producing the dynamic response of electrical systems. We discuss here 
ideal (also named independent) sources in the following sense: An ideal voltage 
source delivers a certain voltage independent of the current passing through the 
source and is set up in the circuit by the other electrical components. Similarly, an 
ideal current source produces a specified current that does not affect the voltage 
across the source and is not altered by the voltages across other electrical compo-
nents in the circuit. Figure 4.1 shows a schematic representations of voltage and 
current sources. Both sources can provide constant signals (in which case they are 
termed dc, direct current, sources) or time-varying ones, particularly sinusoidal 
(known as ac, alternating current sources).

 4.1.2 resistor elements
The resistor, symbolized as in Figure 4.2, is an electrical element for which the 
voltage across it, v, is proportional to the current passing through it, i, according to 
Ohm’s law:

 ( ) ( )v t Ri t=  (4.1)

The proportionality constant is the resistance, and for a wire of length l and cross-
sectional area A, the electrical resistance is calculated as

 R
A
lt

=  (4.2)

where t denotes the electric resistivity.
Variable (or active) resistances are encountered in potentiometers, where a  contact 

wiper can move over a resistor and change the resistor length connected to voltage, 
resulting in a change in resistance, as seen in Eq. (4.2). A variable resistor (or transla-
tion potentiometer), a schematic representation of which is given in Figure 4.2(c), is 
illustrated with a bit more detail in Figure 4.3.
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The voltage v is supplied to the resistor of length l, and the translatory-motion wiper, 
through its mobile contact, separates a voltage vx. Two voltage-current relationships can 
be written according to Ohm’s law:

 
v Ri

A
l
i

v R i
A
x

ix x

t

t

= =

= =

Z

[

\

]]

]]
 (4.3)

figure 4.1

Voltage and Current Source  Representations: (a) Variable Voltage; (b) Constant Voltage 
(Battery); (c) Current.

v

+

−

(a)

V
+

−

(b)

i

(c)

+

−

figure 4.2

Resistor Representation: (a) in a Circuit Segment; (b) Symbol for Constant Resistance;  
(c) Symbol for Variable Resistance.
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Combining Eqs. (4.3) yields

 v
R

R
v

l
x

vx
x

= =  (4.4)

The resistor dissipates energy in a circuit, similar to damping elements in 
mechanical systems. The energy dissipated in time t by a resistor transforms into 
heat, according to the Joule effect:

 E Ri t vit
R
v

t2
2

= = =  (4.5)

Because energy is power multiplied by time (E = Pt), the electric power absorbed 
by a resistor is

 P Ri vi
R
v2

2

= = =  (4.6)

Equations (4.5) and (4.6) considered the voltage v is constant.
Resistors can be combined in series (as sketched in Figure 4.4(a)), in parallel (as 

illustrated in  Figure 4.4(b)), or in a mixed (series-parallel) manner.
The companion website Chapter 4 contains the derivation of the equivalent series 

(Rs) and parallel (Rp) resistances, Figure 4.4(c), whose equations are

 
R R R R

R R R R
1 1 1 1
s n

p n

1 2

1 2

g

g

= + + +

= + + +*  (4.7)

Example 4.1
Determine the resistors forming the reversed-Y combination of Figure 4.5(b), which is 
equivalent to the original D (delta) combination of Figure 4.5(a), such that the resistance 
between any two vertices of one combination is equal to the resistance in the other com-
bination between the same vertices. Numerical application: RAB = 250 X, RBC = 220 X, 
RCA = 280 X.

figure 4.4

Resistor Connections: (a) Series; (b) Parallel; (c) Equivalent Resistance.
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Solution
The D arrangement of Figure 4.5(a) is more difficult to manipulate and decompose in 
series and parallel connections in a complex electrical circuit; therefore, the equivalent 
(reversed-Y ) circuit of Figure 4.5(b) could provide an alternative. Assuming that voltage 
is applied across the conductor connecting nodes A and B in Figure 4.5(a), the resistor 
RAB is connected in parallel with the series combination of RCA and RBC; therefore, the 
equivalent resistance between nodes A and B is calculated as

 
R R R R
1 1 1

AB AB BC CA

= +
+D

 (4.8)

which results in

 R
R R R

R R R
AB

AB BC CA

AB BC CA
=

+ +

+
D

^ h
 (4.9)

When voltage is applied between nodes A and B of Figure 4.5(b), the only resistances 
involved are RAD and RBD, which are connected in series; therefore, the equivalent resis-
tance between these two points is

 R R RAB
Y

AD BD= +  (4.10)

Because the problem requires that R RAB AB
Y=D , it follows from Eqs. (4.9) and (4.10) that

 R R
R R R

R R R
AD BD

AB BC CA

AB BC CA
+ =

+ +

+^ h
 (4.11)

By performing a similar analysis for the node pairs B-C and C-A, the following equations 
are obtained:

 
R R

R R R

R R R

R R
R R R

R R R

BD CD
AB BC CA

BC CA AB

CD AD
AB BC CA

CA AB BC

+ =
+ +

+

+ =
+ +

+

^

^

h

h

Z

[

\

]
]

]]
 (4.12)

figure 4.5

Three-Resistor Connections: (a) D (Delta) Combination; (b) Reversed-Y Combination.
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Equations (4.11) and (4.12) can be solved for the reversed-Y resistances in terms of the D 
arrangement components using MATLAB® Symbolic Math Toolbox™, for instance, as

 

R
R R R

R R

R
R R R

R R

R
R R R

R R

AD
AB BC CA

AB CA

BD
AB BC CA

BC AB

CD
AB BC CA

CA BC

=
+ +

=
+ +

=
+ +

Z

[

\

]
]
]]

]
]
]

 (4.13)

The numerical values of these resistances are RAD = 93.33 X, RBD = 73.33 X, RCD = 

82.13 X.

 4.1.3 capacitor elements
Capacitor elements in electrical systems store electrostatic energy and, therefore, 
can be considered functionally similar to springs in mechanical systems, which store 
elastic potential energy. The parameter characterizing a capacitor is the capacitance, 
C, which can be constant (with the symbols shown in Figure 4.6(b)) or variable (as 
symbolized in Figure 4.6(c)). In the International System (SI) of units, capacitance 
is measured in farads (F).

The capacitance is related to the current and voltage (these variables are indicated 
in Figure 4.6(a)) by the equation

 ( )
( )

i t C
dt

dv t
=  (4.14)

Equation (4.14) indicates that, when a capacitor is connected to a constant-voltage 
source, the current passing through it is zero. Integration of Eq. (4.14) results in

 ( ) ( )v t
C

i t dt
1 t

0
= 8  (4.15)

Equation (4.15), which shows that the voltage reaches a value v over a period of 
time t, indicates that the voltage across a capacitor cannot change abruptly (instanta-
neously). Combining Eq. (4.15) with the current-charge relationship,

 ( )
( )

i t
dt

dq t
=  (4.16)

results in

 ( ) ( )q t Cv t=  (4.17)

A common capacitor configuration has two planes, parallel plates, and a dielec-
tric between them. For this configuration, the capacitance is calculated as

 C g
Af

=  (4.18)
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where f is the dielectric permittivity, A is the two plates’ superposition area, and g 
(the gap) is the distance between the plates.

The capacitor electric power is

 ( ) ( ) ( )
( )

P t v t i t vC
dt

dv t
= =  (4.19)

The energy stored by a capacitor in an infinitesimal time dt is dE = Pdt, which, by 
integration and consideration of Eq. (4.19), yields

 ( ) ( ) ( )
( )

( ) ( ) ( )E t P t dt Cv t
dt

dv t
dt Cv t dv t Cv t

2
1t t

0 0

2= = = =8 8 8  

 ( ) ( )
( )

q t v t
C

q t

2
1

2
1

2

= =  (4.20)

The assumption has been made in Eq. (4.20) that the capacitance is constant and  
v(0) = 0. A capacitor stores energy and does not dissipate it as long as it is not con-
nected to other components. However, when a charged capacitor is connected to a 
resistor, for instance, a current flow is produced through the components until the 
whole energy stored in the capacitor is dissipated as heat on the resistor.

Actuation and Sensing in Microelectromechanical Systems
Variable capacitors are increasingly utilized for either actuation or sensing pur-
poses in microelectromechanical systems (MEMS). Variable-plate capacitors can 
be designed using two principles, both based on the fact that one plate can move 
with respect to the other, which is fixed. According to one design principle (named 
 parallel-plate or transverse-motion), the mobile plate moves in a direction perpen-
dicular to the two plates such that the common area A remains constant but the gap 
varies, Figure 4.7(a). The second principle (known as comb-drive or longitudinal-
motion) utilizes the motion of the mobile plate that is parallel to the other plate 
whereby the gap is preserved but the common area varies, Figure 4.7(b). Each of 
these design principles is illustrated through a few examples where either actuation 
or sensing (together known as transduction) is studied.

figure 4.6

Capacitor Representation (a) in a  Circuit  Segment; (b) Symbols for Constant  Capacitance; 
(c) Symbols for Variable  Capacitance.
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Example 4.2
Determine the force f that acts on the mobile plate of the capacitor shown in Figure 4.8. A 
constant voltage v is applied externally between the two plates and the mobile plate moves 
by remaining parallel to the fixed one. The initial gap is g0, the common plate area is A, 
and the electric permittivity of the dielectric is f. Plot the f/f0 ratio in terms of the x/g0 ratio 
(f0 is the initial force and x is the mobile plate displacement).

Solution
The attraction electrostatic force between the two plates generates the motion of the 
mobile plate toward the fixed one. In MEMS, this principle is used to generate actuation 
utilizing several parallel-connected pairs of the type shown in Figure 4.8 (a micropho-
tograph of several such pairs is shown in Figure 4.7(a)) to multiply the force generated 
by a single pair. The capacitance after the mobile plate has displaced a distance x (and 
the gap is g) is

 
( )

C g
A

g x
A

0

f f
= =

-
 (4.21)

The electrostatic force can be expressed as the partial derivative of the electrostatic 
energy in terms of mechanical displacement (see details in the companion website 
 Chapter 4) as

 f
x
E

x
Cv v

x
C v

x g x
A

g x

Av
2 2 2 2

2 2 2

0
0

2

2

# #
2

2

2

2

2

2

2

2 f f
= = = = - =

-
d c

^
n m

h
 (4.22)

As Eq. (4.22) indicates, the actuation force is proportional to the applied voltage squared 
and increases nonlinearly when the gap decreases. Initially, when x = 0, the electrostatic 
force is

 f
g

Av

2
0

0
2

2f
=  (4.23)

figure 4.7

Capacitive Transduction in MEMS: (a) Parallel Plate; (b) Comb Drive.
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Combination of Eqs. (4.22) and (4.23) results in

 
f

f

x g1
1

0 0
2

=
-_ i

 (4.24)

and the corresponding plot is shown in Figure 4.9. For values of x close to g0, the force f 
reaches very large values (it is infinite when x " g0, just before the mobile plate collides 
with the fixed one). To avoid capacitor plate collision, the mobile plate in MEMS is con-
nected to a spring that limits its motion range.

figure 4.9

Plot of Force Ratio in Terms of Nondimensional Gap.
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figure 4.8

Variable-Gap, Transverse-Motion (Parallel-Plate) Variable Capacitor.
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Example 4.3
Consider that the variable capacitor of Figure 4.8 was designed to sense the displace-
ment x of the mobile plate. Find the relationship between the voltage variation and the 
mechanical displacement. Assume that a bias dc voltage vb is applied to the variable 
capacitor circuit, as indicated in Figure 4.10, as mechanical motion is applied externally 
to the mobile plate.

Solution
With no displacement of the capacitor mobile plate, the bias voltage fully loads the capaci-
tor, generating the charge

 q C vb0=  (4.25)

The original capacitance is determined by taking x = 0 in Eq. (4.21):

 C g
A

0
0

f
=  (4.26)

Combination of Eqs. (4.25) and (4.26) results in

 q g
Avb

0

f
=  (4.27)

After the mobile plate of the capacitor moves a distance Dx (Dx is the same as x in 
the previous example; it is used to highlight the relationship with Dv, the voltage variation) 
toward the fixed the plate, the voltage changes by a quantity Dv and the capacitance 
changes from C0 to C. As a consequence, the total voltage sensed by the low-resistance 
meter of Figure 4.10 is

 v v
C

q
b D+ =  (4.28)

figure 4.10

Electrical Circuit with Variable-Gap Capacitor and Bias Voltage Used as a Displacement 
Sensor.
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By substituting the capacitance C from Eq. (4.21) and the capacitance C0 from Eq. (4.26) 
into Eq. (4.28), the last equation becomes

 v v g
g x v

b

b

0

0
D

D
+ =

-^ h
 (4.29)

Equation (4.29) allows expressing the voltage variation in terms of the mechanical 
 displacement Dx:

 v g
v

x
b

0
D D= -  (4.30)

which shows that the voltage variation opposes the bias voltage; that is, the total voltage 
vb + Dv decreases.

Example 4.4
Find the relationship between the electrostatic attraction force and the displacement of 
the mobile plate in a comb-drive (constant-gap, longitudinal-motion) capacitive actua-
tor, such as the one sketched in Figure 4.11, assuming a constant dc voltage is applied 
between the two capacitor plates.

Solution
When the two plates are superimposed over a length of x, the capacitance is

 C g
wxf

=  (4.31)

where g is the constant gap and w is the width (dimension perpendicular to the drawing 
plane, assuming the plates are of rectangular shape) of the two capacitor plates. The elec-
trostatic force is produced by the electrical field lines, as shown in Figure 4.11, and is

 f
x
E

x
Cv v

x
C

g
wv

2 2 2

2 2 2

#
2

2

2

2

2

2 f
= = = =d n  (4.32)

figure 4.11

Fixed-Gap, Longitudinal-Motion (Comb-Drive) Variable Capacitor.
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As Eq. (4.32) indicates, the electrostatic force is constant for a comb-drive capacitive 
actuator and is proportional to the square of the applied voltage.

Example 4.5
The MEMS of Figure 4.11 is considered to function as a detector and senses the dis-
placement x of the mobile capacitor plate, which is produced externally. Determine the 
connection between the mechanical displacement and the voltage variation produced 
by it. Assume again that a bias dc voltage vb is applied to the  capacitor circuit as shown 
in Figure 4.10 and that an initial superposition of length x0 between the two plates occurs 
before the mechanical motion is to be measured.

Solution
The initial capacitance of the variable capacitor is

 C g
wx

0
0f

=  (4.33)

The constant charge can be expressed as

 q C v g
wx v

b
b

0
0f

= =  (4.34)

The total voltage that results when the mobile plate moved a distance Dx is the sum of 
vb and Dv (the voltage variation that results from the mobile plate displacement from its 
initial position), which is equal to the ratio of the charge q to the modified capacitance C:

 
( )

v v
C

q
g

wx v

w x x

g

x x

x
vb

b
b

0

0 0

0
#

f

f
D

D D
+ = =

+
=

+
 (4.35)

Equation (4.35) can be written as

 v
x x

x
v

x x

x
v1b b

0 0

0
D

D

D

D
= -

+
= - -

+
f p  (4.36)

which shows that the voltage variation opposes the bias voltage (as was the case with the 
transverse capacitive sensing) and the value of this voltage increases as the plate super-
position length increases.

Similar to resistors, capacitors can be connected in series or in parallel, as illustrated 
in Figure 4.12. The series (Cs) and parallel (Cp) equivalent capacitances, derived in the 
companion website Chapter 4, are

 C C C C
C C C C

1 1 1 1
s n

p n

1 2

1 2

g

g

= + + +

= + + +
*  (4.37)
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 4.1.4 inductor elements
An inductor, schematic representations of which are shown in Figure 4.13, consists 
of a coil with N turns, where a variable current generates a voltage, which in the case 
of a linear inductor is proportional to the current rate.

The proportionality constant, L, is the inductance, which is a measure of this 
electrical component’s capacity to store magnetic energy. For a cylindrical inductor 
with N turns, coil diameter D, total wire length l, and magnetic permeability n, the 
inductance is expressed, as demonstrated in the companion website Chapter 4, as

 L
l

N D
4

2 2rn
=  (4.38)

In SI, the inductance unit is the henry (H). The total magnetic flux, NU, is propor-
tional to the generated current:

 ( ) ( )N t Li tU =  (4.39)

where L is the inductance. By Faraday’s law, the flux variation generates a voltage 
on the inductor, which is

 ( )( ) tv t
dt
d

NU= 6 @ (4.40)

Combining Eqs. (4.39) and (4.40) results in

 ( )
( )

v t L
dt

di t
=  (4.41)

figure 4.12

Capacitor Connections: (a) Series; (b) Parallel; (c) Equivalent Capacitance.
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figure 4.13

Inductor Representation: (a) in a Circuit Segment; (b) Symbol for Constant Inductance;  
(c) Symbol for Variable Inductance.
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Equation (4.41) indicates that for a constant-current source connected to an inductor, 
the voltage on the inductor is zero. Equation (4.41) enables expressing the current as 
a function of voltage:

 ( ) ( )i t
L

v t dt
1 t

0
= 8  (4.42)

Equation (4.42) shows that the current (and the magnetic flux, by Eq. (4.39)) cannot 
change instantaneously, as it needs a time interval to modify its value.

The power related to an inductor is expressed as

 ( ) ( ) ( )
( )

( )P t v t i t L
dt

di t
i t= =  (4.43)

The magnetic energy stored by the inductor over a period of time t and assuming 
i(0) = 0 is

 ( ) ( ) ( ) ( ) ( )E t P t dt Li t di t Li t
2
1t

0

2= = =8 8  (4.44)

Inductors, too, can be connected in series or in parallel, and an equivalent 
inductance can be computed for either case, as derived in the website companion 
Chapter 4:

 
L L L L

L L L L
1 1 1 1
s n

p n

1 2

1 2

g

g

= + + +

= + + +*  (4.45)

where the subscripts s and p stand for series and parallel, respectively.

4.1.5 Operational amplifiers
Operational amplifiers (or simply op amps) are components that can be connected 
with other electrical components in circuits to amplify voltage, isolate circuits, count 
signals, or perform arithmetical and mathematical operations (addition, integration, 
differentiation, etc.). The symbol of an op amp, which is shown in Figure 4.14, indi-
cates its main feature of having two input ports (a negative one and a positive one) 
and therefore differential input voltages. Voltages are usually measured with respect 
to the ground (which has zero voltage).

As its name suggests, the op amp amplifies the differential input voltage v2 - v1 
to an output voltage by means of a factor K, known as gain or amplification:

 ( ) ( )v Kv K v v K v vo i 2 1 1 2= = - = - -  (4.46)
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The operational amplifier has some basic properties:

•	 High input impedance (the notion of impedance is studied more thoroughly in 
Chapter 7, but it mainly refers to the electrical resistance posed to the passing of 
current), which is ideally equal to infinity.

•	 Low output impedance (which is ideally zero).
•	 High gain of 105−106 (infinity ideally; actually the gain depends on frequency, 

when harmonic or sinusoidal signals are involved, and it can decrease significantly 
with the frequency increase).

 4.2 electrical circuits and netwOrks
Electrical elements are connected in electrical systems, known as circuits or networks, 
whose dynamic behavior is described by mathematical models expressed as differ-
ential equations, similarly to mechanical systems. Kirchhoff’s laws are presented 
in this chapter together with procedures derived from Kirchhoff’s laws, such as the 
mesh analysis method (the most popular probably) and the node analysis method. 
Applying the energy method to conservative electrical systems also is included in 
this chapter, while the companion website Chapter 4 presents the use of Lagrange’s 
equations method.

4.2.1 kirchhoff’s laws
The two Kirchhoff’s laws provide basic procedures for deriving mathematical models 
for electrical systems (networks). The first Kirchhoff’s law, also known as the node 
or current law (with the acronym KCL from Kirchhoff’s current law), states that 
the algebraic sum of currents corresponding to branches that converge into a node 
is zero (Figure 4.15 illustrates this principle), and this is basically an expression of 
the charge conservation. For the particular case of Figure 4.15, the first Kirchhoff’s 
law is

 ( ) ( )i i i i 01 2 3 4+ - + =  (4.47)

figure 4.14

Schematic Representation of an  Operational Amplifier (Op Amp).
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Example 4.6
Using KCL, determine the relationship between the input current ii and the output current 
io of the electrical network of Figure 4.16.

Solution
Based on KCL, the following current balance equations can be written at nodes a, b, c, d, 
e, and f of  Figure 4.16:

 ; ; ; ; ;i i i i i i i i i i i i i i i i i ii o1 2 2 3 4 3 5 6 8 1 5 7 4 6 7 8= + = + = + = + = + = +  (4.48)

Successive substitutions, going from the last Eq. (4.48) to the second one, result in

 ( ) ( )i i i i i i i i i i io i4 6 1 5 4 1 3 1 2= + + + = + + = + =  (4.49)

Equation (4.49) shows that, as expected, the current entering the electrical network, ii, 
is equal to the current that exits the network, io, because the current (and the charge) is 
ideally a conservative amount.

It should be mentioned here that a loop in an electrical network is any closed con-
tour of circuit branches, whereas a mesh is a loop that contains no other loop within it. 

figure 4.15

Illustration of the First Kirchhoff’s (Node or  
Current) Law.
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figure 4.16

Electrical Network with Nodes and  Currents.
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figure 4.17

Two Meshes and Three Loops in an Electrical Network.
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Figure 4.17 illustrates these definitions by using a simple sketch showing just the circuit 
branches (lines). According to these definitions, the network is formed of two meshes 
(ABEF and BCDE) and three loops (the two meshes and ACDF ).

The second Kirchhoff’s law, also known as the mesh or voltage law (its acronym 
being KVL from Kirchhoff’s voltage law), states that, in a mesh, the sum of voltages 
across individual electrical components is equal to the sum of source voltage.

Example 4.7
Use KVL to derive the mathematical model of the single-mesh electrical circuit of 
 Figure 4.18, which is formed of two voltage sources, a resistor, an inductor, and a 
 capacitor.

Solution
The source v1 produces a positive voltage in the direction of the arbitrarily chosen direc-
tion of the current i. The other source, v2, opposes the current direction; it therefore has 
a minus sign in the corresponding KVL equation:

 
( )

( ) ( )v v v L
dt

di t
Ri t

C
i t dt v v

1
R L C 1 2+ + = + + = -8  (4.50)

Equation (4.50) is the mathematical model for the electrical system of Figure 4.18.  
A model that is expressed in terms of charge instead of current is obtained using the 
charge-current relationship, Eq. (4.16):

 
( ) ( )

( ) orL
dt

d q t
R

dt

dq t

C
q t v v Lq Rq

C
q v v

1 1
2

2

1 2 1 2+ + = - + + = -p  (4.51)

It should be noted that Kirchhoff’s voltage law is the electrical domain counterpart 
of Newton’s second law of motion for mechanical systems. Indeed, forcing and voltage 
are similar, and voltages across inductors, resistors, and capacitors are similar to iner-
tia, damping, and spring forces, respectively—more on these similarities (analogies) in 
Chapter 10.

figure 4.18

Single-Mesh Electrical Circuit to Illustrate Kirchhoff’s  Voltage Law.
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4.2.2 configuration, degrees of freedom
The configuration of an electrical system is determined by means of a minimum 
number of  independent physical parameters (they can be currents, charges, 
 voltages, voltage rates, etc.) that are sufficient to define the configuration of the 
electrical system as well as the values of all other variables of interest. These 
independent parameters are named system coordinates, and they actually are 
degrees of freedom (DOFs), similar to the DOFs introduced for mechanical sys-
tems in Chapter 3.

Figure 4.19 illustrates a circuit formed of a voltage source, a resistor, and an 
inductor, all assembled in one loop.

Assuming the values of the voltage v, resistance R, and inductance L are known, 
the current value needs to be determined by means of Kirchhoff’s second law. The 
current is the only parameter necessary to fully define the configuration of the circuit 
at any moment in time; therefore, this system is a single-DOF one. Once the current 
was determined, the voltage vAB, for instance, which falls across the inductor L, can 
be calculated. It can be considered as well that the independent parameter (DOF) of 
the circuit is the source voltage v, as knowledge of v suffices to enable calculation 
of any other parameter (variable) of the electrical system, but then the current i has 
to be known (specified).

Example 4.8
Determine the configuration (number of DOFs) of each of the three electrical circuits 
shown in Figure 4.20.

Solution
For the circuit of Figure 4.20(a), the branch currents i1, i2, and i3 are DOF candidates. 
However, the three currents are connected at an adjacent node (either A or B) by means 
of Kirchhoff’s first law:

 i i i1 2 3= +  (4.52)

Equation (4.52) plays the role of a constraint on i1, i2, and i3. It was shown in Chapter 3  
that the number of DOFs of a mechanical system is the number of apparent DOF  

figure 4.19

Electrical Circuit as a  Single-DOF System.
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parameters (or candidate DOFs) minus the number of connection equations between 
these parameters. This rule is also valid for electrical systems, and as a consequence, 
the number of DOFs for the electrical system of Figure 4.20(a), the currents i1 and i2, for 
instance, can be the DOFs. For this system, the voltage sources v1 and v2 can also be the 
 independent coordinates (DOFs) or any other voltage-current combination that is formed 
of two components (for instance, v1 and i2).

The same reasoning applies to the circuit of Figure 4.20(b), which needs two inde-
pendent parameters to define its configuration and is therefore a two-DOF system. 
Although the voltage v is sufficient to generate all currents in the circuit, the system is 
still a two-DOF one, not a single-DOF system, as one might be tempted to conclude, 
because one single parameter is insufficient to fully define the configuration of the 
system.

Similarly, the electric circuit of Figure 4.20(c) needs two independent param-
eters to fully define its configuration at any time. They can be, for instance, i and 
i1 or i and v. Two equations (formulated by means of Kirchhoff’s laws) therefore 
are necessary to express the remaining variables in terms of the independent ones  
(the DOFs).

A rule of thumb quickly provides the number of coordinates (DOFs) of an electri-
cal network: The number of DOFs is equal to the number of meshes. According to 
this rule, it can be seen that the electrical networks of Figure 4.20 are formed of two 
meshes; therefore, they should be two DOF systems, as demonstrated in the previous 
solved Example 4.8.

figure 4.20

Two-Mesh Electrical  Circuits with (a) Two Voltage Sources; (b) One Voltage Source; (c) One 
Voltage Source and One Current Source.
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 4.2.3 methods for electrical systems modeling
One of the most utilized procedures in modeling electrical networks is the mesh 
analysis method, and another method is the node analysis; both methods are briefly 
presented in this section. The equivalent resistance method is designed to model 
networks that are formed solely of resistors; this technique is presented in the com-
panion website Chapter 4.

The Mesh Analysis Method
The mesh analysis method is normally used for electrical networks where the input 
is provided by  voltage sources. The voltages supplied by the sources are known, as 
well as the parameters defining the electrical components making up the network. In 
mesh analysis, therefore, Kirchhoff’s second law is applied to express voltage bal-
ances for each mesh, aided by Kirchhoff’s first law to relate the  currents converging 
at common nodes. In such a network, the unknowns are usually the currents or the 
charges. For circuits containing only resistors, the mathematical model consists of an 
algebraic equations system. When the circuits also contain capacitors or inductors, 
the mathematical model consists of differential (or differential-integral) equations.

Example 4.9
Determine the currents set up in the circuit of Figure 4.21 using the mesh analysis 
method. Known are R1 = 20 X, R2 = 30 X, R3 = 10 X, R4 = 40 X, R5 = 5 X, and 
v  = 40 V.

Solution
The circuit of Figure 4.21 indicates the currents and their arbitrary directions, as well 
as the arbitrary positive directions for each of the two meshes (the curved arrowed 
lines inside each mesh). The following equations are obtained through application of  
Kirchhoff’s second law:

 
R i R i R i v
R i R i R i 0

1 1 4 3 5 1

2 2 3 2 4 3

+ + =
+ - =

(  (4.53)

figure 4.21

Electrical Network Comprising Resistors and a Voltage Source.
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Kirchhoff’s first law is applied at node C (or node D), which results in

 i i i1 2 3= +  (4.54)

Equations (4.53) and (4.54) are rearranged in a system of three algebraic equations 
where the unknowns are the currents i1, i2, and i3:

 
R R i R i v
R R i R i

i i i
0

0

1 5 1 4 3

2 3 2 4 3

1 2 3

+ + =

+ - =

- - =

^

^

h

h*  (4.55)

The equations system (4.55) can be written in vector-matrix form as

 
R R

R R
R
R

i
i
i

v
0
1

0

1 1
0
0

1 5

2 3

4

4

1

2

3

+
+
-

-
-

=> H* *4 4 (4.56)

and the unknown vector containing the currents is determined by matrix algebra as

 
i
i
i

R R
R R

R
R

v
0
1

0

1 1
0
0

1

2

3

1 5

2 3

4

4

1

=
+

+
-

-
-

-

> H* *4 4 (4.57)

The solution to Eqs. (4.57) is obtained using the symbolic calculation capabilities of 
 MATLAB® by means of the following code:

>> syms r1 r2 r3 r4 r5 v
>> a = [r1+r5,0,r4;0,r2+r3,-r4;1,-1,-1];
>> f = [v;0;0];
>> i = inv(a)*f

After some algebraic conditioning, the returned currents are

 

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

i
R R R R R R R R R R

R R R v

i
R R R R R R R R R R

R v

i
R R R R R R R R R R

R R v

1
1 2 3 4 2 3 4 5 4 5

2 3 4

2
1 2 3 4 2 3 4 5 4 5

4

3
1 2 3 4 2 3 4 5 4 5

2 3

=
+ + + + + +

+ +

=
+ + + + + +

=
+ + + + + +

+

Z

[

\

]
]
]]

]
]
]

 (4.58)

Numerically, the following values are obtained: i1 = 0.89 A, i2 = i3 = 0.44 A.

The Node Analysis Method
In the node analysis method, voltages are associated with each node of the net-
work where current change occurs, then nodal equations are formulated by using 

www.semeng.ir

www.semeng.ir


124 CHAPTER 4 Electrical Systems

Kirchhoff’s node law. With this method, we select one node to be the reference node, 
and all the voltages are expressed in terms of the reference node’s voltage. Usually, 
it is computationally preferable to select as the reference node the one with the larg-
est number of element branches connected to it. It is also customary to consider the 
voltage of the reference node to be zero.

Example 4.10
Calculate the currents produced by the current and voltage sources in the circuit sketched 
in Figure 4.22 employing the node analysis method. Known are R1 = 50 X, R2 = 70 X,  
R3 = 60 X, R4 = 40 X, i = 0.1 A, and v = 80 V.

Solution
For the circuit of Figure 4.22, if node B is considered to be the reference node with zero 
voltage, it follows that the entire line BD is grounded; therefore, the voltage of node D is 
also zero. Using Ohm’s law, according to which a current is equal to the voltage differ-
ence across it divided by resistance, and Kirchhoff’s node law, two node equations can 
be written when the voltages vA and vB are associated with nodes A and B, respectively. 
The equations are

 
; or

; or

i i i i
R

v

R

v v

i i i
R

v v

R

v

R

v v

0

0

A A C

A C C C

1 2
1 2

2 3 4
2 3 4

= + =
-

+
-

= +
-

=
-

+
-

Z

[

\

]]

]]
 (4.59)

The unknowns vA and vC are calculated symbolically from Eq. (4.59) using MATLAB® as:

 
( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

( )

v
R R R R R R
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i
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v
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R R R
v

A

C

1 2 3 4 3 4

1 2 3 3 4 4 2

1 2 3 4 3 4

1 3

1 2 3 4 3 4

1 3 4

1 2 3 4 3 4

3 1 2

=
+ + +

+ +
+

+ + +

=
+ + +

+
+ + +

+

Z

[

\

]]

]]
 (4.60)

figure 4.22

Electrical Network Comprising Resistors, a Voltage Source, and a Current Source.
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The numerical values of the voltages of Eqs. (4.60) are vA = 19.93 V and vC = 40.83 V. The  
four currents are determined from Eqs. (4.59) as i1 = 0.40 A, i2 = -0.30 A, i3 = 0.68 A,  
i4 = -0.98 A. The minus signs of i2 and i4 indicate that these currents have directions 
opposite to the ones arbitrarily chosen in Figure 4.22.

 4.2.4 free response
This section studies the natural response and the free damped response of electrical 
systems, both describing the behavior of electrical networks in the absence of voltage 
or current sources.

Natural Response
Electrical systems have a natural response when no voltage or current source is 
involved and no energy dissipation occurs (which translates in the absence of 
resistors). Electrical circuits that contain only capacitors and inductors are conser-
vative systems; they  display a natural response consisting of one or more natural 
 frequencies, depending on the number of DOFs. The differential equation(s) defining 
the natural response of an electrical system can be derived using Kirchhoff’s laws or 
applying the energy method, similarly to mechanical systems. MATLAB® can also 
be utilized to determine the eigen-frequencies and eigenvectors associated to the 
natural response. These methods are discussed next for single- and multiple-DOF 
electrical systems.

Single-DOF Conservative Electrical Systems
For single-DOF conservative electrical systems, the natural frequency is calculated 
by searching for sinusoidal (harmonical) solutions of the mathematical model dif-
ferential equation, as introduced in Chapter 2.

Example 4.11
Consider the LC (resonant) circuit sketched in Figure 4.23(a), which is formed of an 
inductor and a capacitor. Derive its mathematical model using Kirchhoff’s second law and 
also by the energy method. Determine the natural frequency of this electrical system for 
L = 1 H and C = 4 nF.

figure 4.23

LC (Inductor-Capacitor) Circuit: (a) Actual  Circuit; (b) Schematic for Charging the Circuit.
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Solution
The single-DOF electrical system shown in Figure 4.23(a) is a conservative one, as no 
voltage or current sources input energy into the system and no resistors draw energy 
from the system. We can assume that the capacitor is charged separately from a  voltage 
source (when switch S1 is closed and switch S2 is open) then disconnected from the 
source and connected to the inductor (by opening switch S1 and closing S2), as shown 
in Figure 4.23(b), so that the capacitor discharges on the inductor and a current i is 
 produced through the circuit of Figure 4.23(a).

Application of Kirchhoff’s second law to the electrical circuit of Figure 4.23(a) yields

 
( )

( )L
dt

di t
C

i t dt
1

0+ =8  (4.61)

which can be written in terms of the charge q as

 Lq
C

q
1

0+ =p  (4.62)

or

 q
LC

q
1

0+ =p  (4.63)

The electrical energy totaled by the capacitor and inductor in the circuit of Figure 
4.23(a) is

 E Li
C

q
Lq

C

q

2
1

2
1

2
1

2
12

2
2

2

= + = +o  (4.64)

Because the total electrical energy is conserved, the time derivative of the energy is zero; 
therefore, the following equation results from Eq. (4.64):

 q Lq
C

q
1

0+ =o pc m  (4.65)

The condition posed by Eq. (4.65) should be valid at all times, but the charge rate 
(the current) is not zero at all times; therefore, the only way that Eq. (4.65) is satisfied  
is when

 Lq
C

q
1

0+ =p  (4.66)

which is identical to Eq. (4.62): They represent the mathematical model of the electrical 
system shown in  Figure 4.23(a). By comparing Eq. (4.63) with the generic equation that 
modeled the free undamped response of a single-DOF mechanical system and was of 
the form

 x x 0n
2~+ =p  (4.67)
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it follows that the natural frequency ~n of the electrical system of Figure 4.23(a) is

 
LC

1
n~ =  (4.68)

and its numerical value is ~n = 500 rad/s. The free response of the electrical system con-
sists of a harmonic (sinusoidal or cosinusoidal) vibration at the natural frequency, quite 
similar to the case of a spring-mass mechanical system.

Multiple-DOF Conservative Electrical Systems
Kirchhoff’s voltage law or the energy method (both in conjunction with Kirchhoff’s 
node law) can be applied to derive the mathematical models of conservative electrical 
systems with configurations involving more than one DOF to determine their natural 
frequencies. The natural frequencies, together with their corresponding modes, can 
be evaluated analytically or using MATLAB® specialized commands, as discussed 
in Chapter 3.

Analytical Method The following example illustrates the analytical method of 
 calculating the natural frequencies and the corresponding modes of a multiple-DOF 
electrical system.

Example 4.12
Derive the mathematical model of the two-mesh electrical system sketched in Figure 4.24 
using Kirchhoff’s laws and the energy method. Determine the natural frequencies and the 
modes (eigenvectors) of this system for L1 = 0.5 H, L2 = 0.3 H, and C = 0.02 F.

Solution
Application of KVL to the two meshes of the electrical circuit of Figure 4.24 generates the 
equations

 

( )
[ ( ) ( )

( )
[ ( ) ( )]

]L
dt

di t

C
i t i t dt

L
dt
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C
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]]

]]
 (4.69)

figure 4.24

Two-Mesh Electrical Circuit with Energy Conservation.

C L2L1

i1
i1− i2

i2

www.semeng.ir

www.semeng.ir


128 CHAPTER 4 Electrical Systems

which can be written in charge form as
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( )
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q q

L q
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 (4.70)

The energy collected by the three electrical components of the circuit is

 
( )

E L
C

q q
L qq

2
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2
1

2
1

1 1
2 1 2

2

2 2
2= +

-
+o o  (4.71)

The energy being constant, its time derivative is zero, which leads to

 ( ) ( )q L q
C

q q q L q
C

q q
1 1

01 1 1 1 2 2 2 2 2 1+ - + + - =o p o p; ;E E  (4.72)

Equation (4.72) has to be valid at all times, but the charge rates cannot be zero at all 
times; therefore, compliance with the condition of Eq. (4.72) results in Eqs. (4.70), which 
have been obtained by means of Kirchhoff’s voltage law: They represent the mathematical 
model of the conservative electrical system of Figure 4.24.

The free response of a conservative system requires solution of the harmonic type:
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=

(  (4.73)

Substitution of Eqs. (4.73) into Eqs. (4.72) yields the following algebraic equations 
 system:
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 (4.74)

For the equations system (4.74) to have nontrivial solutions in the amplitudes Q1 and Q2, 
the determinant of the system needs to be zero:

 C
L

C

C

C
L

1

1

1

1 0

2
1

2
2

~

~

-

-

-

-
=  (4.75)

which produces the following algebraic equation (characteristic equation) in ~:

 ( )L L
C

L L
1

02 2
1 2 1 2~ ~ - + =; E  (4.76)

whose solution consists of the natural frequencies
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The numerical value of the nonzero natural frequency of Eqs. (4.77) is ~n,2 = 16.33 rad/s.
Similar to mechanical systems, modes and eigenvectors can be expressed for 

 electrical systems. The following ratio is obtained from Eqs. (4.74):

 
Q

Q

L C1
1

2

1

2
1~

=
-

 (4.78)

which, for the nontrivial natural frequency of Eq. (4.77), becomes

 .
Q

Q

L
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CL L
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= - = -

~=
+

e o  (4.79)

Equation (4.79) indicates that the mode consists of two charge amplitudes that have 
opposite signs (which means the corresponding currents circulate in opposite directions 
at ~n2). The magnitude of Q2 is larger than that of Q1. One eigenvector, corresponding to 
the nonzero natural frequency and the ratio of Eq. (4.79), is obtained by considering that 
Q2 = 1, for instance, which leads to

 
.

Q L
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0 6
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=
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=
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# * '- 4 1 (4.80)

Using MATLAB® to Calculate Natural Frequencies, the Eigenvalue  Problem  Similar 
to mechanical systems, the electrical vibrations corresponding to the natural 
 frequencies of a multimesh electrical system (which is the counterpart of a multiple-
DOF mechanical system) can be expressed in vector-matrix form as an eigenvalue 
problem. The mathematical model of Example 4.12, Eqs. (4.70), can be written as

 [ ]{ } [ ]{ } { }L q C q 0+ =p  (4.81)

where

 [ ] ; [ ]L
L

L C C

C

C

C
0
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1

1
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= =
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-
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T
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<

V

X

W
W
W
W

F  (4.82)

are the inductance and capacitance matrices and

 { } { }q q q t
1 2=  (4.83)

By following a development similar to the one applied to mechanical systems in 
Chapter 3 (more derivation details are in the companion website Chapter 4), the 
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following equation is obtained when a sinusoidal solution is sought for {q} in 
Eq. (4.81):

 [ ] [ ] [ ]det L C I 01 m- =-^ h  (4.84)

where m = ~2 are the eigenvalues, [I ] is the identity matrix and [L]−1[C] = [D] is the 
dynamic matrix of the conservative electrical system.

The MATLAB® command [V, D] = eig(D), which was introduced and uti-
lized in Chapter 3, returns the modal matrix V, whose columns are the eigenvectors, 
and the diagonal matrix D, whose diagonal elements are the eigenvalues. Simply 
using the command eig(D) produces the eigenvalues solely.

Example 4.13
Derive the mathematical model for the electrical circuit of Figure 4.25, and then deter-
mine the natural frequencies (eigenvalues) and the eigenvectors by using the vector-
matrix formulation method and MATLAB®. Consider L1 = L2 = L = 50 mH, C1 = C2 =  
C = 800 nF.

Solution
The electric energy corresponding to the elements of the circuit is

 ( )E L q L q q
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2
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2
1
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2

2 1 2
2
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2
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2

= + - + +o o o  (4.85)

The system being conservative, the time derivative of the electric energy is zero; therefore, 
the following two differential equations are obtained by annulling the multipliers of the two 
charge first derivatives:

 
( )L L q L q

C
q

L q L q
C

q

1
0

1
0

1 2 1 2 2
1

1

2 1 2 2
2

2

+ - + =

- + + =

p p

p p

Z

[

\

]]

]]
 (4.86)

The inductance and capacitances matrices, [L] and [C], result from comparing Eqs. (4.81) 
and (4.86):

figure 4.25

Conservative Two-Mesh Electrical Circuit.
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Using MATLAB® with its symbolic calculation capability, the following natural frequencies 
are obtained:

 
.

;
.

LC LC

0 618 1 618
n n1 2~ ~= =  (4.88)

whose numerical values are ~n1 = 97.71 rad/s and ~n2 = 255.83 rad/s. The unit-norm 
eigenvectors corresponding to the two natural frequencies are also found by means of 
MATLAB® as:

 { }
.
.

;{ }
.

.
Q Q

0 53
0 85

0 85
0 53

n n1 2= =
-

~ ~ ~ ~= =' '1 1 (4.89)

Equations (4.89) indicate that, during the first modal motion, the charges q1 and q2 have 
identical flow directions. The amplitude of q2 is larger than that of q2. During the second 
modal motion, the charges vibrate about opposing directions and the magnitude of q1 is 
larger than the magnitude of q2.

Free Damped Response
Let us consider an RLC series circuit without a source, as sketched in Figure 4.26.

The dynamic equation is obtained by means of Kirchhoff’s voltage law as

 
( )

( ) ( )L
dt

di t
Ri t

C
i t dt

1
0+ + =8  (4.90)

which can be written in terms of charge as

 q
L
R

q
LC

q
1

0+ + =p o  (4.91)

It has been shown for a similar mechanical system in Chapter 2 that the ratio mul-
tiplying q in Eq. (4.91) represents the square of the system’s natural  frequency ~n.  

figure 4.26

Single-Mesh Electrical Circuit with  Resistor, Inductor, and  Capacitor.
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In addition to the natural frequency, let us introduce another parameter, p, the electric 
damping ratio:

 LC

L
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n

2~
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=

=

Z
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]]

]]
 (4.92)

such that Eq. (4.91) becomes

 q q q2 0n n
2p~ ~+ + =p p  (4.93)

Equations (4.93) and Eq. (2.71), which define the free damped vibrations of a single-
DOF mechanical system, are similar. More about similarity (and analogy) between 
systems of different kinds is discussed in Chapter 10, but it should be mentioned that 
the electrical damping ratio was introduced in a way that is similar to the mechanical 
damping ratio. The dissipative nature of p is highlighted by the presence of R (which 
accounts for energy dissipation in an electrical system), and the value of p can be 
determined directly in terms of the actual system parameters by combining the two 
Eqs. (4.92) in

 
R

L
C

2
p =  (4.94)

It has been shown in mechanical systems that for 0 < p < 1 there is underdamping, for 
p > 1 there is overdamping, and for p = 1 the damping is critical. The same defini-
tions apply for electrical damping.

For 0 < p < 1, the solution to Eq. (4.93) is

 ( ) ( ) ( )cos sin sinq Q e t Q e t Qe tt
d

t
d

t
d1 2~ ~ ~ {= + = +v v v  (4.95)

with

 
1

n

d n
2

v p~

~ ~ p

= -

= -
)  (4.96)

and Q1, Q2 (or Q and {) are found from the initial conditions. The cases of criti-
cal damping (p = 1) and overdamping are presented in the companion website 
Chapter 4.

Example 4.14
In the electrical circuit of Figure 4.26, the resistor has a resistance R = 250 X. It is 
determined experimentally that the system’s damping ratio is 0.45 and its natural fre-
quency is 1200 Hz. What changes need to be applied to the system’s capacitance C and 
inductance L such that the damping ratio is reduced by 25% and the natural frequency 

www.semeng.ir

www.semeng.ir


 4.2 Electrical Circuits and Networks 133

is increased by 30% when the same resistance is used? Plot the system’s response in its 
latter configuration when the capacitor is charged by a voltage source of v = 200 V, which 
is subsequently removed.

Solution
Equations (4.92) enable expressing the inductance and capacitance as

 ;L
R

C
R2

2

n np~ ~

p
= =  (4.97)

With the original-design numerical values, these parameters are L1 = 0.0368 H and C1 = 
4.77 # 10−7 F. The changed values of the damping ratio and natural frequency are

 . ; .0 75 1 3n n2 1 2 1p p ~ ~= =  (4.98)

which numerically are p2 = 0.3375 and ~n2 = 1560 Hz. With these values, Eqs. (4.92) 
are used again, generating the altered values of the inductance and capacitance: L2 = 
0.0378 H and C2 = 2.75 # 10−7 F. Equations (4.95) and (4.96) give the charge equation 
as a function of time, and the constants Q1 and Q2 are determined by using the initial 
conditions:

 ( ) ;
( )

q vC
dt

dq t
0 0

t 0
= =

=

 (4.99)

stating that the initial charge is furnished by the voltage v applied to the capacitor and 
the initial current through the circuit is zero. The charge is plotted as a function of time 
in Figure 4.27; it can be seen that the charge settles to a steady-state value of zero in 
approximately 2 ns.

The MATLAB® dsolve command is employed here to solve a second-order differen-
tial equation. For the present example the command line that generates q(t) is

>> dsolve('D2q+2*csi*omn*Dq+omn^2*q=0','q(0)=v*c', 
'Dq(0)=0')

The charge is returned symbolically, so the pertinent numerical values have to be subse-
quently substituted, and the result plotted as shown in Figure 4.27.

 4.2.5 Operational amplifier circuits
As mentioned previously, circuits with operational amplifiers can realize various 
functions, such as inversion, amplification, addition, integration, differentiation, and 
filtering, to mention a few capabilities. We discuss next some of these functions.

Inverting Amplifier Circuits
In a circuit with two resistors, such as the one of Figure 4.28, the operational ampli-
fier can change the sign of the input voltage at the output as shown in the following.
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Based on Kirchhoff’s node law, the currents identified in Figure 4.28 are con-
nected as

 i i i1 2 3= +  (4.100)

However, it has been shown that the input impedance of an ideal op amp is infinity; 
therefore, no  current is entering the op amp, that is, i3 = 0, which means that i1 = i2. 
The two currents can be expressed by means of Ohm’s law as

 ;i
R

v v
i

R

v vi A A o
1

1
2

2

=
-

=
-

 (4.101)

figure 4.28

Basic Operational Amplifier in a  Negative Feedback Circuit.
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0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

C
ha

rg
e 

(C
)

× 10−3

× 10−5

www.semeng.ir

www.semeng.ir


 4.2 Electrical Circuits and Networks 135

where vi = v1 because v2 = 0 in Eq. (4.46). The input-output voltage relationship 
introduced in Eq. (4.46) becomes

 v Kvo A= -  (4.102)

Combining Eqs. (4.100), (4.101), and (4.102) yields

 
R

v

KR

v

R

v

KR

vi o o o

1 1 2 2

+ = - -  (4.103)

Regularly, the gain K of an op amp is high (larger than 105); therefore, the two terms 
in Eq. (4.103) with K to the denominator are very small and can be neglected. As a 
consequence, Eq. (4.103) changes to

 v
v

R

R

i

o

1

2
= -  (4.104)

Equation (4.104) indicates that the input and output voltages have different signs, 
which proves the inverting effect of this particular op amp circuit. In addition, if  
R2 > R1, there is an amplification effect as well, which justifies the name of inverting 
amplifier. The effect of multiplying and changing the sign of the input voltage at the 
output can be used as a logical operation in analog computing, as is shown in the 
companion website Chapter 4.

If we now analyze Eq. (4.101) in conjunction with Eq. (4.104) by taking into 
consideration that i1 = i2, we conclude that vA = 0. At the same time, as Figure 4.28 
shows, the positive input terminal is connected to the ground; therefore, its voltage is 
also zero. It follows that the voltages at the two input terminals, vA and vB, are zero. 
Actually, this property can be extended for the op amp circuits where the output is 
fed back to the negative input terminal, the case known as negative feedback, when 
the negative and positive input voltages are always equal.

Mathematical Operations with Operational Amplifier Circuits
We study here addition and integration; other operational amplifier examples are 
 presented in the companion website Chapter 4.

Example 4.15
Determine the relationship between the output voltage vo and the two input voltages v1 
and v2 for the op amp circuit of Figure 4.29; establish the function produced by this 
circuit.

Solution
The op amp circuit has negative feedback, and because the positive input voltage is zero, 
it follows that the negative input terminal voltage is zero as well. No current is drawn into 
the op amp; therefore,
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 i i i1 2+ =  (4.105)

The currents of Eq. (4.105) are expressed by means of Ohm’s law as

 ; ;i
R

v
i

R

v
i

R

v0 0 0 o
1

1

1
2

2

2
=

-
=

-
=

-
 (4.106)

By substituting Eqs. (4.105) into Eq. (4.106), the following relationship is obtained 
between the output and input voltages:

 v
R
R

v
R
R

vo
1

1
2

2= - +d n (4.107)

In the case where the three resistors are identical, that is, R1 = R2 = R, Eq. (4.107) 
reduces to

 ( )v v vo 1 2= - +  (4.108)

which indicates the function of the op amp circuit of Figure 4.29 is that of an inverting 
adder. The particular case with two input resistors can be generalized. When n resistors of 
corresponding resistances R1, R2, …, Rn are connected to the negative input terminal of 
Figure 4.29, having v1, v2, …, vn, the corresponding voltages with respect to the ground, 
the output voltage becomes

 v
R
R

v
R
R

v
R
R

vo
n

n
1

1
2

2 g= - + + +d n (4.109)

For identical resistances, R1 = R2 = ··· = Rn = R, Eq. (4.112) reduces to

 ( )v v v vo n1 2 g= - + + +  (4.110)

figure 4.29

Operational Amplifier in a Negative Feedback Circuit with Two Input Resistors.
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Example 4.16
Formulate the relationship between the output and input voltages for the op amp circuit 
of Figure 4.30 and determine the equation of the output voltage vo as a function of R, C, 
and the input voltage vi.

Solution
This circuit, too, has negative feedback and the positive input connected to the ground; as 
a consequence, the two input ports have zero voltages applied to them. The current i can 
be expressed in two ways, for the input branch and for the feedback branch:

 ; ( )i
R

v
i C

dt
d

v
0

0
i

o=
-

= -  (4.111)

Equation (4.111) is rewritten as

 
dt

dv

RC

vo i
= -  (4.112)

Integration of Eq. (4.112) yields

 v
RC

v dt
1

o i= - 8  (4.113)

which indicates that the role of the op amp circuit of Figure 4.30 is that of an integrator.

4.2.6 forced response with simulink®

Simulink® can be utilized to graphically model and solve differential equations 
pertaining to electrical systems dynamic models, which can incorporate nonlinear 
effects, such as saturation. A couple of Simulink® examples are studied next.

figure 4.30

Operational Amplifier in a Negative Feedback Circuit with Input Resistor and Feedback 
Capacitor.
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Example 4.17
Identify an electrical circuit whose mathematical model is the differential equation 
dx (t)/dt + 10x (t) = cos (~t). Use Simulink® to solve this differential equation for x (0) = 0  
and ~ = 100 rad/s, and plot the system response as a function of time.

Solution
Consider the electrical circuit of Figure 4.31.

The following equation is obtained by using Kirchhoff’s second law:

 ( ) ( ) ( )Ri t
C

i t dt v t
18+ =  (4.114)

which can be written in terms of charge as

 ( ) ( ) ( )q t
RC

q t
R

v t
1 1

+ =o  (4.115)

Equation (4.115) is, indeed, of the type indicated in this example with R = 1 X, C = 0.1 F,  
and v = cos(100t). The initial condition of the problem is q(0) = 0, which means there is 
no initial charge in the circuit.

figure 4.32

Simulink® Diagram for Calculating the Time-Response  Corresponding to a First-Order 
 Differential Equation Defining an Electrical System.
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figure 4.31

Electrical Circuit with Resistor,  Capacitor, and Alternating  Voltage Source.
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Solving differential equations using Simulink® was introduced in Chapter 2 in connec-
tion with single-DOF mechanical systems, and a similar procedure needs to be applied 
here. Equation (4.115) is reformulated as

 ( ) ( ) ( )q t
RC

q t
R

v t
1 1

= - +o  (4.116)

The two signals in the right-hand side of Eq. (4.116) are the inputs to the summing point 
of Figure 4.32, and the result is the charge derivative in the left-hand side of Eq. (4.116). 
After integration, the charge q(t) is obtained. It is known that cos(100t) = -sin(100t - 
r/2); therefore, the Sine Wave source parameters are Amplitude: - 1, Frequency 
(rad/sec): 100, Phase (rad): pi/2. Under Simulation, select Configura-
tion Parameters; and under Solver, select a Stop time of 0.8 s. The charge plot 
as a function of time is shown in Figure 4.33.

Example 4.18
The amplifier circuit of Figure 4.34, with R2 = 10R1 and R4 = 5R3, has a sinusoidal input 
voltage vi = 8 sin(5t) V. Knowing that the output voltage saturates for vi < −10 V and vi > 
15 V, use Simulink® to plot the output voltage, and compare it to the output voltage when 
the amplifier is ideal (without saturation).

figure 4.33

Charge as a Function of Time for the Electrical Circuit of Figure 4.32.
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Solution
The output voltage vo, input voltage vi, and interstage voltage v can be related according to

 K v
v

v
v

v
v

R

R

R

R

R R

R R

i

o

i

o

1

2

3

4

1 3

2 4
# #= = = - - =e eo o  (4.117)

which results in a gain (amplification) of K = 50. For an ideal amplifier, the relation-
ship between the output voltage and the input voltage is a linear one, as pictured in 
Figure 4.35. For input voltages exceeding some threshold values, say vi,min and vi,max, the 
output voltage no longer increases, due to saturation—this situation is also illustrated in 
Figure 4.35 and was introduced in Chapter 1. Saturation itself does not occur in reality 
at such precise limits, and there is a transition between the unsaturated and saturated 
regions. However, for the ideal saturated amplifier, the output voltage is defined in terms 
of the input voltage as

figure 4.34

Two-Stage Operational Amplifier System.
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figure 4.35

Saturation-Type Nonlinearity in an Amplifier.
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The nonlinear output voltage profile can be modeled in Simulink®, as shown next. 
The block diagram needed to graphically solve this example is shown in Figure 4.36. The 
Saturation block is selected from the Discontinuities library. Under Main, an 
Upper limit of 750 V and a Lower limit of −500 V need to be specified. These 
limits are obtained by multiplying the limits of the input voltage by the gain of 50. The 
 saturated and nonsaturated outputs vo are mixed into a Mux block (the black rectangle is 
found in the Commonly Used Blocks library), which further transmits the two signals 
to the Scope to be plotted.

Figure 4.37 shows the plot of the simulation; the result of saturation is a truncation of the 
ideal sinusoidal  output: The peak regions of the ideal sinusoid are chopped in the saturated 
response between −500 V and 750 V.

figure 4.36

Simulink® Diagram for Plotting the Output Voltage from an  Operational Amplifier with and 
without Saturation.

Sine
vi vo

Saturation

Nonsaturated vo

Saturated vo

Scope

-K-

figure 4.37

Simulink® Plot of Unsaturated and Saturated Output Voltages.
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summary
This chapter discusses the electrical elements of voltage and current source, resis-
tor, capacitor, inductor, and operational amplifier. It also introduces the methods 
of electrostatic actuation and sensing in microelectromechanical systems. Ohm’s 
law, Kirchhoff’s laws, the energy method, the mesh analysis method, and the node 
analysis method are applied to derive mathematical models for electrical  systems. 
Examples are studied of how to apply MATLAB® for symbolic and numerical cal-
culation of the  natural, free, and forced responses of electrical systems. Simulink® 
is used to model and solve  differential equations for electrical systems that might 
include nonlinearities, such as saturation. The next chapter studies, in a similar 
manner, the modeling of fluid and thermal systems.

prOblems

4.1 Starting from the operating principle of a translation potentiometer ( Figure 4.3), 
sketch a rotation (angular) potentiometer and find the relationship between 
voltage and angular displacement.

4.2 Five identical resistors (R = 120 X) need to be combined using both series and 
parallel connections. Determine the combinations that produce the maximum 
resistance and minimum resistance, respectively, between two end points; cal-
culate the respective resistances.

4.3 A Wheatstone bridge consists of five resistors, as shown in Figure 4.38. 
 Determine the equivalent resistance between nodes a and b, as well as the one 
between nodes c and d for R1 = R3 = 210 V, R2 = R4 = 180 V, R5 = 130 V.

4.4 Determine the equivalent resistance between nodes a and b of the electrical 
system shown in  Figure 4.39 for R1 = 50 X, R2 = 80 X, R3 = 40 X, R4 = 60 X, 
R5 = 30 X, R6 = 10 X.

figure 4.38

Wheatstone Bridge with Resistances.
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4.5 Calculate the equivalent capacitance between nodes a and b that correspond to 
the capacitor Wheatstone bridge shown in Figure 4.40 for C1 = C2 = 20 nF,  
C3 = 15 nF, C4 = 30 nF, and C5 = 40 nF. Hint: See companion website Chapter 
4 for conversion between triangle and reversed-Y capacitance connections.

4.6 A MEMS capacitive actuator with one fixed plate and two mobile plates is 
sketched in  Figure 4.41. Evaluate the resulting force acting on the mobile pair 
as a function of the changing gap when an external voltage v = 20 μV is applied 
between the fixed and the mobile plates. Initially, the fixed plate is placed sym-
metrically between the mobile plates. The distance between the two mobile 
plates is d = 5 μm, the plate overlapping area is 8000 μm2, and f0 = 8.8 #  
10−12 F/m. Also calculate the resulting force corresponding to a minimum gap 
gmin = d/500.

4.7 Compare the sensing performance of a transverse-motion capacitive unit with 
that of a longitudinal-motion one for MEMS displacement detection in terms 
of the initial gap g0 and overlap x0. Assume the two physical units are identical 
(same initial gap, plate areas, and dielectric properties).

figure 4.39

Electrical Resistances in a Mixed Connection.
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Wheatstone Bridge with Capacitors.
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 4.8 The motion of the block of Figure 4.42 is sensed both longitudinally and trans-
versely separately by two capacitive circuits. Knowing g0 = 10 μm, x0 = 35 μm,  
vb = 2 μV, Dvt = 0.8 μV (reading by the transverse unit), and Dvl = 0.2 μV 
(reading by the longitudinal unit), calculate the corresponding block displace-
ment. If the result indicates a discrepancy, consider the transverse unit is the 
precise one, indicate what design parameter of the longitudinal unit was erro-
neously evaluated, and determine its exact value. The motion starts as indi-
cated in Figure 4.42.

 4.9 A longitudinal MEMS capacitor is replaced with a transverse one to obtain a 
10-fold increase in the actuation force. Consider that the two actuators’ dimen-
sions and operation conditions are identical, the initial gap of the transverse 
actuator is equal to the longitudinal actuator gap, and the maximum distance 
traveled is one third of that gap. For a capacitor plate that is square with a side 
length of 80 μm, calculate the initial gap of the transverse actuator.

4.10 Demonstrate that the equations allowing conversion of an inductor D connec-
tion into a reversed-Y connection (as sketched in Figure 4.43) are the ones 

figure 4.42

MEMS Capacitive Sensor with Transverse and  Longitudinal Pickup.
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figure 4.43

Three-Inductor Connections: (a) D (Delta)  Connection; (b) Reversed-Y Connection.
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derived in Example 4.1 where the symbol R for resistance has to be substituted 
with the symbol L for inductance (see Figure 4.5). Calculate LAD, LBD, and LCD 
for LAB = 80 mH, LBC = 100 mH, LCA = 70 mH.

4.11 An electrical network is formed of five meshes enclosed in a rectangular area. 
Determine the number of corresponding loops and the configurations (degrees 
of freedom) for three geometric arrangements. Draw the electrical diagram of 
such a circuit that contains one voltage source and six resistors. Demonstrate 
using Kirchhoff’s first law that five independent currents define the configura-
tion of the electrical system.

4.12 Using Kirchhoff’s current law,

(a)  Demonstrate that the configuration of the electrical network schematized 
in Figure 4.44 is four.

(b) Demonstrate that ii = io1 + io2.

4.13 A single-mesh (single-DOF) circuit comprises series and parallel combina-
tions of three identical inductors and two identical capacitors. Identify the two 
electrical systems for which the natural frequencies ratio is maximum and cal-
culate that ratio.

4.14 What is the ratio of the natural frequencies for the electrical system of 
 Figure 4.45?

4.15 Use the energy method to determine the mathematical model for the elec-
trical circuit of  Figure 4.46. Find the system’s natural frequencies and the 
corresponding eigenvectors for L1 = 80 mH, L2 = 120 mH, C1 = 250 μF, 
and C2 = 280 μF.

4.16 Use the matrix eigenvalue method and MATLAB® to solve Problem 4.15.

4.17 For an electrical circuit containing a resistor, an inductor, and a capacitor 
connected in series it is known that the natural frequency is 3000 Hz and the 

figure 4.44

Electrical Network with Currents.
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system’s  period is 0.00035 s. It is also known that the resistance correspond-
ing to critical damping is Rcr = 200 X. Calculate the unknown parameters R, 
L, and C.

4.18 A solenoid is connected to a voltage source. Derive the mathematical mod-
els of the electrical system when the solenoid is considered ideal (without 
electrical resistance) and when the solenoid  resistance is taken into account. 
Calculate the two currents and plot them as functions of time. Known are the 
voltage v = 80 V, the wire diameter d = 0.2 mm, the coil median diameter  
D = 50 mm, the number of turns N = 2000, the electric resistivity t = 17 # 
10−9 Xm, and the magnetic permittivity μ = 0.01 H/m.

4.19 Apply the mesh analysis method to derive the mathematical model for the elec-
trical circuit of  Figure 4.47. Find the currents in the circuit for R1 = 35 X, R2 = 
50 X, R3 = 60 X, R4 = 20 X, R5 = 45 X, R6 = 10 X, and R7 = 25 X. The voltage 
is v = 100 V.

4.20 Use the mesh analysis method to determine the mathematical model for the 
electrical circuit of Figure 4.48. Solve for the currents and plot them using 
MATLAB® for L1 = 5 H, L2 = 8 H, L3 = 6 H, R1 = 100 X, R2 = 150 X, v = 
20sin(6t) V.

figure 4.45

Two-Mesh Electrical Circuit with Coupling 
Inductor and Capacitor.
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figure 4.46

Two-Mesh Electrical Circuit with Coupling 
Capacitor.

C1 C2 L2

L1

figure 4.47

Electrical Circuit with Resistors and  Voltage 
Source.
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figure 4.48

Three-Mesh Electrical Circuit.
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figure 4.51

Electrical Network Comprising  Resistors, 
Capacitors, Inductors, and a Voltage 
Source.
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figure 4.52

Electrical Circuit with  Resistors and Current 
Source.
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figure 4.49

Two-Mesh Electrical Circuit with Two 
Switches Swapping States.
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figure 4.50

Two-Mesh Electrical Circuit with Switch.
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4.21 Derive the mathematical model of the circuit shown in Figure 4.49. Consider 
that, in the first phase, the switch S1 is closed while switch S2 is open; and in the 
second phase, the two switches change their states. Plot the current through R for 
the second phase. Known are R = 120 X, C = 50 μF, L = 0.6 H, and v = 80 V.

4.22 Derive the mathematical model of the circuit shown in Figure 4.50 when the 
switch is closed (position 1), then when the switch is opened. Plot the current 
through R2 when the switch in the open position. Consider R1 = R2 = 200 X, 
C = 20 μF, and v = 100 V.

4.23 Derive the mathematical model of the electrical circuit of Figure 4.51 using the 
mesh analysis method.

4.24 Use Simulink® to model the circuit shown in Figure 4.51 of Problem 4.23. Plot 
the branch currents in terms of time when the initial charge on capacitor C1 is 
q1(0) = 0.001 F; known also are R1 = 350 X, R2 = 220 X, L1 = 1.2 H, L2 = 2 H,  
C1 = 3.5 mF, C2 = 2.8 mF, v = 110 V.

4.25 Determine the DOFs of the electrical circuit sketched in Figure 4.52. Using 
the node analysis method and MATLAB®, calculate the currents through the 
branches for R1 = 50 X, R2 = 20 X, R3 = 40 X, R4 = 40 X, R5 = 60 X, and  
i = 3 mA.
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4.26 Calculate the currents produced by the current source in the circuit sketched in 
Figure 4.53 by  employing the nodal analysis method and MATLAB® for i = 
1 mA, R1 = 30 X, R2 = 50 X, R3 = 10 X, and R4 = 70 X.

4.27 Determine the relationship between the output and input voltages for the 
op amp circuit of  Figure 4.54 and establish the function produced by this 
circuit. Plot the output voltage for vi = 80t V, R = 180 X, and C = 35 mF.

4.28 Derive the mathematical model for the operational amplifier circuit shown in 
Figure 4.55. Use MATLAB® to find the output voltage for R = 35 X, L = 0.5 
H, C = 95 μF, and an input voltage defined as v = 40/(1 + 0.01t), where t  
is time.

4.29 In the Wheatstone bridge shown in Figure 4.38 of Problem 4.3, the input 
 voltage is vi = 40 sin(10t) V and the resistor R1 saturates when the voltages 
vmin = -20 V and vmax = 30 V fall across it. Use Simulink® to plot the output 
 voltage.

4.30 Solve Problem 4.20 based on Figure 4.48 utilizing Simulink® and the numeri-
cal values given in Problem 4.20.

figure 4.53

Electrical Network Comprising Resistors 
and a Current Source.
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figure 4.54

Operational Amplifier in a  Negative 
Feedback Circuit with Input  Capacitor and 
Feedback Resistor.
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figure 4.55

Electrical Circuit with Operational Amplifier.
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CHAPTER

Objectives

The focus of this chapter is on modeling fluid and thermal systems, and the main 
addressed topics are

•	 Fluid (liquid and pneumatic) elements—inertance, capacitance, resistance, and 
fluid energy sources.

•	 Thermal capacitance and resistance elements.

•	 Mathematical modeling of fluid systems and formulation of the natural and 
forced responses.

•	 Mathematical modeling of thermal system forced response.

•	 Use of MATLAB® in symbolic and numerical calculations, and in evaluation of 
fluid systems eigenvalues and eigenvectors.

•	 Application of Simulink® to graphically model and plot the time response of 
forced fluid systems with linear and nonlinear properties.

intrOductiOn
This chapter is dedicated to modeling the dynamics of fluid (liquid and pneumatic) 
systems as well as thermal systems. These systems are modeled using elements 
 similar to those for mechanical and electrical systems: inertance, capacitance, and 
resistance. System models are derived when these components are coupled in various 
systems. In case only inertance and capacitance properties are present and no resis-
tive losses occur, the natural response of fluid systems is studied. In many applica-
tions, the inertia properties of liquids and gases can be neglected, and the resulting 
mathematical models are based on only the capacitive and resistive properties used 
to formulate the forced response of fluid and thermal first-order systems. The use of 
MATLAB® and Simulink® in solving for the natural and forced responses of fluid and 
thermal systems is illustrated by several solved examples.

5Fluid and thermal systems
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152 CHAPTER 5 Fluid and thermal systems

5.1 Liquid systems mOdeLing
In liquid (or hydraulic) systems, the medium of energy transmission is a liquid. We 
review a few basic  liquid laws first, such as Bernoulli’s law and the law of mass con-
servation. Next, we discuss the basic  liquid elements of inertance, capacitance, and 
resistance, together with the sources generating liquid system motion. You will learn 
how to formulate the natural (free) response of inertance-capacitance liquid systems 
as well as the forced response of liquid systems containing capacitance and resistance 
components.

The notion of flow rate is utilized in liquid and pneumatic systems with different 
meanings. In liquid systems, the volume flow rate is employed, which is denoted here 
by qv; whereas pneumatic systems use the mass flow rate, denoted by qm. The two 
amounts are connected by means of the mass density:

 ;
m

q
t
V

t
xA

vA q
t t

V
qv m vt t

D

D

D

D

D

D

D

D
= = = = = =  (5.1)

where V is volume, m is mass, v is the fluid velocity, x is distance travelled by fluid, and 
A is area perpendicular on flow direction.

5.1.1 bernoulli’s Law and the Law of mass conservation
An important instrument in modeling liquid dynamics is Bernoulli’s law. For a 
 conservative liquid (with no energy losses or gains) flowing in a pipe and when 
the liquid is considered incompressible (and therefore its mass density is constant), 
Bernoulli’s law states that

 p
v

gh p
v

gh
2 22

2
2

2 1
1
2

1

t
t

t
t+ + = + +  (5.2)

which is based on Figure 5.1, and where p is the static pressure, h is the vertical 
 distance (also named head) from a reference line, and v is the liquid velocity at the 
center point of a cross-section. When losses are accounted for (of a viscous nature) 
and energy is input into the system (such as by pumps or hydraulic actuators), 
Eq. (5.2) changes to

 p
v

gh p
v

gh w gh
2 2 f2

2
2

2 1
1
2

1

t
t

t
t t t+ + = + + + -  (5.3)

where w is the specific work produced by a hydraulic source (it is energy per unit 
mass, being measured in N-m-kg-1 in SI) and hf is the lost head (it is due mainly 
to viscous friction). Equations (5.2) and (5.3) are the pressure-form equations of 
Bernoulli’s law.

The law of volume/mass conservation states that, if there is no accumulation or 
loss of liquid between points 1 and 2 of Figure 5.1, then the volume flow rate will 
not change:

 q qv v1 2=  (5.4)
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or, based on Eq. (5.1)

 v A v A1 1 2 2=  (5.5)

For a pipe of length l, the lost head is calculated as

 h
d

lf

g
v
2f

h

2

#=  (5.6)

where f is the Moody friction factor and dh is the hydraulic diameter, which is cal-
culated as

 d
P
A4

h
w

=  (5.7)

with Pw being the wetted perimeter of the pipe internal cross-section. For laminar 
flow (which is defined shortly), the Moody friction factor is determined as

 
Re

f
64

=  (5.8)

The Reynolds number, Re, is the ratio of the inertia to viscous friction effects 
associated with the  relative motion between a solid and a fluid. The mathematical 
expression of the Reynolds number is

 Re
vd vdh h

n

t

o= =  (5.9)

Figure 5.1

Liquid Column traveling through Variable  Cross-section Pipe in a Vertical Plane.
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154 CHAPTER 5 Fluid and thermal systems

where dh is the hydraulic diameter (for a sphere moving in a fluid, dh is the diameter; 
similarly, for fluid flowing in a pipe, dh is the pipe inner diameter), n is the dynamic 
viscosity, and o is the kinematic viscosity. Laminar flow has a smooth, linear char-
acter and is defined by generally parallel streamlines. It is characterized by large 
viscosity effects and small inertia properties and occurs for low Reynolds numbers, 
for instance, the flow in a pipe is considered laminar when Re < 2000. For very small 
Reynolds number, such as Re < 1, the flow is known as creep or Stokes flow. On the 
contrary, turbulent flow has a nonlinear character and is defined by a chaotic motion 
containing vortices and eddies. In pipelines, turbulent flow occurs for Reynolds 
 numbers larger than 4000 and where inertia effects are predominant. When 2000 < 
Re < 4000, the flow is considered to be of a transition nature, because it combines 
laminar and turbulent traits.

Example 5.1
A pump is used to send liquid vertically through a pipe of circular cross-section with 
inner diameter d = 0.02 m. Assume the pipe, whose height is l = 6 m, is open at its end 
opposite to the pump; also assume the flow is laminar and the incompressible liquid has a 
mass density t = 1000 kg/m3 and dynamic viscosity n = 0.00001 N-s/m2. Known also is 
the input volume flow rate qvi = 0.0001 m3/s. Calculate the specific work of the pump w 
that is necessary to send liquid to the top of the pipe by considering the friction losses. the 
pressure at the pump intake and at the pipe’s free end is atmospheric.

Solution
Figure 5.2 shows schematically the pump and vertical pipe system, where point 0 is at the 
intake (input) to the pump, point 1 is at the outtake (output) of the pump, and point 2 is at 
the end of the vertical pipe segment.

Application of Bernoulli’s law between points 0 and 1, which are assumed at the same 
height, leads to

 p
v

p
v

w
2 201

1
2

0
2t t

t+ = + +  (5.10)

the law of mass conservation gives

 q v A v Avi 0 1= =  (5.11)

which assumed that the pump intake and outtake areas are identical; the result is 

 v v
d

q4 vi
0 1 2r

= =  (5.12)

Because v0 = v1, Eq. (5.10) simplifies to

 p p w
1 0

t= +  (5.13)
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Bernoulli’s law is now applied between points 1 and 2:

 or wp
v

gl p
v

gh gl gh
2 2a f f

2
2

1

1
2t

t
t

t t t t+ + = + - -=  (5.14)

since v2 = v1 because of mass conservation. the friction head is found, using Eqs. (5.6) 
through (5.9), as

 h
gd

lv32
f 2

1

t

n
=  (5.15)

which takes into consideration that the hydraulic diameter is equal to the actual inner 
pipe diameter d. Combining Eqs. (5.12), (5.13), (5.14), and (5.15), the specific work of 
the pump is

 w gl
d

lq128 vi

3rt

n
= +  (5.16)

the numerical value of the pump specific work is w = 58.8 m2/s2.

 5.1.2 Liquid elements
Similar to mechanical or electrical systems, which are formed of elements with iner-
tia, storage capacity, losses, and energy input, liquid systems can be defined by such 
elements. Inertance elements  portray liquid inertia effects, whereas capacitances and 
resistances characterize liquid storage and loss features, respectively. The pressure or 
the difference of level (head) among various components of a liquid system represent 
source elements that set the liquid into motion. As a consequence of the dual manner 
of generating liquid motion, the elements’ definitions can be provided by either using 

Figure 5.2

Pump with Vertical Pipe segment.

d

Pipe cross-section 

0

1

2

l Pipe segment 
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156 CHAPTER 5 Fluid and thermal systems

the pressure or the head in addition to other amounts of interest. The subscript p (for 
 pressure) or h (for head) accompanies the letter l (standing for liquid) in the following.

Inertance
The inertance quantifies the inertia effects in liquid systems and is particularly 
important in long conduits such as pipes. For laminar flow and in terms of pressure, 
the inertance (which is denoted by I ) is defined as the pressure difference necessary 
to produce a unit change in the rate of change of the volume flow rate:

 pI
q

p

dt

dq

p

dq

pdt
,l

v v v

D D D
= = =
o

 (5.17)

The SI unit of Il,p is N-s2-m-5 (or kg-m-4). The head-related inertance definition is 
similar to that of Eq. (5.17):

 hI
q
h

dt

dq
h

dq
hdt

,l
v v v

D D D
= = =
o

 (5.18)

The SI unit of Il,h is kg-N-1-m-1 (or s2-m-2). By taking into account that a static pres-
sure difference is connected to the head difference as

 p g htD D=  (5.19)

it follows that the two inertance definitions of Eqs. (5.17) and (5.18) are related as

 hpI gI, ,l lt=  (5.20)

The kinetic energy that corresponds to inertance is very similar to the kinetic 
energy of mechanical and electrical systems, defined as
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< F  (5.21)

The pressure-definition of Eq. (5.21) is kept here (whose SI unit is J or N-m), as the 
head-defined energy results in a quantity that is not actually an energy (the interested 
reader might want to check the units of ( / ) ) .T h qq,l h vv

1
2

2D= o

Example 5.2
A microchannel used in a microfluidic application has the shape and dimensions 
 indicated in Figure 5.3. Calculate the pressure-defined inertance of the liquid that flows 
through this channel segment, considering that known are the end widths w1 and w2, 
the thickness h, the length l, and the liquid mass density t. Obtain the inertance for the 
particular design with w1 = w2.
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Solution
the width w of Figure 5.3(b) can be expressed in terms of x as

 ( )w w x w
l

w w
x1

2 1
= = +

-
 (5.22)

the inertance of an elementary parallelepiped of width w, thickness h, and length dx is first 
determined. the total inertance is calculated afterward by summing all similar elementary 
prisms (which means integration over the tapered pipe length l ). Newton’s second law of 
motion is used for the prismatic element of length dx by expressing the external force as 
area times pressure difference:

 ( ) [ ( ) ( )] ( ) ( )dm
dt
dv

A x p x p x dx A x xd= - + =  (5.23)

where it has been considered that p(x) = p(x + dx) + dp(x). Knowing that qvo  = A[dv (t)/
dt], Eq. (5.23) enables expressing the inertance of the element as
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 (5.24)

MAtLAB®’s symbolic Math toolbox™ is used to integrate the elementary inertance of 
Eq. (5.24) using the following code:

>> syms w1 w2 h l x rho
>> w = w1+(w2-w1)/l*x;
>> in =limit(int(1/w,x),x,l,'left')-limit(int(1/w,x), 

x,0,’right’);
>> inertance = rho/h*in

Figure 5.3

tapered Rectangular  Cross-section Pipe with Laminar Flow: (a)  three-Dimensional View; 
(b) side View.

(a) (b)

v
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the last MAtLAB® command in the previous sequence returns:
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lnI dI
h w w

l
w
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, ,l p l p
2 1 1

2
#

t
= =

-
#  (5.25)

It can be seen that the variable x is integrated between the limits of 0 and l in two steps: 
first the indefinite integral of 1/w (x) is calculated, then the definite integral is evaluated as 
the difference between the upper and lower limits of the indefinite integral; on attempting 
to directly calculate the definite integral by means of the command int(1/w,x,0,l), 
an error message is returned, as MAtLAB® cannot determine whether w (x) is between 
the limits 0 and l.

For w1 = w2 = w, the trapezoidal prism becomes a parallelepiped with an inertance of

 I
hw

l
A
l

,
*
l p

t t
= =  (5.26)

which is obtained using the MAtLAB® command limit(inertance,w1,w2,'left')—
this command calculates the limit of Il,p when w1 reaches w2 from the left. the full MAtLAB® 
code can be found on the companion website. Equation (5.26), where A is the inner cross-
sectional area, is valid for any constant cross-section pipe.

Capacitance
The capacitance in the liquid domain reflects the storage capacity by a tank-type 
device. The capacitance can be defined in terms of static pressure as the ratio between 
the volume flow rate and the rate of pressure variation:
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In the International System (SI) of units system, the pressure-defined liquid 
capacitance is measured in m5-N-1 (or m4-s2-kg-1). In terms of head, the capaci-
tance quantifies the  volume flow rate necessary to change the head rate variation 
by one unit:
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Due to the connection between head and static pressure, Eq. (5.19), the two 
 capacitances of Eqs. (5.27) and (5.28) are related as

 h pC gC, ,l lt=  (5.29)

The SI unit of Cl,h is m2.
Similar to springs in mechanical systems and capacitors in electrical systems, the 

liquid capacitance is incorporated into potential pressure-form energy as
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D D= = =  (5.30)

The hydraulic energy, according to Eq. (5.30), is measured in N-m.

Example 5.3
a. Determine the capacitance of the variable cross-section cylindrical vessel sketched in 

Figure 5.4(a).
b. Use the result to calculate the capacitance of the conical segment of Figure 5.4(b). 

Known are the end diameters d1 and d2, the height h, as well as the liquid mass 
density t and the gravitational  acceleration g.

Figure 5.4

(a) Variable Cross-section  Vertical tank; (b) Conical- segment  Vertical tank.
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dx
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Solution
a. the pressure-defined capacitance can be expressed as

 C
dp
dV

dh

dp
dh
dV

,l p = =  (5.31)

the pressure at the bottom of the tank is

 p ght=  (5.32)

the volume occupied by the liquid in a variable cross-section tank with a head (height) 
of h is  calculated as

 ( )V A x dx
h

0

= #  (5.33)

where A(x) is the tank variable cross-sectional area at a distance x measured from 
the bottom of the tank. By taking derivatives of p and V in Eqs. (5.32) and (5.33) with 
respect to h and substituting these derivatives into Eq. (5.31), the pressure-defined 
and head-defined capacitances become
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b. the diameter defining the variable area A(x) is the one given in Eq. (5.22) with d 
instead of w and h instead of l. the tank volume is therefore expressed as
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d d
x dx

h
d d d d
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Calculating the derivative of V with respect to h in Eq. (5.35) and substituting it into 
Eqs. (5.34) yields
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 (5.36)

For a cylindrical tank with d1 = d2 = d, Eqs. (5.36) change to

 ;C
g

d
C

d
4 4, ,l p l h

2 2
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r r
= =  (5.37)
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Liquid capacitances can be connected in series and in parallel in the same way as 
electrical capacitances. The companion website Chapter 5 gives the derivation of the 
equivalent series and parallel capacitances, based on Figure 5.5:

 C C C
C C C

1 1 1
ls l l

lp l l

1 2

1 2

= +

= +
*  (5.38)

Resistance
The liquid motion through pipes or conduits encounters resistance from changes in 
the conduit direction, the existence of valves, or other  constrictions, which act as 
energy dissipaters. The dissipative action is quantified by means of resistances, very 
similar to electrical systems. Figure 5.6 shows the portion of a pipeline with a valve 
on it. The valve changes the area of flow and the net result of it is a  pressure drop 
from p1 to p2.

Mathematically, the liquid resistance is defined as the ratio of the pressure drop to the 
volume flow rate:

 R q
p

q
p p

,l p
v v

1 2D
= =

-
 (5.39)

The SI unit for Rl,p is N-s-m-5 (or kg-s-1-m-4). In terms of equivalent head, the liquid 
resistance is defined as

 R q
h

,l h
v

=  (5.40)

Figure 5.5

Liquid storage tanks Connected in (a) series; (b) Parallel.

(a) 

Cl1 Cl2

(b)

Cl2

Cl1

www.semeng.ir

www.semeng.ir


162 CHAPTER 5 Fluid and thermal systems

Rl,h is measured in s-m-2 in SI units. Again, when the static pressure-head relation-
ship is considered, the two resistances of Eqs. (5.39) and (5.40) are connected as

 hpR q
p

q
gh

gR, ,l
v v

l

t
t

D
= = =  (5.41)

Both definitions assume a linear relationship between pressure (or head) varia-
tion and volume flow rate. While this linearity covers the laminar flow domain, for 
turbulent flow, the relationship between these variables becomes nonlinear and it is 
accepted that pressure varies with the square of the volume flow rate:

 p kqv
2D =  (5.42)

where k is a constant determined experimentally. Figure 5.7 shows the variation of 
the pressure in terms of volume flow rate for the laminar and turbulent regimes.

Assuming the pressure varies nonlinearly with the volume flow rate, this rela-
tionship can be linearized using a Taylor series expansion about a given nominal 
(or operational) point, such as the one indicated with the letter n in Figure 5.7. The 
Taylor series expansion can keep the first two (linear) terms:
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p
p p

q
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D D
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= + -
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 (5.43)

Figure 5.7

Laminar- and turbulent-Regime Relationships between Pressure Drop and Volume 
Flow Rate.
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Figure 5.6

Pipeline with Valve and  Pressure Drop.
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As seen in Figure 5.7,

 ( );pp p q q q, ,nn v v n v nd dD D D- = - =  (5.44)

represent small variations in pressure and volume flow rate. As a consequence, 
Eq. (5.43) can be  written as
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Equation (5.45) suggests the linearized resistance about the nominal point is
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Equation (5.46) indicates that the linearized liquid resistance is the ratio of a small 
variation of the pressure variation to the small variation of the volume flow rate and 
can be calculated as the partial derivative of the pressure variation in terms of the 
volume flow rate at the nominal point. By taking into account Eq. (5.42), the linear-
ized resistance defined in Eq. (5.46) becomes
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kq q

p
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,
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v v n
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D D
= = = d n  (5.47)

In other words, the linearized liquid resistance for turbulent flow is twice the liquid 
resistance of  laminar (linear) flow.

Example 5.4
the pressure variation in a pipe with turbulent liquid flow is expressed in terms of volume 
flow rate as v

23 .p q qv= +D  Compare the linearized hydraulic resistance corresponding 
to this relationship to the linear resistance, which can be defined as R p/q*

, p vl = D  by 
 plotting the two-resistance ratio in terms of qv. Calculate this ratio for qv = 0.01 m3/s and 
qv = 2 m3/s.

Solution
According to Eq. (5.47), the linearized hydraulic resistance is obtained as

 
p

u

u( )
R

q
q1 6,l p

v
v

D
= = +  (5.48)

At the same time, the resistance Rl, p*  is calculated as

 R q
p

q1 3,
*
l p

v
v

D
= = +  (5.49)
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the following ratio can be used to compare the resistances of Eqs. (5.48) and (5.49):
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,
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,
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+
 (5.50)

which indicates the linearized resistance is almost twice the resistance defined in 
Eq. (5.49). Equation (5.50) also shows that the ratio increases with the increasing volume 
flow rate, and the limit is

 
3

limc c 2,maxR R
v

= =
"q

 (5.51)

the numerical values of the resistance ratio of Eq. (5.50) are cR = 1.029 for qv = 0.01 m3/s  
and cR = 1.857 for qv = 2 m3/s. Figure 5.8 is the plot of cR as a function of qv.

In the companion website Chapter 5, the Hagen-Poiseuille equation is dem-
onstrated, which gives the resistance of a cylindrical pipe of length l and internal 
 diameter d for laminar flow as

 R q
p

d

l128
,l p

v 4r

nD
= =  (5.52)

Figure 5.8

Linear-to-Nonlinear Hydraulic Resistance Ratio as a Function of Volume Flow Rate.
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Example 5.5
Determine the hydraulic resistance of a tapered pipe having a length of l and end diame-
ters of d1 and d2, as indicated in Figure 5.9. Consider laminar flow and calculate the resis-
tance numerical value for d1 = 0.5 m, d2 = 0.3 m, l = 10 m, and n = 0.001 N-s/m2.

Solution
If an elementary portion of length dx of the tapered pipe is studied, the respective portion 
is approximately a cylinder of diameter d, as shown in Figure 5.9; therefore, its pressure 
difference is given by the Hagen-Poiseuille equation as

 ( )d p
d

dx
q

128
v4r

n
D =  (5.53)

the diameter d is expressed geometrically in terms of x as

 ( )d d d d
l

l x
2 1 2= + -

-
 (5.54)

substitution of Eq. (5.54) into Eq. (5.53) and integration between the limits of 0 and l with 
respect to x yields the pressure difference between the input and the output of the pipe:
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which indicates that the fluid resistance of the tapered pipe of Figure 5.8 is
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 (5.56)

Obviously, when d1 = d2, and therefore the taper is zero (the tapered pipe becomes a 
cylindrical one), Eq. (5.56) reduces to the classical Hagen-Poiseuille equation resistance, 
Eq. (5.52), which corresponds to a constant cross-section cylindrical pipe. the solution to 
this problem has been obtained using the MAtLAB® symbolic Math toolboxtM; the code 
is included in the companion website. For the numerical parameters of this example, the 
hydraulic resistance is Rl,p = 19.72 N-s/m5.

Similar to dampers in mechanical systems and resistors in electrical systems, 
energy is lost through liquid resistances, and this loss can be expressed in pressure 
form as

 
2( )

U R q
R

p
pq

2
1

2
1

2
1

,
,

dl l p v
l p

v
2 D

D= = =  (5.57)
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It should be mentioned that Eq. (5.57) actually expresses power: The pressure is 
measured in N/m2, hydraulic resistance is measured in N-s/m5, and therefore the unit 
of Udl is N-m/s, which is the unit for power.

Liquid resistances can be connected in series (as shown in Figure 5.10(a)) or in 
parallel (as  illustrated in Figure 5.10(b)), and the equivalent resistances Rls and Rlp, 
which are derived in the companion  website Chapter 5, are

 

R R R

R R R
1 1 1
ls l l

lp l l

1 2

1 2

= +

= +
*  (5.58)

Example 5.6
A microfluidic channel system is shown in Figure 5.11. Calculate the equivalent hydrau-
lic resistance between points 1 and 2 by considering that the liquid losses are produced 
according to the Hagen-Poiseuille equation. Also calculate the power lost in the micro-
system. Known are l = 100 nm, n = 0.0005 N-s/m2, d = 20 nm (pipe diameter), and 
Dp = p1 - p2 = 103 N/m2.

Figure 5.10

Liquid Resistances Connected in (a) series; (b) Parallel.

Rl1 Rl2 Rl1

Rl2

(a) (b)

Figure 5.9

tapered Pipe with Laminar Flow.

d
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Solution
Figure 5.12(a) shows the microchannel system of Figure 5.11 with the corresponding 
hydraulic resistances, which are identical. the aim is to obtain the equivalent, one-resistance 
system of Figure 5.12(b). to achieve that, the resistance, which is equivalent to the four 
actual resistances in the middle of the system of Figure 5.12(a), can be calculated by com-
bining in parallel two groups of series connected resistances, which yields

 
( (2 2

2 2( (
RR

R R

R R
ll

l l

l l
1 =

+
=

) )

) )
 (5.59)

the equivalent resistance is formed by connecting in series the end resistances of the 
original system of Figure 5.12(a) to the middle resistance of Eq. (5.59):

 R R R Rle l l l1= + +  (5.60)

substituting Eq. (5.59) into Eq. (5.60) yields

 R R
d

l

d

l
3 3 128 384le l 4 4

#
r

n

r

n
= = =  (5.61)

Figure 5.11

six-Component Pipeline system with Flowing Liquid.

p1

qv l

l l

l l

l1 2

p2

qv

Figure 5.12

(a) Actual Microchannel  system with Liquid Resistances; (b) Equivalent, One-Resistance 
Liquid system.
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With the numerical values of this example, the equivalent resistance is found to be Rle = 
3.8197 # 1013 N-s/m5. Equation (5.57) is used to calculate the power dissipated through 
the pipeline system:

 
2( )

U
R

p

2
1

dl
le

D
=  (5.62)

Numerically, the dissipated power is Udl = 1.31 # 10-8 W.

Sources of Hydraulic Energy
For liquid-level systems, as is discussed shortly in this chapter, the liquid motion is 
generated through the head difference among various components, such as tanks and 
piping. Hydraulic actuators are components that convert high input fluid pressure 
into kinetic energy at the output.

In many liquid applications, the energy necessary to generate flow in a liquid net-
work is provided by pumps, which transform the input electric energy into output liquid 
work, generally manifested as flow rate or equivalent head. Pumps can be of several 
configurations, such as centrifugal, axial, rotary, or reciprocating in regular-scale appli-
cations, as well as diaphragm (or membrane) in micro- and nano- applications. The 
characteristic centrifugal pump, a widely used configuration, shows the head varia-
tion as a function of the flow rate at the output is generally nonlinear, as sketched in 
Figure 5.13. Its equation is

 h h K qg h v
2= -  (5.63)

where hg, the geometric head, is the maximum head-type energy a pump pro-
duces when no energy is lost through friction and Kh is a coefficient related to 
the energetic losses. A point along the characteristic curve indicates that a speci-
fied head h corresponds to a given value of the volume flow rate and that, as the 
flow rate increases (together with the corresponding losses), the head of the pump 

Figure 5.13

Head-Flow Rate Characteristic of a Generic  Centrifugal Pump.

qv

h

hg
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decreases. An equation similar to Eq. (5.63) can be written when using pressure 
instead of head:

 p p K qp v0
2= -  (5.64)

where p0 is the maximum attainable pressure at zero flow rate and Kp is a constant 
depending on the pump construction.

 5.1.3 Liquid systems
Assembling several of the liquid elements presented thus far in this section leads to 
the formation of liquid systems. When only inertance and capacitances are present 
in a liquid system and no forcing source is considered, the natural response can be 
formulated similarly to mechanical and electrical systems. When external action or 
energy is applied in any form in a liquid system, the response is forced. Both liquid 
system responses are studied next.

Natural Response
We study the natural response of free lossless liquid systems that are described by 
one single variable (single-DOF systems) as well as for systems whose response 
needs to be formulated in terms of more than one liquid-system variable (multiple-
DOF systems). The natural frequencies and corresponding modes (eigenvectors) of 
multiple-DOF systems can be calculated analytically or by MATLAB®, as shown in 
previous chapters.

Single-DOF Conservative Liquid Systems
Consider a lumped-parameter liquid system that is defined by inertance Il and capaci-
tance Cl. This system possesses a natural frequency, which can easily be found using 
the energy method, similar to the modality used to determine the natural frequencies 
of single-DOF mechanical or electrical systems. The demonstration of the following 
natural frequency

 
I C

1
n

l l

~ =  (5.65)

is given in the companion website Chapter 5. This natural frequency is very similar 
to the natural  frequency of an electrical system formed of an impedance L and a 
capacitance C, as discussed in Chapter 4. It can be checked that ~n of Eq. (5.65) is 
measured in s-1, which is identical to rad-s-1, the unit of natural frequency.

Example 5.7
A lossless pipe segment of given length l and inner diameter d through which a liquid 
of known properties flows needs its hydraulic natural frequency reduced by 20%. What 
design changes can be made to achieve that goal?
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Solution
Based on Eqs. (5.26) and (5.37), the pressure-defined liquid inertance and capacitance 
(where the  subscript p has been dropped) are
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l
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2

2
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]

 (5.66)

By substituting Eqs. (5.66) into Eq. (5.65), the hydraulic natural frequency of the pipe 
segment becomes

 
l

g
n~ =  (5.67)

As a side note, the particular natural frequency of Eq. (5.67) is identical to the natural 
frequency of a simple pendulum of length l under the action of gravity.

