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Conversion of Units

Quantity SI Equivalence

English Equivalence

Mass 1 Ib; — sec?/ft (slug) =14,5939 kg
=321741b,,
11b,, = 0.45359237 kg

Length lin. =0.0254 m
1ft=0.3048 m
1 mile = 5280 ft =1.609344 km

Area 1in® = 0.00064516 m?
1 £t? = 0.0929030 m?

Volume 1in® =16.3871x10°¢ n?
1ft>=283168X10" > n?
1 US gallon = 3.7853 litres
=3.7853 X107 n?

Force or 11b; = 4448222 N

weight

Torque or 11b; —in. = 01129848 N-m
moment 11b; — ft =1.355818 N-m
Stress, 1 Ib; /in? (psi) = 6894.757 Pa
pressure, or 1 1b, /ft? = 47.88026 Pa

elastic

modulus

Mass density 11b,, /in® = 27.6799 X 10° kg /m’

L1b,, /ft> =16.0185 kg /m’

1 kg = 2.204623 Ib,,

=0.06852178 slug
(Ib; — sec?/ft)

1 m = 39.37008 in.
=3.28084 ft
1 km = 3280.84 ft = 0.621371 mile

1 m? =1550.0031 in?
=10.76391 ft>

1o’ =61.0237%10° in®

=353147 ft3
=10’ litres = 0.26418 US gallon

1 N = 0.2248089 1b,

1 N-m = 8.850744 Ib, — in.
=0.737562 Ib — ft

1 Pa=1450377x10"* Ib, /in’ (psi)
=208.8543 X104 Ib; /ft2

1kg/m? = 36.127x10 °Ib_, /in®
=62.428x107° Ib,, /ft




Quantity SI Equivalence E.{

Work or energy lin. —1b; = 0.1129848 J 1 1
1ft—1b, =1.355818 ) 1]
1 Btu =1055.056 J
1kWh =36%10%]

Power 1in — Ib, /sec = 0.1129848 W 1

Area moment
of inertia or
second moment
of area

Mass moment
of inertia

Spring constant:
translatory

torsional

Damping constant:

translatory
torsional

Angles

1ft — Ib; /sec =1.355818 W
=0.0018182 hp
1hp="7457W

1in® = 41.6231 x 10~ ®m*
1 ft* = 86.3097x10™* m*

1in — Ib; — sec? = 0.1129848 m*- kg 1

11b, /in. =175.1268 N/m
11b,/ft =14.5939 N/m

lin. — 1b; /rad = 0.1129848 m* N /rad 1

11b; - sec/in =175.1268 N-s/m

1in — Ib; — sec/rad

=0.1129848 m-N-s/rad

1 rad = 57.295754 degrees;

1 rpm = 0.166667 rev/sec = 0.104720 rad /sec; 1 raf

1 degree =




Prefac;

This text is intended for use as an introduction to the subject of vibratic
engineering at the undergraduate level. The style of presentation from the pric
edition, of presenting the theory, computational aspects, and applications of vibr:
tions in a manner as simple as possible is retained. As in the first edition, computs
techniques of analysis are emphasized. Expanded explanations of the fundamental
emphasizing physical significance and interpretation that build upon previot
experiences in undergraduate mechanics are given. Numerous examples and prot
lems are used to illustrate principles and concepts.

This book was first published in 1986. Favorable reactions and friendly encou
agements from professors, students and my publisher have provided me with tt
impetus to come out with a new edition. In this second edition several new chapte:
have been added. Modifications and corrections to many topics have been mad
Most of the additions to the first edition were suggested by those who have used tl
text and by numerous reviewers.

Some of the important changes in this edition are:

Approximately forty percent of the problems are new.

Design type problems, identified by asterisks, are included in various chapter:

Project type problems are added at the end of several chapters.

The section on vibration measuring instruments has been expanded into a fu

chapter entitled, “ Vibration Measurement.”

The chapter on further topics in vibration is now deleted.

* New chapters on finite element method, nonlinear vibration, and randor
vibration are added.

* All the examples in the book have been presented in a new format. Followi

the statement of each example, the known information, the quantities to b

determined, and the approach to be used are first identified and then th

detailed solution is given.

* ® B *

*
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FEATURES
Each topic in Mechanical Vibrations is self-contained. All the concepts are ex-

plained fully and the derivations are presented with complete details for the benefit

of the reader. The computational aspects are emphasized throughout the book.
Several Fortran computer programs, most of them in the form of general purpose
subroutines, are given at the end of the chapters. These programs are given for use
by the students. Although the programs have been tested, no warranty is implied as
to their accuracy.

Problems, which are based on the use/development of computer programs, are
given at the end of each chapter. It is highly desirable that students solve these
problems to obtain exposure to many important computational and programming
details.

Some subjects are presented in a somewhat unconventional manner. The topics
of Chapters 9, 10, and 11 fall in this category. Most textbooks discuss the topics of
isolators, absorbers, and balancing at different places. Since one of the main
purposes of the study of vibrations is to control vibration response, all the topics
directly related to vibration control are given in Chapter 9. The vibration measuring
instruments, along with vibration exciters and signal analysis procedures, are
presented in Chapter 10. Similarly, all the numerical integration methods applicable
to single- and multidegree-of-freedom systems, as well as continuous systems, are
unified in Chapter 11.

Specific features include:

* 23 Computer programs to aid the student in the numerical implementation of
the methods discussed in the text.

* Nearly 100 illustrative examples following the presentation of most of the
topics.

* More than 250 review questions to help students in reviewing and testing their
understanding of the text material.

* Over 600 problems, with solutions in the instructor’s manual.

* More than 290 references to lead the reader to specialized and advanced
literature.

* Biographical information about scientists and engineers, who contributed to the
development of the theory of vibrations, is given on the opening pages of
chapters and appendixes.

NOTATION AND UNITS

Both the SI and the English system of units have been used in the examples and
problems. A list of symbols, along with the associated units in SI and Enghish
systems, is given at the beginning of the book. A brief discussion of SI units as they
apply to the field of vibration is given in Appendix C. Arrows are used over symbols
to denote column vectors and square brackets are used to indicate matrices.
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CONTENTS

Mechanical Vibrations is organized into 14 chapters and 3 appendixes. The material
of the book provides flexible options for different types of vibration courses. For a
one-semester senior or dual-level course, Chapters 1 through 5, portions of Chapters
6, 7, 8 and 10, and Chapter 9 may be used. The course can be given a computer
orientation by including Chapter 11 in place of Chapter 8. Alternatively, with
Chapters 12, 13 and 14, the text has sufficient material for a one-year sequence at
the senior level. For shorter courses, the instructor can select the topics depending
on the level and orientation of the course. It is hoped that the relative simplicity
with which the various topics are presented makes the book useful to students as
well as practicing engineers for purposes of self-study and as a source of references
and computer programs.

Chapter 1 starts with a brief discussion of the history and importance of
vibrations. The basic concepts and terminology used in vibration analysis are
introduced. The free vibration analysis of single-degree-of-freedom undamped trans-
lational and torsional systems is given in Chapter 2. The effects of viscous, Coulomb
and hysteretic damping are also discussed. The harmonic response of single-degree-
of-freedom systems is considered in Chapter 3. Chapter 4 is concerned with the
response of a single-degree-of-freedom system under general forcing conditions. The
roles of convolution integral, Laplace transformation, and numerical methods are
discussed. The concept of response spectrum is also introduced in this chapter. The
free and forced vibration of two-degree-of-freedom systems is considered in Chapter
5. The self-excited vibration and stability of the system are discussed. Chapter 6
presents the vibration analysis of multidegree-of-freedom systems. Matrix methods
of analysis are used for the presentation of the theory. The modal analysis proce-
dure is described for the solution of forced vibration problems. Several methods of
determining the natural frequencies of discrete systems are outlined in Chapter 7.
Dunkerley’s, Rayleigh’s, Holzer’s, matrix iteration, and Jacobi’s methods are dis-
cussed.

The vibration analysis of continuous systems including strings, bars, shafts,
beams, and membranes is given in Chapter 8. The Rayleigh and Rayleigh-Ritz
methods of finding the approximate natural frequencies are also described. Chapter
9 discusses the various aspects of vibration control including the problems of
elimination, isolation and absorption. The balancing of rotating and reciprocating
machines and whirling of shafts are also considered. The vibration measuring
instruments, vibration exciters and signal analysis are the topics of Chapter 10.
Chapter 11 presents several numerical integration techniques for finding the dy-
namic response of discrete and continuous systems. The central difference, Runge-
Kutta, Houbolt, Wilson, and Newmark methods are summarized and illustrated.
The finite element analysis, with applications involving one dimensional elements, is
given in Chapter 12. An introductory treatment of nonlinear vibration, including a
discussion of subharmonic and superharmonic oscillations, limit cycles, and systems
with time dependent coefficients, is given in Chapter 13. The random vibration of
linear vibration systems is considered in Chapter 14. Appendixes A, B, and C
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outline the basic relations of matrices, Laplace transforms, and SI units, respec-
tively.
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LIST oF sSYMBOLS

Symbol

Meaning

a, a,» 4 ”z,:ﬁ-
x
”ll

[a]

A

A, A, A,,...
b, by by, ...
B, B, B, ..
B

ac

€, €y €15 Ca5 - - -

[e]
C’ Clv szCl"Cl’/

constants, lengths

flexibility coefficient

flexibility matrix

area

constants

constants, lengths

constants

balancing weight

viscous damping coefficient

constants

wave velocity

critical viscous damping
constant

damping constant of ith
damper

damping coefficient

damping matrix

constants

diameter, dimension

diameter

dynamical matrix

base of natural logarithms

eccentricity

unit vectors parallel to
x and y directions

Young’s modulus

expected value of x

linear frequency

force per unit length

unit impulse

force

amplitude of force F(r)

force transmitted

force acting on ith mass

force vector

impulse

acceleration due to gravity

impulse response function

English Units SI Units
in./1b m/N
in./lb m/N
in m?

b N
Ib-sec/in. N-s/m
in./sec m/s
Ib-sec/in. N:s/m
Ib-sec/in. N-s/m
Ib-sec/in. N-s/m
Ib-sec/in. N:s/m
in. m

in. m

sec? s?

in, m
Ib/in? Pa

Hz Hz
Ib/in. N/m
1b-sec N-s

Ib N

b N

b N

1b N

b N
Ib-sec N-s
in,/sec? m/s?
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Symbol Meaning

G shear modulus

h hysteresis damping
constant

H(iw) frequency response function

i V=1

7 area moment of inertia

{n identity matrix

Im() imaginary part of ()

J integer

J polar moment of inertia

Jos Iy o, mass moment of inertia

k, k spring constant

k, spring constant of ith
spring

k, torsional spring
constant

k,, stiffness coefficient

[k] stiffness matrix

0, length

m, m mass

m, ith mass

m, mass coefficient

[m] mass matrix

M mass

M bending moment

M, M M,,... torque

M, aniplitude of M,(r)

n an integer

n number of degrees of freedom

N normal force

N total number of time steps

pressure

p(x) probability density
function of x

P(x) probability distribution
function of x

P force, tension

9, Jjth generalized coordinate

q vector of generalized

displacements

English Units

Ib/in?
Ib/in

in

i.ﬂd

Ib-in. /sec?
Ib/in,
Ib/in.

Ib-in/rad

Ib/in.
Ib/in,

in.
Ib-sec?/in.
Ib-sec?/in.
Ib-sec?/in.
Ib-sec?/in,
Ib-sec? /in.
Ib-in.
Ib-in,
Ib-in,

xxi

SI Units

N/n?
N/m

4

kg - m?
N/m
N/m

N-m/rad

N/m
N/m

kg
kg

ZZZ255 5

8 B 8

N/n?
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LIST OF SYMBOLS (continued)

Symbol
q

9,

r

7
Re()

R(7)

S S S,

Su(@)

- o~

NNNNS

E3
<

sTaaes
§ = =

<

AN

W, Wi, Wy, @,
%o
Yo
w,

"

w
w

Meaning English Units SI Units
vector of generalized
velocities
Jth generalized force
frequency ratio = w/w,
radius vector in. m
real part of ()
autocorrelation - —
function
electrical resistance ohm ohm
Rayleigh’s dissipation Ib-in/sec N-m/s
function
Rayleigh’s quotient 1/sec? 1/s2
exponential cocfficient,
root of equation
acceleration, displacement,
velocity spectrum
spectrum of x
time sec s |
ith time station sec s
torque 1b-in N-m
kinetic energy in.-lb I
kinetic energy of ith mass in.-lb I
transmissibility ratio
an element of matrix [U]
axial displacement in. m
potential energy in.-Ib I
unbalanced weight Ib N
upper triangular matrix
linear velocity in./sec m/s
shear force Ib N
potential energy in.-Ib I
potential energy of ith in.-Ib J
spring
transverse deflections in. m
valueof watt =0 in. m
valueof w att =0 in./sec m/s
nth mode of vibration
weight of a mass Ib N
total energy in.-lb J
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w transverse deflection in. m
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W(x) a function of x
x, ¥, 2 cartesian coordinates, in. m

displacements
Xo, X(0) valueof xatt =0 in, m
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x, displacement of jth mass in. m
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X vector of displacements in, m
X, valueof X at t = ¢, in, m
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X ith mode
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X\ ith component of jth mode in. m
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mode shape
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Y amplitude of y(r) in. m
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Z(iw) mechanical impedance Ib/in. N/m
a angle, constant
B angle, constant
B hysteresis damping constant
Y specific weight Ib/in’ N/w’
8 logarithmic decrement
8,8, deflections in. m
8, static deflection in. m
8, Kronecker delta
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e damping ratio
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4 stress Ib/in? N/m
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cri critical value
eq equivalent value
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Simply supported beam with load
at the middle
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piston in a cylinder)
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CHAPTER 1 _

Fundamentals
of Vibration

Galileo Galler (1564 -~ 1642), an Italian astronomer,
philosopher, and professor of mathematcs at the
Universities of Pisa and Padua, in 1609 became the first
man to point a telescope to the sky. He wrote the first
treatise on modern dynamics in 1590. His works on the
oscillatons of a simple pendulum and the vibration of
strings are of fundamental significance  the theory of
vibrations. (Courtesy of the Granger Collection)

1.1 PRELIMINARY REMARKS

This chapter introduces the subject of vibrations in a relatively simple manner. The
chapter begins with a brief history of the subject and continues with an examination
of its importance. The various steps involved in vibration analysis of an engineering
system are outlined, and essential definitions and concepts of vibration are intro-
duced. There follows a presentation of the concept of harmonic analysis, which can
be used for the analysis of general periodic motions. No attempt at exhaustive
treatment is made in Chapter 1; subsequent chapters will develop many of the ideas
in more detail.

‘1.2 BRIEF HISTORY OF VIBRATION

People became interested in vibration when the first musical instruments, probably
whistles or drums, were discovered. Since then, people have applied ingenuity and
critical investigation to study the phenomenon of vibration. Galileo discovered the
relationship between the length of a pendulum and its frequency and observed the
resonance of two bodies that were connected by some energy transfer medium and
tuned to the same natural frequency. Further, he observed the interrelationships of
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the density, tension, length, and frequency of a vibrating string [1.1]. Although it
had long been understood that sound was related to the vibration of a mechanical
system, it was not clear that pitch is determined by the frequency of vibration until
Galileo found the result. At about the same time as Galileo, Hooke showed the
relationship between frequency and pitch.

Among mathematicians, Taylor, Bernoulli, D’Alembert, Euler, Lagrange, and
Fourier made valuable contributions to the development of vibration theory. Wallis
and Sauveur observed, independently, the phenomenon of mode shapes (with
stationary points, called nodes) in vibrating strings. They also established that the
frequency of the second mode is twice that of the first and the frequency of the third
mode three times that of the first. Sauveur is credited with coining the term
fundamental for the lowest frequency and harmonics for the others. Bernoulli first
proposed the principle of linear superposition of harmonics: Any general configura-
tion of free vibration is made up of the configurations of individual harmonics,
acting independently in varying strengths {1.2].

After the enunciation of Hooke's law of elasticity in 1676, Euler (1744) and
Bernoulli (1751) derived the differential equation governing the lateral vibration of
prismatic bars and investigated its solution for the case of small deflections. In 1784,
Coulomb did both theoretical and experimental studies of the torsional oscillations
of a metal cylinder suspended by a wire.

There is an interesting story related to the development of the theory of
vibration of plates [1.3]. In 1802, Chladni developed the method of placing sand on
a vibrating plate to find its mode shapes and observed the beauty and intricacy of
the modal patterns of the vibrating plates. In 1809, the French Academy invited
Chladni to give a demonstration of his experiments. Napoleon Bonaparte, who
attended the meeting, was very impressed and presented a sum of 3000 francs to the
Academy, to be awarded to the first person to give a satisfactory mathematical
theory of the vibration of plates. By the closing date of the competition in October,
1811, only one candidate, Sophie Germain, had entered the contest. But Lagrange,
who was one of the judges, noticed an error in the derivation of her differential
equation of motion. The Academy opened the competition again, with a new closing
date of October, 1813. Sophie Germain again entered the contest, presenting the
correct form of the differential equation. However, the Academy did not award the
prize to her because the judges wanted physical justification of the assumptions
made in her derivation. The competition was opened once more. In her third
attempt, Sophie Germain was finally awarded the prize in 1816, although the judges
were not completely satisfied with her theory. In fact, it was later found that her
differential equation was correct but that the boundary conditions were erroneous.
The correct boundary conditions for the vibration of plates were given in 1850 by
Kirchhoft.

After this, vibration studies were done on a number of practical mechanical and
structural systems. In 1877, Lord Rayleigh published his book on the theory of
sound [1.4]; it is considered a classic on the subject of vibrations even today.
Notable among the many contributions of Rayleigh is the method of finding the
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fundamental frequency of vibration of a conservative system by making use of the
principle of conservation of energy—now known as Rayleigh’s method [1.5]. In
1902, Frahm investigated the importance of torsional vibration study in the design
of propeller shafts of steamships. The dynamic vibration absorber, which involves
the addition of a secondary spring-mass system to eliminate the vibrations of a main
system, was also proposed by Frahm in 1909. Among the modern contributors to
the theory of vibrations, the names of Stodola, Timoshenko, and Mindlin are
notable. Stodola’s method of analyzing vibrating beams is also applicable to turbine
blades. The works of Timoshenko and Mindlin resulted in improved theories of
vibration of beams and plates.

1t has long been recognized that many basic problems of mechanics, including
those of vibrations, are nonlinear. Although the linear treatments commonly adopted
are quite satisfactory for most purposes, they are not adequate in all cases. In
nonlinear systems, there often occur phenomena that are theoretically impossible in
linear systems. The mathematical theory of nonlinear vibrations began to develop in
the works of Poincaré and Lyapunov at the end of the last century. After 1920,
studies undertaken by Duffing and van der Pol brought the first definite solutions
into the theory of nonlinear vibrations and drew attention to its importance in
engineering. In the last 20 years, authors like Minorsky and Stoker have endeavored
to collect the main results concerning nonlinear vibrations in the form of mono-
graphs [1.6,1.7].

Random characteristics are present in diverse phenomena such as earthquakes,
winds, transportation of goods on wheeled vehicles, and rocket and jet engine noise.
It became necessary to devise concepts and methods of vibration analysis for these
random effects. Although Einstein considered Brownian movement, a particular
type of random vibration, as long ago as 1905, no applications were investigated
until 1930. The introduction of the correlation function by Taylor in 1920 and of the
spectral density by Wiener and Khinchin in the early 1930s opened new prospects
for progress in the theory of random vibrations. Papers by Lin and Rice, published
between 1943 and 1945, paved the way for the application of random vibrations to
practical engineering problems. The monographs of Crandall and Mark, and
Robson systematized the existing knowledge in the theory of random vibrations
[1.8,1.9]

Until about 25 years ago, vibration studies, even those dealing with complex
engineering systems, were done by using gross models, with only a few degrees of
freedom. However, the advent of high-speed digital computers in the 1950s made it
possible to treat moderately complex systems and to generate approximate solutions
in semi-closed form, relying on classical solution methods but using numerical
evaluation of certain terms that cannot be expressed in closed form. The simultane-
ous development of the finite element method enabled engineers to use digital
computers to conduct numerically detailed vibration analysis of complex mechani-
cal, vehicular, and structural systems displaying thousands of degrees of freedom
[1.10,1.11]. Figure 1.1 shows the finite element idealization of the body of a
bus [1.12].
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Figure 1.1 Finite element 1dealization of the body of a bus [1 12]. (Reprinted with permission ©1974
Socrety of Automotive Engineers. Inc.)

3 IMPORTANCE OF THE STUDY OF VIBRATION

Most human activities involve vibration in one form or other. For example, we hear
because our eardrums vibrate and see because light waves undergo vibration.
Breathing is associated with the vibration of lungs and walking involves (periodic)
oscillatory motion of legs and hands. We speak due to the oscillatory motion of
larynges (tongue) [1.13]. Early scholars in the field of vibration concentrated their
efforts on understanding the natural phenomena and developing mathematical
theories to describe the vibration of physical systems. In recent times. many
investigations have been motivated by the engineering applications of vibration,
such as the design of machines, foundations, structures, engines, turbines. and
control systems.

Most prime movers have vibrational problems due to the inherent unbalance in
the engines. The unbalance may be due to faulty design or poor manufacture.
Imbalance in diesel engines, for example, can cause ground waves sufficiently
powerful to create a nuisance in urban areas. The wheels of some locomotives can
rise more than a centimeter off the track at high speeds due to unbalance. In
turbines, vibrations cause spectacular mechanical failures. Engineers have not yet
been able to prevent the failures that result from blade and disk vibrations in
turbines. Naturally, the structures designed to support heavy centrifugal machines.
like motors and turbines, or reciprocating machines, like steam and gas engines and
reciprocating pumps, are also subjected to vibration. In all these situations, the
structure or machine component subjected to vibration can fail because of material
fatigue resulting from the cyclic variation of the induced stress. Furthermore. the
vibration causes more rapid wear of machine parts such as bearings and gears and
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Figure 1.2 Tacoma Narrows bridge during wind-induced vibration. The
bridge opened on 1 July 1940 and collapsed on 7 November 1940
(Farquharson photo, Historical Photography, Collection, University of Wash-
ington Libraries.)

also creates excessive noise. In machines, vibration causes fasteners such as nuts to
become loose. In metal cutting processes, vibration can cause chatter, which leads to
a poor surface finish.

Whenever the natural frequency of vibration of a machine or structure coincides
with the frequency of the external excitation, there occurs a phenomenon known as
resonance, which leads to excessive deflections and failure. The literature is full of
accounts of system failures brought about by resonance and excessive vibration of
components and systems (see Fig. 1.2). Because of the devastating effects that
vibrations can have on machines and structures, vibration testing [1.14] has become
a standard procedure in the design and development of most engineering systems
(see Fig. 1.3).

In many engineering systems, a human being acts as an integral part of the
system. The transmission of vibration to human beings results in discomfort and
loss of efficiency. Vibration of instrument panels can cause their malfunction or
difficulty in reading the meters [1.15]. Thus one of the important purposes of
vibration study is to reduce vibration through proper design of machines and their
mountings. In this connection, the mechanical engineer tries to design the engine or
machine so as to minimize unbalance, while the structural engineer tries to design
the supporting structure so as to ensure that the effect of the imbalance will not be
harmful [1.16].
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e 1.3 Vibration testing of the space shuttle Enterprise (Courtesy of
V)

n spite of its detrimental effects, vibration can be utilized profitably in several |,
trial applications. In fact, the applications of vibratory equipment have in-
ed considerably in recent years [1.17]. For example, vibration is put to work in
tory conveyors, hoppers, sieves, washing machines and compactors. Vibration
jo used in pile driving, vibratory testing of materials, vibratory finishing
sses, and electronic circuits to filter out the unwanted frequencies (see Fig.
Vibration has been found to improve the efficiency of certain machining,
g, forging, and welding processes. It is employed to simulate earthquakes for
ical research and also to conduct studies in the design of nuclear reactors.

1.4 Vibratory fimshing process. (Reprinted courtesy of the Society of Manufacturing
ers, ©1964 The Tool and Manufacturing Engineer )
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4.4 BASIC CONCEPTS OF VIBRATION

1.4.1
vibration

1.4.2

Elementary Parts
of Vibrating
Systems

Any motion that repeats itself after an interval of time is called vibration
oscillation. The swinging of a pendulum and the motion of a plucked string
typical examples of vibration. The theory of vibration deals with the study
oscillatory motions of bodies and the forces associated with them.

A vibratory system, in general, includes a means for storing potential energy (spr
or elasticity), a means for storing kinetic energy (mass or inertia), and a means
which energy is gradually lost (damper).

The vibration of a system involves the transfer of its potential energy to kin
energy and kinetic energy to potential energy, alternately. If the system is dam
some energy is dissipated in each cycle of vibration and must be replaced by
external source if a state of steady vibration is to be maintained.

As an example, consider the vibration of the simple pendulum shown in |
1.5. Let the bob of mass m be released after giving it an angular displacement 8.
position 1 the velocity of the bob and hence its kinetic energy is zero. But it ha
potential energy of magnitude mgl/(1 — cos #) with respect to the datum positios
Since the gravitational force mg induces a torque mgl sin 8 about the point O,
bob starts swinging to the left from position 1. This gives the bob certain ang\
acceleration in the clockwise direction, and by the time it reaches position 2, all
its potential energy will be converted into kinetic energy. Hence the bob will
stop in position 2, but will continue to swing to position 3. However, as it passes
mean position 2, a counterclockwise torque starts acting on the bob due to gra:
and causes the bob to decelerate. The velocity of the bob reduces to zero at the
extreme position. By this time, all the kinetic energy of the bob will be converteg
potential energy. Again due to the gravity torque, the bob continues to attail
counterclockwise velocity. Hence the bob starts swinging back with progressiy

T(1 - cos )

Figure 1.5 A simple pendulum.
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Figure 1.6 Single degree of freedom systems

increasing velocity and passes the mean position again. This process keeps on
repeating, and the pendulum will have oscillatory motion. However, in practice, the
magnitude of oscillation (#) gradually decreases and the pendulum ultimately stops
due to the resistance (damping) offered by the surrounding medium (air). This
means that some energy is dissipated in each cycle of vibration due to damping by

the air.
4.3 The minimum number of independent coordinates required to determine completely
egree the positions of all parts of a system at any instant of time defines the degree of
f Freedom freedom of the system. The simple pendulum shown in Fig. 1.5, as well as each of

the systems shown in Fig. 1.6, represents a single degree of freedom system. For
example, the motion of the simple pendulum (Fig. 1.5) can be stated either in terms
of the angle 8 or in terms of the cartesian coordinates x and . If the coordinates x
and y are used to describe the motion, it must be recognized that these coordinates
are not independent. They are related to each other through the relation x? + y* =
12, where ! is the constant length of the pendulum. Thus any one coordinate can;
describe the motion of the pendulum. In this example, we find that the choice of 8
as the independent coordinate will be more convenient than the choice of x or y.
For the slider shown in Fig. 1.6(a), either the angular coordinate 6 or the coordinate
x can be used to describe the motion. In Fig. 1.6(b), the linear coordinate x can be
used to specify the motion. For the torsional system (long bar with a heavy disk at
the end) shown in Fig. 1.6(c), the angular coordinate 8 can be used to describe the
motion. '

Some examples of two and three degree of freedom systems are shown in Figs.
1.7 and 1.8, respectively. Figure 1.7(a) shows a two mass—two spring system that is
described by the two linear coordinates x, and x,. Figure 1.7(b) denotes a two rotor
system whose motion can be specified in terms of §, and #,. The motion of the
system shown in Fig. 1.7(c) can be described completely either by X and @ or by x,
y, and X. In the latter case, x and y are constrained as x> + y* = /> where / is a
constant,
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Figure 1.7 Two degree of freedom systems

-

Figure 1.8 Three degree of freedom systems.
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For the systems shown in Figs. 1.8(a) and 1.8(c), the coordinates x, (i = 1,2, 3) and
6, (i = 1,2,3) can be used, respectively, to describe the motion. In the case of the
system shown in Fig. 1.8(b), 8, (i = 1,2, 3) specifies the positions of the masses m,
(i =1,2,3). An alternate method of describing this system is in terms of x, and y,
(i =1,2,3); but in this case the constraints x2 + y> = {? (i = 1,2,3) have to be

considered.
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Figure 1.8 A cantilever beam (an infinite
number of degrees of freedom system).

The coordinates necessary to describe the motion of a system constitute a set of
generalized coordinates. The generalized coordinates are usually denoted as gy, g, ...
and may represent cartesian and/or noncartesian coordinates.

A large number of practical systems can be described using a finite number of
degrees of freedom, such as the simple systems shown in Figs. 1.5 to 1.8. Some
systems, especially those involving continuous elastic members, have an infinite
number of degrees of freedom. As a simple example, consider the cantilever beam
shown in Fig. 1.9. Since the beam has an infinite number of mass points, we need an
infinite number of coordinates to specify its deflected configuration. The infinite
number of coordinates defines its elastic deflection curve. Thus the cantilever beam
has an infinite number of degrees of freedom. Most structural and machine systems
have deformable (elastic) members and therefore have an infinite number of degrees
of freedom.

Systems with a finite number of degrees of freedom are called discrete or
lumped parameter systems, and those with an infinite number of degrees of freedom
are called continuous or distributed systems,

Most of the time, continuous systems are approximated as discrete systems, and
solutions are obtained in a simpler manner. Although treatment of a system as
continuous gives exact results, the analysis methods available for dealing with
continuous systems are limited to a narrow selection of problems, such as uniform
beams, slender rods, and thin plates. Hence most of the practical systems are
studied by treating them as finite lumped masses, springs, and dampers. In general,
more accurate results are obtained by increasing the number of masses, springs. and
dampers—that is, increasing the number of degrees of freedom.

SSIFICATION OF VIBRATION

tion

Vibration can be classified in several ways. Some of the important classifications are
as follows.

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its own,
the ensuing vibration is known as free vibration. No external force acts on the
system. The oscillation of a simple pendulum is an example of free vibration.
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Forced Vibration. If a system is subjected to an external force (often, a repeating
type of force), the resulting vibration is known as forced vibration, The oscillation
that arises in machines such as diesel engines is an example of forced vibration.

If the frequency of the external force coincides with one of the natural
frequencies of the system, a condition known as resonance occurs, and the system
undergoes dangerously large oscillations. Failures of such structures as buildings,
bridges, turbines, and airplane wings have been associated with the occurrence of
resonance.

If no energy is lost or dissipated in friction or other resistance during oscillation, the
vibration is known as undamped vibration. If any energy is lost in this way, on the
other hand, it is called damped vibration. In many physical systems, the amount of
damping is so small that it can be disregarded for most engineering purposes.
However, consideration of damping becomes extremely important in analyzing
vibratory systems near resonance.

If all the basic components of a vibratory system—the spring, the mass, and the
damper—behave linearly, the resulting vibration is known as linear vibration. On
the other hand, if any of the basic components behave nonlinearly, the vibration is
called nonlinear vibration. The differential equations that govern the behavior of
linear and nonlinear vibratory systems are linear and nonlinear, respectively. If the
vibration is linear, the principle of superposition holds, and the mathematical
techniques of analysis are well developed. For nonlinear vibration, the superposition
principle is not valid, and techniques of analysis are less well known. Since all
vibratory systems tend to behave nonlinearly with increasing amplitude of oscilla-
tion, a knowledge of nonlinear vibration is desirable in dealing with practical
vibratory systems.

If the value of the excitation (force or motion) acting on a vibratory system is
known at any given time, the excitation is called deterministic. The resulting
vibration is known as dererministic vibration.

In some cases, the excitation is nondeterministic or random; the value of the
excitation at a given time cannot be predicted. In these cases, a large collection of
records of the excitation may exhibit some statistical regularity. It is possible to
estimate averages such as the mean and mean square values of the excitation.

Force

0
Time

Time

(a) A deterministic (periodic) excitation (b) A random excitation

Figure 1.10
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Examples of random excitations are wind velocity, road roughness, and grot
motion during earthquakes. If the excitation is random, the resulting vibration
called random vibration. In the case of random vibration, the vibratory response
the system is also random; it can be described only in terms of statistical quantit
Figure 1.10 shows examples of deterministic and random excitations.

1.6 VIBRATION ANALYSIS PROCEDURE

A vibratory system is a dynamic system for which the variables such as t
excitations (inputs) and responses (outputs) are time-dependent. The response of
vibrating system generally depends on the initial conditions as well as the exterr
excitations. The analysis of a vibrating system usually involves mathematical mod
ing, derivation of the governing equations, solution of the equations, and interpre!
tion of the results.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is
represent all the important features of the system for the purpose of deriving {
mathematical (or analytical) equations governing the behavior of the system. T|
mathematical model should include enough details to be able to describe the systg
in terms of equations without making it too complex. The mathematical model m
be linear or nonlinear depending on the behavior of the components of the syste|
Linear models permit quick solutions and are simple to handle; however, nonling
models sometimes reveal certain characteristics of the system that cannot
predicted using linear models. Thus a great deal of engineering judgment is need
to come up with a suitable mathematical model of a vibrating system.

Sometimes the mathematical model is gradually improved to obtain md
accurate results. In this approach, first a very crude or elementary model is used
get a quick insight into the overall behavior of the system. Subsequently, the moc
is refined by including more components and/or details so that the behavior of t
system can be observed in more detail. To illustrate the procedure of refinem
used in mathematical modeling, consider the forging hammer shown in Fig. 1.11(
The forging hammer consists of a frame, a falling weight known as the tup, an anv
and a foundation block. The anvil is a massive steel block on which material
forged into desired shape by the repeated blows of the tup. The anvil is usual
mounted on an elastic pad to reduce the transmission of vibration to the foundati(i
block and the frame [1.18]. For a first approximation, the frame, anvil, elastic pal
foundation block, and the soil are modeled as a single degree of freedom system :
shown in Fig, 1.11(b). For a refined approximation, the weights of the frame an
anvil and the foundation block are represented separately with a two degree «
freedom model as shown in Fig. 1.11(c). Further refinement of the model can t
made by considering eccentric impacts of the tup, which cause each of the massc
shown in Fig. 1.11(c) to have both vertical and rocking (rotation) motions in tt
plane of the paper.

Step 2: Derivation of Governing Equations. Once the mathematical model is avai
able, we use the principles of dynamics and derive the equations that describe th
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Figure 1.11 Modeling of a forging hammer.
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vibration of the system. The equations are usually in the form of a set of ordinary
differential equations for a discrete system and partial differential equations for a
continuous system. The equations may be linear or nonlinear depending on the
behavior of the components of the system. Several approaches are commonly used
to derive the governing equations. Among them are Newton’s second law of motion,
d’Alembert’s principle, and the principle of conservation of energy.

Step 3: Solution of the Governing Equations. The equations of motion must be
solved to find the response of the vibrating system. Depending on the nature of the
problem, we can use one of the following techniques for finding the solution:
standard methods of solving differential equations, Laplace transformation meth-
ods, matrix methods,* and numerical methods. If the governing equations are
nonlinear, they can seldom be solved in closed form. Further, the solution of partial
differential equations is far more involved than that of ordinary differential equa-
tions. Numerical methods, using computers, can be used to solve the equations.
However, it will be difficult to draw general conclusions about the behavior of the
system using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations gives
the displacements, velocities, and accelerations of the various masses of the system.
These results must be interpreted with a clear view of the purpose of the analysis
and the possible design implications of the results.

1.7 SPRING ELEMENTS

A linear spring is a type of mechanical link which is generally assumed to have
negligible mass and damping. A force is developed in the spring whenever there is
relative motion between the two ends of the spring. The spring force is proportional
to the amount of deformation and is given by

F=kx (1.1)

where F is the spring force, x is the deformation (displacement of one end with
respect to the other), and k is the spring stiffness or spring constant. If we plot a
graph between F and x, the result is a straight line according to Eq. (1.1). The work
done in deforming a spring is stored as strain or potential energy in the spring.

.

The basic definitions and operations of matrix theory are given in Appendix A.
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Figure 1.12 Nonlineanty beyond proportionality limit

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deforma-
tion. Beyond a certain value of deformation (after point A4 in Fig. 1.12), the stress
exceeds the yield point of the material and the force-deformation relation becomes
nonlinear [1.20, 1.39). In many practical applications we assume the deflections to be
small and make use of the linear relation in Eq. (1.1). Even if the force-deflection
relation of a spring is nonlinear, as shown in Fig. 1.13, we often approximate it as a
linear one by using a linearization process [1.19, 1.20]. To illustrate the linearizatior
process, let the static equilibrium load F acting on the spring cause a deflection of
x*. If an incremental force AF is added to F, the spring deflects by an additiona
quantity Ax. The new spring force F + AF can be expressed using Taylor’s serie:
expansion about the static equilibrium position x* as
1 d°F

?F (Ax)2+--- (1.2:

F+ AF = F(x* + Ax) = F(x*) +% (Ax) +

Force (F)
4

F+ AF = Fix* + Ax) | ————

F=F(x*) | ———— S

-+ Deformation (x)

Figure 1.13 Linearization process
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Figure 1.14 Cantilever with end mass.

For small values of Ax, the higher order derivative terms can be neglected to obtain

F+aF=Fx)+ | (a0 (13)
Since F = F(x*), we can express AF as
AF = kAx (1.4)
where k is the linearized spring constant at x* given by
_dF
Tdx .

We may use Eq. (1.4) for simplicity, but sometimes the error involved in the
approximation may be very large.

Elastic elements like beams also behave as springs. For example, consider a
cantilever beam with an end mass m, as shown in Fig. 1.14. We assume, for
simplicity, that the mass of the beam is negligible in comparison with the mass m.
From strength of materials [1.21], we know that the static deflection of the beam at
the free end is given by

wi3
8, = 3ET (1‘5)
where W = mg is the weight of the mass m, E is Young’s modulus and, / is the

moment of inertia of the cross section of the beam. Hence the spring constant is
W _ 3EI
k= i 1—3 (1-6)

sh

Similar results can be obtained for beams with different end conditions.

In many practical applications, several linear springs are used in combination. These
springs can be combined into a single equivalent spring as indicated below.

Case (i): Springs in Parallel. Let the springs be parallel as shown in Fig, 1.15(a). If
W is the weight of mass m, we have for equilibrium

W= k185| + k285| (17)
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Figure 1.15 Combination of springs.

where 8, is the static deflection of the mass m. If k., denotes the equivalent spring
constant of the combination of the two springs, then for the same static deflection
8,,, we have

W=k, (1.8)
Equations (1.7) and (1.8) give
ke =k, + Kk (1.9)

In general, if we have n springs with spring constants ky, k,,..., k, in parallel, then
the equivalent spring constant k_, can be obtained:

keg=ky+ky+ oo +k (1.10)

n

Case (ii): Springs in Series. Next we consider two springs connected in series, as
shown in Fig. 1.15(b). Since both the springs are subjected to the same force W, we
have for equilibrium

=k

W=k, (1.11)

W =k,b,

where 8, and §, are the elongations of springs 1 and 2, respectively. As the total
elongation is equal to the static deflection 4,

8 +8,=4, (1.12)
If k., denotes the equivalent spring constant, then for the same static deflection,
W= k.3, (1.13)

Equations (1.11) and (1.13) give
k8, = kb, = kcq'ssu
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or
keq85| keq85| .
8, = %, and 8, = %, (1.142
Substituting these values of 8, and 8, into Eq. (1.12), we obtain
k.0 k.0
eq st e st
kT Th %
that is,
1 1 1 '
=t (1.15)
ke Kk k, :
Equation (1.15) can be generalized to the case of n springs in series:
1 1 1 1
kLT TRt (%.16)

In certain applications, springs are connected to rigid components su(ﬂl as
pulleys, levers, and gears. In such cases, an equivalent spring constant can be fQund
using energy equivalence, as illustrated in Example 1.2.

APLE 1.1

Equivalent k of Holsting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever begm as!
shown in Fig. 1.16(a). Determine the equivalent spring constant of the system whoh the
suspended length of the wire rope is /. Assume the net cross-sectional diameter of thé, wim!
rope as d and the Young’s modulus of the beam and the wire rope as I

Given: Dimensions of the cantilever beam: length = b, width = a, and thickness = 1. Young's,
modulus of the beam = E. Wire rope: length = /, diameter = d, and Young’s modulus = E{

Find: Equivalent spring constant of the system.
Approach: Series springs.
Solution. The spring constant of the cantilever beam is given by

_3EI 3E({1 , Ear® 1
k”'—bfg_b’—(_ﬁ“')'ﬁ (ED
- The stiffness of the wire rope subjected to axial loading is
AE  wd’E
=22 == E2
ky { 4 (E2)

The cantilever beam and the wire rope can be considered as series springs (Fig. 1.16b) whose
equivalent spring constant k., is given by ‘

or

E wat’d?
Y L - E3
k 4 ( nd?b® + laﬂ) (B3,
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Figure 1.168 Hoisting drum.
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Equivalent k of a Crane

The boom AB of the crane shown in Fig. 1.17(a) is a uniform steel bar of length 10 m and
area of cross-section 2500 mnr’. A 1000 kg mass is suspended while the crane is stationary.
The cable CDEBF is made of steel and has a cross-sectional area of 100 mue. Neglecting the

effect of the cable CDEB, find the equivalent spring constant of the system in the vertical
direction,

Given: Steel boom: length = 10 m, cross-sectional area = 2500 mm’, and material = steel.
Cable FB: material = steel and cross-sectional area = 100 mm’. Base: FA = 3 m.

Find: Equivalent spring constant of the system.

Approach: Equivalence of potential energy.
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Figure 1.17 Crane lifting a load.

Solution. A vertical displacement x of point B will cause the spring k, (boom) to dt¢
form by an amount x, = x cos45° and the spring k, (cable) to deform by an amount x, *
x ¢os(90° — 8). The length of the cable FB, /, is given by (Fig. 1.17b)

12 = 3% + 102 - 2(3)(10)cos 135° = 151.426, [, = 12.3055 m
The angle 8 satisfies the relation

§+32—-2(4)(3)cosf = 10, cos® =038184, 6 =35.0736°
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The total potential energy (U) stored in the springs k, and k, is given by

U = Lk, (x cos 45°) + Lk, [ x cos(90° - 8)) (E1)
where
-6 9
ky = —A;E‘ - (a0 x 1‘12 3)0(5227 X107) _ 16822 x 10° N/m
A ;
and

A, E. -6 9
2B _ (2500 X 10 1())(207 X10°) _ ¢ uso 107 N/m

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential
energy of the equivalent spring (U,,) is given by

Uyg = 3keox? (E2)

By setting U = [,

/.q» We obtain the equivalent spring constant of the system as

keq = 26.4304 X 10° N/m

INERTIA ELEMENTS

The mass or inertia element is assumed to be a rigid bodys; it can gain or lose kinetic
energy whenever the velocity of the body changes. From Newton’s second law of
motion, the product of the mass and its acceleration is equal to the force applied to
the mass. Work is equal to the force multiplied by the displacement in the direction
of the force and the work done on a mass is stored in the form of kinetic energy of
the mass.

In most cases, we must use a mathematical model to represent the actual
vibrating system, and there are often several possible models. The purpose of the
analysis often determines which mathematical model is appropriate. Once the model
is chosen, the mass or inertia elements of the system can be easily identified. For
example, consider the cantilever beam with a tip mass shown in Fig. 1.14(a). For a
quick and reasonably accurate analysis, the mass and damping of the beam can be
disregarded; the system can be modeled as a spring-mass system, as shown in Fig.
1.14(b). The tip mass m represents the mass element, and the elasticity of the beam
denotes the stiffness of the spring. Next, consider a multistory building subjected to
an earthquake. Assuming that the mass of the frame is negligible compared to the
masses of the floors, the building can be modeled as a multidegree of freedom
system, as shown in Fig. 1.18. The masses at the various floor levels represent the
mass elements, and the elasticities of the vertical members denote the spring
elements.
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Figure 1.18 Idealizaton of a multistory building as a
multidegree of freedom system.

In many practical applications, several masses appear in combination. For a simple
ration analysis, we can replace these masses by a single equivalent mass, as indicated below
ses [1.22].

| Case (i): Translational Masses Connected by a Rigid Bar. Let the masses be
attached to a rigid bar that is pivoted at one end, as shown in Fig. 1.19(a). The
equivalent mass can be assumed to be located at any point along the bar. To be
specific, we assume the location of the equivalent mass to be that of mass m,. The

vot point m m m Pivot point meq

. o "1 [e]
C

}_I_IJ PR

.

3

(a) (b)

Figure 1.19 Translational masses connected by a rigid bar.
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velocities of masses m, (%,) and m, (%,) can be expressed in terms of the velocity
of mass m, (%,), by assuming small angular displacements for the bar, as

. _ b, b
X, = ﬁxl, X, = 7:—xl (1.17)
and
i, =% (1.18)

eq

By equating the kinetic energy of the three mass system to that of the equivalent
mass system, we obtain

1 1 1 1
7”11*12 + 5m22§ + 5m3X§ = 7meqiezq (1.19)
This equation gives, in view of Egs. (1.17) and (1.18),
LY Y
meq=ml+([-l) m2+(z) m, (1.20)

Case (ii): Translational and Rotational Masses Coupled Together. Let a mass m
having a translational velocity % be coupled to another mass (of mass moment of
inertia J,) having a rotational velocity 6, as in the rack and pinion arrangement
shown in Fig. 1.20. These two masses can be combined to obtain either 1) a single
equivalent translational mass m., or 2) a single equivalent rotational mass J,, as
shown below.

1. Equivalent translational mass. The kinetic energy of the two masses is given
by

T= %mxl + 17100'1 (1.21)

and the Kinetic energy of the equivalent mass can be expressed as

Ta=3 m X2 (1.22)

Pinion, mass moment of inertia J,

Rack, mass m

Figure 1.20 Translational and rotational masses n a rack
and pinion arrangement.
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Since %,, = % and § = %/R, the equivalence of T and 7, gives
1 ., 1 ., 1 %y

fmeqxz = imxz + *2—.10(7{‘)

that is,

Je
me, =m+ 'R—oz (1.23

2. Equivalent rotational mass. Here 0;‘] = § and % = 6R, and the equivalence ol
T and T, leads to

1 1 2 1 .
51,4}2 = 5m(1}R) + 3Jof?
or

Jug=Jo + mR? ' (1.24)

LE 1.3 Cam-Follower Mechanism, ..

A cam-follower mechanism (Fig. 1.21) is used to convert the rotary motion of a shaft into the
oscillating, or reciprocating motion of a valve, The follower system consists of a pushrod of
mass n,, a focker arm of mass m,, and mass moment of inertia J about its C.G., a valve of |
mass nt,, and a valve spring of negligible mass [1.23, 1.24, 1.38]. Find the equivalent mass

spring
Valve
(mass m,)

Roller
follower

Shaft

Figure 1.21 Cam-follower system
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(mgq) of this cam-follower system by assuming the location of m
(ii) point C.

cq 3 (i) point 4 and
Given: Mass of pushrod = m,, mass of rocker arm = m,, mass moment of inertia of rocker
arm = J,, and mass of valve = m,. Linear displacement of pushrod = x »

Find: Equivalent mass of the cam-follower system (i) at point A, (ii) at point C.
Approach: Equivalence of kinetic energy.

Solution. Due to a vertical displacement x of the pushrod, the rocker arm rotates by an angle
6, = x /I, about the pivot point, the valve moves downward by x, = 8,/, = x/,//, and the
C.G. of the rocker arm moves downward by x, = 6,/; = x/;/1,. The kinetic energy of the
system (T') can be expressed as’
1 1, 1 [
T= fmpx; + jml,xf + 7.],9,2 + jm,xf (E1)
where %,, %,, and %, are the linear velocities of the pushrod, C.G. of the rocker arm and the
valve, respectively, and § is the angular velocity of the rocker arm.

(i) 1f m., denotes the equivalent mass placed at point 4, with %, = ¥, the kinetic energy of
the equivalent mass system T is given by

To = 3, (E2)
By equating T and T, and noting that
%, =%, 5((,=X1—:2, x=x,—:’ and 0,=%
we obtain
meg = m +_+ml_§+ml_§ (E3)
WTTe TR TRty

(i) Similarly, if the equivalent mass is located at point C, %, = %, and

g = %
1 1,
Ty = fqu’.‘ezq = 5"’ch:2- (E4)
Equating (E.4) and (E.1) gives
J, b\ LY
amn omf) < nl)

ELEMENTS

In many practical systems, the vibrational energy is gradually converted to heat or
sound. Due to the reduction in the energy, the response, such as the displacement of
the system gradually decreases. The mechanism by which the vibrational energy is
gradually converted into heat or sound is known as damping. Although the amount

¥ If the valve spring has a mass m,, then its equivalent mass will be 4m, (see Example 2.5). Thus the

kinetic energy of the valve spring will be (3m,)x].
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of energy converted into heat or sound is relatively small, the consideration of
damping becomes important for an accurate prediction of the vibration response of
a system. A damper is assumed to have neither mass nor elasticity, and damping
force exists only if there is relative velocity between the two ends of the damper. It
is difficult to determine the causes of damping in practical systems. Hence damping
is modeled as one or more of the following types [1.25].

Viscous Damping. Viscous damping is the most commonly used damping mecha-
nism in vibration analysis. When mechanical systems vibrate in a fluid medium such
as air, gas, water, and oil, the resistance offered by the fluid to the moving body
causes energy to be dissipated. In this case, the amount of dissipated energy
depends on many factors, such as the size and shape of the vibrating body, the
viscosity of the fluid, the frequency of vibration, and the velocity of the vibrating
body. In viscous damping, the damping force is proportional to the velocity of the
vibrating body. Typical examples of viscous damping include (1) fluid film between
sliding surfaces, (2) fluid flow around a piston in a cylinder, (3) fluid flow through an
orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry Friction Damping. Here the damping force is constant in magni-
tude but opposite in direction to that of the motion of the vibrating body. It is
caused due to friction between rubbing surfaces that are either dry or have
insufficient lubrication.

Material or Solid or Hysteretic Damping. When materials are deformed, energy is
absorbed and dissipated by the material [1.26]. The effect is due to friction between
the internal planes, which slip or slide as the deformations take place. When a body
having material damping is subjected to vibration, the stress-strain diagram shows a
hysteresis loop as indicated in Fig. 1.22. The area of this loop denotes the energy
lost per cycle due to damping.

A viscous damper can be constructed using two parallel plates separated by a
distance 4, with a fluid of viscosity p between the plates (see Fig. 1.23). Let one
plate be fixed and the other plate be moved with a velocity v in its own plane. The
fluid layers in contact with the moving plate move with a velocity v, while those in
contact with the fixed plate do not move. The velocities of intermediate fluid layers
are assumed to vary linearly between 0 and v as shown in Fig. 1.23. According to
Newton’s law of viscous flow, the shear stress (7) developed in the fluid layer at a
distance y from the fixed plate is given by

du

T=EG (1.25)

where du/dy = v/h is the velocity gradient. The shear or resisting force (F)
developed at the bottom surface of the moving plate is

F=TA=T=CU (1.26)
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Figure 1.22. Hysteresis loop for elastic matenals.
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Figure 1.23 Parallel plates with a viscous fluid In between

where A is the surface area of the moving plate and
=4 (1.27)
is called the damping constant.

If a damper is nonlinear, a linearization procedure is generally used about the
operating velocity (v*), as in the case of a nonlinear spring. The linearization
process gives the equivalent damping constant as

dF

c=—-

dv |,

When dampers appear in combination, they can be replaced by an equivalent
damper by adopting a procedure similar to the one described in Secs. 1.7 and 1.8
(see Problem 1.20).
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(AMPLE 1.4 ,.-Pislond Type Das : 0

Develop an expression for the damping constant of the dashpot shown in Fig. 1.24(a).

Given: Diameter of cylinder = D + 2d, diameter of piston = D, velocity of piston = uo,z
axial length of piston = /, and viscosity of fluid = p.

Find: Damping, constant of the dashpot.
Approach: Shear stress equation for viscous fluid flow. Rate of fluid flow equation.

Solution. As shown in Fig, 1.24(a), the dashpot consists of a piston of diameter D, and length
1, moving with velocity v, in a cylinder filled with a liquid of viscosity p [1.20,1.27). Let the
clearance between the piston and the cylinder wall be 4. At a distance y from the moving
surface, let the velocity and shear stress be v and 7, and at a distance (y + dv) let the
velocity and shear stress be (v — dv) and (7 + d7), respectively (see Fig. 1.24(b)). The
negative sign for dv shows that the velocity decreases as we move toward the cylinder wall.
The viscous force on this annular ring is equal to

dr
F=aDldr = 'erIE;dy (E1)
But the shear stress is given by
dv
=rg (E2)

where the negative sign is consistent with a decreasing velocity gradient [1.28]. Using Eq.

N

ﬁ— Cylinder 4—— Cylinder

dy

{ Vo Piston Piston
—Ad——D— d [f— —4d o D] d
~— . . .
%~ Viscous 7 “—_ Viscous
ftuid fluid

(a) (b)

Figure 1.24 A dashpot
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(E2) in Eq. (E.1), we obtain

= —'erIdyudy2 (E3)
The force on the piston will cause a pressure difference on the ends of the element, given by
P 4P
P aD*\ D’ (EA)
4
Thus the pressure force on the end of the element is
4P
p(nDdy) = 4 dy (E5)

Where (7Ddy) denotes the annular area between y and (y + dy). If we assume uniform
mean velocity in the direction of motion of the fluid, the forces given in Egs. (E.3) and (E.5)
must be equal. Thus we get

d)’ = —aDI dy}t
D dyz
or
d% 4P
el AR E.
P Dl (E.6)
Integrating this equation twice and using the boundary conditions v = —y, at y = 0 and
v=0at y = d, we obtain
Dz,”(yd y’) - (1 - ,11) (E7)

The rate of flow through the clearance space can be obtained by integrating the rate of flow
through an element between the limits y = 0 and y = 4:

d 2Pd* 1
= = == — Zud
Q j;verdy "D[67!D21p. 3 % ]

The volume of the liquid lowing through the clearance space per second must be equal to the
volume per second displaced by the piston. Hence the velocity of the piston will be equal to
this rate of fiow divided by the piston area. This gives

(E.8)

U = 9 (EQ)

o2
(%27
Equations (E.9) and (E.8) lead to
31rD31! 1+ z—d)
p= Ve B, (E.10)

By writing the force as P = cv,, the damping constant ¢ can be found as

37D 2d
c= I.t[ Zd’ (1 + '3)] (E11)
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1.10 HARMONIC MOTION

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum,
or may display considerable irregularity, as in the case of ground motion during an
earthquake. If the motion is repeated after equal intervals of time, it is called
periodic motion. The simplest type of periodic motion is harmonic motion. The
motion imparted to the mass m due to the Scotch yoke mechanism shown in Fig .
1.25 is an example of simple harmonic motion {1.29,1.30,1.20]. In this system, a
crank of radius A rotates about the point O. The other end of the crank P slides in

k
x(1)
4
m Al
s ) /
! 1
° T 2n 3n 9= ,:,
—-Alk
"
A
Slotted rod
i 1+t~ P
[ J -

(’ OAEKB =w‘, x = Asin ot

Figure 1.25 Scotch Yoke mechanism.
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a slotted rod, which reciprocates in the vertical guide R. When the crank rotates at
an angular velocity w, the end point S of the slotted link and hence the mass m of
the spring-mass system are displaced from their middle positions by an amount x
(in time ¢) given by

x=Asind = Asinwt (1.28)

This motion is shown by the sinusoidal curve in Fig. 1.25. The velocity of the mass
m at time ? is given by

%:— = wA cos wt (1.29)

One
cycle
of motion

Angular
displaceme

0=

One cycle of motion

Figure 1.26 Harmonic motion as the projection of the end of a rotating vector.
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and the acceleration by

2
f_f = —wMsinwt = —wix (1.30)
dt

It can be seen that the acceleration is directly proportional to the displacement.
Such a vibration, with the acceleration proportional to the displacement and
directed towards the mean position,-is known as simple harmonic motion. The
motion given by x = A cos wt is another example of a simple harmonic motion.
Figure 1.25 clearly shows the similarity between cyclic (harmonic) motion and
sinusoidal motion.

Harmonic motion can be represented conveniently by means of a vector OP of
magnitude 4 rotating at a constant angular velocity w. In Fig. 1.26, the projection of
the tip of the vector X = OPon the vertical axis is given by

y = Asin wt (1.31)
and its projection on the horizontal axis by

x = A cos wt (1.32)

Any vector X in the xy plane can be represented as a complex number:
X=a+ib (1.33)

where i = V=1 and @ and b denote the x and y components of X, respectively
(see Fig. 1.27). Components a and b are also called the real and imaginary parts of
the vector X. If A denotes the modulus or absolute value of the vector X, and ¢
represents the argument or the angle between the vector and the x-axis, then X can
also be expressed as

X=Acos¢ + iAdsing = de* (1.34)
ye
________ X=a+ib
b - | =Ae®
|
Al H
a

(¢

Figure 1.27
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‘Figure 1.28 Displacement, velocity, and acceterations as rotating vectors.
with
A=(a?+ 2" (1.35)
and
b
¢=tan”' = (1.36)
The rotating vector X of Fig. 1.26 can be represented as a complex number:
X = der (1.37)
The differentiation of Eq. (1.37) with respect to time gives
di__d iwty - ; w2 W
s E(Ae ) = iwde' = iwX (1.38)
dz/\_; d . @ [ v
o Zi(iwde™’) = — e = - X (1.39)
Thus the displacement, velocity, and acceleration can be expressed as*
displacement =  Re[Ade''] = A cos wt (1.40)
velocity = Reliwde™'] = — wAsin wt
= wA cos(wt + 90°) (1.41)
acceleration = Re[ —w’de™'] = — w¥ cos wt
= w4 cos(wr + 180°) (1.42)

*If the harmonic displacement is originally given as x(¢) = A sin wt, then we have
displacement = Im[ 4e"“'} = Asinwt
velocity = Im[iwde'™' ] = wA sin(wt + 90°)
acceleration = Im[ ~w?de’’ | = w’A sin(wt + 180°)

Where Im denotes the imaginary part.
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Figure 1.29 Vectorial addition of harmonic functions.

where Re denotes the real part. These quantities are shown as rotating vectors in
Fig. 1.28. It can be seen that the acceleration vector leads the velocity vector by 90°,
and the latter leads the displacement vector by 90°. .

Harmonic functions can be added vectorially, as shown in Fig. 1.29. If Re( X))
= Aicoswt and Re(X;) = Acos(wt + 0), then the magnitude of the resultant
vector X is given by

A= ;[(A, + Ax0s0)% + (A,sin0) (1.43)
and the angle a by
A,sin @
= tan-1 2
a = tan (A1+A2 50) (1.44)

Since the original functions are given as real components, the sum )_(1 + )?2 is given
by Re(X) = Acos(wt + a). The sum of X; and X, can also be found using complex
numbers:
X = X‘l + )‘('2 =A™ + Azel(wm-ﬂ) = (Al + Aze”’)e“‘"
= (A, + Axc0s 8 + iA,sin8)e"”
= Ae'%'“ = Ae:(wH—a) (145)

where 4 and « are given by Egs. (1.43) and (1.44).

Fis

Addition of Harmonic Motions

Find the sum of the two harmonic motions x,() = 10cos wt and x,(f) = 15 cos(wt + 2).
Given: Two harmonic motions, x,(z) = 10cos wt and x,(f) = 15 cos(wt + 2).
Find: Sum of harmonic motions.

Approach: Equation for sum of trigonometric terms. Principle of vector addition.
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Im 4
x(1)
,,,,, i
x(t) AN
\
Ay
\
N
14.1477
15 \\
\\
74.6° AN
wt + 10 0 (0)
114.6°
4.6 wt ! Re
[e]
Figure 1.30

Solution

Method 1: By using trigonometric relations: Since the circular frequency is the same for both
x,(r) and x,(7), we express the sum as

x(1) = Acos(wt + a) = x,(1) + x,(t) (E1)
that is,

A(cos wt cos a — sinwt sina) = 10cos wt + 15cos( wt + 2)
= 10cos wt + 15(cos wtcos2 ~ sinwrsin2)  (E.2)

that is,
cos wi( A cos a) — sinwt(Asina) = cos wr(10 + 15c0s2) — sinw!(15sin2) (E.3)
By equating the corresponding coefficients of cos wz and sin wz on both sides, we obtain

Acosa =10 + 15cos2
Asina = 15sin2

A =10 + 15c0s2)> + (15sin2)’

=14.1477 (E.4)
and
15sin2
= tap-1 = °
a = tan ( 0+ 15cosl) = 74.5963 (E.5)

Method 2: By using vectors: For an arbitrary value of wz, the harmonic motions x,(¢) and
x,(r) can be denoted graphically as shown in Fig. 1.30. By adding them vectorially, the
resultant vector x(#) can be found to be

x(1) = 14.1477 cos( wt + 74.5963°) (E6)

Method 3: By using complex number representation: The two harmonic motions can be
denoted in terms of complex numbers:

x (1) = Re[Ale“‘"] = Re[10e™]

x;(1) = Re[ d,e"“*?] = Re[15"“* D] (E7)
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The sum of x;(¢) and x,(¢) can be expressed as
x(t) = Re[ Ae'(wi*o] (E8) |

where 4 and a can be determined using Eqs. (1.43) and (1.44) as 4 = 14.1477 and‘
a = 74.5963°.

]
itions

The following definitions are useful in dealing with harmonic motion.

Cycle. The movement of a vibrating body from its undisturbed or equilibrium
position to its extreme position in one direction, then to the equilibrium position,
then to its extreme position in other direction, and back to equilibrium position is
called a cycle of vibration. One revolution (i.e., angular displacement of 27 radians)
of the pin P in Fig. 1.25 or one revolution of the vector OF in Fig. 1.26 constitutes
a cycle.

Amplitude. The maximum displacement of a vibrating body from its cquilibrium
position is called the amplitude of vibration. In Figs. 1.25 and 1.26 the amplitude of
vibration is equal to 4.

