

 - Co airnaph Crer

 PAPCO \qquad

Subject:
Year. Month. Date. (3)
 con anconemin

$$
5 x=\tan \theta
$$

$$
\text { - Exiver }=\omega
$$

$$
v=\frac{d S}{d t} \Rightarrow \int_{S_{1}}^{s} d s=\int_{t_{1}}^{t} v d t \Rightarrow S=S_{1}+\left(t \quad t_{1} \quad t_{1} \quad v \quad v-i \quad c^{s}, c^{2}\right)
$$

$$
\begin{aligned}
& \therefore f_{1} a,=1 \text { 此 } \\
& a=\frac{d v}{d t} \rightarrow \int_{v_{0}}^{v} d v=\int_{t_{0}}^{t} a d t \Rightarrow v-v_{0}=a\left(t-t_{0}\right) \\
& \int_{S_{0}}^{s} d s=\int v d t=\int_{0}^{t}\left(v_{0}+a(t)\right) d t \Rightarrow S-S_{0}=v_{0} t+\frac{i}{2} a t^{2} \\
& * a=\frac{d v}{d t} \Rightarrow f(v)=\frac{d v}{d t} \Rightarrow \frac{d v}{f(v)}=d t \Rightarrow \int \frac{d v}{f(v)}=\int d t \\
& * a d s=v d v \Rightarrow f(v) d s=v d v \Rightarrow d s=\frac{v d v}{f(v)} \\
& S=4 t^{3}+3 t^{2}-18 t+5 \\
& V=0 \Rightarrow\left\{\begin{array}{l}
t=? \\
a=?
\end{array} \quad v=\frac{d S}{d t} \Rightarrow V=12 t^{2}+6 t-18 \Rightarrow 12 t^{2}+6 t-18=0 \Rightarrow t=1 \mathrm{~s}\right. \\
& a=\frac{d v}{d t} \Rightarrow a=24 t+6 \quad \begin{array}{l}
t=1 \\
\Rightarrow
\end{array} a=24(1)+6=30 \frac{m}{s^{2}} \Rightarrow a=30 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Subject:
Year.
2-22

$$
\left\{\begin{array} { l }
{ x = 4 0 } \\
{ v = 0 . 4 }
\end{array} \quad \left\{\begin{array}{l}
x=120(\mathrm{~mm}) \\
v=?
\end{array}\right.\right.
$$

$2 j^{i \pi}$

a

$$
a-2=\frac{4-2}{0.12-0.04}(x-0.04) \Rightarrow a=25 x+1
$$

$(25 x+1) d x=v d v \Rightarrow \int_{0.04}^{0.12}(25 x+1) d x=\int_{0.4}^{v} v d v \Rightarrow v=0.8 \mathrm{~m} / \mathrm{s}$
2-48

$$
a d x=v d v \Rightarrow k \frac{d x}{x}=v d v
$$

$$
\left\{\begin{array} { l }
{ x = 7 . 5 } \\
{ \text { jovi } } \\
{ v = 0 } \\
{ v = 6 0 0 \frac { n } { s } }
\end{array} \left\{\begin{array}{l}
x=750 \\
v=375 \\
a=? \mathrm{~m} / \mathrm{s}^{2}
\end{array}\right.\right.
$$

$k \int_{0.0075}^{0.75} \frac{d x}{x}=\int_{0}^{600} v d v \Rightarrow k=39086 \quad: \quad a=\frac{39086}{x}$

$$
x=375 \mathrm{~mm} \Rightarrow a=\frac{39086}{0.375} \Rightarrow a=104230 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a=\frac{k}{x}
$$

30 er
paij: $: \frac{d v}{d s}=-\frac{25}{50}=\cdots 1 / 2$

$$
a=-30 \mathrm{~m} / \mathrm{s}^{2} \quad a d s=v d v
$$

$$
v=a\left(\frac{d s}{d v}\right)
$$

$$
V=-30(-2)=+60 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

(1) $V=\frac{d S}{d t} \quad$ berites: $V^{2}-2500=\frac{900-2500}{400-100}(S-100)$
\qquad

$$
\left.\ddot{x}=k_{1} t-k_{2}^{2} x \quad \Rightarrow \ddot{x}+k_{2}^{2} x=k_{1} t(1) \quad \dot{j}\right) \dot{\psi}, j, 0
$$

$$
\begin{array}{ll}
a=k_{1} t-k_{2}^{2} x & x=f(t)=? \\
t=0 & \begin{cases}x=0 & a=\frac{d^{2} s}{d t^{2}}=\stackrel{s}{x} \\
\dot{x}=0 & x\end{cases}
\end{array}
$$

$$
x=x_{g}(t)+x_{p}(t)
$$

$$
x+k_{2} x=0 \Rightarrow x_{g}=A \sin k_{2} t+B \cos k_{2} t(3) \quad x_{p}=c t
$$

$$
\begin{aligned}
& \xrightarrow{(1),(4)} k_{2}^{2} c t=k_{1} t \quad x_{p}(t)=\frac{k_{1}}{k_{2}^{2}} t(5) x(t)=A \sin k_{2} t+B \cos k_{2} t+\left(\frac{k_{1}}{k_{2}^{2}}\right) t \\
& \left\{\begin{array}{l}
t=0 \\
x=0
\end{array} \rightarrow B=0\right. \\
& \left\{\begin{array}{l}
t=0 \\
x=0
\end{array} \rightarrow A k_{2}+\frac{k_{1}}{k_{2}^{2}}=0 \Rightarrow A=-\frac{k_{1}}{k_{2}^{3}} \therefore x(t)=-\frac{k_{1}}{k_{2}^{3}} \sin k_{2} t+\frac{k_{1}}{k_{2}^{2}} t\right.
\end{aligned}
$$

$$
\begin{align*}
& v^{2}=2500-\frac{16}{3}(S-100) \Rightarrow v=\sqrt{-\frac{16}{3} 5+3033} \tag{2}\\
& \xrightarrow{(1) \sim(2)} \sqrt{-\frac{16}{3} S+3033}=\frac{d S}{d t} \quad \int_{t-2}^{t} d t=\int_{S}^{400} \frac{d S}{\sqrt{-\frac{16}{3} S+3033}} \\
& \cdots \Rightarrow \Delta S=400-S_{3} \quad \begin{array}{c}
\text { s } \\
400-\Delta S
\end{array} \quad \Rightarrow \Delta S=65.3 \mathrm{~m} \\
& \text { of fuivi } u \text { : }-\frac{16}{3} s+3033=u^{2} \Rightarrow-\frac{16}{3} d s=2 u d u \quad \ldots
\end{align*}
$$

$$
\omega: \mathrm{rad} / \mathrm{s}-r p m
$$

$$
\theta * \omega=\frac{d \theta}{d t} * \alpha=\frac{d \omega}{d t} * \alpha d \theta=\omega d \omega
$$

$$
\begin{aligned}
& \omega-120\left(\frac{2 \pi}{60}\right)=\frac{(60-120(2 \pi)}{10(2 \pi)}\left(\theta-\theta_{1}\right) \\
& \quad \Rightarrow t=? \\
& \quad \omega=4 \pi-\frac{1}{10}\left(\theta-\theta_{1}\right)
\end{aligned}
$$

$$
d t=\frac{d \theta}{\omega} \Rightarrow d t=\frac{-10 d \omega}{\omega} \Rightarrow \int_{t}^{t+\Delta t} d t=\int_{\substack{120(2 \pi) \\ 60}}^{\frac{-10 d \omega}{\omega(2 \pi / 6)}} d \omega=-\frac{1}{10} d \theta \Rightarrow d \theta=-10 d \omega
$$

$$
\mathrm{PAPCO} \Longrightarrow \triangle t=6.93 \mathrm{~s}
$$

$$
\begin{aligned}
& \omega=\dot{\theta}=\frac{d \theta}{d t}:(\operatorname{coser}-\operatorname{la}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \omega}{d t}=\dot{\omega}=\ddot{\theta}=\alpha: \text { जा }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{P}, \vec{Q} \quad \frac{d(\vec{P} \pm \vec{Q})}{d t}=\frac{d \vec{P}}{d t} \pm \frac{d \vec{Q}}{d t} \\
& \frac{d\left(\overrightarrow{P_{\dot{x}}} \cdot \vec{Q}\right)}{d t}=\frac{d \vec{P}}{d t} \cdot \vec{Q}+\vec{P} \cdot \frac{d \vec{Q}}{d t} \underset{1,5}{-12 \sin (\vec{Q} \cdot \dot{Q} \rightarrow \infty} \\
& \text { 4 Jañ } \\
& \frac{d(\overrightarrow{p u})}{d t}=\frac{d \vec{p}}{d t} u+\vec{p} \frac{d u}{d t} \\
& \alpha=\operatorname{cin}^{2} \quad \frac{d(\alpha \vec{p})}{d t}=\alpha \frac{d \vec{P}}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \quad \vec{v}=\frac{d \vec{r}}{d t}: \text { ulibüss * U/vizer }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}=\frac{d \vec{v}}{d t}: \text { visicu }
\end{aligned}
$$

\qquad

Subject:
Year. Month. Date. 8)

$$
\begin{aligned}
& \Rightarrow V_{m}=\dot{\text { i }}, V_{\text {y }}=\dot{5} \\
& \vec{a}=a_{x} \vec{i}+a_{y} \vec{j} \quad \vec{a}=\frac{d}{d t}(\dot{x} \vec{i}+\dot{j} \vec{j})=\ddot{x} \vec{i}+\ddot{j} \vec{j} \\
& \Rightarrow a_{x}=\ddot{x}, \quad a_{y}=\ddot{y}
\end{aligned}
$$

- ilo $二 \operatorname{Tan} \theta$,

$$
\vec{r}=x \vec{i}+\vec{j} \quad \vec{j}=\dot{x} \vec{i}+\dot{j} \vec{j} \quad \vec{a}=\ddot{x} \vec{i}+\vec{j} \vec{j}
$$

$$
\begin{aligned}
& x=2 t^{2} \text {, } 3 t
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=\left(2 t^{2}-3 t\right) \vec{i}+\left(\frac{t^{3}}{3}-8\right) \vec{j} \\
& \vec{v}=(4 t-3) \vec{i}+\left(t^{2}\right) \vec{j} \quad \vec{a}=4 \vec{i}+2 t \vec{j} \\
& t=3 \Rightarrow v=15 \vec{i}+9 \vec{j} \Rightarrow|v|=\sqrt{15^{2}+9^{2}}=17.5 \mathrm{~m} / \mathrm{s} \\
& a=4 \vec{i}+6 \vec{j} \Rightarrow 1 a 1=\sqrt{4^{2}+6^{2}}=7.2 \mathrm{~m} / \mathrm{s}^{2} \\
& \theta_{v}=\tan ^{-1}\left(\frac{v g}{v_{x}}\right)=\operatorname{tg}^{-1}\left(\frac{\theta}{15}\right)=30.1^{\circ} \\
& \theta_{a}=\operatorname{gg}^{-1}\left(\frac{a g}{a x}\right)=\operatorname{tg}^{-1}\left(\frac{6}{4}\right)=56^{\circ}
\end{aligned}
$$

Subject，
Year．Month．Date．（9）

$$
\begin{aligned}
& \text { - is A A dorico inco, } \\
& \text { A }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\operatorname{tg} \theta & =\frac{150}{A C} \\
\Rightarrow x & =\frac{200}{3.6} t
\end{aligned} \\
& V_{0}=200 \mathrm{~km} / \mathrm{h} \\
& \dot{x}=\frac{200}{3.6} \mathrm{~m} / \mathrm{s} \quad \dot{x}=v_{x}=\frac{d x}{d t} \Rightarrow \int_{0}^{x} d x=\int_{0}^{t} \dot{x} d t
\end{aligned}
$$

$$
\begin{aligned}
& a_{y}=g=9.8 \mathrm{~m} / \mathrm{s}^{2}=d v_{y} / d t \Rightarrow d v_{y}=g d t \quad: y(t)=? \mathrm{~J} / \sqrt{ } \\
& \int_{0}^{v_{y}} d v_{y}=g \int_{0}^{t} d t \Rightarrow v_{y}=g t \quad v_{y}=\frac{d y}{d t} \Rightarrow \int_{0}^{y} d y=g \int_{0}^{t} t d t \Rightarrow y=1 / 2 g t^{2} \\
& 150=1 / 2(9.81) t^{2} \Rightarrow t=5.53 \mathrm{~s} \\
& \xrightarrow{(1)} x=C A=\frac{200}{3.6}(5.53)=307.6(\mathrm{~m}) \quad \operatorname{tg} \theta=\frac{150}{307.6} \Rightarrow \theta=26^{\circ}
\end{aligned}
$$

$$
95,93,89,85,82,78,75,67,65,60
$$

in二人⿻

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
n=0.1 \mathrm{~m} \quad v=\dot{x} \vec{i}+\dot{j} \vec{j} \\
\vec{v}, \vec{a}=? \quad a=\dot{x}+\vec{j} \vec{j}
\end{array}\right. \\
\Rightarrow \dot{\dot{n}=0.1 \mathrm{~m} / \mathrm{s} \quad \bar{w} l^{2} \Rightarrow \vec{n}=0} \\
\frac{a}{20 \gamma} \Rightarrow \vec{j}=\frac{0.1}{20(0.1)}=0.05 \mathrm{~m} / \mathrm{s}
\end{array}\right]\left(\begin{array}{l}
\vec{v}=0.1 \vec{i}+0.05 \vec{j}(\mathrm{~m} / \mathrm{s}) \\
\vec{a}=-0.025 \vec{j} \quad(\mathrm{~m} / \mathrm{s})
\end{array}\right.
$$

$$
\begin{aligned}
& x=10 y^{2} \Rightarrow \dot{x}=20 \mathrm{y} \dot{j} \Rightarrow \vec{j}=\frac{\dot{a}}{20 \gamma} \Rightarrow \dot{y}=\frac{0.1}{20(0.1)}=0.05 \mathrm{~m} / \mathrm{s} \\
& x=0.1 \Rightarrow 0.1=10 \mathrm{r}^{2} \Rightarrow \vec{y}=0.1 \\
& \dot{x}=20 \mathrm{ry} \dot{y} \Rightarrow \ddot{x}=20\left(\dot{j}^{2}+7 \ddot{y}\right) \Rightarrow=20\left(\dot{j}^{2}+7 \ddot{y}\right) \Rightarrow \ddot{y}=-\frac{\dot{y}^{2}}{y} \\
& \ddot{y}=-\frac{10.05)^{2}}{0.1}=-0.025 \mathrm{~m} / \mathrm{s}^{2} \quad\left\{\begin{array}{l}
\vec{v}=0.1 \vec{i}+0.05 \vec{j}(\mathrm{~m} / \mathrm{s}) \\
\vec{a}=-0.025 \vec{j}\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{array}\right.
\end{aligned}
$$

Subject：
Year．Month．Date． 10
$(n-t)$（clso－p

$$
* \vec{v}=v \vec{e}_{t}=\rho \dot{\theta}
$$

$$
\begin{aligned}
& \Delta S=\rho \Delta \theta \\
& v=\operatorname{li} \frac{\Delta S}{\Delta t}=\operatorname{li} \cdot \frac{\rho \Delta \theta}{\Delta t} \\
& \Delta t \rightarrow 0
\end{aligned}
$$

$\dot{\theta}: n$ groçlicien

$$
\vec{v}\left\{\begin{array}{l}
v_{t}=\rho \dot{\theta}^{\circ} \\
v_{n}=0
\end{array}\right.
$$

$$
v=\rho \frac{d \theta}{d t}=\rho \theta^{\circ}
$$

 －气صIge

$$
\begin{aligned}
& * \vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(v \vec{e}_{t}\right) \quad \vec{a}=\stackrel{\rightharpoonup}{v} \vec{e}_{t}+v \frac{d}{d t} \vec{e}_{t} \\
& \frac{d \overrightarrow{e_{t}}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\left.\overrightarrow{e_{t}}\right|_{t+\Delta t}-\left.\overrightarrow{e_{t}}\right|_{t}}{\Delta t}=\operatorname{li} \frac{\vec{\lambda}}{\Delta t \rightarrow 0} \\
& =\ell_{i} \frac{(1 \times \Delta \theta) \vec{e}_{n}}{\Delta t} \\
& \frac{d \overrightarrow{e_{t}}}{d t}=\overrightarrow{e_{n}} \operatorname{li}_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\dot{\theta} \vec{e}_{n} \\
& \Delta t \rightarrow 0 \text { 虽 }
\end{aligned}
$$

Year. Month. Date. 11

$$
a_{n}=\frac{v^{2}}{\rho} \quad a_{n}=g \cos \theta \Rightarrow g \cos \theta=\frac{v^{2}}{\rho} \Rightarrow \rho=\frac{v^{2}}{g \cos \theta}=73400 \mathrm{~m}
$$

$$
\begin{aligned}
& \vec{r}=\frac{3}{2} t^{2} \vec{i}+\frac{2}{3} t^{3} \vec{j} \quad t=2 s \quad \text { in } \\
& a_{n}=\frac{v^{2}}{\rho} * \quad \vec{v}=3 t \vec{i}+2 t^{2} \vec{j} * \vec{a}=3 \vec{i}+4 t \vec{j} * \vec{t}+2 \\
& \overrightarrow{t=2} \vec{a}=3 \vec{i}+8 \vec{j} \quad \begin{array}{l}
a \mu / v \\
\\
\\
\end{array} \vec{v} \rightarrow \theta=? \quad \vec{v}=6 \vec{i}+\vec{j} \\
& a_{n}=a \operatorname{Sin} \theta \Rightarrow a_{n}=\sqrt{73} \operatorname{Sin} 16^{\circ}
\end{aligned}
$$

$$
\Rightarrow P=41.7
$$

$$
128-123-118-113-104-99
$$

Subject:

$$
\begin{aligned}
& \vec{r}=r \vec{e}_{r} \\
& \vec{v}=\frac{d}{d t} \vec{r}=\frac{d}{d t}\left(r \vec{e}_{r}\right)=\dot{r} \vec{e}_{r}+r \frac{d}{d t} \vec{e}_{r}, \ldots \dot{\theta} \overrightarrow{e_{\theta}} \\
& \vec{v}=\dot{r} \overrightarrow{e_{r}}+r \dot{\theta} \vec{e}_{\theta} \Rightarrow " v_{r}=\dot{r}, v_{\theta}=r \dot{\theta} " \\
& \quad+\quad|v|=\sqrt{\dot{r}^{2}+(r \dot{\theta})^{2}}
\end{aligned}
$$

ชи;

$$
\begin{aligned}
\vec{a}=\frac{d \vec{r}}{d t} & =\frac{d}{d t}\left[\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}\right]=\left(\ddot{r} e_{r}+\dot{r} \ddot{e_{\theta}}\right)+\left(\ddot{r} \ddot{e_{\theta}}+r \ddot{\theta} \overrightarrow{e_{\theta}}-r \dot{\theta}^{2} \overrightarrow{e_{r}}\right) \\
\vec{a} & =(\ddot{r}-r \dot{\theta}) \overrightarrow{e_{r}}+(r \ddot{\theta}+2 \dot{r} \ddot{\theta}) \vec{e}_{\theta} \quad " \overrightarrow{a_{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \Rightarrow \overrightarrow{a_{\theta}}=(\ddot{\theta}+2 \dot{\theta})
\end{aligned}
$$

PqPCO

Subject:
Year. Month. Date. 13

$$
\begin{aligned}
& \vec{v}=R \omega \overrightarrow{e_{\theta}} \\
& \vec{a}=-R \omega^{2} \overrightarrow{\theta_{r}}+r \alpha \overrightarrow{e_{\theta}}
\end{aligned}
$$

\qquad

\qquad
\qquad

$$
\dot{\theta}=80\left(\frac{2 \pi}{60}\right)=\frac{8 \pi}{3} \quad \mathrm{rad} / \mathrm{s} \quad \ddot{\theta}=-280^{\circ} \mathrm{rpm} / \mathrm{s} \times \frac{2 \pi}{60}=-29.3 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\overrightarrow{v_{p}}=\left(-0.3 \overrightarrow{e_{r}}+\frac{2 \pi}{3} \overrightarrow{e_{\theta}}\right) \quad \overrightarrow{a_{p}}=\left(-1 / 4 \times \frac{64 \pi^{2}}{9}\right) \vec{e}_{r}+\left(-1 / 4 \times 29.3+2 . \frac{8 \pi}{3} \times(-0.31) \overrightarrow{e_{\theta}}\right.
$$

$$
\overrightarrow{a_{p}}=-17.6 \overrightarrow{e_{r}}-12.4 \overrightarrow{e_{\theta}}
$$

$$
\begin{aligned}
& \text { 位 }
\end{aligned}
$$

Subject:
Year. Month. Date. 14
 ω

$$
\ddot{x}=h \omega\left(2 \dot{\theta} \operatorname{tg} \theta\left(1+\operatorname{tg}^{2} \theta\right)\right) \Rightarrow \ddot{\sim}=a_{p}=2 h \omega^{2} g \theta\left(1+\operatorname{tg}^{2} \theta\right)
$$

$$
\begin{array}{ll}
R=90 & \hat{\beta}=60 \mathrm{rad} / \mathrm{s} \quad \overrightarrow{\mathrm{c}} \mathrm{c}^{2} \\
d=300 & \beta=30^{\circ}
\end{array}\left\{\begin{array}{l}
\dot{\mathrm{r}}, \vec{r}=? \\
\dot{\hat{\theta}}, \vec{\theta}=?
\end{array}\right.
$$

$$
\triangle A B: r^{2}=R^{2}+d^{2}-2 R d \cos \beta \quad \beta=30 \quad r=0.227 \mathrm{~m}
$$

$$
\dot{J \pi \omega} \Rightarrow 2 r \dot{r}=+2 R d \dot{\beta} \sin \beta \Rightarrow \dot{r}=3.57 \mathrm{~m} / \mathrm{s}) \quad \text { vg) }
$$

$$
\text { ت̈n, (2) } \Rightarrow \dot{r}^{2}+r \ddot{r}=R d \dot{\beta}^{2} \cos \beta \Rightarrow \ddot{r}=314.7 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\frac{r}{\sin \beta}=\frac{R}{\sin \theta} \Rightarrow & r \sin \theta=R \sin \beta \Rightarrow \ddot{\theta}=11.43^{\circ} \\
& \dot{r} \sin \theta+r \dot{\theta} \cos \theta=R \dot{\beta} \cos \beta \Rightarrow \ddot{\theta}=17.84 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

$$
\nabla_{B}=\dot{r} \vec{e}_{r}+r \dot{\theta} \overrightarrow{e_{\theta}}
$$

$$
\left|V_{B}\right|=R \dot{\beta}
$$

$$
\left\{\begin{array}{l}
R \dot{\beta} \cos \gamma=\dot{r} \\
R \dot{\beta} \operatorname{Sin} \gamma=r \dot{\theta}
\end{array}\right.
$$

: ${ }^{3}$ º ?