Equation (5.67) indicates that changes in the natural frequency can be operated by 
using length alterations. the requirement is that the new natural frequency be

 . .0 2 0 8*
n n n n~ ~ ~ ~= - =  (5.68)

which, based on Eq. (5.67), is

 
l

g*
*n~ =  (5.69)

A combination of Eqs. (5.67), (5.68), and (5.69) yields the new length:

 
.

.l
l

l
0 64

1 56* = =  (5.70)

which shows that an increase of 56% in the pipe length is necessary to produce a 
 reduction of 20% in the natural frequency.

Multiple-DOF Conservative Liquid Systems
The natural response of multiple-DOF conservative liquid systems is studied employ-
ing the analytical approach and MATLAB®. Schematic liquid circuits can be drawn 
and analyzed similarly to electrical systems, as shown in the following example. It 
should be mentioned that, while relative agreement exists in terms of the symbols 
used for hydraulic elements such as pumps, actuators, or resistances, there is no con-
sensus on the graphical representation of liquid inertances and capacitances. Due to 
the similitude between electrical and hydraulic systems, the symbol used for electri-
cal inductances is used for hydraulic inertances, whereas hydraulic capacitances are 
symbolized similar to electrical capacitances.
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Analytical Approach The analytical approach to finding the natural frequency of 
multiple-DOF liquid systems is similar to the approach used for mechanical and 
electrical systems in Chapters 3 and 4 and is illustrated by an example.

Example 5.8
Utilize the energy method to derive the mathematical model for the liquid system 
whose circuit is sketched in Figure 5.14. Calculate its natural frequencies and deter-
mine the corresponding modes (eigenvectors) by the analytical approach. Consider 
Il1 = Il2 = Il = 2 # 106 kg/m4 and Cl1 = Cl2 = Cl = 3 # 10-8 m4-s2-kg-1.

Solution
Using the volume flows indicated in Figure 5.14 and based on the energy Eq. (5.21) and 
Eq. (5.30), the total energy corresponding to the four liquid  components is

 
( )

E I v
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l l
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2= +
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+ +o o  (5.71)

with v indicating volume (not to be confounded with translatory velocity, which uses the 
same symbol). this energy is constant, therefore its time derivative is zero, which leads to

 ( ) ( )v I v
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v v v I v
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v v
C

v
1 1 1

0l
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l l
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1 2 2 2 2
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2 1
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2+ - + + - + =o p o p< <F F  (5.72)

Equation (5.72) needs to be satisfied at all times, and since the volume flow rates cannot 
be zero at all times, the only way of validating Eq. (5.72) is when
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 (5.73)

the solution to Eq. (5.73) is harmonic:

 
(

(

sin )

sin )

v V t

v V t
1 1

2 2

~

~

=

=
*  (5.74)

Figure 5.14

two-Mesh Conservative Liquid system.

Il1 Cl1 Cl2

Il2v1

v1− v2

v2
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where V1 and V2 are volume amplitudes. Equations (5.74) are substituted into Eqs. (5.73) 
and the result is the following algebraic equations system, as sin(~t) cannot be zero at 
all times:
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 (5.75)

the homogeneous equations system (5.75) has nontrivial solutions in V1 and V2 when the 
determinant of the system is zero:
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which, by also using the specific values of the inductances and capacitances of the 
 problem, results in the characteristic equation

 I
C

I

C
3

1
0l

l

l

l

2 4 2
2

~ ~- + =  (5.77)

the solution of this equation in ~ provides the two natural frequencies of the hydraulic 
system:

 ;
I C I C2

3 5
2

3 5
n

l l
n

l l
1 2~ ~=

-
=

+
 (5.78)

With the numerical data of the problem, the natural frequencies are ~n1 = 2.5 rad/s and 
~n2 = 6.6 rad/s.

the following amplitude ratio is obtained from the first Eq. (5.75):

 
V

V

I C1
1

l l2

1

2~
=

-
 (5.79)

Using ~n1 in Eq. (5.79) and requiring that the corresponding eigenvector is unit-norm, the 
following equations are obtained:
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the eigenvector corresponding to Eqs. (5.80) is

 
.
.

V
V
V

0 85
0 53

11

12
n1 = ==~ ~! ( '+ 2 1 (5.81)

As seen in Eq. (5.81), the two flows v1 and v2 have identical directions and the amplitude 
V1 is larger than the amplitude V2 during the modal motion at the resonant frequency 
~n1. the second natural frequency of Eq. (5.78) is now substituted into the amplitude 
ratio of Eq. (5.79) and a unit-norm eigenvector is again sought, which results in the 
 following equations:
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V V0 62 1
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e o  (5.82)

whose corresponding eigenvector is

 
.

.
V

V
V

0 53
0 85

21

22
n2 = =

-
=~ ~! ( '+ 2 1 (5.83)

Inspection of Eq. (5.83) shows that, during the second modal motion at ~n2, the two 
flows have opposite directions (this is indicated by the minus sign) and the ampli-
tude V1 is smaller than the  amplitude V2.

Using MATLAB® to Calculate Natural Frequencies, the Eigenvalue Problem Similar 
to  mechanical and electrical systems, the natural response of a multiple-DOF hydrau-
lic system can be  formulated in vector-matrix form as an eigenvalue problem, and 
MATLAB® can be employed to solve for  eigenvalues and eigenvectors. The equation 
describing the free vibrations of a multiple-DOF  hydraulic system can be written as

 [ ]{ } [ ]{ } { }I v C v 0l l+ =p  (5.84)

where [Il] is the inertance matrix, [Cl] is the capacitance matrix, and {v} is the vol-
ume  vector. It can be shown by following a development similar to the one applied 
to mechanical systems in Chapter 3, that when sinusoidal solution of the type {v} = 
{V} sin(~t) is sought for Eq. (5.84), the following equation is obtained:

 1-([ ] [ ] [ ])det I C I 0l l m- =  (5.85)

where m = ~2 are the eigenvalues, [I ] is the identity matrix and [Il]-1[Cl] = [Dl] is the 
liquid dynamic matrix.

Once [Dl] has been determined, the MATLAB® command [V, Dl] = eig(Dl), 
which was utilized in Chapters 3 and 4, returns the modal matrix V, whose columns 
are the eigenvectors, and the diagonal matrix Dl, whose diagonal elements are the 
eigenvalues.

www.semeng.ir

www.semeng.ir


174 CHAPTER 5 Fluid and thermal systems

Example 5.9
Calculate the eigenvalues and the eigenvectors corresponding to the hydraulic system of 
Example 5.8 using the eigenvalue method and MAtLAB®.

Solution
Equations (5.75) can be arranged in the matrix-vector form of Eq. (5.84) with
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By taking into consideration that the inertances are identical and the conductances are 
also identical, the dynamic matrix is calculated using MAtLAB® symbolic calculation:
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As expected, the eigenvalues returned by MAtLAB® are the squares of the natural 
 frequencies of Eqs. (5.78) and the eigenvectors are
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= =~ ~ ~ ~! ' ! '+ 1 + 1 (5.88)

which are essentially the eigenvectors obtained in Example 5.8 (the minus signs in 
the first eigenvector of Eq. (5.88) shows that the two components move in the same 
 direction).

Forced Response of Liquid-Level Systems
As mentioned previously in this chapter, one modality of generating the forced 
response of liquid systems is by means of tanks, where flow connects in and out with 
pipe lines, for instance. Often, in such liquid systems, known as liquid-level systems, 
hydraulic calculations can be performed without considering the inertia effects; as a 
consequence, such systems consist of only capacitances and resistances.

Example 5.10
A liquid-level system is formed of a tank of capacitance Cl communicating with a pipe 
segment equipped with a valve of resistance Rl, as sketched in Figure 5.15.

a. Derive a mathematical model for this system by connecting the output (either the flow 
rate qo or the head h) to the input flow rate qi. Assume that the pressure at the input 
and output ports is zero.

b. For a unit ramp input, find the solution qo(t) and plot it against time considering that 
Rl,p = 5 # 104 N-s/m5 and Cl,p = 2 # 10-6 m5/N. the slope of the ramp input is Q = 
10-4 m3/s.
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Solution
a. If we use the pressure definitions of resistances and capacitances, the following 

 equations can be  written:
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( (
(

) ( )

) )
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p t R q t

q t q t C
dt

dp t
,

,

l p o

i o l p

=

- =
*  (5.89)

where the pressure is at the bottom of the tank just before the valve. taking the time 
derivative of the first Eq. (5.89) and considering the resistance is constant, the follow-
ing equation results:

 
( ) ( )
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dp t
R

dt

dq t
,l p

o
=  (5.90)

which, substituted into the second Eq. (5.89), produces

 
( )

( ) ( )R C
dt

dq t
q t q t, ,l p l p

o
o i+ =  (5.91)

Equation (5.91) represents the mathematical model of the liquid-level system of 
Figure 5.15, where qi is the input and qo is the output. since the order of the differential 
 equation is one, the physical system is a  first-order one.

An alternate model can be obtained by considering that the pressure before the 
resistance is actually

 ( ) ( )p t gh tt=  (5.92)

It is simple to see that

 
( ) ( )

dt

dp t
g

dt

dh t
t=  (5.93)

Figure 5.15

Liquid-Level system with tank and Valve.
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Equations (5.92) and (5.93) are used in conjunction with Eq. (5.89) to obtain the first-
order  differential equation:

 
( )

( ) ( )R C
dt

dh t
h t g

R
q t, ,

,

l p l p

l p

it+ =  (5.94)

which represents another mathematical model, where the output is the head h and the 
input is the flow rate qi.

b. When the input flow rate is of a ramp form, namely, qi = Qt (where Q is a constant), the 
solution to the differential Eq. (5.91) is

 - x( )q t t e Q1o x-= +
t

_ i8 B  (5.95)

which can be found using the MAtLAB® command dsolve, as introduced in Chapter 4. 
the time constant, x = Rl,pCl,p has a value of 0.1 s for the numerical values of this exam-
ple. Due to its ramp nature, the input flow rate grows to infinity when time goes to infinity, 
and this is shown in the plot of  Figure 5.16. the following code generates Eq. (5.95): 

>> dsolve('R*C*Dqo + qo = q*t','qo(0) = 0') 

after defining the symbolic variables.

Figure 5.16

Output Flow Rate as a Function of time.
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Example 5.11
Derive the mathematical model of the liquid system sketched in Figure 5.17 by consider-
ing the inputs to the system are the pressure p1 and the flow rate q2, whereas the output 
is the flow rate qo.

Solution
Based on the hydraulic capacitance and resistance definitions, as well as on Figure 5.17, 
the following  relationships can be formulated:
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 (5.96)

the third Eq. (5.96) allows expressing p3 as

 ( ) ( )p t R q t pl o a3 3= +  (5.97)

which can be used to obtain q1 from the fifth Eq. (5.96):

 ( )
( )

( ) ( )q t R C
dt

dq t
q t q tl l

o
o1 3 2 2= + -  (5.98)

Combining now the second Eq. (5.96) with Eqs. (5.97) and (5.98) enables expressing 
the pressure p2:

 ( )
( )

( ) ( ) ( )p t R R C
dt

dq t
R R q t R q t pl l l

o
l l o l a2 2 3 2 2 3 2 2= + + - +  (5.99)

Figure 5.17

Liquid-Level system with Pump, two tanks, and three Valves.
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the first Eq. (5.96) and Eq. (5.99) yield
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Eventually, the fourth Eq. (5.96) is used in conjunction with Eqs. (5.98) and (5.100) to 
produce the following second-order differential equation:
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 (5.101)

Equation (5.101), which can be solved independently for qo, is the  mathematical 
model of the liquid system of Figure 5.17.

5.2 Pneumatic systems mOdeLing
In pneumatic systems, the motion agent is a gas, most often air. Gases are compress-
ible, particularly at large velocities; therefore, pneumatic systems produce responses 
that are slower than liquid systems, but for velocities that are smaller than the sound 
velocity, they are nearly incompressible. We discuss some basic gas laws then 
 introduce the pneumatic elements and modeling of pneumatic systems.

5.2.1 gas Laws
Gas laws describe either the state or the transformation (process) between different 
states of a gaseous substance. The perfect (or ideal) gas law postulates that, for a 
given gas state that is defined by pressure p, volume V, and absolute (Kelvin-scale) 
temperature i, the following relationship applies for a gas mass of m:

 pV
M
m

Ri=  (5.102)

where R is the universal gas constant and M is the gas molecular mass. If the 
gas constant Rgas is used, which is defined as Rg = R/M, the perfect gas law of 
Eq. (5.102) becomes

 pV mR
g
i=  (5.103)

Equations (5.102) and (5.103) allow expressing the gas mass density as

 
V
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pM

R

p

g

t
i i

= = =  (5.104)
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Transformation or process gas laws connect two states using specific conditions. 
The polytropic transformation is defined by the equation

 p a a
V
mn

n

t= = c m  (5.105)

where a is a constant and n is the polytropic exponent. Several particular transforma-
tions, relating to actual physical conditions, can be derived from the general poly-
tropic transformation, each defined by a specific exponent n. All assume the gas 
mass m is constant. The adiabatic transformation, which considers no heat exchange 
between the gas and its surroundings, has an exponent defined as

  n c
c

v

p
=  (5.106)

where cp is the constant-pressure specific heat and cv is the constant-volume specific 
heat. The specific heat is defined as the heat (energy) Q necessary to raise the tem-
perature of the mass unit by one degree:

 c
m

Q

iD
=  (5.107)

Transformations that keep the temperature constant are called isothermal, and 
for such processes, the exponent is n = 1. That can easily be checked as follows: 
Eq. (5.102) shows that pV = constant, a condition that also results from Eq. (5.105) 
when n = 1. Constant-pressure transformations (also called isobaric) satisfy 
the condition that the ratio V/i is a constant, as it results from Eq. (5.102). This 
means the polytropic exponent needs to be n = 0, as can be checked in Eq. (5.105). 
Eventually, constant-volume transformations result in equations of the type p/i = 
constant, as seen in Eq. (5.102). It can also be checked out that such processes imply 
n " 3 because V = constant when n " 3, Eq. (5.105).

5.2.2 Pneumatic elements
The pneumatic elements are defined similarly to liquid systems, particularly the iner-
tance and the resistance, but as mentioned in the introduction to this chapter, the 
mass flow rate is used instead of the volume flow rate that operates for liquids. The 
pneumatic capacitance is discussed in terms of the specific gas transformation.

Inertance
A column of gas moving in a duct possesses kinetic energy; therefore, its inertance 
is defined as

 I
q

p

q

p
I

1
g

m v
l

t t

D D
= = =
o o

 (5.108)
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where Il is the pressure-defined inertance of the liquid studied at the beginning of this 
chapter. The SI unit of Ig is m-1. The kinetic energy of a gas is

 T I q
I

q T
2
1

2
1

g g m
l

v l
2 2 2

# t t t= = =  (5.109)

where Tl is the liquid kinetic energy; the gas energy’s SI unit is kg2-m-1-s-2.

Capacitance
The pneumatic capacitance of a container is defined as

 
( )

( )

( )
( )

( )

( )
C

dt

dp t

q t

dp t

dm t

dt

dp t

q t
Cg

m v
lt t= = = =  (5.110)

where Cl is the capacitance of a liquid. The SI unit for gas capacitance is m-s2. For a 
polytropic process, where the pressure is defined as in Eq. (5.105),

 dp n
p

dt t=  (5.111)

which indicates the capacitance of Eq. (5.110) can be written for constant volume as

 C
dp
dm

dp
Vd

nR
V

g
g

t

i
= = =  (5.112)

where Eq. (5.104) has been used. It can be seen that, for a constant-pressure trans-
formation where the polytropic coefficient is n = 0, the pneumatic capacitance 
is infinity; whereas for a constant-volume process with n " 3, the pneumatic 
capacitance is equal to zero. In general, the pneumatic capacitance is variable, as it 
depends on temperature; for an isothermal transformation only (where the tempera-
ture is constant), the pneumatic capacitance is constant and equal to

 C
R
V

g
gi

=  (5.113)

The energy stored by a pneumatic capacitive element is

 U C p C p U
2
1

2
1

g g l l
2 2t t= = =  (5.114)

and its SI unit is N-kg-m-2 (or kg2-m-1-s-2).

Resistance
The pneumatic resistance is defined in terms of pressure variation and mass flow rate as

 R q
p

q
p

R
1

g
m v

lt t

D D
= = =  (5.115)
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where Rl is the resistance of a liquid. Gas resistance is measured in m-1-s-1 in the 
International System of units. The energy dissipated through pneumatic resistance is

 U R q
R

q U
2
1

2
1

dg g m
l

v dl
2 2 2

# t t t= = =  (5.116)

and the SI energy unit is N2-s-m-3 (or kg2-m-1-s-3).

Sources of Pneumatic Energy
Similar to liquid systems, energy needs to be supplied to a pneumatic system to allow 
operation. The main pneumatic energy sources are the fans or blowers, for which 
the delivered pressure is a parabolic function of the air volume; this is expressed 
by means of an equation that also includes the energy losses, such as those due to 
 impeller friction or shock:

 p c
V

c
11

2
2

D = -d n  (5.117)

whose characteristic curve is shown in Figure 5.18; c1 and c2 are constants, depend-
ing on the type of pneumatic source and performance.

 5.2.3 Pneumatic systems
The natural response of conservative pneumatic systems is briefly discussed next, 
followed by an example illustrating the forced response of a pneumatic system with 
losses.

Natural Response
Pneumatic systems with no losses, therefore defined by only inertance and capac-
itance properties, can be analyzed in terms of their natural response, similarly to 
liquid, mechanical, or electrical systems. For a single-DOF pneumatic system, the 

Figure 5.18

Characteristic Curve of a Fan.
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natural frequency is calculated by means of an equation similar to Eq. (5.65), where 
the subscript g (gas) should be used instead of l, for liquid. Also using Eqs. (5.108) 
and (5.110), the natural frequency of a pneumatic system is

 
I C I C

1 1
, ,n g

g g l l

n l~ ~= = =  (5.118)

therefore, a single-DOF pneumatic system and a single-DOF liquid system have 
identical natural frequencies. The companion website Chapter 5 includes examples 
of calculating the natural frequencies of single- and multiple-DOF pneumatic sys-
tems using the energy method and MATLAB®, but the procedure is identical to that 
used for the natural response of liquid systems and is not pursued here. However, a 
few problems dedicated to this topic are proposed at end of this chapter.

Forced Response
When pneumatic sources are included in a pneumatic system, the dynamic response 
is forced. We study the forced response of a two-DOF pneumatic system with resis-
tance losses and negligible inertia.

Example 5.12
A fan is used to pressurize the container of capacitance Cg2 as in Figure 5.19, where 
another vessel of capacitance Cg1 is connected to the target vessel and the fan. Derive the 
mathematical model of this pneumatic system that connects the output pressure po to the 
input pressure created by the fan, pi, by also considering the duct losses Rg1 and Rg2.

Solution
the following equations are written for the four pneumatic components:

( )

( ) ( )
;

( )

( ) ( )
;

( )

( ) ( )
;

( )

( )
R

q t

p t p t
R

q t

p t p t
C

dt

dp t

q t q t
C

dt

dp t

q t
g

mi

i
g

mo

o
g

mi mo
g

o

mo
1 2 1 2=

-
=

-
=

-
=

 (5.119)

the mass flow rate of the second Eq. (5.119) is substituted into the fourth Eq. (5.119), 
which enables expressing the pressure p as

 ( ) ( )
( )

p t p t R C
dt

dp t
o g g

o
2 2= +  (5.120)

and this results in

 
( ) ( ) ( )

dt

dp t

dt

dp t
R C

dt

d p to
g g

o
2 2 2

2

= +  (5.121)
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the first and the third Eqs. (5.119) are used in conjunction with Eqs. (5.120) and (5.121), 
which yields the following differential equation:

 
( )

( ( ) )
( )

( ) ( )R R C C
dt

d p t
R C R R C

dt

dp t
p t p tg g g g

o
g g g g g

o
o i1 2 1 2 2

2

1 1 1 2 2+ + + + =  (5.122)

Equation (5.122), which can independently be solved for po, and Eq. (5.120), which can 
subsequently be solved for p, form the mathematical model of the pneumatic system of 
Figure 5.19.

5.3 thermaL systems mOdeLing
In thermal systems, the focus is on heat and mass exchange among various states of a 
medium or different media. The analysis in this section is restricted to heat exchange, 
but more advanced notions can be learned from texts specializing in heat and mass 
transfer. We introduce the thermal elements of capacitance and resistance, followed 
by the mathematical modeling of thermal systems. Since thermal inertia can safely 
be neglected, thermal systems behave as first-order systems. To keep notation unitary 
with that used for electrical, fluid, and pneumatic systems, the symbol qth or simply 
q is used here to indicate the heat flow rate, which is defined as the time derivative of 
the heat flow, or thermal energy Q:

 ( ) ( )
( )

q t q t
dt

dQ t
th = =  (5.123)

Another notation used here is i for temperature; this symbol is preferred to the 
 symbol t, which has been reserved to denote time.

 5.3.1 thermal elements
As inertia effects are negligible in thermal systems, the elements of interest are the 
thermal capacitance (involved with thermal energy storing) and thermal resistance 
(responsible for energy losses). These amounts are assumed to be of a lumped- 
parameter nature. The role of the electrical charge rate (current) in electrical systems 

Figure 5.19

Pneumatic system with Fan, two Containers, and two Valves.
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or flow rate in fluid systems is played by the heat flow rate q in defining these thermal 
quantities.

Capacitance
Thermal capacitance is connected to the energy storage capacity and assumes no 
energy losses. It is defined as the heat flow necessary to change the temperature rate of 
a medium by one unit in one second:

 
( )

( )

( )

( )

C

dt

d t

q t

dt

d t
dt

dQ t

d

dQ
th

i i i
= = =  (5.124)

The SI unit for thermal capacitance is N-m-K-1 (or J-K-1). As known from physics, 
the heat quantity Q is related to a change of temperature i in a medium (solid or 
fluid) of mass m as

 Q mci=  (5.125)

where c is the specific heat. The specific heat can be defined under process conditions 
of constant pressure, when denoted by cp, or constant volume, when the symbol cv is 
used. Applying the temperature derivative to the variables of Eq. (5.125) results in

 
d

dQ
mc

i
=  (5.126)

Comparison of Eqs. (5.124) and (5.126) shows that

 C mcth =  (5.127)

Resistance
Thermal resistance is formulated with regard to energy losses and under the assump-
tion of no storage capacity. Similar to electrical or fluid systems, thermal resistance 
is defined as the temperature variation produced by a unit heat flow rate:

 R qth
iD

=  (5.128)

To find a specific expression for Rth in terms of physical parameters, the types of 
heat transfer processes (conduction, convection, and radiation) need to be considered 
separately, as each process is governed by a specific law that connects the heat flow 
rate to temperature variation. Radiation, which involves emission of heat by electro-
magnetic waves, does not require the presence of a medium to transmit the energy, 
unlike conduction and convection, and is not studied here.
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Conduction
In conduction, the heat is transmitted through one single medium (solid or fluid) as 
energy released by particles that possess more energy to adjacent particles having 
less energy. Fourier’s law of heat conduction governs the conduction process, which, 
based on the wall schematic of Figure 5.20, is expressed as

 
( )

q kA
dx

d xi
= -  (5.129)

where k is the thermal conductivity of the wall material, A is the area of the surface 
normal to the heat flow direction, dx is the thickness of an elementary layer (of total 
thickness l), and i(x) is the temperature at the surface determined by the abscissa x. 
The temperature to the left of the wall, i1, is assumed higher than the temperature to 
the right of the wall, i2; therefore, the heat flow direction is from left to right. The 
minus sign in Eq. (5.129) indicates that the temperature decreases in the wall from 
left to right; therefore, the slope of the temperature as a function of distance is nega-
tive. As a consequence, a positive heat flow rate going from the higher temperature 
to the lower one is possible only with a minus sign as in Eq. (5.129).

For constant heat flow rate, integration of Eq. (5.129) results in

 ( )qx kA x Ci= - +  (5.130)

The integration constant is found using i = i1 for x = 0, which results in C = kAi1, 
whose value is substituted back in Eq. (5.130) to yield

 ( ) ( )x x
kA

q
x1i i iD- = =  (5.131)

Figure 5.20

Conduction Heat transfer through a Planar Wall.
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For x = l, Eq. (5.131) becomes

 ( )l
kA

q
l1 2i i iD- = =  (5.132)

Comparison of Eq. (5.132) with the definition of the thermal resistance, Eq. (5.128), 
indicates that the conductance-related thermal resistance of a planar wall is (ignoring 
the minus sign)

 R
kA
l

th =  (5.133)

The companion website Chapter 5 demonstrates that the thermal resistance corre-
sponding to the radial heat flow through a hollow cylinder of internal radius ri, exter-
nal radius ro, length l, and thermal conductivity k is

 
ln

R
lk

r
r

2th
i

o

r
=  (5.134)

Thermal resistances can be connected in series, in parallel, or in series/parallel 
combinations. A series combination is sketched in Figure 5.21(a), and a parallel one 
in Figure 5.21(b). The equivalent series (Rth,s) and parallel (Rth,p) resistances (which 
are derived in the companion website Chapter 5) are

 

p

R R R

R R R
1 1 1

, , ,

, , ,

th s th th

th th th

1 2

1 2

= +

= +
*  (5.135)

Figure 5.21

Connection of Planar Walls in (a) series; (b) Parallel.
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Example 5.13
Consider the heat conduction through the three-component wall sketched in Figure 5.22. 
the external layers are identical, and the middle layer has its thermal conductivity k2 = 
4k1, where k1 is the thermal conductivity of the external layers. Known are ii, io (ii > io), 
these are the indoor and outdoor temperatures; l and A, wall component thicknesses and 
common surface area; and k1, thermal conductivity of external layers.

a. Calculate the heat flow rate through the composite wall.
b. Calculate the temperature iil at the interface between the inner wall layer and the 

middle wall layer.
Numerical application: l = 0.01 m, A = 20 m2, ii = 23°C, io = 5°C, k1 = 0.15 W/m-C.

Solution
a. If considering only heat flow through conduction from the inside toward the outside, 

as shown in  Figure 5.22, then the three panels behave as three thermal resistors con-
nected in series. the equivalent thermal resistance is therefore

 R R R
k A

l
k A

l
k A

l
2

2 4 3
, , ,th e th th1 2

1 2 1

= + = + =  (5.136)

According to Eq. (5.128), the heat flow rate is

 ( )q
R l

k A

3,th e

i o
i o

1i i
i i=

-
= -  (5.137)

the heat flow rate’s numerical value is q = 1800 W.

Figure 5.22

three-Panel Composite Wall.
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b. the same flow rate passes through the inner layer; therefore,

 i
i

q
R l

k A

,th

i
i

1

1i i
i=

-
= - i
l

l^ h (5.138)

Equations (5.137) and (5.138) yield the unknown temperature

 
3
2

3
1

i i oi i i= +l  (5.139)

Numerically, this temperature is equal to 17°C. 

Convection
In convection, the heat is transmitted between two media, one of them a fluid in 
motion and the second, in most of the cases, (the surface of) a solid. In general, the 
solid has a higher temperature; therefore, heat transfers from the solid to the moving 
fluid. The governing law defining the heat flow, known as Newton’s law of cooling, 
is expressed as

 q hA iD=  (5.140)

where h is the convection heat transfer coefficient, A is the area of the surface of the 
solid in contact with the moving fluid, and

 si i iD = - 3 (5.141)

The temperature at the heat exchange surface is is, and i3 is the fluid temperature 
at a distance far enough from the surface. Values of h are generally obtained experi-
mentally, as h depends on many factors, such as surface geometry, fluid and solid 
properties, and fluid velocity. Comparison of Eqs. (5.128) and (5.140) shows that 
the thermal resistance corresponding to convection is

 R
hA
1

th =  (5.142)

Conduction and convection may occur simultaneously, such as the case is with a 
wall exposed to wind on the outside, the outside and inside temperatures being dif-
ferent, as shown in the following example.

Example 5.14
Calculate the heat flow rate for the two-panel wall of Figure 5.21(a) when convection is con-
sidered both on the outside surface (film coefficient is ho) and on the inside one (film coef-
ficient is hi). Also calculate the two surface temperatures. the two panels have dimensions of 
h (height), w (width), and thicknesses l1 and l2; and the thermal conductivities are k1 and k2, 
respectively. Consider it wintertime; therefore, the outdoor temperature i2 is lower than the 
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indoor one i1. Numerical application: h = 4 m, w = 6 m, l1 = 0.1 m, l2 = 0.004 m, k1 = 0.1 
W/m-C, k2 = 0.0002 W/m-C, ho = 25 W/m2-C, hi = 0.1 W/m2-C, i1 = 25°C, i2 = -10°C.

Solution
the equivalent thermal resistance is a series combination of the four resistances of the 
actual system:

 R R R R R, , , , ,th s th o
conv

th
cond

th
cond

th i
conv

2 1= + + +  (5.143)

By using Eqs. (5.133) and (5.142), the thermal resistance of Eq. (5.143) becomes

 R
A h k

l

k

l

h
1 1 1

,th s
o i2

2

1

1
= + + +e o (5.144)

Knowing the inside and outside temperatures allows finding the heat flow rate as
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the temperature on the outside wall surface is determined by considering only the out-
side convection:
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 (5.146)

similarly, the temperature on the inside wall surface is calculated from convection:
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 (5.147)

Numerically, it is obtained that A = hw = 24 m2, q = 27.6 W, iso = -9.95°C, isi = 

13.72°C.

5.3.2 thermal systems
Thermal systems, as we saw in the few examples discussed thus far in this section, are 
used for heating or cooling (as parts of the more complex indoor air conditioning equip-
ment or HVAC, heating, ventilating, and air conditioning), in sensing devices (such as 
thermometers), or in thermal homogenizing equipment. Systems formed of thermal 
capacitors and resistors are described by differential equations that are the mathemati-
cal models of the analyzed thermal systems. Let us analyze the following example.
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Example 5.15
two identical rooms are designed, as sketched in Figure 5.23, with the six identical exter-
nal walls. A cooling system operates in only one of the rooms. Consider it is summertime 
and heat flow infiltrates from the outside. Heat also flows through the wall separating the 
two rooms. Knowing the following amounts, heat flow absorbed by the cooler qi, the out-
side temperature io as well as the walls thermal resistances and the two rooms thermal 
capacitances, find the mathematical model of this thermal system that expresses the two 
indoor temperatures i1 and i2.

Solution
the following equations can be written for the left room in terms of its thermal 
capacitance:

 
( )

( ) ( )C
dt

d t
q t q tth o

1
1

i
= -  (5.148)

similarly, the capacitance-related equation for the right room is

 
( )

( ) ( ) ( )C
dt

d t
q t q t q tth o i

2
2

i
= + -  (5.149)

the room walls behave as thermal resistances; therefore, the following relationships can 
be formulated:
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( ) ( )
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,th o

o

o

1

1i i
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-
 (5.150)

Figure 5.23

two-Room thermal system with Internal Cooling.

qo

qo1 qo2

qo1

Rth,o

Rth,o

Rth,o

Rth,o

Rth,o

qo2 
q

Coolerqi

Cth

Rth

q1

qo2 qo1 Rth,o

qi

Cth

q2

www.semeng.ir

www.semeng.ir


 5.4 Forced Response with simulink® 191

which corresponds to the three external walls on the left room, and

 
( )

( ) ( )
R

q t

t t
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o

o

2

2i i
=

-
 (5.151)

which corresponds to the three external walls of the right room. For the intermediate wall, 
the thermal  resistance is

 
( )

( ) ( )
R

q t

t t
th

1 2i i
=

-
 (5.152)

the three heat flow rates are taken from Eqs. (5.150), (5.151), and (5.152) and substi-
tuted into Eqs. (5.148) and (5.149) adequately, such that the latter ones become
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 (5.153)

the two differential Eqs. (5.153) form the mathematical model of the thermal system of 

Figure 5.23.

5.4 FOrced resPOnse With simuLink®

Similar to mechanical and electrical systems, Simulink® can be used to model the 
forced response of fluid and thermal systems, as shown in the following examples.

Example 5.16
Plot the pressure p, which results from applying an input qi = 0.1 + 0.01 sin(10t) m3/s 
to the liquid system shown in Figure 5.15 of Example 5.10. the capacitance is Cl,p = 2 #  
10-6 m5/N and the liquid resistance is nonlinear, defined by the pressure-output flow rate 
as p R qpl o,= 2

 N/m2. Compare this pressure with the pressure obtained when the resis-
tance is linear with Rl,p = 1000 N-s/m5.

Solution
Equations (5.94) in conjunction with Eqs. (5.92) and (5.93) allow formulating the follow-
ing differential equation corresponding to the linear liquid resistance

 
( )

( ) ( )
dt

dp t

R C
p t

C
q t

1 1
, , ,l p l p l p

i= - +  (5.154)

the two terms in the right-hand side of Eq. (5.154) are the inputs to a two-input sum-
ming point, whose output is the pressure derivative in the left-hand side of Eq. (5.154). 
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Figure 5.24 is the block diagram that integrates Eq. (5.154). the top part of Figure 5.24 
is the block diagram that integrates Eq. (5.154), and the result is plotted by Scope 1, as 
shown in Figure 5.25(a). the second Eq. (5.89) can be written as

 ( ) ( )
( )

q t q t C
dt

dp t
,o i l p= -  (5.155)

Using the nonlinear relationship between output flow rate qo and the pressure p in con-
junction with Eq. (5.155), yields the following differential equation corresponding to the 
nonlinear liquid resistance
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( ) ( )
dt

dp t

R C
p t

C
q t

1 1

, , ,l p l p l p
i= - +  (5.156)

Figure 5.24

simulink® Diagram for Integrating the Differential Eqs. (5.154) and (5.156).
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Figure 5.25

time Variation of tank Pressure (in N/m2) for Linear and Nonlinear  Resistances.
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the bottom part of the simulink® diagram of Figure 5.24 realizes integration of the dif-
ferential Eq. (5.156) and the resulting plot is illustrated in Figure 5.25(b) as displayed by 
Scope 2.

the input flow rate is modeled through a Sine Wave block from the Source Block 
library. Its Amplitude is 0.01, the Bias (or offset) is 0.1, and the Frequency is 10 
rad/s. the value of the gains are Gain 1 = 5 x 105, Gain 2 = 500 and Gain 3 =  
15811, as a result of the numerical values of parameters. the Math Function block 
generating the square root of the pressure p is found in the Math Operations library. 
As Figure 5.25 indicates, the linear-resistance pressure variation is approximately 10 times 
larger than the pressure variation corresponding to the nonlinear resistance.

Example 5.17
Consider the following numerical values for the two-room thermal system of Example 
5.15: Rth = 0.8889 K-s/J, Rth,o = 1.2 K-s/J, Cth = 250,000 J/K, and qi = 450 W. the 
outdoor temperature increases linearly from a value of 1,001 K (28°C) to a value of 1,013 
K (40°C) in 1,000 s and remains constant afterwards. Use simulink® to plot the two room 
temperatures over a time period of 4,000 s considering the initial temperatures in both 
rooms are 300 K (27°C).

Solution
the input (outdoors) temperature can be modeled in simulink® by the Signal Builder 
block from the Sources library, which is shown in Figure 5.26. the time range is changed 
from the default value to 4,000 s by clicking Axes and then Change Time Range. the 
specific input profile is generated by using the boxes underneath the plot region to define 
the start and end values of time and temperature for two time intervals: one from 0 to 
1,000 s and the next one from 1,000 to 4,000 s, as shown in Figure 5.26.

the mathematical model Eqs. (5.153) can be written as

 
a a a

a a a a
o

o

1 11 1 12 2 13

2 12 1 11 2 13 21

i i i i

i i i i

= + +

= + + +

o

o*  (5.157)

where

 ; ; ;a
C R R

a
R C

a
R C

a
C

q1 1 1 1 1
, ,th th o th th th th o th th

i
11 12 13 21= - + = = = -d n  (5.158)

the parameters above have the following numerical values: a11 = -15 # 10-6, a12 =  
4.5 # 10-6, a13 = 3.33 # 10-6, and a21 = -0.0018. the simulink® diagram that real-
izes integration of Eqs. (5.157) is shown in  Figure 5.27, whereas the time-domain room 
temperatures are plotted in Figure 5.28. As Figure 5.28 indicates, the temperature in 
the room without a cooling unit slightly increases, whereas the temperature in the cooled 
room slightly decreases.
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Figure 5.27

simulink® Diagram for Integrating the Differential Eqs. (5.157).
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Figure 5.26

Input temperature Profile.
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summary
Using an approach similar to the one utilized in Chapters 2, 3, and 4 that focuses 
on modeling mechanical and electrical systems, this chapter introduces the fluid 
elements of inertance, capacitance, resistance, as well as the pumps and fans. The 
thermal elements of capacitance and resistance are also studied. Based on these ele-
ments, mathematical models are formulated for the natural and forced responses of 
fluid systems as well as to derive mathematical models for the forced response of 
thermal systems. MATLAB® is utilized to run symbolic and numerical calculations 
and evaluate the eigenvalues and eigenvectors of fluid systems; an example on how to 
apply Simulink® to model and solve for the time response of a fluid system example 
is also included. Subsequent chapters employ fluid and thermal system models, along 
with mechanical and electrical system models, to identify various responses in the 
time or frequency domains.

PrObLems
5.1 Find the pressure at point 4 of the vertical-plane pipeline drawn in  Figure 5.29 

under laminar flow conditions. The pipeline cross-section is  circular with an 
inner diameter di = 30 mm. Known are the pump specific work w = 2 m2/s2, l = 
10 m, h = 2 m, v0 = 1 m/s, t = 1000 kg/m3, n = 0.001 N-s/m2, and the atmo-
spheric pressure pa = 105 N/m2.

5.2 Determine the liquid inertance of the parabolic-shaped conduit segment defined by 
the end radii r1 and r2 and height h, as sketched in Figure 5.30. Find the inertance 
numerical value for t = 800 kg/m3, h = 1.2 m, r1 = 0.05 m, and r2 = 0.09 m.

5.3 Calculate algebraically the liquid inertance of the pipeline segment shown in 
Figure 5.31 and its numerical value for l = 3 m, inner diameters d1 = 20 mm, 
d2 = 40 mm, and fluid densityt = 1,800 kg/m3.

Figure 5.28

Room temperatures versus time.
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5.4 Determine the hydraulic capacitance of a semi-spherical tank of inner radius R.

5.5 Calculate the capacitance of a cylindrical vertical tank whose cross-section 
varies according to a decreasing exponential: r(x) = c1e-c

2
x (x being the dis-

tance measured from the upper end of the tank). The tank has its maximum 
radius r1 at the top and minimum radius r2 at the bottom; its total height is h. 
Numerical application: r1 = 1.2 m, r2 = 0.8 m, h = 5 m.

Figure 5.29

Vertical Liquid system with Pump and Pipeline.

h

Pump
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v0

l

l
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Figure 5.30

Parabolic-Profile Pipe segment.

r1

r2

h

Figure 5.31

Variable Cross-section Pipeline segment.
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 5.6 Calculate the capacitance of the tank shaped as in Figure 5.32.

 5.7 Using the Hagen-Poiseuille approach, determine the hydraulic resistance of 
the parabolic-shaped pipe segment shown in Figure 5.30 of Problem 5.2.

 5.8 Answer the same question as in Problem 5.7 for a pipe segment having the 
exponential decreasing profile defined in Problem 5.5 and placed horizontally.

 5.9 In turbulent flow, the volume flow rate is expressed in terms of head as ,q c h=  
where c is a constant. Determine the pressure-defined hydraulic resistance.

5.10 The kinetic energy loss is measured for a valve corresponding to three values 
of the flow rate, and the following values are obtained: qV1 = 0.1 m3/s, Ud1 =  
2100 W; qV2 = 0.3 m3/s, Ud2 = 2800 W; qV3 = 0.5 m3/s, Ud3 = 3500 W. 
Determine a relationship between the liquid resistance of the valve Rl,p and the 
volume flow rate q.

5.11 Liquid with a volume flow rate qv = 1 m3/s flows through the pipe system 
sketched in Figure 5.33. Knowing that l = 2 m, di = 25 mm (the inner diameter 
of the circular piping), and n = 0.00005 N-s/m2, determine the loss of pres-
sure between points 1 and 2. Hint: The transformation between triangle and 
reversed-Y liquid resistance connections is identical to the one of electrical 
resistances of Chapter 4.

Figure 5.32

Vertical tank with tapered and semi-spherical  segments.

r1

r2

h

Figure 5.33

Pipeline system with seven Lines Containing Flowing Liquid.

1 2
qv qvl

l l

l l

l
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5.12 Calculate the hydraulic resistance of the pipeline shown in Figure 5.31 of 
Problem 5.3 and the energy that is lost. Known also are qV = 0.02 m3/s and n =  
0.00001 N-s/m2.

5.13  Calculate the natural frequencies of the hydraulic system sketched in 
Figure 5.34. Is it possible that the amplitudes of the flow rates in the two 
meshes are equal during either of the two modal  motions and the directions 
of these flows are identical (i.e., either clockwise or  counterclockwise)?

 Known are: Cl1 = 1.8 # 10-6 m5/N, Cl2 = 2.2 # 10-6 m5/N, Il = 3 # 104 N-s2/m5.

5.14 Water flows in a tank of diameter d = 1 m with an input volume flow rate qi = 
0.1 m3/s. At the base of the tank is a discharge pipe of length l = 3 m and inner 
diameter di = 40 mm. Find the output flow rate exiting the pipe after t = 20 s 
and the difference between the input and output flow rates as time goes to infin-
ity (the steady-state error). Known are: n = 0.001 N-s/m2 and t = 1000 kg/m3.

5.15 Derive a mathematical model for the liquid-level system shown in Figure 5.35 
when the input to the system is the volume flow rate qi and the output is the 
volume flow rate qo.

5.16 Find the capacitance of a conical vessel of height h and base circle radius r 
with a polytropic gas (of coefficient n and gas constant Rgas) in it for a specified 
temperature i.

Figure 5.34

two-Mesh Conservative Hydraulic Circuit.

CI1 II CI2

Figure 5.35

Liquid-Level system Consisting of two tanks and two Valves.

Cl1 Cl2

pa

pa

paRl1 Rl2

qo

qi

www.semeng.ir

www.semeng.ir


  Problems 199

5.17 Calculate the gas capacitance related to an incompressible gas that flows 
through the conduit segment of Figure 5.36.

5.18 Using the Hagen-Poiseuille approach, determine the resistance of an incom-
pressible gas that flows through the conduit segment shown in Figure 5.36 of 
Problem 5.17.

5.19 Disregarding the pneumatic resistances, determine the natural frequency of the 
system sketched in Figure 5.37. The conduits are tubular of inner diameter di =  
20 mm and l = 1 m. The vertical-plane tapered tank is defined by d1 = 0.2 m  
and, d2 = 0.4 m. 

5.20 Neglect pneumatic resistances and determine the natural frequencies of the 
pneumatic system sketched in Figure 5.38. Use lumped-parameter inertances 
and capacitances. The middle  conduit has an inner diameter d2 that is twice the 
inner diameter of all other conduits, d1. Known are g = 9.8 m/s2 and  l = 3 m.

5.21 Derive a mathematical model for the pneumatic system of Figure 5.39, which 
is formed of two tanks and a conduit. The input is the pressure pi and the output 
is the pressure in the conical tank, po. Known are d = 0.5 m and l = 3 m; the 

Figure 5.36

Parabolic-Profile Pipe segment.

Parabola

d1d2

I I

Figure 5.37

Pneumatic system with tapered Vessel and Conduits.

d2

d1

Vessel

Conduits

l

ll

h
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conduit inner diameter is di = 0.005 m. The pneumatic agent is a gas with t =  
1.2 kg/m3 and n = 1.3 # 10-5 N-s/m2. Ignore the capacitance of the conduit.

5.22 A structural layer is sandwiched between two identical insulation layers to 
reduce the temperature loss by 50%. Considering that the thermal conductivity 
of the insulation layers is 20 times smaller than the thermal conductivity of the 
structural layer, find the thickness of the insulation layer as a fraction of the 
structural layer thickness.

5.23 A wall is formed of two identical panels that enclose air space. The thick-
ness of the panels is lp = 0.02 m and that of the air space is la = 0.04 m. The 
thermal conductivity of the panel is kp = 2 W/m-C and that of the air space is 
ka = 0.02 W/m-C. It is calculated that during wintertime and for an outside 
temperature of -10°C, the inside temperature should be 23°C. However, the 
measured inside temperature is 25°C. Evaluate the outside convection coef-
ficient considering combined heat conduction and convection.

5.24 The composite wall sketched in Figure 5.40 is formed of five panels. Sketch 
the thermal resistance connection for the outside-to-inside heat flow. Knowing 
that l1 = l2 = l3 = 0.02 m, A1 = A2 = A3 = 25 m2, A4 = A5 = 0.1 m2, k1 = k5 = 
0.001 W/m-C, k2 = k4 = 0.9 W/m-C, k3 = 0.002 W/-C, io = 35°C, and ii = 
20°C, find the heat flow rate penetrating from outside.

Figure 5.38

Conduit Pneumatic system.

Conduits

l l

ld2d1

Figure 5.39

Pneumatic system with two Containers and Conduit.
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5.25 A stainless steel pipe (k = 15 W/m-C) of length l = 10 m, inner diameter  
di = 0.5 m, and outer diameter do = 0.6 m is coated with an insulation material 
(ki = 0.0001 W/m-C) to allow a total heat loss of q = 10 W when the outdoor 
temperature is -5°C and the temperature of the fluid inside the pipe is 30°C. 
What is the thickness of the insulating layer?

5.26 Several cylinders are combined as shown in the longitudinal section of 
Figure 5.41. Find the radial heat flow corresponding to a temperature differ-
ence of 40°C. Known are k1 = 0.1 W/m-C, k2 = 0.02 W/m-C, k3 = 25 W/m-C, d1 =  
0.050 m, d2 = 0.042 m, d3 = 0.036 m, d4 = 0.030 m, l1 = 1 m, l2 = 0.8 m, l3 = 1.1 m.

5.27 Two identical rooms (as sketched in Figure 5.42) are heated differently during 
wintertime by means of two heat sources of known heat flow rates q1 and q2. The 

Figure 5.40

Five-Panel Composite Wall.

q

qiqo
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k1 k2 k3
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I1 I2 I3
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Figure 5.41

Longitudinal section through Composite Cylinder tubing.
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rooms have identical walls separating the conditioned space from the outside. 
Heat also flows through the wall separating the two rooms, which is different 
from the outside walls. Knowing the outside temperature is io, derive the math-
ematical model of this thermal system where the output amounts are the two 
room temperatures i1 and i2. Known are the thermal resistances of the outside 
walls Rth,o, the thermal resistance of the separating wall Rth, and the thermal 
capacitances of the two rooms Cth, as well as the outdoor temperature io and the 
two source heat flow rates q1 and q2.

5.28 Use Simulink® to plot the time response of the liquid system of Figure 5.35 in 
Problem 5.15. Known are Cl1 = 1.5 # 10-6 m5/N, Cl2 = 2.1 # 10-6 m5/N, Rl1 = 3 #  
104 N-s/m5/, qi = 0.001 m3/s; the resistance Rl2 is nonlinear with the following 
relationship between  pressure loss and flow rate: p = 1100q3 N/m2.

5.29 Plot the output pressure po in the conical vessel of Figure 5.39 in Problem 5.21  
using Simulink®. Consider the input pressure is a ramp function defined as  
pi = 2000t N/m2 for 10 minutes and then remains constant for 10 minutes 
after that. 

5.30 Known are the following amounts for the thermal system of Figure 5.42 in 
Problem 5.27: io = -10°C, Rth = 0.3 K-s/J, Rth,o = 1 K-s/J, Cth = 200,000 J/K, 
q1 = 1900 W, q2 = 1600 W. Plot the two rooms’ temperatures as a function of 
time using Simulink®.
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Figure 5.42

two-Room thermal system with Internal Heating.
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Objectives

The chapter introduces the Laplace transform, which can be used to solve the 
differential equations corresponding to mechanical, electrical, and fluid or thermal 
systems’ mathematical models as derived in previous chapters. The Laplace 
transform is also instrumental in formulating other system dynamics models, such 
as the transfer function, the state space model, or frequency-domain analysis, as 
shown in Chapters 7, 8, and 9. The following topics are studied:

•	 Direct and inverse Laplace transforms.

•	 Laplace pairs and main Laplace-transform properties.

•	 Techniques of partial fraction expansion.

•	 Application of direct and inverse Laplace transforms to solving linear differential 
equations with constant and time-varying coefficients, integral equations, and 
integral-differential equations.

•	 Use of MATLAB® specialized commands for partial-fraction expansion and direct 
or inverse Laplace transform calculations.

intrOductiOn
This chapter presents the main properties and applications of the Laplace trans-
form. One important applicative strength of the Laplace method is the conversion 
of differential equations into algebraic equations by means of the direct Laplace 
transform, which enables calculation of the transformed  solution with relative ease. 
Subsequent use of the inverse Laplace transform allows retrieving the  original, time-
dependent solution. Integral and integral-differential equations can also be solved by 
the same two-phase Laplace approach. The Laplace transform is also fundamental 
in the transfer  function, state space, and frequency-domain approaches. While the 
Laplace  transform is utilized mainly for  constant-coefficient, linear differential equa-
tions, some equations with time-varying coefficients can also be solved through this 
methodology, a topic also discussed here. The chapter includes the application of 

6The Laplace Transform
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206 CHAPTER 6 The Laplace Transform

the Laplace transform to multiple degree-of-freedom dynamic models, which are 
expressed in vector-matrix form. Time-domain system identification from Laplace-
domain information also is discussed.

6.1 direct LapLace and inverse LapLace  
transfOrmatiOns

Transformations, also named operators, convert functions into other functions; this 
is schematically illustrated in Figure 6.1. Transformations change the original func-
tion, but they can either keep the independent variable or modify it. An operator 
that takes a function and multiplies it by a number n, for instance, preserves the 
independent variable of the original function. Such an operator can formally be 
expressed as

 ( ) ( )O f t nf t=6 @  (6.1)

If, for example, f(t) is cos(~t) in Eq. (6.1), the result, n cos(~t), depends on time t as 
well as on the input (original) function.

Another set of transformations (or simply, transforms) modify both the original 
function and its independent variable through their application. Such transforms 
are the integral ones, which change a function and its variable using integration, 
and the Laplace transform is one of them. Other integral transforms are the Fourier 
transform, the Melin transform, the Hankel transform, the Kantorovich transform, 
and the Mehler-Fock transform, all of which operate over an infinite domain. Still 
other transforms apply over a finite domain and are known as finite transforms, 
including specific techniques such as those of Sturm-Liouville, Legendre, and 
Tchebycheff.

The direct Laplace transform takes a function f(t) that depends on time t and 
transforms into another function F(s) that depends on the complex  variable s, as 
sketched in Figure 6.2. The inverse Laplace transform, also indicated in  Figure 6.2, 
operates on F(s) to obtain f(t). Mathematically, the Laplace transform is defined as

 ( )ef t dt( ) ( )F s f tL st

0

= =

3

-
6 @ #  (6.2)

fiGure 6.1

Relationships between Functions and Transformations (Operators).

FUNCTION FUNCTION
TRANSFORMATION

(OPERATOR)
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The integral defining the Laplace transform needs to be convergent for the trans-
formation to exist, which requires the original function f(t) to satisfy the following 
conditions:

1. f(t) has to be piecewise continuous over the interval 0 < t < 3, which means it 
has to be continuous on any partition of that interval (provided the interval can 
be partitioned into a finite number of nonintersecting intervals), and it needs to 
have finite limits at the ends of each subinterval.

2. f(t) needs to be of exponential order, which means is has to satisfy the following 
equality:

 ( ) elim f t 0t=v-

t"3
  (6.3)

for values of the real constant v that are larger than a threshold value vc, which is 
known as the abscissa of convergence.

6.1.1 direct Laplace transform and Laplace transform pairs
Formally, the inverse Laplace transform, which is often needed to return the original 
(generally unknown) time-domain function f(t), is computed as

 ( ) ( )f t F sL 1= -
6 @ (6.4)

but the integration technique allowing direct calculation of f(t) from F(s) is a bit more 
involved for this introductory text. Suffice to say that application of the direct Laplace 
transform, Eq. (6.2), enables formulating f(t) - F(s) pairs for elementary functions 
that satisfy the requirements for obtaining the Laplace transform. Table 6.1 contains 
several basic Laplace-transform pairs for quick translation between the two domains.

fiGure 6.2

Direct and Inverse Laplace Transformations.
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f (t )

s (LAPLACE) DOMAIN
F(s)

INVERSE LAPLACE
TRANSFORMATION

DIRECT LAPLACE
TRANSFORMATION

www.semeng.ir

www.semeng.ir


208 CHAPTER 6 The Laplace Transform

Table 6.1 Laplace Transform Pairs

f (t ) F (s )

d(t) 1

1(t) 1/s

t 1/s2

t n n!/sn+1

e-at 1/(s + a)

sin(~t) ~/(s2 + ~2)

cos(~t) s/(s2 + ~2)

1 t/ sr /

tne-at n!/(s + a)n+1

eat - ebt (a - b)/[(s - a)(s - b)]

aeat - bebt (a - b)s/[(s - a)(s - b)]

(eat - ebt)/t ln[(s - a)/(s - b)]

t - (1 - e-at)/a a/[s2(s + a)]

sinh(~t) ~/(s2 - ~2)

cosh(~t) s/(s2 - ~2)

sin(~t + {) [~ cos{ + (sin{)s]/(s2 + ~2)

t sin(~t) 2~s/(s2 + ~2)2

sin(~t)/t tan-1(~/s)

t cos(~t) (s2 - ~2)/(s2 + ~2)2

t sinh(~t) 2~s/(s2 - ~2)2

t cosh(~t) (s2 + ~2)/(s2 - ~2)2

cos(~1t) - cos(~2t) ( ) ( ) ( )s s2
2

1
2 2

1
2 2

2
2

~ ~ ~ ~- + +6 @

1 - cos(~t) ~2/[s(s2 + ~2)]

~t - sin(~t) ~3/[s2(s2 + ~2)]

sin(~t) - ~t cos(~t) 2~3/(s2 + ~2)2

sin(~t) + ~t cos(~t) 2~s2/(s2 + ~2)2

sin(~t) sinh(~t) 2~2s/[s4 + (2~2)2]

cos(~t) cosh(~t) s3/[s4 + (2~2)2]

sin(~t) cosh(~t) ~(s2 + 2~2)/[s4 + (2~2)2]

sinh(~t) - sin(~t) 2~3/(s4 - ~4)

cosh(~t) - cos(~t) 2~2s/(s4 - ~4)

sinh(~t) + sin(~t) 2~s2/(s4 - ~4)

cosh(~t) + cos(~t) 2s3/(s4 - ~4)
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One of the simplest transforms is the one applied to the unit step function sketched 
in Figure 6.3. Instead of simply using a value of 1 (or the more generic symbol 
u(t), as in other texts) to define it, the symbol 1(t) can be utilized with the function 
 definition indicated in Figure 6.3, which highlights that the unit-step function is zero 
for t < 0. This special symbol allows truncating various other functions by adequate 
combination with 1(t), as will be shown shortly. The Laplace transform of 1(t) is

 e dt
3

( )
e

t s s1
1

L st
st

0
0

= = - =

3

-
-

6 @ #  (6.5)

and the pair is included in Table 6.1.

Example 6.1
Calculate the Laplace transform of the unit-ramp function, which is sketched in Figure 6.4. 
Using the principle of mathematical induction, also derive the Laplace transform of the 
function u(t) = t n, where n is an integer and n > 1.

Solution
The Laplace transform of the unit ramp function is calculated through integration by 
parts as

 =e et dt dt
3

[ ]
e e

t t s s s s
1 1

L st
st

st
st

00
0 2

0
2

= = - + = -

33 3
-

-
-

-

##  (6.6)

which is also shown in Table 6.1. It can be demonstrated using L’Hospital rule in Eq. (6.6) 
that

 
st-e

e
lim limt s s

1
0

st2
= - =

-
=

t"3 t"3
 (6.7)

To calculate the Laplace transform of t 2, a procedure similar to the one applied previ-
ously is used, which yields

 et dt st-
3e

et t s s t dt
s

2 2
L st

st

0

2 2

0

2

0 3
= = - + =

33

-
-

6 @ ##  (6.8)

fiGure 6.3

Unit-Step Function.
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Equation (6.8) took into account both the result of Eq. (6.6) and the fact that

 
e

e e
lim lim limt s s

t

s

2 2
0

st

st st

2
2 3

= - =
-

=
-

=
-

t t t" " "3 3 3
 (6.9)

Equations (6.6) and (6.8) suggest that

 
!

t
s

n
L n

n 1
=

+
6 @  (6.10)

but this has to be demonstrated. If Eq. (6.10) is valid, the following relationship needs to 
be valid as well:

 
!

t
s

n 1
L n

n

1
2

=
++

+

] g
6 @  (6.11)

and, according to the principle of mathematical induction, Eq. (6.10) would be proven. 
This can be shown by using integration by parts again to calculate tL n 1+

6 @:
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(6.12)

This proves that Eq. (6.11) is valid; therefore, Eq. (6.10) is valid as well, as also indicated 
in Table 6.1. The following limit is zero (as can be demonstrated through mathematical 
induction again):
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fiGure 6.4

Unit-Ramp Function.
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Example 6.2
Calculate the Laplace transform of the unit-amplitude sinusoidal function of Figure 6.5.

Solution
According to the definition, the Laplace transform of the unit-amplitude sinusoidal func-
tion is

 ( ) esin sinF s t t dtL st

0

~ ~= =

3

-] ]g g6 @ #  (6.14)

Integration by parts is applied to this equation, which yields

 st st- -( ) e e e
sin

cos cosF s s
t

s t dt s t dtst

0 0
0

~ ~
~

~
~= - + =

3 33
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]
] ]

g
g g# #  (6.15)

because
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g
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 0 0 0= - =  (6.16)

Integration by parts is applied to the integral on the right-hand side of Eq. (6.15), which 
results in

 ( ) e ( )
cos

F s s s
t

s F sst

0

~ ~ ~
= - -

3
-

] g
= G (6.17)

By taking into account that
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fiGure 6.5

Unit-Amplitude Sinusoidal Function.
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the Laplace transform of sin(~t) is found algebraically from Eq. (6.17) as

 ( ) [ ]sinF s t
s

L
2 2

~
~

~
= =

+
] g  (6.19)

 6.1.2 properties of the Laplace transform
Table 6.2 synthesizes the main Laplace transform properties, which are demonstrated 
in the following. Several other properties and examples are included in the compan-
ion website Chapter 6.

Linearity
An important property with applications in solving differential equations and deter-
mining transfer functions is the linearity character of both the direct and inverse 
Laplace operators. Consider a linear combination of n time-dependent functions, 
f1(t), f2(t), …, fn(t) by means of n real constants, a1, a2, …, an. Application of the 
Laplace transform to this linear combination results in:

 ( ) ( ) ( ) ( ) ( ) ( )a f t a f t a f t a F s a F s a F sL n n n n1 1 2 2 1 1 2 2g g+ + + = + + +6 @  (6.20)

This propriety can easily be verified by using the definition of the Laplace transform. 
Application of the inverse Laplace transform to Eq. (6.20) and consideration of

 ( ) ( )f t f tL L1 =-
66 @ @  (6.21)

Table 6.2 Main Laplace Transforms Properties (Theorems)

Theorem f (t ) F (s )

Linearity a1f1(t) + a2f2(t) a1F1(s) + a2F2(s)

Frequency shift eatf(t) F(s - a)

Time shift f(t - a)1(t - a) e-asF(s)

Time derivatives
( )

dt
d

f t
sF(s) - f(0)

( )
dt

d
f t

2

2

( ) (0)
( )

s F s sf
df

df t2

0t

- -
=

Time integral
( )f t dt

0

t

# ( )
( )

s
F s

s

f t
0t

+
=

#

Final value lim ( )f t
t"3

( )limsF s
0s"

Initial value
0t>

lim ( )f t
0t"

( )limsF s
s"3
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demonstrates the linear character of the inverse Laplace transform and results in

 ( ) ( ) ( ) ( ) ( ) ( )a F s a F s a F s a f t a f t a f tL n n n n
1

1 1 2 2 1 1 2 2g g+ + + = + + +-
6 @  (6.22)

Frequency-Shift Theorem
The frequency shift theorem (as shown in Table 6.2) yields the Laplace transform of 
the product between a function f(t), which is Laplace transformable, and e-at, where a 
is a real constant. It can be shown that

 e( ) ( ) ( ) ( )e e ef t f t dt f t dt F s aL at at st s a t

00

= == +

33

- - - - +] g
6 @ ##  (6.23)

The effect of multiplying the original function by an exponential function on apply-
ing the Laplace transform to this product is a translation (shift) of the variable s 
into the Laplace domain. Because the Laplace domain is closely connected to the 
frequency response, as we see in subsequent chapters, the theorem is known as the 
frequency shift theorem.

Example 6.3
The out-of-plane bending vibrations of a MEMS cantilever (see Fig. 3.1) are identified 
by the Laplace transform of the free end displacement as Z(s) = 3/(s2 + 0.2s + 30). 
Determine the time-domain  coordinate z(t).

Solution
In checking the functions in the right column of Table 6.1, the closest format to the one 
of the problem appears to be the pair corresponding to sin(~t), but some modifications 
are needed before finding z(t). By completing the square in the denominator, the function 
Z (s) can be written as

 ( )
. . . . .

.
Z s

s s0 1 29 99

3

29 99

3

0 1 29 99

29 99
2 2 2 2

#=
+ +

=
+ +] ^ ] ^g h g h

 (6.24)

By considering now the linearity propriety, the frequency shift theorem, together with the 
line in Table 6.1 giving the Laplace transform of sin(~t), it follows that

 z( ) ( )
. . .

.
t Z s

s29 99

3

0 1 29 99

29 99
L L1

2 2
#= =

+ +

- 1-

] ^g h
6 >@ H

 e
.

.sin t
29 99

3
29 99. t0 1= - ^ h (6.25)
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Example 6.4
Use the frequency-shift theorem and the Laplace transforms of sin(~t) and cos(~t) to 
determine the Laplace transforms of the following functions: f1(t) = te-at sin(~t); f2(t) = 
te-at cos(~t).

Solution
The following results from the frequency-shift theorem:

 e
( )

t
s a j

1
L a j t

2~
=

+ +

~- +^ h
6 @  (6.26)

The complex number of Eq. (6.26) is expressed in standard form as
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(6.27)

At the same time, the original function of Eq. (6.26) can be formulated based on Euler’s 
identity as

 e e e e e ecos sin cos sint t t t j t t t jt ta j t at j t at at at~ ~ ~ ~= = - = -~ ~- + - - - - -] ] ] ]^ g g g gh
6 @ 

(6.28) e e e e e ecos sin cos sint t t t j t t t jt ta j t at j t at at at~ ~ ~ ~= = - = -~ ~- + - - - - -] ] ] ]^ g g g gh
6 @

Applying the Laplace operator to Eq. (6.28) results in

 e e ecos sint t t j t tL LLa j t at at~ ~= -~- + - -] ]^ g gh
6 6 6@ @ @ (6.29)

Comparison of the real and imaginary parts of Eqs. (6.27) and (6.29) shows that
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(6.30)

Time-Shift Theorem
The previous theorem has a counterpart, which, as shown in Table 6.2, indicates that 
multiplication of the function F(s) by an exponential e-as, followed by application of 
the inverse Laplace transform, results in a time domain shift:

 e ( )1f t a t a F sL as- - = -] ]g g6 @  (6.31)

which is known as the time-shift theorem.
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Before demonstrating this property, a brief preamble is needed to better under-
stand the functions f(t - a) and 1(t - a) on the left-hand side of Eq. (6.31). An 
original arbitrary function f(t) is plotted in Figure 6.6(a), together with the function 
f(t - a). As it can easily be verified, the function f(t - a) is shifted (translated) hori-
zontally to the right by a quantity a because f(t - a) = f(t1). A similar situation applies 
to the functions 1(t) and 1(t - a), as 1(t - a) translates to the right by the quantity a, 
as illustrated in Figure 6.6(b).

Let us analyze what happens with the product between an arbitrary function f(t) 
and 1(t). This product is expressed as 

 ( ) ( )
( ) ,
( ) ( ),

f t
f t t
f t f t t

t1
0 0 0
1 0

<#

# $
=

=

=
(  (6.32)

In other words, the original function exists only for positive values of t and is 
zero (truncated) to the left of the origin. Multiplication of a function by 1(t) is omit-
ted altogether in many applications, as this particular operation does not change the 
original function over the zero-to-infinity interval, where Laplace integration is being 
applied. It can simply be shown that multiplication of f(t) by 1(t - a) results in a 
function that is zero to the left of a and is f(t) to the right of that point. Let us analyze 
what is the result of multiplying f(t - a) by 1(t - a). Without doing any math, the 
functions f(t) and 1(t) are first translated to the right by a quantity a to yield the func-
tions f(t - a) and 1(t - a), respectively. The product of the two functions is zero, 
again, to the left of a and f(t - a) to the right of a. The combined result is translating 
the product function f(t)1(t) to the right by the quantity a:

 
( ) ,
( ) ( ),

f t a t a
f t a t a
f t a f t a t a

1
0 0
1

<

>

#

#
- - =

- =

- = -
] ]g g (  (6.33)

Demonstrating the time-shift theorem, which is expressed in Eq. (6.31), can be 
done by starting from the Laplace transform definition:

 ef dt1f t a t a t a t a1L st

0

- - = - -

3

-] ] ] ]g g g g6 @ #  (6.34)

fiGure 6.6

Horizontally Translated (a) Arbitrary Function; (b) Unit-Step Function.
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By using the change of variables t - a = t1, Eq. (6.34) can be written as

a+( ) ( )e ( ) ( )ef t a t a f t t dt f t t dt1 1 1L s t

a

s t a
1 1 1 11
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1 1- - = +

3
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- +] ] ^ ^g g h h
6 @ # #

 e ( ) ( )e e ( )f t t dt F s1sa st sa
1 1

0

1
1= =

3

- - -#  (6.35)

Equation (6.35) takes into account that

 a+( ) ( )ef t t dt1 0s t

a

1 1 1

0

1 =-

-

^ h#  (6.36)

because f(t1)1(t1) is zero for t less than zero, as indicated in Eq. (6.32).

Example 6.5
Determine the Laplace transforms of the pulse and impulse functions plotted in Figure 6.7.

Solution
The pulse function, as can be seen in Figure 6.7(a), is nonzero only between 0 and x, and 
it can be written as

 ( ) ,

,
p t

A
t

t

0

0 2

# #x x

x
= *  (6.37)

The branch-form of this function is not amenable to using the definition of the Laplace 
transform over the  zero-to-infinity time interval; therefore, reformulation in an adequate 
manner is needed. We saw that one convenient way of defining a function starting from 
a point on the time axis that is different from zero is by using the function 1(t - a) as a 
multiplier of the original function. As such, the pulse function can be considered as being 
made up of two step functions: one equal to A /x, starting from zero and going to infinity; 

fiGure 6.7

(a) Pulse Function; (b) Impulse Function.

(a) 

f

t

A
t

(b)

t0

Rectangle
area is A

f

t t

•

www.semeng.ir

www.semeng.ir


 6.1 Direct Laplace and Inverse Laplace Transformations 217

and another one, equal to -A /x, applied only from t = x to infinity. As a consequence, the 
pulse function can be rewritten as

 ( )p t
A A

t1x x x= - -] g (6.38)

where multiplication of the first term on the right-hand side with 1(t) has been omitted 
according to a previous discussion. By applying the linearity principle together with the 
time-shift theorem, the following is the Laplace transform of the original pulse function:

 ( ) eP s
A A

t s
A

1 1L s

x x x x= - - = - x-] ^g h: D  (6.39)

The impulse function is a particular case of the pulse function occurring when the 
time interval over which the pulse is nonzero reduces to zero; in that case, the height of 
the needlelike rectangle must go to infinity to combine with a width that tends to zero, in 
order to keep a constant area A, as shown in Figure 6.7. Mathematically, the impulse is 
defined as

 ( ) ,

, ,

limi t
A

t

t t0 < >
0 x x

x x
= =

"x*  (6.40)

Equations (6.38) and (6.40) indicate that

 ( ) ( )limi t p t=
0"x

 (6.41)

therefore,

 ( ) ( ) ( ) ( )
e

[ ] [ ]lim lim limI s i t p t p t s
A 1

LL L
s

x= = = =
- x-

0 0 0" " "x x x

^ h
8 B

 
e

lim s
sA

A
s

= =
x-

0"x
 (6.42)

Interchangeability between the limit and the Laplace operators, as well as l’Hospital’s rule, 
are applied in Eq. (6.42), because the original limit was of the form zero over zero. When 
A = 1, the impulse function becomes the unit-impulse function, also known as Dirac delta 
function, denoted by d(t).

Example 6.6
Determine the Laplace transform of the function sketched with thick solid line in Figure 6.8.

Solution
Figure 6.8 indicates that the function f (t) is

 ( )
( ),
( ),
,

,
,

,
f t

f t t a
f t a a t a

t a

t t a
t a a t a

t a

0
2

0 2

0
2

0 2

1

1

$ $

# #

# #

# #

# #= - = -* *  (6.43)
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The branch form of Eq. (6.43) can be rendered into the function expression

 ( ) ( )f t t a t a a t a t a t at1 1 1 2 2 1 2= - - - - - - -] ] ] ]g g g g  (6.44)

Let us analyze the specific form given in Eq. (6.44) and check whether this formula is 
adequate to the plot of Figure 6.8. The first term on the right-hand side of Eq. (6.44) is a 
ramp function that is defined from zero to infinity. The next term (the negative step) brings 
the function from the value of a at t = a to a value of zero. However, the original function 
f1(t) continues to exist, which is necessary for the interval a to 2a, where it actually is iden-
tical to the necessary function t - a. At t = 2a, another negative step function is applied, 
once more bringing the function to a value of zero from the value of a—this is achieved by 
the third (minus) term on the right-hand side of Eq. (6.44). The last negative term is used 
to cancel the effect of the remaining function t - a when the time increases from a value 
of 2a to infinity. The Laplace transform applied to f(t) of Eq. (6.44) results in

 ( ) e e[ ]f t s s ae s
1 1

1
1

L as as as2= + - -- - -^ h: D (6.45)

Laplace Transform of Derivatives
The Laplace transform of the first derivative of a function f(t) can be approached 
using the definition
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e
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df t
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=

3

-
< F #  (6.46)

through integration by parts where u = e-st and the rest of the function in Eq. (6.46) 
being dv. In doing that, one obtains
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6 6< @ @F #  (6.47)

fiGure 6.8

Truncated Train of Triangular Pulses.
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Equation (6.47) took into account the fact that ( )elim f t 0st =-

t"3
6 @ , because the 

function f(t) is Laplace transformable and therefore is of exponential order.

Example 6.7
Find the Laplace transform of the function f (t) = sin(~t) by using the relationship

( )
( ) ( )

( )

dt

d f t
s f t sf

dt

df t
0L L

t
2

2
2

0

= - -
=

6> @H

Solution
The given relationship can be reformulated as

 ( )
( )

( )
( )

f t
s dt

d f t
sf

dt

df t
0

1
L L

t
2 2

2

0
= + +

=

6 >@ H* 4  (6.48)

It is known that
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2
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 (6.49)

therefore,

 
( )

( )[ ]
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d f t
f tL L2

2

2

~= -> H  (6.50)

for f (t) = sin(~t). Combining Eqs. (6.48) and (6.50) results in

 ( ) ( )
( )

f t
s s

sf
dt

df t
01

1
L

t
2

2

2
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~
+ = +

=

c m6 @ ) 3 (6.51)

Because

 
( )

( )cos
dt

df t
0

t 0
~ ~= =

=

 (6.52)

and f (0) = 0, Eq. (6.51) transforms to

 ( )f t
s

L
2 2~

~
=

+
6 @  (6.53)

which is the expected result.
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Laplace Transform of Indefinite Integrals
There are two modalities of formulating indefinite integrals: one that specifies the 
limits of integration as zero and t (a generic time station), and another form that does 
not mention the limits of integration at all. As a consequence, there are two theorems 
related to the Laplace transformation of integrals. It will be shown next that

 ( )
( )

f t dt s
F s

L

t

0

=> H#  (6.54)

By applying the definition of the Laplace transform, it follows that

 L ( ) ( ) ef t dt f t dt dt
t t

st

00 0

=

3

-f p> H ## #  (6.55)

Integration by parts is used in Eq. (6.55) by taking ( )u f t dt
t

0
= #  and dv = e-stdt, 

which yields

3
( ) e ( ) e ( )lim limf t dt s f t dt s f t dt

1 1
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= - - -- -

t 0"t"
f fp p> H# # #

 ( )e
( )

s f t dt s
F s1 st

0

+ =

3

-#  (6.56)

because, as you can verify, both limits in Eq. (6.56) are zero; so Eq. (6.54) has been 
demonstrated.

We also demonstrate that

 ( )
( ) ( )

f t dt s
F s

s

f t dt
L

t 0
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=
: D#

#
 (6.57)

By again applying integration by parts to the Laplace definition equation and select-
ing the variables u and v as we did previously, it can be shown that
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(6.58)

which took into account that e ( )lim s f t dt
1

0st- =-

t"3
b l# .
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Initial-Value and Final-Value Theorems, use of MATLAB® to Calculate 
Limits
Both the initial- and final-value theorems can be demonstrated based on the theorem 
providing the Laplace transform of the first derivative of a function f(t). Let us first 
calculate the limit:

 
( ) ( )

e
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elim lim lim
dt

df t

dt

df t
dt

dt

df t
dt 0L st st

0 0

= = =

3 3

- -

s s" "3 3 s"3_ i< F # #  (6.59)

In this equation, advantage has been taken again of the interchangeability of the 
limit and integration operators with respect to the s variable. However, according to 
Eq. (6.47), it also follows that
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Comparison of Eqs. (6.59) and (6.60) yields

 ( ) ( )limlim f t sF s=
t 0" s"3

6 6@ @ (6.61)

which is known as the initial-value theorem.
The final-value theorem can be established similarly by considering the following 

limit first:
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(6.62)

It is also true that
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sF s f sF s f t0L
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Because the algebraic sums in the right-hand sides of Eqs. (6.62) and (6.63) need to 
be equal, it is necessary that:

 ( ) ( )lim limf t sF s=
s 0"t"3

6 6@ @ (6.64)

which is the final-value theorem.
As mentioned in previous chapters, MATLAB® and its symbolic calculation 

capability can be used to evaluate such limits as the ones necessary in the initial- and 
final-value theorems. To calculate the limit [ ( )]lim f t

,t a t a<"
, the following MATLAB® 

command is needed: limit(f,t,a,'left'), and to compute the limit [ ( )]lim f t
,t a t a>"

, 

the MATLAB® command is limit(f,t,a,'right').
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The initial- and final-value theorems can be used to interrogate the behavior of 
a dynamic system only at the initial moment and the final one, without necessarily 
knowing the system’s response over the whole time range, as shown in the following 
example.

Example 6.8
A single-loop electrical circuit is formed of a constant-voltage source of voltage v, an induc-
tor of inductance L, and a resistor of resistance R, all connected, all in series. Calculate the 
initial value and the final value of the current in the mesh for v = 120 V and R = 240 X.  
Use MATLAB® to check the results.

Solution
According to Kirchhoff’s second law, as shown in Chapter 4, the differential equation 
governing the dynamic behavior of this electrical circuit is

 
( )

( )L
dt

di t
Ri t v+ =  (6.65)

The Laplace transform is applied to Eq. (6.65), which results in

 [ ( ) ( )]L sI s i RI s s
v

0+ + =] g  (6.66)

Solving for I(s), the Laplace transform of the current i(t), in Eq. (6.66) yields

 ( )I s
s Ls R

v
Ls R
Li 0

=
+

+
+]

]

g

g
 (6.67)

The initial value of the current is determined by means of the initial-value theorem as

 ( ) ( )lim lim limi t sI s
Ls R

v
Ls R
sLi

i
0

0
t 0

= =
+

+
+

=
" s s" "3 3

]
]

g
g< F  (6.68)

whereas the final (steady-state) value of the current is found using the final-value theorem as

 ( ) ( ) .lim lim limi t sI s
Ls R

v
Ls R
sLi

R
v

A
0

0 5
s s0 0

= =
+

+
+

= =
" "t"3

] g
< F  (6.69)

The following MATLAB® code returns the results of Eqs. (6.68) and (6.69):

 » syms s i0 l r c v
 » I = v/(s*(l*s+r))+l*i0/(l*s+r);
 » limit(s*I,s,0,'right')
  ans =
  v/r
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 » limit(s*I,s,inf,'left')
  ans =
  i0

Periodic Functions
Periodic functions have the property

 ( )f t f t T f t T f t nT2 g= + = + = = +] ] ]g g g (6.70)

for every value of the time variable t, where T is the period and n is any positive 
integer. Let us calculate the Laplace transform of such a periodic function. The zero-
to-infinity time interval can be split in an infinite number of subintervals, namely: 0 
to T, T to 2T, …, nT to (n + 1)T, …, which means the Laplace transform of f(t) can 
be written as

 e
( )n T1+

nT

( )e ( ) e ( ) e ( ) f t dtf t dt f t dt f t dtst st
T

st st

T

T

0 0

2

g= + +

3

- - - -# # ##  

e ( )f t dt
( )n T1+

nT

st

n 0
g+ =

3
-

=

/ #  (6.71)

The following change of variable

 t t nT1= +  (6.72)

transforms the limits of integration of the integral in Eq. (6.71) into 0 (the lower 
limit) and T (the upper limit), so that Eq. (6.71) becomes

 st se ( ) e ( ) e e ( )f t dt f t dt f t dtt nT
T

nTs

n

st
T

n 00

1 1

00
1 1

0

1 1= =
33 3

=

- - +

=

- -d^ nh //# # #  (6.73)

The infinite sum in Eq. (6.73) represents an infinite geometric series sum whose 
ratio is r = e-Ts and whose first term is a = 1. It is known that the sum of terms in a 
geometric series is calculated as

 e
e

e

e
lim lim

r
a r

1
1

1

1 1

1
1nTs

n

Ts

n Ts

Ts
n 0

1 1

=
-

-
=

-

-
=

-

3
-

=

+

-

- +

-n"3 n"3

^ ]h g
6 @/  (6.74)

By combining Eqs. (6.73) and (6.74) and taking into account that the time variable in 
the integral of Eq. (6.73) is arbitrary, the Laplace transform of the periodic function 
f(t) becomes

 ( )
e

e ( )

e

e ( )

[ ]f t

f t dt f t dt

1 1
L

sT

st
T

sT

st
T

1 1

0 0

1

=
-

=
--

-

-

-# #
 (6.75)
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Example 6.9
Find the Laplace transform of the periodic function drawn in Figure 6.9. Consider that 
time is measured in seconds.

Solution
Figure 6.9 indicates the function’s period is T = 4 s. The sinusoidal portions have an 
amplitude of 1; and because this maximum value occurs at t = 1 s for the first time, it 
follows that the sinusoidal portion can be expressed as sin(~t) with ~ = r/2. As a conse-
quence, f (t) is expressed as

( )
,

, ( )

,

, ( )

sin sin
f t

t nT t n T

n T t n T

t n t n

n t n

2 2
1

0
2
1

1

2
4 4

2
1

0
2
1

4 4 1

# #

# #

# #

# #

r r

=

+

+ +

=

+

+ +

c c

c

c c

c

m m

m

m m

m

Z

[

\

]]

]]

Z

[

\

]]

]]
 (6.76)

Application of Eq. (6.75) with consideration of the fact that the function f (t) is zero for 
the second interval (namely, for t between 2 and 4 s) leads to

 

st

( )
e

e sin

f t

t dt

1

2
L

s4

0

2
r

=
- -

- c m

6 @

#
 (6.77)

The integral in the numerator of Eq. (6.77) can be solved by parts or by applying the 
symbolic calculation capability of MATLAB®; the final result is

 L ( )
( ) ( e )

e( )
f t

s4 1

2 1
s

s

2 2 4

2

r

r
=

+ -

+
-

-

6 @  (6.78)

The Convolution Theorem
The convolution theorem offers an elegant alternative to finding the inverse Laplace 
transform of a function that can be written as the product of two functions, without 
using the simple fraction expansion process, which, at times, could be quite complex, 

fiGure 6.9

Train of Sinusoidal Pulses.
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as we see later in this chapter. The convolution theorem is based on the convolution 
of two functions f (t) and g(t). According to the definition, the convolution of f (t) and 
g(t) is

 ( ) ( ) ( )f t g t f g t d
t

0

) x x x= -] g#  (6.79)

It is straightforward to demonstrate that the convolution of two functions is a com-
mutative operation. If the change of variable is used, x1 = t - x in Eq. (6.79), this 
equation changes to

 ( ) ( )f g t d f t g d
t

t0

1 1 1

0

x x x x x x- = - -] ^g h# #  

( ) ( ) ( )g f t d g t f t
t

1 1 1

0

)x x x= - =^ h#  (6.80)

The convolution theorem (whose demonstration is given in the companion web-
site Chapter 6) states that

 ( ) ( ) ( ) ( )[ ]f t g t F s G sL ) =  (6.81)

which leads to

 [ ( ) ( ) ( ) ( ) ( )]F s G s f t g t f g t dL

t
1

0

) x x x= = -- ] g#  (6.82)

Equation (6.82) indicates that the inverse Laplace transform of the product of two 
functions in the s domain is equal to the convolution of the original (time-domain) 
functions.

Example 6.10
Determine the inverse Laplace transform of the function X(s) = 1/[(s2 + a2)(s2 + b2)] using 
the convolution theorem.

Solution
The given function can be expressed in product form as

 ( ) ( ) ( )X s
s a s b

F s G s
1 1

2 2 2 2
#=

+ +
=  (6.83)

which indicates that

 ( ) ( );F s
s a

G s
s b

1 1
2 2 2 2

=
+

=
+

 (6.84)
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therefore, the time-domain counterparts of the functions in Eq. (6.84) are

 ( ) ( )( ); ( )sin sinf t a at g t
b

bt
1 1

= =  (6.85)

By applying the convolution theorem and integral, the function x(t) is calculated as

 ( ) ( ) ( ) [ ( )( ) ]sin sinx t f t g t
ab

a b t d
1

t

0

) x x x= = -#  (6.86)

The sine product under the integral can be written as

 [ [] ] [cossin sin cosa b t a b a b btbt
2
1

x x x x- = + - - - +] ] ] ]g g g g ?" , (6.87)

Substituting Eq. (6.87) into Eq. (6.86) and solving the resulting two integrals yields

 a( ) [ ]sin sinx t
ab a b

a bt b t
1
2 2

=
-

-
^

] ]
h

g g  (6.88)

6.2 sOLvinG differentiaL equatiOns by the direct and 
inverse LapLace transfOrms

The theorem that applies the direct Laplace transform to derivatives of functions is 
fundamental in solving linear differential equations and linear differential equation 
systems. While the Laplace transform excels in solving linear differential equations 
with constant coefficients, there are cases where the Laplace transform can be applied 
to solve linear differential equations with time-dependent coefficients. For constant-
coefficient linear differential equations, application of the Laplace transform changes 
a time-domain differential equation into an algebraic one in the s domain, where the 
unknown (the Laplace transform of the time-dependent unknown function of the 
differential equation) can be determined easily. After finding the unknown function 
in the s domain, the process of partial- (or simple-) fraction expansion needs to be 
applied to simplify the usually complex functions, simplification of which enable 
migration back to the time domain using regular Laplace pairs and properties. To 
summarize, the steps that are needed to solve differential equations by means of the 
Laplace transforms are

•	 Formulate the mathematical model with differential equation(s) in the time 
domain.

•	 Apply the Laplace transform(s) to the time-dependent differential equation(s).
•	 Solve the resulting s-domain algebraic equation(s) for the Laplace transform(s) 

of the time-domain unknown function(s).
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•	 Use partial-fraction expansion of the s-domain unknown function(s) to sim-
plify them.

•	 Apply the inverse Laplace transform(s) to the simplified s-domain unknown 
function(s) and thus determine the original time-domain unknown functions.

6.2.1 analytical and matLab® partial-fraction expansion
Most often, rather complicated functions are produced in the s domain by application 
of the direct Laplace transform, functions that cannot be directly converted into the 
time domain using relatively simple transformation pairs and adequate properties. 
As a consequence, simplifications need to be performed before the inverse Laplace 
transformation can be utilized conveniently. Laplace-domain functions are obtained 
in fraction form:

 ( )
( )
( )

F s
D s

N s
=  (6.89)

where N(s) (N standing for numerator) and D(s) (D meaning denominator) are poly-
nomials in s. When the degree of N(s) is larger than or equal to the degree of D(s), it 
is necessary to divide N(s) by D(s) until a quotient is produced together with another 
polynomial fraction where the degree of the new numerator is smaller than the degree 
of the denominator.

Example 6.11
Determine the original function f (t), knowing its Laplace transform is F (s) = (s 4 + 3s 3 +  
6s 2 + 6)/(s 2 + 2s + 5).

Solution
Division of the numerator to the denominator yields the following sum:

 ( )F s s s
s s

s
1

2 5
3 112

2
= + - -

+ +

-
 (6.90)

F(s) can further be conditioned to the form

 ( )F s s s
s

s

s
1 3

1 2
1

7
1 2
22

2 2 2
# #= + - -

+ +

+
+

+ +2] ]g g
 (6.91)

which enables application of the inverse Laplace transform resulting in

 ( )
( ) ( )

( ) ecos sinf t
dt

d

dt

d
t t

t t
t 3 2 7 2 t

2

2d d
d= + - - - -] ]g g6 @  (6.92)
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Still, division of the numerator to the denominator of Eq. (6.89) may not be suf-
ficient, because the resulting polynomial fraction is too complex (particularly due to 
the nature of its denominator), and the procedure known as partial-fraction expan-
sion needs to be applied, as we discuss next. Partial fraction expansion can be per-
formed analytically or using specialized MATLAB® commands.

 Analytical Partial-Fraction Expansion
There are four cases, as determined by the following denominator roots:

•	 Real and simple (distinct).
•	 Complex (or imaginary) and simple (distinct).
•	 Real and multiple (repeated).
•	 Complex and multiple (repeated).

In each of these cases, different partial-fraction expansion rules apply, and several 
unknown coefficients in the numerators of these fractions need to be determined 
by employing three methods. For simple roots, the method of fraction combination 
(which is presented in the companion website Chapter 6) or the cover-up method 
can be used to determine the unknown fraction coefficients. For multiple roots, the 
method of the s derivative can be utilized in conjunction with either of the other 
two methods just  mentioned. A couple of examples are studied next; the full treat-
ment of the four cases mentioned  previously can be found in the companion website 
Chapter 6. 

Example 6.12
Calculate the inverse Laplace transform of the function F(s) = (s + 3)/[(s2 + 3s + 2)(s2 + 1)]  
using partial-fraction expansion and the cover-up method.

Solution
The function s can be written as

 ( )
( ) ( ) ( )

F s
s s s

s

1 2 1
3

2
=

+ + +

+
 (6.93)

and the particular fraction expansion of it is of the form

 
( ) ( ) ( )s s s

s
s

a
s

b

s

cs d

1 2 1
3

1 2 12 2+ + +

+
=

+
+

+
+

+

+
 (6.94)

It can be seen that, in any of the simple fractions in the right-hand side of Eq. (6.94), the 
difference between the degree of the polynomial in the denominator and the degree of the 
polynomial in the numerator is 1.

The cover-up method determines the coefficients individually and sequentially, and it 
is advantageous to use this method in applications involving a large number of  coefficients 
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(fractions). To find the coefficient a, Eq. (6.94) is multiplied by (s + 1) then s is made 
equal to -1, which results in

 1=
( ) ( )

a
s s

s

2 1
3

s
2

1

=
+ +

+

=-

 (6.95)

This process is equivalent to “covering” (s + 1) on the left-hand side of Eq. (6.94) and 
evaluating the remainder of the fraction for the value of s that zeroes the denominator of 
the fraction that contains a on the right-hand side of Eq. (6.94); that is, s = -1. By using 
this procedure, b is found by covering (s + 2) on the left-hand side of Eq. (6.94) and 
 taking s = -2 for the remainder:

 
( ) ( )

b
s s

s

1 1
3

5
1

s
2

2

=
+ +

+
= -

=-

 (6.96)

The coefficients c and d are determined similarly, by first multiplying through  
Eq. (6.94) by (s2 + 1), then considering that s2 + 1 = 0. The last operation can be done 
for either of the two complex roots of s2 + 1 = 0; that is, s = -j or s = j. For s = j, for 
instance, the following is obtained:

 
( ) ( )

cs d
s s

s
1 2

3

s j

+ =
+ +

+

=

 (6.97)

which is equivalent to the following identity:

 ( )d c d c j j3 3 3- + + = +  (6.98)

By equating the real parts and then the imaginary parts in the two sides of Eq. (6.98), b 
and c are obtained as c = -4/5 and d = 3/5. As a consequence, F(s) can be written as

 ( )F s
s s

s

s

s

s1
1

5
1

2 5
4

1 5
3

1
1

2 2
# # #=

+
-

+
-

+
+

+
 (6.99)

whose inverse Laplace transform is

 ( ) e e cos sinf t t t
5
1

5
4

5
3t t2= - - +- -  (6.100)

Example 6.13
Determine the inverse-Laplace transform of the function F (s) = 1/[s(s + 1)2] using par-
tial-fraction expansion together with the cover-up and s-derivative methods.

Solution
The roots of the denominator are s = 0 and s = -1, which is real and of the order 2 of 
multiplicity. The partial-fraction expansion of F(s) is

 
( ) ( )s s s

a

s

b
s

c

1
1

1 12 2+
= +

+
+

+
 (6.101)
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The coefficients a, b, and c can be determined with a method that combines the cover-
up procedure with a derivation technique, as shown next. The coefficient a is calculated 
using the cover-up method as

 
( )

a
s 1

1
1

s
2

0

=
+

=
=

 (6.102)

The coefficient b, the one corresponding to largest degree denominator of the two  fractions 
with s + 1 in the denominator, is directly found by means of the cover-up method as

 b s
1

1
s 1

= = -
=-

 (6.103)

To find coefficient c, Eq. (5.101) is multiplied by (s + 1)2, which results in

 ( ) ( )s s
a

s b c s
1

1 1= + + + +2  (6.104)

By applying the derivation with respect to s in Eq. (6.104), the following equation is 
obtained:

 
( ) ( )

s s
a s

s

a s
c

1 2 1 1
2 2

2

- =
+

-
+

+  (6.105)

For s = -1 in Eq. (6.105), the value of c is found:

 c
s
1

1
s

2
1

= - = -
=-

 (6.106)

As a consequence, the function F(s) is

 ( )
( )

F s s s s
1

1
1

1
1

2
= -

+
-

+
 (6.107)

whose inverse Laplace transformation yields the original function:

 ( ) ef t t1 1 t= - + -] g  (6.108)

MATLAB® Partial-Fraction Expansion
Partial-fraction expansion of the function F(s) given in Eq. (6.89) results in

 ( ) ( )
( )

F s k s s p
r

s p
r

s p
r

s p

r

i

i

i

i

1

1

2

2

2

1
g g= + - + - + + - +

-
+

+

 
( )s p

r
s p

r

i
k

i k

n

n1
g+

-
+ + -

+ -
 (6.109)
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where k(s) is the direct-terms polynomial, r1, r2, …, rn are residues, and p1, p2, …, pn 
are poles. Please note that the pole pi is a pole of multiplicity k. The poles can be either 
real or complex. MATLAB® has a simple set of commands that are centered around 
the residue command, which enable partial-fraction expansion in a simple way, as 
shown in the next example.

Example 6.14
Use MATLAB® to determine the partial-fraction expansion of the Laplace-domain 
function:

( )F s
s s s s

s s

7 18 20 8
8 15

4 3 2

2

=
+ + + +

- +

Solution
In MATLAB®, the coefficients of N(s), which is the numerator of F(s), and D(s), which is 
the denominator of F(s), need to be first defined, then the residue command can be 
entered:

» n = [1,-8,15];
» d = [1,7,18,20,8];
» [r,p,k] = residue(n,d)

and MATLAB® returns

r =
 -24.0000
 -23.0000
 -35.0000
 24.0000
p =
 -2.0000
 -2.0000
 -2.0000
 -1.0000
k =
 []

The interpretation of these MATLAB® results is that the partial-fraction expansion of  
F(s) is

 ( )F s
s s s s2 2 2 1

2424 23 35
2 3

= -
+

-
+

-
+

+
+] ]g g

 (6.110)
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6.2.2 Linear differential equations with constant coefficients
Let us assume the linear differential equation is of the general form

 
( ) ( ) ( )

( ) ( )c
dt

d x t
c

dt

d x t
c

dt

dx t
c x t f tn n

n

n n

n

1 1

1

1 0g+ + + + =- -

-

 (6.111)

where f (t) is the input (or excitation) function, x(t) is the output (unknown) function, 
and the  coefficients c0 to cn are constant. Applying the direct Laplace transformation to 
Eq. (6.111) (and let us assume all the initial conditions are zero, to simplify this generic 
model), the following algebraic equation is obtained:

 ( ) ( )c s c s c s c X s F sn
n

n
n

1
1

1 0g+ + + + =-
-_ i  (6.112)

which provides the s-domain solution:

 ( )
( )

X s
c s c s c s c

F s

1
1

1 0n
n

n
n g

=
+ + + +-

-
 (6.113)

The time-domain solution is formally calculated as

 ( ) [ ( )]x t X sL= 1-  (6.114)

Example 6.15
The MEMS device shown in Figure 6.10, consisting of a mass m = 10-6 kg and two beam 
springs of total stiffness k = 2 × 10-6 N/m, is acted upon by a an external force f. The 
microsystem motion is opposed by a viscous damping force whose damping coefficient 
is c = 3 × 10-6 N-s/m. Calculate the system response (displacement) for the following 
forcing functions:
a. f (t) = 2 nN.
b. f (t) = 2t nN.
Consider that the initial conditions in both cases are

( )
( )

;x
dt

dx t
0 0 0

t 0
= =

=

fiGure 6.10

Micromechanism with Shuttle Mass and Two Beam Springs.