Period of Oscillation. The time taken to complete one cycle of motion is known as
the period of oscillation or time period and is denoted by 7. It is equal to the time
required for the vector OP in Fig. 1.26 to rotate through an angle of 2x and hence

T= %’1 (1.46)
where w is called the circular frequency.

Frequency of Oscillation. The number of cycles per unit time is called the frequency

of oscillation or simply the frequency and is denoted by f. Thus
1 W .
f = ; = ﬂ (1.47) )
Here w is called the circular frequency to distinguish it from the linear frequency
f= w/27. w denotes the angular velocity of the cyclic motion; f is measured in

cycles per second (Hertz) while w is measured in radians per second.

Phase Angle. Consider two vibratory motions denoted by
x, = Asin wt (1.48)
x, = A,sin(wt + ¢) (1.49)

The two harmonic motions given by Eqs. (1.48) and (1.49) are called synchronous
because they have the same frequency or angular velocity w. Two synchronous .
oscillations need not have the same amplitude, and they need not attain their
maximum values at the same time. The motions given by Egs. (1.48) and (1.49) can
be represented graphically as shown in Fig. 1.31. In this figure, the second vector OP;
leads the first one OP] by an angle ¢, known as the phase angle. This means that the
maximum of the second vector would occur ¢ radians earlier than that of the first
vector. Note that instead of maxima, any other corresponding points can be taken
for finding the phase angle. In Egs. (1.48) and (1.49) or in Fig. 1.31, the two vectors
are said to have a phase difference of ¢. -
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Figure 1.31 Phase difference between two vectors.

Natural Frequency. If a system, after an initial disturbance, is left to vibrate on its
own, the frequency with which it oscillates without external forces is known as its
natural frequency. As will be seen later, a vibratory system having n degrees of
freedom will have, in general, n distinct natural frequencies of vibration.

AONIC ANALYSIS®

Although harmonic motion is simplest to handle, the motion of many vibratory
systems is not harmonic. However, in many cases the vibrations are periodic— for
example, the type shown in Fig. 1.32(a). Fortunately, any periodic function of time
can be represented by Fourier series as an infinite sum of sine and cosine terms
[1.31, 1.32].

If x(¢) is a periodic function with period 7, its Fourier series representation is given
by

a . .
x(1) To + a,cos wt + axos 2wt + +-- +bhsinwt + bysin 2wt + - -

a ud .

To + Y (a,c0s nwt + b,sin nwt) (1.50)
n=1

where w = 27/t is the fundamental frequency and ay, ay, a,,..., by, b,,... are

constant coefficients. To determine the coefficients a, and b,, we multiply Eq. (1.50)

by cos nwt and sin nwt, respectively, and integrate over one period T = 27/w, for

example from 0 to 2m/w. Then we notice that all terms except one on the

*The harmonic analysis forms a basis for Section 4.2.
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Figure 1.32 A periodic function.

right-hand side of the equation will be zero, and we obtain

ay = %fh/ux(t)dt = %fx(z)dz (1.51)
() ()
a,= %f"/wx(t)cos notdt = %ffx(t)cos nwt dt (1.52)
o o
_ W (/e . _2r -
b,= '”L x(t)sin nwtdt = TLx(t)sm nwt dt (1.53)

The physical interpretation of Eq. (1.50) is that any periodic function can be
represented as a sum of harmonic functions. Although the series in Eq. (1.50) is an
infinite sum, we can approximate most periodic functions with the help of only a
few harmonic functions. For example, the triangular wave of Fig. 1.32(a) can be
represented closely by adding only three harmonic functions, as shown in Fig.
1.32(b).

Fourier series can also be represented by the sum of cosine terms only:

x(1) = co + creos(wt — ;) + c,cos(2wt — ¢,) + -+ (1.54)
where
¢y = ay/2. (1.55)
¢, = (af + b,,z)l/2 (1.56)
and
@, =tan-'(ﬂ) (1.57)
" a,

The Fourier series can also be represented in terms of complex numbers by writing

Eq. (1.50) as
Lad inwt —inwt mwt _ ,—inwt
x0 =3+ L {a T wn () o

n=1

The harmonic functions a,cos nwt or b,sin nwt in Eq. (1.50) are called the
harmonics of order n of the periodic function x(t). The harmonic of order » has a
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Figure 1.33 Freguency spectrum of a typical periodic function of time

period 7/n. These harmonics can be plotted as vertical lines on a diagram of
amplitude (a, and b, or ¢, and ¢,) versus frequency (nw) called the frequency
spectrum or spectral dzagram Figure 1.33 shows a typical frequency spectrum.

An even function satisfies the relation
x(—=1) = x(1) (1.59)

In this case, the Fourier series expansion of x(¢) contains only cosine terms:
a 00
x(t) = To + Y acosnot (1.60)
n=1

where a, and a, are given by Egs. (1.51) and (1.52), respectively. An odd function
satisfies the relation
x(=1) = —x(1) (1.61)

In this case, the Fourier series expansion of x(?) contains only sine terms:

o0
x(t) = Y b,sinnwt (1.62)
n=1
where b, are given by Eq. (1.53). In some cases, a given function may be considered
as even or odd depending on the location of the coordinate axes. For example, the
shifting of the vertical axis from (a) to (b) or (c) in Fig. 1.34(i) will make it an odd or
even function. This means that we need to compute only the coefficients b, or a,
Similarly, a shift in the time axis from (d) to (€) amounts to adding a constant equal
to the amount of shift. In the case of Fig,. 1.34(ii), when the function is considered as
an odd function, the Fourier series expansion becomes (see Problem 1.40)

x (1) = % E‘, (2n1— 1)s‘m 2"(2':__ Dt (1.63)

On the other hand, if the function is considered as an even function as shown in Fig
1.34(iii), its Fourier series expansion becomes (see Problem 1.40)

()= 44 4A i Ez—nl)”+; 052'”(2"1,_ 1)t (1.64
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Figure 1.34 Even and odd functions.

Since the functions x,(1) and x,(¢) represent the same wave, except for the location
of the origin, there exists a relationship between their Fourier series expansions also.
Noting that

xl(t + ) = x,(1) (1.65)
we find from Eq. (1.63),
TV _ 44 & 1 . 27(2n - 1) T
xl(t+z)—7n§l TN (t+ Z)
44 & 1

-4 ):_‘, - l)sin{ 21r(2nT— 1)t + 21r(22— 1)} (1.66)

Using the relation sin(4 + B) = sin A cos B + cos Asin B, Eq. (1.66) can be ex¥
pressed as
o0

-"1(‘ + %) = % z {(2 1_ )S.ln21r(2n1— 1)10052"(22_ 1)

+cos

21r(2nT— ntsin 2#(22 - 1)} (1.67)

Since cos[2m(2n — 1)/4] = Ofor n = 1,2,3,..., and sin[27(2n — 1)/4] = (- 1)”*l
forn=1,2,3,..., Eq. (1.67) reduces to

x,(z+ ) Z Ean)_”;) 21r(2n7— 1)t (1.68)

which can be identified to be the same as Eq. (1.64).




1.11  Harmonic Analysis . 2}

In some practical applications, the function x(¢) is defined only in the interval 0 to
7 as shown in Fig. 1.35(a). In such a case, there is no condition of periodicity of the
function since the function itself is not defined outside the interval 0 to . However,
we can extend the function arbitrarily to include the interval —7 to 0 as shown in
either Fig. 1.35(b) or Fig. 1.35(c). The extension of the function indicated in Fig.
1.35(b) results in an odd function x,(¢), while the extension of the function shown
in Fig. 1.35(c) results in an even function x,(¢). Thus the Fourier series expansion
of x,(1) yields only sine terms and that of x,(¢) involves only cosine terms. These
Fourier series expansions of x,(z) and x,(#) are known as half range expansions
[1.40). Any of these half range expansions can be used to find x(t) in the interval 0
to 7.

For very simple forms of the function x(?), the integrals of Egs. (1.51) to (1.53) can
be evaluated easily. However, the integration becomes involved if x(¢) does not
have a simple form. In some practical applications, as in the case of experimental
determination of the amplitude of vibration using a vibration transducer, the
function x(?) is not available in the form of a mathematical expression; only the
values of x(t) at a number of points ¢, ,,..., ty are available, as shown in Fig.

x(t)
(a) Original I/\
function 0 raad
x(t)
(b) Extension as an b.\ .

odd function

(c) Extension as an
even function

Figure 1.35 Extension of a function for half-range expansions.
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Figure 1.36 Values of the periodic function x(t) at discrete points t,. t,, ..., .

1.36. In these cases, the coefficients a, and b, of Egs. (1.51) to (1.53) can be
evaluated by using a numerical integration procedure like trapezoidal or Simpson's

rule {1.33).

If ¢}, t,,..., 1y are assumed to be an even number of equidistant points over the
period T (N = even) with the corresponding values of x(r) given by x, = x(f,).
Xy = x(t,),..., xy = x(ty), respectively, the application of trapezoidal rule gives

the coefficients a, and b, as' (by setting 7 = NA?):

N
ao= 5T,
i;l
2 2nmt,
a,= N lglx, 5_1’_
2 & 2nmt;
b, = ~ Y. x,sin

(1.69)
(1.70)

(1.7)

MPLE 1.6

Fourier Series Expansion

Find the Fourier series expansion of the function shown in Fig. 1.32(a).

Given: Saw-tooth type periodic function (Fig. 1.32a).

Find: Coefficients a, and b, in the Fourier series expansion of Eq. (1.50).

*N needs to be an even number for Simpson’s rule, but not for the trapezoidal rule. Equations (1.69) t©

(1.71) assume that the periodicity condition, x, = x,, hoids true.
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Approach: Fourier series expansion of a periodic function.
Solution. The function x(r) can be represented within the first cycle as
t
(t)=A_-,0<t<7 (E.1)
where the period is given by 7 = 27/w. To compute the Fourier coefficients a, and 5,, we

use Egs. (1.51) to (1.53):
5\ 20/0

20/ W [2n/0 wAft
a, ﬂf"“(r)dr f" A= a’r~;7(3)0 =4 (E.2)

2 2
a, = wf /e x(t)cos nwt - dt = f ey :_cos not - dt
o

Il

Awfh/w A fcosnwt  wtsin nwt ]2
=— teosnwt - dt = —5 | ——— + ———
T 27 n n [}
=0,n=1,2,. (E3)
2n/0 2
b, = ,,»f 7 x(t)sin nt - dt = —fo"/“’A—sm net - dt
Aw [2/0 A [sinnot ot cos nwt 1277
= — tsinnot - dt = — | —5— - ————
7T Jy 202 n? n 0
-4 =1, (E4)
Therefore the Fourier series expansion of x(t) is
x(1) = —'—;— - —g—sinwt - —g;sinZw{ -
=%[% —{sinwr+%sin2wt+—§—sin3wr+ }] (E.5)

The first three terms of the series are shown plotted in Fig. 1.32(b). It can be seen that the
approximation reaches the sawtooth shape even with a small number of terms.

Numerical Fourier Analysis

The pressure fluctuations of water in a pipe, measured at 0.01 second intervals, are given in
Table 1.1. These fluctuations are repetitive in nature. Make a harmonic analysis of the
pressure fluctuations and determine the first three harmonics of the Fourier series expansion.

Given: Pressure fluctuations of water in a pipe at 0.01 second intervals.
Find: First three harmonics of the pressure fluctuation (i.e., ag, ay, a,, as, by, by, by).

Approach: Fourier series expansion of a periodic function using numerical method {Egs.
(1.69) through (1.71)].

Solution. Since the given pressure fluctuations repeat every 0.12 sec, the period is 7 = 0.12
sec and the circular frequency of the first harmonic is 2# radians per 0.12 sec or @ = 27/0.12
= 52.36 rad/sec. As the number of observed values in each wave (N) is 12, we obtain from

Eq. (1.69)
N
au=%z =—Zp,=681667 (E.1)

=1 =1
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Time Station, i Time (sec), 1, Pressure (kN / n?), p;
0 0 0
1 0.01 20
2 0.02 34
3 0.03 42
4 0.04 49
5 0.05 53
6 0.06 70
7 0.07 60
8 0.08 36
9 0.09 22
10 0.10 16
11 0.11 7
12 0.12 0
n=1 ne=2 n=3
g‘ 2, . 2mt; 4mt; . 4mt; 6mt; X
i 1; P; p,-cosm Pismﬁji p,;cos 12 Pismf)ﬁ p,»cosm Pp;sin
El 0.01 20000 17320 10000 10000 17320 0
|2 0.02 34000 17000 29444 -17000 29444 -34000 .
3 0.03 42000 0 42000 -42000 0 0 —4f
i 4 0.04 49 000 —~24 500 42434 —-24500 —42434 49000
5 0.05 53000 —45 898 26 500 26 500 — 45898 0 5§
6 0.06 70 000 =70000 0 70000 0 - 70000 -
7 0.07 60 000 - 51 960 -30000 30000 51960 0 - 60000
}8 0.08 36 000 - 18000 -31176 — 18000 31176 36 000 0
9 0.09 22000 0 —-22000 -22000 0 0 22000
iO 0.10 16 000 8000 —13856 — 8000 ~13856 -16 000 0
1 0.11 7000 6062 — 3500 3500 - 6062 0 ~ 7000
2 0.12 0 0 0 0 0 0 0
() 409 000 —161976 49 846 8500 21650 -35000 —14000
12
Z ) 68166.7 ~26996.0 8307.7 1416.7 3608.3 —~5833.3 ~23333
=1

i

f
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The coefficients a,, and b, can be determined from Eqs. (1.70) and (1.71):

2 ¥ 2nmt, 18 2nmt

a, = —N—‘glp,(}os p L = % 'gl p,COSﬁl—Z‘l (E.2)
2 ¥ nm 1& 2nmt,

b, = —ﬁzll psin— = ¢ E] pSin g3 (E3)

The computations involved in Eqs. (E.2) and (E.3) are shown in Table 1.2, From these
calculations, the Fourier series expansion of the pressure fluctuations p(t) can be obtained
[see Eq. (1.50)):
p(t) = 34083.3 — 26996.0 cos 52.361 + 8307.7 sin 52.36¢
+ 1416.7cos104.72¢ + 3608.3 sin 104.72¢
— 5833.3¢0s157.08t — 2333.3sin157.08¢

+ oo N/m? (E4)

ON LITERATURE

The literature on vibrations is large and diverse. Several textbooks are available
{1.34], and dozens of technical periodicals regularly publish papers relating to
vibrations. This is primarily because vibration affects so many disciplines, from
science of materials to machinery analysis to spacecraft structures. Researchers in
many fields must be attentive to vibration research.

The most widely circulated journals that publish papers relating to vibrations
are Journal of Vibration, Acoustics, Stress, and Reliability in Design; Journal of
Applied Mechanics;, Journal of Sound and Vibration; AIAA Journal, ASCE Journal
of Engineering Mechanics, Earthquake Engineering and Structural Dynamics, Bul-
letin of the Japan Society of Mechanical Engineers; International Journal of Solids
and Structures; International Journal for Numerical Methods in Engineering, Journal
of the Acoustical Society of America; Sound and Vibration; Vibrations, Mechanical
Systems and Signal Processing, International Journal of Analytical and Experimental
Modal Analysis; and Vehicle System Dynamics. Many of these journals are cited in
the chapter references.

In addition, Shock and Vibration Digest and Applied Mechanics Reviews are
monthly abstract journals containing brief discussions of nearly every published
vibration paper. Formulas and solutions in vibration engineering can be readily
found in references {1.35-1.37].

'UTER PROGRAM

A FORTRAN computer program, in the form of subroutine FORIER, is given for
the harmonic analysis of a function x(7). The arguments of this subroutine are as
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Number of equidistant points at which the values of x() are
known. Input data.

Number of Fourier coefficients to be computed. Input data.
Time period of the function x(t). Input data.

Array of dimension N, containing the known values of x(z),
X(I) = x(t,). Input data.

Array of dimension N, containing the known values of ;.
T(I) = ¢,. Input data.

a, of Eq. (1.69). Output.

Array of dimension M, containing the computed values of a, of
Eq. (1.70). Output.

Array of dimension M, containing the computed values of b, of
Egq. (1.71). Output.

To illustrate the use of subroutine FORIER, consider Example 1.7 with M =5
instead of M = 3. Thus we have N =12, M = 5, and TIME = 0.12. The main
program that calls subroutine FORIER, subroutine FORIER itself, and the output
of the program are given below.

c
c
C PROGRAM 1
C MAIN PROGRAM FOR CALLING THE SUBROUTINE FORIER
c
c
C FOLLOWING 6 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION X(12),T(12),XSIN(12),XCOS(12),A(5),B(5)
DATA N,M,TIME /12,5,0.12/
DATA X /20000.0,34000.0,42000.0,49000.0,53000.0,70000.0,60000.0,
2 36000.0,22000.0,16000.0,7000.0,0.0/
DATA T /0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,0.11,
2 0.12/
C END OF PROBLEM-DEPENDENT DATA
CALL FORIER (N,M,TIME,X,T,AZERO,A,B,XSIN,XCOS)
PRINT 100
100 FORMAT (//,46H FOURIER SERIES EXPANSION OF THE FUNCTION X(T),//)
PRINT 200, N,M,TIME
200 FORMAT (6H DATA:,//,37H NUMBER OF DATA POINTS IN ONE CYCLE =,Is,
2 /,42H NUMBER OF FOURIER COEFFICIENTS REQUIRED =,15,/,
3 14H TIME PERIOD =,E15.8)
PRINT 300, (T(1),I=1,N)
300 FORMAT (/,33H TIME AT VARIOUS STATIONS, T(I) =,/,(4E15.8,1X))
PRINT 400, (X(1),I=1,N)
400 FORMAT (/,31H KNOWN VALUES OF X(I) AT T(I) =,/,(4E15.8,1X))
PRINT 500
500 FORMAT (//,29 RESULTS OF FOURIER ANALYSIS:,/)
PRINT 600, AZERO
600 FORMAT (BH AZERO =,2X,E15.8,//,31H VALUES OF I, A(I) AND B(I) ARE
2,
DO 700, I =1,M
700 PRINT 800, I,A(I),B(I)
800 FORMAT (I5,2X,E15.8,2X,E15.8)

STOP
END
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SUBROUTINE FORIER

onoooon

SUBROUTINE FORIER (N,M,TIME,X,T,AZERO,A,B,XSIN,XCOS)
DIMENSION X(N),T(N),A(M),B(M),XSIN(N) ,XCOS(N)
PI=3.1416
SUNZ=0.0
DO 100 I=1,N

100  SUMZ=SUMZ4X(I)
AZERO=2.0*SUMZ/REAL(N)

DO 300 II=1,M

SUMS=0.0

SUMC=0.0

DO 200 I=1,N

THETA=2. O%PI*T(1)*REAL(I1)/TIME
XCOS (1)=X(1)*COS(THETA)
XSIN(I)=X(1)*SIN(THETA)
SUMS=SUNS+XSIN(I)
SUMC=SUMC+XCOS (1)

200 CONTINUE
A(I11)=2.0*SUMC/REAL(N)
B(11)=2.0%SUNS/REAL(N)

300 CONTINUE
RETURN
END

FOURIER SERIES EXPANSION OF THE FUNCTION X(T)
DATA:

NUMBER OF DATA POINTS IN ONE CYCLE = 12
NUMBER OF FOURIER COEFFICIENTS REQUIRED = 5
TIME PERIOD = 0.12000000E+00

TIME AT VARIOUS STATIONS, T(I) =
0.

8E-02 0. ~01 0.2 E-O1 0. E-01
0. 1E-01 0. -01 0. -01 0.7 8E-01
0. E-01 0. +00 0.1 +00 0.1 00
KNOWN VALUES OF X(I) AT T(I) =
0. 5 0.3 +05 0.4 +05 0.4 5
0.5 5 0. +05 0. +05 0. 5
0. 5 0. +05 0. +04 0 00

RESULTS OF FOURIER ANALYSIS:

AZERO =  0.68166664E+05

VALUES OF I, A(I) AND B(I) ARE
-0.26996299E+05  0.83075869E+04
0.141663468E406  0.36084932E+04
-0.58332480E+04  -0.23334373E404

-0.58340521E+03  0.21650562E+04
-0.21702822E+04 -0.64117188E+03
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REVIEW QUESTIONS

1.1. What was Galileo’s contribution to the development of vibration theory?

1.2. Give the names of two early investigators who derived the governing equation for the
lateral vibration of prismatic bars.

13. Give two examples each of the bad and the good effects of vibration.

1.4. What are the three elementary parts of a vibrating system?

1.5. Define the degree of freedom of a vibrating system.

1.6. What is the difference between a discrete and a continuous system? Is it possible to
solve any vibration problem as a discrete one?

1.7. What is the difference between free and forced vibration?

1.8. In vibration analysis, can we always disregard damping?

19. Can we identify a nonlinear vibration problem by looking at its governing differential
equation?

1.10. What is the difference between deterministic and random vibration? Give two practical

examples of each.
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L1
L12.
L13.
1.14.
L1S.
1.16.
1.17.

1.18.
1.19.

1.20.
1.21.
1.22.
1.23.

1.24.

What methods are available for solving the governing equations of a vibration problem?
How do you connect several springs to increase the overall stiffness?

Define spring stiffness and damping constant.

What are the common types of damping?

What is the difference between harmonic motion and periodic motion?

State three different ways of expressing a periodic function in terms of its harmonics.
Define these terms: cycle, amplitude, phase angle, linear frequency, period, and natural
frequency.

How are 7, w, and f related to each other?

How can we obtain the frequency, phase, and amplitude of a harmonic motion from the
corresponding rotating vector?

How do you add two harmonic motions having different frequencies?
Suggest two methods for finding the time derivative of a harmonic motion.
What is harmonic analysis?

Give the names of two technical journals and two abstract journals for vibration
research.

What are half range expansions?

PROBLEMS

The problem assignments are organized as follows:

Section

Problems Covered  Topic Covered

11-1.3 16 Vibration analysis procedure
14-1.16,1.21 1.7 Spring elements
1.10,1.16-1.19 18 Mass elements
1.20,1.22,1.23 1.9 Damping elements

124-1.37 110 Harmonic motion

1.38-1.49 1.11 Harmonic analysis

1.50-1.53 113 Computer program

L1* A study of the response of a human body subjected to vibration/shock is important in

many applications. In a standing posture, the masses of head, upper torso, hips, and

*The asterisk denotes a design type problem or a problem with no unique answer.
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1.2*

13*

legs, and the elasticity /damping of neck, spinal column, abdomen, and legs influence
the response characteristics. Develop a sequence of three improved approximations for
modeling the human body.

A reciprocating engine is mounted on a foundation as shown in Fig. 1.37. The
unbalanced forces and moments developed in the engine are transmitted to the frame
and the foundation. An elastic pad is placed between the engine and the foundation
block to reduce the transmission of vibration. Develop two mathematical models of
the system using a gradual refinement of the modeling process.

An automobile moving over a rough road (Fig. 1.38) can be modeled considering (a)
the weight of the car body, passengers, seats, front wheels, and rear wheels; (b) the
elasticity of tires (suspension), main springs, and seats; and (c) damping of the seats,
shock absorbers, and tires. Develop three mathematical models of the system using a
gradual refinement in the modeling process.

f——— Frame

Reciprocating

engine

Foundation
block

Soil
ure 1.37 A reciprocating engine on foundation Figure 1.38 An automobile moving on a rough road

1.4.  Determine the equivalent spring constant of the system shown in Fig. 1.39.

LS. In Fig 1.40, find the equivalent spring constant of the system in the direction of 6.

16.  Find the equivalent torsional spring constant of the system shown in Fig 1.41.

L7. A machine of mass m = 500 kg is mounted on a simply supported steel beam of
length / = 2 m having a rectangular cross-section (depth = 0.1, m, width = 1.2 m) and
Young’s modulus E = 2.06 x 10" N/n?. To reduce the vertical deflection of the
beam, a spring of stiffness k is attached at the mid-span, as shown in Fig. 1.42.
‘I)eteltnyne the value of k needed to reduce the deflection of the beam to one-third of
its original value. Assume that the mass of the beam is neghgible.

18.  Four identical rigid bars—each of length a—are connected to a spring of stiffness k
to form a structure for carrying a vertical load P, as shown in Figs. 1.43(a) and (b).
Find the equivalent spring constant of the system keq. for each case, disregarding the
masses of the bars and the friction in the joints.

19.  The tripod shown in Fig. 1.44 is used for mounting an electronic instrument that finds

the distance between two points in space. The legs of the tripod are located symmetri-
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(b)

Figure 1.43 Figure 1.44

cally about the mid-vertical axis, each leg making an angle « with the vertical. I
leg has a length of / and axial stiffness of k, find the equivalent spring stiffness
tripod in the vertical direction.

1.10. Find the equivalent spring constant and equivalent mass of the system shown |
1.45 with reference to 6.

I N
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Y
=3 ny
k'\ﬁK/\‘ Je
~

3 =

2 ~
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kg
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density p
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Figure 1.45
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L1

1.12.

Find the length of the equivalent uniform hollow shaft of inner diameter and
thickness ¢ that has the same axial spring constant as that of the solid conical shaft
shown in Fig. 1.46.

The force-deflection characteristic of a spring is described by F = 500x + 2x' where
the force (F) is in Newtons and the deflection (x) is in millimeters. Find (1) the
linearized spring constant at x = 10 mm, and (ii) the spring forces at x = 9 mm and
x = 11 mm using the linearized spring constant. Also find the error in the Spring
forces found in (ii).

d  Cross sectional
area = A

1.13.

Air
pressure = p
volume = ¢
-~

Figure 1.47

Figure 1.47 shows an air spring. This type of spring is generally used for obtaining
very low natural frequencies while maintaining zero deflection under static loads. Find
the spring constant of this air spring by assuming that the pressure p and volume v
change adiabatically when the mass m moves.

Hint: pv" = constant for an adiabatic process, where vy is the ratio of specific heats.
For air, y = 1.4.

Find the equivalent spring constant of the system shown in Fig. 1.48 in the dircction
of the load P.

Figure 1.48
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1.15.* Design a steel helical compression spring to satisfy the following requirements:
Spring stiffness (k) > 8000 N/mm
Fundamental natural frequency of vibration (f;) > 0.4 Hz
Spring index (D/d) > 6
Number of active turns (N) > 10.
! The stiffness and fundamental natural frequency of the spring are given by [1.41]:

Gd* kg
k= DN and =172 W
where G = shear modulus, d = wire diameter, D = coil diameter, W = weight of the
spring, and g = acceleration due to gravity.

1.16. Two sector gears, located at the ends of links 1 and 2, are engaged together and rotate
about O, and 0,, as shown in Fig. 1.49, If links 1 and 2 are connected to springs k, to
ks and k, and k,, as shown, find the equivalent torsional spring stiffness and
equivalent mass moment of inertia of the system with reference to f,. Assume (a) the
mass moment of inertia of link 1 (including the sector gear) about O, as J; and that of
link 2 (including the sector gear) about O, as J,, and (b) the angles 8, and 6, to be
small.

Sector gear 1
Sector gear 2

1
————p> _1 6, ky

re 1.49

1.17. In Fig 1.50, find the equivalent mass of the rocker arm assembly, referred to the x
coordinate.

1.18. Find the equivalent mass moment of inertia of the gear train shown in Fig 1.51, with
reference to the driving shaft. In Fig. 1.51, J, and n, denote the mass moment of
inertia and the number of teeth, respectively, of gear i, i = 1,2,...,2N.

1.19. Two masses, having mass moments of inertia J; and J,, are placed on rotating rigid
shafts that are connected by gears, as shown in Fig. 1.52. If the number of teeth on
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Figure 1.50

gears 1 and 2 are n; and n,, respectively, find the equivalent mass moment of inert]
corresponding to 8.
1.20. Find a single equivalent damping constant for the following cases: ’
i. When three dampers are parallel.
ii. When three dampers are in series.
iii. When three dampers are connected to a rigid bar (Fig. 1.53), and the equiva.len‘
damper is at the site .

Driving
Shaft 1 [7]
;/lotor, i 1m,
motor —=
] Shaft 2
7 7 Jam|2 3|3, ns Shaft N
M St e Gear 2N — 1
Jo,ng |4 LAV Y .
L
| —
Shaft N + 1
Load.
Jioad
Gear 2N —| |
Jan, man

Figure 1.51
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Problems

Gear 1.m .
PR
™y

Gear2,n, 4

|
Jy 13 \
1

|re 1.52 Rotational masses on geared shafts Figure 1.53 Dampers connected to a ngid bar.

iv. When three torsional dampers are located on geared shafts (Fig. 1.54), and the
equivalent damper is at the location ¢,;.

Hint: The energy dissipated by a viscous damper in a cycle during harmonic motion is

given by mcw X?, where ¢ is the damping constant, w is the frequency, and X is the

amplitude of oscillation.

Figure 1.54 Dampers located on geared shafts

1.21.* Design an air spring using a cylindrical container and a piston to achieve a spring
constant of 75 Ib/in. Assume that the maximum air pressure available is 200 psi.

1.22.* Design a shock absorber (piston-cylinder type dashpot) to obtain a damping constant
of 10° Ib-sec/in. using SAE 30 oil at 70° F. The diameter of the piston has to be less
than 2.5 inches.

1.23. Develop an expression for the damping constant of the rotational damper shown in
Fig. 1.55 in terms of D, d, I, h, w, and x, where w denotes the constant angular
velocity of the inner cylinder, and 4 and h represent the radial and axial clearances
between the inner and outer cylinders.

1.24.  Express the complex number S + 2/ in the exponential form Ae?.

1.25. Add the two complex numbers (1 + 2i) and (3 ~ 4i) and express the result in the
form Ae'.

1.26. Verify that the harmonic functions x,(¢) = A,cos(wt + ¢) and X,(1) = Aysin(wt + ¢)
satisfy the differential equation d2x/dr* + w’x = 0.
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Lmachine is subjected to the motion x(¢) = A cos(50¢ + ) mm. The initial condi-
ns are given by x(0) = 3 mm and x(0) = 1.0 m/s.
Find the constants A4 and a.

Express the motion in the form x(f) = A cos wt + A,sinwt, and identify the
constants 4, and A,.

how that any linear combination of sin w and cos wt such that x(#) = A4,cos w? +
hsin wt (A, A, = constants) represents a simple harmonic motion.

nd the sum of the two harmonic motions x,(f) = Scos(3t + 1) and x,(1) =
Ycos(3t + 2). Use:

trigonometric relations
[ vector addition

complex number representation

one of the components of the harmonic motion x(¢) = 10sin(wt + 60°) is x,(¢) =
sin(w? + 30°), find the other component.

’onsider the two harmonic motions x,(f) = 3cos?t and x,(¢) = sinmt. Is the sum
1(1) + x,(¢) a periodic motion? If so, what is its period?

nsider two harmonic motions of different frequencies: x,(z) = 2cos2z and x,(t) =
s 3¢. Is the sum x,(r) + x,(¢) a harmonic motion? If so, what is its period?
‘onsider the two harmonic motions x,(¢) = tcos3¢ and x,(t) = cos . Is the differ-
ace x(¢) = x,(t) ~ x,(¢) a harmonic motion? If so, what is its period?
vhenever two harmonic motions x,(¢) and x,(t) having slightly different frequencies
re combined, the amplitude of the resulting motion x(¢) varies between a maximum
ad a minimum value. Every time the amplitude of x(f) reaches a maximum, there is
1d to be a beat. What are the maximum and minimum amplitudes of the combined
otion x(f) = x,() + x,(¢) when x,(¢) = 3sin30¢ and x,(¢) = 3sin29¢? Also find
1e frequency of beats corresponding to x(t).
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1.35. A harmonic motion has an amplitude of 0.05 m and a frequency of 10 Hz. Find
period, maximum velocity, and maximum acceleration.

1.36. An accelerometer mounted on a building frame indicates that the frame is vibra
harmonically at 15 cps, with a maximum acceleration of 0.5 g. Determine
amplitude and the maximum velocity of the building frame.

1.37. The maximum amplitude and the maximum acceleration of the foundation c
centrifugal pump were found to be x,., = 0.25 mm and %, = 0.4 g Find
operating speed of the pump.

1.38.  Express the complex Fourier series expansion of Eq. (1.58) in the form

o0
W= £ e
n=—o0
and identify the expression for c,.

1.39. Prove that the sine Fourier components (b, ) are zero for even functions, that is, w
x(—t) = x(t). Also prove that the cosine Fourier components (a, and a,) are :
for odd functions, that is, when x(—¢) = —x(¢).

1.40. Find the Fourier series expansions of the functions shown in Figs. 1.34(ii) and
Also, find their Fourier series expansions when the time axis is shifted down
distance 4.

1.41. The impact force created by a forging hammer can be modeled as shown in Fig. 1
Determine the Fourier series expansion of the impact force.

x(1) x(1)

A A
0 > 0
3 T %‘ 2t s_; t [ T 2t
Figure 1.56 Figure 1.57

1.42-1.44. Find the Fourier series expansions of the periodic functions shown in Figs. 1.5
1.59. Also plot the corresponding frequency spectra.

x(1)

VANWANANESE.
VA

Figure 1.58 Figure 1.59
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1.45.  Conduct a harmonic analysis, including the first three harmonics, of the function givg
below:

A 002 004 006 008 010 012 014 016 018
3 9 13 17 29 43 59 63 57 49

L 020 022 024 026 028 030 032
2 35 35 41 47 41 13 7

1.46. In a centrifugal fan (Fig. 1.60a), the air at any point is subjected to an impulse eac}
time a blade passes the point, as shown in Fig. 1.60(b). The frequency of the‘;ﬂ
impulses is determined by the speed of rotation of the impeller n and the number of
blades N in the impeller. For n =100 rpm and N =4, determine the first lhrq
harmonics of the pressure fluctuation shown in Fig. 1.60(b).

Pressure (psi)
4

0 Pmax = 100
n
Impeller
T 51:

(a) Centrifugal fan (b) ldeal pressure fluctuation at a point

Q

Figure 1.60 :

1
1.47. The torque (M,) variation with time, of an internal combustion engine, is given inj
Table 1.3. Make a harmonic analysis of the torque. Find the amplitudes of the firs*

three harmonics.

€s) M(N-m) ts) M(N-m) t(s) M(N=m)
0.00050 770 0.00450 1890 0.00850 1050
0.00100 810 0.00500 1750 0.00900 990
0.00150 850 0.00550 1630 0.00950 930
0.00200 910 0.00600 1510 0.01000 890
0.00250 1010 0.00650 1390 0.01050 850
0.00300 1170 0.00700 1290 0.01100 810
0.00350 1370 0.00750 1190 0.01150 770

0.00400 1610 0.00800 1110 0.01200 750
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1.48.* A shder crank mechanism is shown in Fig. 1.61. Derive an expression for the motion
of the piston P in terms of the crank length r, connecting rod length /, and the
constant angular velocity of the crank w.

i. Discuss the feasibility of using the mechanism for the generation of harmonic
motion.

ii. Find the value of //r for which the amplitude of every higher harmonic is smaller
than that of the first harmonic by a factor of at least 25.

40
30
20 42 d
o 4
£ wiA \
H \
£ 0 \
-0 \ ]
= 20 \
~30 U

0 0.1 0.2 03 0.4 0.5 0.6
Time (seconds)

Figure 1.62

2

/

z /
£ 1 =
g
£ 0
g 1
o \v Nt
a -l

20 005 010 015 020 025 030 035

Time (seconds)

ot

Figure 1.61 Figure 1.63

1.49. Make a harmonic analysis of the function shown in Fig. 1.62, including the first three
harmonics.

1.50. Solve Problem 1.47 using subroutine FORIER.

1.51. Solve Problem 1.45 using subroutine FORIER.

1.52. Find the first six harmonics of the function shown in Fig. 1.62, using subroutine
FORIER.

1.53.  Use subroutine FORIER to conduct a harmonic analysis of the function shown in Fig.
1.63, including the first ten harmonics.



CHAPTER 2

Free Vibration
of Single Degree
of Freedom Systems

sir Isaac Newton (1642-1727) was an English natural
philosopher, a professor of mathematics at Cambridge
Unwversity, and President of the Royal Society. His
“ppncipia Mathematica™ (1687), which deals with the laws
and conditions of motion, is considered to be the greatest
soientific work ever produced. The definitions of force,
mass, and momentum, and his three laws of motion crop
up continually in dynamics. Quite fittingly, the unit of force
named “"Newton' in Sl units happens to be the approximate
weight of an average apple, which inspired him to study
the laws of gravity (Courtesy of the Granger Collection)

2.1 INTRODUCTION

Figure 2.1(a) shows a spring-mass system that represents the simplest possible
vibratory system. It is called a single degree of freedom system since one coordinate
(x) is sufficient to specify the position of the mass at any time. There is no external
force applied to the mass; hence the motion resulting from an initial disturbance
will be a free vibration. Since there is no element that causes dissipation of energy
during the motion of the mass, the amplitude of motion remains constant with time;
it is an undamped system. In actual practice, except in a vacuum, the amplitude of
, free vibration diminishes gradually over time, due to the resistance offered by the
surrounding medium (such as air). Such vibrations are said to be damped. The study
of the free vibration of undamped and damped single degree of freedom systems is
fundamental to the understanding of more advanced topics in vibrations.

Several mechanical and structural systems can be idealized as single degree of
freedom systems. In many practical systems, the mass is distributed, but for a
simple analysis, it can be approximated by a single point mass. Similarly, the
elasticity of the system, which may be distributed throughout the system, can also
be idealized by a single spring. For the cam-and-follower system shown in Fig. 1.21,
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Figure 2.1. A spring-mass system in horizontal position.

for example, the various masses were replaced by an equivalent mass (M) in
Example 1.3. The elements of the follower system (pushrod, rocker arm, valve, and
valve spring) are all elastic but can be reduced to a single equivalent spring of
stiffness k... For a simple analysis, the cam-and-follower system can thus be
idealized as a single degree of freedom spring-mass system, as shown in Fig. 22,
Similarly, the building frame shown in Fig. 2.3(a) can be idealized as a spring-mass:
system, as shown in Fig. 2.3(b). In this case, since the spring constant k is merely
the ratio of force to deflection, it can be determined from the geometric any
material properties of the columns. The mass of the idealized system is the same :{
that of the floor if we assume the mass of the columns to be negligible.

q

AAAAAAAAAN-
YWWWWW
>~

_ @_,

Figure 2.2. Equivalent spring-mass system for the cam-and-follower system of Fig 1.21.
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Rigid floor

x(1) (mass = m) x(1)
=/ —

x(1)
\ / P
Elastic columns
(mass is negligible)

7777777 7 (b) Equivalent spring —
(a) Building frame mass system

Figure 2.3. Idealization of a building frame

'‘BRATION OF AN UNDAMPED
| TRANSLATIONAL SYSTEM

Spring-mass System in Horizontal Position. Consider the undamped single degree
of freedom system shown in Fig. 2.1(a). The mass is supported on frictionless rollers
and can have translatory motion in the horizontal direction. The unstretched length
of the spring is /,. Let the mass be displaced a distance +x from its rest position.
This results in a spring force kx, as shown in Fig. 2.1(c). Newton’s second law states
that

mass X acceleration = resultant force on the mass (2.1)
The application of Eq. (2.1) to the mass m yields the equation of motion

mX = —kx
or
mi+ kx =0 (22)

2
where X = % is the acceleration of the mass.
't

Spring-mass System in Vertical Position. Consider the configuration of the spring-
mass system shown in Fig. 2.4(a). The mass hangs at the lower end of a spring,
which in turn is attached to a rigid support at its upper end. At rest the mass will
hang in a position called the static equilibrium position, in which the upward spring
force exactly balances the downward gravitational force on the mass. In this
position the length of the spring is /, + §,,, where §,, is the static deflection—the
elongation due to the weight W of the mass m. From Fig. 2.4(a), we find that, for
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Figure 2.4. A spring-mass system in vertical position.

static equilibrium,

W =mg = kb, (2.
where g is the acceleration due to gravity. Let the mass be deflected a distance +x;
from its static equilibrium position; then the spring force is —k(x + 8), as shown

in Fig. 2.4(c). The application of Newton’s second law of motion to the mass m
gives

mi= —k(x+8,)+WwW
and since k4, = W, we obtain
mx + kx =0 (24)

Notice that Egs. (2.2) and (2.4) are identical. This indicates that when a mass :
moves in a vertical direction, we can ignore its weight, provided we measure x from
its static equilibrium position.
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Equation (2.2) can also be derived by using the conservation of energy principle. To
apply this principle, first note that the system shown in Fig. 2.1(a) is conservative,
since there is no energy dissipation due to damping. During vibration, the energy of
the system is partly kinetic and partly potential. The kinetic energy T is stored in
the mass by virtue of its velocity, and the potential energy U is stored in the spring
by virtue of its elastic deformation. Due to the conservation of energy, we have

T + U = constant

or
dirryy=o0 25)
dt '
The kinetic and potential energies are given by
T = imx? (2.6)
and*
U = lkx? 2.7)
Substitution of Eqs. (2.6) and (2.7) into Eq. (2.5) yields the desired equation
mi + kx =0 (2.2)

The solution of Eq. (2.2) can be found by assuming
x(1) = Ce* (2.8)

where C and s are constants to be determined. Substitution of Eq. (2.8) into Eq.
(2.2) gives

C(ms?+k)=0

Since C cannot be zero, we have

ms*+ k=0 2.9
and hence

k2
s= j:(——';l-) = tiw, (2.10)
where i = (- 1)'/2 and
k12
w, = (;) (2.11)

Equation (2.9) is called the auxiliary or the characteristic equation corresponding to

* Equation (2.7) can also be derived by considering the weight of the mass (Fig. 2.4). Since the spring
force is mg at x = 0, the potential energy of the spring under the deformation x will be mgx + $kx?, as
shown in Fig. 2.4(d). The potential energy of the system due to the change in elevation of the mass (note
that +x is downwards) is —mgx. Thus the net potential energy of the system about the static
equilibrium position is given by
U = potential energy of the spring + change in potential energy due to change in elevation of the mass m

= mgx + %kxz - mgx = ikxz
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the differential Eq. (2.2). The two values of s given by Eq. (2.10) are the roots of the
characteristic equation, also known as the eigenvalues or the characteristic ralues of
the problem. Since both values of s satisfy Eq. (2.9), the general solution of Eq. 22
can be expressed as

x(1) = Cient + Cye™'ent (2.12)
where C, and C, are constants. By using the identities

etial = cosat + isinat

Eq. (2.12) can be rewritten as
x(1) = Ajcos w,t + A,sinw,¢ (2.13)

where A4, and A, are new constants. The constants C, and C, or 4, and A4, can be
determined from the initial conditions of the system. If the values of displacement
x(¢) and velocity x(¢) = (dx/dt)(¢) are specified as xo and X%, at 1 = 0, we have_
from Eq. (2.13), i

x(t=0)=4, = x, ‘

x(1=0) = w,4, =%, (2.19)
Hence 4, = x4 and A4, = %y/w,. Thus the solution of Eq. (2.2) subject to the initial
conditions of Eq. (2.14) is given by

X
x(t) = xgcos w,t + -m—osinw,,t (2.15)

Equations (2.12), (2.13), and (2.15) are harmonic functions of time. The motion is
symmetric about the equilibrium position of the mass m. The velocity is a maximum
and the acceleration is zero each time the mass passes through this position. At the
extreme displacements the velocity is zero and the acceleration is a maximum. Since
this represents simple harmonic motion (see Sec. 1.10), the spring-mass system itself
is called a harmonic oscillator. The quantity w,, given by Eq. (2.11), represents the
natural frequency of vibration of the system.
Equation (2.13) can be expressed in a different form by introducing the notation

A, =Acos ¢

A, =Asin¢ (2.16)
where 4 and ¢ are the new constants which can be expressed in terms of 4, and 4,
as

2]

A= (4 + A%)l/2 = [xé + (—“-’9) ] = amplitude
n

A X
=tan-Y 22| = tan-1| 20| = 7
¢ = tan ( A, ) tan ( Xo”n) phase angle (2.17)

Introducing Eq. (2.16) into Eq. (2.13), the solution can be written as
x(t) = Acos(w,t — ¢) (2.18)
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ot
x(1) = Acos (w,— @)
(a) (b)
Figure 2,5. Graphical representation of the motion of a harmonic oscillator.
By using the relations
A, = Agsin ¢,
AZ =Aocos¢0 (219)
Eq. (2.13) can also be expressed as
x(t) = Agsin(w,t + &) (2.20)
where
T 177
X,
Ag=A4= [x.§+ (;")] (2.21)
and
P = tan“(m) (2.22)
Xo

The nature of harmonic oscillation can be represented graphically as in Fig.
2.5(a). If A denotes a vector of magnitude A4 which makes an angle w,t — ¢ with
respect to the vertical (x) axis, then the solution, Eq. (2.18), can be seen to be the
projection of the vector 4 on the x-axis. The constants 4, and A4, of Eq. (2.13),
given by Eq. (2.16), are merely the rectangular components of A along two
orthogonal axes making angles ¢ and —(3 — ¢) with respect to the vector 4. Since
the angle w,? — ¢ is a linear function of time, it increases linearly with time; the
entire diagram thus rotates anticlockwise at an angular velocity w,. As the diagram
(Fig. 2.5a) rotates, the projection of A onto the x- axis varies harmomcally so that
the motion repeats itself every time the vector A sweeps an angle of 2. The
projection of A, namely x(z), is shown plotted in Fig. 2.5(b) as a function of time.
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The phase angle ¢ can also be interpreted as the angle between the origin and thel
first peak.
Note the following aspects of the spring-mass system:

1. If the spring-mass system is in a vertical position, as shown in Fig. 2.4(a), {he
circular natural frequency can be expressed as

k2
w, = (;) (2.23)
The spring constant k can be expressed in terms of the mass m from Eq. (2.3)
as
W _mg
=5 =5 (2.29)

Substitution of Eq. (2.24) into Eq. (2.11) yields
1,2 |
w, = (s%,) (2.25)

Hence the natural frequency in cycles per second and the natural period are
given by

172
f- 1) (2.26)
1, (84
T, = 7 =21r(-§‘) (2.27)\;‘

Thus, when the mass vibrates in a vertical direction, we can compute the natural
frequency and the period of vibration by simply measuring the static deflection .
4. It is not necessary that we know the spring stiffness k and the mass m.

2. From Eq. (2.18), the velocity %(7) and the acceleration %(¢) of the mass m a'
time 7 can be obtained as

x(t) = :11—':(1) = —w,Asin(w,t - ¢) = w,A cos(w,,t - ¢+ %)
2
#(1) = %(t) = —wldcos(w,t — ¢) = wiAcos(w,t — ¢ +7) (2.28)

Equation (2.28) shows that the velocity leads the displacement by § and the
acceleration leads the displacement by =.

3. If the initial displacement (x,) is zero, Eq. (2.18) becomes
x(t) = ?cos(w,,t - %) = :’-—osinw,,t (2.29)

On the other hand, if the initial velocity (X,) is zero, the solution becomes |

x(1) = xqc08 w,¢ (2.30)
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Natural Frequency of Hoisting System N . : s

Find the natural frequency of vibration in the vertical direction of the hoisting system shown
in Fig. 1.16(a).

Given: Hoisting system of Fig. 1.16(a) with cantilever, rope, and weight.
Find: Natural frequency of vibration of the system in the vertical direction.
Approach: Single degree of freedom idealization.

14
Solution: The equivalent spring constant of the system (cantilever beam and rope) was
derived in Example 1.1:

k (E1)

kyk, E( wmald?
4

AT T+ Kk, A\ 70 1 lar®

r

The cantilever, rope, and the weight being lifted can now be modeled as a single degree of
freedom system, as shown in Fig. 1.16(c). This leads to the natural frequency of the system:

(k) (k) [ By (_maia® )] E2
“n m T\ W AW\ #b%d® + lar® (E2)

£73

Natural Frequency of Pulley System B

Determine the natural frequency of the system shown in Fig. 2.6. Assume the pulleys to be
frictionless and of negligible mass.

Pulley 2

Pulley 1
ulley 0

-1

Figure 2.6
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Given: System consisting of two pulleys and a mass as shown in Fig, 2.6.
Find: Natural frequency of vibration of the mass.
Approach: Single degree of freedom idealization.

Solution. Since the pulleys are frictionless and massless, the tension in the rope is consta

and is equal to the weight W of the mass m. Thus the upward force acting on pulley 1 is 2w
and the downward force acting on pulley 2 is 2W. The center of pulley 1 moves up by a
distance 2W/k,, and the center of pulley 2 moves down by 2W/k,. Thus the total movemeng

of the mass m is
2w 2W
z( o+ )

¥
as the rope on either side of the pulley is free to move the mass downward. If k., denotes the
equivalent spring constant of the system,

weight of the mass
equivalent spring constant

= net displacement of the mass

w 1.1 aw(ky + ky)
T =AW 4+ - | = 2
ke ( ky kz) kiky
ik
R ey (1
If the equation of motion of the mass is written as
mi 4+ keox =0 (E2
the natural frequency is given by
k1172 kik 172 !
o-(22)" - [____m(k: S| radssee (E3)
or
w, 1 kyky /
L fi= 5 = ﬂ[—m(kl Y5 cycles/sec (E4)

FREE VIBRATION OF AN UNDAMPED
TORSIONAL SYSTEM

If a rigid body oscillates about a specific reference axis, the resulting motion is -
called torsional vibration. In this case, the displacement of the body is measured in |
terms of an angular coordinate. In a torsional vibration problem, the restoring
moment may be due to the torsion of an elastic member or to the unbalanced
moment of a force or couple. '
Figure 2.7 shows a disc, which has a polar mass moment of inertia .J,, mounted
at one end of a solid circular shaft, the other end of which is fixed. Let the angular
rotation of the disc about the axis of the shaft be 8; @ also represents the angle of
twist of the shaft. From the theory of torsion of circular shafts [2.1], we have the
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(a) (b)

Figure 2.7. Torsional vibration of a disc.

relation

- G_{‘i (2.31)
where M, is the torque that produces the twist 8, G is the shear modulus, [ is the
length of the shaft, J is the polar moment of inertia of the cross section of the shaft
given by
wd*
K73
and d is the diameter of the shaft. If the disc is displaced by # from its equilibrium
position, the shaft provides a restoring torque of magnitude M,. Thus the shaft acts
as a torsional spring with a torsional spring constant

(2.32)

(2.33)

The equation of the angular motion of the disc about its axis can be derived by
using Newton’s second law or the principle of conservation of energy. By consider-
ing the free body diagram of the disc (Fig. 2.7b), we can derive the equation of
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motion by applying Newton’s second law of motion:
Jf +k8=0 (2.34

which can be seen to be identical to Eq. (2.2) if the polar mass moment of inertia J
the angular displacement @, and the torsional spring constant k, are replaced by th
mass m, the displacement x, and the linear spring constant k, respectively. Thus g
natural circular frequency of the torsional system is

k, 1,2
= (_,—0) (2.35|_

and the period and frequency of vibration in cycles per second are

Jo\172
= 27{("_1) (2.36

1 (&, 172
5= g(z) (2.3

Note the following aspects of this system:

1. If the cross section of the shaft supporting the disc is not circular, an appropna
ate torsional spring constant is to be used {2.4, 2.5].

2. The polar mass moment of inertia of a disc is given by
phwD*  WD?

fo="53 Bg

where p is the mass density, & is the thickness, D is the diameter, and W is theis:
weight of the disc.

3. The torsional spring-inertia system shown in Fig. 2.7 is referred to as a torsional
pendulum. One of the most important applications of a torsional pendulum is in
a mechanical clock, where a ratchet and pawl convert the regular oscillation of a
small torsional pendulum into the movements of the hands.

The general solution of Eq. (2.34) can be obtained, as in the case of Eq. (2.2):
0(1) = Ajcos w,t + Aysinw,? (2.38);

where w, is given by Eq. (2.35), and 4, and A4, can be determined from the initial
conditions. If

0(1=0)=6, and 6(:=0)= ‘%’(z=0)=0‘0 (2.39)°

the constants 4, and 4, can be found: '
4, = 6

4; =6/, (2.40)

Equation (2.38) can also be seen to represent a simple harmonic motion.
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'#= Natural Frequency of Compound Pendulum

Any rigid body pivoted at a point other than its center of mass will oscillate about the pi
point under its own gravitational force. Such a system is known as a compound pendul
(Fig. 2.8). Find the natural frequency of such a system.

Given: Rigid body oscillating about the pivot point O under gravity.
Find: Natural frequency of angular oscillations.
Approach: Idealize the system as a single degree of freedom torsional system.

Solution. Let O be the point of suspension and G be the center of mass of the compou
pendulum, as shown in Fig. 2.8. Let the rigid body oscillate in the xy plane so that
coordinate § can be used to describe jts motion. Let d denote the distance between O and
and J, the mass moment of inertia of the body about the z-axis (perpendicular to both x z
y). For a displacement 0, the restoring torque (due to the weight of the body W)
(Wd sinf) and the equation of motion is

Jf + wdsing =0 (E
For small angles of oscillation, sin 8§ = 6. Hence Eq. (E.1) can be expressed as
Jof + wdb =0 (E
This gives the natural frequency of the compound pendulum:
2
“ (%) () =

 — — e s X

|
|
4
|

Figure 2.8

ot
A ke
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Comparing Eq. (E.3) with the natural frequency of a simple pendulum, «, = (g//)"/* (see
Problem 2.27), we can find the length of the equivalent simple pendulum: '

%

| = md (E.4)
If J, is replaced by mk? where k, is the radius of gyration of the body about O, Eqs. (E3)
and (E.4) become
172
gd
w, = (;g) (E.5)
kZ
1= (70) (Es)
If kg denotes the radius of gyration of the body about G, we have
kg = k% + d? (E7)
and Eq. (E.6) becomes
kg
/= ( s d) (E8)
If the line OG is extended to point A such that
kg
GA=— (E.9)
Eq. (E.8) becomes
1=GA+d=04 (E.10)

Hence, from Eq. (E.5), w, is given by

o= () (8" (&)” -

This equation shows that, no matter whether the body is pivoted from O or 4, its natural
frequency is the same. The point A is called the center of percussion.

Center of Percussion. The concepts of compound pendulum and center of percus-
sion can be used in many practical applications:

1. A hammer can be shaped to have the center of percussion at the hammer head
while the center of rotation is at the handle. In this case, the impact force at the
hammer head will not cause any normal reaction at the handle (Fig. 2.9a).

2. In a baseball bat, if the ball is made to strike at the center of percussion while
the center of rotation is at the hands, no reaction perpendicular to the bat will
be experienced by the batter (Fig. 2.9b). On the other hand, if the ball strikes
the bat near the free end or near the hands, the batter will experience pain in
the hands as a result of the reaction perpendicular to the bat.

3. In Izod (impact) testing of materials, the specimen is suitably notched and held
in a vice fixed to the base of the machine (see Fig. 2.9¢). A pendulum is released
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Pendulum

© (@)

Figure 2.9

from a standard height, and the free end of the specimen is struck by the
pendulum as it passes through its lowest position. The deformation and bending
of the pendulum can be reduced if the center of percussion is located near the
striking edge. In this case, the pivot will be free of any impulsive reaction.

4. In an automobile (shown in Fig. 2.9d), if the front wheels strike a bump, the
passengers will not feel any reaction if the center of percussion of the vehicle is
located near the rear axle. Similarly, if the rear wheels strike a bump at point A4,
no reaction will be felt at the front axle (point O) if the center of percussion is
located near the front axle. It is desirable, therefore, to have the center of
oscillation of the vehicle at one axle and the center of percussion at the other
axle [2.2].

STABILITY CONDITIONS

Consider a uniform rigid bar that is pivoted at one end and connected symmetri-
cally by two springs at the other end, as shown in Fig. 2.10(a). Assume that the mass
of the bar is m and that the springs are unstretched when the bar is vertical. When
the bar is displaced by an angle 8, the spring force in each spring is k/sin8; the
total spring force is 24/ sin 8. The gravity force W = mg acts vertically downward
through the center of gravity, G. The moment about the point of rotation O due to
the angular acceleration 8 is J§ = (mi2/3)d. Thus the equation of motion of the
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Figure 2.10

bar, for rotation about the point O, can be written as

mi? . . /.
=0+ (2klsin @)l cos 8 — Wsin8 = 0 (2.41)

For small oscillations, Eq. (2.41) reduces to

ml? . 2 wi,
—3—0+2k10_T0—0

or

2mi?

The solution of Eq. (2.42) depends on the sign of (12k/% — 3W1)/2mi?, as discussed
below.

Case 1. When (1242 — 3W!1)/2mi? > 0, the solution of Eq. (2.42) represents stable
oscillations and can be expressed as

0(t) = Aicosw,t + A,sinw,t (243)
where 4, and 4, are constants and

(12/(12 - 3w1)'/2
W, = |5

. 2
6+ (——IZH 3W1)0 =0 (2.42)

2mi? (249

Case 2. When (12472 — 3WI)/2mi* = 0, Eq. (2.42) reduces to § =0 and the
solution can be obtained directly by integrating twice as

8(t) = Cit + G, (2.45)
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initial conditions #(z = 0) = 4, and 6(t = 0) = b,, the solution becomes
8(t) = bor + 8, (2.46)

Equation (2.46) shows that the angular displacement increases linearly at a constant
velocity fp, However, if d, = 0, Eq. (2.46) denotes a static equilibrium position with
9 = b, that is, the pendulum remains in its original position, defined by 8 = 4,

Case 3. When (12ki% = 3WI)/2mi? < 0, we define

L 12k12)'/2
2mi?

For the

and express the solution of Eq. (2.42) as
8(t) = Bie™ + Be™™ (2.47)

where B, and B, are constants. For the initial conditions (¢ = 0) = 6, and
(¢ = 0) = 6, Eq. (2.47) becomes

0(1) = 71&[(“00 + 90)"“ + (“00 - 0'0)(“'] (2.48)

Equation (2.48) shows that 8(¢) increases exponentially with time; hence the motion
is unstable. The physical reason for this is that the restoring moment due to the
spring (2k/28), which tries to bring the system to equilibrium position, is less than
the nonrestoring moment due to gravity [ — W(//2)8], which tries to move the mass
away from the equilibrium position. Although the stability conditions are illustrated
with reference to Fig. 2.10 in this section, similar conditions need to be examined in
the vibration analysis of many engineering systems.

! METHOD

For a single degree of freedom system, the equation of motion was derived using the
energy method in Section 2.2.2. In this section, we shall use the energy method to
find the natural frequencies of single degree of freedom systems. The principle of
conservation of energy, in the context of an undamped vibrating system, can be
restated as

n+U=TL+1U (2.49)
where the subscripts 1 and 2 denote two different instants of time. Specifically, we
use the subscript 1 to denote the time when the mass is passing through its static
equilibrium position and choose U; = 0 as reference for the potential energy. If we

let the subscript 2 indicate the time corresponding to the maximum displacement of
the mass, we have 7, = 0. Thus Eq. (2.49) becomes

T,+0=0+U, (2.50)

If the system is undergoing harmonic motion, then T, and U, denote the maximum
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values of T and U, respectively, and Eq. (2.50) becomes

Tmax = Umax (2 Sl!
The application of Eq. (2.51), which is also known as Rayleigh’s energy me thod,
gives the natural frequency of the system directly, as illustrated in the followm‘

examples. i

|

\MPLE 2.4 Manometer for Dleselin_g_lne

The exhaust from a single-cylinder four-stroke diesel engine is to be connected to a silemer‘!
and the pressure therein is to be measured with a simple U-tube manometer (see Fig. 2.11).i
Calculate the minimum length of the manometer tube so that the natural frequency of
oscillation of the mercury column will be 3.5 times slower than the frequency of the pressure
fluctuations in the silencer at an engine speed of 600 revolutions per minute. The frequency of
pressure fluctuations in the silencer is equal to

number of cylinders X speed of the engine

Given: U-tube manometer, engine speed = 600 rpm, and natural frequency of oscillation =
3.5 times slower than the frequency of pressure fluctuations.

Find: Minimum length of the manometer tube.
Approach: Use energy method to find the natural frequency.
Solution

1. Natural frequency of oscillation of the liquid column: Let the datum in Fig. 2.11 be taken aj
the equilibrium position of the liquid. If the displacement of the liquid column from th

Datum

Figure 2.11
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equilibrium position is denoted by x, the change in potential energy is given by
U = potential energy of raised liquid column + potential energy of depressed liquid
column
= (weight of mercury raised X displacement of the C.G. of the segment) + (weight of
mercury depressed X displacement of the C.G. of the segment)
= (Axy)—’zE + (Axy)izc = Ayx? (E1)

where 4 is the cross sectional area of the mercury column and y is the specific weight of
mercury. The change in kinetic energy is given by

1
= 7 (mass of mercury)( velocity)

1 Aly, . 2
=75 (% (E2)
where / is the length of the mercury column. By assuming harmonic motion, we can write
x(t) = Xcos w,t (E3)

where X is the maximum displacement and «, is the natural frequency. By substituting Eq.
(E.3) into Egs. (E.1) and (E.2), we obtain

U = U,,,cos%w,t (E.4)
T = T, S, (E.5)
where
Upax = AYX? (E.6)
and
1 Ayla} ,
T =3 2 X (E.7)
By equating Up,,, to T, We obtain the natural frequency:
12
o = (2—,5) (E8)
2. Length of the mercury column: The frequency of pressure fluctuations in the silencer
_ 1x600
-2
= 300 rev/min
= l% = 107 rad/sec (E.9)

Thus the frequency of oscillations of the liquid column in the manometer is 107 /3.5 = 9.0
rad/sec. By using Eq. (E.8), we obtain

172
(z—ﬁ) =90 (E.10)
or
20981 G oim (E11)

(9.0)
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Effect of Mass on «, of a Spring

m

ﬂ'II
N
o

Determine the effect of the mass of the spring on the natural frequency of the spring-mass
system shown in Fig. 2.12. )

Given: Spring-mass system.
Find: Effect of mass of the spring on w,.