PAPCO \qquad -空出

Subject:
Year. Month. Date. 15

$\dot{\theta}=4 \frac{\mathrm{rad}}{\mathrm{s}} \quad \bar{u} \mathrm{c}^{\circ}$ (cow)

$$
\begin{aligned}
& \theta=0 \Rightarrow r=0 \\
& R=0.4 \mathrm{~m} \quad \theta=30^{\circ} \Rightarrow V_{c}, a_{c}=?
\end{aligned}
$$

$$
\text { ádicabi.büp } \rightarrow a_{r}=25 \mathrm{~m} / \mathrm{s}^{2} \quad, a_{e}=0
$$

$$
\begin{aligned}
& |v|=? \\
& \ddot{r}=? \\
& \ddot{\theta}=?
\end{aligned}
$$

PqPCO

$$
\begin{aligned}
& r=B D \\
& \Delta_{O B D}:(r=B D)^{2}=2 R^{2}-2 R^{2} \cos \theta \Rightarrow r=B D=0.207 \mathrm{~m} \\
& 2 r \dot{r}=+2 R^{2} \dot{\theta} \dot{\sin \theta} \Rightarrow \tilde{r}=1.55 \mathrm{~m} / \mathrm{s} \\
& \dot{r}^{2}+\ddot{r}=R^{2} \dot{\theta}^{2} \cos \theta \Rightarrow \ddot{r}=-0.83 \mathrm{~m} / \mathrm{s}^{2} \quad \dot{\theta}=4 \mathrm{rad} \mathrm{~s}, \ddot{\theta}=0 \\
& \vec{v}_{c}=\dot{r} \overrightarrow{e_{r}}+r \dot{\theta} \overrightarrow{e_{\theta}} \Rightarrow \overrightarrow{\vec{k}_{0}}=1.55 \overrightarrow{e_{r}}+0.828 \overrightarrow{e_{\theta}} \\
& \overrightarrow{a_{c}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \overrightarrow{e_{r}}+(\ddot{\theta}+2 \dot{r} \dot{\theta}) \overrightarrow{e_{\theta}} \Rightarrow \overrightarrow{a_{c}}=-4.14 \overrightarrow{e_{r}}+12.4 \overrightarrow{e_{\theta}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{a_{B}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \overrightarrow{e_{r}}+(r \ddot{\theta}+2 \ddot{r}) \overrightarrow{e_{\theta}}
\end{aligned}
$$

$$
\begin{aligned}
& R \dot{\beta}^{2}(\sin \gamma \overrightarrow{e r}-\cos \gamma \overrightarrow{e \theta})=\left(\ddot{r}-r \dot{\theta}^{2}\right) \overrightarrow{e_{r}}+(r \ddot{\theta}+2 \dot{\theta}) \overrightarrow{e_{\theta}} \\
& \left\{\begin{array}{l}
\dot{\beta}^{2} \sin \gamma=\ddot{r}-r \dot{\theta}^{2} \Rightarrow \ddot{r}=\Theta \\
\dot{B}^{2} \cos \gamma=r \ddot{\theta}+2 \ddot{r} \ddot{\theta} \Rightarrow \ddot{\theta}=\xi
\end{array}\right.
\end{aligned}
$$

dien,s जim

 ر多

$\overrightarrow{r_{A}}=\overrightarrow{r_{B}}+\vec{r}_{A / B}$
$\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{A / B}$
E-gy.ues
$\overrightarrow{a_{A}}=\vec{a}_{B}+\vec{a}_{A / B}$
$\varepsilon-\bar{z}, b$

$$
\vec{r}_{A / B}=x \vec{i}+y \vec{j} \quad \vec{v}_{A / B}=x \vec{i}+\dot{y} \vec{j} \quad \vec{a}_{A / B}=\ddot{x} \vec{i}+\ddot{j} \vec{j}
$$

$$
\begin{gathered}
\left.B_{x}^{c} \quad \begin{array}{c}
c \\
\vec{v}_{A} \\
=\vec{v}_{B}+\vec{v}_{A / B} \\
\vec{v}_{B}=\vec{v}_{C}+\vec{v}_{B / C} \\
\vec{v}_{A}=\vec{v}_{C}+\vec{v}_{A / C} *
\end{array}\right\} \\
\vec{v}_{B}+\vec{v}_{A / B}=\vec{v}_{C}+\vec{v}_{A / C} \Rightarrow \vec{v}_{C}+\vec{v}_{B / C}+\vec{v}_{A / B}=\vec{v}_{C}+\vec{v}_{A / C} \\
\vec{v}_{A / C}=\vec{v}_{A / B}+\vec{v}_{B / C} \quad \vec{v}_{1 / n}=\vec{v}_{1 / 2}+\vec{v}_{2 / 3}+\cdots+\vec{v}_{n-1 / n}
\end{gathered}
$$

$$
\begin{aligned}
R & =150 \mathrm{~m} \\
v_{A} & =54 \mathrm{~km} / \mathrm{h} \quad \overrightarrow{u n}_{6} \\
v_{B} & =81 \mathrm{~km} / \mathrm{h} \\
\vec{v}_{A_{/ B}}=?, & \vec{a}_{A / B}=?
\end{aligned}
$$

$$
\vec{V}_{A}=\frac{54}{3.6} \vec{j}
$$

$\vec{V}_{B}=\frac{81}{3.6} \vec{i}$

$$
\begin{aligned}
& \quad \frac{54}{3.6} \vec{j}=\frac{81}{3.6} \vec{i}+\overrightarrow{v_{A / B}} \Rightarrow \vec{v}_{A / B}=-22.5 \vec{i}+15 \vec{j} \mathrm{~m} / \mathrm{s} \quad\left|V_{A / B}\right|=27 \mathrm{~m} / \mathrm{s} \\
& \left.a_{A}=\vec{a}_{A}\right)_{n}=\frac{v_{A}^{2}}{\rho} \vec{i}=\frac{\left(\frac{54}{3.6}\right)^{2}}{150}, \vec{m} \quad \vec{a}_{A}=1.5 \vec{i} \mathrm{~m} / \mathrm{s}^{2} \quad \vec{a}_{A / B}=? \Rightarrow 1.5 \vec{i}=-3 \vec{i}+\vec{a}_{A / B} \Rightarrow \vec{a}_{A / B}=4.5 \vec{i} \mathrm{~m} / \mathrm{s}^{2} \\
& \overrightarrow{a_{B}}=-3 \vec{i} \quad \text { al s }
\end{aligned}
$$

PAsCO

Subject.
Year. Month. Date. 18
\qquad

$$
-V_{w} \vec{j}=6 \cdot 5(\sin 50 \vec{i}+\cos 50 \vec{j})-V_{w / R}(\sin 15 \vec{i}+\cos 15 \vec{j})
$$

$$
\left\{\begin{array}{l}
0=+6.5 \sin 15-V_{w / B} \sin 15 \Rightarrow V_{w / B}=19.24 ~ o v^{1 /} \\
-V_{w}=6.5 \cos 50-V_{w / B} \cos 15 \Rightarrow V_{w}=14.4 \text { op }
\end{array}\right.
$$

$$
205-204-201-195-189-185: \text { vv }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquadPAPCO \qquad

$$
\frac{d \vec{k}}{d t}=\vec{\omega} \times \vec{k}
$$

$$
\overrightarrow{\omega \times} \vec{i}=|\omega| 1 i \mid \sin (\omega, i)^{\vec{c}}=\omega(1)(1) \vec{j}=\omega \vec{j}
$$

$$
\begin{aligned}
& \vec{\omega} \times \vec{j}=|\omega| l j \mid \operatorname{Sin}(\omega, j) \vec{e}=\omega(1)(1)(\vec{i})=-\omega \vec{i} \\
& \frac{d \vec{e}}{d t}=\vec{\omega}_{\times} \vec{e}
\end{aligned}
$$

if $(\vec{r}=x \vec{i}+y \vec{j}) \quad \frac{d r}{d t}=(x \vec{i}+\vec{j} \vec{j})+\vec{\omega} \times \vec{r}$

$$
\begin{aligned}
& \frac{d \vec{r}}{d t}=\frac{d}{d t}(x \vec{i}+\partial \vec{j})=\dot{x} \vec{i}+\dot{j} \vec{j}+x(\vec{\omega} \times \vec{i})+\gamma(\vec{\omega} \times \vec{j}) \\
& * \vec{i}=\dot{i} \vec{i}+\dot{j} \vec{j} \\
& \frac{d r}{d t}=(\vec{x} \vec{i}+\dot{j} \vec{j})+\{\vec{\omega} \times x \vec{i}+\vec{\omega} \times \partial \vec{j}\}=\vec{r}+\vec{\omega} \times(x \vec{i}+y \vec{j})=\vec{r}+\vec{\omega} \times \vec{r} \\
& \frac{d \dot{r}}{d t}=\underbrace{(\ddot{x} \vec{i}+\ddot{j} \vec{j})}_{\vec{r}}+\vec{\omega} \times \vec{r} \\
& \overrightarrow{\dot{r}}=\dot{x} \vec{i}+\vec{j} \vec{j}=\vec{V}_{\text {rel }} \\
& \vec{r}=\vec{i} \vec{i}+\vec{j} \vec{j}=\overrightarrow{a_{r e l}}
\end{aligned}
$$

$$
\vec{\omega} \times \vec{r}=r \omega \leftarrow \beta^{i} \omega
$$

Subject.

$$
\begin{aligned}
& \overrightarrow{a_{A}}=\overrightarrow{a_{B}}+\vec{\omega} \times \vec{r}+\vec{\omega} \times(\vec{r}+\vec{\omega} \times \vec{r})+\vec{r}+\vec{\omega} \times \vec{r} \quad \text { 白 bevecpl) }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}_{A}=\vec{a}_{B}+\overrightarrow{w_{x}} \vec{r}+\vec{w} \times(\vec{w} \times \vec{r})+2 \vec{w} \times \vec{v}_{r e l}+\left.\vec{a}_{r e l}\right|_{-\vec{a}_{A / p} \sim} \frac{\frac{v_{r e}^{2}}{0}}{2} /
\end{aligned}
$$

$\left.\left.\vec{a}_{P / B}\right)_{t}+\vec{a}_{P / B}\right)_{n} \cdot$ -

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{P / B}+\vec{v}_{A / P} \quad \vec{v}_{A}=\vec{v}_{P}+\vec{v}_{A / P}
$$

* - -
- buestuo ícolis une i : r

$$
\begin{array}{lll}
\omega=5 \mathrm{rad} / \mathrm{s} & \\
\begin{array}{ll}
\dot{\omega}=-10 \mathrm{rad} / \mathrm{s}^{2} & x=0.1 \mathrm{~m} \\
& \dot{x}=0.15 \mathrm{~m} / \mathrm{s} \\
& \ddot{x}=0.5 \mathrm{~m} / \mathrm{s}^{2} \\
& \overrightarrow{v_{A}}=?
\end{array}
\end{array}
$$

PqPCO

$$
\begin{aligned}
& \vec{v}_{A}=\vec{v}_{0}+\vec{\omega}_{x} \vec{r}+\vec{V}_{r e l} \\
& \vec{v}_{0}=0 \quad \vec{\omega}=-5 \vec{k} \quad \vec{r}=\overrightarrow{O A}=x \vec{i}-0.1 \vec{j}=0.1 \vec{i}-0.1 \vec{j} \\
& \vec{V}_{\text {rel }}=0 \quad \vec{j} \vec{i} \vec{j}=\vec{j} \vec{j}=0.15 \vec{i}
\end{aligned}
$$

$$
\vec{v}_{A}=0+(-5 \vec{k}) \times(0.1 \vec{i}-0.1 \vec{j})+0.15 \vec{i}=-0.5 \vec{j}-0.5 \vec{i}+0.15 \vec{i}
$$

$$
\overrightarrow{V A}=-0.35 \vec{i}-0.5 \vec{j}
$$

$$
\begin{aligned}
& a_{A}= a_{0}+\vec{\omega} \times \vec{r}+\vec{w} \times(\vec{\omega} \times \vec{r})+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\overrightarrow{a_{r e l ~}} \\
& a_{0}= 0 \quad \vec{\omega}=10 \vec{k} \quad \vec{a}_{\text {rel }}=\dot{\text { un }}=\vec{w}+\vec{w}=\vec{x}+\vec{j}+\vec{j}=0.5 \vec{i} \\
& \overrightarrow{a_{A}}=-\vec{i}+2 \vec{j} \quad
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Subject:
Year. Month Date. 22

$\vec{\omega}=0 \quad \vec{a}_{r e l}=\vec{a}_{A}=$ íe wép $_{\rho}=\vec{\omega}$

$$
\left.=\vec{a}_{r(1}\right)_{n}=(0 \mathrm{~A})(\dot{\beta})^{2}(\vec{i})=-3.75 \vec{i}
$$

$$
\overrightarrow{a_{A}}=-33.75 i \quad \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\ddot{\theta}=\dot{\omega}+\ddot{\beta}=0
$$

$$
\begin{aligned}
& \dot{\theta}=10+5=15 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{v_{0}}=0 \quad \vec{\omega}=10 \vec{k} \quad \vec{r}=\overrightarrow{O A}=0.15 \vec{i} \quad \overrightarrow{v_{\text {nel }}}=0.75 \vec{j} \quad ; \quad \vec{j}, \quad, \quad 0,0,0,0,0 \\
& \vec{v}_{A}=1.5 \vec{j}+0.75 \vec{j}=2.25 \vec{j} \\
& \vec{v}_{A}=v_{0}+\vec{\omega} \times \vec{r}+\vec{v}_{\text {rel }} \\
& \overrightarrow{a_{0}}=0 \quad \vec{\omega}=0 \quad \vec{a}_{\text {nel }}=-3.75 \vec{i} \quad \overrightarrow{a_{A}}=-33.75 \vec{i} \\
& \vec{v}=\dot{r} \overrightarrow{e_{r}}+r \vec{e} \overrightarrow{e_{\theta}}
\end{aligned}
$$

Subject:
Year. Month. Date. 23

$$
\begin{aligned}
& \vec{v}=(0.15)(15) \overrightarrow{e_{\theta}}=2.25 \overrightarrow{e_{\theta}}=2.25 j \\
& \vec{a}=(0.15)(15)^{2} \overrightarrow{e_{r}}=-33.75 \overrightarrow{e_{r}}=-33.75 i
\end{aligned}
$$

$\alpha=15 \mathrm{rad} / \mathrm{s}^{2}$
$\dot{x}=100 \mathrm{~mm} / \mathrm{s} \quad \omega \quad \omega=12 \mathrm{rad} / \mathrm{s}$

$$
\vec{v}_{A}, \vec{a}_{A}=? \quad: 0 \geqslant 2, q \text { v, }, 5
$$

$$
\begin{aligned}
& \vec{V}_{0}=0 \quad \vec{\omega}=12 \vec{k} \mathrm{rad} / \mathrm{s} \quad \vec{r}=0 \quad \vec{v}_{\text {rel }}=\dot{x}=0.11 \vec{m} / \mathrm{s} \quad \overrightarrow{\dot{r}}=\vec{v}_{\text {rel }}=\dot{x} \vec{i}+\dot{y} \vec{j} \\
& \vec{V}_{A}=\vec{V}_{0}+\vec{\omega} \times \vec{r}+\vec{v}_{\text {rel }} \Rightarrow \vec{V}_{A}=0+0+0.1 \vec{i} \Rightarrow \quad V_{A}=0.1 \vec{i}
\end{aligned}
$$

$$
\vec{a}_{0}=0 \quad \vec{\omega}=15 \vec{k} \mathrm{rad} / \mathrm{s}^{2} \quad \vec{a}_{\text {rel }}=0=\ddot{x} \longrightarrow \text { ülúcti } \dot{x}
$$

$$
\vec{a}_{A}=0+0+0+2(12 \vec{k}) \times(0.1 \vec{i})+0 \Rightarrow \overrightarrow{a_{A}}=2.4 \vec{j}
$$

$$
\begin{aligned}
& V_{A}=V_{B}=50 \mathrm{~km} / \mathrm{L} \\
& R=150 \mathrm{~m} \\
& \text { S } B=\overrightarrow{0} \dot{0} \dot{A}=\overrightarrow{a_{n c l}}
\end{aligned}
$$

PAPCO

Subject,
Year. Month. Date. 24

$$
\begin{aligned}
& \overrightarrow{a_{A}}=0 \quad \overrightarrow{a_{B}}=\frac{V_{B}^{2}}{R} \vec{j}=\frac{\left(\frac{50}{3.6}\right)^{2}}{150} \vec{j} \quad \vec{\omega}=\left(\frac{V_{B}}{R}\right) \vec{k}=\left(\frac{50 / 3.6}{150}\right) \vec{k} \\
& \vec{\omega}=0 \quad \vec{N} \quad \vec{i} \quad \vec{r}=\overrightarrow{B A}=R=150 \vec{j}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{A}=-\frac{50}{3.6} \vec{i} \quad \vec{V}_{B}=\frac{50}{3.6} \vec{i} \quad \vec{\omega}=\left(\frac{50 / 3.6}{150}\right) \vec{k} \quad \vec{r}=150 \vec{j} \\
& \text { SËsucdim: } \left.: \frac{-50}{3.6} \vec{i}=\frac{50}{3.6} \vec{i}+\left(\frac{50 / 3.6}{150}\right) \vec{k} \times(150 \vec{j})\right)+\overrightarrow{\nabla_{\text {nel }}} \\
& \vec{v}_{\text {rel }}=-13.9 i \overrightarrow{a_{\text {nel }}}=2.58 \vec{i}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}_{0}=0 \quad \vec{\omega}=3 \vec{k} \quad \vec{\omega}=0 \quad \vec{r}=\overrightarrow{O A}=\overrightarrow{O D}+\vec{x}=0 \cdot 15 \vec{j}+x \vec{i} \\
& \vec{V}_{\text {rel }}=\dot{x}=0.4 \vec{i} \\
& \triangle O A: \operatorname{tg} \theta=\frac{x}{0.15} \Rightarrow x=0.15 \operatorname{tg} \theta \stackrel{\theta=30}{\Longrightarrow} x=0.087 \\
& \vec{a}_{\text {nel }}=\ddot{x}=(0.231)(4) \vec{i} \quad \vec{r}=\overrightarrow{O A}=0.15 \vec{j}+0.087 \vec{i} \\
& \text { : csines. } \\
& \text { * } \dot{x}=0.15 \dot{\theta}\left(1+\operatorname{tg}^{2} \theta\right)=0.15(2)\left(1+\operatorname{tg}^{2} 30\right) \\
& =0.4 \vec{i}
\end{aligned}
$$

$$
* \ddot{x}=0.3\left(2 \dot{e} \operatorname{tg} \theta\left(1+\bar{g}^{2} \theta\right)\right)=(0.231)(4) \vec{i}
$$PAPCO

(1) $\vec{R}=x \vec{i}+y \vec{j}+2 \vec{k}$
(2) $\vec{v}=\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{\sum} \vec{k}$
(3) $\vec{a}=x \vec{i}+\vec{j} \vec{j}+\ddot{z} \vec{k}$

$$
\begin{array}{ll}
v_{x}=\dot{x}, & v_{y}=\dot{j}, v_{z}=\dot{z} \\
a_{x}=\dot{x} \quad, a_{y}=j, a_{z}=\dot{z}
\end{array}
$$

(6) $\vec{a}=\underbrace{\left(\dot{r}_{r}-r \dot{\theta}^{2}\right)}_{a_{r}} \overrightarrow{e_{r}}+\underbrace{(\ddot{r}+2 \ddot{r} \dot{\theta})}_{a_{\theta}} \overrightarrow{e_{\theta}}+\underbrace{\ddot{z}}_{a_{2}} \vec{k}$

こiviner B, wim: R, 子*

[

PAPCO \qquad

Subject，
Year．Month．Date． 26

$$
\begin{aligned}
& \text { (7) } \vec{R}=R \overrightarrow{e_{R}} \quad \vec{v}=\dot{R} \overrightarrow{e_{R}}+R \frac{d \overrightarrow{e_{R}}}{d t} \quad\left(\frac{d \vec{e}}{d t}=\vec{\omega} \times \vec{e}_{R}\right) \\
& \left(\vec{\omega}=\dot{\theta} \vec{k}-\dot{\phi} \vec{e}_{\theta}\right)\left(\vec{k} \perp \overrightarrow{e_{\theta}}, \vec{k} \cdot \overrightarrow{e_{\phi}}, \overrightarrow{e_{R}} \text { 㨁场, },\right) \\
& \left(\vec{k}=\sin \varphi \vec{e}_{R}+\cos \varphi \overrightarrow{e_{\varphi}}\right) \vec{\omega}=\dot{\theta}\left(\sin \varphi \vec{e}_{R}+\cos \varphi \overrightarrow{e \phi}\right)-\dot{\phi} \overrightarrow{e_{\theta}} \\
& \frac{d \overrightarrow{e_{R}}}{d t}=\left|\begin{array}{ccc}
\overrightarrow{e_{R}} & \overrightarrow{e_{\theta}} & \overrightarrow{e_{\varphi}} \\
\dot{\sin \phi} \varphi & -\dot{\varphi} & \dot{\cos \varphi} \\
1 & 0 & 0
\end{array}\right| \Rightarrow \frac{d \overrightarrow{e_{R}}}{d t}=\dot{\dot{\theta}} \cos \varphi \overrightarrow{e_{\theta}}+\dot{\varphi} e_{\varphi}
\end{aligned}
$$

（8）

$$
\begin{aligned}
& \vec{v}=\dot{R} \overrightarrow{e_{R}}+R \dot{\theta} \cos \varphi \overrightarrow{e_{\theta}}+R \dot{\varphi} \overrightarrow{e_{\varphi}} \quad\left[V_{R}=\dot{R}, V_{\theta}=R \dot{\theta} \cos \varphi, V_{\varphi}=R \varphi \cdot\right. \\
& \vec{a}= \ddot{R} \vec{e}_{R}+\dot{R}\left(\dot{\theta} \cos \varphi \overrightarrow{e_{\theta}}+\dot{\varphi} \overrightarrow{e_{\varphi}}\right)+\dot{R} \dot{\theta} \cos \varphi \overrightarrow{e_{\theta}}+R \ddot{\theta} \cos \varphi \overrightarrow{e_{\theta}}-R \dot{\theta} \dot{\varphi} \sin \varphi \overrightarrow{e_{\theta}}+R \dot{\theta} \cos ^{s} \varphi(\\
&\left.-\dot{\theta} \cos \varphi \overrightarrow{e_{R}}+\dot{\theta} \sin \varphi \overrightarrow{e_{\varphi}}\right)+\dot{R} \dot{\varphi} \overrightarrow{e_{\varphi}}+R \ddot{\varphi} \vec{\varphi}+R \dot{\varphi}\left(-\dot{\varphi} \overrightarrow{e_{R}}-\dot{\theta} \sin \varphi \vec{e}_{\theta}\right) \\
& \frac{d \overrightarrow{e_{\theta}}}{d t}=\left|\begin{array}{ccc}
\overrightarrow{e_{R}} & \overrightarrow{e_{\theta}} & \overrightarrow{e_{\varphi}} \varphi \\
0 & -\dot{\varphi} & \dot{\theta} \cos \varphi \\
0 & 0
\end{array}\right|=\left(-\dot{\theta} \cos \varphi \overrightarrow{e_{R}}+\dot{\theta} \sin \varphi \overrightarrow{e_{\varphi}}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\vec{a}_{R}=\vec{R}-R \dot{\theta}^{2} \cos ^{2} \varphi-R \dot{\varphi}^{2} \\
\overrightarrow{a_{\theta}}=2 \vec{R} \dot{\theta} \cos \varphi+R \ddot{\theta} \cos \varphi-R \dot{\theta} \dot{\varphi} \sin \varphi \\
\overrightarrow{a_{\varphi}}=2 \dot{R} \dot{\varphi}+R \dot{\theta}^{2} \operatorname{Sin} \varphi \cos \varphi+R \ddot{\varphi}
\end{array}\right.
$$

PAPCO

$$
v_{r}=v_{x} \cos \theta+v_{y} \sin \theta+v_{z}(c)
$$

$$
V_{\theta}=-V_{u} \sin \theta+V_{y} \cos \theta+V_{z}(0)
$$

$$
V_{z}=V_{x}(0)+V_{y}(0)+V_{z}(1)
$$

$$
\left[\begin{array}{l}
v_{r} \\
v_{\theta} \\
v_{z}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]}_{v=0}\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] \Rightarrow\left\{v_{r_{0 z}}=\left[T^{e}\right]\{\mathrm{v}\}_{\text {viz }}\right.
$$

$$
\vec{F}=4 \vec{i}-7 \vec{j}+5 \vec{k}, \theta=30^{\circ} \Rightarrow F(1)^{\prime}-\omega=?
$$

$$
\begin{aligned}
& v_{R}=v_{r} \cos \varphi+v_{\theta}(0)+v_{2} \sin \varphi \\
& v_{\theta}=V_{r}(0)+v_{\theta}(1)+v_{2}(0) \\
& v_{\varphi}=-v_{r} \sin \varphi+v_{\theta}(0)+v_{2} \cos \varphi
\end{aligned}
$$

$$
\left\{\begin{array}{l}
v_{R} \\
v_{\theta} \\
v_{\varphi}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos \varphi & 0 & \sin \varphi \\
0 & 1 & 0 \\
-\sin \varphi & 0 & \cos \varphi
\end{array}\right]\left\{\begin{array}{l}
v_{r} \\
v_{\theta} \\
v_{z}
\end{array}\right\} \Rightarrow\{v\}_{R \varphi \theta}=\left[T^{\varphi}\right]\left\{v_{v}\right\}_{r e z}
$$

PAsCO

Subject,
Year. Month. Date. 2,8

$$
\{v\}_{\text {Req }}=\left[T^{\varphi}\right]\left[T^{0}\right]\{v\}_{x \cdot y z}
$$

$$
\{v\}_{x y z}=\left[T^{e}\right]^{-1}\{v\}_{r e z}
$$

$$
\{v\}_{k y z}=\left[T^{\ominus}\right]^{-1}\left[T^{\varphi}\right]^{-1}\{v\}_{R \in q}
$$

$$
183,181,178,176,173=0
$$

$$
v^{2}
$$

$$
\begin{aligned}
& l=1.2 \mathrm{~m} \quad \beta=45^{\circ} \quad \text { Jo } \quad \mathrm{ru} \\
& \dot{\sigma}=2 \mathrm{rad} / \mathrm{s} \quad \dot{\beta}=1.5 \mathrm{rad} / \mathrm{s} \quad \dot{l}=0.9 \mathrm{~m} / \mathrm{s} \quad \text { (cte) } \\
& a_{R}=a_{\theta}, a_{\varphi}=?
\end{aligned}
$$

$$
\begin{aligned}
& a R=\ddot{R}-R^{2} \cos ^{2} \varphi-R \dot{\varphi}^{2} \\
& R=\rho=1.2 \mathrm{~m} \quad \dot{R}=0.9 \mathrm{~m} / \mathrm{s}=\dot{l} \quad \ddot{R}=\|=0 \\
& \dot{\theta}=\dot{\gamma}=2 \mathrm{rdd} \\
& \varphi=\frac{\pi}{2}-\beta=45^{\circ} \quad \ddot{\theta}=\ddot{\gamma}=0 \\
& a_{R}=-5.1 \quad-\dot{\beta}=-1.5 \frac{\mathrm{rdd}}{\mathrm{~s}} \quad \ddot{\varphi}=-\ddot{\beta}=0 \\
& a_{\theta}=7.6 \quad a \varphi=-0.3 \quad \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