Beam springs

x

Shuttle mass
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Solution
The Laplace transform is applied to the differential equation of this problem (which, as 
shown in Chapter 2, is mx mx x fk+ + =p o ) taking into account the parameter values and 
given initial conditions; this leads to

 ( )
( ) ( )

( ) ( )
( )

X s
ms cs k

F s

s s

F s

s s

F s

3 2 10

10
2 22 2 6

6

=
+ +

=
+ +

=
+ +-

-

^ h
 (6.115)

where X (s) is the Laplace transform of x(t) and F(s) is the Laplace transform of f (t). 
International System of units (N, m, s, kg) have been used in Eq. (6.115).
a. In the case where f (t) = 2, its Laplace transform is F(s) = 2/s so that Eq. (6.115) trans-

forms into

 ( )
( ) ( )

X s
s s s1 2

2
=

+ +
 (6.116)

All roots of the denominator are real and distinct; therefore, X(s) is of the form

 ( )X s s
a

s
b

s
c

1 2
= +

+
+

+
 (6.117)

The coefficients are easily found by either of the two methods mentioned, and it is 
quite straightforward to check that a = c = 1 and b = -2. As a  consequence, X(s) 
becomes

 ( )X s s s s
1

1
2

2
1

= -
+

+
+

 (6.118)

The inverse Laplace transform is now applied to X(s), which results in the solution x(t):

 ( ) [ ( ) e e]x t X s 1 2L t t2= = - +- -1-  (6.119)

b. The Laplace transform of f(t) = 2t is F(s) = 2/s2; and therefore,

 ( )
( ) ( )

X s
s s s1 2

2
2

=
+ +

 (6.120)

The partial fraction expansion of X(s) is

 
( ) ( )s s s s

a
s
b

s
c

s
d

1 2
2

1 22 2+ +
= + +

+
+

+
 (6.121)

The coefficients c and d are found as follows:

 
( )

( )

c
s s

d
s s

2
2

2

1
2

2
1

s

s

2
1

2
2

=
+

=

=
+

= -

=-

=-

Z

[

\

]
]

]]
 (6.122)
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 To find the coefficient a, Eq. (6.121) is multiplied by s 2, which yields

 
( ) ( )s s

a bs
s
cs

s
ds

1 2
2

1 2

2 2

+ +
= + +

+
+

+
 (6.123)

By taking s = 0 in Eq. (6.123), it is found that a = 1. The s derivative is now applied to 
Eq. (6.123), which results in

 
( ) ( ) ( ) ( )

b
s

cs cs

s

ds ds

s s

s

1
2

2
4

1 2

2 2 3
2

2

2

2

2 2
+

+

+
+

+

+
= -

+ +

+] g
 (6.124)

 Equation (6.124) has to be valid for all values of s and therefore for s = 0; it follows that 
b = -3/2.

 As a consequence,

 ( )X s
s s s s
1

2
3 1

1
2

2
1

2
1

2
# #= - +

+
-

+
 (6.125)

 Application of the inverse Laplace transform to X(s) of Eq. (6.125) results in

 ( ) e ex t t
2
3

2
2
1t t2= - + -- -  (6.126)

6.2.3 use of matLab® to calculate direct and inverse Laplace 
transforms

In many instances, the s-domain unknowns are quite complex, and applying the 
inverse Laplace transform to retrieve their time-dependent counterparts is no easy 
task. MATLAB® has some strong capabilities allowing us to calculate both the direct 
and inverse Laplace transforms. MATLAB® Symbolic Math ToolboxTM enables 
calculation of the direct and inverse Laplace transforms of functions by using the 
laplace (f(t)) and ilaplace(F(s)) commands, as shown in the following 
example.

Example 6.16
Use analytic calculation and also MATLAB® to solve the differential equation of Example 6.15 
for f (t) = 2 sin(t).

Solution
The Laplace transform of f (t) in this case is

 ( )F s
s 1

2
2

=
+

 (6.127)
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which can also be determined using the following MATLAB® code:

 » syms t
 » f = 2*sin(t);
 » pretty(laplace(f));

By means of F(s) of Eq. (6.127), the Laplace-domain unknown becomes

 ( )X s
s s s1 1 2

2
2

=
+ + +^ ] ]h g g

 (6.128)

The simple fraction expansion of the right-hand side of Eq. (6.128) is of the form

 ( )X s
s

as b
s

c
s

d

1 1 22
=

+

+
+

+
+

+
 (6.129)

Using the cover-up method, the coefficients are found to be a = -3/5, b = 1/5, c = 1, 
d = -2/5. Substitution of these values into X(s) of Eq. (6.129) and application of the 
inverse Laplace transform to the resulting numerical expression yields the following time-
dependent solution:

 ( ) [ ( ) e e( ) ]sin cosx t tt
5
1

3
5
2t t2= - + -- -  (6.130)

In MATLAB®, the command ilaplace, as mentioned here, allows obtaining the 
time-domain original function x(t) from X(s), which needs to be defined symbolically. The 
MATLAB® command lines are

 » syms s
 » X = 2/((s^2+1)*(s+1)*(s+2));
 » pretty(ilaplace(X))

which returns

- 2/5 exp(-2 t) + exp(-t) - 3/5 cos(t) + 1/5 sin(t)

6.2.4 Linear differential equation systems with constant  
coefficients

The method of Laplace transform can also be applied to multiple-DOF systems, and 
this results in several differential equations, depending generally on a number of 
time-dependent functions that is equal to the number of available equations. They 
can be transformed into algebraic equations that form an algebraic equations sys-
tem whose unknowns are the Laplace transforms of the unknown time- dependent 
functions. These Laplace-transformed unknowns are solved for in the s domain 
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algebraically, and then inverse Laplace transforms are applied to those to determine 
the original time-dependent unknown functions.

Example 6.17
For the electrical circuit of Figure 6.11, find and plot the currents through the inductor 
and the capacitor by deriving the mathematical model of the circuit and using the inverse 
Laplace transform capabilities of MATLAB®. Consider that all the initial conditions are zero 
and R = 200 X, L = 20 H, C = 10 nF, and v = 100 V.

Solution
According to Kirchhoff’s current law applied at one of the nodes highlighted in Figure 6.11,  
the three currents are connected as

 ( ) ( ) ( )i t i t i tR L C= +  (6.131)

For the two meshes of the circuit, Kirchhoff’s second law results in

 

( )

( )
( )

( )Ri t L
dt

di t
v

C
i t dt L

dt

di t1
0

R
L

C
L

+ =

- =

Z

[

\

]]

]] #
 (6.132)

The current iR is substituted from Eq. (6.131) into Eq. (6.132), and after applying the 
Laplace transform to the two resulting equations, the following algebraic equations system 
is obtained:

 
( ) ( ) ( )

( ) ( )

R Ls I s RI s s
v

LsI s
Cs

I s
1

0

L C

L C

+ + =

- + =

Z

[

\

]]

]]
 (6.133)

which can be written in vector-matrix form as

 
( )

( )

R Ls

Ls

R

Cs

I s

I s
s
v

1
0

L

C

+

- => H* *4 4  (6.134)

fiGure 6.11

Electrical Circuit with Step Voltage Input.
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The unknown vector can be calculated as

 
( )

( )

I s

I s

R Ls

Ls

R

Cs
s
v

s RLCs Ls R

v

RLCs Ls R
LCvs

1
0

L

1

C

2

2

=
+

- =
+ +

+ +

-

^ h
> H

Z

[

\

]]

]]
* *

_

`

a

bb

bb
4 4  (6.135)

By using MATLAB® symbolic calculation capability, the unknowns are found to be

 
e

e
( ) 0.5 [0.5 (239.8 ) 0.52 (239.8 )]
( ) [0.5 (239.8 ) 0.52 (239.8 )]

cosh sinh
cosh sinh

i t t t
i t t t
L

t

C
t

250

250

= - +

= -

-

-)  (6.136)

These currents are plotted against time in Figure 6.12.

6.2.5 Laplace transformation of vector-matrix differential  
equations

We have seen that the Laplace transform can be applied individually to differen-
tial equations making up a system. Differential equations describing the dynamic 
response of multiple-DOF systems can be formulated in vector- matrix form, and 
the question arises whether the Laplace transform (direct and inverse) can operate 

fiGure 6.12

Time Variation of Currents in Inductor and Capacitor.
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directly on this form. It is actually quite straightforward to extend the Laplace trans-
form from functions to collections of functions (which are vectors). Let us look at a 
vector {x(t)} consisting of two components, x1(t) and x2(t). The Laplace transforms 
of the two components  (assuming they exist) are determined as

 

( )x t dt

( )x t dt

e

e

( )

( )

X s

X s

st

st

1 1

0

2 2

0

=

=

3

3

-

-

Z

[

\

]
]]

]
]

#

#
 (6.137)

and they can be assembled into the vector X(s) as

 ( ) ( ) ( )X s X s X s t
1 2=" ", ,  (6.138)

We can therefore define the Laplace transform of the vector {x(t)} into the vector 
{X(s)} as

 ( ) ( )[{ }]x t X sL = " ,  (6.139)

In conclusion, application of the Laplace transform to a vector results in another vec-
tor whose  components are the Laplace transforms of the original (time-dependent) 
vector.

Extensions can be made, and it can simply be shown that, given the vectors 
{x1(t)} and {x2(t)}, as well as the matrices [A1] and [A2] (made up of constants 
only), the following linear relationship holds:

 ( ) ( ) ( ) ( )A x t A x t A X s A X sL 1 1 2 2 1 1 2 2+ = +8 6 6 6 6B@ @ @ @" " " ", , , ,  (6.140)

We thus can conclude that the Laplace pairs and properties pertaining to scalar 
functions are also valid for vector functions, which could be particularly helpful in 
solving differential equations written in vector-matrix form. For instance, taking the 
first and second time derivatives of a vector {x(t)} would formally lead to

 
( )

( )

( ) ( )

( ) ( ) ( )

dt
d

x t s X s x

dt

d
x t X s s x xs

0

0 0

L

L
2

2
2

= -

= - - o

;

=

E

G

Z

[

\

]]

]]

" "

" " "

"

"

, ,

, , ,

,

,
 (6.141)

where the vectors having the argument zero indicate initial conditions.
Consider a multiple-DOF undamped mechanical system whose vector-matrix 

equation modeling the forced response behavior is

 ( ) ( ) ( )M x t K x t f t+ =p5 5? ?" " ", , ,  (6.142)
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Substituting Eqs. (6.141) into Eq. (6.142) results in

 ( ) ( ) ( ) ( ) ( )M s X s s x x K X s F s0 02 - - + =o_ i5 5? ?" " "" ", , ,, ,  (6.143)

which can also be written as

 ( ) ( ) ( ) ( )s M K X s M x s x F s0 02 + = + +o^ ^h h5 5 5? ? ? " " "" , , ,,  (6.144)

The solution to Eq. (6.144) is therefore

 ( ) ( ) ( ) ( )X s s M K M x s x F s0 02 1
= + + +

- o^^ ^ hh h5 5 5? ? ?" "" ", ,, ,  (6.145)

and the time-domain solution vector is simply found by inverse-Laplace transform-
ing {X(s)}.

Example 6.18
The MEMS system of Figure 6.13(a), which consists of two shuttle masses and two ser-
pentine springs, is acted upon by a force f; the lumped-parameter model of this mechani-
cal microsystem is sketched in Figure 6.13(b). Find the forced response of the mechani-
cal microsystem by using the Laplace transform method applied to the vector-matrix form 
of the mathematical model. Consider that the initial conditions are zero, f = 10-6 d(t) N, 
where d(t) is the unit impulse, and m1 = m2 = m = 10-6 kg, k1 = k2 = k = 10-6 N/m.

Solution
For zero initial conditions, Eq. (6.145) reduces to

 ( ) ( )X s s M K F s2 1
= +

-
^ h5 5? ?" ", ,  (6.146)

The equations of motion for the two-DOF mechanical system are

 
( )m x k k x k x

m x k x k x f
01 1 1 2 1 2 2

2 2 2 1 2 2

+ + - =
- + =

p
p(  (6.147)

fiGure 6.13

Two-DOF Translatory Mechanical System: (a) Physical Model; (b) Lumped-Parameter 
Model.
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which can be written in the vector-matrix form of Eq. (6.142) with

 ( )
( )

; ;M m
m K k

k
k

k f t
t0

0 2 10
06

d
= =

-
- = -

5 : 5 :? D ? D " ), 3 (6.148)

The two components of {X(s)} are determined by using MATLAB® as

 
( )

( )

X s
m s mks k

k

X s
m s mks k

ms k
3

3
2

1 2 4 2 2

2 2 4 2 2

2

=
+ +

=
+ +

+

Z

[

\

]]

]]
 (6.149)

and using the inverse-Laplace transform with the numerical parameters of this example, 
the time response is

 
( ) . ( . ) . ( . )
( ) . ( . ) . ( . )

sin sin
sin sin

x t t t
x t t t

0 72 0 62 0 28 1 62
1 17 0 62 0 17 1 62

1

2

= -
= +

(  (6.150)

where the two displacements are measured in micrometers. If symbolic MATLAB® cal-
culation is used, [r,p,k] commands are first needed to obtain the X1(s) and X2(s) of 
Eq. (6.149).

6.2.6 solving integral and integral-differential equations by the 
 convolution  theorem

The convolution theorem can be used to solve integral equations, namely, equations 
that contain terms where the time-domain unknown function is under the integral 
operator. Let us assume the  mathematical model of a system consists of the following 
integral equation:

 ( ) ( ) ( ) ( )x t x f t d g t
t

0

x x x+ - =#  (6.151)

where the functions f and g are known time-dependent functions and x(t) is the 
unknown function. Application of the Laplace transform to Eq. (6.151) results in

 ( ) ( ) ( ) ( )X s X s F s G s+ =  (6.152)

Therefore,

 ( )
( )

( )
X s

F s

G s

1
=

+
 (6.153)

which yields

 ( ) ( )
( )

( )
x t X s

F s

G s

1
L L1= =

+
- 1-

6 =@ G (6.154)
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Example 6.19
Solve the following integral equation knowing that x (0) = 0:

( ) ( )e ( )sinx t x t d tt
t

0

x x+ - =-#

Solution
In this case the functions f (t) and g (t) are

 ( ) e ( ); ( )sinf t g t tt= =-  (6.155)

Therefore,

 ( ) ( );F s
s

G s
s1

1
1

1
2

=
+

=
+

 (6.156)

so that, in accordance with Eq. (6.153), X(s) is

 ( )
( ) ( )

X s
s s

s

1
1

2 2
=

+ +

+
 (6.157)

Simple fraction expansion of X(s) results in

 
( ) ( )s s

s
s

a

s

bs c

2 1
1

2 12 2+ +

+
=

+
+

+

+
 (6.158)

It can be shown by one of the known methods that a = −1/5, b = 1/5 and c = 3/5. As a 
consequence,

 ( ) ( ) esin cosx t X s t t
5
1

3L t1 2= = + -- -^ h6 @  (6.159)

There are situations where the mathematical model of a dynamical system is formed 
of one or  several differential equations that also include the unknown(s) under an integral; 
such equations are named  integral-differential and can be solved under certain condi-
tions using the convolution theorem.

Example 6.20
Solve the following integral-differential equation:

( ) ( ) ( )x t x t d 4
t

0

x x x+ - =o #

with x(0) = 0.
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Solution
Application of the Laplace transform to the integral-differential equation of the problem 
yields

 ( )
( )

sX s
s

X s
s
4

2
+ =  (6.160)

which results in

 ( )
( ) ( )

X s
s

s

s s s

s
s

a

s s

bs c

1
4

1 1
4

1 13 2 2
=

+
=

+ - +
=

+
+

- +

+
 (6.161)

The constants are found to be a = −4/3, b = c = 4/3. Now applying the inverse Laplace 
transforms to the two fractions on the right-hand side of Eq. (6.161), the solution is 
obtained as

 ( ) e ecos sinx t t t
3
4

2
3

3
2
3 . t t0 5= + - -d dn n= G) 3 (6.162)

 6.2.7  Linear differential equations with time-dependent  
coefficients

To demonstrate the applicability of the Laplace method to linear differential equa-
tions with time-dependent coefficients, a few more properties and theorems of the 
Laplace transforms are presented (and demonstrated) as solved examples in the com-
panion website Chapter 6. One of these proprieties,

 ( )
( )

tf t
ds

dF s
L = -6 @  (6.163)

is used in the next example.

Example 6.21
Solve the differential equation d 2x(t)/dt 2 = t sinh(t) knowing that x (0) = 0 and

( )
dt

dx t
0

t 0
=

=

.

Solution
The direct Laplace transform is applied to both sides of the given differential equation 
based on Eq. (6.163), which results in

 ( ) [ ( )]sinhs X s
ds
d

tL2 = - ^ h (6.164)
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Completion of the calculations on the right-hand side of Eq. (6.164), which takes into 
account that [sinh ] 1/ ( 1)stL

2
= - , results in

 ( )s X s
s

s

1

22

2 2
=

-^ h
 (6.165)

Equation (6.165) gives X(s):

 ( )X s
s s 1

2
2 2

=
-^ h

 (6.166)

The inverse Laplace transform of X(s) is

 ( ) ( ) ( )cosh sinx t tt t2 1= - +6 @  (6.167)

Example 6.22
Determine x(t), the solution to the differential equation

( ) ( )
t

dt

d x t

dt

dx t
1

2

2

+ =

for (0) (0)  0; 0x x= =o . Use direct and inverse Laplace transforms.

Solution
Because only the derivatives of the unknown function are involved here, the following 
substitution can be used:

 
( )

( )
dt

dx t
y t=  (6.168)

As a consequence, the original differential equation changes to

 
( )

( )t
dt

dy t
y t 1+ =  (6.169)

The Laplace transform is applied to this differential equation, which yields

 ( )dY s
s

ds
2

= -  (6.170)

Integration of Eq. (6.170) results in

 ( )Y s s C
1

1= +  (6.171)

where C1 is an arbitrary constant of integration. The inverse Laplace transform is applied 
to Eq. (6.171), which yields

 ( ) ( )y t C t1 1d= +  (6.172)
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where d(t) is the delta Dirac function. Knowing y(t) enables us to determine x(t) by per-
forming integration in Eq. (6.168). Let us integrate between the limits of zero and infinity 
(this is consistent with the definition of any Laplace-operable function), which results in

 ( )t dtd( )x t t C
0

1= +

3

#  (6.173)

A basic property of the delta Dirac function is that

 ( ) 0t dtd =
0

3

#  (6.174)

therefore, Eq. (6.173) gives the solution

 ( )x t t=  (6.175)

It can simply be checked that x = t is indeed the solution to the differential equation of 
the problem.

6.3 time-dOmain system identificatiOn frOm 
 LapLace-dOmain infOrmatiOn

A time-domain dynamic system can be identified by analyzing it in the Laplace 
domain. The topic is particularly important when the frequency-response of a system 
is known—this can be achieved through experimental means, forinstance. Chapter 9  
studies the frequency response approach in more detail. In this section, we aim to 
identify a single-DOF time-defined dynamic system from a given  function to the 
Laplace domain, as shown next.

Let us assume a single-DOF dynamic system is defined by the generic differential 
equation:

 ( ) ( ) ( ) ( )ax t bx t cx t f t+ + =p o  (6.176)

with a, b, and c being constants and the initial conditions being nonzero. Application 
of the Laplace transform to Eq. (6.176) enables expressing the Laplace transform of 
the unknown x(t) as

 ( )
( ) ( ) ( ) ( )

X s
as bs c

ax s ax bx F s0 0 0
2

=
+ +

+ + +o
 (6.177)

where F(s) is the Laplace transform of the forcing function f(t). Equation (6.177) can 
be written in the generic form

 ( )
( )

X s
as bs c

ds e F s
2

=
+ +

+ +
 (6.178)
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Equations (6.177) and (6.178) are general, as they encompass all possible ele-
ments, forcing, and initial conditions for a single-DOF system. Particular cases 
can be derived from them by annulling various term(s) in either the numerator or 
denominator, terms that correspond to missing elements, forcing functions, or initial 
conditions.

Example 6.23
Identify a single-DOF system whose Laplace-domain transform is

( )
( ) ( )

( )
X s

s s s

s s s

1 2 1

5 5
2 2

2

=
+ + +

- +
.

Solution
The expression of X(s) can be transformed as follows:

 ( )
( ) ( ) ( ) ( )

( ) ( )

( )

( )
X s

s s s

s s s

s s s

s s

s s

s
s

1 2 1
5 5 1 1

1 2 1

5 1 1 1

2 1

5 1
1

1

2 2

3 2

2 2

2

2

2

=
+ + +

- + - +
=

+ + +

- + +
=

+ +

- +
+

 

( ) ( ) ( ) ( )

( ) ( )

( )

( )

s s s

s s s

s s s

s s

s s

s
s

1 2 1
5 5 1 1

1 2 1

5 1 1 1

2 1

5 1
1

1

2 2

3 2

2 2

2

2

2

+ + +

- + - +
=

+ + +

- + +
=

+ +

- +
+

 
(6.179)

Comparison of Eqs. (6.177) and (6.179) shows that

 ( )F s
s 1

1
2

=
+

 (6.180)

which yields

 ( ) ( )sinf t t=  (6.181)

The same comparison also indicates that a = 2, b = 1, c = 1, and 

 
( )
( ) ( )

ax
ax bx

0 5
0 0 1
=

+ = -o(  (6.182)

The equation system (6.182) is solved for the two initial conditions, which are

 
( )

( )

x

x

0
2
5

0
4
7

=

= -o

Z

[

\

]]

]]
 (6.183)
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As a consequence, the time-domain differential equation that corresponds to X(s) of this 
example is

 2 ( )sinx x x t+ + =p o  (6.184)

and the initial conditions are given in Eqs. (6.183).
When Eq. (6.184) is the mathematical model of a mechanical system, one possibility 

is that the system is a translatory one, consisting of a mass m = 2 kg, a damper with a 
damping coefficient of c = 1 N-s/m, a spring of stiffness k = 1 N/m, and a sinusoidal 
force f = sin(t) N acting on the mass in the motion direction. The initial displacement 
of this mechanical system is equal to 5/2 m and the initial velocity is equal to -7/4 m/s. 
The differential equation can also represent an electrical system, having its elements 
(resistor, capacitor, and inductor) disposed in series in the case where the source is a 
voltage one; alternatively, the same elements and a current source can be connected in 
parallel.

summary
This chapter introduces the direct and inverse Laplace transforms as tools for 
solving differential equations that are mathematical models of mechanical, elec-
trical, or fluid or thermal systems. By using Laplace transform pairs as well as 
properties of the Laplace transforms, differential equations are transformed into 
algebraic equations in the Laplace (s) domain, which allow algebraic solution for 
the unknown Laplace transforms, followed by identification of the original time-
domain unknowns. Using the technique of partial-fraction expansion, the direct 
and inverse Laplace transforms can be used to solve linear differential equations 
with constant and time-varying coefficients. MATLAB® symbolic calculation of 
partial-fraction expansion and Laplace transforms also is presented through exam-
ples. The Laplace transformation is used extensively in subsequent chapters, which 
are dedicated to transfer functions, state space modeling, and frequency-domain 
analysis.

prObLems
6.1 Find the Laplace transforms of the following functions and check the results 

with MATLAB®:

(a) f(t) = sin(t) cos(3t).

(b) f(t) = cos(2t) cos(4t).

(c) f(t) = sin(2t) sin(3t).
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 6.2 Same question as in Problem 6.1 for the functions

(a) f(t) = cosh(4t) sinh(3t).

(b) f(t) = cosh(t) cosh(5t).

(c) f(t) =sinh(2t) sinh(3t).

 6.3 Find the Laplace transforms of sinh(~t) and cosh(~t), the hyperbolic sine and 
cosine functions, considering that known are the Laplace transforms of sin(~t) 
and cos(~t).

 6.4 Use the theorem that expresses the Laplace transform of the first time deriv-
ative to calculate the Laplace transforms of the functions f1(t) = t sin(~t) 
and f2(t) = t cos(~t), when known are the Laplace transforms of sin(~t) and 
cos(~t).

 6.5 Same question as in Problem 6.4 for the functions f1(t) = te-at, f2(t) = t2e-at, when 
known is the Laplace transform of e-at (a being a positive real constant).

 6.6 Calculate the Laplace transforms of the following functions both analytically 
and with MATLAB®:

(a) f(t) = te-at sinh(~t).

(b) f(t) = te-at cosh(~t).

 6.7 Calculate the Laplace transform of the function f(t) = cosh(~t) sin(~t) - 
sinh(~t) cos(~t) analytically and with MATLAB®.

 6.8 Demonstrate that ( ) ( )[ ] /t f t d F s dsL 2 2 2= ; use the mathematical induction to 
calculate [ ( )]t f tL n .

 6.9 Demonstrate that

( )
( ) ( )

( ) ( )

dt

d f t
s F s s f s

dt

df t

dt

df t
0L n

n
n n n

t
n

n

t

1 2

0
1

1

0

g= - - - -- -

=
-

-

=

= G

 when the function f(t) and its first (n - 1) derivatives are all of exponential 
order.

6.10 By using partial-fraction expansion and the inverse Laplace transform, calcu-
late the original functions f(t) for the following s-domain functions. Check the 
results with MATLAB® for both partial-fraction expansion and inverse Laplace 
transform calculations:

(a) F(s) = m/[(s + m)(s + n)].

(b) F(s) = (2s + 1)/[(s2 + 3s + 2)(s - 3)].

(c) F(s) = (2s + 1)/[s(s2 + s + 1)].
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248 CHAPTER 6 The Laplace Transform

6.11 Same question as in Problem 6.10 for the following functions:

(a) F(s) = (s + 1)/[(s2 + 7s + 12)(s2 + 2)].

(b) F(s) = 2/[s2(s + 3)].

(c) F(s) = 4s3/(s4 - ~4).

6.12 Same question as in Problem 6.10 for the following functions:

(a) F(s) = (3s4 + 2s2 - 1)/[(s2 + 1)(s2 + s - 2)].

(b) F(s) = (s2 - 3s + 1)/[s2(s + 2)2].

(c) F(s) = (2s + 1)/[s(s2 + 2)2].

6.13 Find f(t) for

( )
( ) ( )

eF s
s s

s

1 2
3 s

2 2
4=

+ +

+ -

 Verify the result by using MATLAB®.

6.14 Using just basic Laplace pairs and properties, find the Laplace transform of the 
function f (t) = 4e-3s/[s(s2 + 25)]. Verify the obtained result with MATLAB®.

6.15 The rotary mechanical system of Figure 6.14 is formed of a cylinder with 
a mass moment of inertia J, a damper with a damping coefficient c, and a 
spring of stiffness k. Calculate the final value of the cylinder rotation angle 
when a unit impulse torque is applied to it. Use symbolic calculation and 
MATLAB® to confirm the result.

6.16 An unknown constant voltage is applied to a series circuit formed of a resis-
tor R = 40 X and an inductor L, as shown in Figure 6.15. It is determined that 
the steady-state current in the circuit is i(3) = 0.1 A. Calculate the source 
voltage.

6.17 Find the Laplace transform of the function shown in Figure 6.16.

6.18 Calculate the Laplace transform of the function sketched in Figure 6.17.

fiGure 6.14

Rotary Mechanical System with Inertia, 
Damping, and Stiffness Properties under 
Unit Impulse Input.

k

J

mt

c

fiGure 6.15

Electrical Circuit with Constant Voltage 
Input.

v L

R

+

−
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6.19 Calculate the Laplace transform of the periodic function sketched in Figure 6.18.

6.20 Calculate the Laplace transform of the periodic function shown in Figure 6.19.

6.21 Calculate the inverse Laplace transforms of the following functions without 
applying partial-fraction expansion and verify the results by MATLAB®:

(a) X(s) = 6s/(s2 + 9)2.

(b) X(s) = 1/(s3 + 4s2).

6.22 Use the convolution theorem to determine the inverse Laplace transforms of 
the following functions:

(a) X(s) = 1/(s2 - ~2)2.

(b) X(s) = 1/[s2(s2 + a)].

fiGure 6.16

Truncated Sinusoidal-Segment Function.

0
2 4

f

t

2

Sinusoidal function  

fiGure 6.17

Truncated Multisegment Function.

0

f

t

2  

4

a

1

−a

fiGure 6.18

Periodic Multisegment Function.

f

t0 2 4 6 8 10

2

1

fiGure 6.19

Periodic Multiline Function.

f

Parabolic function

t0 1 2 3 4 5 6 7 8

a
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250 CHAPTER 6 The Laplace Transform

6.23 Solve the following differential equations subject to the initial conditions that are 
specified next to the equations using direct and inverse Laplace transforms:

(a) ( ) ( ); ; .x x x x x0 03 0 1 0- + = = =o op

(b) ( ) ( )( ); ; .cosx x x t x x0 02 2 0 0+ + = = =o op

(c) ( ) ( ); ; .x x x e x x0 04 6 0 2t2+ + = = =-o op

6.24 Answer the same question as in Problem 6.23 for the following systems:

( ) ( ); ; .sin
x x x x

x x x t x x0 0
3 2 0

2 0 01 1 2 2

1 2 1
1 2

- - + =
+ + =

= =
o o
o o(

6.25 Solve the following system of differential equations and initial conditions:

( ) ( ) ( ) ( )( ); ; ; ; .
x x x
x x x t x x x x0 0 0 0

200 80 0
80 0 0 0 080

1 1 2

2 1 2
1 2 1 2d

+ - =
- + =

= = = =
p
p

o o(

 Propose a MEMS mechanical subsystem that can be modeled by means of 
these equations.

6.26 Solve the following system of integral-differential equations:

( ) ( ) ;; ;

x x x dt x dt

x x dt x dt

x x0 0

3 10 10 50

10 10 0

0 0

t t

t t

1 1 1
0

2
0

2 2
0

1
0

1 2

+ + - =

+ - =

= =

o

o

Z

[

\

]
]]

]
]

# #

# #

 Propose an electrical system that can be modeled by means of these 
equations.

6.27 Use the convolution theorem to solve the integral equation

)x( ) ( )e e(cosx t x t d2 3( )t
t

t

0

x x+ - =x- - -
6 @#

 knowing that x(0) = 0.

6.28 Solve the following differential equation (after Sneddon 1972):

 
( ) ( )

( )t
dt

d x t

dt

dx t
tx t 0

2

2

- - =

 knowing that x(0) = 0.

( ) ( ); .x x0 00 0
1 2

= =o o
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6.29 Identify a single-DOF mechanical micro system whose Laplace-domain trans-
form coordinate is defined as X(s) = 3/[s(s2 + 3s + 1)].

6.30 A single-DOF electrical system has its time-domain coordinate transformed 
into the Laplace  domain as X(s) = (3s2 + 7s + 3)/[s2(s2 + 2s + 0.006)]. 
Determine the system components,  forcing function, and initial conditions.

suggested reading
T. F. Bogart, Jr., Laplace Transforms and Control Systems Theory for Technology, John Wiley 

& Sons, New York, 1982.
I. H. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972.
W. R. LePage, Complex Variables and the Laplace Transform for Engineers, McGraw-Hill, 

New York, 1961.
C. J. Savant, Jr., Fundamentals of the Laplace Transformation, McGraw-Hill, New York, 

1962.
W. T. Thomson, Laplace Transformation, 2nd Ed. New York, Prentice-Hall, 1960.
R. V. Churchill, Operational Mathematics, McGraw-Hill, New York, 1958.
E. J. Watson, Laplace Transforms and Applications, Van Nostrand, New York, 1981.
L. Debnath, Integral Transforms and Their Applications, CRC Press, Boca Raton, FL,1995.
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CHAPTER

Objectives

Based on the mathematical models developed by the methods presented in Chapters 
2, 3, 4, and 5 for mechanical, electrical, fluid, and thermal systems and using the 
Laplace transform of Chapter 6, this chapter introduces you to the transfer function 
approach by studying the following topics:

•	 The transfer function as a connector between input and output into the Laplace 
domain for single-input, single-output and multiple-input, multiple-output 
mechanical, electrical, fluid, and thermal systems.

•	 Calculating the transfer function from the mathematical model of a dynamic 
system.

•	 Using the complex impedance as a tool for modeling mechanical, electrical, 
fluid, and thermal systems and deriving the transfer function directly in the 
Laplace domain.

•	 Application of the transfer function in obtaining the forced response and the free 
response with nonzero initial conditions.

•	 Utilization of MATLAB® and Simulink® in transfer function applications.

intrOductiOn
Using the Laplace transform technique, this chapter introduces the transfer func-
tion as a Laplace-domain operator characterizing the properties of a given dynamic 
system and connecting the input to the output. We see that the transfer function for 
single-input, single-output (SISO) systems and transfer function matrix for multiple-
input, multiple-output (MIMO) systems can be used to determine the forced time 
response and the free time response with nonzero initial conditions. The complex 
impedance is introduced as a transfer function at the element level, which enables 
deriving the transfer function of dynamic systems directly in the Laplace domain. 
MATLAB® and Simulink® examples illustrating the use of transfer function by means 
of built-in capabilities are incorporated alongside many solved examples that use the 

7Transfer Function Approach

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-240-81128-4.00007-6
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CHAPTER 7 Transfer Function Approach254

standard transfer function formulation and solution. The transfer function concept 
is also important in studying system dynamics by means of the state space model-
ing approach (the topic of Chapter 8) and frequency-domain analysis (the focus of 
Chapter 9).

7.1	 The	Transfer	funcTion	concepT
A major objective in system dynamics, as seen in all previous chapters, is finding 
the system response (or output) that corresponds to a specific forcing (or input), 
which means solving the differential equations defining the behavior of a given 
dynamic system. Using direct and inverse Laplace operators, differential equations 
are converted into algebraic ones whose s-domain solution is transformed into 
the time-domain solution. This procedure has to be utilized every time a different 
input is applied to the same dynamic system. Consider a first-order system whose 
input u1(t) is connected to the output y1(t) by the following differential equation:

 ( ) ( ) ( )a y t a y t u t1 1 0 1+ =o  (7.1)

Laplace transforming the left- and right-hand sides of Eq. (7.1) with zero initial 
 conditions results in

 ( ) ( )Y s
a s a

U s
1

1
1 0

1=
+

 (7.2)

Another input u2(t) applied to the same dynamic system generates the Laplace-
domain solution:

 ( ) ( )Y s
a s a

U s
1

2
1 0

2=
+

 (7.3)

By this process, finding the Laplace-domain solution technically requires three oper-
ations: calculating the Laplace transform of the left-hand side of Eq. (7.1), calculat-
ing the Laplace transform of the input, and determining the Laplace-domain solution. 
For n inputs, 3 # n operations are needed. If n = 10, 3 # 10 = 30 operations are 
necessary.

This process can be simplified by noticing the following ratio (the transfer 
 function) is constant for a given dynamic system:

 ( )
( )

( )

( )

( )
G s

Y s

U s

Y s

U s
a s a

1

1

1

2

2

1 0
= = =

+
 (7.4)

For n inputs, evaluating the n outputs means calculating the function G(s) once, plus 
evaluating the Laplace transform of the input, followed by determining the Laplace 
transform of the output (by multiplying G(s) by the Laplace-transform of the input), 
so two operations per each input are needed. As a consequence, the total number 
of operations is 2 # n + 1. For n = 10, this latter process (the transfer function 
approach, as we see shortly) needs only 2 # 10 + 1 = 21 operations compared to the 
30 operations necessary in the straightforward Laplace-transformation procedure.

www.semeng.ir

www.semeng.ir


255 7.1 The Transfer Function Concept

The transfer function approach simplifies greatly the task of obtaining a system’s 
response ( output) both conceptually and through the use of built-in MATLAB® commands. 
Let us first consider an example that will help highlight the content of this chapter.

Example 7.1
The translatory mechanical system of Figure 7.1 is formed of a body of mass m = 1 kg 
that is connected to a damper with a damping coefficient c = 1 N-s/m and a spring of 
stiffness k = 1 N/m. A force u (the input) acts on the body in a direction parallel to the 
damper spring, which generates a rectilinear motion y (the  output) of the body. Determine 
the ratio of the Laplace transforms of the output Y(s) to the input U(s) for zero initial con-
ditions. For the particular case where the input is a unit impulse, calculate the  system 
time response y (t), as well as the steady-state response y(3).

Solution
Newton’s second law of motion is applied to the body of mass m, which yields

  ( ) ( ) ( ) ( )my t cy t ky t u t+ + =p o  (7.5)

Applying the Laplace transform to Eq. (7.5) with zero initial conditions results in

 ( )
( )
( )

G s
U s

Y s

ms cs k
1

2
= =

+ +
 (7.6)

The function denoted by G(s) in Eq. (7.6) is the transfer function of the mechanical sys-
tem sketched in Figure 7.1, and it will be the focus of this chapter. Note that the transfer 
function is defined by only the system parameters m, c, and k. However, for a given input 
u(t), such as d(t), the unit impulse, whose Laplace transform is U(s), the Laplace trans-
form of the output can be evaluated from Eq. (7.6) as

 ( ) ( ) ( )Y s G s U s=  (7.7)

With G(s) of Eq. (7.6) and U(s) = 1, Eq. (7.7) becomes

 ( )Y s
ms cs k s s

s

1
1

1

3

2

2
1

2
3

2
3

2 2 2 2
#=

+ +
=

+ +
=

+ +c dm n

 (7.8)

fiGure	7.1

Forced Mass–Damper–Spring Translatory Mechanical System.

y
k

c

u
m
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CHAPTER 7 Transfer Function Approach256

The time-domain response y (t) is obtained by inverse Laplace transforming Y(s) of 
Eq. (7.8), which is:

 ( ) e siny t t
3

2
2
3. t0 5= - d n  (7.9)

The value of y when t " 3 is 0; this steady-state value can also be obtained by using the final-
value theorem of Chapter 6, according to which: 

03 "
( ) ( )lim lim 0y y t sY s3 = = =

"

( )
st

.

This example emphasizes the main role of the transfer function (which is defined 
more systematically shortly), namely, obtaining the Laplace-domain output as the 
product between the transfer function and the Laplace transform of the input, fol-
lowed by calculation of the time-domain output from its counterpart in the s domain. 
The transfer function can also be utilized to

Calculate the natural frequencies (eigenfrequencies) by solving the characteristic •	
equation (the transfer function denominator made zero); more details are given 
in the Chapter 9.
Model and solve control problems, as discussed in the website Chapter 11.•	

In many applications, the transfer function is determined as in Example 7.1 
by applying the Laplace transform to the differential equation representing the 
time-domain mathematical model. Another modality of establishing the transfer 
function, as is shown in this chapter, is by direct operation in the Laplace domain 
through complex impedances (denoted by Z(s), they are defined in a subsequent 
section). Figure 7.2 shows schematically these interactions, which are based on 
the transfer function of a SISO system but are also valid for MIMO systems. 
As is shown in this chapter, the actual forcing (or input) u(t) can be combined 
with the nonzero initial conditions (denoted by IC in Figure 7.2) to generate 
an  equivalent forcing term, Ue(s), in the Laplace domain. With G(s) and Ue(s) 
 determined, the time-domain response is calculated by inverse Laplace trans-
forming Y(s) = G(s)Ue(s).

fiGure	7.2

Derivation of Transfer Function Model and Time-Domain Response Calculation.

TIME DOMAIN 

DERIVATION  

RESPONSE

D[y (t ), u(t )] = 0

u(t ), IC  

y (t )

LAPLACE DOMAIN

Ue(s)

Y(s) = G(s)U(s)

Z(s) G(s) 
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257 7.2 Transfer Function Model Formulation

7.2	 Transfer	funcTion	Model	forMulaTion
As indicated in Figure 7.2, an important step in evaluating the time-domain response 
of a dynamic system is calculation of the transfer function. Analytically, this can 
be achieved either by starting from the time-domain differential equations (the 
mathematical model) or by working directly in the Laplace domain with complex 
impedances, which, as shown a bit later, are s-domain counterparts of the parameters 
defining the mechanical, electrical, fluid, and thermal system elements. A transfer 
function model can also be obtained from an existing zero-pole-gain (zpk) model 
using MATLAB®. These methods are discussed in the following.

	7.2.1	 analytical	approach
Using time-domain mathematical models or the complex impedance approach to 
obtain transfer function models are procedures discussed in this section.

Transfer function from the Time-domain mathematical model
This section defines the transfer function more systematically and analyzes the modali-
ties of calculating the transfer function for SISO systems and the transfer function matrix 
for MIMO systems using time-domain mathematical models of dynamic systems.

SISO Systems
A SISO system, as introduced in Chapter 1, has one input and one output that are 
part of a differential equation, as suggested in Figure 7.3(a), where the operator D 
indicates the time-domain equation is a differential one, including derivatives of the 
input u(t) and the output y(t).

Transfer function definition: For a SISO system, the transfer function G(s) is 
the ratio of the Laplace transform of the output Y(s) to the Laplace transform of the 
input U(s) for zero initial  conditions, which is mathematically expressed as

 
0=

( )
( )
( )

G s
U s

Y s

IC

=  (7.10)

Equation (7.10) is quite powerful as it allows evaluating the dynamic system response 
into the Laplace domain.

fiGure	7.3

SISO System with Input and Output Connected in the (a) Time Domain by a Differential 
Equation; (b) Laplace Domain by the Transfer Function.

u(t) y(t)
D [y (t), u(t)] = 0

(a)

U(s)
G(s)

Y(s)

(b)
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CHAPTER 7 Transfer Function Approach258

Example 7.2
Derive the mathematical model of the electrical system of Figure 7.4 by relating the output 
voltage vo(t) to the input voltage vi (t). Use the model to calculate the transfer function 
Vo(s)/Vi(s).

Solution
The following equations can be written for the electrical system of Figure 7.4 by applying 
Kirchhoff’s voltage law (Chapter 4):

 

( ) ( )

( )

[ ( )]

[ ( ) ( )]

( ) [ ( ) ( )] [ ( ) ( )]
( ) [ ( ) ( )]

C
i t dt R i t i t

C
i t dt R i t i t

v t R i t i t R i t i t
v t R i t i t

1

1

i

o

1
1 1 1

2
2 2 2

1 1 2 2

2 2

= -

= -

= - + -
= -

Z

[

\

]
]
]

]
]]

#

#  (7.11)

Laplace transforming the first two Eqs. (7.11) with zero initial conditions yields

 
( ) ( )

( ) ( )

I s
R C s

R C s
I s

I s
R C s

R C s
I s

1

1

1
1 1

1 1

2
2 2

2 2

=
+

=
+

Z

[

\

]]

]]
 (7.12)

Substitution of I1(s) and I2(s) of Eqs. (7.12) into the equations produced by Laplace trans-
forming the last two Eqs. (7.11) result, after some algebra, in the following s-domain 
voltages:

 

C
( ) ( )

( ) ( )

V s
R C s R C s

R R C s R R
I s

V s
R C s

R
I s

1 1

1

i

o

1 1 2 2

1 2 1 2 1 2

2 2

2

=
+ +

+ + +

=
+

^ ^

^

h h

h
Z

[

\

]
]

]
]

 (7.13)

fiGure	7.4

Electrical System with Resistors and Capacitors.

i

i − i1
i − i2

i1

i2

vi vo

C1

C2

R1

R2

i

www.semeng.ir

www.semeng.ir


259 7.2 Transfer Function Model Formulation

The required transfer function is obtained from Eqs. (7.13) as

 ( )
( )

( )
G s

s

s

R R C C s R R

R R C s R

V

V

i

o

1 2 1 2 1 2

1 2 1 2
= =

+ + +

+

^ h
 (7.14)

Several remarks are needed about the preceding:

1.	 The transfer function approach is applicable only to dynamic systems described 
by linear differential equations with constant coefficients.

2.	 Although it is expressed as the ratio of the output to the input in the  
s-domain, the transfer function solely describes the system. In other words, 
for a specified system, with unique characteristics, the transfer function is 
also unique.

3.	 The order of the system (which is also the order of the differential equation 
describing the input-output relationship) is identical to the degree of the  
s polynomial in the denominator of the transfer function, which is named the 
characteristic polynomial.

MIMO Systems
Multiple-input, multiple-output systems have more than one component at either the 
input or the output; multiple-DOF systems, which have been studied in previous chap-
ters, are MIMO systems because they possess more than one DOF and therefore have 
multiple outputs. Figure 7.5(a) illustrates a generic dynamic system defined by p dif-
ferential equations, denoted by D1 to Dp, and therefore by p outputs (the differential 
equations solution components y1, y1, …, yp); also m inputs, u1, u1, …, um, are acting 
on the system.

As shown in the following example, the Laplace transforms of the input compo-
nents, U1(s), U2(s), …, Um(s), can be collected into an input vector {U(s)}, whereas 
the Laplace transforms of the output components are gathered, similarly, into another 
vector, the output vector {Y(s)}.

fiGure	7.5

MIMO System with Input and Output Components Connected in the (a) Time Domain by 
a Differential Equations System; (b) Laplace Domain by the Transfer Function Matrix.

(b)

{U(s)}
[G(s)]

{Y(s)} 

(a)

D1[y1(t ), …, yp(t ), u1(t ), …, um(t )] = 0

D2[y1(t ), …, yp(t ), u1(t ), …, um(t )] = 0

Dp[y1(t ), …, yp(t ), u1(t ), …, um(t )] = 0

…

u1(t )

u2(t )

um(t )

y1(t )

y2(t )

yp(t )
…  … 
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Transfer function matrix definition: For a MIMO system, the transfer function 
matrix [G(s)] connects the Laplace transform of the output vector, {Y(s)}, to the 
Laplace transform of the input vector, {U(s)}:

 ( ) ( ) ( )Y s s sG U= 6 @" ", ,  (7.15)

Example 7.3
The MEMS actuator system of Figure 7.6(a) consists of two shuttle masses that can 
move horizontally and are coupled by means of a serpentine spring. The mass m1 
is also supported by two identical beam springs and is subjected to frontal damp-
ing on its left by the air squeezed between mass and an anchored wall. Electrostatic 
transverse actuation is applied to both masses such that opposite forces are gener-
ated on m1 and m2. Express the transfer function matrix using a lumped-parameter 
model of this MEMS device where the output vector is formed of the two masses’ 
displacements.

Solution
The lumped-parameter mechanical model of the MEMS device of Figure 7.6(a) is shown 
in Figure 7.6(b). It has two inputs (the forces u1 and u2) and two outputs (the mass dis-
placements y1 and y2); therefore, it is a MIMO system with m = p = 2. It should be men-
tioned that the system is also a two-DOF  system, and the fact that the number of outputs 
is identical to the number of DOFs is not accidental; this  feature can oftentimes be utilized 
to simplify the choice of DOFs once the output parameters have been  determined.

Newton’s second law of motion yields the mathematical model of this mechanical 
system:

 
( )

( )
m y u cy k y k y y
m y u k y y

1 1 1 1 1 1 2 1 2

2 2 2 2 2 1=
= - - - -

- - -

p o
p(  (7.16)

fiGure	7.6

Linear-Motion MEMS Device: (a) Physical Model; (b) Lumped-Parameter Mechanical 
Model with Two-Force Input and Two-Displacement Output.
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Application of the Laplace transform to the two Eqs. (7.16) with zero initial conditions 
yields

 
k

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

m s cs k k Y s k Y s U s
Y s m s k Y s U s

1
2

1 2 1 2 2 1

2 1 2
2

2 2 2

+ + + - =

- + + = -
)  (7.17)

Equations (7.17) are expressed in vector-matrix form:

 
( )

k
U sk

( )

( )

( )m s cs k k
m s k

Y s

Y s

U s11
2

1 2

2

2

2
2

2 2 2

1+ + +

-

-

+
=

-
= G* *4 4  (7.18)

which can be reformulated as

 
k

k
1( )

( )

( )

( )

Y s

Y s
m s cs k k

m s k

U s

U s
1

2
1 2

2

2

2
2

2

1

2

1

2

=
+ + +

-

-

+

-

-
= G* *4 4  (7.19)

If {Y(s)} = {Y1(s),Y2(s)}t is the output vector and {U(s)} = {U1(s), -U2(s)}t is the input vec-
tor, Eq. (7.19) shows, by comparison to the definition Eq. (7.15), that the transfer function 
matrix of this example is the matrix connecting {Y(s)} to {U(s)} in Eq. (7.19).

A similar result is obtained if Eq. (7.16) is written directly into vector-matrix form after 
application of the Laplace transform:
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which reduces to Eq. (7.18) after right-factoring the vector {Y1(s) Y2(s)}t and adding up the 
corresponding matrix components in the left-hand side of Eq. (7.20). The transfer matrix 
[G(s)] is determined as
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where G11(s), G12(s) = G21(s) and G22(s) are regular (scalar) transfer functions that con-
nect specific input and output components; G12(s), for instance, relates Y1(s) to U2(s). 
The denominator D(s) of Eq. (7.21) is

 ( ) ( )D s m m s m cs ck s k km k m k k s1 2
4

2
3

1 2 2 1 2
2

2 1 2+= + + + + +6 @  (7.22)
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It is also important to point out that all individual transfer functions have the same 
denominator, which is the characteristic polynomial. Its roots are the eigenfrequen-
cies, which can be calculated by taking 1s j j~= = -_ i in Eq. (7.22) and solving 
the resulting characteristic equation D ( j~) = 0. As mentioned before, Chapter 9 
studies this topic.

Transfer function from complex impedances
The notion of complex impedance is a tool derived by means of the transfer function 
approach, which allows modeling dynamic systems and deriving transfer functions 
directly in the Laplace domain. In electrical systems, for instance, the transfer func-
tion between current and voltage defines the impedance. The qualifier complex indi-
cates that the impedance is a function of the variable s, which is a complex number, 
as learned in Chapter 6.

The complex impedance, denoted by Z(s), Figure 7.7, relates an input amount 
In(s) to the corresponding output amount Out(s) through a structural relationship, 
depending on the type of system (mechanical, electrical, fluid, or thermal) and the 
type of element. Its defining equation is

 
0=

( )
( )
( )

In
Out

Z s
s

s

IC

=  (7.23)

Complex Impedances for Mechanical, electrical, fluid, and Thermal 
Systems
Table 7.1 synthesizes the complex impedances corresponding to the defining ele-
ments of mechanical, electrical, fluid, and thermal systems. Full details on the 
derivation of all impedances given in Table 7.1 are given in the companion website 
Chapter 7.

Complex Impedance System Modeling and Analysis
Several examples are studied illustrating the use of complex impedances in deriving 
transfer functions for SISO and MIMO electrical, thermal, fluid, and mechanical 
systems.

Electrical systems One important consequence of using the complex impedance 
is that relationships based on Ohm’s law can be used to apply other laws, such as 
Kirchhoff’s first and second laws, by considering that all electrical components 
behave as resistors through their corresponding complex impedances. Because of 

fiGure	7.7

Complex Impedance Z(s) as a Transfer Function for a Generic Dynamic System  
Component.
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Table 7.1 Complex Impedances of Mechanical, electrical, fluid, and Thermal 
Systems

System and 
Element

Time-Domain 
Relationship In(s ) Out(s ) Z (s )

Mechanical

Translation

Mass f(t) = md 2x (t)/dt2

Displacement, 
x (s) Force, F(s)

ms2

Damping f(t) = cdx(t)/dt cs

Stiffness f(t) = kx(t) k

Rotation

Mass moment of 
inertia m(t) = Jd 2i(t)/dt2

Rotation, H(s) Moment, M(s)
Js2

Damping m(t) = cdi(t)/dt cs

Stiffness m(t) = ki(t) k

Electrical

Inductance v(t) = Ldi(t)/dt

Current, I(s) Voltage, V(s)

Ls

Resistance v(t) = Ri(t) R

Capacitance i(t) = Cdv(t)/dt 1/(Cs)

Fluid

Pressure-defined

Inductance p(t) = If,pdqf (t)/dt
Fluid flow 
rate, Qf (s) Pressure P(s)

If,ps

Resistance p(t) = Rf,pqf (t) Rf,p

Capacitance qf (t) = Cf,pdp(t)/dt 1/(Cf,ps)

Head-defined

Inductance h(t) = If,hdpf (t )/dt
Fluid flow 
rate, Qf (s) Head, H(s)

If,hs

Resistance h(t) = Rf,hqf (t) Rf,h

Capacitance qf (t) = Cf,hdh/dt 1/(C f,hs)

Thermal

Resistance ith(t) = Rthqth(t) Thermal flow 
rate, Qth(s)

Temperature, 
Hth(s)

Rth

Capacitance qth(t) = Cthdith(t)/dt 1/(C ths)

that, electrical impedances are connected in series, parallel, and in mixed formations 
exactly like resistances. According to Figure 7.8, the series and parallel equivalent 
impedances of two electrical impedances Z1 and Z2 are

 ( ) ( ) ( )
( ) ( ) ( )

;Z s Z s Z s
Z s Z s Z s

1 1 1
s

p
1 2

1 2

= + = +  (7.24)
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Example 7.4
Determine the transfer function Vo(s)/Vi(s) of the two-component electrical system repre-
sented in Figure 7.9, and based on it, evaluate the transfer function of the electrical system 
shown in Figure 7.4 of Example 7.2.

Solution
The transfer function of this circuit is determined by using Kirchhoff’s second law for the 
two loops shown in Figure 7.9:

 
( ) ( ) ( )
( ) ( )

V s Z I s Z I s
V s Z I s
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o
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2

= +
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(  (7.25)

The transfer function is therefore
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 (7.26)

The electrical system of Figure 7.4 is of the form sketched in the generic Figure 7.9, 
where the two impedances are
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 (7.27)

each being calculated as a parallel-connection impedance. By substituting Eqs. (7.27) 
into the transfer  function of Eq. (7.26), the latter one yields the transfer function of 
Eq. (7.14).

fiGure	7.9

Single-Stage Electrical System with Two Generic Complex Impedances.
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fiGure	7.8

Connection of Electrical Impedances: (a) Series; (b) Parallel; (c) Equivalent Impedance.
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Example 7.5
Calculate the transfer function Vo(s)/Vi(s) of the two-component operational amplifier 
shown in Figure 7.10(a) and then determine the transfer function of the two-stage opera-
tional amplifier circuit of Figure 7.10(b).

Solution
The negative feedback in the system of Figure 7.10(a) ensures that the positive and 
negative input ports have the same zero voltage because the positive input port is con-
nected to the ground. At the same time, due to the high input impedance of the opera-
tional amplifier, the current I that passes through Z1 is identical to the one passing 
through Z2:

 
( ) ( )

Z

V s

Z

V s0 0i o

1 2

-
=

-
 (7.28)

Equation (7.28) can be rewritten to highlight the circuit transfer function as

 ( )
( )

( )
G s

V s

V s

Z

Z

i

o

1

2
= = -  (7.29)

The minus sign in Eq. (7.29) indicates the inverting effect in the s domain, which is similar 
to the time-domain inverting effect, demonstrated in Chapter 4, for the two resistors R1 
and R2.

The electrical system of Figure 7.10(b) is formed of two individual stages serially con-
nected such that the output of the first stage is the input to the second stage, as illustrated 
in Figure 7.11; the total transfer function can be expressed as the product of the two 
stages’ transfer functions:
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fiGure	7.10

(a) Two-Component, One-Stage Inverting Operational Amplifier Electrical System; 
(b)  Two-Stage  Operational Amplifier System.
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When considering the whole electrical system of Figure 7.10(b), because the current 
through the four components is the same, the following equations can be written in the 
Laplace domain:
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 (7.31)

By combining the two Eqs. (7.31), the following transfer function is obtained:
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R R Cs
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1 3

2
= =  (7.32)

It can be seen that the actual transfer function of Eq. (7.32) is identical to the product 
of the two partial transfer functions as in Eq. (7.30), which consider that the electrical 
system can be split into two serially connected subsystems.

Thermal systems A thermal system example is studied next using the complex 
impedance approach and a node-analysis procedure (similar to the one introduced in 
Chapter 4 for electrical systems).

Example 7.6
Find the transfer function matrix of the one-room thermal system of Figure 7.12 using the 
complex impedance approach. Consider that the input components are the thermal flow 
rate qi and the outdoors temperature i2, whereas the output is the indoor temperature i1. 
The enclosed space has a thermal capacity Cth and the four identical walls are defined by 
a thermal resistance Rth.

Solution
The thermal impedances provided in Table 7.1 become, for this example,
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=  (7.33)

fiGure	7.11

Two-Stage Operational Amplifier System with Separate Stages.
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By expressing Qo(s) of the first Eq. (7.33) and substituting it in the second Eq. (7.33), the 
following equation is obtained:

 ( ) ( ) ( )R C s s s R Q s1th th th i1 2H H+ = +^ h  (7.34)

which can be reformulated in vector form as

 ( )
( )
( )s

R C s R C s

R s
Q s1

1
1th th th th
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i
1

2H
H

=
+ +

) (3 2  (7.35)

The transfer function connecting the output H1(s) to the input vector {H2(s) Qi (s)}t is the 
row vector of Eq. (7.35):

 ( )G s
R C s R C s

R

1
1

1th th th th

th
=

+ +
6 @ ) 3  (7.36)

Let the impedance-based circuit of Figure 7.13 be the model for the actual thermal 
 system of Figure 7.12.

Treating heat flow rates as electrical currents and the temperatures as voltages, the 
node-analysis method of Chapter 4 can be applied to the thermal circuit of Figure 7.13. 
The source flow rate at node 1 is the sum of flow rates passing through the impedances 
ZCth and ZRth, which is expressed as
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= +

-
 (7.37)

The second Eq. (7.37) changes to Eq. (7.34), and therefore the complex impedance 
model of Figure 7.13 correctly represents the original thermal system.

fiGure	7.12

Four-Wall, One-Room Thermal System with Internal Heating.
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fluid systems As the case was with electrical and thermal systems, impedances can 
be utilized to model fluid systems directly into the Laplace domain, as illustrated in 
the following example.

Example 7.7
Use an impedance-based mathematical model of the liquid system shown in Figure 7.14 
and determine the transfer function matrix considering that the input to the system con-
sists of the volume flow rates qi1 and qi2, whereas the liquid heads h1 and h2 are the 
system’s output. The system is formed of two tanks of capacitances Cl 1 and Cl 2 and two 
valves of resistances Rl 1 and Rl 2.

Solution
Using the fluid impedance definitions of Table 7.1, the following equations can be written 
for the fluid  resistances and capacitances indicated in Figure 7.14:
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Referring to Eqs. (7.38), the flow rate Q(s) is substituted from the second equation in the 
first one, and the flow rate Qo(s) is substituted from the fourth equation in the third one; 
the following equations are obtained:
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 (7.39)

fiGure	7.13

Impedance-Based Thermal Circuit as a Model  Candidate for the Actual System of  
Figure 7.12.
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The impedances of Eqs. (7.39) are
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By substituting them in Eqs. (7.39), the latter ones become
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Because the head vector of the left-hand side of Eq. (7.41) is the output and the volume 
flow rate of the right-hand side of Eq. (7.41) is the input, the transfer function matrix is
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the denominator polynomial being D(s) = Rl1Rl2Cl1Cl2s2 + [Rl2(Cl1 + Cl2) + Rl1Cl1]s + 1.
Let us check whether a relationship identical to that of Eq. (7.41) can be set for the 

liquid circuit shown in Figure 7.15, which is proposed as an impedance model of the 
physical (actual) system.

Considering that liquid flow rates and heads in liquid systems play the roles of currents 
and voltages in electrical systems, respectively, the node analysis method (introduced  

fiGure	7.14

Two-Tank Liquid-Level System.
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for electrical systems in Chapter 4) can also be applied to liquid (and fluid, in general) 
 systems by using complex impedances. Assuming the heads at the lower points on the cir-
cuit of Figure 7.15 are zero, the flow rates connecting at nodes 1 and 2 can be expressed, 
by virtue of conservation, as
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Substituting Eqs. (7.40) into Eqs. (7.43) and using matrix notation, the latter equations 
become Eq. (7.41). As a consequence, the impedance-based circuit of Figure 7.15 
 models correctly the actual liquid system of Figure 7.14.

mechanical systems Mechanical impedances can be combined in series and in par-
allel; therefore, equivalent impedances can be calculated for either case. Figure 7.16 
illustrates the serial and the  parallel connection of translatory-motion spring-type 
and damper-type impedances.

The companion website Chapter 7 derives the two equivalent mechanical imped-
ances, which are

 ;
Z Z Z

Z Z Z
1 1 1

s
p

1 2
1 2= + = +  (7.44) 

As shown in Table 7.1, the input to a mechanical impedance is a displacement (or 
rotation angle) and the output is a force (or moment). By taking into account that par-
allel-connected mechanical impedances have the same displacement, while series-
connected mechanical impedances transmit the same force, mechanical impedance 
circuits can be designed for mechanical systems. This process is also aided by the 
Newton’s second law of motion, which can be expressed in terms of impedances, as 
shown in the following example.

fiGure	7.15

Impedance-Based Liquid Circuit as a Model  Candidate for the Actual System of  
Figure 7.14.
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Example 7.8
a. Use the single DOF mechanical system of Figure 7.1 to demonstrate Newton’s second 

law of motion applied to mechanical impedances, according to which the sum of imped-
ance forces (resulting from inertia, damping, or stiffness) is equal to the sum of externally 
applied Laplace-transformed forces at any degree of freedom; draw a corresponding 
mechanical impedance circuit; and express the system’s transfer function Y(s)/U(s).

b. Use the complex impedance approach and an appropriate mechanical impedance 
circuit to determine the transfer function matrix of the MEMS sketched in Figure 7.6 of 
Example 7.3.

Solution
a. The dynamic equation of motion for the mass-damper-spring system of Figure 7.1 is 

given in Eq. (7.1). Its Laplace transform with zero initial conditions leads to

 ( ) ( )ms cs k Y s U s2 + + =^ h  (7.45)

which can also be written as

 ( ) ( ) ( ) ( )Z Y s Z Y s Z Y s U sm d e+ + =  (7.46)

where Zm, Zd, and Ze are the mass, damping, and elastic mechanical impedances, 
respectively, as given in Table 7.1. Equation (7.45) illustrates the statement of Newton’s 
second law of motion in terms of impedances. Let us analyze the circuit of Figure 7.17, 
which has mechanical impedances as elements and a force source. This circuit indi-
cates that all mechanical impedances have the same displacement Y(s). By consider-
ing that forces play the role of voltages (both represent forcing) and displacements are 
similar to currents, Kirchhoff’s voltage law applied to the circuit of Figure 7.17 results 
in Eq. (7.45). Equation (7.45) enables expressing the transfer function that has also 
been obtained in Eq. (7.6).

b. Analyzing the lumped-parameter model of Figure 7.6(b), which corresponds to the 
MEMS of Figure 7.6(a), it can be seen that the mass m1, the damper c, and the 
spring k1 undergo the same displacement y1; as a consequence, the three imped-
ances are connected in parallel. The middle spring k2 incurs a deformation that is the 

fiGure	7.16

Connections of Elastic and Damping Mechanical Impedances: (a) Series; (b) Parallel;  
(c) Equivalent.

(a) (b) (c) 

F (s)ab

X2(s) X1(s)

Z1 Z2
b

X (s)

F (s)a

Z1

Z2
F (s)ab

X (s)

Z

www.semeng.ir

www.semeng.ir


CHAPTER 7 Transfer Function Approach272

difference between its end points displacements, y1 - y2, whose Laplace transform 
is the input to this spring’s impedance. On the other hand, the mass m2 undergoes a 
displacement y2. The impedance-form of Newton’s second law of motion can be writ-
ten for each of the two DOFs based on the definition that has just been demonstrated 
at point (a):

 
( ) ( ) ( ( ) ( )) ( )

( ) ( ( ) ( )) ( )
Z Z Z Y s Z Y s Y s U s

Z Y s Z Y s Y s U s
m d e e

m e

1 1 1 2 1 2 1

2 2 2 2 1 2

+ + + - =
+ - = -

(  (7.47)

Equations (7.47) took into account the law of action and reaction, in terms of the force 
generated by the middle spring k2. By using the impedance definitions of Table 7.1, 
Eqs. (7.47) can be written in a form identical to Eqs. (7.17), which are derived in 
Example 7.3; therefore, the same transfer function derived from the MEMS mathemati-
cal model is obtained using the complex impedance approach.

Let us analyze the mechanical impedance circuit of Figure 7.18, which contains 
two meshes and where the external forces U1(s) and U2(s) have been represented as 
sources.

The impedance Newton’s second law that has just been introduced can be applied 
for each of the two meshes, and this actually results in Eqs. (7.47) that have been 
obtained by applying Newton’s second law in the impedance variant for each of the 
two DOF. It therefore means that the circuit of Fig. 7.18 is a valid representation of the 
lumped-parameter model of Fig. 7.6(b).

fiGure	7.18

Mechanical Impedance Circuit for the MEMS Lumped-Parameter Model of Figure 7.6(b).
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fiGure	7.17

Mechanical Impedance Circuit for the Mechanical System of Figure 7.1.
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273 7.2 Transfer Function Model Formulation

7.2.2	 MaTlaB®	approach
The transfer function is formulated in MATLAB® by the tf command, where the 
coefficients of the numerator and denominator have to be defined in descending order 
of powers. For the transfer function G(s) = (6s + 3)/(5s2 + s + 4), for instance, the 
numerator and denominator are num = [6, 3], den = [5, 1, 4], and the 
transfer function is defined as sys = tf (num, den). The sequence just discussed 
can also be written directly as sys = tf ([6, 3], [5, 1, 4]). Note: Any other 
function name or symbol can be used instead of sys.

The transfer function (tf) model is actually one of the four linear time invariant 
(LTI) models (or objects) available in the MATLAB® Control System Toolbox™; 
more details on LTIs are offered in Appendix C. Whenever the tf command is issued, 
MATLAB® generates and stores the corresponding transfer function model. Another 
MATLAB® LTI object is zero-pole-gain (zpk), which can build a model that stores 
the zeroes (z), poles (p), and constant gain (k) of a specific function (such as a transfer 
function). According to this model, a transfer function can be written in the form

 ( )G s
s p s p s p

k s z s z s z

n

m

1 2

1 2

f

f
=

- - -

- - -

^ ^ ^

^ ^ ^

h h h

h h h
 (7.48)

Whenever the zeroes, poles, and gain are known, the MATLAB® command 
zpk(z, p, k) generates a zero-pole-gain LTI object. MATLAB® allows conver-
sion between tf and zpk models, as illustrated in the following example.

Example 7.9
An s-domain function is defined by the zeroes 1 and 2; the poles -1, -2, and -3; and a 
gain of 5. Build the MATLAB® zero-pole-gain object corresponding to these data then con-
vert this object into a transfer function model. Reconvert the obtained transfer function 
model into a zero-pole-gain model and confirm that the original zpk model is retrieved.

Solution
The following MATLAB® command sequence is used to generate the zpk model from the 
given data, convert that model into a tf model, and reconvert the tf object into the original 
zpk model:

>> f = zpk([1,2],[−1,−2,−3],5)
Zero/pole/gain:
5 (s-1) (s-2)
-----------------
(s+1) (s+2) (s+3)
>> g = tf(f)
Transfer function:
5 s^2 - 15 s + 10
----------------------
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CHAPTER 7 Transfer Function Approach274

s^3 + 6 s^2 + 11 s + 6
>> zpk(g)
Zero/pole/gain:
5 (s-2) (s-1)
-----------------
(s+3) (s+2) (s+1)

7.3	 Transfer	funcTion	and	The	TiMe	response
Employing the transfer functions derived by one of the two methods presented in 
section 7.2, we determine the time response of SISO and MIMO systems both ana-
lytically and by means of MATLAB®. The generic formulation considers that both 
forcing and nonzero initial conditions can be applied.

7.3.1	 siso	systems
The transfer function approach to determining the time response of SISO systems is 
discussed in this section.

Analytical Approach
The general case of a second-order system subjected to both forcing and nonzero initial 
conditions is studied here, out of which result the particular cases of the forced response 
with zero initial conditions and the free response with nonzero initial conditions.

For such a dynamic system, the differential equation is

 ( ) ( ) ( ) ( )a y t a y t a y t u t2 1 0+ + =p o  (7.49)

with the initial conditions: ;y y0 0 0 0! !o ] ]g g . Laplace transforming Eq. (7.49) 
yields

 ( ) ( ) ( ) ( )Y s
a s a s a

U s a y s a y a y G s U s
1

0 0 0 e

2
2

1 0
2 2 1=

+ +
+ + + =o] ] ]g g g6 @  (7.50)

where G(s) is the transfer function of the second-order system and Ue(s) is the equiv-
alent input  (forcing) function that combines the effects of the actual input function 
U(s) and the initial conditions, as introduced in Figure 7.2; these functions are

 ( ) ( ) ( );G s
a s a s a

U s U s a y s a y a y
1

0 0 0e

2
2

1 0
2 2 1=

+ +
= + + +o] ] ]g g g  (7.51)

The time-domain counterpart of Ue(s) is

 L( ) ( ) ( ) ( ) ( ) ( )u t U s a y
dt
d

t a y a y t0 00e 2 2 1d d= + + +1- o] g6 6@ @  (7.52)
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275 7.3 Transfer Function and the Time Response

For zero initial conditions, Eq. (7.52) reduces to

 L( ) ( )u t U se = 1-
6 @  (7.53)

which represents the forced response with zero initial conditions. Conversely, when 
U(s) = 0, which means u(t) = 0, Eq. (7.52) simplifies to

 ( ) ( )( ) ( )( )u t a y
dt
d

a y a yt t00 0e 2 2 1d d= + +o] g 6 @  (7.54)

which describes the free response of a second-order system with nonzero initial 
conditions.

It can simply be shown that the transfer-function model of a first-order system is 
derived from the model of the second-order system, previously formulated, by taking 
a2 = 0 in Eqs. (7.51) and (7.52).

According to the initial-value theorem, the initial value of the output is calculated 
as

 
30 3" "

( ) ( ) ( ) ( ) ( )lim lim limy y t sY s sG s U s0 e= = =
"t s s

 (7.55)

Similarly, the final value of the time-domain response can be determined by using 
the final-value theorem:

 
0 0" "3

( ) ( ) ( ) ( ) ( )lim lim limy y t sY s sG s U se= = =3
s" st

 (7.56)

Example 7.10
The pneumatic system of Figure 7.19(a) is formed of a container with a capacity  
Cg = 1.2 # 10-6 m-s2, which is supplied with a gas whose pressure depends on time as 
pi = (1 + 4e-0.2t) # 105 N/m2. The gas passes through a constriction whose resistance 
is Rg = 30,000 m-1s-1. Use complex impedances to determine the pneumatic circuit 
corresponding to this system as well as its transfer function Po(s)/Pi(s); based on it, 

fiGure	7.19

Pneumatic System with Valve and  Container: (a) Physical Model; (b)  Pneumatic Impedance 
Circuit.
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CHAPTER 7 Transfer Function Approach276

calculate the output (container) pressure po(t) and plot it against time for zero initial 
conditions. Also determine the final (steady-state) value of po(t).

Solution
Based on Figure 7.19(a) and on Table 7.1, the gas resistance and capacitance imped-
ances are

 ( )
( )

( ) ( )
( )

( )

( )
;Z s

Q s

P s P s
Z s

Q s

P s
R

m

i o
C

m

o

g g
=

-
=  (7.57)

Eliminating Qm(s) between the two Eqs. (7.57) and taking into account that

 ( ) ( );Z s R Z s
C s
1

R g C
g

g g
= =  (7.58)

the complex transfer function is

 ( )
( )

( )

1
G s

P s

P s

R C s
1

i

o

g g

= =
+

 (7.59)

Consider that the pneumatic impedance circuit of Figure 7.19(b) represents the 
physical system of Figure 7.19(a). Based on this circuit and applying an equivalent of the 
Kirchhoff’s voltage law where pressure is used instead of voltage and volume flow rate for 
current, the following s-domain equations can be formulated:

 
( ) ( ) ( )
( ) ( )

P s Z Q s Z Q s

P s Z Q s
i R m C m

o C m

g g

g

= +

=
*  (7.60)

The pressure-defined impedances corresponding to fluid (gas) resistance and capaci-
tance of Table 7.1 are substituted in Eqs. (7.60); by evaluating the Po(s)/Pi(s) ratio, the 
transfer function of Eq. (7.59) is obtained.

The Laplace transform of the output is

 ( ) ( ) ( )
.

P s P s G s
R C s s s1

10 1
0 2

4
o i

g g

5

= =
+

+
+

c m  (7.61)

The steady-state value of the container pressure is calculated as

 
3 0""

( ) ( ) ( ) N/m10lim limp p t sP so o o
25= = =3

st
 (7.62)

The container pressure is calculated by inverse Laplace transforming Po(s) of Eq. (7.61) as

 ( ) N m1 4 5 /p t e e 10.
o

tt0 2 28 5 2
#- + -- -^ h  (7.63)

which is plotted in Figure 7.20. It can be seen that the steady-state pressure value of  
105 N/m2 is reached after approximately 25 seconds.
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277 7.3 Transfer Function and the Time Response

Example 7.11
A single-mesh electrical system is formed of a resistor R, a capacitor C, an inductor L, 
and a voltage source providing a ramp voltage v (t) = Vt. Find the current i(t) in the circuit 
when 4L = R2C, knowing i(0) = 0.1 A and q(0) = 0 C. Plot i(t) for V = 100 V, R = 200 X, 
and L = 3 H; also find the final value of the current.

Solution
The differential equation of the series electrical system is

 ( ) ( ) ( ) ( )Ri t L
dt
d

i t
C

i t dt v t
1

+ + =#  (7.64)

which can be written in terms of charge as

 ( ) ( ) ( ) ( )Lq t Rq t
C

q t v t
1

+ + =p o  (7.65)

According to Eqs. (7.49) and (7.51), the transfer function and the equivalent Laplace-
transformed input are

 ( ) ( ) ( );G s
LCs RCs

C
U s

s

V
Li 0

1
e2 2

=
+ +

= +  (7.66)

fiGure	7.20

Container Pressure as a Function of Time.
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As a consequence and for the particular condition of this example, the Laplace transform 
of the output is

 ( ) ( ) ( )
( )

Q s G s U s
s LCs RCs

CV

LCs RCs

LCi 0

1 1
e 2 2 2

= =
+ +

+
+ +^ h

 (7.67)

The Laplace transform of the current is expressed in terms of the Laplace transform of 
the charge as

 ( ) ( )
( )

I s sQ s
s LCs RCs

CV

LCs RCs

LCi s0

1 12 2
= =

+ +
+

+ +^ h

 
( )

L
V

s s
L
R

s
L
R

i s0

2

1

2

2 2
#=

+

+

+c cm m
 (7.68)

where this example’s relationship among L, R, and C is used. The steady-state value of the 
current can be determined by means of the final value theorem as

 
003 ""

( ) ( ) ( )lim lim limi i t sI s
L
V

L
R R

LV

2

1 4
2 2

#= = =

+

=3
" ss

s
t

c m

 (7.69)

For the numerical values of this example, the final current is i (3) = 0.03 A.

fiGure	7.21

Current as a Function of Time.
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279 7.3 Transfer Function and the Time Response

By inverse Laplace transforming I(s) of Eq. (7.68), the following time-dependent cur-
rent is obtained:

 ( )
( )

e
( )

ei t
R

LV
RL

LV R i
t

R

LV R i0 04
2

4 4
L

R
t

2

2

2

2

2L

R
t

2= -
+

-
- --

 (7.70)

The current i(t) is plotted in Figure 7.21 for the numerical values of this example, which 
shows that, indeed, the final value (steady-state) value is 0.03 A.

mATLAB® Approach
The Control System ToolboxTM of MATLAB® allows calculation and plotting of the 
forced response of dynamic systems by means of the transfer function. Once the 
mathematical model and the corresponding transfer function are obtained through 
modeling, MATLAB® has the capability of obtaining the system response (and plot-
ting it) for various inputs, such as unit step, unit impulse, or an arbitrary form. As 
shown in a previous section of this chapter, the transfer function is determined in 
MATLAB® by using the tf command.

Response to Unit Step Input, the step function
The following sequence of MATLAB® code:

>> g = tf ([6, 3], [5, 1, 4]);
>> step(sys)

produces the plot shown in Figure 7.22 as the response to a unit step input applied to 
the transfer function G(s) = (6s + 3)/(5s2 + s + 4).

It can be seen that the time range, time units, as well as title and axes labels have 
been introduced automatically. The MATLAB® command ltiview enables operat-
ing modifications in the obtained plot, such as changing the time range. The following 
sequence of commands produces the plot of Figure 7.23, which is the response based 
on the same transfer function over a time interval of 20 seconds:

>> g = tf ([6, 3], [5, 1, 4]);
>> ltiview

Appendix C gives a more detailed description of the ltiview command options; 
but in a nutshell, the plot of Figure 7.23 is obtained by selecting File, Import, 
and the transfer function that has just been defined (either in the Workspace or 
in a MAT-file). By right clicking the plot space, the time range can be changed 
to 20 s from the default 60 s by selecting Properties and Limits. By right 
clicking the plot area again, it is possible to highlight system features such as 
the Peak Response, the  settling Time, the Rise Time, or the steady 
state (all properties of second-order systems under step input). By choosing 
Rise Time, for instance, the point of Figure 7.23 is highlighted; and by clicking 
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fiGure	7.23

MATLAB® Plot with Unit Step Input and Modified Time Specifications by the ltiview 
Option.
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fiGure	7.22

MATLAB® Plot with Basic Usage of the Step Function.
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281 7.3 Transfer Function and the Time Response

it, the accompanying box is shown. In this system configuration, the rise time is the 
time necessary for the response to get from 10% to 90% of the final (steady-state) 
response. The ltiview command enables changing the type of input from unit 
step, as also described in Appendix C.

The unit step input can be used to find the free response of a system subjected to 
nonzero initial conditions as well. We saw in this section that the free response of a 
system under nonzero initial conditions is equivalent to that of the same system under 
equivalent forcing and zero initial conditions. It can be demonstrated that the free sys-
tem can be converted to a forced system under unit step forcing, as shown in the next 
example.

Example 7.12
Prove that the standard step function can be used to determine the free response of a 
second-order system subjected to nonzero initial conditions. Using the MATLAB® tf and 
step commands, apply the methodology to a series electrical circuit that is formed of a 
capacitor C = 50 μF, a resistor R = 300 X, and an inductor L = 40 mH to plot the charge in 
the circuit as a function of time. An initial charge q0 = 0.1 C is applied to the capacitor.

Solution
Let us consider a free second-order system whose differential equation is of the form

 ( ) ( ) ( )ay t by t cy t 0+ + =p o  (7.71)

With nonzero initial conditions, the Laplace transform of Eq. (7.71) yields an equation that 
can be solved for X(s), the Laplace transform of x(t):

 ( )
( ) ( ) ( )

Y s
as bs c

ay s ay by0 0 0
2

=
+ +

+ +o
 (7.72)

When considering a dummy forcing function u(t) acts on the otherwise free dynamic 
 system, it can simply be shown that the transfer function of that system is

 ( )
( )
( )

G s
U s

Y s

as bs c
1

2
= =

+ +
 (7.73)

Equation (7.72) can be reformulated as

 L( )
( )

( ) ( )Y s
as bs c

ay s ay by s
s G s t

0 0 0 1
1

2

2

#=
+ +

+ +
= l

o] ]g g6

6

@

@ (7.74)

which indicates that the original system with its transfer function G(s) has been equiva-
lently transformed into another system defined by the transfer function
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 ( )s =
( ) ( )][

G
as bs c

ay s ay by s0 00
2

2

+ +

+ +
l

o ] g

 s= + ( )] ( )[ay ay by s G s00 02 +o] ]g g" ,  (7.75)

and acted upon by a unit step function 1(t).
The differential equation describing the free response of the electrical circuit is

 Lq Rq
C

q
1

0+ + =p o  (7.76)

and its original transfer function is

 ( )s = =
/ . ,

G
Ls Rs C s s1

1
0 04 300 20 000

1
2 2+ + + +

 (7.77)

The modified transfer function, as in Eq. (7.75), is therefore

 ( )s =
. ,

.
G

s s

s s

0 04 300 20 000
0 004 30
2

2

+ +

+
l  (7.78)

The plot that gives the variation of q(t) is shown in Figure 7.24.

fiGure	7.24

Charge Variation as a Function of Time.
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283 7.3 Transfer Function and the Time Response

Response to Unit Impulse Input, the impulse function
Another built-in MATLAB® input function is the unit impulse, which is considered 
to be applied under zero initial conditions. Consider the transfer function G(s) = 1/
(s2 + s + 1). Usage of the following sequence of commands:

>> sys = tf (1, [1, 1, 1]);
>> impulse(sys)

generates the plot of Figure 7.25 for unit impulse forcing.
All the other features discussed for the step function as an input are also valid 

for the impulse function. Let us check, for instance, the following feature.

Example 7.13
Demonstrate that the regular impulse function can be used to model the response of a 
second-order system subjected to both nonunity impulse input and nonzero initial condi-
tions. Apply the algorithm to the electric system of the previous Example 7.12 with a initial 
charge of that example. In addition, consider that the circuit includes a voltage source 
with v = 40 V, which opens and closes very fast thereafter.

Solution
The dynamic equation that describes the system is

 ( ) ( ) ( ) ( )ay t by t cy t d td+ + =p o  (7.79)

fiGure	7.25

MATLAB® Plot with Basic Usage of the Impulse Function.
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CHAPTER 7 Transfer Function Approach284

where the constant d multiplies the Dirac delta function d(t), the unit impulse, which 
 models the fast opening and closing of the voltage source. Applying the Laplace transform 
to Eq. (7.79) for nonzero initial conditions results in

 L( )
( ) ( ) ( )

[ ( )]X s
as bs c

ay s ay by d
t

0 0 0
2

# d=
+ +

+ + +o
 (7.80)

which indicates that

 
( )

( )G
as bs c

ay s ay by d
s

0 0 0
2

=
+ +

+ + +
l

o] ]g g

 ( )G s ay s ay by d0 0 0= + + +o] ] ]g g g6 @ (7.81)

is the transfer function of a modified system under forcing by a unit impulse. This dem-
onstrates the equivalence stated in the example.

For the particular case of the electrical circuit, its equation is

 ( ) ( ) ( ) ( )Lq t Rq t
C

q t t
1

40d+ + =p o  (7.82)

and therefore the constants of the general model are a = L, b = R, c = 1/C, and d = 40. 
With the numerical values given in Example 7.12, the modified transfer function becomes

 ( )s =
. ,

.
G

s s

s

0 04 300 20 000
0 004 70

2 + +

+
l  (7.83)

The charge variation is shown in Figure 7.26.

fiGure	7.26

Charge in an RLC Series Circuit with Impulse Voltage and Initial Charge.
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285 7.3 Transfer Function and the Time Response

It can be seen that there is a spike in the charge response corresponding to the appli-
cation of the impulsive voltage of 40 V; the charge decreases to zero thereafter.

Response to Arbitrary Input, the lsim function
Arbitrary forcing can be generated in MATLAB® by the lsim function under zero 
initial conditions. The arbitrary function has to be defined before launching the calcu-
lating and plotting lsim command. Let us consider a dynamic system whose transfer 
function is G(s) = 1/(s2 + s + 1) and is acted upon by the forcing function f(t) = 1/
(t + 2) . The following MATLAB® code

>> sys = tf (1, [1, 1, 1]);
>> t = [0:0.01:20];
>> f = 1./(t + 2);
>> lsim(sys,f,t)

generates the plot of Figure 7.27, where both the input (the curve starting from a 
value of 0.5) and the output are shown.

It is also possible to simulate a system that is under combined arbitrary forc-
ing and nonzero initial conditions, as demonstrated in the following example. 
Caution has to be applied as only forcing of polynomial form can be used for this 
procedure.

fiGure	7.27

Second-Order System Response to Arbitrary Forcing with Zero Initial Conditions.
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Example 7.14
Prove that the lsim command, which is normally employed for forcing under zero initial con-
ditions, can also be used for a forced system with nonzero initial conditions. Apply the result 
to a mechanical system formed of a mass m = 0.1 kg, a viscous damper c = 0.2 N-s/m, and 
a spring with k = 10 N/m under the action of a force f (t) = 6 + 5 sin(10t) N when the initial 
displacement of the mass is y(0) = 0.1 m.

Solution
Consider first a generic second-order system under an arbitrary forcing function f (t) 
with the nonzero initial conditions y0;! !0 0 0yo ] ]g g . The mathematical model 
of the particular mechanical system of this example is described by the differential 
equation

 ( ) ( ) ( ) ( )my t cy t ky t f t+ + =p o  (7.84)

Application of the Laplace transform to Eq. (7.84) yields

 ( )
( )

( ) ( ) ( )
( )

( )
Y s

ms cs k F s

my s my cy F
F s

s0 0 0
2

#=
+ +

+ + +o

^ h
 (7.85)

fiGure	7.28

Second-Order System Response to Arbitrary Forcing with Nonzero Initial Conditions.
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which indicates that
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( ) ( ) ( ) ( )
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 (7.86)

is the transfer function of a modified system that is acted upon by the given function f(t). 
By using the numerical values of this example, the transfer function of Eq. (7.86) is

 
, , ,

( )
, ,

G
s s s s

s s s s
s

60 620 13 000 62 000 600 000

2 700 5 200 60 000
4 3 2

4 3 2

+ + + +
=

+ + + +
l  (7.87)

Figure 7.28 shows the response (lower curve) and forcing functions.

7.3.2	 MiMo	systems
Similar to SISO systems, the forced response of MIMO systems is studied in this 
section using the analytical approach and MATLAB®.

Analytical Approach
The forced response of first-order and second-order MIMO systems are analyzed 
separately by considering the general situation where both forcing and initial con-
ditions are applied to the system. The forced response with zero initial conditions 
and the free response with nonzero initial conditions result as particular cases of the 
general formulation.

first-Order Systems
First-order MIMO systems are described by the differential equation

 [ ]{ ( ) { ( ) { ( )} [ ] } }a y t a y t u t1 0+ =o  (7.88)

The number of inputs, m, is normally smaller than the number of outputs (which is 
assumed equal to the number of differential equations of the mathematical model), 
p; however, by adding p − m zeroes to the input, the two vectors have the same 
dimension. Application of the Laplace transform to Eq. (7.88) with nonzero initial 
conditions leads to

 [ ] ( { ( ) { { ( )} }) [ ] } { ( )}a s Y s y a Y s U s01 0- + =] g  (7.89)

After factoring out {Y(s)} and grouping the remaining terms, Eq. (7.89) can be 
 written as

 U{ ( ) ( [ ] { ( ) ( [ ] [ ]{ ( )} [ ]) } [ ]) }Y s s a a s s a a a y 01 0
1

1 0
1

1= + + +- -  (7.90)
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The transfer function matrix corresponding to zero initial conditions for the  first-order 
system is obtained from Eq. (7.90) as

 1-[ ( ) ( [ ]] [ ])G s s a a1 0= +  (7.91)

because {Y(s)} = [G(s)] {U(s)}. As a consequence, Eq. (7.90) becomes

 }( )U s{ ( ) [ ( ) {} ]Y s G s e=  (7.92)

with

 { ( ) { ( )} } [ ]{ ( )}U s U s a y 0e 1= +  (7.93)

being the Laplace transform of an equivalent input vector. When {y(0)} = 0, the 
equivalent forcing vector reduces to the actual one, {U(s)}; therefore, the modified 
Eq. (7.92) enables calculating the forced response with zero initial conditions in 
the Laplace domain. Conversely, when {U(s)} = 0, the equivalent forcing vector of 
Eq. (7.93) simplifies to

 { ( )} [ ]{ ( )}U s a y 0e 1=  (7.94)

and Eq. (7.92) provides the Laplace transform of the free response with nonzero 
initial conditions.

The initial and final values of the output vector {y(t)} can be determined without 
prior knowledge of the vector itself, by means of {Y(s)} and applying the initial- and 
final-value theorems:

 ( )

{ ( )} { ( )} { ( )} [ ( )]{ ( )}

{ } { ( )} { ( )} [ ( )]{ ( )}

lim lim lim

lim lim lim

y y t s Y s s G s U s

y y t s Y s s G s U s

0
t s s e

t s s e

0

0 0

= = =

= = =
" " "

" " "

3 3

3
3

*  (7.95)

The time-domain equivalent forcing is found by inverse Laplace transforming 
Eq. (7.93) as:

 { ( ) { ( ) { ( )} } ( ) [ ] [ ] }u t u t a yt I 0e 1d= +  (7.96)

where d(t) is the delta Dirac function and [I] is the identity matrix.

Example 7.15
The two-tank liquid system of Figure 7.14 analyzed in Example 7.7 is defined by Cl1 = 
20 m2, Cl2 = 16 m2, Rl1 = 2 s-m2 , Rl 2 = 1.2 s-m2. Knowing the initial heads are h1(0) = 
0.1 m, h2(0) = 0, and that the input volume flow rates are qi 1 = qi 2 = 0, use the transfer 
function determined in Example 7.7 to find the time response of the hydraulic system. 
Also determine the steady-state head values.

Solution
The transfer function matrix [G(s)] was derived in Eq. (7.42) and the Laplace-domain 
system response is found from Eqs. (7.92) and (7.93) as

www.semeng.ir

www.semeng.ir


289 7.3 Transfer Function and the Time Response

 { ( ) { ( ) [ ( )] [ ]{ ( ) [ ( ) { ( )} } } ][ ] }Y s H s G s a y G s a h0 01 1= = =  (7.97)

with

 [ ] { ( ); }
( )
( )a

C
C h

h
h00

0 0
0

l

l
1

1 1

2
= =

2
< F ( 2  (7.98)

By using the numerical values of the example, the following Laplace-domain heads are 
obtained:

 ( ) ( );H s
s s

s
H s

s s

384 32
3840 416 5 3840 416 5

12
1 2 2 2

+
=

+ +
=

+ +
 (7.99)

The final (steady-state) values of the heads are

 
( ) ( )

( ) ( )

lim lim

lim lim

h h t sH s

h h t sH s

0

0
t s

t s

1 1 0 1

2 2 0 2

3

3

= = =

= = =

" "

" "

3

3

]

]

g

g
*  (7.100)

The time-dependent heads are found by inverse Laplace transforming Eqs. (7.99) as

 
e
e

( ) . [ ( . ) . ( . )]
( ) . ( . )

cosh sinh
sinh

h t t t
h t t

0 001 94 0 04 0 68 0 04
0 077 0 04

.

.

t

t
1

0 054

2
0 054

= +

=

-

-)  (7.101)

and they are plotted against time in Figure 7.29.

fiGure	7.29

Time Variation of Hydraulic Heads.
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Second-Order Systems
The vector-matrix differential equation of second-order MIMO systems is

 [ ]{ ( ) ( ) { ( ) { ( )} [ ]{ } [ ] } }a y t a y t a y t u t2 1 0+ + =p o  (7.102)

where, again, the input and output vectors are assumed to have the same dimension. 
When the initial conditions are nonzero, that is, { ( ) { ( )} { }; } { }y y0 00 0! !o , the 
Laplace transform that is applied to Eq. (7.102) yields

 [ ] ( { ( ) { ( ) { ( ) ( { ( )} } }) [ ] }a s Y s s y y a s Y s0 02
2

1- - +o

 { (0) { ( ) { ( )}) [ ] } }y a Y s U s0- + =  (7.103)

The Laplace-transformed output vector {Y(s)} is expressed from Eq. (7.103) as

 [ ] [ ]{ ( )} [ ] { ( )}Y s s a s a a U s2
2 1 0

1
= + +

-
_ i

 [ ] [ ] [ ] ( [ ]{ ( )}s a s a a s a y 02
2 1 0

1
2+ + +

-
_ i

 [ ]{ ( )} [ ]{ ( )})a y a y0 02 1+ +o  (7.104)

Taking into account that the regular (zero initial conditions) transfer function matrix 
[G(s)] is the one connecting {Y(s)} to {U(s)},

 1-[ ( ) ( [ ] [ ]] [ ])G s s a s a a2
2 1 0= + +  (7.105)

Eq. (7.104) can be written in the form of Eq. (7.92), where the equivalent forcing 
vector Ue(s), which incorporates the effect of the actual forcing vector and the initial 
conditions, is

 { ( ) { ( ) [ ]{ ( ) { ( ) { ( )} } } [ ] } [ ] }U s U s s a y a y a y0 0 0e 2 2 1= + + +o  (7.106)

Equation (7.106) shows that, for zero initial conditions, {Ue(s)} = {U(s)} and, for 
{U(s)} = 0, which models the free response with nonzero initial conditions:

 { ( ) [ ]{ ( ) { ( )} } [ ] } [ ]{ ( )}U s s a y a y a y0 0 0e 2 2 1= + +o  (7.107)

The time-domain equivalent input vector is determined by inverse Laplace transform-
ing Eq. (7.106) as

{ ( ) { ( ) ( ) [ ] [ ]{ ( )} } }u t u t
dt
d

t I a y 0e 2d= +

 ( )( ) [ ] ([ ]{ } [ ]{ ( )})a y at I y0 02 1d+ +o  (7.108)

Note: The matrices [a2], [a1] and [a0] are square, their dimensions being equal to the 
dimensions of the output vector. In order to enable multiplications involving the input 
vector, its dimension needs to be equal to the output vector dimension. When this condi-
tion does not occur naturally, zeroes can be added to the vector of smaller dimension.
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Example 7.16
The mechanical micro system sketched in Figure 7.30(a) consists of two shuttle masses, 
m1 = 2 # 10−10 kg and m2 = 3 # 10−10 kg, that can move horizontally and two identical 
serpentine springs. There is also viscous squeeze damping between the mass m1 and 
the anchored wall with a damping coefficient c = 0.01 N-s/m. Determine the lumped-
parameter model of this microdevice and consider that the initial displacement of m1 is 
y1(0) = 2 μm and the initial velocity of m2 is (0) (0) m s1 /y v2 2= = no . Determine the forc-
ing function vector that renders the system equivalent to the forced response of the same 
system under zero initial conditions using the transfer function matrix and the specified 
nonzero initial conditions.