Approach: Add the kinetic energy of the spring to that of the attached mass and use the
energy method to find the natural frequency.

Solution. Let | be the total length of the spring. If x denotes the displacement of the lower
end of the spring (or mass m), the displacement at distance y from the support is given by
y(x/1). Similarly, if x denotes the velocity of the mass m, the velocity of a spring element
located at distance y from the support is given by y(x/I). The kinetic energy of the spring

element of length dy is
; 1(m, yxy?
T 2( [} )( [} ) (E)

where m, is the mass of the spring. The total kinetic energy of the system can be expressed a3
T = kinetic energy of mass (7;,) + kinetic energy of spring (7,)

Smir [ (" a)(2E)

= ;mx2+§T 2 (Ez)

The total potential energy of the system is given by
U= bhx? (E3)
By assuming a harmonic motion ’
x(1) = Xcos w,t (E4)

where X is the maximum displacement of the mass and w, is the natural frequency, the
maximum kinetic and potential energies can be expressed as

Tou = %(m )X (E5)

i
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1

Unax = 3 kX2 (E.6)
By equating T,,, and U, ,,, we obtain the expression for the natural frequency:
172
k
W =\ Tm, (E7)
m+ 3

Thus the effect of the mass of the spring can be accounted by adding one third of its mass to
the main mass [2.3].

I

IBRATION WITH VISCOUS DAMPING

As stated in Section 1.9, the viscous damping force F is proportional to the velocity
X or v and can be expressed as

= —cx (2.52)

where ¢ is the damping constant or coefficient of viscous damping and the negative
sign indicates that the damping force is opposite to the direction of velocity. A
single degree of freedom system with a viscous damper is shown in Fig. 2.13. If x is
measured from the equilibrium position of the mass m, the application of Newton’s
law yields the equation of motion:
mx = —cx — kx

or

mi + cx + kx =0 (2.53)

>
AAAA
WWV
N
—p
e

o
m T m
+x
System Free body diagram
() (b)

Figure 2.13. Single degree of freedom system with viscous
damper
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To solve Eq. (2.53), we assume a solution in the form
x(1) = Ce* (2.59)

where C and s are undetermined constants. Inserting this function into Eq. (2.53)
leads to the characteristic equation

ms2 +cs + k=0 (2.55)
the roots of which are

_—cch2—4mk_ c c\V Kk
$12= 2m ="aat V(2_m—) T m (2.56)

These roots give two solutions to Eq. (2.53):
x,(1) = Cie™  and  x3(1) = Cpe™ (2.57)

Thus the general solution of Eq. (2.53) is given by a combination of the two
solutions x,(¢) and x,(t):

x(t) = Ce™ + Cye™!

L dEer) (54} o5y

where C; and C, are arbitrary constants to be determined from the initial condi-
tions of the system.

+ Cye

Critical Damping Constant and the Damping Ratio. The critical damping ¢, is
defined as the value of the damping constant ¢ for which the radical in Eq. (2.56)
becomes zero: '

(55) - & -0

c.=2m\ 7’;— = Vkm = 2mw, (2.59)
For any damped system, the damping ratio { is defined as the ratio of the damping
constant to the critical damping constant:
¢ =c/c, (2.60)
Using Eqs. (2.60) and (2.59), we can write

or

2_Cm_ - ci . .2”7". = tw, ’ (2.61)
and hence
sa= (=t 287 1), (2.62)
Thus the solution, Eq. (2.58), can be written as
x(1) = Cel =8+ -Dou o o o(-8-VF-T)ut (2.63)

The nature of the roots s, and s, and hence the behavior of the solution, Eq. (2.63),
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depeﬂds upon the magnitude of damping. It can be seen that the case { = 0 leads to
' the undamped vibrations discussed in Section 2.2. Hence we assume that { # 0 and
consider the following three cases.

Case 1. Underdamped system (§ < 1 or ¢ < ¢, or ¢/2m < /k/m). For this condi-
(¢? — 1) is negative and the roots 5, and s, can be expressed as

s=(=¢+il1-¢)a,
5=(-t-i1-)e,

and the solution, Eq. (2.63), can be written in different forms:

tion,

x(1) = Cret =5+ i=8Duut 4 Cpet=t=if1=tHou

e so{ oW1 =Font 4 e fi=Ernr)

e'“"n‘{(Cl + Gy)eosf1 — §2wt + i(Cy - Cz)simﬁ—-_ﬁiw"t}
e~sonl Cloosf1 = 2w, + Cysinfl - (2w}

= Xe':"’"'sin(ﬁ——{zwnt + ¢)

X e [T Pt~ o) (269

where (Cy, C}), (X, ¢), and (X,, ¢,) are arbitrary constants to be determined from
the initial conditions.

For the initial conditions x(1 = 0) = x, and X(1 = 0) = %, C{ and CJ can be
found:

Xo + $w,xq
Cy = x, and Y= J—;—
1-¢%a,

and hence the solution becomes

x(1) = e""’"’{xocosyl -+ %{%@sin\/l - {Hu,,r} (2.66)
~a,

The constants ( X, ¢) and (X,, ¢,) can be expressed as

(2.65)

X=X,=(C) + (C5)? 2.67)
¢ =tan"'(C{/C3) (2.68)
éo = tan"'(-C;/C{) (2.69)

The motion described by Eq. (2.66) is a damped harmonic motion of angular
frequency {1 — {?w,, but because of the factor ¢ “», the amplitude decreases
exponentially with time, as shown in Fig. 2.14. The quantity

wy=V1- 8w, (2.70)

is called the frequency of damped vibration. It can be seen that the frequency of
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x(t)
p

—

Figure 2.14. Underdamped solution.

damped vibration w, is always less than the undamped natural frequency w,. The
decrease in the frequency of damped vibration with increasing amount of damping,
given by Eq. (2.70), is shown graphically in Fig. 2.15. The underdamped case is very
important in the study of mechanical vibrations, as it is the only case which leads to
an oscillatory motion [2.10).

Case 2. Critically damped system (§ = 1 or ¢ = ¢, or ¢/2m = y/k/m). In this casd
the two roots s, and s, in Eq. (2.62) are equal:
cl‘

= H = G = e, (2,71)'}E

[

Wy
w,

o 1

Figure 2.15. Vanation of w, with damping.
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Undamped (¢ = 0)

Overdamped (§ > 1)

Underdamped (§ < 1)

Critically A
~._  damped (L =1) (wy is smaller
o >~ than w,)
-

2n Y
w,

Figure 2.16. Comparison of motions with different types of damping

Because of the repeated roots, the solution of Eq. (2.53) is given by [2.6]*
x(1) = (C, + Gyt)e o (2.72)
The application of the initial conditions x(t = 0) = x, and x(1 = 0) = x,, for this
case gives
G =x
C, = Xy + w,Xq (2.73)
and the solution becomes
x(1) = [xo + (%g + w,xo)t] e (2.74)

It can be seen that the motion represented by Eq. (2.74) is aperiodic (i.e., non-peri-
odic). Since e~ “' — 0 as t — oo, the motion will eventually diminish to zero, as
indicated in Fig,. 2.16.

Case 3. Overdamped system ({ > 1 or ¢ > ¢, or c/2m > \Jk/m). As y$* — 1 > 0,
Eq. (2.62) shows that the roots s; and s, are real and distinct and are given by

s,=(-—§+v‘§'2-1)w,,<0
s=(-t-f-1)0,<0

* Equation (2.72) can also be obtained by making { approach unity in the limit in Eq. (2.66). As
{ — 1, w; = 0; hence cos w,t ~— 1 and sinw,t — w,t. Thus Eq. (2.66) yields

x(t) = e 9 (C] + Clwgt) = (C, + Gyt)e ™'

where C, = C{ and C, = Cjw, are new constants.
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with s, < s,. In this case, the solution, Eq. (2.63), can be expressed as
x(t) = Cle(—s'+ 82— 1)w,t + Cze(-f- $2-1)w,t (2'75)

For the initial conditions x(1 = 0) = x, and x(1 = 0) = %, the constants C and,

C, can be obtained:
xow,,(§ + m) + X,
20,082 -1 i
“Xo‘*’n(§ - \/fz—"l_) ~ %
20482 -1

Equation (2.75) shows that the motion is aperiodic regardless of the initial condi-
tions imposed on the system. Since roots s; and s, are both negative, the motion
diminishes exponentially with time, as shown in Fig. 2.16.

Note the following two aspects of these systems:

Cz = (276)

1. The nature of the roots s, and s, with varying values of damping c or { can be
shown in a complex plane. In Fig. 2.17, the horizontal and vertical axes are’
chosen as the real and imaginary axes. The semicircle represents the locus of the
roots s, and s, for different values of { in the range 0 < { < 1. This figure
permits us to see instantaneously the effect of the parameter { on the behavior
of the system. We find that for { = 0, we obtain the imaginary roots s, = iw,

Imaginary axis

4
£=0
0<t<i_ 4 _:""‘
h
i
1
1
AN
\
V]—g:“’n
Si=5=-w, !
'
& & P . 1
« > s F_ - 7] Real axis
forg>1 \forg>1 | ™
1]
1
|
| 2
b
!
[}
—w,
£=0

Figure 2.17. Locus of s; and s,.
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and 5, = —iw,, leading to the solution given in Eq. (2.12). For ¢ < { < 1, the
roots s, and s, are complex conjugate and are located symmetrically about the
real axis. As the value of { approaches 1, both roots approach the point —w, on
the real axis. If { > 1, both roots lie on the real axis, one increasing and the
other decreasing. In the limit when { = o, §; = 0 and s, - —o00. The value
¢ =1 can be seen to represent a transition stage, below which both roots are
complex and above which both roots are real.

2. A critically damped system will have the smallest damping required for aperi-
odic motion; hence the mass returns to the position of rest in the shortest
possible time without overshooting. The property of critical damping is used in
many practical applications. For example, large guns have dashpots with critical
damping value, so that they return to their original position after recoil in the
minimum time without vibrating. If the damping provided were more than the
critical value, some delay would be caused before the next firing.

The logarithmic decrement represents the rate at which the amplitude of a free
damped vibration decreases. It is defined as the natural logarithm of the ratio of any
two successive amplitudes. Let ¢, and 1, denote the times corresponding to two
consecutive amplitudes (displacements), measured one cycle apart for an under-
damped system, as in Fig. 2.14. Using Eq. (2.64), we can form the ratio

X Xoe~Sonticos(wyty — ¢p) @.77)
—Sw,t _ .
X2 Xee *en2cos(wyty — dy)

But ¢, =1, + 7, where 7,=27/w, is the period of damped vibration. Hence
cos(wyt, — @) = COS(2m + wyt;, — o) = cos(wyt; — ¢), and Eq. (2.77) can be
written as

X, e'f”n’l

I = ebunm
Fe ow e R 2.79)

The logarithmic decrement & can be obtained from Eq. (2.78):

2 2%t 27 c

X L
§=In2L = = = == . — 2.79
X, $1y = Lo, /l “ e, )/1 ~¢2 w, 2m 279)
For small damping, Eq. (2.79) can be approximated:
§=2x¢ if (<1 (2.80)

Figure 2.18 shows the variation of the logarithmic decrement 8 with { as given by
Eqgs. (2.79) and (2.80). It can be noticed that for values up to { = 0.3, the two curves
are difficult to distinguish.

The logarithmic decrement is dimensionless and is actually another form of the
dimensionless damping ratio {. Once 8 is known, { can be found by solving
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Figure 2.18. Vanation of logarithmic
decrement with damping

Eq. (2.79)
¢ = S (2.81)‘

y@n) + 8

If we use Eq. (2.80) instead of Eq. (2.79), we have
)

¢ = T l282)‘
If the damping in the given system is not known, we can determine it experimentally
by measuring any two consecutive displacements x, and x,. By taking the natural
logarithm of the ratio of x; and x,, we obtain 8. By using Eq. (2.81), we can
compute the damping ratio {. In fact, the damping ratio ¢ can also be found by’
measuring two displacements separated by any number of complete cycles. If ¥,
and x,,,, denote the amplitudes corresponding to times t, and ¢,,,, =1 + MW
where m is an integer, we obtain

Xy Xy X3 X3 X

- (2.83)
Xm+1 Xy X3 Xy Xm+1

Since any two successive displacements separated by one cycle satisfy the equation

X, Cors
P 2.84)
X_[+| ¢ (
Eq. (2.83) becomes ‘
X1 = (el’u,,rd)'" = e™wnt (285)

Xm+1
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Equations (2.85) and (2.79) yield

= L2
B '"ln( xm+l) (2.86)
which can be substituted into Eq. (2.81) or Eq. (2.82) to obtain the viscous damping
ratio ¢{.

In a viscously damped system, the rate of change of energy with time (dW/dt) is
given by

aw . dx\?
i~ = force X velocity = Fo = —a?= —c(:l—t—) (2.87)

using Eq. (2.52). The negative sign in Eq. (2.87) denotes that energy dissipates with
time. Assume a simple harmonic motion as x(1) = Xsinw,!, where X is the
amplitude of motion and the energy dissipated in a complete cycle is given by*

dt
= 7cw, X? (2.88)

This shows that the energy dissipated is proportional to the square of the amplitude
of motion. It is to be noted that it is not a constant for given values of damping and
amplitude, since AW is also a function of the frequency w,.

Equation (2.88) is valid even when there is a spring of stiffness & parallel to the
viscous damper. To see this, consider the system shown in Fig. 2.19. The total force
resisting motion can be expressed as

2
AW = fa /”d)c(gﬁ) dr = fzﬂchwdcoszwdt ~d(wyt)
t=0 0

=—kx—cv=—kx—cx (2.89)
If we assume simple harmonic motion
x(1) = Xsinw,t (2.90)
as before, Eq. (2.89) becomes
= —kXsin wy! — cwy X cos w,yt (2.91)

The energy dissipated in a complete cycle will be

_ 27/ wy
AW_fl_0 Fodt

2 . 27 /W,
= f /wdezwdsm wyt - cos wyt - d{wyt) + f “cwg Xcostwyt - d{wyt)
0 0

= ﬂcdez (2.92)

which can be seen to be identical with Eq. (2.88). This result is to be expected, since

* In the case of a damped system, simple harmonic motion x(t) = Xcosw,? is possible only when
the steady-state response is considered under a harmonic force of frequency w, (see Section 3.4). The loss
of energy due to the damper is supplied by the excitation under steady state forced vibration [2.7].
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the spring force will not do any net work over a complete cycle or any iniegy,
number of cycles.

We can also compute the fraction of the total energy of the vibrating Syster
that is dissipated in each cycle of motion (AW /W), as follows. The total energy o
the system W can be expressed either as the max1mum potential energy (14X ?) or as
the maximum kinetic energy (zmu,fm Imx% “’4 , the two being apprommate!y
equal for small values of damping. Thus

W = oot =25 () - 20 = 0t -
W = Tmalx? o, \7m 28 = 47{ = constant (?2,931

using Eqgs. (2.79) and (2.82). The quantity AW /W is called the specific dum) ing
capacity and is useful in comparing the damping capacity of engineering mateials,
Another quantity known as the loss coefficient is also used for comparing the
damping capacity of engineering materials. The loss coefficient is defined a the:
ratio of the energy dissipated per radian and the total strain energy:

(Aw/27) _

loss coefficient = i W (@94)‘

The methods presented in Sections 2.6.1 through 2.6.4 for linear vibrations™With
viscous damping can be extended directly to viscously damped torsional (angular)
vibrations. For this, consider a single degree of freedom torsional system with a
viscous damper as shown in Fig. 2.20(a). The viscous damping torque is gwa by
(Fig, 2.20b);

= —cf (2.95)
where ¢, is the torsional viscous damping constant, § = df/dr is the angular
velocity of the disc, and the negative sign denotes that the damping torque is
opposite the direction of angular velocity. The equation of motion can be derived as

Ji+ch+kf=0 (2.96)
where J, = mass moment of inertia of the disc, k, = spring constant of the system
(restoring torque per unit angular displacement), and @ = angular displacement of

the disc. The solution of Eq. (2.96) can be found exactly as in the case of lineaf
vibrations. For example, in the underdamped case, the frequency of d;xmpedl

vibration is given by
=1-{, (297}

1
=,/ 98
Wy, A (2.98)

where

and
G AL B {2.99)

where ¢, is the critical torsional damping constant.
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Figure 2.20
«Shock Absorber for a Motorcycle g»

An underdamped shock absorber 15 to be designed for a motorcycle of mass 200 kg (Fig.
2.21a). When the shock absorber is subjected to an initial vertical velocity due to a road
bump, the resulting displacement-time curve is to be as indicated in Fig. 2.21(b). Find the
necessary stiffness and damping constants of the shock absorber if the damped period of
vibration is to be 2 sec and the amplitude x, is to be reduced to one-fourth in one half cycle
(e, x;5 = x,/4). Also find the minimum initial velocity that leads to a maximum displace-
ment of 250 mm.

Given: Mass = 200 kg; displacement-time curve of the system (Fig. 2.21b); damped period of
vibration = 2 sec, x, s = x,/4; and maximum displacement = 250 mm.

Find: Stiffness (k), damping constant (c), and initial velocity (x,), which results in a
maximum displacement of 250 mm.

Approach: Equation for the logarithmic decrement in terms of the damping ratio, equation
for the damped period of vibration, time corresponding to maximum displacement for an
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Figure 2.21

underdamped system, and envelope passing through the maximum points of an underdamped
system.

Solution. Since x, s = x,/4, x5 = x, 5/4 = x,/16. Hence the logarithmic decrement bewmeﬁ
2m¢

h-¢

from which the value of { can be found as ¢ = 0.4037. The damped period of vibration i
given to be 2 sec. Hence

5= ln(%) = In(16) = 2.7726 = (E1)

dog= 227
4T o, o, - e
@ = N . S = 3.4338 rad /sec

21 - (0.4037)*
The critical damping constant can be obtained:
¢, = 2mw, = 2(200)(3.4338) = 1373.54 N-s/m
Thus the damping constant is given by

¢ = tc, = (0.4037)(1373.54) = 554.4981 N-s/m
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and the stiffness by
= maw? = (200)(3.4338) = 2358.2652 N/m
The displacement of the mass will attain its maximum value at time 1, given by

sinaw,f, = y1 = §?

(See Problem 2.45.) This gives

’ sinwyf, = sinwy, = 1 — (0.4037)° = 0.9149

or
_ sin” ‘!(’:‘9149) — 0.3678 sec
The envelope passing through the maximum points (see Problem 2.45) is given by
x =1 = §% Xe$ont (E2)
‘ Since x = 250 mm, Eq. (E.2) gives at ¢,

0.25 = “ - (04037)2 Xe-—(04037)(3 4338K0.3678)

X =0.4550 m.
The velocity of the mass can be obtained by differentiating the displacement

or

x(£) = Xe™tn'sinw,t

3( 1) = Xe (= $u,sinwyt + w,cos w,1) (E3)
When ¢ = 0, Eq. (E.3) gives

(= 0) = i = Xu, = Xt = § = (0.4550)(3.4338)(J1 - (0.4037)° )

=1.4294m/s

The schematic diagram of a large cannon is shown in Fig. 2.22 {2.8]. When the gun is fired,
high-pressure gases accelerate the projectile inside the barrel to a very high velocity. The
reaction force pushes the gun barrel in the opposite direction of the projectile. Since it is
desirable to bring the gun barrel to rest in the shortest time without oscillation, it is made to
translate backward against a critically damped spring-damper system called the recoil
mechanism. In a particular case, the gun barrel and the recoil mechanism have a mass of 500
kg with a recoil spring of stiffness 10,000 N/m. The gun recoils 0.4 m upon firing. Find (1)
the critical damping coefficient of the damper, (2) the initial recoil velocity of the gun, and (3)
the time taken by the gun to return to a position 0.1 m from its initial position.

Given: Critically damped recoil mechanism with m = 500 kg, k = 10,000 N/m, and recoil
distance = 0.4 m.
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Recoil mechanism
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Figure 2.22

Find: Critical damping coefficient, recoil velocity, and time taken by the gun to returt to ¢
position 0.1 m from its initial position.

Approach: Use the response equation of a critically damped system.

Solution. 1. The undamped natural frequency of the system is

w, = |f % - \/ 5)5%..?—0 = 4.472] rad/sec

and the critical damping coefficient (Eq. (2.59)) of the damper is
¢, = 2ma, = 2(500)(4.4721) = 4472.1 N-s/m
2. The response of a critically damped system is given by Eq. (2.72):

x(6) = (C, + Gt)e (E1)
where C; = x, and C, = x; + w,x,. The time ¢, at which x(¢) reaches a maximum value can
be obtained by setting x(¢) = 0. The differentiation of Eq. (E.1) gives

2(1) = Ge — w0, (G + Grye ™
Hence x(t) = 0 yields
4= (wi - %) (E2)

In this case, xo = C; = 0; hence Eq. (E.2) leads to t;, = 1/«,. Since the maximum valve of

x(t) or the recoil distance is given to be x,,, = 0.4 m, we have

Ko

€W,

- %o
Xmax = X(£= 1) = Ge™ ™" = Fe \
4

%o = Xmautse = (0.4)(4.4721)(2.7183) = 4.8626 m/s

3. 1f t, denotes the time taken by the gun to return to a position 0.1 m from its initial
position, we have

0.1 = Gytye =" = 486261, 44721 (E3)
The solution of Eq. (E.3) gives t, = 0.8258 sec.
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RATION WITH COULOMB DAMPING

In many mechanical systems, Coulomb or dry-friction dampers are used because of
their mechanical simplicity and convenience {2.9]. Also in vibrating structures,
whenever the components slide relative to each other, dry-friction damping appears
internally. As stated in Section 1.9, Coulomb damping arises when bodies slide on
dry surfaces. Coulomb’s law of dry friction states that when two bodies are in
contact, the force required to produce sliding is proportional to the normal force
acting in the plane of contact. Thus the friction force F is given by

F=puN (2.100)

where N is the normal force and p is the coefficient of friction. The friction force
acts in a direction opposite to the direction of velocity. Coulomb damping is
sometimes called constant damping, since the damping force is independent of the
displacement and velocity; it depends only on the normal force N between the
sliding surfaces.

Consider a single degree of freedom system with dry friction as shown in Fig.
2.23(a). Since the friction force varies with the direction of velocity, we need to
consider two cases, as indicated in Figs. 2.23(b) and (c).

Case 1. When x is positive and dx/dr is positive, or when x is negative and dx/dr
is positive (i.e., for the half cycle during which the mass moves from left to right),
the equation of motion can be obtained using Newton’s second law (see Fig. 2.23b)

mi=~kx —pN or mX+kx=—uN (2.101)

This is a second order nonhomogeneous differential equation. The solution can be
verified by substituting Eq. (2.102) into Eq. (2.101).

x(1) = Acosw,t + Aysinw,t — ”—kIY (2.102)

(a) ®) @©)

Figure 2.23. Spring-mass system with Coulomb damping.
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Figure 2.24. Motion of the mass with Coulomb damping }

where w, = \Jk/m is the frequency of vibration, and A4, and A, are cons{
whose values depend on the initial conditions of this half cycle.

Case 2. When x is positive and dx /dt is negative, or when x is negative and
is negative (i.e., for the half cycle during which the mass moves from right to
the equation of motion can be derived from Fig, 2.23(c) as

—kx + uN = mx or mi + kx = uN (2.]
The solution of Eq. (2.103) is given by

x(t) = Acos w,t + A sinw,! + Elfl (2.1
where 4; and A, are constants to be found from the initial conditions of this
cycle. The term uN/k appearing in Eqgs. (2.102) and (2.104) is a constant repre
ing the virtual displacement of the spring under the force uN, if it were applied §
static force. Equations (2.102) and (2.104) indicate that in each half cycle the mo
is harmonic, with the equilibrium position changing from uN/k to —(pN/k) ev
half cycle as shown in Fig. 2.24.

To see the motion characteristics of the system more clearly, let us assume the inif
conditions to be

x(t=0) = x,
X(1=0)=0 (2.10

That is, the system starts with zero velocity and displacement x, at ¢ = (. Sind
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X = X¢ at £ = 0, the motion starts from right to left. Let x,, x,, X,,... denote the
amplitudes of motion at successive half cycles. Using Eqgs. (2.104) and (2.105), we
can evaluate the constants 4; and 4,

Ay =x, — ”,ﬁV,AA—O

Thus Eq. (2.104) becomes
x(t) = (xo— %)cosw”t+ % (2.106)

This solution is valid for half the cycle only, i.e., for 0 <t < 7/w,. When t = 7 /q,.
the mass will be at its extreme left position and its displacement from equilibrium
position can be found from Eq. (2.106):

—x, = x(r = wi) (xo— ikty-)cosvr + ":’ (xo - 2—) (2.107)

Since the motion started with a displacement of x = x,, and in a half cycle the value
of x became —(x, — (2pN /k)), the reduction in magnitude of x in time 7 /w, is
2uN /k.

In the second half cycle, the mass moves from left to right, so Eq. (2.102) is tc
be used. The initial conditions for this half cycle are

x(t=0) =valueof x at 1 = wi in Eq. (2.106) = —(xo - ZP'TN)

and

#(1 = 0) = value of & at t = — in Eq. (2.106)

= {value of — w"(xo - %)sinw”t att= win} =0
Thus the constants in Eq. (2.102) become
—A,-—xo+¥, A,=0
so that Eq. (2.102) can be written as
x(t) = (xo - :WTN)OOS w,t — M—,iv- (2.108

This equation is valid only for the second half cycle, that is, for 7 /w, <t < 27 /w,
At the end of this half cycle the value of x(t) is

4uN
x, = x(r = wi) in Eq. (2.108) = x, — “T
and

x( - wi) in Eq. (2.108) = 0

These become the initial conditions for the third half cycle, and the procedure cai
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be continued until the motion stops. The motion stops when x, < pN/k Since
the restoring force exerted by the spring (kx) will then be less than the friction
force pN. Thus the number of half cycles (r) that elapse before the motion ceageg is
given by

2uN _ uN

Yom T < %

that is,
. BN
°” %
TEN (2309)
k

Note the following characteristics of Coulomb damping:

1. In each successive cycle, the amplitude of motion is reduced by the antount
4uN /k, so the amplitudes at the end of any two consecutive cycles are related:

4uN
X, =X, - = (2.110)

2. As the amplitude is reduced by an amount 4uN/k in one cycle (i.rgin
time 27 /w,), the slope of the enveloping straight lines (shown dotted) i
224 s

ig. ;

_(4uN\/(2m) _ (2pNe,

( k w, | Tk _
The final position of the mass is usually displaced from equilibrium (x = 0l
position and represents a permanent displacement in which the friction force 15

locked in. Slight tapping will usually make the mass come to its equilibriuni|
position.

3. The natural frequency of the system remains unaltered in Coulomb damping, in
contrast to the viscous damping.

4. With viscous and hysteresis damping, the motion theoretically continues for-|
ever, perhaps with an infinitesimally small amplitude. In the case of C oulomb,

damping, however, the system comes to rest after some time. ‘

If a constant frictional torque acts on a torsional system, the equation governing
the angular oscillations of the system can be derived, similar to Egs. (2.101) and
(2.103), as

Jb+kf=-T (2.111)
and
JG+kb=T (2.112)|

where T denotes the constant damping torque (similar to g N for linear vibrations)
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The solutions of Eqgs. (2.111) and (2.112) are similar to those for linear vibrations. In
particular, the frequency of vibration is given by

k,
w0, = ‘/ 7 (2.113)

and the amplitude of motion at the end of rth half cycle (6,) is given by

2T
6,=6—rg (2.114)

where 0, is the initial angular displacement at 1 = 0 (with § = 0 at ¢ = 0). The
motion ceases when

2.115)

“Pulley Subjected to Coulomb Damping s o e

A steel shaft of length 1 m and diameter 20 mm is fixed at one end and carries a pulley of
mass moment of inertia 25 kg-m’ at the other end. A band brake exerts a constant frictional
torque of 400 N-m around the circumference of the pulley. If the pulley is displaced by 6°
and released, determine (i) the number of cycles before the pulley comes to rest and (ii) the
final settling position of the pulley.

Given: Steel shaft: length = 1 m, diameter = 20 mm, J; of pulley = 25 kg-n?, frictional
torque = T = 400 N-m, and 6, = 6°.

Find: (i) number of cycles before motion ceases and (ii) final settling position of pulley.
Approach: Torsional system with Coulomb damping.

Solution. (i) The number of half cycles that elapse before the angular motion of the pulley
ceases is given by Eq. (2.115).

(E1)

where 6, = initial angular displacement = 6° = 0.10472 rad, k, = torsional spring constant
of the shaft given by

10yf T 4
o (Bx10 ){ 32(0.07)}
k= o ) 62832 Nemrad
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and T = constant friction torque applied to the pulley = 400 N-m. Equation (E.1) gives

400
0.10472 — (—62832)

300
( 2832 )

Thus the motion ceases after 8 half cycles.
(ii) The angular displacement after 8 half cycles is given by Eq. (2.114).

r> = 7.72494

62832

Thus the pulley stops at 0.16393° from the equilibrium position on the same side of the initid
displacement.

0 = 0.10472 - 8 X z(ﬂ) = 0.002861 rad = 0.16393°

FREE VIBRATION WITH HYSTERETIC DAMPING

Consider the spring-viscous damper arrangement shown in Fig. 2.25(a). For tln“
system, the force (F) needed to cause a displacement x(?) is given by

F=kx+cx (z.usi
For a harmonic motion of frequency w and amplitude X, ‘
x(t) = Xsinwt (2117

Equations (2.116) and (2.117) yield
F(t) = kX sinwt + cXew cos wt

= kx + cofX? - (Xsinwr)?
= kx + cwVX? — x? (2.118)

When F versus x is plotted, Eq. (2.118) represents a closed loop as shown in Fig.
2.25(b). The area of the loop denotes the energy dissipated by the damper in a cycle
of motion and is given by

AW = ¢Fdx = f%"/u(szinwt + eXw cos wt ) (wX cos wt) dt = mwcX? (2.11‘1
()

Equation (2.119) has been derived in section 2.6.4 too [see Eq. (2.92)].

As stated in Section 1.9, the damping caused by the friction between ﬂ}e
internal planes that slip or slide as the material deforms is called hysteresis (or solfd
or structural) damping. This causes a hysteresis loop to be formed in the stress-straif
or force-displacement curve (see Fig. 2.26a). The energy loss in one loading and
unloading cycle is equal to the area enclosed by the hysteresis loop {2.11-2.13]. Thf
similarity between Figs. 2.25(b) and 2.26(a) can be used to define a hysteresi
damping constant. It was found experimentally that the energy loss per cycle due ©
internal friction is independent of the frequency, but approximately proportional t©
the square of the amplitude. In order to achieve this observed behavior from Ed:
(2.119), the damping coefficient ¢ is assumed to be inversely proportional to the
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frequency as

c= (2.120)

€l

where h is called the hysteresis damping constant. Equations (2.120) and (2.119)
give
AW = qhX? (2.121)
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Complex Stiffness. In Fig. 2.25(a), the spring and the damper are connected in
parallel and for a general harmonic motion, x = Xe'®, the force is given by

F = kX" + cwiXe'' = (k + iwc)x (2.122)

Similarly, if a spring and a hysteresis damper are connected in parallel as shown in
Fig. 2.26(b), the force-displacement relation can be expressed as

F=(k+ih)x (2.123)
where .
k+ih=k(1+i%)=k(1 +iB) (2.124)
is called the complex stiffness of the system and B = h/k is a constant indicating a
dimensionless measure of damping.
Response of the System. In terms of B, the energy loss per cycle can be expressed as
AW = 7kBX? (2.125)

Under hysteresis damping, the motion can be considered to be nearly harmonic
(since AW is small), and the decrease in amplitude per cycle can be determined
using energy balance. For example, the energies at points P and Q (separated by
half a cycle) in Fig. 2.27 are related as

kX,~2 ”’C.BX,‘2 "'kBX,~2+oA5 kX,‘2+oAs

- T = ———

2 3 3 =72
X; 2 + a8
P/ AN A/ 4 2.126
Xiios 2 —af ( )

Similarly, the energies at points Q and R give

X; 2 + 78
j+0.5 - 7l 1127
X 72— B ( )

x(?)

""""""" X 1

\Z_ \,Z__”ﬁ:‘_)ﬂl____&/_ _____ .

Figure 2.27
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Multiplication of Egs. (2.126) and (2.127) gives

X, 2+m8 2—aB+2m
’inl=2_ﬂﬁ= ZE‘”B B=1+ﬂﬁ‘=constant (2.128)

The hysteresis logarithmic decrement can be defined as

8= o =] =
= ]n( X}“) =~ In(1 + #B) =~ 7B (2.129)

Since the motion is assumed to be approximately harmonic, the corresponding
frequency is defined by [2.10]
k
o=\ (2.130)
The equivalent viscous damping ratio {,, can be found by equating the relations for
the logarithmic decrement 8.

§=27f =af= T;(—h
B h
$a=73 = 3% (2.131)

Thus the equivalent damping constant ¢, is given by

g = € S = 20k - B = pymic < B2

@

(2.132)

Note that the method of finding an equivalent viscous damping coefficient for a
structurally damped system is valid only for harmonic excitation. The above
analysis assumes that the system responds approximately harmonically at the
frequency w.

Estimation of Hysteretic Damping Constant

The experimental measurements on a structure gave the force-deflection data shown in Fig.

228 From this data, estimate the hysteretic damping constant 8 and the logarithmic
decrement 8.

Given: Experimental force-deflection curve.
Find: Hysteresis damping constant 8 and logarithmic decrement 8.

Approach: Equate the energy dissipated in a cycle (area enclosed by the hysteresis loop) to
AW of Eq. (2.121).

Solution, The energy dissipated in each full load cycle is given by the area enclosed by the
hysteresis curve. Each square in Fig. 2.28 denotes 100 X 2 = 200 N-mm. The area enclosed

Y the loop can be found as area ACB + area ABDE + area DFE = }(ABXCG) +
(ABYAE) + (DE)YFH) = (1.25)(1.8) + (1.25)(8) + 3(1.25)(1.8) = 12.25 square units.
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This area represents an energy of 12.25 x 200/1000 = 2.5 N-m. From Eq. (2.121), we |
AW = 7hX? = 2.5N-m (1

Since the maximum deflection X is 0.008 m and the slope of the force-deflection curve (g
approximately by the slope of the line OF) is k = 400/8 = 50 N/mm = 50,000 N/m,
hysteretic damping constant 4 is given by

h= S = 2 13395 L@

and hence

h _ 12,433.95
B=% = "sg000 - 0248679

The logarithmic decrement can be found
8 = 78 = #(0.248679) = 0.78125 (1

2.9 COMPUTER PROGRAM

A FORTRAN computer program, in the form of subroutine FREVIB, is given
the free vibration analysis of a viscously damped single degree of freedom syst
The system may be underdamped, critically damped, or overdamped. The ar
ments of this subroutine are as follows:

M = Mass. Input data.

K = Spring stiffness. Input data.

C = Damping constant. Input data.

X0 = Value of displacement of mass at time 0. Input data.

XDo = Value of velocity at time 0. Input data.

N = Number of time steps at which the value of x(1) is tc
printed. Input data.

DELT = Time interval between consecutive time steps (At). In
data.

X, XD, XDD = Arrays of dimension N each, which contain comput

values of displacement, velocity, and acceleration. X(I
x(t,), XD(I) = %(z,), XDD(I) = i(t,). Output.

T = Array of dimension N which contains the values of ti
T(I) = ¢,. Output.

To illustrate the use of the subroutine FREVIB, we consider an example v
m = 450 kg, k = 26519.2 N/m, ¢ = 1000 N-s/m, xo = 0.539567 m, %o = 1.0 m
At =025 s, and N = 10. The main program which calls FREVIB, the subrou
FREVIB, and the output of the program are given below.
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aooaoon

PROGRAM 2
MAIN PROGRAM FOR CALLING FREVIB

a

c

100

200

400
300
500
600
700
800
900

REAL M,K
THE FOLLOWING 3 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION X(10),XD(10),XDD(10),T(10)

DATA M,K,C,X0,XDO,N,DELT/
2 450.0,26519.2,1000.0,0.539567,1.0,10,0.25/

END OF PROBLEM-DEPENDENT DATA

CALL FREVIB (M,K,C,X0,XDO,N,DELT,X,XD,XDD,T,II)

PRINT 100

FORMAT (/,24H FREE VIBRATION ANALYSIS,/,
2 37H OF A SINGLE DEGREE OF FREEDOM SYSTEM,//,SH DATA)
PRINT 200, M,K,C,X0,XDO,N,DELT

FORMAT (/,7H M  =,E15.8,/,7HK  =,E15.8,/,7H C  =,E15.8,/,
2 74 X0 =,E15.8,/,7H XDO =,E15.8,/,7H N  =,15,/,7H DELT =,
3 E15.8)

IF (II .EQ. 1) PRINT 500

IF (II .EQ. 2) PRINT 600

IF (II .EQ. 3) PRINT 700

IF (II .EQ. 4) PRINT 800

PRINT 900

DO 300 I=1,N

PRINT 400, I,T(I),X(I),XD(I),XDD(I)

FORMAT (I5,4E15.6)

CONTINUE

FORMAT (//,19H SYSTEM IS UNDAMPED)

FORMAT (//,23H SYSTEM IS UNDER DAMPED)

FORMAT (//,28H SYSTEM IS CRITICALLY DAMPED)

FORMAT (//,22H SYSTEM IS OVER DAMPED)

FORMAT (//,9H RESULTS:,//,3X,2H I,3X,8H TIME(I),7X,5H X(I),10X
2 6H XD(I),9X,7H XDD(I),/)

STOP

END

SUBROUTINE FREVIB

aoooaao

SUBROUTINE FREVIB (M,K,C,X0,XDO,N,DELT,X,XD,XDD,T,II)
DIMENSION X(N),XD(N),XDD(N),T(N)
REAL M,K

OMN=SQRT (K/M)

UNDAMPED SYSTEM

IF (ABS(C) .GT. 1.0E-06) GO TO 100
II=1

OMN=SQRT (K/M)
A=SQRT(X0##*2+(XDO/OMN)**2)
PHI=ATAN (XDO/ (XO*OMN))

DO 10 I=1,N

IF (I .GT. 1) GO TO 20
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T(I)=DELT

GO TO 30
20 T(I)=T(I-1)+DELT
30  TT=T(I)

X(1)=A*COS (OMN#TT-PHI)
XD (I)=A*OMN*COS (OMN*TT-PHI+1.5708)
XDD(I)=-(C*XD(I)+K*X(I))/M

10 CONTINUE
GO TO 500

100 CCRIT=2.0%SQRT(K*M)
XAI=C/CCRIT

IF (XAI - 1.0) 200,300,400
c UNDERDAMPED SYSTEM
200 II=2
OMD=SQRT (1.0~ (XAI*¥2))*OMN
CP1=X0
CP2=(XDO+XAI*OMN*X0) /OMD
A=SQRT (CP1#*2+CP2##2)
PHI=ATAN(CP1/CP2)
DO 110 I=1,N
IF (I .GT. 1) GO TO 120
T(I)=DELT
GO TO 130
120 T(I)=T(I-1)+DELT
130 TT=T(I)
X (I)=A*EXP(-XAT#*OMN*TT)*SIN(OMD*TT+PHI)
XD (1)=A*EXP (-XAI*OMN*TT)* (OMD*COS (OMD*TT+PHI ) - XAI*OMN*S IN (OMD*
2 TT+PHI))
XDD(I)=- (C*XD(L)+K*X(1))/M
110 CONTINUE
GO TO 500
c CRITICALLY DAMPED SYSTEM
300 II=3
DO 210 I=1,N
IF (I .GT. 1) GO TO 220
T(I)=DELT
GO TO 230
220 T(I)=T(I-1)+DELT
230 TT=T(I)
X (I)=(X0+(XDO+OMN*X0)*TT)*EXP ( -OMN*TT)
XD (I)=- (XO+(XDO+OMNX0)*TT) *OMN*EXP ( ~OMN*TT )+ (XDO+OMN#X0 )*
2 EXP(-OMN*TT)
XDD(I)=-(C*XD(I)+K*X(I1))/M
210 CONTINUE
GO TO 500
c OVERDAMPED SYSTEM
400 II=4
X1=SQRT(XAI**2-1.0)
C1=(XO*OMN* (XAI+X1)+XDO0)/ (2 . 0*OMN*X1)
C2=(~X0*OMN* (XAL-X1)-XD0)/ (2. 0*OMN*X1)
DO 310 I=1,N
IF (I .GT. 1) GO TO 320
T(I)=DELT
GO TO 330

109
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320 T(I)=T(I-1)+DELT
330 TT=T(I)
X(1)=C1*EXP ((-XAI+X1)*OMN*TT)+C2*EXP ( ( -XAI-X1)*OMN+TT)
XD(I1)=C1*(-XAI+X1)*OMN*EXP ( (-XAI+X1)*OMN*TT)
2 +C2%(-XAI-X1)*OMN*EXP ( (-XAI-X1)*OMN*TT)
XDD(I)=-(C*XD(I)+K*X(I))/M
310 CONTINUE
500 RETURN
END

FREE VIBRATION ANALYSIS
OF A SINGLE DEGREE OF FREEDOM SYSTEM

DATA

M = 0.45000000E+03
K = 0.26519199E+05
C = 0.10000000E+04
X0 = 0.53956699E+00
XDO = 0.10000000E+01
N = 10

DELT = 0.25000000E+00

SYSTEM IS UNDER DAMPED

RESULTS:
I TIME(I) X(I) XD(I) XDD(I)
1 0.250000E+00 0.192649E-01 -0.335069E+01 0.631066E+01
2 0.500000E+00 -0.318983E+00 0.106230E+01 0.164376E+02
3 0.750000E+00 0.144699E+00  0.140377E+01 -0.116468E+02
4 0.100000E+01 0.112366E+00 -0.129493E+01 -0.374428E+01
5 0.125000E+01 -0.137887E+00 -0.173140E+00 0.851065E+01
6 0.150000E+01 0.285635E-02 0.827508E+00 ~0.200724E+01
7 0.175000E+01 0.777184E-01 -0.304712E+00 ~0.390293E+01
8 0.200000E+01 =-0.395868E-01 -0.326002E+00 0.305736E+01
9 0.225000E+01 -0.252620E-01  0.334008E+00 0. 746487E+00
10 0.250000E+01 0.350478E-01  0.239573E-01 -0.211866E+01
REFERENCES
2.1. R. W. Fitegerald, Mechanics of Materials (2nd ed.), Addison-Wesley, Reading, Mass.

1982.
2.2. R.F. Steidel, Jr., An Introduction to Mechanical Vibrations (2nd Ed.), John Wiley, Ne¥
York, 1979.



Review Questions 11

23.

24.

25.
2.6.

27.

28.
2.9.

2.10.

211

212,

213,

W. Zambrano, “A brief note on the determination of the natural frequencies of a
spring-mass system,” International Journal of Mechanical Engineering Education, Vol. 9,
October 1981, pp. 331-334; Vol. 10, July 1982, p. 216.

R. D. Blevins, Formulas for Natural Frequency and Mode Shape, Van Nostrand
Reinhold, New York, 1979.

A. D. Dimarogonas, Vibration Engineering, West Publishing Co., St. Paul, 1976.

E. Kreyszig, Advanced Engineering Mathematics (4th Ed.), John Wiley, New York,
1979.

S. H. Crandall, “The role of damping in vibration theory,” Journal of Sound and
Vibration, Vol. 11, 1970, pp. 3-18.

I. Cochin, Analysis and Design of Dynamic Systems, Harper & Row, New York, 1980.
D, Sinclair, “Frictional vibrations,” Journal of Applied Mechanics, Vol. 22, 1955, pp.
207-214.

T. K. Caughey and M. E. J. O'Kelly, “Effect of damping on the natural frequencies of
linear dynamic systems,” Journal of the Acoustical Society of America, Vol. 33,1961, pp.
1458-1461.

E. E. Ungar, “The status of engineering knowledge concerning the damping of built-up
structures,” Journal of Sound and Vibration, Vol. 26, 1973, pp. 141-154.

W. Pinsker, “Structural damping,” Journal of the Aeronautical Sciences, Vol. 16, 1949,
p. 699.

R. H. Scanlan and A. Mendelson, “Structural damping,” AIAA Journal, Vol. 1, 1963,
pp- 938-939.

REVIEW QUESTIONS

2.1

22.

23.
24,
25.
26.
27.
28

29.

2.10.

Suggest a method for determining the damping constant of a highly damped vibrating
system that uses viscous damping.

Can you apply the results of Section 2.2 to systems where the restoring force is not
proportional to the displacement, that is, where k is not a constant?

State the quantities corresponding to m, ¢, k, and x for a torsional system.

What effect does a decrease in mass have on the frequency of a system?

What effect does a decrease in the stiffness of the system have on the natural period?
Why does the amplitude of free vibration gradually diminish in practical systems?
Why is it important to find the natural frequency of a vibrating system?

How many arbitrary constants must a general solution to a second order differential
equation have? How are these constants determined?

Can the energy method be used to find the differential equation of motion of all single
degree of freedom systems?

What assumptions are made in finding the natural frequency of a single degree of
freedom system using the energy method?
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2.1

2.12,
213
2.14.
2.15.
2.16,

17,
2.18.
2.19.
2.20.

221

222,
2.23.
224

Is the frequency of a damped free vibration smaller or greater than the natura
frequency of the system?

What is the use of logarithmic decrement?

Is hysteresis damping a function of the maximum stress?
What is critical damping and what is its importance?
What happens to the energy dissipated by damping?
What is equivalent viscous damping? Is the equivalent viscous damping factor
constant?

What is the reason for studying the vibration of a single degree of freedom system?
How can you find the natural frequency of a system by measuring its static deflection?
Give two practical applications of a torsional pendulum.

Define these terms: damping ratio, logarithmic decrement, loss coefficient, and specific
damping capacity.

In what ways is the response of a system with Coulomb damping different from that of
systems with other types of damping?

What is complex stiffness?

Define the hysteresis damping constant.

Give three practical applications of the concept of center of percussion.

PROBLEMS

The problem assignments are organized as follows:

Section

Problem covered Topic covered

2.1-2.25 22 Undamped translational systems

2.26-
2.36-
2.43-
2.55-
2.63-
2.67-
2.71-

235 2.3 Undamped torsional systems
2.42 2.5 Energy method

2.54,2.66 2.6 Systems with viscous damping
2.62 2.7 Systems with Coulomb damping
2.65 2.8 Systems with hysteretic damping
2.70 29 Computer program

2,73 — Projects

2.L

An industrial press is mounted on a rubber pad to isolate it from its foundation. If the
rubber pad is compressed 5 mm by the self-weight of the press, find the natural
frequency of the system.
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22,

23.

24.

25.

2.6.

A spring-mass system has a natural period of 0.21 sec. What will be the new period if
the spring constant is (i) increased by 50% and (ii) decreased by 50%?

A spring-mass system has a natural frequency of 10 Hz. When the spring constant is
reduced by 800 N/m, the frequency is altered by 45%. Find the mass and spring
constant of the original system.

A helical spring, when fixed at one end and loaded at the other, requires a force of 100
N to produce an elongation of 10 mm. The ends of the spring are now rigidly fixed,
one end vertically above the other, and a mass of 10 kg is attached at the middle point
of its length. Determine the time taken to complete one vibration cycle when the mass
is set vibrating in the vertical direction.

The maximum velocity attained by the mass of a simple harmonic oscillator is 10
cm/sec, and the period of oscillation is 2 sec. If the mass is released with an initial
displacement of 2 ¢m, find (a) the amplitude, (b) the initial velocity, (c¢) the maximum
acceleration, and (d) the phase angle.

Three springs and a mass are attached to a rigid, weightless, bar PQ as shown in Fig.
2.29. Find the natural frequency of vibration of the system.
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Figure 2.29 Figure 2.30
27. An automobile having a mass of 2000 kg deflects its suspension springs 0.02 m under
static conditions. Determine the natural frequency of the automobile in the vertical
direction by assuming damping to be neghgible.
28. Find the natural frequency of vibration of a spring-mass system arranged on an
inclined plane, as shown in Fig. 2.30.
29. Find the natural frequency of the system shown in Fig. 2.31 with and without the
springs k, and k, in the middle of the elastic beam.
2.10. Find the natural frequency of the pulley system shown in Fig. 2.32 by neglecting the
friction and the masses of the pulleys.
2.11. A rigid block of mass M is mounted on four elastic supports as shown in Fig. 2.33. A

mass m drops from a height / and adheres to the rigid block without rebounding. If
the spring constant of each elastic support is k, find the natural frequency of vibration
of the system (a) without the mass m, and (b) with the mass m. Also find the resulting
motion of the system in case (b).
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2.12. Derive the expression for the natural frequency of the system shown in Fig. 2.34 Note
that the load W is applied at the tip of beam 1 and midpoint of beam 2. ,

2.13. A heavy machine weighing 9810 N is being lowered vertically down by a winch'atd
uniform velocity of 2 m/sec. The steel cable supporting the machine has a diameter of
0.01 m. The winch is suddenly stopped when the steel cable’s length is 20 m. Find the
period and amplitude of the ensuing vibration of the machine.

2.14. The natural frequency of a spring-mass system is found to be 2 Hz. When 2a?
additional mass of 1 kg is added to the original mass m, the natural frequency 1S
reduced to 1 Hz. Find the spring constant k and the mass m.

2.15. Four weightless rigid links and a spring are arranged to support a weight W in tWo0
different ways as shown in Fig. 2.35. Determine the natural frequencies of vibration of
the two arrangements.

2.16.

Figure 2.36 shows a small mass  restrained by four linearly elastic springs, cach of
which has an unstretched length /, and an angle of orientation of 45° with respect t0
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Figure 2.35

Figure 2.37

the x-axis. Determine the equation of motion for small displacements of the mass in
the x direction.

2.17.* A mass m is supported by two sets of springs oriented at 30° and 120° with respect to
the X axis, as shown in Fig. 2.37. A third pair of springs, with a stiffness of & each, is
to be designed so as to make the system have a constant natural frequency while
vibrating in any direction x. Determine the necessary spring stiffness k; and the
orientation of the springs with respect to the X axis.

2.18. A mass m is attached to a cord which is under a tension T, as shown in Fig. 2.38.
Assuming that the tension T remains unchanged when the mass is displaced normal to

-
*The asterisk denotes a design problem or a problem with no unique answer.
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Flgure 2.38 Figure 2.39
the cord, (a) write the differential equation of motion for small transverse vibrati,
and (b) find the natural frequency of vibration.
2.19. The schematic diagram of a centrifugal governor is shown in Fig. 2.39. The lengt
each rod is /, the mass of each ball is m and the free length of the spring is 4. If
shaft speed is w, determine the equilibrium position and the frequency for s
oscillations about this position.
2.20. A square platform PQRS and a car which it is supporting have a combincd mass|

M. The platform is suspended by four elastic wires from a fixed point O, as indica
in Fig. 2.40. The vertical distance between the point of suspension O and
horizontal equilibrium position of the platform is k. If the side of the platform i
and the stiffness of each wire is k, determine the period of vertical vibration of
platform. r

Flywheel

Shaft —

>

Figure 2.40 Figure 2.41
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A flywheel is mounted on a vertical shaft, as shown in Fig. 2.41. The shaft has a
diameter d and length / and is fixed at both ends. The flywheel has a weight of W and
a radius of gyration of r. Find the natural frequency of the longitudinal, the
transverse, and the torsional vibration of the system,

2.22. A building frame is modeled by four identical steel columns, of weight w each, and a
rigid floor of weight W, as shown in Fig. 2.42. The columns are fixed at the ground
and have a bending rigidity of EI each. Determine the natural frequency of horizontal
vibration of the building frame by assuming the connection between the floor and the
columns to be (a) pivoted as shown in Fig. 2.42(a), and (b) fixed against rotation as
shown in Fig. 2.42(b). Include the effect of self weights of the columns.

X x | X X
h“‘, ———————— - J A _'AT—‘——___“ ‘_"
/I|/// 1 7 /i _|T/ " ,Z’
' w // Ul w 7
/ / 4 14 v/ 7
7 Al A v Y
HE - e T~
e 7 e I [F—Et
// ;/ A\N // / ///\
/
// / h /" /// h

J El £ J — — 1

AN\N N
(a) (b)
Figure 2.42

223

A helical spring of stiffness & is cut into two halves and a mass m is connected to the
two halves as shown in Fig, 2.43(a). The natural time period of this system is found to
be 0.5 sec. If an identical spring is cut so that one part is } and the other part 3 of the
original length, and the mass m is connected to the two parts as shown in Fig. 2.43(b),
what would be the natural period of the system?

Figure 2.43

224* Figure 2.44 shows a metal block supported on two identical cylindrical rollers rotating

in opposite directions at the same angular speed. When the center of gravity of the
block is initially displaced by a distance x, the block will be set into simple harmonic
motion. If the frequency of motion of the block is found to be w, determine the
coefficient of friction between the block and the rollers.
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2.25.* If two identical springs of stiffness k each are attached to the metal block of Problem *
2.24 as shown in Fig. 2.45, determine the coefficient of friction between the block and

the rollers.

226. A pulley 250 mm in diameter drives a second pulley 1000 mm in diameter by means of
a belt (see Fig. 2.46). The moment of inertia of the driven pulley is 0.2 kg-m?. The belt
connecting these pulleys is represented by two springs, each of stiffness k. For what

value of k will the natural frequency be 6 Hz?

Figure 2.46
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2.27. Derive an expression for the natural frequency of the simple pendulum shown in Fig.
L.5. Determine the period of oscillation of a simple pendulum having a mass m = $ kg
and a length / = 0.5 m.

2.28.

A mass m is attached at the end of a bar of negligible mass and is made to vibrate in

three different configurations, as indicated in Figs. 2.47(a) to (c). Find the configura-
tion corresponding to the highest natural frequency.
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\ .
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b) ©)
247 Figure 2.48

2.29. Find the natural frequency of the pendulum shown in Fig. 2.48 when the mass of the
connecting bar is not negligible compared to the mass of the pendulum bob.

2.30. A steel shaft of 0.05 m diameter and 2 m length is fixed at one end and carries at the
other end a steel disc of 1 m diameter and 0.1 m thickness, as shown in Fig. 2.7. Find
the natural frequency of torsional vibration of the system.

231. A uniform slender rod of mass m and length / is hinged at point A and is attached to
five springs as shown in Fig. 2.49. Find the natural frequency of the system if
k = 2000 N/m, k, = 1000 N-m/rad, m = 10 kg, and / = 5 m.
A A g
4 . YVVVV 7 —I—_
4 4
3
ram
A
N
]
3
1 ok
W WW—

Figure 2.49
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232 A cylinder of mass m and mass moment of inertia Jj is free to roll without slipping
but is restrained by two springs of stiffnesses &, and k, as shown in Fig, 2.50. Find its
natural frequency of vibration. Also find the value of a that maximizes the natura
frequency of vibration.

2.33. If the pendulum of Problem 2.27 is placed in a rocket moving vertically with an
acceleration of 5 m/s?, what will be its period of oscillation?

2.34. Find the equation of motion of the uniform rigid bar OA4 of length / and mass m
shown in Fig. 2.51. Also find its natural frequency.

2.35. A uniform circular disc is pivoted at point O as shown in Fig. 2.52. Find the natural
frequency of the system. Also find the maximum frequency of the system by varying

the value of b.
> b/'l‘_ a—-l

Figure 2.52 Figure 2.53

2.36. Solve problem 2.6 using Rayleigh’s method.

237. Solve problem 2.10 using Rayleigh’s method.

2.38. Find the natural frequency of the system shown in Fig, 2.36.
2.39. Solve problem 2.18 using Rayleigh’s method.

2.40. Solve problem 2.31 using Rayleigh’s method.

2.41. Solve problem 2.34 using Rayleigh’s method.

2.42. A wooden rectangular prism of density p, , height 4 and cross-section a X b is initia!ly
depressed in an oil tub and made to vibrate freely in the vertical direction (see Fig
2.53). Find the natural frequency of vibration of the prism using Rayleigh’s method-
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243.

2.44.

245.

2.46.

2.47.

248.

2.49.

Assume the density of oil as py. If the rectangular prism is replaced by a unifon
circular cylinder of radius r, height h and density p, , will there be any change in tt
natural frequency?

A simple pendulum is found to vibrate at a frequency of 0.5 Hz in vacuum an
0.45 Hz in a viscous fluid medium. Find the damping constant assuming the mass ¢
the bob of the pendulum as 1 kg.

The ratio of successive amplitudes of a viscously damped single degree of freedos
system is found to be 18:1. Determine the ratio of successive amplitudes if th
amount of damping is (a) doubled, and (b) halved.

Assuming that the phase angle is zero, show that the response x(¢) of an underdampe
single degree of freedom system reaches a maximum value when

sinw,r = 1 — §?
sinw,t = —y1 = {2

Also show that the equations of the curves passing through the maximum an
minimum values of x(7) are given, respectively, by

and a minimum value when

x =1 = §% Xe font
and
x = —y1 = §% Xe~$unt
Derive an expression for the time at which the response of a critically damped syster
will attain its maximum value. Also find the expression for the maximum response.

A shock absorber is to be designed to limit its overshoot to 15% of its initia
displacement when released. Find the damping ratio §, required. What will be th
overshoot if { is made equal to (i) 3§, and (i) 3§?

For a spring-mass-damper system, m = 50 kg and k = 5000 N/m. Find the follow
ing: (a) critical damping constant ¢, (b) damped natural frequency when ¢ = ¢ /2
and (c) logarithmic decrement.

A locomotive car of mass 2000 kg traveling at a velocity v = 10 m/sec is stopped a
the end of tracks by a spring-damper system as shown in Fig. 2.54. If the stifiness o

s

Blriiea 2 EA
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2.50.

2.51.

2.52.>

2.53.

254,

2.55.

2.56.

2.57.

2.58.

2.59.

2.60.

the spring is k = 40 N/mm and the damping constant is ¢ = 20 N-s/mm, determine
(a) the maximum displacement of the car after engaging the springs and damper anq
(b) the time taken to reach the maximum displacement.

A torsional pendulum has a natural frequency of 200 cycles/min when vibrating i,
vacuum. The mass moment of inertia of the disc is 0.2 kg-o. It is then immersed in ¢}
and its natural frequency is found to be 180 cycles/min. Determine the damping
constant. If the disc, when placed in oil, is given an initial displacement of 2°, find jig -
displacement at the end of the first cycle. .
A body vibrating with viscous damping makes 5 complete oscillations per second, and ’
in 50 cycles its amplitude diminjshes to 10%. Determine the logarithmic decrement
and the damping ratio. In what proportion will the period of vibration be decreased if
damping is removed?

The maximum permissible recoil distance of a gun is specified as 0.5 m. If the initial
recoil velocity is to be between 8 m/sec and 10 m/sec, find the mass of the gun and
the spring stiffness of the recoil mechanism. Assume that a critically damped dashpot
is used in the recoil mechanism and the mass of the gun has to be at least S00 kg,

A viscously damped system has a stiffness of 5000 N/m, critical damping constant of
0.2 N-s/mm, and a logarithmic decrement of 2.0. If the system is given an initial
velocity of 1 m/sec, determine the maximum displacement of the system.

Explain why an overdamped system never passes through the static equilibrium
position when it is given (i) an initial displacement only and (ii) an initial velocity
only.

A single degree of freedom system consists of a mass of 20 kg and a spring of stiflness
4000 N/m. The amplitudes of successive cycles are found to be 50,45,40,35,. .. mm,
Determine the nature and magnitude of the damping force and the frequency of the
damped vibration.

A mass of 20 kg slides back and forth on a dry surface due to the action of a spring
having a stiffness of 10 N/mm. After four complete cycles, the amplitude has been
found to be 100 mm. What is the average coefficient of friction between the two
surfaces if the original amplitude was 150 mm? How much time has elapsed during the
four cycles?

A 10-kg mass is connected to a spring of stiffness 3000 N/m and is released after
giving an initial displacement of 100 mm. Assuming that the mass moves on a
horizontal surface as shown in Fig. 2.23(a), determine the position at which the mass
comes to rest. Assume the coefficient of friction between the mass and the surface to
be 0.12.

A weight of 25 N is suspended from a spring that has a stiffness of 1000 N /m. The
weight vibrates in the vertical direction under a constant damping force. When the
weight is injtially pulled downward a distance of 10 cm from its static equilibrium
position and released, it comes to rest after exactly two complete cycles. Find the
magnitude of the damping force.

A mass of 20 kg is suspended from a spring of stiffness 10,000 N/m. The vertical
motion of the mass is subject to Coulomb friction of magnitude 50 N. If the spring is
initially displaced downward by 5 cm from its static equilibrium position, determine
(a) the number of half cycles elapsed before the mass comes to rest, (b) the time
elapsed before the mass comes to rest, and (c) the final extension of the spring.

The Charpy impact test is a dynamic test in which a specimen is struck and broken by
a pendulum (or hammer) and the energy absorbed in breaking the specimen is
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measured. The energy values serve as a useful guide for comparing the impact
strengths of different materials. As shown in Fig. 2.55, the pendulum is suspended
from a shaft, is released from a particular position, and is allowed to fall and break the
specimen. If the pendulum is made to oscillate freely (with no specimen), find (a) an
expression for the decrease in the angle of swing for each cycle caused by friction, (b)
the solution for #(¢) if the pendulum is released from an angle 6, and (c) the number
of cycles after which the motion ceases. Assume the mass of the pendulum as m and
the coefficient of friction between the shaft and the bearing of the pendulum as p.

Bearing of
penduium

Striking edge
%

Test

|
|
|
_.f
|

Locauo specimen
spec:men rr
Striking edge
Anvil \
(support for
test specimen)
(a) (b)

Figure 2,55

2.61. Find the equivalent viscous damping constant for Coulomb damping for sinusoidal
vibration.

2.62. A single degree of freedom system consists of a mass, a spring, and a damper in whic?l
both dry friction and viscous damping act simultaneously. The free vibration ampli-
tude is found to decrease by 1% per cycle when the amplitude is 20 mm and by 2% per
cycle when the amplitude is 10 mm. Find the value of (N /k) for the dry friction
component of the damping.