PasCO

Year. Month. Date. 29
\qquad

$$
\vec{R}=l \cos \varphi \overrightarrow{e_{r}}+l \sin \varphi \vec{k} \quad \vec{v}=l \cos \varphi \overrightarrow{e_{r}}+l \rho \dot{\sin \varphi \overrightarrow{e_{r}}+l \cos \varphi \dot{\theta} \overrightarrow{e_{\theta}}+l \sin \varphi \vec{k}+l \dot{\varphi} \cos \varphi k \rightarrow}
$$

$$
\vec{a}=\ddot{l} \cos \varphi \overrightarrow{e r}-\dot{\rho} \dot{\sin \varphi} \overrightarrow{e_{r}}+\dot{l} \dot{\theta} \cos \varphi \overrightarrow{e_{\theta}}-\left\{\dot{l} \dot{\rho} \sin \varphi \overrightarrow{e_{r}}+\rho \dot{\rho} \sin \varphi \overrightarrow{e_{r}}+\rho \dot{\varphi}^{2} \cos \varphi \overrightarrow{e_{r}}+\right.
$$

$\left.l \dot{\varphi} \dot{\theta} \sin \varphi \overrightarrow{e_{\theta}}\right\}+\left\{l \dot{\theta} \cos \varphi \overrightarrow{e_{\theta}}-l \dot{\theta} \varphi \dot{\sin } \varphi \overrightarrow{e_{\theta}}+l \vec{\theta} \cos \varphi \overrightarrow{e_{\theta}}-l \dot{\theta}^{2} \cos \varphi \overrightarrow{e_{r}}\right\}+$

$$
\{\ddot{l} \sin \varphi \vec{k}+\dot{l} \dot{\varphi} \cos \varphi \vec{k}\}+\left\{\dot{\rho} \dot{\varphi} \cos \varphi \vec{k}+l \ddot{\varphi} \cos \varphi \vec{k}-l \dot{\varphi}^{2} \sin \varphi \vec{k}\right\}
$$

pisuntisobưン

$$
\begin{aligned}
& {\left[T^{\varphi}\right]=\left[\begin{array}{ccc}
\cos \varphi & 0 & \sin \varphi \\
0 & 1 & 0 \\
-\sin \varphi & 0 & \cos \varphi
\end{array}\right] \Rightarrow\left[T^{\varphi}\right]^{-1}=\left[\begin{array}{ccc}
\cos \varphi & 0 & -\sin \varphi \\
0 & 1 & 0 \\
\sin \varphi & 0 & \cos \varphi
\end{array}\right]} \\
& \varphi=45^{\circ} \Rightarrow\left[T^{P}\right]^{-1}=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\
0 & 1 & 0 \\
\frac{\sqrt{2}}{2} & 0 & \sqrt{2}
\end{array}\right] \quad\left\{\begin{array}{c}
a_{r} \\
a_{\theta} \\
a_{2}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\
0 & 1 & 0 \\
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}
\end{array}\right\}\left\{\begin{array}{c}
-5.1 \\
7.6 \\
-0.3
\end{array}\right\} \\
& a_{r}=\left(\frac{\sqrt{2}}{2}\right)(5.1)+(0)(7.6)+\left(\frac{\sqrt{2}}{2}\right)(0.3) \\
& a_{0}=0(5.1)+1(7.6)-(0)(0.3) \\
& a_{2}=\frac{\sqrt{2}}{2}(-5.1)+0(7.6)-\left(\frac{\sqrt{2}}{2}\right)(0.3)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=\ddot{\sigma} \mid r=l \cos \varphi \sin \theta \\
a_{2}=\ddot{z} \quad z=l \sin \varphi
\end{array}
\end{aligned}
$$

$$
\omega
$$

$$
z=z_{0} \sin 2 \pi n t
$$

$$
\left.a_{A}\right)_{\text {max }}=?
$$

$$
\begin{aligned}
& a_{r}=\ddot{r}-r \ddot{\theta}^{2} \quad a_{\theta}=r \ddot{\theta}+2 r \dot{\theta} \quad a_{2}=\ddot{z} \\
& r=r \quad \dot{r}=0 \quad \ddot{r}=0 \quad \dot{\theta}=\omega \quad \bar{\omega}_{0} \quad \ddot{\theta}=\dot{\omega}=0 \\
& \ddot{z}=
\end{aligned}
$$

$$
\begin{aligned}
& z=2 \cdot \sin 2 \pi n t \Rightarrow i=2 \pi n z \cdot \cos 2 \pi n t \Rightarrow \ddot{z}=-z_{0}(2 \pi n)^{2} \sin 2 \pi n t \\
& a_{r}=-r(\omega)^{2} \quad a_{\theta=0} \quad a_{z}=-z \cdot(2 \sin)^{2} \sin 2 \pi n t \\
& \left|a_{n}\right|=\sqrt{\left(r^{2} \omega^{4}\right)+\left(2 \cdot \cdot^{2}(2 n n)^{4} \operatorname{Sin}^{2} 2 \pi n t\right)} \Rightarrow a_{\max }=\sqrt{r^{2} \omega^{4}+z_{0}^{2}(2 \pi n)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\theta}=\omega \quad=\quad=\frac{R}{2}(1-\cos 2 \theta) \\
& \theta=\frac{\pi}{4} \mathrm{rad} \Rightarrow \quad v=?
\end{aligned}
$$

$V_{R}=\dot{R} \quad V_{\theta}=R \dot{\theta} \operatorname{Cos} \varphi \quad V_{\varphi}=R \dot{\varphi}$

$$
\begin{aligned}
& R=R \Rightarrow \dot{R}=0 \text { U, } \dot{0} \dot{\theta}=\dot{\theta}=\omega= \\
& \sin \varphi=\frac{z}{R}=\frac{h}{2 R}(1-\cos 2 \theta) \quad \cos \varphi=\frac{r}{R}=\frac{\sqrt{R^{2}-z^{2}}}{R}=\sqrt{1-\left(\frac{z}{R}\right)^{2}} \\
& \dot{\varphi} \cos \varphi=\frac{h}{2 R}(+2 \dot{\theta} \cdot \sin 2 \theta) \Rightarrow \dot{\varphi}=\frac{\frac{h / R}{R} \dot{\theta} \sin 2 \theta}{\cos \varphi}-\theta=\frac{\pi}{4} \\
& \cos \varphi=\sqrt{1-\left(\frac{h}{2 R}\right)^{2}}
\end{aligned}
$$

PAsCO

Subject：
Year．Month．Date． 37

$$
\dot{\varphi}=\frac{\omega h / R}{\sqrt{1-\left(\frac{R}{2 R}\right)^{2}}} \quad v_{R}=0 \quad v_{\theta}=R \omega \sqrt{1-\frac{h^{2}}{4 R^{2}}} \quad v_{\varphi}=\frac{\omega h}{\sqrt{1-\frac{h^{2} / 4 R^{2}}{}}}
$$

\qquad
＂hy：Jubó

$$
\begin{aligned}
& r_{B}+l_{1}+r_{A}=l \\
& r_{A}+r_{B}=l_{2} \\
& \nabla_{A}+r_{B}=0 \\
& a_{A}+a_{B}=0
\end{aligned}
$$ ～ば楊（2）

$$
\begin{aligned}
& H-r_{B}+l_{2}+r_{A}=l_{B} \Rightarrow r_{A}-r_{B}=l_{3} \\
& V_{A}-V_{B}=0 \Rightarrow V_{A}=V_{B} \\
& a_{A}-a_{B}=0 \Rightarrow a_{A}=a_{B}
\end{aligned}
$$ PAPCO

Subject:
Year. Month. Date. 32

$$
\begin{aligned}
& \left(\partial_{B}-l_{1}\right)+l_{2}+\left(\partial_{B}-l_{3}\right)+l_{4}+H-n=l \Rightarrow 2 \jmath_{B}-m=C \\
& 2 v_{B}-V_{A}=\cdots \Rightarrow v_{A}=2 v_{B} \nRightarrow a_{A}=2 a_{B} \Rightarrow a_{B}=0.022 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& x \dot{x}+y \dot{y}=0 \Rightarrow x V_{B}+y V_{A}=0 \Rightarrow V_{A}=\frac{-x}{J} V_{B} \Rightarrow V_{B}=-\frac{0.917}{0.4}(0.3)=-0.69 \\
& \dot{x}^{2}+x \ddot{x}+\dot{j}^{2}+y \ddot{y}=0 \Rightarrow V_{B}^{2}+x a_{B}+V_{A}^{2}+y_{A}=0 \\
& \Rightarrow a_{B}=\frac{\left(V_{A}^{2}+v_{B}^{2}+y_{A}\right)}{x} \Rightarrow a_{B}=-6 \mathrm{~m} / \mathrm{s}^{2} \\
& x=0.4 N \Rightarrow y=0.917
\end{aligned}
$$

220. 210.21
c. 208 :
\qquad

$$
237 \cdot 232 \cdot 226 \cdot 224: 050
$$

\qquad
\qquad
\qquad
PAPCO \qquad

$$
\sum \vec{F}=m \vec{a} \quad: \text { 谄 }
$$

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \\
& \sum F_{i y}=m a_{y}
\end{aligned} \quad r-e\left\{\begin{array}{l}
\sum \vec{F}_{r}=m a_{r} \\
\sum F_{e}=m a_{e}
\end{array}\right.
$$

$$
\begin{aligned}
& m_{1} a_{1}=f \quad, m_{2} a_{2}=f, \ldots
\end{aligned}
$$

Subject,
Year. Month. Date. 34
\qquad
\qquad
-iasob -3
4 ? 20.4
\qquad
\qquad
\qquad

$$
m_{i, j,}=25 \mathrm{~kg} \quad F_{A}, F_{B}=\text { ? }
$$

$a=2 g \quad$ jicilis "Eis vien món.

\qquad

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \Rightarrow-m g \sin \alpha+F_{A} \cos \alpha=m a_{x} \\
& F_{A} \cos \alpha-m g \sin \alpha=m(2 g) \Rightarrow F_{A}=574(N)
\end{aligned}
$$

$$
\sum F_{y=m} a_{y} \Rightarrow F_{B}-m g \cos \alpha-F_{A} \sin \alpha=m a_{y} \Rightarrow F_{B}=385(\mathrm{~N})
$$

PAPCO \qquad

$$
\begin{aligned}
& T=T \Rightarrow F=2 T \\
& F_{n}=m a_{x} \Rightarrow T+2 T-m g \cdot \sin x=m a_{x} \\
& 3(250)-100(9.81) \sin \left(5^{\circ}\right)=100 a_{x} \Rightarrow a_{x}=4.96 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\qquad

$$
\begin{align*}
& \sum f_{t}=m a_{t} \Rightarrow m g \sin \beta=m a_{t} \Rightarrow a_{t}=g \sin \beta \\
& \sum f_{n}=m a_{n} \Rightarrow m g \cos \beta=m \frac{\nabla^{2}}{R} \Rightarrow v_{B}^{2}=R g \cos \beta \tag{1}
\end{align*}
$$

\qquad
(2) $\left.v_{B}^{2}=v_{0}^{2}+2 R g(1-\cos \beta) \Rightarrow(1)=2\right) \Rightarrow R g \cos \beta=v_{0}^{2}+2 R g(1-\cos \beta)$

$$
\left\{\cos \beta=\frac{2}{3}+v_{0}^{2} / 3 R g\right\} \quad \frac{v_{0}^{2}}{3 R g} \leqslant 1 / 3 \Rightarrow v_{0}^{2} \leqslant R g
$$

Subject.
Year. Month. Date. 36

$$
5 \pi \sim 2 \stackrel{5}{=} / \bar{j}
$$

$\sum F_{r=m} a_{n}$

$$
\sum F_{\theta}=m a_{\theta} \Rightarrow F=m(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \Rightarrow F=2(0.375(-2)+2(0.1)(3)) \Rightarrow F=-0.3 \mathrm{~N}
$$

$$
\sum_{\text {framar }} \Rightarrow-T=2\left(\ddot{r}-r \dot{\theta}^{2}\right)=2\left(0-0.375(3)^{2}\right) \Rightarrow T=6.75 \mathrm{~N}
$$

PAsCO

$$
\begin{aligned}
& m p=2 \mathrm{~kg} \mu=0 \\
& \dot{r}=0.1 \mathrm{~m} / \mathrm{s} \quad r=375 \mathrm{~mm} \\
& \omega=3 \mathrm{rad} / \mathrm{s} \quad \dot{\omega}=-2 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sum F_{x j}=0 \Rightarrow & N=\rho g(l-x) 0 \\
\sum F_{y}=m a_{y}= & T_{-} F=\rho(l-x) a_{y} \quad " F=F N \\
& T_{-} F(\rho g(l-x))=\rho(l-x) a_{y} \text { (2) }
\end{aligned}
$$

1^{\top}
3
3
3

$$
a_{y}=a_{x}-a
$$

$$
\sum F_{x}=m a_{x} \Rightarrow \rho g x_{-} T=p x a_{m}
$$

$$
T=p_{x}(g-a)
$$

$$
\xrightarrow{(4),(2)} \rho x(g-a)-f \rho g(l-x)=p(l-x) a
$$

$$
\Rightarrow a=\frac{9}{l} x-\frac{g}{f}(l-x)(5)
$$

$a d x=v d v \ldots$ cive a 方 \sim -

$$
\Rightarrow v^{2}=\frac{9}{l}\left(l^{2} b^{2}\right)-\frac{29 l}{f}(l-b)+\frac{9}{f}\left(l^{2}-b^{2}\right)
$$

Eng : $\sum F_{x=0} \neq b=\frac{R l}{1+\ell}$
$\Rightarrow V=\sqrt{\frac{g l}{(1+R)}} \quad$ Cimiverociscicis Max
 PapCO

Subject:
Year. Month. Date. 38

$$
m_{p}=2 \mathrm{~kg}
$$

Cósing=u

$$
\theta=0=\left\{\begin{array}{l}
\ddot{\theta}=50 \frac{2,}{\tilde{z}^{2}} \cdot(c \omega) \\
\ddot{\theta}=200 \quad \frac{2,}{s^{2}}(c c \omega)
\end{array}\right.
$$

N N N N

Year. Month. Date. 39

\qquad
"

$$
\begin{aligned}
& \sum F_{r}=m a_{n} \\
& -p+N \cos \gamma=m \cdot\left(\ddot{r}-r \dot{\theta}^{2}\right) \\
& \sum F_{\theta}=m a_{\theta} \\
& F_{+N}+\sin \gamma=m \cdot(r \ddot{\theta}+2 \dot{r} \dot{\theta})
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \text { op or : } r^{2}=e^{2}+R^{2}-2 e R \cos \beta \quad \frac{R}{\operatorname{Sin} \theta}=\frac{r}{\operatorname{Sin} \beta} \Rightarrow r=f(\theta) \\
& \dot{\theta}=\omega \Rightarrow \ddot{\theta}=0 \\
& \Rightarrow\left\{\begin{array}{l}
N= \\
R=-m_{0} e \omega^{2} \frac{R^{2}}{R^{2}-e^{2}}-\frac{p e}{\sqrt{R^{2}-e^{2}}}
\end{array}\right.
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
PAsCO \qquad

$$
d u=\vec{F} \cdot \overrightarrow{d r}
$$

$$
\begin{aligned}
& d u=F d S+F d S \quad(d S=R d \theta) \\
& d u=F(2 R) d \theta \Rightarrow d u=M d \theta \\
& d u=\vec{M} \cdot \overrightarrow{d \theta}
\end{aligned}
$$PAsCO

Subject,
Year.

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t}=\frac{d}{d t}(m \vec{v}) \\
& d u=\vec{F} \cdot \overrightarrow{d r}=m \vec{a} \cdot d \vec{r}=m a t d S \\
& \int_{1}^{2} d u=m \int_{v_{1}}^{v_{2}} v d v \Rightarrow U_{1 \cdot 2}=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right) \\
& T=\frac{1}{2} m v^{2} \Rightarrow U_{1-2}=T_{2}-T=\Delta T \quad
\end{aligned}
$$

* こ. Sj,
: Sijuerós, Sur-
phi \vec{a} u, coc

juno

$$
\begin{aligned}
& \vec{k}=-15 \vec{i}+10 \vec{j}+15 \vec{k} \\
& v_{A}=0 \rightarrow V_{B}=?
\end{aligned}
$$

PAPCO

Subject.
Year. Month. Date. 42

$$
\begin{aligned}
& u=\Delta T \\
& \text { 1: A pecs 2: B ness }
\end{aligned}
$$

$$
\begin{aligned}
& u_{1,2}=\int(-15 d x+10 d y-4.6 d z) \\
& U_{A-B}=\int_{0.6}^{0}-15 d x+\int_{0}^{0.8} 10 d r+\int_{0.5}^{0}-4.6 d z \Rightarrow U_{A-B}=19.3 \mathrm{~J} \\
& \Delta T=\frac{1}{2} m\left(V_{B}^{2}-V_{A}^{2}\right) \Rightarrow \Delta T=V_{B}^{2} \longrightarrow V_{B}^{2}=19.3 \Rightarrow V_{B}=4.39
\end{aligned}
$$

$$
\begin{aligned}
& \text { - <er } \\
& u \vec{\nabla}=\frac{\partial}{\partial x} \vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial}{\partial z} \vec{k} \|
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{F_{c}}=\vec{\nabla} \varphi \Rightarrow f_{n} \vec{i}+f_{y} \vec{j}+f_{2} \vec{k}=-\left(\frac{\partial \varphi}{\partial x} \vec{i}+\frac{\partial \varphi}{\partial y} \vec{j}+\frac{\partial \varphi}{\partial z} \vec{k}\right) \\
& d u=F_{x} d x+f_{1} d y+F_{z} d_{z} \quad \| \overrightarrow{E_{c}}=-\vec{\nabla} V, \\
& d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y+\frac{\partial v}{\partial z} d z \quad \text { júz } \\
& d u=f_{x} d x+f_{y} d y+f_{z} d z=-\left(\frac{\partial v}{\partial x} \cdot \vec{u}+\frac{\partial v}{\partial y} d \vec{y}+\frac{\partial v}{\partial z}(\vec{R})\right. \\
& d u=-d v
\end{aligned}
$$

PAPCO

$$
d u=-d v \quad \vec{\nabla} \times \overrightarrow{F_{c}}=0
$$

$$
\text { * ©urtictcsin -mg } \vec{k} \quad *
$$

$$
\begin{aligned}
& u=\int(-m g j) \cdot(d x \vec{i}+d y \vec{j}) \\
& u=-\int_{y_{1}}^{r_{2}} m g d y=-m g h=u_{g}
\end{aligned}
$$

$f^{\prime} f_{1}^{\prime}=m g\left(h_{2}-h_{1}\right)=-\left(v_{2}-v_{1}\right)$

$$
\begin{aligned}
& \Rightarrow V_{g}=m g h \quad \\
& \Rightarrow V_{e}=\frac{1}{2} k x^{2}
\end{aligned}
$$

Subject:
Year. Month. Date. $4 / 4$

$$
\begin{aligned}
U=\Delta T & \Rightarrow U_{g}+U_{e}+U_{n c}=\Delta T \\
& -\Delta V_{g}-\Delta V_{e}+U_{n c}=\Delta T \Rightarrow U_{n c}=\Delta T+\Delta V_{g}+\Delta V_{e}
\end{aligned}
$$

$$
\Delta T=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)
$$

$$
\Delta v_{g}=m g\left(h_{2}-h_{1}\right)
$$

$$
\Delta v_{e}=1 / 2 k\left(x_{2}^{2}-x_{1}^{2}\right)
$$

diEjópery n

$$
P=\frac{\cdots(\dot{\omega}), b^{\prime}}{\dot{j i}}=\frac{\vec{F} \cdot \overrightarrow{d r}}{d t} \Rightarrow \vec{p}=\vec{F} \cdot \vec{v}+\cdots
$$

$$
p=\frac{\vec{M} \cdot \overrightarrow{d e}}{d t} \Rightarrow \vec{P}=\vec{M} \cdot \vec{\omega} \quad \text { Épisesionesois: } p=M \omega
$$

-

PAPCO

$$
\begin{aligned}
& E_{m}=T+V_{p} \\
& \text { O. } \\
& \Delta T+\Delta V g+\Delta V e=0 \Rightarrow \Delta(T+V)=0 \Rightarrow \Delta E_{m=0} \\
& E_{M}=\text { cte }
\end{aligned}
$$

Subject:
Year. Month. Date. 45

(2) $U_{n c}=\Delta T+\Delta V_{g}+\Delta V_{e} \Rightarrow U_{n c}=U_{N}=0$

(4)

$$
\Delta V_{g}=m g\left(h_{2}-R_{1}\right) \Rightarrow h_{1}=0, h_{2}=R \operatorname{Sin} \theta=0.15 \times \frac{\sqrt{2}}{2}
$$

(5) $\Delta v_{g}=0.25(9.8)\left(\frac{0.15 \sqrt{2}}{2}-0.6\right) \quad$ (virh iv

(2) coscisis.
"ibluophoocus: مoiviness $\Delta v g$..

$$
\left.\left.\Delta v_{g}=\Delta V_{g}\right)_{A}+\Delta V_{g}\right)_{B} \Rightarrow \Delta V_{g}=m g\left(h_{2}-h_{1}\right)_{A}+m g\left(h_{2}-h_{1}\right)_{B}
$$

$$
A:\left\{\begin{array}{l}
-l_{1} \cos 60^{\circ}=h_{1} \\
-h_{1}=h_{2}
\end{array} \quad B:\left\{\begin{array}{l}
h_{1}=-\left(l_{1} \cos \theta_{1}+l_{2} \cos \gamma\right) \\
h_{2}=-\left(l_{1}+l_{2}\right)
\end{array}\right.\right.
$$

$$
\triangle A B=\frac{l_{2}}{\Delta \sin }=\frac{l_{1}}{\sin \theta}=\frac{l_{1}}{\sin \gamma} \Rightarrow \gamma v_{g}=-0.27 \mathrm{mg}
$$

(4) $\Delta v_{e}=0 \quad$ tir sig, acci

$$
\begin{aligned}
& \left.\left.\Delta T=T_{2}-T_{1} x^{0}=T_{2}\right)_{A}+T_{2}\right)_{B} \Rightarrow \Delta T=\frac{1}{2} m V_{2 A}^{2}+\frac{1}{2} m V_{2 B}^{2} \\
& Y_{B}=l_{1} \cos \theta+l_{2} \cos \gamma \Rightarrow j_{B}=-l_{1} \theta^{2} \sin \theta-l_{2} \gamma \sin \gamma=0=V_{2 B}
\end{aligned}
$$

(5) $\Delta T=\frac{1}{2} m V_{2 A}^{2}$

$$
\xrightarrow{(1)} v^{5 i_{2}} 0=\frac{1}{2} m V_{A}^{2}-0.27 \mathrm{mg}+0 \Rightarrow V_{2 A}=2.3 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& U_{n c}=\Delta T: \Delta V g+\Delta V e \quad\left\{\begin{array}{l}
1: \theta=60^{\circ} \\
2: \theta=0^{\circ}
\end{array} \quad: \quad\right. \text { Poser } \\
& U_{n C}=U_{R_{1}, R 2}+U_{N}=0+0_{x}+0
\end{aligned}
$$

$$
\begin{aligned}
& U_{n c}=\Delta T+\Delta V_{g}+\Delta V_{0}^{1} \Rightarrow U_{n C}=U_{N}+U_{f}=F(A C-B C) \quad\left\{\begin{array}{l}
1: A \\
2: B
\end{array}\right. \\
& \Delta T=\frac{1}{2} m V^{2}\left(V_{B}-V_{A}^{2}\right)=0.1 V_{B}^{2} \Rightarrow \Delta V_{g}=m g\left(h_{2}-h_{1}\right)
\end{aligned} \begin{aligned}
& \Delta V_{g}=0.2(9.8)(0.25-0) \Rightarrow V_{B}=4.48 \mathrm{~m} / \mathrm{s} \\
& h_{2}=0.25
\end{aligned}
$$

1VF-168-14F-157-10--143-114-129-11F-116-11-105: نر :

* シ̈ァ(j)

> sidecis.ab, !