Solution
The lumped-parameter model of the physical model sketched in Figure 7.30(a) is 
shown in Figure 7.30(b), where the two serpentine springs have been replaced by 
identical springs of stiffness k and the interaction between mass m1 and the wall of 
Figure 7.30(a) has been modeled by the damper c. This mechanical device has two 
outputs, the displacements y1 and y2; therefore, it is a multiple-output system and, 
as a  consequence, a MIMO system. By using Newton’s second law of motion (and 
dropping the time variable notation), the dynamic equations corresponding to the two 
masses are

 
( )

( )
m y cy ky k y y
m y k y y

1 1 1 1 1 2

2 2 2 1

= - - - -
= - -

p o
p(  (7.109)

which can be arranged in vector-matrix form as

 
m

m
y

y
c y

y
k
k

k
k

y

y0
0

0
0
0

2 0

0
1

2

1

2

1

2

1

2

+ +
-

-
=

o

o

p

p
< ; ;F E E* * * )4 4 4 3  (7.110)

fiGure	7.30

Translatory Mechanical  Microsystem under Nonzero Initial Conditions: (a) Physical Model;  
(b) Lumped-Parameter Model.

y1
k

c

k
m1

y2

m2

(a) (b)

Spring

Spring

Wall 

m1 m2

Wall 

www.semeng.ir

www.semeng.ir


CHAPTER 7 Transfer Function Approach292

Equation (7.110) shows that the two matrices of interest are

 [ ];[ ]a
m

m a
c

0
0

0
0
02

1

2
1= =< ;F E  (7.111)

Now using Eq. (7.107) with {y (0)} = {y1(0) 0}t and {v (0)} = {0 v2(0)}t, the equivalent 
 forcing vector becomes

 { ( ) ( ) , ( )} ( ) ( ) ( )f t m y
dt
d

cy m yt t t0 00e

t

1 1 1 2 2d d d= + o] g' 1

 ,( ) ( ) ( )
dt
d

t t t4 10 2 10 3 10
t

16 8 16
# # #d d d= +- - -' 1  (7.112)

Example 7.17
Use the node analysis method in conjunction with the complex impedance matrix 
approach to find the time response (consisting of the relevant voltages) of the electrical 
circuit of Figure 7.31(b). Known are R1 = 400 X, R2 = 550 X, C = 250 μF, L = 5 H, i = 
20 mA, and the initial conditions are zero.

Solution
Let us study the impedance-based circuit of Figure 7.31(a). Considering that the nodes c and 
d are grounded, it follows that Vc = Vd = 0. By applying Kirchhoff’s first law at nodes a and b, 
the following equations are obtained:

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )I s
Z

V s

Z

V s V s

Z

V s V s

Z

V s

Z

V s
R

a

R

a b

R

a b

L

b

C

b

1 2

2

= +
-

-
= +

Z

[

\

]]

]]
 (7.113)

fiGure	7.31

Electrical Circuit with  Current Source: (a) Physical Model; (b) Complex Impedance 
 Representation.
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which can be written as

 
( ) ( ) ( )

( ) ( )

Z Z
V s

Z
V s I s

Z
V s

Z Z Z
V s

1 1 1

1 1 1 1
0

R R
a

R
b

R
a

R L C
b

1 2 2

2 2

+ - =

- + + + =

d

d

n

n

Z

[

\

]]

]]
 (7.114)

The solution to Eqs. (7.114) is

 

( ) ( )

( ) ( )

V s
LC R R s Ls R R

R R CLs Ls R
I s

V s
LC R R s Ls R R

R Ls
I s

a

b

1 2
2

1 2

1 2
2

2

1 2
2

1 2

1

=
+ + + +

+ +

=
+ + + +

^

_

^

h

i

h

Z

[

\

]
]]

]
]

 (7.115)

By applying the inverse Laplace transforms to Va(s) and Vb(s) of Eqs. (7.115) with the 
numerical values of the parameters, the following time-domain voltages are obtained:

 
e

e
( ) 4.63 0.5 (28.2 )
( ) 1.2 (28.2 )

sin
sin

v t t
v t t

.

.
a

t

b
t

2 1

2 1

= +

=

-

-)  (7.116)

Figure 7.32 contains the plots of these voltages in terms of time. The initial and final 
 values of the voltages va and vb are calculated as

fiGure	7.32

Node Voltages as Functions of Time.
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( ) ( ) ; ( ) ( )

( ) ( ) ; ( ) ( )

lim lim

lim lim

v sV s
R R

R R i
v sV s

R R

R R i

v sV s v sV s

0

0 0 0

a s a a s a

b s b b s b

1 2

1 2

0 1 2

1 2

0

3

3

= =
+

= =
+

= = = =

" "

" "

3

3

*  (7.117)

and their values are va(0) = va(3) = 4.63 V; vb(0) = vb(3) = 0 V, values confirmed on 
the plots of  Figure 7.32.

mATLAB® Approach
By using the tf function, it is possible to model and determine the time response of 
MIMO systems with MATLAB®. Let us consider the following example.

Example 7.18
Determine the system response produced by the input u(t) = {8 sin(t), 10/(t + 1)}t and 
the transfer function matrix

[ ( )]G s s s

s s

s s

s

s s

s
2 100

2

2 100
1

2 100
4 20

2 100
2

2

2

2

2

=
+ +

+ +

-
+ +

+

-
+ +

R

T

S
S
S
SS

V

X

W
W
W
WW

.

fiGure	7.33

Response Curves for a Two-Input, Two-Output Dynamic System.
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Solution
The transfer function matrix is of a 2 # 2 dimension, and because there are two input 
components, there also are two output components. Each element of the transfer func-
tion matrix is defined separately as g11, g12 (the elements of the first row) and g21, 
g22 (the elements of the second row). The first output, denoted by y1, is the sum 
of the response corresponding to the first input (denoted by y11) and the response 
 corresponding to the second input (denoted by y12). A similar definition is given to the 
second output. The following MATLAB® sequence

>> g11 = tf([2],[1,2,100]);
>> g12 = tf([4,20],[1,2,100]);
>> g21 = tf([-1],[1,2,100]);
>> g22 = tf([-2,0],[1,2,100]);
>> t = 0:0.01:10;
>> u1 = 8*sin(5*t);
>> u2 = 10./(t+1);
>> lsim(g11,u1,t);
>> lsim(g12,u1,t);
>> lsim(g21,u2,t);
>> lsim(g22,u2,t);
>> [y11,t] = lsim(g11,u1,t);
>> [y12,t] = lsim(g12,u2,t);
>> [y21,t] = lsim(g21,u1,t);
>> [y22,t] = lsim(g22,u2,t);
>> y1 = y11+y12;
>> y2 = y21+y22;
>> subplot(2,1,1);
>> plot(t,y1), ylabel('y_1'), grid on, title('First Output')
>> subplot(2,1,2);
>> plot(t,y2), xlabel('Time (s)'), ylabel('y_2'), grid on,… 
title('second Output')

produces the plots of Figure 7.33.

7.4	 usinG	siMulink®	To	Transfer	funcTion	ModelinG
The following examples illustrate the Simulink® environment application to create 
and simulate dynamic problems by means of transfer functions.

Example 7.19
Consider a series RLC electrical circuit, with R = 3000 X, L = 1 H, and C = 0.002 F, 
connected to a voltage source with v = 80 sin(10t) V. Considering that the resistor R has 
a nonlinearity of the saturation type with a saturation voltage of 50 V (both negative and 
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positive), plot the resulting currents for the case where the resistance is purely linear (no 
saturation) and for the actual resistance (with saturation).

Solution
With the numerical data of this example, the transfer function that connects the input voltage 
to the output current

 ( )
( )
( )

.
.

G s
V s

I s

LCs RCs

Cs

s s

s

1 0 002 6 1
0 002

2 2
= =

+ +
=

+ +
 (7.118)

A saturation-type nonlinearity takes into account that on a resistor the voltage-current 
relationship is linear (proportional) only up to the saturation voltage value; past that point, 
any increase in the input will keep the output constant. Figure 7.34 shows the blocks that 
are needed in this Simulink® model and their connections. Simulink® has the option of 
using saturation through the saturation block under the Discontinuities cat-
egory of the library—by double clicking it, its property window opens where you need 
to type 50 under the Upper limit and −50 under the Lower limit to indicate 
the saturation voltage values. The sine Wave input was dragged from the sources 
library; an Amplitude of 80 and a Frequency (rad/sec) of 10 need to be speci-
fied in its parameter window. The Transfer Fcn block is taken from the Continuous 
library and the numerator and denominator coefficients of the transfer functions have to 
be specified in the Function Block  Parameters as:

Numerator coefficient:
[0.002,0]
Denominator coefficient:
[0.002,6,1]

A simulation time of 10 seconds is selected in the stop time of the Configuration 
Parameters and then the model is run—the simulation result is shown in Figure 7.35, 
and it can be seen that the saturation has the effect of chopping the current peaks for 
both positive and negative values.

fiGure	7.34

Simulink® Transfer  Function Model of an Electrical System with Resistor Voltage Saturation.
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Example 7.20
A MIMO system is defined by the transfer function matrix

[ ( )] s s s s

s s

s s

s s

G s 2 1
1

0

2 1
2

2 1
1

2 1
1

2 1
3

2 2

2

2

2

=
+ + + +

+ +

+ +

+ +

R

T

S
S
S
SS

V

X

W
W
W
WW

Use Simulink® to determine and plot the time response of this system under the action of 
the input { ( )} 2, 1, ( )u t sin t t= " , .

Solution
The number of output components is two, as indicated by the number of rows of the 
transfer function, which connects the input to the output Laplace-transformed vectors 
according to {Y(s)} = [G(s)]{U(s)}.  Simulink® has the capability of modeling MIMO sys-
tems and transfer function matrices by means of the same  Transfer Fcn command 
introduced in the previous example. Specifically, the following specifications are needed 
in the Function Block Parameters:

Numerator coefficient:
[1,2,1;0,1,3]
Denominator coefficient:
[2,1,1]

Notice that while the numerator contains the numerator coefficients of the transfer func-
tion (and can be a matrix), the denominator can only be a vector collecting the coeffi-
cients of the denominator polynomial.

Because the transfer function block accepts formally one input and generates one 
output, the Merge block (taken from the signal Routing library and shown in the 
Simulink® diagram of Figure 7.36) has to be used to model the three input components. 

fiGure	7.35

Simulink® Plot of the Saturated and Unsaturated Currents as Time Functions.
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This block, as the name suggests, merges several input signals into a single output signal; 
in our case three inputs need to be specified under  Parameters in the Function 
Block: Merge. The two resulting time-domain outputs, y1 and y2, can be plotted sepa-
rately through scope 1 and scope 2 using a Demux block (taken from the signal 
Routing library). Alternately, the two output signals can be superimposed on a single 
plot (produced by the scope 3) and this result is shown in Figure 7.37.

suMMary
This chapter introduces the transfer function, which enables connecting the input 
to the output of a dynamic system into the Laplace domain for single-input, single- 
output and multiple-input, multiple-output systems. It is shown how to derive the 

fiGure	7.37

Simulink® Plot of the Two Outputs as Functions of Time.
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fiGure	7.36

Simulink® Transfer  Function Matrix Model of a MIMO  System with Three Inputs and Two 
Outputs.
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299  Problems

transfer function for SISO systems and the transfer function matrix for MIMO sys-
tems by starting from the system time-domain mathematical model or using com-
plex impedances. The transfer function is further utilized to determine the free and 
forced time responses with nonzero initial conditions of mechanical, electrical, 
fluid, and thermal systems Examples that apply built-in MATLAB® commands and 
Simulink® to model and solve dynamic systems problems by means of the transfer 
function also are studied. The concept of transfer function is used in subsequent 
chapters to study the state space approach (Chapter 8) and the frequency-domain 
analysis (Chapter 9).

proBleMs

7.1 Evaluate the input function u(t) of the following differential equation whose 
output is y(t) and calculate the corresponding transfer functions:

 (a) ( ) ( ) ( ) (10 ) ( )0.1 75 sin cosy t y t y t t t10+ + = +p o

 (b) t2-( ) ( ) ( ) e ea y t a y t a y t t t
3 2

2
1+ + = - -q p o

7.2 A two-input, two-output dynamic system is defined by the following differential 
equations system:

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

y t y t y t y t y t y t u t
y t y t y t y t y t u t

2 10 5 80 60
5 5 60 60

1 1 1 2 1 2 1

2 2 1 2 1 2

+ + - + - =
+ - + - =

q p o o
p o o( .

 Determine its transfer function matrix [G(s)].

7.3 Determine the transfer function H2(s)/Ma(s) for the shaft-gear mechanical sys-
tem of Figure 7.38 using the mathematical model of this system assuming all 
physical parameters are known.

7.4 Apply the node analysis method in the time domain to determine the transfer 
function matrix  between the input current and the relevant output voltages for 
the electrical circuit of Figure 7.39.

fiGure	7.38

Rotary Mechanical Shaft-Gear System.

c

θ1, ma
k2

N2

N1
k1

J2

J1

θ2

www.semeng.ir

www.semeng.ir


CHAPTER 7 Transfer Function Approach300

fiGure	7.39

Electrical Circuit with Current Source.
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fiGure	7.40

Noninverting Operational  Amplifier: (a) Generic  Impedance Model; (b)  Actual Circuit with 
Resistors and  Capacitors.
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7.5 Using the complex impedance approach, find the transfer function Vo(s)/Vi(s) 
of the operational amplifier system shown in Figure 7.40(a) and demonstrate 
that the system is a noninverting  amplifier. Apply the result to calculate the 
transfer function of the system of Figure 7.40(b).

7.6 A thermometer defined by a thermal capacitance Cth and a thermal resistance 
Rth is placed in a bath whose temperature is ib(t). Use complex impedances to 
determine the transfer function H(s)/ Hb(s) where H(s) and Hb(s) are Laplace 
transforms of the thermometer and bath temperatures. Draw the impedance-
based thermal system that generates the transfer function.

7.7 The tank-pipe liquid system of Figure 7.41 is defined by a resistance Rl and a 
capacitance Cl. Use complex impedances to determine the transfer functions 
Po(s)/Pi(s) and H(s)/Pi(s) with Po(s) and Pi(s), being the Laplace transforms of 
the output (tank) and input pressures, and H(s), being the Laplace transform of 
the head h(t). Sketch the impedance-based liquid system corresponding to the 
pressure transfer function. Known also are the gravitational acceleration g and 
liquid mass density t.

7.8 The MEMS of Figure 7.42 is formed of two pairs of beams and a shuttle mass 
that are placed on a massless platform. The platform is subjected to input dis-
placement u and the shuttle mass displacement is measured capacitively. Use a 
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lumped-parameter model with known mass m, stiffness k, and damping coef-
ficient c to formulate the  mathematical model of the shuttle mass motion y and 
determine the transfer function Y(s)/U(s). Also use complex impedances and a 
mechanical impedance circuit to calculate the system’s transfer function.

 7.9 Use the complex impedance approach to formulate the transfer function matrix 
for the electrical circuit of Figure 7.43, considering that the input components 
are the voltages v1 and v2 and the output is formed of the meaningful currents. 
Known are all the electrical components’ parameters.

7.10 Use the complex impedance approach and an appropriate thermal circuit to deter-
mine the transfer function matrix of the two-room thermal system of Example 5.15 
and sketched in Figure 5.23, considering that there is no cooler (qi = 0). The output 

fiGure	7.41
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is formed by the two room temperatures i1 and i2, whereas the input is the outdoors 
temperature io. Known are all the thermal components’ parameters.

7.11 What type of system is the pump-tank-pipe liquid system of Figure 7.44 in terms 
of input and output? Find the corresponding transfer function (or transfer func-
tion matrix) of this system  using complex impedances and a corresponding liquid 
circuit by using the system’s parameters from Figure 7.44.

7.12 Consider the torsional mechanical microsystem shown in Figure 7.45, formed 
of three identical flexible bars and two identical rigid plates. Derive the time-
domain mathematical model of this system and determine the transfer function 
matrix corresponding to the input mt and the outputs i1 and i2. Confirm the 
obtained result by deriving the impedance-based transfer function matrix and 
the corresponding mechanical impedance circuit. Consider that known are the 
bars’ torsional stiffness k and the plates mass moment of inertia J.

7.13 A dynamic system has 0 as its zero; −2 (order two of multiplicity), −3 as poles, 
and a gain of 2. Use MATLAB® to calculate the corresponding transfer func-
tion of this system then reconvert the obtained transfer function model into a 
zero-pole-gain model.

fiGure	7.45
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7.14 It was determined that the poles of a two-DOF system are −5 and −4. The 
zeroes and gains  obtained when applying individual inputs u1 and u2 in cor-
respondence with the individual outputs y1 and y2 (the two DOFs) follow:

y1 y2

u1 gain: 1, zeroes: none gain: 2, zeroes: none

u2 gain: 1, zeroes: -1, -2 gain: 3, zeroes: -2 (double)

 Use one-line MATLAB® code to determine the corresponding transfer function 
matrix of this system.

7.15 A pneumatic system defined by a resistance Rg and capacitance Cg is subjected 
to a ramp input pressure pi(t) = Pit, where Pi is a constant. After a time t1 = 3 s, 
it is determined that the output pressure is twice the input pressure constant pi. 
Use the transfer function approach to determine the system’s time constant. For 
a pressure pi = 50 atm and zero initial conditions, plot the output pressure as a 
function of time.

7.16 Consider the heat transfer between the conditioned space of a room with four 
walls and the  outdoors.

 (a)  Find the transfer function corresponding to the indoor and outdoor tem-
peratures i1 and i2 assuming that i2 > i1.

 (b)  Determine i1 and plot it as a function of time when i2 = 40°C. Known 
also are the following data for the wall: height h = 4 m, width w = 10 m, 
length l = 0.2 m, thermal conductivity k = 0.04 W/m-C; and for the air 
in the room space, mass density t = 1.1 kg/m3, constant-pressure specific 
heat cp = 1100 J/kg-C and i1(0) = 20°C.

7.17 Consider the mechanical system shown in Figure 7.46 with c1 = 0.5 N-s/m, 
c2 = 0.8 N-s/m, c3 = 0.3 N-s/m, k1 = 100 N/m, k2 = 120 N/m, k3 = 150 N/m. 
Use the complex impedance approach to find the equivalent complex imped-
ance and the transfer function of this system. Plot the chain total displacement 
when a force f = sin(10t) N is applied at the free end.

7.18 A rotor system such as the one shown in Figure 7.47 consists of a disk 
with the mass moment of inertia J = 0.1 kg-m2, a damper with viscous 

fiGure	7.47

Elastic Shaft with Inertia and Damping.

c

m, θ
k

J

fiGure	7.46

Spring-Damper Mechanical System.

k1
k2

c2

c3c1

k3

www.semeng.ir

www.semeng.ir


CHAPTER 7 Transfer Function Approach304

damping coefficient c = 6 N-m-s/rad, and a rotary spring of unknown stiff-
ness k. When applying a step input m = 20 N-m to the disk, it is determined 
experimentally that the steady-state response is io(3) = 4°. Evaluate the 
spring constant using the transfer function approach and plot the system 
response for a rotor initial velocity ~(0) = 40 rad/s and the unit step input 
of MATLAB®.

7.19 Use the complex impedance approach to find the transfer function of the opera-
tional amplifier circuit of Figure 7.48 and use it to plot the output voltage vo 
as a function of time for the following numerical values: vi = 30 V, R = 1 kX, 
C = 50 mF, and L = 200 mF. Also calculate the initial and final values of the 
output voltage.

7.20 The electrical circuit of Figure 7.49 is designed for a variable capacity 
MEMS device; it contains a resistor with R = 1000 X, a voltage source 
with v = 1 V, and a transverse-motion variable  capacitor with an initial gap  
g0 = 10 nm, plate area A = 10−7 m2, and dielectric permittivity fo = 8.8 #  
10−12 C2-N−1-m−2. Use complex impedances and the transfer function 
approach to calculate the displacement of the mobile plate after a very short 
amount of time t1 = 10−9 s from the initial moment; at that time, the mea-
sured current in the circuit is i1 = 10 nA.

fiGure	7.49

Electrical Circuit with Variable-Gap Capacitor and Bias Voltage Used as a Displacement 
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7.21 The MEMS of Figure 7.50 is formed of two pairs of beams and a shuttle 
mass and is subjected to capacitive actuation. Use a lumped-parameter 
model to formulate the system’s mathematical model for the motion about 
the y direction by also taking into account the damping between the fixed 
and mobile capacitor plates. All beams have a circular cross-section of 
diameter d = 2 nm. Known also are the shuttle mass m = 9 # 10−11 kg, l1 =  
200 nm, l2 = 100 nm, Young’s modulus E = 165 GPa, damping coeffi-
cient c = 0.5 N-s/m. Plot the system’s response using its transfer function 
and MATLAB®’s impulse function when an impulsive electrostatic force  
f = 1 # 10−6 d(t) N is applied by the capacitive superimposed to an initial 
displacement y(0) = 1.2 nm. Ignore the mass contribution from the springs 
and verify whether the initial capacitive gap g0 = 8 nm is sufficient for the 
mobile plate motion.

7.22 By using the transfer function H1(s)/Ma(s), determined in Problem 7.3 for the 
rotary shaft-gear mechanical system shown in Figure 7.38, calculate and plot 
i1(t) using the step input command of MATLAB®. Known are N1 = 48, N2 = 
36, J1 = 0.002 kg-m2, J2 = 0.0016 kg-m2, c = 80 N-m-s, k1 = 170 N-m, k2 = 
110 N-m, ma = 15 N-m, and i2(0) = 3°.

7.23 The liquid system of Problem 7.7 and shown in Figure 7.41 carries water with 
t = 1000 kg/m3 and n = 0.001 N-s/m2. The pipe diameter is di = 0.07 m and 
its total length is l = 20 m; the tank has a diameter d = 3m and an initial  liquid 
head h(0) = 1 m. The input pressure is a function of time, pi = (1 + e−10t) P, 
where P = 3 # 105 N/m2. Use MATLAB® and its lsim input command to 
plot the tank pressure po in terms of time. Also calculate the steady-state value 
of the tank pressure.

7.24 Utilize the transfer function matrix connecting between the input current and 
the relevant  output voltage of the electrical system of Problem 7.4 and shown 
in Figure 7.39 to plot the currents through the four electrical components by 
using MATLAB®. Also calculate the steady-state  current values. Known are 
R = 500 X, C = 200 nF, L1 = 2 H, L2 = 3 H, and i = 10 mA.

fiGure	7.50
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7.25 Consider the following transfer function matrix:
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 Determine the system response under the  following inputs: u1(t) = 1 and  
u2(t) = e−t using  MATLAB® and its impulse command.

7.26 For the mechanical system of Figure 7.51, calculate the components of a 
forcing vector that will render this free system under the initial conditions 

-{ ( ) m/s { ( )} . , . ; }y y0 00 2 0 1 t= =o " ,  m. , .0 03 0 02 t" ,  into a forced system 
with zero initial conditions; plot y1(t) and y2(t) for m = 1 kg, c = 2 N-s/m, and 
k = 40 N/m. Also determine the final values of the two displacements.

7.27 Use complex impedances and the transfer function approach for the circuit  
of Figure 7.52 to determine and plot the output voltage for R1 = 500 X, R2 = 
600 X, L = 400 mH, C = 0.004 F, v1 = 50 V, and v2 = 40 V.

7.28 Plot the output voltage of the operational-amplifier circuit of Problem 7.5 and 
shown in  Figure 7.40(b) for C1 = 3 mF, C2 = 5 mF, R1 = 100 X, R2 = 85 X, and  
vi = 110 V using  Simulink®. The resistors are nonlinear with their saturation limits 
being +70 V and −50 V.

7.29 Utilize the transfer function approach and Simulink® to plot the output flow 
rate of the liquid system shown in Figure 7.44 of Problem 7.11. Known are  

fiGure	7.52
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pa = 105 N/m2, p1 = 2 # 105 N/m2, qi = 0.02 m3/s, d = 1 m (diameter of the 
tank), t = 1000 kg/m3, di = 0.02 m (diameter of the pipe), l = 10 m (length of 
pipe), n = 0.001 N-s/m2.

7.30 Use Simulink® to plot the angles i1(t) and i2(t) of the torsional MEMS shown 
in Fig. 7.45 of Problem 7.12. The flexible connectors are of circular cross-
section with a diameter d = 200 nm, a length l = 10 nm, and a shear modulus 
G = 0.8 # 1010 N/m2. The rigid plates have a width w = 100 nm and thickness 
t = 5 nm. The material density is t = 3600 kg/m3. The input torque is mt =  
100 nN-nm, and the initial conditions are zero.

suggested	reading
H. Klee, Simulation of Dynamic Systems with MATLAB® and Simulink®, CRC Press, Boca 

Raton, FL, 2007.
N. S. Nise, Control System Engineering, 5th Ed. John Wiley & Sons, New York, 2008.
D. G. Alciatore and M. B. Histand, Introduction to Mechatronics and Measurement Systems, 

3rd Ed.  McGraw-Hill, New York, 2007.
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1970.
W. T. Thomson, Laplace Transformation, 2nd Ed. New York, Prentice-Hall, 1960.
I. Cochin, Analysis and Design of Dynamic Systems, Harper & Row Publishers, New York, 

1980.
K. Ogata, System Dynamics, 4th Ed. Prentice Hall, Upper Saddle River, 2004.
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CHAPTER

Objectives

This chapter focuses on the state space approach to modeling dynamic systems in 
the time domain and determining the corresponding solution. The subject matter of 
the chapter is related to the modeling of Chapters 2, 3, 4, and 5, as well as with the 
Laplace transform of Chapter 6 and the transfer function of Chapter 7. The following 
topics are studied:

• The state space concept as a procedure for modeling the time-domain dynamics 
of SISO and MIMO systems and for obtaining solutions to the corresponding 
models.

• Deriving state space models directly in the time domain or via transfer functions 
in the Laplace domain in cases where the input includes or has no time 
derivatives in it.

• Analytical and MATLAB® methods of converting between transfer function or zero-
pole-gain models and state space models.

• Nonlinear state space models and procedures for linearizing such models.

• The use of state space models to solve for the free response with nonzero initial 
conditions and for the forced response of dynamic systems.

• Specialized MATLAB® commands designed to model and solve state space 
problems.

• Application of Simulink® to graphically model and solve system dynamics 
problems by state space modeling.

intrOductiOn
This chapter introduces the state space modeling method for SISO and MIMO 
dynamic systems into the time domain. The approach, which is a vector-matrix 
one, has the main advantage of being able to model systems with a large number 
of degrees of freedom as well as systems with nonlinearities. Similar to the transfer 
function approach, which was the subject of Chapter 7, the material presented here 
focuses on deriving state space models of dynamic systems and solving these models 

8State Space Approach
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to determine the time response using analytical methods and MATLAB®  custom 
commands. While the transfer function model belongs to the Laplace domain, a 
state space model operates in the time domain. The state space approach utilizes the 
same vector-matrix model for both SISO and MIMO dynamic  systems. Converting 
between state space and transfer function or zero-pole-gain models is illustrated, 
so that a convenient modeling approach can be used for a specific problem. The 
 capabilities of Simulink® to solve state space formulations, such as for systems with 
nonlinearities, are exemplified.

 8.1 the cOncept and MOdel Of the state space 
apprOach

The state space approach employs a unique vector-matrix formulation to model 
a dynamic system to determine the forced response of generally multiple-input, 
multiple-output (MIMO) systems, but single-input, single-output (SISO) systems 
can also be modeled using the same formulation and approach.

Mathematical models of MIMO systems having a large number of outputs (or 
DOFs) result in an equally large number of differential equations that need to be solved 
for these unknown outputs. Solutions can be determined by means of the Laplace trans-
forms (as seen in Chapter 6) or using the transfer function matrix approach (as covered 
in Chapter 7). The question arises whether it is possible to employ a single mathemati-
cal model to capture the wide variety of particular dynamic systems in terms of number 
of inputs, number of outputs, and order of the differential equations. Consider, for 
instance, a MIMO dynamic system whose vector-matrix mathematical model is

 ( ) ( ) { ( )} { ( )} [ ]{ ( )}a y t a y t a y t a y t b u t( ) ( )
q

q
q

q
1

1
1 0g+ + + + =-

- o6 6 6 6@ @ @ @$ $. .  (8.1)

where {y(t)} is the unknown output (response) vector and {u(t)} is the specified input 
(forcing)  vector—there might also be time derivatives of {u(t)} on the right-hand side 
of Eq. (8.1). The maximum order of the differential equations in Eq. (8.1) is q, where

( )y t
( )q
$ .

indicates the q-order time derivative of {y(t)}.
The state space modeling approach utilizes the following variable transformation:

 { ( )} [ ]{ ( )} [ ]{ ( )}y t C x t D u t= +  (8.2)

This uses the new unknown {x(t)} instead of the original one {y(t)} with the purpose of 
obtaining the following first-order differential equation instead of the original Eq. (8.1):

 { ( )} [ ]{ ( )} [ ]{ ( )}x t A x t B u t- =o  (8.3)
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which can also be written as

 { ( )} [ ]{ ( )} [ ]{ ( )}x t A x t B u t= +o  (8.4)

Equation (8.4) is known as the state equation; and by solving it, the state vector 
{x(t)} is determined. The output vector {y(t)} is subsequently calculated from the 
output equation (8.2). The standard state space model consists of the state equation, 
Eq. (8.4), and of the output equation, Eq. (8.2). The four matrices contain parameters 
defining the dynamic system being studied; and they are [A], the state matrix, [B], the 
input matrix, [C], the output matrix, and [D], the direct transmission matrix. Proper 
selection of the state variables (which are collected in state vectors, which, at their 
turn, form a state space) ensures that Eqs. (8.1) can always be applied, irrespective 
of the number of DOFs and of the system order. This topic is analyzed in the next 
section of this chapter.

Another form of the state space model, which is implemented in MATLAB®, 
 generates the descriptor state-space model, whose state equation is

 [ ]{ ( )} [ ]{ ( )} [ ]{ ( )}E x t A x t B u t= +l lo  (8.5)

where [E ], the descriptor matrix, is a square, nonsingular matrix, and [ Al] and [ Bl] 
differ from the original [A] and [B], respectively.

Equations (8.1) and (8.2) define the forced response of a dynamic system by 
means of the state space model. When no input is acting on the dynamic system, 
the state space model simplifies to the one characterizing the free response in the 
homogeneous form:

 
{ ( )} [ ]{ ( )}

{ ( )} [ ]{ ( )}

x t A x t

y t C x t

=

=

o
 (8.6)

or, in descriptor form, the state Eq. (8.5) is

 [ ]{ ( )} [ ]{ ( )}E x t A x t= lo  (8.7)

As Eqs. (8.2) and (8.4) suggest, the input and output vectors need not have the 
same dimensions. Assuming the input vector has the dimension m and the output 
vector has the dimension p, it can be determined what the dimensions of the other 
matrices are, based also on the dimension of the state vector, which is n. Equation 
(8.4) shows that [A] has to be square with n rows and n columns; in other words [A] is 
of n # n dimension. Similarly, the matrix [B] is of n # m dimension, as it results from 
the same Eq. (8.4). From Eq. (8.2) it follows that [C] has p # n dimension, whereas 
the matrix [D] is of p # m dimension. A visual representation of the four matrices’ 
dimensions is given in Figure 8.1.

Let us consider a few examples illustrating how to derive the state space models 
of dynamic systems from known mathematical models.
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Example 8.1
Derive a state-space model of the single-mesh electrical circuit sketched in Figure 8.2. 
Utilize the model to find the charge variation as a function of time for R = 110 X, L = 3H, 
C = 1 mF, v = 60 V, and zero initial conditions.

Solution
As shown in Chapter 4, the following differential equation is the mathematical model of 
the electrical system sketched in Figure 8.2:

 Lq Rq
C

q v
1

+ + =p o  (8.8)

where L is the inductance, R is the resistance, C is the capacitance, q is the charge, and v 
is the source voltage. Let us drop the time variable and select the variables x1 and x2 as

 
x q

x q
1

2

=

= o
*  (8.9)

to be the state variables of the state vector

 { } { }x x x t
1 2=  (8.10)

In Eqs. (8.8), (8.9), and (8.10), the variable t (time) has been dropped to simplify notation 
but all variables in this example (q, v, x1, and x2) are functions of time. The two Eqs. (8.9) 
indicate that

 x x1 2=o  (8.11)

On the other hand, Eq. (8.8) can be written in the form

 q
LC

q
L
R

q
L

v
1 1

= - - +p o  (8.12)

fiGure 8.1
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which can be formulated using the state variables as

 x
LC

x
L
R

x
L

v
1 1

2 1 2= - - +o  (8.13)

by virtue of Eqs. (8.9). The source voltage is the input to the system and therefore can be 
denoted by u, so v = u. Equations (8.11) and (8.13) are collected in vector-matrix form as

 
x
x

LC L
R

x
x u

L

0
1

1 0

1
1

2

1

2
=
- -

+
o
o > H( ( *2 2 4  (8.14)

Comparison of Eq. (8.14) to Eq. (8.4) indicates that Eq. (8.14) is the state equation with 
the state and input matrices being

 [ ] ; [ ]A
LC L

R B
L

0
1

1 0

1=
- -

=> H * 4 (8.15)

If the charge is the output, which can be denoted formally as y = q, then the first Eq. (8.9) 
becomes

 y x1=  (8.16)

Equation (8.16) can be written in vector form as

 { }y
x
x u1 0 01

2
#= +( 2  (8.17)

which is of the form shown in Eq. (8.7). Comparison of this equation with Eq. (8.2) indicates 
that, indeed, Eq. (8.17) represents the output equation, and its defining matrices are

 [ ] { }; [ ]C D1 0 0= =  (8.18)

The state Eq. (8.14) and the output Eq. (8.17) form the state space model of the electrical 
system of  Figure 8.2.

fiGure 8.2

Single-Mesh Electrical System.
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The state equation can also be rendered in descriptor format by rewriting Eq. (8.8) as

 Lq
C

q Rq v
1

= - - +p o  (8.19)

the case where Eq. (8.14) changes to

 
L

x
x

C
R

x
x u

1
0

0
0
1

1 0

1
1

2

1

2
=
- -

+
o
o; >E H( ( )2 2 3  (8.20)

therefore,

 [ ] ; [ ] ; [ ]E
L

A
C

R
B

1
0

0
0
1

1 0

1
= =

- -
=l l; >E H ) 3 (8.21)

while the output equation and its matrices remain unchanged.
Note: In Chapter 4, the potential electrical energy stored by a capacitor was shown 

to be equal to ½(q2/C), whereas the kinetic electrical energy related to an inductor was 
½ Lq2o . Both energies describe a given system state, defined as a function of charge 
(through the potential energy) and of charge derivative, or current (through the kinetic 
energy). The particular choice of the state variables as the charge and the charge 
time derivative, Eq. (8.9), indicates the connection between parameters with physical 
 significance (the energy terms) and state variables. This observation is also valid for 
other systems, for instance, mechanical ones, where the potential energy depends on 
displacement and the kinetic energy on velocity (the displacement’s first derivative); for 
a second-order differential equation representing the mathematical model of a mechan-
ical system, a common choice of state variables consists in displacement and velocity.

The state Eq. (8.4) is solved for {x(t)} then the output Eq. (8.2) is solved for {y(t)} 
by first calculating {X(s)} and {Y(s)}. Laplace transforming Eqs. (8.4) and (8.2) for the 
 particular initial conditions of this example and with zero initial conditions results in

 
{ ( )} [ ]{ ( )} [ ]{ ( )}

{ ( )} [ ]{ ( )} [ ]{ ( )}

s X s A X s B U s

Y s C X s D U s

=

=

+

+
)  (8.22)

where {X(s)}, {U(s)}, and {Y(s)} are the Laplace transforms of {x(t)}, {u(t)}, and {y(t)}, 
respectively. The first Eq. (8.22) yields {X(s)} as

 { ( )} ( [ [ ]) [ ]{ ( )}X s s I A B U s1= - -]  (8.23)

which, substituted into the second Eq. (8.22), gives

 { ( )} [ ( )]{ ( )}Y s G s U s=  (8.24)

where

 [ ( )] [ ] ( [ [ ]) [ ] [ ]G s C s I A B D1= - +-]  (8.25)
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is the transfer function matrix, introduced in Chapter 7. In this example, the dimension of 
[G(s)] is 1 # 1; therefore, we actually have a scalar G(s) transfer function connecting the 
Laplace transforms of the input voltage v(t) and the charge q(t). Using the numerical data 
of this example and MATLAB®, the transfer function is found to be

 [ ( )]
/

G s
Ls Rs C s s1

1
3 110 1000

1
2 2

=
+ +

=
+ +

 (8.26)

The Laplace-transformed output variable is

 ( ) ( ) ( ) ( ) ( ) ( )
( )

Q s Y s G s U s G s V s
s s s3 110 1000

60
2

= = = =
+ +

 (8.27)

whose time-domain counterpart (charge) is

 ( ) 0.06 0.3 0.36q t e et t20
3

50

= + -- -  (8.28)

Unlike the transfer function model, a state space model is not unique to any 
given dynamic  system—this feature is demonstrated in the companion website 
 Chapter 8—as illustrated in the following example.

Example 8.2
Find another state space model for the electrical circuit of Figure 8.2 using the current i 
and the voltage across the capacitor, vc, as state variables.

Solution
For the electrical system of Figure 8.2, Kirchhoff’s voltage law can be written in the form

 v v v vR L C+ + =  (8.29)

where vR, vL and vC are the voltages across the resistor, inductor, and capacitor, respec-
tively. To simplify notation, we will discontinue mentioning time as the independent vari-
able in both physical and state space model variables; therefore, x will be used with 
the understanding that it is actually x (t). By taking into account known current-voltage 
 relationships, Eq. (8.29) can is expressed as

 Ri L
dt
di

v vC+ + =  (8.30)

or as

 
dt
di

L
R

i
L

v
L

u
1 1

C= - - +  (8.31)
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where it has been considered that v is the input to the system; that is, v = u. Another 
linear independent relationship between i and vC, with vC appearing as a derivative is

 
dt

dv

C
i

1C
=  (8.32)

If we now select the state variables to be i and vC, namely,

 
x i

x vC

1

2

=

=

r
r
*  (8.33)

Eqs. (8.31) and (8.32) can be formulated in vector-matrix form as a state equation:

 
x
x

L
R

C

L x
x uL1

1

0

1

0

1

2

1

2
=
- -

+
ro

ro
r
r

R

T

S
S
S
S

V

X

W
W
W
W

) ( *3 2 4  (8.34)

where the [A] and [B] matrices are highlighted. By considering the output vector is 
defined by the components

 
y i

y vC

1

2

=

=

r
r
*  (8.35)

the output equation can be written as

 
y
y

x
x u

1
0

0
1

0
0

1

2

1

2
= +

r
r

r
r

; E( ( '2 2 1  (8.36)

where the matrices [C] and [D] are shown. Let us compare the state vectors of Examples 
8.1 and 8.2, which are

 
{ } { } { } ;

{ } { } { }

x x x q q

x x x i v

t t

t
c

t

1 2

1 2

= =

= =

o

r r r
 (8.37)

By considering known relationships between the electrical variables that enter the two 
vectors, the following transformation can be written:

 
q
q

C i
v

0
1 0 C

=o
; E( (2 2 (8.38)

which indicates the two state vectors are linearly related.

Similar to the transfer function approach of Chapter 7, the material of this chapter is 
structured mainly in two segments: One is dedicated to deriving state space models and 
the other one to calculating the forced response from a state space model. Figure 8.3 
depicts the two phases, their components, and the component relationships (to simplify 
representation, symbols for vectors and matrices have been dropped).

As suggested in Figure 8.3, a state space model can be obtained directly in the 
time domain from an existing mathematical model (such as the differential  equations 
shown symbolically as D[ y(t), u(t)] = 0) or by migrating from Laplace-domain 
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transfer function or zero-pole-gain models. Calculating the time response y(t) from 
a derived state space model is performed by first calculating the Laplace transform 
of the state vector, followed by inverse Laplace transformation and derivation of the 
time-domain output y(t). An initial state vector x(0) is also taken into consideration.

8.2 state space MOdel fOrMulatiOn
State space models can be derived either analytically or by means of MATLAB®, as 
discussed in the following sections.

 8.2.1 analytical approach
The analytical procedures for state space model derivation presented here apply to 
systems without input time derivatives, systems with input time derivatives, systems 
that have already been defined by transfer functions, and nonlinear systems.

Dynamic Systems without Input Time Derivative
When the differential equations that constitute the mathematical model of a 
dynamic system contain input variables and no input variable time derivatives, 
the procedure of selecting the state variables is rather straightforward as will be 
discussed in the following. The cases of SISO and MIMO systems are analyzed 
separately.

SISO Systems
Single-input, single-output dynamic systems that do not include time derivatives of 
their input are described by a single differential equation of the form

 ( ) ( ) ( ) ( ) ( )a y t a y t a y t a y t u t
( ) ( )

n

n

n

n

1

1

1 0g+ + + + =-

-
o  (8.39)

fiGure 8.3

Derivation of State Space Models and Time-Domain Response Calculation.
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A rule of thumb is that the number of state variables is equal to the order of the 
 differential equation representing the mathematical model of a dynamic system, pro-
vided a0 and an of Eq. (8.39) are nonzero (the reader is encouraged to check the 
rationale for this assertion). This system is defined by a differential equation of order 
n and, therefore, requires n state variables, which can be selected as

 , , , ,x y x y x y x y
( ) ( )

n

n

n

n

1 2 1

2 1
f= = = =-

- -
o  (8.40)

The following relationships are therefore valid:

 , , ,x x x x x xn n1 2 2 3 1f= = =-
o o o  (8.41)

Equation (8.39) can be reformulated in terms of these state variables as

 x a
a

x a
a

x a
a

x a
a

x a u
1

n
n n n

n
n

n

n
n

n

0
1

1
2

2
1

1
g= - - - - - +

-

-

-o  (8.42)

Equations (8.41) and (8.42) are collected into the vector-matrix equation
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0
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-
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`
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b
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_

`

a

b
bb

b
bb

 (8.43)

which represents the state equation where [A] is the square matrix multiplying the 
state vector and [B] is actually a column vector multiplying the scalar u. The output 
equation is determined by taking into account that the differential Eq. (8.34) has one 
unknown, y, which can be considered the output  function. As a consequence,

 { }{ }y x x x x u1 0 0 0 0n n
t

1 2 1 #f f= +-  (8.44)

and therefore [C] is the row vector and [D] is the zero scalar.
Examples 8.1 and 8.2 actually derive state space models of dynamic systems with-

out input time derivatives. Let us analyze another example from the same category.

Example 8.3
The microresonator sketched in Figure 8.4(a) is actuated electrostatically by a comb 
drive. The shuttle mass is supported by two elastic beams, and there is viscous damping 
between the shuttle mass and the substrate. Use a lumped-parameter model to deter-
mine the mathematical model of this mechanical system and derive a state space model 
for it. The damping coefficient is c, one beam’s spring constant is k, the shuttle mass 
is m, and the electrostatic actuation force is f.
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Solution
The equation of motion for the lumped-parameter model of Figure 8.4(b) is

 my cy ky f2+ + =p o  (8.45)

which is a second-order differential equation with the following coefficients and forcing: 
a2 = m, a1 = c, a0 = 2k, and u = f. Based on these parameter assignments and according to 
Eqs. (8.43) and (8.44), the state space  matrices are

 [ ] ; [ ] ; [ ] { }; [ ]A
a
a

a
a B

a
C D

0 1 0
1 1 0 0

2

0

2

1

2

=
- -

= = => H * 4  (8.46)

As a consequence, the generic state space Eq. (8.43) becomes

 
x
x

m
k

m
c

x
x

m
u

0
2

1 0
11

2

1

2
=
- -

+
o
o > H( ( *2 2 4  (8.47)

and the output equation is

 { }y
x
x1 0 1

2
= ( 2 (8.48)

Equations (8.47) and (8.48) form the state space model of the micromechanical system 
of Figure 8.4(a).

MIMO Systems
The companion website Chapter 8 presents a formal procedure that can be used to 
derive state space models for MIMO systems with no input time derivative. A sim-
plified version of that methodology is mentioned here, based on the following 

fiGure 8.4

Microresonator Supported on Beam Springs, with Viscous  Damping and Electrostatic 
Actuation: (a) Physical Model; (b) Lumped-Parameter Model.
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particular application. Assume the mathematical model of a MIMO  system  consists 
of two differential equations, one of second order and the other of first order. As 
discussed for SISO systems, the second-order differential equation needs two 
state variables, whereas for the first-order differential equation, one state vari-
able is necessary, so three state variables are needed in total. A good choice of 
the state  variables, as seen in the examples that have been studied thus far, is the 
 time-domain variable and its first time derivative for a second-order differential 
equation, whereas for a first-order differential equation, the sole state variable can 
be the time-domain variable of that equation. Let us analyze another example and 
derive its state space model.

Example 8.4
Consider the mechanical system of Figure 8.5, where f1 is the actuation force and f3 is 
a friction force.  Determine a state space model for this system when the output vector is 
formed of the displacements y1, y2, and y3.

Solution
Newton’s second law of motion applied to the three bodies of Figure 8.5 results in

 

( ) ( )

( ) ( ) ( ) ( )

)( ) (

m y f c y y k y y

m y c y y k y y c y y k y y

m y f c y y k y y

1 1 1 1 1 2 1 1 2

2 2 1 2 1 1 2 1 2 2 3 2 2 3

3 3 3 2 3 2 2 3 2

= - - - -

= - - - - - - - -

= - - - - -

p o o

p o o o o

p o o

Z

[

\

]]

]]
 (8.49)

The mathematical model of this mechanical system consists of three second-order 
 differential equations. As a consequence, we need 3 # 2 = 6 state variables, which are 
selected as

 ; ; ; ; ;x y x y x y x y x y x y1 1 2 1 3 2 4 2 5 3 6 3= = = = = =o o o  (8.50)

Equations (8.50) indicate the following state variable connections:

 ; ;x x x x x x1 2 3 4 5 6= = =o o o  (8.51)

Equations (8.49) can be written as
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 (8.52)
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Collecting Eqs. (8.51) and (8.52) into a vector-matrix form results in the state equation
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where u1 = f1 and u2 = f3. The matrix multiplying the state vector in Eq. (8.53) is [A] and 
the one multiplying the input vector is [B]. The output vector {y} = {y1 y2 y3}t is connected 
to the state and input vectors as
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4 (8.54)

The matrix multiplying the state vector in Eq. (8.54) is [C] and the matrix multiplying the 
input vector in the same equation is [D].

fiGure 8.5

MIMO Translatory Mechanical System.
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Dynamic Systems with Input Time Derivative
In situations where the differential equations corresponding to a dynamical model 
include time derivatives of the input variables, the procedure used when there were 
no input derivatives cannot be applied directly because a state space model does not 
accommodate time derivatives of the input. It is however possible to determine state 
space models using an additional function or vector, as shown in the following. Only 
coverage of SISO systems is provided here but the companion website Chapter 8 
includes the study of MIMO systems.

Let us consider a SISO dynamic system whose mathematical model consists of 
the following differential equation:

 ( ) ( ) ( ) ( ) ( ) ( )a y t a y t a y t a y t b u t b u t
( ) ( ) ( ) ( )

n

n

n

n

q

q

q

q

1

1

1 0 1

1
g g+ + + + = + +-

-
-

-
o  

 ( ) ( )b u t b u t1 0+ +o  (8.55)

The state space variable choice made for SISO systems without input time deriva-
tives cannot be applied here, simply because the standard state space model can 
have the term containing u(t) only on the right-hand side of Eq. (8.55). Without loss 
of generality, let us assume that n > q. Application of the Laplace transform with 
zero initial conditions to Eq. (8.55) results in the following transfer function:
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 (8.56)

A function Z(s) is introduced in G(s) of Eq. (8.52) as
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The following relationships can be written:
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Cross-multiplication in Eqs. (8.58) leads to
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The inverse Laplace transform is applied to Eqs. (8.59), which results in
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The first of the two Eqs. (8.60) is now an equation in z(t) that contains no time 
derivatives of the input u(t) and, therefore, can be modeled using the standard pro-
cedure, which has been detailed in a previous section. This system needs n state 
variables, which can be defined as

 , , , ,x z x z x z x z
( ) ( )

n

n

n

n

1 2 1

2 1
f= = = =-

- -
o  (8.61)

Finding the state equation is done exactly as shown previously and is not detailed 
here. To determine the output equation, the second Eq. (8.60) is written as

 y b x b x b x b xq q q q0 1 1 2 1 1g= + + + +- +  (8.62)

which can be reformulated in vector-matrix form as

 t{ }{ }y b b b x x x x x u0 0 0q m n n0 1 1 2 1 #f f f f= +-  (8.63)

Note that, for a SISO system with a time derivative of the input, the numerator of 
the transfer  function always contains terms in s; this problem is oftentimes referred 
to as numerator dynamics.  Conversely, if a transfer function contains s terms in its 
numerator, the original input has derivatives in it.

Example 8.5
Find a state space representation for the electrical circuit of Figure 8.6 by using one state 
variable only.

Solution
Using the complex impedance approach, which was discussed in the Chapter 7, the transfer 
 function is
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 (8.64)

fiGure 8.6

Single-Stage  Capacitive/Resistive Electrical System.
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As seen in Eq. (8.60), the transfer function numerator has an s term; therefore, the 
input voltage contains at least one time derivative. As a consequence, the procedure 
just outlined here needs to be applied. The ratio of Eq. (8.64) is written by means of the 
intermediate function Z(s) as
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with
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RCs 1
1o
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= =
+

 (8.66)

Cross-multiplication in the second Eq. (8.66), followed by application of the inverse Laplace 
transform, yields

 z
RC

z
RC

v
1 1

i= - +o  (8.67)

If the state variable x = z is chosen, Eq. (8.67) becomes the state equation

 x
RC

x
RC

u
1 1

= - +o  (8.68)

where the input voltage is considered to be the state space input, u = vi.
Cross-multiplication followed by inverse Laplace transformation are applied now to the 

first Eq. (8.66), which, combined with Eq. (8.67), yields the output equation

 y x u= - +  (8.69)

where y = vo is the output. Equations (8.68) and (8.69) form a state space model for the 
electrical system of Figure 8.6.

Conversions Between Transfer Function and State Space Models
Another modality of deriving state space models is by using an existing transfer 
function of a dynamic system. This section discusses the procedures that enable 
 two-way conversions between transfer function and state space models.

Transformation of a Transfer Function Model into a State  
Space Model
The known transfer function of a SISO system (which is a scalar) can be con-
verted into a state space model by following the steps indicated in the previous 
subsection, where the state space model of a SISO system with input derivatives 
is obtained using the transfer function concept and the intermediate function 
Z(s). The  companion website Chapter 8 covers the topic of conversion for MIMO 
systems.
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Example 8.6
Determine a state space model by converting the transfer function model of the 
 operational amplifier circuit sketched in Figure 7.10(b) of Example 7.5.

Solution
Equation (7.32) gives the system’s transfer function, which can be written as
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Cross-multiplication in the first Eq. (8.71) and application of the inverse Laplace trans-
formation to the resulting equation (with zero initial conditions) results in the following 
equation:

 z
R R C

v
1

i
1 3

=o  (8.72)

By selecting the state variable as x = z and considering that the input is u = vi changes 
Eq. (8.72) to

 x
R R C

u
1

1 3

=o  (8.73)

which is the scalar form of the state equation with

 ;A B
R R C

0
1

1 3

= =  (8.74)

Cross-multiplication and inverse Laplace transformation with zero initial conditions are 
also applied to the second Eq. (8.71), which results in

 y R x2=  (8.75)

where y = vo. Equation (8.75) is the output equation with

 ;C R D 02= =  (8.76)
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Transformation of a State Space Model into a Transfer  
Function Model
This subsection studies the topic of transforming a state space model into the corre-
sponding transfer function model. Example 8.1 demonstrates that {Y(s)} and {U(s)}, 
the Laplace transforms of the output and input vectors, are connected by means of 
transfer function matrix [G(s)], as shown in Eqs. (8.24) and (8.25). Since [G(s)] is cal-
culated based on the state space model matrices [A], [B], [C], and [D], it  follows that 
the respective calculation procedure enables transformation of a state space model 
into a transfer function one for both SISO and MIMO systems. In Chapter 7, the 
matrix [G(s)] is derived using a different formulation in the context of applying the 
transfer function concept to MIMO systems. Let us study the  following example.

fiGure 8.7

Translatory Mechanical System with 
 Displacement Input.

y u

ck Displacement

fiGure 8.8

Free-Body Diagram for the Mechanical 
System of Figure 8.7.

fdfe

y

Example 8.7
Obtain the state space model for the mechanical system shown in Figure 8.7 and trans-
form the resulting model into a transfer function model.

Solution
Figure 8.8 shows the free-body diagram corresponding to the massless point defined by 
the coordinate y.

Newton’s second law of motion corresponding to the free-body diagram of Figure 8.8 
results in

 f f0 d e= - -  (8.77)

where fd and fe are the damping and elastic forces, defined as

 
( )f c y u

f ky
d

e

=

=

-o o
*  (8.78)

By combining Eqs. (8.77) and (8.78), the following equation is obtained:

 cy ky cu+ =o o (8.79)
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The mechanical system is SISO and its mathematical model consists of a first-order 
 differential equation. As a result, a single state variable is needed. Because the input 
function appears as a time derivative, it is necessary to apply the Laplace transform to 
Eq. (8.79), which results in

 
( )
( )

U s

Y s

s c
k

s
=

+

 (8.80)

Using the intermediate function Z(s) changes Eq. (8.80) to

 
( )
( )

( )
( )

( )
( )

U s

Y s

U s

Z s

Z s

Y s

s c
k

s
1

# #= =

+

 (8.81)

which indicates the following selection needs to be made:

 
( )
( )

( )
( )

U s

Z s

s c
k

Z s

Y s
s

1
=

=

+

Z

[

\

]
]]

]
]]

 (8.82)

Cross-multiplication in the first Eq. (8.82) and application of the inverse Laplace trans-
form to the resulting equation yields

 cz kz cu+ =o  (8.83)

Equation (8.83) no longer contains input derivatives; therefore, we can choose x = z as 
the state variable. As a consequence, Eq. (8.83) becomes

 x c
k

x u= - +o  (8.84)

which is the state equation with A = -k/c and B = 1. Cross-multiplication in the second 
Eq. (8.82) followed by inverse Laplace transformation results in

 y z x= =o o (8.85)

Combining Eqs. (8.84) and (8.85) yields

 y c
k

x u= - +  (8.86)

with C = −k/c and D = 1. The transfer function corresponding to the state space model 
defined by the state Eq. (8.84) and output Eq. (8.86) is the one given in Eq. (8.80). This 
can readily be verified using the known equation G(s) = C(sI − A)−1B + D.
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Nonlinear Systems
While it is almost always possible to derive a state space model for a nonlinear 
dynamic system, finding a solution to it can be problematic. In such cases, the 
 linearization technique can be utilized to derive a linear state space model from 
the original, nonlinear one when the variables vary in small amounts around an 
equilibrium position. The companion website Chapter 8 analyzes the lineariza-
tion of nonlinear nonhomogeneous state space models, that is, models that con-
tain a nonzero input vector, but here we analyze only homogeneous nonlinear 
systems.

Consider a two-DOF dynamic system defined by one second-order  differential 
equation and one first-order differential equations. As previously discussed in 
this chapter, one variant would use three state variables: two corresponding to the 
 second-order differential equation and one for the first-order differential  equation. 
Because the system has two DOFs, these variables can be considered as  output 
variables. As a consequence, the following nonlinear state equations can be 
 formulated:

 

( ) ( , , )

( ) ( , , )

( ) ( , , )

x t f x x x

x t f x x x

x t f x x x

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

=

=

=

o

o

o

Z

[

\

]]

]]
 (8.87)

where f1, f2, and f3 are nonlinear functions of x1, x2, and x3. Similarly, the output 
 variables can be expressed as

 
( ) ( , , )

( ) ( , , )
y t h x x x

y t h x x x
1 1 1 2 3

2 2 1 2 3

=

=
*  (8.88)

with h1 and h2 being nonlinear functions of x1, x2, and x3.
If small (linear) variations of the time-dependent variables and functions of 

Eqs. (8.87) and (8.88) are considered (which is equivalent to using Taylor series 
expansions of the functions on the left-hand sides of Eqs. (8.87) and (8.88) about the 
equilibrium point), the following equations result from Eqs. (8.87):

 

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x

f
x t

x

f
x t x t

x

f
x t

x t
x

f
x t

x

f
x t

x

f
x t

x t
x

f
x t

x

f
x t

x

f
x t

e e e

e e e

e e e

1
1

1

1
2

1

2
3

1

3

2
1

2

1
2

2

2
3

2

3

3
1

3

1
2

3

2
3

3

3

d d d d

d d d d

d d d d

= + +

= + +

= + +

o

o

o

e e e

e e e

e e e

o o o

o o o

o o o

Z

[

\

]
]
]
]

]
]
]
]

 (8.89)
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where the variables preceded by the symbol d indicate small variations of those variables 
and the subscript e indicates the equilibrium point. Equations (8.89) can be arranged into 
the following vector matrix equation:

 

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

( )
( )
( )

( )
( )
( )

x t
x t
x t

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x t
x t
x t

e

e

e

e

e

e

e

e

e

1

2

3

1

1

1

2

1

3

2

1

2

2

2

3

3

1

3

2

3

3

1

2

3

d

d

d

d

d

d

=

o
o
o

e

e

e

e

e

e

e

e

e

o

o

o

o

o

o

o

o

o

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

* *4 4
 (8.90)

Equation (8.90) is the linearized version of the original, nonlinear state space equa-
tion, the first Eq. (8.87), and the matrix [A] is formed of the partial derivatives of f1,  
f2, …, fn in terms of x1, x2, …, xn, the evaluation being made at the equilibrium point. The 
state vector is formed of small variations of the original state vector’s components.

If small variations are now considered for the nonlinear output Eqs. (8.88), the 
following equations are obtained:
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 (8.91)

which can be written in vector-matrix form as
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( *2 4 (8.92)

Equation (8.92) is the linearized form of the original, nonlinear output space 
Eq. (8.90). The output vector includes small variations of the original state vector’s 
components, and the matrix [C] connects the output and state vectors.

Example 8.8
The lumped-parameter model of a microcantilever that vibrates in a vacuum is the mass-
spring system shown in Figure 8.9. Considering that the spring constant is nonlinear such 
that the elastic force is f = 1/3y 3, where y is the vertical displacement measured from 
the equilibrium position, find a state space representation of the system and derive the 
 corresponding linearized state space model.
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Solution
At static equilibrium, the gravity force is equal to the elastic force; therefore,

 mg y
3
1

e
3=  (8.93)

where ye is the deformation of the spring at static equilibrium. If we now assume that 
the reference frame is moved to the position defined by ye of Eq. (8.95), the equilibrium 
 position, it can be shown that the equation of motion is

 my y
3
1 3= -p  (8.94)

where y is the distance measured from the equilibrium position to an arbitrary position. 
The following state variables are selected:

 ;x y x y1 2= = o (8.95)

which enables formulating the equations

 
x x

x
m

x
3
1

1 2

2 1
3

=

= -

o

o
*  (8.96)

These are state equations, and the second one is nonlinear. The output equation is 
 linear:

 y x1=  (8.97)

Let us now linearize the state equation. If differentials in functions and in variables are 
considered, then the first Eq. (8.96), which is linear, can be written as

 x x1 2d d=o  (8.98)

fiGure 8.9

Lumped-Parameter Model of Microcantilever with a Nonlinear Spring.

kNonlinear spring

y
m
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The second Eq. (8.96) is reformulated based on the previous theory discussion as

 x
m x

x m
x

x x
3
1 , e

x x

1
3

1

1
2

, e

2
1

1

1 1

#
2

2
d d d= - = -

=

o _ i  (8.99)

Because x1 = y and ye is provided in Eq. (8.93), Eq. (8.99) becomes

 
9

x
g

xm

2
3

2 1d d= -o  (8.100)

Equations (8.98) and (8.100) can now be collected into the linearized state equation:

 
m
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0 1
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d
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d-
=

o

o > H* *4 4 (8.101)

where the state variables are dx1 and dx2. The output equation is simply obtained by dif-
ferentiating Eq. (8.97) as

 y x1d d=  (8.102)

which is written in standard form as

 y
x

x
1 0

1

2

d
d

d
= ! *+ 4 (8.103)

The state Eq. (8.101) and output Eq. (8.103) form the linearized state space model of the 
mechanical system of Figure 8.9.

8.2.2 Matlab® approach
This section illustrates the use of MATLAB® functions enabling conversions between 
transfer function or zero-pole-gain models and state space models.

Conversion between Transfer Function and State Space Models
A MATLAB® state space model or LTI (linear time invariant) object is defined by 
using a command of the type:

sys = ss (A, B, C, D)

where A, B, C, and D are the state space model defining matrices. If the command 
is issued as, for instance,

» sys = ss ([1, 3; 2, 5], [1; 3], [-1, 0;0, 5], [0; 1])
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the following result will be generated:

a = b = c = d =

x1 x2 u1 x1 x2 u1

x1 1 3 x1 1 y1 -1 0 y1 0

x2 2 5 x2 3 y2 0 5 y2 1

which is an explicit way to mention the vectors that connect to any of the system’s 
matrices.

If the descriptor form of the state space is utilized instead of the regular form, 
then the MATLAB® command changes to

» sys = dss ( Al, Bl, C, D, E)

where [Al] ! [A] and [Bl] ! [B], as discussed in the introduction to this chapter. The 
MATLAB® functions that realize transformation of a transfer function model into 
a state space model, as well as the ones realizing the converse transformation, are 
examined in the following.

Transformation of a Transfer Function Model into a State  
Space Model
In instances where a transfer function or a transfer function matrix needs to be  converted 
into a state space model, MATLAB® achieves this goal by means of two built-in functions. 
For a transfer function object, let us say sys1, which has previously been created, the 
function, tf2ss(sys1) or ss(sys1), generates a  corresponding state space model.

Example 8.9
Use MATLAB® to convert the transfer function matrix

[ ( )]G s s s

s s

s

s s

2
3

2

1

2
1

2

2

2

= +

+ +

R

T

S
S
S
SS

V

X

W
W
W
WW

into a space model.

Solution
The following MATLAB® sequence solves this example:

» s = tf ('s'); % command uses symbolic s in transfer  function
» g = [3/(s^2 + 2*s), 1; s/(s^2 + 2*s), 1/(s^2 + 2*s)];
» f = ss(g);
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To identify the four state space matrices, the following command can be added to this 
sequence:

» [a,b,c,d] = ssdata(f)

which returns

a =

-2 0 0 0

1 0 0 0

0 0 -2.0000 0

0 0 1.0000 0

b =

2 0

0 0

0 1

0 0

c =

0 1.5000 0 0

0.5000 0 0 1.0000

d =

0 1

0 0

As it can be seen from the result, the state space generated through conversion from the 
given transfer function uses five state variables (see the dimensions of [A]), two inputs, 
and two outputs (see the dimension of [D]), which is, obviously, just one possible solution 
from an infinite number of potential state space solutions.

Transformation of a State Space Model into a Transfer  
Function Model
For a specified state-space model, identified as sys1, for instance, the command 
ss2tf(sys1) or tf(sys1) generates the corresponding transfer function model.

Example 8.10
The following matrices define a state space model:

; ; { };A B C D
1
0

0
1

0
0

2 1 2= = = =; E ' 1

Use MATLAB® to find the corresponding transfer function model.
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Solution
The MATLAB® commands can be the following ones:

» a = eye (2);
» b = zeros (2, 1);
» c = [2, 1];
» sys1 = ss( a, b, c, 2);
» sys2 = tf (sys1)

The result of this sequence is 2. In other words, the transfer function is a gain equal to 2. 
If, instead of the last line of the sequence, we use

» [num, den] = ss2tf (a, b, c, d)

The result is

num =
2 -4 2

den =
1 -2 1

which indicates the transfer function is ( )sG
x x
x x

2 1
2 4 2

2
2

2

=
- +

- +
=

Conversion between Zero-pole-gain and State Space Models
Conversion between transfer function and zero-pole-gain models is presented in 
Chapter 7. Similarly, MATLAB® enables conversion between state space (ss) and zpk 
models, as well. Assume that a linear time invariant object sys1 has been defined as 
a zpk model; the MATLAB® command

» sys2=ss(sys1)

converts the zpk sys1 model into another ss model, labeled sys2. Conversely, when 
a ss model, named sys2, is available, it can be transformed into a zpk model, named 
sys1, by means of the MATLAB® command

» sys1=zpk(sys2)

Example 8.11
A dynamic system’s zero-pole-gain model is defined by a gain of 2, its zeroes are 
1 (double) and 3, and its poles are 0 and -1 (triple). Determine a state space model 
 corresponding to the given zero-pole-gain model then confirm that the state space model 
can be converted back to the original zpk model.
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Solution
The following MATLAB® sequence solves this example:

» sys1 = zpk([1,1,3],[-1,-1,-1,0],2)
Zero/pole/gain:
2 (s-1)^2 (s-3)
---------------
s (s+1)^3
» sys2 = ss(sys1)

a =

x1 x2 x3 x4

x1 0 -1.414 -2 1

x2 0 -1 -2.828 1.414

x3 0 0 -1 2

x4 0 0 0 -1

b =

u1

x1 0

x2 0

x3 0

x4 4

c =

x1 x2 x3 x4

y1 -0.5 -0.7071 -1 0.5

d =

u1

y1 0

Continuous-time model.
» sys3=zpk(sys2)
Zero/pole/gain:
2 (s-3) (s-1)^2
---------------
s (s+1)^3

It can be seen that the state space model rendered by MATLAB® (one of the many 
 possible models) is the one of a SISO system (as indicated by the dimensions of the 
matrix [D], which uses four state variables (see the dimensions of matrix [A]). By applying 
the zpk command to the state space model, the original zpk object is retrieved.
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8.3 state space and the tiMe-dOMain respOnse
Analytical and MATLAB® methods can be used to determine the time (forced) 
response of dynamic systems by means of state space models, which is the subject 
of the following sections.

 8.3.1 analytical approach: the state-transition Matrix Method
As briefly mentioned at the beginning of this chapter, the time response of dynamic 
systems can be evaluated by an algorithm that consists of combined calculations 
in the Laplace and time domains. In essence, solving for the output {y} based on 
a given input {u} and a selected state vector {x} can be performed as indicated in 
Figure 8.10. The state vector {x} is first determined through integration from the 
state equation then substituted into the output equation, which yields the output vec-
tor {y} as a function of the input vector {u}, the state vector {x}, and the state space 
model matrices [A], [B], [C], and [D]. Two subcases are studied next: The first one 
analyzes the homogeneous state space model (with no forcing {u(t)}) and the other 
one focuses on the nonhomogeneous state space model where {u(t)} ! 0. Both 
categories consider nonzero initial conditions. The state-transition matrix method is 
utilized, as explained next.

Homogeneous State Space Model
The homogeneous case corresponds to the absence of an input vector, whereby the 
system response is caused by initial conditions only. The state and output equations 
are given in Eqs. (8.2) and (8.4). The aim of this method is to express the state vector 
at any time instant in terms of the initial state vector as

 { ( )} [ ( )]{ ( )}t xx t 0{=  (8.104)

where [{(t)] is the state transition matrix. There are two methods of  calculating 
the state transition matrix: The Laplace transform method is discussed next 
and the matrix exponential method is  presented in the companion website 
Chapter 8.

fiGure 8.10

Block Diagram of Operations in a State Space Model.

{u } [B ]{u } 
+

+
+ ∫

+

[A]{x }
[D ]{u }

{x } [C ]{x } {y}{x}
[B ] [C ]

[A ]
[D ]
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By applying the Laplace transform to the state equation, Eq. (8.2), and consider-
ing a nonzero initial state vector {x(0)}, the following relationship is obtained:

 { ( )} ( [ ] [ ]) { ( )}X s s I A x 01= - -  (8.105)

whose inverse Laplace transform yields the time-domain state vector:

 L{ ( )} [( [ [ ]) ]{ ( )}x t s I A x 01= - -1- ]  (8.106)

By comparing Eqs. (8.104) and (8.106), it follows that the matrix connecting {x(t)} 
to {x(0)} is the state-transition matrix, which is therefore calculated as

 L[ ( )] [( [ [ ]) ]t s I A 1{ = - -]1-  (8.107)

The output equation, Eq. (8.2), becomes

 L{ ( )} [ ] [ ( )]{ ( )} [ ] [( [ [ ]) ]{ ( )}y t C t x C s I A x0 01{= = - -]1-  (8.108)

Example 8.12
The homogeneous state space model of a dynamic system is defined by the matrices

[ ] ; [ ] { }A C
0
8

0

2
1

0

0
8
1

1 0 1= - - => H

Determine the system’s response y (t) and plot it with respect to time if the following initial 
condition is used: {x (0)} = {0 1 0}t.

Solution
The following MATLAB® commands

» a = [0,2,0;-8,-1,8;0,0,1];
» c = [1,0,1];
» syms s
» c*ilaplace(inv(s*eye(3)-a))*[0;1;0]

which are based on the analytical Eq. (8.108), yield the following approximate output:

 ( ) 0.5 (4 )siny t e t. t0 5= -  (8.109)

The response curve is plotted in Figure 8.11.
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Example 8.13
Use the state space approach to find the response of the hydraulic system shown in 
 Figure 7.14 of the solved Example 7.7 by considering that there is no input flow rate. 
Instead, there is an initial value of the fluid head in the left tank, h10, which acts as an  initial 
condition. Plot the system’s time response for Rl1 = 20 s/m2, Rl 2 = 25 s/m2, Cl1 = 1 m2,  
Cl 2 = 2 m2, and h10 = 0.05 m.

Solution
For the case of the free response, the differential equations are derived using the defini-
tions of hydraulic capacitances, Eq. (5.27), and resistances, Eq. (5.39):

 ; ; ;C
dt

dh
q C

dt

dh
q q R q h h R q hl l o l l o1

1
2

2
1 1 2 2 2= - = - = - =  (8.110)

After eliminating the intermediate and output flow rates q and qo, the hydraulic system’s 
mathematical model is

 
C

dt

dh

R
h

R
h

C
dt

dh

R
h

R R
h

1 1
0

1 1 1
0

l
l l

l
l l

1
1

1
1

1
2

2
2

1
1 2

2
l1

+ - =

- + + =d n

Z

[

\
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 (8.111)

fiGure 8.11

Time Response of a Homogeneous State Space Model.
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Two state variables are needed for this two-DOF first-order system, and they can be 
selected as

 ;x h x h1 1 2 2= =  (8.112)

By using these state variables in conjunction with Eqs. (8.111), the following state 
 equation is obtained:
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( (2 2 (8.113)

Matrix [A] of the state space model is the one connecting the two vectors in Eq. (8.115). 
The output equation is obtained based on Eqs. (8.112):
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2
= = ; E( ( (2 2 2 (8.114)

Matrix [C] of the state space model is the identity matrix [I ]; therefore, {x (0)} = {y (0)}. 
Using the parameters of this example, Eq. (8.108) yields the following time-domain 
 output:
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e
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0 047

= -

=

-

-

[
*  (8.115)

Figure 8.12 contains the plots of the two response components. For t " 3, the heads 
become h1(3) = 0 and h2(3) = 0.

fiGure 8.12

Time-Response Curves of Hydraulic Heads.
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Nonhomogeneous State Space Model
The nonhomogeneous case implies intervention of the input (forcing) vector 
{u(t)}; therefore, the state and output equations are the ones originally expressed 
in Eqs. (8.2) and (8.4). Application of the Laplace transform to the state Eq. (8.4), 
considering there is a nonzero initial state vector {x(0)}, results in the following 
Laplace-domain equation:

 { ( )} [ ] [ ] { ( )} [ ] [ ] [ ]{ ( )}X s s I A x s I A B U s01 1= - + -- -
^^ hh  (8.116)

The inverse Laplace transform is now applied to Eq. (8.116), which leads to

 L{ ( )} [ ( )]{ ( )} [( [ ] [ ]) [ ]{ ( )}]x t t x s I A B U s0 1{= + - -1-  (8.117)

According to the convolution theorem, which is studied in Chapter 6, the second term 
on the right-hand side of Eq. (8.117) can be calculated as

 L ( ) ( ) [ ]{ ( )}s I A B U s t B u d
t

1 1

0

{ x x x- -=
- -
^ h5 5 58 6? ? ? B @" , #  (8.118)

and, as a consequence, Eq. (8.117) becomes

 { ( )} [ ( )]{ ( )} [ ( )] [ ]{ ( )}x t t x t B u d0
t

0

{ { x x x-= + #  (8.119)

where [{(t)] is computed by means of Eq. (8.107). The output vector is found as

 { } [ ] [ ( )]{ ( )} [ ( )] [ ]{ ( )} { ( )}( ) [ ]C t x t B u u ty t d D0
t

0

{ { x x x-= + +f p#  (8.120)

Example 8.14
A dynamic system is described in state space form by the matrices

[ ] [ ] [ ][ ] ; ; ;B C DA
0
60

1
5

0

1
1 0 0=

- -
= = =; E ) !3 +

A step input u = 3 is applied to the system and the initial conditions are zero. Find the 
system response and plot it against time.

Solution
The matrices’ dimensions show that the system is SISO and there are two state variables. 
For the particular case of this example, the output is expressed from Eq. (8.120) as

 { ( )} [ ] [ ( )] [ ] ( )y t C t B u d
t

0

{ x x x-= #  (8.121)
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where u (x) = 3. The state transition matrix [{(t)] is first computed by using the definition 
Eq. (8.107) as

 
. . .

. .
.

. . .
[ ( )]

[cos( ) sin( )]
sin( )

. sin( )
[cos( ) sin( )]

et
t t

t
t

t t
7 3 0 34 7 3

8 18 7 3
0 14 7 3

7 3 0 34 7 3
. t2 5{ =

+

- -
-

< F  (8.122)

The variable t - x is used instead of the variable t in Eq. (8.122), then the operations 
 necessary are performed in Eq. (8.121), which yields the following time-domain response:

 0.35( ) . 1 [ (7.3 ) (7.3 )]sincosy t t t e0 05 2.5t- - + -" , (8.123)

Figure 8.13 displays the output as a function of time.

8.3.2 Matlab® approach
This section presents the application of built-in MATLAB® functions that use state 
space modeling to determine the forced response (including nonzero initial condi-
tions) of dynamic systems. The free response with nonzero initial conditions and the 
forced response are studied next.

Free Response with Nonzero Initial Conditions
With MATLAB®, it is possible to directly model the free response of a dynamic 
 system when the initial conditions are different from zero. The basic command is

» initial (sys, x0)

where x0 is the initial state vector and sys is a previously formulated state space model.

fiGure 8.13

Time Response of a Nonhomogeneous State Space Model.
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fiGure 8.14

Example Plot for Free Response with Nonzero Initial Conditions.
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Example 8.15
The free-response state space model of a dynamic system is represented by the matrices 
[A] and [C] and the initial state vector x0, which are defined as

[ ]
.

.
.

; [ ] { }; { }A C x
1

1 5
1 5

0 1
4 10

10
10=

- -
= =; E ' 1

Use MATLAB® to determine the time response and plot it in terms of time.

Solution
The following MATLAB® command sequence

» a = [-1, -1.5; 1.5, 0.1]; b = [0; 0];
» c = [4, 10]; d = 0;
» x0 = [10; 1];
» sys = ss (a, b, c, d);
» initial (sys, x0)

is used to model the free response of this specific state space model and the result is 
plotted in  Figure 8.14.

Several previously defined state space models can be plotted on the same graph 
and time interval and specified with the command

» initial (sys1, sys2,…,sysn, x0, t)
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When using a command like

» [y,t,x] = initial (sys1, sys2,…,sysn, x0, t)

no plot is returned but the output matrix and state matrix are formed, each having 
as many rows as time increments. The number of columns in y is equal to the num-
ber of inputs and the number of columns in x is equal to the number of state vari-
ables. Subsequent plotting is possible with a plot command. Instead of initial, 
 initialplot can be used with the same specifications.

Forced Response
To find the forced time response, the state space models in MATLAB® employ the 
same predefined functions as the transfer function models, step, impulse, and 
lsim. For a state space model defined as

» sys = ss ([-1, -1; 1, 0], [1; 0], [1, 0; 0, 2], [0; 1]);

the command step(sys, 'k') (k indicates that the color of the plot should be 
black) produces the plots shown in Figure 8.15.

Because the matrices of this particular example define a one-input, two-output 
model, two plots result, each corresponding to a unit step input.

fiGure 8.15

Response of a Two-Output State Space Model to Unit-Step Input.
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Example 8.16
Consider the mechanical microsystem shown in Figure 8.16, which is formed of three 
identical serpentine springs, each having a spring constant of k = 10 N/m and two identical 
shuttle masses with m = 30 ng. A force f = 5 sin(2t) nN acts on the body on the right, as 
shown in the figure. Also, an initial displacement y1(0) = -1.5 # 10-11 m is applied to the 
body on the left of the figure. Consider that damping acts on both masses, with a damping 
coefficient c = 0.1 N-s/m. Find a state space model of the system and use MATLAB® to plot 
its time response. Use both the regular and the descriptor forms of the state equation.

Solution
To use MATLAB® for the time-domain solution, the problem is divided into two subproblems: 
it is considered first that the system is under the action of the force alone, then that only the 
initial conditions are applied. Since the system is linear, the two individual solutions are then 
added to obtain the total (actual) solution. The lumped-parameter model corresponding to 
the micromechanical system is shown in Figure 8.17, being formed of two masses m, three 
dampers c, and three springs k. The force f  is also indicated in the figure.

The dynamic equations of this system are

 
( )( )

( ) ( )

my cy ky c y y k y y

my cy ky c y y k y y f
1 1 1 1 2 1 2

2 2 2 2 1 2 1

= - - - - - -

= - - - - - - +

p o o o

p o o o
*  (8.124)

The following state variables are selected:

 ; ; ;x y x y x y x y1 1 2 1 3 2 4 2= = = =o o  (8.125)

fiGure 8.16

Two-Mass, Three-Spring Mechanical Microsystem.
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fiGure 8.17

Lumped-Parameter Model of Two-DOF Translatory Mechanical System.
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the input is the force, that is, u = f, whereas the output is formed of the two displace-
ments y1 and y2. Combination of Eqs. (8.124) and (8.125) generates the standard-form 
state equation:
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which defines the [A] and [B] matrices. The descriptor-form state equation is also obtained 
from Eqs. (8.124) and (8.125):
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where the matrix Al6 @ of Eq. (8.5) is the one on the left-hand side of Eq. (8.127) and the 
matrix Bl6 @ of Eq. (8.5) is the first one on the right-hand side of Eq. (8.127). The output 
equation is determined from the first and third of Eqs. (8.125):
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which defines the [C] and [D] matrices. The second sub-problem uses the initial-
 condition vector ((0) 0) 0 0 0x y1

t=" ", ,  with the same state space model as of the 
first  sub-problem (the one with forcing). With the numerical values of this problem, the 
MATLAB® code is given here:

» t = 0:0.0001:10;
» m = 30e-6;
» da = 0.1;
» k = 10;
» u = 5e-6*sin(2*t);
» a = [0,1,0,0;-2*k/m,-2*da/m,k/m,da/m;0,0,0,1;k/m,da/m,…
-2*k/m,-2*da/m];
» b = [0;0;0;1/m];
» c = [1,0,0,0;0,0,1,0];
» d = [0;0];
» sys = ss(a,b,c,d);
» % individual response 'yf' to forcing
» [yf,t,x] = lsim(sys,u,t);
» % individual response 'yic' to initial conditions
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» y01 = -1.5e-11;
» x0 = [y01;0;0;0];
» [yic,t,x] = initial(sys,x0,t);
» % total response 'y' as superposition of individual… 
responses 'yf' and 'yic'
» y = yf + yic;
» y1 = y;
» y1(:,2) = []; % deletes the second column and keeps…
the first column of 'y1 = y'
» y2 = y;
» y2(:,1) = []; % deletes the first column and keeps…
the second column of 'y2 = y'
» subplot(211);
» plot(t,y1)
» ylabel('y_1 (m)')
» grid on
» subplot(212);
» plot(t,y2)
» ylabel('y_2 (m)')
» xlabel('Time (sec)')
» grid on

Figure 8.18 shows the response curves of the mechanical microsystem of Figure 8.16.

fiGure 8.18

Plot of Displacement Outputs for the Two-DOF Mechanical System.
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If the descriptor form of the state equation is used, then Eq. (8.127) is needed to 
define the [E] and [Al] matrices, and the following additional commands are inserted in 
the previous MATLAB® sequence:

» e = [1,0,0,0;0,m,0,0;0,0,1,0;0,0,0,m];
» ap = [0,1,0,0;-2*k,-2*da,k,da;0,0,0,1;k,da,-2*k,-2*da];
» bp = [0; 0; 0; 0];

and instead of the sys1 = ss(a,b,c,d) command, the command

» sys2 = dss(ap,bp,c,d,e)

is employed. The remaining part of the code is identical to the one employed in this 
example and the plots of Figure 8.18 are obtained as well.

8.4 usinG siMulink® fOr state space MOdelinG
Simulink® offers an elegant environment for creating and simulating state space models. 
The minimum configuration of a Simulink® state space model is formed of an input block, 
the state space block, and an output (visualization) block. Let us analyze a few examples 
of formulating and solving state space problems by means of Simulink®. As a reminder, 
in order to open the Simulink® environment, just type simulink at the MATLAB® 
prompt, then click on File, New, and Model to open a new model window.

Example 8.17
A state space model is defined by the matrices

.
; ; { }; { }A B C D

0 001
1

80
0

1
0

1
0

0 1 0 0= =
-

= =; ;E E

The input to this system has two components: One is a pulse with an amplitude of 1, 
period of 5 s, and pulse width of 2.5 s; the second input is a random function with a mean 
value of 0 and a variance of 1. The initial conditions of the problem are u (0) = {1, 2}t. Use 
Simulink® to plot the system response.

Solution
A new model window is opened and the following blocks are dragged to it from the Library 
window: a Sine Wave block from the Sources category, the State Space block 
from the Continuous  category, and Scope from the Sinks category. The  system is a 
MISO (multiple-input/single-output) system, as the dimensions of the matrices indicate. We 
 therefore need to use two signals combined into a single input, since the Simulink® state 
space operator works as a single-input, single-output one. The  Simulink® source library 
possesses a concatenating operator that accepts several vectors (or  matrices) as the input, 
which it combines into a single vector (or matrix) at the output without modifying the original 
components. In  Figure 8.19 the two input signals preserved their individuality, although 
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fiGure 8.19

Simulink® Block Diagram of the Two Inputs.
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Number

Pulse
Generator

Vector
Concatenate Scope

fiGure 8.20

Simulink® Plot of the Pulse and Random Input Signals.

they are combined in one vector. Configuration of the state space block (which you have to 
double click) is done by filling in the following data:

Function Block Parameters: State-Space Window
A: [0.001, 80; 1, 0]
B: [1, -1; 0, 0]
C: [0, 1]
D: [0, 0]
Initial conditions: [1; 2]

Configuring the other blocks is straightforward.
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The two inputs, the Pulse Generator and the Random Number shown in 
 Figure 8.19, are selected from the Source block category, and the parameters of 
the example are entered after  clicking the respective operators and opening of the 
 corresponding  windows. The Vector Concatenate box, which creates a contiguous 
output  signal from several input vector-type signals, is dragged from the  Mathematical 
 Operations library group, whereas, as before, Scope is taken from the Sink library. 
Figure 8.20 is the plot resulting from the two input functions.

Figure 8.21 illustrates the block diagram of the simulation, which uses the State-
Space block in addition to those already mentioned. The A, B, C, and D matrices  elements 
are entered, and the initial  condition vector is also inserted as [1; 2]. The result of the 
simulation is shown in Figure 8.22.

fiGure 8.21

Simulink® Block Diagram of the Two-Input, One-Output State Space Model.
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fiGure 8.22

Simulink® Plot of the State Space Model Time-Domain Output.
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Example 8.18
A body of mass m = 1 kg slides on a horizontal surface with friction. The coefficient of static 
friction is ns = 0.3 and the coefficient of kinematic friction is nk = 0.2. A ramp force f = 0.5t 
N acts on the body. Find a state space model of this mechanical system and determine its 
time response using Simulink®.

Solution
(a) The free-body diagram is sketched in Figure 8.23 where f is the active (ramp) force 
and ff is the kinematic friction force. It is known that, when the ramp force is applied, the 
body will start moving only after the active force has reached the value of the opposing 
static friction force, which is

 f mg,f s sn=  (8.129)

or ff,s = 0.3 # 1 kg # 9.8 m/s2 = 2.94 N and Figure 8.24(a) depicts this situation, where 
the motion starts after a delay time td. Another time-domain force definition is displayed 
in Figure 8.24(b), which indicates a sudden jump in the active force to the level of the 
static friction force, followed by the linear (ramp) variation.

Let us use the free-body diagram of Figure 8.23 to derive the mathematical model and 
then the state space model of the sliding body. The dynamic equation of motion is:

 ormy f f my f mgf kn= - = -p p  (8.130)

fiGure 8.23

Free-Body Diagram for a Body under the Action of Active and Friction Forces.
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fiGure 8.24

Force-Time Relationship Indicating (a) Linear Effects; (b) Nonlinear Effects Due to 
 Coulomb Friction.
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The state variables are

 ;x y x y1 2= = o (8.131)

The output is y and the input is formed by superimposing (adding) the active and friction forces as  
u = u1 + u2, where

 ;u f u mgk1 2 n= = -  (8.132)

The state equation is therefore

 
x

x

x

x
u

m

0
0

1
0

0

1
1

2

1

2

= +
o

o
; E* * *4 4 4  (8.133)

The output equation is

 { }y
x
x u1 0 01

2
#= +( 2  (8.134)

There are two different ways in Simulink® of modeling the time definition of 
 Figure 8.24(b) and  Figure 8.25 shows the block diagram of the two models described 
next. One model, which is displayed in the top area of Figure 8.25, combines the two 
inputs by means of an Add block, which operates similarly to a Sum block and is found in 
the Mathematical Operations of the Simulink library. The Ramp 1 input 

fiGure 8.25

Simulink® Block Diagram of the State Space Model without and with the Nonlinear Effect 
of Coulomb Friction.
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is defined with a Slope of 0.5 and a Start time of td = ff,s / K = 2.94 N / 0.5 N/s = 
5.88 s. This start time value, which is actually the delay time, has to be introduced with a 
negative sign, as shown in Figure 8.24(b)). The Constant input is the kinematic friction 
force whose value is f = nkmg = 0.2 # 1 kg # 9.8 m/s2 =1.96 N—it has a minus sign 
to conform to Eq. (8.130). The addition result is fed to the State-Space block where 
A, B, C, and D are defined in Eqs. (8.133) and (8.134).

The other modeling procedure available in Simulink® is shown on the lower 
branch of Figure 8.25. The Ramp 2 block has a Slope of 1 and generates the time 
vector entering the Coulomb & Viscous Friction block. This block requires 
input of the Coulomb friction value (offset), which is equal to the static 
friction force ff,s = 2.94 N, as well as of the Gain, which is the 0.5 slope. The output 
of this block is added to the output of the Constant block (the kinematic friction 
force), and the result is again fed to the State-Space model block. The outputs 
from the two state space blocks are mixed into the Bus Creator block, which func-
tions similarly to a Mux block; the output of the block is a group (or bundle) formed 
of separate input signals, and this output is subsequently plotted by a Scope. Com-
pared to the Vector Concatenate block, which has been utilized in the previ-
ous example and which accepts inputs of the same data type, such as vectors, the 
Bus Creator block accepts input signals of different data types. Because the two 
Simulink® models are identical, a single displacement plot is obtained, as pictured 
in Figure 8.26.

suMMary
This chapter introduces the concept of state space as an approach that can be used 
to model and determine the response of dynamic systems in the time domain. Using 
a vector-matrix formulation, the state space procedure is an alternate method of 

fiGure 8.26

Simulink® Plot of State Space Model Time Response.
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characterizing mostly MIMO systems defined by a large number of coordinates 
(DOFs). Different state space algorithms are applied, depending on whether the input 
has time derivatives or no time derivatives. Methods of calculating the free response 
with nonzero initial conditions and the forced response using the state space approach 
also are presented. Methods of converting between state space and transfer function 
or zero-pole-gain models are presented, both analytically and by means of MATLAB® 
specialized commands. The chapter also studies the principles of  linearizing nonlinear 
state space models. The material includes the application of specialized MATLAB® 
commands to solve state space formulated problems and examples of using Simulink® 
to model and solve system dynamics problems by the state space approach.

prObleMs
8.1 Find a state space model for the translatory mechanical system of Figure 8.27 

considering that the input is the displacement u of the chain’s free end and the 
output is the displacement z. Derive another state space model for an output 
formed of the displacement z and the  velocity dz /dt.

8.2 Demonstrate that the voltage on the resistor, vR, and the voltage on the capaci-
tor, vC, can be used as state variables to generate a valid state space model for 
the series electrical circuit of  Figure 8.28.

8.3 (a) Find a state space representation for the electrical circuit shown in 
 Figure 8.29 using only one state space variable.

(b) If the resistor R2 is substituted by an inductor L, formulate a state space 
model by using two state variables. Hint: Use the relationship between 
voltage v and magnetic flux W: v = d W/dt.

8.4 The pneumatic system of Figure 8.30 consists of a pneumatic resistance Rg and 
a gas container whose capacity is Cg. The input pressure is pi and the output 
(container) pressure is po. Derive a state space model for this system.

8.5 Derive a state space model for the one-room thermal system of Figure 8.31. 
Consider the input is the outdoors temperature i2, whereas the output is the 
indoor temperature i1. The enclosed space has a thermal capacity Cth and 
the four identical walls each have a thermal resistance Rth.

fiGure 8.27

Translatory Mechanical System with 
Springs, Damper, and Displacement Input.

u

z
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c

fiGure 8.28

Series Electrical System with Resistor, 
Inductor, Capacitor, and Voltage Source.
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R
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8.6 The MEMS system of Figure 8.32 is formed of two shuttle masses m1 and m2 
coupled by a serpentine spring and supported separately by two pairs of iden-
tical beam springs. The shuttle masses are subjected to viscous damping and 
acted upon by two electrostatic forces f1 and f2. Use a lumped-parameter model 
of this MEMS device and obtain a state space model for it by having an output 
vector formed of the two masses’ displacements and velocities.

8.7 Find a state space model for the translatory mechanical system of Figure 8.33 
considering that the input is the force f applied at the chain’s free end and the 
output vector contains all relevant displacements.

8.8 Derive a state space model for the electrical system of Figure 8.34, where 
vi is the applied  (input) voltage. Consider the output is formed of the relevant 
 currents in the circuit and the output voltage vo. Known are R, L, and C.

8.9 The liquid system shown in Figure 8.35 is formed of two tanks of capacitances 
Cl1 and Cl2 and two valves of resistances Rl1 and Rl2. Formulate a state space 
model for it by considering the input to the system is the volume flow rate qi 
and the pressure p3; the output consists of the  pressures at the tanks’ bottoms, 
p1 and p2.

fiGure 8.29

Electrical Circuit with Current Source.
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fiGure 8.30

Pneumatic System with Resistance and 
Capacitance.
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fiGure 8.31

Four-Wall, One-Room Thermal System.
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8.10 Find state space models for the SISO dynamic systems represented by the 
 following differential equations, where y is the output and u is the input:

(a) y y y y u6 2 6 3+ + + =q p o o.

(b) y y y u u3 5 3+ + = +p o p .

8.11 Derive a state space model for the rotary mechanical system of Figure 8.36, 
which is formed of a cylinder with a mass moment of inertia J, a spring of 
stiffness k, and two dampers defined by the damping coefficients c1 and c2. The 
input is the rotation angle iu and the output is the cylinder rotation angle.

8.12 Obtain a state space model for the electrical system of Figure 8.37, where the 
applied voltage vi is the input and the voltage vo is the output. Known are R, L, 
and C.

8.13 Use a lumped-parameter model for the single-DOF mechanical microacceler-
ometer of Figure 8.38. Find a transfer function model of this system and con-
vert it to a state space model. The five identical massless beams have a length 
l = 100 nm, their cross-section is square with a side of a = 2 nm, Young’s 
modulus is E = 150 GPa, and the mass of the central plate is 200 ng. Use the 
state space model and MATLAB® to calculate and plot the mass displacement 
when a force f = 10-8d(t) N is applied to the plate. Ignore damping and inertia 
contributions from the beams.

fiGure 8.33

Translatory Mechanical System with 
Springs, Damper, Mass, and Force Input.

f
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fiGure 8.34

Two-Stage Electrical System.
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fiGure 8.35

Two-Tank Liquid-Level System.
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8.14 Use complex impedances to determine the transfer function of the electrical 
system shown in  Figure 8.39, and then convert the transfer function model into 
a SISO state space model using  analytical derivation. Use MATLAB® to plot 
the output voltage as a function of time using the state space model. Known are 
R = 450 X, L = 500 mH, C = 80 nF, and vi = 90 V.

8.15 Transform the state space model of the electrical system of Problem 8.12 
and pictured in Figure 8.37 into a transfer function for R = 270 X, L = 6 H, 
and C = 300 nF. Use analytical and MATLAB® calculations.

8.16 Convert the state space model of the MEMS device of Problem 8.6 and 
shown in Figure 8.32 into the corresponding transfer function matrix model 
by means of analytical derivation. Use MATLAB® to confirm the analytical 
result. Known are m1 = 3 # 10-11 kg, m2 = 4 # 10-11 kg, damping coefficients 
c1 = c2 = 0.1 N-s/m, stiffness of beam springs k1 = 2 N/m and stiffness of 
middle spring k = 3 N/m.