2.63. The experimentally observed force-deflection curve for a composite structure is shown

in Fig. 2.56. Find the hysteresis damping constant, the logarithmic decrement and the
equivalent viscous damping ratio corresponding to this curve.
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2.64. A panel made of fiber-reinforced composite material is observed to behave as a single

2.65.

2.66.

degree of freedom system of mass 1 kg and stiffness 2 N/m. The ratio of successive
amplitudes is found to be 1.1. Determine the value of the hysteresis damping constant
B, the equivalent viscous damping constant ¢, , and the energy loss per cycle for an
amplitude of 10 mm.

A built-up cantilever beam having a bending stiffness of 200 N/m supports a mass of
2 kg at its free end. The mass is displaced initially by 30 mm and released. If the
amplitude is found to be 20 mm after 100 cycles of motion, estimate the hysteresis
damping constant B of the beam.

The rotor of a dial indicator is connected to a torsional spring and a torsional viscous
damper to form a single degree of freedom torsional system. The scale is graduated i
equal divisions and the equilibrium position of the rotor corresponds to zero on the
scale. When a torque of 2 X 10~* N-m is applied, the angular displacement of the
rotor is found to be 50° with the pointer showing 80 divisions on the scale. When
the rotor is released from this position, the pointer swings first to — 20 divisions in on¢
second and then to 5 divisions in another second. Find (a) the mass moment of inerti2
of the rotor, (b) the undamped natural time period of the rotor, (c) the torsional
damping constant, and (d) the torsional spring stiffness.

2.67-2.70.

Find the free vibration response of a viscously damped single degree of frcedo™
system with m = 4 kg, k = 2500 N/m, x5 = 100 mm, %, = —10 m/s, &z = 0.01 &
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and N = 50 using the subroutine FREVIB for the following conditions:
(@ c=0

(b) c = 100 N-s/m

(c) ¢ =200 N-s/m

@) ¢ =400 N-s/m

Projects:

271

2.72.

2.73.

A water turbine of mass 1000 kg and mass moment of inertia 500 kg is mounted
on a steel shaft as shown in Fig. 2.57. The operational speed of the turbine is 2400
rpm. Assuming the ends of the shaft to be fixed, find the values of I, a, and d, such
that the natural frequency of vibration of the turbine in each of the axial, transverse,
and circumferential directions is greater than the operational speed of the turbine.

Design the columns for each of the building frames shown in Figs. 2.42(a) and (b) for
minimum weight such that the natural frequency of vibration is greater than 50 Hz.
The weight of the floor (W) is 4000 Ib and the length of the columns (1) is 96 in.
Assume that the columns are made of steel and have a (ubular cross section with outer
diameter d and wall thickness 7.

One end of a uniform rigid bar of mass m is connected to a wall by a hinge joint O
and the other end carries a concentrated mass M, as shown in Fig. 2.58. The bar
rotates about the hinge point O against a torsional spring and a torsional damper. It is
proposed to use this mechanism, in conjunction with a mechanical counter, t0 control
entrance to an amusement park. Find the masses m and M, the stiffness of the
torsional spring (k,), and the damping force (F,) necessary to satisfy the following
specifications: (1) A viscous damper or a Coulomb damper can be used. (2) The bar
has to return to within 5° of closing in less than 2 sec when released from an initial
position of 8 = 75°.

Amusement park

Figure 2.58
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Charles Augustin de Coulomb (1736 - 1806) was a French
mibitary engineer and physicist His early work on statics
and mechanics was presented in his great memoir ' The
Theory ot Simple Machines™ in 1779, which describes the
effect ot resistance and the so-called “Coulomb’s law of
proportionalhty ' between trichon and normal pressure In
1784, he obtained the correct solution to the problem of
the small oscillations of a body subjected to torsion He s
well known for his laws of force tor electrostatic and
magnetic charges His name i1s remembered through the
unit of electric charge (Courtesy of Brown Brothers)

3.1 INTRODUCTION

A dynamic system 1s often subjected to some type of external force or excitation,
called the forcing or exciting function. This excitation 1s usually time-dependent. It
may be harmonic. nonharmonic but periodic, nonperiodic. or random in nature. The
response of a system to a harmonic excitation is called harmonic response. The
nonperiodic excitation may have a long or short duration. The response of a
dynamic system to suddenly applied nonperiodic excitations is called transient
response.

In this chapter, we shall consider the dynamic response of a single degree of
freedom system under harmonic excitations of the form F(r) = Fe"“'** or
F(t) = Fycos(wt + ¢) or F(r) = Fysin(wt + ¢). where F; is the amplitude, w 1s the
frequency, and ¢ is the phase angle of the harmonic excitation. The value of ¢
depends on the value of F(r) at r = 0 and 1s usually taken to be zero. Under a
harmonic excitation, the response of the system will also be harmomic. If the
frequency of excitation coincides with the natural frequency of the system. the
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response of the system will be very large. This condition, known as resonance. is to
be avoided to prevent failure of the system. .

OF MOTION

If a force F(r) acts on a viscously damped spring-mass system as shown in Fig. 3.1,
the equation of motion can be obtained using Newton's second law:

mx + ¢k + kx = F(r) (3.1)

Since this equation is nonhomogeneous, its general solution x(¢) is given by the sum’
of the homogeneous solution, x,(¢). and the particular solution, x,(r). The homo-
geneous solution, which is the solution of the homogeneous equation

mi+cxk+ kx =0 (32)

represents the free vibration of the system and was discussed in Chapter 2. As scen'
in Section 2.6.2, this free vibration dies out with time under each of the three
possible conditions of damping (underdamping, critical damping, and overdamping).
and under all possible initial conditions. Thus the general solution of Eq. (3.1),
eventually reduces to the particular solution x,(1), which represents the steady-stale‘
vibration. The steady-state motion is present as long as the forcing function is
present. The variations of homogeneous, particular, and general solutions with tme
for a typical case are shown in Fig. 3.2. Tt can be seen that x,(r) dies out and x(t)
becomes x (1) after some time (7 in Fig. 3.2). The part of the motion that dies out
due to damping (the free vibration part) is called transient. The rate at which the
transient motion decays depends on the values of the system parameters k, ¢, and
m. In this chapter, except in Section 3.3, we ignore the transient motion and derive
only the particular solution of Eq. (3.1), which represents the steady-state response,
under harmonic forcing functions.

>~
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+r F(1)

Fn
(a) (b) Free body diagram

Figure 3.1 A spring-mass-damper system
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Figure 3.2 Homogeneous, particutar and general sotutions of Eq
(3 1) tor an underdamped case

RESPONSE OF AN UNDAMPED SYSTEM
UNDER HARMONIC FORCE

Before studying the response of a damped system, we consider an undamped system
subjected to a harmonic force, for the sake of simplicity. If a force F(t) = F,cos wt
acts on the mass m of an undamped system, the equation of motion, Eq. (3.1).
reduces to
mx + kx = Fycos wt (3.3)
The homogeneous solution of this equation is given by
x,(1) = C cosw,t + Cysinw,t (3.4)
where w, = (k/m)'/? is the natural frequency of the system. Because the exciting
force F(r) is harmonic, the particular solution x,(1) is also harmonic and has the
same frequency w. Thus we assume a solution in the form
x,(1) = Xcos wr (3.5)

where X is a constant that denotes the maximum amplitude of x,(1). By substitut-
ing Eq. (3.5) into Eq. (3.3) and solving for X, we obtain

F,
X= 0 3.6
k ~ mw? (6)
Thus the total solution of Eq. (3.3) is
F,
x(1) = Cycosw,t + Cysinw,t + ——2— cos wr (3.7)
k — mw
Using the initial conditions x(r = 0) = x, and %(r = 0) = X%,. we find that
F, X
C=xp~ 0 G=2 (3.8)

T3
k - mw®
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Figure 3.3

and hence

2 X0\ . F,
x(t) = (Xo - ;—:—”’m)cosw,,l + (u_f)sm“"" + (:—”"F)cosw: (3.9)

The maximum amplitude X in Eq. (3.6) can also be expressed as

X 1
T o (3.10)
- (2]
wn
where 8, = Fy/k denotes the deflection of the mass under a force F, and 1s

sometimes called “static deflection” since Fy is a constant (static) force. The
quantity X /8, represents the ratio of the dynamic to the static amplitude of motion
and is called the magnification factor, amplification factor. or amplitude ratio. The
variation of the amplitude ratio. X/§,,, with the frequency ratio r = w/w, (Eq.
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F(1) = Fycosun
4

"™ TN\
~_~ = ©~

xp(1) = X cos unt

NN

Figure 3.4

(3.10)] is shown n Fig. 3.3. From this figure, the response of the system can be
identified to be of three types.

Case 1. When 0 < w/w, < 1, the denominator in Eq. (3.10) is positive and the
response is given by Eq. (3.5) without change. The harmonic response of the system
x,(1) is said to be in phase with the external force as shown in Fig. 3.4.

Case 2. When w/w, > 1, the denominator in Eq. (3.10) is negative, and the
steady-state solution can be expressed as

x, (1) = = Xcoswt (3.11)

where the amplitude of motion X is redefined to be a positive quantity as

X=—— (3.12)

The variations of F(r) and x,(t) with time are shown in Fig. 3.5. Since x (1) and
F(t) have opposite signs, the response is said to be 180° out of phase with the
external force. Further, as w/w, — 00, X — 0. Thus the response of the system to a
harmonic force of very high frequency is close to zero.

Case 3. When w/w, = 1, the amplitude X given by Eq. (3.10) or (3.12) becomes
infinite. This condition, for which the forcing frequency w is equal to the natural
frequency of the system w,, is called resonance. To find the response for this

n
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(1) = Focos ot

"™ N\
N r O

A1) = —Xcosam
Y

2 wi

igure 3.5

ondition. we rewrite Eq. (3.9) as
€OS Wl — COS w,!
7
w
()
w’l

ince the last term of this equation takes an indefinite form for w = w,, we apply
"Hosputal's rule {3.1] to evaluate the limit of this term:

(3.13)

Xo .
x(1) = xo €08 w,t + Fosmw,,l + 8,
n

d
COS W! — COS w,! ) 7o (cos wt = cos w,t)
lim { ——m—mm™M™——|= Im | —mm——
0w, 1 ( w ) w=—w, d ) w?
wp L dw w?
. tsin wt w,t
= lim [—5— | = 5 sine,t. (3.19)
w—w,| 2=
2
n

"hus the response of the system at resonance becomes

x0 . 85(“’::' .
x(t) = xgcos w,t + oSine,t + =5sine,! (3.15)
'

tcan be seen from Eq. (3.15) that at resonance, x(¢) increases indefinitely. The last
erm of Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response
an be seen 1o increase linearly with time.



3.3.1
Total Response

3.3.2
Beating
Phenomenon

33 Response of an Undamped System under Harmonic Force 1 3

0

Figure 3.6

The total response of the system, Eq. (3.7) or Eq. (3.9), can also be expressed as

8.
x(1) = Acos(w,t — ¢) + —————coswt; for wﬁ <1 (3.16;
w "
- (s
x(t) = Acos(w,t — ¢) — *——coswr;  for Uﬁ,. >1 (3.17)

(2
w’l
where A4 and ¢ can be determined as in the case of Eq. (2.18). Thus the complete
motion can be expressed as the sum of two cosine curves of different frequencies. In
Eq. (3.16), the forcing frequency w is smaller than the natural frequency, and the

total response is shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is greater
than the natural frequency, and the total response appears as shown in Fig. 3.7(b).

If the forcing frequency is close to, but not exactly equal to, the natural frequency of
the system, a phenomenon known as beating may occur. In this kind of vibration,
the amplitude builds up and then diminishes in a regular pattern. The phenomenon
of beating can be explained by considering the solution given by Eq. (3.9). If the
initial conditions are taken as x, = X, = 0, Eq. (3.9) reduces to

F
x(1) = (2 mZ(cos Wt — cos w,t)
[5) W

1

n

F + -
(ZO/MZ[Zsin‘hY 2“’"t~sinm"2 2y (3.18)

W, — W
Let the forcing frequency w be slightly less than the natural frequency:
W, ~w=2¢ (3.19)
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Figure 3.7

here € is a small positive quantity. Then w, = w and

wtw, =20 (3.20)
Muluplication of Eqs. (3.19) and (3.20) gives
W - W= dew (3.21)

Use of Egs. (3.19) to (3.21) in Eq. (3.18) gives
x(t) = (?{—:sin el)sinwt (3.22)

ince ¢ is small, the function sin e varies slowly; its period, equal to 2 /e, is large.
hus Eq. (3.22) may be seen as representing vibration with period 27 /w and of
ariable amplitude equal to
Fy,/m
( fe/w )sin et

It can also be observed that the sin wt curve will go through several cycles, while the
SIn et wave goes through a single cycle, as shown in Fig. 3.8. Thus the amplitude
builds up and dies down continuously. The time between the points of zero
amplitude or the points of maximum amplitude is called the period of beating (1,)
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and is given by
27 27

I

(3.23)

with the frequency of beating defined as

w,=2e=w,~w

EXAMPLE 3.1

Plate Supporting a Pump =~ -

A reciprocating pump, weighing 150 Ib, 1s mounted at the middle of a steel plate of thickness
05 in., width 20 in., and length 100 1n., clamped along two edges as shown in Fig. 3.9. During
operation of the pump, the plate is subjected to a harmonic force, F(1) = 50 cos62.832 ¢ Ib.
Find the amplitude of vibration of the plate.

Gen: Pump weight = 150 Ib; plate dimensions: thickness (+) = 0.5 in., width (w) = 20 in,
and length (/) = 100 in.; and harmonic force: F(t) = 50cos62.832 ¢ Ib.

Find: Amplitude of vibration of the plate, X

Approach: Find the stiffness of the plate by modeling it as a clamped beam. Use the equation
for the response under harmonic excitation.

| ©OFW), x(2)
, 100 in.

N

Figure 3.9
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Solution. The plate can be modeled as a fixed-fixed beam having Yc;ung‘s modulus (E) =
X 10° psi, length (/) = 100 in, and area moment of inertia (/) = ﬁ(ZO)([)j)3 =0.2083 in*
The bending suffness of the beam is given by

6
) = 192E1 _ 192(30 X 10°)(02083) _ 1500 4 1p, /i, (E1)

The amplitude of harmonuc response is given by Eq. (3.6) with F, = 50 Ib, m = 150/386.4
Ib-sec?/in. (neglecting the weight of the steel plate), & = 1200.0 Ib/in., and « = 62.832
rad /sec. Thus Eq. (3 6) gives
R
X=—2— = 0 - 0.1504 in. (E2)
k= mw’ 12000 - (150/386.4)(62. 832)

The negative sign indicates that the response x(r) of the plate is out of phase with the
excitation F(1).

4 RESPONSE OF A DAMPED SYSTEM
UNDER HARMONIC FORCE

If the forcing function ts given by F(r) = F,cos wt, the equation of motion becomes
mi + cx + kx = Fycos wf (3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume it
in the form*

x,(1) = Xcos(wt - ¢) (3.25)
where X and ¢ are constants to be determined. X and ¢ denote the amplitude and
phase angle of the response, respectively. By substituting Eq. (3.25) into Eq. (3.29),
we arrive at .

X[(k - mw?)cos(wt = ¢) - cwsin(w! — ¢)] = Fycos wf (3.26)
Using the trigonometric relations
cos(wl — ¢) = cOS wi COS ¢ + sinw! sin ¢
sin(wf — ¢) = sinwl cos$ — €os wf sin ¢
in Eq. (3.26) and equating the coefficients of cos wr and sin wr on both sides of the
resulting equation, we obtain
X[(k - mw?)cos ¢ + cwsing] = Fy
X[(k - mw?)sing - cwcosg| = 0 (3.27)
Solution of Egs. (3.27) gives
Fy

[(k—mwz) + cw ]

(3.28)

* Ahernatvely. we can assume x,(1) to be of the form x,(1) = C, coswr + G, sinwr. which also
mvolves two consiants C; and G, But the final result will be the same 1n both the cases
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and
cw

¢ =tan ' —) 3.29

° - tan (k - mw? (3.29)
By inserting the expressions of X and ¢ from Egs. (3.28) and (3.29) into Eq. (3.25)
we obtain the particular solutton of Eq. (3.24). Figure 3.10 shows typical plots of the
forcing function and (stead:-state) response. Dividing both the numerator and
denominator of Eq. (3.28) by A and making the following substitutions

n V % = undamped natural frequency.

w =
c ¢ ¢
£= ¢, " Imw, m " Ko,
Fy . .
8, = * = deflection under the static force F,. and
=YL
r= o, = requency ratio
we obtain
1
81 _ - 7 ‘2 = (3.30)
. ah -7+ (2
(-] ez} e
w’l ‘4)"
and
w
|_x&
‘4’"
¢ = tan~ Y =t} = tan " ! Ar (3.31)
2 2
11 _ i) 1-r
“’ll

As stated in Section 3.3, the quantity X/8,, is called the magnification factor,
amplification factor, or amphiude ratio. The variations of X/8, and ¢ with the
frequency ratio r and the damping ratio { are shown in Fig. 3.11. The following
observations can be made from Eqs. (3.30) and (3.31) and from Fig. 3.11:

1. For an undamped system ({ = 0). Eq. (3.31) shows that the phase angle ¢ = 0
(for r < 1) or 180° (for r > 1) and Eq. (3.30) reduces to Eq. (3.10).

. The damping reduces the amplitude ratio for all values of the forcing frequency.

~

3. The reduction of the amplitude ratio in the presence of damping is very
significant at or near resonance.

4. With damping, the maximum amplitude ratio (see Problem 3.11) occurs when
r=y1-2%2 o  w=uwyl-2 (3.32)

which is lower than the undamped natural frequency w, and the damped
natural frequency w, = w,y1 — {2.
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Figure 3.11  Vanation of X and ¢ with frequency ratio r.
5. The maximum value of X (when r = 1 - 2¢?) is given by
X) 1
= = —— (3.33)
(8» w21 - 12 .
and the value of X at w = w, by
X 1
(6—) =3 (3.34)
st/ wew,

Equation (3.33) can be used for the experimental determination of the measure
of damping present in the system. In a vibration test. if the maximum amplitude
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of the response ( X),,,. is measured, the damping ratio of the system can be
found using Eq. (3.33). Conversely, if the amount of damping is known, one can
make an estimate of the maximum amplitude of wvibration.

6. For { > 1/V2. the graph of X has no peaks and for { = 0. there 15 a
discontinuity at r = 1.

7. The phase angle depends on the system parameters m. ¢, and k and the forcing
frequency w. but not on the amplitude F, of the forcing function.

8. The phase angle ¢ by which the response x(r) or X lags the forcing funcuon
F(1) or F, will be very small for small values of r. For very large values of r. the
phase angle approaches 180° asymptotically. Thus the amplitude of vibration
will be in phase with the exciting force for r < 1 and out of phase for r > 1.
The phase angle at resonance will be 90° for all values of damping ({).

9. Below resonance (w < w,), the phase angle increases with increase in damping.
Above resonance (@ > w,), the phase angle decreases with increase in damping.

The complete solution is given by x(1) = x,(r) + x,(1) where x,(r) is given by Eq.
(2.64). Thus
x(1) = Xpe "5 cos(wyt — ¢p) + Xcos(wr — o) (3.35)
where
w =1 - w0, (3.36)
r=2 (3.37)

X and ¢ are given by Egs. (3.30) and (3.31), respectively, and X;, and ¢, can be
determined from the initial conditions.

For small values of damping ({ < 0.05), we can take

The value of the amplitude ratio at resonance is also called Q factor or quahty factor
of the system, in analogy with some electrical-engineering applications, such as the
tuning circuit of a radio, where the interest lies in an amplitude at resonance that is
as large as possible [3.2]. The points R, and R,. where the amplification factor falls
to Q/ V2, are called haif power points because the power absorbed (AW ) by the
damper (or by the resistor in an electrical circuit), responding harmonically at a
given frequency, is proportional to the square of the amplitude {see Eq. (2.88)}:

AW = mcw X? (3.39)

The difference between the frequencies associated with the half power points R, and
R, is called the bandwidth of the system (see Fig. 3.12). To find the values of R, and
R, weset X/8, = 0/ V2 in Eq. (3.30) so that
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Ja-r) oy 2 WX

rt - rZ(Z - 4{2) + (1~ 8{2) =0
The solution of Eq. (3.40) gives

=1-28%-281 +¢2, A=1-282+ 251+ §2

or small values of {, Eq. (3.41) can be approximated as

) 2 @ 2
=Rf=(w—:) “1-2 r22=R§=(u—j) 1+

¥

here w, = w|g and w, = w|g, From Eq. (3.42),
0} - o = (0 + @)@ - w;) = (R} - R})w] = &
sing the relation
W, + 0, = 2w,
Eq. (3.43), we find that the bandwidth Aw is given by
Bo = &, — @, = 2/0,
mbining Eqs. (3.38) and (3.45), we obtain

..]— “n
Q-Z—{_wz—w,

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)



3.5

It can be seen that the quality factor Q can be used for esumatmg the equivalent
viscous damping in a mechanical system.f

RESPONSE OF A DAMPED SYSTEM
UNDER F(t) = Fye’!

Let the harmonic forcing function be represented in complex form as F(r) = Fe'’
so that the equation of motion becomes

mi + cx + kx = Fye'' (3.47)

Since the actual excitation is given only by the real part of F(r), the response will
also be given only by the real part of x(r) where x(r) is a complex quantity
satisfying the differential equation (3.47). Fy in Eq. (3.47) is, in general. a complex
number. By assuming the particular solution x (1)

x,(1) = Xe! (3.48)
we obtain. by substituting Eq. (3.48) into Eq. (3.47),*
X = i (3.49)

(k - mw?) + icw

Multiplying the numerator and denominator on the right side of Eq. (3.49) by
[(k — mw?) - icw} and separating the real and imaginary parts, we obtain

k — mw? cw
X=F, iy (3.50)
0[(k—mc.-)2)2+czmz (k-—mwz)2+czw2]

Using the relation, x + iy = Ae'® where 4 = {x? + y? and tan ¢ = y/x, Eq. (3.50)
can be expressed as

F,
X= 0 B 3.51
[(k - mwz)z R Czwzll/ze ( )
where
o= (=) (52

Thus the steady-state solution, Eq. (3.48), becomes

F;
xp(1) = . 1,2
[(k - mmz)2 + (00)2] /

et 9) (3.53)

' The determination of the system parameters (m. c. and A) based on half-power ponts and other
response charactenstics of the system is considered 1n Section 10.8.

* Equation (349) can be written as Z(1w)X = F, where Z(1w) = —mw? + 1w¢ + A 15 called the
mechamcal tmpedance of the system [3 8).
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Frequency Response. Equation (3.49) can be rewntten in the form

kX 1

2t ——= i 3.54
K 1-r2402¢r H(iw) ( )

where H(iw) is known as the complex frequency response of the system. The
absolute value of H(iw) given by

kX
Fy

- 1 (3.55)

[a - s @]

denotes the magnification factor defined in Eq. (3.30). Recalling that e = cos ¢ +
i sin ¢, we can show that Eqs. (3.54) and (3.55) are related:

[H(iw)| =

H(iw) = |H(iw)le™"? (3.56)
where ¢ is given by Eq. (3.52), which can also be expressed as
¢ = tan"( 202) (3.57)
1-r

Thus Eq. (3.53) can be expressed as
F
x,(1) = T°|H(iw)|e““’"°) (3.58)

It can be seen that the complex frequency response function. H(:w), contains both
the magnitude and phase of the steady state response. The use of this function in the
experimental determination of the system parameters (m, ¢, and k) is discussed in
Section 10.8. If F(r) = Fycos wt, the corresponding steady-state solution is given by
the real part of Eq. (3.53):

K
[(k - mmz)2 + (cw)z]

x,(1) =

T cos(wl — ¢)

2
Re[?oH(iw)e'”’] = Re[%ﬁ(.‘mne"“'-“ (3.59)

which can be seen to be the same as Eq. (3.25). Similarly, if F(r) = Fysin w1, the
corresponding steady-state solution is given by the imaginary part of Eq. (3.53):

F,
x,(1) = .
& [(k — mo?) + (cw)zl

asin(wr — ¢)

- 1m[%|y(m)|e'l~'-w] (3.60)

Complex Vector Representation of Harmonic Motion. The harmonic excitation and
the response of the damped system to that excitation can be represented graphically
in the complex plane, and interesting interpretation can be given to the resulting
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|

Figure 3.13 Representation of Eq (3 47) in a complex plane

diagram. We first differentiate Eq. (3.58) with respect to time and obtain
K
velocity = X,(1) = iwle(iw)k““" * = 1a0x (1)
F,
acceleration = % (1) = (l'w)ZTOIH(iw)k'l“"ﬂ = —wlx, (1)  (3.61)

Because 1 can be expressed as
LN ; e
1= cosy +ising =e (3.62)
we can conclude that the velocity leads the displacement by the phase angle = /2
and that it is multiplied by w. Similarly, —1 can be written as

| —1=cosm+ isinm=¢e" (3.63)

Hence the acceleration leads the displacement by the phase angle 7. and it is
multiplied by w?.

Thus the various terms of the equation of motion (3.47) can be represented in
the complex plane, as shown in Fig. 3.13. The interpretation of this figure is that the
sum of the complex vectors mi(r), cx(1), and kx(r) balances F(¢), which is
precisely what is required to satisfy Eq. (3.47). It is to be noted that the entire
diagram rotates with angular velocity  in the complex plane. If only the real part

| of the response is to be considered, then the entire diagram must be projected onto
the real axis. Simularly, if only the imaginary part of the response is to be
considered, then the diagram must be projected onto the imaginary axis. In Fig.
3.13, notice that the force F(1) = Fye'' is represented as a vector located at an
angle wr to the real axis. This implies that Fy is real. If F; is also complex. then the
force vector F(1) will be located at an angle of (wr + ). where ¢ is some phase
angle introduced by F,. In such a case, all the other vectors. namely, mx, cx, and kx
will be shifted by the same angle . This is equivalent to multiplying both sides of
Eq. (3.47) by e*.
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RESPONSE OF A DAMPED SYSTEM
UNDER THE HARMONIC MOTION OF THE BASE

Sometimes the base or support of a spring-mass-damper system undergoes harmonic
motion, as shown in Fig. 3.14(a). Let y(¢) denote the displacement of the base and
x(¢) the displacement of the mass from its static equilibrium position at ume r.
Then the net elongation of the spring is x — y and the relative velocity between the
two ends of the damper 1s x — y. From the free-body diagram shown in Fig. 3 14(b).
we obtain the equation of motion:

mi+c(x—p)+k(x—y)=0 (3.64)
If (1) = Ysinwt, Eq. (3.64) becomes
mi + cx + kx = Asinwt + Bcos wt (3.65),

where 4 = kY and B = cwY. This shows that giving excitation to the base ts'
equivalent to applying harmonic force of magnitude (kY sin wf + cwY cos wr) to the
mass. By using the solutions given in Egs. (3.59) and (3.60), the steady-state
response of the mass can be expressed as

kYsin(wr — ¢,) . wcYcos(wt — ¢,)
[(k - mc-)z)2 + ((‘w)zll/z [(k - mt.:z)2 + (cw)zl

The phase angle ¢, will be the same for both the terms because it depends on the
values of m, ¢, k, and w, but not on the amplitude of the excitation. Equation (3.66)
can be rewritten as

x,(1)

x, (1) = (3.66)

1/2

i

Xcos(wi — ¢, — ¢,)

k2 + (cw)
Y
(k - mwz)2 + (cw)?

n

12
] cos(wl — ¢, — ;) (3.67)

v(0) = Ysmun
Base
- t

i
h T

+x +2
+9

k(x~y) clx~y)

~
AMAA
VWA~

(a) (b)

Figure 3.14 Base excilauon
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where the ratio of the amplitude of the response x,(1) to that of the base motion
(1) is given by

X
Y

era) |7 [_asant 17 G
(k—-mw2)2+ (cw)? Q1 —r2)2+ (2tr)? '

and ¢, and ¢, by

o an () = 25)
%:tan"(ciu):tan"(z%r) (3.69)

The ratio X/ Y is called the displacement transmissibility.
Note that if the harmonic excitation of the base is expressed in complex form as
y(1) = Re(Ye'™"), the response of the system can be expressed as

x,(1) = Re{(lLizL—)Ye""} (3.70)

—-r? 4+ i2tr
and the transmussibility as
X | V2R
7 = 1+ @] HGo) (3.71)

where |H(iw)]| is given by Eq. (3.55).

In Fig. 3.14(b), the force carried by the support F must be due to the spring and
dashpot which are connected to it. It can be determined as follows:

F=k(x—-y)+c(x-y)=—mi (3.72)
From Eq. (3.67), Eq. (3.72) can be written as
F=mo'Xcos(wt — ¢, — ¢,) = Freos(wl — ¢, — ;) (3.73)
where Fr is the amplitude or maximum value of the transmitted force given by
kF—; = ,2[_1_+§2§r_)f_2]'/2 (3.74)
(1-r2)" + (28r)

The ratio ( Fr/kY ) is known as the force transmissibility.! It can be noticed that the
transmitted force is in phase with the motion of the mass x(r). The variation of the

The use of the concept of transmussibility in the design of vibration 1solation systems 15 discussed 1n
Chapter 9
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force transmitted to the base with the frequency ratio r is shown in Fig. 3.15 for
different values of §.

If z = x — y denotes the motion of the mass relative to the base. the equation of
motion, Eq. (3.64), can be rewritten as

mi+ c:+ kz=-mj=ma?Ysinwi (3.75)
The steady-state solution of Eq. (3.75) is given by
ma?Y sin{wt — ¢,)

[(k - mmz)z + (c‘w)Z]Vz

2(t) = = Zsin(w! - ¢,) (3.76)

where Z, the amplitude of z(7). can be expressed as

mwlyY r?

= =Y
Yk - ma) + (o) (- 1)+ 25r)

and ¢, by Eq. (3.69). The ratio Z/Y is shown graphically in Fig. 3.16.

z

(3.77)
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MPLE 3.2

Vehicle Moving on a Rougﬁoad

Figure 3 17(a) shows a wimple model of a motor vehicle that can vibrate in the vertical
direction while traveling over a rough road. The vehicle has a mass of 1200 kg The
suspension system has a spring constant of 400 kN /m and a damping ratio of { = 0.5 If the
vehicle speed is 100 km/hr, determine the displacement amplitude of the vehicle. The road
surface varies sinusoidally with an amplitude of ¥ = 005 m and a wavelength of 6 m

Green. Vehicle model: m = 1200 kg, k = 400 kN/m, { = 0.5. and speed = 100 km/hr.
Road surface: sinusoidal with ¥ = 0.05 m and period = 6 m.

Find: Displacement amplitude ( X) of the vehicle.

Approach: Model the vehicle as a single degree of freedom system subjected to base motion
as shown in Fig. 3 17(b)

Solution. The frequency w of the base excitaton can be found by dividing the vehicle spreed
by the length of one cycle of road roughness:

100 x 10()0)1

3600 i 29.0887 rad/sec

w=12mf= 2"(
The natural frequency of the vehicle is given by

k (400><10-‘

“=Vm =\ T

12
)' = |8 2574 rad/sec
m

and bhence the frequency ratio r is

w
= — =
w,
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W v(1) = Y sinay

Figure 3.17 Vehicle moving over a rough road

(b)

The amplitude ratio can be found from Eq. (3.63):

172 12
X _ 1+ (2¢r) _ { 1+ (2 %05 x 15933)° }
v { (1-r) + (z;r)’} (1 - 1.5933%) + (2 x 0.5 x 1.5933)°
= 0.8493
Thus the displacement amplitude of the vehicle is given by
X = 0.8473Y = 0.8493(0.05) = 0.0425 m

PLE33 Machine on Resilient Foundation

A heavy machine. weighing 3000 N, is supported on a resilient foundation. The static
deflection of the foundation due to the weight of the machine is found to be 7.5 ¢cm It s
observed that the machine vibrates with an amphtude of 1 cm when the base of the
foundation is subjected to harmonic oscillation at the undamped natural frequency of the
system with an amplitude of 0.2S ¢m. Find (1) the damping constant of the foundation. (2)
the dynamic force ampliiude on the base, and (3) the amplitude of the displacement of the
machine relative to the base




Green. Machine weight (W) = 3000 N, static deflection under W = 7.5 cm, and X = | ¢m,
when y(1) = 0.25snw,7 cm.

Find. ¢, F . and Z.
Approach: Specialize the equations for X/ Y, F,, and Z for the case w = w,
Solution. (1) The stiffness of the foundation can be found from 1ts static deflection:
= weight of machine/8, = 3000,/0.075 = 40,000 N/m
At resonance (w = w, or r = 1), Eq. (3.68) gives

x_oowo . [1+@y e
v = o005 4T | T

The solution of Eq. (E.1) gives { = 0.1291. The damping constant is given by
c=1{-¢ = {/km = 0.1291 X 2 x /40,000 X (3000/9.81) = 903.0512N-s/m (E 2)

(2) The dynamic force amplitude on the base at r = I can be found from Eq. (3.74)

(E1)

2 2
F,=Yk[Al :;{ ] = kX = 40.000 X 001 = 400 N (EY)

(3) The amplitude of the relative displacement of the machine at r = 1 can be obtaned |
from Eq. (3.77):
Y 0.0025

Z= 3 = 7% 0.0291

It can be noticed that X = 0.0l m, ¥ = 0.0025 m, and Z = 0 00968 m: therefore. Z # X - ¥
This is due 10 the phase differences between x, y, and

= 0.00968 m (E4)

3.7 RESPONSE OF A DAMPED SYSTEM
UNDER ROTATING UNBALANCE

Unbalance in rotating machinery is one of the main causes of vibration. A
simplified model of such a machine is shown in Fig. 3.18. The total mass of the
machine 1s M, and there are two eccentric masses m/2 rotating in opposite
directions with a constant angular velocity . The centrifugal force (mew?)/2 due to
each mass will cause excitation of the mass M. We consider two equal masses m/2
rotating in opposite directions in order to have the horizontal components of
excitation of the two masses cancel each other. However, the vertical components of
excitation add together and act along the axis of symmetry A — 4 in Fig. 3.18. If
the angular position of the masses 1s measured from a horizontal position, the total
vertical component of the excitation is always given by F(r) = mew?sinwr. The
equation of motion can be derived by the usual procedure:

M5 + cx + kx = mew’ sin wt (3.78)

The solution of this equation will be identical to Eq. (3.60) if we replace m and F,
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Figure 3.18 Rotaling unbalanced masses

by M and mew? respectively. This solution can also be expressed as
2
x,(1) = Xsin(wt ~ ¢) = lm[%(wﬁ) IH(iU)le"“""’] (3.19)

where w, = yk/M and X and ¢ denote the amplitude and the phase angle of
vibration given by

me w? me ( w\?
X= 3 s 172 = T{(:) IH(IU)' (380)
[(k = M) + (co)] "
and
_ cw
¢ = tan l(m) (381)1
By defining { = ¢/c, and ¢, = 2Muw,, Eqgs. (3.80) and (3.81) can be rewritten as
MXx r? 2 (s
—_— = Y Bl |H(iw)| (3.82)
" o -yt e @]
and
6= lan*(lzf’rz) (3.83) |

The variation of MX/me with r for different values of { is shown in Fig. 3.16. On |
the other hand, the graph of ¢ versus r remains as in Fig. 3.11(b). The following
observations can be made from Eq. (3.82) and Fig. 3.16:

L. All the curves begin at zero amplitude. The amplitude near resonance (w = w,)
is markedly affected by damping. Thus if the machine is to be run near
resonance, damping should be introduced purposefully 10 avoid dangerous
amplitudes.
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2. At very high speeds (w large). MX/me is almost unity. and the effect of
damping is negligible.
3. The maximum of MX/me occurs when

d(MX
d_r(—'_ﬂ—e’—) =0 (3.84)
The solution of Eq. (3.84) gives
r= -—v.——L—-_—— >1
"1] _ 2{2

Accordingly, the peaks occur to the right of the resonance value of r = 1.

IXAMPLE 3.4 Francls Water Turbine

The schematic diagram of a Francis water turbine 1s shown in Fig. 3.19 in which water flows
from A 1nto the blades B and down into the tail race C. The rotor has a mass of 250 kg and
an unbalance (me) of 5 kg-mm The radial clearance between the rotor and the stator 1s
5 mm. The turbine operates in the speed range 600 to 6000 rpm. The steel shaft carrying the
rotor can be assumed 1o be clamped at the bearings. Determine the diameter of the shaft so
that the rotor is always clear of the stator at all the operating speeds of the turbine. Assume
damping to be negligible.

Bcarmg—’*'

Shaft ——f

Rotor

A Lﬂrﬁmm

— 7, (;;M

}

Tail race

Figure 3.19



Given: Turbine: mass (M) = 250 kg, unbalance (me) =5 kg-mm, and speed range =
600-6000 rpm. Shaft- length = 2 m and maximum radal defleczon = 5 mm.

Find. Diameter of the shalt

Approach. Equate the maximum amplitude (radial deflection) of rotor to 5 mm. Use thet
expression for the stffness of a cantilever beam.

Solution. The maximum amplitude of the shaft (rotor) due to rotating unbalance can be¢
obtained from Eq. (3 80) by setting ¢ = 0 as

mewz mew” (E 1 )

X=l-md) “xa-m

where me = 5 kg-mm, M = 250 kg, and the limiting value of X =5 mm. The value of «
ranges from

27

600 rpm = 600 X 60 = 20 rad/sec

2

6000 rpm = 6000 X o = 2007 rad /sec

while the natural frequency of the system is given by

v =\ = ‘/% = 0.0625/k rad /sec (E.2)

if k is in N/m. For w = 207 rad/sec, Eq. (E.1) gives

-3 2 2
0.005 ~ (5.0 x 1073) x (2201r) _ 2 —
kl_(zoq,) k — 10°n
0.004 &
k =10.04 x 1072 N/m (E3)

For w = 2007 rad/sec, Eq. (E.1) gives

(5.0 X107%) x (2007)° 20072

0.005 = -,
ol (2007 )? k~ 10"
~ 0.004 k
k = 10.04 X 10°72 N/m (E4)

From Fig. 3.16, we find that the amplitude of vibration of the rotating shaft can be minimized
by making r = w/w, very large. This means that v, must be made small compared to
w—that is, k must be made small. This can be achieved by selecting the value of k as
10.04 X 10*7> N/m. Since the stiffiness of a cantilever beam (shaft) supporting a load (rotor)
at the end is given by

k= 3EI JE(M")

T orle

64 (E.S)
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the diameter of the beam (shaf1) can be found:

_ 6ak _ (64)(10.04 x 10°72)(2%)

d* -
3nE 3m(2.07 x 10')

=2.6005 X 10 ¢ m*

or
d=01270 m = 127 mm (E6)

3.8 FORCED VIBRATION WITH
COULOMB DAMPING

For a single degree of freedom system with Coulomb or dry friction damping.
subjected to a harmonic force F(7) = Fysinws as in Fig. 3.20. the equation of
motion is given by ’

mx¥ + kx + pN = F(t) = Fsinwr (3.85)

where the sign of the friction force (N ) 1s positive (negative) when the mass moves
from left to right (right to left). The exact solution of Eq. (3.85) is quite involved.
However, we can expect that if the dry friction damping force is large, the motion of
the mass will be discontinuous. On the other hand, if the dry friction force is small
compared to the amplitude of the applied force F,. the steady state solution is
expected 1o be nearly harmonic. In this case, we can find an approximate solution of
Eq. (3.85) by finding an equivalent viscous damping ratio. To find an equivalent
viscous damping ratio, we equate the energy dissipated due to dry friction to the
energy dissipated by an equivalent viscous damper during a full cycle of motion. If
the amplitude of motion is denoted as X. the energy dissipated by the friction force
N in a quarter cycle is pNX. Hence in a full cycle, the energy dissipated by dry
friction damping is given by

AW = 4uNX (3.86)

If the equivalent viscous damping constant is denoted as Ceq» the energy dissipated
during a full cycle [see Eq. (2.92)] will be

AW = ﬂt‘muxz (3.87)
By equating Egs. (3.86) and (3.87), we obtain

., = N (3.88)

A awX

r———o )

m An =
BN\ \\ W\ Fosmon

Figure 3.20
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Thus the steady-stale response is given by
x,(1) = Xsin(wr ~ ¢) (3.89)

where the amplitude X can be found from Eq. (3.60):

F Fo/k
X = 2(l - 7 = (2 0/ ) s (3‘90)
_ 2 2 2
[(" ma’)” + (c“l“’)] [(1 - ﬁ;) + (2§:ai)
W, W,
with
Cq  Ca _ _4uN__ _ 2N
$ea = . T 2me,  2mugeX T amwo,X (.9
Substitution of Eq. (3.91) into Eq. (3.90) gives

Fosk

X = (10/ ) = (3.92)

1 w? 4uN\?
- —-3 + ( nkX)
The solution of this equation gives the amplitude X as
172
- (auN)z
7 F
xofo) 1T (3.93)
k o2\ .

1 - —
-]

As stated earlier, Eq. (3.93) can be used only if the friction force is small compared
to Fy. In fact. the limiting value of the friction force uN can be found from Eq.

(3.93). To avoid imaginary values of X, we need to have

auN F 4
1—(75) >0 or pN>1_r'

If this condition is not satisfied, the exact analysis, given in Ref. [3.3]. is to be used.
The phase angle ¢ appearing in Eq. (3.89) can be found using Eq. (3.52):

W
28, — 4uN
CooW “QAw, kX
=1 fl_i._)=ta»| = tan- ! L 394
¢ tan (k—mw2 n 1—”—2 n ]_..“.’.1. (3.94)
2 (.)2

W,
n

n
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Substituting Eq. (3.93) into Eq. (3.94) for X, we obtain

4uN
nF,
172

1= auN ?

F,
Equation (3.94) shows that tan ¢ is a constant for a given value of F,/uN. ¢ is
discontinuous at w/w, = 1 (resonance) since it takes a positive value for w/w, <1
and a negative value for w/w, > 1. Thus Eq. (3.95) can also be expressed as

- N -
t nFy

[

¢ = tan (3.95)

¢ =tan"! (3.96)

(- ()"

Equation (3.93) shows that friction serves to limit the amplitude of forced
vibraton for w/w, # 1. However, at resonance (w/w, = 1), the amplitude becomes
infinite. This can be explained as follows. The energy directed into the system over
one cycle when it is excited harmonically at resonance is

7 _dx
AW’ = Fedo= | Fo dt
j;yclc j(') a
T=2nf0
= [ Fysinowt - [wXcos(wt — ¢)] dr (3.97)
0
Since Eq. (3.94) gives ¢ = 90° at resonance, Eq. (3.97) becomes
AW = Fox..,f“/‘“sinz wtdt = nE,X (3.98)
()

The energy dissipated from the system is given by Eq. (3.86). Since nFy, X > 4uNX
for X to be real-valued, AW’ > AW at resonance (see Fig. 3.21). Thus more energ)

aw
AW = aF.X
nF,
AW = 4uNX

> |

N
&, 3

@:} \\\*""v‘\\ N
5> 1
+ X

o

Figure 3.21
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is directed into the system per cycle than is dissipated per cycle. This extra energy 1
used to build up the amplitude of vibration. For the nonresonant condition
(w/w, # 1), the energy input can be found from Eq. (3.97):

AW = wF,,szw/”sin wtcos(wl — ¢p) di = wFyXsing (3.99)
o

Due to the presence of sin¢ in Eq. (3.99). the input energy curve in Fig. 3.21 is
made to coincide with the dissipated energy curve, so the amplitude is limited. Thus
the phase of the motion ¢ can be seen to limit the amplitude of the motion.

The periodic response of a spring-mass system with Coulomb damping sub-
Jected to base excitation is given in Refs. {3.10. 3.11].

—rLES.S Spring-Mass System with Coulomb Damping

A spring-mass system, having a mass of 10 kg and a spnng of stffness of 4000 N/m, vibrates
on a horizontal surface The coefficient of friction 1s 0.12 When subjected to a harmonic {orce
of frequency 2 Hz, the mass is found to vibrate with an amplitude of 40 mm. Find the
amplitude of the harmonic force applied to the mass.

Gwen. Spring-mass system with Coulomb fricion—m = 10 kg, k = 4000 N/m, p = 0.12,
harmonic force with frequency = 2 Hz, vibration amplitude = 40 mm

Find: Amplitude of the applied force.
Approach: Use Eq. (3 93).
Solution. The vertical force (weight) of the mass 1s N = mg =10 x 9.81 = 98.1 N. The

natural frequency 1s
[k / 4000
o=V =V1 = 20 rad/sec

and the frequency ratio 1s

w 2 X 27w
ol T i 0.6283
The amplitude of vibration X is given by Eq. (3.93): ‘
, s
L[N
X = ky —W
=4 —
(i-2))
w'v
» I
{ 4(0.12)(98.1) }
V- TR
0.04 = 20 b

0001 ()~ o681y

The solution of this equation gives £, = 97.9874 N
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3.9 FORCED VIBRATION WITH
HYSTERESIS DAMPING

Consider a single degree of freedom system with hysteresis damping and
to a harmonic force F{r) = Fysinwi, as indicated in Fig. 3.22. The eq
motion of the mass can be derived. using Eq. (2.132). as

Bk

mx + —‘;-,i + kx = Fysinwrt

where (Bk/w)x = (h/w)x denotes the damping force.* Although the so
Eq. (3.100) is quite involved for a general forcing function F(z). our inte,
find the response under a harmonic force.

The steady-state solution of Eq. (3.100) can be assumed:

x,(1) = Xsin(wr ~ ¢)
By substituting Eq. (3.101) into Eq. (3.100), we obtain
F()

2 172
el

1 B
2
wﬂ
Equations (3.102) and (3.103) are shown plotted in Fig. 3.23 for several valu
A comparison of Fig. 3.23 with Fig 3.11 for viscous damping reveals the foll

X =
k

and

¢ = tan

1. The amplitude ratio
_X
(Fo/k)

attains its maximum value of Fy/kB at the resonant frequency (w = w,)
case of hysteresis damping, while it occurs at a frequency below resc
(@ < w,) in the case of viscous damping.

2. The phase angle ¢ has a value of tan '(8) at w = 0 in the case of hys
damping, while it has a value of zero at w = 0 in the case of viscous dar
This indicates that the response can never be in phase with the forcing fu.
in the case of hysteresis damping.

* In conirasi 10 viscous dampsng, this damping force here can be seen 10 be a funcuon of the
frequency w (see Section 2.8)
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Note that if the harmonic excitation is assumed to be F(t) = Fee'' in Fig,
3.22, the equation of motion becomes

mi + B—:’x + kx = Fe'' (3.104)

In this case, the response x(r) is also a harmonic function involving the factor
e'“’. Hence x(t) is given by iwx(¢), and Eq. (3.104) becomes

mi + k(1 +if)x = Fe™' (3.105)

where the quantity k(1 + iB) is called the complex stiffness or complex damping
{3.7]. The steady-state solution of Eq. (3.105) is given by the real part of

x{1) = (3.106)
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3.10 FORCED MOTION WITH OTHER

TYPES OF DAMPING

Viscous damping is the simplest form of damping to use in practice, since 1t leads to
linear equations of motion. In the cases of Coulomb and hysteretic damping, we
defined equivalent viscous damping coefficients to simplify the analysis. Even for a
more complex form of damping, we define an equivalent viscous damping coeffi-
cient, as illustrated in the following examples. The practical use of equivalent
damping is discussed in Ref. {3.12].

EXAMPLE 3.6

Quadratic Damping

Quadranc or veloaty squared damping 1s present whenever a body moves in a turbulent fluid
flow.

Gwen: Veloaty squared damping,

Find: Equivalent viscous damping coefficient and amplitude of steady state vibration of a
single degree of freedom system having quadrauc damping,

Approach: Equate energies dissipated per cycle during harmonic motion.
Solution. The damping force is assumed to be
= ra(x) (E1)

where a 15 a constant, % is the relative velocity across the damper, and the negative (positive)
sign must be used in Eq. (E.1) when X 1s positive (negative). The energy dissipated per cycle
during harmonic motion x(f) = X sinw! is given by

2/2 5
AW = fo a(x) dx = 2X‘f 7 gu? cos’ wrd(wt) = gw'ax‘ (E2)
-X -n/2
By equating this energy to the energy dissipated in an equivalent viscous damper [see Eq.
(2.92)):
AW = mc, wX? (E3)
we obtain the equivalent viscous damping coefficient (Ceq):

8

Cq = FpawX (E4)

It can be noted that Cq is MOt a constant but varies with @ and X The amplitude of the
steady-state response can be found from Eq (3.30):

X 1

I N NIRRT (E5)
(1-77) + (2,r)
where r = w/w, and
f“‘ =T 2muw, (E'b)
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Using Eqs. (E.4) and (E.6), Eq (E.S) can be solved to obtain

3 1/2
3am| (-2 (1-r2)"  (8ar’8, ;
x= W[‘ 7t 7 9w (E7)

CITATION AND STABILITY ANALYSIS

The force acting on a vibrating system is usually external to the system and
independent of the motion. However, there are systems for which the exciting force
is a function of the motion parameters of the system, such as displacement, velocity.
or acceleration. Such systems are called self-excited vibrating systems since the
motion itself produces the exciting force (see Problem 3.46). The instability of
rotating shafts, the flutter of turbine blades, the flow induced vibration of pipes, and
the automobile wheel shimmy and aerodynamically induced motion of bridges are
typical examples of self-excited vibrations.

A system is dynamically stable if the motion (or displacement) converges or
remains steady with time. On the other hand, if the amplitude of displacement
increases continuously (diverges) with time, it is said to be dynamically unstable.
The motion diverges and the system becomes unstable if energy is fed into the
system through self-excitation. To see the circumstances that lead to instability, we
consider the equation of motion of a single degree of freedom system:

mi o+ ok + kx =0 (3.107)

If a solution of the form x(r) = Ce*, where C is a constant, is assumed, Eq. (3.107)
leads to the characteristic equation

¢
st st = 0 (3.108)
The roots of this equation are
¢ lfrey? k\1'?
S12% T gm t i[(m) B 4(;)} (3.109)

Sinc(_: the solution is assumed 1o be x(¢) = Ce™, the motion will be diverging and
apertodic if the roots s, and s, are real and positive. This situation can be avoided if
¢/m and k/m are positive. The motion will also diverge if the roots 5, and s, are
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complex conjugates with positive real parts. To analyze the situation, let the roots s,
and s, of Eq. (3.108) be expressed as

5, =p+iq, s;=p—iq (3.110)

where p and ¢q are real numbers so that
2 k
(s=s)(5~5,) =52— (5, +5,)5+s55,=s>+ ,—Cn-s + =0 (3.111)

Equations (3.111) and (3.110) give

%= — (s, +5,) = ~-2p, ;I:'—=s.s2=pz+q2 (3.112)
Equations (3.112) show that for negative p. ¢/m must be positive and for positive
p? + g% k/m must be positive. Thus the system will be dynamically stable if ¢ and
k are positive (assuming that m is positive).

EXAMPLE 3.7

Instability of a Vibrating System

Find the value of free stream velocity u at which the airfoil section (single degree of freedom
system) shown 1n Fig. 3.24 becomes unstable.!

Gwen: Single degree of freedom airfoil section in flud flow
Find: Velocity of the fluid which causes instability of the arfoil (or mass m).

Approach: Find the vertical force acting on the airfoil (or mass m) and obtain the condition
that leads to zero damping.

Solution. The vertical force acting on the airfoil (or mass m) due to fluid flow can be
expressed as {3.4}

F= %puzDC‘ (E.1)

where p = density of the fluid, u = free stream velocity, D = width of the cross section
normal to the fluid flow direction, and C, = vertical force coefficient, which can be expressed
as

";§' (C; cosa + Cpsina) (E2)

c =

where u,, is the relative velocity of the fAuid, C, is the lift coefficient, C, is the drag

The same analysis 1s vahd for a vibrating structure such as a water tank (Fig 3 25a) or galloping of
an ice-coated power hine (Fig 3 25b) under wind loading [3 4-3 6]
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Figure 3.24
coeflicient, and a is the angle of attack (see Fig 3 24):
a=-un (5] (E3)
u
For small angles of actack,
X
a=-7 (E 4)

and C, can be approximated, using Taylor’s series expansion about a = 0. as

ac,
C=C,0* Ta

a (E.5)

a=0
where, for small values of a, u,, = u and Eq. (E.2) becomes

C,=C cosa+ Cpsina (E6)
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¢ }stffness and

damping
< ‘Water tank l
" (m)
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u
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Figure 3.25
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Equation (E.5) can be rewritten, using Egs. (E.6) and (E 4), as

C, =(C cosa + Cpsina)

[ [
- + a[—;l cosa — C; sina + 7(;’3 sina

a
+Cp cos a]
o= )
aC,
=C +a—5—
‘ a da |,y
x({9C
SR & R (E7)
Substitution of Eq. (E.7) into Eq. (E.1) gives
1 1 ac, .
F= ipuzDC,' e 3pub53 E (E8)
The equation of motion of the airfoil (or mass m) s
L 1 1 ac, .
mx+cx+kx=F=—2—pu2DC,'“‘nf 70"DE',_"X (E9)

The first term on the right-hand side of Eq. (E.9) produces a static displacement and hence
ounly the second term can cause instability of the system The equation of motion, considering
only the second term on the right-hand side, 1s
. . . 1 acC, R
mi + ¢cx + kx = mx + [c + 5puD—— x+kx=0 (E.10)
= 2 da |, _q

Note that m includes the mass of the entrained fluid. We can see from Eq (E.10) thai the
displacement of the airfoil (or mass m) will grow without bound (1.e, the system becomes
unstable) if ¢ is negative. Hence the minimum velocity of the fluid for the onset of unstable

oscillations is given by ¢ = 0, or,
2
w= - { —%} (E11)
PDGa ‘

a=0

a
The value of a—a‘ =" 2.7 for a square section in a steady flow (3.4},

3.12 COMPUTER PROGRAM

A FORTRAN computer program, in the form of subroutine HARESP, is given for
finding the steady-state response of a viscously damped single degree of freedom
system under the harmonic force Fycoswr or Fysinwi. The arguments of the
subroutine are as follows:

XM = Mass. Input data.

XC = Damping constant. Input data.

XK = Spring stiffness. Input data.
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FO = Amphtude of the force. Input data.
oM = Forcing frequency. Input data.
1C = Integer for idenufying the nature of the force. 1C = 1 for

cosine variation and 1C = 0 for sine variation. Input data.

N = Number of time steps in a cycle at which the response is
to be printed. Input data.

X. XD. XDD = Arrays of dimension A cach, which contain the computed
values of displacement. velocity. and acceleration. X(1) =
x(t,). XD = x(1,). XDD(l) = {(¢,). Output.

XAMP = Amplitude of the response (Eg. (3.51)). Output.

XPHI = Phase angle of the response (Eq. (3.52)). Output.

To llustrate the use of subroutine HARESP. an example is considered with
m=5kg ¢=20N-s/m. k =500 N/s. F; =250 N, « = 40 rad/s. N = 20, and
F(1) = F,sinwt. The main program. which calls HARESP. subroutine HARESP,
and the output of the program are given below.

PROGRAM 3
MAIN PROGRAM WHICH CALLS HARESP

2Nz EsNoNoNa N

FOLLOWING 2 LINES CONTAIN PROBLEM-DEPENDENT DATA

DIMENSION X(20),XD(20),XDD(20)

DATA XM,XC,XK,F0,0M,N,1C/5.0,20.0,500.0,250.0,40.0,20,0/
END OF PROBLEM-DEPENDENT DATA

CALL HARESP {XM,XC,XK,F0,OM,IC,N,X,XD,XDD,XAMP,XPHI)

PRINT 100
100 FORMAT (//,40H STEADY STATE RESPONSE OF AN UNDERDAMPED,/,

2 53H SINGLE DEGREE OF FREEDOM SYSTEM UNDER HARMONIC FORCE)

PRINT 200, XM,XC,XK,FO,OM,IC,N
200 FORMAT (//,12H GIVEN DATA:,/,5H XM =,E15.8,/,5H XC =,E15.8,/,

2 SH XK =,E15.8,/,5H FO =,E15.8,/,5H OM =,E15.8,/,5H IC =,12,/,

35HN =,12)

PRINT 300 ,
300 FORMAT (//,10H RESPONSE:,//,5H 1 ,3X,5H X(I),12X,6H XD(I),

2 11X, 7H XDD(1),/)

DO 400 1=1,N
400 PRINT 500,1,X(1),XD(1),XDD(I)
500 FORMAT (14,2X,E15.8,2X,E15.8,2X,E15.8)
STOP “
END

a
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SUBROUTINE HARESP

20

30

SUBROUTINE HARESP (XM,XC,XK,F0,0M,IC,N,X,XD,XDD,XAMP,XPHI)

DIMENSION X(N),XD(N),XDD(N)

OMN=SQRT (XK /XM)

V XAT=XG/(2.0%XM*OMN)
DST=FO/XK
R=0M/OMN

XAMP=DST/SQRT((1.0-R¥#2)#*%2+(2 . 0*XAI*R)#*2)

XPHI=ATAN(2.0*XAI*R/(1.0-R*

*2))

DELT=2.0%3.16416/(OM*REAL(N))
IF (IC .EQ. 0) GO TO 20
TIME=0.0

DO 10 I=1,N
TIME=TIME+DELT
X (1)=XAMP*COS (OM*TIME-XPHI)

XD(I)=-XAMP*OM*SIN(OM*TIME -XPHI)

XDD (X)=-XAMP* (OM**2)*C0S (OM*TIME -XPHI )
RETURN
TIME=0.0

DO 30 I=1,N
TIME=TIME+DELT
X(I)=XAMP*SIN(OM*TIME-XPHI)
XD(1)=XAMP*OM*COS (OM*TIME-XPHI)
XDD(I)=-XAMP*(OM**2)*SIN(OM*TIME-XPHI)

RETURN

EN

STEADY STATE RESPONSE OF AN UNDERDAMPED

D

SINGLE DEGREE OF FREEDOM SYSTEM UNDER HARMONIC FORCE

GIVEN DATA:
XM = 0.50000000E+01
XC = 0.20000000E+02
XK = 0.50000000E+03
FO = 0.25000000E+03
OM = 0.40000000E+02
IC =0
N =20
RESPONSE :
I X(I)
1 0.13528203E-01
2 0.22216609E-01
3 0.28730286E-01
4 0.32631632E-01
5 0.32958329E-01

coooC

XD(I)

12103548E+01
98389733E+00
66112888E+00
27364409E+00
16062698E+00

XDD(I)

-0.21665126E+02
-0.35546574E+02
-0.645968460E+02
-0.51890614E+02
-0.52733330E+02
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6 0.30258821E-01 -0.54113245E+00 -0.48414116E+02
7  0.24597352E-01 -0.88866800E+00 -0.39355762E+02
8 0.16528117E-01 -0.11492138E+01 -0.26444986E+02
9 0.68409811E-02 -0.12972662E+01 -0.10945570E+02

10 -0.35157942E-02 -0.13183327E+01 0.56252708E+01

11 -0.13528424E-01 -0.12103508E+01 0.21645479E+02

12 -0.22216786E-01 -0.98389095E+00  0.35546856E+02

13 -0.28730409E-01 -0.66112041E+00 0.45968655E+02

14 -0.32431684E-01 -0.27363408E+00 0.51890697E+02

15 -0.32958303E-01 0.14063700E+00 0.52733284E+02

16 -0.30258721E-01 0.54114151E+00 0.48413952E+02

17 -0.24597190E-01 0.88867509E+00  0.39355507E+02

18 -0.16527895E-01 0.11492189E+01 0.26444633E+02

19 -0.68407385E-02  0.12972684E+01  0.10945182E+02

20 0.35160405E-02 0.13183316E+01 -0.56256652E+01

REFERENCES

3.1. G B. Thomas and R L. Finney. Calculus and Analytic Geometry (6th Ed.). Addison-
Wesley, Reading. Mass.. 1984

3.2. J. W. Nilsson, Electric Cireuits, Addison-Wesley. Reading, Mass.. 1983.

33. J. P Den Hartog. “Forced vibrations with combined Coulomb and viscous friction,”
Journal of Appled Mechamcs (Transactions of ASME), Vol. 53, 1931. pp APM
107-115

3.4. R D. Blevins, Flow-Induced Vibration. Van Nostrand Reinhold, New York. 1977.

35. J. C. R. Hunt and D. J W Richards, “Overhead line oscillations and the effect of
aerodynamic dampers,” Proceedings of the Instuute of Electrical Engineers. London,
Vol. 116. 1969. pp 1869-1874. .

3.6. K. P.Singh and A I Soler. Mechanical Design of Heat Exchangers and Pressure Vessel
Components. Arcturus Publishers. Cherry Hill, New Jersey. 1984.

3.7. N. O. Myklestad. " The concept of complex damping.” Journal of Apphed Mechamcs.
Vol. 19, 1952, pp 284-286

38. R. Plunkett (Ed.), Mechamcal Impedance Methods for Mechamcal Vibranons. American
Society of Mechamcal Engineers, New York, 1958.

39. A. D. Dimarogonas. Vibranon Engineering. West Publishing Co.. St. Paul. 1976.

3.10. B. Westermo and F. Udwadia. “Periodic response of a sliding oscillator system to
harmonic excitation.” Earthquahe Engeering and Structural Dynanucs, Vol 11, No 1,
1983, pp 135-146.