$$
\mu_{K}=0.3
$$

$S=? \quad b c$

$$
\sum F_{r y}=0 \Rightarrow N-m_{1} g \cos \theta \Rightarrow N=m_{1} g \cos \theta
$$

$$
F_{K}=\mu_{k}(N)=\mu_{k} m_{1} g \cos \theta
$$

$$
\begin{aligned}
& \text { (2) } U_{n C}=\left(\mu \pi m_{i} g \cos \theta\right) S \\
& \therefore=\Delta T=T_{2}-T_{1}=0 \\
& \left.\left.\left.\Delta v g=\Delta v_{g}\right)_{1}+\Delta v g\right)_{2}+\Delta v g\right)_{3} \\
& \text { PAPCO } \frac{m_{1}\left\{\begin{array} { l }
{ h _ { 1 } = 0 } \\
{ h _ { 2 } = S \operatorname { s i n } \theta }
\end{array} \quad m _ { 2 } \left\{\begin{array} { l }
{ h _ { 1 } = 1 . 2 m } \\
{ h _ { 2 } = 0 }
\end{array} \quad \text { m3 } \left\{\begin{array}{l}
h_{1}=1.2 \mathrm{~m} \\
h_{2}=-\left(S_{1}-1.2\right)
\end{array}\right.\right.\right.}{S_{1}=2 S=-(2 S-1.2)} \\
& S=2.25 \mathrm{~m}
\end{aligned}
$$

$$
m=10 \mathrm{~kg} \quad x_{1}=0 \quad(x=1 \mathrm{~m})
$$

$\mathrm{V}_{\mathrm{g}}=$

$$
V_{\operatorname{man}}=? \quad x=? \quad: V_{\operatorname{mox}}=
$$

$$
X_{\max }=?
$$

$$
\left\{\begin{array}{l}
1: x=1 m \\
2: x=x_{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { (1) } U_{n c}=\Delta T+\Delta V g+\Delta V e \quad U_{n C}=C \\
& \text { (3) } \Delta T=\frac{1}{2} m\left(v_{2}^{2}-V_{1}^{2}\right)=\frac{1}{2} m V_{2}^{2}=5 V_{2}^{2}
\end{aligned}
$$

$$
\begin{gather*}
\Delta v g=m g\left(h_{2}-h_{1}\right)\left\{\begin{array}{l}
h_{1}= \\
h_{2}=-\left(x_{2}-\right.
\end{array}\right. \\
\Delta v_{e}=\frac{1}{2} k\left[\left(x_{2}-1\right)^{2}-0\right]=225\left(x_{2}-1\right)^{2} \tag{5}
\end{gather*}
$$

(4) $\Delta v g=m g\left(1-x_{2}\right)$

$$
\begin{align*}
\xrightarrow{(7)} \xrightarrow{50^{2} 2} & =5 v_{2}^{2}+m g\left(1-x_{2}\right)+225\left(x_{2}-1\right)^{2} \tag{6}\\
v_{2} & =\frac{d x_{0}}{d t} \tag{6}
\end{align*}=\frac{d}{d t}\left(x_{2}-1\right)=\dot{x}_{2} \quad 5 \dot{x}_{2}^{2}+\log \left(1-x_{2}\right)+225\left(x_{2}-1\right)^{2}=0 .
$$

$$
10 \ddot{x}_{2} \dot{x}_{2}+\log \left(-\dot{x}_{2}\right)+2(225)\left(\dot{x}_{2}\right)\left(x_{2}-1\right)=0
$$: <oos + shis jos

$$
-\log +450\left(x_{2-1}\right)=0 \Rightarrow x_{2-1}=\frac{109}{450} \Rightarrow x_{2}=1.218
$$

$$
x_{2} \rightarrow \text { (6) } \quad V_{2}=V_{\max }=1.46 \mathrm{~m} / \mathrm{s}
$$

$$
\left.v_{2}=0 \text { (6) } 1,1,2\right) \Rightarrow m g\left(1-x_{2}\right)+225\left(x_{2}-1\right)^{2}=0
$$

$$
\left(x_{2}-1\right)\left[-m g+225\left(x_{2}-1\right)\right]=0
$$

$$
\left\{\begin{array}{l}
x_{2}=1 \\
x_{2}=1+\frac{m g}{225}=1.44
\end{array}\right.
$$

PAPCO

Year. Month. Date. 49

$$
\begin{aligned}
& \vec{r}=1.2 t \vec{i}+0.9 t^{2 \vec{j}}-0.9\left(t^{3}-1\right) \vec{k} \\
& \vec{F}=60 \vec{i}-25 \vec{j}-40 \vec{k} \quad t=4 \mathrm{~s} \quad P=? \\
& P=\frac{d u}{d t}=\frac{\vec{F} \cdot d r}{d t}=\vec{f} \cdot \vec{v} \quad \vec{v}=\frac{d r}{d t}=1.2 \vec{i}+1.8 t \vec{j}-0.9\left(3 t^{2}\right) \vec{k} \\
& \left.\vec{v}\right|_{t=4}=1.2 \vec{i}+7.2 \vec{j}-43.2 \vec{k} \quad P=(60)(1.2)-(25)(7.2)-40(-43.2) \\
& \vec{P}=1044 \mathrm{w}
\end{aligned}
$$

$$
\begin{aligned}
& m=2.5 \mathrm{~kg} \\
& k=1800 \mathrm{~N} / \mathrm{m} \\
& \mu=0 \\
& v_{c}=?
\end{aligned}
$$

$$
\begin{cases}1: B & U_{n c}=U_{F S}=0 \\ 2: C & \text { wit as }\end{cases}
$$

$$
\Delta T=\frac{1}{2} m\left(V_{c}^{2}-V_{B}^{2}\right)=1.25 V_{c}^{2}
$$

$$
\begin{aligned}
& \Delta v_{g}=m g\left(h_{c}-h_{B}\right) \quad\left\{\begin{array}{l}
h_{C}=0 \\
h_{B}=0.042
\end{array}=2.5(9.8)(0.0 .042)\right. \\
& \Delta v_{e}=1 / 2 k\left(x_{c}^{2}-x_{B}^{2}\right)
\end{aligned}
$$

$$
w_{B}=36-13.63=22.37 \quad x_{c}=6+13.63=19.63 \mathrm{~mm} \quad \Delta v_{e}=-0.10395(\dot{j})
$$

$$
v_{c}=0.952 \mathrm{~m} / \mathrm{s}
$$

ℓ 多
$\mu=0$ デツノノ

$$
v_{2}=?
$$

$$
\sum \vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t} \quad\left[\vec{F}=\frac{d}{d t}(m \vec{v})\right.
$$

$$
\sum \vec{F}=\frac{d}{d t} \vec{G}=\overrightarrow{\dot{G}}
$$

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} \sum \vec{F} d t=\int_{\vec{G}_{1}}^{\overrightarrow{G_{2}}} d \overrightarrow{G_{E}} \quad \int_{t_{1}}^{t_{2}} \sum \vec{F} d t={\overrightarrow{G_{2}}}^{\prime}-\vec{G}_{1}=\Delta \overrightarrow{G_{e}} \\
& \text { if: } \sum \vec{F}=0 \Rightarrow \frac{d \vec{G}}{d t}=0 \Rightarrow \vec{G}=\ddot{t}
\end{aligned}
$$PqPCO

\therefore a b $\longrightarrow s y s$

$$
\sum F=0
$$

(a) $\stackrel{F}{\rightarrow} \int F d t=\Delta G_{a}$
(b) $\quad \int-f d t=\Delta G_{b}$

$$
\Delta G_{a}+\Delta C_{\mathrm{cb}}=0 \Rightarrow \Delta\left(G_{a}+C_{c b}\right)=0
$$

(sldot
$\overrightarrow{H_{0}}=\vec{r}_{0} \times \overrightarrow{c_{c}}=\vec{r}_{0} \times m \vec{v}$

$$
H_{0}=m\left|\begin{array}{ccc}
\vec{i} & \vec{i} & \vec{k} \\
x & y & z \\
V_{x} & V_{y} & V_{z}
\end{array}\right|
$$

$$
\begin{aligned}
& H_{x}=m\left(y V_{z}-z V_{r y}\right) \\
& H_{y y}=m\left(z V_{x}-x V_{z}\right) \\
& H_{z}=m\left(x V_{r y}-y V_{x}\right)
\end{aligned}
$$

PqPCO

$$
\begin{aligned}
& \sum \overrightarrow{m_{0}}=\vec{r} \times \sum \vec{f}=\vec{r} \times m \frac{d \vec{v}}{d t}=m\left(\vec{r} \times \frac{d \vec{v}}{d t}\right) \quad \text { iq en evi xiver } \sum f \text { on } \\
& \frac{d}{d t}(\vec{r} \times m \vec{v})=\vec{r} \times m \frac{d \vec{v}}{d t} \\
& 0 \vec{v}_{x m \vec{v}}+\vec{r} \times m \frac{d \vec{v}}{d t} \quad \Rightarrow \sum \overrightarrow{M_{0}}=\frac{d}{d t}\left(\vec{r} \times \overrightarrow{G_{c}}\right) \\
& \int_{t_{1}}^{i_{2}} \sum \vec{H}_{0} d t=\int_{H_{1}}^{\overrightarrow{H_{2}}} d \vec{H}_{0} \quad \int_{t_{1}}^{t_{2}} \sum \vec{M}_{0} d t=\vec{H}_{20}-\vec{H}_{10} \\
& \text { c) } \\
& \text { 白 }
\end{aligned}
$$

if $\sum \overrightarrow{H_{0}}=0 \Rightarrow \overrightarrow{H_{0}}=\overrightarrow{u_{0}} \quad$ Sicgj jénisosivés

 $\Rightarrow C_{n}==t^{2} \Rightarrow C_{n}=C_{n}^{\prime} \quad \quad$ jos

$$
G_{1 x}+C_{2 x}=C_{i n}^{\prime}+Q_{2 x}^{\prime} \quad\left\{\begin{array}{l}
1: U^{\prime} \\
2:
\end{array}\right.
$$

$$
\begin{aligned}
& m_{1} v_{1 m}^{\prime}+m_{2} v_{2 n}=m_{1} v_{1}^{\prime} x+m_{2} v_{2 n}^{\prime} \Rightarrow 0.01(300)=2 v_{1 n}^{\prime}+0.01(100) \\
& v_{\text {Bu }}^{\prime}=1 m / s
\end{aligned}
$$

"苏 = , 解 $\frac{k_{2}-k_{1}}{k_{1}} \times 100$-sijivitho,

$$
\begin{aligned}
& \int(P-F) d t=m\left(V_{2 w}\right) \quad[P=25 t, F=? \Rightarrow \cdots] \\
& \sum F_{y}=0 \Rightarrow N-m g=0 \Rightarrow N=m g
\end{aligned}
$$

PAPCO

Subject:
Year. Month. Date 53

$$
\frac{1}{2} m v_{A}^{2}(0.6)=\frac{1}{2} m v_{A}^{\prime 2}+\frac{1}{2} m v_{B}^{2}
$$

$$
\Rightarrow 0.6 v_{A}^{2}=v_{A}^{\prime 2}+v_{B}^{\prime 2}(2)
$$

$$
\text { (7), (2) } \Rightarrow V_{B}^{\prime}=\left\{\begin{array}{l}
0.868 \Rightarrow V_{A}^{\prime}=0.332 \\
0.332 \Rightarrow V_{A}^{\prime}=0.868
\end{array}\right.
$$

$$
\begin{aligned}
& m_{V_{A}+m}^{\prime} v_{B}^{\prime}=(m+m) v_{C} \\
& v_{A}^{\prime}+v_{B}^{\prime}=2 v_{C} \Rightarrow v_{c}=0.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& F_{k}=\mu_{k}(m g) \quad \int_{t_{1}}^{t_{2}=4}\left(P_{-} F\right) d t=m V_{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{2.35}^{4}(25 t-0.4 \mathrm{mg}) d t=10 V_{2 x} \Rightarrow \bar{V}_{2 x}=6.63 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\text {Siss }} F_{x}=0 \Rightarrow G_{x}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow G_{x}=G_{x}^{\prime} \Rightarrow m_{A} v_{A}+m_{B} \int_{B}^{\prime}=m_{A} v_{A}^{\prime}+m_{B}^{\prime} v_{B}^{\prime} \\
& \Rightarrow 1.2=v_{A}^{\prime}+v_{B}^{\prime}
\end{aligned}
$$

(1) 2

\qquad
idicis Tr

$$
\begin{aligned}
& 1: \sum F_{t}=0 \Rightarrow G_{1 t}=G_{1 t}^{\prime} \Rightarrow m_{1}^{\prime} v_{1} \cos \theta_{1}=m_{1} v_{1}^{\prime} \cos \theta_{1}^{\prime} \\
& v_{1} \cos e_{1}=v_{1}^{\prime} \cos e_{1}^{\prime} \\
& r: \sum F_{t}=0 \Rightarrow G_{2 t}=C_{2 t}^{\prime} \Rightarrow m_{2} V_{2} \cos e_{2}=m_{2} v_{2}^{\prime} \cos \theta_{2}^{\prime} \\
& \\
& v_{2} \cos \theta_{2}=v_{2}^{\prime} \cos \theta_{2}^{\prime}
\end{aligned}
$$PqPCO

Subject:
Year. Month. Date. 55

$$
\begin{aligned}
\left.2,1: \sum F_{n}=0 \Rightarrow G_{i, r}\right)_{n}=G_{u \times 1)}^{\prime} \Rightarrow & -m_{1} v_{1} \operatorname{Sin} \theta_{1}+m_{2} v_{2} \operatorname{Sin} \theta_{2}=m_{1} v_{1}^{\prime} \operatorname{Sin} \theta_{1}^{\prime}-m_{2} v_{2}^{\prime} \operatorname{Sin} \theta^{\prime} 2 \\
& -m_{1} v_{1} \operatorname{Sin} \theta_{1}+m_{2} V_{2} \operatorname{Sin} \theta_{2}=m_{1} V_{1}^{\prime} \operatorname{Sin} \theta_{1}^{\prime}-m_{2} v_{2}^{\prime} \operatorname{Sin} \theta_{2}^{\prime}
\end{aligned}
$$

Restitution coefficient

$$
e=(\nu, 2, \omega)-\infty)=
$$

ioj)

- $<e \leqslant 1$

Suny "ubl
Si

مسَّقيد (در)
برخّودن
عis

PAPCO \qquad

$$
\begin{aligned}
& v_{1}=24 \mathrm{~m} / \mathrm{s} \quad e=0.3 \\
& v_{1}^{\prime}=e_{i}^{\prime}=?
\end{aligned}
$$

$$
h^{\prime}: h_{2}, h=h_{n_{1}}
$$

$$
E_{1}=m g h_{1} \quad E_{2}=m g h_{2} \quad \Rightarrow / \Delta E=\frac{E_{1}-E_{2}}{E_{1}} \times 100 \Rightarrow \frac{m g\left(h_{1}-h_{2}\right)}{m g h_{1}} \times 100
$$

$$
\% \Delta E=\left[1-\left(\frac{h_{2}}{h_{1}}\right)\right] \times 100=\left(1-e^{2}\right) \%
$$

$0.67 \frac{0 \pi}{0.6} \quad \omega=\frac{1.03 .0 .67}{0.6}=0.57 \frac{\mathrm{rad}}{\mathrm{s}}$
PAPGO $317-212-270-264-259-254-248: 276$

$$
\begin{aligned}
& \left.E F_{1}\right)_{t}=0 \Rightarrow C_{r_{1}}=G_{1}^{\prime} \Rightarrow m_{1} V_{1} \cos \theta_{1}=m_{1} V_{1}^{\prime} \cos \theta_{1}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } 2 \text { (2) } \quad \theta_{1}^{\prime}=27.46^{\circ} \quad v_{i}^{\prime}=13.52 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Year. Month. Date. 57

\qquad
\qquad
\qquad

जis $\quad \frac{r}{\Delta}=e \Rightarrow \frac{r}{d-r \cos \theta}=e \Rightarrow r=e d _r e \cos \theta$
 $r(1+e \cos \theta)=e d \Rightarrow r=\frac{e d}{1+e \cos \theta}$

$$
\frac{1}{r}=\frac{1+e \cos \theta}{e d}
$$

$$
\begin{array}{cc}
e=0 & \text { osi } \\
a<e \leqslant 1 & v_{0}^{0}
\end{array}
$$

$$
e=1 \quad w^{x}
$$

a<e $\leqslant 1$ on
\qquad
\qquad
\qquadPAPCO

$$
\begin{aligned}
& \xrightarrow{2} \ddot{r}-r \dot{e}^{2}=-\frac{k m}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{1}{u} \Rightarrow \frac{d r}{d t}=\frac{d}{d t}\left(\frac{1}{u}\right)=\frac{d}{d \theta} \cdot \frac{d \theta}{d t}\left(\frac{1}{u}\right) \Rightarrow \frac{d r}{d t}=\dot{\theta}\left[\frac{-d u / d \theta}{u^{2}}\right]=-r^{2} \dot{\theta}[d u / d \theta]=-h \frac{d u}{d \theta} \\
& \ddot{r}=\frac{d}{d t}\left(\frac{d r}{d t}\right)=\frac{d}{d t}\left(-h \frac{d u}{d \theta}\right)=-h \frac{d}{d \theta} \cdot \frac{d \theta}{d t}\left(\frac{d u}{d \theta}\right) \Rightarrow \ddot{r}=-h \dot{\theta}\left[\frac{d^{2} u}{d \theta^{2}}\right] \xlongequal{r^{2} \dot{\theta}=h}-\frac{h^{2}}{r^{2}} \frac{d^{2} u}{d \theta^{2}}=-u^{2} h^{2} \frac{d^{2} u}{d \theta^{2}} \\
& \longrightarrow \stackrel{2}{\longrightarrow}^{2}+u^{2} h^{2} \frac{d^{2} u}{d \theta^{2}}+\frac{1}{u} h^{2} u^{4}=+k m \cdot u^{2} \\
& \frac{d^{2} u}{d \theta^{2}}+u=k m_{0} / h^{2} \quad \frac{d^{2} u}{d \theta^{2}}+u=k m_{0} / h^{2} \quad 4 \quad \text { a } \\
& \alpha^{2}+1=0 \Rightarrow \alpha= \pm \sqrt{-1} \Rightarrow u=c \cos (\theta+\delta) \\
& u_{p}=\frac{k m_{0}}{h^{2}} \Rightarrow \quad u=c \cos (\theta+\delta)+\frac{k m_{0}}{h^{2}} \quad \frac{1}{r}=c \cos \theta+\frac{k m_{0}}{h^{2}} \quad 5
\end{aligned}
$$

$$
\begin{aligned}
\sum F_{n}=m a_{n} \Rightarrow & T S_{\operatorname{Sin} \theta}=\operatorname{man} \\
& T \operatorname{Sin} \theta=m r \omega^{2}
\end{aligned}
$$

$$
\quad \sum F_{n}=0 \Rightarrow T \sin \theta-m r \omega^{2}=0
$$

PAsCO \qquad

S: ~injor si

$$
\left\{\begin{array}{l}
1: 2 i_{5 s} 6 i_{0} \\
2: \delta
\end{array}\right.
$$

(...S.ve vidaldt) $0=2$

$$
\int \sum f_{y y} d t=C_{22 y}-G_{1 y}
$$

$\sqrt{2 g h}$

5 Hai

 T-5, i

 -

تisk
()
(1...

PAPCO

珹
二等 θ ，

$$
a^{\prime}=\theta+\beta \Rightarrow \ddot{B}=\dot{\theta}+0 \quad \text { d }
$$

$$
v=\frac{d s}{d t}
$$

$$
\omega=\frac{d \theta}{d t} \mathrm{rad} / \mathrm{s}
$$

$a=\frac{d v}{d t}$
$\alpha=\frac{d \omega}{d t} \quad \mathrm{rad} / \mathrm{s}^{2}$

$a d s=v d v$
$\alpha d \theta=\omega d \omega$
PasCO＿ \qquad

$$
\cos \theta=\frac{x}{l} \quad x=l \cos \theta \Rightarrow \dot{x}=-l \dot{\theta} \sin \theta
$$

-its जैpsien

"

$$
\dot{S}=R \dot{\theta} \Rightarrow V_{0}=R \omega \Rightarrow \frac{\oplus S=R \Theta}{\bar{\omega}=\frac{V_{0}}{R}}
$$

 نPAPCO_

Subject,
Year. Month. Date. 63

$$
\dot{S}=R \dot{\theta} \Rightarrow \ddot{S}=R \ddot{\theta} \Rightarrow \ddot{\theta}=\alpha=\frac{a_{0}}{R}
$$

$$
\omega=\frac{V_{0}}{R}
$$

 RW 呟

$$
\begin{gathered}
\text { or. } \\
\left.\frac{1 \omega_{1}}{}\right)^{1 \omega_{2}} \nabla_{c}=R_{1} \omega_{1}=R_{2} \omega_{2} \Rightarrow \omega_{2} \Rightarrow \omega_{2}=\frac{R_{1}}{R_{2}}
\end{gathered}
$$

\qquad

$$
\begin{aligned}
& \begin{array}{r}
r=r \\
\theta=r=2 R \omega=2 v_{0} \\
\dot{y}=0
\end{array}\left\{\begin{array}{l}
\dot{x}=0
\end{array}\right. \\
& r:\left\{\begin{array}{l}
\dot{x}=R \omega=v_{0} \\
\dot{j}=R \omega=v_{0}
\end{array}\right. \\
& \because\left\{\begin{array}{l}
\ddot{x}=R \ddot{\theta}(1-\cos \theta)+R \dot{\theta}(\dot{\theta} \sin \theta) \\
\ddot{y}=R\left(\ddot{\theta} \sin \theta+\dot{\theta}^{2} \cos \theta\right)
\end{array} \quad \quad \therefore=\left\{\begin{array}{l}
\ddot{\sim}=0 \\
\ddot{r}=R \omega^{2}
\end{array}\right.\right. \\
& \theta=\left\{\begin{array} { l r }
{ \ddot { x } = 2 a _ { 0 } } & { \mu : } \\
{ \ddot { \ddot { y } } = - R \omega ^ { 2 } } & { \theta = \frac { \pi } { 2 } }
\end{array} \left\{\begin{array}{l}
\ddot{x}=R \alpha+R \omega^{2}=a_{0}+R \omega^{2} \\
\ddot{y}=R \alpha=a_{0}
\end{array}\right.\right.
\end{aligned}
$$

$$
\Delta 7-52-20-47-\varepsilon r-38-r \varepsilon-28-r r^{r}-19-13-\omega: \text { y,ss }
$$

$$
\begin{aligned}
& v_{0}, a_{0} \\
& \omega, \alpha=?
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} O B=0.26 \mathrm{~m} / \mathrm{s} \quad \\
& \left.\theta=60^{\circ} \rightarrow a_{A}\right)_{n}=?
\end{aligned}
$$

$$
\left.a_{A}\right)_{n}=(C A) \omega_{i}^{2}
$$

$$
C A=\sqrt{(0.3)^{2}+(0.15)^{2}}=0.335 \mathrm{~m}
$$

cArdy

$$
\triangle B B: \quad \begin{align*}
C H & =\frac{1}{2} O B=\frac{r}{2}=0.2 \operatorname{Sin} \frac{\theta}{2} \\
r & =0.4 \operatorname{Sin}\left(\frac{\theta}{2}\right) \circledast
\end{align*}
$$

$$
\begin{aligned}
& \dot{r}=0.4\left(\frac{1}{2} \dot{\theta} \cos \frac{\theta}{2}\right) \Rightarrow \omega_{1}=e_{1}=\frac{\dot{r}}{0.2 \cos \theta / 2} \Rightarrow \omega_{1}=\frac{0.26}{0.2 \cos 30^{\circ}}=1.5 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \left.a_{A}\right)_{n}=0.335(1.5)^{2}=0.755 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\ddot{r}=0.2\left[\ddot{\theta} \cos \frac{\theta}{2}-\frac{\dot{\theta}^{2}}{2} \sin \frac{\theta}{2}\right] \quad \Rightarrow \ddot{\theta}=\frac{\frac{\theta^{2}}{2} \sin \theta / 2}{\cos \theta / 2}=\frac{\dot{\theta}^{2}}{2} \tan \frac{\theta}{2}
$$

$$
{ }_{\beta 1}{ }^{G} \text { micioncos: } 2 \beta+\theta=180 \Rightarrow 2 \dot{\beta}+\dot{\theta}=0 \Rightarrow \dot{\beta}=\frac{-\dot{\theta}}{2}=\omega_{2}=-0.75
$$

$$
\ddot{\beta}=-\ddot{\theta} / 2 \Rightarrow \cdots
$$

$$
V_{B}=B C\left(\omega_{1}\right)
$$

\qquadP\&PCO

$$
a_{C D}=a=c k
$$

$$
x=0 \Rightarrow V_{C D}=0 \quad \omega_{B C}=?
$$

$$
\frac{x}{2}=l \cos \theta \Rightarrow x=2 l \cos \theta
$$

$$
\dot{x}=-2 l \dot{\theta} \sin \theta \leadsto \omega_{1} \quad \Rightarrow \omega_{1}=-\frac{\dot{x}}{2}
$$

$$
\gamma+\theta=180 \Rightarrow \dot{\gamma}+\dot{\theta}=0 \Rightarrow \dot{\gamma}=-\dot{\theta} \Rightarrow-\omega_{1}=\omega_{2}
$$

$$
\begin{aligned}
& \omega_{2}=\frac{\dot{x}}{2 l \sin \theta} \\
& x=\frac{1}{2} \dot{x}^{2} \Rightarrow \dot{x}=\sqrt{2 a x}
\end{aligned}
$$

$$
\omega_{2}=\frac{\sqrt{2 a x}}{2 l \sin \theta}=\frac{\sqrt{4 a l \cos \theta}}{2 l \sin \theta}
$$