8.17 Derive a state-space model for the mass-spring lever system sketched in 
 Figure 8.40, which  vibrates in a vertical plane. Assume the elastic (spring) 
force is  defined as fe = z + ½z2 (where z represents the vertical displacement 

fiGure 8.36

Rotary Mechanical System.
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fiGure 8.37

One-Stage Electrical System with Resistor, 
Inductor, and Capacitor.

vi

C 

voLR

fiGure 8.38
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of the spring end attached to the lever) and the rod is  massless. Linearize the 
obtained model by considering small vibrations about the equilibrium position. 
Hint: Formulate the dynamic equation of motion about the static equilibrium 
position.

8.18 Consider an initial rotation angle of 5° is applied to the pivoting rod of the lever 
system studied in Problem 8.17 and shown in Figure 8.40. Solve the linearized 
state space model using the state transition matrix method; also use Simu-
link® to solve both the original nonlinear and the  linearized state space models. 
Known are m = 0.6 kg, l = 0.4 m, and k = 80 N/m.

8.19 An RLC series circuit with a voltage source v has a nonlinear resistor whose 
voltage varies as vR = 300(i)3/2, where i is the current through the components. 
Derive a nonlinear state space model for this system and obtain the linearized 
state space model corresponding to an equilibrium point defined by ie ! 0 and 
(di/dt)e = 0.

8.20 For the electrical system of Problem 8.19 consider that the equilibrium point 
corresponds to the initial moment where ie = 5 mA. Known also are L = 0.1 H, 
C = 0.002 F, and the source voltage, which is v = te-3t V. Solve the linearized 
state space model using the state transition matrix; also use Simulink® to solve 
both the original nonlinear and the linearized state space models.

8.21 The transfer function of a SISO dynamic system is G(s) = (3s + 1)/(2s2 + 
s + 4). Use  MATLAB® to determine the corresponding zero-pole-gain model, 
then  utilize the resulting zpk model to derive a state space model. Also obtain 
a state space model directly from the transfer function model. If the two state 
space models are different, explain the discrepancy.

8.22 Use the state space model derived for the mechanical system of Problem 8.7 
and shown in Figure 8.33 together with the state transition matrix method to 
solve for the mass displacement. Known are m = 0.8 kg, c = 70 N-s/m, k1 = 
100 N/m, k2 = 130 N/m, and f = 40d(t).

fiGure 8.39

Single-Stage Operational-Amplifier 
 Electrical System.
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fiGure 8.40
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8.23 Apply the state space approach and the state transition matrix to find the 
 currents in the circuit of Figure 8.41 when an initial charge q0 = 0.4 C is 
 applied to the capacitor. Plot these currents in terms of time when known are 
R1 = 20 X, R2 = 30 X, L = 0.6 H, and C = 0.01 F.

8.24 The homogeneous state space model of a dynamic system is defined by the 
matrices

{ }[ ]
.

; [ ]A C
0
120

1
0 1

1 0=
- -

=; E

 Use MATLAB® to plot the system response y(t) if the following initial 
 condition is applied: y(0) = 0.02.

8.25 Consider the electrical system of Problem 8.3(a) and represented in 
 Figure 8.29. Apply the state transition matrix method to the state space 
 model derived for this system to calculate and plot the voltage that is rel-
evant. Known are R1 = 100 X, R2 = 80 X, C = 5 mF, i = 1A and zero initial 
conditions.

8.26 Consider the two-room thermal system of Figure 8.42. Derive a state space 
model for the system and use MATLAB® to plot the two room temperatures 
i1 and i2 when the outside temperature is io = 35°C and the initial room 
 temperatures are i1(0) = 27°C and i2(0) = 16°C. All walls are identical and 
of dimensions 8 m # 4 m # 0.2 m; the wall material thermal conductivity is 
k = 0.05 W/m-C. The rooms’ thermal capacitance is Cth = 220,000 J/K.

8.27 A dynamic system is defined by the state space matrices

[ ] ; [ ] ; [ ] { }; [ ]A B C D
1
3

0
80

1
0

1 0 2=
- -

=
-

= =; E ' 1 .

 Find the system response and plot it against time when an input u = 2 sin(20t) 
is applied to the system with zero initial conditions; use MATLAB® for that.

8.28 Find a state space model for the pneumatic system of Figure 8.43 knowing the 
input pressures pi,1 = 30 atm and pi,2 = 20 atm. Known also are the pneumatic 
resistances Rg1 = 2,000 m-1-s-1,Rg2 = 3,000 m-1-s-1, Rg3 = 1,000 m-1-s-1, and 
tank capacitances Cg1 = 0.0005 m-s2, Cg2 = 0.0004 m-s2. Use the state transition 

fiGure 8.41

Two-Mesh Electrical System with Initial Charge on Capacitor.

C
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matrix method , as well as Simulink®, to find and to plot the pressures in the two 
containers.

8.29 A parallel RLC circuit is connected to a voltage source that provides a 
 sinusoidal voltage v = 80 sin(2t) V. It is also known that L = 0.6 H and C = 
380 nF. Plot the currents in the three components by using Simulink®, when 
an initial charge q0 = 0.1 C is applied to the capacitor and

(a) The resistor is linear with R = 80 X.

(b) The resistor defined at (a) has a saturation nonlinearity (discontinuity) 
 defined by a limit voltage of 70 V.

8.30 Two bodies of masses m1 = 1.2 kg and m2 = 1 kg are connected by a dashpot 
(spring and damper) defined by c = 90 N-s/m and k = 110 N/m. The bodies 

fiGure 8.43

Pneumatic System with Two Containers and Ductwork.
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slide on a horizontal surface with friction. The coefficient of static friction is 
ns = 0.35 and the coefficient of kinematic friction is nk = 0.22. A sinusoidal 
force f = 0.5 sin(5t) N acts on the body of mass m2. Find a state space model of 
this mechanical system and determine its time response using Simulink® when 
nonlinear effects of Coulomb friction are considered.

suggested reading
H. Klee, Simulation of Dynamic Systems with MATLAB® and Simulink®, CRC Press, Boca 

Raton, FL, 2007.
N. S. Nise, Control System Engineering, 5th Ed. John Wiley & Sons, New York, 2008.
B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th Ed. John Wiley & Sons, New 

York, 2003
P. Marchand and O. T. Holland, Graphics and GUIs with MATLAB®, 3rd Ed. Chapman & 

Hall/CRC, Boca Raton, FL, 2003.

www.semeng.ir

www.semeng.ir


361

CHAPTER

Objectives

This chapter studies the frequency-domain behavior of dynamic systems by 
introducing and using the concept of complex transfer function, which is based on 
the transfer function of Chapter 7. 
The following topics are analyzed:

•	 Calculation of natural frequencies for conservative dynamic systems.

•	 Evaluation of the amplitude and phase angle of the steady-state response of SISO 
and MIMO dynamic systems for harmonic input by using the complex transfer 
function.

•	 Harmonic vibration transmission, absorption, and isolation.

•	 Sensing of mechanical vibrations with harmonic input.

•	 Cascading unloading systems with sine input by means of the complex transfer 
function.

•	 Filtering applications by using electrical and mechanical systems.

•	 Utilization of specialized MATLAB® commands to model and solve frequency-
domain problems.

intrOductiOn
Two main themes are analyzed in this chapter, both based on a particular form of 
the transfer function, which is known as the complex transfer function. One topic 
utilizes the characteristic polynomial, which is the denominator of the transfer func-
tion for SISO systems and the denominator of the transfer function matrix for MIMO 
systems, to calculate the natural frequencies of conservative dynamic systems. The 
other important topic analyzes the steady-state response when the input (or forcing) 
to a dynamic system is harmonic (sinusoidal mainly). The output, in that particular 
case, can be determined from the input and the complex transfer function, which is 

9Frequency-Domain  
Approach

© 2010 Elsevier Inc. All rights reserved.
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362 CHAPTER 9 Frequency-Domain Approach

obtained from the regular transfer function G(s) for SISO systems (or transfer func-
tion matrix [G(s)] for MIMO systems) using the substitution s = j~. The frequency-
domain response consists of the output amplitude and phase angle defined in terms of 
frequency, which becomes the variable. The two resulting graphical representations 
are known as Bode diagrams, and MATLAB® enables plotting the magnitude (ratio 
of the output to the input amplitudes) and the phase angle between output and input 
by built-in functions. Vibration transmission, vibration reduction or isolation, as well 
as cascading nonloading dynamic systems and electrical/mechanical filters, are ana-
lyzed in the frequency domain. MATLAB® conversion between frequency-response 
data and zero-pole-gain, transfer-function, and state space models is also examined.

9.1 the cOncept Of cOmplex transfer functiOn in 
steady-state respOnse and frequency-dOmain 
analysis

One section of this chapter is devoted to calculating the natural frequencies of conser-
vative dynamic systems (of order two or higher) by means of a methodology relying 
on a particular expression of the transfer function that uses j~ instead of s as variable. 
Consider a single-DOF conservative translatory mechanical system formed of a mass 
m and a spring k. Its natural frequency, as seen in Chapter 2, is /k mn~ = . Let us 
attempt to determine this natural frequency by utilizing the transfer function. When 
a “dummy” force u(t) is considered to act on the mass aligned with the mass motion 
coordinate y(t), the following transfer function results, as discussed in Chapter 7:

 ( )
( )
( )

G s
Y s

U s ms k
1
2

= =
+

 (9.1)

The variable s is complex, as seen in Chapter 5, and for the particular value s = j~ 
(where j 1= - ), the function of Eq. (9.1) becomes

 ( )G j
m k

1
2

~
~

=
- +

 (9.2)

which is known as the complex transfer function. Its denominator is the  characteristic 
polynomial; its roots are found by solving the characteristic equation, which, for this 
example, is

 0m k2~- + =  (9.3)

The root of Eq. (9.3) is the natural frequency of this single-DOF conservative 
mechanical system.

Another section of this chapter uses the same transfer function expression with 
j~ instead of s to evaluate the steady-state response (when time " 3) of dynamic 
 systems under sinusoidal input. The total solution (or time response) y(t) of a dynamic 
system to an input u(t) is the sum of the complementary solution (the solution of the 
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 homogeneous equation) yc(t) and a particular solution yp(t); that is, y(t) = yc(t) + 
yp(t). The complementary solution is related to the inherent properties of a system, 
whereas the particular (or steady-state) solution is connected to the specific input. 
Our focus in this chapter falls on the steady-state solution, which is ( ) ( ),limy y t

t
3 =

"3
 

under the assumption that the input is harmonic (sinusoidal, in particular). We dem-
onstrate that the complementary solution is zero when time " 3; therefore, the total 
solution consists of only the particular solution, the latter one  having a harmonic 
form. Before generalizing, let us solve the example of a first-order system.

Example 9.1
Determine the steady-state response of a first-order system for a sinusoidal input u (t) = 
U sin(~t).

Solution
A first-order system, as introduced in Chapter 1, is defined by the differential equation

 ( ) ( ) ( )y t y t Ku tx + =o  (9.4)

with x being the time constant and K the static sensitivity. As shown in Appendix A, the 
complementary solution to the homogeneous equation attached to Eq. (9.4) has the form

 ( )y t c ec
t

1= m  (9.5)

where m is the root of the characteristic equation:

 1 0xm + =  (9.6)

which gives m = −1/x; therefore, the particular solution of Eq. (9.2) becomes

 ( )y t c e /
c

t
1= x-  (9.7)

As the time constant is a positive quantity and c1 is a constant, it can be seen that

 ( ) ( )limy y t 0c t c3 = =
"3

 (9.8)

therefore, the total solution is identical to the particular solution when time goes to infinity:

 ( ) ( ) ( ) ( )lim limy y t y y t
t p t p3 3= = =
" "3 3

 (9.9)

There are several methods of determining the particular solution, such as the method of 
undetermined coefficients, which is used here. The particular solution is a linear combi-
nation of the input and its time derivative:

 ( ) ( ) ( )sin cosy t Y t Y tp 1 2~ ~= +  (9.10)
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Equation (9.10) is substituted into the differential Eq. (9.4) where u = U sin(~t). After 
identifying the sine and cosine factors in the resulting equation, the unknown coefficients 
Y1 and Y2 are found as

 ;Y
KU

Y
KU

1 1
1 2 2 2 2 2x ~ x ~

x~
=

+
= -

+
 (9.11)

Using basic trigonometry, Eq. (9.10) can be reformulated by means of Eqs. (9.11) as

 ( ) [ ( )]sin tany t
KU

t
1

p 2 2

1

x ~
~ x~=

+
+ --  (9.12)

which indicates that the particular solution is a sinusoidal function that has the same 
 frequency as the input function, a phase angle with respect to the input, and an amplitude 
that is a multiplier of the input amplitude.

Let us check that the response amplitude and phase angle can be obtained from a 
specific form of the system’s transfer function. The transfer function corresponding to 
Eq. (9.4) is

 G
( )
( )

( )
U s

Y s

s
K

s
1x

= =
+

 (9.13)

When the substitution s = j~ is used, Eq. (9.13) changes to

 ( )
( )

( )
G j

U j

Y j

j
K K K

j
1 1 12 2 2 2

~
~

~

x~ x ~ x ~

x~
= =

+
=

+
-

+
 (9.14)

G( j~) of Eq. (9.14) is a complex number whose modulus |G( j~)| and phase angle \ G( j~) 
are

 ( ) ( ) ( )| | ; tanG j
K

G j
1 2 2

1\~
x ~

~ x~{=
+

= = --  (9.15)

If we now compare Eqs. (9.12) and (9.15), it follows that

 ( ) ( ) ( )| | [ ]siny t G j U t G jp \~ ~ ~= +  (9.16)

In other words, the steady-state output characteristics can be obtained from the ampli-
tude and phase angle of G( j~), which is known as the complex (or sinusoidal) transfer 
function.

Figure 9.1 illustrates the main calculation steps involved in frequency-domain 
modeling and that enable finding the natural frequencies of conservative  systems 
and the steady-state response of dynamic systems under sinusoidal input. As 
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 Figure 9.1 indicates, the fundamental to this approach is the transfer function 
G(s) for SISO systems (or the transfer function matrix [G(s)] for MIMO  systems), 
which was the subject of Chapter 7. It is noteworthy that evaluating the behavior 
at infinity of a time-domain response to harmonic input shifts the analysis in the 
frequency domain because the amplitude and the phase angle of the sinusoidal 
steady-state response depend on the input frequency solely.

9.2 calculatiOn Of natural frequencies fOr 
cOnservative  dynamic systems

Using the characteristic polynomial of the complex transfer function (for SISO 
or  single-DOF systems) and the characteristic polynomial of the complex trans-
fer function matrix (for MIMO or multiple-DOF systems), the natural frequencies 
of conservative dynamic systems are calculated here analytically and by means of 
MATLAB®.

9.2.1 analytical approach
In the previous section, the use of the complex transfer function to calculate the natu-
ral frequency of a  conservative mechanical single-DOF sys tem is examined. That 
particular approach can be generalized as follows.

The free undamped behavior of second-order single-DOF systems is described 
by the differential equation

 ( ) ( )a y t a y t 02 0+ =p  (9.17)

Chapter 2 shows that the natural frequency resulting from Eq. (9.17) is

 a
a

n
2

0
~ =  (9.18)

LAPLACE DOMAINTIME DOMAIN

y (∞) = U  G( jω) sin[ωt +\G( jω)]

G(s )u(t ) = U sin(ωt )

G( jω) ωn

G( jω) ,\G( jω)

fiGure 9.1

Calculation of the Natural Frequencies and Steady-State Response Using the Complex 
Transfer Function Model and Frequency-Domain Analysis.
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Let us consider the forced undamped second-order system

 ( ) ( ) ( )a y t a y t u t2 0+ =p  (9.19)

The Laplace transform of Eq. (9.19) with zero initial conditions results in the transfer 
function

 ( )
( )
( )

G s
U s

Y s

a s a
1

2
2

0

= =
+

 (9.20)

During the modal motion, a single-DOF dynamic system undergoes harmonic (sinusoi-
dal or cosinusoidal) vibrations at the natural frequency ~n. It is mentioned in Chapter 
7 that, even though it relates the input to the output, the transfer function is solely 
descriptive of a system’s properties. The following characteristic equation results 
from the characteristic polynomial of Eq. (9.20), which is the denominator of G(s):

 a s a 02
2

0+ =  (9.21)

Using the substitution s = j~ in Eq. (9.21) results in

 a a 02
2 0~- + =  (9.22)

and this is actually the equation of the natural frequency as in Eq. (9.18). As a rule 
of thumb, we conclude that, for a free, undamped, single-DOF system the natural 
 frequency can be determined by solving the characteristic equation (which corre-
sponds to the characteristic polynomial, the denominator of the transfer function) 
and using the substitution s = j~.

The equation of the free response of multiple-DOF, second-order undamped 
 systems is of the form

 ( ) ( )[ ]{ } { }[ ]{ }a y t a y t 02 0+ =p  (9.23)

where {y(t)} is the output vector. The harmonic free response is of the form

 { ( )} { } ( )siny t tY ~=  (9.24)

which substituted in Eq. (9.23) leads to

 [ ] [ ] { }( ){ }a a Y 02
2 0~ +- =  (9.25)

Regarded as a system of algebraic equations with the unknown being the ampli-
tude vector {Y}, nonzero (nontrivial) solutions are possible only when the  system’s 
determinant is zero:

 ( [ ] [ ]) 0det a a2
2 0~- + =  (9.26)
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Equation (9.26), the characteristic equation, needs to be solved to find the natural 
frequencies of the free undamped response.

Let us turn our attention to modeling the forced response of undamped systems 
using the complex transfer function matrix approach, which means starting from the 
equation

 [ ]{ ( )} ( )[ ]{ } { ( )}a y t a y t u t2 0+ =p  (9.27)

where {u(t)} is the input or forcing vector. The Laplace transform with zero initial 
conditions is applied to Eq. (9.27), taking into account that the matrices [a2] and [a0] 
have constant components, which results in

 ([ ] [ ]){ ( )} { ( )}a s a Y s U s2
02 + =  (9.28)

The s-domain output vector {Y(s)} is found by left-multiplying Eq. (9.28) by the 
inverse of the [a2]s2 + [a0] matrix:

 { ( )} { ( )}([ ] [ ]) [ ( )]{ ( )}Y s a s a U s G s U s2
2

0
1= + =-  (9.29)

where

 [ ( )] ([ ] [ ])G s a s a2
2

0
1= + -  (9.30)

is the transfer function matrix. It is known that the denominator of an inverse 
matrix is the determinant of the original matrix, but [G(s)] is the transfer func-
tion matrix; therefore, its denominator is the characteristic polynomial. As a 
consequence, the characteristic equation corresponding to the transfer function 
matrix is

 ([ ] [ ]) ([ ] [ ]) 0det deta s a a s a2
2

0
1

2
2

0+ = + =-  (9.31)

Equation (9.31) employs the property that a nonsingular matrix (one whose deter-
minant is nonzero) and its inverse have the same determinant. As is the case with 
single-DOF systems, let us use s = j~ in Eq. (9.31), which produces Eq. (9.26), the 
known form of the characteristic equation for multiple-DOF systems.

Example 9.2
For the mechanical system of Figure 9.2(a) known are m1 = 1 kg, m2 = 1.8 kg, k1 = 200 N/m, 
k2 = 250 N/m. Assuming the two levers are massless and the motions are small, deter-
mine the natural frequencies of this system using the complex transfer function matrix 
and its characteristic equation.
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Solution
As discussed in Chapter 3, the masses and springs can be relocated conveniently on a 
lever, for instance, by having them all placed at the ends of the levers, at points A1 and 
A2, as shown in Figure 9.2(b). In doing so, the originally rotational system is transformed 
into a translational one, since the displacements are assumed small and all mechanical 
components are aligned to a vertical axis. In this situation, the coordinates y1 and y2 are 
the parameters defining the state of the system, which is therefore a two-DOF system. The 
transformed mass and spring parameters are

 ; ;m
l
l

m m m
l
l

m m k
l
l

k k
3
2

9
4

3 9
1

3 9
1

t t t1

2

1 1 2

2

2 2 1

2

1 1= = = = = =c c cm m m  (9.32)

The dynamic equations of motion for the two bodies are

 
( )

( )
m y k y k y y
m y k y y

t t

t

1 1 1 1 2 1 2

2 2 2 2 1

= - - -

= - -

p

p
)  (9.33)

Laplace transforming Eqs. (9.33) results in the following vector-matrix equation:
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-

-

+
== G* )4 3 (9.34)

Using s = j~, Eq. (9.34) becomes
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~

~

~

- + +

-

-
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== G* )4 3 (9.35)

Compared to the known format of a transfer function matrix, Eq. (9.35) indicates that the 
complex transfer function matrix is

fiGure 9.2

Lever Mechanical System: (a) Original System; (b) System with Relocated Components.
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 (9.36)

with

 ( )d m m m k m k m k k kt t t t t t t1 2
4

1 2 2 1 2 2
2

1 2~ ~= - + + +  (9.37)

being the characteristic polynomial. Using the numerical values of this example, the natu-
ral frequencies are ~n1 = 5.85 rad/s and ~n2 = 42.8 rad/s as obtained by solving the 
equation d = 0.

9.2.2 matlab® approach
As shown in previous chapters, the MATLAB® command eig yields the eigenvalues 
and eigenvectors of a square matrix, either in numeric or symbolic format. However, 
another command furnishes the natural  frequencies associated with a characteristic 
polynomial, in addition to providing the damping ratios. Let us analyze the follow-
ing example, which introduces the damp(sys) command (in the Control System 
Toolbox™), where sys is an LTI object (zero-pole-gain, transfer function, or state 
space) previously defined.

Example 9.3
Use MATLAB® and the damp command to calculate the natural frequencies of the 
mechanical lever system analyzed in Example 9.2 and sketched in Figure. 9.2.

Solution
After introducing the numerical values of the parameters, the following commands can be 
used to calculate the natural frequencies of the two-DOF mechanical system of Example 
9.2 and shown in Fig. 9.2:

s=tf('s');
g11=m1t*s^2+k1t+k2;
g12=-k2;
g22=m2t*s^2+k2;
ginv=[g11,g12;g12,g22];
g=inv(ginv);
damp(g)

and the return is
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Eigenvalue Damping Freq. (rad/s) 
-2.22e-016 + 5.85e+000i 3.80e-017 5.85e+000 
-2.22e-016 - 5.85e+000i 3.80e-017 5.85e+000 
-2.22e-016 + 5.85e+000i 3.80e-017 5.85e+000 
-2.22e-016 - 5.85e+000i 3.80e-017 5.85e+000 
5.33e-015 + 4.28e+001i -1.25e-016 4.28e+001 
5.33e-015 - 4.28e+001i -1.25e-016 4.28e+001 
5.33e-015 + 4.28e+001i -1.25e-016 4.28e+001 
5.33e-015 - 4.28e+001i -1.25e-016 4.28e+001 

It can be seen that the natural frequencies (the last column of the table) are indeed the 
ones obtained in Example 9.2, as expected.

9.3 steady-state respOnse Of dynamic systems tO 
harmOnic input

As presented in this section, analytical methods and MATLAB® can be used to evalu-
ate the steady-state response of dynamic systems being subjected to sinusoidal input 
(forcing) as shown in the following.

9.3.1 analytical approach
The steady-state response of SISO and MIMO dynamic systems are formulated and 
studied analytically.

SISO Systems
This section studies SISO systems in relation to the problem of harmonic excitation 
and the corresponding steady-state solution. It also introduces the main frequency 
response parameters for the second-order systems.

Steady-State Solution Under Harmonic (Sinusoidal) Input
The results obtained for the particular case of a first-order system (see Example 
9.1) can be extended to systems of higher order, as shown in the following. When 
the input is of harmonic form, u = U sin(~t), its relationship to the output and the 
  transfer function into the s-domain is

 ( ) ( )Y s G s
s

U
2 2~

~
=

+
 (9.38)

Equation (9.38) indicates that the total response contains contributions from the 
 system itself, represented by the transfer function G(s), and from the forcing (input), 
identified by the Laplace transform of U sin(~t). The partial fraction expansion on 
the right-hand side of Eq. (9.38) leads to

 ( ) ( ) ( ) ( )Y s G s
s j

c

s j

c
Y s Y si

i
c p

1 2

~ ~
= +

-
+

+
= +/  (9.39)
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where the sum is denoted by Yc(s), the Laplace transform of the complementary 
solution, and contains partial fractions resulting from G(s). The two-fraction sum 
denoted by Yp(s), the Laplace transform of the particular solution, is the expansion 
of the fraction on the right-hand side of Eq. (9.38). For a stable system (more on this 
topic in the website Chapter 11), the inverse Laplace transform of Yc(s) is zero when 
time goes to infinity for a system with losses; therefore, the steady-state response 
consists of only the particular solution, as demonstrated for first-order systems. As a 
consequence, we are interested in working with only

 ( )G s
s

U
s j

c

s j

c
2 2

1 2

~

~

~ ~+
=

-
+

+
 (9.40)

The constants c1 and c2 are determined using the cover-up method (see  
Chapter 6) as
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]]
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 (9.41)

A complex number can be written in phasor form, which is obtained using the trigo-
nometric definition of the complex number and Euler’s equations:

 ( ) ( ) ( ) ( )| | [ ( ) ( )]cos sinG j G j G j j G j\ \~ ~ ~ ~= +  

 ( )| |G j
e e

j
j

e e
2 2

j G j j G j j G j j G j

~=
+

+
-\ \ \ \~ ~ ~ ~- -^ ^ ^ ^h h h h

= G

 ( )| |G j ej G j~= \ ~^ h (9.42)

At the same time, the numbers G(j~) and G(−j~) in Eqs. (9.41) are complex conju-
gates and therefore have the same modulus; as a result, Eqs. (9.38), (9.39), and (9.40) 
result in

 ( ) ( )| |Y s U G j
j s j

e
j s j

e
2
1

2
1

p

j G j j G j

# #~
~ ~

=
-

-
+

\ \~ ~-

e
^ ^

o
h h

 (9.43)

Application of the inverse Laplace transform to Eq. (9.43) results in

 ( ) ( )| |y t U G j
j

e e
2p

j t G j j t G j

#~=
-\ \~ ~ ~ ~+ - +^ ^h h7 7A A

 

 ( ) ( )| | [ ]sinU G j t G j\~ ~ ~= +  (9.44)

Equation (9.44) shows that the steady-state response can be expressed as a sinusoidal 
function of time:

 ( ) [ ]siny t Y tp p ~ {= +  (9.45)
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where, by comparison to Eq. (9.44),

 ( ) ( )| | ;Y U G j G jp \~ ~{= =  (9.46)

In other words,

•	 The steady-state amplitude is obtained from the input amplitude U multiplied by 
the modulus of the complex transfer function |G( j~)| (when s = j in G(s)).

•	 The phase angle between the output and the input is the angle of the complex 
transfer function, \ G( j~).

The frequency response therefore consists of the two functions, the modulus of the 
complex transfer function and the phase of the same function expressed in terms of the 
frequency ~. Alternatively, these amounts are called the frequency response magnitude, 
denoted by M(~) and the frequency response phase, denoted by {(~). Performing a 
frequency-domain analysis means studying the two functions M(~) and {(~). As it 
results from the transfer function G(s), the complex transfer function G(j~) is the ratio 
of two complex-valued polynomials. Because a complex number can be formulated in 
phasor form, as in Eq. (9.42), the complex transfer function modulus is the ratio of the 
numerator to the denominator modulii, whereas the complex transfer function phase 
angle is the difference between the numerator and denominator phase angles.

Example 9.4
Determine the frequency response of the operational amplifier electrical system of 
 Figure 9.3 for sinusoidal input voltage and R = 220 X, L = 0.8 H, and C = 360 nF.

Solution
As seen in Chapter 7, the transfer function of this system is calculated based on imped-
ances as

 ( )
( )

( )
G s

V s

V s

Z

Z

R Ls
Cs

LCs RCs

1
1

i

o

1

2

2
= = - = -

+
= -

+
 (9.47)

fiGure 9.3

Operational Amplifier System with Input  Resistor-Inductor and Feedback Capacitor.
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and the corresponding complex transfer function is

 ( )G j
LC RC j

1
2

~
~ ~

=
-

 (9.48)

which is a complex number in standard algebraic form, whose modulus is

 ( ) ( )| |
| |

M G j
LC RC j C L R

1 1
2 2 2 2

~ ~
~ ~ ~ ~

= =
-

=
+

 (9.49)

The phase of the complex transfer function of Eq. (9.48) is

 1 11( ) ( ) tan tantanG j
L
R

L
R

0\{ ~
~ ~

- - == = - - -
b bl l (9.50)

For the numerical values of the electrical components, the magnitude and phase angle 
are plotted in Figure 9.4. Equations (9.49) and (9.50) indicate that both the magnitude 
and the phase angle become zero when ~" 3. As shown later in this chapter, the mag-
nitude behavior displayed in the frequency response of Figure 9.4 is that of a low-pass 
filter, which magnifies the input signal for a narrow low-frequency range and blocks it (or 
diminishes it) for higher frequencies.

Frequency Response Parameters of Second-Order Systems
The typical frequency response for second- or higher-order dynamic systems 
 displays a maximum in magnitude, which is known as resonant peak, denoted by 

fiGure 9.4

Magnitude and Phase Angle Plots for the Electrical System of Figure 9.3.
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Mr, and occurs at the resonant frequency ~r. The magnitude generally decreases 
for frequencies larger than a threshold frequency ~c (the cutoff frequency, also 
named bandwidth), where the output power amplitude becomes half the input power 
amplitude. Since the power amplitude of a sinusoidal signal is proportional to the 
square of the  amplitude of that signal, the cutoff frequency corresponds to a value of 

( ) /M 1 2~ =  or 0.707 of the magnitude. The slope of the magnitude curve around 
the cutoff frequency is the cutoff rate. Figure 9.5 plots the typical magnitude and 
phase angle curves in terms of frequency for a second-order system.

For a second-order system with unitary gain (K = 1), whose mathematical model 
is introduced in Chapter 1, the transfer function is

 ( )G s
s s2 n n

n

2 2

2

p~ ~

~
=

+ +
 (9.51)

The magnitude and phase angle are obtained from Eq. (9.51) by taking s = j~:

 ( ) ( )
( )

| |
( )

; ( ) tanG j M
1 2

1
1

2
2 2 2

1
2

~ b
b pb

{ b
b

pb
= =

- +
= -

-

-  (9.52)

where b = ~/~n. The resonant frequency is found by equating the derivative of M(b) 
to zero:

 
1 (2 )

4 ( 1 2 )

( )2
0

2 2 2 3

2 2

b pb

b b p
-

- +

- +
=

7 A

 (9.53)

fiGure 9.5

Magnitude and Phase Angle Plots  Illustrating the Frequency Response of a Typical 
Second-Order System.
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fiGure 9.6

Magnitude as a Function of the Frequency Ratio.
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The valid solution of Eq. (9.53) is

 1 2r
2b p= -  (9.54)

therefore, the resonant frequency is

 1 2r n
2~ ~ p= -  (9.55)

Real values of the resonant frequency are possible only for 1 2 02$p- , which 
means that ..1 2 0 707#p =  For damping ratios that are larger than 0.707, there 
is no resonance at all. For all p # 0.707, the resonant peak is found by combining 
Eqs. (9.52) and (9.54):

 M
2 1

1
r 2p p
=

-
 (9.56)

It can be seen that the resonant frequency depends on both the natural frequency 
and damping ratio, while the resonant peak depends only on the damping ratio. 
Figure 9.6 plots M(b) for three values of the damping coefficient: p1 = 0.1, p2 = 0.4, 
and p3 = 0.707.

The cutoff frequency is obtained by taking M 1 2=  in Eq. (9.52), which 
results in

 1 2 4 4 2c n
2 4 2~ ~ p p p= - + - +  (9.57)

www.semeng.ir

www.semeng.ir


376 CHAPTER 9 Frequency-Domain Approach

Note: The natural frequency and damping ratio are properties intrinsic to 
 second-order systems, which are defined through the characteristic polynomial of 
Eq. (9.51). As a consequence, ~n and p can be determined from transfer functions 
with numerators that are different from the one of Eq. (9.51).

Example 9.5
A microcantilever of constant rectangular cross-section has a thickness h = 200 nm, a 
width w = 5 nm, and a length l = 50 nm. The microcantilever undergoes harmonic out-
of-plane bending vibrations. Use lumped-parameter modeling to determine the cantilever 
mass density t as well as the damping coefficient c of the gaseous environment. Consider 
that known are the following parameters: ~n = 5.65 # 105 rad/s, ~r = 5.1 # 105 rad/s, 
and E = 160 GPa.

Solution
The damping ratio is determined from Eq. (9.55) as

 
2
1

1
n

r

2

2

p
~

~
= -f p  (9.58)

which yields p = 0.3043. As shown in Chapter 3, the lumped parameter model of a 
 cantilever consists of a spring of equivalent stiffness ke, given in Table 3.2, and a pointlike 
equivalent mass me, provided in Table 3.1, with the natural frequency /k mn e e~ = . This 
latter equation yields

 
l

Eh

33
35

n
2 4

2

t
~

=  (9.59)

thus, t = 3402.2 kg/m3. The damping coefficient is calculated as

 c m lwh2 2
140
33

n e n#p~ p t ~= =  (9.60)

whose numerical value is c = 1.38 # 10-8 N-s/m.

MIMO Systems
MIMO systems can also be rendered into frequency-domain models using either 
the transfer function matrix or the state space modeling approach, as shown in the 
 following. Also discussed are superimposing several sinusoidal inputs and calculat-
ing the total steady-state response of MIMO systems.

Complex Transfer Function Matrix Approach
For MIMO systems under the action of harmonic input, it is necessary to firstly 
determine the  transfer function matrix |G(s)|, which creates a relationship between 
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the input {U(s)} and output {Y(s)} Laplace-transformed vectors, such as the ones 
studied in Chapter 7. The next step is to use the substitution s = j~ to obtain the 
complex transfer function matrix |G(j~)|. Let us analyze an example then generalize 
the frequency response of MIMO systems.

Example 9.6
Determine the frequency response of the two-vessel pneumatic system shown in Figure 
5.19 of Example 5.12, evaluating the pressures in the two vessels when the input pressure 
pi is sinusoidal. Known are the  following pneumatic system properties: Rg1 = 500 m−1s−1, 
Rg2 = 600 m−1s−1, Cg1 = 0.004 m-s2, Cg2 = 0.005 m-s2.

Solution
By combining the second and fourth of Eqs. (5.119), the following equation is 
 produced:

 
( )

( ) ( )R C
dt

dp t
p t p t 0g g

o
o2 2 + - =  (9.61)

A similar combination of the first, third, and fourth of Eqs. (5.119) results in

 
( )

( ) ( ) ( )R C
dt

dp t

R

R
p t

R

R
p t p t1g g

g

g

g

g

o i1 1
2

1

2

1
+ + - =f p  (9.62)

Equations (9.61) and (9.62) can be assembled in vector-matrix form:
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which indicates the pneumatic system is a single-input, two-output system, so a 
MIMO system. The input is pi and the output components are the two pressures in the 
 vessels, p and po. The form of this system is

 ( ) ( ) ( )a y t a y t u t1 0+ =o6 6@ @" " ", , , (9.64)

By applying the Laplace transform with zero initial conditions to Eq. (9.64), a relationship 
{Y(s)} = [G(s)] {U(s)} is obtained; the transfer function matrix [G(s)] is

 [ ( )] ( [ ] [ ])G s s a a
1 0

1= + -  (9.65)
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By using the numerical values of this example and MATLAB®, the following transfer matrix 
is obtained:

 [ ( )]

.

.
G s

s s

s

s s

s s

s s

s
12 15 2

6 2

12 15 2
2
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1 67
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=
+ +

+

+ +
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S
S
SS

V

X

W
W
W
WW
 (9.66)

If G11(s), G12(s) are the elements of the transfer function matrix on the first row, and G21(s), 
G22(s) are the elements on the second row, the following relationship can be  written in the 
Laplace domain:

 
( )

( )
( )
( )

( )
( )

( )P s

P s
G s
G s

G s
G s

P s

0o

i11

21

12

22
= < F* )4 3 (9.67)

which can be reduced to the following scalar equations:
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( ) ( ) ( )

P s G s P s
P s G s P s
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o i
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21

=
=

(  (9.68)

The transfer functions of Eqs. (9.68) are defined in Eq. (9.66). Each equation in Eq. (9.68) 
represents a SISO system, which can be treated separately. The complex transfer  functions 
corresponding to G11(s) and G21(s) are needed first. They are

 ( ) ( );G j
j

j
G j

j2 12 15

2 6

2 12 15
2
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~ ~
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- +
 (9.69)

The following modulii and phase angles are obtained from Eqs. (9.69):
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 (9.70)

and these amounts are plotted in Figure 9.7.
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fiGure 9.7

Magnitude and Phase Angle Plots for a Pneumatic System with One Input and Two 
 Outputs.
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The previous example with one input and two outputs needs only two transfer 
functions of the 2 # 2 transfer function matrix to obtain the two outputs. For the gen-
eral MIMO case, where there might be m inputs and p outputs, the general relation-
ship between the input vector and output vector through the transfer function matrix 
is written directly with s = j~ as

 { ( )} [ ( )]{ ( )}Y j G j U j~ ~ ~=  (9.71)

The complex transfer matrix [G( j~)] contains p # m transfer functions connecting 
every component of the input vector to every component of the output vector. To 
graphically qualify the frequency response of such a system, p # m magnitude plots 
and an equal number of phase angle plots are needed.

Linear Superposition for Time Response
The time response of a MIMO system under multiple sinusoidal input can be found 
through the linear superposition of individual responses, since any component of the 
output vector results as the sum of all input components multiplied by their corre-
sponding transfer functions. The output component i, for instance, is computed as

 ( ) ( ) for . . .| | ( ), , , ,siny t G j U t i p1 2i ik k k k ik
k

m

1
~ ~ {= + =

=

/  (9.72)
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fiGure 9.8

Lumped-Parameter Mechanical  System with Harmonic Input Forces.
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where Re and Im are the real and imaginary parts of the complex transfer function 
Gik, which connects the output i to the input k. In Eq. (9.72), Uk is the amplitude of the 
sinusoidal input k and {ik is the phase angle between the output i and the input k.

Example 9.7
Consider the mechanical system of Figure 9.8 with m1 = m2 = m3 = 1 kg, c1 = c2 = 2 N-s/m, 
k1 = k2 = k3 = 1 N/m is acted upon by the forces u1 = 5 sint; u2 = 2 sin(3t). Both forces are 
expressed in Newtons.
a. Determine and plot the magnitude and phase angle that define the frequency response 

connecting the output y1 and the input u1.
b. Express the steady-state outputs (time responses) of this system under the given force 

inputs.

Solution
a. The mechanical system is a two-input, three-output one and its equations of motion are
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 (9.74)

 Application of the Laplace transform to Eqs. (9.74) with zero initial conditions gener-
ates the equation
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 Equation (9.75) enables solving for Y1(s), Y2(s) and Y3(s) in terms of U1(s) and U2(s) as
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 The transfer functions of the matrix in Eq. (9.76) are, for the numerical values of this 
example,
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 (9.77)

 The magnitudes and phase angles of the transfer functions in Eq. (9.76) are 
 determined in the regular manner using s = j~. The magnitude of each is then the 
ratio of the numerator modulus to the denominator modulus and the phase angle 
is the  difference between the numerator’s phase angle and the  denominator’s 
phase angle. Figure 9.9 shows the frequency domain plots corresponding to 
G11(s).

b. By following the generic Eq. (9.72), the three outputs are expressed as
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 (9.78)

 with U1 = 5 and U2 = 2 being the amplitudes of the inputs, and the six complex 
transfer functions G11( j~) through G32( j~) can be obtained from the corresponding 
ones listed in the transfer function matrix of this example for G11, G21, and G31 when 
~ = 1 rad/s, as well as for G12, G22, and G32 when ~ = 3 rad/s. After determining the 
modulii and phase angles of all the complex transfer functions, they are substituted 
correspondingly into Eqs. (9.78). The input forces are plotted in Figure 9.10 and the 
steady-state time responses are plotted in Figure 9.11.
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fiGure 9.10

Sinusoidal Input Forces.
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fiGure 9.9

Magnitude and Phase Angle Plots for the G11(j~) Transfer Function.
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fiGure 9.11

Steady-State Response of Two-Input, Three-Output Dynamic System.
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9.3.2 using matlab® for frequency response analysis
MATLAB® can use built-in functions either in the core program or in the Control 
System Toolbox™ that generate frequency-domain calculations and plots quite sim-
ply. Specifically, it is possible to determine the frequency response of dynamic sys-
tems through Bode plots using either the transfer function or state space models. 
Discrete frequency data can also be used to obtain frequency plots. Conversions from 
zero-pole-gain, transfer function, or state space models to a frequency-response data 
model can be performed using MATLAB®.

The Logarithmic Scale and Bode Plots
Frequency plots similar to the ones shown thus far in this chapter but that  utilize 
logarithmic scales for magnitude and frequency are known as Bode plots. The 
Control System Toolbox™ of MATLAB® has the bode(sys) command to 
obtain the two plots (magnitude and phase versus frequency) once a linear time-
invariant model is available, as defined by sys. Traditionally, Bode plots utilize a 
 logarithmic scale for the frequency, because using log10~ instead of simply ~ pro-
vides a wider dynamic range (for instance, when ~ = 1000 rad/s, the logarithmic 
counterpart is only log10 ~ = 3). Another reason for using a logarithmic scale for 
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magnitudes is that the output, input, and complex transfer function amplitudes are 
connected in a product form as Y( j~) = G( j~)U( j~), which, logarithmic scale, 
becomes

 ( ) ( ) ( )| | | | | |log log logY j G j U j10 10 10~ ~ ~= +  (9.79)

Therefore, an additive relationship between amplitudes (magnitudes) is obtained 
using the log scale. For cascading systems (serially connected systems without inter-
stage loading), as is shown later in this chapter, where the total magnitude is the 
product of individual systems’ magnitudes, using addition instead of multiplication 
is particularly advantageous.

The actual unit being used for the magnitude M(~) in a Bode plot is known as 
decibel, and the number of decibels is calculated as 20 log10M(~). The magnitude 
is the ratio of two signal amplitudes, and power is proportional to the square of 
the amplitude (such as in electrical systems where power = resistance # current2); 
in other words, |G( j~)|2 = M(~)2 is proportional to the power ratio. A factor of 
10 in a power ratio is named bel (in honor of the telephone’s inventor, Alexander 
Graham Bell), and the number of bels corresponding to the magnitude is # bells = 
log10|G( j~)|2. Considering that 1 bel has 10 decibels, the number of decibels is # 
decibels = 10 log10|G( j~)|2 = 20 log10|G(  j~)|.

In MATLAB®, MIMO systems can also be handled by means of the transfer func-
tion matrix, and the frequency response can readily be determined as illustrated in 
the following example.

Example 9.8
Use MATLAB® to plot the Bode diagrams corresponding to the transfer function matrix
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Solution
The following MATLAB® command sequence can be used

>> g11 = tf(1,[1,2,10]);
>> g12 = tf([1,2],[1,2,10]);
>> g21 = tf(–2,[1,2,10]);
>> g22 = tf([2,0],[1,2,10]);
>> m = [g11,g12;g21,g22];
>> bode(m)
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fiGure 9.12

Bode Plots for a Two-Input, Two-Output Dynamic System.
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to generate the Bode diagrams of Figure 9.12. The 2 # 2 transfer function matrix 
indicates that the  system is a two-input, two-output one; therefore, four plot pairs 
resulted.

Plotting the Frequency Response from a State Space Model
The MATLAB® bode command can be used in conjunction with a state space model 
directly, unlike any previous conversion to transfer function matrix model. Let us 
study the following example.

Example 9.9
A state space model is defined by the following matrices:

[ ] [ ] [ ] [ ]; ; ;
.

A B C D
1
3

0
2

1

1
0
1

1
4

2

0 5
=
-

=
-

=
-

=
-

; ;E E) )3 3

Plot the frequency response corresponding to this system model.
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Solution
According to the matrices’ dimensions, the system has two outputs (the number of rows 
of [C]) and one input (number of columns of [B] and [D]). We can use the following 
 MATLAB® command sequence

>> a  = [1,0;-3,2];
>> b = [1;-1];
>> c = [0,1;-1,4];
>> d = [-2;0.5];
>> sys = ss(a,b,c,d);
>> bode(sys)

to obtain the plots of Figure 9.13. Two pairs of plots, as expected, are produced by relating 
the single input to the two outputs.

Frequency Response Data Handling
MATLAB® possesses the capability of handling frequency response data by creating 
a linear time invariant (LTI) model. The command frd (r,f)—which stands for 
frequency response data, with r being a vector that contains the frequency response 

fiGure 9.13

Bode Plots for a Three-Input, Two-Output Dynamic System.
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values (the values of G( j~)) and f being the vector comprising the corresponding fre-
quency values—can be used in situations when discrete experimental or numerically 
generated data available in the frequency domain need to be further analyzed. For 
instance, Bode plots can be drawn for such data, as shown in the following example.

Example 9.10
Frequency response data are furnished by a frequency analyzer corresponding to the 
frequency range from 0 to 100 rad/s with an increment of 10 rad/s as follows:

0.1000, -0.0246-0.0031i, -0.0052-0.0003i, -0.0023-0.0001i, 
-0.0013, -8.0021e-004-1.6123e-005i, -5.5038e-004-9.3211e-
006i, -4.0675e-004-5.8120e-006i, -3.1004e-004-3.9342e-006i, 
-2.5089e-004-2.7127e-006i, -2.0038e-004-2.0078e-006i

where 1i j= = - . Plot the magnitude of these data in terms of frequency and deter-
mine G( j~) for ~ = 88 rad/s.

Solution
We need to define the frequency response vector r as well as the frequency vector f first 
to be able to call the frd function. Once the frd LTI model has been created, the com-
mand bodemag can be used to plot just the magnitude of the complex transfer func-
tion. Retrieving data from the frequency response, other than the discrete values that 
have been provided, can be done by means of the freqresp command. The following 
 MATLAB® code can be used to solve this problem:

>> f = 0:10:100;
>> r = []; % input-given values of G(j~) – not included here
>> g = frd(r, f);
>> bodemag (g)
>> freqresp (g,88)

The last command returns the value of -2.6068e-004-2.9914e-006i, whereas the 
bodemag  command gives the plot of Figure 9.14.

Frequency Response Model Conversion
MATLAB® allows conversion to an frd model from any of the other three (previ-
ously defined) linear time invariant (LTI) models: zpk (zero-pole-gain), tf (transfer 
function), and ss (state space) models. Conversion to a frequency response model 
is possible by means of the command frd (sys, f), where sys is an LTI object 
(zpk, tf, or ss) and f is a frequency vector. The frd vector returns  frequency 
response data for the specified frequencies. It should be noted that conversion from 
an existing frd model into any of the zpk, tf, or ss models is not possible in 
MATLAB®.
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Example 9.11
Obtain the frequency response data model when known are
a. A zero-pole-gain model for which: the zeroes are 1 and 2; the poles are 0, 3 (of the 

second order of  multiplicity), 5; the gain is 1.5.
b. A transfer function model defined by 

( )
( )

. .
G s

s s s s

s s

11 39 45
1 5 4 5 3

3 2

2

=
- + -

- +

 Plot the magnitude and phase angle corresponding to the [0; 1000] rad/s frequency 
range for each model.

Solution
a. The following MATLAB® program results in the Bode plots of Figure 9.15:

>> z = [1,2];
>> p = [0,3,3,5];
>> f = zpk(z,p,1.5);
>> om = 0:1:1000;
>> g = frd(f,om);
>> bode(g)

fiGure 9.14

Bode Plot of Magnitude from Frequency Response Data.
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b. The following MATLAB® commands

>> f = tf([1.5,-4.5,3],[1,-11,39,-45,0]);
>> om = 0:1:1000;
>> g = frd(f,om);
>> bode(g)

generate the same plot of Figure 9.15; the reader is encouraged to check the reason 
for that.

9.4 frequency-dOmain applicatiOns
This section studies several applications where frequency-domain analysis is  utilized: 
vibration  transmission in mechanical systems, serially connected systems, and electrical/
mechanical filters.

fiGure 9.15

Bode Plots Resulting from a Zero-Pole-Gain Model Data.
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9.4.1 transmissibility in mechanical systems
Under harmonic input, mechanical vibration can be transmitted among adjacent sys-
tems by either displacement or force. Vibration absorption, isolation, and measurement 
are also discussed in this section.

Transmissibility for Motion Input, Mass Detection by the Frequency 
Shift Method in MEMS
In Chapter 3, the frequency shift method is discussed in connection with the possibil-
ity of detecting small amounts of matter that attach to microresonators through the 
change (shift) in the natural frequency of the original device. We saw that variations 
in either the bending or the torsional natural frequencies are generally used by moni-
toring the natural frequencies of micro- and nano-cantilevers or bridges. In either 
of the cases, the flexible microstructure is excited over its frequency range and the 
natural frequencies of interest are measured. After mass deposition takes place, fre-
quency excitation is applied again, and the shifts in the original natural frequencies 
are detected, which enables evaluating the quantity of deposited mass and its posi-
tion. Lumped-parameter models can be used to study such problems in the frequency 
domain. Figure 9.16 illustrates the case where the bending mode is of interest and the 
cantilever or the bridge is modeled by lumped parameters.

Lumped damping (or equivalent damping) as accounting for all system losses is 
also considered here. The input is a sinusoidal motion applied by the vibrating plat-
form to the mass-spring-damper system. The equation of motion of the mass is

 ( ) ( )my c y u k y u= - - - -p o o  (9.80)

which can be rewritten as

 my cy ky cu ku+ + = +p o o  (9.81)

The following transfer function results after applying the Laplace transform to 
Eq. (9.81):

 ( )
( )
( )

G s
U s

Y s

ms cs k

cs k
2

= =
+ +

+
 (9.82)

fiGure 9.16

Lumped-Parameter Mechanical System with Input Harmonic Motion as Physical Model of 
a Microcantilever or Bridge Undergoing Out-of-Plane Bending Vibrations.
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Using s = j~, as well as the equations for natural frequency ~n, damping ratio p, and 
frequency ratio b, which have previously been defined as

; ;m
k

m
c

2n n
n

~ p~ b ~
~

= = =

changes Eq. (9.82) to

 ( )
( )

( )
G j

U j

Y j

j

j

1 2

1 2
2

~
~

~

b pb

pb
= =

- +

+
 (9.83)

The modulus of the ratio of two complex numbers is equal to the ratio of the modu-
lii of the same numbers. At the same time, Y(j~) and U(j~) are complex numbers; 
therefore, their modulii are also their amplitudes. It follows from Eq. (9.83) that

 ( )
( )

( )

( )
| |

| |

| |
TR G j

U j

Y j

U
Y

1 4

1 4
2 2 2 2

2 2

~
~

~

b p b

p b
= = = =

- +

+
 (9.84)

The modulus of the transfer function, which was shown to be equal to the ratio 
of the output amplitude Y to the input amplitude, is known as transmissibility and 
denoted by TR. Figure 9.17 plots the transmissibility corresponding to Eq. (9.84) 
in terms of the frequency ratio for several values of the damping ratio, such that the 
underdamped (p < 1), overdamped (p > 1), and critically damped (p = 1) cases are 
illustrated.

fiGure 9.17

Transmissibility as a Function of the Frequency Ratio for Various Damping Ratios.
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As Figure 9.17 shows, all curves pass through the points b = 0, TR = 1 and b = 
21/2, TR = 1 (these values of b are found by solving TR = 1). For these two frequency 
ratios, the amplitude transmitted to the body of mass m is equal to the input amplitude. 
The spike in transmissibility is visible for the small (underdamped) damping ratio of 
p = 0.1. It can be checked that when p " 0, the transmissibility " 3. For larger val-
ues of the damping ratio, including the critically damped and overdamped cases, the 
transmissibility curve flattens almost to superposition over TR = 1 for overdamping. 
It can also be seen in Figure 9.17 that for b > 21/2, TR < 1 irrespective of the damping 
ratio, which indicates that the output amplitude is less than the input amplitude.

Example 9.12
An external mass equal to Dm = 5 # 10−16 kg deposits at the free end of a rectangular 
cross-section microcantilever. Analyze the frequency spectrum before and after mass 
deposition by plotting the two transmissibility curves when the cantilever is supported 
on a vibratory table, as shown in Figure 9.16, and determine the value of the frequency 
shift. The cantilever is 90 nm long, 10 nm wide, and 120 nm thick. It is also known that  
E = 160 GPa, t = 2500 kg/m3. The damping coefficient is c = 1.55 # 10−9 N-s/m.

Solution
Similar to the generic derivation of the transfer function of Eq. (9.82), when the total mass 
that vibrates is m (the effective mass of the cantilever) plus Dm, the new transfer function is

 
( )
( )

( )
( )G

U s

Y s

m m s cs k

cs k
s

2D
= =

+ + +

+
l

l
 (9.85)

Using the substitutions utilized in the generic transmissibility derivation, the following 
modified  transmissibility is obtained:
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 (9.86)

where rm = Dm/m is the ratio of the deposited mass to the cantilever’s effective mass. 
The effective mass m and stiffness of the cantilever are calculated according to Tables 
3.2 and 3.1 as m = 6.364 # 10−14 kg, k = 9.48 # 10−4 N/m. It follows that the natural  
bending -related frequency of the cantilever is ~n = 1.22 # 105 rad/s. The damping ratio 
is p = 0.1 and the mass ratio becomes rm = 0.0079. With these values, the two transmis-
sibility functions of Eqs. (9.84) and (9.86) are
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 (9.87)

and Figure 9.18 shows the plot of the transmissibilities in terms of the frequency ratio.

www.semeng.ir

www.semeng.ir


 9.4 Frequency-Domain Applications 393

The precise frequency shift is computed by evaluating the difference between the 
original and altered natural frequency:

 m
k

m m
k

n n n~ ~ ~D
D

= - = -
+

l  (9.88)

For the numerical values of this problem, the difference of Eq. (9.88) is D~n = 476.65 rad/s.  
Approximate  frequency values can also be obtained by right clicking the peaks of the two 
plots of Figure 9.18.

Transmissibility for Force Input
In some situations, the input to a mechanical system is a harmonic force or torque 
instead of displacement, and the interest lies on how that force (or moment) is 
transmitted to other parts of the mechanical system as either force (moment) or 
 displacement; this connection is known as transmissibility for force input. Consider 
the mechanical system of Figure 9.19(a), where a sinusoidal force acts on a body of 
mass m connected to a fixed base through a damper spring with damping coefficient 
c and stiffness k. We want to compare the amplitude of the input force F to the ampli-
tude Fb, which is transmitted to the base.

Based on the free-body diagram of the mass and base, Figure 9.19(b), the equa-
tion of motion of the mass is

 my f f fd e= - -p  (9.89)

fiGure 9.18

Transmissibility and Frequency Ratio Change as a Result of Mass Addition on a Vibrating 
Nanocantilever.
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where fd is the damping force and fe is the elastic force. Using known relationships, 
Eq. (9.89) becomes

 my cy ky f+ + =p o  (9.90)

The force transmitted to the base fb is equal to the sum of the damping and elastic 
forces as the damper and the spring connect the moving body to the fixed base; 
therefore,

 f cy kyb = +o  (9.91)

Laplace-transforming Eqs. (9.90) and (9.91) with zero initial conditions results in the 
following transfer function after substituting Y(s) from one equation into the other:

 ( )
( )

( )
G s

F s

F s

ms cs k

cs kb

2
= =

+ +

+
 (9.92)

which is identical to Eq. (9.82), which expressed the transfer function between the 
input motion of the base U(s) and the output motion of the body Y(s). Since the input 
to this system is sinusoidal, the output is sinusoidal as well; therefore, the transmis-
sibility can be expressed as

 ( )
( )

( )

( )
| |

| |

| |
TR G j

F j

F j

F

F

1 4

1 4b b

2 2 2 2

2 2

~
~

~

b p b

p b
= = = =

- +

+
 (9.93)

where Fb is the amplitude of the force transmitted to the base, this force being 
expressed as

 ( )sinf F tb b ~ {= +  (9.94)

fiGure 9.19

Mechanical System with Input Harmonic Force: (a) Lumped-Parameter Model;  
(b) Free-Body  Diagrams.
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Example 9.13
Two identical electric motors that are synchronized and rotate in opposite directions are 
placed symmetrically on a rigid platform connected to the ground by means of two identi-
cal dashpot supports, as shown in Figure 9.20(a). The mass center of each rotor has an 
eccentricity e with respect to its rotation axis, as sketched in Figure 9.20(b). Determine 
the amplitude of the force transmitted to the ground when the  rotation frequency is one 
half the system’s natural frequency. Known are the mass of the platform and the motor 
stators, which is mp = 80 kg, the mass of one rotor mr = 0.5 kg, the damping coefficient 
c = 80 N-s/m, the spring stiffness k = 200 N/m, and the eccentricity e = 4 mm.

Solution
Figure 9.20(b) is an enlarged schematic view of the rotor’s center of mass; it rotates 
eccentrically about the bearings axis, which coincides with the geometric center of the 
motor placed on the right of Figure 9.20(a). The eccentricity produces a centrifugal force, 
whose vertical projection is

 ( ) ( )sin sinf f t m e ty c r
2~ { ~ ~ {= + = +  (9.95)

Due to synchronization between the two motors, a force identical to the one of Eq. (9.95) 
acts on the rotor on the left in Figure 9.20(a). The horizontal projections of the centrifugal 
forces on the two rotors cancel out because of opposite rotation directions, whereas the 
vertical projections are identical. As a consequence, Figure 9.21 shows the simplified, 
lumped-parameter physical model of the mechanical system.

The amplitude of the force acting on the mass m (which is m = mp + 2mr) is

 F m e2 r
2~=  (9.96)

The following equations can be written:

 
my cy ky f
f cy ky

2 2
2 2b

+ + =

= +

p o
o(  (9.97)

fiGure 9.20

Rigid Platform with Eccentric Motors and Damper-Spring Supports: (a) Schematic of  
the System; (b) Enlarged Sketch of the Right  Motor Showing Eccentricity and 
 Centrifugal Force.
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Application of Laplace transform with zero initial conditions to Eqs. (9.97) produces the 
following transfer function:

 ( )
( )

( ) 2( )
G s

F s

F s

ms cs k

cs k

2 2
b

2
= =

+ +

+
 (9.98)

which results in a transmissibility:

 ( )
( )

( )

( )
TR | |

| |

| |
G j

F j

F j

F

F

2 16

2 1 4b b

2 2 2

2 2

2
~

~

~

b p b

p b
= = = =

- +

+
 (9.99)

Combining Eqs. (9.96) and (9.99) yields

 
( )

F
m e

2 16

4 1 4
b

r n

2 2 2 2

2 2 2 2

b p b

b ~ p b
=

- +

+
 (9.100)

The natural frequency of the mechanical system is

 m
k2

n~ =  (9.101)

which results in a numerical value of ~n = 2.22 rad/s. The damping ratio is calculated as

 
m
c

2 n

p
~

=  (9.102)

Numerically, it is obtained that p = 0.22. With b = 0.5 and all the other numerical 
values of this example, the amplitude of the force transmitted to the base is Fb = 
0.0056 N.

Vibration Absorption and Vibration Isolation
When a harmonic force acts on a body that is placed on a fixed base through a damper 
spring, it is  possible to reduce the amplitude of the force transmitted to the support, 

fiGure 9.21

Lumped- Parameter Model of the Platform-Motors  Mechanical System.
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but it is impossible to completely eliminate it, as can be seen by  reformulating 
Eq. (9.99):

 
1 16( )

F
F2 1 4

b 2 2 2 2

2 2

b p b

p b
=

- +

+
 (9.103)

because 1 + 4p2b2 ! 0. One way of isolating (eliminating) the base force is adding a 
mass-spring  system to the existing system, as shown in the next example.

Example 9.14
A sinusoidal force acts on the mass-damper-spring mechanical system of Figure 
9.22(a). Study the possibility of reducing to zero the force transmitted to the fixed 
base by adding a mass-spring subsystem to the existing system, as suggested in 
Figure 9.22(b).

Solution
The equations of motion for the two-DOF mechanical system of Figure 9.22(b) are

 
( )
( )

m y k y y
my f k y y cy ky

a a

a

2 2 1

1 1 2 1 1

= - -
= - - - -

p
p o(  (9.104)

The force transmitted to the base results from the damper and spring contact and is 
expressed as

 f cy kyb 1 1= +o  (9.105)

fiGure 9.22

Mechanical System with Sinusoidal Input: (a)  Original System; (b) System with Added 
Mass and Spring.
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Laplace transforming Eqs. (9.104) and (9.105) results in

 
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

m s k Y s k Y s
ms cs k k Y s F s k Y s

F s cs k Y s

a a a

a a

b

2
2 1

2
1 2

1

+ =

+ + + = +
= +

*  (9.106)

Successive substitution of Y2(s) and Y1(s) from the first two Eqs. (9.106) into the third 
of Eqs. (9.106) results in

 
( )

( )

( ) ( )

( ) ( )

F s

F s

m s k ms cs k k k

cs k m s kb

a a a a

a a

2 2 2

2

=
+ + + + -

+ +
 (9.107)

The modulus of the base force can be now determined by means of the transmissibility as

 ( ) ( )| | | |
| ( ) ( ) |

| | ( )
F F j TR F s

m s k ms cs k k k

k c j k m
Fb b

a a a a

a a

2 2 2

2

~
~ ~

= = =
+ + + + -

+ -
 (9.108)

Equation (9.108) indicates that when

 m
k

a

a 2~=  (9.109)

the amplitude of the force transmitted to the base is zero. In other words, when the natu-
ral frequency of the added mass-spring subsystem becomes equal to the frequency of 
the sinusoidal force, the transmitted vibration is annihilated. This additional mass-spring 
system behaves as a vibration isolator.

Measuring Vibration Displacement and Acceleration Amplitudes
The transmissibility principle can be used to measure the amplitude of either the displace-
ment or the acceleration of a vibratory input, as studied in the following example.

Example 9.15
A massless platform undergoes a sinusoidal motion, as shown in Figure 9.23. Using 
a mass-damper-spring system as a sensor, analyze the situations when displacement 
or acceleration amplitudes can be detected using the relative motion of the body with 
respect to the platform.

Solution
The equation of motion for the mass of Fig. 9.23 is:

 ( ) ( )mx c x u k x u= - - - -p o o  (9.110)

which is rewritten as

 ( ) ( ) ( )m x u mu c x u k x u- = - - - - -p p p o o  (9.111)
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The motion of interest is the one of the mass relative to the vibrating platform; therefore, 
the following relative motion coordinate is introduced:

 y x u= -  (9.112)

Equation (9.111) becomes

 my cy ky mu+ + = -p o p (9.113)

The Laplace transform is applied to Eq. (9.113), which results in the transfer function

 ( )
( )
( )

G s
U s

Y s

ms cs k

ms
2

2

= =
+ +

-
 (9.114)

The magnitude corresponding to G(j~), which derives from G(s), can be expressed as

 

( )
( )

( )

( )

( )

| |
| |

| |

( )

( )

G j
U j

Y j

U
Y

k m c

m

2n n

2
2 2

2

2 2
2 2

2

~
~

~

~ ~

~

~ ~ p~ ~

~

= = =
- +

=
- +

 (9.115)

where the definitions of the natural frequency ~n and damping ratio p have been used.
Depending on the relationship between ~ and ~n, two cases are possible, as dis-

cussed next.

System with Small Natural Frequency and High Excitation Frequency: ~ >> ~n

Equation (9.115) can be changed to

 

~

Y U

1 2

1

n n

2

2 2 2

~

~
p

~
-

=

+e fo p

 (9.116)

fiGure 9.23

Mechanical Instrument to Measure Vibration.
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The square of the natural-to-excitation frequency ratio is a very small positive quantity, 
which can be neglected. As a consequence, Eq. (9.116) simplifies to

 Y U.  (9.117)

Equation (9.95) indicates that the instrument measurement, y, is approximately equal to 
the amplitude of the input motion. As a result, the system can be used as a displacement 
sensor.

System with Large Natural Frequency and Small Excitation Frequency: ~ << ~n

In this situation, Eq. (9.115) can be written as

 

~

Y U

1 2

1n

n
n

2

2

2

2 2 2~

~

~

~
p

~
=

- +f fp p

 (9.118)

The square of the excitation-to-natural frequency ratio is a very small positive quantity this 
time, and as a consequence, the denominator of the fraction on the right-hand side of Eq. 
(9.118) is equal to 1 approximately. Therefore, Eq. (9.118) simplifies to

 ( )Y U
1

n
2

2.
~

~  (9.119)

Because the input motion is sinusoidal, the acceleration also is sinusoidal:

 ( ) ( )sin sina U t A t2~ ~ ~= - = -  (9.120)

where A = ~2U is the acceleration amplitude. As a consequence, and as per Eq. (9.119), 
the amplitude of the relative motion of the mass (which is the measured parameter) is 
proportional to the amplitude of the input acceleration; therefore, the instrument can be 
used as an acceleration sensor.

9.4.2 cascading nonloading systems
In many instances dynamic systems interact in a cascading (series) manner, such 
that the output from one system becomes the input to the next system, as sketched 
in Figure 9.24. If there is no interstage loading (meaning that the output of one stage 
converts fully into the input of the subsequent stage) and the input to the first system 
is sinusoidal with an amplitude U and a frequency ~, the output from the second 
system is

 ( ) ( )| | ( )siny t U G j t~ ~ {= +  (9.121)

www.semeng.ir

www.semeng.ir


 9.4 Frequency-Domain Applications 401

where

 
( ) ( ) ( )| | | | | | ;G j G j G j1 2

1 2

~ ~ ~

{ { {

=
= +

(  (9.122)

Based on Figure 9.24, the Laplace transform of the first-stage output is

 ( ) ( ) ( )Y s G s U s1 1=  (9.123)

Because there is no interstage loading, the output from the second stage system is 
calculated similarly:

 ( ) ( ) ( ) ( ) ( ) ( )Y s G s Y s G s G s U s2 1 1 2= =  (9.124)

Let us use s = j~ in Eq. (9.124), which leads to

 ( ) ( ) ( ) ( )Y j G j G j U j1 2~ ~ ~ ~=  (9.125)

The right-hand side of Eq. (9.125) can be written in phasor form:

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

| | | |

| | | |

y t Y j G j e G j e U j

G j G j e U j

j j

j

1 2

1 2

1 2

1 2

~ ~ ~ ~

~ ~ ~

= =

=

{ {

{ {+^ h
 (9.126)

where U(j~) = U sin(~t) is the input to the system. Equations (9.121) and (9.122) 
have thus been demonstrated. This result can be generalized to a system made up of n 
subsystems cascading so that the output from one subsystem is input to the next one: 
The output from a serially connected system under sinusoidal input is of sinusoidal 
form; its magnitude is the product of individual magnitudes and its phase angle is the 
sum of all individual phase angles.

Example 9.16
A cascading dynamic system is formed of two subsystems; one is first order and the next 
one is second order, such that the output from the first-order system is the output to the 
second-order system. The two systems are defined by the following differential equations: 

 3 20 sin (3 ); 2 0.01 5y y yt y y y1 1 1= =+ + +o op  (see  Figure 9.24). Determine the steady-
state response of the system and plot the corresponding Bode plots.

fiGure 9.24

Two-Stage Dynamic System with Elements  Connected in Series and without Interstage 
Loading.
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Solution
The transfer functions corresponding to the differential equations of the two coupled sys-
tems are found by applying Laplace transforms to the differential equations:

 ( ) ( );
.

G s
s

G s
s s3 1

1
2 0 01

5
1 2 2

=
+

=
+ +

 (9.127)

The magnitudes and phase angles are found from the G1( j~) and G2( j~) functions as

 

( ) ( ) ( )

( ) ( )
( )

| |
( )

;

| |
. ( )

;
.
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1 3
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1 2 1
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=

=
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\

]
]

]]

 (9.128)

Numerically, the magnitudes and phase angles of Eq. (9.128) are M1(~) = 0.11, M2(~) = 
0.46, {1 = −83.66°, {2 = 33.72°. The steady-state response is therefore

 ( ) ( ) ( )| | | | ( )siny t G j G j A t1 2 1 2~ ~ ~ { {= + +  (9.129)

and, with the numerical values of this example, the output is

 ( ) ( . )siny t t 49 94~= - c  (9.130)

The combined transfer function, which is necessary for the Bode plots, is obtained by 
multiplying the transfer functions of Eqs. (9.127):

 ( ) ( ) ( )
. .

G s G s G s
s s s3 7 2 03 0 01

5
1 2 3 2

= =
+ + +

 (9.131)

and the Bode diagrams are shown in Figure 9.25.

 9.4.3 filters
Electrical or mechanical filter systems are utilized to remove the input signal over 
certain frequency ranges and transmit it in its original magnitude over the other 
intervals. The most utilized filter types are sketched in Figure 9.26: Filters can be 
low pass, high pass, band pass or notch. The best way to  analyze filter behavior, 
as shown in Figure 9.26, is to have their magnitude plotted against the frequency. 
Ideally, the magnitude is equal to 1 over the passband and equal to 0 over the 
stopband. The frequency that separates the passband and the stopband is the cutoff 
frequency (or corner  frequency), denoted by ~c.

Actual filter circuits display a behavior closer to the schematic representation of 
Figure 9.26(e), which shows a real low-pass filter with a transition band between the 
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passband and the stopband. The cutoff frequency is defined as the frequency where 
the input power amplitude is reduced by half, and since power is proportional to the 
square of amplitude, the cutoff frequency is given by the equation

 ( ) 0.707M
2
1

c~ = =  (9.132)
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fiGure 9.25

Magnitude and Phase Angle Plots of a Two-Stage Cascading System under Sinusoidal 
Input without Interstage Loading.
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fiGure 9.26

Filter Magnitude Ratio versus Frequency: (a) Ideal Low Pass; (b) Ideal High Pass; (c) Ideal 
Band Pass; (d) Ideal Notch; (e) Real Low Pass.
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A couple of examples of electrical and mechanical filters are presented next, but 
more filter examples are contained in the complementary Chapter 9.

Electrical Filter Systems
Electrical filters can be passive when they contain only passive elements such as 
resistors, capacitors, or inductors, or active, when they incorporate elements that 
need external energy sources, such as actuators, sensors, or operational amplifiers.

Example 9.17
Analyze the frequency response of the low-pass (Butterworth) filter of Figure 9.27 using 
the following sets of values: R1 = 100 X, C1 = 0.001 F, and R2 = 1000 X, C2 = 0.01 F. 
Determine the cutoff frequency for each case.

Solution
The transfer function of the electrical circuit of Figure 9.27 is

 ( )
( )

( )
G s

V s

V s

RCs 1
1

i

o
= =

+
 (9.133)

The two plots of Figure 9.28 have been obtained for the combinations shown in the leg-
end using the tf and bodemag MATLAB® commands. The conclusion is that the transi-
tion band (and the roll-off slope) cannot be changed by changing the values of either R or 
C. However, a shift to the left is achieved by increasing the values of either R or C.

The magnitude is derived from Eq. (9.133) as

 ( ) ( )
( )

M G j
RC1

1
2

~ ~
~

= =
+

 (9.134)

therefore, the cutoff frequency is obtained based on Eq. (9.132) as

 
RC

1
c~ =  (9.135)

Numerically, the cutoff frequency values are ~c1 = 3.16 rad/s and ~c2 = 0.32 rad/s for the 
two cases under analysis. The companion website Chapter 9 shows that, by adding two 
or more stages identical to the one of Figure 9.27, it is possible to reduce the  transition 
band.

fiGure 9.27

Electrical Low-Pass RC (Butterworth) Filter.
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fiGure 9.28

Magnitude Ratio versus  Frequency for an RC Low-Pass (Butterworth) Filter.
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R1= 100 Ω, C1= 0.001F

R2= 1000 Ω, C1= 0.01F

Mechanical Filters
Mechanical systems, too, can function as filters with respect to their input and output 
signals, as illustrated in the following example.

Example 9.18
Verify whether the mechanical system of Figure 9.29 produces any filtering effects when 
the input is the displacement u and the output is the displacement y. Consider the follow-
ing numerical values: m = 1 kg, c = 2 N-s/m, and k = 200 N/m.

Solution
The dynamic equation of motion for the body of mass m is

 ( )my c y u ky= - - -p o o  (9.136)

which results in the transfer function

 ( )
( )
( )

G s
U s

Y s

ms cs k

cs
2

= =
+ +

 (9.137)
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The magnitude and phase angle corresponding to G( j~) are

 
( ) ( )

( )
( )

( )

( )

| |
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M G j
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2 2 2 2
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= = =
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Z
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\

]
]

]]
 (9.138)

and Figure 9.30 shows the Bode plots associated with Eqs. (9.138). The mechanical system 
works as a band-pass filter, as can be seen in Figure 9.26(c). The cutoff frequency is obtained 
by solving the equation M(~c) = 0.707, which actually has two valid roots: ~c1 = 13.18 rad/s 
and ~c2 = 15.18 rad/s. This is illustrated in the magnitude plot of Figure 9.30, where a line 
parallel to the frequency axis at -3dB (which is equal to 1/ 2) intersects the magnitude 
curve at two points, whose abscissas are the cutoff frequencies calculated previously.

fiGure 9.30

Magnitude and Phase Plots of a Mechanical Filter.
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fiGure 9.29

Translatory Mechanical System as a Filter.

y

u

ck
m

www.semeng.ir

www.semeng.ir


  Problems 407

summary
The concepts of complex transfer function and complex transfer function matrix are 
introduced and applied in this chapter as modeling tools of the natural response and 
the steady-state response of SISO and MIMO dynamic systems under sinusoidal 
input. The frequency response of dynamic systems under sinusoidal excitation con-
sists of an output amplitude and a phase angle that depend on the input frequency. 
The topics of transmission, absorption, and elimination of mechanical vibrations 
generated by sinusoidal input are also studied as well as the principles of mechanical 
vibration sensing, the cascading unloading systems, and electrical/mechanical filter 
systems. Specialized MATLAB® commands are utilized to model and solve several 
applications of these topics.

prOblems
9.1 Use the transfer function approach and a lumped-parameter model to deter-

mine a relationship between the geometrical and material parameters of the 
nanobridge shown in Figure 9.31 so that the natural frequency corresponding 
to the y translation is twice the one corresponding to the ix rotation. The rigid 
plate has a mass m and a moment of inertia J about the longitudinal axis. The 
identical side rods are flexible and massless; they have circular cross-sections 
and their length is l; the material has a Poisson’s ratio n. Hint: Apply separate 
adequate input for each of the two motions (a force for the y translation and 
a moment for the ix rotation).

9.2 Determine the natural frequencies of the electrical system of Figure 9.32 by 
formulating the  complex transfer function matrix between a (dummy) input 
voltage and the two independent output currents. Consider that L1 = 12 mH,  
L2 = 16 mH, C1 = 24 nF, and C2 = 30 nF. Use  MATLAB® to verify the ana-
lytical results.

9.3 Calculate the resonant frequency and resonant peak of a dynamic system 
whose transfer function is G(s) = (3s + 2)/(s2 + s + 10). Determine and plot 
the  magnitude and the phase angle corresponding to a sinusoidal input being 

fiGure 9.31

Top View of Paddle Nanobridge.
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applied to this system by means of the analytical approach and also using 
MATLAB®.

9.4 Use a lumped-parameter model and the analytical transfer function approach 
to calculate the frequency-domain response of the mechanical microsystem 
sketched in Figure 9.33 when a sinusoidal input force is applied to the shuttle 
mass in the motion direction. Use MATLAB® to verify the analytical results. 
Each of the two identical end springs has three flexible beams of circular cross-
section with d = 1 nm, l1 = 10 nm, l2 = 30 nm, and E = 1.5 # 1011 N/m2. The 
mass of the shuttle mass is m = 200 ng and the coefficient of viscous damping 
between the mass and the surrounding gas is c = 0.004 N-s/m.

9.5 A fixed-gap, longitudinal motion, variable-capacitor actuator (as the one of 
 Figure 4.11) is  connected in an electrical circuit with a sinusoidal voltage source, 
as sketched in Figure 9.34. Knowing the gap g = 2 nm, the capacitor plate width 
w = 30 nm, the air permittivity f = 8.8 # 10−12 F/m, the resistance R = 0.2 X, 
and the inductance L = 10 nF, plot the frequency response using MATLAB® and 
applying the complex transfer function approach for two superposition lengths 
of the capacitor armatures: x1 = 10 nm and x2 = 15 nm. Calculate analytically 
and evaluate graphically the peak magnitude response for the two cases.

9.6 Apply the complex impedance approach to the fan-container-duct pneumatic 
system of  Figure 9.35 and plot the frequency response both analytically and 
with MATLAB® considering the  Hagen-Poiseuille pneumatic losses in the duct. 

fiGure 9.32

Two-Stage Electrical System.
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fiGure 9.33

Translatory Mechanical Microsystem.
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fiGure 9.35

Pneumatic System with Container, Duct, 
and  Supply Fan.
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fiGure 9.34

Electrical Microcircuit with Resistor, Inductor, 
Voltage Source, and Variable Capacitor.
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Known are the following parameters: diameter and length of duct are di = 0.01 m  
and l = 12 m, container diameter d = 0.5 m, gas density t = 1.2 kg/m3, and gas 
dynamic viscosity n = 1.9 # 10−5 N-s/m2.

9.7 A constant rectangular cross-section nanocantilever vibrates in out-of-plane 
bending, driven by a sinusoidal input displacement applied to the anchor point. 
Find the equivalent viscous damping ratio of the environment when the cantile-
ver has a length of 60 nm, a width of 5 nm, and a thickness of 120 nm. Young’s 
modulus is 150 GPa and the mass density is 6000 kg/m3. The experimentally 
determined bandwidth is 30,000 Hz.

9.8 Use the complex transfer function approach to determine the values of R and 
C in the electrical system of Figure 9.36 knowing the resonant frequency is  
21 kHz, the resonant peak is 1.3, and L = 0.4 H.

9.9 Use a lumped-parameter model for the mechanical microsystem of Figure 9.37,  
where the  serpentine springs are identical; they are illustrated in Figure 3.6  
with l = 20 nm and a square cross-section of 300 nm per side. The material 
Young’s modulus is 170 GPa. The masses of the shuttles are m1 = 200 ng and 
m2 = 280 ng. Determine all the magnitudes and phase angles corresponding to 
a sinusoidal force applied on m1 in the motion direction.  Consider an overall 
damping coefficient c = 0.05 applying to both shuttle masses’ motions.

fiGure 9.36

Electrical System with Inductor, Resistor, and  Capacitor.
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fiGure 9.37

Mechanical Microsystem with Shuttle Masses and Serpentine Springs.
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9.10 The lumped-parameter model of Figure 9.38, is defined by the chassis mass 
m and moment of inertia J as well as by two damper-spring suspensions. 
Determine the  system’s number of DOFs and plot its steady-state frequency 
response. Also calculate and plot the steady-state time response of the system 
when u1 = 0.05 sin(2t) m, u2 = 0.05 sin(2t - r/10), m = 1 kg, J = 0.01 kg-m2, 
c1 = 0.4 N-s/m, c2 = 0.6 N-s/m, k1 = 100 N/m, k2 = 160 N/m, l1 = 1 m, and  
l2 = 2 m.

9.11 Use the transfer function modeling approach to obtain the Bode plots for the 
electrical system represented in Figure 9.39. Consider that the inputs are the 
sine voltages v1 and v2 and the outputs are the meaningful currents. The electri-
cal components are L = 10 H, R = 20 X, C = 1 F.

9.12 The liquid system of Figure 9.40 is formed of two tanks and two identical 
pipe segments. The system input consists of the flow rate qi and the exter-
nal pressure po, both of which are  assumed to vary sinusoidally. Derive the 
transfer function matrix of this system, whose outputs are the tank pressures 
p1 and p2. Use MATLAB® to plot the frequency response when known are 
d1 = 3 m, d2 = 3 m (tank diameters), di = 0.03 m (diameter of the pipe),  

fiGure 9.40

Tank-Pipe Liquid System under Sinusoidal Input.
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Electrical System with Voltage Input.
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l = 40 m (length of pipe  between tanks and also length of pipe at the second 
tank outflow), n = 0.001 N-s/m2, and t = 1000 kg/m3.

9.13 Derive a state space model and plot the Bode diagrams for the mechanical sys-
tem of Figure 9.41, where u1, u2 are the input sinusoidal force components and 
y1, y2 are the output displacements. Known are m1 = 2.5 kg, m2 = 3 kg, c =  
20 N-s/m, k1 = 200 N/m, k2 = 150 N/m, k3 = 400 N/m. Also plot the steady-state 
time-domain solution of this system for u1 = 90 sin(2t) and u2 = 100 sin(5t).

9.14 Consider the inputs are the voltages v1, v2 and the output is the voltage vo for 
the operational  amplifier electrical system of Figure 9.42. Use the complex 
transfer function approach to calculate and plot the steady-state time-domain 
response of this system for R1 = 200 X, R2 = 180 X, L = 0.22 H, C = 3 mF,  
v1 = 60 sin(8t) V, and v2 = 80 sin(2t) V.

9.15 A frequency analyzer provided the following experimental frequency response 
data:

 0.2, -0.2 + 0.01i, -0.3 + 0.1i, -0.02 + 0.03i, 0.1 + 0.04i, 0.1i, -0.015i, 
0.002 - 0.6i

 for the 10–60 rad/s frequency range. Plot the magnitude and phase angle corre-
sponding to this data set and calculate G(j~) for ~ = 25 rad/s and ~ = 43 rad/s.

9.16 A zero-pole-gain (zpk) model has the zeroes 1, 1, 3; the poles 2, 5, 6, 6; and 
a gain of 120. Plot the Bode diagrams corresponding to this system for the 

fiGure 9.42

Operational Amplifier System with Two Input Voltages and One Output Voltage.
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412 CHAPTER 9 Frequency-Domain Approach

0–8000 rad/s frequency range using the conversion from the (zpk) model to the 
frequency response data (frd) model.

9.17 A dynamic system is defined by the differential equation: 3 2y y y+ + +q p o  
y5 100=  sin(~t). Use the conversion from a transfer function model to the 

frequency response data model to plot the Bode diagrams corresponding to this 
system for the 0–3000 rad/s frequency range.

9.18 A dynamic system is described by the following state space matrices:

[ ] [ ] [ ]; ; { }; .A B C D1
2

5
1 3 0 4

1

2
= = = - =: D ) 3

 Use MATLAB® to convert the model to a frequency response model and find 
its natural frequencies. Considering that a sine input is applied to the system, 
plot the Bode diagrams of the system response for the 0-1500 rad/s  frequency 
range.

9.19 What is the minimum quantity of mass that can be detected by deposition at the 
free end of a microcantilever if the detection equipment has a resolution of 50 
Hz? For that minimum mass, plot the original and shifted transmissibilities in 
terms of the frequency ratio when a sinusoidal displacement is applied to the 
cantilever base. Known are the  dimensions of the cantilever, l = 50 nm, w = 
30 nm, h = 2 nm, also the material properties, E = 160 GPa, t = 6200 kg/m3, 
and the viscous damping coefficient is c = 5 # 10−10 N-s/m.

9.20 A nanobridge is formed of a rigid platform having the dimensions of 200 nm # 
200 nm # 2 nm and two identical nanowires of diameter 120 nm and length 30 nm  
made of a material with E = 140 GPa, G = 100 GPa, and t = 5400 kg/m3  
(assume both the plate and nanowires are made of the same material). Decide 
which of the following two resonance shift methods is more sensitive in detect-
ing a mass quantity of 2 # 10−14 kg:

(a) Bending mode with mass deposited at the center of the plate; the damping 
coefficient in translation is ct = 4 # 10−9 N-s/m;

(b) Torsional mode with mass deposited off the plate center at a distance of 
100 nm; the  damping coefficient in rotation is cr = 5 # 10−6 N-m-s.

 Draw the transmissibility curve for each case assuming sinusoidal input dis-
placement of the base is applied in bending and sinusoidal input rotation of the 
base is applied in torsion.

9.21 For the rotary mechanical system of Figure 9.43, evaluate the frequency of the 
sinusoidal input torque mi that generates a transmitted torque amplitude on 
the right base equal to 85% of the input amplitude. Known are J1 = 2 kg-m2,  
J2 = 3 kg-m2, c = 45 N-m-s, k1 = 320 N-m, k2 = 280 N-m.

9.22 A sinusoidal force acts on the mechanical system illustrated in Figure 9.44. 
Considering that the mass is m = 0.5 kg and the stiffness is k = 200 N/m, 
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 analyze the transmissibility of the input force to the force on the wall for p = 
0.3 and p = 0.7.

9.23 A constant rectangular cross-section microcantilever needs to be designed to 
sense an input base acceleration of 100g (g is the gravitational acceleration con-
stant). Known are the  thickness h = 5 nm, the mass density t = 5600 kg/m3, 
and Young’s modulus E = 160 GPa. Calculate the microcantilever length if the 
tip deflection cannot exceed 1 nm.

9.24 The microbridge of Figure 9.45 operates as a sensor for the sinusoidal input 
rotary displacement of its base. To be effective for this purpose, the natural 
frequency needs to be least 100 times smaller than the input frequency. It is also 
expected that the actual input frequency be larger than 2000 rad/s. Find the flex-
ible rods’ diameter d for J = 3 # 10−19 kg-m2, l = 500 nm, and G = 100 GPa. 
Calculate the damping coefficient c corresponding to the viscous interaction 
between the microbridge plate and its environment knowing that the maximum 
value of this  system’s  magnitude is 1.001.

9.25 Two dynamic systems form a nonloading cascade defined by the following 
differential equations: ;siny y y t y y y y3 6 5 8 3 2 41 1 1 1 1+ + = + = +p o p o o] g . Evalu-
ate the steady-state response of this system and plot the corresponding Bode 
diagrams.

fiGure 9.43

Rotary Mechanical System with Torque Transmission.
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9.26 A sinusoidal input u = 10 sin(100t) is provided to an unknown first-order 
 system, which serially connects to a first-order transducer system defined by a 
sensitivity of 1.2 and a time constant of 0.01 s. The output from the transducer 
is further fed into a filter-amplifier device, which acts as a second-order system 
with a sensitivity of 3, a natural frequency of 300 rad/s, and a damping ratio 
of 0.3. Knowing that the signal output from the filter-amplifier system has an 
amplitude of 200 and a phase angle of -70° with respect to the sinusoidal 
input, evaluate the unknown first order system parameters.

9.27 Study the frequency response of the electrical systems of Figure 9.46(a) and 
9.46(b), for which R = 1200 X and L = 0.8 H. Demonstrate that both systems 
behave as high-pass filters.

9.28 Determine whether the electrical circuit of Figure 9.47 can function as a filter and 
establish its type in case it is a filter. The electrical components are R1 = 4 X, R2 = 
40 X, L = 1 H, C = 0.125 mF. Calculate the corresponding cutoff frequency.

9.29 Check whether the mechanical system of Figure 9.48 operates as a filter when 
connecting the input displacement u to the output displacement y. Draw the 
Bode plots for the following pairs of parameter values: k1 = 10 N/m, c1 =  
1 N-s/m and k2 = 15 N/m, c2 = 2 N-s/m.

9.30 Use the complex transfer function that connects the input displacement u 
to the output displacement y to predict the filter behavior of the translatory 
mechanical system of Figure 9.49 when the following amounts are known:  
m = 1 kg, c1 = 100 N-s/m, c2 = 85 N-s/m, k1 = 140 N/m, k2 = 200 N/m.

fiGure 9.45

Microbridge with Base Rotary Input.
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fiGure 9.46

Electrical Filters: (a) Single-Stage; (b)  Two-Stage.
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CHAPTER

Objectives

This chapter introduces the notion of dynamic system coupling, which studies the 
interaction between systems belonging to different domains (fields) and generates 
mathematical models reflecting that interaction. Specifically, you learn about

• System analogies based on differential equations and transfer functions.

• Actuation and sensing by means of coupled-field systems.

• Electromechanical and electromagnetomechanical coupled-field examples.

• Principles of piezoelectricity and applications of piezoelectric coupling.

• Thermomechanical coupling by means of bimetallic strips.

• Nonlinear electrothermomechanical coupling.

• Utilization of MATLAB® and Simulink® to model and solve the mathematical 
models of coupled-field systems.

intrOductiOn
Dynamic systems seldom operate in isolation but commonly interact with other sys-
tems. Interaction between dynamic systems of different physical nature is known as 
domain or field coupling, and some examples of the many coupled-field possibili-
ties are presented in this chapter, such as electromechanical (including strain-gauge 
macro-scale and MEMS applications), electromagnetomechanical (with or without 
optical detection), piezoelectric, and thermomechanical or electrothermomechanical; 
more coupled-field dynamic system examples are studied in the companion website 
Chapter 10. Analogies among systems are also analyzed in this chapter using dif-
ferential equations or transfer functions. Various algebraic and numeric examples 
are used to illustrate linear and nonlinear system coupling that apply MATLAB® and 
Simulink® to determine the solutions.

10Coupled-field systems

© 2010 Elsevier Inc. All rights reserved.
DOI:10.1016/B978-0-240-81128-4.00010-6
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418 CHAPTER 10 Coupled-field systems

10.1 cOncept Of system cOupling
We dealt with system coupling implicitly in almost all the previous chapters, but the 
coupling between coordinates was restricted to a system of a single physical type 
(mechanical, electrical, fluid, or thermal). Consider, for instance, the two separate 
mass-spring mechanical systems of Figure 10.1(a); they are physically isolated and 
therefore uncoupled. Once a spring of stiffness k is added between the masses m1 and 
m2, as in Figure 10.1(b), the two systems become coupled and the resulting math-
ematical model is represented by the equations

 
( )

( )

m x k k x kx

m x k k x kx

0

0
1 1 1 1 2

2 2 2 2 1

+ + - =

+ + - =

p

p
*  (10.1)

The presence of the boxed term with x2 in the first Eq. (10.1) indicates that this 
is a coupled system. This equation describes the motion of m1, which is defined 
by coordinate x1, and conversely, the fact that the boxed x1 term is included in 
the second Eq. (10.1), the equation formulating the x2 motion. Because the ele-
ments of the system sketched in Figure 10.1(b) are from one field, this system is 
a single-field coupled system.

Single-field coupled systems, such as the one just discussed, are not within the 
scope of this  chapter but the companion website Chapters 3 and 4 study mechanical 
and electrical single-field coupled examples. In basic terms, a multiple-field coupled 
system (or, simply, a coupled-field system) is defined by at least one (differential) 
equation with variables (coordinates or DOFs) from at least two domains of different 
physical nature. The notion of coupled-field systems is introduced in Chapter 1 by 
means of an electromechanical dc motor example, which is discussed qualitatively. 
Another basic couple-field example is the one of a bar of original length l subjected 
to a temperature increase Di and that l deforms axially by the quantity:

 l la iD D=  (10.2)

Evaluated as an input-output relationship, Eq. (10.2) shows that the input (the tem-
perature increase Di) is from the thermal domain whereas the output (the bar elon-
gation Dl) is from the mechanical domain. The coupling between the two system 

figure 10.1

(a) Two Uncoupled Mechanical systems; (b) Coupled Mechanical system.
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 10.1 Concept of system Coupling 419

variables is realized by the coefficient of thermal expansion a, which is measured 
in units of length per units of temperature (m/deg). This example indicates that two 
variables from systems of different physical types can be connected only by means 
of parameters that are defined over both fields.

Equation (10.2) described a zero-order coupled system, but coupled higher-order 
systems (with time derivatives of the output variable) also exist, as we see in this 
chapter. One convenient way of representing the mathematical model of a coupled 
MIMO system is by using the Laplace domain and the transfer function matrix. Con-
sider two systems, denoted by 1 and 2, each being formulated in a different field, see 
Figure 10.2, where {U(s)} = {U1(s) U2(s)}t is the input vector and {Y(s)} = {Y1(s) 
Y2(s)}t is the output vector. When at least one of the output components is a function 
of both inputs, the systems are coupled.

Coupled systems, as shown in Figure 10.3, have nonzero terms on the second-
ary diagonal of the transfer function matrix. When these terms are zero, the two 
systems are uncoupled (as illustrated in Figure 10.3) because the two outputs, 
Y1(s) and Y2(s), depend on the input of only their own systems.

figure 10.2

MIMO Coupled-field system studied in the Laplace Domain.
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Example 10.1
Consider the electromechanical system represented by the dc motor of figure 10.4, stud-
ied in Chapter 1. Assume that, in addition to the given parameters, a load torque ml acts 
on the mechanical cylinder.

a. Discuss the coupling of this system based on the transfer function matrix that connects 
the input vector {va, ml} to the output vector {ia, ~}, where va, ia, and ~ are the armature 
voltage and current and angular velocity of the mechanical system.

b. Use MATLAB® to plot the system response for the following numerical parameters: Jl = 
0.02 N-m-s2,c = 0.1 N-m-s, ml = 0.02 N-m, Ra = 6 X, La = 2 H, va = 80 V, Ke = 0.015 
N-m/A (1 N-m/A = 1 V-s/rad), and Kt = 0.2 N-m/A.