3.11. M. S. Hundal, “Response of a base excited system with Coulomb viscous friction,”
Journal of Sound and Vibration, Vol 64.1979. pp 371-378,

3.12. ] P Bandstra, * Comparison of equivalent viscous damping and nonlinear damping in

discrete and continuous vibrating systems.” Journal of Vibranon. Acousncs, Stress, and
Relwabihty i Design. Vol. 108, 1983. pp. 382-392



Problems 1o/

REVIEW QUESTIONS
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3.2

33.

3.4

39.

3.10.

RATE
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3.13.

3.14.

3.16.

317

3.18.
319
3.20.

3.21.
322
3.23.

How are the amplitude, frequency, and phase of a steady-siate vibration related to
those of the applied harmonic force?

Explain why a constant force on the vibrating mass has no effect on the steady-state
vibrauion.

Define the term miagmification factor -How 1s the magnification factor related to the
frequency ratio?

What will be the frequency of the applied force with respect 1o the natural frequency of
the system if the magnification factor is less than unity?

What are the amplitude and the phase angle of the response of a viscously damped
system in the neighborhood of resonance”

Is the phase angle corresponding to the peak amplitude of a viscously damped system
ever larger than 90°?

Why is damping considered only 1n the neighborhood of resonance in most cases?

Show the various terms in the forced equation of motion of a viscously damped system
in a vector diagram.

What happens to the response of an undamped svstem at resonance?

Define these terms: beating, quality factor. transmissibility, complex stiffiness. quadratic
damping.

Give a physical explanation of why the magnification factor is nearly equal 10 1 for
small values of r and is small for large values of r

Will the force transmitted to the base of a spring-mounted machine decrease with the
addition of damping?

How does the force transmitted to the base change as the speed of the machine
increases”?

If a vehicle vibrates badly while moving on a umiformly bumpy road, will a change in
the speed improve the condition?

. Is it possible 10 find the maximum amplitude of a damped forced vibration for any

value of r by equating the energy dissipated by damping to the work done by the
external force?

What assumptions are made about the motion of a forced vibration with nonviscous
damping in finding the amplitude?

Is it possible 1o find the approximate value of the amplitude of a damped forced
vibration without considering damping at all? If so. under what circumstances’

Is dry friction effective in limiting the reasonant ampliude?

How do you find the response of a viscously damped system under rotating unbalance”

What is the frequency of the response of a viscously damped system when the external
force is F,ysinw? Is this response harmonic?

What is the difference between the peak amplitude and the resonant amplitude?
Why is viscous damping used in most cases rather than other types of damping”
What is self-excited vibration?
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PROBLEMS
The problem assignments are organized as follows:
Section
Problems Covered Topic Covered
31-39 33 Undamped systems
3.10-3.16 34 Damped systems
3.17-3.22 3.6 Base excitation
3.23-332 3.7 Rotating unbalance
3.33-335 3.8 Response under Coulomb damping

3.36-3.3.37 39 Response under hysteresis damping
3.38-341 3.10 Response under other types of

3.46

damping
311 Self excitation and stability

3.42-345 312 Computer program
3.47-3.48 — Projects

3.1

3.2

33.

34.

3.5.

3.6.

3.7.*

38

A weight of 50 N is suspended from a spring of stiffness 4000 N /m and is subjected to
a harmonic force of amplitude 60 N and frequency 6 Hz. Find (i) the extension of the
spring due to the suspended weight, (ii) the static displacement of the spring due to the
maximum applied force, and (iii) the amplitude of forced motion of the weight.

A spring-mass system is subjected to a harmonic force whose frequency is close to the
natural frequency of the system. If the forcing frequency is 39.8 Hz and the natural
frequency is 40.0 Hz, determine the period of beating.

A spring-mass system consists of a mass weighing 100 N and a spring with a stiffness
of 2000 N/m. The mass is subjected to resonance by a harmonic force F(¢) = 25
cos wt N. Find the amplitude of the forced motion at the end of (i) 4 cycle, (i) 23
cycles, and (iii) 55 cycles.

A mass m is suspended from a spring of stiffiness 4000 N /m and is subjected to a
harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude
of the forced motion of the mass is observed to be 20 mm. Find the value of m.

A spring-mass system with m = 10 kg and k = 5000 N /m is subjected to a harmonic
force of amplitude 250 N and frequency w. If the maximum amplitude of the mass is
observed to be 100 mm, find the value of w.

In Fig. 3.1(a), a periodic force F(r) = F,cos wr is applied at a point on the spring that
is located at a distance of 25% of its length from the fixed support. Assuming that
¢ =0, find the steady state response of the mass m.

Design a solid steel shaft supported in bearings which carries the rotor of a turbine at
the middle. The rotor weighs 500 1b and delivers a power of 200 hp at 3000 rpm. In
order 1o keep the stress due to the unbalance in the rotor small, the critical speed of
the shaft is to be made one-fifth of the operating speed of the rotor. The length of the
shaft is to be made equal to at least 30 times its diameter.

A hollow steel shaft, of length 100 in., outer diameter 4 in. and inner diameter 3.5 in.,
carries the rotor of a turbine, weighing 500 Ib, at the middle and is supported at the
ends in bearings. The clearance between the rotor and the stator is 0.5 in. The rotor
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39.

3.10.

311

312

3.13.

has an eccentricity equivalent to a weight of 0.5 1b at a radius of 2 in. A limit switch is
installed to stop the rotor whenever the rotor touches the stator. If the rotor operates
at resonance, how long will it take to activate the limit switch? Assume the initial
displacement and velocity of the rotor perpendicular to the shaft to be zero.

A steel cantilever beam, carrying a weight of 0.1 Ib at the free end, is used as a
frequency meter.t The beam has a length of 10 in., width of 0.2 in., and thickness of
0.05 in. The internal friction is equivalent to a damping ratio of 0.01. When the fixed
end of the beam is subjected to a harmonic displacement y(r) = 0.05cos wr, the
maximum tip displacement has been observed to be 2.5 in. Find the forcing frequency.
A spring-mass-damper system is subjected to a harmonic force. The amplitude is
found to be 20 mm at resonance and 10 mm at a frequency 0.75 times the resonant
frequency. Find the damping ratio of the system.

Find the frequency ratio r = w/w, at which the amplitude of a single degree of
freedom damped system attains the maximum value. Also find the value of the
maximum amplitude.

For the system shown in Fig. 3.26, x and y denote, respectively, the absolute
displacements of the mass m and the end Q of the dashpot ¢,. (i) Derive the equation
of motion of the mass m, (ii) find the steady state displacement of the mass m, and
(iii) find the force transmitted to the support at P, when the end Q is subjected to the
harmonic motion y(¢) = Ycos wr.

4 %) t—-’ x(1) ¥(1) = Y cos wt
__{ I,_ﬂ 3]
F k __l E_.
/ AVAVAVAVAVAZ " Q
Figure 3.26

Show that, for small values of damping, the damping ratio { can be expressed as
¢ = W) T Wy

Wy + W,
where w, and w, are the frequencies corresponding to the half power points.

A torsional system consists of a disc of mass moment of inertia J, = 10 kg-n?, a
torsional damper of damping constant ¢, = 300 N-m-s/rad, and a steel shaft of
diameter 4 cm and length 1 m (fixed at one end and attached to the disc at the other
end). A steady angular oscillation of amplitude 2° is observed when a harmonic torque
of magnitude 1000 N-m is applied to the disc. (i) Find the frequency of the applied
torque. (ii) Find the maximum torque transmitted to the support.

For a vibrating system, m = 10 kg, k = 2500 N/m, and ¢ = 45 N-s/m. A harmonic
force of amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial
displacement and velocity of the mass are 15 mm and 5 m/s, find the complete
solution representing the motion of the mass.

The use of cantilever beams as frequency meters is discussed in detail in Section 10.4.
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3.16. The peak amplitude of a single degree of freedom system, under a harmonic excita.

317

3.19.

3.20.

3.21.
3.22.

3.23.

tion, is observed to be 0.2 in. If the undamped natural frequency of the system is 5 H,
and the static deflection of the mass under the maximum force is 0.1 in., (i) esﬁmaté
the damping ratio of the system, and (ii) find the frequencies corresponding to the
amplitudes at half power.

A single story building frame is subjected to a harmonic ground acceleration as showp,
in Fig. 3.27. Find the steady state motion of the floor (mass m).

Find the horizontal displacement of the floor (mass m) of the building frame shown in
Fig. 3.27 when the ground acceleration is given by X, = 100 sin wr mm/sec’. Assume
m=2000 kg, k=01 MN/m, w=25 rad/sec, and x,(1=0)=x(1=0)=
x(t=0)=%x(:=0)=0.

If the ground is subjected to a horizontal harmonic displacement with frequency
w = 200 rad/sec and amplitude X, = 15 mm in Fig. 3.27, find the amplitude of
vibration of the floor (mass m). Assume the mass of the floor as 2000 kg and the
stiffness of the columns as 0.5 MN /m.

§——> x(0) ﬁ——» (1)

[N
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_ B s o

Jg(t) = A cos ot »(t) = Y cos wt

Figure 3.27 Figure 3.28

An automobile is modeled as a single degree of freedom system vibrating in the
vertical direction. It is driven along a road whose elevation varies sinusoidally. The
distance from peak to trough is 0.2 m and the distance along the road between the
peaks is 35 m. If the natural frequency of the automobile'is 2 Hz and the damping
ratio of the shock absorbers is 0.15, determine the amplitude of vibration of the
automobile at a speed of 60 km/hour. If the speed of the automobile is varicd, find
the most unfavorable speed for the passengers.

Derive Eq. (3.74).

A single story building frame is modeled by a rigid floor of mass m and columns of
stiffness k as shown in Fig. 3.28. It is proposed to attach a damper as shown in Fig
3.28 to absorb vibrations due to a horizontal ground motion y(r) = Y cos wt. Derive
an expression for the damping constant of the damper that absorbs maximum power.

One of the tail rotor blades of a helicopter has an unbalanced mass of m = 0.5 kg ata
distance of ¢ = 0.15 m from the axis of rotation, as shown in Fig. 3.29. The tail section
has a length of 4 m, a mass of 240 kg, a flexural stiffness ( EJ) of 25 MN — m’, and 2
damping ratio of 0.15. The mass of the tail rotor blades, including their drive system,
is 20 kg. Determine the forced response of the tail section when the blades rotate at
1500 rpm.
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Tail rotor blades

Tail section, EJ

Figure 3.29

3.24.

When an exhaust fan of mass 380 kg is supported on springs with negligible damping,
the resulting static deflection is found to be 45 mm. If the fan has a rotating unbalance
of 0.15 kg-m, find (i) the amplitude of vibration at 1750 rpm and (ii) the force
transmitted to the ground at this speed.

A fixed-fixed steel beam, of length S m, width 0.5 m, and thickness 0.1 m, carries an
electric motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig.
3.30. A rotating force of magnitude F, = 5000 N is developed due to the unbalance in
the rotor of the motor. Find the amplitude of steady-state vibrations by disregarding
the mass of the beam. What will be the amplitude if the mass of the beam is
considered?

Fy Fy

(073

3.26.*

3.27.

>
I

i
— ! !
Figure 3.31

If the electric motor of Problem 3.25 is to be mounted at the free end of a steel
cantilever beam of length 5 m (Fig. 3.31), and the amplitude of vibration is to be
limited to 0.5 c¢m, find the necessary cross-sectional dimensions of the beam. Include
the weight of the beam in the computations.

A centrifugal pump, weighing 600 N and operating at 1000 rpm, is mounted on six
springs of stiffness 6000 N/m each. Find the maximum permissible unbalance in order
to limit the steady-state deflection to S mm peak-to-peak.

An air compressor, weighing 1000 Ib and operating at 1500 rpm, is to be mounted on a
suitable isolator. A helical spring with a stiffness of 45,000 Ib/in., another helical
spring with a stiffness of 15,000 ib/in., and a shock absorber with a damping ratio of
0.15 are available for usc. Select the best possible isolation system for the compressor.
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3.29. A variable speed electric motor, having an unbalance, is mounted on an isolator. A{
the speed of the motor is increased from zero, the amplitudes of vibration of the moto
have been observed to be 0.55 in. at resonance and 0.15 in. beyond resonance. Find
the damping ratio of the isolator.

3.30. An electric motor weighing 750 Ib and running at 1800 rpm is supported on four stcj
helical springs, each of which has 8 active coils with a wire diameter of 0.25 in. and
coil diameter of 3 in. The rotor has a weight of 100 Ib with its center of mass located a;
a distance of 0.01 in. from the axis of rotation. Find the amplitude of vibration of lhﬁ
motor and the force transmitted through the springs to the base.

3.31. A small exhaust fan, rotating at 1500 rpm, is mounted on a 0.2 in. steel shaft. Thd
rotor of the fan weighs 30 lb and has an eccentricity of 0.01 in. from the axis of
rotation. (i) Find the maximum force transmitted to the bearings. (ii) Find the horsg
power needed to drive the shaft.

3.32. A rigid plate, weighing 100 1b, is hinged along an edge (P) and is supported on 4
dashpot with ¢ = 1 lb-sec/in. at the opposite edge (Q) as shown in Fig. 3.32. A smal
fan weighing 50 Ib and rotating at 750 rpm is mounted on the plate through a spring
with k = 200 1b/in. If the center of gravity of the fan is located at 0.1 in. from its axi
of rotation, find the steady state motion of the edge Q and the force transmitted to th1
point S.

~

k= ¢ .
> x
C.G.
P |
1

LS" * 15" I 20" ]

Figure 3.32

333. Derive Eq. (3.99).
3.34. Derive the equation of motion of the mass m shown in Fig. 3.33 when the pressure in

T

<
s
3

! 23 ki
}

J p(n=
jp;.sin wr—

UL

Figure 3.33
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33s.

3.36.

3.37.

3.38.

339.

3.40.

341.

343

3.44.

the cylinder fluctuates sinusoidally. The two springs with stiffnesses k, are initially
under a tension of T, and the coefficient of friction between the mass and the
contacting surfaces is p.

A spring-mass system is subjected to Coulomb damping. When a harmonic force of
amplitude 120 N and frequency 2.5173268 Hz is applied, the system is found to
oscillate with an amplitude of 75 mm. Determine the coefficient of dry friction if
m = 2 kg and k = 2100 N/m.
A load of 5000 N resulted in a static displacement of 0.05 m in a composite structure.
A harmonic force of amplitude 1000 N is found to cause a resonant amplitude of
0.1 m. Find (i) the hysteresis damping constant of the structure, (i) the energy
dissipated per cycle at resonance, (iii) the steady state amplitude at one-quarter of the
resonant frequency, and (iv) the steady state amplitude at thrice the resonant fre-
quency.
The energy dissipated in hysteresis damping per cycle under harmonic excitation can
be expressed in the general form

AW = nBkX" (E1)
where v is an exponent (y = 2 was considered in Eq. (2.125)), and B is a coefficient of
dimension (meter)>~?. A spring-mass system having k = 60 kN /m vibrates under
hysteresis damping. When excited harmonically at resonance, the steady-state ampli-
tude is found to be 40 mm for an energy input of 3.8 N-m. When the resonant energy
input is increased to 9.5 N-m, the amplitude is found to be 60 mm. Determine the
values of B and y in Eq. (E.1).
When a spring-mass-damper system is subjected to a harmonic force F(1) = 5cos3mt
1b, the resulting displacement is given by x(t) = 0.5 cos(37t — = /3) in. Find the work
done (i) during the first 1 second, and (ii) during the first 4 seconds.
Find the equivalent viscous damping coefficient of a damper that offers a damping
force of F, = ¢(x)", where ¢ and n are constants and x is the relative velocity across
the damper. Also, find the amplitude of vibration.

Show that for a system with both viscous and Coulomb damping the approximate
value of the steady-state amplitude is given by
252
xelk -y s ] » xBNes (M _pnz) -0

2

The equation of motion of a spring-mass-damper system is given by
mx £ N + cx* + kx = Fycos wt

Derive expressions for (i) the equivalent viscous damping constant, (i) the steady-state
amplitude, and (iii) the amplitude ratio at resonance.

Use subroutine HARESP to find the steady-state response of a torsional system with
Jo=6 kg-n?, ¢, =210 N-m-s/rad, k, = 14000 N-m/rad, and F(r) = 450sin 107
N-m.

Write a subroutine called TOTALR for finding the complete solution (homogeneous
part plus particular integral) of a single degree of freedom system. Use this program to
find the solution of Problem 3.15.

Find the steady-state solution of a single degree of freedom system with m = 10 kg,
¢ =45 N-s/m, k =2500 N/m, F(1) =180c0s20r N, x, =0, and %, =10 m/s,
using subroutine HARESP.



3.45.

3.46.

Write a computer program for finding the total response of a spring-mass-viscous
damper system subjected to base excitation. Use this program 10 find the solution of a
problem with m = 2 kg, ¢ = 10 N-s/m, k = 100 N/m. »(¢) = 0.1 5in25¢ m. x, % 10
mm, and k, = S m/s.
Consider the equation of mouon of a single degree of freedom system:

mi+ ¢k + hx=F

Denve the condition that leads to divergent oscillations in each of the following cases:
(a)W‘hen the forcing function is proportional to the displacement, F(r) = Fa(r)
(b)When the forcing function is proportional to the velocity, F(r) = F,&(1).
(c)When the forcing function is proportional 10 the acceleration, F(r) = F,%(r).

Projects:

3.47.

The arrangement shown in Fig 3.34 consists of two eccentric masses rotating in
opposite directions at the same speed w. It is 10 be used as a mechanical shaker over
the frequency range 20 10 30 Hz. Find the values of w, e, M, m, k, and ¢ 10 satisfy
the following requirements: (i) The mean power output of the shaker should be at least
1 hp over the specified frequency range. (i1) The amplitude of vibration of the masses
should be between 0.1 and 0.2 in. (1ii) The mass of the shaker ( M) should be at least

50 times that of the eccentric mass ().
2—» x(1)

‘F;
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Figure 3.34 Figure 3.35
.
3.48. Design a minimum weight, hollow circular steel column for the water tank shown in

Fig. 3.35. The weight of the 1ank (W) is 100,000 Ib and the height is 50 ft. The stress
induced in the column should not exceed the yield strength of the material, which is
30,000 psi. when subjected 10 a harmonic ground acceleration (due 10 an earthquake)
of amplitude 0.5 g and frequency 15 Hz. In addition, the natural frequency of the
water tank should be greater than 15 Hz. Assume a damping rauo of 0,15 for the
column.
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mpmen e z

Vibration
under General
Forcing Conditions

Jean Bapulisie Joseph Fourer (1768 - 1830) was a French
malhemanician and a prolessor al the Ecole Polylechnique
1n Pans. His works on heal liow, published in 1822, and on
Ingonomelric senes are well known The expansion ol a
penodic lunclion in lerms ol harmonic lunchions has been
named aller him as the “"Fourier sertes ” (Courlesy The
Bellmann Archwe. Inc )

.

4.1 INTRODUCTION

This chapter deals with the vibration of a viscously damped single degree of
freedom system under general forcing conditions. If the excitation is periodic but
not harmonic, it can be replaced by a sum of harmonic functions using the
harmonic analysis procedure discussed in Section 1.11. By the principle of superpo-
sition, the response of the system can thén be determined by superposing the
responses due to the individual harmonic forcing functions. On the other hand. if
the system is subjected to a suddenly applied nonperiodic force. the response will be
transient, since steady-state vibrations are not usually produced. The transient
response of a system can be found using what is known as the convolution integral.

P.z RESPONSE UNDER A GENERAL PERIODIC FORCE

When the external force F(¢) is periodic with period 7 = 27/w, it can be expanded
in a Fourier series (see Section 1.11):
a x €
F(r) = 70 + Y a,cos jor + Y bsin jur (4.1)

=1 =1
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where
2 . .
ﬂ,=;];F(1)COS/w1¢/1, j=0,12.... (4.2)
and
20 _
h,= ;an(l)sm Jwtdt, j —1],2_,,, (4.3)
The equation of motion of the system can be expressed as
o oK
m,'r'+m"+kx=F(1)=£29+ Y a,cos jwr + X bsin jwt (4.4)
=1 =1

The right-hand side of this equation is a constant plus a sum of harmonic functions.
Using the principle of superposition, the steady-state solution of Eq. (4.4) is the sum
of the steady-state solutions of the following equations:
a9

mx + cx + kx = 3 ) ko o (4.5)
mx + ¢k + kx = a,cos jut - (4.6)
mx + cx + kx = bjsin jwt (4.7)

Noting that the solution of Eq. (4.5) is given by
a
x,(1) = TI% (4.8)

and using the results of Section 3.4, we can express the solutions of Egs. (4.6) and
(4.7), respectively, as

v cos( jwr —¢) (4.9)
x,(1) = sin( jor — ¢ ) (4.10)
T e gy
where
. [ 2t .
¢, = tan '(1—_{7/;,‘—2) (4.11)
and
r= ,;i (4.12)

Thus the complete steady-state solution of Eq. (4.4) is given by
a el (a,/k)
x"(l) = 7’% + Z IZ 2
1=1 “(] - )+ (28yr)
* b /k
. ¥ (b,/k)
a2 2
=V =AY+ 28y

cos{ jwt — %)

sin(jw/—.pl) (4.13)
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It can be seen from the solution, Eq. (4.13), that the amplitude and phase shift
corresponding to the yth term depend on ;. If j« = w,. for any j, the amplitude of
the corresponding harmonic will be comparatively large. This will be particularly
true for small values of j and {. Further. as ; becomes larger, the amplitude
becomes smaller and the corresponding terms tend to zero. Thus the first few terms
are usually sufficient to obtain the response with reasonable accuracy.

The solution given by Eq. (4.13) denotes the steady-state response of the system.
The transient part of the solution arising from the initial conditions can also be
included to find the complete solution. To find the complete solution, we need to
evaluate the arbitrary constants by setting the value of the complete solution ard its
derivative to the specified values of initial displacement x(0) and the initial velocity
X(0). This results in a complicated expression for the transient part of the total
solution.

:XAMPLE 4.1

Periodic Vibration of a Hydraulic Valve

In the study of vibrations of valves used in hydraulic control systems, the valve and its clastic
stem are modeled as a damped spring-mass system as shown in Fig. 4.1(a). In addition to the
spring force and damping force, there is a fluid pressurc force on the valve that changes with
the amount ol opening or closing of the valve. Find the stcady-state response of the valve
when the pressure in the chamber varies as indicated in Fig. 4.1(b). Assume k = 2500 N/m,
¢ =10 N-s/m, and m = 0.25 kg.

Given: Hydraulic control valve with m = 0.25 kg. A = 2500 N/m, and ¢ = 10 N-s/m and
pressure on the valve as given in Fig 4.1(b).

Find: Steady-state response of the valve, x,(1).

Approach: Find the Fourier series expansicn of the force acting on the valve Add the
responses due to individual harmonic force components.

Solution. The valve can be considered as a mass connected 10 a spring and a damper on one
side and subjected to a forcing function F(1) on the other side. The forcing function can be
expressed as

F(1) = Ap(1) (E.1)

where A4 is the cross sectional area of the chamber. ginen by

3(2—0) = 6257 mm® = 0.0006257 ' (E2)

and p(1) is the pressure acting on the valve at any instant . Since p(r) is periodic with
period 7 = 2 seconds and A is a constant, F(1) 1v also a periodic function of period 7 =2

seconds. The frequency of the forcing function 1s « = (25/7) = 7 rad/sec. F(1) can be
expressed in a Fourier series as:

4y
F(1) = 5 tawoswr + awonldwt + oo

+ bysinwr + hosin 2er - (E3)
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where a, and b, are given by Eqs. (4.2) and (4.3) Stnce the function F(1) 15 given by

500004+ [or0g4g%
F(r) = . (E4)
500004(2 - 1) forjstsr

the Fourier coctlicients ¢ and b, can be computed with the help of Eqs (4 2) and (4 3):

2 2
ay = 5[[ﬂ’50(xmmw + fl“smxxm(z -1 ‘n] = 500004 (E5)

21 . 2 R . d
a =3 f“>l)000Arcosmd:+fl S0000A4(2 — )cos mtdt

- - ZLI:O A (E6)
PANAE . 2 R
by =5 | [ 500004 sinmid + [*500004(2 - )sinmian | = 0 (E7)
2 0 1
21 . 2
as = 5[] 5000041 cos 2meds + [~500004(2 - t)cm2md:] =0 (E %)
0 “1
2| n . 2 .
b= = f S0000A1 sin 2 dr + / SO000A(2 - ¢)sin2midi| = O (E9)
: 2 (4 1
a;, = 2 flSOOOUAICOS37rldl + [250000/4(2 — t)cos 3wt d
21 \
2x 10%4
- _2x104 10
P (E.10)
2 1 . 2 .
b= % j 500004 1 sin 3midt + f 500004(2 — t)sin3mdi| =0 (E.11)
21 1
Likewise. we can obtain a, = aq = -+ =h, = h, = h = --- = 0. By considering only 1he
first three harmonics. the forcing function can be approximated:
Ky S
F(1) = 250004 - ZxﬂRZOAcoswl— 2’;;?‘1:053“: (E12)
The steady-state response of the valve to the forcing function of Eq. (E 12) can be expressed

as

! x,(1) = 2501?0A - 2 1051/“("2))’ cos{wi — ¢,)
Ja -2y + @y

2 X 10°4 /(9% =?
-G W) ,/( =) cos(3wi — ¢) (E.13)
(1-97)" + (6tr)’

The natural frequency of the valve is given by

[k 2500
o=V =Vo3s - 100 rad/sec (E.14)

and the forcing frequency w by

2 27
w=—_r—=—z—=wrad/sec (E15)
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Thus the frequency ratio can be obtained:

w ”
el T 0.031416

and the damping ratio:

« ¢ 100
(= L= 02

T Tma, T 2(0.25)(100)

The phase angles ¢, and ¢, can be computed as follows:

¢, = tan ‘(l—zr'—) = tan '(2—’;—%&) = 0.0125664 rad
-r = 0. .

179

(E.16)

(E.17)

(E.18)
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and

,( 6¢r ) [ 6 X02 X 0031416
¢. = tan s} = tan —_——
1~ 9r 1 - 9(0.031416)
In view of Eqs. (E.2) and (E.14) 10 (E 19), the solution can be written as
X,(1) = 0.019635 - 0015930 cos( 7t — 0 0125664)
- 0.0017828 cos( 37t - 0.0380483) m (E 20)

) =00380483rad (E.19)

RESPONSE UNDER A PERIODIC FORCE
OF IRREGULAR FORM

In some cases, the force acting on a system may be quite irregular and may be
determined only experimentally. Examples of such forces include wind-and earth-
quake-induced forces. In such cases. the forces will be available 1n graphical form
and no analytical expression can be found to describe F(r). Sometimes. the value of
F(t) may be available only at a number of discrete points 1,. ¢,..... t5. In all these
cases. it is possible to find the Fourier coefficients by using a numerical integration
procedure, as described in Section 1.11. If F, F,. ..., F, denote the values of F(1)
at fy ity ..., 15, respectively, where N denoles an even number of equidistant points
in one time period 7 (v = NAt), as shown in Fig. 4.2, the application of trapezoidal
rule [4.1] gives

2 Y
a=5 LF (414)
=1
PR 2 jmt
a,= 5 Y Fcos L j=12.. (4.15)
/ N::I T
2 X 2jm,
b,—ﬁ‘);lr,sm —. =12 (4.16)
F.
- -~
AN .~ // \\\ L~
N l/ - \\\
N A ] \
1 Ay
N\
T \\\xH ;I \“n .
AN i\ l, \\\Z!
/ N
NN !
[t

T = NA; - l
.

Figure 4 2
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Once the Fourier coefficients ay,. «,. and b, are known. the steady-state response of
the syvstem can be found using Eq. (4.13) with

&
r=|==
Tw,

EXAMPLE 4.2

Steady-State Vibration of a Hydraulic Valve

Find the steady-state response of the valve in Example 4.1 1f the pressure fluctuations in the
chamber are found to be penodic. The values of pressure measured at 0.0 second intervals in
one cycle are given below.

time. ¢, 0 00l 002 003 004 005 006 007 008 009 010 011 0Il2
(seconds)
p,=p) -0 20 34 42 49 53 7 60 36 22 16 7 0
(kN/m')

Given: Arbitrary pressure fluctuations on the valve, shown in Fig. 4.1(a).
Find: Steady state response of the valve.

Approach: Find Fourier series expansion of the pressure acting on the valve using numencal
procedure. Add the responses due to individual harmonic force components.

Solution. The Fourier analysis of the pressure fluctuations (see Example 1.7) gives the result

p(1) = 34083.3 - 26996.0 cos 52.36¢ + 8307.7 sin 52.36¢
+ 1416.7 cos 104.72: + 3608.3 sin 104.72:
~ 5833.3cos157.081 + 2333.35157.08/ + --- N/m* (ED)

Other quantities needed for the computation are

W= ETE = % = 52.36rad/sec
w, = 100 rad/sec
r="2 <0523
w,|
(=02
A = 0.0006257 m’
6, = tan ,( 2r ,,) - tan ,(2 X 0.2 x0A51236) ~16.1°
1-r 1 - 0.5236°
R 4¢r ) (4 X 0.2 X 0.5236)
. = tan”! =tan ! = —-77.01°
#: = tan (1 “ar - 4x05236
é, = tan 1( 6¢r ’) = tan l(w) = ~23.18°
1-9r 1 - 9x0.5236"
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The steady-state response of the valve can be expressed. using Eq. (4 13). as
o 34083 34 (26996.04 /k)
x(1) = -

YO -2y + @)
L (8309.74/k)

W= )+ @)
(1416.74 /k)
V(- art) 4 (agr)
(3608.34 /k)
V(- ar) + (48r)
(5833.34 /k)

V(1 - 9r7) + (6tr)
(2333.34/k)
L= 9r7) + (8r)

cos(52.36: — ¢,)
sin(52 361 - ¢,)
cos(104.721 — ¢,)

+ sin(104.721 ~ ¢,)

cos(157.08¢ — ¢,)

sin(157 081 - ¢,)

ESPONSE UNDER NONPERIODIC FORCE

We have seen that periodic forces of any general wave form can be represented by
Fourier series as a superposition of harmonic components of various frequencies.
The response of a linear system is then found by superposing the harmonic response
to each of the exciting forces. When the exciting force £(¢) is nonperiodic. such as
that due to the blast from an explosion, a different method of calculating th
response is required. Various methods can be used to find the response of the syslem
to an arbitrary excitation. Some of these methods are as follows:

1. by representing the excitation by a Fourier integral;
2. by using the method of convolution integral:

3. by using the method of Laplace transformation;

4

. by first approximating F(¢) by a suitable interpolation model and then using 2
numerical procedure; and

S. by numerically integrating the equations of motion.

We shall discuss Methods 2, 3, and 4 in the following sections and Method § is
Chapter 11.

FONVOLUTION INTEGRAL

A nonperiodic exciting force usually has a magnitude that varies with time: it acts
for a specified period of time and then stops. The simplest form of such a force i
the impulsive force. An impulsive force is one that has a large magnitude F and act
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LU x(1) = g(1)

4
P
F
¢ k
Far=1
0l .
= —ar
F)
(a) (b) (©)
Figure 4.3

for a very short period of time As. From dynamics we know that impulse can be
measured by finding the change in momentum of the system caused by it [4.2]. If %,
and x, denote the velocities of the mass m before and after the application of the
impulse, we have

Impulse = FAl = mx, — mX, (4.17)

By designating the magnitude of the impulse FAr by F, we can write, in general,

F=[""Fa (4.18)
il
A unit impulse (f) is defined as
/= lim IHA’Fd/ = Fdr =1 (4.19)
d Ar—=0Y

1t can be seen that in order for Fdr to have a finite value, F tends to infinity (since
di tends to zero). Although the unit impulse function has no physical meaning, it is
a convenient tool in our present analysis.

We first consider the response of a single degree of freedom system to an impulse
excitation; this case is important in studying the response under more general
excitations. Consider a viscously damped spring-mass system subjected to a unit
impulse at ¢ = 0, as shown in Figs. 4.3(a) and (b). For an underdamped system, the
solution of the equation of motion

mi+cx+ kx=0 (4.20)
is given by Eq. (2.66) as follows:

Xo + §w,xg . } (4.21)

x(t) = e"“”{xocos w,t + ————"sinw
d
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where
[ — (4.22)!
2mw
—_— 2
P (4.24),

n m 1

If the mass is at rest before the unit impulse is applied (x = x = 0 for 7 < 0 or at|
t =0 ), we obtain, from the impulse-momentum relation,

Impulse = f=1=mi(r=0) ~ mi(t =07) = mx, (4.25)

Thus the initial conditions are given by
x(t=0)=x,=0 |

1
i(1=0) =%, = ™ (4.26)
In view of Eq. (4.26), Eq. (4.21) reduces to
(]
x(1) = g(1) = S—sinw, (4.27)
o

Equation (4.27) gives the response of a single degree of freedom system to a unit
impulse, which is also known as the impulse response function. denoted by g(r). The
function g(t), Eq. (4.27), is shown in Fig. 4.3(c).

If the magnitude of the impulse is £ instead of unity, the initial velocity <, is‘
F/m and the response of the system becomes

= Sw,t
x(1) = ~mw‘, sinw, = Fg(t) (4.28)'

If the impulse F is applied at an arbitrary time ¢ = 7, as shown in Fig. 4.4(a). it will
change the velocity at r = v by an amount F/m. Assuming that x = 0 until th
impulse is applied, the displacement x at any subsequent time ¢, caused by a chang
in the velocity at time 7, is given by Eq. (4.28) with ¢ replaced by the time elapsed
after the application of the impulse, that is, # — 7. Thus we obtain

x(t) = Fg(t —7) (4.29)

This is shown in Fig. 4.4(b).

Now we consider the response of the system under an arbitrary external force F(r),
shown in Fig. 4.5. This force may be assumed to be made up of a series of impulsey
of varying magnitude. Assuming that at time , the force F(7) acts on the system
for a short period of time A7, the impulse acting at ¢ = 7 is given by F(r)Ar. At
any time /. the elapsed time since the impulse is 1 — 7, so the response of the system
at ¢ due to this impulse alone is given by Eq. (4.29) with F = F(r) A+:

Ax(r) = F(r)drg(r~7) (4.30)
The total response at time ¢ can be found by summing all the responses due to the
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Far=F

F(1)

Ft -0

(b) . T T+ At

Figure 4.4 Figure 4.5 An arbirary (nonperiodic) forcing
function

elementary impulses acting at all times 7:
x(!)=2f(‘r)g(l-‘r)A‘r (4.31)

Letting A7 — 0 and replacing the summation by integration. we obtain
x(1) = ['F(r)g(t = 7) dr (4.32)
o .
By substituting Eq. (4.27) into Eq. (4.32), we obtain
1 ' -1y
x(1) = m—wd/OF('r)e St =Nsin o, (¢ = ) d7 (4.33)

which represents the response of an underdamped single degree of freedom system
to the arbitrary excitation F(r). Note that Eq. (4.33) does not consider the effect of
initial conditions of the system. The integral in Eq. (4.32) or Eq. (4.33) is called the
convolution or Duhamel integral. In many cases the function F(r) has a form that
permits an explicit integration of Eq. (4.33). In case such integration is not possible.
it can be evaluated numerically without much difficulty. as illustrated in Section 4.8
and Chapter 11. An elementary discussion of the Duhamel integral in vibration
analysis is given in Ref. [4.6).



1.5.3 If a spring-mass-damper system is subjected to an arbitrary base excilation de- |

3esponse to scribed by its displacement. velocity. or acceleration. the equation of motion can be !

3ase Excitation expressed in terms of the relative displacement of the mass z = x — y as follows ‘
(see Section 3.6.2)

mi+ ¢+ kz= —mj (4 34)

This equation is similar to the equation
mi + X + kx = F (4.35)
with the variable : replacing x and the term — mji replacing the forcing function
Hence all of the results derived for the force-excited system are applicable to the
base-excited system also for - when the term F is replaced by —my. For an

underdamped system subjected to base excitation, the relative displacement can he
found from Eq. (4.33):

(1) = —;lzfn’y(f)e fartt=Ngin o, (1 — 7) dr (4.360)
|
IXAMPLE 4.3 Step Force on a Compacting Machine

A compacting machine, modeled as a wingle degree of freedom system, is shown in Fig 4 6(a)
The force acting on the mass m (m includes the masses of the piston, the platform, and the
material being compacted) due to a sudden application of the pressure can be idealized as a
step force, as shown in Fig 4.6(b). Determine the response of the system.

Gwen: Compacting machine subjected to a step force.
Find: Response of the system.
Approach: Evaluate the Duhamel integral with F(r) = F,.

Solution. Since the compacting machine is modeled as a mass-spring-damper system, the
problem is to find the response of a damped single degree of freedom system subjected to a
step force. By noting that F(r) = F,, we can write Eq. (4.33) as

k
muw,

F [ .,,<§w,.sin wa(r = 7) + wycos (1 = 7) }]

e ($a) + ()’

x(1) =

g .
fe $wtt Dsin g, (1 - T) d7
o

=0

% - S,
=T[1_ BTz e "cos(w‘,l—(p)] " (E.l)
where
¢ = tan '(#’) (E2)
vi-¢

This response is shown in Fig 46(c) If the system is undamped ({ = 0 and w, = w,). Eq
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x(t) = 7"[1 - cosw,!] (E.3)

Equation (E.3) is shown graphically in Fig. 4.6(d). It can be seen that if the load l\
instantaneously applied to an undamped system. a maximum displacement of twice the static

displacement will be attained, that is. ¢

=2k/k
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:XAMPLE 4.4

TIme—Belayed Step Force

Find the response of the compacting machine shown 1n Fig. 4 6(a) when 1115 subjected to the
force shown in Fig. 4.7

Grmen' Compacting machine, modeled as a damped single degrce of freedom svstem. sub-
Jected to the force shown in Fig 4.7 |

Find: Response of the system

1
Approach: Since the step force is tlime-delayed. substitute ¢ ~ r, for + n the solution of
Example 4.3

Solution. Since the forcing function starts at ¢ = 1, instead of at 1 = 0. the response can bq
obtained from Eq. (E.1) of Example 4.3 by replacing 7 by 1 1, This gives

(1) = _"_LThl ~ 2 e fen "™ cos{ w, (1~ 1) ~ ¢)] (E1)
k1 -1¢°

If the system 1s undamped, Eq. (E.1) reduces to

X(l)=—?[1 - cosw,(r - 1,)] (E2)

EXAMPLE 4.5

~Rectangular Pulse Load

If the compacting machine shown in Fig. 4 6(a) 1s subjected 1o a constant force only during
the ime 0 < 7 < 1, (Fig. 4.8a), determine the response of the machine

o t

Figure 4.7
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Grven: Compacting machine, modeled as a spring-mass-damper system, subjected to a
rectangular pulse type of load.

Find: Response of the machine.

Approach. Consider the rectangular pulse as a sum of a positive step function applied at
1 = 0 and a negative step function applied at ¢ = 1,,.

Solution. This forcing function can be considered as the sum of a step function of magnitude
+ F, beginning at 1 = 0 and a second step function of magnitude — F, slarting at time
t = 1,. Thus the response of the system can be obtained by subtracting Eq. (E.1) of Example
4.4 from Eq (E.1) of Example 4.3. This gives

x(!)4= ;%[‘cos(u‘,t —¢) + eSiocos{ w, (1 — 15) — 4;}] (E.1)

with
- ¢ = tan ‘(ﬁ) (E.2)
H1)
F,
[¢] W .
) (a)
(>3
- n<3
hY \ 1
(0] >
“ Tny N 2, !
e _/
(b)

Figure 4.8
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To see the vibration response graphically, we consider the svstem as undamped, so that Eq
(E.1) reduces to

2
x(1) = T’[cos w, (1~ 1,) - cosw,r] (E.3)

This response is shown n Fig. 4.8(b) for two cases: (1) 1, > 1,/2. and (2) ¢, < 1,/2 where ¢,
15 the duration of the rectangular pulse and 1, is the natural nme peniod of the system. It can
be seen that the peak occurs during the forced vibration era (that is. prior to #,) for 1, > 7,/2
while the peak occurs in the residual vibration era (that 1. after +,) if 1, < 7,/2.

. EXAMPLE 4.6

. Compacting Machine Under. Linear Force..

———

L B

Deternmine the response of the compacting machine shown in Fig 4 9(a) when a hinearly
varying force (shown in Fig 4 9b) is applied due to the motion of the cam

[0] 0] 0]

Mouon of
cam

—

Muterial
being compacted

Platform

9] —*!

(b)

Figure 49
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Gven: Compacting machine, modeled as a single degree of freedom system. subjectes
ramp function.

Find: Response of the system-

Approach: Evaluate the Duhamel integral with F(r)=8F-1

Solution. The linearly varying force shown in Fig. 4.9(b) i> known as the ramp functior
forcing function can be represented as F(r)y=8F 1, where 8F denotes the rate of ir

of the force F per umt ume. By substituting this into Eq. (433). we obtain

x(1) = %% olfe St ginw, (1 - T) dT
SF

f'(t —rye S Usine, (1 )(-d7)
0

muwy,
L f'e sodt - Osinawy (1 = T~ d7)

muy Jo

These integrals can be evaluated and the response¢ expressed as follows (Sce Problen
LRSS
x(1) = §k£ - A, s Ecosw,,t - ﬂ'—,iﬁ sinw,!
W, w, Wy
For an undamped system, Eq. (E.1) reduces 10
§F
x(r) = :’:’;lw”l - sinw,t]

Figure 4.9(c) shows the response given by Egq. (E-2).

XAMPLE 4.7 Blast Load on a Building Frame

A building frame s modeled as an undamped single degrec of freedom system (Fig
. Find the response of the frame if it is subjected to 2 blast loading represented
triangular pulse shown in Fig. 4.10(b).

Given: Building frame subjected to a triangular-pulse type blast loading.

Find: Displacement of the frame.

FD) A

Fu

o] W
(L]

Figure 4.10
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Approach: Model the building frame as an undamped single degree of freedom system and
evaluate the Duhamel integral for the given load

Solution. The forcing function is given by

F(‘r)=ﬁ,(l—11“) for0 <1< 4y (E1)

F(r)=0 fori, <7 (E2)
Equation (4.33) gives, for an undamped system,

x(1) = %%L'F(r)sinw"(/—f)dr (E3)
Response during 0 < 1 < 1,- Using Eq. (E\1) for F(r) in Eq. (E.3) gives

F ¢ T . .
x(1) = —‘-’;] (] - I—)[smw,,/cosw,,-r - cosw,rsinw,r] d(w,r)
muw, ‘¢ 0

n

F . 1 T
% Sin w,,r/o(l - ,—o)cos w,t - d(w,T)
—ECOSQ,,I.['(I - l)sim.;,,r~(/(w,,-r.) (E 4)
k o Iy
By noting that integration by parts gives
1
ffcosu,,-r cd(w,7T) = Tsiner + o cosw,T (E53)
and
. 1.
f‘r sinwr - d(w,1) = —1cosw,T + osiner (E.6)
3

Eq. (E4) can be written as

R . [ 1 1
x(1) = T sinw,r{sinw, — asmw,,l— m——coswr+ P

—cosw,,r[~cosw,,1+ 1+ icosw,,/~ Lsina:,‘r } (E7)
o Wuly
Simplifying this expression, we obtain
(1) = 122 1
x *E—-cosul-&-—w sinw,? (E 8)

Response during 1 > 1, Here also we use Eq. (E1) for F(r). but the upper limit of !
wntegration in Eq. (E.3) will be 1,, since F(7) = 0 for > 1,. Thus the response can be found :
from Eq. (E.7) by setting ¢ = 1, within the square brackets. This results in

x(t) =

oS0, (@t = sinw,r,)eoswr]  (E9) |
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|
.6 RESPONSE SPECTRUM

The graph showing the variation of the maximum response (maximum displace-
ment, velocity, acceleration, or any other quantity) with the natural frequency (or
natural period) of a single degree of freedom system to a specified forcing function
is known as the response spectrum. Since the maximum response is plotted against
the natural frequency (or natural period). the response spectrum gives the maximum
response of ail possible single degree of freedom systems. The response spectrum is
widely used in earthquake engineering design {4.2.4.5]. A review of recent literature
on shock and seismic response spectra in engineering design is given in Ref. {4.7].

Once the response spectrum corresponding to a specified forcing function is
available, we need to know just the natural frequency of the system to find its
maximum response. Example 4.8 1llustrates the construction of a response spectrum.

XAMPLE 4.8

Response Spectrum of Sinusoidal Pulse

Find the undamped response spectrum for the sinusoidal pulse force shown in Fig 4.11(a)
using the imtial conditions x(0) = x(0) = 0

Guen: Single degree of freedom undamped system subjccted to one-half period of a sinu-
soidal force.

Find: Response spectrum.

Approach. Find the response and express itls maximum value in terms of its natural time
period.

(4]

A R A R B
]|— ! l \ i \ |

F) L~ S

(a) (b)

Figure 4.11
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Solution. The equation of mouon of an undamped system can be expressed as

Fsinwt, 01514

E1l
0, 1>, (EV)

mi + Ay = F(1) = {
where

o= (E2)
1y

The solution of Eq (E.1) can be obiained by superposing the homogencous solution a, (1)
and the particular solution x,,(1) as
W) = x, (1) + x,(1) (E3)
that is,
K, -
v(r) = Acosw,r + Bsinw,r + (—ﬂm-,—)sinm (E4)
k ~ mw

where 4 and B are constants and w, ts the natural frequency of the system:

2w k -
“=T =Vm (ES)
Using the initial conditions x(0) = 1(0) = 0 in Eq. (E4), we can find the constants A and B
as

A=0, B= - —-——L (E6)
w,(k ~ mw?)
Thus the solution becomes
F./k
x(1) = ——"/—,<sinm——‘isinw,,l}. O<r<i, (E7)
1= (w/w,) o
which can be rewritten as
x(1) 1 .t T, . 2mt .
T=——--’;—:{sm,—o—msm—;’l—>‘ O0<rxy, (E®)
- (3)
where
F,
& = (EY)

The solution given by Eq. (E8) is valid only during the period of force application,

0 < 7 < 1,. Since there 1s no force applied for 1 > 1, the solution can be expressed as a freé
vibration solution:

|

x(t) = A'cosw,r + B'sinw, 1, 1>, (E,]O!

where the constants 4" and B’ can be found by using the values of x(; = ) and x(r = 1,)]
given by Eq. (E8), as ininal conditons for the duration ¢ > 1,. This gives

’

v, . 2w ’ e
x(t=1,) =a|- Pt A'cos w,1y + B'sinaw,1, (E11)
L 271,
x(r=1,,)=a<\’—"—l—“’ 7"}

= —wA'sinw,! + w, B cosw,r (E12)
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where

3,

M

a= ———: (E.13)
1- (2]
( 2'0)
Equations (E.11) and (E.12) can be solved to find A’ and B’ as

, an , an
= —— =~ ——1 4+
A PRLC A B v [1 4 coyaw,ty) (E.14)

Equations (E.14) can be subsututed into Eq (E.10) to obtain
X0 _ (/) [

S 2{1 - (n/2)7)

Equations (E.8) and (E.15) give the response of the system in nondimensional form, that is,
x/8, is expressed in terms of ¢/, Thus for any specified value of 1,/7,. the maximum value
of x/8, can be found This maximum value of x/8,, when plotted against t,/7,. gives the
response spectrum shown in Fig 4.11(b). It can be observed that the maximum value of
(¢/8,) . = 175 occurs at a value of ¢,/7, = 0.75.

sinzu(ﬁ - TL) - sinZuTL], r21, (EI15)

6.1
Eesponse

pectrum
for Base
Excitation

In Example 4.8, the input force is simple and hence a closed form solution has
been obtained for the response spectrum. However, if the input force is arbitrary, we
can find the response spectrum only numerically. In such a case, Eq. (4.33) can be
used to express the peak response of an undamped single degree of freedom system
due to an arbitrary input force F(r) as

x(1)

- T"‘T”fo'r(f)sin w, (1 - 1) dr (4.37)

max

max

In the design of machinery and structures subjected to a ground shock. such as that
caused by an earthquake. the response spectrum corresponding to the base excita-
tion is useful. If the base of a damped single degree of freedom system is subjected
to an acceleration J(r), the equation of motion, in terms of the relative displace-
ment z = x — y, is given by Eq. (4.34) and the response z(¢) by Eq. (4.36). In the
case of a ground shock, the velocity response spectrum is generally used. The
displacement and acceleration spectra are then expressed in terms of the velocity
spectrum. For a harmonic oscillator (an undamped system under free vibration). we
notice that

Klmax = — @2 Xl max 800 K| o = &

¥ ma

Thus the acceleration and displacement spectra S, and S, can be obtained in terms
of the velocity spectrum (S, ):

S,
S, == S, =4S (4.38)

Chadl

To consider damping in the system. if we assume that the maximum relative
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displacement occurs after the shock pulse has passed, the subsequent motion must
be harmonic. In such a case. we can use Eq. (4.38). The fictitious velocity associated
with this apparent harmonic motion is called the pseudo velocity and 1ts response
spectrum. S, . is called the pseudo spectrum. The velocity spectra of damped systems
are used extensively in earthquake analysis,

To find the relative velocity spectrum, we differentiate Eq. (4.36) and obtain*

1 .
He)= = — [F(r)e ' D _ty o -
Hr) wd";)(f)( [—Sw,snw,(r—7)

+w,cos w, (1 — ‘r)] dr (4.39)
Equauon (4.39) can be rewriten as
St
1) = F=—=={PT+ Qsin(w,t ~ ¢) (4 40)
T
where
3
P= f,}‘(r)e{“’"cosw‘,fdf (4 a1}
(3} '
Q= f’j‘( 1)efsinw, T dr (442§
0
and
- e .
¢ = tan"! (Pvl f_‘*_g{) (4 431
(Pt -0 -¢)
The velocity response spectrum, S, can be obtained from Eq. (4.40):
; oS e ’
S, =121 o = 1—/—§7vpz +0? (4 44)
Thus the pseudo response spectra are given by
S, , -
Si=lelmn = 550 8 = gt S, = H e = w,S, (4.45

u’l

Water Tank Subjected to Base Acceleration -

|
The water tank, shown in tig 412(a), 1s subjected to a Linearly ‘arying ground acccleration
as shown in Fig 412(b) due to an earthquake. The mass of the tank 15 . the stiffncss of thg
column is 4. and damping is negligible Find the response spectrum for the relativd
displacement, : = v - y, of the water tank ‘

1

.

The following relanon is used 1n deriving Eq (4 39) from kg (436)

d 1df
,,-,f“/(w)dv = f",T,(/.r)m . /(:.r)(h_‘%
At
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3——» ()

Waicr 1ank —— "

Column, k ————

u,

(¢

—p ¥(1) ~ ¥

() (b)

Figure 4.12

Gren Water tank subjected to the base acceleration shown in Fig. 4.12(b).
Find: Response spectrum of relative displacement of the tank.

Approach: Model the water tank as an undamped single degree of freedom system Find the
maximum relative displacement of the tank and express it as a function of w,

Solution. The base acceleration can be expressed as
#(n) =y"m(1 - ,—’) for 0 < 1< 21y (E1)
0
#1)=0 for 1> 21, (E2)

Response during 0 < t < 21, By substituting Eq. (E.1) into Eq. (4.36), the response can be
expressed, for an undamped system, as

1 .
(1) =~ ;ﬂ,ﬁm“[[;(l . ’l“)(sin W, COS w,T — COS w,! $inw,7) drl (E.3)

This equation s the same as Eq. (E.4) of Example 4.7 except that ( — ... ) appears in place of
Fy/m. Hence z(1) can be written, using Eq. (E.8) of Example 4.7, as

Finan * 1.
2(1) p [1 7 T cos + AL m,,:] (E4)
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To find the maximum response 2., we set

(1) = —yL”;[—l 4w, fSinw,! + cosaw,t] =0 (ES)
fow,

This equation gives the time 7, at which z,,,, occurs:

2 -
1 =:"tan Yw,tn) (E6)

By substituting Eq. (E.6) into Eq. (E.4). the maximum response of the tank can be found. |

|

9 L E7)

o = T 1- T cos w, 1, + u","Sm w,l,, (E7)
n

Response during 1 > 2t,: Since ther€ is no excitation during this time, we can use the solution’
of the free vibration problem (Eq. (2.15)):

2(1) = 24005 w,t + (-ii"l)sin w, ! (E.s);‘
provided that we take the initial displacement and initial velocity as '
zo=2(1=21)) and i, =:(1=21) (E.9)
using Eq. (E.7). The maximum of z(r) given by Eq. (E.8) can be identified as
AL
Zmax = [25 + (;"‘) ] (E.10)

where z, and %, are computed as indicated in Eq. (E.9).

4.7 LAPLACE TRANSFORMATION

The Laplace transform method can be used to find the response of a system under,
any type of excitation, including the harmonic and periodic types. This method can‘
be used for the efficient solution of linear differential equations, particularly those,
with constant coefficients [4.3). It permits the conversion of differential equations
into algebraic ones, which are easier to manipulate. The major advantages of the
method are that it can treat discontinaous functions without any particular difficulty
and that it automatically takes into account the initial conditions.
The Laplace transform of a function x(r), denoted symbolically as x(s) =
Lx(t), is defined as
©

)?(:)=.Y’x(!)=/0 e ¥x (1) dr (4.46)
where s is. in general, a complex quantity and is called the subsidiary variable. The
function e”* is called the kernel of the transformation. Since the integration is with
respect to £, the transformation gives a function of s. In order to solve a vibration
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problem using the Laplace transform method, the following steps are necessary:
1. Write the equation of motion of the system.
2. Transform each term of the equation, using known initial conditions.
3. Solve for the transformed response of the system.
4. Obtain the desired solution (response) by using inverse Laplace transformation.
In order to solve the forced vibration equation
mi + cx + kx = F(t) (4.47)

by the Laplace transform method, it is necessary to find the transforms of the
denivatives

. dx . d?x
x(l)=E(1) and x(l)=W(1)
These can be found as follows:
dx o dx
yI(!) =](‘, e D?(l)dl (4-48)

This can be integrated by parts to obtain

Y[‘ll—'}(l) =e "x(l)[ + x]je”x(l)] dt = sx(s) — x(0) (4.49)

where x(0) = x, is the nitial displacement of the mass m. Similarly, the Laplace
transform of the second derivative of x(¢) can be obtained:

2
_gd_x
dr?

where x(0) = X, is the initial velocity of the mass m. Since the Laplace transform of
the force F(r) is given by

F(s) = 2LF(1) =f°°e‘"r(z)d: : (4.51)
0

(1) = jﬂ”e""‘%(:)m =s2%(s) - sx(0) — £(0)  (4.50)

we can transform both sides of Eq. (4.47) and obtain, using Egs. (4.46) and (4.48) to
(4.51),

m&i(t) + cLx(t) + kLx(t) = LF(1)
or

(ms? + cs + k)xX(s) = F(s) + mx(0) + (ms + ¢)x(0) (4.52)

where the right-hand side of Eq. (4.52) can be regarded as a generalized transformed
excitation.

For the present, we take x(0) and x(0) as zero, which is equivalent to ignoring
the homogeneous solution of the differential equation (4.47). Then the ratio of the
transformed excitation to the transformed response Z(s) can be expressed as

Z(s)=%=msz+c:+k (4.53)
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1 function Z(s) is known as the generalized impedance of the system. The
ciprocal of the function_Z(s) is called the wdnuttance or wransfer functian of the
stem and is denoted as Y(s):

1 X(s) 1 1

Y(s) = — = = = = . 5 4.54
() Z(s) F(s) ms’+ces+k  mls+ Qws + ] (@59

can be seen that by letting s = 1w in ¥(s) and muluplying by k. we obtain the
»mplex frequency response H(iw) defined in Eq. (3.54). Equation (4.54) can also
¢ expressed as

(s) = Y(s)F(s) (4.55)

-hich indicates that the transfer function can be regarded as an algebraic operator
hat operates on the transformed force to yield the transformed response.

To find the desired response x(f) from X(s). we have to take the inverse
_aplace transform of X(s). which can be defined symbohically as

x(1) =% 'x(s) =& "V(s)F(s) (4.56)

n general, the operator & ' involves a line integral in the complex doman.
4.9,4.10]. Fortunately, we need not evaluate these integrals separately for each
sroblem; such integrations have been carried out for various common forms of the
function F(r) and tabulated {4.4]. One such table 1s given 1n Appendix B. In order
1o find the solution using Eq. (4.56). we usually look for ways of decomposing ¥(s)
1nto a combination of simple functions whose inverse transformations are available
in Laplace transform tables. We can decompose X(s) conveniently by the method of
partial fractions.

In the above discussion, we 1ignored the homogeneous solution by assuming
v(0) and x(0) as zero. We now consider the general solution by taking the initial
conditions as x(0) = x, and x(0) = x,. From Eq. (4.52). the transformed response
v(s) can be obtained:

F(s) s+ 28w, 1
2 Nt 3 ERI]
m(s + 28w,s + w,,) s7+ 2w,s + W,

x(s) = X
(s) s34+ 2§‘w,,s+w;f Yo
(4.57)

We can obtain the inverse transform of x(s) by considering each term on the right
side of Eq. (4.57) separately. We also make use of the following relation [4.4]:

L fi(s)fuls) =f0’/|(f)fz(1— r)dr (4.38)

By considering the first term on the right side of Eq. (4.57) as /',(s)fz(x). where

1
m(s® + w5 + })

fi(s) = F(s) and fy(s) =
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and by noting that f(1) =% ‘j(:) = F(1). we obtain*
s 'fl(:)jz(s)

Considering the second term on the right side of Eq. (4 37). we find the inverse
transform of the coefficient of x,, from the table in Appendin B:
N ,( s+ 2w, ) 1

= St + 4.60
s+ 2t + W] yi1-¢ ¢ anbe + o) ( )

fF(T)e Sold Dane,(r = 1) dr {4.59)

nw,

where
¢, = cos '({) (a.61)

Finally, the inverse transform of the coefficient of X, in the third term on the right
side of Eq. (4.57) can be obtained from the table in Appendix B:

» Sw,

1 1
-1 ] = — 0 4
K [(32 % = 3)] Jr. smu,r ( .62)

Using Egs. (4.57). (4.59), (4.60). and (4.62), the general solution of Eq. (4.47) can be
expressed as

X X .
x(1) = ——‘)me" Soalsin(wyt + ¢,) + u—‘"e $elsin w,f
(1-¢%) 4
-!u,,tP-VI : -
mwdj;,F( sinw,(r — v)drs (4.63)

EXAMPLE 4.10

Response of a Compacting Machine

tind the response of the compacting machine of Example 4 5 assunung the system to be
underdamped (i.e.. { < 1).

Green: Compacting machine (spring-mass-damper system) subjected to a step force.
Find: Response of the system.
4pprouch: Use Laplace transformation technique.

Solution. The forcing function is given by

F for0<rg, R
F(:)={O fort > 1, (E1)

By taking the Laplace transform of the governing differential equation, Eq. (4.47). we
obtain Eq. (4.57). using Appendix B, with

F(s) = £F(1) = ~“~(—‘—}"——~) (E1)

*  The inverse transform of /,(s) is oblained from the Laplace transform fable m Appendix B
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Thus Eq. (4.57) can be written as

< R(l-e™) s + R,
X(s) = 3 3 3 5 Xy
ms(s? + Qw,s + @) 7+ Wos+ o
1 .
-\
s” + Ro, + W
i 1 - R e
mw, [ s mo, |« 2ts
{ 5+ § + l) ( st + l)
w, ) n 2
+ -i,' — 2 + (—K'Y" + ﬁ;‘) ~ ! ()
“n £+Z‘b+l o “ 5;4»2—§s+1
W W Wl Wy

The inverse transform of Eq. (E.2) can be expressed by using the results in Appendex I

w(1) = L[l _ 11’ I““_'__sin{u_.\l - ¢,}]
i

) 5
mw, 2

[RTENR)

BN P s——:—sin{w,,\"l—§3(1~'«,) *'ﬁ':}
mw;, v~ ¢

'ﬁ[hét;:sin{w,,\il —{W—m}]

ali-¢

2 i .

R R T ) ‘-
w, w Jpy1 -8 !

where ¢, is given by Eq. (4.61) Thus the response of the compacting machine can be
expressed as

F, . —1 |
x(1) = —==1-e ’“»’sin(w,,vl -+ ¢‘)
mayl - §?

e Tuatt ’"'sin{ w,,v’l_:?([ —1,) + ¢, }]

Xy fey - —_—
- -~
e i, T ) |
. (ZIw,:xu + ’f")e *“-'sin(m"‘ﬁ?r) (k)
wyl = §°

Although the first part of Eq. (E.4) is expected to be the same as Eq. (E.1) of Example 4510
is difficult to see the equivalence in the present form of Eq (E.4). However, for the undamped
system. Eq (E.4) reduces to

) Fy , n -y n
x(1) = ;,;: —sm(u,,: 7) + smlw,,(l — 1) + 2}
- \“bl'n(u,,l - ;) + g‘—'sinu,,l

K X -
= T"[cnsw,,(l - 1) - eosw,t] + ycosw, + '“Tl's'lnw"[ (E3)
;
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The first or steady-state part of Eq (E 5) can be seen to be identical to Eq. (E.3) of Example

Li 45,

.8 RESPONSE TO IRREGULAR FORCING CONDITIONS
USING NUMERICAL METHODS

In the previous sections, 1t was assumed that the forcing functions F(r) are available
as functions of time in an explicit manner. In many practical problems, however. the
forcing functions F(f) are not available 1n the form of analytical expressions. When
a forcing function is determined experimentally. F(f) may be known as an irregular
curve. Sometimes only the values of F(r) = F, at a series of points t = 1, may be
available. in the form of a diagram or a table. In such cases, we can fit polynomials
or some such curves to the data and use them in the Duhamel integral, Eq. (4.33). to
find the response of the system. Another, more common, method of finding the
response involves dividing the time axis into a number of discrete points and using a
simple variaton of F(t) during each ume step. We shall present this numerical
approach in this section, using several types of interpolation functions for F(r) [4.8].
The direct numerical integration of the equations of motion is discussed in Chap.
11

Method 1. Let the function F(r) vary with time in an arbitrary manner, as
indicated in Fig. 4.13. This forcing function can be approximated by a series of step
functions having different magnitudes starting at different instants, as shown in Fig.
4.14. In this figure, the first step function starts at time r =1, =0 and has a
magnitude of AF,, the second step function starts at time ¢ =, and has a
magnitude of AF,, and so forth. The response of the system in any time interval
1,y <t <t,due o the step functions AF, (i = 1.2, .., J — 1) can be found. using
the results of Example 4.3:

/-1
RRSE 0

=1
x{cosw,,(: )+ i - z,)}] (4.64)

Thus the response of the system at t = ¢, becomes

1
=X AF,[I — e Soatt 1)

=1

Wy

x{cos w1, =) + g’w"sin w, (1, - :,)}] (4.65)

Notice that the step function AF, of step 1 1s positive if the slope of the F-versus-t
curve is positive, and it is negative if the slope of the F-versus- curve is negative. as
indicated 1n Fig. 4.14. For higher accuracy, the time steps taken should be small. In
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addition, it is desirable to make the force steps start, after the first one, at instants
when the ordinates of the F(r) curve are at the midheights of the steps, as shown in
Fig. 4.14. In this case, the errors involved in approximating the F(f) curve will be
self-compensatory; that is. the areas lying above the F(¢) curve will be approxi-
mately equal to the areas lying below the F(r) curve.