$\omega_{1}=3 \mathrm{rad} / \mathrm{s} \quad(\mathrm{cc})$

$$
\begin{align*}
& {[\cos] r^{2}=(4)^{2}+(8)^{2}-2(4)(8) \cos \theta \Rightarrow r^{2}=80-64 \cos \theta \rightarrow \overbrace{}^{\theta=40^{\circ}} r=5.57 \mathrm{~cm}} \tag{2}\\
& 2 r \dot{r}=+64 \dot{\theta} \sin \theta \Rightarrow \dot{r}=32 \omega_{1} \sin \theta / r \Rightarrow \dot{r}=32\left(\frac{3 \sin 40}{5.57}\right)=11.1 \mathrm{~cm} / \mathrm{s}
\end{align*}
$$

(1) $\underbrace{\theta=40} \beta=27.5^{\circ}$

$$
-t
$$

$$
2 \pi
$$

$$
? \imath \frac{d r}{d t}=\frac{-t \cdot \omega}{2 \pi}
$$

$$
\dot{r}=\frac{-t \cdot \omega}{2 \pi} \Rightarrow \alpha=+\frac{\omega}{r} \frac{t \omega}{2 \pi}=\frac{t+\omega^{2}}{2 \pi r}=\frac{+v^{2} t}{2 \pi r^{3}}
$$

$c=150 \mathrm{~mm}$
$\omega(c e \omega)$

$$
\begin{aligned}
& \left.a_{c}\right)_{n}=80 \\
& \left(a_{c}\right)_{t}=30
\end{aligned} \quad \dot{m} s^{2} \quad \theta, \theta=?
$$

(I) $\left.a_{c}\right)_{n}=(0 c) \omega^{2}$
(2) $\left.a_{c}\right)_{t}=(0 c) \alpha$

$$
O C=\frac{2}{3}(O H)=\frac{2}{3}(150 \operatorname{si} 60) \quad O C=50 \sqrt{3}
$$

(1) $\rightarrow \sqrt{\frac{80}{0.05 \sqrt{3}}}=30.4 \frac{\mathrm{rad}}{\mathrm{s}}$
(2) $\rightarrow \rightarrow \alpha=\frac{30}{0.05 \sqrt{3}}=346.4 \frac{\mathrm{rad}}{\mathrm{s}^{2}}$

$$
\begin{aligned}
& \vec{v}_{A}=\vec{v}_{B}+\vec{v}_{A / B} \\
& \vec{a}_{A}=\vec{a}_{B}+\vec{a}_{A / B}
\end{aligned}
$$

$$
\left|\nabla_{A / B}\right|=\left(r_{A / B}\right)(\omega)
$$

$$
B A^{\prime} \rightarrow \text { 㞓 }
$$

$$
\frac{\Delta \vec{r}_{A}}{\Delta t}=\frac{\Delta \vec{r}_{B}}{\Delta t}+\frac{\Delta \vec{r}_{A / B}}{\Delta t}
$$

$$
\Rightarrow \quad \vec{V}_{A}=\vec{V}_{B}+\vec{V}_{A / B}
$$

$$
\frac{\left|\Delta r_{A / B}\right|}{\Delta t}=r_{A / B} \cdot \frac{\Delta \theta}{\Delta t} \Rightarrow\left|V_{A / B}\right|=r \omega \quad \vec{V}_{A / B}=\vec{\omega} \times \vec{r}
$$

velocity center

PasCO

$$
c p=\sqrt{0.15^{2}+(0.075)^{2}}=0.167
$$

PAPCO

$$
\begin{aligned}
& \bar{V}_{A / B}=r \omega \quad r=R \sqrt{2} \quad \Rightarrow \omega=\frac{V A / B}{R \sqrt{2}} \Rightarrow \omega=\frac{1.5}{0.15 \sqrt{2}}=5 \sqrt{2} \quad \frac{\mathrm{rad}}{\mathrm{~S}} \\
& V_{p}=C_{p} \cdot \omega \Rightarrow V_{p}=1.186
\end{aligned}
$$

$$
\begin{gathered}
V_{A}=x \omega \Rightarrow 2=\frac{0.2}{3} \omega \Rightarrow \omega=30 \quad \frac{\mathrm{rad}}{\mathrm{~S}} \\
C D=\sqrt{R^{2}+\left(\frac{R}{3}\right)^{2}}=\cdots \\
\frac{V_{B}}{V_{B}}=\frac{x}{2 R-x} \quad(\omega)
\end{gathered}
$$

$$
\omega_{1}=2 \frac{\mathrm{rad}}{\mathrm{~s}} \sum_{0}
$$

$V_{A}=1.2 \mathrm{~m} / \mathrm{s} \longrightarrow$ ff OC, 戸ं $B C$

$$
\omega_{2}, \omega_{3}=?
$$

$$
V_{B}=V_{C}+V_{B / C}
$$

$$
\vec{V}_{c}=10()\left(\omega_{1}\right) \vec{i}=10.3(2) \vec{i}=0.6 \vec{i}
$$

$$
\begin{equation*}
\vec{v}_{B / C}=(B C)\left(\omega_{2}\right)=0.4 \omega_{2} \vec{j} \quad \overrightarrow{v_{B}}=0.6 \vec{i}+0.4 \omega_{2} \vec{j} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& \vec{V}_{B}=\vec{v}_{A}+\vec{V}_{B / A} \Rightarrow \vec{V}_{B} \\
& V_{A}=1.2 \vec{i} \quad \vec{V}_{B / A}=(A B) \omega_{3} \quad \beta=\cos ^{-1}(0.6) \\
& \vec{v}_{B / A}=(A B) \omega_{3}(\cos \beta \vec{i}-\sin \beta \vec{j})= \\
& \xrightarrow{(1)(2)} 0.6 \vec{i}+0.4 \omega_{2} \vec{j}=1-2 \vec{i}+0.3 \omega_{3} \vec{i}-0.4 \omega_{3} \vec{j}\left\{0.4 \omega_{2}=-0.4 \omega_{3} \Rightarrow \omega_{2}=2 \underset{\mathrm{~s}}{\mathrm{rad}}\right.
\end{aligned}
$$

$$
V_{C E}=V_{C}=4.24 \quad \text { - }
$$

$$
a_{B}=\quad a_{c}=-106.1 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& 140-132-126-119-116-112-107-100-93-87-74-67-60: \text { iv is } \\
& 146-138-131-123-116-110-103-95-90-86-80
\end{aligned}
$$

\qquad
\qquad
\qquad

$$
\begin{aligned}
& \mathrm{V}_{A}=\mathrm{V}_{p}+\mathrm{V}_{\mathrm{rel}} \rightarrow \quad a_{p}+2 \vec{\omega} \times \vec{v}_{\mathrm{rei}}+\vec{a}_{\mathrm{rel}} \\
& a_{A}=a_{0}
\end{aligned}
$$

$$
\begin{aligned}
& a_{B}=a_{C}+a_{B / c} \quad \ddot{j}=8 \quad \overrightarrow{a_{B}}=a_{B}(-\vec{j}) \\
& \ddot{\vec{j}}=\stackrel{\square}{a_{c}}=a_{c}(\vec{i})
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{a B / C}=\underbrace{B C \omega^{2}(\sin 45 \vec{i}-\cos 45 \vec{j})}_{B / C \text { lino }}+B C \cdot \alpha_{3}(\cos 45 \vec{i}-\sin 45 \vec{j})
\end{aligned}
$$

$$
\begin{aligned}
& N=2 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \omega_{2}=\alpha_{2}=?
\end{aligned}
$$

"aण防

$$
\vec{V}_{A}=(A C \cdot N)(\vec{j})=-0.15 \times 2 \vec{j}=-0.3 \vec{j}
$$

$$
\overrightarrow{v_{p}}=\left(\mathrm{mp} \cdot \omega_{2}\right) \vec{i}=0.15 \omega_{2} \vec{i}
$$

$$
\vec{v}_{\text {rel }}=V_{\text {rel }}\left(-\frac{\sqrt{2}}{2} \vec{i}-\frac{\sqrt{2}}{2} \vec{j}\right)
$$

$$
\begin{aligned}
& \underbrace{\longrightarrow} \vec{v}_{A}=\vec{v}_{P}+\vec{V}_{\text {rel }} \Rightarrow-0.3 \vec{j}=0.15 \omega_{2} \vec{i}-\frac{\sqrt{2}}{2} v_{\text {nel }}(\vec{i}+\vec{j}) \\
& \left\{\begin{array}{l}
0=0.15 \omega_{2}-\frac{\sqrt{2}}{2} v_{\text {nel }} \\
-0.3=-\frac{\sqrt{2}}{2} v_{\text {nel }} \Rightarrow v_{\text {rel }}=0.3 \sqrt{2} \quad \Rightarrow 0.15 \omega_{2}=\frac{\sqrt{2}}{2}(0.3 \sqrt{2}) \Rightarrow \omega_{2}=2 \\
\mathrm{rad}
\end{array}\right.
\end{aligned}
$$

$$
\vec{a}_{A}=A C \cdot \omega_{1}^{2} \vec{i}=0.15(2)^{2} \vec{i}=0.6 \vec{i}
$$

$$
\overrightarrow{a_{p}}=M p \cdot w_{2}^{2} \vec{j}+(m p)\left(\alpha_{2}\right) \vec{i}=(0.15)\left(2^{2}\right) \vec{j}+0.15\left(\alpha_{2}\right) \vec{i}=0.6 \vec{j}+0.15 \alpha_{2} \vec{i}
$$

$$
2 \omega_{2} \times \vec{V}_{\text {nel }}=2(2 \times 0.3 \sqrt{2})\left(\frac{\sqrt{2}}{2} \vec{i}-\frac{\sqrt{2}}{2} \vec{j}\right)=1.2(\vec{i}-\vec{j})
$$

\%í-ipijóppu90

$$
\begin{aligned}
& \vec{a}_{\text {rel }}=a_{\text {nel }}\left(-\frac{\sqrt{2}}{2} \vec{i}-\frac{\sqrt{2}}{2} \vec{j}\right) \\
& \vec{a}_{A}=\vec{a}_{p}+2 \vec{w}_{\times} \vec{v}_{n e l}+\vec{a}_{\text {nel }} \Rightarrow 0.6 \vec{i}=0.6 \vec{j}+0.15 \alpha_{2} \vec{i}+1.2(\vec{i}-\vec{j})-\frac{\sqrt{2}}{2}(\vec{i}+\vec{j})+\vec{a}_{\text {nel }} \\
& 0.6=0.15 \alpha_{2}+1.2-\frac{\sqrt{2}}{2} a_{\text {nd }} \\
& 0=0.6-1.2-\frac{\sqrt{2}}{2} a_{n d} \Rightarrow \vec{a}_{\text {rd }}=-0.6 \sqrt{2}
\end{aligned}
$$

$$
-0.6=0.15 \alpha_{2}+0.6 \Rightarrow \alpha_{2}=-8 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \quad-2
$$

\qquad

$$
\begin{aligned}
& \vec{\nabla}_{A}=-0.3 \vec{j} * \vec{v}_{M}=0 \quad * \quad \vec{\omega} \times \vec{r}=\omega \vec{k} \times(-M A) \vec{j}=0.15 \omega_{2} \vec{i}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{A}=\vec{V}_{B}+\vec{\omega} \times \vec{r}+\vec{v}_{\text {nev }} \Rightarrow-0.3 \vec{j}=0+0.15 \omega_{2} \vec{i}-\frac{\sqrt{2}}{2} v_{\text {rel }}(\vec{i}+\vec{j}), \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{0 A}=\omega_{1}=10 \frac{\mathrm{rad}}{\mathrm{~s}} \text { (cw) } E_{1_{1}}= \\
& \theta=30^{\circ} \rightarrow \omega_{2}, \alpha_{2}, q_{\text {nev }}=? \\
& 2 \sigma_{2} \operatorname{sen}\left(r_{1} x\right. \text { by } \\
& \text { As. -ir BC Cranes, P }
\end{aligned}
$$

$$
\begin{array}{ll}
\overrightarrow{V_{A}}=\vec{V}_{p}+\vec{v}_{\text {rel }} & \overrightarrow{V_{A}}=O A \cdot \omega_{1}(\sin \gamma \vec{i}+\cos \gamma \vec{j}) \\
\gamma=\theta=30^{\circ} & \overrightarrow{V_{A}}=0.2(10)\left(\frac{1}{2} \vec{i}+\frac{\sqrt{3}}{2} \vec{j}\right)=\vec{i}+\sqrt{3} \vec{j}
\end{array}
$$

$$
\begin{aligned}
& \vec{v}_{p}=(c p)\left(\omega_{2}\right) \vec{j}=(2 R \cos \theta)\left(\omega_{2}\right) \vec{j}=2(0.2)\left(\frac{\sqrt{3}}{2}\right) \omega_{2} \vec{j}=0.2 \sqrt{3} \omega_{2} \vec{j} \\
& \vec{v}_{\text {rel }}=V_{\text {nel }} \vec{i} \\
& V A=V_{p}+V_{\text {nel }} \Rightarrow \vec{i}+\sqrt{3} \vec{j}=0.2 \sqrt{3} w_{2} \vec{j}+V_{\text {rel }} \vec{i} \\
& V_{\text {rel }}=1 \mathrm{~m} / \mathrm{s} \quad * \quad \omega_{2}=5 \mathrm{rad} / \mathrm{s} \\
& a_{A}=a_{p}+2 \vec{w}_{x} \overrightarrow{v_{r e l}}+\vec{a}_{\text {nel }}
\end{aligned}
$$

$$
\begin{aligned}
& a_{p}=(C p)\left(\omega_{2}\right)^{2} \vec{i}+\left(\left(p, \alpha_{2}\right) \vec{j}=5 \sqrt{3} \vec{i}+0.2 \sqrt{3} \alpha_{2} \vec{j}\right. \\
& 2 \vec{\omega}_{2} \times \overrightarrow{v_{n}} \vec{l}=2(5)(1)(-\vec{j})=-10 \vec{j} \\
& \overrightarrow{a_{\text {rel }}}=a_{\text {rel }} \vec{i} \\
& 10 \sqrt{3} \vec{i}-10 \vec{j}=5 \sqrt{3} \vec{i}+0.2 \sqrt{3} \alpha_{2} \vec{j}-10 \vec{j}+a_{\text {nel }} \vec{i} \\
& 10 \sqrt{3}=5 \sqrt{3}+a_{\text {nd }} \Rightarrow a_{\text {nel }}=5 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2} \\
& -10=0.2 \sqrt{3} \alpha_{2}-10 \Rightarrow \alpha_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \beta=2 \theta \Rightarrow \dot{\beta}^{\beta}=2 \dot{\theta} \Rightarrow \omega_{1}=2 \omega_{2} \Rightarrow \omega_{2}=1 / 2 \omega_{1}=5 \\
& \ddot{\beta}=2 \ddot{\theta} \Rightarrow \alpha_{1}=2 \alpha_{2}=0
\end{aligned}
$$

Year. Month Date. 75

$$
V_{A}=(O A) \omega_{O A}=(2 R)(4)=8 R
$$

$$
V_{D=0}
$$

$$
\vec{V}_{A}=\vec{V}_{D}+\vec{V}_{A / D} \Rightarrow\left\{\begin{array}{r}
8 R \vec{j}=0+R \omega_{C}(-\vec{j}) \Rightarrow 8 R=-R \omega_{C} \Rightarrow \\
\frac{\omega_{C}=-8}{\mathrm{rad}} \mathrm{~s}
\end{array}\right.
$$

$$
\begin{array}{ll}
\vec{v}_{A}=8 R \vec{j} \\
\vec{v}_{B}=R \cdot \omega_{B}(-\vec{j}) \quad & \quad \overrightarrow{\dot{j}}=-R \omega_{B} \vec{j}-R \omega_{C} \vec{j}
\end{array}
$$

$$
10 R \vec{J}=-R \omega_{c} \vec{\jmath} \Rightarrow \vec{\omega}_{c}=-10 \mathrm{rad}
$$

$V_{A}=(2 R) W_{O A} \quad V_{D}=R W_{B}$

ciancillo

$$
V_{A / D}=R W_{C}
$$

$$
\begin{array}{ll}
\tau u A B=\alpha_{A B}=? & v_{D=3} \mathrm{~m} / \mathrm{s}=0.45\left(\omega_{1}\right) \\
\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{A / B} & v_{D=45 / 100 ~ \omega} \\
\vec{v}_{A}=O A \cdot \omega_{1} \vec{\delta} & \\
v_{A}=\frac{0.3}{0.45}(3) \vec{J}=2 \vec{J} &
\end{array}
$$

COH

$$
\begin{aligned}
& \vec{V}_{B}=-B C\left(\omega_{3}\right) \vec{i}=-0.4 \omega_{3} \vec{i} \quad \overrightarrow{V_{A}}=A B \cdot \omega_{2}(\sin \theta \vec{i}+\cos \theta \vec{j}) \\
& \operatorname{rg} \theta=0.75=3 / 4 \quad \vec{v}_{A / B}=(0.5) \omega_{2}(0.6 \vec{i}+0.8 \vec{j})=0.3 \omega_{2} \vec{i}+0.4 \omega_{2} \vec{j} \\
& V_{A}=V_{B}+V_{A / B} \Rightarrow 2 \vec{j}=-0.4 \omega_{3} \vec{i}+0.3 \omega_{2} \vec{i}+0.4 \omega_{2} \vec{j} \\
& \left\{\begin{array}{l}
2=0.4 \omega_{2} \Rightarrow \omega_{2}=5 \mathrm{rad} / \mathrm{s} \\
0.4 \omega_{3}=0.3 \omega_{2} \Rightarrow \omega_{3}=3.75 \mathrm{rad} /,
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{a_{A}} & =\overrightarrow{a_{B}}+\vec{a}_{A / B} \\
\vec{a}_{A} & =(0.3)\left(\frac{3}{0.45}\right)^{2}(-\vec{i})
\end{aligned}
$$

$$
\overrightarrow{a_{B}}=B C\left(\omega_{3}\right)^{2}(-\vec{j})-B C\left(\alpha_{3}\right)(\vec{i}) \Rightarrow \overrightarrow{a_{B}}=(\cdot 0.4)(3.75)^{2}(\vec{j})-0.4 \alpha 3 \vec{i}
$$

$$
\vec{a}_{A / B}=A B \omega_{2}^{2}(-\cos \theta \vec{i}+\sin \theta \vec{j})+A B \alpha_{2}\left(\sin e^{\vec{i}}+\cos \theta \vec{j}\right)
$$

$$
\overrightarrow{a A}=a_{B}+\vec{a}_{A / B} \Rightarrow(-0.3)\left(\frac{3}{0.45}\right)^{2} \vec{i}=-0.4(3.75)^{2} \vec{j}-0.4 \alpha_{3} \vec{i}^{2}+0.5(5)^{2}(-0.8 \vec{i}+0.6 \vec{j})+0.5 \alpha_{2}(0.6 \vec{i}+
$$

$$
0.8 \vec{j}
$$

$$
\alpha_{2}=-4.7 \quad \mathrm{rad} / \mathrm{s}^{2}
$$

$* \quad V_{A} \cos \theta=V_{B} \Rightarrow \quad A(\omega) \cos \theta=V_{B}$

$$
\frac{V_{B}}{O A \cos \theta}=\omega \Rightarrow \frac{0.9}{0.15 \sqrt{3} / 2}=\omega=6.93 \mathrm{rad}
$$

$$
\text { (2) } \Rightarrow\left\{\begin{array}{l}
\nabla_{c}=-2.08 \\
\nabla_{n c l}=-1.04
\end{array}\right.
$$

PqPCO

Subject,
Year. Month. Date. 7F

$$
\begin{aligned}
& \overrightarrow{a c}=\overrightarrow{a p}+2 \vec{\omega} \times \overrightarrow{V_{n e l}}+\overrightarrow{a n e l} \\
& \overrightarrow{a_{c}}=a_{c}(\sin \theta \vec{i}+\cos \theta \vec{j}) \\
& \overrightarrow{a_{p}}=\left(o p \cdot \omega^{2} \cdot \vec{i}\right)-o p \cdot \alpha \vec{j}=\left(\frac{0.2}{\cos \theta}\right)(6.43)^{2}(-\vec{i})-\frac{0.225}{\cos \theta} \propto \vec{j} \\
& 2 \vec{\omega}_{x} V_{n \overrightarrow{C l}}=2(6.93)(-1.04)(-\vec{j}) \\
& \overrightarrow{a_{\text {rel }}}=a_{\text {nev }} \vec{i} \\
& \text { ac }\left(\frac{1}{2} \vec{i}+\frac{\sqrt{3}}{2} \vec{j}\right)=\frac{0.2}{\sqrt{3} / 2}(0.93)^{2}(-\vec{i})-\frac{0.225}{\sqrt{3} / 2} \alpha \vec{j}+(2.08)(6.93) \vec{j}+\text { and } \vec{i} \\
& \omega=\frac{V_{B}}{O A \cos \theta} \Rightarrow \dot{\omega}=\alpha=\frac{V_{B}}{O A}\left(+\frac{\dot{B} \sin \theta}{\cos ^{2} \theta}\right) \Rightarrow \alpha=-22.73 \mathrm{rad} \frac{\mathrm{~s}}{}
\end{aligned}
$$

$$
I_{x x}=\int r^{2} d m: \ddot{\sigma}_{, i} e^{? /} \quad I_{x y}=\int x \cdot y \cdot d x: \dot{\alpha}, j x
$$

$$
I_{x}=\int r^{2} d A: \operatorname{sip}_{w} \operatorname{rim}_{d m} \quad I_{x y}=\int x \cdot y d A: i L_{i n}
$$

$$
\begin{aligned}
& \omega=\frac{V_{B} \sigma^{k}}{O A \cdot \cos \theta} \longrightarrow \omega^{\hat{N}^{\alpha}}=\frac{V_{B}}{O A}\left(\theta^{\hat{N}^{\cdot}} \frac{\sin \theta}{c_{1}^{2} \theta}\right) \Rightarrow \alpha=-22.73, a_{c}=24.96
\end{aligned}
$$

$$
\begin{aligned}
& \text { * * * } \\
& \text { 86,9,6: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pé I,opI } \\
& \text { 分 }
\end{aligned}
$$

$d m$:

$$
\left.\Rightarrow M=\int d M=\int r^{2} \alpha d m \Rightarrow M=\int_{1}^{\int r^{2} d m} \Rightarrow M=1 \alpha\right\}
$$

 - Zll k)$m$$\sqrt[4]{2} x$

$$
I=\int r^{2} d m=\int k^{2} d m=k^{2} m
$$f

finvi,PAPCO

 ,

$$
I=I_{1}+I_{2}-I_{3} \quad: \int_{0} / \operatorname{lum}_{0}
$$

Tr,	\bar{I}	m	d	$m d^{2}$	$\bar{I}+m d^{2}$
					-

$$
\text { Niveir Itmd }{ }^{2} \text { onen }
$$

—, $\bar{\Sigma}$
-

$$
\left\{\begin{array}{l}
I_{n}=\int r^{2} d A \\
I_{n x}=\int r^{2} d m
\end{array}\right.
$$ - $v^{\downarrow}=0.0$

$$
I_{n x}=\int r^{2} d m=\int r^{2} \cdot \rho \cdot d v=\int r^{2} \cdot t^{\uparrow} \cdot d A \cdot \rho
$$

$$
\Rightarrow I_{x x}=\rho+\int r^{2} d A \Rightarrow I_{x x}=\rho I I_{x}
$$

$$
I=\int r^{2} d m \quad\left\{\begin{array}{l}
d m=\rho A=\rho A d s \\
r=3 \cdot \sin \alpha
\end{array}\right.
$$

$$
\begin{aligned}
& \Rightarrow I=\int s^{2} \cdot \sin ^{2} \alpha \cdot P A d s \\
& \Rightarrow I_{0}=(P A) \sin ^{2} \alpha \int_{-\frac{l}{2}}^{\frac{l}{2}} s^{2} \cdot d s=\frac{P A}{3} \sin ^{2} \alpha\left(\frac{l^{3}}{8}+\frac{l^{3}}{8}\right)
\end{aligned}
$$