Solution
a. Equation (1.19) is the only one that changes due to the presence of the load torque:

 
( )

( ) ( )
( )

J
dt

d t
m t m t c

dt

d t
l a l2

2i i
= - -  (10.3)

Combining Eqs. (1.18), (10.3), and (1.20) results in

 

( )
( )

( )
( )

( ) ( )
( ) ( )

L
dt

di t
R i t K

dt

d t
v t

J
dt

d t
c

dt

d t
K i t m t

a

a

a a e a

l t a l2

2

i

i i

+ + =

+ - = -

Z

[

\

]
]

]]
 (10.4)

This system is field coupled as the two Eqs. (10.4) comprise variables from both 
the electrical and the mechanical fields. The Laplace transformation of Eqs. (10.4) 
results in

 
( )

( )

( )

( )

L s R

K

K

J s c

I s

s

V s

M s
a a

t

e

l

a a

lX

+

- +
=

-
> H) *3 4 (10.5)

where X(s) is the Laplace transform of ~(t) =di(t)/dt, the angular velocity. The relationship

 
( )

( )
( )

( )

( )

I s

s
G s

V s

M s
a a

lX
= 6 @) *3 4 (10.6)

figure 10.4

schematic of a dc Motor as an Electromechanical system.
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indicates, by comparison to Eq. (10.5), that the transfer function matrix [G(s)] is

 ( )
( )

( )

( )

( )

G s
L s R

K

K

J s c

D s

J s c

D s

K

D s

K

D s

L s R
a a

t

e

l

l

t

e

a a

1

=
+

- +
=

+
-

+

-

R

T

S
S
S
S
S

6 >

V

X

W
W
W
W
W

@ H  (10.7)

with the denominator D(s) being

 ( ) ( )D s J L s J R cL s K K cRl a l a a e t a
2= + + + +  (10.8)

field coupling is also indicated by the nondiagonal transfer function matrix.

b. Once the transfer function matrix of Eq. (10.7) is obtained, the Laplace-transformed 
output vector of Eq. (10.6) can be determined, and then the time-domain counterpart 
vector (which is not given here) is obtained symbolically using MATLAB®’s ilaplace 
command. The armature current and shaft angular velocity are plotted in figure 10.5 
for the numerical values of this example. Both output amounts become constant after 
approximately 2 s.

figure 10.5

Time-Domain Plots for a Two-Input, Two-Output Coupled-field Electromechanical dc-Motor 
system.
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 10.2 system AnAlOgies
Two or more dynamic systems are analogous if they have similar mathematical mod-
els expressed by differential equations, transfer functions (or transfer function matri-
ces), or state space models. System analogies enable testing a system that is simpler 
to design and monitor (usually an electrical system), then extrapolating the obtained 
results to the analogous system (say, mechanical, for instance). The expectation for a 
coupled-field system therefore is to enable conversion of parameters from one field to 
their counterparts in the analogous system; this subject is discussed in the companion 
website Chapter 10.

Analogous systems are studied in this chapter based on their differential equations 
and transfer functions. Two analogous systems have the same order and structure of 
their differential equations; they are also defined by similar transfer functions (or 
transfer function matrices) as is illustrated next for first- and second-order systems. 
An example of zero-order system analogy is the one relating levers (as mechanical 
systems) to transformers (as electrical systems).

 10.2.1 first-Order systems
The following example studies analogous examples of first-order systems from sev-
eral fields.

Example 10.2
Demonstrate that the mechanical, electrical, pneumatic, and operational amplifier sys-
tems of figure 10.6 and the liquid-level system of figure 5.15 are analogous.

Solution
for the mechanical system of figure 10.6(a), consisting of the damper of coefficient c 
and the spring of stiffness k, the equation of motion is formulated for coordinate y as

 ( )cy k y u0 = - - -o  (10.9)

which can be rewritten as

 
k
c

y y u+ =o  (10.10)

The transfer function of the electrical circuit sketched in figure 10.6(b) is determined 
by means of the complex impedance approach as

 ( )
( )

( )
G s

V s

V s

Z Z

Z

RCs 1
1

i

o

1 2

2
= =

+
=

+
 (10.11)

whose inverse Laplace transform yields

 RCv v vo o i+ =o  (10.12)
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with R and C being the electrical resistance and capacitance and vi and vo being the input 
and output voltages. The companion website Chapter 5 demonstrates that the equation 
governing the dynamic behavior of the pneumatic system of figure 10.6(c) is

 R C p p pg g o o i+ =o  (10.13)

where Rg and Cg are the pneumatic (gas) resistance and capacitance, pi and po are the 
input and output pressures. similarly, the differential equation governing the dynamic 
behavior of the liquid system of figure 5.15 is given in Eq. (5.91) and rewritten here:

 R C q q q, ,l p l p o o i+ =o  (10.14)

with Rl,p and Cl,p being the pressure-defined liquid resistance and capacitance, and qi, qo 
being the input and output volume flow rates.

By using the complex impedance approach, the transfer function of the electrical 
system of figure 10.6(d) is

 ( )
( )

( )
G s

V s

V s

Z

Z

R Ls
R

i

o

1

2
= = - = -

+
 (10.15)

Equation (10.15) can be reformulated as

 
( )

( )

V s

V s

R
L

s 1

1

i

o
= -

+

 (10.16)

figure 10.6

Analogous first-Order systems: (a) Mechanical; (b) Electrical; (c) Pneumatic;  
(d) Operational Amplifier.
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424 CHAPTER 10 Coupled-field systems

and, if we ignore the minus sign of Eq. (10.16) or if we add another op amp basic invert-
ing stage with two identical components, the inverse Laplace transform with zero initial 
conditions yields

 
R
L

v v vo o i# + =o  (10.17)

Equations (10.10), (10.12), (10.13), (10.14), and (10.17) are similar first-order differen-
tial equations. As a consequence, the four systems of figure 10.6 together with the one 
of figure 5.15 are analogous. The quantities c/k in Eq. (10.10), RC in Eq. (10.12), RgCg 
in Eq. (10.13), Rl,pCl,p in Eq. (10.14), and L /R in Eq. (10.17) are all time constants (they 
are measured in seconds), as they relate to first-order systems.

By comparing Eqs. (10.11) and (10.16), it can be seen that the analogous systems 
of Figures 10.6(b) and 10.6(d) have similar transfer functions, which proves that 
system analogy can also be pursued using transfer functions instead of time-domain 
equations; more examples on system analogy by transfer functions are offered in the 
companion website Chapter 10.

10.2.2 second-Order systems
Force-voltage or force-current analogies can be established between second-order 
mechanical and electrical systems as discussed next.

For the mechanical system of Figure 10.7(a), the equation of motion is

 my cy ky f+ + =p o  (10.18)

By using known voltage-current relationships, the dynamic equation of the electrical 
system shown in Figure 10.7(b) is

 Lq Rq
C

q v
1

+ + =p o  (10.19)

The analogy between the mechanical system of Figure 10.7(a) and the electrical system 
of Figure 10.7(b) is illustrated by Eqs. (10.18) and (10.19). Table 10.1 shows the pairing 
of physical quantities according to this particular analogy. It should be noted that rotary 
mechanical systems are also analogous to the electrical system of Figure 10.7(b), where 

figure 10.7

Analogous second-Order systems: (a) Mechanical; (b) series Electrical; (c) Parallel Electrical.

(c)

k

c 

m
f i 

C

R

v L

(a) (b)

y

i 
R

L

C

2

1

www.semeng.ir

www.semeng.ir


 10.2 system Analogies 425

angular displacement, velocity, and acceleration replace the translational counterparts 
and moments (torques) are needed instead of forces (so the moment-voltage analogy is 
the correct denomination in this case).

For the electrical system of Figure 10.7(c), the source current is equal to the sum 
of currents through the resistor, inductor, and capacitor, which means that

 
( )

( ) ( ) ( )C
dt

dv t
R

v t
L

v t dt i t
1 1

+ + =#  (10.20)

where v is the voltage across each of the three electrical components. When using the 
relationship between voltage and electrical flux, v = d W(t)/dt, Eq. (10.20) changes to

 C
R L

i
1 1

W W W+ + =p o  (10.21)

which is similar to Eq. (10.18) and therefore indicates the analogy between the mechan-
ical system of Figure 10.7(a) and the electrical one of Figure 10.7(c). This force-cur-
rent analogy can be summarized by the pairs illustrated in Table 10.2. Again, rotary 
mechanical systems can be used instead of translatory ones with the corresponding 
changes in displacement, velocity, and accelerations (angular instead of linear) and 
forcing (moment instead of force), which results in a moment-current analogy.

Example 10.3
for the electrical system of figure 10.8, determine an analogous rotary mechanical sys-
tem using the differential equations of the two systems. Also demonstrate that the transfer 
function matrices of the two systems are similar.

Solution
By using Kirchhoff’s second law, the following equations are obtained that represent the 
mathematical model of the two-mesh electrical system of figure 10.8:

 
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

R i t
C

i t i t dt v t

L
dt

di t
R i t

C
i t i t dt v t

1

1

1 1 1 2 1

2
2 2 1 2 2

+ - =

+ - - =

6

6

@

@

Z

[

\

]]

]]

#

#
 (10.22)

Table 10.1 Force-Voltage Analogy Pairs

Mechanical f y m c k

Electrical v q L R 1/C

Table 10.2 Force-Current Analogy Pairs

Mechanical f y m c k

Electrical i W C 1/R 1/L
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Equations (10.22) can be written by using charges instead of currents as:

 
( )

( )

R q
C

q q v

Lq R q
C

q q v

1

1

1 1 1 2 1

2 2 2 1 2 2

+ - =

+ - - =

o

p o

Z

[

\

]]

]]
 (10.23)

Application of the force-voltage analogy of Table 10.1 (with rotary-motion parameters 
instead of translatory-motion ones) results in the following equations for the analogous 
mechanical system:

 
( )

( )

c k m

J c k m

1 1 1 2 1

2 2 2 1 2 2

i i i

i i i i

+ - =

+ - - =

o

p o
*  (10.24)

A candidate for a rotational mechanical system described by Eqs. (10.24) is the one 
of figure 10.9; it can easily be checked that Eqs. (10.24) are indeed the ones describing 
the dynamic response of this mechanical system, which confirms this is the mechanical 
analogous of the electrical system of figure 10.8. It should be noted that the number of 
DOfs of two analogous systems must be the same.

Application of the Laplace transform with zero initial conditions to Eqs. (10.23) leads 
to a relationship of the type {Q(s)} = [Ge(s)] {V(s)}, where the transfer function matrix of 
the electrical system is

 ( )G s
R s

C

C

C

Ls R s
C

1

1

1

1e

1

2
2

1

=
+

-

-

+ +

-R

T

S
S
S
S

6

V

X

W
W
W
W

@  (10.25)

and {Q(s)} = {Q1(s), Q2(s)}t, {V(s)} = {V1(s), V2(s)}t contain the Laplace transforms of q1, q2, 
v1, and v2, respectively. similarly, by applying the Laplace transform with zero initial condi-
tions to Eqs. (10.24), the following vector-matrix is obtained: {H(s)} = [Gm(s)] {M(s)}, with

 ( )G s
c s k

k
k

Js c s km
1

2
2

1

=
+

-

-

+ +

-

6 =@ G  (10.26)

figure 10.8

Two-Mesh Electrical Network.
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 10.3 Electromechanical Coupling 427

being the transfer function matrix of the mechanical system. {H(s)} = {H1(s), H2(s)}t, 
{M(s)} = {M1(s), M2(s)}t are formed of the Laplace transforms of i1, i2, m1, and m2, 
respectively. The similarity between the source transfer matrices of Eqs. (10.25) and 
(10.26) is noticed, as well as compliance with the pairs of Table 10.1.

10.3 electrOmechAnicAl cOupling
Systems defined by at least one equation comprising electrical and mechanical vari-
ables are known as electromechanical systems. Usually, differential equations can be 
formulated for the mechanical and electrical parts separately, complemented by one 
or several coupling equations connecting amounts from the two fields, as shown in 
the dc motor example. Several examples of electromechanically coupled systems are 
studied next, including electromagnetomechanical and piezoelectric ones.

10.3.1 mechanical strain, electrical voltage coupling
Mechanical strain can be related to electrical voltage by means of sensors, for 
instance. Consider the block of Figure 10.10, which has a rectangular cross-section 
(width is w and thickness is h) and a length l being acted upon by two axial forces f. 
The block has an electric resistance R that can be defined along its length. It is dem-
onstrated in the companion website Chapter 10 that the following relationship exists 
between the electrical resistance variation and the mechanical strain:

 
R
dR

R
R

K1 2 a ao f f
D

= = + =] g  (10.27)

figure 10.10

Mechanical Block under Axial Load.
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where the symbol D indicates small but finite resistance variation whereas d points 
at infinitesimal variations; o is Poisson’s ratio, a material constant (e.g., 0.3 for steel) 
and K is the material sensitivity. Equation (10.27) is the base for a lot of sensors 
that measure mechanical deformation (strain) through electrical resistance variation. 
As known from mechanics of materials (see also Appendix D), the ratio of a length 
variation to the initial length is the mechanical strain:

 
l
l

w
w h

h

a

t

f

f

D

D D

=

= =

Z

[

\

]]

]]
 (10.28)

where fa is the axial strain (the strain aligned with the external force f ), and ft is the 
transverse strain (the strain perpendicular to the force direction).

It is also known that the relationship between the two strains is

 t af of= -  (10.29)

Equation (10.29) indicates that, when the axial strain is positive (the length l increases), 
the transverse strain is negative (the dimensions w and h decrease under the action of f  ).

The strain gauge is a practical way of implementing the use of resistance pickup for 
mechanical strain, and an example is discussed in the companion website Chapter 4.  
Figure 10.11 is the top view of a mechanical member under the action of two axial 
loads f. Two strain gauges, Sa and St, are affixed (glued) to the member. The strain 
gauge that has its long wire segments parallel to the forces f picks up the axial strain 
(this is the reason of being denoted by Sa), whereas the strain gauge identified as St, 
which has its longitudinal dimension perpendicular to the force line of action, senses 
transverse deformations.

For strain gauges, an equation similar to Eq. (10.27) connects the resistance vari-
ation to the mechanical strain, so that the two strain gauges of Figure 10.11 sense the 
following resistance-strain relationships:

 R
R

K

R
R

K K

a
g a

t
g t g a
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f of

D

D

=

= = -
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Z
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 (10.30)

figure 10.11

Wire strain-Gauge sensing for Mechanical  Deformations of Member under Load.
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 10.3 Electromechanical Coupling 429

where Kg is the strain gauge sensitivity. Strain gauges are usually connected in a 
Wheatstone-bridge electrical system, such as the one shown in Figure 10.12.

If vi is the input voltage to the bridge, then assuming all four strain gauges are iden-
tical, the following relationship between the input voltage vi and the variation of the 
output voltage Dvo is demonstrated to be valid in the companion website Chapter 10:

 v
R

R

R

R

R

R

R

R
v

4
1

o i
1

1

2

2

3

3

4

4
D

D D D D
= - + -e o  (10.31)

where the subscripts 1, 2, 3, and 4 have been kept only to indicate the positions of the 
four strain gauges in the Wheatstone bridge. For a strain-gauge Wheatstone bridge, 
which is used to monitor the variation of a mechanical amount, say y, the sensor 
sensitivity K relates to the bridge output voltage as

 v KyoD =  (10.32)

Example 10.4
Design a displacement sensor to detect a sinusoidal motion using a microcantilever beam, 
such as the one shown in figure 10.13, and four identical strain gauges connected in a 
Wheatstone bridge. Indicate the location and position of the strain gauges on the canti-
lever, as well as their connection in the Wheatstone bridge. Express the output voltage 
variation as a function of the mechanical strain.

Solution
The sinusoidal motion of the support generates out-of-plane oscillatory bending of the micro-
cantilever. It is known from Mechanics of Materials that the strains are maximum on the two 
faces (face 1 is shown in figure 10.13 and face 2 is the opposite face), one is positive and 
the other one is negative, and at the microcantilever’s root. They are calculated by means of 
Hooke’s law (stress = Young’s modulus # strain or v = Ef, see Appendix D) as

 
E E

I

m h

E

wh

flh

Ewh

fl2
2

12 6
b

3

2
! ! ! !f

v
= = = =  (10.33)

figure 10.12

Wheatstone full Bridge with four Resistors.
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430 CHAPTER 10 Coupled-field systems

In Eq. (10.33), mb is the bending moment at a length l from the free end, mb = fl (f being 
a “dummy” force applied at the free end of the beam that would bend the microcantilever 
identically to the actual support motion), and I is the moment of inertia of the cross-section. 
Two strain gauges need to be placed on one face (such as on face 1 in figure 10.13) 
and the other two on the opposite face, as close as possible to the root (fixed end). Let us 
assume that face 1 is the one that extends under bending and the opposite face 2 com-
presses. The strain gauges denoted by R1 and R3 are connected in the place of resistances 
R1 and R3 in the Wheatstone bridge of figure 10.12. The other two strain gauges, which 
are not shown in figure 10.13 but are placed on face 2 of the cantilever, are connected as 
R2 and R4 in the Wheatstone bridge. The relative resistance variations are

 
R

R

R

R

R

R

R

R
Kg

1

1

3

3

2

2

4

4
f

D D D D
= = - = - =  (10.34)

As a consequence, Eq. (10.31) simplifies to

 v K vo g ifD =  (10.35)

Example 10.5
for the microsystem of Example 10.4 and sketched in figure 10.13, analyze the sensor 
sensitivity K (connecting the output voltage amplitude to the input motion amplitude) as a 
function of the subresonant excitation frequency. The output voltage amplitude variation 
is the sensitivity times the cantilever’s tip deflection amplitude, as defined in Eq. (10.32). 

figure 10.13

Cantilever Beam under sinusoidal Motion.

u = U sin(vt)
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Known are l = 200 nm, h = 100 nm, w = 40 nm, t = 5200 kg/m3, E = 1.6 # 1011 N/m2,  
Kg = 2.2, and vi = 20 V.

Solution
The lumped-parameter model of the microcantilever, where m and k are effective mass 
and stiffness (the subscript e has been dropped) connected to the free end of the cantile-
ver, is shown in figure 10.14. A similar application is studied in Chapter 9 when discuss-
ing transmissibility.

The dynamic equation of motion of the mass is

 ( )mz k z u= - -p  (10.36)

This equation can also be written as

 my ky mu+ = -p p (10.37)

where

 y z u= -  (10.38)

is the relative displacement of the microcantilever free end with respect to the moving 
support. The transfer function corresponding to Eq. (10.37) is

 ( )
( )
( )

G s
U s

Y s

ms k

ms
2

2

= = -
+

 (10.39)

and the corresponding G(j~) function is

 ( )G j
k m

m
2

2

~
~

~
=

-
 (10.40)

which is a real number, so its modulus is equal to the function itself. The amplitude of the 
relative motion, Y, can therefore be expressed in terms of the input amplitude U:

 ( )Y G j U
k m

m
U

2

2

~
~

~
= =

-
 (10.41)

Vibrating support

z

k

m

u = U sin(vt)

figure 10.14

Lumped-Parameter Model of a Microcantilever with Harmonic Input Motion.
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432 CHAPTER 10 Coupled-field systems

Working with amplitudes, it is known that a force F applied at the end of the microcanti-
lever produces a deflection Y according to the mechanics of materials equation (see also 
Appendix D):

 Y
EI

Fl

E
wh

Fl

Ewh

Fl
3

3
12

43

3

3

3

3

= = =  (10.42)

By using Eq. (10.41), Eq. (10.42) can be written as

 
4 k m

F
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Ewh
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Ewh m
U

4 23

3

3

3 2

~

~
= =

-^ h
 (10.43)

At the same time, the maximum strain (amplitude), E, which is recorded at the length l 
from the free end, can be related to the force amplitude F according to Eq. (10.33):

 
Ewh

l
F

6
2

E =  (10.44)

Equations (10.43) and (10.44) are combined and result into

 
l k m

hm
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2

3
2 2

2

~

~
E =

-^ h
 (10.45)

In terms of amplitudes, Eq. (10.35) can be written as

 V K vo g iD E=  (10.46)

Combining Eqs. (10.45) and (10.46) results in

 V
l k m

hm K v
U

2

3
o

g i

2 2

2

~

~
D =

-^ h
 (10.47)

since DVo = KU, the system’s sensitivity K is therefore

 K
l k m

hm K v

2

3 g i

2 2

2

~

~
=

-^ h
 (10.48)

Numerically, the equivalent mass is determined according to Table 3.1 as m = 9.8 # 
10-13 kg, the equivalent stiffness is calculated based on Table 3.2 as k = 2 # 10-4 N/m; 
therefore, the natural frequency is ~n = (k/m)1/2 = 14,282 rad/s. figure 10.15 shows 
the variation of K with ~ when ~ is subresonant, ~ < ~n. As indicated in Eq. (10.48), the 
microdevice sensitivity increases to infinity when the input frequency approaches the 
natural frequency.
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10.3.2 electromagnetomechanical coupling
Systems containing magnetic components in addition to mechanical and electrical 
elements result in coupled electromagnetomechanical systems, as illustrated by the 
following examples.

Example 10.6
Derive the mathematical model of the electromechanical system of figure 10.16. The 
mechanical subsystem is formed of an arm (rotor) of mass moment of inertia J, which can 
rotate in two end bearings, and a rotary spring of stiffness k. This mobile arm is metallic 
and closes an electrical circuit, which has a voltage source (excitation) ve, a resistance R, 
and a capacitance C. An external constant magnetic field B is applied perpendicularly to 
the electrical circuit plane.

Solution
The system analyzed here is very similar to the dc motor examined at the beginning of this 
chapter. As shown next, a differential equation governs the dynamics of the mechanical 
system, another one defines the dynamic behavior of the electrical circuit, and two coupling 
equations connect mechanical to electrical variables. Let us discuss first the coupling equa-
tions based on figure 10.17, which shows the top view of the mechanical rotary arm.

As known from electromagnetics, the interaction between the magnetic field B and 
the current i passing through the element of length l (which is part of both the rotary 

figure 10.15

Variation of Microdevice sensitivity with Input frequency.
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434 CHAPTER 10 Coupled-field systems

mechanical system and the electrical system) generates the following force f (which is 
shown in figure 10.17):

 if l B#=  (10.49)

Because there is a right angle between the two product vectors of Eq. (10.49), the mag-
nitude of f is the product of the magnitudes of the two vectors. The force f generates a 
torque about the pivot point that is

 cos cos cosm fr lrBi AB it i i i= = = ] g  (10.50)

where A = lr is the area of the rotating surface, see figure 10.16. Equation (10.50) is a 
coupling equation, as it connects the mechanical torque mt to the current i.

It is also known from electromagnetics that, due to the Hall effect, a back electromo-
tive force (actually voltage) vm is generated by the motion of a current-carrying conduc-
tor in a magnetic field B, which is perpendicular to the conductor; this voltage, which 
opposes the source voltage ve, is calculated as

 | | ( ) ( )sin cosv v B l vBl t vBl t90°
m # i i= = - =6 @  

 
( )

( ) ( )
( )

cos cosr
dt

d t
Bl t AB t

dt

d ti
i i

i
= = 6 @  (10.51)

figure 10.17

Top View of Mechanical Rotary Arm.
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where v denotes velocity and v = r~ = rdi(t)/dt. Equation (10.51) relates the voltage vm 
(which is an electrical amount) to the angular velocity of the rotor ~ = di(t )/dt (which is 
a mechanical amount); therefore, this is another coupling equation.

The time-domain differential equation of the mechanical subsystem motion is

 
( )

( ) ( )J
dt

d t
m t k tt2

2i
i= -  (10.52)

where k i is the opposing elastic torque produced by the spring. The differential equation 
defining the dynamic response of the electrical system is obtained based on figure 10.18 
and Kirchhoff’s second law:

 
( )

( ) ( ) ( )L
dt

di t
Ri t v t v te m+ = -  (10.53)

By combining Eqs. (10.50) and (10.52), as well as Eqs. (10.51) and (10.53), the fol-
lowing equations are obtained:
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 (10.54)

where the input is the voltage ve, for instance, and the output is formed of the unknown 
rotation angle i and the current i. The two Eqs. (10.54) can be combined to express one 
of the amounts i or i in terms of v.

Example 10.7
A magnet is attached to a bridge to measure velocity and can slide inside a fixed coil, 
which is electrically connected to a voltmeter, as sketched in figure 10.19. The bridge 
is bent out of its equilibrium position and allowed to undergo free vibrations. Determine 
the overall (equivalent) viscous-type damping (loss) coefficient of this mechanical system 

figure 10.18

Electrical subsystem of the Electromechanical system.
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knowing the bridge characteristics: length l = 0.4 m, width w = 0.02 m, thickness h = 
0.001 m, Young’s modulus E = 2.1 # 1011 N/m2, mass density t = 7800 kg/m3, the mass 
of the magnet mm = 0.02 kg, as well as two consecutive voltage amplitude readings of  
1 V and 0.98 V.

Solution
By Faraday’s law, a motional electromotive force (voltage) vm is induced in the electrical 
circuit containing the voltmeter, and its value is

 ( )
( )

v t Bl
dt

dz t
m c=  (10.55)

where lc is the coil length and B is the magnetic field. The center bridge velocity is 
dz (t)/dt.

The actual mechanical system is equivalent to a lumped-parameter one formed of 
a mass m, a viscous damper with coefficient ce, and a linear-motion spring of stiffness 
ke, all placed at the bridge midpoint. The mass is the sum of the magnet mass mm and 
the equivalent bridge mass me, which is given in Table 3.1, m = mm + me. The midpoint 
stiffness of the bridge is provided in Table 3.2. As shown in Chapter 2, the equivalent 
damping coefficient is calculated as

 c m2e n e~ p=  (10.56)

where ~n is the natural frequency, ~n =
 /k me . In Chapter 2 as well, it is shown, Eq. 

(2.78), that the logarithmic decrement (the ratio of two consecutive motion amplitudes) is

 ln
Z

Z

1

2

k

k

e

e1

2
d

p

rp
= =

-

-
 (10.57)

figure 10.19

Electromechanical system with fixed Coil and Magnet Attached to a Bending Bridge:  
(a) Physical Model; (b) Lumped-Parameter Mechanical Model.
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It is also shown that Eq. (2.72), ( )z Zet te n=
p ~-  

sin 1 t2
e n- +p ~ {^ h, describes the 

free damped vibrations of a single-DOf mechanical system, which applies here by using 
z instead of x. The time derivative of z is therefore

 
( )

cos
dt

dz t
Z e t1 1n

t
e e n
2 2e n~ p p ~ {= - - +~p- _ i8

 sin t1
e e n

2p p ~ {- - +` j B (10.58)

which can be written as
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sin
dt

dz t
Z Z e t1n

t
e n1
2

1
e n~ p ~ {= - +p ~- _ i8 B (10.59)

where the new amplitude is a constant amount depending only on pe and ~n. Combining 
Eqs. (10.55) and (10.59) indicates that the voltage vm is a sinusoidal function of time, 
whose amplitude is

 V Bl Z Z em c n
t

1
e n~= p ~-  (10.60)

As a consequence, the ratio of two consecutive voltage amplitudes is equal to the ratio of 
the consecutive deflection amplitudes at the bridge midpoint; therefore,
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The equivalent damping ratio is found from Eq. (10.61):
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 (10.62)

for the numerical values of this example, Eq. (10.62) yields an equivalent damping ratio 
pe = 0.0032. The mass, equivalent midpoint bridge stiffness, and natural frequency are 
determined to be m = 0.043 kg, ke = 1050 N/m, and ~n = 156 rad/s, so that Eq. (10.56) 
gives an equivalent viscous damping coefficient ce = 0.0433 N-s/m.

10.3.3 electromagnetomechanical coupling with Optical  
detection in mems

Optical capturing of the reflected beam from a tilting surface provides information 
about the amount of tilt by using a photodiode that can detect the deflection of a 
reflected ray. This principle is implemented in MEMS applications to measure angu-
lar position.
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The distance d characterizing the deflection of a reflected ray after the reflecting 
surface has tilted an angle iy can be calculated simply based on Figure 10.20:

 [ ( )]tan tand h 20 0 ya a i= - -  (10.63)

which allows determining the tilt angle iy as

 
/tan tan d h

2
0 0

y

1

i
a a

=
- --

^ h
 (10.64)

Example 10.8
A sinusoidal current i = I sin(~t) passes through the circular-loop electrical circuit of 
radius r, which is printed on a rigid plate of thickness dr and mass density t attached to a 
flexible microrod of length l, diameter dr, and shear modulus G. The microdevice is placed 
under the action of an unknown constant magnetic field B, as shown in figure 10.21. 
Determine the magnetic field B when I = 0.002 A, ~ = 40 rad/s, r = 100 nm, dr = 1 nm,  
l = 50 nm, t = 3600 kg/m3, G = 50 # 1010 N/m2. The tilt of the rigid plate is monitored 
optically by a photodiode, which is placed at a distance h = 2 mm from the plate, the 
incident laser beam angle being a0 = 30°, see figure 10.20. It is also known that the 
maximum deviation of the reflected ray is d = 4 nm.

Solution
It can be shown using faraday’s law that the interaction between a current passing 
through a circular loop and an external magnetic field, which is parallel to the loop plane, 
results in a moment (torque) applied to the loop plane; the moment is on an axis that 
passes through the circular loop center and perpendicular to the magnetic field direction, 
see Lobontiu (2007) or Bueche and Jerde (1995) for more details. Moreover, the torque 
value is equal to the product of the loop area, magnetic field, and current:

 sin sinm ABi r BI t M tt t
2r ~ ~= = =] ]g g (10.65)

figure 10.20

Optical Detection by Means of a Tilting surface and Photodiode.
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where the torque amplitude is Mt = rr 2BI. The direction of the torque mt being on the 
axis of the flexible rod, its effect is alternating torsion. for small tilt angles, the lumped-
parameter mathematical model of the rigid plate mechanical motion is

 J m kx t t xi i= -p  (10.66)

where J is the plate mass moment of inertia, kt is the torsional stiffness of the rod (see 
Table 3.2), and ix is the tilt angle of the plate (identical to the rotation angle of the rod 
end). The mass moment of inertia for thin plates (where 2r >> h = dr, see Appendix D) 
and torsional stiffness are calculated as

 ;J
m r r d r r d

k
l

GI

l

Gd

12
2

12

4 2

3

4

32
r r

t

p r
2 2 2 4 4t t r

= = = = =
] ]g g

 (10.67)

With the numerical data of this example, J = 48 # 10-20 kg-m2 and kt = 9.81 # 10-10 N-m.
By applying the Laplace transform to Eq. (10.66), the following transfer function is 

obtained:
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 (10.68)

The complex transfer function is therefore
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= =^ ^h h  (10.69)

where Hx and Mt are the amplitudes of the tilt angle ix and torsional moment mt, respec-
tively. Combination of Eqs. (10.65) and (10.69) results in

 M =;( )G j~
k J

r BI
x t
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2
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r
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-
 (10.70)

Considering now that the angle Hx is iy of Eq. (10.64), Eq. (10.70) yields
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 (10.71)

and the numerical value of B is 0.0117 T.

figure 10.21

Top View of Electromagnetomechanical sensor.
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 10.3.4 piezoelectric coupling
A special type of interaction between the mechanical and electrical fields with appli-
cations in actuation and sensing is piezoelectric coupling, which is studied in this 
section.

Introduction to Piezoelectricity
In piezoelectric transduction (actuation or sensing) coupling between the mechanical 
and electrical fields is realized by means of the direct and converse piezoelectric effects, 
which are constitutive features of piezoelectric materials. In the direct piezoelectric 
effect, external application of a mechanical strain (deformation) to a piezoelectric 
material generates a voltage, which is proportional to the mechanical action. A device 
based on the direct piezoelectric effect can be used as a sensor or generator. The con-
verse piezoelectric effect generates mechanical strain (deformation) from a piezoelec-
tric material connected to an external voltage source (with the strain being proportional 
to the voltage); thus, this principle can be used for actuation resulting in motors.

Some natural materials, such as quartz crystals, the Rochelle salt or tourmaline, 
as well as ceramics, such as PZTs (based on lead [plumbum], zirconium, and tita-
nium or barium and titanium) display piezoelectric behavior. Piezoelectric materials 
are formed of electric dipoles oriented randomly in the material structure, see Figure 
10.22(a). Through a poling process, a strong external voltage (approximately 2000 
V/m) is applied to the material, which has been heated to an elevated temperature, 
that aligns the dipoles as sketched in Figure 10.22(b); this structure is permanently 
impressed on the material by a fast cooling process. Through poling, the final dimen-
sion about the poling direction becomes larger, as illustrated in Figure 10.22(b). 
Based on the poling direction, three reference axes are used to define various proper-
ties and deformation motions of a piezoelectric block, as shown in Figure 10.23.

The numbers 1, 2, and 3 indicate translations about x, y, and z, respectively, whereas 
the numbers 4, 5, and 6 indicate the ix, iy, and iz rotations about the  corresponding 

figure 10.22

Piezoelectric Block: (a) Unpoled; (b) Poled.
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axes. Axis 3 always indicates the poling direction. Let us consider the actuation situ-
ation where an external voltage va is applied to a piezoelectric block about the poling 
direction (which was generated by the poling voltage vp), as illustrated in Figure 
10.24(a). The result is the extension of the block dimension parallel to poling direc-
tion 3 and compressions in direction 1 (shown in the figure) and direction 2 (not 
shown, but perpendicular on the figure plane).

Conversely, when an external voltage is applied that has a polarity inverse to the 
one of the poling voltage, as indicated in Figure 10.24(b), the dimension parallel with 
direction 3 shrinks, whereas the dimensions about axes 1 and 2 extend, due to volume 
conservation. In either of the two situations, linear translatory actuation is possible 
about any of the axes, 1, 2, or 3. Actuation based on deformation about axis 3 is 
known as longitudinal actuation, whereas transverse actuation generates  mechanical 
motion about either axis 1 or 2. A third operation mode, shearing, is presented in the 
companion  website Chapter 10, together with detailed presentation of the constitu-
tive piezoelectric laws, which are summarized in the following.

figure 10.23

Reference Axes of a Piezoelectric Block.
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figure 10.24

Piezoelectric Block as a Longitudinal Actuator Realizing: (a) Expansion; (b) Compression 
(Original Block Is shown with solid Lines and Deformed Block Is Indicated with Dashed Lines).
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Longitudinal Actuation and Sensing with Piezoelectric Block
Both piezoelectric actuation and sensing are governed by constitutive laws that quantify 
the interaction between the mechanical and electrical fields, as briefly discussed next. 
Piezoelectricity standards (particularly, the 176-1987 IEEE Standard on Piezoelectricity) 
use special symbols, where mechanical stresses (which are usually denoted by v if they 
are normal and by x when they are shear or tangential), mechanical strains (which are 
denoted by f if they are linear and by c if they are generated by shear), and elasticity 
modulii (normally denoted by E for Young’s or the longitudinal modulus and by G 
for the shear modulus) bear different symbols. The main reason, probably, is that the 
same symbol can be used for different amounts: For instance, E can stand for both the 
Young’s modulus and the electric field, whereas f can represent both the normal strain 
and the electric permittivity. Also, the same standard uses the symbol D for the charge 
density instead of v, which is normally used in electrostatics. However, in this text, 
the classical physics notations are used. To avoid confusion between mechanical and 
electrical amounts that have the same symbol, the subscript m is used for mechanical 
amounts, such that f means electrical permittivity and fm denotes mechanical strain. 
Similarly, E points to an electric field, whereas Em designates Young’s modulus.

We briefly present the actuator (motor) and sensor (generator) behaviors of a 
piezoelectric block with longitudinal action. The block’s deformation and charge 
variation pertaining to the longitudinal direction result from superimposing the 
actions produced by the mechanical and electrical fields. Consider a piezoelectric 
block whose dimension about the poling axis (3) is l and whose cross-sectional area 
is A, as sketched in Figure 10.25. The Young’s modulus of the piezoelectric material 
about the direction of interest is Em and the electric permittivity is f.

Actuation
The aim is to evaluate the total mechanical strain fm resulting from the actuator (motor) 
behavior of a piezoelectric block under the action of an external force f and an external 
(actuation) voltage va that has the same direction as the poling direction. The actuation 
voltage determines an increase in l through the converse piezoelectric effect, and the 
external force adds to the increase in l. The total deformation therefore is the sum of 
the piezoelectric (electrically generated) deformation and the mechanical one:

 l l le mD D D= +  (10.72)

figure 10.25

Piezoelectric Block functioning as an Actuator.
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According to the converse piezoelectric effect principle, the deformation is propor-
tional to the applied voltage; therefore,

 l dve aD =  (10.73)

with d being known as the piezoelectric charge (or strain) constant. In the literature, 
it is usually denoted by d33, the first subscript indicating the poling direction and 
the second one pointing at the stress or strain direction. The constant is measured in 
m/V or, alternatively, in C/N. Equation (10.73) illustrates the coupling between the 
mechanical field (represented by Dle) and the electrical field (through va). As known 
from Mechanics of Materials, the mechanically generated deformation is

 l
E A

fl

E

l
m

m m

mv
D = =  (10.74)

where vm = f/A is the mechanical strain. As a consequence, the total deformation of 
Eq. (10.73) becomes

 l dv
E

l
a

m

mv
D = +  (10.75)

Division by l in Eq. (10.75) results in the total mechanical strain:

 
l
l

dE
Em

m

m
f

vD
= = +  (10.76)

where E = va/l is the electrical field corresponding to the voltage va set between the 
two electrodes spaced at l.

Example 10.9
A longitudinal piezoelectric actuator of length l = 0.03 m, cross-sectional area A = 1 
cm2, mass density tPZT = 7500 kg/m3, Young’s modulus Em = 50 GPa, and piezoelec-
tric charge constant d = 4 # 10-10 m/V is attached to a mass m = 0.020 kg, which 
further connects to a spring k = 200 N/m, as illustrated in figure 10.26(a).

a. Evaluate the total system mechanical losses as an equivalent damping coefficient ceq 
if experimental frequency-domain testing indicates the system’s bandwidth is ~c =  
1.2 ~n (where ~n is the mechanical system’s natural frequency). Consider the mass 
and stiffness contributions of the piezoelectric actuator.

b. Plot the system’s response y as a function of time when a unit impulse voltage is applied 
to the piezoelectric actuator. Note: the electrical circuit is not shown in the figure.

Solution
a. Equation (9.57) gives the relationship between the bandwidth ~c (which is the fre-

quency corresponding to the state where the power becomes half the original power 
in a damped mechanical system under sinusoidal excitation), the natural frequency 
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~n, and in our case, the equivalent damping ratio peq. By using this example’s specific 
requirement, Eq. (9.57) changes to

 .1 2 1 2 4 4 2eq eq eqn n
2 4 2~ ~ p p p= - + - +  (10.77)

Equation (10.77) is solved for the equivalent damping ratio, which results in peq = 0.56. 
The mechanical lumped-parameter model of the piezoelectrically actuated system of 
figure 10.26(a) is shown in figure 10.26(b). The total mass mt is formed of the mass 
m and the lumped mass fraction of the piezoelectric  actuator, meq,PZT. The companion 
website Chapter 3 demonstrates that this latter mass fraction is one third of the total 
axially vibrating actuator mass; as a consequence,

 m m m m m m lA
3
1

3
1

eq,PZT PZT PZTt t= + = + = +  (10.78)

Numerically, the total mass is mt = 0.0275 kg. The piezoelectric block stiffness kPZT 
and the one of the spring are connected in parallel; therefore, a total stiffness kt is 
calculated as

 k k k k
l

E A
PZTt

m
= + = +  (10.79)

with a numeric value of kt = 1.667 # 108 N/m. The equivalent damping coefficient can 
be determined from the equivalent damping ratio, the total mass, and total stiffness as

 c m k2eq eq t tp=  (10.80)

and its numerical value is ceq = 2397.8 N-s/m.

b. Newton’s second law is applied to the mechanical system of fig. 10.26(b):

 m y f c y k yPZT eqt t= - -p o  (10.81)

The force generated by the piezoelectric block is

 f k y
l

E A
yPZT PZT

m
0 0= =  (10.82)

Piezoelectric actuator

l

m
k

y
fPZT

y

kPZT
mt

ceq

k

(a) (b)

figure 10.26

Longitudinal Piezoelectric Actuator: (a) schematic of Actual system; (b) Lumped- 
Parameter Model.
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where y0 is the free deformation of the piezoelectric block; therefore, in accordance 
with Eq. (10.73),

 y dva0 =  (10.83)

Equations (10.82) and (10.83) are combined and substituted into Eq. (10.81), which 
becomes

 m y c y k y Cveqt t a+ + =p o  (10.84)

where the constant C is

 C
l

E Adm
=  (10.85)

with a numerical value of C = 0.0667 N/ V. Laplace transforming Eq. (10.84) yields the 
transfer function

 ( )
( )
( )

G s
V s

Y s

m s c s k

C

eqa t t
2

= =
+ +

 (10.86)

By using the tf and impulse MATLAB® commands, the plot of figure 10.27 is 
obtained.
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figure 10.27

Displacement Response of  Piezoelectrically-Actuated Mechanical system under Unit 
Impulse Voltage Input.
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Sensing
We now evaluate the sensor (generator) response of the block of Figure 10.25 under 
the same external mechanical and electrical loading by assessing the total charge 
 density v. When the block operates as a sensor for the force f, the total generated 
charge is

 q q qm e= +  (10.87)

where the charge due to direct piezoelectric effect is proportional to the applied 
force:

 q d fm m=  (10.88)

Equation (10.88) is the relationship that couples the electrical and mechanical fields 
in sensing. The piezoelectric literature utilizes the g constant (named piezoelectric 
voltage constant), or g33, for this particular case (with the subscripts having the same 
meaning with the ones of d33). The voltage constant is measured in m2/C and is 
defined as

 org g
Em

m

f

vv
= =  (10.89)

where vm and fm are the mechanical stress and strain, and v is the charge density (v = 
q/A). Because v = fm /g = f/(EmAg), it follows by comparison to Eq. (10.88) that:

 d
gE
1

m
m

=  (10.90)

It can be shown that dm is measured in C/N so the units of d (the piezoelectric charge 
constant) and dm are identical. Equation (10.89) can also be written in the form

 
/
/

g
f A
v l

E A

fl
E

v
lE
v

m
m

mD
= = =  (10.91)

which is

 or( ) v
d

lv gE l
1

m
m D D= =  (10.92)

Equation (10.92) indicates that the voltage generated through mechanical action is 
proportional to the mechanical deformation. The charge generated by the action of 
the voltage va is

 q Cv
l
A

v AEe a a
f

f= = =  (10.93)

where C is the electrical capacitance of the piezoelectric block taken along its length l. 
Adding up the charges of Eqs. (10.88) and (10.93) gives the total charge of Eq. (10.87):

 q d f AEm f= +  (10.94)
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Division by A in Eq. (10.94) produces the charge density v = q/A in the left-hand side:

 d Em mv v f= +  (10.95)

where vm = f/A is the mechanical stress.

Example 10.10
An accelerometer uses a piezoelectric plate to sense the acceleration of an input sinusoidal 
displacement using the device shown in figure 10.28. Use a lumped-parameter model to 
express the acceleration ampli  tude by means of the sensing voltage amplitude. Known are 
the dimensions of the piezoelectric plate: thickness h = 1 mm, side of square cross-sectional 
area a = 1 cm, as well as Young’s modulus Em = 5 # 1010 N/m2, piezoelectric mass density 
tPZT = 7500 kg/m3, piezoelectric voltage constant g = 0.074 m2/C, mass m = 0.05 kg, and 
spring stiffness k = 100 N/m. Assume that the total system losses are lumped into the vis-
cous damping coefficient ct = 136.821 N-s/m. The voltage amplitude read by the sensor is 
V = 0.05 V. Consider that the spring and damper are precompressed to maintain permanent 
contact between the vibrating mass m and the piezoelectric sensor. Also, draw the Bode plot 
magnitude ratio to verify the results.

Solution
By taking into account that the piezoelectric plate can be represented as a mass-damper-
spring system, figure 10.29(a) shows the lumped-parameter model of the original system 
of figure 10.28, which includes the effective mass, damping coefficient, and spring stiff-
ness of the piezoelectric sensor.

Because the actual mass m and the piezoelectric plate equivalent (efficient) mass move 
together, the lumped-parameter model can be simplified  further to the one of  figure 10.29(b), 
where the subscript t indicates total and adds up contributions from the mechanical system 
to the corresponding equivalent amounts of the piezoelectric sensor. By using the lumped-
parameter model of figure 10.29(b), the equation of motion of the system is

 m z c z u k z ut t t= - - - -p o o] ]g g (10.96)

figure 10.28

Piezoelectric sensing of Acceleration.

Piezoelectric sensor

u 5 U sin(vt )
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where z monitors the absolute motion of the mass m about the equilibrium position (the 
one obtained by the precompression of the dashpot). The total mass, damping coef-
ficient, and spring rate are

 

m m m m m m ha

k k k k
h

E a

3
1

3
1

eq,PZT PZT PZT

PZT

t

t
m

2

2

t= + = + = +

= + = +

Z

[

\

]
]

]]
 (10.97)

The total mass of Eq. (10.97) has been calculated by taking into account that the equiva-
lent mass of the axially vibrating piezoelectric plate (fixed at one end and mobile at the 
other) is one third of the actual mass; see the companion website Chapter 3 for details. 
A similar accelerometer problem is studied in Chapter 9, and it is demonstrated that 
Eq. (10.96) can be brought to the form

 m y c y k y m ut t t t+ + = -p o p (10.98)

where y = z - u is the coordinate indicating the relative motion of the mass with respect 
to the moving platform. It can be shown that, if the reference frame of z is placed at the 
point of static equilibrium, where the compression spring and damper forces balance out 
the reactions from the corresponding piezoelectric forces, then Eq. (10.96) and therefore 
(10.98) are valid; the interested reader can try this as a side  exercise.

The piezoelectric actuator generates a voltage v proportional to the relative displace-
ment y, as shown in Eq. (10.92):

 y
gE

v d v
1

m
m= =  (10.99)

The Laplace transform is applied to the equation and, after substituting Eq. (10.99) into 
Eq. (10.98), the following transfer function is obtained:
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 (10.100)
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figure 10.29

Lumped-Parameter Model of (a) Original system; (b) Equivalent system.
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figure 10.30 is the MATLAB® Bode plot of magnitude ratio corresponding to the transfer 
function of Eq. (10.100), obtained for the following parameter values: mt  = 0.0503 kg, kt  = 
5 # 109 N/m2, and dm = 1/(gEm) = 27 # 10-11 C/N.

Our interest lies on transmissibility, the amplitude ratio of the voltage to the input 
 displacement, which is the modulus of the complex function G( j~), as discussed in 
 Chapter 9; that is,
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Equation (10.101) can also be written as
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where the total natural frequency ~n,t and total viscous damping ratio pt are

 ;m
k

m
c

2, ,n t
t

t
t n t

t

t
~ p ~= =  (10.103)

The numerical value of the natural frequency of Eq. (10.103) is ~n,t = 3.154 # 105 rad/s; 
this value can also be retrieved by right clicking on the peak of the plot obtained using 
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figure 10.30

Magnitude-Ratio Bode Plot of Piezoelectric system’s Transfer function.
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MATLAB®’s bodemag command, as illustrated in figure 10.30. An accelerometer is 
defined by a high natural frequency; therefore, the square root of Eq. (10.102) is approxi-
mately equal to 1. As a consequence,

 V
d

U

d
A,

,m

n t

m n t

2

2

2
.

~

~

~
=  (10.104)

where A = ~2U is the acceleration amplitude of the external motion. The acceleration 
amplitude is therefore expressed as

 A d V,m n t
2~=  (10.105)

By using the numerical values of the example, the acceleration amplitude is found to be 
A = 1.345 m/s2.

Piezoelectric and Strain Gauge  Sensory-Actuation
A piezoelectric stack can be equipped with two strain gauges, as shown in 
Figure 10.31, which is the photograph of an actuator realized by Thorlabs, that 
are connected in a half Wheatstone bridge. In this arrangement, the deforma-
tion of the piezoelectric stack can be monitored, and the block functions as both 
actuator and sensor.

An example is solved in the companion website Chapter 10 of the piezoelectric 
block of Figure 10.32, which has two strain gauges connected in a half Wheatstone 
bridge, as shown in Figure 10.33 (the strain gauges are denoted by R1, R2, whereas the 
other two resistances R are of constant value).

figure 10.31

Piezoelectric stack with Two strain Gauges in a Half Wheatstone Bridge Connection.
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It is also demonstrated that the output voltage variation is expressed as

 v K v K
E A

f
v

E A

K v
f

2
1

2
1

2o g a i g
m

i
m

g i
fD = = =  (10.106)

and that the device sensitivity (resulting from Dvo = Kf ) is therefore

 K
E A

K v

2 m

g i
=  (10.107)

Example 10.11
A two strain-gauge piezoelectric block is used to eliminate the effects of the force f = 
5 sin(4t) N, which is applied at the end of the rigid rod shown in figure 10.34. The rod 
is  supported by an elastic beam (flexure hinge), both being originally horizontal. Known 

R1 R

R2R

vi

vo
i1 i1

i2 i2

figure 10.33

Half Wheatstone Bridge with Two Variable Resistors and Two “Dummy” Resistors.

f

2
1

R1

R2

figure 10.32

Piezoelectric Block with Two strain Gauges.
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are L = 20 mm, the rod mass m = 0.05 kg, the flexure length lf = 6 mm, the flexure cross-
sectional  dimensions, which are thickness hf = 1 mm (dimension in the plane of the figure) 
and width wf = 2 mm, as well as the beam Young’s modulus Ef = 2.1 # 1011 N/m2. for the 
piezoelectric sensory-actuator known are l = 20 mm, cross-sectional area A = 6.252 mm2, 
Em = 5.2 # 1010 N/m2, d = 390 # 10-12 m/V, vi = 15 V, and Kg = 2.

a. What actuation voltage is necessary for the piezoelectric block to counteract the exter-
nal force f ?

b.  The readout indicates an output voltage amplitude of DVo = 67.16 nV, which indi-
cates there is an error in the actuator placement. What is the actual position of the 
actuator?

Solution
a. The lumped-parameter model of the system sketched in figure 10.34 is shown in 

 figure 10.35, where the piezoelectric actuator has been replaced by a point force fa, 
and the flexure hinge has been substituted by a spiral (torsional) spring of stiffness kf.

static balancing of the horizontal rod requires that

 f
L

fL
2a =  (10.108)

In this case, there is no rotation of the rod about the pivot point and therefore no elastic 
torque generated by the torsional spring. By taking into account that Dh = fal/(EmA) = dva, 
Eq. (10.108) allows expressing the actuation voltage as

 ( )sinv
E Ad

l
f

E Ad
l

t
2 2

50 4a
m m

= =  (10.109)

Numerically, the actuation voltage is va = 50.49 sin(4t) V.

f

fa

Spiral spring

kf

figure 10.35

Equivalent Lumped-Parameter Model.

Flexure hinge
Piezoelectric actuator

Rigid rod 

lf L /2 L /2

l

f

figure 10.34

Lever-Type Mechanical system with External force and  Counteracting Piezoelectric Block.
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b. for a perfectly balanced mechanical system (with no rotation about the pivot point), the 
tip displacement of the piezoelectric actuator should be zero and this should translate 
into an output voltage of zero. The output voltage not being zero means that one pos-
sible cause for this discrepancy is the position of the actuator with respect to the pivot 
point. Assume the actual position parameter is a instead of the design parameter L/2. 
In this case, the dynamic equation of motion of the rod around the pivot point is

 J f a fL ka fi i= - -p  (10.110)

It is known that the elastic torque is equal to the stiffness times the deformation (rotation 
angle); thus, it is known from Mechanics of Materials that the spring rotary stiffness is

 k
l

E I

l

w h E

12f
f f

f ff f
3

= =  (10.111)

which is kf = 5.833 N-m. According to Eq. (10.106), the following relationship can be 
written between the output voltage variation Dvo and the actuation force fa:

 ;f c v c
K v

E A2
a o

g i

m
1 1D= =  (10.112)

Assuming that the rod of figure 10.35 rotates by an angle i in the direction of action 
of fa, this angle can be expressed for small deformations as

 a
l

E Aa

f l

m

a
i

D
= =  (10.113)

substituting fa of Eq. (10.112) into Eq. (10.113) results in

 ;a
c

v c
K v

l2
o

g i

2
2i D= =  (10.114)

Combining Eqs. (10.110), (10.112), and (10.114) produces the following differential 
equation:

 a
Jc

dt

d
v a

k c
c a v fLo

f

o
2

2

2
2

1# D D+ - = -^ dh n  (10.115)

The Laplace transform applied to Eq. (10.115) yields the transfer function that con-
nects DVo(s), the Laplace transform of Dvo(t), to F(s), the Laplace transform of f (t). 
Because there is no damping in the system, the transfer function is also the ratio of the 
amplitudes of the two signals Vo and F:

 
F

V

a
c

J k c a

Lo

f
2 2

1~

D
=

- +_ i

 (10.116)
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As a consequence, the following equation in a is produced:

 0c a
V

LF
a c J k1

2
2

2

o
f# ~

D
- + - =_ i  (10.117)

The mass moment of inertia of the rigid rod is determined as J = mL2/12. By using the 
numerical values of this example, the value of a = 11 mm is obtained, which indicates 
that, for the given sensing voltage, the piezoelectric actuator needs to be moved 1 mm 
to the left to cancel the error.

10.4  thermOmechAnicAl cOupling: the bimetAllic 
strip

The bimetallic strip is a cantilever beam consisting of two layers of different  materials, 
as shown in Figure 10.36(a). Exposed to a temperature increase, the two materials 
expand differently along the length, but because they are attached, the compound 
beam bends, as illustrated in Figure 10.36(b) because the top layer material has a 
linear coefficient of thermal expansion a1 that is larger than the coefficient a2 of the 
bottom layer and therefore tends to expand more in the dimension l.

The radius of curvature R, shown in Figure 10.36(b), is related to the temperature 
increase Di as

 R
h

1 2a a iD
=

-^ h
 (10.118)

where h = h1 + h2 (h1 and h2 are the two strips’ thicknesses).
Mechanics of Materials shows that the curvature (the reciprocal of the radius 

of  curvature) depends on the second derivative of the free end deflection z(x), 
 Fig. 10.36(b):

 
R dx

d z x1
2

2

=
] g

 (10.119)

�1

l

h
�2

(b)(a)

R z(x)

z

x

figure 10.36

Bimetallic strip in (a) Original  (Undeformed) Condition; (b) Deformed Condition.
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where x is measured from the fixed end of the cantilever of Figure 10.36(b). 
Combining Eqs. (10.118) and (10.119) followed by two integrations yields the slope 
and the deflection:

 

( ) ( )

( )
( )

dx

dz x

h
x C

z x
h

x C x C
2

1 2
1

1 2 2
1 2

a a i

a a i

D

D

=
-

+

=
-

+ +

Z

[

\

]]

]]
 (10.120)

Both the slope and deflection are zero at the root, for x = 0, which results in the two 
integration constants, C1 = C2 = 0. The maximum deflection is at the free end and is 
found from the second Eq. (10.120) for x = 1:

 
( )

z
h

l

2
1 2

2

#
a a

iD=
-

 (10.121)

Equation (10.121) indicates that the bimetallic strip functions as a thermal sensor 
when the free-end deflection can be measured.

Example 10.12
A two-material cantilever is calibrated by exposing it to a temperature increase of Di = 20° 
and evaluating the resulting free-tip displacement as a function of time. Known are the 
following parameters: a1 = 22.2 # 10−6 deg−1, a2 = 3.2 # 10−6 deg−1, E1 = 69 GPa, 
E2 = 400 GPa, t1 = 2700 kg/m3, t2 = 2400 kg/m3, common width w = 50 nm, common 
length l = 350 nm, h1 = 100 nm, and h2 = 1 nm. Plot the free-tip displacement using 
a lumped-parameter model and considering that the total viscous damping coefficient is 
c = 2.3 # 10−7 N-s/m.

Solution
When the inertia, damping, and stiffness properties of the bi-metallic strip are considered, 
the quasi-static model, which predicted the tip deflection as a function of temperature in 
Eq. (10.121), needs to be altered. The lumped-parameter model of the two-material can-
tilever consists of two collocated masses, m1 and m2, two springs in parallel (of stiffnesses 
k1 and k2) and an equivalent point force that produces the same tip displacement as the 
quasi-static thermal effect, see figure 10.37.

The total mass is calculated by means of Table 3.1 as

 m m m wl h h
140
33

1 2 1 1 2 2# t t= + = +^ h (10.122)
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similarly, the stiffness is calculated as indicated in Table 3.2:

 k k k
l

E I E I
l

w
E h E h

3
4

1 2 3 1 1 2 2 3 1 1
3

2 2
3

# #= + = + = +^ _h i (10.123)

With the numerical values of this example, m = 1.1 # 10−11 kg and k = 0.1166 N/m, 
which yields a natural frequency of 102,910 rad/s. The equivalent point force is calcu-
lated by means of Eqs. (10.121) and (10.123):

 f kz
l h h

w E h E h
a

8eq
1 2

1 1
3

2 2
3

1 2
#

a a
i iD D= =

+

+ -
=

^

^

^h

h

h
 (10.124)

which shows the force is proportional to the temperature variation. The proportionality 
constant is C = 1.234 # 10−7 N-deg−1. Based on figure 10.37, the equation of motion of 
the mass is

 
( ) ( )

( )m
dt

d z t
f c

dt

dz t
kz teq2

2

= - -  (10.125)

Combining Eqs. (10.124) and (10.125) results in

 
( ) ( )

( )m
dt

d z t
c

dt

dz t
kz t a

2

2

iD+ + =  (10.126)

The transfer function corresponding to Eq. (10.126) is

 ( )
( )

( )
G s

s

Z s

ms cs k

a
2DH

= =
+ +

 (10.127)

By using the MATLAB® tf and step commands and shortening the time interval, the 
plot of figure 10.38 is obtained; it can be seen that the tip displacement is approximately 
1.8 nm and the steady state tip displacement is k3( ) lim ( ) ( )z sG s s

0s
DH Di= =

"
a , namely, 

z (3) = 21.16 nm.

figure 10.37

Lumped-Parameter Model of a Two-Material Cantilever under Thermal Deformation.
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 10.5 nOnlineAr electrOthermOmechAnicAl  
cOupled-field  systems

Obtaining the time-domain solution of nonlinear coupled-field systems is usually 
performed using time-stepping schemes, such as the finite difference method, the 
Runge-Kutta procedure, or other dedicated algorithms; the companion website 
Chapter 10 presents application of the forward and central finite difference methods 
to some nonlinear coupled-field mathematical models, whereas the last part of this 
section presents the use of Simulink® in numerically solving such a model.

The following example derives the nonlinear model of a dynamic system with cou-
pling between the electrical, thermal, and mechanical fields. One equation connect-
ing temperature variation Di to electrical resistance at the final  temperature R is

 (1 )R R R0 a iD= +  (10.128)

where R0 is the electrical resistance at the original (initial) temperature and aR is the 
thermal coefficient of resistance.

figure 10.38

free-End Displacement of Two-Material Cantilever under Thermal Deformation.
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Example 10.13
A voltage v is applied to a deformable bar by means of an external electrical circuit, as 
sketched in figure 10.39. The voltage generates heating of the bar through the Joule 
effect and its subsequent axial deformation in the x direction. Derive a mathematical 
model of this coupled-field dynamic system with the output being the bar surface tem-
perature is and the axial deformation x of its guided end. Known are the linear coefficient 
of thermal expansion a, the specific heat c, the thermal coefficient of resistance aR, as 
well as the electrical resistivity of the bar tel, its original length at the air temperature l0, 
length of square cross-sectional side a, and mass density t. The bar loses heat through 
convection in the air whose constant temperature is i3 while the average convection 
coefficient is h. Assume that the variations of the cross-sectional dimensions and mass 
density with the temperature are negligible. Also assume that the electrical-to-mechanical 
energy conversion is instantaneous.

Solution
As seen in Chapter 5, the thermal capacity of the bar Cth is connected to its temperature 
and heat flow rates

 orC q q mc q qth s i s i0 0i i= - = -o o  (10.129)

where m is the bar mass, c is the specific heat, and qi is the input heat flow rate gained 
through Joule heating defined as

 
( )[1 ]

q
R
v

R
v

R s
i

2

0

2

i ia
= =

+ - 3

 (10.130)

and qo is the heat flow rate lost through convection

 ( )q hAo sl i i= - 3  (10.131)

figure 10.39

MEMs with Electrothermal (Joule Effect) Actuation.
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The lateral area of the bar Al is

 [ ( )]A al al4 4 1l s0 a i i= = + - 3  (10.132)

while the constant mass is m = ta2l0 and the original resistance is R0 = tel l0 /a2. Using 
these parameters and substituting Eqs. (10.130), (10.131), and (10.132) in Eq. (10.129) 
results in

 
( )

a l c
l

a v
1s

el R s

2
0

0

2 2

t i
t a i i

=
+ - 3

o
6 @

 

 ( ) ( )hal4 1 s s0 a i i i i- + - -3 36 @  (10.133)

Considering that the air temperature i3 is constant, the notation i = is − i3 is used, which 
allows reformulating Eq. (10.133) as

 cal cal hl4el R el el R0
2

0
2

0
2 3tt a ii tt i t aa i+ +o o  

 hl hl av4 4el R el0
2 2

0
2 2t a a i t i+ + + =^ h  (10.134)

The displacement x of the bar’s movable end is expressed in Eq. (10.132) as

 ( )( ) tx t l0a i=  (10.135)

Equations (10.134) and (10.135) form the mathematical model of the electrothermo-
mechanical system of figure 10.39. The nonlinear Eq. (10.134), which expresses the 
 electrothermal system coupling, can be solved for i, whereas Eq. (10.135), which illus-
trates the thermomechanical system connection, is used to determine x, as shown in the 
solved Example 10.15.

10.6  simulink® mOdeling Of nOnlineAr cOupled-field 
systems

This section comprises a few examples of coupled-field systems being described by 
nonlinear mathe matical models and which are solved by means of Simulink®.

Example 10.14
Use simulink® to plot the time variation of the arm rotation angle i(t) and the  current 
i(t) corresponding to the electromagnetomechanical system of Example 10.6 and shown 
in  figure 10.16. Known are r = 0.01 m, l = 0.04 m, k = 0.1 N-m, J = 2 # 10−6 kg-m2, 
ve = 60 V, R = 80 X, L = 0.04 H, B = 1 T, as well as the nonzero initial condition 
i(0) = 0.05 rad.
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Solution
The differential Eqs. (10.54) can be written as

 

( )
( ) ( ) ( )

( )
( )

( )
( )
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dt
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]]
 (10.136)

where A = rl = 4 # 10−4 m2 is the rotating loop area. It can be seen that the  differential 
equations are  nonlinear, because the variable i enters as a trigonometric function’s argu-
ment and also because it multiplies the other variable i. figure 10.40 contains the simu-
link® block diagram, allowing us to solve the two differential Eqs. (10.136). The upper 
part of the diagram solves the first Eq. (10.136), while the lower part corresponds to the 
second Eq. (10.136). Blocks used in previous simulink®-solved examples are seen in 
figure 10.40; a new block here is the Trigonometric Function, which allows cal-
culation of cosi; this block is dragged from the Math Operations library. The nonzero 
initial condition of this example is specified by clicking the second integration block on 
the upper part of the block diagram (which gives the angle i) and specifying the value of 
i(0). figure 10.41 illustrates the plots of i and i as functions of time. It can be seen that 
the current reaches a constant value of less than 0.8 A very fast, whereas the arm has an 
oscillatory motion with an amplitude of approximately 3 degrees.

figure 10.40

simulink® Diagram for solving the Mathematical Model of the Electromagnetomechanical 
system of Example 10.6.
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Example 10.15
solve Example 10.13 using simulink® for a copper bar and the following numerical val-
ues: l 0 = 0.1 m, a = 1 mm (side of square cross-section actuator), t = 8900 kg/m3, 
a = 17 # 10−6 deg−1, tel = 17 # 10−9 X-m, aR = 0.0039 deg−1, c = 385 J/(kg-deg), 
h = 30 J/(m2-s-deg), and v = 0.017 V. specifically, plot the time variations of the tem-
perature change i and the axial deformation of the bar x.

Solution
Equations (10.134) and (10.135) can be rewritten as

 a a a a a
x a

1 2 3
2

4
3

5

6

i i ii i i

i

= - - - - +
=

o o
)  (10.137)

with the coefficients a1 through a6 easily identifiable in Eq. (10.135) as

 ; ;
( )

; ;a ca
h

a a ca
h

a ca
h4 4 4

R
R R

1 2 3 4t a t

a a

t
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= = =

+
=

 ;a
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v
a l

el

5
0
2

2

6 0
tt

a= =  (10.138)

The numerical values of the constants of Eq. (10.138) are a1 = 0.035, a2 = 0.0039, 
a3 = 1.3718 # 10−4, a4 = 2.3219 # 10−9, a5 = 0.4961, and a6 = 1.7 # 10−6. figure 10.42 
illustrates the simulink® block diagram solving the nonlinear Eq. (10.138). The Add block 
is dragged from the Math Operations library and used to add the five terms on 
the right-hand side of Eq. (10.138); the Math Function block is also obtainable from 
the Math Operations library and is utilized to calculate the square of i. The second 

figure 10.41

Plot of solution in Terms of Time: (a) Rotation Angle i (rad); (b) current I (A). Time Is 
Measured in seconds.

(a) (b)
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term in the right-hand side of Eq. (10.138) is generated as the product between i and 
io by means of the Product block from the Math Operations library. figure 10.43 
shows the rising and stabilizing portions of the system response over a time period of 
150 s. The maximum bar temperature change is less than 14 deg and the maximum bar 
deformation is approximately 23 nm.

figure 10.42

simulink® Diagram for solving the Mathematical Model of the Electrothermomechanical  
system of Example 10.13.
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Plot of Displacement in Terms of Time, Time Is Measured in seconds.
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summAry
This chapter studies the interaction among systems containing elements of different 
physical types by formulating mathematical models of these coupled-field systems. 
As a preamble to system coupling, system analogies are studied using differential 
equations and transfer functions. Several examples of coupled-field systems are ana-
lyzed, including electromechanical and electromagnetomechanical ones, piezoelec-
trically-coupled applications, and bimetallic strips as thermomechanically coupled 
problems and electrothermomechanical systems. Examples of using Simulink® to 
model the dynamics of non linear coupled-field systems are included.

prOblems
10.1 Formulate a state-space model for the dc motor of Example 10.1, shown in 

 Figure 10.4, using two inputs (the armature voltage va and load moment ml) and 
one output (the shaft angular velocity ~), then plot the system’s time response 
(output) by means of MATLAB®. Use the numerical values of Example 10.1 
except for va = 100 - 10/(t + 1) V and ml = 0.15 cos(5t) V.

10.2 Consider that the mechanical system of Example 3.11, whose sketch is 
 Figure 10.44, is  actuated by a dc motor and its corresponding electrical circuit. 
Demonstrate the electromechanical  coupling of this system deriving the transfer 
function matrix connecting the armature voltage va and load moment ml as input 
variables to the midshaft cylinder rotation angle i and armature current ia as out-
put variables.

N3

N4

c3

c

c1

N1

N2 ml

ma
Electrical armature circuit

couples to shaft 

k1 k2

J

figure 10.44

Gear-shaft Rotary Mechanical system Driven by a dc Motor.
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10.3 Calculate and plot the angular velocity of the midshaft cylinder studied in 
 Problem 10.2. All parameters furnished in Example 3.11 are applicable here 
except for the actuation moment ma. The other parameters are Ra = 10 X, 
La = 5 H, va = 100 sin(60t) V, Ke = 0.02 N-m/A, Kt = 0.4 N-m/A.

10.4 Use time-domain modeling to determine an electrical system that is analogous 
to the liquid system of Figure 10.45, where pi is the input pressure and po is the 
output pressure. The system is formed of two tanks having the capacitances Cl1 
and Cl2, and three resistances: Rl1, Rl2, and Rl3. 

10.5 Find a mechanical system that is analogous to the electrical system of 
 Figure 10.46 using the transfer function approach.

10.6 Determine a mechanical system and an electrical system that are analogous. 
Both systems are defined by the mathematical model

x x x x
x x x x

20 20 300 80
30 20 200 220

1 1 2 1

2 2 1 2

+ - + =
+ - + =

p o o
p o o(

10.7 Propose an electrical circuit that is analogous to the lumped-parameter model 
of the MEMS sketched in Figure 10.47, which is formed of two shuttle masses, 
m1 and m2, six supporting identical beams (of bending stiffness k1), and a ser-
pentine spring (of stiffness k). The system is acted upon capacitively by the 

figure 10.45

Liquid-Level system with Tanks and Valves.

Rl1 Cl1 Cl2
pi p1 Rl2p1 p2 Rl3p2 po

qi

figure 10.46

Electrical system for Mechanical system Analogy.
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forces f1 and f2; viscous damping of coefficient c exists between the two masses 
and the underneath  supporting base.

10.8 Identify an operational amplifier electrical system that is analogous to a mechan-
ical system formed of a mass, a parallel spring-damper connection, and a force 
acting on the mass—see Figure 10.7(a). Use the transfer function approach.

10.9 A sinusoidal force f of unknown amplitude is applied to the mass-damper-spring 
mechanical system of Figure 10.48. Use the voltage-divider electrical circuit 
shown in the figure to evaluate the force amplitude F when known are m = 1 kg, 
k = 200 N/m, c = 0.1 N-s/m, R = 30 X, Rs = 20 X (the total sensing resistance), 
L = 0.05 H, V = 120 V (the voltmeter amplitude). The maximum voltmeter 

figure 10.47

Microelectromechanical system with Capacitive Actuation.
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figure 10.48

Mechanical Motion sensing by a Voltage Divider Circuit.
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indication is 2 V at an excitation frequency ~ = 20 rad/s. Known also are the 
electric resistivity tel = 2 # 10-7 Xm and resistor wire area A = 2 # 10-7 m2.

10.10   The shuttle mass m = 1.4 # 10-12 kg of Figure 10.49 is supported by two iden-
tical beam springs, each of stiffness k1 = 2 N/m. Two identical longitudinal 
pairs create a capacitive force on the shuttle mass in the y direction, which is 
1.4 times larger than the force required to close the gap d = 6 nm between 
the mass and a mobile, massless plate supported by a serpentine spring of 
stiffness k2 = 3 N/m. The superposition width of the capacitor plates is w = 
250 nm, the constant capacitive gap is g = 5 nm, the electric permittivity is 
f = 8.8 # 10-12 F/m, and the viscous damping coefficient between the mass 
and substrate is c = 0.001 N-s/m. Determine and plot the mass displacement 
before and after contact with the mobile stop plate assuming that the capaci-
tive actuation is discontinued after contact.

10.11   A voltage v = 5d(t) nV (where d(t) is the unit impulse) is supplied to the rotary 
capacitive MEMS actuator of Figure 10.50, which operates in air. Find and plot 
the time response of the mobile armature knowing its moment of inertia is J = 
10-18 kg-m2, the viscous damping coefficient (not symbolized in  Figure 9.50) 
is c = 30 N-m-s, and the spiral spring stiffness is k = 2 N-m. Known also are 
the fixed gap g = 4 nm and the radius R = 220 nm.

10.12   The microbridge of Figure 10.51 is used to evaluate the dynamic viscosity of a 
fluid by transverse capacitive sensing of the midpoint displacement relative to 
the input displacement u = 5 sin(200t) nm of a massless cage. Use a lumped-
parameter model to determine the fluid dynamic viscosity knowing that the 
bridge has a length of 230 nm, width of 60 nm, thickness of 1.2 nm, Young’s 
modulus of 1.6 # 1011 N/m2, and mass density of 6100 kg/m3. The maximum 
voltage sensed by the capacitor is DV = 20 nV and the mass of capacitor plate 
attached to the microbridge is mp = 2 # 10-12 kg. For the capacitive sensor, the 
initial gap is g0 = 12 nm and the bias voltage is vb = 10 nV.

figure 10.49

MEMs with Longitudinal Capacitive Actuation.
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10.13   A microcantilever with a length l = 200 nm, width w = 25 nm, thickness 
h = 2 nm, Young’s modulus E = 160 GPa, and mass density t = 5800 kg/m3 
has two strain gauges (Kg = 2)  attached at its root; the gauges are connected 
in a half Wheatstone bridge (with vi = 15 nV). The cantilever is attached to a 
massless platform (base), which has a sinusoidal motion u = 10 sin(100t) nm. 
Determine the point mass that attaches at the cantilever free end knowing the 
output voltage amplitude of the Wheatstone bridge, which is DVo = 5 nV. Use 
a lumped-parameter model without damping.

10.14   A microcantilever is placed on a shaker that provides a variable-frequency input 
displacement motion u = 5 sin(~t) nm. The microcantilever has a length l = 
320 nm, width w = 50 nm, thickness h = 3 nm, Young’s modulus E = 150 
GPa, mass density t = 5400 kg/m3 and is used in conjunction with a strain 
gauge (Kg = 2.1) attached to the cantilever root and connected in a Wheatstone 
bridge (with vi = 20 nV). Knowing that the maximum voltage readout is DVo = 
8 nV, determine the overall coefficient of viscous damping c.

10.15   The microcantilever of Problem 10.14 is used to sense the mass of a particle mp 
that attaches to its free end. Calculate mp knowing that the lumped-parameter 
viscous damping coefficient is c = 4.27 # 10-9 N-s/m, the maximum voltage 
readout is DVo = 4.5 nV, while all other parameters are the ones specified in 
Problem 10.14.

10.16   A straight deformable bar of cross-sectional area A = 25 mm2, length l = 100 cm, 
mass density t = 7800 kg/m3, Young’s modulus E = 2.1 # 1011 N/m2, and 

figure 10.50
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 Poisson’s ratio n = 0.3 is anchored at one end and subjected to a sinusoidal 
axial load of unknown amplitude and frequency ~ = 45000 rad/s at the other 
end. Disposing of three identical strain gauges (Kg = 2.3) that can be attached to 
the bar and connected in a Wheatstone bridge (vi = 30 V), determine the force 
 amplitude when the maximum output voltage of the bridge is 2.5 # 10-6 V. 
 Consider the system is lossless.

10.17   The electromagnetomechanical system of Example 10.7 and shown in 
 Figure 10.19 is used as a sensor for a sinusoidal displacement of frequency 
~ = 80 rad/s and unknown amplitude. The external magnetic field is B = 0.5 T, 
the coil has N = 50 turns, and the coil diameter is dc = 0.01 m. Use a lumped-
parameter model together with the bridge and magnet parameters of Example 
10.7 and the amplitude of the sensed voltage of 0.03 V to determine the input 
displacement amplitude. Also viscous damping affects the mechanical motion 
with a coefficient c = 32 N-s/m.

10.18   The MEMS device of Figure 10.52 is used to measure the external magnetic 
field B. A current i = 0.005 sin(60t) A passes through the circular-loop electri-
cal circuit of radius r = 160 nm, which is printed on a rigid plate of thickness 
hp = 10 nm and mass density t = 6550 kg/m3  attached to a flexible rod of 
length l = 100 nm, diameter dr = 2 nm, and Young’s modulus  E = 150 GPa. 
The tilting of the rigid plate is monitored optically by a photodiode, which is 
placed at a distance h = 3 mm from the plate; the incident laser beam angle is 
a0 = 25°, as in Figure 10.20 and the maximum deviation of the reflected beam 
is measured to be d = 6 nm. Evaluate the magnetic field B.

10.19   An external magnetic field B = 1 T interacts with a sinusoidal current 
of  unknown amplitude and rotates the rigid plate shown in Figure 10.53 by an 
 angle i. Optical detection with an incident beam at a0 = 20° and a capture 
screen at a distance h = 200 nm from the microdevice plane  indicates a 
 maximum deflection of the reflected beam of d = 50 nm (see Figure 10.20). 
The three identical flexible members have a circular cross-section of diam-
eter dr = 2 nm, their length is l = 300 nm, while their material modulii are 
E = 140 GPA and G = 112 GPa. The rigid plate is defined by r = 80 nm, 
a thickness hp = 8 nm, and a mass density t = 6000 kg/m3. Knowing that the 

figure 10.52
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current’s frequency is one half the natural rotary frequency of the mechanical 
microsystem in the i direction, determine the current amplitude.

10.20   An unknown actuation voltage is applied to the piezoelectric block of 
 Figure 10.31 and generates an output (sensing) voltage variation of DVo = 
0.0001 sin(20t) V in its half Wheatstone bridge sensing circuit. Determine 
the characteristics of the actuation voltage, as well as the maximum free-
end displacement and the maximum force that can be generated by the 
 piezoelectric block. Known are Kg = 2, l = 20 mm, A = 42.25 mm2, tPZT =  
5300 kg/m3, vi = 150 V, Em = 5.2 # 1010 N/m2, d = 390 # 10-12 m/V. 
 Consider the system is lossless.

10.21   A longitudinal piezoelectric actuator of length l = 0.03 m, cross-sectional area 
A = 1 cm2, mass density tPZT = 7500 kg/m3, Young’s modulus Em = 50 GPa, 
and piezoelectric charge constant d = 4 # 10-10 m/V is attached to a mass 
m = 0.20 kg, which further connects to a spring k = 200 N/m, as illustrated in 
Figure 10.54.

 (a)  Evaluate the total system mechanical losses as an equivalent damping 
 coefficient ceq if  experimental frequency-domain testing indicates the 

figure 10.53
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 system’s bandwidth is ~c = 1.2 ~n (where ~n is the mechanical system’s 
natural frequency). Consider the mass and stiffness contributions of the 
piezoelectric actuator.

 (b)  Plot the system’s response y as a function of time when a unit impulse 
 voltage is  applied to the piezoelectric actuator. Note: The electrical circuit 
is not shown in the figure.

10.22   Consider four strain gauges are available (Kg = 2.2) attached on the  piezoelectric 
actuator of Problem 10.21; and they are connected in a full Wheatstone bridge 
with vi = 18 V. Express the relationship between the actuation voltage of the 
piezoelectric block, va = 50 sin(120t) V and the readout voltage DVo for this 
device, then evaluate the viscous damping coefficient corresponding to the 
total (equivalent) system losses.

10.23   A circular piezoelectric plate with diameter d = 20 mm, thickness h = 3 mm, 
Young’s modulus of 1.7 # 1011 N/m2, mass density of 7,00 kg/m3, and dm = 3 # 
10-11 m/V is attached at the midpoint of a bridge, as shown in Figure 10.55. 
A  displacement u = 0.008d(t) m is provided to the bridge externally with d(t) 
 being the unit impulse. Determine and plot the sensing voltage variation with time. 
Known are the bridge data: length of 180 mm, width of 20 mm, thickness of 2 mm, 
Young’s modulus of 2.1 # 1011 N/m2, mass density of 7800 kg/m3. The piezoelec-
tric losses are equivalent to a viscous damping coefficient c = 12 N-s/m.

10.24   The two identical bimetallic strips and end-point mass of Figure 10.56, in con-
junction with two identical strain gauges (Kg = 2) applied at the cantilever root, 
are used as a temperature sensor. Formulate the transfer function between the 
input temperature and the output voltage of the strain-gauge Wheatstone bridge 
(vi = 2). Plot the output voltage using Simulink® when the sensor is exposed to 

figure 10.55
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a temperature increase of Di = 50°. Known are l = 50 mm, h1 = 1 mm, h2 =  
2 mm, w = 8 mm (the strips width), a1 = 30 # 10-6 deg-1, a2 = 4 # 10-6 
deg-1, E1 = 80 GPa, E2 = 200 GPa, t1 = 5200 kg/m3, t2 = 8000 kg/m3, and 
m = 0.05 kg. Include the inertia contributions from the two beams in a lumped-
parameter model.

10.25   The bimetallic strip of Problem 10.24 and Figure 10.56 is anchored at both 
ends after removing the mass m, such that it becomes a bridge used as an actua-
tor. Evaluate the relationship between the maximum deflection at the midpoint 
and the temperature variation. Using a lumped-parameter model with viscous 
damping coefficient c = 40 N-s/m, determine and plot the system response 
to a temperature variation of 60 deg. The strain gauges are not utilized in this 
experiment.

10.26   Obtain a mathematical model for the MEMS sketched in Figure 10.57 to con-
nect the input voltage to the output mechanical motion x. Consider electrical, 
thermal, and mechanical field interaction in the model.

10.27   Use Simulink® to plot x as a function of time and the input voltage v for the 
MEMS of Problem 10.26. Known are l = 120 nm, diameter of flexible beams 
cross-section d = 3 nm, la = 200 nm, thermal actuator side of square cross-
section a = 10 nm, ta = 7600 kg/m3 (actuator mass density), coefficient of 
thermal expansion a = 2.5 # 10-6 deg-1, R1 = 0.1X, v = 5 nV, tel = 15 # 10-9 
X-m, aR = 0.004 deg-1, c = 380 J/(kg-deg), and h = 32 J/(m2-s-deg).

10.28   Use a lumped-parameter model for the system of Figure 10.58, which is 
formed of two bimetallic strips and a connecting spring, to derive a time-
domain mathematical model describing the mechanical motion in the spring 
direction when a temperature increase of Di is applied. Obtain a state-space 
model corresponding to this system.

10.29   Use Simulink® and the state space model of Problem 10.28 to plot the time 
response of the system sketched in Figure 10.58. Known are l1 = 60 mm,  

figure 10.57
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l3 = 80 mm, h1 = h3 = 1.2 mm, h2 = h4 = 2 mm, w = 8 mm (all strips’ width), 
a1 = 30 # 10-6 deg-1, a2 = 4 # 10-6 deg-1, a3 = 40 # 10-6 deg-1, a4 = 8 #  
10-6 deg-1, E1 = 80 GPa, E2 = 200 GPa, E3 = 90 GPa, E4 = 180 GPa, t = 
7000 kg/m3 (for all strips), k = 30 N/m, and Di = 65°.

10.30   Use Simulink® to plot the time variation of the plate’s tilting angle for the system 
sketched in Figure 10.52 of Problem 10.18 when B = 2/(1 + 0.1t) T. The optical 
detection system is not employed here.
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CHAPTER

11-1

Objectives

Based on the material presented in previous chapters, this last chapter introduces the 
main concepts, terminology, and methods used in the modeling, analysis, and design 
of feedback control dynamic systems. The following topics are briefly studied here:

• Modeling of control systems by means of negative-feedback block diagrams and 
typical transfer functions, such as feed-forward, open-loop, and closed-loop 
transfer functions.

• Basic controllers achieving proportional, integrative, or derivative functions and 
their effects in control systems.

• Stability of control systems using the Routh-Hurwitz criterion and analytical or 
MATLAB® study of the closed-loop poles location in the complex plane.

• Transient response characteristics of first- and second-order control systems 
under unit step input.

• The graphical root locus method to qualifying the stability and the time-domain 
characteristics of control systems.

• Steady-state response of control systems.

• Sensitivity analysis of controlled systems to parameter variation.

• Modeling and analysis of control systems in the frequency domain using the 
Nyquist and Bode plots.

intrOductiOn
As mentioned in the Preface to this book, while many of its ingredients are offered 
in system dynamics, controls is a standalone discipline, and it is thus studied thor-
oughly in dedicated textbooks and monographs; this chapter, therefore, dwells on 
only introducing the controls fundamentals.

Single-field and coupled-field dynamic systems are studied in previous chapters 
under the assumption that, once an accurate mathematical model has been derived 
and a given input specified, the output (or response) of the system of interest can be 
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11-2 CHAPTER 11 Introduction to modeling and design

determined and conclusions can be formulated with respect to the system behavior. 
In all instances, the output of a dynamic system theoretical model was never inter-
rogated or checked against experimental results. However, in real-life applications, 
errors due to modeling (such as those induced by severe simplifying assumptions) 
or to the presence of unwanted factors (such as disturbances or interference) affect 
the theoretical model predictions. Controlling the dynamics of a regular system (also 
known as an open-loop system) becomes necessary to correct the deviation of an 
actual system response from the theoretical response. One practical control method 
is picking up the output signal and comparing it to the input (or reference) signal; in 
case differences are noted, a controller is set into action, which modifies the level and 
quality of the input provided to the originally uncontrolled system. The main tool in 
modeling such feedback control systems is the block diagram, which consists of the 
transfer functions defining the various subsystems and the Laplace-domain signals 
connecting them. It thus becomes possible to model, analyze, and design control sys-
tems from the viewpoint of stability, transient response, and steady-state response.

11.1 cOncept Of feedback cOntrOl Of  
dynamic  systems

Consider the piezoelectric (PZT) actuator of Figure 11.1, which needs to provide an 
output force proportional to the applied voltage va and the block free displacement, 
as discussed in Chapter 10. The free displacement of the PZT block can be evaluated 
using an electrical strain gauge circuit through the sensed voltage vs. Due to model-
ing approximations, fabrication or assembly imprecision, as well as material con-
stants that may differ from specifications, the actual (measured) free displacement is 
not identical to the one predicted through modeling; as a consequence, the level of 
delivered force may differ from the one desired. It is therefore necessary to somehow 
modify the actuation voltage to obtain the required force.

fiGure 11.1

Piezoelectric Actuator with Strain Gauge Sensing.
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 11.1 Concept of Feedback Control of Dynamic Systems 11-3

The necessity for controls arises naturally when the output of a SISO  (single-input, 
single-output) system, for instance, is not the one expected through the mathematical 
model that represents the system, as discussed in the previous example and sketched 
generically in Figure 11.2.

This mismatch between the actual and model responses can be generated by sev-
eral factors, such as accuracy level of the mathematical model or disturbance (noise) 
input, which is not accounted for through modeling. The objective therefore is reduc-
ing (or eliminating, ideally) the difference between actual and model outputs without 
modifying the existing system model.

One way of realizing this task is suggested in Figure 11.3, where comparison 
between the model output and actual output is performed first, the result of which is 
usually an error. Since the input-output relationship is determined (for a given input, 
the corresponding output can be calculated by means of the direct model), this output 
error can be used to predict an input error using the inverse model variant. The input 
error is then fed to an input modifier, which alters the normal input and provides the 
adequate input signal to the model.

fiGure 11.2
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Actual procedures operate slightly differently than this approach to controls, as 
illustrated in Figure 11.4, where the system output is back fed to a summing point that 
compares it to the reference signal (or set point, the desired, model output), then an 
error results, which is supplied to a control unit whose role is minimizing (or eliminat-
ing) the error supplied to the actual system (or plant) through an actuator. This type of 
control is known as negative feedback control, because the output signal is directed to 
the minus terminal of the summing point. The sensor, which is placed on the feedback 
branch, converts the actual output into a physical parameter of the same nature as the 
reference signal, so that comparison between the two signals is possible.

When the actuator and system are designed as a single unit, the two subsystems 
are known as the plant.

11.2 blOck diaGrams and feedback  
cOntrOl systems

This section introduces the block diagrams, which are graphical representations of 
control systems; the transfer functions corresponding to the various units forming a 
feedback control system and their sensitivity to parameter variations are also studied 
here, together with the main types of control functions.

11.2.1 transfer functions and basic block diagrams
The connection chart of Figure 11.4 is usually displayed using the Laplace (s) 
domain transfer functions inside the blocks and signals connecting the blocks; 
this construction, which is illustrated in Figure 11.5, is known as a block diagram. 
It should be mentioned that the block interconnections are assumed ideal, which 
means there is no interstage loading.

The transfer functions are Gc(s) for the controller, Ga(s) for the actuator, Gs(s) =  
Gp(s) for the system (plant), and H(s) for the sensor/conditioner. The signals 
 connecting the blocks are R(s) for reference, E(s) for error, M(s) for modified 

fiGure 11.4
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 11.2 Block Diagrams and Feedback Control Systems 11-5

(manipulated), A(s) for actuation, C(s) for controlled output, and B(s) for back 
 signal. The function of the summing point (or block) has already been introduced 
in previous chapters when using Simulink® to graphically model and solve prob-
lems of a dynamic system not involving controls. This point block connects two 
input signals (one negative, the other positive) and an output signal, according to 
the algebraic relationship

 ( ) ( ) ( )R s B s E s- =  (11.1)

The actuator can be part of either the controlled system or the controller, and its 
transfer function may not appear explicitly in a block diagram. The controller and 
the plant can be grouped serially into a transfer function G(s), which is termed the 
feed-forward transfer function and calculated as

 ( )
( )
( )

( )
( )

( )
( )

( ) ( )G s
E s

C s

M s

C s

E s

M s
G s G s

p c
#= = =  (11.2)

such that the block diagram of Figure 11.5 is simplified to the one of Figure 11.6.
Another transfer function, defined based on the block diagram of Figure 11.6, is 

the open-loop transfer function GOL(s):

 ( )
( )
( )

( )
( )

( )
( )

( ) ( )G s
E s

B s

E s

C s

C s

B s
G s H s

OL
#= = =  (11.3)

fiGure 11.5

Block Diagram of a Basic Negative-Feedback Control System.
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The third qualifier of a negative-feedback control system, which as we shall see is 
extremely important, is the closed-loop transfer function, which is defined as

 ( )
( )
( )

G s
R s

C s
CL

=  (11.4)

Using operations of the algebra of block diagrams (essentially, signal connections 
through block transfer functions and summation points), it can be shown that

 ( ) ( ) ( ) ( ) ( ) ( )E s R s B s R s H s C s= - = -  (11.5)

which, in turn, enables expressing the reference signal as

 ( ) ( ) ( ) ( )
( )
( )

( ) ( )R s E s H s C s
G s

C s
H s C s= + = +  (11.6)

Substituting R(s) of Eq. (11.6) into Eq. (11.4) yields the closed-loop transfer 
function:

 ( )
( )
( )

( ) ( )
( )

G s
R s

C s

G s H s

G s

1CL
= =

+
 (11.7)

The closed-loop transfer function relationship of Eq. (11.8), which can be written 
as C(s) = GCL(s)R(s), is very important, as it indicates that a feedback control system 
can formally be transformed into an uncontrolled system whose output Y(s), input 
U(s), and transfer function GCL(s) are connected as Y(s) = GCL(s)U(s). However, 
GCL(s) contains all information pertaining to a feedback control system incorporating 
a controller, actuator, plant, and feedback loop.

When the feedback branch has no sensor (or rather, it has a sensor with a trans-
fer function H(s) = 1), the system becomes a unity-feedback system, as sketched in 
 Figure 11.7; its open-loop and closed-loop transfer functions are

 ( ) ( ) ( )
( )

( )
;G s G s G s

G s

G s

1OL CL
= =

+
 (11.8)

fiGure 11.7

Block Diagram of a Unity-Feedback Control System.
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Example 11.1
a. Convert the control system described by the block diagram of Figure 11.8(a) into a 

basic feedback control system, such as the one represented in Figure 11.6.
b. For G1(s) = 2/s, G2(s) = 1/(s2 + s + 3), G3(s) = 1/(s + 1), and a time-domain unit 

step input r (t) = 1, plot and compare the time responses c(t) of the control systems of 
Figures 11.8(a) and 11.8(b).

Solution
a. The following signal equation can be written for the summing point on the left in  

Figure 11.8(a):

 ( ) ( ) ( )E s R s C s
1
= -  (11.9)

Similarly, the equation for the next summing point is

 ( ) ( ) ( )E s E s B s
2 1

= -  (11.10)

Based on the transfer function G3(s), the signal B(s) is expressed as

 ( ) ( ) ( )B s A s G s
3

=  (11.11)

(a)

(b)

+

−

C (s)R (s)
G2(s)

G3(s)
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−
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−

C (s)A (s)

G3(s)

G1(s) G2(s)
E2(s)E1(s)R (s)
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fiGure 11.8

(a) Block Diagram of a Control System with Two Feedback Loops; (b) Block Diagram of a 
Basic Control System Using the Transfer Functions of Two System in Panel (a).
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A(s) depends on G1(s) according to the equation

 ( ) ( ) ( )A s E s G s
2 1

=  (11.12)

Combining Eqs. (11.10), (11.11), and (11.12) yields

 ( ) 1 ( ) ( ) ( )E s G s G s E s
12 3 1

+ =6 @  (11.13)

At the same time, the transfer function G2(s) and Eq. (11.12) result in

 ( ) ( ) ( ) ( ) ( ) ( )C s A s G s E s G s G s
2 2 1 2

= =  (11.14)

which yields

 ( )
( ) ( )

( )
E s

G s G s

C s
2

1 2

=  (11.15)

E2(s) of Eq. (11.13) is substituted in Eq. (11.5), which produces

 ( )
( ) ( )

( ) ( ) ( )
E s

G s G s

G s G s C s1
1

1
1 2

3
+

=
6 @

 (11.16)

which is substituted in Eq. (11.9) to result in

 ( )
( ) ( ) ( ) ( )

( ) ( )
( )

1
C s

G s G s G s G s

G s G s
R s

1 2 1 3

1 2
=

+ +
 (11.17)

Because C(s) = GCL(s)R(s), Eq. (11.17) indicates that the closed-loop transfer function 
of our control system is

 ( )
( ) ( ) ( ) ( )

( ) ( )

1
G s

G s G s G s G s

G s G s
CL

1 2 1 3

1 2
=

+ +
 (11.18)

Comparison of Eq. (11.18) to the definition Eq. (11.7) shows that one option is

 ( ) ( ) ( )G s G s G s
1 2

=  (11.19)

The other condition necessary for Eqs. (11.18) and (11.7) to be identical is

 ( ) ( ) ( ) ( ) ( ) ( )1 1G s G s G s G s H s G s
1 2 1 3

+ + = +  (11.20)

Combining Eqs. (11.19) and (11.20) results in the following transfer function of the 
feedback function:

 ( )
( )

( )
1H s

G s

G s

2

3
= +  (11.21)

Equations (11.19) and (11.21) thus demonstrate that the control system of Figure 11.8(a) 
can be rendered into the basic control system of Figure 11.6.
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 11.2 Block Diagrams and Feedback Control Systems 11-9

b. The closed-loop transfer function of the control system of Figure 11.8(a) is calculated by 
means of Eq. (11.18) with the particular transfer functions G1(s), G2(s), and G3(s) as

 ( )G s
s s s s

s

2 6 7 5
2 2

CL 4 3 2
=

+ + + +

+
 (11.22)

The closed-loop transfer function of the feedback control system of Figure 11.8(b) is 
calculated based on Eq. (11.7) with the particular transfer functions G(s) = G2(s), and 
H(s) = G3(s) as

 ( )G s
s s s

s

2 4 4
1

CL 3 2
=

+ + +

+
 (11.23)

The plots of Figure 11.9 show the time variation of the responses for the two control 
systems of Figures 11.8(a) and 11.8(b) when r (t) = 1. The plots have been obtained 
using MATLAB® step command.

Compared to the system of Figure 11.8(b), the more complex control system 
of Figure 11.8(a) requires a longer time to reach the steady state and has a larger 

fiGure 11.9

Time Response under Unit Step Input for the Control System of: (a) Figure 11.8(a); (b) 
Figure 11.8(b).
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11-10 CHAPTER 11 Introduction to modeling and design

maximum response. The reader is encouraged to calculate the steady-state value of 
the two systems by employing the final-value theorem introduced in Chapter 6.