Method 2. Instead of approximating the F(r) curve by a succession of step
functions, we can approximate it by a series of rectangular impulses F,, as shown in
Fig. 4.15. These impulses F, are positive or negative, depending on whether the
curve F(t) lies above or below the time (f) axis. As in the previous case, the
magnitudes of F, should be selected as the values of F(r) at the midpoints of
the time intervals At as shown in Fig. 4.15, to make the errors self-compensating.
The response of the system in any time interval ¢,_, <t <1, can be found by
adding the response due to F, (applied in the interval A7) to the response existing
at t =1, (initial condiuon). This gives

F .
x(r) = —k—'[l - e“"’~"":-"{cosw',(r -t + %sinud(z - 1,_,)}]

X,y + $w,x,_

L Ginw,(f - t, ,)}
. (4.66)

By substituting 1 =1, in Eq. (4.66) the response of the system at the end of the

+ e"""""""’{x R cosud(t —-t_,)+
=1 7 l) W,



CHAPTER 4  vibrauon under General Forcing Conditions

nterval At can be obtained:
F, o, .
x, = ?’ll - e“"‘v":{cos w, - A, + u—‘;'smw,f All}

X,y + Sw,x,
Ll lsinc.:‘,-At,} (4.67)

+e’f"-'A'r{x]_,cosu,-Alj+ o
By differentiating Eq. (4.66) with respect to t and substituting ¢ = r,, we obtain the
velocity x, at the end of the interval At

Fuw, fzuz .
i} = ;k‘e*{u.m, 1+ Tzﬁ sinw, - A, + wde’f"~ 4,
y

. %, + fw,x,

x{—x,, Sinw, - A7+ ———wd——cos w, - At,
X, fwx, oy

- g‘.‘j—:[x,_{cos w, - Ar, 4+ L G0, Az/]} (4.68)
Equations (4.67) and (4.68) represent recurrence relations for computing the re-
sponse at the end of jth time step. They also provide the initial conditions of x, and
%, at the beginning of step j + 1. These equations may be sequentially applied to
find the variations of displacement and velocity of the system with time.

Method 3. In the piecewise-constant types of approximations used in Methods 1
and 2, it is not always possible to make the areas above and below the F(r) curve
equal and make the errors self-compensating. Hence it is desirable to use a higher
order interpolation, such as a piecewise linear or a piecewise quadratic approxima-
tion, for F(t). In the piecewise linear interpolation, the variation of F(r)in any time
interval is assumed to be linear as shown in Fig. 4.16. In this case, the response of
the system in the time interval f,_, <t <1, can be found by adding the response
due to the linear (ramp) function applied during the current interval to the response
existing at 1 = ¢,_, (initial condition). This gives

. 2 e
X(!)=;§7/I /-.—w—"ﬂ"" v
X{i—{cosw‘,(l—lrl)
uj—fz 2

s-1 - - {w, .
+|1-e tw,r :,--){cos w(t=1,,)+ —‘J—:sun w,(r - ’/-1)}]

R X+ Sw.x, .
te ru"“—"-')[x/»lcos‘*’./(’ - l,-l) + L o n e, (- ’1-~|)}

(4.69)
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where AF, = F, — F,_,. By setting t = 1, in Eq. (4.69), we obtain the response at th
end of the interval Az

F, 2 _ y2.2
[At _x, e""’-A"{z—gcos w,Ar, - u"—;—g-&sin u,,At]}]

x =
17 kAt 20,
F_
+ —’k—' [1 - e""""A’/{cos w AL, /}l
A ‘i/—l + g“’n"/—l .
+ e teub x  cosw,Ar, + sinw,Az, (4.70
Wy

By differentiating Eq. (4.69) with respect to ¢ and substituting ¢ = 1, we obtain th
velocity at the end of the interval:

AF,

= %A ’1 — e A'{coswdAl + g——smw,,At }]

£ -3 o St A
e Rt s sinw, A 4 o7 B
d

o o
X lx’,_,cos WAt — gw; (i,,, + T"xj_ ,)sin udA!/] (4
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Equations (4.70) and (4.71) are the recurrence relations for tinding the response of
the system at the end of sth time step.

Jua— —
MPLE 4.11 Damped Response Using Numerical Methods -
Find the response of a spring-mass damper svstem subjected to the forang function I
|
. wt
F(l)=l-},{l—sm2”—l) (El)‘
o
in the nterval 0 < ¢ < #,, using a numerical procedure. Assume K, =1. k=1 m=1,
§ =0.1.and ¢, = 1,/2, where 7, denotes the natural period of vibration given by
27 2
,"=._=_"I/;=2,, (E2)
o (k/m)”
The values of x and x at r = 0 are zero
Geen, Spring-mass-damper system subjected to the force given by Eq (E1). m =1, k = 1.
{=01 F=11== x@0)=x0) =0
Fn
1.0
11.0000
F\! AF =10
~0.8436 AF, = 0.8436 - 1.0000
) 0.8 N | AFy = 0.6910 - 0 8436
W PN
1 N 06910
0.6+ ; P\ } AFy = 0.01231 - 0.0489%4
: v\ A= Ei=2.11
[ 70.5460
L AN
1] i 1 '
1 t t t
= oafF 1L R 104122
F(r)zf}.(l—mn%) R AN
_ - | ! ~50.2929
Fo=1 B 1 !
W L 1 1 l ' 1
=% 028 v 0910
I B R . 0.04894
RN 10100 L7 0.01231
U )} i i A e 1
0‘(':. b ottty L b By by 1, —>!
2 7 "
o mEER AR AR B
L 1 n
H [ 3 !
3 3 3 m An Al
e 417

Figure 4.18
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Find. Response of the system.
4pproach: Use numerical methods.

Solution. Figure 4.17 shows the forcing function of Eq. (E.1) For the numencal compu
tons. the time interval 0 to 1, is divided into ten equal steps with

P
A1 = 2

=15 - i=23. .1 (E

5

Four different methods are used to approximate the forcing funcuon F(r). In Fig. 4.18, F
is approximated by a series of rectangular impulses, each starting at the beginning of
corresponding time step. A similar approximation, with the magnitude of the impulse at
end of the time step, is used in Fig. 4.19. The value of F(r) at the mddle of the time stej
used as an impulse in Fig. 4.20. In Fig. 4.21, piecewise linear (trapezoidal) impulses are u
to approximate the forcing function F(#). The numerical results are given m Table 4.1.
can be expected from the idealizations, the results obtained by i1deahizations 1 and 2 (F
418 and 4.19) overestimate and underestimate the true response. respectively The rest
given by idealizations 3 and 4 are expected to lie between those given by idealizations 1 :
2. Further, the results obtained from idealization 4 will be the most accurate ones
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Figure 4.21
x(t;) Obtained According to
Fig. 4.18 Fig. 4.19 Fig. 4.20 Fig. 4.21
i L (1dealization 1) (1dealization (dealization3)  (Idealizafs
1 0 0.00000 0.00000 0.00000 0.00000
2 O.lx 0.04794 0.04044 0.04417 0.04541
3 027 0.17578 0.14729 0.16147 0.16377
4 037 0.35188 0.29228 0.32190 0.32499
5 04x 0.54248 0.44609 0.49392 0.49746
6 0.57 0.71540 0.58160 0.64790 0.65151
7 0.6x 0.84330 0.67659 0.75906 0.76238
8 0.77 0.90630 0.71578 0.80986 0.81255
9 0.87 0.89367 0.69214 0.79142 0.79323
10 0.97 0.80449 0.60717 0.70403 0.70482
11 4 0.64730 047152 0.55672 0.55647
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4.9 COMPUTER PROGRAMS

4.91 A Fortran computer program. in the form of subroutine PERIOD. is given for
Response under  finding the dynamic response of a damped oscillator exaited by any periodic
applied to the mass. The arguments of the subroutine are as follows:

an Arbitrary external force

Periodic
Forcing Function

XM
XK
XAl

FZERO
FC

Mass of the system. Input data.
Stiffness of the spring. Input data.
Damping ratio §. Input data.

Number of equidistant points at which the values of the force
F(t) are known. Input data.

Number of Fourier coefficients to be considered in the solution.
Input data.

Time period of the function F(¢). Input data.
Array of dimension N which contains the known values of F(t).
F(I) = F(¢,). Input data.

Array of dimension N which contains the known values of time
t. T(I) = 1,. Input data.

F,. Output.
Array of dimension M. FC(J) = F,. Output.

Array of dimension N which contains the computed response at
time 1. X(I) = x,. Output.

A sample problem and the listing of the program are given below.

2NN NeNeNeNe]

PROGRAM &
MAIN PROGRAM WHICH CALLS PERIOD

FOLLOWING 10 LINES CONTAIN PROBLEM-DEPENDENT DATA

DIMENSION F(24),T(24),XSIN(20),XC0S(20),PSI(20),PHI(20),FC(20),
2 X(24),XPC(20),XPS(20)

DATA XM,XK,XAI /100.0,100000.0,0.1/

DATA N,M,TIME /24,20,0.12/

DATA F/24000.0,48000.0,72000.0,96000.0,120000.0,96000.0,72000.0,
2 48000.0,24000.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
30.0,0.0,0.0,0.0/

DATA T/0.005,0.010,0.015,0.020,0.025,0.030,0.035,0.040,0.045,

2 0.050,0.055,0.060,0.065,0.070,0.075,0.080,0.085,0.090,0.095,
3 0.100,0.105,0.110,0.115,0.120/

C END OF PROBLEM-DEPENDENT DATA

CALL PERIOD (XM,XK,XAI,N,M,TIME,F,T,XSIN,XCOS,PSI,PHI,FZERO,FC,

2 X,XPC,XPS)
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100

200

400
500

PRINT 100, XM,XK,XAI,N,M,TIME
FORMAT (/,56H RESPONSE OF A SINGLE D.0.F. SYSTEM UNDER PERIODIC FO
2RCE,//,6H XM =,E15.6,/,6H XK =,E15.6,/,6H XAI =,E15.6,/,
36H N =,13,/,6H M =13,/ 6H TIME=,E15.6,/)

PRINT 200

FORMAT (/,27H APPLIED FORCE AND RESPONSE,//,3H I,3X,5H T(I),10X,
2 SH F(I),10X,5H X(I1),/)

DO 400 I=1,N

PRINT 500, I,T(I),F(1).X(I)

FORMAT (I13,3E15.6)

STOP

END

[z EsNeNoN el

SUBROUTINE PERIOD

100

200

300

500

400

SUBROUTINE PERIOD (XM,XK,XAI,N,M,TIME,F,T,XSIN,XCOS,PSI,PHI,
2 FZERO,FC,X,XPC,XPS)

DIMENSION F(N),T(N),XSIN(M),XCOS(M),PSI(M),PHI(M),FC(M),X(N)
2 ,XPC(M),XPS(M)

OMEG=2.0#3.1416/TIME

OMEGN=SQRT (XK/XM)

SUMZ=0.0

DO 100 I=1,N

SUMZ=SUMZ+F (1)

FZERO=2.0%SUMZ/REAL(N)

DO 300 J=1,M

SUMS=0.0

SUMC=0.0

DO 200 I=1,N

THETA=REAL(J)*OMEG*T (1)

FSIN=F(I)*SIN(THETA)

FCOS=F(1)*COS(THETA)

SUMS=SUMS+FSIN

SUMC=SUMC+FCOS

CONTINUE

AJ=2.0%SUMC/REAL(N)

BJ=2.0*SUMS/REAL(N)

R=OMEG/OMEGN

PHI(J)=ATAN(2.0*XAI*REAL(J)*R/(1.0- (REAL(J)*R)**2))
CON=SQRT((1.0- (REAL(J)*R)**2)**2+ (2. O*XAI*REAL(J)*R)**2)
XPC(J)=(AJ/XK)/CON

XPS (J)=(BJ/XK)/CON

CONTINUE

DO 400 I=1,N

X(1)=FZERO/ (2.0%XK)

DO 500 J=1,M
X(I)=X(I)+XPC(J)*COS(REAL(J)*OMEG*T(I)-PHI(J))

2 +XPS(J)*SIN(REAL(J)*OMEG*T(I)-PHI(J))

CONTINUE

RETURN

END



4.9.2

Response under
Arbitrary Forcing
Function

Using the
Methods

of Section 4.8

49 Computer Programs 21 3

RESPONSE OF A SINGLE D.0.F. SYSTEM UNDER PERIODIC FORCE

.110000E+00
.115000E+00
.120000E+00

.000000E+00  0.210580E+00
.000000E+00  0.268249E+00
.000000E+00  0.329747E+00

XM = 0.100000E+03
XK = 0.100000E+06
XAI =  0.100000E+00
N = 24
M= 20
TIME=  0.120000E+00
APPLIED FORCE AND RESPONSE
I T F(I) X(1)
1 0.500000E-02  0.240000E+0S  0.393129E+00
2 0.100000E-01  0.480000E+0S  0.:51156E+00
3 0.150000E-01  0.720000E+05  0.:96753E+00
4 0.200000E-01  0.960000E+05S 0. 523365E+00
S 0.250000E-01  0.120000E406  0.525113E+00
6 0.300000E-01  0.960000E+0S  0.297451E+00
7 0.350000E-01  0.720000E+0S 0. 447280E+00
8 0.400000E-01  0.480000E+0S  0.382350E+00
9 0.450000E-01  0.260000E+0S  0.310534E+00
10 0.S00000E-01  0.000000E+00  0.239646E+00
11 0.550000E-01  0.000000E+00  0.17698:E+00
12 0.600000E-01  0.000000E+00  0.124139£+00
13 0.650000E-01 0.000000E+00 0.821526E-01
14 0.700000E-01  0.000000E+00 0. 517498E-01
15 0.750000E-01  0.000000E+00  0.333252£-01
16 0.800000E-01 0.000000E+00 0.269447€-01
17 0.850000E-01 0.000000E+00 0.323697€-01
18  0.900000E-01  0.000000E+00  0.490896E-01
19  0.950000E-01  0.000000E+00  0.763507E-01
20 0.100000E+00  0.000000E+00  0.113176E+00
21 0.105000E+00  0.000000E+00  0.158378E+00
0 0
0 0
0 0

A Fortran computer program is given for finding the response of a viscously
damped single degree of freedom system under arbitrary forcing function using the
methods outlined in Section 4.8. For illustration. the data of Example 4.11 is used.
The following input data is required for this program.

F = Array containing the values of the forcing function at various time
stations according to the idealization of Fig. 4.14 (Fig. 4.18 or 4.19
for Example 4.11).

FF = Array containing the values of the forcing function at various time
stations according to the idealization of Fig. 4.16 (Fig. 4.20 or 4.21
for Example 4.11).

XAl = Damping factor.
OMN = Undamped natural frequency of the system.
DELT = Incremental ume between consecutive time stations.

XK = Spring stiffness.
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The program prints the values of x(r,) and x(1,) given by four different methods at
time Statons Iy, f3,..., Iyy. Although the program uses the data of Example 4.11
directly, it can be generalized to find the response under any arbitrary forcing
function of any single degree of freedom system.

C
C
C PROGRAM 5

C RESPONSE OF A SINGLE D.O.F. SYSTEM UNDER ARBITRARY FORCING FUNCTION
C USING THE METHODS OF SECTION 4.8

c

c :
C FOLLOWING 10 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION F(11),FF(11),DELF(11),T(11),X(11),XD(11),X1(11),
2 XD1(11),X2(11),XD2(11),X3(11),XD3(11),X4(11),XD4(11)
DATA F/0.0,1.0,0.84356554,0,69098301,0.54600950,0.41221475,
.29289322,0.19098301,0.10899348,0.04894348,0.01231166/
DATA FF/1.0,0.92154090,0.76655464,0.61731657,0.47750144,
2 0.35055195,0.23959404,0.14735984,0.07612047,0.02763008,
3 0.00308267/
DATA XAI,OMN,XK /0.1,1.0,1.0/
DELT=3,14159265/10.0
DATA NP,NP1,NP2 /11,10,9/
C NP = NUMBER OF POINTS AT WHICH VALUE OF F IS KNOWN, NP1=NP-1, NP2=NP-2
C END OF PROBLEM-DEPENDENT DATA
XN=XAT*OMN
PD=OMN*SQRT(1.0-XAI**2)
C SOLUTION ACCORDING TO METHOD 1 USING THE IDEALIZATION OF FIG. 4.18
T(1)=0.0
DO 10 I=2,NP
10 T(I)=T(I-1)+DELT
DO 20 I=1,NP1
20 DELF(I)=F(I+1)-F(I)
DO 40 J=2,NP
X(J)=0.0
XD(J)=0.0
IM1=J-1
DO 30 I=1,JM1
X(J)=X(J)+(DELF(I)/XK)*(1.0-EXP(-XN*(T(J)-T(I)))*(COS (PD*(T(J)-
2 T(I)))+(XN/PD)*SIN(PD*(T(J)-T(I)))))
C XD(J) OBTAINED BY DIFFERENTIATING EQ. (4.64)
XD(J)=XD(J)+(DELF (1) /XK)*EXP(~XN*(T(J)-T(I)))*SIN(PD*(T(J)-

2

(=

2 T(D)))
30  CONTINUE .
40  CONTINUE
DO 50 I=2,NP
X1(I)=X(I)

50  XD1(I)=XD(I)

C SOLUTION ACCORDING TO METHOD 1 USING THE IDEALIZATION OF FIG. &.19
DO 60 K=2,NP2 .

60  DELF(K)=DELF(X+1)
DELF(1)=F(3)
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70
80

90

215

DELF(NP)=F(NP)

pO 80 J=2,NP

X(J)=0.0

XD(J)=0.0

Mi=J-1

DO 70 I=1,JM1

X(J)=X(J)+(DELF (I)/XK)*(1.0-EXP(-XN*(T(J)-T(I)))*(COS(PD*(T(J)-
2 T(I)))+(XN/PD)*SIN(PD*(T(J)-T(I)))))
XD(J)=XD(J)+(DELF(I)/XK)*EXP(-XN*(T(J)-T(I)))*SIN(PD*(T(J)-
2 T(D))

CONTINUE

CONTINUE

DO 90 I=2,NP

X2(1)=X(I)

XD2(1)=XD(I)

C SOLUTION ACCORDING TO METHOD 2 USING THE IDEALIZATION OF FIG. 4.20

X(1)=0.0

XD(1)=0.0

DO 100 J=2,NP

DEL=DELT

X(J)=(FF(J)/XK)*(1.0-EXP(-XN*DEL)*(COS (PD*DEL)+(XN/PD)*

2 SIN(PD*DEL)))+EXP(-XN*DEL)*(X(J-1)*COS(PD*DEL)+((XD(J-1)

3 +XN*X(J-1))/PD)*SIN(PD*DEL))
XD(J)=(FF(J)*PD/XK)*EXP (-XN*DEL)* (1. 0+XN**2/ (PD**2))*SIN(PD*DEL)
2 +PD*EXP(-XN*DEL)*(-X(J-1)*SIN(PD*DEL)+ ((XD(J-1)+XN*X(J-1))/PD)*
3 COS(PD*DEL)-XN*(X(J-1)#COS(PD*DEL)+( (XD (J-1)+XN*X(J-1))/PD)*
4 SIN(PD*DEL))/PD)

100 CONTINUE

DO 110 I=2,NP
X3(I)=X(I)

110 XD3(I)=XD(I)
C SOLUTION ACCORDING TO METHOD 3 USING THE IDEALIZATION OF FIG. 4.21

120

130

140

X(1)=0.0

XD(1)=0.0

pO 120 J=1,NP1

F(J)=F(J+1)

F(NP)=0.0

DO 130 J=2,NP

DELF (J)=F(J)-F(J-1)

X(J)=(DELF (J)/ (XK*DEL))* (DEL- (2.0*XAI/OMN)+EXP(-XN*DEL)*

2 ((2.0*XAI/OMN)*COS(PD*DEL)- ( (PD*%2-XN**2)/ (OMN*OMN*PD))*
3 SIN(PD*DEL)))+(F(J-1)/XK)*(1.0-EXP(-XN*DEL)* (COS(PD*DEL)
4 +(XN/PD)*SIN(PD*DEL) ) )+EXP (-XN*DEL)* (X(J-1)*COS (PD*DEL)
5 +((XD(J-1)+XN*X(J-1))/PD)*SIN(PD*DEL))

XD(J)=(DELF (J)/ (XK*DEL))*(1.0-EXP(-XN*DEL)* (((XN**2+PD¥**2)/
2 (OMN**2))*COS(PD*DEL)+( (XN**3+XN*PD*PD)/ (PD* (OMN**2)))*
3 SIN(PD*DEL)))+(F(J-1)/XK)*EXP(-XN*DEL)* ( (XN**2/PD)+PD)*
4 SIN(PD*DEL)+EXP(-XN*DEL)* (XD(J-1)*COS(PD*DEL) - ((XN*XD(J-1)
5 +XN*XN*X (J-1)+PD*PD*X(J-1))/PD)*SIN(PD*DEL))

CONTINUE

DO 140 I=2,NP

X4 (I)=X(I)

XD4(1)=XD(I)

PRINT 150
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150 FORMAT (//,6H VALUE,6X,10H METHOD #1,7X,10H METHOD #1,7X,

2 10H METHOD #2,7X,10H METHOD #3)

PRINT 160

160 FORMAT (3X,3H OF,5X,11H (FIG.4.18),6X,11H (FIG.4.19),6X,

2 11H (FIG.4.20),6X,11H (FIG.4.21),/)

PRINT 170

170 FORMAT (3X,2H I,7X,SH X(I),12X,5H X(I),12X,5H X(I),12X,5H X(I),
2

2
D0 180 I=2,NP

180 PRINT 190,I,X1(I),X2(I),X3(I),X4(I)

190 FORMAT (I5,2X,E15.6,2X,E15.6,2X,E15.6,2X,E15.6)

PRINT 200

200 FORMAT (//,3X,2H I,6X,6H XD(I),11X,6H XD(I),11X,6H XD(I),11X,

2 6H XD(I),/)
DO 210 I=2,NP

210 PRINT 190,1,XD1(I),XD2(1),XD3(1),XD4(I)

STOP
END

VALUE METHOD #1
(FIG.4.18)

X(I)

-479360E-01
.175781E+00
.351883E+00
542483E+00
.715396E+00
.843296E+00
906301E+00
893674E+00
804490E+00
647299E+00

(=]
-

—~O VPN ULEWLN —
CO0O0O00O0OO0OO0O0CCOC

—_—

XD(I)

298008E+00
502976E+00
602270E+00
595174E+00
492171E+00
313187E+00

0.850188E-01
-0.161754E+00
-0.396047E+00
-0.589414E+00

HFOWVWE®NOWEWN -
(=~ NN

-

-0.
-0.
-0.

(==l N=-N-0-2"]

[= =Nl NN}

METHOD #1
(FIG.4.19)

X(I)

.404372E-01
.147294E+00
.292277E+00
-446091E+00
.581603E+00
.6786586E+00
.715783E+00

692145E+00
60716 7E+00

.469170E+00

XD(I)

251389E+00
418148E+00
491876E+00
474576E+00
377744E+00
220601E+00
276649E-01
174042E+00
357870E+00
507466E+00

METHOD #2
(FIG.4.20)

X(I)

0.441750E-01
0.161471E+00
0.321877E+00
0.493842E+00
0.647699E+00
0.758676E+00
0.809225E+00
0.790486E+00
0.702788E+00
0.555198E+00

XD(I)

0.276010E+00
0.462605E+00
0.549249E+00
0.536630E+00
0,435845E+00
0.266613E+00
0.547668E-01
-0,170711E4+00
-0, 380784E+00
-0.549289E+00

(== NeleNeNeNe e le o]

METHOD #3
(FIG.4.21)

X(1)

454151E-01
163773E+00
324989E+00
497464LE+00
651514E+00
762379E+00
812552E+00
793231E+00
704820E+00
356465E+00

XD(1)

.275640E+00
.461687E+00

547683E+00

-534405E+00
-433036E+00
-263378E+00
.513272E-01
- 174093E+00
. 383830E+00
.551730E+00
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REVIEW QUESTIONS

4.1.  What is the basis for expressing the response of a system under penodic excitation as a
summation of several harmonic responses?

4.2. Indicate some methods for finding the response of a system under nonperiodic forces
4.3. What is Duhamel integral? What is its use?

4.4. How are the initial conditions determuned for a single degree of freedom system
subjected to an impulse at ¢ = 0?

4.5, Derive the equation of motion of a system subjected 10 base excitation.
4.6. What s a response spectrum?

4.7. What are the advantages of the Laplace transformation method”

4.8. What is the use of the pseudo spectrum?

4.9. How is the Laplace transform of a function x(¢) defined”

4.10. Define these terms: generahzed impedance and admittance of a system.

4.11. State the 1nterpolation models that can be used for approximating an arbitrary forcing
function

4.12. How many resonant condiuons are there when the external force 15 not harmomic?
4.13. How do you compute the frequency of the first harmonic of a penodic force”

4.14. What is the relation between the frequencies of higher harmonics and the frequency of
the first harmonic for a periodic exaitation?
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PROBLEMS

The problem assignments are organized as follows:

Section
Problems Covered Topic Covered

41-45 42 Response under general
periodic force

46-4.8 43 Periodic force of irregular
form

49-421 45 Convolution integral
4.22-4.26 46 Response spectrum
4.27-4.29 4.7 Laplace transformation
4.30-4.33 48 Irregular forcing conditions

using numerical methods
4.34-439 4.9 Computer program
4.40-4.41 — Projects

4.1-4.4. Find the steady-state response of the hydraulic control valve shown in Fig, 4.1(a) to
the forcing functions obtained by replacing x(¢) with F(r) and 4 with F, in Figs.
1.56-1.59.

45. Find the steady-state response of a viscously damped system to the forcing function
obtained by replacing x(¢) and 4 with F(¢) and F,, respectively, in Fig. 1.32(a).

4.6. Find the response of a damped system with m = 1 kg, k = 15 kN/m, and { = 0.1
under the action of a periodic forcing function, as shown in Fig. 1.62.

4.7.  Find the response of a viscously damped system under the periodic force whose values
are given in Problem 1.47. Assume that x, denotes the value of the force in Newtons at
time ¢, seconds. Use m = 0.5 kg, k = 8000 N/m, and { = 0.06.

48.  Find the displacement of the water tank shown in Fig. 4.22(a) under the periodic force
shown in Fig. 4.22(b) by treating it as an undamped single degree of freedom system.
Use the numerical procedure described in Section 4.3.

y

L, X F(f), kN
—
K@) m=10Mg
400

k=5 MN/m

7 0 006 0.150.37 0,30 036 " (seconds)

(a) (b)

Figure 4.22
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49. Sandblasting is a process in which an abrasive material, entrained in a jet, is directed
onto the surface of a casting to clean its surface. In a particular setup for sandblasting,
the casting of mass m is placed on a flexible support of stiffness k as shown in Fig.
4.23(a). If the force exerted on the casting due to the sandblasting operation varies as
shown in Fig. 4.23(b), find the response of the casting.

Nozzle Jet of abrasive
material
F@)
Casting, m

Rlb-—-
Flexible i
support. k !

o] P >

(a) (b

Figure 4.23

4.10. The frame, anvil, and the base of the forging hammer, shown in Fig. 4.24(a), have a
total mass of m. The support elastic pad has a stiffness of k. If the force applied by
the hammer is given by Fig. 4.24(b), find the response of the anvil.

Hammer
K@)
v t— Frame
F)
L/Anvil Fa
. . 1
o " L 1
l T Base .T }
|
< < Elastic
% % % $ 3 % 3 pad k {
! — !
N o ta Sty
(a) (b)

Figure 4.24
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the displacement of a damped single degree of freedom system under the forcing
tion F(t) = Fye™* where a is a constant.

the transient response of an undamped spring-mass system for ¢ > 7 /w When the
s is subjected to a force

F,
?O(l—coswr) for0ges T
= w
F(1) = -
K for t > <

ume that the displacement and velocity of the mass are zero at ¢ = 0.

Use the Dahamel integral method to derive expressions for the response of an
amped system subjected to the forcing functions shown in Figs. 4.25(a) to (c).

1203) F)

Fy(1 - cos 30)

re 4.25

pure 4.26 shows a one degree of freedom model of a motor vehicle traveling in the
rizontal direction. Find the relative displacement of the vehicle as it travels over a
pd bump of the form y(s) = Ysinns/8.

m

......
n
=1
AAAAAA

x
&
AAAAAA

| W ———
%o it

N M\ h - J‘\\\
r b -

qure 4.26
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An automobile, having a mass of 1000 kg, runs over a road bump of the shape shov
in Fig. 4.27. The speed of the automobile is 50 km/hr. If the undamped natural peri
of vibration in the vertical direction is 1.0 second, find the response of the car |
assuming it as a single degree of freedom undamped system vibrating in the vertic
direction.

4.17.

Height of bump (m)

4
01—
|
|
|
[
I
1
|
!
0 0.25

Figure 4.27
4.18.
4.19.

Figure 4.29

Camcorder
(m)
_L l-—Containe
ki2 z Sk
» Distance along
0.50 road (m) N NA\N -

Figure 4.28

A camcorder of mass m is packed in a container using a flexible packing material. Tl
stifiness and damping constant of the packing material are given by k and
respectively, and the mass of the container is negligible. If the container is dropp
accidentally from a height of 4 onto a rigid floor (see Fig. 4.28), find the motion of t
camcorder.

An airplane, taxiing on a runway, encounters a bump. As a result, the root of the wi
is subjected to a displacement that can be expressed as

W) = {;’(ﬂ/r&), 0<t<y

t> ¢

Find the response of the mass located at the tip of the wing if the stiffness of the wi
is k (see Fig. 4.29).

Equivalent
mass, m
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4.20.
4.21.

Derive Eq. (E.1) of Example 4.6.

In a static firing test of a rocket, the rocket is anchored to a rigid wall by a
spring-damper system, as shown in Fig. 4.30(a). The thrust acting on the rocket
reaches its maximum value F in a negligibly short time and remains constant until the
burnout time #,, as indicated in Fig. 4.30(b). The thrust acting on the rocket is given
by F = mgv where m is the constant rate at which fuel is burnt and v is the velocity
of the jet stream. The initial mass of the rocket is M, so that its mass at any time ¢ is
givenbym =M — my1,0 < t < ;. If thedataare k = 7.5 X 10° N/m, ¢ = 0.1 x 10¢
N-s/m, my = 10 kg/s, v = 2000 m/s, M = 2000 kg, and ¢, = 100 s, (1) derive the
equation of motion of the rocket, and (2) find the maximum steady-state displacement
of the rocket by assuming an average (constant) mass of (M — 1mgt,).

}—9 x(1) . 4r

¢

&

7777777777777772777 o) t —»!
(a) (b)
Figure 4.30

4.22.

4.23.

4.24.

4.25.

*

4.26.

4.27.

4.28.

4.29.

4.30.

Derive the response spectrum of an undamped system for the rectangular pulse shown
in Fig. 4.25(a). Plot (x/8) nax With respect t0 (2,/7,).

Find the displacement response spectrum of an undamped system for the pulse shown
in Fig. 4.25(c).

The base of an undamped spring-mass system is subjected to an acceleration excita-
tion given by a4[1 — sin(w¢/2¢,)]. Find the relative displacement of the mass z.

. k
Find the response spectrum of the system considered in Example 4.7. Plot (Tf )

0 jmax
Versus w,l, in the range 0 < w,# < 15.

A building frame is subjected t0 a blast load and the idealization of the frame and the
load are shown in Fig. 4.10. If m = 5000 kg, K, = 4 MN, and 7, = 04 s, find the
minimum stiffness required if the displacement is to be limited to 10 mm.

Find the steady state response of an undamped single degree of freedom system
subjected to the force F(t) = Fye'”' by using the method of Laplace transformation.
Find the response of a damped spring-mass system subjected to a step function of
magnitude F, by using the method of Laplace transformation.

Find the response of an undamped system subjected to a square pulse F(t) = K, for
0 <t <ty and O for ¢ > t, by using the Laplace transformation method. Assume the
initial conditions as zero.

Determine the expression for the velocity x, for the damped response represented by

Eq. (4.64).
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431. Derive Egs. (4.68) and (4.71).

432. Compare the values of %, given by Egs. (4.68) and (4.71) in the case of Example 4.1)

433. Derive the expressions for x, and X, according to the three interpolation functior
considered in Section 4.8 for the undamped case. Using these expressions, find th
solution of Example 4.11 by assuming the damping to be zero.

434. A damped single degree of freedom system has a mass m = 2, a spring of stiffne:
k = 50, and a damper with ¢ = 2. A forcing function F(¢), whose magnitude
indicated in the following table, acts on the mass for one second. Find the response
the system by using the piecewise linear interpolation method described in Section 4.:

Time (1)  F(t;)

0.0 -80
0.1 -120
0.2 -150
03 -130 '
04 -110
0.5 -70
0.6 —40
0.7 30
0.8 100
09 150
1.0 180

435. The equation of motion of an undamped system is given by 2% + 1500x = F(¢) wher
the forcing function is defined by the curve shown in Fig. 4.31. Find the response o
the system numerically for 0 < ¢ < 0.5. Assume the initial conditions as xo = %o =
and the step size as A¢ = 0.01.

F()(N)

20

| -» 1, sec
0

Figure 4.31
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F(r)
3

1

100 —
60
30 -
! 1 —
0 0.05 0.10 0.15
Figure 4.32

4.36. Solve Problem 4.35 if the system is viscously damped so that the equation of motion is
2% + 10x + 1500x = F(2).

4.37. Write a computer program for finding the steady-state response of a single degree of
freedom system subjected to an arbitrary force, by numerically evaluating the Duhamel
integral. Using this program, solve Example 4.11.

438. Find the relative displacement of the water tank shown in Fig. 4.22(a) when its base is
subjected to the earthquake acceleration record shown in Fig. 1.63, by assuming the
ordinate to represent acceleration in g’s. Use the program of Problem 4.37.

4.39. The differential equation of motion of an undamped system is given by 2% + 150x =
F(t) with the initial conditions x, = %, = 0. If F(t) is as shown in Fig. 4.32. find the
response of the problem using the computer program of Problem 4.37.

Projects:

4.40. Design a seismometer of the type shown in Fig. 4.33(a) (by specifying the values of «,
m and k) to measure earthquakes. The seismometer should have a natural frequency
of 10 Hz and the maximum relative displacement of the mass should be at least 2 cm
when its base is subjected to the displacement shown in Fig. 4.33(b).

y(0), em
4
Rigid bar (mass negligibl
Cage (mass & ¢ eligible) .
negligible)
o S :{‘—)
w0 O
t Al ki2 m '
'
- 1, S€C
SR o 1

SR

(a) ~ (b)

Figure 4.33
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4.41. The cutting forces developed during two different machining operations are shown in
Figs. 4.34(a) and (b). The inaccuracies (in the vertical direction) in the surface finish in
the two cases were observed to be 0.1 mm and 0.05 mm, respectively. Find the
equivalent mass and stiffness of the cutting head (Fig. 4.35) assuming it to be an
undamped single degree of freedom system.

F(), N F(). N

+ 1, sec

Figure 4.34

Cutting head

L

Figure 4.35




CHAPTER 5

Two Degree
of Freedom
Systems

Danel Bernoulli (1700 - 1782) was a Swiss who became a
professor of mathematics at St. Petersburg in 1725 after
receving his doctorate in medicine for his thesis on the
action of lungs. He later became professor of anatomy and
botany at Basel. He developed the theory of hydrostatics
and hydrodynamics and “Bernoulli’'s theorem'* 1s well
known to engineers. He derived the equation of motion for
the vibration of beams (the Euler-Bernoully theory) and
studied the problem of vibrating strings. Bernoulli was the
first person to propose the principle of superposition of
harmonics in free vibration. (Courtesy Culver Pictures)

5.1 INTRODUCTION

Systems that require two independent coordinates to describe their motion are
called two degree of freedom systems. Some examples of systems having two degrees
of freedom were shown in Fig. 1.7. We shall consider only two degree of freedom
systems in this chapter, so as to provide a simple introduction to the behavior of
systems with an arbitrarily large number of degrees of freedom, which is the subject
of Chapter 6.

Consider the system shown in Fig. 5.1, in which a mass m is supported on two
equal springs. Assuming that the mass is constrained to move in a vertical plane, we
find that the position of the mass m at any time can be specified by a linear

, coordinate x(2), indicating the vertical displacement of the center of gravity (C.G.)
of the mass, and an angular coordinate #(t), denoting the rotation of the mass m
about its C.G. Instead of x(z) and 6(r), we can also use x,(¢) and x,(¢) as
independent coordinates to specify the motion of the system. Thus the system has
two degrees of freedom. It is important to note that in this case the mass m is not
treated as a point mass, but as a rigid body having two possible types of motion. (If
it is a particle, there is no need to specify the rotation of the mass about its CG)
The system shown in Fig. 5.2 does have one point mass m but is a two degree of
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x (0

WW

Figure 5.1 Figure 5.2

freedom system, because the mass has two possible types of motion (translatiof¥
along the x and y directions). The general rule for the computation of the number
of degrees of freedom can be stated as follows:

Number of masses in the system X
= number of possible types of motion of
each mass

Number of degrees of freedom of the
system

There are two equations of motion for a two degree of freedom system, one for each
mass (more precisely, for each degree of freedom). They are generally in the form of
coupled differential equations—that is, each equation involves all the coordinates. 1f
a harmonic solution is assumed for each coordinate, the equations of motion lead to
a frequency equation that gives two natural frequencies for the system. If we give
suitable initial excitation, the system vibrates at one of these natural frequencies.
During free vibration at one of the natural frequencies, the amplitudes of the two
degrees of freedom (coordinates) are related in a specific manner and the configura-
tion is called a normal mode, principal mode, or natural mode of vibration. Thus a
two degree of freedom system has two normal modes of vibration corresponding to
the two natural frequencies.

If we give an arbitrary initial excitation to the system, the resulting free
vibration will be a superposition of the two normal modes of vibration. However, if
the system vibrates under the action of an external harmonic force, the resulting
forced harmonic vibration takes place at the frequency of the applied force. Under
harmonic excitation, resonance occurs (i.e., the amplitudes of the ‘two coordinates
will be maximum) when the forcing frequency is equal to one of the natural
frequencies of the system.

As is evident from the systems shown in Figs. 5.1 and 5.2, the configuration of a
system can be specified by a set of independent coordinates such as length, angle, of
some other physical parameters. Any such set of coordinates is called generalized
coordinates. Although the equations of motion of a two degree of freedom system
are generally coupled so that each equation involves all the coordinates, it is alwaySi

|
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possible to find a particular set of coordinates such that each equation of motion
contains only one coordinate. The equations of motion are then uncoupled and can
be solved independently of each other. Such a set of coordinates, which lead to an
uncoupled system of equations, is called principal coordinates.

NS OF MOTION FOR FORCED VIBRATION

Consider a viscously damped two degree of freedom spring-mass system, shown in
Fig. 5.3(a). The motion of the system is completely described by the coordinates
x,(2) and x,(r), which define the positions of the masses m, and m, at any time ¢
from the respective equilibrium positions. The external forces F(1) and F,(¢) act on
the masses m, and m, respectively. The free-body diagrams of the masses m, and
m, are shown in Fig. 5.3(b). The application of Newton’s second law of motion to
each of the masses gives the equations of motion:

mky + (e + €)% ~ Xy + (ky + ko)x — kyxy = Fy (5.1)

myky = ¢k + (g + €3) %y — koxy + (ka + k3)x, = F (5.2)
It can be seen that Eq. (5.1) contains terms involving x, (namely, —c,%, and
—k,x,), whereas Eq. (5.2) contains terms involving x, (namely, —c,%, and
—k,x,). Hence they represent a system of two coupled differential equations. We
can therefore expect that the motion of the mass », will influence the motion of the
mass m,, and vice versa. Equations (5.1) and (5.2) can be written in matrix form as

[m)Z(1) + []%(1) + [K1%(r) = F(1) (5.3)

where [m], [c], and [k] are called the mass, damping, and stiffness matrices,

x(1) x:(0)
Fi() , ROk

' 1
AAAAA AAAMA, AA
WWV VW~ VWW—

m
e

AANNNNNN\N

N
N

X, % :' X3, X2
F, F

kX ky(xz = x;) ==t m [e— kix,
m 2 .
by ' %y = k) St [454)
Spring &, under tension Spring &, under tension Spring ]c\ under
for +x; for +(x — xy) compression for +x;
(b)

Figure 5.3 A two degree of freedom spring-mass-damper system.
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respectively, and are given by
[m] m 0
m) =
0 m,
L
[e] = - Gt

[kt ky ks
[k]‘[ —ky kg

and x(t) and 1?(1) are called the displacement and force vectors, respectively, and

are given by

0= {%)
and

70 -{20)

It can be seen that the matrices [m], [c], and [k] are all 2 X 2 matrices whose
elements are the known masses, damping coefficients, and stiffnesses of the system,
respectively. Further, these matrices can be seen to be symmetric, so that

[m]"=[m],  [c]"=[c], [k]"=[k]
where the superscript T denotes the transpose of the matrix.

Notice that the equations of motion (5.1) and (5.2) become uncoupled (indepen-
dent of one another) only when ¢, = k, = 0, which implies that the two masses m,
and m, are not physically connected. In such a case, the matrices [m], [¢], and [k]
become diagonal. The solution of the equations of motion (5.1) and (5.2) for any
arbitrary forces Fy(1) and F,(¢) is difficult to obtain, mainly due to the coupling of
the variables x,(1) and x,(7). We shall first consider the free vibration solution of
Egs. (5.1) and (5.2).

3 FREE VIBRATION ANALYSIS OF AN UNDAMPED SYSTEM

For the free vibration analysis of the system shown in Fig, 5.3(a), we set F,(¢) =
Fy(t) = 0. Further, if damping is disregarded, ¢, = ¢, = ¢; = 0, and the equations
of motion (5.1) and (5.2) reduce to
mg (1) + (ky + ky)x, (1) — kyxp(2) = 0 (5.4
maky (1) = kaxy (1) + (ky + k3)xy(1) = 0 (5.9)
We are interested in knowing whether m, and m, can oscillate harmonically with

the same frequency and phase angle but with different amplitudes. Assuming that it
is possible to have harmonic motion of m, and m, at the same frequency w and the



5.3 Free Vibration Analysis of an Undamped System 231

same phase angle ¢, we take the solutions of Egs. (5.4) and (5.5) as
x(1) = X, cos(wt + ¢)
x,(2) = Xycos(wt + ¢) (5.6)

where X, and X, are constants that denote the maximum amplitudes of x,(¢) and
x,(1), and ¢ is the phase angle. Substituting Eq. (5.6) into Egs. (5.4) and (5.5), we
obtain

[{—mw? + (ky + ky)} X, = ky Xy|cos(wt + ¢) =0
[—kaX, + {=mp? + (ky + k3)} Xp]cos(wt + ¢) = 0 (5.7)

Since Egs. (5.7) must be satisfied for all values of the time 7, the terms between
brackets must be zero. This yields

{—me? + (kg + k))} X, — ky X, =0
— ko Xy + {—muw? + (ky+ k3)} X, = 0 (5.8)
which represent two simultaneous homogeneous algebraic equations in the un-
knowns X; and X,. It can be seen that Eqgs. (5.8) are satisfied by the trivial solution

X, = X, = 0, which implies that there is no vibration. For a nontrivial solution of
X, and X,, the determinant of the coefficients of X, and X, must be zero:

{—mw? + (k + ky)) —k,
det R =
—k, {—mp® + (ky + k3))
or
(mymy)a® = {(ky + ky)my + (ky + k3)m }o?
+{(ky + k) (ky + ky) — K3} =0 (5.9)
Equation (5.9) is called the frequency or characteristic equation because solution of

this equation yields the frequencies or the characteristic values of the system. The
roots of Eq. (5.9) are given by

2 2_1{("1"”‘2)"“2"’("‘2*”‘3)"’1}
’ 2

Wi, W
1, & mym,

x%[{ (ky + ky)my + (ky + k3)my }2

mym;

2 1/2
_4{ (ky + k) (kg + k) = kz}] (5.10)

mm,

This shows that it is possible for the system to have a nontrivial harmonic solution
of the form of Egs. (5.6) when w is equal t0 w, or w, given by Eq. (5.10). We call w,
and w, the natural frequencies of the system.

The values of X, and X, remain to be determined. These values depend on the
natural frequencies w, and w,. We shall denote the values of X, and X, correspond-
ing to w, as X{V and X{ and those corresponding to w, as X{? and X§>. Further,
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since the Eqs. (5.8) are homogeneous, only the ratios r, = { X{/X{"'} and r, =
{X$P/XP} can be found. For w? = w? and w?® = w}, Egs. (5.8) give

X0 —mwd + (k + ky) k,
n= Xl(l) - k2 - _mzw% + (k2 + k:) (5.11)
XP  —mwd + (k, + k) k,
=2_ = = 5.
n X ky —myw3 + (ky + ks) (5.12)

Notice that the two ratios given for each r, (i = 1,2) in Egs. (5.11) and (5.12) are
identical. The normal modes of vibration corresponding to «? and w3 can be

expressed, respectively, as
(1) 1
o = {Xl } - { X }
X nX{

(2) 2)
2
X2 rX®
The vectors X® and X'®, which denote the normal modes of vibration, are known

as the modal vectors of the system.
The free vibration solution or the motion in time can be expressed as

x.“*(r)} ={ X(0cos(ay1 + ) }

and

= first mode (5.13)

®O(1) = {

xP(1) nX®cos(wyt + ¢)

(1) } i { XPcos(unt + ) }

= second mode  (5.14)
xP(1) r, XP cos(w,t + ¢,)

xO(1) = {

where the constants X, X{®, ¢,, and ¢, are determined by the initial conditions.

Initial Conditions. Since each of the two equations of motion, Egs. (5.1) and (5.2).
involves second-order time derivatives, we need to specify two initial conditions for
each mass. As stated in Section 5.1, the system can be made to vibrate in its ith
normal mode (i = 1,2) by subjecting it to the specific initial conditions

x)(t=0) = X{) = some constant,  x,(z=0) =0,
x3(1=0) = n X, %(1=0)=0

However, for any other general initial conditions, both modes will be excited. The
resulting motion, which is given by the general solution of Egs. (5.4) and (5.5), can
be obtained by superposing the two normal modes, Eqs. (5.13) and (5.14):

#(1) = FO(1) + £O(1)



6.3 Free Vibration Analysis of an Undamped System ——

that is,
x(1) = x{P(1) + xP (1) = XV cos(wyt + ¢1) + XP cos(wyt + ¢,)
x3(1) = xP(1) + xP(1) = L XP cos(wt + ¢y) + r XP cos(wyt + ¢,) (5.15)
Thus if the initial conditions are given by
x(t=0) = x(0), x(1=0)=%(0),
x3(1=10) = x,(0), %,(1=10) = %,(0) (5.16)

the constants XV, X{?, ¢,, and ¢, can be found by solving the following equations
(obtained by substituting Egs. (5.16) into Eqgs. (5.15)):

x,(0) = X{Vcos ¢, + X{Pcos ¢,

%,(0) = —w0, XPsin ¢, — w, X sin ¢,
x5(0) = nX®cos ¢, + r, X cos ¢,
%,(0) = —w0,, XV sin ¢, — w,r, X{? sin ¢, (5.17)

Equations (5.17) can be regarded as four algebraic equations in the unknowns
X®cos ¢;, X{?cosd,, X sing,, and X sin¢,. The solution of Eqgs. (5.17) can
be expressed as

XD cos ¢, = {M} X® cos ¢, = { —rix,(0) + xz(O)}

rp—r n—n
1 o _ —I‘z)?l(O) + x2(0) 2 o - ’1*1(0) — -’EZ(O)
XD sing, = { w(r,—n) ’ X7 sin g, wy(r,— 1)

from which we obtain the desired solution

X0 = [{ X cos 4,[}2 + {x® sin<t>,}2]l/2

. . 21172
Ty ! P [{rle(O) - x,(0)}* + ______{—rle(O‘)o;r %) ]

r, —

x® = [{ X cos ¢2}2 + {x@ Si“¢2}2]l/2

) 2, {0 - %)
T (n—n y wl ]
tan—l{ XV sin ¢, } - tan—l{ —r%(0) + %,(0) }

* = XM cos ¢, 0 [x,(0) = x,(0)]

- tan-1 X sin ¢, -1 r%(0) — %,(0)
¢ = tan {X1(2)°°5¢2 tan w,[—rx,(0) + x,(0)] (5.18)

l)bﬂmm+n@
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Figure 5.4

Frequencies of Spring-Mass System

Find the natural frequencies and mode shapes of a spring-mass system, shown in Fig..;j5.4
which is constrained to move in the vertical direction only. Take n = 1.

Given: Two degree of freedom spring-mass system shown in I}igA 5.4.
Find: Natural frequencies and mode shapes.

Approach: Assume harmonic solution for free vibration and solve the resulting equations. |
Solution. 1f we measure x, and x, from the static equilibrium positions of the masses », and
m,, respectively, the equations of motion and the solution obtained for the system of Fig

5.3(a) are also applicable to this case if we substitute m, = m, = m and k; = k, = k, = k.
Thus the equations of motion, Egs. (5.4) and (5.5), are given by

mi, + 2kx; ~ kx, =0

miy — kx; + 2kx, = 0 (E1)
By assuming harmonic solution as ,
x,(1) = X cos(wt + ¢); i =1,2 (E2)
the frequency equation can be obtained by substituting Eq. (E.2) into Eq. (E.1):
(-ma? + 2k) (-k)
(—k) (—me? + 2k) -

or
miw® ~ dkmw? + 3k2 =0 (E.3)
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The solution of Eq. (E.3) gives the natural frequencies

172
_ [ dkm — [16k°m? — 12m%2)\" _ [E
1= 2m? T Vm

akm + [16k2m? — 12m%2] 2\ K
“2= { 2m? } “Vm
From Egs. (5.11) and (5.12), the amplitude ratios are given by
r=£{2=—mw§+2k= k -1
! XM k -mw? + 2k
r=£=—ma§+2k= k -1
2 X® k —mw? + 2k

The natural modes are given by Egs. (5.13) and (5.14):

Xl‘”cos(\/’-’gz + ¢1)
x® cos(\/—%?l + ¢2)
—X}”cos(\/—%u ¢2)

First mode = ¥ V'(¢) =

Y

Second mode = ¥?(¢) =

235

(E4)

(E.5)

(E6)

(E7)

(E.8)

(E.9)

It can be seen from Eq. (E.8) that when the system vibrates in its first mode, the amplitudes
of the two masses remain the same. This implies that the length of the middle spring remains
constant. Thus the motions of m, and m, are in phase (see Fig. 5.5a). When the system
vibrates in its second mode, Eq. (E.9) shows that the displacements of the two masses have
the same magnitude with opposite signs. Thus the motions of m; and m, are 180° out of

(a) First mode (b) Second mode

Figure 5.5
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phase (see Fig. 5.5b). In this case the midpoint of the middle spring remains stationary for all
time ¢. Such a point is called a node. Using Egs. (5.15), the motion (general solution) of the
system can be expressed as

x (1) = Xl‘“cos(‘/ 7’;— t+ ¢1) + X,‘z’cos(]/ 3—"’: t+ ¢2)
x,(1) = XV cos(]/ 7’;- 1+ ¢1) - X COS(V 3—: t+ 4»2) (E.10)

PLE 5.2

Initial Conditions to Excite Specific Mode B SRR

Find the initial conditions that need to be applied to the system shown in Fig. 5.4 50 as to
make it vibrate in (1) the first mode, and (2) the second mode.

Given: Two degree of freedom spring mass system shown in Fig. 5.4.
Find: Initial conditions needed to make the system vibrate in one of the modes.

Approach: Specify the solution to be obtained for the first or second mode from the general
solution for arbitrary initial conditions and solve the resulting equations.

Solution. For arbitrary initial conditions, the motion of the masses is described by Egs.
(5.15). In the present case, n, = 1 and r, = —1, so Egs. (5.15) reduce to

x (1) = Xl‘”cos(\/gt + ¢1) + X{z’cos(v 3—’: t+ ¢z)
x,(1) = Xl‘”cos(\/gt + ¢1) - sz’cos(v _C%k L+ ¢2) (E1)

Assuming the initial conditions as in Eq. (5.16), the constants X{*, X{®, ¢,, and ¢, can be
obtained from Eqs. (5.18), using , =1 and r, = —1:

X0 = - 3{[0) + xOF + 2[40) + 6O (E2)
XP = - %{[—xl(o) + Xz(o)]z + %[XI(O) - 5‘2(0)]2}“2 (E3)
Y e ] EXOREA )]
= { VE[x(0) + x,(0)] } =4
_ -1 ‘/;[5‘1(0) - X (0)]
¢2 = tan {ﬁ [—x(0) + 11(0)]} =9

(1) The first normal mode of the system is given by Eq. (E.8) of Example 5.1:

k
Xl“’cos(v i ‘1’1),

k
X,‘”cos(v it ¢,)

Comparison of Egs. (E.1) and (E.6) shows that the motion of the system is identical with the

xO(r) = (E6)
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first normal mode only if X{? = (. This requires that (from Eq. (E.3))
x(0) = x,(0) and  %(0) = x,(0) (E7)
(2) The second normal mode of the system is given by Eq. (E.9) of Example 5.1:

3k
Xl‘z’cos(v it ¢1)
(E8)
—lecos(v 3—: t+ ¢'z)

Comparison of Egs. (E.1) and (E.8) shows that the motion of the system coincides with the
second normal mode only if X{ = 0. This implies that (from Eq. (E.2))

x(0) = —x,(0) and 3 (0) = ~x,(0) (E9)

)—(-(2)( 1) =

NAL SYSTEM

Consider a torsional system consisting of two discs mounted on a shaft, as shown in
Fig. 5.6. The three segments of the shaft have rotational spring constants k,, k,,,
and k3, as indicated in the figure. Also shown are the discs of mass moments of
inertia J; and J,, the applied torques M, and M,,, and the rotational degrees of
freedom 6, and 8,. The differential equations of rotational motion for the discs J;
and J, can be derived as follows:

-110:1 = —kub, + k(8, - 0,) + M,
Iy = =k (8, ~ 8,) = kb, + M, (5.19)

k12(8,-6,)
(b)

Figure 5.6
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which upon rearrangement become
WOy + (kg + k)8, — ko8, = My
I = kb + (kg + ki3)8, = M, (5.20)

Find the natural frequencies and mode shapes for the torsional system shown in Fig. 5.7 for
Jy=Jo, S =24y, and ky =k, = k.

Given: Two degree of freedom torsional system shown in Fig. 5.7.
Find: Natural frequencies and mode shapes.
Approach: Assume harmonic solution for free vibration and solve the resulting equations.

Solution. The differential equations of motion, Eq. (5.20), reduce to (with M,, = M, = k; =
0, krl = k,z = k,, 4 =y and Jy = 2J):

Joby + 2k,0), — k6, =0
2Jo8, ~ k0, + k8, =0 (E1)
Rearranging and substituting the harmonic solution
0,(1) = 8, cos(wt + $); i=1,2 (E2)
gives the frequency equation:
26%E — SwPhyk, + k2 =0 (E3)

The solution of Eq. (E.3) gives the natural frequencies:

o= TEG-A) a4 ) (B4

Figure 5.7
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The amplitude ratios are given by

_8 L (-
rl-—ws -
o (5 + VT

=2-=—0

ro= —2_
2 (2)
6

(ES)

RDINATE COUPLING AND PRINCIPAL COORDINATES

As stated earlier, an n degree of freedom system requires » independent coordinates
to describe its configuration. Usually, these coordinates are independent geometrical
quantities measured from the equilibrium position of the vibrating body. However,
it is possible to select some other set of » coordinates to describe the configuration
of the system. The latter set may be, for example, different from the first set in that
the coordinates may have their origin away from the equilibrium position of the
body. There could be still other sets of coordinates to describe the configuration of
the system. Each of these sets of » coordinates is called the generalized coordinates.

As an example, consider the lathe shown in Fig. 5.8. An accurate model of this
machine tool would involve the consideration of the lathe bed as an elastic beam
with lumped masses attached to it [5.1-5.3]. However, for simplified vibration
analysis, the lathe bed can be considered as a rigid body having mass and inertia,
and the headstock and tailstock can each be replaced by lumped masses. The bed
can be assumed to be supported on springs at the ends. Thus the final model will be
a rigid body of total mass m and mass moment of inertia J, about its C.G., resting
on springs of stiffnesses k, and k,, as shown in Fig. 5.9(a). For this two degree of
freedom system, any of the following sets of coordinates may be used to describe

Headstock Live center Dead center Tailstock

7L

Figure 5.8
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x(6)
| C'IG m, Jy
Ab— ——— i — B
g b1 b Sk
\\\{‘W R\:W kyx) = ky(x — 1,08)
(a)
A B
———y— @ :
T )

A._._._.' ————-—p .9
s - 3
ki :E h P b 5: ky
>
AANNNNNY ANNNN\N /'|—J
kiy — 116) ky(y + 196)
(b)
Figure 5.9
the motion:
1. Deflections x,(¢) and x,(¢) of the two ends of the lathe AB
2. Deflection x(¢) of the C.G. and rotation 6(¢)
3. Deflection x,(¢) of the end 4 and rotation 6(¢)
4. Deflection y(¢) of point P located at a distance e to the left of the C.G. and

rotation #(¢), as indicated in Fig. 5.9(b).

Thus any set of these coordinates—(x,,\xz), (x, 8), (x,, 8), and ( y, §)—represents
the generalized coordinates of the system. Now we shall derive the equations of
motion of the lathe using two different sets of coordinates to illustrate the concept
of coordinate coupling.

Equations of Motion Using x(¢) and 6(¢). From the free-body diagram shown in
Fig. 5.9(a), with the positive values of the motion variables as indicated, the force
equilibrium equation in the vertical direction can be written as

mi = —k(x = 1,0) — ky(x + 1,8) (5.21)
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and the moment equation about the C.G. can be expressed as
Job = ky(x = 10), — ky(x + 1,8)1, (5.22)
Equations (5.21) and (5.22) can be rearranged and written in matrix form as
i ky + k = (kydy = Kyl
[r(r)t 3]{):} . (K, 2) ( 121 222) {;} ={0} (5.23)
o\ | (ki - kaly) (Kl + kal) 0
It can be seen that each of the Eqgs. (5.23) contain x and #. They become
independent of each other if the coupling term (k,/, — k,l,) is equal to zero—that
is, if kyfy = kyly. If k) # kyly, the resultant motion of the lathe 4B is both
translational and rotational when either a displacement or torque is applied through
the C.G. of the body as an initial condition. In other words, the lathe rotates in the

vertical plane and has vertical motion as well, unless k,/; = k,/,. This is known as
elastic or static coupling.

Equations of Motion using y(¢) and 0(¢). From Fig. 5.9(b), where y(¢) and 6(¢) are
used as the generalized coordinates of the system, the equations of motion for
translation and rotation can be written as

mj = —ky(y = 1{8) ~ ky(y + 1;6) — mef
20 = ki(y - 1{0)l] = ky(y + 130)15 — mey (5.29)

These equations can be rearranged and written in matrix form as

[m me]{y'}+ (ky + ky) (kols — kydy) {y}={0} (5.25)

me Ty NGS T [ (—kiti + kalg) (ki + kols?) [\O) 7 NOT T

Both the equations of motion represented by Eq. (5.25) contain y and 8, so they are
coupled equations. They contain static (or elastic) as well as dynamic (or mass)
coupling terms. If k[ = k,l3, the system will have dynamic or inertia coupling
only. In this case, if the lathe moves up and down in the y direction, the inertia
force my, which acts through the center of gravity of the body, induces a motion in
the @ direction, by virtue of the moment mje. Similarly, a motion in the 6 direction

induces a motion of the lathe in the y direction due to the force me.
Note the following characteristics of these systems:

1. In the most general case, a viscously damped two degree of freedom system has
equations of motion in the following form:

my  mypf% o ] % ky ki {xl} {0}
= 5.26
mp mzz]{fc'z} + [012 sz]{xz} + [ku kyy f\ X2 0 (5.26)
This equation reveals the type of coupling present. If the stifiness matrix is not
diagonal, the system has elastic or static coupling. If the damping matrix is not
diagonal, the system has damping or velocity coupling. Finally, if the mass

matrix is not diagonal, the system has mass or inertial coupling. Both velocity
and mass coupling come under the heading of dynamic coupling.
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2. The system vibrates in its own natural way regardless of the coordinates used. .
The choice of the coordinates is a mere convenience.