$\Rightarrow I_{00}=\frac{1}{12} \stackrel{?}{\rho} A l^{3} \sin ^{2} \alpha$

$$
m=P A l \rightarrow P A=m / l \rightarrow I_{0}=\frac{1}{12} m l^{2} \sin ^{2} \alpha,
$$

$$
\alpha=90 \rightarrow I_{00}=\frac{1}{12} m l^{2}
$$

$$
\begin{aligned}
& I_{n n}=\frac{1}{12} m l^{2}+\frac{m}{2} \\
& a_{0}^{m}
\end{aligned}
$$

$$
\begin{aligned}
& I_{-n}=? \\
& I_{o=}=? \\
& \bar{I}=?
\end{aligned}
$$

$$
: r=\text { =ir- }
$$

$$
\begin{aligned}
\left\{\begin{array}{l}
d_{m}=P A d S=P A R d \theta \\
r=R \sin \theta
\end{array}\right. & \not I_{a a}=\int R^{2} \sin ^{2} \theta \cdot \rho A R d \theta=R^{3} \rho A \int \sin ^{2} \theta d \theta \\
& m=\pi R \cdot A \cdot \rho \Rightarrow P A=m / R R \\
\Rightarrow I_{a a}= & \frac{1}{2} m R^{2} \checkmark
\end{aligned}
$$

$$
\begin{aligned}
& I_{00}=\int R^{2} \cdot \rho A R d B=R^{3} P A R=R^{3} \times \frac{m}{\pi R} \times \pi \Rightarrow I_{00}=m R^{2} \\
& I_{00}=\bar{I}+m d^{2} \Rightarrow m R^{2}=\bar{I}+m\left(\frac{2 R}{R}\right)^{2} \Rightarrow I=l
\end{aligned}
$$

䟚

rad

$$
d \vec{f}=d m\left(\vec{a}+\overrightarrow{r \alpha}+\vec{r} \vec{\omega}^{2}\right)
$$

$\bar{a}(d m)$
$\left.v \omega^{(d m}\right)$

$$
\begin{aligned}
& d M=\left(r \alpha^{2} d m\right)-(r \bar{a} \sin \theta d m) \\
& \sum \bar{M}=\int r^{2} \alpha d m-\int r \bar{a} \sin \theta d m=\int r^{2} \alpha d m-\int \bar{a} r y d m
\end{aligned}
$$

$$
\text { * } \int \bar{a} r g d m=\bar{a} \iint d m=\bar{a} \neq \bar{y} m=0 \Rightarrow \Sigma \bar{M}=\alpha \int r^{2} d m \Rightarrow \sum \bar{M}=\bar{I} \alpha
$$

$$
\text { yé } \operatorname{b}_{0}
$$

「,
$二_{1}=\frac{1}{2}$
—

$$
4
$$

$$
\begin{array}{ll}
\Sigma R_{x}=m \bar{a}_{x} & \\
\sum F_{r d}=m \bar{a}_{r y} & \sum \bar{u}=0 \\
& \sum m_{A}=m \bar{a} d
\end{array}
$$

$$
\sum M_{A}=\bar{I} \alpha+m \vec{a} d \quad \sum \vec{F}=m \vec{a}
$$

\qquad

$$
\sum m_{0}=\bar{I} \alpha+m r^{2} \alpha=\alpha\left(\bar{I}+m r^{2}\right)
$$

هuncos

$$
\sum M_{0}=I_{0} \alpha \quad \text { is in absboses }
$$

$$
\begin{aligned}
& m_{A}+m_{B}=60 \mathrm{~kg} \\
& m_{B}=20 \mathrm{~kg} \\
& a=? \\
& M_{C}, R_{\phi}=?
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m A}=\bar{I} \alpha+m \bar{a} d \\
& \sum F_{i y}=m \bar{a}_{y}
\end{aligned}
$$

Year. Month. Date. 87

$$
\begin{aligned}
& V_{m g} \\
& \text { Efts }=m \bar{a} y \quad \quad \sum \bar{M}=0 \\
& \sum F_{x}=m a_{x} \Rightarrow F_{-m g} \sin \theta=m \bar{a}_{x} \Rightarrow \bar{a}_{x}=a=\frac{f}{m}-g \sin \theta \\
& a=\frac{800}{60}-(9.8) \sqrt{3} / 2=4.84 \mathrm{~m} / \mathrm{s}^{3} \\
& \sum F_{m}=F_{x}-m_{B} g \sin \theta=m_{B} a \Rightarrow f_{m}=m_{B} a+m_{B} g \sin \theta= \\
& f_{n}=263 \mathrm{~N} \\
& \sum f_{\pi-1}=m_{B} a_{0} \Rightarrow f_{y}-m_{B} g \cos \theta=m(0) \Rightarrow f_{r y}=m_{B} g \cos \theta \Rightarrow f_{2}=98 \mathrm{~N} \\
& \sum \bar{M}=\bar{I} \alpha=0 \Rightarrow-m_{c}-f_{n} \sin \theta\left(\frac{l}{2}\right)-f_{r g} \cos \theta(l / 2)=0 \\
& M_{c}=-\left(\frac{1.4}{2}\right)(263 \sqrt{3} / 2+98 .(1 / 2)) \Rightarrow M_{c}=-196 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{c}^{\text {sit }} \quad M_{C}=-m_{B}\left(9 \frac{l}{2}+\bar{a} \sin \theta \frac{l}{2}\right)=-196
\end{aligned}
$$

PAPCO

$$
\sum f_{x}=m \bar{a}_{n}=m a_{n} \Rightarrow f_{1}=m a \Rightarrow a=\frac{f_{1}}{m}
$$

$$
\Sigma M_{B}=m a d \Rightarrow-f_{1}(l \sin \theta)+m g\left(l_{/ 2} \cos \theta\right)=-m a(l / 2 \sin \theta)
$$

$$
f_{1}=\frac{1}{\sin \theta}\left[\frac{1}{2} m g \cos \theta+\frac{1}{2} m a \operatorname{Sin} \theta\right]
$$

$$
\Rightarrow a=\frac{1}{m}\left[\frac{1}{2} m g \cot \theta+\frac{1}{2} m a\right] \Rightarrow a=\frac{9}{2} \operatorname{cotg} \theta+\frac{a}{2} \Rightarrow a=9 \cdot \operatorname{cotg} \theta
$$

vicious : $\sum \mu_{0}=I_{0 \alpha}$
$\sum_{f_{n}}=m a_{n} \Rightarrow ?_{T_{A}}+\stackrel{?}{T}_{B}-m g S_{i n}=m \stackrel{?}{a}_{n}$
$\sum f_{t}=m \bar{a}_{t} \Rightarrow m g \cos \theta=m \frac{?}{a}_{t} \Rightarrow \bar{a}_{t}=g \cos \theta$
$\sum \bar{M}=\bar{I} \alpha \Rightarrow T_{A} \operatorname{Cos} \theta(0.6)+T_{A} \operatorname{Sin} \theta(0.9)-T_{B} \operatorname{Cos} \theta(0.6)-T_{B} \operatorname{Sin} \theta(1.2)=\bar{I} \alpha$

$$
\begin{aligned}
& V_{A}=V_{B}+V_{A / B}\left\{\begin{array}{l}
\overrightarrow{V_{A}}=V_{A} \vec{e}_{t} \\
\vec{V}_{B}=V_{B} \vec{e}_{t}
\end{array} \quad \overrightarrow{V_{A} / B}=(A B)(\omega)\left(\sin \theta \vec{e}_{n}-\cos \theta \vec{e}_{n}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
V A \overrightarrow{e_{t}}=V B \overrightarrow{e_{t}}+A B(\omega) \sin \theta \overrightarrow{e_{n}}-A B \cdot \omega \cos \theta \overrightarrow{e_{t}} \\
A B \omega \sin \theta=0 \Rightarrow \omega=0
\end{gathered}
$$

$$
\left.a_{A}\right|_{n}=l \cdot \omega_{v}^{2} \quad \text { "AC } v_{1} S_{1}^{\prime N-j} n
$$

$$
\left.a_{A}\right)_{n}=0
$$

$$
\Rightarrow T_{A}=\quad T_{B}=1792(\mathrm{~N})
$$

$$
m=5 \mathrm{~kg} \quad l=0.9 \mathrm{~m}
$$

$$
\theta=30^{\circ} \quad \dot{\theta}=2 \mathrm{rad} / \mathrm{s}
$$

$$
\mathcal{R}_{A}=? \quad \alpha=?
$$

$$
\begin{aligned}
\sum f_{n}=m \bar{a}_{x} \Rightarrow & \stackrel{?}{\dot{F}}_{1}=m \stackrel{\rightharpoonup}{a}_{x} \\
& ?_{2}-m g=m \bar{a}_{n}
\end{aligned}
$$

$$
\sum M_{0}=I_{0} \alpha \Rightarrow m g(\Delta)=I_{0} \stackrel{?}{\alpha}
$$

$$
\begin{aligned}
& \sum f_{n}=m \bar{a}_{n} \Rightarrow F_{1}-m g \sin \theta=m\left(\frac{\ell}{2} \dot{\theta}^{2}\right) \Rightarrow F_{1}=m g \sin \theta+m\left(\frac{\ell}{2} \dot{\theta}^{2}\right) \quad Z_{C} \quad F_{1}=33.5 \text { "N" cöm=s } \\
& \sum f_{t}=m \bar{a}_{t} \Rightarrow-\stackrel{?}{f}_{2}+m g \cos e=m \bar{a}_{t}^{?} \\
& \sum_{M A}=I_{A} \alpha \Rightarrow(m g \cos \theta) \frac{l}{2}=\frac{1}{3} m l^{2} \alpha \Rightarrow \alpha=14.15 \mathrm{rad} / \mathrm{s}^{2} \\
& -f_{2}+m g \cos \theta=m\left(\frac{l}{2} \alpha\right) \Rightarrow+f_{2}=10.6 " \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}=\frac{\bar{x}_{1} l_{1}+\bar{y}_{2} l_{2}}{l_{1}+l_{2}}=\frac{(\pi R)(0)+R(R / 2)}{\pi R+R}=\frac{R}{2(1+\pi)}=0.024 \\
& \bar{x}=\frac{\bar{x}_{1} l_{1}+\bar{x}_{2} l_{2}}{l_{1}+l_{2}}=\frac{\left(\frac{2 R}{\pi}\right)(\pi R)+(0)(R)}{\pi R+R}=\frac{2 R}{1+\pi}=0.097 \\
& \left.\left.I_{0}=I_{1}\right)_{0}+I_{2}\right)_{0}=m_{1} R^{2}+\frac{1}{3} m_{2} R^{2} \\
& I_{0}=R^{2}\left(m_{1}+\frac{m^{2}}{3}\right)=
\end{aligned}
$$

$$
\bar{a}_{t}=O C \cdot \alpha \quad O G=\sqrt{x^{2}+r^{2}}
$$

$$
a_{n}=0 \leftarrow \omega=0 \text { wo cis }
$$

$\bar{a}_{x}=\bar{a}_{t} \sin \theta=O G \cdot \alpha \cdot \operatorname{Sin} \theta \quad \bar{a}_{\sigma y}=O G \cdot \alpha \cdot \cos \theta$

$$
\begin{cases}F_{1}=m \cdot O G \cdot \alpha \cdot \sin \theta \\ F_{2}=m g+m(-O G \cdot \alpha \cdot \cos \theta) \\ m g \bar{x}=I_{0} \cdot \alpha \Rightarrow \alpha= & F_{1}=0.34 \sim \\ F_{2}=3.51 \sim \alpha=28.35 & \mathrm{rad} \\ \mathrm{~s}^{2}\end{cases}
$$

$m_{3}=25 \mathrm{~kg}$
$\because \pi$
$m_{1}=m_{2} \simeq 0$

$$
200 \mathrm{~N} \cdot \mathrm{~m} \quad \omega=5 \mathrm{rad} / \mathrm{s}
$$

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}=? \quad F_{D}=?
$$

$$
\begin{aligned}
& \begin{array}{l}
\xrightarrow{\rightarrow} B x+D_{x}=m_{3} \bar{a}_{x} \\
\xrightarrow{2} B_{y}+D_{y}-m_{3} g=m_{y} \\
\xrightarrow{3} D_{x}(0.3)-B_{x}(0.5)=\bar{I}_{3}, \alpha
\end{array}
\end{aligned}
$$

Subject,
Year.

$$
\left.\left.a G\right|_{x}=\bar{a}_{x}=a_{D}\right)_{\infty}=(C D) \omega^{2}=l \omega^{2}
$$

$$
\Sigma M_{A}=I A_{0} \alpha_{2}^{0}
$$

r. iperpeisg

$$
B_{y} l-M_{0}=0 \Rightarrow B_{0}=M_{0} / \ell=33.33 \mathrm{~N}
$$

imencospexis

$$
\Rightarrow D_{y}=0
$$

$$
\begin{gathered}
\Rightarrow D_{x}=234.4 \mathrm{~N}=f_{0} \quad \alpha_{3}=0 \\
\left.\bar{a}_{(g}=a_{0}\right)_{t}=\ell \alpha_{1} \Rightarrow \alpha_{1}=\alpha_{2}=5.87 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
\end{gathered}
$$

$m=10 \mathrm{~kg}$
حَ
$f_{0}=$? CूE

PAPCO \qquad

$$
\begin{aligned}
& \sum F_{x}=m \bar{a}_{x} \\
& \sum F_{y}=m=m \bar{a}_{y}
\end{aligned}
$$

㠺

$$
\Sigma_{\bar{m}}=\bar{I}_{\alpha} \quad \sum_{M_{A}}=\bar{I}_{\alpha}+\operatorname{ma} d
$$

 " $F_{K}=\mu k \cdot N "$ "

[. ex
 - تje por frtsmax

(1) $\sum f_{y}=m \bar{a}{ }_{r g} \Rightarrow T_{1}+T_{2}-m g=m \bar{a}$
(1) $\Sigma_{\bar{M}}=\bar{I}_{\alpha} \neq T_{2}(R)-T_{1}(R)=\frac{1}{2} m R^{2}(\alpha)$

(3) $\sum f_{r g}=m \bar{a}_{\text {rg }} \Rightarrow m g-T_{2}=m(2 \bar{a})$
$:$ mpes
(9) $\bar{a}=R \alpha \xrightarrow{(2)} \alpha=\frac{\bar{a}}{R} \Rightarrow \bar{a}=0.61 \mathrm{~m} / \mathrm{s}^{2}$ ibside \bar{a}
\qquad
P\&PCO

Subject:
Year. Month. Date. 95

$$
\sum f_{\sqrt{0}}=m \bar{a}_{\sqrt{0}} \Rightarrow N_{-m g}=m(0) \Rightarrow N=m g \oplus
$$

$$
\sum_{\bar{M}}=\bar{I} \alpha \Rightarrow P \cdot x+F \cdot R=\frac{1}{2} m R^{2} \alpha^{?}
$$

$$
\bar{a}=R \alpha \rightarrow \alpha=\frac{\bar{a}}{R}
$$

$\xrightarrow{(3)} P \cdot x+F \cdot R=\frac{1}{2} m R^{-2}\left(\frac{\bar{a}}{R}\right)$

$$
\begin{aligned}
& \xrightarrow{\text { (1) }} \bar{a}=\frac{P-F}{m} \xrightarrow{(A)} P \cdot x+F \cdot R=\frac{1}{2} m R\left(\frac{P-F}{m^{x}}\right) \\
& F\left(R+\frac{R}{2}\right)=p\left(\frac{R}{2}-x\right) \Rightarrow F=\left(\frac{R / 2-x}{R+R / 2}\right) p \Rightarrow F=\frac{R / 2-x}{3 / 2 R} p \\
& F=\frac{1}{3}\left(1-\frac{2 x}{R}\right) p \Rightarrow F=\frac{P}{3}\left(1-\frac{x}{R / 2}\right) \\
& \text { if }\left\{\begin{array}{l}
x<\frac{R}{2} \Rightarrow F \longleftarrow \\
x<\frac{R}{2} \Rightarrow R \longrightarrow
\end{array}\right. \\
& \text { (I) : } F<F_{\text {max }}=\mu_{0} \cdot N=\mu_{1} \cdot m g
\end{aligned}
$$

$$
U_{n c}=\Delta T+\Delta V_{e}+\Delta V_{g}
$$

$$
u_{n c}=\int \vec{E} \cdot d r
$$

$\Delta T=T_{2}-T_{1} \quad \Delta v_{e}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right) \quad \Delta V g=m g\left(\bar{h}_{2}-\bar{h}_{1}\right)$
2

$$
d T=\frac{1}{2} d m\left(V_{i}\right)^{2} \Rightarrow T=\int d T
$$

$$
d T=\frac{1}{2} d m(v)^{2}=\frac{1}{2} \frac{d}{m}(\vec{v})^{2}
$$

$T=\int d T=\int 1 / 2 d m(\bar{v})^{2}$

$$
T=\frac{1}{2}(\bar{v})^{2} \int_{m} d m \Rightarrow T=\frac{1}{2} m \bar{v}^{2}
$$

Br eco

Pap CO

Year. Month. Date. 97
": קiöñ

$$
d T=\frac{1}{2} d m V_{i}^{2}
$$

$$
d T=\frac{1}{2} d m(r \omega)^{2} \quad T=\int d T=\int \frac{1}{2} d m\left(r^{2} \omega^{2}\right)
$$

$$
\begin{gathered}
v_{A / c}=r \omega \quad v_{A}^{2}=\bar{v}^{2}+(r \omega)^{2}-2 \bar{v}(r \omega) \cos (\pi-\theta) \\
v_{A}^{2}=\bar{v}^{2}+(r \omega)^{2}+2 \bar{v}(r \omega) \cos \theta \\
d T=\frac{1}{2} d m\left[\bar{v}^{2}+r^{2} \omega^{2}+2 \bar{v}(r \omega) \cos \theta\right] \\
T=\int \frac{1}{2} \bar{v}^{2} d m+\int \frac{1}{2} r^{2} \omega^{2} d m+\int \bar{v} r \omega \cos \theta d m
\end{gathered}
$$

$$
T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{T} \omega^{2}+\bar{v} \omega \int r \cos \theta d m \mathcal{A}^{\circ}
$$

 peipdyr $\int J d m=\bar{j} d m$ $\checkmark \cdot=\bar{\sigma}, \bar{n}$ OO

$$
\begin{aligned}
& T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2} \\
& T=\frac{1}{2} m \bar{v}^{2} \quad T=\frac{1}{2} I_{0} \omega^{2} \quad T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2}
\end{aligned}
$$

$\Delta x=0$ जंच゙边
$k=3000 \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
& \begin{cases}1: \theta=90^{\circ} & u_{n C}=\Delta T+\Delta V_{g}+\Delta V_{e} \\
2: \theta=180^{\circ} & U_{n c}=U_{R_{1}, R_{2}}+U_{R_{3}}=\theta(0)\end{cases} \\
& \Delta T=T_{2}-T_{1}=-\frac{1}{2} I_{0} \omega_{0}^{2} \Rightarrow \Delta T=-\frac{1}{2}\left(\frac{4}{3} m l^{2}\right) \omega_{0}^{2}=-\frac{2}{3} m l^{2} \omega_{0}^{2} \\
& \Delta v_{g}=m g\left(\bar{h}_{2}-\bar{h}_{1}\right)=m g(0-l)=-m g l \text { (9) } \\
& \Delta v_{e}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right) \Rightarrow\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=2 l-l \sqrt{2}
\end{array} \Rightarrow \Delta v_{e}=\frac{k}{2} l^{2}(2-\sqrt{2})^{2}(9)\right. \\
& 0=-\frac{2}{3} m l^{2} \omega_{0}^{2}-m g l+\frac{k}{2} l^{2}(2-\sqrt{2})^{2} \Rightarrow \omega_{0}=3.67 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& M_{0}=12 \mathrm{~N} \cdot \mathrm{~m} \\
& \theta=45^{\circ} \quad \text { ov } \\
& K=140 \mathrm{~N} / \mathrm{m} \quad \Delta x_{1}=+150 \mathrm{~mm} \\
& m_{A B}=3 \mathrm{~kg} \quad l=0.25 \mathrm{~m}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
1: \theta=45^{\circ} \quad U_{n c}=\Delta T+\Delta v g+\Delta v e \tag{1}\\
2: \theta=0 \quad U_{n c}=U_{N}+U_{f_{1}, f_{2}}+U_{m_{0}}=\int \vec{M} \cdot d \theta=\int M d \theta \\
1=2, v_{0} \quad
\end{array}\right.
$$

jes等。

$\because: \dot{\sim} \because j$

$$
U_{M_{0}}=\int M d e=M_{0}\left(\frac{\pi}{4}\right)=3 \pi \dot{j}
$$

$$
\begin{aligned}
\left.\left.\Delta v_{g}=\Delta v g\right)_{1}+\Delta v g\right)_{2}=m g\left(\bar{h}_{2}-\bar{h}_{1}\right)_{1}=m g\left(\frac{3}{2} l-\frac{3}{2} l\left(\frac{\sqrt{2}}{2}\right)\right) & =\frac{3}{2} m g l\left(1-\frac{\sqrt{2}}{2}\right) \\
\left(\bar{h}_{1}=\frac{3}{2} l \cos \theta=\frac{3}{2} l \cos 45^{\circ}, \bar{h}_{2}=\frac{3}{2} l \|\right. & =3.23 \mathrm{j}
\end{aligned}
$$

$$
\Delta V e=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right) \Rightarrow\left\{\begin{array}{l}
x_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m} \\
x_{2}=(2 l-2 l \cos 45)+0.15=0.296 \mathrm{~m}
\end{array}\right.
$$

SHExar - d,

$$
\begin{aligned}
& \Delta v_{e}=\frac{1}{2}(140)\left[(0.296)^{2}-(0.15)^{2}\right]=4.58 j \\
& \left.\left.\Delta T=T_{2}-T_{1}=T_{2}\right)_{1}+T_{2}\right)_{2}=\frac{1}{2} m_{1} \bar{v}_{1}^{2}+\frac{1}{2} \overline{I_{1}} \omega_{1}^{2}+\frac{1}{2} I_{0} \omega_{2}^{2} \\
& \dot{\text { ussrgs }} \quad \bar{I}_{1}=\frac{1}{12} m l^{2}=
\end{aligned}
$$

$$
\left.P A P C O \quad I_{0}\right)_{2}=\frac{1}{12}(2 m)(2 l)^{2}=\frac{2}{3} m l^{2}
$$

$$
\begin{aligned}
& J=2 l \cos \theta \Rightarrow \dot{d}_{A}=-2 l \dot{\theta}_{\theta} \sin \theta \\
& \overrightarrow{V A}=\vec{V}_{C_{C}}+\vec{V}_{A / C_{C}} \\
& 0=\vec{V}_{C}+\frac{l}{2} \omega \vec{i} \\
& \Rightarrow \vec{V}_{C_{C}}=\vec{V}_{1}=\frac{\eta}{2} \omega \\
& \vec{V}_{C C}=\vec{V}_{B}+\vec{V}_{C_{C / B}} \Rightarrow \vec{V}_{C c}=-l \omega \vec{i}+\frac{l}{2} \omega \vec{i}=-\frac{l}{2} \omega \vec{i} \\
& \Rightarrow \omega_{1}=\omega_{2}=\omega=4.15 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
& 111-103-97-93-88-82: \text { ins } \\
& 12 r-145-181-129-1 r Y-116: \text { unN }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquadPalpCO

Year. Month. Date. 101

$$
\begin{aligned}
& U_{n c}=\Delta T_{+}+\Delta V_{g}+\Delta V_{e} \\
& \left\{\begin{array} { l }
{ 1 : \theta = \theta _ { 0 } } \\
{ 2 : \theta = 0 }
\end{array} \left\{\begin{array}{l}
\bar{h}_{1}=l / 2 \sin \theta_{0} \\
\bar{h}_{2}=0
\end{array}\right.\right.
\end{aligned}
$$

$$
U_{n c}=U_{N}+U_{c_{m}, c_{n}}=0
$$

$$
\Delta v_{g}=2(m g)\left(0-\frac{l}{2} \sin e_{0}\right) \Rightarrow \Delta v_{g}=-m g l \sin \theta_{0}
$$

$$
\left.\Delta T=T_{2}-T_{1}=T_{2}\right)_{1}+T_{2} /_{2}
$$

$$
=\frac{1}{2} I_{c} \omega_{1}^{2}+\frac{1}{2} m \bar{v}_{2}^{2}+\frac{1}{2} \bar{I}_{2} \omega_{2}^{2}
$$

$$
\Rightarrow \Delta T=\frac{1}{2} I_{c} \omega^{2}+\frac{1}{2} m \bar{v}_{2}^{2}+\frac{1}{2} \bar{I}_{2} \omega^{2}
$$

$$
\vec{v}_{G}=\overrightarrow{V_{B}}+\overrightarrow{v_{G}^{B}} \left\lvert\, ~\left(\vec{V}_{G}=l \omega \vec{j}-\frac{l}{2} \omega \vec{j}=\frac{l}{2} \omega \vec{j}=\vec{v}_{2}\right.\right.
$$

$$
\Delta T=\frac{1}{2}\left(\frac{1}{3} m l^{2}\right) \omega^{2}+\frac{1}{2} m\left(\frac{l^{2}}{4} \omega^{2}\right)+\frac{1}{2}\left(\frac{1}{12} m l^{2}\right) \omega^{2}=m l^{2} \omega^{2}\left(\frac{1}{3}\right)
$$

$$
0=\frac{1}{3} m l \omega^{2} \omega^{2} m g l \sin \theta_{0} \Rightarrow \omega^{2}=\frac{9 \sin \theta_{0}}{l / 3} \Rightarrow \omega=\sqrt{\frac{39 \sin \theta_{0}}{l}}
$$

$$
\nabla_{B}=l \omega=\sqrt{3 g l \sin \theta_{0}}
$$

$$
\mu=0
$$

$$
\mathrm{V}_{A}=? \quad \text { Usif!́cA orisel }
$$

$$
\text { Syoten : } 1 \frac{1}{12}, 4,403
$$

$$
\begin{aligned}
& \text { Unc }=U_{f}+U_{N}=0 * \quad \Delta v e=0 * \\
& \Delta v_{g}=m g\left(\bar{h}_{2}-\bar{h}_{1}\right) \quad \Delta v_{g}=m g(2.5-9)=-6.5 \mathrm{mg} \\
& \bar{\rho}_{2}=2.5
\end{aligned}
$$

$$
\Delta T=T_{2}-T_{1}=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2} \Rightarrow 0=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2}-6.5 m g
$$

$$
\left.\mathbb{v}_{r 0}=l \sin \beta \Rightarrow \dot{0}=l \dot{\beta} \cos \beta \Rightarrow V_{\beta}\right)_{r g}=l \dot{\beta} \cos \beta=0 \Rightarrow \dot{\beta}=0
$$

$$
\vec{V}_{A}=\vec{V}_{B}+\vec{V}_{A / B} \Rightarrow(A C)\left(\omega_{A C}\right) \vec{i}=C_{B} \vec{i}+(A B)(\omega)\left(-\cos \gamma_{i}-\sin \gamma \vec{j}\right)
$$

$$
0=-A B \cdot \omega \cdot \operatorname{Sin} \gamma \Rightarrow \omega=0
$$

$$
\begin{aligned}
& m_{O A}= 18 \mathrm{~kg} \\
& k_{0}= 0.22 \mathrm{~m} \rightarrow \mathrm{~m}_{2} \\
& m_{A B}= 12 \mathrm{~kg} \\
& O A \quad V_{B} \rightarrow V_{B}=? \\
& \omega_{1}, \omega_{2}=?
\end{aligned}
$$

PAPCO

Year. Month. Date. 103

$$
\begin{aligned}
& U_{n c}=U_{n}+U_{o_{n}, O_{0}}=0 \quad * \quad \Delta V e=0 \\
& \left.\Delta v g=\Delta v g)_{1}+\Delta v_{g}\right)_{2}=\left.m_{1} g\left(\bar{h}_{2}-\bar{h}_{1}\right)\right|_{1}+\left.m_{2} g\left(\bar{h}_{2}-\bar{h}_{1}\right)\right|_{2} \\
& \text { (1) }\left\{\begin{array}{l}
\bar{h}_{1}=0.8 \\
\bar{h}_{2}=0.62
\end{array}\right. \\
& \text { (2) }\left\{\begin{array}{l}
\bar{h}_{1}=0.4 \\
\bar{h}_{2}=0.2
\end{array} \mathrm{~m}\right. \\
& \Delta V_{g}=18 g(0.62-0.8)+12 g(0.2-0.4)=\ldots . \\
& \left.\left.\Delta T=T_{2}-T_{1}=T_{2}\right)_{1}+T_{2}\right)_{2}=\frac{1}{2} I_{0} \omega^{2}+\frac{1}{2} m_{2} \bar{v}_{2}^{2}+\frac{1}{2} \bar{I}_{2} \omega_{v}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}=m_{0 A} \cdot k_{0}^{2} \nLeftarrow \omega=5.75 \mathrm{rad} / \mathrm{s} \\
& V_{A}=V_{B}=0.4 \omega \quad \Rightarrow \quad V_{B}=2.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& m \rightarrow \text { sus } \\
& \mu=0 \\
& \mathrm{~V}_{0}=\text { ? } \\
& \omega=\text { ? } \\
& \text { vircosisble }
\end{aligned}
$$

$\vec{Q}=m \vec{v} \quad \vec{H}_{0}=\vec{r} \times m \vec{v}$
$\vec{G}_{i}=m_{i} \vec{v}_{i}$

$$
\overrightarrow{G_{e}}=\sum \vec{G}_{i}=\sum m_{i} \vec{v}_{i}=\sum m_{i} \frac{d}{d t}\left(\overrightarrow{r_{i}}\right)
$$

$$
\begin{aligned}
& G=\sum \frac{d}{d t}\left(m_{i} \vec{r}_{i}\right)=\frac{d}{d t} \sum\left(m_{i} \vec{r}_{i}\right) \\
& \quad G=\frac{d}{d t}(m \overrightarrow{\vec{r}}) \Rightarrow \overrightarrow{\vec{G}}=m \overrightarrow{\vec{V}} \\
& \sum \vec{F}=m \overrightarrow{\vec{a}}=m\left(\frac{d}{d t} \vec{v}\right)=\frac{d}{d t}(m \overrightarrow{\bar{v}}) \Rightarrow \sum \vec{F}=\frac{d \vec{G}}{d t}=\overrightarrow{\vec{G}} \\
& \int_{t_{1}}^{t_{2}} \sum \vec{F} d t=\int_{G_{1}}^{G_{2}} d G \quad \int_{t_{1}}^{t_{2}} \sum F d t=\vec{G}_{2}-\vec{G}_{i}
\end{aligned}
$$

院

$$
\int \sum f_{u} d t=C_{2 x}-C_{1 x}
$$

if $\sum \vec{F}=0 \Rightarrow \dot{G}_{=0} \Rightarrow \vec{G}=c \vec{c}$

$$
\vec{H}=\vec{r}_{i} \times m_{i} \vec{v}_{i} \quad \vec{H}_{i}=\vec{P}_{i} \times m_{i} \vec{v}_{i}
$$

$$
\begin{aligned}
& \vec{v}_{i}=\vec{V}+\vec{v}_{i / c} \Rightarrow \overrightarrow{H_{i}}=\vec{\rho}_{i} \times m_{i}\left(\overrightarrow{v_{i}}+\overrightarrow{v_{i}}\right) \\
& \overrightarrow{\vec{H}}=\sum \overrightarrow{\vec{H}}_{i}=\sum \vec{P}_{i} \times m_{i}\left(\overrightarrow{\vec{v}_{i}}+\vec{v}_{i / c}\right)
\end{aligned}
$$

(3): $\quad v_{i<c}=\rho_{i} \omega \sum_{i m_{i}} \rho_{i} \cdot\left(\rho_{2} \cdot \omega\right) \vec{K} \Rightarrow \overrightarrow{\vec{H}}=\omega \sum\left(m_{i} \rho_{2}^{2}\right) \vec{K}$

$$
\bar{H}=\bar{I} \omega
$$

$$
H_{A}=\bar{H}+d G=\bar{I} \omega+d(m \bar{V})
$$

$H_{A}=\bar{I} \omega+m \overline{\bar{V}} d$

$$
\begin{gathered}
H_{A}=\bar{I} \omega+m \bar{v} d=\bar{I} \omega+m d^{2}(\omega) \\
H_{0}=\omega\left(\bar{I}+m d^{2}\right) \\
\sum \bar{M}=\frac{d}{d t} \vec{H}=\overrightarrow{\vec{H}} \\
\int \sum \vec{M} d t=\overrightarrow{H_{2}}-\overrightarrow{H_{1}}
\end{gathered}
$$

$$
H_{0}=\omega\left(\bar{I}_{+m d^{2}}^{2} \quad H_{0}=I_{0} \omega\right.
$$

sies pröncoü

PAPCO

$$
\begin{aligned}
& \overrightarrow{\vec{H}}=\sum \underbrace{\vec{P}_{i} \times m_{i} \overrightarrow{\vec{V}}}_{(A}+\underbrace{\sum \vec{P}_{i} \times m_{i} \vec{V}_{i / c}}_{(B)} \\
& \text { (4): } \sum m_{i} \rho_{i} \times \overrightarrow{\vec{V}}=-\sum \overrightarrow{\vec{v}} \times m_{i} p_{i}=-\overrightarrow{\vec{V}} \times \sum m_{i} \overrightarrow{p_{i}} \text {. }
\end{aligned}
$$

Subject:
Year. Month. Date. 106

$$
H_{0}=\bar{I} \omega+m \bar{v} d
$$

$$
v_{0}=R \omega \Rightarrow \omega=\frac{V_{0}}{R}=\frac{0.9}{0.225}=4 \mathrm{rad}
$$

$$
+m \bar{v} d=m(E G \cdot \omega)(\Delta) \Rightarrow m \bar{v} d=8(0.3)(4)(0.075)=0.72
$$

$$
H_{0}=(0.135)(4)+0.72 \Rightarrow H_{0}=1.26 \quad \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{5} "
$$

$$
m \bar{v} d=8(\Delta \omega)(\Delta)=8(0.075)^{2}(4) \Rightarrow m \bar{v} d=0.72 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~J}}: 8=90^{\circ} \mathrm{\sigma} / \mathrm{s}
$$

$$
\begin{aligned}
& H_{0}=H_{0} \quad \Rightarrow\left(H_{0, y}+H_{0},\right. \\
& \left(m p \cdot V_{1} \cdot \frac{l}{2}\right)+\left(I_{0} \omega_{1}^{1}\right)=\left(m p \cdot v_{2} \cdot \frac{Q}{2}\right)+\left(I_{0} \omega \omega_{2}\right) \\
& (0.03)(500)(0.4)+0=(0.03)(0.4 . \omega)(0.4)+\frac{1}{3}(10)(0.8)^{2} \omega e^{6}=4.8 \times 10^{-4} \omega+6.4 / 3 \omega \\
& \mathrm{PaPCO} \Rightarrow \omega=2.81 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=0 \\
& I=\bar{I}+m d^{2} \Rightarrow m k_{0}^{2}=\bar{I}+m \Delta^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{I}=m\left(k_{0}^{2}-\Delta^{2}\right)=s\left[(0.15)^{2}-\left(0.0751^{2}\right]=0.135 \quad \mathrm{~kg} . \mathrm{m}^{2}\right.
\end{aligned}
$$

Subject:

\qquad
\qquad
PAPCO \qquad

Subject,
Year. Month Date. 108

$$
\begin{aligned}
& \vec{a}_{G}=\vec{a}_{A}+\overrightarrow{a_{G}} \Rightarrow \overrightarrow{a_{G}}=\vec{a}_{A}\left(\cos \theta^{i}+\sin \theta \vec{j}\right)+(3 / 4 l \alpha) \vec{j}, R \omega^{2}=0 \rightarrow \omega=0 \dot{0}, \\
& \left\{\begin{array}{l}
\bar{a}_{x}=a_{A} \cos \theta \\
\bar{a}_{y}=a_{A} \sin \theta+\frac{3}{4} l \alpha
\end{array} \quad \Longrightarrow \overrightarrow{a_{A}=\frac{149}{109}} \mathrm{~m} / \mathrm{s}^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& R=0.2 \mathrm{~m} \\
& / m=25 \mathrm{~kg} \quad \omega_{0}=4 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
c: \quad \dot{e}=8 \mathrm{rad} / \mathrm{s}
$$

$$
H_{B}=\text { ? }
$$

$$
\bar{H}=\bar{I} \omega
$$

$$
H_{0}=I_{0} \omega
$$

$* H_{B}=\bar{I} \omega+m \bar{v} d$

$$
H_{A}=\bar{I} \omega+m \bar{v} d
$$

$$
\bar{I}=\frac{1}{2} m R^{2}=\frac{1}{2}(25)(0.2)^{2}=0.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
m=25 \mathrm{~kg}, \quad \bar{v}=l \omega_{0}=0.4(4)=1.6 \mathrm{~m} / \mathrm{s}
$$

$$
a: \omega_{D}=\omega_{0}=4 \frac{\mathrm{rad}}{\mathrm{~s}} \quad d=l=0.4 \quad H B=10.51(4)+25(1.6)(0.4)=18 \quad \frac{\mathrm{~kg} . \mathrm{m}^{2}}{\mathrm{~S}}
$$

PAPCO

$$
\begin{aligned}
& \sum f_{x}=\operatorname{ma}_{x} \Rightarrow \dot{?} \sin \theta=m \bar{a}_{x} \text { (1) } \\
& \sum f_{\sqrt{2}}=m \bar{a}_{B} \Rightarrow m g-N \cos \theta=m \bar{a} y(D) \\
& \sum \bar{M}=\bar{I} \alpha \\
& \frac{m g}{2}\left(\frac{l}{4}\right)-\frac{m g}{2}\left(\frac{l}{4}\right)+N \cos \theta\left(\frac{3}{4} l\right)=\bar{I} \alpha \\
& \bar{x}^{\prime}=\frac{\sum_{m_{i} x_{i}^{\prime}}}{\sum_{m_{i}}}=\frac{\frac{m}{2}(0)+\frac{m}{2}\left(l_{2}\right)}{m} \\
& \overline{a r}^{\prime}=l / 4 \\
& \bar{I}=\left[\frac{1}{12} \frac{m}{2}\left(\ell^{2}\right)+m / 2,\left(\frac{l}{4}\right)^{2}\right]+\left[\frac{1}{12}\left(\frac{m}{2}\right)(E)^{2}+\frac{m}{2}\left(\frac{\ell}{a}\right)^{2}\right] \\
& \bar{I}=\frac{7}{48} m l^{2}
\end{aligned}
$$

Subject:
Year.
$b: \quad \omega=0$
$d=\ell=0.4$
$H_{B}=0+25(1.6)(0.4)=16 \mathrm{kgm} / \mathrm{s}$
c:

$$
\begin{aligned}
& \omega_{D}=\omega_{0}-\dot{\theta}=4-8=-4 \frac{\mathrm{rad}}{\mathrm{~s}} d=0.4 \mathrm{~m} \\
& H_{B}=(0.5)(-4)+(25)(1.6)(0.4) \Rightarrow H_{B}=-2+16=14 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}}
\end{aligned}
$$

$\sum F_{x}=m \bar{a}_{x} \Rightarrow \vec{i} \vec{F}_{+} m g \sin \theta=m \vec{a}_{x}$ (1)
$\sum f_{y}=m \bar{a}_{y} \Rightarrow N-m g \cos \theta=m(\theta)(1) \Rightarrow N=m g \cos \theta$
$\sum_{\bar{M}_{0}}=\overline{\bar{I}} \alpha \Rightarrow-f(r)=m \bar{k}^{2} \alpha^{?}$ (1)

$$
\bar{a}_{x}=-r \alpha=\left\{\begin{array}{l}
-F+m g \sin \theta=-m r \alpha \\
-B_{r}=m \bar{k}^{2} \alpha
\end{array}\right.
$$

$\frac{m k^{-2} \alpha}{r}+m g \sin \theta=-m r \alpha$

 Rn

 $\vec{w}_{3}=\vec{w}_{1}+\vec{w}_{2}+\vec{w}_{3} \vec{v}_{3}^{3}$, N穴

$$
\begin{aligned}
& \omega=\omega \overrightarrow{e_{n n}} \\
& \alpha=\frac{d \vec{\omega}}{d t}= \pm \dot{\omega} \vec{e}_{n n}
\end{aligned}
$$

P\&PCO

Subject:
Year. Month. Date. //I

$$
\begin{aligned}
& \overrightarrow{V A}=\vec{\omega} \overrightarrow{\omega_{r}}=\frac{d r}{d t} \quad \text { - Nöng itn } \\
& \begin{array}{l}
\vec{r}=O \vec{C}+\overrightarrow{C A} \\
\quad \\
\vec{r} \\
\overrightarrow{V_{A}}
\end{array} \vec{\omega} \times(\vec{O}+\vec{b}) \Rightarrow \overrightarrow{V_{A}}=\vec{\omega} \times \vec{b}
\end{aligned}
$$

(5) = (Gッ) eriso

$$
\begin{aligned}
& \theta_{x}=90^{\circ} \Longrightarrow \theta_{r y}=90^{\circ} \\
& \theta_{y}=90^{\circ} \Longrightarrow \theta_{x}=90^{\circ}
\end{aligned}
$$

oin
\qquad

$$
\overrightarrow{V_{A}}=\vec{\omega} \times \vec{r} \quad \overrightarrow{a_{A}}=\vec{\omega} \times \vec{r}+\vec{\omega} \times(\vec{\omega} \times \vec{r})
$$

$$
\begin{aligned}
& 2 \pi r \omega z=2 \pi R \omega_{i} \delta \Rightarrow \omega_{z}=\frac{R}{r} \omega_{r y}=\frac{R}{r} \cdot \frac{2 \pi}{\tau} \\
& \omega=\frac{2 \pi}{\tau} \vec{\delta}-\frac{R}{r} \frac{2 \pi}{\bar{\sigma}} \vec{k} \\
& |\omega|=\sqrt{\left(\frac{2 \pi}{e}\right)^{2}+\left(\frac{R}{r} \frac{2 \pi}{e}\right)^{2}} \quad=\overrightarrow{\omega^{2}} \Rightarrow \vec{\alpha}=\vec{\Omega} \times \vec{\omega} \\
& \vec{\alpha}=\left(\frac{2 \pi}{\tau} \vec{j}\right) \times\left[\frac{2 \pi}{\tau} \vec{j}-\frac{R}{r} \frac{2 \pi}{\tau} \vec{k}\right] \Rightarrow \vec{\alpha}=-\left(\frac{2 \pi}{\tau}\right)^{2}\left(\frac{R}{r}\right) \vec{i} \\
& \alpha=\frac{d \vec{\omega}}{d t}=\dot{\omega}_{y} \vec{J}+\omega_{y}\left(\frac{d \vec{J}}{d t}\right)-\dot{\omega}_{z} \vec{k}-\omega_{z} \frac{d \vec{k}}{d t} \quad \text { "' } \frac{d \vec{e}}{d t}=\vec{\omega} \times \vec{e} "
\end{aligned}
$$

7/16 The wheel rolls without slipping in a circular arc of radius R and makes one complete turn about the vertical y-axis with constant speed in time τ. Determine the vector expression for the angular acceleration α of the wheel and construct the space and body cones.

Ans. $\boldsymbol{\alpha}=-\left(\frac{2 \pi}{\tau}\right)^{2} \frac{R}{r} \mathbf{i}$

Subject:
Year. Month. Date. 115

- Jus
$\omega=14 \mathrm{rad} / \mathrm{s}$ (ct)
=injojoivs
$B \left\lvert\, \begin{array}{lll}0.2 & A \left\lvert\, \begin{array}{l}0.2 \\ 0.2 \\ 0.1 \\ 0.6\end{array} \quad V_{A}\right., a_{A}=\text { ? }\end{array}\right.$

$$
\begin{aligned}
& \overrightarrow{V_{A}}=\vec{\omega} \times \vec{r} \quad \overrightarrow{a_{A}}=\vec{\omega} \times \vec{r}+\vec{\omega} \times(\vec{\omega} \times \vec{r}) \\
& \omega=14 \vec{e}_{O B} \quad \vec{e}_{O B}=\frac{\overrightarrow{O B}}{10 B 1}=\frac{0.2 \vec{i}+0.3 \vec{j}+0.6 \vec{k}}{\sqrt{(0.2)^{2}+(0.3)^{2}+(0.6)^{2}}}=\frac{1}{0.7}(0.2 \vec{i}+0.3 \vec{j}+0.6 \vec{k}) \\
& \vec{\omega}=4 \vec{i}+6 \vec{j}+12 \vec{k} \\
& \dot{\omega}=\frac{d \vec{\omega}}{d t}=0 \quad \vec{r}=O \vec{A}=0.2 \vec{i}+0.2 \vec{j}+0.1 \vec{k} \\
& V_{A}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
4 & 6 & 12 \\
0.2 & 0.2 & 0.1
\end{array}\right|=-1.8 \vec{i}+2 \vec{j}-0.4 \vec{k} \rightarrow \nabla_{A}=2.72 \mathrm{~m} / \mathrm{s} \\
& \vec{a}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
4 & 6 & 12 \\
-1.8 & 2 & -0.4
\end{array}\right|=-26.4 \vec{i}-20 \vec{j}+18.8 \vec{k} \Rightarrow|\vec{a}|=38.1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

7/6 The vertical shaft and attached clevis rotate about the z-axis at the constant rate $\Omega=4 \mathrm{rad} / \mathrm{s}$. Simultaneously the shaft B revolves about its axis $O A$ at the constant rate $\omega_{0}=3 \mathrm{rad} / \mathrm{s}$, and the angle γ is decreasing at the constant rate of $\pi / 4 \mathrm{rad} / \mathrm{s}$. Determine the angular velocity ω and the magnitude of the angular acceleration x of shaft B when $\gamma=$ 30°. The $x-y-z$ axes are attached to the clevis and rotate with it.

$$
\begin{aligned}
\text { Ans. } \omega & =-0.785 \mathbf{i}-2.598 \mathbf{j}+2.5 \mathbf{k r a d} / \mathrm{s} \\
\alpha & =11.44 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

 $\vec{\omega}=\Omega \vec{k}-\dot{\gamma} \vec{i}-\omega_{0} \cos \gamma \vec{j}-\omega_{0} \sin \gamma \vec{k}$ $\vec{\omega}=-\dot{\gamma} \vec{i}-\omega_{0} \cos \gamma \vec{j}+\left(\Omega-\omega_{0} \sin \gamma\right) \vec{k}$

$$
\begin{equation*}
\vec{\omega}=-\frac{\pi}{4} \vec{i}-3 \cos 30 \vec{j}+(4-3(1 / 2)) \vec{k}=-\frac{\pi}{4} \vec{i}-3 \frac{\sqrt{3}}{2} \vec{j}+2.5 \vec{k} \tag{1}
\end{equation*}
$$

$$
\vec{\alpha}=\frac{d \vec{\omega}}{d t}=-\dot{\gamma}(\vec{\Omega} \times \vec{i})-\omega_{0}[-\dot{\gamma} \sin \gamma \vec{j}+(\cos \gamma) \vec{\Omega} \times \vec{j}]+\left(-\omega_{0} \dot{\gamma} \cos \gamma\right) \vec{k}+\left(\Omega-\omega_{0} \sin \gamma\right)(\vec{\Omega} \times \vec{k})
$$

$$
\vec{\alpha}=\frac{\pi}{4}(4 \vec{k} \times \vec{i})-3\left[-\frac{\pi}{4} \times \frac{1}{2} \vec{j}-\frac{\sqrt{3}}{2} \times 4 \vec{i}\right]-3 \times \frac{\pi}{4} \times \frac{\sqrt{3}}{2} \vec{k}
$$

$$
\vec{\alpha}=10.39 \vec{i}-4.32 \vec{j}+2.04 \vec{k} \quad \mathrm{rad} / \mathrm{s}^{2} \quad \quad \text { a } 0 \text { ? } 2 \vec{k}=.6
$$

7/10 The robot shown has five degrees of rotational freedom. The $x-y-z$ axes are attached to the base ring, which rotates about the z-axis at the rate ω_{1}. The arm $O_{1} O_{2}$ rotates about the x-axis at the rate $\omega_{2}=\theta$. The control arm $O_{2} 4$ rotates about axis $0_{1}-O_{2}$ at the rate ω_{3} and about a perpendicular axis through O_{2} that is momentarily parallel to the x-axis at the rate $\omega_{4}=\dot{\beta}$. Finally, the jaws rotate about axis $0_{2}-A$ at the rate ω_{5}. The magnitudes of all angular rates are constant. For the configuration shown, determine the magnitude ω of the total angular velocity of the jaws for $\theta=60^{\circ}$ and $\beta=45^{\circ}$ if $\omega_{1}=2 \mathrm{rad} / \mathrm{s}, \dot{\theta}=1.5 \mathrm{rad} / \mathrm{s}$, and $\omega_{3}=$ $0_{4}=\omega_{5}=0$. Also express the angular acceleratimon of arm $\mathrm{O}_{1} \mathrm{O}_{2}$ as a vector.