11.2.2 basic control functions and systems
The main types of control functions are proportional (P), integrative (I), and deriva-
tive (D). For a proportional controller, based on Figure 11.5, the transfer function is

 ( )
( )
( )

G s
E s

M s
K

c P
= =  (11.24)

where the constant KP is the proportional gain. Integral controllers apply integration 
to their input and are defined by a transfer function:

 ( )
( )
( )

G s
E s

M s
s
K

T s

K
c

I

I

p
= = =  (11.25)

where KI is the integral gain, also related to the proportional gain KP by means of the 
integral time TI, as shown in Eq. (11.25). It is known that time-domain integration is 
transformed into division by the variable s in the Laplace domain, which accounts for 
the integrative name of the controller introduced in Eq. (11.25). Derivative control-
lers are defined by a transfer function:

 ( )
( )
( )

G s
E s

M s
K s K T s

c D P D
= = =  (11.26)

where the constant KD is the derivative gain and the constant TD is known as deriva-
tive time. The derivative name comes from the effect produced by such a controller, 
which is derivation (indicated by the multiplication by s in the Laplace domain). 
There are multiple examples of components or systems realizing the basic controller 
transfer functions just mentioned, and Figure 11.10 shows a mechanical, a fluid, and 
an electrical system.

fiGure 11.10

Basic Controllers: (a) Mechanical Lever as a P Controller; (b) Tank with Fluid as an I 
 Controller; (c) Electrical inductor as a D Controller.
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It can be shown that the transfer functions of the three systems of Figure 11.10 are

 ( )
( )

( )
G s

Z s

Z s
z
z

l

l
K

c
A

B

A

B

A

B

P
= = = =  (11.27)

for the lever of Figure 11.10(a); therefore, it is a proportional controller

 ( )
( )
( )

;G s
Q s

P s
C s s

K
K

C
1 1

c
v l

I

I
l

= = = =  (11.28)

for the tank with liquid of Figure 11.10(b), which is an integral controller. The trans-
fer function

 ( )
( )
( )

G s
I s

V s
Ls K s

c D
= = =  (11.29)

corresponds to the inductor of Figure 11.10(c), which shows that this is a derivative 
controller.

Various combinations between these basic functions, such as proportional- integrative 
(PI), proportional-derivative (PD), and proportional-integrative-derivative (PID) control-
lers are also possible, as is briefly discussed in the following. These compound control-
lers have transfer functions obtained by adding basic controller transfer function. A PI 
 controller, for instance, is defined as

 ( )
( )
( )

G s
E s

M s
K s

K
K

T s
1

1
c P

I

P
I

= = + = +e o (11.30)

Similarly, a PD controller is characterized by the transfer function

 ( )
( )
( )

G s
E s

M s
K K s K T s1

c P D P D
= = + = +_ i (11.31)

whereas the PID controller has the transfer function

 ( )
( )
( )

G s
E s

M s
K s

K
K s K

T s
T s1

1
c P

I

D P
I

D
= = + + = + +e o (11.32)

Example 11.2
a. Design a PI controller based on an operational-amplifier system that uses only resistors 

and inductors.
b. Determine a mechanical microsystem formed of a mass m, a damper c, and a spring 

k to act as a PID controller by using displacements at the input and output ports.
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Solution
a. Two operational amplifier cascading stages are needed to generate input and output 

voltages having the same sign. It is demonstrated in Chapter 7 that the transfer func-
tion of the impedance system of Figure 11.11(a) is

 ( )
( )

( )
G s

V s

V s

Z

Z

Z

Z

Z Z

Z Z

i

o

1

2

3

4

1 3

2 4
#= = - - =f fp p  (11.33)

For the electrical system of Figure 11.11(b), the four impedances of Eq. (11.33) are

 ; ; ;Z
R Ls

R Ls
Z R Z R Z R

1
1

1

2 2 3 3 4 4
=

+
= = =  (11.34)

Combining Eqs. (11.33) and (11.34) yields the transfer function

 ( ) ( )
/

G s G s
R Ls R Ls

R

R

R

R R Ls

R R R Ls
K s

K
c P

I

1 1

2

3

4

1 3

2 4 1
#= =

+
=

+
= +

_

_

i

i
 (11.35)

with

 ;K
R R

R R
K

R L

R R
P I

1 3

2 4

3

2 4
= =  (11.36)

and therefore, the op-amp system of Figure 11.11(b) behaves as a PI controller.

fiGure 11.11

Two-Stage Operational Amplifier System as a PI Controller with (a) Impedances; (b) Actual 
Electrical Components.
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b. Consider the cascade arrangement of the given mechanical components of 
 Figure 11.12(a). The two displacements u and y are the relevant parameters defining 
the mechanical systems. Newton’s second law of motion is applied to mass m as

 mu ku c u y= - - -p o o^ h (11.37)

which is reconfigured as

 mu cu ku cy+ + =p o o (11.38)

Applying the Laplace transform to Eq. (11.38) with zero initial conditions results in the 
following transfer function:

 ( )
( )
( )

G s
U s

Y s
cs

ms cs k
c
k

s c
m

s1
1

c

2

#= =
+ +

= + +  (11.39)

which indicates the system acts as a PID controller with KP = 1, KI = k/c, and KD = m/c. 
A mechanical microsystem whose lumped-parameter model is that of Figure 11.12(a) is 
the device of Figure 11.12(b). The shuttle mass plays the role of m and the serpentine 
spring is designed with a stiffness k in the motion direction. There is damping between 
the mobile plate to the right of Figure 11.12(b) and the shuttle mass, which can be 
modeled by the damper c with two mobile ends of Figure 11.12(a).

Example 11.3
The mechanical system of Figure 11.13 consists of a shuttle mass m, two beam springs, 
each of stiffness k, a piezoelectric actuator, and a transverse capacitive sensing unit. 
Using proportional control and voltage as the reference signal, propose a physical feed-
back control system of the type sketched in Figure 11.5. Determine the individual transfer 
function of each component of the feedback diagram of Figure 11.5.

fiGure 11.12

Mass-Damper-Spring Mechanical System as a PID Controller: (a) Lumped-Parameter 
Model; (b) Actual Microsystem.
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Solution
Let us build the physical units making up the feedback control diagram of Figure 11.5 
and derive their transfer functions. The summing point is designed after taking into con-
sideration that the particular sensing unit has a negative gain as its transfer function. The 
transverse capacitive sensing unit converts the shuttle mass displacement y into voltage 
variation vs. Equation (4.30) is reformulated here as

 
s

v v g
v

y
b

0
D = = -  (11.40)

with vb being the bias voltage. The Laplace transform is applied to Eq. (11.40), which 
results in the transfer function of the feedback sensor

 ( )
( )

( )
H s

Y s

V s
g
v

K
s b

s
0

= = - = -  (11.41)

which is a constant gain negative denoted by Ks.
Assuming a constant voltage vr is the reference signal (which is the positive input to 

the summing point of Figure 11.5), the negative input signal is the voltage vs sensed by 
the transverse capacitive unit of Figure 11.13, whereas the output of the summing point is 
an error voltage ve (the difference between the two aforementioned signals). Consider the 
two-stage operational amplifier system of Figure 11.14, and assume that R2 = nR1 with  
n ≥ 1. The following relationship exists between the voltages corresponding to the first-
stage operational amplifier unit:

 v
R

R
v v

r s
1

2
- = -_ i (11.42)

which algebraically adds the two input voltages. The second stage of the circuit generates 
the input-output relationship:

 v v
e
= -  (11.43)

fiGure 11.13

System with Piezoelectric Actuation and Transverse Capacitive Sensing.
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Combining Eqs. (11.42) and (11.43) yields

 v
R

R
v v n v v

e r s r s
1

2
= - = -_ _i i (11.44)

In the Laplace domain, Eq. (11.44) becomes

 ( ) ( ) ( )V s n V s V s
e r s

-= 6 @ (11.45)

which indicates that the summing point also has an amplifying effect; therefore, the physi-
cal system of Figure 11.14 can operate as both a summing point and a proportional con-
troller. However, as seen shortly, the control function is attributed to another component of 
the control system. We can consider that n = 1 (R1 = R2) in Eq. (11.45), which indicates 
the system of Figure 11.14 is the exact functional implementation of the summing point 
introduced in Figure 11.5.

Actuation is provided by the PZT bar, which (as discussed in Chapter 10 and according 
to Eqs. (10.82) and (10.83)) applies the following force to the mechanical microsystem:

 f f
l

E A
dv

PZT a
a

m

a
= =  (11.46)

where Em is the actuator’s Young modulus, A is the cross-sectional area, d is the piezo-
electric charge constant, and va = ve is the actuation voltage provided by the amplifying 
summing point unit discussed previously. Applying the Laplace transform to Eq. (11.46) 
results in

 
a

( ) ( )F s
l

E A
dV s

a
a

m
=  (11.47)

therefore, the actuator’s transfer function is

 ( )
( )

( )
G s

V s

F s

l

E A
d K

a
a

a

a

m

a
= = =  (11.48)

fiGure 11.14

Two-Stage Operational System with Resistors as a Summing Point and P Controller for the 
MEMS of Figure 11.13.
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11-16 CHAPTER 11 Introduction to modeling and design

which is a constant gain denoted by Ka. This feature allows using the actuator as a P 
controller as well; therefore, Gc(s) = Kc = Ka.

The plant is the mechanical system formed of the shuttle mass m, the two beam 
springs k, and the input force fa. Applying Newton’s second law of motion to the lumped-
parameter of the mechanical unit and ignoring the losses yields

 my ky f2
a

= - +p  (11.49)

whose Laplace transform results in the following transfer function of the mechanical 
 system:

 ( )
( )
( )

G s
F s

Y s

ms k2
1

m
a

2
= =

+
 (11.50)

11.2.3 sensitivity analysis
Consider a function f depending on time and on two parameters p1 and p2:

 ( )f t p t p
1 2

2= +  (11.51)

It is clear that a variation in p2 produces a variation in f that is larger than the one 
generated by the same variation in p1. Commonsense language would state that the 
function f is more sensitive to p2 than to p1. However, the mathematical definition of 
the sensitivity of a function f to a parameter p, denoted as Sf,p is,

 
0 0"" 2

2

/
/

lim limS
p p

f f

f

p

p

f

f

p

p

f
,f p p p

# #
D

D

D

D
= = =

D D
 (11.52)

where uf /up is the partial derivative of f with respect to p. Ideally, the sensitivity of a 
function with respect to any parameter that might influence the function should be zero; 
in other words, the function should ideally be insensitive to parameter variations.

In control systems, the sensitivity analysis can be applied to any function that depends 
on parameters. Examples include sensitivity analysis of open-loop and closed-loop 
transfer functions or steady response, as well as of control systems to disturbances.

Example 11.4
A two-stage operational amplifier containing only resistors acts as a proportional controller 
with a gain K to an electrical system (plant) formed of an inductor, a resistor, and a capaci-
tor whose transfer function is Gp(s) = Q(s)/V(s) = 1/(s 2 + 2s + 5), with Q(s) being the 
Laplace transform of the charge in the plant circuit and V(s) being the Laplace transform 
of the voltage provided by the controller. These two subsystems are connected in a unity-
feedback control system. Relate the sensitivity of the open-loop transfer function to the 
one of the closed-loop transfer function, both calculated in terms of the gain K.
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Solution
The open-loop transfer function is G(s) = Gc(s)Gp(s) = K/(s2 + 2s + 5). The sensitivity of 
the open-loop transfer function to K is calculated according to Eq. (11.52):

 
2

2

( )
( )

S
G s

K
K

G s
,G K

#=  (11.53)

whereas the sensitivity of the closed-loop transfer function is calculated as

 
2

2

( )

( )
S

G s
K

K

G s
,G K

CL

CL

CL
#=  (11.54)

Taking into consideration that GCL(s) = G(s)/[1 + G(s)] for a unity-feedback system and 
doing some math calculations, it follows that

 
2

2

2

2( )

[ ( )]

( )
K

G s

G s K

G s

1
1CL

2
#=

+
 (11.55)

Combining Eqs. (11.53), (11.54), and (11.55) results in the following sensitivity 
 connection:

 S
G s

S
1

1
, ,G K G KCL

#=
+ ] g

 (11.56)

For the particular expression of the open-loop transfer function of this example it fol-
lows that

 

S

S
s s K

s s

1

2 5
2 5

,

,

G K

G K 2

2

CL

=

=
+ + +

+ +*  (11.57)

Equation (11.57) shows that the sensitivity of the open-loop transfer function does 
not vary with K, whereas the closed-loop transfer function becomes less sensitive with the 
increase of the gain K.

11.3 stability Of cOntrOl systems
Together with transient response characteristics and steady-state errors (which are 
addressed in subsequent sections of this chapter), stability is a fundamental topic (prob-
ably the most important one) in control systems. If a system is unstable, it is pointless 
to analyze the other two categories: the transient response and the steady-state errors. 
Stability essentially requires that a system’s response does not grow unbounded (does 
not go to infinity) for any specific bounded input. The total time-domain response of 
a control system c(t) is formed of the natural and forced responses:

 ( ) ( ) ( )c t c t c t
n f

= +  (11.58)
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The forced response results from the action of the reference (input) signal on 
the system, whereas the natural response is determined by the closed-loop system’s 
characteristics, which are features inherent to the feedback control system. Consider, 
for instance, that a unit step r(t) = 1 is applied to a controlled system; the Laplace 
transform of the response is

 ( ) ( ) ( ) ( ) ( )C s C s C s s G s s
k

G s
1

,f n CL Cl i
i

= + = = +/  (11.59)

where k is a constant and GCL,i(s) are partial fractions resulting from the closed-loop 
transfer function partial fraction expansion. In Eq. (11.59), the term k/s represents the 
forced response in the Laplace domain and the sum of the partial fractions GCL,i(s) 
represents the natural response in the Laplace domain. By inverse Laplace transform-
ing Cf (s) of Eq. (11.59), it follows that the forced response is

 ( )c t k
f
=  (11.60)

which is a step function; therefore, the forced response is finite (bounded). Whether 
the natural (and therefore total) response is finite (or bounded) or grows to infinity 
with time, which generates an unbounded response that corresponds to an unstable 
controlled system depends on the Laplace transforms of the components GCL,i(s).

11.3.1 using matlab® to plot the closed-loop poles and  
analyze stability

Let us analyze an example to better clarify how the nature of the roots of the closed-
loop transfer function GCL(s), also named closed-loop poles, influence the natural 
response of a controlled system.

Example 11.5
Assume the fractions GCL,1(s) through GCL,4(s) given in the following list result from the 
partial fraction expansion of a closed-loop transfer function GCL(s), among other partial 
fractions. Study the poles of these closed-loop transfer function partial fractions (the roots 
of their characteristic equations) and plot the time-domain response of their correspond-
ing inverse Laplace transforms:

a. ( )G s
s s10 26

1
,CL 1 2 3

=
- +^ h

b. ( )G s
s s10 26

1
,CL 2 2 3

=
+ +^ h

c. ( )G s
s 1

1
,CL 3 2 3

=
+^ h

d. ( )G s
s 1

1
,CL 4 2

=
+

www.semeng.ir

www.semeng.ir


 11.3 Stability of Control Systems 11-19

Solution
a. This fraction can be written as

 ( )G s
s j s j5 5

1
,CL 1 3 3

=
- + - -^ ^h h

 (11.61)

which shows that the poles (the roots of the fraction denominator in Eq. (11.61)) of this 
partial transfer function are

 ( )p s j5"=  (11.62)

and their order of multiplicity is 3. It is seen that the complex conjugated poles have 
a positive real part. MATLAB®’s Control System Toolbox™ can plot the zeroes and the 
poles of a given transfer function, which has been defined previously, for instance, by 
using a zpk (zero-pole-gain) LTI (linear time invariant) model or a tf (transfer func-
tion) LTI model. The plot of Figure 11.15(a) is obtained using either pzmap(sys) or 
pzplot(sys), where sys is the LTI model of Eq. (11.61). If the zpk formulation is 
used, the following MATLAB® code produce the plot of Figure 11.15(a):

>> g1 = zpk([],[5-i, 5+i],1); % there is no zero – shown by the [],…
the poles are 5-i and 5+I of the order of multiplicity 3 but…
an input of an order of multiplicity of 1 is sufficient,…
and the gain is 1
>> pzplot(g1)

As discussed in Appendix A, the time domain solution resulting from these poles 
should contain terms of the form t ne 5t cos(t) and t ne 5 t sin(t) (with n = 0, 1, 2). Its actual 
expression, which can be obtained by using MATLAB’s ilaplace command, is

 
1

( ) ( ) ( ) ( )cos sing t c t e t t t t3
8
1

3
, ,CL n

t
1

5 2= = + -- ^ h6 @ (11.63)

and Figure 11.15(b) shows its variation with time. We can see that it grows unbounded 
after approximately 4.5 s; therefore, such poles result in the system being unstable.

b. This particular fraction can be written as

 ( )G s
s j s j5 5

1
,CL 2 3 3

=
+ + + -^ ^h h

 (11.64)

the poles of this partial transfer function are

 ( )p s j5"= -  (11.65)

and their order of multiplicity is 3. This time, the real part of the complex  conjugated 
poles is negative. The position of these poles in the complex plane is shown in 
 Figure 11.16(a). The inverse Laplace transform of GCL,2(s) from Eq. (11.64) is

 ( ) ( ) ( ) ( )cos sing t c t e t t t t3
8
1

3
, ,CL n

t
1 1

5 2= = - + -- ^ h6 @ (11.66)
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and is plotted in Figure 11.16(b). Compared to Eq. (11.63), the only difference of 
Eq. (11.66) is the minus sign in the exponential, which results in a decaying response, 
as expected from theory. The natural response cn,2(t) rapidly drops to zero; therefore, it 
is bounded and the system is stable.

c. This fraction can be expressed as

 ( )G s
s j s j

1
,CL 2 3 3

=
+ -^ ^h h

 (11.67)

fiGure 11.15

Multiple Complex Conjugate Closed-Loop Poles with Positive Real Parts: (a) Pole Position 
(Indicated by ×); (b) Natural Time Response.
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its poles are purely imaginary and on the third order of multiplicity:

 ( )p s j"=  (11.68)

The pole-zero map is shown in Figure 11.17(a). The inverse Laplace transform of the 
partial fraction of Eq. (11.67) is

 ( ) ( ) ( ) ( )cos sing t c t t t t t3
8
1

3
, ,CL n3 3

2= = - + -^ h6 @ (11.69)

fiGure 11.16

Multiple Complex Conjugate Closed-Loop Poles with Negative Real Parts: (a) Pole Position; 
(b) Natural Time Response.
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and its time response is plotted in Figure 11.17(b). Because the time response, again, 
grows unbounded as time goes to infinity, the system is unstable.

d. The partial fraction is written as

 ( )G s
s j s j

1
,CL 3

=
+ -^ ^h h

 (11.70)

therefore, its poles are purely imaginary (as given in Eq. (11.70)) and on the order 
of multiplicity 1 (simple poles). They are located on the imaginary axis. The inverse 
Laplace transform of the partial fraction of Eq. (11.25) is, obviously,

 ( ) ( ) ( )sing t c t t
, ,CL n4 4

= =  (11.71)

fiGure 11.17

Multiple Imaginary Conjugate Closed-Loop Poles: (a) Pole Position; (b) Natural Time Response.
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The time response of Figure 11.18 is a pure sinusoidal signal. This condition is known 
as marginal stability (or neutral stability), where the time response neither reduces to a 
constant value (such as zero) nor grows indefinitely.

According to this example, there are three different types of systems, as described 
by their natural responses in connection with the closed-loop pole positions: stable 
systems, unstable systems, and marginally stable (or neutrally stable) systems.

Systems whose natural response is bounded in time (does not grow indefinitely) 
are stable systems. Example 11.5(b) indicates that multiple complex conjugated 
closed-loop poles with negative real parts generate stable systems. Similar responses 
are generated by simple complex conjugated closed-loop poles and multiple real 
closed-loop poles, provided that their real part is negative—this is required to be 
demonstrated in a proposed problem at the end of the chapter.

Systems whose natural response is unbounded (it grows indefinitely with time 
increasing) are, on the other hand, unstable systems. In Example 11.5 parts (a), with 
multiple complex conjugated closed-loop poles with positive real parts, and (c), with 
multiple imaginary closed-loop poles (multiple poles on the imaginary axis), are 
examples of unstable systems. Instability is also generated by complex conjugated 
closed-loop poles with positive real parts and by multiple simple positive real closed-
loop poles.

Eventually, a third category in stability comprises marginally stable systems, 
as in Example 11.5(d), where the natural response is sinusoidal. Marginally stable 
systems display a natural response that is oscillatory and neither dies out (as the 

fiGure 11.18

Natural Time Response Corresponding to Simple Imaginary Conjugated Closed-Loop Poles.
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case with stable system responses) nor grows unbounded (as with unstable systems). 
These three categories and their corresponding closed-loop poles are illustrated in 
Figure 11.19.

A simpler definition of stability is that stable systems have closed-loop poles 
that are strictly in the left-hand plane (LHP) of the complex plane. Unstable sys-
tems have their closed-loop poles in the right-hand plane (RHP) of the complex 
plane, as well as multiple poles on the imaginary axis. Marginally stable systems 
have simple poles located on the imaginary axis. It is therefore straightforward that 
analysis of the real part of the closed-loop poles and the order of multiplicity of 
the imaginary poles should be sufficient in discerning the stability behavior of a 
controlled  system. In many instances, a stable system incorporates the marginally 
stable condition, whereas the notion of an absolutely stable system means solely a 
system that is stable.

We have already seen that MATLAB® can produce pole-zero maps through 
pzplot or pzmap commands, so once the closed-loop transfer function is available, 
plotting the corresponding poles reveals the stability character of a system. These 
two MATLAB® commands can be misleading when multiple roots are located on 

fiGure 11.19

System Stability as a Function of the Closed-Loop Poles Nature.
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the imaginary axis, as there is no direct graphical way of indicating the order of 
multiplicity through these commands; therefore, such roots can be either simple or 
multiple and the system can be either marginally stable or unstable. MATLAB® also 
has the commands pole(sys) and zero(sys), which enable expressing the poles 
and zeroes of a system.

Example 11.6
Use MATLAB® to decide the stability behavior of the controlled systems defined by the 
 following closed-loop transfer functions:

a. ( )G s
s s s s s s2 8 8 20 8 16

1
CL 6 5 4 3 2

=
+ + + + + +

b. ( )G s
s s s s s s s

s s s

12 51 100 146 216 96 128
2 5 3 1

CL 7 6 5 4 3 2

3 2

=
+ + + + + + +

+ - -

Solution
a. The following MATLAB® code,

g = tf(1, [1, 2, 8, 8, 20, 8, 16]);
pzmap(g)

gives the plot of Figure 11.20. The order of multiplicity of the imaginary poles is not 
clear, so if the command pole(g) is added to the preceding sequence, MATLAB® 
returns

ans =
-1.0000 + 1.7321i
-1.0000 - 1.7321i
  0.0000 + 1.4142i
  0.0000 - 1.4142i
-0.0000 + 1.4142i
-0.0000 - 1.4142i

which indicates the imaginary pole is of the order 2 of multiplicity; therefore, this  system 
is unstable.

b. There are instances where we might attempt to factor out (if that is possible) a polyno-
mial, such as the one in the denominator of a closed-loop transfer function, which allows 
us to rapidly spot the nature of that system’s stability. The function simple(sys) can 
be used as follows in this example:

>> simple(s^7+12*s^6+51*s^5+100*s^4+146*s^3+216*s^2+96*s+128)

which returns

ans =
(s^2+2)*(s^2+1)*(s+4)^3
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This result shows that there is a real negative pole of the order 3 of multiplicity (s = 
-4) and four simple imaginary poles (s = -j, s = j, s = -1.41 j, s = 1.41 j); therefore, 
this system is marginally stable.

MATLAB® enables finding and plotting the poles by specifying the feed-forward 
transfer function G(s) and feedback transfer function H(s), based on a control sys-
tem, as shown in Figure 11.6. The command feedback(sys1,  sys2) defines an 
LTI object where sys1 is G(s) and sys2 is H(s); this LTI object is actually the 
closed-loop transfer  function GCL(s) corresponding to G(s) and H(s). Let us analyze 
an example.

fiGure 11.20

Closed-Loop Poles Plot in the Imaginary Plane.
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Example 11.7
A closed-loop control system is formed of a unit-gain integral controller, a mechanical 
filter microsystem (plant) formed of two shuttle masses, a connecting microspring, with 
one mass being subjected to viscous damping and connected by another microspring 
to the substrate. When a force is applied to the free shuttle mass, the transfer function 
 connecting the displacement of the other mass to the force is Gp(s) = 1/(2s4 + 3s3 +  
15s2 + 200s + 9). This control system is also provided with a feedback sensor whose 
transfer function is H(s) = s + 5. Study the stability of the system using MATLAB®.
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Solution
The feed-forward transfer function is the product of the controller transfer function Gc = 
1/s and the plant transfer function Gp(s). MATLAB® can operate on transfer function LTI 
objects by multiplying them, so that G(s) need not be obtained separately. The following 
MATLAB® code can be used:

>> sys1=tf(1,[1,0])*tf(1,[2,3,15,200,9])

The transfer function: 

1
--------------------------------------
2 s^5 + 3 s^4 + 15 s^3 + 200 s^2 + 9 s
>> sys2=tf([1,5],1);
>> pole(feedback(sys1,sys2))

which returns

ans =
1.5648 + 4.3924i
1.5648 - 4.3924i
-4.5812
-0.0242 + 0.1566i
-0.0242 - 0.1566i

therefore, the system is unstable, as it has a pair of complex conjugated poles with a 
positive real part.

11.3.2 the routh-Hurwitz stability test
The Routh-Hurwitz stability test (or array) offers the means of verifying whether a 
system is stable, marginally stable, or unstable by predicting the number of closed-
loop poles on the LHP, the imaginary axis, and the RHP. The method, which does not 
calculate the closed-loop poles, is particularly useful in checking the stability of sys-
tems whose closed-loop transfer function contains at least one unknown parameter, 
such as a gain K. If we consider a unity-feedback control system whose feed-forward 
transfer function is

 ( )G s
a s a s a s a s a

K

4
4

3
3

2
2

1 0

=
+ + + +

 (11.72)

its closed-loop transfer function is

 ( )
( )

( )
G s

G s

G s

a s a s a s a s a K
K

1CL

4
4

3
3

2
2

1 0

=
+

=
+ + + + +

 (11.73)

The roots of the characteristic equations cannot be found analytically, 
in order to locate the poles and check stability, because the parameter K is 
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unknown. The Routh-Hurwitz test offers a method to decide on the stability of 
such a system.

The Routh-Hurwitz theorem, as well as several consequences, are not dem-
onstrated here, that is beyond the scope of the current text. The interested reader 
can find more on the Routh-Hurwitz theorem in advanced texts on systems and 
controls, such that of Chen (1984). The Routh-Hurwitz test normally comprises 
two steps: (a) construction of the Routh-Hurwitz array and (b) interpretation of 
the array and derivation of conclusions on system stability. Step (a) oftentimes 
needs some additional calculations, particularly in two special cases where normal 
construction of the array becomes impossible. Essential in the interpretation of the 
Routh-Hurwitz array are the elements in the first column, as they establish that the 
number of closed-loop poles that lie in the right-hand plane is equal to the number 
of changes in the sign of coefficients of the first column. In case no sign change 
occurs in the first column, there is no closed-loop pole in the RHP.

Construction of the Routh-Hurwitz Array
Let us consider a particular characteristic polynomial corresponding to the closed-
loop transfer function, although the method is applicable to any characteristic 
polynomial:

 ( )D s a s a s a s a s a s a
CL 5

5
4

4
3

3
2

2
1 0

= + + + + +  (11.74)

The following table is the Routh-Hurwitz array:

s

s

s

s

s

s

a

a

A a

a
a

a
a

B
A

a
A

a
A

C
B

A
B

A
B

D
B

B
C

B

a

a

A a

a
a

a
a

B
A

a
A

a

C
B

A
B

a

a

A a

a
a

B
A

a
A

0

0

0
0

0

0
0

0

0
0

0

0

0

0

5

4

3

2

1

0

5

4

1
4

5

4

3

2

1
1

4

1

2

2

1
1

1

1

2

2

1
1

1

1

2

3

2

2
4

5

4

1

0

2
1

4

1

0

2
1

1

1

1

0

3
4

5

4

3
1

4

1

= -

= -

= -

= -

= -

= -

= - =

= - =

= - =

As can be seen, the Routh-Hurwitz array is built by following some simple rules:
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•	 The first row contains every other coefficient of the characteristic polynomial 
starting with the one of the largest exponent of s.

•	 The second row contains every other coefficient of the characteristic polynomial 
starting with the one of second largest exponent of s.

•	 All other rows are formulated using data from the two rows immediately above 
them, as they are all negative ratios of an order-2 determinant to the first number 
in the immediately preceding line; the first column of the determinant is formed 
of the first elements in the rows immediately preceding, whereas the second 
column is formed of the elements in the column to the right that belong to the 
rows immediately preceding.

Let us study a concrete example.

Example 11.8
Analyze the stability of a unity-feedback control system formed of a proportional control-
ler, a second-order electrical system, and a second-order electrical filter, whose aggregate 
feed-forward transfer function is G(s) = 1/(s4 + 4s3 + 10s2 + 12s + 4). Use the Routh-
Hurwitz test as well as MATLAB®.

Solution
For a unity feedback control system with the open-loop transfer function of this example, the 
closed-loop transfer function is GCL(s) = G(s)/[1 + G(s)] = 1/(s4 + 4s3 + 10s2 + 12s + 5). 
The Routh-Hurwitz array corresponding to the given closed-loop transfer function follows:

.

.
.

s
s

s

s

s

1
4

4

1
4

10
12

7

7

4
7

12
5

9 14

9 14

7
9 14

5
0

5

10
12

4

1
4

5
0

5

7

4
7

0
0

0

4

1
4

0
0

0

0
0

4

3

2

1

0

- =

- =

- =

- =

- =

- =

0
5

All the elements in the first column are positive, so there is no sign change, which means 
there are no closed-loop poles on the RHP; therefore, the system is stable.

MATLAB® commands that use transfer function definition and poles calculation, as 
seen previously in this chapter, can be employed to determine the closed-loop poles. 
However, another MATLAB® command, roots([list of polynomial coeffi-
cients]), directly yields the roots. The command in this case is

>> roots([1,4,10,12,5])
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which returns

ans =
-1.0000 + 2.0000i
-1.0000 - 2.0000i
-1.0000
-1.0000

We can see that all roots of the characteristic polynomial have negative real parts; 
therefore, the system is confirmed to be stable.

As mentioned before, there are two particular cases where it is impossible to con-
tinue past a certain point with the construction of the array. Obviously, when a zero 
element is produced in the first column, the formulation cannot continue, because the 
elements on the next row cannot be computed (due to division by zero). A second 
special case is when all elements of a row are zero. Both cases are discussed next.

Zero Element in First Column
Method of Polynomial with Reciprocal Roots
Two methods are analyzed here enabling continuation of the Routh-Hurwitz array 
formation in case a zero results in the first column, which would normally halt cre-
ation of the array. One is the method of the polynomial with reciprocal roots, and the 
other one is the epsilon method.

The method of the polynomial with reciprocal roots is based on two elementary 
observations that can be checked by the reader quite easily:

1. An original polynomial and the polynomial whose roots are reciprocal to the ones 
of the original polynomial have their roots distributed identically in the complex 
plane; that is, if a root of the original polynomial is in the RHP, the corresponding 
reciprocal root is also in the RHP.

2. The polynomial with reciprocal roots is obtained from the original polynomial 
by using the coefficients in reversed order.

When a zero element is produced in the first column, the polynomial with reversed 
coefficients can be used instead of the original polynomial. Let us consider the fol-
lowing example to illustrate the method.

Example 11.9
Study the stability of a feedback control system whose closed-loop transfer function has 
the following characteristic polynomial: DCL(s) = s4 + 2s3 + s2 + 2s + 3. Use the method 
of polynomial with reciprocal roots and verify the results with MATLAB®.

Solution
The Routh-Hurwitz array corresponding to the given closed-loop transfer function is cal-
culated down to the third row, where a zero element results in the first column:

1
2
0

1
2

3
0

s
s
s

4

3

2
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A polynomial with reversed coefficients is formed:

 ( )D s s s s s3 2 2 1
CL

4 3 2= + + + +l  (11.75)

and the corresponding Routh-Hurwitz array becomes

s
s
s
s
s

3
2
2
3
1

1
2
1
0

1
0
0

04

3

2

1

0

-

There are two sign changes in the first column of the array (from 2 to -2 and from -2 
to 3); therefore, there are two closed-loop poles in the RHP and the control system is 
unstable. The same conclusions are found using MATLAB®’s command

>> roots([3,2,1,2,1])

which renders

ans =
0.3245 + 0.7913i
0.3245 - 0.7913i
-0.6578 + 0.1515i
-0.6578 - 0.1515i

showing that there are two roots with positive real parts.

There might be situations, however, when this method still leads to a zero in the 
first column. The epsilon method, presented next, can be used instead.
Method of Epsilon

The epsilon (f) method uses a small number f instead of the zero in the first col-
umn and continues building the Routh-Hurwitz array based on f. At the end, limits 
are calculated of the elements in the first column of the array for f " 0, and conclu-
sions are derived with respect to system stability. Let us study the previous example 
by means of the epsilon method.

Example 11.10
Study the stability of a feedback control system whose closed-loop transfer function was 
analyzed in Example 11.9 using the epsilon method.

Solution
Instead of zero in the third line and first column of the array developed in Example 10.5, 
f is used and the element calculation is completed, as follows:

2 6

s
s
s

s

s

1
2

3

1
2
3

0

3
0
0

04

3

2

1

0
f

f

f

-
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The following limit calculations are performed for the elements in the first column of 
the array:

00" ", ,
1
2

2 6

3

0 0> <

f

f
f

f f f f

-

+
+
+

-

+

+
+
-

+

+

As this array indicates, for small f either positive or negative, there are two sign changes 
in the first columns, indicating there are two closed-loop poles in the RHP, which was also 
the conclusion of Example 11.9, where a different solution method is applied.

All Elements in a Row are Zero
When all elements in a row are zero, an auxiliary polynomial is selected, formed with 
the coefficients of the previous (nonzero) row, which are made to correspond to the 
respective powers of s. A derivative in terms of s is taken of the auxiliary polynomial, 
and the resulting coefficients are used instead of the original zero row, after which the 
formation of the Routh-Hurwitz array continues in the normal way. Let us consider 
the following example.

Example 11.11
Discuss the stability of the feedback control system whose closed-loop denominator is the 
polynomial DCL(s) = s 4 + 4s3 - s2 - 16s - 12. Use the Routh-Hurwitz test and check 
the result with MATLAB®.

Solution
The following is the Routh-Hurwitz array for the problem analyzed here:

s
s
s
s

1
1
1
0

1
4
4
0

12
0
0
0

04

3

2

1

-
-

-

-

In the row of s3, the actual coefficients are 4, -16, and 0, so that 4 is factored from 
that row and is eliminated (factoring out a positive number and eliminating it from a row 
is allowable operation in Routh-Hurwitz array construction). A similar operation is applied 
to the coefficients in the row corresponding to s2, where the factor 3 is eliminated. Since 
the row corresponding to s contains only zeroes, the auxiliary polynomial is formed with 
the coefficients of the row located above the zero row as

 ( )P s s 42= -  (11.76)
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and its derivative in terms of s is dP (s)/ds = 2s + 0; as a consequence, the coefficients used 
in the row corresponding to s1 are 2 and 0, and the array started can be completed as

s
s
s
s
s

1
1
1
2
4

1
4
4
0

12
0

04

3

2

1

1 -

-
-

-

-

There is one sign change in the first column of the array; therefore, the system is unsta-
ble, having one closed-loop pole in the RHP—this can easily be checked with  MATLAB®, 
which gives the following roots of the original polynomial: -3, -2, -1, and 2.

A row with zero elements in the Routh-Hurwitz array indicates that the original 
(characteristic) polynomial is divisible by the polynomial formed of the coefficients 
in the row immediately above the row with zeroes, which is actually the auxiliary 
polynomial. As a consequence, the roots involved with the rows including the one 
above the original row with zeroes down to the bottom of the array are the roots of 
the auxiliary polynomial not only the roots of the characteristic polynomial. In the 
previous example, the roots of the auxiliary polynomial of Eq. (10.30) are -2 and 
2; MATLAB® verifies that, indeed, these are also roots of the original polynomial. 
A related feature of the characteristic polynomial is that it is always an even poly-
nomial, which means it contains only even powers of s; this can also be seen in Eq. 
(11.76). A direct result is that the roots of the auxiliary polynomial come in pairs and 
are symmetric with respect to the origin (such as -2 and 2 of the previous example). 
Therefore, should a complex number, say v + ~j, be a root of the auxiliary polyno-
mial (with both real and imaginary parts being positive, for instance), three other 
complex numbers are also going to be roots of that polynomial: v - ~j, -v + ~j, and 
-v - ~j. On the other hand, if the polynomial has an imaginary root ~j, it also has its 
conjugate, -~j, as a root. However, poles of the type +~j or -~j are located on the 
imaginary axis, and they indicate marginal stability, according to the definition. Let 
us analyze a more ample example involving several of these aspects.

Example 11.12
The closed-loop characteristic polynomial of a feedback control system is DCL(s) = s 6 + 
s 5 - 3s 4 + 3s 3 - 22s 2 - 4s + 24. Determine whether the system is stable. In case it is 
not, establish the number of poles located in the LHP, the RHP, and the imaginary axis.

Solution
The Routh-Hurwitz array for this system, after factoring 6 on the row corresponding to s4, 
generates zeroes on the row corresponding to s3, as follows:

s
s
s
s

1
1
1
0

3
3
3
0

22

4
0

24
0

6

5

4

3

-

-

-

-
4-
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As a consequence, the auxiliary polynomial is formed of the elements of the row above 
the zeroes, which is

 ( )P s s s3 44 2= - +-  (11.77)

and its s derivative is

 
( )

ds

dP s
s s4 6 03= - +-  (11.78)

The coefficients -4, -6, and 0 (or rather -2, -3, and 0, after factoring out and eliminating 
the factor 2) are used instead of the original zeroes in the row of s3, as shown in the new array:

.
.

s
s
s
s
s
s
s

1
1

2
1 5

8 33
4

3
3
3
3
4
0

22
4
4
0
0

24
0
0

6

5

4

3

2

1

0

-

-

-

-
-

-
-

1-

The poles corresponding to the auxiliary polynomial P(s), which divides the original 
polynomial DCL(s), can be located by analyzing the coefficients in the first column from 
the row corresponding to s 4 down. There is one sign change in that region, which indi-
cates there is one pole in the RHP. Due to symmetry, there is also a pole in the LHP. The 
remaining two poles of the auxiliary polynomial have to be placed on the imaginary axis. 
By analyzing the remaining elements on the first column, a sign change is spotted, which 
shows there is another pole on the right-hand plane, a pole that belongs to the second-
degree polynomial corresponding to the first two rows of the array. As a consequence, the 
system is unstable and the poles are located as follows:

Two poles on the RHP.
Two poles on the LHP.
Two poles on the imaginary axis.

Example 11.13
The feed-forward transfer function of a unity feedback control system that contains an 
integral controller and a second-order mechanical microsystem is G(s) = K/(s3 + 15s2 + 
50s). Determine the values of the positive gain K that render this system

a. stable.
b. unstable.
c. marginally stable.

Solution
The closed-loop transfer function is

 ( )
( )

( )
G s

G s

G s

s s s K
K

1 15 50CL 3 2
=

+
=

+ + +
 (11.79)
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and the corresponding Routh-Hurwitz array is

s
s

s

s

K

K

K
1
15

15
750

50

0

3

2

1

0

-

a. The system is (absolutely) stable when there is no sign change in the first column. 
Because K > 0, it follows that, for K < 750, all elements in the first column are positive; 
therefore, for 0 < K < 750, the system is absolutely stable.

b. When, on the contrary, K > 750, there are two sign changes in the first column, the 
system is unstable, and two closed-loop poles are located in the RHP.

c. For K = 750, the row corresponding to s1 contains only zeroes. The auxiliary polynomial 
is therefore formed with the elements on row immediately above as

 ( )P s s15 7502= +  (11.80)

and its s derivative is

 
( )

ds

dP s
s30 0= +  (11.81)

The new array is

s
s
s
s

1
15
30

750

50
750

0

3

2

1

0

There are no sign changes on the first column; therefore, there are no roots of the 
second-degree characteristic polynomial to generate poles in the RHP, which means 
there are no symmetric poles on the left plane either. The only possibility that remains is 
that the two poles are on the imaginary axis. As a consequence, for K = 750, the system 
is marginally stable.

11.4  transient respOnse and time-dOmain 
 specificatiOns

One area where performance of dynamic systems can be improved through con-
trols is the transient time-domain response, which describes the natural response 
(and is governed by the homogeneous differential equation that is the mathemati-
cal model) of a control system. Transient response specifications (qualifying the 
performance of the transient response) are usually defined for first- and second-
order control systems under unit step input.
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11.4.1 first-Order systems
The differential equation of a first-order control system connecting the input 
r(t) to the output c(t) is similar to the one introduced to define regular first-order 
systems:

 ( ) ( ) ( )c c t r ttx + =o  (11.82)

where x is the time constant and the static sensitivity is assumed to be K = 1. The 
closed-loop transfer function can be obtained by applying the Laplace transform to 
Eq. (11.82):

 ( )
( )
( )

G s
R s

C s

s
1

1

CL

x

x
= =

+

 (11.83)

For a unit step input, the Laplace-domain output is obtained from Eq. (11.83) as

 ( )C s
s s

1

1

x

x
=

+b l

 (11.84)

The inverse Laplace transform applied to C(s) of Eq. (10.15) yields the time-domain 
response

 ( )c t e1
t

= - x
-  (11.85)

and Figure 11.21 shows a typical response curve that corresponds to a time  constant 
of 0.1 s.

For t = x, a response value of c(x) = 1 - e-1 = 0.63 is obtained from Eq. (11.85), 
which shows that, after a time interval equal to the time constant, the response (out-
put) reaches 63% of the input, which for this particular case is equal to 1 (one).

Two other time parameters are defined, the rise time xr and the settling time xs. The 
rise time is defined in various ways, for instance, the time necessary for the output to 
get from 10% to 90% of the input or from 20% to 80% of the input. Also xr is defined 
as the time required for the output to reach a certain level, such as 80% or 90% when 
starting from a zero value. We consider here that the rise time is the time necessary 
for the output to reach 90% of the input. Solving the equation .e1 0 9/r- =x x-  results 
in xr = 2.3x, and this point is indicated in the plot of Figure 11.21.

The settling time xs is considered here to be the time necessary for the response 
to reach and stay within 98% of the input, but other definitions are also offered in the 
controls literature. The value of xs is determined from the equation 1 0.98e /s- =x x- , 
as xs = 3.91x, but is generally approximated as four times the time constant, xs = 4x. 
The point corresponding to the settling time is also indicated in Figure 11.21.
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Equation (11.83) shows that the pole of the closed-loop transfer function, p = -1/x 
(which is negative), is the one generating the transient response. It can be seen that, as 
the pole moves on the real axis of the complex plane to the left (toward large negative 
values), the time constant becomes smaller and, therefore, the response is faster. This 
pole motion also helps improve system stability, as more stable systems are further 
away in the negative direction from the imaginary axis in the LHP.

The following example investigates the proportional, integrative, and derivative 
control actions on first-order systems.

Example 11.14
For the liquid-level system (the plant here) of Example 5.10, which is redrawn in 
 Figure 11.22, known are the pressure-defined resistance Rl = 104 N-s/m5 and capaci-
tance Cl = 1/3 × 10-4 m5/N. The plant steady-state output flow rate under an input qi = 
1 m3/s is 2/3 m3/s. Examine the time response by applying individually (and separately) 
proportional, integrative, and derivative control to this plant in a unity-feedback configura-
tion and a unit step input.

Solution
The time constant of the liquid-level plant is

 R C
l l

x =  (11.86)

fiGure 11.21

Typical Response of Curve and Characteristics a First-Order Control System to Unit Step 
Input.
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and its numerical value is x = 1/3 = 0.33 s. As studied in Chapter 5, the differential 
 equation governing the dynamics of the plant is

 q q Kq
o o i

x + =o  (11.87)

where K is the static sensitivity. The solution to Eq. (11.87) is

 ( )q t K e1
o

t

= - x
-` j (11.88)

and the steady-state response is qo (3) = K, which results in K = 2/3. Laplace trans-
forming Eq. (11.87) and using the numerical values of this example generates the plant 
transfer function:

 ( )
( )

( )
G s

Q s

Q s

s
K

s1 3
2

p
i

o

x
= =

+
=

+
 (11.89)

The feed-forward transfer function is

 ( ) ( ) ( )
( )

G s G s G s
s

G s

3

2
c p

c
= =

+
 (11.90)

When proportional control is used, which means Gc(s) = KP, the closed-loop transfer 
function becomes

 ( )
( )
( )

( )
( )

/ ( )

/ ( )
G s

R s

C s

G s

G s

K

K

s K

K

s

s

1 1 2 3

2 3

3 2

2
CL

P

P

P

P
= =

+
=

+ +

+
=

+ +
 (11.91)

Compared to the transfer function of the plant, the closed-loop transfer function 
moves its pole to the left on the real axis, which indicates the time constant decreases 

fiGure 11.22

Liquid-Level Plant.
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and the speed of response increases. For unit step input, R(s) = 1/s, the response 
becomes

 ( )C s
s s K

K

3 2

2

p

p
=

+ +_ i
 (11.92)

whereas the response of the plant itself (with no control and no feedback) is

 ( )
( )

C s
s s 3

2
p +

=  (11.93)

Figure 11.23 plots the time response corresponding to Eq. (11.93), as well as the time 
responses resulting from Eq. (11.92) for two values of the proportional gain: KP = 1 
and KP = 5. We can see that, by increasing the proportional gain, the amplitude of the 
response increases and the time response decreases, which are both good (desirable) 
results. Equation (11.92) also shows that the steady-state response (which is dealt with in 
more detail in a subsequent section of this chapter) is

 ( ) ( )limc sC s
K

K

3 2

2
s

P

P
= =

+"33  (11.94)

For very large values of the proportional gain KP, c(3) " 1. However, the steady-state 
response of the plant, as results from Eq. (11.93), is

 ( ) ( )limc sC s
3
2

p ps
= =

"3
3  (11.95)

which is also shown in the plot of Figure 11.23.

fiGure 11.23

The Effect of Proportional Control on a First-Order Control System with Unit Step Input.
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For integrative control, the closed-loop transfer function becomes

 ( )G s

s
K

s

s
K

s

s s K

K

1
3

2

3
2

3 2

2
CL

I

I

I

I

2

#

#

=

+
+

+
=

+ +
 (11.96)

which shows that the control system becomes a second-order system (a topic that is 
studied shortly). Three plots are shown in Figure 11.24, which is obtained by using the 
step MATLAB® command for the values of KI = 1 and KI = 5. While reducing the tran-
sient response time, increasing the integrative gain KI also leads to overshoot (when the 
output exceeds the input, which is seen for KI = 5 in this example), and this is another 
feature typical of second-order systems. Adding integrative controls manages to eliminate 
the difference between steady-state response and input, which has also been achieved 
through proportional control.

In the case of using derivative control, the closed-loop transfer function is

 ( )G s
K s

s

K s
s

K s

K s

1
3

2
3

2

1 2 3

2
CL

D

D

D

D

#

#

=

+
+

+
=

+ +_ i
 (11.97)

fiGure 11.24

The Effect of Integrative Control on a First-Order Control System with Unit Step Input.
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As Figure 11.25 shows, adding derivative control to a first-order system completely 
changes the system response whose steady-state response, for instance, becomes

 ( ) ( )limc sC s 0
s

= =
"3

3  (11.98)

11.4.2 second-Order systems
The differential equation of a second-order control system connecting the input r(t) 
to the output c(t) is

 ( ) ( ) ( ) ( )a c t a c t a c t br t
2 1 0

+ + =p o  (11.99)

Division by a2 changes Eq. (11.99) into

 ( ) ( ) ( ) ( )c t c t c t r t2
n n n

2 2p~ ~ ~+ + =p o  (11.100)

with ~n being the natural frequency and p the damping ratio, parameters introduced 
in Eq. (1.14) in Chapter 1. As the case was with first-order systems, it is considered 
here that the static sensitivity is K = 1 (the static sensitivity is defined as K = b/a0). 

fiGure 11.25

The Effect of Derivative Control on a First-Order Control System with Unit Step Input.
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The closed-loop transfer function of the second-order control system is obtained by 
taking the Laplace transform of Eq. (11.100):

 ( )
( )
( )

G s
R s

C s

s s2CL

n n

n

2 2

2

p~ ~

~
= =

+ +
 (11.101)

The type of response c(t) corresponding to a unit step input is analyzed shortly, 
but the various response situations, which depend on the value of the damping ratio, 
can be connected to the nature and position of the closed-loop poles, which are the 
roots of the characteristic equation:

 s s2 0
n n

2 2p~ ~+ + =  (10.102)

The closed loop-poles are

 ±s p 1
, , n1 2 1 2

2p p ~= = --_ i  (11.103)

For a unit step input, the Laplace-domain output is obtained from Eq. (11.101):

 ( )C s
s s s2

n n

n

2 2

2

p~ ~

~
=

+ +_ i
 (11.104)

Four situations are possible, depending on the value of the damping ratio:

a. p > 1, overdamping. The closed-loop poles in this case are real and distinct and 
provided by Eq. (11.103).

b. p = 1, critical damping. The two closed-loop poles are real and identical and are 
expressed from Eq. (11.103) as

 s p
, , n1 2 1 2

p~= =-  (11.105)

c. 0 < p < 1, underdamping. The closed-loop poles are complex conjugate numbers, 
as follows from Eq. (11.103), and are expressed as

 ±s p j1
, , n n1 2 1 2

2p~ p ~= =- -  (11.106)

d. p = 0, no damping. For no damping, the closed-loop poles are purely imaginary 
and are defined as

 ±s p j
, , n1 2 1 2

~= =  (11.107)

The closed-loop pole positions in the complex plane are plotted in Figure 11.26. It 
should be mentioned that a closed-loop pole can be denoted as a complex number:

 ±p jv ~=  (10.108)

where v is the real part and ~ is the imaginary part. The symbol x is used in Figure 
11.26 to indicate a pole.
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Example 11.15
The closed-loop transfer function of a control system with proportional control, a second-
order electrical plant, and unity feedback is GCL(s) = 10,000/(s2 + 200ps + 10,000). Plot 
the response curves c(t) for a unit step input in terms of possible values of the damping 
ratio.

Solution
By comparing the transfer function of this example with the generic closed-loop transfer 
function of Eq. (11.101), it follows that the natural frequency is ~n = 100 rad/s. In the 
case of overdamping, let us take the value p = 2, which renders the closed-loop transfer 
function into

 ( )
,

,
G s

s s400 10 000

10 000
CL 2

=
+ +

 (11.109)

For the critically damped case, the closed-loop transfer function becomes

 ( )
,

,
G s

s s200 10 000

10 000
CL 2

=
+ +

 (11.110)

The MATLAB® step command is used to plot the response curves c(t) corresponding to 
the transfer functions of Eqs. (11.109) and (11.110), see Figure 11.27.

(b)

(d)

(a)

−  ξ +    ξ2−1  ωn

ω j
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σ−ξωn
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(c)

ω j

σ

1− ξ2ωn

− ξωn

−    ξ2ωn

−  ξ +    ξ2−1  ωn

fiGure 11.26

Closed-Loop Pole Position in the Complex Plane for (a) Overdamping; (b) Critical Damping; 
(c) Underdamping; (d) No Damping.
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fiGure 11.27

Response Curves for an Overdamped and a Critically Damped Second-Order Control Sys-
tem under Unit Step Input.
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fiGure 11.28

Response Curve for an Underdamped Second-Order Control System under Unit Step 
Input.
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A value of p = 0.6 results in underdamping, and the closed-loop transfer function

 ( )
,

,
G s

s s120 10 000

10 000
CL 2

=
+ +

 (11.111)

is used to plot c(t) in Figure 11.28.
Eventually, for p = 0 and therefore no damping, the closed-loop transfer function 

transforms into

 ( )
,

,
G s

s 10 000

10 000
CL 2

=
+

 (11.112)

and Figure 11.29 is the response plot that corresponds to a unit step input.
It can be seen that, where there is no damping, the response is harmonic (oscilla-

tory) about the unit step input, having an amplitude of 1 and a frequency defined by the 
natural frequency.

The majority of control system applications involve values of the damping ratio 
that are less than 1, so they address the underdamped case. For first-order systems, 
two time-domain specifications, the rise time and the settling time, were introduced 
to characterize the response to unit input. For second-order systems, two additional 
parameters are introduced, the peak time and the maximum overshoot, to enable 

fiGure 11.29

Response Curve for a Second-Order Control System with No Damping under Unit  
Step Input.
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 characterization of the time response. These are best defined based on the plot of 
c(t), so c(t) is determined explicitly for underdamping. C(s) of Eq. (11.104) can be 
expanded in partial fraction as

( )C s s s

s1

1 1n n

n

2 2 2 2p~ p ~

p~

p

p
= -

+ + -

+
-

-_ ^i h

 
s 1

1

n n

n

2 2 2

2

#
p~ p ~

p ~

+ + -

-

_ ^i h
 (11.113)

The inverse Laplace transform of C(s) of Eq. (11.113) is

 ( ) cos sinc t e t t1
1

t
d d2

n ~
p

p
~= - +

-

p~-
_ _i i> H (11.114)

where

 1
d n

2~ p ~= -  (11.115)

is the damped frequency, which is introduced in Chapter 2. Using trigonometric 
transformations, Eq. (11.114) can be written as

 ( ) sin tanc t e t1
1

1 1t
d2

1
2

n

p
~

p

p
= -

-
+

-p~- -f p (11.116)

Figure 11.30 contains several plots of c(t) obtained for various values of the damping 
ratio and for a particular value of the natural frequency ~n = 100 rad/s.

It can be seen that smaller amounts of damping generate larger and more  sustained 
oscillations (e.g., for p = 0.05), whereas larger damping ratios produce vibrations that 
decay more rapidly to the input level (as is the case with p = 0.7). In Figure 11.30, 
envelope curves are drawn that are tangent to the crests of one of the curves corre-
sponding to p = 0.05; the lower envelope is defined as

 ( )f t e1
l

tn= - p~-  (11.117)

whereas the upper one is defined as

 ( )f t e1
u

tn= + p~-  (11.118)

and both are decaying curves whose limits equal 1 when time goes to infinity. Similar 
decaying curves have been studied in previous chapters; they are defined as

 ( )f t e
t

= x
-  (11.119)
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where x is the time constant. If we compare Eq. (11.119) with the exponential parts 
of both Eqs. (11.117) and (11.118), it follows that the time constant of an under-
damped second-order control system under unit step input is

 
1

n

x
p~

=  (11.120)

Large values of the damping ratio and the natural frequency result in small time 
constants and, therefore fast system responses; this is seen in Figure 11.30, where 
envelopes to the response curves corresponding to p = 0.2 and p = 0.7 would be 
steeper, as the damping ratio is larger.

The four parameters that define the time response of second-order control sys-
tems under unit step input are, as mentioned previously, the peak time, maximum 
overshoot, rise time, and settling time; they are defined based on Figure 11.31.

Because, in the case of a second-order system, the response reaches the input 
and exceeds it, the rise time xr can be defined as the time the control system needs to 
reach the input for the first time; in our case, the equation to determine it is

 c 1
r

x =_ i  (11.121)

Using c(t) of Eq. (11.114), the condition of Eq. (11.121) yields

 cos sine
1

0
d r d r2

n r ~ x
p

p
~ x+

-
=p~ x-

_ _i i> H  (11.122)

fiGure 11.30

Response Curves for a Second-Order Control System with Unit Step Input and Under-
damping with Various Damping Ratios.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

c
(t

)

ξ = 0.05
ξ = 0.2
ξ = 0.7

www.semeng.ir

www.semeng.ir


11-48 CHAPTER 11 Introduction to modeling and design

The valid option for Eq. (11.122) to be satisfied is when the bracket is zero, which 
leads to the following rise time (when the minus sign is neglected):

 

tan

1

1

r

n
2

1
2

x
p ~

p

p

=
-

-- f p

 (11.123)

The settling time xs is the time after which the response reaches and remains 
within 2% of the input. Mathematically, this requirement is

 1 .c 0 02
s

#x -_ i  (11.124)

Using Eq. (11.116), the following results, in combination with the condition of 
Eq. (11.124):

 0.02sin tane e
1

1 1

1

1
d s2

1
2

2
n s n s#

p
~ x

p

p

p-
+

-

-

p~ x p~ x- - -f p  (11.125)

which, at the limit, means solving the equation

 .e
1

1
0 02

2
n s

p-
=p~ x-  (11.126)

fiGure 11.31

Typical Response Curve and Characteristics of a Second-Order Control System with Under-
damping and Unit Step Input.
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whose solution is

 
0.02ln 1

s
n

2

x
p~

p
= -

-^ h6 @

 (11.127)

An accurate approximation of the settling time given in Eq. (11.127) is

 
4

s
n

x
p~

=  (11.128)

The typical response curve plotted in Figure 11.31 displays a peak value, which 
defines the maximum overshoot (cmax - 1), as past it, the response slowly settles 
into the input value as time grows toward infinity. The time corresponding to this 
maximum response is known as peak time, and it can be computed by solving the 
equation

 
( )

0
dt

dc t

t p

=
x=

 (11.129)

Using Eq. (11.114), the condition set in Eq. (11.129) results in

 sine
1

0
n

d p2
n p

p

~
~ x

-
=p~ x-

_ i  (11.130)

which is possible when

 
d p

~ x r=  (11.131)

in order to detect the first maximum of c(t). Equation (11.131) yields the peak 
time:

 
1

p
d

n
2

x ~
p ~

r r
= =

-
 (11.132)

For an input different from unity, the maximum (percentage) overshoot is defined as

 
( )

( )
O

c

c c
100

max

p
#=

-

3

3
 (11.133)

where c(3) is the steady state response (which is equal to the input in the case we 
analyze). For the concrete situation, where the input is a unit step and where c(3) " 1,  
the maximum overshoot becomes

 O c 1 100
maxp

#= -_ i  (11.134)
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By substituting the peak time of Eq. (11.132) into the c(t) of Eq. (11.114), the maxi-
mum overshoot of Eq. (11.134) becomes

 O e 100/
p

1 2
#= rp p- -  (11.135)

While the peak time depends on both the natural frequency and the damping 
ratio, the maximum overshoot is a function of only the damping ratio.

Example 11.16
A second-order mechanical microsystem is formed of a shuttle mass and a serpentine 
spring attached to an anchor. The microsystem, whose mechanical properties are not 
known precisely, vibrates in a gas with unknown damping properties. This system acts as 
a plant in a unity-feedback system, which also contains a proportional controller (actua-
tor). Applying a unit step input to the control system, it is obtained experimentally that the 
rise time is xr = 0.002 s whereas the settling time is xs = 0.3 s. Identify the closed-loop 
transfer function of this system.

Solution
The natural frequency can be expressed in terms of the damping ratio from Eq. 
(11.128):

 
4

n
s

~
px

=  (11.136)

which, substituted in Eq. (11.127), yields the following nonlinear equation in p:

 tanf 4 1
1

0
r s

2 1
2

p p x x p
p

p
= - -

-
=-^ fh p  (11.137)

For the rise time and settling time values of this example, the function of Eq. 
(11.137) is plotted in Figure 11.32. It can therefore be graphically evaluated that f (p) 
intersects the abscissa for a value situated between 0 and 0.05. The MATLAB® function 
fzero(f, x0), see also Appendix C for more details on this function, which is used 
in the following code,

>> f=@(xi)4*sqrt(1-xi.^2)*0.002-0.3*xi.*atan(sqrt(1-xi.^2)./xi);
>> fzero(f,[0,0.05])

finds the solution of p = 0.0172. Equation (11.136) yields ~n = 775.194 rad/s. As a conse-
quence, the closed-loop transfer function, as expressed in the generic Eq. (11.101), is

 ( )
. ,

,
G s

s s26 667 600 930

600 930
CL 2

=
+ +

 (11.138)
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The time specifications defined here can be connected by means of the damp-
ing ratio and the natural frequency to the pole position of an underdamped unity-
feedback control system with unit step input. Figure 11.26 (c) is replotted in Figure 
11.33, showing the position of one of the two conjugate closed-loop poles corre-
sponding to underdamping.

The underdamped pole can be expressed in complex number form as

 p j
d d

v ~= +  (11.139)

where vd is the real part and ~d is the imaginary part, as shown in Figure 11.33, 
where Pythagoras theorem gives the pole magnitude as

 | |p OP
d d n
2 2v ~ ~= = + =  (11.140)

This result indicates that, if the pole moves around a circular trajectory (centered 
at O) of constant radius, the natural frequency of the system remains unchanged. The 
following equation is also obtained from Figure 11.33:

 | |cos
n

d
a ~

v
p= =  (11.141)

which indicates that, when the pole moves radially along a line of constant inclina-
tion, the damping ratio is unaltered. Clockwise rotation of the radial line OP (which 
increases the angle a) reduces the damping ratio, and conversely, counterclockwise 
rotation increases the damping effect.

fiGure 11.32

Function that Depends on the Damping Ratio, Eq. (11.137).
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Considering that vd = p~n, the settling time of Eq. (11.128) can be written as

 
4

s
d

x
v

=  (11.142)

which shows that the settling time remains unmodified as long as the pole moves 
up or down on a specified vertical line in the complex plane. Moving the vertical 
line to the left in Figure 11.33 increases the abscissa vd and hence the settling time 
decreases. Equation (11.132) shows that the peak time is inversely proportional to the 
damped frequency ~d, and this shows that, when the pole moves on a specified hori-
zontal line (to the left or to the right in Figure 11.33), the peak time remains constant. 
To reduce the peak time, a horizontal line has to be displaced upward in the complex 
plane, which increases the coordinate ~d.

If a value of ~n = 1 rad/s is used in Eq. (11.123), the rise time becomes a function 
of only the damping ratio; this function is plotted in Figure 11.34.

fiGure 11.33

Closed-Loop Pole Position in the Complex Plane for an Underdamped Unity-Feedback 
Control System with Unit Step Input.
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It can be seen that the rise time xr decreases when the damping ratio increases. It 
has also been shown that, when the radial line OP rotates counterclockwise (which 
reduces the angle a, see Figure 11.33), the damping ratio becomes larger. The 
rotation of the pole while keeping a constant radius keeps the natural frequency 
unchanged (the natural frequency is in the denominator of xr), but overall, the rise 
time is reduced.

A similar trend can be seen in the maximum overshoot Op, which decreases when 
the damping increases, as shown in Figure 11.35. Again, counterclockwise rota-
tion of the radial line OP in Figure 11.33 generates an increase in damping, which 
reduces the maximum overshoot. It should also be mentioned that, out of the four 
time-domain specifications, only the maximum overshoot depends on one parameter 
(the damping ratio), the other three specifications are functions of both the damping 
ratio and the natural frequency.

Example 11.17
The closed-loop transfer function of a unity-feedback control system is formed of an inte-
gral controller, and a first-order thermal system under unit step input is GCL (s) = 2500/
(s2 + 40s + 2500). Reductions in the maximum overshoot of 15% and in the rise time 
of 20% are needed. What changes in the damping ratio and natural frequency need to 
be made to accomplish this? What are the qualitative modifications in the settling time 
and peak time? How does the closed-loop poles move in the complex plane as a result 
of these modifications?

fiGure 11.35

Maximum Percentage Overshoot versus Damping Ratio.
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Solution
The closed-loop transfer function of this problem shows that ~n = 50 rad/s; therefore, 
2p~n = 40, which results in a damping ratio of p = 0.4. The original rise time is calculated 
by means of Eq. (11.123) as xr = 0.0253 s, and the original maximum overshoot is deter-
mined by Eq. (11.134) as Op = 25.38%. The modified rise time and maximum overshoot 
are, according to the requirements of the problem,

 
. .

. . %O O O
0 2 0 0202

0 15 21 57
r r r

p p p

#

#

x x x= - =

= - =

l

l*
 (11.143)

The modified (new) damping ratio is obtained by expressing it in terms of the maxi-
mum overshoot of Eq. (11.135) as

 

+ ln

ln

O

O

100

100

p

p

2

2
p =-l

l

l

e o

 (11.144)

With the maximum overshoot value of Eq. (11.143), the new damping ratio value of Eq. 
(11.144) becomes pl= 0.4387. The modified natural frequency is calculated from Eq. 
(11.123) as

 

tan

1

1

n

r
2

1
2

~
p x

p

p

=
-

--

l
l l

l

l

 (11.145)

which gives a numerical value of 61.4 /rad sn~ =l . With these values of the damping 
ratio and natural frequency, the closed-loop transfer function of this example problem 
 modifies to

 ( )
.

G s
s s53 87 3770

3770
CL 2

=
+ +

l  (11.146)

To plot the pole position in the complex plane, we use MATLAB®’s pzmap(sys), which 
enables plotting the poles and zeroes of an LTI object (such as a transfer function in our 
case) in the complex plane. The following MATLAB® code generates the pole position plot 
of Figure 11.36:

>> tf1 = tf(2500,[1,40,2500]);
>> tf2 = tf(3770,[1,53.87,3770]);
>> pzmap(tf1,tf2)

The arrows indicate how the poles move after the modifications of the damping ratio 
and natural frequency. The motion of the poles to the left indicates that the settling time 
decreases, while the poles moving away vertically reduces the peak time value.
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11.5 steady-state errOrs
In addition to model inaccuracies in controlled systems, the interaction between 
the type of input and the configuration of the control system can lead to differ-
ences between the output c(t) and the reference (input) r(t) signals in the form of 
an error as

 ( ) ( ) ( )e t r t c t= -  (11.147)

for a unity feedback system.
In its initial period, the response c(t) is inherently different from the input r(t), 

as we have seen, for both first-order and second-order systems. As a consequence, 
it is important that the errors are minimal or completely eliminated after the system 
enters its settled phase. Mathematically, it is convenient to evaluate the error limit 
when time grows to infinity. This error, known as steady-state error, can be calcu-
lated by means of the final-value theorem:

 ( ) ( ) ( )lim lime e t sE s
t s 0

= =
" "3

3  (11.148)

Specific ways of calculating the steady-state error are implemented for unity-feedback 
systems, nonunity-feedback systems, and systems with disturbance-type errors. How-
ever, our study is limited to unity-feedback systems. A block diagram of a basic unity-
feedback control system is shown in Figure 11.7. The error signal can is expressed as

 ( ) ( ) ( )E s R s C s= -  (11.149)

fiGure 11.36

Change of Closed-Loop Pole Position in the Complex Plane.
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At the same time,

 ( ) ( ) ( )C s E s G s=  (11.150)

Substituting C(s) of Eq. (11.150) into Eq. (11.149) allows expressing the error 
 signal as

 ( )
( )

( )
E s

G s

R s

1
=

+
 (11.151)

The steady-state error of Eq. (11.148) becomes

 ( ) ( )
( )

( )
lim lime e t

G s

sR s

1t s 0
= =

+" "3
3  (11.152)

Example 11.18
A plant is defined by a constant gain transfer function Gp(s) = Kp. Assuming the 
plant is incorporated into a unity-feedback control system with unit step input, deter-
mine the steady-state errors when the controller is proportional (P), integrative (I), or 
derivative (D).

Solution
For unit step input, R(s) = 1/s, and Eq. (11.152) simplifies to

 ( )
( )lim

e
G s1

1

s 0

=
+

"

3  (11.153)

For a proportional controller, Gc(s) = KP, and the open loop transfer function is

 ( ) ( ) ( )G s G s G s K K
c p P p

= =  (11.154)

As a consequence, the steady-state error of Eq. (11.153) is

 ( )e
K K1
1

c p

=
+

3  (11.155)

which means there is a permanent offset (the constant error) between the input and the 
output.

For an integral controller, the open-loop transfer function becomes

 ( ) ( ) ( )G s G s G s s

K K
c p

I p
= =  (11.156)
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and the steady-state error is

 

0"

( )

lim

e

s

K K
1

1
0

s

I p

=

+

=3  (11.157)

which indicates that, using integrative control, it is possible to eliminate the steady-state 
error altogether.

Eventually, in case a derivative controller is used, the open-loop transfer function is

 ( ) ( ) ( )G s G s G s K K s
c p D p

= =  (11.158)

which results in the following steady-state error:

 
0"

( )
lim

e
K K s1

1
1

s D p

=
+

=3  (11.159)

It can therefore be concluded that application of proportional or derivative control 
to a plant that has a constant gain results in constant and finite steady-state errors, so 
the controlled output is offset from the input. Integrative control, however, eliminates the 
steady-state error.

A more systematic approach to studying the steady-state errors of a  feedback 
control system is to take into account possible variants of types of control  systems 
and inputs. In general, three basic input types are used to test and study unity- 
feedback control systems: unit step, unit ramp, and unit parabola. Table 11.1  illustrates 

r (t) R (s) e (3) Constant

Unit step 
r(t )

r(t ) =1

t

( )R s s
1

=
( )lim G s K11

1 1

s P0
+

=
+

"

Position
( )limK G s

p s 0
=

"

Unit ramp
r(t )

r(t ) = t

t

( )R s
s

1
2

=
( )lim sG s K1

1 1

s v0
+

=
"

Velocity

( )limK sG s
v s 0
=

"

Unit parabola
r(t )

t

r(t ) = t2

2

( )R s
s

1
3

=
( )lim s G s K1

1 1

s
a

2

0
+

=

"

Acceleration

( )limK s G s
a s

2

0
=

"

Table 11.1 Correlation Between Basic Input, Steady-State Errors, and Constants
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these inputs, their Laplace transforms, and the steady-state errors that can be defined, 
for each input, in terms of a constant (Kp, position constant, for unit step input; Kv, 
 velocity constant, for unit ramp input; and Ka, acceleration constant, for unit parabola 
input).

For an open-loop transfer function, which is written in the zero-pole-gain form as

 ( )
…

…
G s

s p s p

K s z s z

1 2

1 2
=

+ +

+ +

_ _

_ _

i i

i i
 (11.160)

where K is the gain, z1, z2, … are zeroes, or roots of the numerator (they are written 
here as distinct ones, but they can also be multiple), and p1, p2, … are the poles, or roots 
of the denominator (some of them can also be multiple), it can be seen from Table 11.1 
that the position constant Kp is constant, while the velocity constant Kv and the accel-
eration constant Ka are zero. This results in steady-state errors that are constant for unit 
input and infinite for unit ramp and unit parabola input, as can be checked from the 
same Table 11.1. As a consequence, to realize zero steady-state errors, it is necessary 
that the open-loop transfer function be of the form

 ( )
…

…
G s

s s p s p

K s z s z
n

1 2

1 2
=

+ +

+ +

_ _

_ _

i i

i i
 (11.161)

where the positive integer n is at least equal to 1. Because division by s in the Laplace 
domain means integration into the time domain, the conclusion is that the open-loop 
transfer function needs to have at least one integration (n = 1). The value of n is named 
the system type; therefore, a type-0 system has n = 0, a type-1 system has n = 1, while 
a type-2 system has n = 2, and so forth. Defining the open-loop transfer function as in 
Eq. (11.161) allows calculation of the three types of constants and the corresponding 
steady-state errors for various system types. A type-zero system has the following 
position constant:

 
0" …

…

…
…

limK
s s p s p

K s z s z

p p
Kz z

p 0
1 2

1 2

1 2

1 2
=

+ +

+ +
=

s _ _

_ _

i i

i i
 (11.162)

assuming there are l poles and m zeroes.

System 
type

Unit step Unit ramp Unit parabola

Kp e(3) Kv e(3) Ka e(3)

0 Constant Constant 0 3 0 3

1 3 0 Constant Constant 0 3

2 3 0 3 0 Constant constant
3 3 0 3 0 3 0

Table 11.2 Correlation Between System Type, Basic Input, Constants,  
and Steady-State Errors

www.semeng.ir

www.semeng.ir


 11.5 Steady-State Errors 11-59

which has a constant value; as a consequence, the steady-state error associated with 
it, see Table 11.1, is also constant. For a type-1 system, the position constant is

 
0" …

…
limK

s s p s p

K s z s z
p 1

1 2

1 2
3=

+ +

+ +
=

s _ _

_ _

i i

i i
 (11.163)

therefore, the corresponding steady-state error is zero. It is clear that for type-1 
systems and higher, the steady-state error is zero for unit step input. Similar calcula-
tions can be carried out for unit ramp and unit parabola inputs. Table 11.2 synthe-
sizes the resulting conclusions. The plus or minus sign in front of infinity has been 
omitted.

It can be seen from Table 11.2 that a type-three system, which possesses three 
integrations in its open-loop transfer function, realizes zero steady-state errors for 
each of the three basic inputs analyzed here. However, increasing the number of 
integrations beyond three increases the chance of the controlled system becoming 
unstable.

Example 11.19
The microaccelerometer of Figure 11.37 is a plant formed of a shuttle mass, a serpen-
tine spring, two U springs, and a massless plate. There is viscous damping between the 
shuttle mass and the plate; an input motion is transmitted to the plate, which generates 
an output motion of the shuttle mass of y. The plant transfer function is Gp(s) = Y(s)/U(s) 
= 5(s + 1)/[(s + 4)(s + 5)]. This plant is connected to a controller defined by a transfer 
function Gc(s) = 1/s 2. These two units are incorporated into a unity-feedback control sys-
tem. Verify the stability of the system, determine the system type, evaluate the Kp, Kv, Ka 
constants, and determine the steady-state error for r (t) = t 2/2.

fiGure 11.37

Mechanical Microsystem with Input Displacement u and Output Displacement y.
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Solution
The open loop transfer function is

 ( ) ( ) ( )
( ) ( )

( )
G s G s G s

s s s s s s

ss

4 5

5 1

9 20
5 5

c p 2 4 3 2+ +
= =

+
=

+ +

+
 (11.164)

The stability of this system can be verified by finding the poles of the closed-loop transfer 
function; this can be done in MATLAB® by means of the following code:

g = tf([5,5],[1,9,20,0,0]);
% alternative zpk definition: g = zpk([-1],[0,0,-4,-5],5);
pole(feedback(g,1))

which returns the following poles:

ans =
     -5.4971
     -3.3621
     -0.0704 + 0.5153i
     -0.0704 - 0.5153i

Because all real parts of the closed-loop poles are negative, the unity-feedback con-
trol system is stable. Checking out the number of integrations in the open-loop transfer 
 function, we see that n = 2; therefore, this is a type-2 system. Table 10.2 indicates that 
Kp = 3 and Kv = 3, whereas the acceleration constant Ka is finite. Its value is computed 
according to the definition of a unit parabola input (see Table 10.1)

 ( )
( )

.lim limK s G s
s s

s

4 5

5 1
0 25

a s s0

2

0
= =

+ +

+
=

" " ] ]g g
 (11.165)

As a consequence, the constant steady-state error is

 ( )e
K
1

4
a

= =3  (11.166)

Example 11.20
The mechanical microsystem (plant) of Figure 11.38 is composed of a mass m = 10-12 
kg and two beam springs, each having a stiffness k = 5 N/m. An external force f acts on 
the mass displacing it in the direction y. This is plant originally placed in a unity-feedback 
control system with a unity-gain P controller. Design a PD controller that generates a 
maximum overshoot of 10% and reduces the steady-state error of the resulting feedback 
control system 100 times under a unit step input.
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Solution
The dynamic model of the mechanical microsystem is

 my f ky2= -p  (11.167)

Applying the Laplace transform to Eq. (11.167) yields the plant’s transfer function:

 ( )
( )
( )

G s
F s

Y s

ms k2
1

p 2
= =

+
 (11.168)

Addition of the PD controller to the mechanical microplant of Figure 11.38 generates 
the block diagram of Figure 11.39.

The open-loop transfer function corresponding to the control system of Figure 11.39 is

 ( ) ( ) ( )G s G s G s
ms k

K T s K

2c p

P D P

2
= =

+

+
 (11.169)

and the closed-loop transfer function of the same system is

 ( )
( )

( )
G s

G s

G s

ms K T s k K

K T s K

1 2CL

P D p

P D P

2
=

+
=

+ + +

+
 (11.170)

whose characteristic polynomial is

 ( )D s ms K T s k K2
CL P D p

2= + + +  (11.171)

fiGure 11.39

Block Diagram of Mechanical Microplant with a PD Controller in a Unity-Feedback 
 Control System.
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We can see that the effect of the derivative control translates into damping arising in 
the characteristic polynomial due to the s term; Equation (11.171) also indicates that the 
(total) equivalent stiffness increases through the addition of the proportional damping. 
Division of the characteristic equation DCL(s) = 0 by m leads to the following equivalent 
natural frequency and damping ratio:

 ;m
k K

m
K T2

2
n

P

n

P D2~ p~=
+

=  (11.172)

Since the maximum overshoot depends on only the damping ratio, according to Eq. (11.135), 
for Op = 0.1 (as the example specifies) solution of Eq. (11.135) yields p = 0.5912.

The steady-state errors of the original system (without the PD control) e' (3) and of the 
system with the PD control, which is e(3), are calculated based on Table 11.1 as
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 (11.173)

This example requires that

 ( )
( )

e
e

100
3

3
=
l

 (11.174)

Combining Eqs. (11.173) and (11.174) results in KP = 100 - 2k = 990. Substituting ~n 
from the first Eq. (11.172) into the second Eq. (11.172) results in

 T
K m

k K2 2
D

P

Pp
=

+
 (11.175)

And the numerical value of the derivative time of Eq. (11.175) is TD = 3.8 # 10-8 s. The 
PD controller is thus designed, as the values of the proportional gain KP and derivative 
time TD are determined per the example specifications.

11.6 time-dOmain cOntrOls Of systems  
witH disturbances

In addition to the normal input to feedback controlled systems (which is the refer-
ence signal R(s) for SISO systems), disturbances can also be produced by unwanted 
external effects and imprecision in the mathematical models describing the various 
transfer functions, as well as by the interstage loading between various components 
of the control system. One common situation occurs when the disturbance signal 
D(s) acts between the controller and the plant, as illustrated in Figure 11.40.
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The following signal balance is valid for the plant transfer function Gp(s):

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){[ ] }s H s C s G s D s G s C sR
c p

- + =  (11.176)

Equation (11.176) can be written as

 ( ) ( ) ( )C s G R s G D s
, ,CL R CL D

= +  (11.177)

where the two partial closed-loop transfer functions, one due to R(s) and the other 
one connected to D(s), are
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 (11.178)

Comparing the two transfer functions of Eqs. (11.178) and their contributions to the 
total response C(s), we can see that, for large (or very large) values of Gc(s), such as for 
cases where a large proportional gain KP is used in the controller, the weight of GCL,D in 
C(s) is relatively small; therefore, the effect of disturbances is substantially reduced.

The following example uses Simulink® to model and plot the time response of a 
control system with sinusoidal disturbance.

Example 11.21
Consider that the dc motor of Figure 1.19 is the plant of the feedback control system 
sketched in the block diagram of Figure 11.40 where the input is the armature voltage and 
the output is the shaft angular velocity. The controller is proportional with KP = 25, and 
the sensor has a proportional gain Ks = H(s) = 0.1 V-s/rad. A unit step input is provided 
to the control system as reference signal, while the disturbance is d(t) = 3sin(10t) V. Use 
Simulink® to build the block diagram of this control system and to plot the response c(t). 
Known are the following parameters: Jl = 0.025 N-m-s2, c = 0.14 N-m-s, Ra = 10 X, La =  
1.8 H, Kt = 0.2 N-m/A, and Ke = 0.02 N-m/A.

fiGure 11.40

Block Diagram of a Nonunity Control System with Reference and Disturbance Inputs.
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Solution
Equation (1.21) described the time-domain behavior of a dc motor with the armature volt-
age va(t) as the input and the shaft rotation angle i(t) as the output. Equation (1.21) can 
be reformulated using the shaft angular velocity ~(t) as the plant output:

 ( ) ( ) ( ) ( )a a a vt t t t
a2 1 0

~ ~ ~+ + =p o  (11.179)

with

 ; ;a
K

L J
a

K

L c R J
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K
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t
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a a l

t

a

e2 1 0
= =

+
= +  (11.180)

The transfer function of the plant is obtained by applying the Laplace transform to  
Eq. (11.179):

 ( )
( )
( )

G s
V s

s

a s a s a
1

p
a 2

2
1 0

X
= =

+ +
 (11.181)

The numerical values of the coefficients defined in Eq. (11.180) are a2 = 0.225, a1 = 
2.51, a0 = 7.02. The controller transfer function is

 ( )
( )
( )

G s
E s

M s
K

c P
= =  (11.182)

whereas the transfer function of the feedback sensor is

 ( )
( )
( )

( )

( )
H s

C s

B s

s

V s
K

s

s
= = =  (11.183)

A system where the feedback transfer function picks up the rate of a signal (the angu-
lar velocity in our case) is known as a velocity control system. If the original Eq. (1.21) is 
used instead of Eq. (11.179), which connects the shaft rotation angle i(t) to the armature 
voltage va(t), a feedback sensor converting the angular displacement output into voltage 
would be necessary, and the system would be a position control system.

The block diagram of Figure 11.41 is built by means of blocks already used in previ-
ous chapters in Simulink® examples. The Sum and Scope operators are brought in from 
the Commonly Used Blocks library, the three transfer functions belong to the Con-
tinuous library, whereas the Step and Sine inputs (which are in the time domain) are 
taken from the Sources library.

The result of the simulation is plotted in Figure 11.42, which shows that the shaft 
 angular velocity has a slight vibratory motion around a value slightly larger than 2.5 rad/s.
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11.7 transient respOnse and stability by tHe rOOt 
lOcus metHOd

Using the poles and zeroes of the open-loop transfer function, the root locus method 
(Evans, 1954) is a graphical method plotting the successive positions of the closed-
loop transfer function poles as a parameter (such as a gain K ) vary over a range. 
This method can qualify changes in a feedback system’s stability (tied to closed-
loop pole migration between the left- and right-hand planes), as well as in the tran-
sient response characteristics while a parameter varies. While the method can be 
used for design purposes, mainly to improve the transient response behavior through 

fiGure 11.41

Simulink® Block Diagram of the Feedback Control System of a dc Motor Plant with 
 Sinusoidal Disturbance Input.

C(s)M(s)E(s)R(s)= 1/s

B(s)

d = 3 sin(10 t)

Plant Scope

Sensor

ControllerStep
0.225s2+ 2.51s + 7.02

125
1

0.1
1

+
+

+
−

fiGure 11.42

Plot of the Shaft Angular Velocity by Simulink® for the Feedback-Controlled dc Motor Plant 
with Sinusoidal Disturbance Input
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compensation or addition of poles or zeroes, our introductory discussion here is lim-
ited to presenting the basic elements of the root locus method and its application to 
feedback control system analysis.

Consider for instance the control system of Figure 11.43(a), which is formed of an 
integral controller of constant KI, an actuator converting the actuation voltage Va(s) into 
a torque Ma(s), and a plant comprising a rotary inertia J = 0.001 kg-m2 and a damper 
c = 0.1 N-m-s, as sketched in Figure 11.43(b). The transfer function of the plant con-
nects the input torque Ma(s) to the output shaft angular velocity X(s), according to

 ( )
( )
( )

. .
G s

M s

s
Js c s

1
0 001 0 1

1
p

a

X
= =

+
=

+
 (11.184)

A sensor (such as a tachometer) picks up the output shaft angular velocity X(s) and 
converts it to a proportional voltage Vs(s), which is further lead to a summing point, 
where it is compared to a reference voltage Vr(s); the result, the error voltage Ve(s), 
is applied to the integral controller. The feed-forward transfer function of this control 
system is

 ( )
( )
( )

( )
G s

V s

s

s Js c

K K
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K K
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I a I a

2
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= = =
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therefore, its closed-loop transfer function is
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 (11.186)

Let us assume the gain Ks of the feedback sensing unit varies from 0 to potentially 
3, whereas the other two gains, KI and Ka have fixed values. In this case, K = KsKIKa 
also varies from 0 to 3.

fiGure 11.43

(a) Block Diagram of a Nonunity-Control System with Feedback Gain; (b) Rotary 
 Mechanical System (Plant).

(b)

c
ma, θ J

(a)

+

−

Vr (s) Ve(s)

Vs(s)

Gp(s)
Ma(s) Ω(s)Va(s)

KI/s Ka

Ks

www.semeng.ir

www.semeng.ir


 11.7 Transient Response and Stability by the Root Locus Method 11-67

The closed-loop poles are the roots of the characteristic polynomial Js2 + cs + 
K = 0.001s2 + 0.1s + K in the denominator of the closed-loop transfer function of 
Eq. (11.186). When taking values for the gain K from 0 to 5 in increments of 0.5, we 
can see that the two closed-loop poles migrate on the real axis from -100 and 0 to 
meet at -50 for a gain K = 2.5, as shown in Figure 11.44. With the gain increasing 
past 2.5, the closed-loop poles leave the real axis and move, one up and the other one 
down, as also seen in Figure 11.44.

It can be seen that this particular system is stable, as the closed-loop poles are 
always in the LHP. For K in the 0 to 2.5 range, the poles are on the real axis; this 
indicates that the second-order system is critically damped (cosa = p = 1). For 
gains larger than 2.5, the system becomes underdamped (p < 1), and as the poles 
move away from the real axis, the system’s damping ratio decreases and the natu-
ral frequency increases; the settling time remains constant, whereas the peak time 
decreases as the poles move away.

The closed-loop poles of a feedback system are the roots of the characteristic 
equation corresponding to the closed-loop transfer function, which for a system with 
a gain K is 1 + KG(s)H(s) = 0; this can be written as

 ( ) ( )KG s H s 1= -  (11.187)

but KG(s)H(s) = GOL(s) is the open-loop transfer function. The open-loop transfer 
function can be written as a ratio of factorized polynomials in terms of zeroes and 
poles as

 ( ) ( ) ( )KG s H s G s
s p

s z

OL

i
i

n

j
j

m

1

1
= =
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=

=
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i
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 (11.188)

fiGure 11.44

Closed-Loop Pole Displacement in the Complex Plane by Gain Variation.
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For a given s (which is a complex number), the factors s - zj and s - pi are 
also complex numbers, which renders GOL(s) of Eq. (11.188) into a complex num-
ber, which satisfies Eq. (11.188) for the following angle and magnitude (modulus) 
conditions:

 
( ) ( ) ( ) ( )

( ) ( )
± ( ) , , , ,…j KG s H s G s H s k k

M K G s H s
2 1 0 1 2

1
\ \ r= = = + =

= =
)  (11.189)

The first Eq. (11.189) took into account that the direction of a vector is not influenced 
by a constant (such as K) multiplying that vector. Recalling the phasor form of com-
plex numbers, the factors of Eq. (11.188) are written as

 
| |
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*  (11.190)

and are graphically represented in Figure 11.45.
As a consequence, the angle condition of Eq. (11.189) follows from the particular 

form of the open-loop transfer function given in Eq.(11.188):

 ± , , , ,…j s z s p k k2 1 0 1 2
j
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i
1 1
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= =
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Similarly, the magnitude condition of Eq. (11.189) results in
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 (11.192)

fiGure 11.45

Representation of a Pole pi and a Zero zj in Connection with a Number s in the Complex 
Plane.
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which is also
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 (11.193)

Equations (11.191) and (11.193) qualitatively and quantitatively show that decid-
ing whether or not a complex number s is a closed-loop pole is equivalent to checking 
whether the open-loop poles and zeroes associated with s satisfy these two equations. 
If Eq. (11.191) is not complied with, the test point s is clearly not a closed-loop pole. 
If, instead, a test point s checks Eq. (11.191), it means the point is on the root locus 
(because it is a closed-loop pole), and Eq. (11.193) needs to further be used to deter-
mine the corresponding gain K.

Example 11.22
The open-loop transfer function of a feedback control system has the poles -5 and -4 
and the zeroes -2 and -1. Verify whether the point s = -1.5 is on the root locus.

Solution
Figure 11.46 shows the relative positions of the open-loop poles and zeroes with respect 
to the test point.

The angle of Eq. (11.191) is calculated as

 rj s z s p 0 0 0
j

j

m

i
i

n

1 1
\ \ r= - - - = + - + =

= =
_ _ ] ]i i g g/ /  (11.194)

fiGure 11.46

Relative Positions of the Open-Loop Poles and Zeroes with Respect to a Test Point.
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Since { is an odd number of r, it follows that the test point is on the root locus; therefore, 
this is a closed-loop pole. The corresponding gain is calculated, based on Eq. (11.193), as
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11.7.1 basic rules for sketching the root locus
There are several rules, also known as Evans rules (they were introduced by W. R. 
Evans around 1950) for sketching the root locus plot. These rules are only enunciated 
next, without a demonstration; the interested reader is referred to dedicated controls 
texts such as the ones mentioned in the suggested reading section at the end of this 
chapter.

1. The number of root locus branches is equal to the number of open-loop poles.
2. The root locus is symmetric with respect to the real axis.
3. The root locus starts (begins) at open-loop poles and ends at open-loop zeroes. 

As a consequence of Rule 1, the number of open-loop poles is equal to the 
number of open-loop zeroes.

4. Real-axis portions of the root locus are always located to the left of an odd 
number of open-loop poles and zeroes (this is the sum of open-loop poles and 
zeroes) on the real axis.

5. The behavior at infinity of the root locus is described by asymptotes. Because 
usually the number of finite open-loop poles np is larger than the number of finite 
open-loop zeroes nz (since the degree of the polynomial in the numerator of the 
open-loop transfer function is smaller than the degree of the open-loop transfer 
function characteristic polynomial), there should be np - nz infinite zeroes (which 
are situated at infinity), so that the end of root locus branches corresponding 
to these infinite zeroes is determined by means of asymptotes. The np - nz 
asymptotes are centered at an abscissa:

 
finite open looppoles finite open loopzeroes

n na
p z

v = -

- - -^ ^h h//
 (11.196)

and the asymptotes’ angles with respect to the real axis are calculated as

 
k n n

k2 1
,a

p z

r
{ = -

+] g
 (11.197)

with k = 0, 1, …, np - nz - 1. As a result of Rule 2, the asymptotes have to be 
symmetric with respect to the real axis.

www.semeng.ir

www.semeng.ir


 11.7 Transient Response and Stability by the Root Locus Method 11-71

6. The points where two root locus branches meet on the real axis and continue 
on this axis as K increases are known as the break-in points. The points where 
two real-axis root locus branches meet then leave the real axis are named the 
breakaway points. The gain K is minimum for break-in points and maximum for 
breakaway points compared to the gains of all other points belonging to the same 
real-axis segment of the root locus.

7. The points where the root locus crosses the j~ (imaginary) axis can be calculated 
using the Routh-Hurwitz criterion. These j~-axis crossing points ultimately 
indicate values of the gain K that separates stable from unstable regions. 
Analyzing the characteristic polynomial of the closed-loop transfer function, a 
row that involves K and corresponds to an odd power of s in the Routh-Hurwitz 
array must be zero; this results in the value of the gain. The corresponding 
frequency is obtained by annulling the polynomial P(s) that is formed of the 
coefficients on the row above the zero row (see method of Routh-Hurwitz).

Example 11.23
Sketch the root locus of a feedback system having the open-loop transfer function of 
Example 11.22 and a feedback gain K. Determine the exact values of K corresponding to 
the break-in and breakaway points.

Solution
Because there are two finite open-loop poles and two open-loop zeroes, np = nz; there-
fore, there are no infinite zeroes and no asymptotes. Also, only two root locus segments 
are located on the real axis, between -2 and -1 (at the left of one open-loop pole, 
which is an odd number) and between -5 and -4, at the left of three open-loop poles 
and zeroes. Figure 11.47 sketches the root locus.

fiGure 11.47

Sketch of Root Locus for Example 11.22.
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The root locus starts from the two open-loop poles, -5 and -4, and the two branches 
proceed on the real axis until they reach the breakaway point. After that, the two branches 
continue off the real axis and land again on the real axis, meeting at the break-in point, 
between the two open-loop zeroes. They continue on the real axis after landing until each 
branch reaches one of the two zeroes, -2 and -1.

To calculate the breakaway and break-in points, the open-loop transfer function first 
needs to be determined. Knowing the two open-loop poles and zeroes, the open-loop 
transfer function is written as

 ( )
( ) ( )

( ) ( )
G s K

s s

s s
K

s s

s s
4 5

1 2

9 20
3 2

OL 2

2

+ +

+ +
= =

+ +

+ +
 (11.198)

However, we know that points on the root locus satisfy the propriety GOL(s) = -1, which, 
using Eq. (11.198), leads to

 K
s s

s s

3 2

9 20
2

2

=
+ +

- + +^ h
 (11.199)

According to Rule 6, at break-in and breakaway, the gain K assumes extreme values, 
which means that

 
ds
dK

0=  (11.200)

Taking the s derivative to K of Eq. (11.199) and using Eq. (11.200) yields the  equation

 s s6 7 02 + + =  (11.201)

whose roots are

 
.

.

s

s

3 2 4 414

3 2 1 586
1

2

=- - =-

=- + =-
*  (11.202)

It can be seen that s1 = -4.414 is the breakaway point (for which K = 0.029 from 
Eq. (11.199)) and s2 = -1.586 is the break-in point (its gain is K = 33.971 from the 
same Eq. (11.199)).