3. From Egs. (5.23) and (5.25), it is clear that the nature of the coupling depends
on the coordinates used and is not an inherent property of the system. It is
possible to choose a system of coordinates ¢,(¢) and ¢,(¢) which give equations
of motion that are uncoupled both statically and dynamically. Such coordinates
are called principal or natural coordinates. The main advantage of using
principal coordinates is that the resulting uncoupled equations of motion can be
solved independently of one another.

The following example illustrates the method of finding the principal coordi-
nates in terms of the geometrical coordinates.

Principal Coordinates of Spring-Mass System

Determine the principal coordinates for the system shown in Fig. 5.4.
Given: Two degree of freedom spring-mass system shown in Fig. 5.4.
Find: Principal coordinates.

Approach: Define two independent solutions as principal coordinates and express them in
terms of the solutions x,(r) and x,(r).

Solution. The general motion of the system shown in Fig. 5.4 is given by Egs. (E.10) of

Example 5.1:
x(t) =B, cos(\/'—gt + 4;1) + Bzcos(v -3’;’( t+ ¢z)
x,(t) = B, cos(\/gt+¢,) - Blcos(v%kt+¢z) (E1)

where B, = X{V, B, = X{?, ¢, and ¢, are constants. We define a new set of coordinates

q,(t) and ¢,(t) such that
k
a(t) = B cos(v mit ¢1)

3(1) = B, \cos(\[%;k'r + ¢z) (E2)

Since ¢,(t) and g,(r) are harmonic functions, their corresponding equations of motion can be
written as*

.. k
Gt (;)ql =0

qz‘*(%,,lﬁ)qz:() (E3)

* I\zlote that the equation of motion corresponding to the solution g = Bcos(wt + ¢) is given by
G+ wiqg=0.
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These equations represent a two degree of freedom system whose natural frequencies are
w, = k/m and w, = {/3k/m. Because there is neither static nor dynamic coupling in the
equations of motion (E.3), ¢,(#) and ¢,(¢) are principal coordinates. From Egs. (E.1) and
(E.2), we can write

x (1) = (1) + q.(¢)

x (1) = (1) - ¢,() (E4)
The solution of Eqs. (E.4) gives the principal coordinates:

(1) = 3[x(6) + x ()]
(1) = 3[x(0) - x,(0)] (E5)

Frequencies and Modes of an Automobile IS &

Determine the pitch (angular motion) and bounce (up and down linear motion) frequencics
and the location of oscillation centers (nodes) of an automobile with the following data (sce
Fig. 5.10):

mass = m = 1000 kg

radius of gyration = r = 0.9 m

distance between front axle and C.G. =/, = 1.0 m

distance between rear axle and C.G. =/, = 1.5 m

front spring stiffness = k;, = 18 kN/m

rear spring stiffness = k, = 22 kN/m
Given: Two degree of freedom automobile model, Fig. 5.10, with m = 1000 kg, r = Glin,
l,=10m, , =15m, k, = 18 kN/m, and k, = 22 kN/m.

Bounce
4~y Pitch
e §E C.G. 4 éE
A A / v /‘A

— 1._+7 1,

Reference

i

=
0
@
@

ke
bl

Figure 5.10
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Find: Natural frequencies and mode shapes.
Approach: Assume harmonic solution for free vibration and solve the resulting equations.

Solution. If x and 8 are used as independent coordinates, the equations of motion are given
by Eq. (5.23) with k, =k, k; =k, and J, = mr?. For free vibration, we assume a
harmonic solution:

x(t) = Xcos(wt + ¢),  0(t) = O cos(wt + $) (E1)

Using Egs. (E.1) and (5.23), we obtain

(~mw? + k + k,) (=kily + kyly) X 0
(& ={5) (E2)
[ (ki + kyly)  (—dow? + Kyl + kzlg)] ] 0
For the known data, Eq. (E.2) becomes
[(—1000“,2 + 40,000) 15,000 ]{ x} _ {0} &3
15,000 (- 81002 + 67,500) |\ © 0 :
from which the frequency equation can be derived:
8.1w* — 999w? + 24,750 = 0 (E4)
The natural frequencies can be found from Eq. (E.4):
w, = 5.8593 rad/sec, wy = 9.4341 rad /sec (E.5)
With these values, the ratio of amplitudes can be found from Eq. (E.3):
)8(5:: = —2.6461, )6((5‘: = 0.3061 (E6)

The node locations can be obtained by noting that the tangent of a small angle is
approximately equal to the angle itself. Thus, from Fig. 5.11, we find the distance between the

AL

Figure 5.11
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C.G. and the node as —2.6461 m for w, and 0.3061 m for w,. The mode shapes are shown by
dotted lines in Fig. 5.11.

IBRATION ANALYSIS

The equations of motion of a general two degree of freedom system under external
forces can be written as

my mp)f% TP T ky kip|fx _ IR
M2 ’”22]{)'52} * [“12 sz]{xz} + [ku kzz]{xz} - {1"2 (5.27)
Equations (5.1) and (5.2) can be seen to be special cases of Eq. (5.27), with

my, = my, my =m,, and m, =0. We shall consider the external forces to be
harmonic:

F/(t) = Fe™, j=12 (5.28)
where  is the forcing frequency. We can write the steady-state solutions as
x,(1) = Xe™, j=12 (5.29)

where X; and X, are, in general, complex quantities which depend on « and the
system parameters. Substitution of Egs. (5.28) and (5.29) into Eq. (5.27) leads to

() = (R oo

As in Section 3.5, we define the mechanical impedance Z,,(iw) as
Z (iw) = —w?m, + ivc,, + k,;, r,s=1,2 (5.31)
and write Eq. (5.30) as

{(—wzm“ + iwcy, + k“) (—wzmlz + iwcyy + ku)

(—wzmn +iwcy, + ku) (—wzml2 + iwcy + kn)

[Z(iw)] X =F, (5.32)
where
[Z(iw)] = [;:E":; ;zg::;] = impedance matrix
S (X
%)
and

= _ [Fo
a-{x)

Equation (5.32) can be solved to obtain
X=[z(io)]'F, (5.33)
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where the inverse of the impedance matrix is given by

2311 1 Zp(iw) = Zp(ie) '
= S.
[2(ie)] Zy(iw)Zy(iw) — Zh(iw) | =Zp(ie)  Zy(ivw) (5.34)
Equations (5.33) and (5.34) lead to the solution
X,(iv) = Zy(iw) Fyg = Zyy(iw) By
! Zy(iw) Zy (i) - lez(i“’)
X,(i) = —Z,(iw) Fiy + Zy,(iw) Fyy (5.35)

Zu(i“’)zzz(i“’) - lez(iw)

By substituting Eqgs. (5.35) into Eqgs. (5.29) we can find the complete solution. x,(¢)
and x,(t).

The analysis of a two degree of freedom system used as a vibration absorber is
given in Section 9.10. Reference [5.4] deals with the impact response of a two degree
of freedom system, while Ref. [5.5] considers the steady-state response under
harmonic excitation.

Find the steady-state response of the system shown in Fig. 5.12 when the mass m, is excited
by the force F{(1) = Fycos wt. Also, plot its frequency response curve.

Given: Two degree of freedom undamped spring-mass system subjected to the foliing
function Fj(t) as shown in Fig. 5.12.
t

\
\

mj IF.(!) = Fyycos ot

Ll
-
=
W
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x>
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Figure 5.12
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Find: Steady state response of the masses.

Approach: Assume harmonic solution and use the concept of mechanical impedance to find
the response.

Solution. The equations of motion of the system can be expressed as

m off*% 2k —k)[*) _ [ Focoswt
0 m {x;} * [—k % {X:} { 0 (E1)
Comparison of Eq. (E.1) with Eq. (5.27) shows that

my=my=m, m;=0, g =c;=cn=0,
ky =ky =2k, k= —k, F =Fqcoswt, F=0

We assume the solution to be:*
x,(1) = X cos wt; j=12 (E2)
Equation (5.31) gives
Z(0) =Zp(w) = —me? + 2k, Z,(w) = —k (E3)
Hence X; and X, are given by Egs. (5.35):

(—w?m + 2k) R, (—w?m + 2k) Fy

M iy e Cmdrme o 9
_ kR _ kFq
%) (—mo? +2k) — k2 (—m&? +3k)(—ma? + k) (E3)
By defining wf = k/m and w} = 3k/m, Eqs. (E4) and (E.5) can be expressed as
2
- ()}
Xi() = o 2 o 2] o \2 (E$6)
- -)
Xy(w) = > F“’z > (E7)
@) - -
@) w0 @y

The responses X, and X, are shown in Fig. 5.13 in terms of the dimensionless parameter
@/w,. In the dimensionless parameter w/w,, ®, was selected arbitrarily; w, could have been
selected just as easily. It can be seen that the amplitudes X, and X, become infinite when
W = o} or o = wl. Thus there are two resonance conditions for the system: one at w; and
another at w,. At all other values of w, the amplitudes of vibration are finite. It can be noted

* Since Fcoswr = Real( Fge'’), we shall assume the solution also to be x, = Real(X,e™") =

X, cos wt, j =1,2. It can be verified that X, are real for an undamped system.
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Figure 5.13. Frequency response curves of Example
56

from Fig. 5.13 that there is a particular value of the frequency w at which the vibration of the
first mass m,, to which the force F(¢) is applied, is reduced to zero. This characteristic forms
the basis of the dynamic vibration absorber discussed in Chapter 9.

SEMI-DEFINITE SYSTEMS

Semi-definite systems are also known as unrestrained or degenerate systems. An
example of such a system is shown in Fig. 5.14. This arrangement may be
considered to represent two railway cars of masses m, and m, with a coupling
spring k. The equations of motion of the system can be written as

mx + k(x; —x;) =0
myk, + k(x;—x,) =0 (5.36)
For free vibration, we assume the motion to be harmonic:
x;(1) = X; cos(wt + ¢,), j=1,2 (5.37)
Substitution of Eq. (5.37) into Eq. (5.36) gives
(Smw? + k) X, — kX, =0
— kX, + (—m? + k)X, =0 (5.38)

Figure 5.14
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By equating the determinant of the coefficients of X; and X, to zero, we obtain the
frequency equation as

W[ mymyw? = k(my + my)] =0 (5.39)

from which the natural frequencies can be obtained:

k(m, +
@ =0 and w2=\/—(m'—m'”—2) (5.40)

It can be seen that one of the natural frequencies of the system is zero, which means
that the system is not oscillating. In other words, the system moves as a whole
without any relative motion between the two masses (rigid body translation). Such
systems, which have one of the natural frequencies equal to zero, are called
semi-definite systems. We can verify, by substituting «, into Eq. (5.38), that X{? and
X are opposite in phase. There would thus be a node at the middle of the spring.

ITATION AND STABILITY ANALYSIS

In Section 3.11, the stability conditions of a single degree of freedom system have
been expressed in terms of the physical constants of the system. The procedure is
extended to a two degree of freedom system in this section. When the system is
subjected to self-exciting forces, the force terms can be combined with the damp-
ing/stiffness terms, and the resulting equations of motion can be expressed in
matrix notation as

my mplf% o aalfk ky ko {Xl}_{b}
[mzl mzz]{)'c'z}+[cn czz]{i2}+[k21 kzz] Xf T \0 (5.41)
By substituting the solution
x (1) =Xe*,  j=12 (542)

in Eq. (5.41) and setting the determinant of the coefficient matrix to zero, we obtain
the characteristic equation of the form

ags* +ais®+a,s?+as+a, =0 (5.43)

The coefficients a,, a;, a5, a,, and a, are real numbers, since they are derived from
the physical parameters of the system. If s,, s,, 53, and s, denote the roots of Eq.
(5.43), we have

(s =s)(s —s2)(s —53)(s —5,) =0
or
S = (sp + 5yt 5y 4 50)8% + (5,55 F 5153 + 515, + 5,55 + 5,8, + 538,)s?

— (51583 + 518,84 + $15354 + 525354)8 + (5)5,555,) = 0 (5.44)
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A comparison of Egs. (5.43) and (5.44) yields

ag=1

ay= —(8; + 5, + 55+,

Ay = 5155 + 8,55 + 5154 + 5585 + 5,54 + 535,

Ay = — (515,83 + 515,54 + 5,535, + 5,555,)

ay = 5,555,584 (5.45)

The criterion for stability is that the real parts of s, (i = 1,2, 3,4) must be negative
to avoid increasing exponentials in Eq. (5.42). Using the properties of a quartjc
equation, it can be derived that a necessary and sufficient condition for stability is
that all the coefficients of the equation (a,, a,, a,, a4, and a,) be positive and that
the condition

aja,a3 > agal + aaf (5.46)

be fulfilled [5.8, 5.9]. A more general technique, which can be used to investigate the
stability of an n degree of freedom system, is known as the Routh-Hurvitz criterion
[5.10]. For the system under consideration, Eq. (5.43), the Routh-Hurvitz criterion
states that the system will be stable if all the coefficients a,, a,,..., a, are positive
and the determinants defined below are positive:

Ti=lal>0 (5.47)
a, a;

T,= ay a,|= %192 dod3 > 0 (%-48)
a a; 0

Ty=|% 4, 44|=aa,a,— aja,— agal>0 (5.49)
0 a a,

Equation (5.47) simply states that the coefficient a, must be positive, while the
satisfaction of Eq. (5.49), coupled with the satisfaction of the conditions a, > 0 and
a, > 0, implies the satisfaction of Eq. (5.48). Thus the necessary and sufficient
condition for the stability of the system is that all the coefficients a,, a,, a,, a,, and
a, be positive and that the inequality stated in (5.46) be satisfied.

COMPUTER PROGRAMS

The determination of the natural frequencies of a damped two degree of freedom
system involves the solution of a fourth order polynomial equation. Similarly, 2
damped degenerate two degree of freedom system requires the determination of the
roots of a cubic equation. An undamped system, on the other hand, requires the
solution of a quadratic equation. This section presents three Fortran subroutines
(QUADRA, CUBIC, and QUART) for the solution of quadratic, cubic, and quartic
equations, respectively. The listing of these subroutines and typical main programs
for calling them are given below. The input data required and the output of the
programs are explained in the comment lines of the programs.
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PROGRAM 6
MAIN PROGRAM WHICH CALLS QUADRA

ooagaoaa

¢ FOLLOWING 2 LINES CONTAIN PROBLEM-DEPENDENT DATA
¢ EXAMPLE X¥%2 - 2.0%X + 5.0 = 0.0
DATA Al,A2,A3/1.0,-2.0,5.0/
¢ END OF PROBLEM-DEPENDENT DATA
CALL QUADRA (Al,A2,A3,RR1,RR2,RI1,RI2)
PRINT 10, Al,A2,A3
10 FORMAT (/,2X,28H POLYNOMIAL COEFFICIENTS ARE,/,3E15.6,//,
2 2X,10H ROOTS ARE,//,4X,5H REAL,14X,10H IMAGINARY)
PRINT 20, RRI,RI1
PRINT 20, RR2,RI2
20 FORMAT (4X,E15.8,4X,E15.8)
STOP
END

SUBROUTINE QUADRA

SOLUTION OF QUADRATIC EQUATION Al*(X*%2)+A2*(X)+A3 = 0
A1,A2,A3 ARE INPUT, (RR1,RI1) AND (RR2,RI2) ARE ROOTS (OUTPUT)
Al MUST NOT BE EQUAL TO ZERO
SUBROUTINE QUADRA (Al,A2,A3,RR1,RR2,RI1,RI2)
RAD=A2+%%2-4  0*A1*A3
IF (RAD) 20,10,10
10  SRAD=SQRT(RAD)
RR1=(-A2-SRAD)/(2.0*A1)
RR2=(-A2+SRAD)/(2.0%Al)
RI1=0.0
RI2=0.0
RETURN
20  SRAD=SQRT(-RAD)
RR1=-A2/(2.0%Al)
RR2=RR1
RI1=SRAD/(2.0%Al)
RI2=-RI1
RETURN
END

(¢ e R eReNeNoN o)

POLYNOMIAL COEFFICIENTS ARE
0.100000E+01 -0.200000E+01  0.500000E+01

ROOTS ARE
REAL IMAGINARY

0.10000000E+01 0.20000000E+01
0.10000000E+01 -0.20000000E+01
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PROGRAM 7

La“°" MAIN PROGRAM FOR CALLING THE SUBROUTINE CUBIC

s e NeNeNe Nl

DIMENSION A(4),RR(3),RI(3)
DATA A/1.0,0.0,6.0,20.0/
PRINT 10
10 FORMAT (//,24H ROOTS OF CUBIC EQUATION,//,
2 51H GIVEN POLYNOMIAL COEFFICIENTS A(1),A(2),A(3),A(4):,/)
PRINT 20, (A(I),I=1,4)
20  FORMAT (4E15.6)
CALL CUBIC (A,RR,RI)
PRINT 30
30 FORMAT (//,38H ROOTS (REAL PART AND IMAGINARY PART):,/)
Do 40 I=1,3
40  PRINT 50,RR(I),RI(I)
50  FORMAT (2E15.6)
STOP
END

SUBROUTINE CUBIC

[sEs NN Ne Kol

ROOTS OF CUBIC EQUATION A(1)%(X#%*3)+A(2)% (X**2)+A(3)*X+A(4)=0
SUBROUTINE CUBIC (A,RR,RI)

DIMENSION A(4),RR(3),RI(3)

po 10 1=1,3

RR(I1)=0.0

10 RI(1)=0.0
A0=A(1)
Al1=A(2)/3.0
A2=A(3)/3.0
A3=A(4)
G=(A0*¥*2)*A3-3. 0%A0*A1*A2+2 . 0% (A1#+3)
H=AO*A2-A1%%2
Y1=G¥#2+4 . 0% (H**3)
IF (Y1 .LT. 0.0) GO TO 100
Y2=SQRT(Y1)
Z1=(G+Y2)/2.0
22=(G-¥2)/2.0
IF(Z1 .LT. 0.0) GO TO 21
23=21%*(1.0/3.0)
Go To 22

21 23=(-21)*%(1.0/3.0)
23=-23

22 IF(22 .LT. 0.0) GO TO 23
Z4=22%%(1.0/3.0)
GO To 24

23 24=(-22)**(1.0/3.0)
Z4=-24



5.9 Computer Programs . 253

24

100

200

CONTINUE

RR(1)=-(A1+23+24) /A0
RR(2)=(-2.0%A1+23+24)/ (2.0%A0) -
RI(2)=SQRT(3.0)*(24~23)/(2.0%A0)
RR(3)=RR(2)

RI(3)=-RI(2)

GO TO 200

SH=SQRT (-H)

XK=2.0*SH

THETA=ACOS (G/(2.0*H*SH))/3.0
XY1=2.0%SH*COS (THETA)

PI=3.1416

XY2=2.0%SH*COS (THETA+(2.0%P1/3.0))
XY3=2.0*SH*COS (THETA+(4.0%P1/3.0))
RR(1)=(XY1-A1)/A0
RR(2)=(XY2-A1)/A0
RR(3)=(XY3-A1)/A0

RETURN

END

ROOTS OF CUBIC EQUATION

GIVEN POLYNOMIAL COEFFICIENTS A(1),A(2),A(3),A(4):

0.100000E+01  0.000000E+00  0.600000E+01  0.200000E+02

ROOTS (REAL PART AND IMAGINARY PART):

[eEesEsNeoNoNeNe)

[¢]

-0.200000E+01  0.000000E+00
0.100000E+01 -0.300000E+01
0.100000E+01  0.300000E+01

PROGRAM 8
MAIN PROGRAM FOR CALLING THE SUBROUTINE QUART

SOLUTION OF: A(1)%*(X#¥%4)+A(2)%* (X**3)+A(3)* (X**2)+A(4)*X+A(5)=0

DIMENSION A(5),RR(4),RI(4)

FOLLOWING LINE CONTAINS PROBLEM-DEPENDENT DATA

DATA A/1.0,0.0,0.0,-8.0,12.0/

END OF PROBLEM-DEPENDENT DATA

PRINT 10, (A(1),1=1,5)
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10  FORMAT (//,31H SOLUTION OF A QUARTIC EQUATION,//,6H DATA:,/,
2 7H A(1) =,E15.6,/,7H A(2) =,E15.6,/,7H A(3) =,E15.6,/,
3 7H A(4) =,E15.6,/,7H A(5) =,E15.6,/)
CALL QUART (A,RR,RI)
PRINT 20
20 FORMAT (/,7H ROOTS:,//,9H ROOT NO.,3X,10H REAL PART,SX,
2 15H IMAGINARY PART,/)
DO 30 I=1,4
30  PRINT 40,I,RR(I),RI(I)
40  FORMAT (15,3X,E15.6,3X,E15.6)
STOP
END

SUBROUTINE QUART

QOO0

SUBROUTINE QUART (A,RR,RI)
DIMENSION A(5),RR(4),RI(4),B(4),RRC(3),RIC(3)
DO 10 I=2,5

10 A(I)=A(I1)/A(1)
B(1)=1.0
B(2)=-A(3)
B(3)=A(4)*A(2)-4.0%A(5)
B(4)=A(5)*(4.0%A(3)-A(2)**2)-A(4)**2
CALL CUBIC (B,RRC,RIC)
IF (RIC(2) .NE. 0.0) GO TO 20
X=AMAX1(RRC (1) ,RRC(2),RRC(3))
RRC(1)=X

20 X=RRC(1)/2.0
IF ((X**2-A(5)) .GT. 0.0) GO TO 30
¥=0.0
Z=SQRT ((A(2)/2.0)**2+2.0%X-A(3))

C ADD TO ABOVE EQUATION

GO TO 40

30 Y=SQRT(X**2-A(5))
Z=-(A(4) -A(2)*X) /(2. 0%Y)

40 C1=1.0
C2=A(2)/2.0+Z
C3=X+Y
CALL QUADRA (C1,C2,C3,QR1,QR2,Q11,QI2)
RR(1)=QR1
RR(2)=QR2
RI(1)=QI1
RI(2)=QI2
Ci=1.0
C2=A(2)/2.0-2
C3=X-Y
CALL QUADRA (C1,C2,C3,QR1,QR2,QI1,QI2)
RR(3)=QR1
RR (4)=QR2
RI(3)=QI1
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RI(4)=QI2
RETURN
END

SOLUTION OF A QUARTIC EQUATION

DATA:

A(1) = 0.100000E+01

A(2) = 0.000000E+00

A(3) = 0.000000E+00

A(4) = -0.800000E+01

A(5) = 0.120000E+02

ROOTS:

ROOT NO. REAL PART IMAGINARY PART
1 -0.137091E+01 0.182709E+01
2 -0.137091E+01 -0.182709E+01
3 0.137091E+01 0.648457E+00
4 0.137091E+01 -0.648457E+00
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REVIEW QUESTIONS

5.1. How do you determine the number of degrees of freedom of a lumped-mass system?

5.2. Define mass coupling, velocity coupling, and elastic coupling.
5.3. Is the nature of the coupling dependent on the coordinates used?

5.4. How many degrees of freedom does an airplane in flight have if it is treated as {;1) ¢
rigid body, and (b) an elastic body? .

5.5. What are principal coordinates? What is their use?

56. Why are the mass, damping, and stiffness matrices symmetrical?

5.7. What is a node? ,

5.8. What is meant by static and dynamic coupling? How can you eliminate coupling of th
equations of motion?

5.9. Define the impedance matrix.
5.10. How can we make a system vibrate in one of its natural modes?

S.11. What is a degenerate system? Give two examples of physical systems that are degener‘
ate,

5.12. How many degenerate modes can a vibrating system have?

PROBLEMS

The problem assignments are organized as follows:

Section Topic

Problems covered covered
51-5.19 5.3 Free vibration of
undamped systems
5.20-5.23 54 Torsional systems
5.24-5.28 55 Coordinate coupling
5.29-5.41 5.6 Forced vibrations
5.42-5.46 5.7 Semi-definite systems
547 5.8 Stability analysis
5.48-5.50 5.9 Computer programs

5.51 —_ Project
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52.

53.

S4.

Find the natural frequencies of the system shown in Fig. 5.15, with m, = m, m, = 2m,
k) =k, and k; = 2k. Determine the response of the system when k& = 1000 N/m,
m = 20 kg, and the initial values of the displacements of the masses m, and m, are 1
and -1, respectively.

Base

AAA
VWWW

3

I x(1)

x
AAMAAAAA
VWWWWVY

g

| x(0)

Figure 5.15 Figure 5.16

Set up the differential equations of motion for the double pendulum shown in Fig.
5.16, using the coordinates x, and x, and assuming small amplitudes. Find the
natural frequencies, the ratios of amplitudes, and the locations of nodes for the two
modes of vibration when m, = my =m and l, = [, = I.

Determine the natural modes of the system shown in Fig. 5.17 when &, = &, = k; = k.

Figure 5.17

A machine tool, having a mass of m = 1000 kg and a mass moment of inertia of
Jo = 300 kg — m?, is supported on elastic supports as shown in Fig. 5.18. If the
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5.

5.6.

[ 0 [

ky

N
N

b

—_

Figure 5.18

stiffnesses of the supports are given by k, = 3000 N/mm, and k, = 2000 N /mn{, and
the supports are located at /, = 0.5 m and /, = 0.8 m, find the natural frequencias and
mode shapes of the machine tool.

An overhead traveling crane can be modeled as shown in Fig. 5.19. The beam an
area moment of inertia (/) of 0.02 m* and modulus of elasticity (E) of 2.06 > 10
N/n?, the truck has a mass (m,) of 1000 kg, the load being lifted has a mass (,) of
5000 kg, and the cable through which the mass (m,) is lifted has a stiffness (f) of
3.0 X 10° N/m. Determine the natural frequencies and mode shapes of the sybtem
Assume the span of the beam as 40 m.

]

WWW
3 AAA

WWW

=]

AAAAAA

(@) (b)
Figure 5.19

One of the wheels and leaf springs of an automobile, traveling over a rough road, i
shown in Fig. 5.20(a). For simplicity, all the wheels can be assumed to be identical and
the system can be idealized as shown in Fig. 5.20(b). The automobile has a mass of
m, = 1000 kg and the leaf springs have a total stifiness of k, = 400 kN/m. The
wheels and axles have a mass of m, = 300 kg and the tires have a stiffness of
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58

259

m, (Automobile)

ky (Leaf springs)

poSS———
m; (Wheels and axles) |
k; (Tires) ——

Y

|

®)
Figure 5.20

k, = 500 kN/m. If the road surface varies sinusoidally with an amplitude of Y =
0.1 m and a period of / = 6 m, find the critical velocities of the automobile.

Derive the equations of motion of the double pendulum shown in Fig. 5.16, using the
coordinates 8, and 6,. Also find the natural frequencies and mode shapes of the
system for my = my =mand I, =1, =1

Find the natural frequencies and mode shapes of the system shown in Fig 5.15 for
my =my=mand k, =k, = k.
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§9. The normal modes of a two degree of freedom system are orthogonal if
X7 [m]) ¥® = 0. Prove that the mode shapes of the system shown in Fig. 5.3(a) are
orthogonal.
5.10. Find the natural frequencies of the system shown in Fig. 5.4 for &, = 300 N,
k, = 500 N/m, k; = 200 N/m, m, = 2 kg, and m, = 1 kg.
5.11. Find the natural frequencies and mode shapes of the system shown in Fig, 5.15)
m, = m, = 1kg, k, = 2000 N/m and k, = 6000 N/m.
§5.12. Derive expressions for the displacements of the masses in Fig. 54 when nige
25 Ib-sec?/in, i = 1,2 and k, = 50,000 Ib/in, i = 1,2,3.
5.13. For the system shown in Fig. 54, m, = 1 kg, m, = 2kg, k, = 2000 N/m, k, = 1
N/m, k; = 3000 N/m, and an initial velocity of 20 m/s is imparted to mass m,.
the resulting motion of the two masses.

5.14. For Problem 5.11, calculate x,(#) and x,(¢) for the following initial conditi
(@) x,(0) =02, %,(0) = x,(0) = %,(0) = 0; and (b) x,(0) = 0.2, ,(0) = x,(0)

%,(0) = 5.0.
5.15. A two-story building frame is modeled as shown in Fig. 5.21. The girders are assu;
to be rigid, and the columns have flexural rigidities Ef, and EI,, with negligtl?:

masses. The stiffness of each column can be computed as
24EI, )
Rk i=1,2
For m| =2m, my=m, h = h, =h, and El, = EI, = EI, determine the natlifal

frequencies and mode shapes of the frame.

x1) Zré
(N T
Fy() =S NNNANANNN
| ’-' i
! 1
; i
El, ; El, Do + & m
: i
! 1
H i (),
Fi(n =" XS —j ]
/ [ !
! my
En | Efli 4
; b
AJ” 7A 7"7
Figure 5.21 N Figure 5.22

5.16.  Figure 5.22 shows a system of two masses attached to a tightly stretched string, fixed
at both ends. Determine the natural frequencies and mode shapes of the system for
m=my=mand |, =l =15=1

S5.17. Find the normal modes of the two-story building shown in Fig. 5.21 when m, = 3m,

2=m, ky =3k, and k, =k, where k; and k, represent the total equivalent

m
stiffnesses of the lower and upper columns, respectively.
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5.18. A hoisting drum, having a weight W, is mounted at the end of a steel cantilever beam
of thickness ¢, width a, and length » as shown in Fig. 5.23. The wire rope is made of
steel and has a diameter of d and a suspended length of /. If the load hanging at the
end of the rope is W;, derive expressions for the natural frequencies of the system.

Figure 5.23

5.19.* Design the cantilever beam supporting the hoisting drum and the wire rope carryir
the load in Problem 5.18 in order to have the natural frequencies of the system great
than 10 Hz when W, = 1000 1b and W, = 500 Ib, = 30 in,, and / = 60 in.

5.20. Determine the natural frequencies and normal modes of the torsional system shown
Fig. 5.24 for k,, = 2k,  and J, = 2J,.

J2
Jy
v, ky ka
4
=<
Figure 5.24 Figure 5.25

5.21. Determine the natural frequencies of the system shown in Fig. 5.25 by assuming
the rope passing over the cylinder does not slip.
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5.22.

Two Degree of Freedom Systems

Find the natural frequencies and mode shapes of the system shown in Fig. 5.6(a) by

assuming that J; = J;, J, = 24, and &k, = k,; = k3 = k,.

5.23.

Determine the normal modes of the torsional system shown in Fig. 5.7 when k, = £

k= 5k, Jy = Jo, and J, = 5J.

5.24.

A simplified ride model of a military vehicle is shown in Fig. 5.26(b). This model can'.

' be used to obtain information about the bounce and pitch modes of the vehicle. If the

total mass of the vehicle is m

and the mass moment of inertia about its C.G. is Jo

derive the equations of motion of the vehicle using two different sets of coordinates, as

indicated in Section 5.5.

chicle body) mass

P

TR

m, Jy

C.G.

r;)-—Unsprung (running gear) mass——(;_»

x=
AAAA

"

VWA
=

asprings Shock absorbers

(a) Military vehicle

w26
5.25. Find the natral frequencies
Fig. 5.27.
NSNS\
s
k

my PR S
.27
H 5.26.

(b) Simplifed ride model

and the amplitude ratios of the system shown 1,

1—+—-1————4

k O
2m =% !“’, 2m
»-‘9(,')—‘1”
r
'’
k
T
() Sk
Figure 5.28

A rigid rod of negligible mass and length 2/ is pivoted at the middle point and is

| constrained to move in the vertical plane by springs and masses, as shown in Fig, 5.28.
Find the natural frequencies and mode shapes of the system.
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5.27. An airfoil of mass m is suspended by a linear spring of stiffness £ and a torsional
spring of stiffness k, in a wind tunnel, as shown in Fig. 5.29. The C.G. is located at a
distance of e from point 0. The mass moment of inertia of the airfoil about an axis
passing through point O is J,. Find the natural frequencies of the airfoil.

[+—— Frame

-————— e

Elastic pad
— Foundation block

(a) R \ N AN
|
]
v
Anvil
and frame }

1 .
Damping of elastic pad ——LlJ +~—— Stiffness of elastic pad

Foundation block -—;

X2
l +——— Stiffness of soil

Damping of soil —»‘I_(

(b) NNN\\\

Figure 5.30

5.28. The expansion joints of a concrete highway, which are located at 15 m intervals, cause
a series of impulses to affect cars running at a constant speed. Determine the speeds at
which bounce motion and pitch motion are most likely to arise for the automobile of
Example 5.5.

5.29. The weights of the tup, frame, anvil, and the foundation block in a forging hammer
(Fig. 5.30) are 5000 Ib, 40,000 Ib, 60,000 1b and 140,000 Ib, respectively. The stiffnesses
of the elastic pad and the soil underneath the foundation block are 6 X 10° Ib/in. and
3 X 10° Ib/in., respectively. If the velocity of the tup before it strikes the anvil is 15
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5.30.

5.32.

ft/sec, find (i) the natural frequencies of the system, and (i) the magnitudes of
displacement of the anvil and the foundation block. Assume the coefficient of
restitution as 0.5 and damping to be negligible in the system.

Find (i) the natural frequencies of the system, and (ii) the responses of the anvil ang
the foundation block of the forging hammer shown in Fig. 5.30 when the time history
of the force applied to the anvil is as shown in Fig. 5.31. Assume the following data:

Mass of anvil and frame (m;) = 200 Mg

Mass of foundation block (m,) = 250 Mg

Stiffness of the elastic pad (k;) = 150 MN/m

Stiffness of the soil (k;) = 75 MN/m

F,=10°NandT=0.5s

S

¢ Ll__l ky
K@)
mi
L i
m

-

I x(t)
Al

c k-
0 T > 7;7!:77‘77/7;

Figure 5.31 Figure 5.32

—

x(r)
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Derive the equations of motion for the free vibration of the system shown in Fig. 5.32.
Assuming the solution as x,(t) = C,e™, i = 1,2, express the characteristic equation in
the form

aps* +as* +as? +ast+ta,=0

Discuss the nature of possible solutions, x,(¢) and x,(¢).

Find the displacements x,(t) and x,(¢) in Fig. 532 for my =1 kg, m, =2 kg,
ky = k; = k3 = 10,000 N/m, and ¢; = ¢, = ¢; = 2000 N-s/m using the initial condi-
tions x,(0) = 0.2 m, x,(0) = 0.1 m, and x,(0) = x,(0) = 0.

A centrifugal pump, having an unbalance of e, is supported oa a rigid foundation of
mass m, through isolator springs of stiffness k,, as shown in Fig. 5.33. If the soil
stiffness and damping are k, and c,, find the displacements of the pump and the
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foundation for the following data: mg = 0.5 Ib, e = 6 in., m, g = 800 1b, &, = 2000
Ib/in., m,g = 2000 Ib, &k, = 1000 1b/in., ¢, = 200 Ib-sec/in., and speed of pump =
1200 rpm.

5.34. A reciprocating engine of mass m, is mounted on a fixed-fixed beam of length /, width
a, thickness ¢, and Young’s modulus E as shown in Fig. 5.34. A spring-mass system

i
Centrifugal pump
(mass, mp) my
Isolator
[ ] springs
C — (stiffness,
S S S k
< < < b}
S S S
09 o O > °. 0 60 © : Foundation
o o 0 ,‘0'- o (mass, m.) k> [
° s TS ?
° © 0 . o,
77 2 2
S Soil

(stiffness, k,;
damping, c;)

Figure 5.33

Fi(1) = F, cos ot

N

Figure 5.34
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5.35.

5.36.

5.37.

538,

5.39.

5.40,

(ky, m,) is suspended from the beam as indicated in the figure. Find the relation
between m, and k, that leads to no steady-state vibration of the beam when 5
harmonic force, Fy(f) = Fjcos wt, is developed in the engine during its operation.t
Find the steady-state response of the system shown in Fig. 5.15 by using the
mechanical impedance method, when the mass m, is subjected to the force F(r) =
F, sinwt in the direction of x,(¢).

Find the steady-state response of the system shown in Fig. 5.15 when the base jg
subjected to a displacement y(t) = Y,cos wt.

The mass m, of the two degree of freedom system shown in Fig, 5.15 is subjected to a
force Fycoswt. Assuming that the surrounding air damping is equivalent to ¢ =
200 N - s/m, find the steady-state response of the two masses. Assume m, = m, = |
kg, k; = k, = 500 N/m, and w = 157",

Determine the steady-state vibration of the system shown in Fig. 5.3(a), assuming that
¢ =c¢,=c;=0, F(t) = Fycoswt, and F(1) = Fcos wt,

In the system shown in Fig. 5.15, the mass m, is excited by a harmonic force having a
maximum value of 50 N and a frequency of 2 Hz. Find the forced amplitude of each
mass for m; = 10 kg, m, = 5 kg, k, = 8000 N/m, and k, = 2000 N/m.

Find the response of the two masses of the two-story frame shown in Fig. 5.21 under
the ground displacement y(t) = 0.2sinwt m. Assume the equivalent stiffness of the
lower and upper columns to be 800 N/m and 600 N/m, respectively, and m, = m, =
50 kg.

Find the forced vibration response of the system shown in Fig. 5.12 when F(¢)is a
step force of magnitude 5 N using the Laplace transformation method. Assume
x,0) = £,(0) = x,(0) = %,(0) = 0, m = 1 kg and & = 100 N/m.

Determine the equations of motion and the natural frequencies of the system shown in
Fig. 5.35.

X2

Q

m Mk,.,.. < E) / "
1 1
my, J
[e) 2+ Y0, m m
A\

AN N\ = b NANNNNNNNNNNNNNNNN
Figure 5.35 Figure 5.36
5.43. Two identical circular cylinders, of radius r and mass m each, are connected by a
spring as shown in Fig. 5.36. Determine the natural frequencies of oscillation of the
system. .
5.44. The differential equations of motion for a two degree of freedom system are given by

ak, + byx; +¢x,=0
a¥; + byx, + ¢,x, =0

Derive the condition to be satisfied for the system to be degenerate.

t

The spring-mass system (k, 71,) added to make the amplitude of the first mass zero is known as a

* vibration absorber.” A detailed discussion of vibration absorbers is given in Section 9.10.
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5.45. Find the angular displacements 6,(r) and 6,(¢) of the system shown in Fig, 5.37 for
the initial conditions 8, (¢ = 0) = 6,(0), 6,(¢ = 0) = 6,(0), and 6,(¢ = 0) = b,(t = 0)
=0.

Figure 5.37

5.46. Determine the normal modes of the system shown in Fig. 5.7 with k,; = 0. Show that
the system with &, = O can be treated as a single degree of freedom system by using
the coordinate a = 8, — 8.

5.47. The transient vibrations of the drive line developed during the application of a cone
(friction) clutch lead to unpleasant noise. To reduce the noise, a flywheel having a
mass moment of inertia J, is attached to the drive line through a torsional spring k,,
and a viscous torsional damper c,, as shown in Fig. 5.38. If the mass moment of
inertia of the cone clutch is J; and the stiffness and damping constant of the drive line
are given by k, and c,, respectively, derive the relations to be satisfied for the stable
operation of the system.

Cone Flywheel, J,
clutch, J,
(>
ki _“l',g F|1_-|"—C:z
. y4
/ Prime 1 Load
mover \ _l_
6,
Drive line \ 0
Figure 5.38

5.48. Find the response of the system shown in Fig, 5.3(a) using a numerical procedure
when k, =k, ky =2k, ks =k, m =2m, my=m, F(t)=0, and F(¢) is a
rectangular pulse of magnitude 500 N and duration 0.5 sec. Assume m = 10 kg,
¢ =¢ =c¢=0,and k = 2000 N/m.

5.49. (a) Find the roots of the frequency equation of the system shown in Fig. 5.3 using
subroutine QUART with the following data: m, = m, = 0.2 lb-s*/in., k; =k, =
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18 Ib/in., ky = 0, ¢, = ¢; = ¢, = 0 (b) If the initial conditions are x,(0) = x,(0) =
2 in., %,(0) = %,(0) = 0, determine the displacemenis x,(r) and v,(t) of the masses.

5.50. Wnie a computer program for finding the sieady-stale response of a 1wo degree of
freedom sysiem under the harmonic exciation F(t) = Fpe" j =12 using Eqs.
(529) and (5.35). Use this program 10 find the response of a system with my, = m,, =
01 Ib-s?/in., my =0, ¢,y =10 Ib-s/in., ¢, = =0, ky, =40 Ib/in, Ay =
20 Ib/in., k;; = —201b/in, F, =11lb, Fyy =21b, and w = 5 rad/s

Project:

5.51. A siep-cone pulley wilh a bel1 dnve (Fig 5.39) 1s used 10 change 1he cuning speeds IL

a lathe. The speed of 1he dnving shafi 1s 350 rpm and the speeds of the ouipui shafi
are 150, 250, 450, and 750 rpm The diameiers of 1he driving and the dnven pulleys,
corresponding 10 150 rpm outpui speed. are 250 mm and 1000 mm, respeciively. The
center disiance belween the shafis 1s 5 m The mass momenis of inertia of the driving
and driven siep cones are 01 and 0 2 kg-m’, respectively. Find the cross sectional arca
of the bel1 10 avoid resonance with any of the inpui/oulpur speeds of the sysiem.4
Assume 1he Young’s modulus of 1he belt material as 10" N/m*

—
—
[y
- -
g
4 A\ U
L] N
— J N =350
]

Figure 5.39
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saseph Lows Lagrange (1736 - 1813) was an ftakan-born
nathematician tamous for his work on theoretical
nechamncs He was made professor of mathematics in
1755 at the Artitiery School at Tunin Lagrange's
nasterpriece his Méchamque, contains what are now
<nown as “Lagrange’s equations,”” which are very useful
n the study of His work on y and
sirength of matenals, where he considered the strength
and detlection of struts, 1s less well-known (Courtesy
Brown Brothers)

Multidegree of
Freedom Systems

6.1 INTRODUCTION .

All the concepts introduced in the preceding chapter can be directly extended to the
case of multidegree of freedom systems. For example, there is one equation of
motion for each degree of freedom; if generalized coordinates are used, there is one
generalized coordinate for each degree of freedom. The equations of motion can be
obtained from Newton’s second law of motion or by using the influence coefficients
defined in Section 6.3. However, it is often more convenient to derive the equations
of motion of a multidegree of freedom system by using Lagrange’s equations.

There are n natural frequencies, each associated with its own mode shape, for a
system having n degrees of freedom. The method of determining the natural
frequencies from the characteristic equation obtained by equating the determinant
to zero also applies to these systems. However, as the number of degrees of freedom
increases. the solution of the characteristic equation becomes more complex. The
mode shapes exhibit a property known as orthogonality, which often enables us to
simplify the analysis of multidegree of freedom systems.

6.2 MULTIDEGREE OF FREEDOM SPRING-MASS SYSTEM

Consider a simple n degree of freedom system, as shown in Fig. 6.1(a). With
reference to the free-body diagram of a typical interior mass m,, the equation of
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motion can be derived:
mi, = —k(x,— x,.0) +k(x,., —x)+F; i=2,3,...,n-1
or
mi, —kx,_ + (k,+k,)x, —k, %, =F;
i=23,...n-1 (61)

The equations of motion of the masses m, and m, can be derived from Eq. (6.1) by
setting i = 1 along with x; = 0 and ¢+ = n along with x = 0, respectively:

n+1
myky+ (kg + ky)x) — kyxy = R (6.2)
mxX, = kX, + (k,+ k,,,)x,=F, (6.3)

Equations (6.1) to (6.3) can be expressed in matrix form as
(m)Z+ [k]Z=F (6.4)

where [m] and (k] are called the mass matrix and the stiffness matrix, respectively.
and are given by

m 0 0 0 o0
0 m, 0 0 0
{m)=]0 0 m, 0 0 (6.5)
(0 0 0 - 0 m,
[ (ky + k) —k, )} o0 0
—ky (kg ky) —k, e 0 0
(k) = 0 —ky  (ky+ky) -0 0
| 0 0 0 ek, (k, k)
6.6)

and X, X, and F are the displacement, acceleration, and force vectors, given by

x (1) (1) F(r)
7= xlf‘), F RN pl (RO (6.7)
x,(1) %,(1) F (1)

The spring-mass system considered above is a particular case of a general n degree
of freedom spring-mass system. In their most general form, the mass and stiffness
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Fi() Fy1) F(1) F(n F.()
e —_— — —_— —_— —_
k, k, k, k, k, L
MM’MMZMMM }—-Mh—‘lm,l—"i‘fv—imn}“w"ﬁ
Xy X2 X, x, X,
Point 1+—> Pomt2+—0 Point 1 +—O +—’ Pmm;+—9 Poimn+—b
(a)
+x,, + X,
F
(RPPPUER o S

(b)

Figure 6.1

matrices are given by

my My My ot My,
(m] = ”":12 My Myt My, (6.8)
’"ﬂ Man M3y Mpun
and
ki ki kg ki,
(4] 2 ka ky L (6.9)
k'1n kan ks, K

k.s INFLUENCE COEFFICIENTS

The equations of motion of a multidegree of freedom system can also be written in
terms of influence coefficients, which are extensively used in structural engineering.
For a linear spring, the force necessary to cause a unit elongation is called the spring
constant. In more complex systems, we can express the relation between the
displacement at a point and the forces acting at various other points of the system
by means of influence coefficients. There are two types of influence coefficients:
flexibility influence coefficients and stiffness influence coefficients. To illustrate the
concept of an influence coefficient, consider the multidegree of freedom spring-mass
system shown in Fig. 6.1.

Let the system be acted on by just one force F,, and let the displacement at
point i (i.e., mass m,) due to F, be x, . The flexibility influence coefficient, denoted



CHAPIER 6 Mulidegree of Freedom Systems

by a,,. Is defined as the deflection at point ¢ due to a unit load at point ;. Since the
deflection increases proportionately with the load for a linear system, we have

x‘l=a”FI (6.10)
If several forces F (j=1,2,...,n) act at different points of the system. the total
deflection at any point i can be found by summing up the contributions of alt forces
F:

’

n n
x,= Y x,= Ya,F. i=12... n (6.11)
y 1

=1
Equation (6.11) can be expressed in matrix form as
%=(alF (6.12)

where ¥ and F are the displacement and force vectors defined in Eq. (6.7) and [a| »
the flexibility matrix given by

an Gy ctoay,
an 4xn a4y,

[a)=] (6.1%)
an a4, 0 a,,

The stifiness influence coefficient, denoted by k,,. is defined as the force at point
¢ due to a umit displacement at point j when all the points other than the point
are fixed. The total force at point i, F,, can be obtained by summing up the forces
due to all displacements x(y=12,....n)

F=Ykx, i=L2..n (6.14)
1=1

Equation (6.14) can be stated in matrix form as

F= (k)% (6.15)
where [k] is the stiffness matrix given by
ki ky, In
(k] = k;n kn ok, (6.16)
klnl kpy ook,

An examination of Egs. (6.12) and (6.15) indicates that the flexibility and stffness
matrices are related. If we substitute Eq. (6.15) into Eq. (6.12). we obtain

% =[a]F=[a)[k]x 16.17)
from which we can obtain the relation
fallk] =[] {6.18)

where [ /] denotes the unit matrix. Equation (6.18) is equivalent to

(k)=lal ', [a)=[4])" (619)
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That is, the stiffness and flexibility matrices are the inverse of one another. The use
of dynamic stiffness influence coefficients in the vibration of nonuniform beams is
discussed in Ref. [6.10].

Note the following aspects of influence coefficients:

1. Since the deflection at point ¢ due to a unit load at point j is the same a» the
deflection at point  due to a unit load at point ¢ for a linear system (Maxwell's
reciprocity theorem [6.1]). we have a, = a, By a similar reasoning, we have
k, =k,

2. The flexibility and sufiness influence coefficients can be calculated from the
principles of solid mechanics.

3. The influence coefficients for torsional systems can be defined in terms of unit
torque and the angular deflection it causes. For example, in a multirotor
torsional system, a,, can be defined as the angular displacement of point
(rotor 1) due to a unit torque at point j.

EAMPLE 6.1 Fiexibility infiluence Coefficients

Find the flexibilitv influence coetficients of the system shown in Fig. 6.2(a)

Gwen: Three degree of freedom spring-mass system, Fig. 6.2(a).

777777 (/777774 /ATZZA
< >
3k S b3
2 $h b zh

s
& =ay, b'=ﬂ'2 m, 4= an m,
I m ] ok wd
F=0 F=0
> F=1 2 s
S & Sk Sk
S s S

3k
<
b =ay &, = ay
28 QF | ]
3

Sk - P
[ ol oo oo
my
h | 0 |
=0 Fi=0
(a) (b) (c) (d)

Figure 6.2
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Find. Flexibility influence coefficients. a, .
4pproach: Use the definition of a,,

Solution. Let ), .. and x, denote the displacements of the masses m,. m. and ni.
respectively The flexsbility influence coefficients a,, of the system can be determined i terms
of the spring stiffnesses k,, k,, and k, as follows. If we apply a unit force at mass m, and no
force at the other masses (F, = 1. F, = F, = 0), as shown in Fig. 6.2(b). the deflecuon of the
mass m, 15 equal 10 8§, = 1/k, = a,,. Since the other iwo masses m, and m, movc tundergo
rigid body translation) by the same amount of deflection §;, we have, bv definiuon.

1
ulI=u1l=slﬂkv,

Next. we apply a unt force at mass m, and no force at masses n, and m,. as shownn Fig
6.2(c) Since the two springs k, and k. offer resistance. the deflection of mass m 1 given by

1 1k +k
5:=E— + = hk =4,

>
K

The mass m, undergoes the same displacement 8, (rigid body translation) while the mas a1,
moves through a smaller distance given by 8, = 1 /k, Hence
ky + k, 1

Uy =8 = Kk, and ay, = §, %5

x=

Finally, when we apply a unit force 10 mass m, and no force 1o masses m, and m1,. as shown
in Fig 6 2(d). the displacement of mass m;, is given by

11 Kkt kak + Kok,
TR TERT ki kyke Tan

1
8,=7(:‘

while the displacements of masses m, and m, are given by

1
T Tkk, C»
and

1
8‘=k_,:""

According 10 Maxwell's reciprocily theorem, we have

1 1
(% %) (ED

The suffness mainx of the sysiem can be found from the relation [k] = [¢] ! or can be
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derived by using the definition of k,, (see Problem 6.8):

(k) + k) —k, 0
[k] = -k, (kyt ky)  —ky (E2)
0 -ky ky
EXAMPLE 6.2 Flexibility Matrix of a Beam
Denve the flexability matnx of the weightless beam shown in Fig. 6.3(a) The beam is umply
supported at both ends. and the three masses are placed at equal intervals. Assume the beam
to be uuform with stiffness EJ.
Gwen: Beam carrying three masses, Fig. 6.3(a).
Find: Flexibihty matrix, [a].
Approuch: Use the definition of 4,, along with beam deflection formula.
Solution. Let \;. x5, and x, denote the 1otal transverse deflection of the masses m,. m,. and
m,, respecuvely From the known formula for the deflection of a pinned-pinned beam [6 2},
the influence coefficients a;, (; = 1,2,3) can be found by applying a unit load at the location
of m, (see Fig. 6 3b):
R - - (ED)
M TGS ET T B ET T 768 ET
Similarly, by applying a unit load at the locations of m, and m, separately. we obtain
1 1 mn
4xn = 4n < 268 T 92 = 48 Ei° a1 = 768 El (E2)
F= IL
<< r ¥ 7
\\\\\Ia.. Ia“ —L"i'///
S S
R=1}
~ i r //
~ 4
my my m; \\\ :a,, an :af/’/
= o | \‘\“-\ __f’—"—

& o o o A Jp-
b L I < T ¥ Z
3 T i T A+4 \~\\ :a., :a [ﬂ» -~

) - ~ e >
L‘~\___L _____ -
(a) (b)

Figure 6.3
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and
3 : 3
”\1=”x1=7i6gll.7x ”=:=“z\=-,lT]87/:-7- "u=7_:3‘%‘i (E3)
Thus the flexibility matrix of the system is given by
" 9 11 7
[u]=m[ll 16 ll] : (E 4)
7 119

6.4 POTENTIAL AND KINETIC ENERGY EXPRESSIONS
IN MATRIX FORM

Let x, denote the displacement of mass m, and F, the force applied in the direction
of x, at mass m, in an n degree of freedom system similar to the one shown in Fig.
6.1, The elastic potential energy (also known as strain energy or energy of deforma-
tion) of the ith spring is given by

V= 3 Fx, (6.20)
The total potential energy can be expressed as
V- Y v-1YEx (6.21)
Since o o
k= Z k,x, (6.22)
J=1

Eq. (6.21) becomes

P Lo
V= 2 Z ( Z kux/)xv= 7 Z Z k,/x,x/ (6,23){
=1

=1\ =1 7=1

Equation (6.23) can also be written in matrix form as*

1. - ,
V= fxr[k]x o (6.24)
where the displacement vector is given by Eq. (6.7) and the stiffness matrix is givenl
by '
ky ky o o kg,
ky kyp ok,
(k)= (6.25)
kn kp Ko

* Swnce the indices / and  can be interchanged 1n Eq (6 23). we have the relation k,, = A

"
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The kinetic energy associated with mass m, is, by definition. equal to

T = %m,x? (6.26)
The total kinetic energy of the system can be expressed as
T=YT=73%mi (6.27)
=1 =1
which can be written 1n matnix form as
T= %)%T[m])% (6.28)
where the velocity vector Tis given by
xl
PR
X = .
i

and the mass matrix [m] is a diagonal matrix given by
m 0

[m] = m, (6.29)

0 Com

"

If generalized coordinates (g,), discussed in Section 6.5, are used instead of the
physical displacements (x,), the kinetic energy can be expressed as

T= %q*T[m]é (6.30)
where zf is the vector of generalized velocities, given by
G
i-{" (6.31)
dn

and [m] is called the generalized mass matrix, given by

My My omy,
My Myt My

(m]=1 . " (6.32)
My My 20 My,

with m,=m,. The generalized mass matrix given by Eq. (6.32) is full, as opposed
to the diagonal mass matrix of Eq. (6.29).
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It can be seen that the potential energy is a quadratic function of the displace-
ments, and the kinetic energy is a quadratic function of the velocities. Hence they{
are said to be in quadratic form. Since kinetic energy, by definition, cannot be
negative and vanishes only when all the velocities vanish, Eqgs. (6.28) and (6.30) are
called positive definite quadratic forms and the mass matrix [m] is called a posite
definite matrix. On the other hand, the potential energy expression, Eq. (6.24). is a
positive definite quadratic form, but the matrix (k] is positive definite only if the
system is a stable one. There are systems for which the potential energy is zero
without the displacements or coordinates x,, x,...., x, being zero. In these cases
the potential energy will be a positive quadratic function rather than positive
definite; correspondingly, the matirx k] is said to be positive. A system for which
[k] is positive and [m] is positive definite is called a semi-definite system (see
Section 6.11).

GENERALIZED COORDINATES AND GENERALIZED FORCES

The equations of motion of a vibrating system can be formulated 1n a number of
different coordinate systems. As stated earlier, n independent coordinates are:
necessary to describe the motion of a system having n degrees of freedom. Any set
of n independent coordinates is called generalized coordinates, usually designated
by 4., 4,.---, q,. The generalized coordinates may be lengths, angles, or any other
set of numbers that define the configuration of the system at any time uniquely.
They are also independent of the conditions of constraint.

To illustrate the concept of generalized coordinates, consider the triple pendu-
lum shown in Fig. 6.4. The configuration of the system can be specified by the six
coordinates (x,, »,), j =1,2,3. However, these coordinates are not independent
but are constrained by the relations

xf 4yl =18
(xz—x|)2+(y2 )’|)2=/2
(5= %)+ (= p) = 1} (6.33)

Since the coordinates (x,, y,), 7 = 1.2,3 are not independent, they cannot be called
generalized coordinates. Without the constraints of Eq. (6.33), each of the masses
m, m, and m; will be free to occupy any position in the x, y plane. The
constraints eliminate three degrees of freedom from the six coordinates (two for
each mass) and the system, thus, has only three degrees of freedom. If the angular
displacements 6 (j = 1,2,3) are used to specify the locations of the masse§ m (=
1,2,3) at any ume there will be no constraints on 6. Thus they form a set of
generalized coordinates and are denoted as ¢, = 6, y = 1,2,3.

When external forces act on the system, the configuration of the system
changes. The new configuration of the system can be obtained by changing the
generalized coordinates q, by Bq/. J=12..., n, where n denotes the number of
generalized coordinates (or degrees of freedom) of the system. If U, denotes the !
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Figure 6.4

work done in changing the generalized coordinate g, by the amount 8q,, the
corresponding generalized force Q| can be defined as

Ql:ﬁ_qu‘ J=12,...,n (6.34)

where @, will be a force (moment) when g, is a linear (angular) displacement.

}.6 LAGRANGE’S EQUATIONS

The equations of motion of a vibrating system can often be derived 1n a simple
manner in terms of generalized coordinates by the use of Lagrange’s equations [6.3)-
Lagrange’s equations can be stated, for an n degree of freedom system, as

4T\ _ AT V. _ 5
(aq/) 3q,+ 3q =9 j=12,..., n (6.35)

where § = dq,/dt is the generalized velocity and Q"” is the nonconservative
generahzed force corresponding to the generalized coordmale q,- The forces repre-
sented by Q!"’ may be dissipative (damping) forces or other exlerna] forces that are
not derivable from a potential function. For example, if F,,, F,,, and F,; represent
the external forces acting on the kth mass of the system in the x. y, and 2
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directions, respectively, then the generalized force Q'"’ can be computed as follows:
Ix dy 9z
m Al S L L NN ] 6.36)
o ;(ka 3q, "3gq, 3, (
where x,. y;, and z, are the displacements of the kth mass in the x, y, and -
directions. respectively. For a conservative system, Qj"’ = 0, so Eqgs. (6.35) take the
form

Ea—q, —a—ql+a—ql=0. Jj=12...., n (6.37)

d ( 37) T  av
Equations (6.35) or (6.37) represent a system of n differential equations, one
corresponding to each of the n generalized coordinates. Thus the equations of
motion of the vibrating system can be derived, provided the energy expressions are
available.

"Equations of Motion of a Torsional System

The arrangement of the compressor, turbine, and generator 1n a thermal power plant is shown
in Fig 65 This arrangement can be considered as a torsional system where J, denote the
mass moments of inertia of the three components (compressor, turbine, and generator). M,
indicate the external moments acting on the components, and k,, represent the torsional
spring constants of the shaft between the components as indicated in Fig. 6.5. Derive the
equations of motion of the system using Lagrange’s equations by treating the angular
displacements of the components 8, as generalized coordinates.

Given: Compressor-turbine-generator arrangement with known mass moments of inertia (J,).
external moments (M, ), and stiffnesses (&,,).

Find. Equations of motion.
Approach: Use Lagrange's equations.

Solution. Here q, = 8,, g, = 6,, and ¢, = 6, and the kinetic energy of the system is given by

T R G
T= 5080 + 5065 + 506 (E.)

Compressor (J4) Turbine (J:) Generator (J1)

Figure 6.5
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For the shaft, the potential energy 1s equal to the work done by the shaft as it returns fro
the dynamic configuration 1o the reference equilibrium posivon Thus 1f 8 denotes t
angular displacement, for a shaft having a torsional spring constant k,. the potential energy
equal to the work done in causing an angular displacement 6 of the shaft:

4 |
V= k,0) d6 = Sk, 6° E.
[k a0 = 3, (
Thus the total potennal energy of the system can be expressed as
1 o] > 1 N
V=§Allaf'§k,3(0j -6,) + ikn(ﬂ‘—ﬂ:)’ (E
There are external moments applied to the componems so Eq (6 36) gives
3
‘ (LA
Ql,"' = Z M:A— = X M, 39 (E
A=1
from which we can obtain
'_”_M80+M30\ M@—M
1= Magg, 238, gg, = M
LA a6, L
Kot =
o' =M, 55 ag M, 30, + Moy 38, M,
N 28, a6, 26,
oV = M, 35 ET + M5 30, + M"-?—& =M, (E

Substituting Eqs. (E.1), (E.3), and (E.5) in Lagrange’s equations. Eq. (6.35). we obtain
7 = 1,2,3 the equations of motion:
Sy + (kg + k)8 - k= M,
S+ (ks + k)0 = ka8, - kB = M,

S+ k8, - k0= M, (E
which can be expressed in matrix form as
J, 0 o[ (ko + k) —k,s o |8 M,
0 5 0f(6)+ -k, (ko + k) —k J(8,) =( M, (E
o 0 u|\é4 0 ki, ke |6 M,,

B.7 GENERAL EQUATIONS OF MOTION IN MATRIX FORM

We can derive the equations of motion of a multidegree of freedom system in mat
form from Lagrange’s equations.*

d(aT aT adv . .
V(a—x;)—a—x;-FW:FI i=1.2..... n (6..

* The generalized coordinates are denoted as v, instead of ¢, and the gencralized forces as £, ins
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where F, is the nonconservative generalized force corresponding to the tth general-
wzed coordinate x, and x, is the time derivative of x, (generalized velocity). The
kinetic and potential energies of a multidegree of freedom system can be expressed
in matrix form as indicated in Section 6.4:

= %)%T[m],é‘ (6.39)
= SRT[K]F (6.40)
where X is the column vector of the generalized coordinates

X

X2
X={. (6.41)

; N

X

From the theory of matrices, we obtain, by taking note of the symmetry of [m],
T _
ax,

—@T%,  i=12...n (6.42)
where 8 is the Kronecker delta (§, = 1if y =1and =0if j # 1), & is the column
vector of Kronecker deltas whose elements in the rows for which j # i are equal to
zero and whose element in the row 1 = j is equal to 1. and #i! is a row vector which
is identical to the rth row of the matrix [m]. All the relations represented by Eq.