$$
\text { Ans. } \omega=2.5 \mathrm{rad} / \mathrm{s}, \mathrm{z}=3 \mathrm{j} \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \vec{w}_{\mathrm{o}_{2} \mathrm{~A}}=\overrightarrow{w_{1}}+\overrightarrow{w_{2}}+\overrightarrow{w_{3}}+\overrightarrow{w_{4}}+\overrightarrow{w_{5}} \\
& \vec{\omega}_{1}=\omega_{1} \vec{k} \quad * \quad \vec{\omega}_{2}=\omega_{2} \vec{i} \quad * \vec{\omega}_{3}=\omega_{3} \vec{k}=\omega_{3}(\cos \theta \vec{j}+\sin \theta \vec{k}) \\
& \overrightarrow{\omega_{4}}=-\omega_{4} \vec{i} \quad * \overrightarrow{\omega_{5}}=\omega_{5}\left(\sin \left(\beta+\frac{\pi}{2}-\theta\right) \vec{\delta}+\cos \left(\beta+\frac{\pi}{2}-\theta\right) \vec{k}\right) \\
& \overrightarrow{\omega_{5}}=\omega_{5}(\cos (\theta-\beta) \vec{j}+\sin (\theta-\beta) \vec{k}) \\
& \left.\vec{\omega}_{0, ~}=\omega_{1} \vec{k}+\omega_{2} \vec{i}+\omega_{3}(\cos \theta \vec{j}+\sin \theta \vec{k})-\omega_{4} \vec{i}+\omega_{5}[\cos (\theta-\beta) \vec{j}+\sin (\theta-\beta) \vec{k})\right] \\
& \overrightarrow{\omega_{0} A}=\left(\omega_{2}-\omega_{4}\right) \vec{i}+\left[\omega_{3} \cos \theta+\omega_{5} \cos (\theta-\beta)\right] \vec{\delta}+\left[\omega_{1}+\omega_{3} \sin \theta+\omega_{5} \sin (\theta-\beta)\right] \vec{k} \\
& \vec{\omega}=1.5 \vec{i}+2 \vec{k} \Rightarrow 1 \omega \mid=2.5 \mathrm{rad} \\
& \overrightarrow{\omega_{0,02}}=\overrightarrow{w_{i}}+\overrightarrow{\omega z}=\omega_{22} \vec{i}+\omega_{1} \vec{k} \Rightarrow \omega_{0,02}=1.5 \vec{i}+2 \vec{k} \quad \text { mil }=2.5 \frac{\mathrm{rad}}{\mathrm{~s}} \quad \overrightarrow{0} t^{2} \\
& \vec{\alpha}_{0,02}=\frac{d}{d t}\left(\omega_{0.02}\right) \quad \vec{\alpha}_{0.02}=\vec{\varepsilon} \times \vec{\omega}=\omega_{1} \vec{k} \times\left(\omega_{2} \vec{i}+\omega_{1} \vec{k}\right) \\
& \vec{\alpha}_{0,02}=\omega_{1} \omega_{2} \vec{J}=3 \vec{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{A}=(A D)\left(\omega_{2}\right) \vec{j}=0.05 \omega_{2} \vec{j} * \\
& \vec{v}_{B}=(B C)\left(\omega_{1}\right) \vec{i}=0.1(6) \vec{i}=0.6 \vec{i} \\
& \vec{r}=0.05 \vec{i}+0.1 \vec{j}+0.1 \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{A / B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\omega_{x} & \omega_{y} & \omega_{z} \\
0.05 & 0.1 & 0.1
\end{array}\right|=\left(0.1 \omega_{y}-0.1 \omega_{z}\right)^{\vec{i}}+\left(0.05 \omega_{z}-0.1 \omega_{x}\right) \vec{j}+\left(0.1 \omega x-0.05 \omega_{y}\right) \\
& 0.05 \omega_{2} \vec{j}=0.6 \vec{i}+0.1\left(\omega_{y}-\omega_{z}\right) \vec{i}+0.05\left(\omega_{z}-2 \omega_{n}\right) \vec{j}+0.05\left(2 \omega_{x}-\omega_{y}\right) \vec{k} \\
& \left\{\begin{array}{l}
0=0.6+0.1\left(\omega_{y}-\omega_{2}\right) \Rightarrow \omega_{z}-\omega_{y}=6 \\
0.05 \omega_{2}=0.05\left(\omega_{z}-2 \omega_{x}\right) \Rightarrow \omega_{2}=\omega_{2}-2 \omega_{x} \\
0=0.05\left(2 \omega_{x}-\omega_{y}\right) \Rightarrow \omega_{2}=\omega_{z}-\omega_{y}=6 \frac{\mathrm{rad}}{\mathrm{~s}} \text {. }
\end{array}\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ \omega _ { z } - \omega _ { y } = 6 } \\
{ 6 = \omega _ { z } - 2 \omega _ { x } } \\
{ \omega _ { y } = 2 \omega _ { x } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \omega _ { n z } - \omega _ { n y } = 6 } \\
{ 6 = \omega _ { n z } - 2 \omega _ { n x } \quad ((\vec { \omega _ { n } } \cdot \vec { r } = 0)) } \\
{ \omega _ { n y } = 2 \omega _ { n x } }
\end{array} \quad \left(\begin{array}{l}
\end{array}\right.\right.\right.
\end{aligned}
$$

Suhject:
Year. Month. Date. Il9

$$
\begin{aligned}
& 0.5 \omega_{n x}+0.1 \omega_{n y}+0.1 \omega_{n z}=0 . \frac{1}{2} \omega_{n x}+\omega_{n y}+\omega_{n z}=0 \\
& \Rightarrow \omega_{n x}+\left(2 \omega_{n x}\right)+\left(6+2 \omega_{n x}\right)=0 \Rightarrow \omega_{n x}= \\
& \Rightarrow \overline{\omega_{n y}}=\overrightarrow{\omega_{n z}}=\quad \Rightarrow \vec{\omega}_{n}=-\frac{4}{3} \vec{i}-\frac{8}{3} \vec{j}+\frac{70}{3} \vec{k} \\
& \overrightarrow{a_{A}}=\vec{a}_{B}+\vec{a}_{A / B} \quad * \quad \overrightarrow{a_{A}}=\left(A D \cdot \omega_{2}^{2}\right) \vec{i}+\left(A D \cdot \alpha_{2}\right) \vec{j} \\
& \overrightarrow{C A}=0.05(6)^{2} \vec{i}+\left(0.05 \alpha_{2}\right) \vec{j}=1.8 \vec{i}+0.05 \alpha_{2}^{?} \vec{j} \\
& \overrightarrow{a_{B}}=B C \cdot \omega_{1}^{2} \vec{k}=(0.1)(6)^{2} \vec{k}=3.6 \vec{k} \\
& \overrightarrow{a_{A / B}}=\vec{\omega} \times \vec{r}+\vec{\omega} \times(\vec{\omega} \times \vec{r}) \xrightarrow{\omega A B} \\
& \overrightarrow{\dot{\omega}} \times \vec{r}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\dot{\omega}_{x} & \dot{\omega}_{y} & \dot{\omega}_{z} \\
0.05 & 0.1 & 0.1
\end{array}\right|=\left(\dot{\omega}_{y}(0.1)-0.1 \dot{\omega}_{z}\right) \vec{i}+\left(0.05 \dot{\omega}_{z}-0.1 \dot{\omega}_{x}\right) \dot{\vec{j}}+\left(0.1 \dot{\omega}_{x}-\dot{\omega}_{y}\right) \vec{k} \\
& \vec{\omega} \times(\vec{w} \times \vec{r})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-\frac{4}{3} & -\frac{8}{3} & \frac{0}{3} \\
-0.6 & 0.3 & 0
\end{array}\right|=-1 \vec{i}+2 \vec{\jmath}-2 \vec{k} \\
& 1.8 \vec{i}+0.05 \alpha_{2} \vec{j}=3.6 \vec{k}-\vec{i}-2 \vec{j}-2 \vec{k}+0.1\left(\dot{\omega}_{y}-\dot{\omega}_{r}\right) \vec{i}+0.05\left(\dot{\omega}_{z}-2 \dot{\omega}_{x}\right) \vec{j} \\
& +0.05\left(2 \dot{\omega}_{x}-\dot{\omega}_{y}\right) \vec{k} \\
& \left\{\begin{array}{l}
1.8=-1+0.1\left(\dot{\omega}_{y}-\dot{\omega}_{z}\right) \quad 1 \\
\left.0.05 \alpha_{2}=-2+0.05\left(\dot{\omega}_{z}-2 \dot{\omega}_{x}\right) 2 \quad \text { "(} \dot{\omega}_{n} \cdot r=01\right) ~ \\
0=3.6-2+0.05\left(2 \dot{\omega}_{x}-\dot{\omega}_{y}\right) 3
\end{array}\right. \\
& \xrightarrow{\text { 会 } \hat{c}^{z}} 0.05 \dot{\omega}_{x}+0.1 \dot{\omega} y+0.1 \dot{\omega}_{z}=04 \\
& \left.\alpha_{2}=-36 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \quad \dot{w}_{n}\right)_{A B}=-8 \vec{i}+16 \vec{j}-12 \vec{k} \quad \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

PAPCO

Year. Month. Date 120

$$
v_{A}, v_{B}=?
$$

روثّة וول :

$$
\begin{aligned}
\overrightarrow{V_{A}}=0+\omega_{1} \vec{k} \times(l \vec{j}+R \vec{k})-R \omega_{0} \vec{\delta} & V_{\text {nel }}
\end{aligned}=R \omega_{0}(-\vec{\delta}) ~ 子 V_{A}=-l \omega_{1} \vec{i}-R \omega_{0} \vec{\delta}
$$

$$
\begin{aligned}
& \overrightarrow{v_{A}}=\overrightarrow{v_{c}}+\vec{\Omega} \times \vec{r}+\overrightarrow{v_{n e l}} \\
& \overrightarrow{v_{C}}=0 \\
& \vec{\Omega}=\omega, \vec{k} \\
& \vec{r}=\overrightarrow{c_{A}}=\overrightarrow{C O}+\overrightarrow{O A}=L \vec{g}+R \vec{k} \\
& \overrightarrow{v_{\text {nel }}}=R W_{0}(-\vec{J})
\end{aligned}
$$

$$
\vec{v}_{A}=\vec{v}_{0}+\vec{\Omega} \times \vec{r}+\vec{v}_{\text {rel }}
$$

$\vec{v}_{A}=\vec{v}_{0}+\vec{\Omega} \times \vec{r}+\overrightarrow{v_{r e d ~}}$
" "

$$
\vec{v}_{0}=-l \omega_{1} \vec{i} * \vec{\Omega}=\omega_{1} \vec{k} \quad * \vec{r}=\overrightarrow{O A}=R \vec{k} \quad * \overrightarrow{v e l}=-R \omega_{0} \vec{J}
$$

$$
\overrightarrow{v_{A}}=-l \omega_{1} \vec{i}-R \omega_{0} \vec{z}
$$

$$
\begin{aligned}
& \overrightarrow{V_{B}}=\overrightarrow{V_{A}}+\overrightarrow{V_{B / A}} \\
& \vec{V} B_{/ A}=\overrightarrow{\omega_{\times}} \overrightarrow{A B}=\overrightarrow{\omega_{0}} \times(\overrightarrow{A O}+\overrightarrow{O B}) \Rightarrow \vec{\omega}=\omega_{1} \vec{k}+\omega_{0} \vec{i} \quad, \quad(\vec{r}=-R \vec{k}+R \vec{j}) \\
& \left.\overrightarrow{V_{B}}=-l \omega_{1} \vec{i}-R \omega_{0} \vec{j}+\left(\omega_{1} \vec{k}+\omega_{0} \vec{i}\right) \times(-R \vec{k}+R \vec{j})=-l \omega_{1} \vec{i}-R \omega_{0} \vec{j}-R \omega_{1} \vec{i}+R \omega_{0} \vec{j}+R \omega_{0} \vec{k}, A\right) \\
& \overrightarrow{V_{B}}=-(l+R) \omega_{1} \vec{i}+R \omega_{0} \vec{k}
\end{aligned}
$$

PAPCO

$$
49-46-41-37-29
$$

$$
\begin{aligned}
& V \overrightarrow{V A / 0}=\omega \times r=\left\{\begin{array}{l}
\vec{\omega}=\omega_{1} \vec{k}+\omega_{0} \vec{i} \\
\vec{r}=O \vec{A}=R \vec{k}
\end{array}\right. \\
& \overrightarrow{V A_{10}}=-R \omega_{0} \vec{j} \quad \Rightarrow \quad \overrightarrow{V A}=-l \omega_{1} \vec{i}-R \omega_{0} \vec{\jmath}
\end{aligned}
$$

Subject:
Year. Month Date. 121 -

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a} \quad \Rightarrow \sum \vec{F}=\frac{d}{d t} \vec{G} \\
& \sum M=\vec{I}_{\alpha} \quad \Rightarrow \sum \vec{M}=\frac{d}{d t} \vec{H}
\end{aligned}
$$

$(\vec{v}+\vec{\omega} \times \vec{\rho}) \Rightarrow \vec{H}_{c}=\int \vec{\rho} \times(\vec{v}+\vec{\omega} \times \vec{\rho}) d m$

$$
\begin{aligned}
\overrightarrow{H_{c}} & =\int \vec{\rho} \times \vec{v} d m+\int \vec{\rho} \times\left(\vec{\omega}_{\times} \times \vec{\rho}\right) d m \\
& =-\int \vec{v} \times \vec{\rho} d m+\cdots \\
-\vec{v} \times \int \vec{\rho} \times d m & =-\vec{v} \times(\vec{\rho} m)=0 \quad \vec{H}_{G}=\int \vec{\rho}^{m} \times(\vec{\omega} \times \vec{\rho})
\end{aligned}
$$

\qquad
\qquad
PqPCO \qquad

Subject.
Year. Month. Date. 1/23

 .

 N

\qquad

Subject:

$$
\begin{aligned}
& I_{r y z}=\frac{1}{2} m R^{2} \quad I_{z z}=\frac{1}{4} m R^{2}+m l^{2} \\
& I_{a z}=I_{x z}+d u d z \cdot m=0
\end{aligned}
$$

$$
I_{r y z}=\bar{I}[y z+d y d z m=
$$

$$
c=\left.\right|_{0} ^{0} \xrightarrow{l} d x \rightarrow d y
$$

$$
I_{\text {oxy }}=I_{0}^{-x y}+d x d y m=0
$$

$$
H_{0 x}=0 \quad, \quad H_{y y}=\left(\frac{1}{2} m R^{2} \|-\frac{l}{R} w_{0}\right) \quad H_{z}=\left(\frac{1}{4} m R^{2}+m \ell^{2}\right) \omega_{0}
$$

Nb
$G=\left\{\begin{array}{l}0 \\ \frac{4 R}{3 \pi} \\ l_{0}+\frac{l}{2}\end{array}\right.$

$$
\left\{\begin{array}{l}
H_{x}=-I_{x z} \omega_{0} \\
H_{r y}=-I_{r y z} \omega_{0} \\
H_{z}=I_{z z} \omega_{0}
\end{array}\right.
$$

PAPCO

$$
\begin{aligned}
& I_{x z}=I_{x z}+\text { dudzm }=0 \\
& I_{y z}=I_{y z}+d_{1 y d z m}=\left(\frac{4 R}{3 \pi}\right)\left(l_{0}+\frac{l}{2}\right) m \\
& I_{z z=} \frac{1}{2} m R^{2}\left(\text { Sup } \Rightarrow \left\{\begin{array}{l}
H_{x}=0 \\
H_{r y}=-\frac{4 R}{3 \pi}\left(l_{0}+\frac{\ell}{2}\right) m \omega_{0} \\
H_{z}=\frac{1}{2} m R^{2} \omega_{0} .
\end{array}\right.\right. \\
& \text { 49-65-69-57-Q : jرN }
\end{aligned}
$$

$$
\begin{aligned}
& * \sum \vec{F}=\frac{d}{d t} \vec{G}=m \vec{a} \\
& * \sum \vec{m}=\frac{d}{d t} \vec{H}
\end{aligned}
$$

$$
\{H\}=[I]\{\omega\}
$$

io

$$
\rightarrow \text { depos , मो }
$$

PAPCO

$$
\begin{aligned}
& \frac{d \vec{H}}{d t}=\vec{H}+\vec{\omega} \times \vec{H} \\
& \overrightarrow{r_{A}}=\overrightarrow{r_{B}}+\vec{r} \\
& \overrightarrow{v_{A}}=\overrightarrow{v_{B}}+\dot{r}+\vec{\omega} \overrightarrow{r r} \\
& \text { * } \sum \vec{M}=\overrightarrow{\dot{H}}+\vec{\omega} \times \vec{H} \\
& r_{A}=r_{B}+r \quad: \text { un } \\
& \sum \vec{m}=\left\{\begin{array}{l}
\dot{H}_{a} \\
\dot{H}_{i-y} \\
\dot{H}_{z}
\end{array}\right\}+\left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\omega_{x} & \omega_{i y} & \omega_{z} \\
H_{x} & H_{y} & H_{z}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\sum_{M_{x}}=\dot{H}_{x}+w_{y y z} H_{z}-w_{z} H_{y} \\
\sum M_{y}=\dot{H}_{i y}+w_{z} H_{x}-\omega_{x} H_{z} \\
\sum M_{z}=\dot{H}_{z}+w_{x} H_{r y}-w_{i y} H_{x}
\end{array}\right. \\
& \sum m_{n}=I_{x x} \dot{\omega}_{x x}-I_{x y} \dot{\omega}_{i y}-I_{n z} \dot{\omega}_{z}+\omega_{r y}\left(-I_{z x} \omega_{x}-I_{z-y} \omega_{z y}+I_{z z} \omega_{z}\right) \\
& -\omega_{z}\left(-I_{\text {yx }} \omega_{x}+I_{\text {-yy }} \omega_{y y}-I_{\text {yz }} \omega_{z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{M_{x}}=I_{x x} \dot{\omega}_{x x}+I_{z z} \omega_{y y} \omega_{z}-I_{\text {ryy }} \omega_{\text {ig }} \omega_{z} \\
& \sum_{M_{x}}=I_{x x} \dot{\omega}_{x x}+\omega_{r y} \omega_{z}\left(I_{z z}-I_{\text {igrg }}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\sum m_{x}=-I_{x z} \dot{\omega}_{z}+I_{y z} \omega_{z}^{2} \\
\sum M_{y}=-I_{y z} \dot{\omega}_{z}+I_{x z} \omega_{z}^{2} \\
\sum M_{z}=I_{z z} \dot{\omega}_{z}
\end{array}\right.
$$

$$
\begin{aligned}
& U_{n c}=\Delta T+\Delta V_{g}+\Delta V_{e} \\
& \text { * Unc }=\int \vec{F} \cdot \overrightarrow{d r} \quad \iota \int \vec{m} \cdot d \vec{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta T=\frac{1}{2} \vec{\omega} \cdot \vec{H}_{0} \quad=\text { aids us }
\end{aligned}
$$

PAPCO

Subject:
Year. Month. Date. 187

Es^{2}

$$
O C=0.05 \mathrm{~m}
$$

$$
R_{A}, R_{B} \text { जो ? }
$$

"Insin uivebuís"

$$
\begin{aligned}
& \sum F_{j}=m \bar{a}_{\sigma} \Rightarrow A_{j}+B r=6(0) \Rightarrow A_{y}+B r_{0}=0 \\
& \begin{aligned}
& \sum M_{x}=\dot{H} x+(\vec{\omega} \times \vec{H})_{x} \\
& \Rightarrow
\end{aligned} \quad\{\omega\}=\left\{\begin{array}{c}
0 \\
0 \\
\omega_{z}
\end{array}\right\} \quad\{H\}=[I]\left\{\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right\} \\
& \{H\}=[I]\left\{\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right\}=\left\{\begin{array}{c}
-I_{x z \omega} \\
-I_{y z} \omega \\
I_{z z \omega}
\end{array}\right\} \\
& \sum \vec{M}=\operatorname{jin}_{\boldsymbol{D}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0 & 0 & \omega \\
I_{x z} \omega & -I_{y z} \omega & J_{z z} \omega
\end{array}\right|=\left(-I_{r y z} \omega^{2}\right) \vec{i}-I_{x z} \omega^{2} \vec{J} \\
& \sum M_{x}=-I_{y z} \omega^{2} \Rightarrow A_{y}(0.15)+B_{r y}(0.35)=-I_{r y} z w^{2} \\
& \sum M_{y}=-I_{x z} \omega^{2} \Rightarrow 6(9.8)(0.05)-A_{x}(0.15)-B_{x}(0.35)=-I_{x z} \omega^{2} \\
& I_{r y z}=0 \quad * \text { visios } \cos \\
& \operatorname{Iox} z=0 \\
& A x=+576 \quad B x=-247 \\
& A_{r y}=B_{r y}=0
\end{aligned}
$$

$\sum F_{x}=m \bar{a}_{x}=\sum m_{i} \bar{a}_{i x}$
$\begin{aligned} & A x+B x-g-0.6 g-0.89=(1)(-0.025)(120 \pi)^{2}-(0.6)(0.05)(120 \pi)^{2} \cos 60^{\circ} \\ \sum F_{r y}= & \sum m_{i} \bar{a}_{i y} \Rightarrow A_{y}+B_{r y}=(0.6)(0.05)(120 \pi)^{2} \sin 60-(0.8)(0.04)(120 \pi)^{2}\end{aligned}$

$$
\sum_{M x}=-I_{1 y z} \omega^{2} \Rightarrow-B_{y}(0.25)=\ldots
$$

\qquad

$$
\begin{aligned}
\sum M_{y y}= & -I_{x z} \omega^{2} \Rightarrow B_{x}(0.25)-1(9.8)(0.05)-0.6(9.8)(0.2) \\
& -\omega^{2}[1(0.025)(0.05)+(0.025)(0.2)(0.6)]= \\
A_{x}= & -3269 \quad \text { Ary }=-1050 \quad B_{x}=225 \quad B_{y}=-2416
\end{aligned}
$$

0, ce,

$$
\left\{\begin{array}{l}
A x+B x=24 \longrightarrow A r=-32 \\
A r y+B r y=0 \longrightarrow A r y=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
-B_{r y}(0.25)=0 \rightarrow B r y=0 \\
B x(0.25)=14 \Rightarrow B x=56
\end{array} \quad\right. \text { ij) iil.0)sysio0 ax By, Ary, Ax }
$$

"
"尾, Com dres

PapCO

$$
P_{0} \longrightarrow M \longrightarrow-2
$$

$$
Y_{0} \dot{j}
$$

水白教

$$
\begin{aligned}
& \tan d \psi=d \psi=d(m \vec{v}) / \vec{G} \\
& d \psi=\frac{F d t}{G} \rightarrow F d t=(d \psi) G \Rightarrow F=\dot{\psi} \cdot m \vec{v} \\
& \quad \vec{F}=m \vec{v} \times \vec{\Omega}
\end{aligned}
$$

$$
\begin{aligned}
& d \psi=\text { Tou } d \psi=\frac{d H}{H}=\frac{M d t}{H} \\
& \frac{M d t}{d t}=H \frac{d \psi}{d t} \\
& M=H \dot{\psi} \Rightarrow M=H \Omega \\
& \vec{M}=\vec{\Omega} \times \vec{H}
\end{aligned}
$$

$$
\sum_{M}=\frac{d \vec{H}}{d t}
$$

$$
m=m g \cdot \vec{r} \cdot \sin \varphi \quad \Rightarrow \quad m g \vec{r} \sin \varphi=I \Omega \sin \varphi(\rho)
$$

$$
\Omega=\frac{m g \vec{r}}{I}=\frac{m g \vec{r}}{m k^{2}}=\frac{g \vec{r}}{k^{2} p}
$$

PAPCO

$$
\begin{aligned}
& \sum \vec{M}=\frac{d}{d t} \vec{H}=\vec{H}+\vec{\omega} \times \vec{H}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R} \cdot \mathbb{N} \quad \underset{M}{ } \sim \text { is } 1 \\
& \text { "M.K }
\end{aligned}
$$

$$
\left.\begin{array}{l}
\sum \vec{M}=\frac{d \vec{H}}{d t}=\vec{H}+\vec{\omega} \times \vec{H} \\
\vec{\omega} \times \vec{H}=(\omega \vec{k}) \times\left(-I_{x z} \omega_{i}-I_{i y z} \omega \vec{j}+I_{z z} \vec{k}\right) \\
0 \\
0
\end{array}\right\} \rightarrow\{H\}=\left\{\begin{array}{c}
-I_{x z} \omega \\
-I_{n z} \omega \\
I_{z z} \omega
\end{array}\right\}
$$

$$
\sum M_{z}=0 \Rightarrow M z
$$

$$
\begin{aligned}
& \left.M x=\omega^{2}\left[0+\rho l(l / 2 \cdot l)+\rho l(l)^{2}+\rho l\left(l \cdot \frac{3}{2} l\right)\right] \Rightarrow m u=3 \rho l^{3} \omega^{2}\right] \\
& M_{r y}=-\omega^{2}\left[0+0+\rho l(l \cdot l / 2)+\rho l(l)\left(\frac{3}{2} l\right)\right] \Rightarrow M_{y}=-2 \rho l^{3} \omega^{2}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

$\Delta S:-3$ sisen

- Elt+at טंग川 चiens, " $\overrightarrow{o p}$, iv. .
$\bar{a}:{ }^{1} \sim \sim \ddot{\sim} \sim m \sim a=\frac{(v+\Delta v)-v}{\Delta t}=\frac{\Delta v}{\Delta t}$
$a:$ S\|S-in $\rightarrow a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=v^{-2}=\dot{S}=\frac{d^{2} s}{d t^{2}}$

$$
d t=\frac{d s}{v} \quad, \quad a=\frac{d v}{d s / v} \Rightarrow a d s=v d v
$$

$a d s=v d v$

PAPCO