Example 11.24
An actuated electrical plant is defined by the transfer function Gp(s) = Ka /(s2 + 2s + 3), 
where Ka is the actuator’s gain. A basic feedback control design is used with a unit integral (I) 
controller (KI = 1) and a proportional gain Ks acting as a sensor on the feedback branch.
a. Sketch the root locus corresponding to this transfer function considering the gain K = 

Ka Ks.
b. Calculate the j~ axis crossing points of the root locus. What is the range of K for stability?
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Solution
a. The open-loop transfer function of the system is

 ( )G s
s s s

K K

s s s
K

2 3 2 3OL

a s

2 3 2
=

+ +
=

+ +^ h
 (11.203)

This function has three finite poles, which are the roots of the characteristic polynomial 
s3 + 2s2 + 3s and are

 , ,s s j s j0 1 2 1 2
1 2 3
= = - = +- -  (11.204)

This indicates that np = 3, which further shows that the root locus has three branches. 
At the same time, there are no finite zeroes, as can be seen in Eq. (11.203); therefore, 
nz = 0, but that means there must be three infinite zeroes and, as a consequence, three 
asymptotes. The center point of the asymptotes is calculated using Eq. (11.196) as
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 (11.205)

The corresponding asymptote angles are given by Eq. (11.197) as
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Using Rule 4, according to which only one real-axis portion of the root locus exists to 
the left of the origin, the root locus of Figure 11.48 is sketched.

fiGure 11.48

Sketch of Root Locus
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b. The characteristic polynomial of the closed-loop transfer function
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 (11.207)

is s 3 + 2s 2 + 3s + K. The following coefficient array is formed related to this  polynomial:

s
s
s K

K
1
2

6

3

0

3

2

1 -

The only possibility of having a row of zeroes is when K = 6, when the coefficients cor-
responding to s1 are zero. For this case, the following equation needs to be solved

 ( )sP s K2 02= + =  (11.208)

to determine the intersections with the imaginary axis for s = j~ and K = 6. The result 
is ~ = 3 = 1.732 rad/s; therefore, the j~ axis crossing from the LHP into the RHP 
(and when unstable behavior occurs) takes place for a gain K = 6 and at a frequency 
~ = 1.732 rad/s. The system is stable for 0 < K < 6, unstable for K > 6, and marginally-
stable for K = 6 (the reader is encouraged to verify this condition).

11.7.2 using matlab® to plot the root locus
The MATLAB® command rlocus(sys), which belongs to the Control System 
ToolboxTM, facilitates plotting the root locus trajectories for an open-loop transfer 
function previously defined as sys and the variable feedback gain K. Both of the two 
feedback systems shown in Figure 11.49 are covered by this command. As such, sys 
represents the open-loop transfer function G(s) in the left block diagram of Figure 
11.49, whereas in the right block diagram of Figure 11.49, sys stands for G(s)H(s).

Note that, instead of having it on the feedback branch, the gain K also could be 
placed next to G(s); this alteration does not change the characteristic equation of the 
closed-loop transfer function, which gives the closed-loop poles and is 1 + KG(s) = 0 
or 1 + KG(s)H(s) = 0. Several root loci plots corresponding to the previously defined 
open-loop transfer functions sys1, sys2, … are obtained by means of the rlocus 
(sys1, sys2, …) command. A variant is the command rlocus(sys, K), which 
allows selecting a range for the feedback gain K by defining this range as a vector. 
The root locus plot obtained can be customized (such as adding grid lines, changing 
the appearance of the plot, or changing the axes’ ranges) by right-clicking the plot.

fiGure 11.49

Block Diagrams of a Feedback System to Be Modeled by the MATLAB® rlocus Command.
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Example 11.25
Use the MATLAB® rlocus command to obtain the root locus plot for the application 
studied analytically in Example 11.24. Determine graphically and approximately the gain 
and frequency corresponding to j~ axis crossings.

Solution
The MATLAB® code

>> sys=tf([1],[1,2,3,0])
>> rlocus(sys)

produces the plot of Figure 11.50, which confirms the analytically obtained plot of 
Figure 11.47.

By approximately clicking the point of intersection between the upper branch and 
the imaginary axis, the box shown in Figure 11.50 is obtained, which indicates an 
approximate gain of K = 6.14 and a frequency of 1.75 rad/s corresponding to the cross-
ing into the unstable domain. These values are close to the ones obtained  analytically 
in Example 11.24.

fiGure 11.50

MATLAB® Root Locus for Example 11.24.
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11.8 bOde plOts and tHe nyquist plOt fOr cOntrOls 
in tHe frequency dOmain

The Bode plots are introduced in Chapter 9 in the context of the steady-state response 
of open-loop (uncontrolled) dynamic systems subjected to harmonic input, and all 
the features discussed in Chapter 9 are valid here, particularly because a feedback 
control system is formally equivalent to an uncontrolled  system whose output C(s) 
is generated from a reference input R(s) interacting with the closed-loop transfer 
function GCL(s) as C(s) = GCL(s) R(s). This section shows that the Bode plots are a 
particular case of the Nyquist plot, which is discussed next.

The Nyquist (or polar) plot is a graphical representation in the s (or frequency) 
domain of the open-loop transfer function through which conclusions can be derived 
with respect to the stability of a basic feedback control system. Assume such a sys-
tem is formed of the feed-forward transfer function KG(s), with K being a gain and 
G(s) incorporating the controller and plant, and the feedback function H(s). The 
open-loop transfer function is therefore GOL(s) = KG(s)H(s). As shown previously in 
this chapter, the closed-loop transfer function is
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 (11.209)

Equation (11.209) demonstrates that

a. The poles of the closed-loop transfer function (the values of s that make GCL(s) 
infinite) are the zeroes of 1 + GOL(s) - the values of s that make 1 + GOL(s) zero. 

Equation (11.209) can also be written as

 ( )
( ) ( )

( )
G s

s G s

G s
1

OL
CL

OL
+ =

H
 (11.210)

which shows that
b. The poles of 1 + GOL(s) are also the poles of GOL(s).

Consider now the shifted open-loop transfer function of Eq. (11.210) has the 
following pole-zero form:

 ( ) ( )D s G s
s p s p

s z
1

CL OL
1 2

= + =
- -

-

_ _

]

i i

g
 (11.211)

and that the generic complex number s travels on a closed contour C1, which is 
connected to the zero z and the poles p1 and p2, as shown in Figure 11.51(a).
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Let us assume the generic point s makes a full rotation around the contour 
C1 in a clockwise direction. The vectors s - z and s - p1 (with the zero z and 
pole p1 external to the closed contour C1) go between only one limit position 
and another limit position and back without performing a full rotation; there-
fore, the net angular motion of each is zero. However, the pole vector s - p2 
(with the pole p2 inside the contour C1) makes a full rotation when s realizes 
the same process. At the same time, the point P, which is the mapped image of 
s through the shifted open-loop transfer function of Eq. (11.211), moves along 
the transformed contour C2, which is shown in Figure 11.51(b). This point’s 
radial (polar) position is measured by the angle {. Taking into account that the 
three vectors are actually complex numbers and can be written in phasor form, 
the angle { (or argument) is calculated based on the component angles {z, {p,1, 
and {p,2. as discussed in the section dedicated to the root locus:

 
z p p1 2

{ { { {= - +_ i (11.212)

Since the net variations of {z and {p1 are zero, as discussed previously, and the 
net variation of {p1 is 360°, it follows from Eq. (11.212) that the net variation 
of { is -360°; this means that the transformed point P travels a full revolu-
tion about the origin of its complex plane in a counterclockwise direction. If, 
instead of a pole, a zero is inside the contour C1, the net variation of { would 
be +360°, so P would undergo a full rotation around its origin in a clockwise 
direction. Similarly, if an equal number of poles and zeroes are placed inside 
C1, the net travel by the polar radius of P would be zero. As a conclusion, we 
can state

fiGure 11.51

Contour Transformation (Mapping) through the Shifted Open-Loop  
Transfer Function: (a) Original Contour and Open-Loop Pole/Zero Positions;  
(b) Transformed Contour.
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c. The number of full rotations in a counterclockwise direction N is equal to the 
difference between the number the poles Np inside contour C1 and the number of 
zeroes Nz inside the same contour:

 N N N
p z

= -  (11.213)

Let us now combine the conclusions derived at (a), (b), and (c) and make an 
addition to be able to formulate Nyquist criterion. According to conclusion (a), Nz 
is also the number of closed-loop poles, which are the parameters whose position 
in the complex plane define stability. According to (b), the poles of 1 + GOL(s) are 
also the poles of GOL(s), so Np of Eq. (11.213) represents the number of open-loop 
poles. Equation (11.213) can therefore be used to express the number of closed-
loop poles in terms of the number of open-loop poles Np inside contour C1 and 
the number of counterclockwise encirclements (full rotations) of the origin by the 
image point P on the mapped contour C2:

 N N N
z p
= -  (11.214)

To help define the number of closed-loop poles in the RHP, consider that the 
contour C1 is the infinite semicircle shown in Figure 11.52.

One small rectification has to be done: Instead of considering encirclement of 
the origin by the transformation function 1 + GOL(s), we can work the encircle-
ments of GOL(s) around -1, because the image of 1 + GOL(s) is the image of 
GOL(s) translated to the right by one unit; see Figure 11.53.

Now we can enunciate the definition of the Nyquist criterion: The number 
of closed-loop poles Nz is equal to the number of open-loop poles Np enclosed 
in an infinite-radius semicircle placed in the RHP and traveling in a clockwise 

fiGure 11.52

Infinite-Radius Semicircle for Open-Loop Pole and Zero Location.
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direction minus the number of counterclockwise encirclements N of the point 
-1 made by the contour that is the map of the semicircle through the open-loop 
transfer function.

It should be mentioned that the Nyquist plot, or the mapped contour C2, is 
the polar plot of the open-loop transfer function GOL(s) = KG(s)H(s), which dis-
plays the variation of the modulus of GOL(s) in terms of the angle (or argument) 
of GOL(s). The exact plot is easily obtainable using any computer software with 
polar plotting capabilities,or, even simpler, with software such as MATLAB®, 
which has the built-in function nyquist, as we see in the following example. For 
s = ~j and ~ > 0, the Nyquist plot is identical to the polar Bode plot obtained by 
combining magnitude and phase angle data from the two regular Bode diagrams. 
Once this portion of the plot is obtained, the portion corresponding to s = ~j and 
~ < 0 is determined by simply mirroring the polar Bode plot about the real axis, 
so that the entire imaginary axis of the contour C1 is mapped. The remainder 
of the Nyquist plot corresponding to the infinite semicircle of C1 can be plotted 
by calculating the magnitude and angle of the open-loop transfer function for 
~ " 3 or ~ " -3.

Example 11.26
A translating mechanical microsystem, such as the one sketched in Figure 11.38, is formed 
of a mass m = 1 × 10-6 kg, two beam springs, each of stiffness k = 1.25 × 10-7 N/m  
and a viscous damper of coefficient c = 1 × 10-6 N-s/m. The system is actuated propor-
tionally by a capacitive force generated from an input voltage (with a gain Ka = 5 × 10-8 
N/V). An integral controller with KI = 20 furnishes the input to the actuator. There is also a 
proportional sensing unit whose unknown gain is Ks and that transforms the linear motion 
y of the mass into voltage. All components are integrated in a regular feedback control 
arrangement.

fiGure 11.53

Mapped Contours of (a) GOL(s) around -1; (b) 1 + GOL(s) around the Origin.
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a. Draw the block diagram of this feedback system.
b. Use the Nyquist criterion to analyze the values of the gain that render this system 

stable.

Solution
a. The transfer function of the mechanical microsystem(plant) is

 
( )s
( )s

( )G s
F

Y

ms cs k2
1

p 2
= =

+ +
 (11.215)

and the feedback block diagram of the microsystem is shown in Figure 11.54. The 
coefficient of 2 is chosen because two springs are acting in parallel on the mass m.

The open loop transfer function is the product of the controller, actuator, plant, and 
sensor transfer functions

 ( ) ( ) ( ) ( ) ( )G s G s G s G s G s
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K K K

2
OL c a p s

I a s

2
= =

+ +^ h

 
.s s s
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0 25
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3 2
=
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 (11.209)

The following MATLAB® code is used to obtain the Nyquist plot of Figure 11.55:

>> g = tf(1,[1,1,0.25,0]);
>> nyquist(g)
>> axis([-12 12 -12 12])% the two axes have been resized

To ease interpretation of the Nyquist plot, the Bode plots, as well as the root locus 
can be utilized; they are shown in Figures 11.56 and 11.57. It should be noted that the 
Nyquist and Bode plots have been drawn for a unitary gain K = 1.

The Nyquist plot starts at point A in Figure 11.55, which corresponds to a fre-
quency ~ = 0. On the Bode plot, the angle corresponding to this plot is { = -90° 
and the magnitude is infinity. For ~ > 0 and increasing, the image point moves until it 
intersects the real axis on the Nyquist plot at point B and for a frequency ~ = 0.5. From 
the Bode plot, the angle corresponding to this point is { = -180° and the magnitude is 
4. When the frequency increases past the value of 0.5, the mapped point moves from 

fiGure 11.54

Block Diagram of a Feedback Microsystem with Integrative Control, Proportional  Actuation, 
and Proportional Sensing.
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fiGure 11.55

Nyquist Plot of a Feedback Control Microsystem.
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fiGure 11.56

Bode Plots of a Feedback Control Microsystem.
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point B to point C, where the frequency is infinity and the magnitude is zero (as seen in 
the Bode plots). A branch that is symmetric with respect to the real axis is drawn to the 
branch just described and corresponds to negative values of ~. These two branches 
correspond to the imaginary axis of the contour C1 shown in Figure 11.52. The Nyquist 
plot needs to be closed by the two horizontal lines (top and bottom) and the semicircle 
of infinite radius, which are shown in Figure 11.55 (these plot portions are not pro-
duced by the MATLAB® code, they are drawn afterward).

The root locus shows that the system becomes unstable for gains larger than 0.25 
(the two branches cross the j~ axis and enter the RHP). This feature can also be detected 
from the Nyquist diagram as follows. Instead of using the point -1 as the origin for count-
ing the encirclements, we can scale the open-loop transfer function KG(s)H(s) by K and, 
therefore, analyze the encirclements with respect to the new scaled origin -1/K. If we 
limit our analysis to positive gains, two positions of -1/K are possible, as illustrated in the 
Nyquist plot of Figure 11.55. For -4 < -1/K1 < 0 (which is equivalent to K1 > 0.25), a test 
radius intersects the Nyquist plots in two spots (see Figure 11.55) and therefore there 
are two clockwise encirclements of the point -1/K1; that means N = -2 (the minus sign 
indicates clockwise rotation). Because the open-loop transfer function has no poles in 
the RHP, which means Np = 0, it follows that the number of closed-loop poles in the RHP 
is Nz = Np - N = 0 - (-2) = 2. On the other hand, for point -1/K2 situated to the left 
of -4, which means 0 < K2 < 0.25, a test radius can be found that does not intersect the 
Nyquist plot, and therefore, N = 0. As a consequence, the number of closed-loop poles 
in the RHP is Nz = Np - N = 0 - (0) = 0, and the system is stable. These conclusions 
are reached more directly using the root locus of Figure 11.57.

fiGure 11.57

Root Locus of a Feedback Control Microsystem.
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It should be mentioned that, in situations where an open loop pole is located 
on the imaginary axis (as the case was with this example), the contour C1 has to 
be changed with a small detour encompassing the respective pole, as illustrated in 
Figure 11.58.

summary
This chapter introduces the main notions, concepts, and modeling tools of feed-
back control dynamic systems. Using transfer functions interconnected in nega-
tive-feedback block diagrams, methods are presented for analyzing and designing 
dynamic systems with feedback control included. Methods focusing on system sta-
bility are the Routh-Hurwitz criterion and the closed-pole position, whereas the root 
locus technique allows studying both the stability and the systems’ characteristics. 
Nyquist plots and Bode diagrams are utilized to model and analyze feedback con-
trol systems in the frequency domain. MATLAB® built-in commands are utilized 
throughout this chapter to aid in the solution of almost all the problems, whereas 
a Simulink® application is exemplified in the time-domain modeling of control 
systems. Studied also are the steady-state response of feedback control systems, 
the sensitivity of control transfer functions to parameter variation, as well as the 
response of control systems to disturbances.

prOblems

11.1 Convert the control system of Example 11.1, shown in the block diagram of 
Figure 11.8(a), into a basic unity-feedback control system such as the one 
shown in Figure 11.7.

fiGure 11.58

Source Contour with an Open-Loop Pole on the Imaginary Axis.
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11.2 (a)  Convert the block diagram of Figure 11.59(a) to the one shown in Figure 
11.6, which corresponds to a basic negative-feedback control system.

(b) For G1(s) = 1/(s + 1), G2(s) = (s + 2)/[s(s2 + 2s + 3)], G3(s) = 2, and r(t) = 1,  
compare the time responses c(t) yielded by the controls systems of  
Figure 11.59.

11.3 Design an electrical circuit to operate as a summing point in a basic control 
system, such as the one of Figure 11.6, when considering the three signals are 
voltages.

11.4 Disposing of three identical wheels and two identical translatory-motion 
springs, design a rotary mechanical system to operate as a summing point 
according to the signal connectivity of Figure 11.6 and when considering 
small rotations. Hint: Use wheel rotation angles as the signals of the summing 
point and consider small rotations.

11.5 Design an electrical system to operate as a PD controller; the system com-
prises two operational amplifiers, one capacitor and four identical resistors. 
Knowing the resistance ranges in the 100 - 200 X interval and the capaci-
tance is within the 3–5 nF range, find the electrical components that minimize 
the controller’s derivative time Td.

11.6 Design a unity-feedback control system composed entirely of mechan-
ical elements, where the controller is a proportional one. As shown in 
Figure 11.60, the plant contains a torsional spring of stiffness kt and a 
cylinder of mass moment of inertia J. The plant’s input and output are the 
angles ii and io.

11.7 Determine the feed-forward transfer function G(s) of a regular unity-feedback 
control system that is equivalent to the system sketched in the block diagram 
of Figure 11.61. Is this system stable?

11.8 A MEMS device is controlled by a PD unit, resulting in the feed-forward 
transfer function shown in Figure 11.62. Transform the nonunity-feedback 

fiGure 11.59

(a) Block Diagram of a Nonunity-Feedback Control System with a Transfer Function Placed 
Before the Summing Point; (b) Block Diagram of a Standard Nonunity-Feedback Control 
System.
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control system, which has an integrative-type sensor on the feedback branch, 
in a unity-feedback system, and determine its system type. Discuss the stabil-
ity of the unity feedback system in terms of K.

11.9 Demonstrate that a control system whose closed-loop transfer function con-
tains only simple real negative poles is a stable system, whereas for simple 
real positive closed-loop poles, the same system is unstable.

11.10 The closed-loop transfer function of a unity-feedback control system is 
GCL(s) = 1/(s2 - 1). Evaluate whether it is possible or not to stabilize this 
system by adding a PD controller. In case stabilizing is doable, determine the 
constants of the additional controller.

fiGure 11.60

Rotary Mechanical Plant with Angular Input and Output.
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fiGure 11.61

Block Diagram with Two Feedback Loops.
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Block Diagram of a Nonunity-Feedback Control System.
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11.11 The Routh-Hurwitz table corresponding to closed-loop characteristic polyno-
mial of a control system follows:

?s

K
K

K1

2 10

5

4

3

2

1

0

-
?s

s
s
s
s

K

0 0

3

 where K is a positive gain.

(a) Express the closed-loop characteristic polynomial, knowing that the 
polynomial has no missing terms.

(b) Complete the Routh-Hurwitz table, establish the positions of the closed-
loop poles in the complex plane in terms of the gain K, and discuss the 
corresponding conditions of stability, instability, and marginal stability.

11.12 The transfer function of a dc motor (which acts as a plant whose input is the 
 armature voltage and whose output is the shaft rotation angle) is Gp(s) =  
1/[(s + 1)(s + 2)(s + 3)], and the plant interacts with a PI controller in a 
 unity-feedback control system. Determine the proportional gain KP and the 
integrative gain KI such that the system has two stable poles and two imaginary 
poles (specify values, ranges, or relationships between these constants).

11.13 The mechanical segment of a MEMS is a second-order system with its poles 
being -2 and -4. A proportional plus derivative controller defined by the 
constants KP and KI, and a proportional feedback sensor defined by Ks are also 
connected with the plant in a feedback control system. Determine the values 
of KP, KI, and Ks that render the system stable, marginally stable, or unstable.

11.14 (a)  Determine the transfer functions of a controller Gc(s) and a plant Gp(s) 
that, connected in a unity feedback system, generate the following closed-
loop transfer function: GCL(s) = 2500/(s2 + 4s + 2500). Considering that 
the plant is a mechanical system, propose such a system by indicating 
(sketching) its components together with the input and output.

(b) What changes are needed for this system in the damping ratio p and the 
natural frequency ~n to obtain a reduction of the maximum overshoot by 
30% and a reduction of the settling time by 20%? Sketch the closed-loop 
poles positions in the complex plane for the two systems.

11.15 The closed-loop transfer function of a unity-feedback control MEMS is

( )G s
s s40 2500

2500
CL 2

=
+ +
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(a) What changes are needed in the damping ratio p and natural frequency ~n 
to produce a reduction of 20% in the maximum overshoot and a reduction 
of 15% in the rise time under unit step input?

(b) How will the closed-loop poles move in the complex plane as a result of 
these changes?

11.16 Determine the equivalent damping ratio and the natural frequency of the con-
trol system sketched in Figure 11.63.

11.17 Compare the time response of the control system sketched in Figure 11.64 
with the system of Figure 11.40, where the disturbance was placed between 
the controller and the plant. Plot the time response for both systems, con-
sidering that r(t) = 1 and d(t) = t. Known are Gp(s) = 100/(s2 + 5s +100), 
Gc(s) = 0.02/s, H(s) = 1. Also use Simulink to run a graphical simulation 
to plot c(t).

11.18 Use Simulink to plot the time-domain controlled response of the system whose 
piezoelectric actuator/controller, plant, and sensing units are those of Example 
11.3, shown in Figure 11.13. The reference signal is vr(t) = 80 V and a distur-
bance force f = 5 sin(4t) N acts on the plant, just after the controller. The beam 
springs have a circular cross-section of diameter db = 1.2 mm, their length is 
l = 0.04 m, and the material elastic modulus is E = 200 GPa. The plant’s mass 

fiGure 11.63

Control System with Two Nonincluding Feedback Loops.
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is m = 0.02 kg. Known also are the following parameters: vb = 10 V, go = 
2 mm, R1 = 10 X, R2 = 250 X, Em = 50 GPa, la = 0.02 m, A = 64 mm2, and 
d = 4.2 × 10-10 m/V.

11.19 A piezoelectric block, which is fixed at one end and free at the other, is 
supplied a reference voltage vr and, consequently, deforms axially. Using a 
lumped-parameter model of the piezoelectric block with inertia, stiffness and 
viscous-type losses (damping) taken into account, design a unity-feedback 
control system, where the sensing of the block’s free end is performed by a 
cantilever provided with four strain gauges connected in a Wheatstone bridge. 
Propose physical components for the summing point and proportional con-
troller and determine all transfer functions involved in this control system.

11.20 Use Simulink to simulate the control system of Problem 11.19, and plot 
the controlled response of the system. A reference voltage vr is applied to 
the piezoelectric block, which increases linearly from 0 to 110 V in 5 s then 
remains constant for the following 25 s. The cantilever has a length l = 
15 mm, its rectangular cross-section is defined by w = 3 mm, h = 0.5 mm, 
and the material elasticity modulus is E = 210 GPa. The piezoelectric actua-
tor is defined by la = 35 mm, A = 65 mm2, t = 6300 kg/m3, Em = 55 GPa, 
and d = 4.5 × 10-10 m/V. The strain gauges have a sensitivity Kg = 2, and the 
input voltage to the Wheatstone bridge is vi = 18 V.

11.21 The open-loop transfer function of a feedback control system is K/(s3 + 
4s2 + 5s).

(a) Sketch the root locus corresponding to this transfer function and confirm 
the sketch using the MATLAB rlocus command.

(b) Calculate breakaway, break-in, and j~-axis crossing points of the root 
locus. What is the range of K for stability?

11.22 The open-loop transfer function of a feedback system with variable gain K, 
KG(s)H(s) has the open loop poles of -1 + j and -1; it also has an open-loop 
zero of 1.

(a) Sketch the root locus (without using MATLAB) for this system, knowing 
that it has three closed-loop poles and the root locus plot has only one 
asymptote.

(b) Determine the open-loop transfer function of this system.

(c) Calculate possible break-in, breakaway, and j~ crossing points, as well as 
the values of the gain corresponding to those points.

11.23 The open-loop poles of a feedback control system are -3, -1, and 2, whereas 
the finite open-loop pole of the same system is -2. Sketch the corresponding 
root locus and also plot it using MATLAB. For all that apply, calculate the 
breakaway, break-in, and j~ axis crossing points.
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11.24 An open-loop transfer function of a feedback control system has the poles -3, 
-2, and -1. Sketch the root locus path and confirm your sketch by applying 
MATLAB. Should there be any, determine the breakaway, break-in, and j~ 
axis crossing points.

11.25 It is known that two poles of an open-loop transfer function are -2 and -1. 
It is also known that the root locus path has four asymptotes that are cen-
tered at the origin of the complex plane. Sketch the root locus, also plot it 
using MATLAB. Calculate the break-in and breakaway points. Is the point 
s = -1.5 + 2j on the root locus?

11.26 The open-loop poles are 1 and 2, whereas the open-loop zeroes are -4 and 
-2. Sketch the corresponding root locus and also plot using MATLAB. 
Calculate the breakaway, break-in, and j~ axis crossing points. Determine 
the point(s) on the root locus where the damping ratio is p = 0.2 and also 
evaluate the corresponding gain K.

11.27 The poles of an open-loop transfer function are -3, -2, and -1, and the 
finite zero is -4. Sketch the root locus knowing that it has two asymptotes at 
120° and 240°. Verify the result using MATLAB. Discuss the stability of this 
system and determine the breakaway point.

11.28 For the mechanical microsystem (plant) shown in Figure 11.65, an actuation 
force displaces the shuttle mass in the direction x. The shuttle has a mass 
m = 1 × 10-10 kg and the four beam springs supporting the shuttle mass are 
identical. When proportional (P) control is applied in a unity feedback loop, 
the natural frequency of the controlled system is ~n = 820,000 rad/s. Under 
a unit step input, this controlled system records a maximum overshoot of 6% 
and a steady-state error of ess = 0.02.

(a) Determine the beam spring stiffness in the motion direction, the viscous 
damping coefficient, and the proportional gain Kp.

fiGure 11.65

Translatory Mechanical Microsystem with Actuation Force.
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(b) Design a proportional plus derivative (P + D) controller to replace the 
original P controller to reduce the steady-state error to ess = 0.01 under 
unit step input and to produce an effective damping ratio of p = 0.7.

11.29 (a)  Using resistors, inductors, and capacitors, design an operational amplifier 
circuit to function as an integral controller.

(b) The plant being the electrical circuit shown in Figure 11.66, find the sys-
tem type and determine the steady-state error of the unity-feedback con-
trol system that adds the integrative controller identified at (a) to the plant 
when the reference signal is a unit ramp.

Numerical application: R = 300 X, L = 2 H, C = 0.002 F. Consider that the  electrical 
components of the controller have the values of the plant’s components as given here.

11.30 For the nonunity-feedback control system of Figure 11.67, determine the sys-
tem type and the steady-state error for a unit ramp input.

11.31 A microcantilever, such as the one sketched in Figure 11.68, receives an 
input displacement u from a rigid frame and, as a result, undergoes bending 
 vibrations; the cantilever free end deflection is z. This deflection is sensed 
optoelectronically by a photodiode whose output voltage is proportional 
(constant Ks) to the input cantilever free-end deflection. When these two units 
are connected in a standard nonunity-feedback control system with a sum-
ming point,

(a) Express the steady-state error in terms of the transfer functions involved 
and a generic reference signal. Use a lumped-parameter model for the 
cantilever with mass m, viscous damping coefficient c, and stiffness k— 
all expressed at the free end of the cantilever.

(b) For integrative (I) control, calculate the steady-state error when individu-
ally applying a unit step, a unit ramp, and a unit parabola input to this 
control system.

fiGure 11.66

Circuit of an Electrical Plant.
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fiGure 11.67

Nonunity-Feedback Control System with a 
 Nonstandard Feedback Transfer Function.

Z2

Z3

Z1

vovi
C

R

L

www.semeng.ir

www.semeng.ir


 Suggested Reading 11-91

11.32 The plant of Problem 11.31 has a controller formed of an integrative unit (I) 
 combined serially to a proportional plus integrative unit (P + I)—both con-
trol units have the same integrative constant KI. Considering unity feedback 
(Ks = 1), evaluate the steady-state error sensitivity to the derivative constant 
KD and the integrative constant KI.

11.33 How does the sensitivity with respect to K change when relocating the pro-
portional element K from its position, shown in Figure 11.69, to a position 
before the reference signal R(s)?

11.34 A constant-gain, second-order plant is connected in a unity feedback control 
system. Calculate the steady-state errors corresponding to a unit ramp input 
for a P + I controller and then for a P + D controller.

11.35 For KI = 0.001 and Ks = 50, run a frequency analysis of the control system of 
Problem 11.13 by

(a) Sketching the root locus and using MATLAB to plot the root locus.

(b) Plotting the polar Bode diagram for ~ > 0.

(c) Plotting the Nyquist diagram using MATLAB and interpreting this dia-
gram for stability in connection with the root locus.

suggested reading
W. R. Evans, Control-System Dynamics, McGraw-Hill, New York, 1954.
N. S. Nise, Control Systems Engineering, 5th Ed., Wiley, Hoboken, NJ, 2008.
K. Ogata, Modern Control Engineering, 5th Ed., Prentice Hall, Pearson, Upper Saddle River, 

NJ, 2009.

fiGure 11.69

Block Diagram of a Unity-Feedback Control System with Gain.
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Solution to Linear Ordinary  
Homogeneous differential  
Equations with Constant 
Coefficients

A
Consider the following differential equations with the function x that depends on 
time, x(t) being the unknown:

 ( )
( ) ( ) ( )

( )L x t a
dt

d x t
a

dt

d x t
a

dt

dx t
a x t 0n n n

n

n n

n

1 1

1

1 0g= + + + + =- -

-

6 @  (A.1)

where a0, a1, …, an−1, an are constant coefficients. This equation is a homogeneous 
linear ordinary  differential equation with constant coefficients, and the operator 
L[x(t)] is a symbol notation that enables shortcut calculations. Searching for particu-
lar solutions of the form

 ( ) ex t t= m  (A.2)

in Eq. (A.1) results in

 ( ) eL x t a a a a 0t
n

n
n

n
1

1
1 0gm m m= + + + + =m

-
-_ i6 @  (A.3)

The specific function of Eq. (A.2) is a solution to the differential Eq. (A.1) only 
when

 a a a a 0n
n

n
n

1
1

1 0gm m m+ + + + =-
-  (A.4)

Equation (A.4) is the characteristic equation associated with Eq. (A.1) and the 
roots m are the eigenvalues. Solving Eq. (A.4) for the eigenvalues m1, m2, …, mn−1, mn 
results in the following solution to Eq. (A.1):

 ( ) e ( ) e ( ) e ( ) e, , , ,x t x t x t x tt t
n

t
n

t
1 2 1

n n1 2 1f= = = =m m m m
-

-  (A.5)

which are all independent functions. As a consequence, the general solution of 
Eq. (A.1) is a linear combination of the individual solutions of Eq. (A.5):

 ( ) ( ) ( ) ( ) ( )x t c x t c x t c x t c x tn n n n1 1 2 2 1 1g= + + + +- -  

e e e ec c c ct t
n

t
n

t
1 2 1

n n1 2 1g= + + + +m m m m
-

-  (A.6)

where c1, c2, …, cn are constant coefficients.

Appendix

© 2010 Elsevier Inc. All rights reserved.
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There are four different cases, depending on the possible types of roots of the 
characteristic  equation, as the eigenvalues can be (a) real and distinct (simple), 
(b) complex and simple, (c) real of order of  multiplicity l, and (d) complex of order 
of multiplicity m. As a consequence, the general solution  contains contributions from 
all four categories and therefore can formally be written as

 ( ) ( ) ( ) ( ) ( )x t x t x t x t x ta b c d= + + +  (A.7)

The solutions xa(t), xb(t), xc(t), and xd (t) are discussed next.

Real Distinct Roots
Assuming that the characteristic Eq. (A.4) has n1 simple real roots, their contribution 
into the solution to the homogeneous Eq. (A.7) is

 ( ) e e e ex t a a a aa
t t

n
t

n
t

1 2 1
n n1 2 1

11
1 1g= + + + +m m m m

-
-  (A.8)

where a1, a2, …, an1 are constant coefficients.

complex Distinct Roots
If a root of the characteristic equation is complex, then its complex conjugate is also 
a root, and the corresponding eigenvalue pair is

 ± jm v ~=  (A.9)

with j 1= - . The corresponding root of the homogeneous differential equation 
can be written as

 e e e e e ( ) ( )cos sint j t( )t j t t j t t ~ ~= = = +m v ~ v ~ v+
6 @ (A.10)

Equation (A.10) indicates that if the final expression included there is a root to Eq. 
(A.1), the following are also roots to the same equation:

 ( ) e ( ) e( ); ( )cos sinx t t x t tt t
1 2~ ~= =v v  (A.10)

Assuming the general solution of the homogeneous Eq. (A.1) has n2 simple complex 
roots, the corresponding to the general solution is

 ( ) e e e( ) ( ) ( )cos sin cosx t b t b t b tb
t t

n
t

n11 1 1
n

2 2
1 1 2g~ ~ ~= + + +v v vl  

 e ( )sinb tn
t

n
n

2 2
2 ~+ vl  (A.11)

with b1, b1l, …, bn2
, bn2
l  being constant coefficients.
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Real multiple Roots
A root of the characteristic equation that has an order of multiplicity of n3 generates 
n3 roots of the homogeneous Eq. (A.1):

 e e e; ; ;t tt t n t13fm m m-  (A.12)

The contribution to the general solution of Eq. (A.1) of a total number n3 of multiple 
real roots can be written as

 ( ) e e e ex t c c t c t c tc
t t

n
n t

n
n t

1 2 1
2 1

3
3

3
3g= + + + +m m m m

-
- -  (A.13)

where c1, c2, …, cn3 are constant coefficients.

complex multiple Roots
If a root of multiplicity n4 is complex, then the following are also roots of the 
 homogeneous Eq. (A.1):

 e e ( ) e ( ) e ( ) e ( )( ); ; ; ; ; ;cos sin cos sin cost t t t t t t tt t t t n t14f~ ~ ~ ~ ~v v v v v-  

 e ( )sint tn t14 ~v-  (A.14)

The contribution to the general solution of Eq. (A.1) of a total number n4 of multiple 
complex roots is

 ( ) e ( ) e e e( ) ( ) ( )cos sin cos sinx t d t d t d t t d t td
t t t t

1 21 2~ ~ ~ ~= + + +v v v vl l  

 e ( ) e ( )cos sind t t d t tn
n t

n
n t1 1

4
4

4
4g ~ ~+ + +v v- -l  (A.15)

with d1,  ,d1l  …, dn4
, ,dn4
l  being constant coefficients.

The constant coefficients of Eqs. (A.8), (A.11), (A.13), and (A.15) are determined 
by means of initial conditions that are applied to the assembled general  solution 
of Eq. (A.7).
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Review of Matrix Algebra B
Special-Form matriceS
A column vector having n components is defined as

 { }
…

x

x

x

xn

1

2
=

Z

[

\

]
]

]
]

_

`

a

b
b

b
b

 (B.1)

whereas a row vector is

 { } …x x x xn1 2= " , (B.2)

A square matrix of the n dimension (or an n # n matrix) comprises an equal number 
of rows and columns:

 
… …

…
…
…
…

…
A

a
a

a

a
a

a

a
a

an n

n

n

nn

11

21

1

12

22

2

1

2=

R

T

S
S
S
S

5

V

X

W
W
W
W

?  (B.3)

A symmetric matrix is a square matrix for which aij = aji:

 
… …

…
…
…
…

…
A

a
a

a

a
a

a

a
a

an n

n

n

nn

11

12

1

12

22

2

1

2=

R

T

S
S
S
S

5

V

X

W
W
W
W

?  (B.4)

A diagonal matrix is a square matrix with nonzero elements placed only on the main 
diagonal:

 
… …

…
…
…
…

…
D

d
d

d

0

0

0

0

0
0

nn

11

22=

R

T

S
S
S
S

5

V

X

W
W
W
W

?  (B.5)

© 2010 Elsevier Inc. All rights reserved.
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The identity matrix (or unity) is a diagonal matrix with the nonzero elements being 
equal to 1:

 I

1
0

0

0
1

0

0
0

1
f f

f
f
f
f
f=

R

T

S
S
S
S

5

V

X

W
W
W
W

?  (B.6)

A zero matrix, zero column vector, or zero row vector has all elements equal to 0.
The transpose of an n # m matrix [A] is an m # n matrix denoted by [B] = [A]t, 

whose elements are defined as bij = aji, where aij are the elements of the original 
matrix:

 [ ] ;

a
a

a

a
a

a

a
a

a

B A

a
a

a

a
a

a

a
a

a

A

n n
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t
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n
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f
f
f f f

f
f
f
f
f

= = =

R

T

S
S
S
S

R

T

S
S
S
S

5 5

V

X

W
W
W
W

V

X

W
W
W
W

? ?  (B.7)

BaSic matrix operationS
The result of multiplying a scalar a by an n # m matrix [A] is

 [ ]a A a

a
a

a

a
a

a

a
a

a

aa
aa

aa

aa
aa

aa

aa
aa

aa

1

2

1

2
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m

m

nm n n

m

m

nm1 2 1 2
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12
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f f

f
f
f
f
f f f

f
f
f
f
f
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R

T

S
S
S
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R

T

S
S
S
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V

X

W
W
W
WW

V

X

W
W
W
WW
 (B.8)

Two matrices need the same dimensions in order to add algebraically; adding up 
the matrices [A] and [B], both of an n # m dimension, results in

 [ ] [ ]A

a
a

a

a
a

a

a
a

a

b
b

b

b
b

b

b
b

b

B

n n

m
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nm n n

m

m
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2
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1

2

f f

f
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f
f f f

f
f
f
f
f
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R

T
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S
S

R

T

S
S
S
S

V

X

W
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W

V

X

W
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f
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+
+

+

+
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+

+
+

+

R

T

S
S
S
S
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X

W
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W
W
 (B.9)

Two matrices [A] and [B] can be multiplied only if the number of columns of [A] 
is equal to the  number of rows of [B]; in other words, [A] is of the n # m dimension 
and [B] is of the m # p dimension. A generic element of the product matrix [C], say 
cij (located in the ith row and the jth column of [C]) is calculated as

 ( )c a bij ik kj
k

m

1
=

=

/  (B.10)
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for i = 1, 2, …, n and j = 1, 2, …, p. Except for special cases, the product of two 
matrices [A] and [B] is noncommutative; therefore,

 ![ ] [ ] [ ] [ ]A B B A  (B.11)

Multiplying a square matrix by the identity matrix leaves the original matrix 
unchanged:

 [ ] [ ] [ ] [ ] [ ]A I I A A= =  (B.12)

For matrix addition and multiplication, the associative and distributive laws are 
applicable:

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] ( )

[ ] [ ] [ ] [ ] [ ]

A B C A B C

A B C A B A C

=

+ = +

^

^

h

h
 (B.13)

The inverse of a square matrix [A] is denoted by [A]−1, and the following property 
applies to the original matrix and its inverse:

 [ ] [ ] [ ][ ] [ ]A A A A I1 1 ==- -  (B.14)

The inverse of a square nonsingular matrix [A] is calculated as

 [ ]
[ ]

adj [ ]

det
A

A

A t
1 =-  (B.15)

A nonsingular square matrix [A] has a nonzero determinant: det[A] ! 0. The determi-
nant of a square matrix [A] is a number that can be calculated based on the elements 
of the first row, for instance,

 det A a b a b a bn n11 11 12 12 1 1g= + + +5 ?  (B.16)

where

 detb A1j
j

j1
1

1= - +] g 7 A (B.17)

(with j = 1, 2, …, n) is the 1jth cofactor of [A] and [A1j] is the 1jth minor of [A] 
obtained by deleting row number 1 and column number j of the original matrix [A]. 
The adjoint matrix of [A]t, which is denoted by adj[A]t in the numerator of Eq. (B.15), 
is a matrix that contains the cofactors of the elements of the transposed matrix [A]t.

The solution to a system of n linear algebraic equations with constant coefficients 
of the form

 
…

a x a x a x b
a x a x a x b

a x a x a x b

m m

m m

n n nm m n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

g
g

g

+ + + =
+ + + =

+ + + =

Z

[

\

]]

]]
 (B.18)
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where x1, x2, …, xm are the unknowns can be obtained using matrix calculus. The 
system of Eq. (B.18) can be written as

 [ ]{ } { }A x b=  (B.19)

where

 [ ] { }
… …

…
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…
…

…
; ; { }

… …
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 (B.20)

The solution to Eq. (B.18) is found by left multiplying Eq. (B.18) by [A]−1, which 
results in

 

[ ] [ ]{ } { }

[ ]{ } { }

{ } { }

[ ]

[ ]

[ ]

A A x A b

I x A b

x A b

1 1

1

1

=

=

=

- -

-

-

 (B.21)

The eigenvalue problem is defined by the following equation:

 [ ]{ } { }A X Xm=  (B.22)

where [A] is an n # n square matrix, {X} is a vector known as eigenvector, and m is 
an eigenvalue. Equation (B.22) can be written as

 [ ] { }[ ] {0}( )A I Xm- =  (B.23)

which represents a system of n homogeneous algebraic equations, the unknown 
being X1, X2, …, Xn, the eigenvector components. For {X} to be nontrivial (nonzero), 
the following condition needs to be satisfied:

 [ ]( [ ])det A I 0m- =  (B.24)

which is the characteristic equation attached to the eigenvalue problem of Eq. (B.22). 
The roots of the characteristic equation are the eigenvalues m1, m2, …, mn. Each of the 
eigenvalues is substituted back into Eq. (B.23), which can be solved for a correspond-
ing eigenvector. It should be noted that only n − 1 components of any eigenvector are 
independent; each of those components can be expressed in terms of the nth compo-
nent, which can be chosen arbitrarily. Many eigenvalue applications use a value of 1 
for the arbitrary component of each eigenvector. In other instances, the condition of 
unit norm is used, which requires that the norm of each eigenvector be 1:

 X X X 0n1
2

2
2 2g+ + + =  (B.25)
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Essentials of MATLAB® and 
System Dynamics-Related 
Toolboxes C
This Appendix reviews the main MATLAB® based commands that are utilized in the 
book, as well as a summary of the main linear time invariant (LTI) models that are 
available in the Control System ToolboxTM.

UsefUl MATlAB® CoMMAnds
Presented here is a list with some useful commands from MATLAB®’s® Control System 
Toolbox™ and Symbolic Math Toolbox™. They have been organized under the fol-
lowing functional categories: mathematical calculations, visualization and graphics, 
linear systems modeling, time domain analysis, frequency domain analysis, and con-
trols for quick reference. A complete function list with documentation  (including 
Simulink® information) can be found at www.mathworks.com/access/helpdesk/help/
helpdesk.html.

Comprehensive information on these functions and related functions can be 
accessed directly in MATLAB® by means of the doc command. For instance, if you 
need more information on Bode plots, just type >> doc bode at the MATLAB® 
prompt and you will be directed on the Help page to the pertinent information on the 
bode command. An additional informative source, where tutorials can be found, is 
www.mathworks.com.academia.

Mathematical Calculations
collect(p)

Collects all the coefficients of the same power in a symbolic polynomial previously 
defined as p.

det(m)

Calculates the determinant of a previously defined matrix m.

diag(v)

Generates a diagonal matrix from the elements of a previously defined vector v; the 
elements of v are placed on the main diagonal of the square matrix.

diff(f, v, n)

Calculates symbolically the nth derivative of a function f in terms of the variable v.

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-240-81128-4.00016-7
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dsolve('eqn.1','eqn.2',…,'cond.1','cond.2',…,'x')

Solves symbolically the differential equations eqn.1, eqn.2,… with the initial 
conditions cond.1, cond.2,… by considering the independent variable is x. If no 
symbol x is used, the default independent variable is time (t). If a differential equa-
tion contains, for instance, the second time derivative of an unknown function y, 
the MATLAB® notation of that is D2y. Similarly, the first time derivative of y is 
denoted as Dy. An initial condition that specifies the value of the first time deriva-
tive as being equal to a symbolic value of b at the initial time moment 0 is denoted 
as 'Dy(0) = b'.

expand(f)

Performs symbolic expansion of functions (previously specified as f  ) such as 
 polynomial multiplication and distribution of products over sums.

eye(m)

Returns the n # n identity matrix. When this command is used as eye(m, n), the 
result is a matrix with m rows and n columns where aii = 0 (for i = 1 to n if n < m, 
and for i = 1 to m if m < n).

factor(f)

Transforms a rational-coefficient polynomial f into a product of irreducible, 
 rational-coefficient, lower-degree polynomials.

fzero([f, x0])

Finds a root of the function f near the point x0. Instead of a point x0, an interval 
[xmin, xmax] can be specified. Both x0 and [xmin, xmax] are part of a vector 
x, and f is a function handle (denoted with the symbol @), which can be called in 
a MATLAB® session regardless of where that function has been introduced – see 
Example 11.16 in the companion website Chapter 11.

ilaplace(f)

Returns the inverse Laplace transform of the previously defined symbolic function f 
that depends on the variable s.

int(f,x)

Evaluates symbolically the indefinite integral of the function f that depends on the 
variable x. The  following command evaluates the definite integral of f as a function 
of x between the integration limits a and b: int(f,x,a,b).

inv(m)

Calculates numerically or symbolically the inverse of a previously defined matrix m. 
A matrix m that has two rows defined as first row: 1, 2, 3, 4; second row: -3, -2, 
-1, 0 is entered in MATLAB®  as m = [1,2,3,4;−3,−2,−1,0].

www.semeng.ir

www.semeng.ir


  Useful MATLAB® Commands 483

laplace(f)

Returns the Laplace transform of the previously defined symbolic function f that 
depends on the time variable t.

limit(f,x,a)

Calculates the symbolic limit of the function f when the variable x reaches the 
value of a. It can also be written as limit(f,x,a,'right'), in the case where 
x > a, or as limit(f,x,a,'left'), in the case where x < a. The value of a can 
be infinity, in which case where a is substituted by inf.

poly(f)

Returns the coefficients of a polynomial f, where f is a vector containing the roots of 
that polynomial; the returned coefficients are ordered in descending powers in a row 
vector. When f was defined as a matrix, the same command returns a row vector with 
the coefficients (also ordered in descending powers) of the characteristic polynomial, 
which is det(s[I ]-[  f  ]), with [I] being the identity matrix.

polyval(f, v)

Returns the value of polynomial f for the value v of the polynomial variable

pretty(f)

Returns the symbolic object f in a mathematical typeset format instead of the regular 
MATLAB® return.

roots(n)

Returns the roots of an s polynomial that was previously defined as the row vector n 
containing the coefficients of the s polynomial in descending order.

simple(f)

Returns the shortest algebraic form of the previously defined symbolic object 
 (function) f by using collect, expand, factor or simplify (see explanation 
of this command next).

simplify(f)

Applies algebraic identities and functional identities (trigonometric, exponential and 
logarithmic) in order to simplify more complex symbolic functions.

solve(eq1, eq2, …, eqn, v1, v2, …, vn)

Solves the system formed of the equations eq1, eq2, …, eqn for the variables v1, 
v2, …, vn. In the form solve(eq, v), it solves the equation defined as eq for the 
variable v.

www.semeng.ir

www.semeng.ir


484 Appendix C

syms a real

Specifies that the amount a is treated as a symbolic (algebraic) object, so no numerical 
value is expected of a, and also that a is real. Instead of the “real” qualifier, “unreal,” 
or “positive” can be used. Also, if the nature of the amount a is not of interest, the 
command syms a can be used. The alternate command a = syms('a','real') 
has the same effect.

taylor(f, n, v, a)

Returns an n -1th order Taylor polynomial approximation of a function f depending 
on the variable v and about the value a.

zeros(m, n)

Returns an m # n zero matrix.

Visualization and Graphics
axis([xmin, xmax, ymin, ymax])

Sets limits to axes to better visualize a portion of interest from a two-dimensional 
plot. In the configuration axis ([xmin, xmax, ymin, ymax, zmin, zmax], the 
command operates in a similar manner with three-dimensional plots. 

ezplot('f')

Plots a function f depending on a variable t over its default domain using a simplified 
syntax (where array operations such as multiplication or division are bypassed); for 
example, the function f = 2t2 can be plotted using ezplot('2t^2'). When utilized 
in the variant ezplot ('f', [a, b]), the command realizes plotting of f between 
the domain limits of a and b.

ltiview

Opens an existing linear time invariant (LTI) object plot and enables changing the 
type of input and visualization of the (new) plot characteristics.

mesh(z)

Generates a three-dimensional plot as a wireframe mesh of the function z, which 
depends on two variables x and y; these are vectors having the dimensions m and n, 
respectively. The function works in connection with the meshgrid command. Instead 
of the mesh(z) command, the surf(z) command can be used, which  generates a 
three-dimensional surface of the same shape as the wireframe.

meshgrid(x, y)

Creates two-dimensional arrays to enable three-dimensional plots of analytical 
 functions of two variables. In the configuration [X,Y] = meshgrid(x, y), where 
x is a vector of dimension m and y is another vector of dimension n, the command 
generates two arrays: One has the vector x as a row that repeats n times and the other 
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array has the vector y as a column that repeats itself m times. With another variable, 
z, defined in terms of x and y, the command mesh(z) generates a three dimensional 
plot if used after the meshgrid command.

plot(t,y,'LineSpec')

Returns a two-dimensional line plot of the pairs (t, y), where t is the independent  variable 
vector and y is the vector function that depends on t. LineSpec is a string of symbols 
that enable customizing the line used in the plot (its style, width, and color) as well 
as the marker used (its type, size, and color). Several function pairs, (t, y1), (t, y2), …,  
can be graphically represented on the same plot, each pair with its own line specifi-
cations using the command plot(t,y1, 'LineSpec1',t,y2,'LineSpec1',…). 
Several spatially separated plots can be generated using the subplot command. For 
instance, if subplot(3,2,1) is used before an actual plot command, MATLAB® 
positions the respective plot in the first row and first column of a matrix with three 
rows and two columns. If the command subplot(3,2,3) is used, MATLAB® places 
the plot in the second row and first column, which is the third position in a sequence 
that runs from left to the right and from top to bottom over the matrix elements.

plot3(x,y,z,'LineSpec')

Returns a three-dimensional line plot of the pairs (x, y, z), where x, y, and z can be defined 
as vectors. For instance, if x is considered to be a previously defined time  vector between 
the limits of 0 and 10 s with a time increment of 0.01 s (e.g., as t = 0:0.01:10), the other 
two variables can be defined in terms of t. LineSpec specifies graphic details of the 
plot line. Several function pairs, (x1, y1, z1), (x2, y2), …, can be graphically represented 
on the same three-dimensional plot, each pair with its own line specifications using 
the command plot3(x1,y1,z1, 'LineSpec1',x2,y2,z2,'LineSpec1',…).  
Related MATLAB® functions are xlabel('text1'), ylabel('text2'), 
zlabel('text3'), title('text'), and legend('text'), which enable using 
customized text for the reference axes, a title for the plot and a legend.

surf(z)

Generates a three-dimensional surface plot; see meshgrid.

linear system Modeling
dss(a,b,c,d,e)

Creates a descriptor state space LTI model based on the previously defined matrices 
a, b, c, d, and e.

frd(r,f)

Creates a frequency response data LTI object from a vector r formed of the  values 
of the G(  j~), the complex transfer function and a vector f formed of the frequen-
cies ~ (in rad/s) corresponding to the values of G(  j~). The adjacent command 
freqresp(frd(r,f),om0) where om0 is a frequency value that was, for instance, 

www.semeng.ir

www.semeng.ir


486 Appendix C

not specified in the vector f, generates the value of G(  j~) that corresponds to om0. 
Mention should be made that om0 can also be a vector.

frd (sys, f)

Converts a previously defined LTI object (such as zero-pole-gain, transfer function, 
or state space) into a frequency response data object (model) that corresponds to a 
vector f containing specified frequencies.

[n,d] = ss2tf(a,b,c,d,ui)

Returns the transfer functions that correspond to the state space model defined by 
the a, b, c, d matrices and the ith input, denoted by ui. Specifically, d is a row with 
the coefficients of an s polynomial in descending order (the characteristic poly-
nomial), whereas n is an array with as many rows as outputs, each row  containing 
the coefficients of an s polynomial in descending order. If only the command 
ss2tf(a,b,c,d,ui) is used, MATLAB® returns the array denoted by n in the 
original command syntax.

ss(a,b,c,d)

Creates a state space LTI model based on the previously defined matrices a, b, c, and d. The 
command ss(sys) converts a previously defined zero-pole-gain, zpk, or transfer func-
tion, tf, model into a state space model. The command [a,b,c,d] = ssdata(sys) 
returns the a, b, c, d matrices of the state space model denoted here by sys.

tf(n,d)

Generates a transfer function LTI object (model) from a previously defined numerator 
(denoted here by n) and a previously defined denominator (denoted here by d). The 
function can also be used directly as tf([],[]), where the two one-row  matrices 
denoted by [] contain the coefficients of the numerator (the first [] matrix) and of the 
denominator (the second [] matrix) in descending order (from the largest power of 
s to the constant term). The function tf(sys) converts another LTI model (such as 
zero-pole-gain, zpk, or state space, ss,) into a  transfer function model.

tf2ss(sys)

Converts an existing transfer function model denoted by sys into a state space model. 
The command [a,b,c,d] = tf2ss(sys) works similarly and returns the a, b, c, 
d matrices of the state space model.

Time domain Analysis
impulse(sys)

Produces the two-dimensional plot of a previously defined LTI object, denoted here 
as sys, such as a transfer function or a state space model under a unit impulse (delta 
Dirac function) input. All the features presented for the step command are also valid 
for the impulse command.
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initial(sys,x0)

Generates a two-dimensional plot based on a previously defined state space model 
denoted here by sys and an initial-state vector denoted here by x0. Several state space 
models, sys1, sys2,… can be used in conjunction with the same initial  condition x0 
with the command initial(sys1,sys2,…,x0). Time can also be specified with 
this command using initial(sys,x0,t) where t can either a value or a previously 
defined vector. The command [y,x,t] = initial(sys,x0) stores the state space 
trajectory vector y, the state vector x, and the time vector t of a state space model sys 
subjected to the initial-state vector x0. The same results are obtained using the func-
tion initialplot instead of initial, with the same syntax.

lsim(sys,u,t)

Generates the two-dimensional plot of the response of a previously defined LTI 
object sys under the action of a time-dependent input u over a time interval defined 
by the vector t.

step(sys)

Produces the two-dimensional plot of a previously defined LTI object denoted here as 
sys, such as a transfer function or a state space model, under a unit step input. Time 
is the independent variable and the time range for the plot is chosen by MATLAB®. 
If a time vector t has been defined, then the command step(sys,t) will gener-
ate the plot over the specified range of t. Another variant of this command is x = 
step(sys), whereby the time response is not plotted, but the vector x (which is the 
time-domain function resulting from applying a unit step input to a system) is gener-
ated and stored for further manipulation.

zpk(n,d,k)

Creates a zero-pole-gain model in the form of a factored polynomial fraction. If the 
command zpk([1,2],[3,3,5,6],8) is used, MATLAB® returns

Zero/pole/gain:

8 (s−1) (s−2)

-------------------

(s−3)^2 (s−5) (s−6)

The command zpk(sys) converts a previously defined transfer function model or 
state space model denoted by sys into a zero-pole-gain model.

frequency domain Analysis
bode(sys)

Produces the Bode plots (magnitude in decibels and phase angle in degrees) based 
on a previously defined linear time invariant object denoted here by sys, such 
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as transfer function, state space, zero-pole-gain, or frequency response data. The 
 command bode(sys1,sys2,…) generates Bode plots for the LTI objects denoted 
by 'sys1', 'sys2', ….

damp(sys)

Returns three groups of data, namely eigenvalues, damping ratios, and natural 
 frequencies  pertaining to a previously defined LTI object, such as a transfer function 
or a state space model.

eig(m)

Returns the eigenvalues (the squares of the natural frequencies) of a previously 
defined matrix m. The use of the command [V,D] = eig(m) returns the modal 
matrix [V] (where each column is an  eigenvector) and a diagonal matrix [D] with the 
eigenvalues located on the main diagonal.

eigs(m)

Calculates the six largest eigenvalues of the matrix m and locates them in a vector. 
The command [V,D] = eigs(m) operates similarly to the [V,D] = eig(m), but 
each of the two matrices [V  ] and [D] are 6 # 6 matrices.

pole(sys)

The command finds the poles of the LTI object previously defined as sys. For sys 
being a transfer function, the poles are the roots of the denominator (characteristic 
equation).

pzmap(sys) or pzplot(sys)

Return a plot showing the positions of poles and zeroes for a previously defined LTI 
object, such as transfer function or state space model, denoted by sys. The command 
[p,z] = pzmap(sys) returns the vector p containing the poles and the vector z 
containing the zeroes of the LTI object. The command pole(sys) plots only the 
pole positions, whereas the zero(sys) plots only the zeroes positions associated 
with the LTI object sys.

residue(n,d)

Generates the residues (which are the numerators in a partial fraction expansion 
where all fractions have first-degree polynomials in their denominators) of a pre-
viously defined fraction (such as a transfer function) that uses the polynomial n 
as its numerator and the polynomial d as its denominator. If instead of this com-
mand, the following command is used, [r,p,k] = residue(n,d), MATLAB® 
returns three groups of numbers: the residues, the poles (which are the roots of d, 
the denominator polynomial, with changed signs), and the direct term k (which is 
the quotient of dividing n by d and returns 0 when the degree of n is less than the 
degree of d).
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zero(sys)

Finds the zeroes of the LTI object previously defined as sys. For a transfer function, 
the zeroes are the roots of the numerator.

Controls
feedback(sys1, sys2)

Generates the closed-loop transfer function for a basic negative feedback control 
system, where sys1 is the open-loop transfer function G(s) and sys2 is the feedback 
transfer function H(s).

nyquist(sys)

Plots the Nyquist chart for a Laplace-domain function defined as sys. The alter-
nate command nyquist(sys,w) returns the Nyquist plot for a set of specified 
 frequencies w.

rlocus(sys)

Calculates and plots the root locus for the open-loop transfer function of a SISO 
system; the function was previously defined as sys. In the format rlocus(sys1, 
sys2,..), MATLAB® plots the root loci for the open-loop transfer functions 
 previously defined as sys1, sys2, ….

ConTrol sysTeM ToolBoxTM lineAr TiMe  
inVAriAnT Models
The Control System ToolboxTM of MATLAB® has the capability of creating single 
entities from  zero-pole-gain, transfer function, state space, and frequency response 
data models (which are defined as collections of vectors and matrices), as exempli-
fied in Chapters 7 through 10. These objects are known as linear time invariant 
 models and are invoqued by the MATLAB® commands in Figure C.1.

Details on creating individual LTI objects have been given in the main text; a few 
additional details are included here on object manipulation (operations), conversion, 
and visualization.

fiGUre C.1

Linear Time Invariant Objects Corresponding to  Various Mathematical Models.

MATHEMATICAL MODEL LTI OBJECT

zero pole gain

transfer function

state space

frequency response data

zpk

tf

ss

frd
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Simple mathematical operations, such as addition and multiplication, can be 
applied between LTI objects. Consider for instance the following transfer function 
object, G(s) = 1/(s2 + 2s + 3), and assume the transformation 2G(s) + 5 is needed. 
The following MATLAB® code realizes this task:

>> g = tf(1,[1,2,3]);

>> 2*g+5

which returns

Transfer function:

5 s^2 + 10 s + 17

-----------------

s^2 + 2 s + 3

Converting between LTI objects, as seen in the book chapters, can be performed 
by calling a particular LTI object as a function of a different LTI object that has 
already been defined. To convert the transfer-function model used in the previous 
example into a state space model, for instance, the command >> ss(g) realizes 
this, and to obtain a zero-pole-gain model from the same transfer function model, 
the command >> zpk(g) is needed. As mentioned, it is not possible to transform 
any of the zpk, tf, or ss models into a frd model, but an existing frd model can be 
converted to any of the other three LTI models. There are no restrictions on con-
verting zpk, tf, and ss models between themselves.

Another important rule, the precedence rule, frd > ss > zpk > tf, basically states 
that operations among various LTI objects are possible and arithmetical combina-
tions among all four objects  produce an frd model. Similarly, combination of a zpk 
model with a tf model (for instance), according to 2g - 3z (g is the transfer function 
defined previously and z is a zpk model described here), results in a zpk model:

>> z = zpk(0,[1,2],1);

>> 2*g−3*z

returns

Zero/pole/gain:

−3 (s−0.2473) (s^2 + 1.581s + 5.391)

------------------------------------

(s−2) (s−1) (s^2 + 2s + 3)

LTI objects can subsequently be used to plot a system’s time-domain or 
 frequency-domain response by means of built-in MATLAB® commands, such as 
step, impulse or bode, to mention just a few. Once a response plot has been 
created, it can be visualized by means of the ltiview command. This command 
also enables changing the type of input and visualizing the new response of the same 
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system. Once an LTI object plot is obtained, the command >> ltiview (typed at 
the  MATLAB prompt) opens the LTI Viewer window. You can import an existing 
LTI object either from the Workspace or from a MAT-file. Assuming the transfer 
function that has been used thus far is imported into the LTI Viewer, the plot of 
Figure C.2 results, which illustrates the system response to a unit step (which is 

fiGUre C.3

LTI Viewer of a Second-Order System Unit Impulse Response with Peak Response.
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fiGUre C.2

LTI Viewer of a Second-Order System Unit Step Response.
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the default input). By right clicking the plot space, you can change the plot type 
by selecting another input or response type altogether. Once an input has been 
selected and the  corresponding plot has been obtained, important system response 
 characteristics can easily be obtained from the plot. By changing the Plot Types 
to Impulse, for instance, the plot of Figure C.3 is produced, and after selecting 
Peak Response under Characteristics and clicking on the peak point, the 
explanatory box appears, which gives the value of the maximum (peak) response 
and the corresponding time.
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Deformations, Strains, and  
Stresses of Flexible  
Mechanical Components D
Bars Under axial Force
A bar of length l, rectangular cross-sectional area A, and modulus of elasticity (or 
Young’s modulus) E, which is acted upon by axial forces fx, as sketched in Figure D.1, 
elongates (or compresses if the forces have opposite directions) by a quantity

 u l
EA

f l
x

x
D= =  (D.1)

By definition, the axial (or normal) strain is

 
l

u

l
l

EA

f
a x

x x
f f

D
= = = =  (D.2)

The normal stress, which is perpendicular to any cross-section of the bar of 
Figure D.1 (and therefore parallel to the forces fx), is calculated as

 
A

f
a x

x
v v= =  (D.3)

Comparison of Eqs. (D.2) and (D.3) yields

 Ea av f=  (D.4)

which is Hooke’s law.
Extension about the axial (x) direction is accompanied by compressions in the y 
and z directions of the bar shown in Figure D.1. These compressive deformations 

FiGUre d.1

Bar under Axial Point-Force Loading.
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are perpendicular to the force  direction and result in transverse (or lateral) strains, 
which are defined as

 ;w
u

w
w

h

u

h
h

t y

y

t z

z
f f f f

D D
= = = = = =  (D.5)

where h is the bar thickness (dimension in the z direction, which is normal to the 
drawing plane of Figure D.1). The axial and transverse strains are related as

 t af nf= -  (D.6)

where μ is Poisson’s ratio, a material constant. Equations (D.1) through (D.6) are 
also valid for a bar that is clamped at one end and free at the other end, where a force 
fx is applied.

Bars Under axial TorqUe
A point moment (torque) applied at the free end of a clamped-free bar, such as the 
one of Figure D.2(a), or at the midpoint of a clamped-clamped bar, such as the one 
of Figure D.2(b), produces an angular deformation (either at the free end of the 
clamped-free bar or at the midpoint of the clamped-clamped bar) that is equal to

 
GI

m l
x

t

x
i =  (D.7)

where G is the shear modulus of elasticity and It is the torsion moment of inertia.
The moduli of elasticity E and G are related by means of Poisson’s ratio as

 
( )

G
E

2 1 n
=

+
 (D.8)

For a circular cross-section bar of diameter d, the torsion moment of inertia is actu-
ally the polar moment of inertia, which is equal to

 I I
d

32t p

4r
= =  (D.9)

FiGUre d.2

Bars in Torsion under  Point-Moment Loading: (a) Clamped-Free Bar; (b) Bridge 
 (Clamped-Clamped Bar).
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For a bar of rectangular cross-section of dimensions w (width) and h (thickness), 
where w > h, the  torsion moment of inertia is calculated as

 . .I wh w
h

w

h
0 33 0 21 1

12
t

3
4

4

= - -e o= G (D.10)

The mass (mechanical) moment of inertia of a circular cross-section cylinder 
of mass m, radius R, length l, and mass density t with respect to its centroidal 
 (symmetry) axis is

 J J
mR

l
d

lI
2 32t p p

2 4

t
r

t= = = =  (D.11)

For a prismatic block, such as the one of Figure D.3, the mass moments of iner-
tia are

 ; ;J
m l

J
m l w

J
m w hh

12 12 12x y z

2 2 2 2 2 2

=
+

=
+

=
+^ ^ ^h h h

 (D.12)

Beams in BendinG
For a cantilever (or clamped-free beam) such as the one of Figure D.4(a), the maxi-
mum deflection and slope (or rotation) produced at the free end by a point force fz 
applied at the same point are

 ;u
EI

f l

EI

f l

3 2z
y

z

y
y

z
3 2

i= =  (D.13)

with E being the elasticity modulus and Iy being the cross-sectional moment of 
 inertia about the bending y axis.

FiGUre d.3

Prismatic Block.
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For a bridge (or clamped-clamped beam) such as the one of Figure D.4(b), the 
maximum deflection produced at the midpoint by a point force applied at the same 
point is

 u
EI

f l

192z
y

z
=  (D.14)

Both the deflection and the slope are zero at the clamped ends of the beams of 
Figure D.4.

Figure D.5 shows a portion of a bent beam under the action of two end bending 
moments my. The upper area of the beam is compressed while the lower area is 
extended under the action of the two bending moments. As a consequence, a layer 
(or fiber) is undeformed, and this is the neutral axis (or fiber). Compressive stresses 
are set up on all the layers between the neutral axis and the upper fiber, and exten-
sional stresses are applied to the fibers limited by the neutral axis and the lower fiber. 
As is the case was with bars under axial loading, the bending stresses are normal (i.e., 
perpendicular on any cross-section). According to Navier’s equation, the maximum 
and minimum stresses corresponding to the lower and upper fibers are equal to

 
I

m
h
2

max min
y

y

v v= =  (D.15)

where h is the thickness of the beam cross-section (dimension measured between the 
undeformed lower and upper fiber). The cross-section is assumed to be symmetric 
about the y axis.

Normal stresses are accompanied by shear stresses (denoted by x), which are 
 produced by a force fz, such as the ones of Figure D.4, and are calculated as

 
A

fz
x =  (D.16)

FiGUre d.4

Beams in Bending  under  Point-Force Loading: (a)  Cantilever; (b) Bridge.
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where A is the cross-sectional area. Similar to flexible mechanical members, shear 
stresses are generated between adjacent flowing fluid layers and Eq. (D.16) is 
 therefore applicable to fluids as well.

For a circular cross-section beam of diameter d, the moment of inertia is

 I I
d

64y z

4r
= =  (D.17)

For a rectangular cross-section beam of width w and thickness h, the moment of 
inertia is

 I
wh
12y

3

=  (D.18)

The radius of curvature R of the bent beam shown in Figure D.5 is calculated as

 
( )

R dx

d u x1 z

2

2

l= =  (D.19)

where l is the curvature and uz(x) is the deflection of a beam at a distance x; see 
Figure D.4(a).

FiGUre d.5

Portion of a Bent Beam.
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A
Acceleration amplitudes, measuring, 398–400
Active filters, 404
Actuation

longitudinal, 441
resulting in motors, 440
and sensing in microelectromechanical systems, 

109–114
and sensing with piezoelectric block, 442–450
transverse, 441

Actuation elements, 35–36
Actuator, 20, 440
Adiabatic transformation, 183
Amplification, 116
Amplification effect, 134
Analogous systems, 422–427

first-order, 422–424
second-order, 424–427

Axial strain, 493

B
Band pass filters, 402
Bernoulli’s Law, 152–155
Bimetallic strip, 454–456
Blowers, 187
Bode plots, 361, 383

from frequency response data, 386–387
the logarithmic scale and, 383–385

C
Capacitance, 108

liquid elements, 158–161
pneumatic elements, 180
thermal elements, 184

Capacitor elements, 108–114, 314
Cascading nonloading systems, 400–402
Characteristic equation, 262, 362, 366, 367, 480
Characteristic polynomial, 259, 262, 362, 366
Circuits, 103, 117–141
Circular pitch, 41
Coefficient of dynamic viscosity, 32
Column vector, 477
Comb-drive, 109
Complementary solution, 7, 362
Complex impedance systems modeling and analysis

electrical systems, 262–266
mechanical systems, 270–272
thermal systems, 266

Complex impedances

electrical systems, 263
fluid systems, 263
introduction, 262–272
mechanical systems, 263
thermal systems, 263

Complex transfer function
defined, 364
introduction, 361
in steady-state response and frequency-domain 

analysis, 362–365
Complex transfer function denominator, 362
Compliant elements

inertia, 67–70
spring, 71–73

Compliant mechanical systems
introduction, 65–66
lumped inertia and stiffness of elements of, 

66–73
natural frequency calculations, single DOF 

systems, 73–78
Compliant mechanisms, 9–12, 66
Components, 7
Conservative mechanical systems, 80–89
Constant gain, 13
Constant-pressure transformations, 184
Constant-volume transformations, 184
Constitutive piezoelectric laws, 441–450
Control System Toolbox linear time invariant 

models, 489
Converse piezoelectric effect principle, 443
Convolution theorem, 224–226
Corner frequency, 402
Coulomb damping, 35
Coupled-field systems, 19–21

analogous systems
first-order, 422–424
second-order, 424–427

the bimetallic strip, 454–456
concept, 418–421
electromagnetomechanical, 433–437
electromechanical, 429–430

with optical detection in MEMS, 437–439
introduction, 417
mechanical strain-electrical voltage, 427–432
MIMO systems, 419
nonlinear, Simulink modeling of, 459–462
nonlinear electrothermomechanical, 457–459
piezoelectric, 440–454
system analogies, 422–427
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Coupled-field systems (cont’d )
thermomechanical, 454–456. See also 

companion website
Creep, 154
Critical damping, 47
Current law, 117
Current source elements, 104
Curvature, 497
Cutoff frequency, 402

D
Damped free response system, 47–51

electrical, 131–133
Damped frequency, 47
Damping elements, 32–35

dry-friction (Coulomb), 35
viscous, 32–35

Deflection, 495
Degrees of freedom, 2
Degrees-of-freedom systems. See multiple  

degrees-of-freedom systems; single  
degree-of-freedom systems

Derivatives, Laplace transform of, 218–219
Descriptor matrix, 311
Descriptor state-space model, 311
Deterministic signals, 8
Diagonal matrix, 477
Dielectric permittivity, 109
Differential equations, Laplace transforms of

analytical partial-fraction expansion, 228–230
linear

with constant coefficients, 232–237
with time-dependent coefficients, 242–244

MATLAB partial-fraction expansion, 230–231
steps for, 226–244
vector-matrix, 237–240

Differential equations with constant coefficients
complex distinct roots, 474
complex multiple roots, 475
Laplace transforms of, 232–234
real distinct roots, 474
real multiple roots, 475
solutions to, 473

Direct transmission matrix, 310
Displacement amplification, 39
Distributed-parameter model transformed to 

lumped-parameter model, 6
Domain coupling. See coupled-field systems
Dry-friction (Coulomb) damping, 35
Dynamic modeling processes, 5
Dynamic systems

linear and nonlinear, 21–24
response generation, 8

steady-state response to harmonic input, 362
total solution, 362

Dynamic systems under harmonic input,  
steady-state response

MATLAB for frequency response analysis, 
383–389

data handling, 386–387
logarithmic scale and Bode plots, 383–385
model conversion, 387–389
plotting from a state space model, 385–386

MIMO systems, analytical approach
complex transfer function matrix approach, 

376–379
linear superposition for time response, 

379–381
SISO systems, analytical approach

frequency response parameters of second-
order systems, 373–376

under harmonic (sinusoidal) input, 370–376
Dynamic viscosity, 154
Dynamic viscosity coefficient, 32

E
Eigenfrequencies, 262
Eigenvalue, 480
Eigenvector, 480
Electric damping ratio, 131
Electric resistivity, 104
Electrical elements

capacitors, 108–114
inductors, 115–116
operational amplifiers, 117–141
resistors, 104–108
voltage and current sources, 104

Electrical networks, 117–141
Electrical systems

complex impedances, 263
degrees of freedom, 120, 121
filters, 404
free damped response, 131–133
free response, 125–133
introduction, 103
natural frequency calculations, 125–131

analytical approach, 127
multiple degrees-of-freedom, 127–131
single degree-of-freedom, 125–127
using MATLAB, the eigenvalue problem, 129

op amp circuits, 133–137
inverting, 133–135
mathematical operations with, 135–137

Electrical systems modeling
configuration determination, 120–121
equivalent resistance method, 122
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forced response with Simulink, 137–141
Kirchoff’s laws in, 117–119
mesh analysis method, 122–123
node analysis method, 123–125
using complex impedances, 262–266
using MATLAB, the eigenvalue problem, 129

Electrical voltage-mechanical strain coupling, 
427–432

Electromagnetomechanical coupling, 433–437
Electromechanical coupling

electromagnetomechanical, 433–437
mechanical strain-electrical voltage, 427–432
with optical detection in MEMS, 437–439
piezoelectric, 440–454

Electromechanical systems, 427
Electrothermomechanical coupling, nonlinear, 

457–459
Energy method, 80–83, 127–131
Energy sources

hydraulic, 168–169
pneumatic, 181

Engineering system(s)
categorizing, 1
components, 7–9, 13
input, and output, 7–9
system order, 13–19

Equivalent resistance method. See companion 
website

F
Fans, 187
Feedback control systems, 3
Field coupling. See coupled-field systems
Filters, electrical and mechanical, 402–406
Final-value theorem, 221–223
First-order systems, 14–15

analogous coupled-field, 422–424
steady-state response under sinusoidal input, 

362
transfer function and the time response, 

287–289
Flexible mechanisms, 9–12, 66
Flexure hinges, 10
Flow rate, 152
Fluid systems

complex impedances, 263
forced response, modeling with Simulink, 

191–193
introduction, 151
liquid systems modeling, 152–178
pneumatic systems modeling, 178–183

Force transmissibility, 393–396
Force-current analogies, 424

Force-current analogy pairs, 425
Forced response, 7
Force-reduction device, 39
Force-voltage analogies, 424
Force-voltage analogy pairs, 425
Forcing elements, 35–36
Forcing functions

deterministic, 8
elementary, examples of, 9
filters for removing, 402–406
types of, 8

Fourier’s law of heat conduction, 190
Free response systems, 37–51

complementary solution and, 7
damped, 47–51
electrical, 125–133
mechanical

free-body diagram, 47
lumped-parameter model, 47
modeling by the energy method, 80–83
multiple degrees-of-freedom, 80–89

natural, 37–47
geared shafts transmissions, 43–47
lever systems, 39–43

Free-body diagram, 2, 36, 47
Frequency shift method, 75–78, 396–398
Frequency-domain applications

cascading nonloading systems, 400–402
filters, electrical and mechanical, 402–406
serially connected systems, 401
transmissibility in mechanical systems, 390–400

acceleration amplitudes, measuring, 398–400
for force input, 393–396
for motion input, 390–393
vibration absorption and isolation, 396–398
vibration displacement, measuring, 398–400

Frequency-domain approach
introduction, 361–362
natural frequency calculations for conservative 

dynamic systems
analytical approach, 365–369
MATLAB approach, 369–370

steady-state response of dynamic systems to 
harmonic input

MIMO systems, 376–381
SISO systems, 370–381

Frequency-shift theorem, 213–218
Friction force, 35

G
Gain, 116
Gas laws, 178–179
Geared shafts transmissions, 43–47
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Generators (sensors), 21, 440
Geometric head, 171
Gravitational potential energy, 80

H
Hagen-Poiseuille equation. See companion  

website
Heat flow rate, 188
Heat transfer processes

conduction, 185–188
convection, 188–189
radiation, 190

High pass filters, 402
Higher-order systems, 16–19
Homogeneous equation, 37
Homogeneous solution, 7
Hooke’s law, 493
Hydraulic actuators, 170
Hydraulic capacitance matrix, 176
Hydraulic diameter, 154
Hydraulic energy sources, 168–169
Hydraulic systems. See fluid systems
Hysteresis, 23

I
Ideal gas law, 183
Ideal sources in electrical systems, 104
Identity matrix, 478
Indefinite integrals, 220
Inductance, 115
Inductor elements, 115–116, 314
Inertance elements

liquid, 156–158
pneumatic, 179–180

Inertance matrix, 176
Inertia, mechanical moment of, 26
Inertia elements, 26–29, 67–70
Inertia force, 28
Inertia moment, 28, 494
Inertia parameter, 67–70
Initial-value theorem, 221–223
Input, defined, 8
Input matrix, 310
Input signals

deterministic, 8
elementary, examples of, 9
filters for removing, 402–406
types of, 8

Integral transforms, 206
Inverting amplifier, 134
Inverting effect, 134
Isobaric transformations, 184
Isothermal transformations, 184

K
Kinematic viscosity, 154
Kinetic energy, 29, 80, 314
Kirchoff’s current (node) law (KCL), 117, 122, 123, 

127–131
Kirchoff’s laws, electrical systems modeling, 

117–119
Kirchoff’s voltage (mesh) law (KVL), 119, 122, 

127–131

L
Lagrange’s equations method. See companion 

website
Laminar flow, 154, 164
Laplace method, advantage of the, 7
Laplace transform pairs, 207–212
Laplace transform properties

convolution, 224–226
derivatives, 218–219
frequency-shift, 213–218
indefinite integrals, 220
initial-value/final-value, MATLAB to calculate 

limits, 221–223
linearity, 212–213
periodic functions, 222–223
time-shift, 214–218

Laplace transforms
direct and inverse, 206–226

using MATLAB to calculate, 234–235
of integral/integral-differential equations by the 

convolution theorem, 240–242
introduction, 205–206
in multiple degree-of-freedom systems, 

235–237
in single degree-of-freedom time-defined 

systems, 244–246
state transition matrix calculations, 337

Laplace transforms of differential equations
analytical partial-fraction expansion, 228–230
linear

with constant coefficients, 232–234
with time-dependent coefficients, 242–244

linear systems with constant coefficients, 
235–237

MATLAB partial-fraction expansion, 230–231
steps for, 226–244
vector-matrix, 237–240

Laplace-domain transform, 244–246
Lateral strains, 494
Law of volume/mass conservation, 152–155
Lever systems, 39–43
Linear time invariant (LTI) models, 273, 489
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Linearity, 212–213
Linearization technique, 328
Linear/nonlinear dynamic systems, 21–24
Liquid elements, 155–169

capacitance, 158–161
hydraulic energy sources, 168–169
inertance, 156–158
resistance, 161–168

Liquid systems modeling, 152–178
analytical approach, 171–173
Bernoulli’s Law in, 152–155
law of volume/mass conservation in,  

152–155
MATLAB approach, 173–174
natural response of conservative systems

multiple degrees-of-freedom, 170–174
single degree-of-freedom, 169–174

volume flow rate, 152
Liquid-level systems, 168–169, 174–178
Loading, 24
Logarithmic decrement, 48
Longitudinal actuation, 441

and sensing with piezoelectric block, 442–450
Longitudinal-motion, 109
Low pass filters, 402
Lumped, 26
Lumped inertia and stiffness of compliant elements, 

66–73
Lumped-parameter modeling, 6

modeling methods, 6–7
solutions methods, 7
system response, 7

M
Magnetic components, systems with, 433
Mass, 26
Material sensitivity, 428
Mathematical models

deriving
equations for, 36
from physical model, 4

elements of, 2
solving, process of, 2, 3

MATLAB, 2
Control System Toolbox linear time invariant 

models, 489
MATLAB approach

conservative dynamic systems natural frequency 
calculations, 369–370

liquid systems modeling, 173–174
mechanical systems modeling, 87–89
state space and the time-domain response

forced response, 342–343

free response with nonzero initial conditions, 
341–343

state space model
conversion between transfer function and, 

331–334
conversion between zero-pole-gain and, 

334–335
descriptor state-space model generation, 311

transfer function and the time response
MIMO systems, 294–295
SISO systems, 279–287

transfer function model formulation,  
273–274

MATLAB commands
controls, 489
frequency domain analysis, 487
linear systems modeling, 485
mathematical calculations, 481
time domain analysis, 486
visualization and graphics, 484

Matrix algebra review
basic matrix operations, 478
special-form matrices, 477

Matrix exponential method, 337
Measurand, 21
Mechanical advantage, 39
Mechanical components, deformations, strains and 

stresses of flexible
bars under axial force, 493
bars under axial torque, 494
beams in bending, 495

Mechanical elements
actuation, 35–36
compliant, 66–73
damping, 32–35
free response, natural, 39–43
inertia, 26–29, 67–70
spring, 29–32, 67–70

Mechanical impedance circuits, 270
Mechanical levers, 39
Mechanical moment of inertia, 26
Mechanical strain, 427

bars under axial force, 493
bars under axial torque, 494
beams in bending, 495

Mechanical strain-electrical voltage coupling, 
427–432

Mechanical systems
complex impedances, 263
compliant, 66–73
filters, 405–406
introduction, 25
transmissibility in, 390–400
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Mechanical systems (cont’d )
acceleration amplitudes, measuring, 398–400
for force input, 393–396
for motion input, 390–393
vibration absorption and isolation, 396–398
vibration displacement, measuring,  

398–400
Mechanical systems modeling, 36–58

from complex impedances, 270–272
forced response with Simulink

first-order systems, 51–54
multiple degrees-of-freedom, 89–95
second-order systems, 54–58

free damped response, 47–51
free response, 37–51
introduction, 25
mathematical, by the energy method, 80–89
the modal problem, 87–89
multiple degrees-of-freedom, 78–95

analytical approach, 83–87
configuring degrees of freedom, 78–79
conservative systems, 80–89
forced response with Simulink, 89–95
MATLAB approach, 87–89
natural frequency calculations, 83–89

natural response
of compliant systems, 73–78
of conservative systems, 37–47
eigenvalue problem formulation, 87
geared shafts transmissions, 43–47
lever systems, 39–43
the modal problem and, 83–89
multiple degrees-of-freedom systems, 83–89
single degree-of-freedom systems, 37–47, 

73–78
Newton’s second law of motion applied to, 

36–37
single degree-of-freedom

natural response of compliant, 73–78
natural response of conservative, 37–47

Mechanics of materials, 427, 443, 454
MEMS (microelectromechanical systems)

actuation and sensing in, 109–114
applications, 11
introduction, 9–12
mass detection by the frequency shift method in, 

75–78, 396–398
optical detection in, 437–439

Mesh analysis method, 122–123
Mesh law, 119
Microfabrication techniques, 11
Micromachining, 11
MIMO dynamic systems

complex transfer function matrix approach, 
376–379

linear superposition for time response, 379–381
MIMO systems

coupled, 419
defined, 8
example, 8
state space modeling, 310–317. See also 

companion website
transfer function and the time response

analytical approach, 287–294
MATLAB approach, 294–295

transfer function and the time-domain 
mathematical model, 259–262

transfer function matrix, 257, 260
Modal motion, 37, 83
Mode shape, 83
Moment-current analogy, 425
Moment-voltage analogy, 425
Moody friction factor, 153
Motors, 440
Multiple degrees-of-freedom systems

Laplace transforms in, 235–237
mechanical systems modeling

analytical approach, 83–87
configuring degrees of freedom, 78–79
conservative systems, 80–89
forced response with Simulink, 89–95
MATLAB approach, 87–89
natural frequency calculations, 83–89

natural frequency calculations
electrical systems, 127–131
liquid systems, 170–174
mechanical systems, 83–89

Newton’s second law of motion, 80
Multiple-field coupled systems. See coupled-field 

systems

N
Nanoelectromechanical systems (NEMS), 66
Natural frequency, 37
Natural frequency calculations

conservative dynamic systems
analytical approach, 365–369
MATLAB approach, 369–370

electrical systems, 125–131
analytical approach, 127
MATLAB approach, 129
multiple degrees-of-freedom, 127–131
single degree-of-freedom, 125–127

mechanical systems, 83–89
compliant, 73–78
conservative, 362–365
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multiple degrees-of-freedom
electrical systems, 127–131
liquid systems, 170–174
mechanical systems, 83–89

single degree-of-freedom, 83
electrical systems, 125–127
liquid systems, 169–174, 187
pneumatic systems, 181–182

Natural frequency shift method, 75–78
mass detection in MEMS, 75–78, 396–398

Navier’s equation, 496
Negative feedback, 134
Networks, 103
Neutrial axis (fiber), 496
Newton’s law of viscous flow, 32
Newton’s second law of motion

applied to mechanical systems modeling,  
36–37

in mechanical impedance circuit design, 270
multiple degree-of-freedom systems, 80

Node analysis method of electrical systems 
modeling, 123–125

Node law, 117
Nominal (operation) point, 20
Nonlinear coupling

electrothermomechanical, 457–459
Simulink modeling of, 459–462

Normal stress, 493
Notch filters, 402
Numerator dynamics, 323

O
Ohm’s law, 104
Operational amplifier circuits, 133–137

inverting, 133–135
mathematical operations with, 135–137. See also 

companion website
Operational amplifiers, 117–141
Operators, 206
Optical detection in MEMS applications,  

437–439
Output, defined, 8
Output equation, 310
Output matrix, 310
Overdamping, 47

P
Parallel-axis theorem, 26
Parallel-plate, 109
Particular solution, 7, 363
Passband, 402
Passive filters, 404
Peak response, 17

Peak time, 17
Perfect gas law, 183
Periodic functions, 222–223
Physical model, 2, 4, 5
Piezoelectric and strain gauge sensory-actuation, 

450–454
Piezoelectric block, 440

longitudinal actuation and sensing with, 
442–450

Piezoelectric charge (strain) constant, 443
Piezoelectric coupling, 440–454
Piezoelectric effect, 19, 440
Piezoelectric effect principle, converse, 443
Piezoelectric materials, 440
Piezoelectric transduction, 440
Piezoelectric voltage constant, 446
Piezoelectricity, introduction, 440–441
Pitch circle, 41
Pneumatic elements, 179–181

capacitance, 180
energy sources, 181
inertance, 179–180
resistance, 180–181

Pneumatic energy sources, 181
Pneumatic systems, 181–183

forced response, 182–183
mass flow rate, 152
natural response, 181–182

Pneumatic systems modeling, 178–183
gas laws in, 178–179

Poisson’s ratio, 428, 494
Polar moment of inertia, 494
Poling process, 440
Polytropic transformation, 183
Potential energy, 80, 108, 314
Potentiometers, 104
Process gas laws, 183
Pumps flow generation, 171

R
Radius of curvature, 497
Random signals, defined, 8
Resistance, 104

liquid elements, 161–168
pneumatic elements, 180–181
thermal coefficient of, 457
thermal elements, 184–189

conduction, 185–188
convection, 188–189

Resistivity, 104
Resistor elements, 104–108
Reynolds number, 153
Rigid bodies, 26
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Rise time, 15, 17
Rotary motion, transmitting, 41
Row vector, 477

S
Saturation, 22
Second-order systems, 16–19, 54–58

analogous, 424–427
Sensor response of a piezoelectric block, 446–450
Sensors, 21, 440
Serially connected systems, 401
Settling time, 15, 17
Shear stresses, 32, 496
Shearing, 441
Simulink, 2
Simulink, forced response systems modeling for

electrical systems, 137–141
fluid systems, 191–193
incorporating nonlinear effects, 137–141
mechanical systems, 51–58
thermal systems, 191–193

Simulink approach
nonlinear coupling modeling, 459–462
state space modeling, 347–352
transfer function model formulation,  

295–298
Single degree-of-freedom systems

Laplace transforms in time-defined systems, 
244–246

mechanical systems modeling
natural response of compliant, 73–78
natural response of conservative, 37–47

natural frequency calculations, 83
electrical systems, 125–127
liquid systems, 169–174, 187
pneumatic systems, 181–182

Single-field coupled systems. See companion 
website

Sinusoidal transfer function, 364
SISO dynamic systems

frequency response parameters of second-order 
systems, 373–376

steady-state response under sinusoidal input, 
370–376

SISO systems
defined, 8
example, 8
linearity of, 21
state space modeling, 310
transfer function and the time response

analytical approach, 274–279
MATLAB approach, 279–287

transfer function and the time-domain 
mathematical model, 257–259

Slope, 495
Small-angle (small-rotation) approximation, 39
Specific heat

constant-pressure/constant-volume, 183
thermal capacitance, 189

Spring constant, 29
Spring elements, 29–32, 71–73
Square matrix, 477
Standard state space model, 310
State equation, 310
State matrix, 310
State space and the time-domain response

analytical approach, 336–341
analytical approach with nonzero initial 

conditions
homogeneous, 336–339
non homogeneous, 340–341

MATLAB approach
forced response, 342–343
free response with nonzero initial conditions, 

341–343
obtaining forced and free response with nonzero 

initial conditions
analytical approach, 336–339
MATLAB approach, 341–343

state-transition matrix method, 336–341
State space approach

advantage of the, 309
concept, 310–317
introduction, 309–310

State space modeling
conversion between

transfer function modeling, 324–327,  
331–334

zero-pole-gain models, 334–335
of dynamic systems, 310–317
MATLAB approach

conversion between transfer function and state 
space models, 331–334

conversion between zero-pole-gain and state 
space models, 334–335

descriptor state-space model generation,  
311

MIMO systems, 310
Simulink approach, 347–352
SISO systems, 310

State space modeling, analytical approach
MIMO systems

with input time derivative. See companion 
website

without input time derivative, 319–321
nonlinear homogenous, 328–331
nonlinear nonhomogenous. See companion 

website
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SISO systems
with input time derivative, 322–324
without input time derivative, 317–319

State variables, 310
State vector, 310
State-transition matrix, 336–341
Static sensitivity, 13
Steady-state response, 7, 15, 17
Steady-state response of dynamic systems to 

harmonic input, 362
MATLAB for frequency response analysis, 

383–389
data handling, 386–387
logarithmic scale and Bode plots, 383–385
model conversion, 387–389
plotting from a state space model, 385–386

MIMO systems, analytical approach
complex transfer function matrix approach, 

376–379
linear superposition for time response, 

379–381
SISO systems, analytical approach

frequency response parameters of  
second-order systems, 373–376

under harmonic (sinusoidal) input,  
370–376

Steady-state solution under harmonic  
(sinusoidal) input, 362, 370–373

Stiffness, 29
Stiffness equations, 30
Stokes flow, 154
Stopband, 402
Strain gauge, 428
Strain gauge sensitivity, 429
Strain gauge sensory-actuation, 446
Symmetric matrix, 477
System, defined, 7
System configuration, minimum variables  

defining, 2, 3
System coordinates, 120
System coupling concept, 418–421. See also 

coupled-field systems
System dynamics, 257–262

dynamical systems lumped-parameter  
modeling and solution, 6–7

introduction, 1–2
linear and nonlinear dynamic systems,  

21–24
modeling process, 2–7
modeling variants, 3–5
software for solving problems in, 2. See also 

specific systems
System order

differential equations and, 13

first-order systems, 14–15
second- and higher-order systems, 16–19
zero-order systems, 13–14

System parameters, 4
System response, 4

T
Thermal coefficient of resistance, 457
Thermal elements, 183–189

capacitance, 184
resistance, 184–189

conduction, 185–188
convection, 188–189

Thermal systems, 189–191
complex impedances, 263
introduction, 151

Thermal systems modeling, 266
forced response, modeling with Simulink, 

191–193
introduction, 183–191

Thermomechanical coupling, 454–456
Third-order systems, 17
Time constant, 14
Time response, of a dynamic system to an input, 

362
Time-domain system identification, 244–246
Time-shift theorem, 214–218
Toothed gears, 41
Torque, 28, 494
Torsional micro-mirror, 12
Total solution, of a dynamic system to an input, 362
Transduction, 109
Transfer function and the time response

MIMO systems
analytical approach, first- and second-order 

systems, 287–294
MATLAB approach, 294–295

SISO systems
analytical approach, second-order systems, 

274–279
MATLAB approach, 279–287

Transfer function approach
concept, 254–256
definition, 257
introduction, 253–254
main role of, 256
uses of, 256

Transfer function matrix, 257, 260, 315, 365, 367
Transfer function model, 257–274
Transfer function model conversion

state space models
analytical approach, 324–327
MATLAB approach, 331–334

zero-pole-gain models, 273
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Transfer function model formulation
from complex impedances

electrical systems, 262–266
fluid systems, 263, 268–270
introduction, 262–272
mechanical systems, 263, 270–272
thermal systems, 263, 266

MATLAB approach, 273–274
Simulink approach, 295–298
from the time-domain mathematical model

analytical approach, 256
MIMO systems, 256, 259–262
SISO systems, 256–259

Transformation gas laws, 183
Transformations, 206
Transformers. See companion website
Transient response, 7
Transition band, 402
Transition flow, 154
Translatory motion symbol, 29
Transmissibility, 391

for force input, 393–396
Transverse actuation, 441
Transverse strain, 427, 494
Transverse-motion, 109
Turbulent flow, 154, 164

U
Underdamping, 47
Unloading, 24

V
Variable capacitors, 109
Variable-plate capacitors, 109
Vibration absorption, isolation, and measurement, 

396–398
Vibration displacement, measuring, 398–400
Viscous damping, 32–35, 46
Viscous damping coefficient, 32
Voltage elements, 104
Voltage law, 119
Volume vector, 176

W
Water jet machining, 11
Wetted perimeter, 153
Wheatstone-bridge system, 428
Wire EDM, 11

Z
Zero-order systems, 13–14, 419
Zero-pole-gain models, 273, 334–335
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