(6.42) can be expressed as

18Tmx+ 35T [m)E = 87 [m]¥

g_}r_ = T (6.43)
Differentiation of Eq. (6.43) with respect to time gives
%(%)mﬁf}, i=1.2....n (6.44)

since the mass matrix is not a function of time. Further, the kinetic energy is a
function of only the velocities x,, and so

aT .
E =0, i=1,2,..., n (6.45)

Similarly, we can differentiate Eq. (6.40), taking note of the symmetry of [k]:

V' lerrqo Voriiis mTro1=
T = 20 KIF+ 371K = 87 (k)¢
=k'x, 1=12..., n (6.46)

where I:,T is a row vector identical to the ith row of the matrix [k}. By substituting
Egs. (6.44) to (6.46) into Eq. (6.38), we obtain the desired equations of motion 1n
matrix form:

[m]%+[k]7=F (6.47)
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where

F={. (6.48)

Note that if the system is conservative, there are no nonconservative forces F,.
50 the equations of motion become

[m]5+ [k]x=0 (6.49)

Note also that if the generalized coordinates x, are same as the actual (physical)
displacements. the mass matrix [m] is a diagonal matrix.

6.8 EIGENVALUE PROBLEM

The solution of Eq. (6.49) corresponds to the undamped free vibration of the
system. In this case, if the system is given some energy in the form of initial
displacements or initial velocities or both, it vibrates indefinitely because there is no
dissipation of energy. We can find the solution of Eq. (6.49) by assuming a solution
of the form ’

x, (1) = X,T(1), 1=1,2,...,n (6.50)
where X, is a constant and T is a function of time 1. Equation (6.50) shows that the
amplitude ratio of two coordinates

x,(1)
%,(1)

is independent of time. Physically, this means that all coordinates have synchronous
motions. The configuration of the system does not change its shape during motion,
but its amplitude does. The configuration of the system, given by the vector
X

= X.

x={"
Xa
is known as the mode shape of the system. Substituting Eq. (6.50) into Eq. (6.49), we
obtain

[m)XT(¢) + [k} XT(:) =0 (6.51)

Equation (6.51) can be written in scalar form as n separate equations:

( Z m,jxl)f(,) + (Z k”XI)T(l) =0, =12, n (6.52)
=1

=1
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from which we can obtain the relations

.. (Zk,,X,)
LA G v (6.53)

=)

Since the left-hand side of Eq. (6.53) is independent of the index i, and the
right-hand side is independent of t, both sides must be equal to a constant. Bv
assuming this constant* as w?, we can write Egs. (6.53) as

T(1) + W*T(1) = 0 (6.54)
Z(k,/—wzm,l)X,=0, i=12,....n
j=1
or
[[k] - *[m]] X =0 (6.55)
The solution of Eq. (6.54) can be expressed as
T(¢) = C,cos{wt + ¢) (6.56)

where C, and ¢ are constants, known as the amplitude and the phase angle.
respectively. Equation (6.56) shows that all the coordinates can perform a harmonic
motion with the same frequency w and the same phase angle ¢. However, the
frequency w cannot take any arbitrary value; it has to satisfy Eq. (6.55). Since Eq.
(6.55) represents a set of n linear homogeneous equations in the unknowns X,
(i = 1,2,..., n), the trivial solution is X, = X, = --- = X, = 0. For a nontrivial
solution of Eq. (6.55), the determinant A of the coefficient matrix must be zero. That
18,

A=k, - w'm, | =[k] - W [m]l=0 (6.57)

Equation (6.55) represents what 1s known as the eigenvalue or characteristic value
problem, Eq. (6.57) is called the characteristic equation. «® is known as the
eigenvalue or the characteristic value, and w is called the natural frequency of the
system.

The expansion of Eq. (6.57) leads to an nth order polynomial equation in w’.
The solution (roots) of this polynomial or characteristic equation gives n values of
w1t can be shown that all the n roots are real and positive when the matrices [k]
and [m] are symmetric and positive definite [6.4], as in the present case. If
©}, wl,..., w2 denote the n roots in ascending order of magnitude, their positive
square roots give the n natural frequencies of the system w; € w, < -+ < 0,. The
lowest value (w,) is called the fundamenzal or first natural frequency. In general, all

.

The constant is assumed to be a positive number, «*. 50 as 10 obtain a harmonic solution to the
resulung Eq (6.54). Otherwise. the solution of T(s) and hence that of \(¢) become exponential. which
violates the physical limitations of finite total energy
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the natural frequencies w, are distinct, although in some cases two natural frequen-
cies might possess the same value.

6.9 SOLUTION OF THE EIGENVALUE PROBLEM

6.9.1

Solution of the
Characteristic
(Polynomial)
Equation

Several methods are available to solve an eigenvalue problem. We shall consider an
elementary method in this section.

Equation (6.55) can also be expressed as

[A[k] = [m]}]X=0 (6.58)
where

A= L (6.59)
(A
By premultiplying Eq. (6.58) by (k] ', we obtain
1] -[P])Xx=0

or

AMIlX=[D]X (6.60)
where [/] is the identity matrix and

[D] = [k]™'[m] (6.61)

is called the dynamical matrix. The eigenvalue problem of Eq. (6.60) is known as the
standard eigenvalue problem. For a nontrivial solution of X, the characteristic
determinant must be zero—that is,

A=]A[7]-[D]]=0 (6.62)

On expansion, Eq. (6.62) gives an nth degree polynomial in A, known as the
characteristic or frequency equation. 1f the degree of freedom of the system (n) is
large, the solution of this polynomial equation becomes quite tedious. We must use
some numerical method, several of which are available to find the roots of a
polynomial equation [6.5].

HAMPLE 6.4

Natural Frequencies of a Three Degree-of-Freedom System e

Find the natural frequencies and mode shapes of the system shown i Fig 6 2 for ky = &, =
ky=kand m = my=m;=m.

Grven: Three degree of freedom spring-mass system with equal masses and stiffnesses
Find: Natural frequencies and mode shapes.

Approach. Find the eigenvalues and eigenvectors of the dynamical matnx.
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Solution. The dynamical matrix 1s given by

[D) = [k} '[m} = [a])[m} (E.1)

where the flexibility and mass matrices can be obtained from Example 6.1:

o
lal=[1 2 2 (E2)
1 2 3
and
1 00
[m} = m[O 1 0] (E.3)
0 0 1
Thus
mll 11
(D)= 7[1 2 2] (E4)
1 2 3

By setting the characteristic determinant equal to zero, we obtain the frequency equation:

A O O mll 1 1
a=[A} -[pl=flo » of-f|1 2 2{|=0 (E.5)
0 0 A 1 2 3
where
A= (E6)
w
By dividing throughout by A, Eq. (E.5) gives
1 -a —a -a
-—a 1 -2a -2a|=& -Sa’+6a-1=0 (E.7)
-—a —2a 1-3a
where
2
m muw
YN (E.3)

The roots of the cubic equation (E.7) are given by

mew?

o = Tl = 019806, w, = 044504/ & © (B9

k
w, = 12471/ - (E.10)

2
o= T =200, wy - 1805) K (E11)

Once the natural frequencies are known, the mode shapes or eigenvectors can be calculated,!

using Eq (6 60):
(E 12)1

2
mw;
% = 1.5553,

a; =

il

(M7= [D)) X =0, =123
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where
Xl(l)
/\7(:1 - sz
X{!

denotes the 1th mode shape. The procedure 1s outlined below.

m

First mode: By substituting the value of w, (i.c.. A, = 50489 X ) in Eq. (E.12). we obtain

(1)
W[ 0 0] L[t 1™ 0
50489710 1 Of- 71 2 2/ x")=(0
00 1 1 23 X0 0

That is,
1)
40489 10  -10 X 0
-10 3.0489 -20 XMy =(0 (E.13)
-1.0 -2.0 2.0489 | oo 0
3

Equation (E.13) denotes a system of three homogeneous linear equations in the three
unknowns X{", X{¥, and X{". Any two of these unknowns can be expressed in terms of the
remaining one. If we choose, arbitrarily, to express X" and X§"' in terms of X{!, we obtain
from the first two rows of Eq. (E.13).
XD 4 X = 4.0489 X
3.0489 XD - 20X = x (E.14)

Once Egs. (E.14) are satisfied, the third row of Eq. (E.13) is satisfied automatically. The
solution of Egs. (E.14) can be obtained:

XM =1.8019x" and  x{¥ = 22470 (E.15)

Thus the first mode shape is given by

. 1.0
X = x;“{ 1.8019} (E.16)
2.2470

where the value of X{" can be chosen arbitrarily.

Second mode. The substitution of the value of w, (i.e., A, = 0.6430%) in Eq. (E.12) leads to

X(Z)
mll 0 0] .t 11 ! 0
06430710 1 Of-FI1 2 2|KXP)=(0
0 0 1 12 30|y ]
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that 15,
2)
-03570 -1.0 -10 X 0
-10 -13570 -2.0 XPr =40
-1.0 -20 -235701| yo 0

As before, the first two rows of Eq. (E.17) can be used to obtain
=X - X7 = 03570 X2
~1.3570 X8 - 20X = x»
The solution of Eqgs. (E.18) leads to
X{ = 0.4450X  and  X{® = -0.8020X;

1.0
0.4450
~0.8020

where the value of X{? can be chosen arbitrarily.

Thus the second mode shape can be expressed as

X‘(Z) = Xl(zl{

(E 17|

(E 18!

(E 19}
|

{

|
(E 20f

Third mode To find the third mode, we substitute the value of w, (i.e., Ay = 0.3078%) =

Eg. (E.12) and obtain

1 00
[0.3078%[0 1 o]—

(3)

m 1 1 1 X
Tl 2 2f{xey =

0 0 1 1 2 3 X

X(JI
- 06922 -1.0 -1.0 ! 0
-1.0 -16922 -20 XPY=«0

-10 -20 ~2.6922 x;‘“ 0

that is.

The first two rows of Eq. (E.21) can be written as
- X - X = 0.6922 X
- 16922 X§» — 2.0x» = X
Equatons (E 22) give
X = -1.2468X>  and X = 0.5544 X
Hence the third mode shape can be written as

_ 1.0
X0 = Xt 12468
0.5544

(E2Y

(E23

(E24

where the value of X{* 1s arbitrary. The values of X{"’. X{® and X{" are usually taken as |

and the mode shapes are shown in Fig. 6 6
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First mode

Second mode D

Third mode

Figure 6.6

6.9.2
Orthogonality of
Normal Modes

In the previous section we considered a method of finding the n natural frequencies
w, and the corresponding normal modes or modal vectors X', We shall now see an
important property of thé normal modes—orthogonality. The natural frequency w,
and the corresponding modal vector X' satisfy Eq. (6.55) so that

WHm] X" = [k] X (6.63)

If we consider another natural frequency w, and the corresponding modal vector
X, they also satisfy Eq. (6.55) so that

WHm] X = [k] XD (6.64)

By premultiplying Egs. (6.63) and (6.64) by X" and X" respectively. we obtain.
by considering the symmetry of the matrices-[k] and [m].

w,’f“"[m],f“’ - )?“"[k]f“‘ = /\71:»’[,(])?(,1 : (6.65)

R[] RO = 2R [m] K0 = RO [k] R0 (6.66)
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By subtracting Eq. (6.66) from Eq. (6.65), we obtain

(w,zvulz)i"’l[m])?"’=0 (6.67)
In general, v} # . so Eq. (6.67) leads to*

FOm] R0 =0, 1% (6 6%)
From Eqgs. (6.65) and (6.66). we obtain, in view of Eq. (6.6%).

X [k]X =0, iwy (6.69)

Equations (6.68) and (6.69) indicate that the modal vectors X' and XU are
orthogonal with respect to both mass and stiffness matrices.

When i =, the left-hand sides of Eqs. (6.68) and (6.69) are not equal to zero.
but yield the generalized mass and stiffness coefficients of the rth mode:
M, = X [m) X, i=12....n (6.70)

"

K,= X k]X@, i=12...n (6.71)

Equations (6.70) and (6.71) can be written in matrix form as

M, 0

g - Ma (X mllX) (67
| 0 M,
Ky 0

& - T - X1 [K]1X] (67
{0 . K,

where | X] is called the modal matrix, in which the tth column corresponds to the
1th modal vector:

(X]=[gm x> ... gl (6.74)
In many cases. we normalize the modal vectors X' such that PMJ = [F]—that s,

X' [m)X@o =1,  i=12...n (6.75)

.

In the case of repeated cigenvalues, w, = w,. the associated modal vectors are orthogonal to all the
remasming modal vectors. but are not usually orthogonal to cach other
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In this case the matrix [K] reduces to
w? 0
w}
(k] = [W = , (6.76)

EXAMPLE 6.5 Orthonormaiization of Eigenvectors Ry

Orthonormalize the cigenvectors of Example 6 4 with respect to the mass matnx

Gwen: Eigenvectors (of Example 6 4).
Find. Eigenvectors, orthonormalized with respect to the matrix [m)

Approach: Multiply each eigenvector by a constant and find its value from the relation
X [mI X =1, 1=1,2.3.

| Solution. The eigenvectors of Example 6.4 are given by

- 1.0
X = xiv( 1.8019

2.2470

_ 1.0
X2 = xlm 0.4450
-0.8020

_ 1.0
X = X ~1.2468
0.5544

The mass matnix is given by

1 0 0
[m}=mlo 1 o

0 0 1

The eigenvector X' is said 1o be [ m)-orthonormal if the following condition is satsfied:
X mpx =1 (E.1)
Thus for + = 1, Eq. (E.1) leads to
m( X")’(1.02 + 180197 + 2.2470%) = 1
or
" 1 0.3280

X = Jm(9.2959)  Jm

Similarly, for 1 = 2 and 1 = 3, Eq. (E.1) gives

m( X2)}(1.0° + 044507 + {-0.8020)3) =1 or X = 01370
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and

m(XUY(100+ (~12468)° + 055447y =1 or XM= "=

6.9.3
Repeated
Eigenvalues

When the charactenstic equation possesses repeated roots. the corresponding mode
shapes are not umque. To see this. let X" and X be the mode shapes
corresponding to the repeated eigenvalue A, = A, = A and X' be the mode shape
corresponding to a different eigenvalue A, Equanon (6.60) can be wnitten as

[D]X = A X (6.77)
[D] X = Ax® (6.78)
[DIX™ = A X0 (6.79)
By multiplying Eq. (6.77) by a constant p and adding to Eq. (6.78). we obtain
[D)(pE™ + K] = A(pKW + X2) (6.80)

This shows that the new mode shape. ( pX*"" + X'), which is a linear combination
of the first two. also satisfies Eq. (6.60). so the mode shape correspondmg to A is not
unique. Any X corresponding to A must be orthogonal to X¥ if it is to be a normal
mode. If all three modes are orthogonal. they will be linearly independent and can
be used to describe the free vibration resulting from any initial conditions.

The response of a multidegree of freedom system with repeated natural frequen-

cies to force and displacement excitaton was presented by Mahalingam and Bishop
[6.16).

Repeated Eigenvalues

Determine the eigenvalues and ewgenvectors of a vibrating system for which

1 00 1 -2 1
fml=10 2 0 and [k} =] -2 4 -2
0 0 1 1 -2 1
Gven: Mass and stiffness matnces
Find: Eigenvalues and eigenvectors.
Approach: Use Eq. (6.80) for repeated eigenvalues.

Solution. The eigenvalue equation [[k] — A[m]] X = 0 can be wntten in the form

(1-2) -2 1 X, 0 '
-2 22-1\) -2 X,y={0 (E.1)
1 -2 a-=-xnlx 0

where A = w’. The characteristic equation gives

(k) - A[m)]=¥(A -4 =0
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A =0X=02Ar,=4 (E.2)
Eigenvector for X\, = 4: Using A, = 4, Eq. (E.1) gives
S3x - 2xh 4 X0 =0
22X 4XY - 22X =0
xh-2xh - 3xth =0 (E3)
If XtV is set equal to 1, Egs. (E.3) give the eigenvector X*¥:

- 1
X = { Al} (E.4)
1

Eigenvector for A, = A, = 0: The value A, =0 or A, =0 indicates that the system is
degenerate (see Section 6.11). Using A, = 0 in Eq. (E.1). we obtain

Xh-2x 4 Xt =0
~2X0 +axh - 2x{" =0
xW-2xh 4+ xih =0 (E.5)
All these equations are of the form
XV o=2x — X

Thus the eigenvector corresponding to X, = A, = 0 can be written as

240 — xih
X = X (E.6)
X‘ll)
If we choose X" =1 and X{" = 1, we obtain
. 1
= (E.7)
1
If we select X" =1 and X{"! = —1, Eq. (E.6) gives

X =< i} (E.8)
-1

As shown earlier in Eq. (6.80), X and X2 are not unique; any linear combination of X
and X' will also satisfy the onginal Eq. (E.1). Note that X'" given by Eq. (E6) is
orthogonal to X** of Eq. (E.4) for all values of X!’ and X{". since

100 ”5“’““\
X m) B0 = (1 -1 1)[0 2 o] o =0

00 1 X
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EXPANSION THEOREM

The eigenvectors. due to their property of orthogonality. are linearly independent.
Hence they form a basis in the n-dimensional space.! This means that any vector 1
the n-dimensional space can be expressed by a linear combination of the n linearl
independent vectors. If X is an arbitrary vector in n-dimensional space, it can b
expressed as

=X X" (6.81)

IR}
where ¢, are constants. By premultiplying Eq. (6.81) throughout by f""[m]. thJ
value of the constant ¢, can be determined as
104 i v’ i
L X mlx X [mlX 45 (6.82)
X' [m] X M,

where M, is the generalized mass in the ith normal mode. If the modal vectors X
are normalized according to Eq. (6.75). ¢, is given by

o =X [mlx,  i=1.2.... n (6.83

Equation (6.83) represents what is known as the expansion theorem [6.6]. It is ver
useful in finding the response of multidegree of freedom systems subjected t
arbitrary forcing conditions according to a procedure called modal analysis.

'

UNRESTRAINED SYSTEMS

As stated 1n Section 5.7. an unrestrained system is one that has no restraints or
supports and that can move as a rigid body. It is not uncommon to see, in practice.
systems that are not attached to any stationary frame. A common example is the
motion of two railway cars with masses m, and m, and a coupling spring k. Such
systems are capable of moving as rigid bodies, which can be considered as modes of|
oscillation with zero frequency. For a conservative system, the kinetic and potential
energies are given by Eqs. (6.27) and (6.24), respectively. By definition, the kinetic
energy is always positive, so the mass matrix [m] is a positive definite matrix.!|
However, the stiffness matrix [k] is a semi-definite matrix, ¥ is zero without the|
displacement vector X being zero for unrestrained systems. To see this, consider the]

equation of motion for free vibration in normal coordinates: }

§(1) + wig(1) =0 (6.84)
For w = 0, the solution of Eq. (6.84) can be expressed as B
q(1) =a+ Bt (6.85)

* A set of vectors is called hinearly independent if no vector in the sel can be obtained by a hncar
combination of the remaining ones.

' Any set of n hnearly independent veciors in an n-dimensional space is called a basts in that space
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where a and B are constants. Equation (6.85) represents a rigid body translation.
Let the modal vector of a multidegree of freedom system corresponding to the rigid
body mode be denoted by X'%_ The eigenvalue problem, Eq. (6.58). can be
expressed as

w[m] X0 = [k] X© (6.86)
With w = 0, Eq. (6.86) gives
(k)X =0
That 1s,
Ky X0 + kX0 + o kX0 =0
ApXO + kpyXO + - +k,, X0 =0
k X0 4k X0+ ok, X0 =0 (6.87)

If the system undergoes rigid body translation, not all the components X,
i=1,2,..., n are zero—that is, the vector X' is not equal to 0. Hence, in order to
satisfy Eq. (6.87), the determinant of [k] must be zero. Thus the stiffness matrix of
an unrestrained system (having zero natural frequency) is singular. If [k] is singular.
the potential energy is given by

V= %X-‘“"[k | x©@ (6.88)

by virtue of Eq. (6.87). The mode X© s called a_zero mode or rigid body mode. 1f
we substitute any vector X other than X© and 0 for X in Eq. (6.24), the potential
energy ¥V becomes a positive quantity. The matrix [k] is then a positive semi-defi-
nite matrix. This is why an unrestrained system is also called a semi-definite system.
Note that a multidegree of freedom system can have at most six rigid body
modes with the corresponding frequencies equal to zero. There can be three modes
for rigid body translation, one for translation along each of the three Cartesian
coordinates, and three modes for rigid body rotation, one for rotation about each of
the three Cartesian coordinates. We can determine the mode shapes and natural
frequencies of a semi-definite system by the procedures outlined in Section 6.9.

EX EXAMPLE 6.7

Naturai Frequencies of a Free System

Find the natural frequencies and mode shapes of the system shown in Fig. 6 7 for m, = m,
=my=mand k, =k, = k.

Gwen: Unrestrained spring-mass system, Fig. 6.7
Find: Natural frequencies and mode shapes.

Approach: Find a ngid body mode corresponding to zero frequency
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Figure 6.7

Solution. The kinetic energy of the system can be written as

T=%(m,i,:#m3X§+m‘X§)=%;r[m]§ (E1)
where
X X,
i={x) i={i
X3 X3
and
m 0 0
[m]=[0 m O (E.2)
0 0 m,

The elongations of the springs k, and k, are (x, — x,) and (x; — x;). respectively, so the
potential energy of the system is given by

V=%{k,(xz—x,)‘+k_,(x,—xz)’} =%}?T[k]i (E3)
where
k, —k, 0 ‘
(k] =] -k k +ky, —k, - (EY)
0 -k, ky

It can be verified that the stiffness matrix k) s singular. Furthermore. if we take all the.
displacement components to be the same as x, = x, = x, = ¢ (rigid body motion), the
potential energy V can be seen to be equal to zero.

To find the natural frequencies and the mode shapes of the system, we express thei
eigenvalue problem as I

[[&] - [m]] X=0 (E.5)

Since [ k] is singular, we cannot find its inverse [k] ™!, so the dynamical matnx [ D] = [m]~ Mk
Hence we set the determinant of the coefficient matrix of X in Eq. (E.5) equal to zero For
ky =k, = k and m; = m, = my = m, this yields

(k - w?m) ~k 0 |
& (k- o'm) & |=0 (Es)“
0 —k (k - w?m)

The expansion of the determinant in Eq. (E.6) leads to

m® — dmikw® + 3mkiw’ =0 (ET)
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By setting
A= w? (E.8)
Eg. (E.7) can be rewritten as
k 3k
m(r-5 )= ) -o (£9)
As m # 0, the roots of Eq. (E.9) are
A =wi=0
A, =wl= i
=" - m
., 3k
MN=wi= ™ (E.10)

The first natural frequency w, can be observed to be zero in Eq. (E.10). To find the mode
shapes, we substitute the values of w,, w,, and w, into Eq. (E.5) and solve for X', X and
X respectively. For w, = 0, Eq. (E.5) gives
kXD — kX =0
—~ kXM + 2kXY — kXx{P =0
— kX" + kXM =0 (E.11)
By fixing the value of one component of X\"'—say, X" as 1—Egs. (E.11) can be solved to
obtain
XP=xM=1 and XM=xP=1

Thus the first (rigid body) mode X'’ corresponding to w, = 0 is given by

1
X = {1} (E.12)
1

For w, = (k/m)"/?, Eq. (E.5) yields

—kX =0
- kX kX — kXD =0
- kX2 =0 (E.13)

By fixing the value of one component of X®'—say, X{? as 1| —Egqs. (E.13) can be solved to
obtain

X=0 and XP=-X?=-1
Thus the second mode X¥*? corresponding to w, = (k/m)"/? is given by

1
X = { o} (E.14)

-1
For w; = (3k/m)'/2, Eq. (E.5) gives
- 2kXP ~ kX =0
- kX - kXD — kX =0
— kXY - 2kX§‘1’=0 (E15)
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By fixing the value of one component of X _say, X" as 1—Egs. (E.15) can be solved to
obtain

X =-2X"= -2 and XD = —%X!" =1
Thus the third mode X** corresponding to w, = (3k/m)"/? is given by

1
i o { _2} (E.16)
1

6.12 FORCED VIBRATION

When external forces act on a multidegree of freedom system. the system undergoes
forced vibration. For a system with n coordinates or degrees of freedom, the
governing equations of motion are a set of n coupled ordinary differential equations
of second order. The solution of these equations becomes more complex when the
degree of freedom of the system (n) is large and/or when the forcing functions are
nonperiodic.* In such cases, a more convenient method known as modal analysis
can be used to solve the problem. In this method. the expansion theorem is used,
and the displacements of the masses are expressed as a linear combination of the
normal modes of the system. This linear transformation uncouples the equations of
motion so that we obtain a set of n uncoupled differential equations of second
order. The solulion of these equations, which is equivalent to the solution of the
equations of n single degree of freedom systems, can be readily obtained. We shall
now consider the procedure of modal analysis.

Modal Analysis. The equations of motion of a multidegree of freedom system under
external forces are given by ,

[m]x+ [k]X=F (6.89)
where F is the vector of arbitrary external forces. To solve Eq. (6.89) by modali
analysis, it is necessary first to solve the eigenvalue problem,

W [m]X = [k]X (6.90)
and find the natural frequencies w,, w,, ..., w, and the corresponding normal modes
X, X@ X" According to the expansxon theorem, the solution vector of Eq.
(6.89) can be expressed by a linear combinaton of the normal modes:

x(t) = ‘71(’)/\7‘“ + qz(l)/\ﬁz) PR +q"(,),\7m) (6.91)

- where g,(1), g,(1)... .. q,(¢) are time-dependent generalized coordinates, also known
as the modal parncipanion coefficients. By defining a modal matnix [ X] in which the
Jth column is the vector X*/’—that is,

[x]= {X‘m Xe . A';l")] (6.92)

* The dyﬁnamu response of muludegree of frecdom systems with statstical properties was conssdered
n Ref [615]
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Eq. (6.91) can be rewritten as

%(1) = [X]14(1) (6.93)
where
a.(r)
iy = {20 (6.94)
9.(1)
Since { X] is not a function of time, we obtain from Eq. (6.93)
(1) = [X14(1) (6.95)
Using Egs. (6.93) and (6.95). Eq. (6.89) can be written as
[mllX1g+ [KI[ X1 = F (6.96)
Premultiplying Eq. (6.96) throughout by [ X]”. we obtain
(X7 [ml(X]q+ (X1 (k][ X1g= [ X)F (6.97)
If the normal modes are normalized according to Eqs. (6.68) and (6.69). we have
[x])[m][x]=[1] (6.98)
[X)7[k][x] = Pw’d (6.99)

By defining the vector of generalized forces é(/) associated with the generalized
coordinates §{(t) as ’

Q1) = [X]F(1) (6.100)
Eq. (6.97) can be expressed, using Eqs. (6.98) and (6.99). as
(1) + [w?]d(r) = O(r) (6.101)

Equation (6.101) denotes a set of n uncoupled differential equations of second
order*

§,(1) + Wl (1) =Q(1), i=12...n (6.102)

* It is possible 10 approximate the solution vector £(s) by only the tirst r(r < n) modal vectors
(instead of n vectors as in Eq. (6.91)):

() = [x]14()

nxi wxr rx1

e a (1)
(X]=[xm g .. o] and G- a:(1)

9.(1)

This leads to only r uncoupled differential equations
(1) + wig (1) = 0.(1). =12,
wnstead of # equations The resuliing solution ¥(r) will be an approximate solution This procedure 1s

called the mode displacement method An alternate procedure. known as the mode acceleration methed.
for finding an approximate solution is indicated in Problem 6.40
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It can be seen that Eqs. (6.102) have precisely the form of the differential equation
describing the motion of an undamped single degree of freedom system. The
solution of Egs. (6.102) can be expressed (see Eq. (4.33)) as:

4.(0)

W

q,(1) = ¢,(0)cos w,r + { )sinwj + ‘—A’I—I',;'Q,(r)sin w,(t = 7)dr,

i=1,2.....n (6.103)

'

The initial generalized displacements ¢,(0) and the initial generalized velocities g,(0)
can be obtained from the initial values of the physical displacements x,(0) and
physical velocities x,(0):

4(0) = [X]"[m]%(0) (6.104)
§(0) = [x]"[m]%(0) (6.105)
where
4,(0) 4,(0) 11(0) x'](O)
i i x,(0 . %,(0
q(0) = quo) , 4(0) = quo) . ¥(0) = f) . x(0) = "f)
4,(0) 4,(0) x,(0) £,(0)

Once the generalized displacements g,(¢) are found, using Eqs. (6.103) to (6.105).
the physical displacements x (¢) can be found with the help of Eq. (6.93).

6.13 VISCOUSLY DAMPED SYSTEMS

Modal analysis, as presented in Section 6.12, applies only to undamped systems. In
many cases, the influence of damping upon the response of a vibratory system is
minor and can be disregarded. However, the effect of damping must be considered if
the response of the system is required for a relatively long period of time compared
to the natural periods of the system. Further, if the frequency of excitation (in the
case of a periodic force) is at or near one of the natural frequencies of the system,
damping is of primary importance and must be taken into account. In general, since
the effects are not known in advance, damping must be considered in the vibration
analysis of any system. In this section, we shall consider the equations of motion of
a damped multdegree of freedom system and their solution using Lagrange’s
equations. If the system has viscous damping, its motion will be resisted by a force
whose magnitude 1s proportional 1o that of the velocity but in the opposite
direction. It is convenient to introduce a function R, known as Rayleigh’s dissipa-
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tion function, in deriving the equations of motion by means of Lagrange’s equations
[6.7]. This function is defined as

£T{e]¥ (6.106)

where the matrix [c] is called the damping matrix and is positive definite, hke the
mass and stiffness matrices. Lagrange's equations, 1n this case [6.8], can be written
as

d{oT aT JR v .
E(a—xl)—a—x‘-Fa—x‘+0—x“=Fl i=1,2,..., n (6.107)

where F, is the force applied to mass m,. By substituting Eqgs. (6.24), (6.28). and
(6.106) into Eq. (6.107), we obtain the equations of motion of a damped multidegree
of freedom system in matrix form:

[m)% + [c]5+ [k]T=F (6.108)

For simplicity, we shall consider a special system for which the damping matrix can
be expressed as a linear combination of the mass and stiffness matrices:

[c] = afm] + B[k] (6.109)

where « and B are constants. This type of damping is known as proportionai
damping because [c] is proportional 1o a linear combination of [m] and [k]. By
substituting Eq. (6.109) into Eq. (6.108) we obtain

[m]%+ [a[m] + B[k])5 + [k]Z=F (6.110)

By expressing the solution vector X as a linear combination of the natural modes of
the undamped system, as in the case of Eq. (6.93),

x(1) = [Xx]4(r) (6.111)
Eq. (6.110) can be rewritten as
[m][X14(1) + [alm] + BK]][ X]4(r)
+[k)[x14(e) = F(1) (6.112)
Premultiplication of Eq. (6.112) by [ X]” leads to
(X) () X1g + [al X)T[m)[X) + BLX)[K)(X)]4
+{X) (k) X])g = [X)'F (6.113)

If the eigenvectors X are normalized according to Egs. (6.68) and (6.69). Eq.
(6.113) reduces to

(1)) + [a[ 1] + B G(0) + [~wi)d(r) = G(r)
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that is,
G,(0) + (a+ wlB)4,(r) + wlg,(1) = Q,(1).
i=12.....n (6.114)
where w, is the rth natural frequency of the undamped system and
o) =[x 1) (6.115)
By writing
a+ wf =%, (6.116)

where ¢ is called the modal damping ratio for the 1th normal mode, Eqs. (6.114) can
be rewritten as

G(0) + 2%w,d, (1) +wig () =0,(1). i=12...n (6117

It can be seen that each of the n equations represented by this expression 1
uncoupled from all of the others. Hence we can find the response of the +th mode in
the same manner as that of a viscously damped single degree of freedom system
The solution of Egs. (6.117), when {, < 1, can be expressed as

q,(1) = e“’”"{cos wt + /_15——?—’ Si“wu.'}q,(o)
+{J—e"-"-’sinwd, }q, 0) + _fQ( r)e S sinw, (¢~ t)dT.
Wy,

i=1,2,....n (6.118)

wy, = wyl = §} (6.119)

Note the following aspects of these systems:

where

1. It has been shown by Caughey [6.9] that the condition given by Eq. (6.109) s
sufficient but not necessary for the existence of normal modes in damped
systems. The necessary condition is that the transformation that diagonalizes
the damping matrix also uncouples the coupled equations of motion. This
condition is less restrictive than Eq. (6.109) and covers more possibilities.

2. In the general case of damping, the damping matrix cannot be diagonalized
simultaneously with the mass and stiffness matrices. In this case. the eigenvalues
of the system are either real and negative or complex with negative real parts.
The complex eigenvalues exist as conjugate pairs; the associated eigenvectors
also consist of complex conjugate pairs. A common procedure for finding the
solution of the eigenvalue problem of a damped system involves the transforma-
tion of the n coupled second order equations of motion into 2n uncoupled first
order equations [6.6].

3. The error bounds and numerical methods in the modal analysis of dynamic
systems were discussed in Refs. [6.11, 6.12].
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IXAMPLE 6.8 Equations of Motion of a Dynamic System H
' Denve the equations of motion of the system shown in Fig 6 8.
Guven: Three degree of freedom spring-mass-damper system, Fig. 6.8.
Find: Equations of motion.
Approach. Use Lagrange’s equations in conjunction with Rayleigh's dissipation function
Solution. The kinetic energy of the system is
T = 4(mii + myid + myx3) (E.1)
The potential energy has the form
V= kxt + ky(x, - x) + ks(x; - x) (E2)
and Rayleigh's dissipation function 1s
R=He# + 6t~ ) + 6l - £) + o +a(x - %) (E3)
Lagrange’s equations can be written as
%(%)"3{*3_2*3_5,=F” 1=1,2,3 (E4)

By substituting Eqgs. (E.1) to (E3) into Eq. (E.4), we obtain the differential equations of

x
AAAA——
VWV

F@) x()

e

x(1) F1)

x3(0) F3()

Figure 6.8 .
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motion:
[m}%+ [+ k]E=F (E3)
where
—m, 0 0
[mi=[0 m O (E6)
| 0 0 m ,
—c, + 6+ € -0 -
[e] = - ey + e, — ¢y (E7)
—Cs k%) ¢y + ¢
[k, + ky  —ky 0
(k1=1] ~ke  hytky —ky (E8)
| o —k, Ky
x,(1) (A
%= xy(1) and  F={F(1) (E.9)
x3(1) A(1)

EXAMPLE 6.9

Steady State Response of a Forced System s T

Find the steady-state response of the system shown in Fig. 6.8 when the masses are subjectec
10 the simple harmonic forces F, = F, = F; = F,cos wt, where w = 175/k/m . Assume thal
m =my=my=m, k, =k, =ky =k, ¢;=1c5 =0, and the damping ratio in each norma
mode is given by {, = 0.01, i = 1,2,3.

Gwen: Three degree of freedom spring-mass-damper system, Fig. 6.8.
Find: Steady-state response under harmonic forces.
Approach: Uncouple the equations of motion and find the response.

Solution. The (undamped) natural frequencies of the system (see Example 6.4) are given b;
w = 0.44504\/%

1,2471\/5 .

1.8025\/5 (E1

and the corresponding [m]-orthonormal mode shapes (see Example 6 5) are given by :

e 0.3280{ }'3019} o - 0.7370{ 12450}
m | 22470 m | _o8020

1.0
o gﬂ{ _lm} &2
m 0 5544

Wy

wy
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Thus the modal vector can be expressed as

o 1 Jo3280 07370 03911
[x]=[XVi2xd] = —|05911 03280 —0.7370 (E.3)
m 107370  -0.5911 0.3280

The generalized force vector Q(1) can be obtained:

03280 05911  0.7370)  Fycos wr
B(1)=[X]'F(1) = ——[07370 03280 -05911 |{ Fcoswr

Ymlosoll -07370 03280 Fcos wr
Qlﬂ
= { @y ) cos wt (E.4)
(2%
where
F R )
Qi = 155617:. Qs = 0"””?2’ Qw = 0.182]7: (E.5)

If the generalized coordinates or the modal participation factors for the three principal modes
are denoted as g,(1). 4,(1). and g,(r), the equations of motion can be expressed as

4(1) + Bwg, (1) + wig 1) = Q(1). 1=123 (E6)
The steady-state solution of Egs. (E.6) can be written as
q,(1) = gcos(wt — ¢), 1=1.2,3 (E7)
where
_ Qo 1
40 = w_l,z ) 12 (E.8)
w w
(-2} (2]
and
w
2(.;‘
¢, = tan~ ' { ———— (E.9)

By substituting the values given in Eqgs. (E.5) and (E.1) into Egs. (E.8) and (E.9), we obtain

>
4,0 = 0.57815 0{';_ é, = tan ' (~0.00544)
>
gy = 0.31429 °‘:'; . & =tan"'(~0.02988)
R
G = 0.92493%(@. ¢, = tan ' (0.33827) (E.10)

Finally the steady-state response can be found using Eq. (6.111).
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6.14 SELF-EXCITATION AND STABILITY ANALYSIS

In a number of damped vibratory systems. frichon leads to negative damping
instead of positive damping. This leads to the instability (or self-excited vibration)
of the system. In general. for an n degree of freedom system shown 1n Fig. 6.9. the
equations of motion will be a set of second order linear differential equations [as
given by Eqs. (6.108) or (6.117)]:

[m]¥+ [cJi+ (K] =F (6.120)

The method presented in Section 5.8 can be extended to study the stability of the
system governed by Eq. (6.120). Accordingly, we assume a solution of the form

(1) = Ce". j=12....n

or
(1) = Ce" (6.121)
where s is a complex number to be determined. C, is the amplitude of x, and
G
.G
C={.
C

"

The real part of s determines the damping and its imaginary part gives the natural
frequency of the system. The substitution of Eq. (6.121) into the free vibration
equations (obtained by setting F = 0in Eq. (6.120)) leads to
([m)s? + [c]s + [k])Ce" =0 (6.122)
For a nontrivial solution of C, the determinant of the coefficients of C, is set equal
to zero, which leads to the “characteristic equation,” similar to Eq. (6.57):
D(s) =|f{m]s? + [c]s + [k]|=0 (6.123)
The expansion of Eq. (6.123) leads to a polynomial in s of order m = 2n, which can
be expressed in the form:
D(sy=ags™ + a;s™ ' +ays™ 2+ -+ +a, s+a,=0 (6.124)
The stability or instability of the system depends on the roots of the polynomial
equation, D(s) = 0. Let the roots of Eq. (6.124) be denoted as
s,=b +iw, J=12... m (6.125)

m

X X3 X

N A D

A'AVA'A'AT A §
Fy— m F, 31 my F; ]j my

a @] [ O € @]
A\ N\ NN NN\ NN N TR IR

Figure 6.9
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If the real parts of all the roots b, are negative numbers, there will be decaying time
functions, e”’, in Eq. (6.121), and hence the solution (system) will be stable. On the
other hand, if one or more roots s, have a positive real part, then the soluuon of Eq.
(6.120) will contain one or more exponenllally increasing time functions e”, and
hence the solution (system) will be unstable. If there is a purely imaginary rool of
the form s, = iw, it will lead to an oscillatory solution e"'. which represents a
borderline case between stability and instability. If s, is a multiple root, the above
conclusion still holds unless it is a pure imaginary number as s, = 1w, In this case,
the solution contains functions of the type e’/ te'“’ lze’“" ..... which increase
with time. Thus the multiple roots with purely imaginary values indicate the
instability of the system. Thus, for a linear system governed by Eq. (6.120) to be
stable, it is necessary and sufficient that the roots of Eq. (6.124) should have
nonpositive real parts, and that, if any purely imaginary root exists, it should not
appear as a multiple root.

Since finding the roots of the polynomial equation (6.124) is a lengthy proce-
dure, a simplified procedure, known as Routh-Hurwitz stability criterion [6.13. 6.14],
can be used to investigate the stability of the system. In order to apply this
procedure, the following mth order determinant 7, is defined in terms of the
coefficients of the polynomial equation (6.124) as:

a, ) ay, as| a;, Ay
—-— 1 1

G G31 gy Qg Arm-2
_____ 1 1

0 a ay, ay, Qrm-3
__________ ] 1
1

T, = 0 ag 4y 44, Aym- 4 (6.126)
0 0 a a; - a4y,
am

Then the following subdeterminants, indicated by the dashed lines in Eq. (6.126),
are defined:

T, =a (6.127)
1 1
a
=" D (6.128)
ag  a,

a, a; as
T,=|ag a, a, (6.129)
0 a a,

In constructing these subdeterminants. all the coefficients a, with 1 > mori < 0
are to be replaced by zeros. According to the Routh-Hurwitz criterion. a necessary
and sufficient condition for the stability of the system is that all the coefficients a,,.

ay... .. a,, must be positive and also that all the determinants 7,. 7,... . T,, must be
positive.
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6.15 COMPUTER PROGRAMS

6.15.1 A Fortran program, in the form of subroutine POLCOF, is given for expanding a
Generating the determinantal equation to a polynomial form. Thus the equation
Characteristic
Polynomial from a4y o ‘I‘lu (13 (1] o g
the Matrix dy  dy o dy, N
i l{4]) - <[1}] = : - x| =0
a, a, - a, 00 - 1
15 expanded:
¢, X"+ " LI +ex+¢,=0

The arguments of the subroutine are as follows:

A = Array of dimension N X N. Contains the matrix [ 4]. Input data.
B.C = Arrays of dimension N X N each.

P.S = Arrays of dimension N each.

PCF = Array of dimension NP. Contains the polynomal coefficients in the

order ¢, ¢;..... ¢, .. Thus the coefficient of the highest order term
i1s stored as the last number. Output.

N = Order of the matrix [ 4]. Input data.
NP = Number of polynomial coefficients = N + 1. Input data.

A main program for calling subroutine POLCOF is written with the data:

-1 2 —-1
0 -1 2

N=3 NP=4,[4]=

2 -1 0]

The program listing and the output are given below.

¥
[ -
C PROGRAM 9

C MAIN PROGRAM WHICH CALLS POLCOF
C

[

C

FOLLOWING 4 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION A(3,3),B(3,3),C(3,3),P(3),5(3),PCF(4)
N=3
NP=4
DATA 4/2.0,-1.0,0.0,-1.0,2.0,-1.0,0.0,-1.0,2.0/
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C END OF PROBLEM-DEPENDENT DATA
CALL POLCOF (A,B,C,P,S,PCF,N,NP)

PRINT 10

10  FORMAT (//,49H POLYNOMIAL EXPANSION OF A DETERMINANTAL EQUATION)
PRINT 20

20 FORMAT (//,21H DATA: DETERMINANT A:,/)
DO 30 I=1,N

30  PRINT 40, (A(I,J),J=1,N)
40  FORMAT (4E15.6)
PRINT 50
50 FORMAT (/,35H RESULT: POLYNOMIAL COEFFICIENTS IN,/,
2 53H PCF(NP)*(X#*N)+PCF(N)* (X**N-1)+.. .+PCF(2)*X+PCF(1)=0,/)
PRINT 60, (PCF(I),I=1,NP)
60  FORMAT (4E15.6)
STOP
END

SUBROUTINE POLCOF

[sNoNeNoNe]

SUBROUTINE POLCOF (A,B,C,P,S,PCF,N,NP)
DIMENSION A(N,N),B(N,N),C(N,N),P(N),S(N),PCF(NP)
DO 10 I=1,N
P(1)=0.0
DO 10 J=1,N
10 B(I,J3)=0.0
DO 20 J=1,N
20 B(J,J)=1.0
DO 60 K=1,N
S(K)=0.0
DO 30 I=1,N
DO 30 J=1,N
30 C(1,J)=B(I,J)
CALL MATMUL (B,C,A,N,N,N)
DO 40 J=1,N
40 S(K)=S(K)+B(J,J)
P(1)=-8(1)
IF (K .EQ. 1) GO TO 60
KM=K-1
DO 50 I=1,KM
50  P(K)=P(K)-(1.0/FLOAT(K))*(S(I)*P(K-1))
P(K)=P(K) -S(K)/FLOAT(K)
60  CONTINUE
DO 70 I=1,N
70 PCF(I)=P(NP-1)
PCF(NP)=1.0
RETURN
END

SUBROUTINE MATMUL

[sEeNeoNoNe]
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C MATRIX MULTIPLICATION SUBROUTINE: A =B * C

C B(L,M) AND C(M,N) ARE INPUT MATRICES, A(L,N) IS OUTPUT MATRIX
SUBROUTINE MATMUL (A,B,C,L,M,N)
DIMENSION A(L,N),B(L,M),C(M,N)

DO 10 I=1,L
DO 10 J=1,N
A(1,3)=0.0
DO 10 K=1,M
10 A(I,J)=A(I,J)+B(I,K)*C(K,J)
RETURN
END

POLYNOMIAL EXPANSION OF A DETERMINANTAL EQUATION

DATA: DETERMINANT A:

0.200000E+01 -0.100000E+01 0.000000E+00
-0.100000E+01  0.200000E+01 -0.100000E+01
0.000000E+00 -0.100000E+01 0.200000E+01

RESULT: POLYNOMIAL COEFFICIENTS IN
PCF (NP)#* (X*#N)+PCF (N)*(X**N-1)+. . . +PCF(2)*X+PCF(1)=0

-0.400000E+01  0.100000E+02 -0.600000E+01  0.100000E+01

A Fortran program. in the form of subroutine CROOTS. is given to find the roots of
the polynomial equation

a, x"+ax" "+ - +a,x+a, =0

The program takes the polynomial coefficients a,. a,.. ... a,, a,., in complex form
as input data and gives the roots in the complex form. If the coefficients of the
polynomial are real numbers. they can always be given in complex form by
assuming the imaginary parts to be zero. The arguments of subroutine CROOTS are
as follows:

A = Complex array of dimension NPS containing the complex poly-
nomial coefficients in the order a,, a,..... a, .. Input data.

N = Order of the polynomial n. Input data.

NP1 = Number of polynomial coefficients = N + 1. Input data.

EPS = Convergence requirement. A small value such as 10~% is to be

used. Input data.
IMAX

Maximum number of iterations to be used in finding the roots. A
number in the range 50 to 100 is to be used. Input data.
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X = Complex array of dimension N containing the computed com-
plex roots. Output.

J = Number of roots actually computed. Qutput.

ID = A value of ID equal to zero indicates that the program could not

find all the roots. Output.
This program is used to compute the roots of the equation
' —6x?+1x-6=0

The main program for this problem, subroutine CROOTS, and the output of the
program are given below.

PROGRAM 10
MAIN PROGRAM FOR CALLING CROOTS

FOLLOWING 6 LINES CONTAIN PROBLEM-DEPENDENT DATA
A(NP1) DENOTES THE COEFFICIENT OF (X**N) IN THE POLYNOMIAL
COMPLEX A(4),X(3)
DATA N,NP1,IMAX,EPS/3,4,50,1.0E-06/
A(4)=(1.0,0.0)
A(3)=(-6.0,0.0)
A(2)=(11.0,0.0)
A(1)=(-6.0,0.0)
C END OF PROBLEM-DEPENDENT DATA
CALL CROOTS (A,N,NP1,EPS, IMAX,X,J,ID)
PRINT 10
10  FORMAT (//,28H COMPLEX ROOTS OF POLYNOMIAL,/)
DO 20 I=1,N
20 PRINT 30,1,X(I)
30  FORMAT ((I5,2E15.6))
STOP
END

SUBROUTINE CROOTS

[sNeoNeNoNe]

SUBROUTINE CROOTS (A,N,NP1,EPS,IMAX,X,J,ID)
COMPLEX A(NP1),X(N)
COMPLEX XOLD,XNEW,ZX0,ZX1,2X2,ALN,ALO,HN,HO,DELTA, ZG, 2R, DEN
2 ,AZ1,AZ2
DO 10 J=1,N
10 X(J)=(0.0,0.0)
J=0
IF (N .EQ. 1) GO TO 100
20 J=J+1
X0LD=(0.0,0.0)
ZX0=A(J)-A(J+1)+A(J+2)
ZX1=A(J)+A(J+1)+A(J+2)
ZX2=A(J)
ALN=(-0.5,0.0)



HN=(-1.0,0.0)
DO 70 K=1, IMAX
ALO=ALN
HO=HN
DELTA=(1.0,0.0)+ALN
2G=ZX0%(ALO#**2) - ZX1#* (DELTA**2) +ZX2* (ALO+DELTA)
ZR=CSQRT(ZG**2-4 .0%ZX2*DELTA*ALO* (ZX0*ALO- ZX1*DELTA+ZX2))
AZ3=REAL(ZR)
AZ4L=AIMAG(ZR)
AZ1=CMPLX (AZ3, -AZ4)
AZ2=2G*AZ1
222SS=REAL (AZ2)
IF (2Z2zSS .LT. 0.0) GO TO 30
DEN=2G+ZR
GO TO 40
30  DEN=ZG-ZR
40 ALN=-2.0%ZX2*DELTA
ALN=ALN/DEN
IF (REAL(ALN) .GT. 1.0E25 ,OR. AIMAG(ALN) .GT. 1.0E25) ALN=
2 (1.0,0.0)
50 HN=ALN*HO
XNEW=XOLD+HN
IF (CABS((XNEW-XOLD)/XNEW) .LT. EPS) GO TO 80
ZX0=2X1
ZX1=2X2
ZS=CABS(ZX2)
ZX2=A(NP1)
NJ1=N-J+1
DO 60 1I=1,NJ1
I=N-1I+1
60  ZX2=ZX2*XNEW+A(I)
IF (CABS(2ZX2/ZS) .LT. 10.0) GO TO 70
ALN=0. 5*ALN
GO TO 50
70 XOLD=XNEW
X(J)=XNEW
D=0
RETURN
80  X(J)=XNEW
JP1=J+1
NJ1=N-JP1+1
DO 90 II=1,NJ1
L=N-11+1
90  A(L)=A(L+1)*X(J)+A(L)
IF (JP1 .LT. N) GO TO 20
100 X(N)=-A(N)/A(NP1)
J=N
RETURN .
END

COMPLEX ROOI'S OF POLYNOMIAL

1 0.100000E+01 0.157652E-13
2 0.200000E+01 -0.315303E-13
3  0.300000E+01  0.157652E-13
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Subroutine MODAL is given for the modal analysis of a multidegree of freedom
system. The arguments of this subroutine are as follows:

XM
oM
T

zZ
X0
XDo

Y0.YDO

DELT
EV

EVT
XMX
XTMX

uyv
NSTEP

N
NVEC

w

it

]

Array of size N X N, in which the mass matrix [m]} is stored.
Input data.

Array of size NVEC, in which the natural frequencies are stored.
Input data.

Array of size NSTEP. in which the tumes ¢,. ¢,
stored.

Array of size NVEC, in which the modal damping ratios of
various modes are stored. Input data.

..... IngTrp aTE

Array of size N, in which the initial values ¢,(0). x,(0).....: ¥, (0)
are stored. Input data.

Array of size N. in which the initial values x,(0). X5(0),....) x,(0)
are stored. Input data.

Arrays of size NVEC.
Array of size NVEC X NSTEP.

Array of size N X NSTEP, in which the magnitudes of the forces
applied to the different masses at times 1. ¢,

..... {ysTpp aT€
stored. Input data.
Time step used for calculation, Ar = ¢, — ¢,. Input data.

Array of size N X NVEC, in which the normal modes are stored
columnwise. Input data.

Array of size NVEC X N = transpose of the matnix EV.

Array of size N X NVEC.

Array of size NVEC X NVEC.

Array of size N X NSTEP, in which the displacements of the

masses m,, m,,..., m,, at various time stations f,. f,,..., tysTep
are stored. Output.

Arrays of size NVEC X NSTEP.

Number of time stations or integration points {,.f,...., INSTEP

Input data.
Number of degrees of freedom of the system. Input data.
Number of modes used in the analysis. Input data.

To illustrate the use of the program, the solution of Example 6.9 is considered:

[m]Z + [c]f+ [k]¥ =/ with %(0) =%, and X(0) =X,



Data:
1 00 1.0000 1.0000 1.0000
[m]=[() 1 0. [EV]=[1.8()I9 0.4450 —].2468]
00 1 22470 ~0.8020  0.5544
n=3  NVEC=3 (=001 for 1=123
w, = 0.89008,  w,=1.4942, = 36050

0 0 Fﬂ\
x0={0}, XD():{o}‘ f={FRjcoswi. w=35  F=20
0 0 Al
NSTEP = 20, DELT = 0.1

The force array F is generated in the main program that calls subroutine MODAL.
The program listing and the output are given below.

PROGRAM 11
MAIN PROGRAM FOR CALLING THE SUBROUTINE MODAL

[sNoNoNeNeNel

DIMENSION XM(3,3),0M(3),2(3),X0(3),XD0(3),Y0(3),YD0O(3),EV(3,3),

2 EVT(3,3),XMX(3,3),XTMX(3,3),T(20),F(3,20),X(3,20),U(3,20),

3 V(3,20),Q(3,20)

DATA N,NVEC,NSTEP,DELT/3,3,20,0.1/

DATA XM/1.0,0.0,0.0,0.0,1.0,0,0,0.0,0,0,1.0/

OMF=3.5

DATA OM/0.89008,1.4942,3.6050/

DATA 2/0.01,0.01,0.01/

DATA X0/0.0,0.0,0.0/

DATA XD0/0.0,0.0,0.0/

DATA (EV(I,1),1=1,3)/1.0,1.8019,2.2470/

DATA (EV(I,2),1=1,3)/1.0,0.4450,-0.8020/

DATA (EV(I,3),1=1,3)/1.0,-1.2468,0.5544/

DO 5 I=1,NSTEP

TIME=REAL(1)*DELT
5 F(1,1)=2.0*COS(3.5*TIME)

DO 10 1=1,20

F(2,1)=F(1,1)
10 F(3,1)=F(1,1)

DO 20 I=1,NVEC

DO 20 J=1,N
20 EVT(I,3)=EV(J,1)

CALL MODAL (XM,0M,OMF,T,Z,X0,X%D0,Y0,YD0,Q,F,DELT,EV,EVT, XMX,

2 XTMX,X,U,V,NSTEP,N,NVEC)

PRINT 30
30  FORMAT (//,40H RESPONSE OF SYSTEM USING MODAL ANALYSIS,/)

DO 40 I=1,N
40 PRINT 50,1, (X(I,J),J=1,NSTEP)
50  FORMAT (/,11H COORDINATE,IS,/,(1X,5E14.6))

STOP

END
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SUBROUTINE MODAL

o000 0

SUBROUTINE MODAL (XM,OM,OMF,T,Z,X0,XDO,Y0,YD0,Q,F,DELT,EV,EVT,
2 XMX,XTMX,X,U,V,NSTEP,N,NVEC)
DIMENSION XM(N,N),OM(NVEC),T(NSTEP),Z(NVEC),X0(N),XDO(N),
2 YO(NVEC),YDO(NVEC),Q(NVEC,NSTEP),F(N,NSTEP) ,EV(N,NVEC),
3 EVT(NVEC,N),XMX(N,NVEC),XTMX(NVEC,NVEC) ,X(N,NSTEP) ,U(NVEC,
4  NSTEP),V(NVEC,NSTEP)
T(1)=DELT
DO 10 I=2,NSTEP
10 T(I)=T(I-1)+DELT
C NORMALIZATION OF MODAL MATRIX WITH RESPECT TO THE MASS MATRIX
CALL MATMUL (XMX,XM,EV,N,N,NVEC)
CALL MATMUL (XTMX,EVT,XMX,NVEC,N,NVEC)
DO 30 I=1,NVEC
DO 20 J=1,N
20 EV(J,I)=EV(J,I)/SQRT(XTMX(I,I))
30 CONTINUE
C CONVERTION OF INFORMATION TO NORMAL COORDINATES
DO 40 I=1,NVEC
Y0(1)=0.0
40 YDO(1)=0.0
DO 60 I=1,NVEC
DO 50 J=1,N
YO(I)=YO(I)+EV(J,1)*X0(J)
50 YDO(I)=YDO(I)+EV(J,I)*XDO(J)
60  CONTINUE
DO 70 I=1,NVEC
Do 70 J=1,N
70 EVT(I,J)=EV(J,I)
CALL MATMUL (Q,EVT,F,NVEC,N,NSTEP)
DO 100 I=1,NVEC
R=0MF/OM(I)
PP=YO0(I)
QQ=YDO(I)
Z1=z(1)
OMEG=0M (1)
OMD=0MEG*SQRT(1.0-ZI#*2)
DO 90 J=1,NSTEP
IF (J .EQ. 1) GO TO 80
PP=U(I,J-1)
QQ=V(I,J-1)
80 C1=EXP(-ZI*OMEG*DELT)
C2=C0OS(OMD*DELT)
C3=SIN(OMD*DELT)
C4=(QQ+OMEG*ZI*PP) /OMD
CS5=0MEG*Z1/0MD
C6=Q(1,J)/(OMEG#¥*2)
U(I,J)=C1#*(PP*C2+C3*C4)+C6*(1.0-C1*(C2+C3*CS5))
V(I,J)=0MD*C 1% (-PP*C3+C2*C4-CS*(PP*C2+C3*C4))+C6*OMD*C1#C3*
2 (1.0+C5**2)
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Solution of
Simulitaneous
Linear Equations
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90  CONTINUE
100 CONTINUE
C FINDING THE SOLUTION IN THE ORIGINAL COORDINATES
CALL MATMUL (X,EV,U,N,NVEC,NSTEP)
RETURN
END

RESPONSE OF SYSTEM USING MODAL ANALYSIS

COORDINATE 1
0.936322E-02 0.354378E-01 .731183E-01 .115538E+00 0.155010E+00
0.184085E+00 0.196572E+00 . 188401E+00 .158198E+00 0.107508E+00
0.406290E-01 -0.359245E-01 -0.114247E+00 -0.186060E+00 -0.243782E+00
-0.281509E+00 -0.295776E+00 -0.286009E+00 -0.254587E+00 -0.206525E+00

o o
(=]

COORDINATE 2 .
0.939528E-02 0.358739E-01 0.751277E-01 0.121321E+00 0.167711E+00
0.207370E+00 0.233936E+00 0.242311E+00 0.229239E+00 0.193704E+00
0.137094E+00 0.631125E-01 -0.225565E-01 -0.112803E+00 -0.1998 14E+00
-0.275895E+00 -0.334293E+00 -0.369942E+00 -0.380052E+00 -0.364457E+00

(==
(==}

COORDINATE 3
0.937892E-02 0.356481E-01 .740876E-01 .118353E+00 .161294E+00
0.195874E+00 0.216076E+00 0.217673E+00 .198772E+00 .160053E+00
0.104682E+00 0.379048E-01 -0.336272E-01 -0.102705E+00 -0.162484E+00
-0.207353E+00 -0.233644E+00 -0.240091E+00 -0.227975E+00 -0.200947E+00

[=N=]
oo
[= =)

Subroutine SIMUL is given for solving a system of N linear equations of the form
[A}X = B. The following arguments are used:

A = Array of size N X N. It is used to store the matrix [ 4] in the
beginning (Input) and contains the inverse of the matrix [ 4] upon
return from the subroutine SIMUL (Output).

B = Array of size N. It is used to store the vector B in the beginning
(Input) and contains the solution vector X upon return from
subroutine SIMUL (Output). ’

N = Number of equations to be solved. Input data.

IND = Zero if ony the inverse [4]~! is required and = any non-zero
integer if X is needed. Input data.

LA,S Arrays of size N each.

LB = Array of size N X 2.

The program listing and typical results are given below.
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PROGRAM 12

C
C
C
C MAIN PROGRAM WHICH CALLS SIMUL
c
C
C

FOLLOWING 4 LINES CONTAIN PROBLEM-DEPEMDENT DATA

C END

100

200

300

400

500

DIMENSION A(3,3),B(3),LA(3),LB(3,2),5(3)

DATA 4/1.0,2.0,3.0,10.0,0.0,3.0,1.0,1.0,2.0/

DATA B/7.0,0.0,14.0/

DATA N,IND/3,1/

OF PROBLEM-DEPENDENT DATA

PRINT 100 .

FORMAT (//,42H SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS)
PRINT 200, ((A(I,J),J=1,N),I=1,N)

FORMAT (//,2X,28H ORIGINAL COEFFICIENT MATRIX,//,3(E12.4,1X))
PRINT 300, (B(I),I=1,N)

FORMAT (//,2X,23H RIGHT HAND SIDE VECTOR,//,3(E12.4,1X))
CALL SIMUL (A,B,N,IND,LA,LB,S)

PRINT 400, ((A(I,J),J=1,N),I=1,N)

FORMAT" (//,2X,30H INVERSE OF COEFFICIENT MATRIX,//,3(E12.4,1X))
PRINT 500, (B(I),I=1,N)

FORMAT (//,2X,16H SOLUTION VECTOR,//,3(E12.4,1X))

STOP

END

OO0O0O0

SUBROUTINE SIMUL

100

130

140
150

160

SUBROUTINE SIMUL (A,B,N,IND,LA,LB,S)
DIMENSION A(N,N),B(N),LA(N),LB(N,2),S(N)
DO 100 I=1,N

LA(I)=0

DO 250 K=1,N

220.0

DO 150 I=1,N

IF (LACI) .EQ. 1) GO TO 150

DO 140 J=1,N

IF (LA(J)-1) 130,140,300

IF (ABS(Z) .GE. ABS(A(I,J))) GO TO 140
IA=1

IB=J

2=A(1,J)

CONTINUE

CONTINUE

LA(IB)=LA(IB)+1

IF (IA .EQ. IB) GO TO 190

DO 160 I=1,N

Z=A(IA,1)

A(IA,I)=A(IB,1)

A(IB,I)=Z

IF (IND .EQ. 0) GO TO 190

Z=B(IA)
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B(IA)=B(IB)
B(IB)=2Z

190 LB(K,1)=IA
LB(K,2)=IB
S(K)=A(IB,IB)
A(1B,1B)=1.0
DO 200 I=1,N

200 A(IB,I1)=A(IB,I)/S(K)
IF (IND .EQ. 0) GO TO 220
B(IB)=B(IB)/S(K)

220 DO 250 I=1,N
IF(I .EQ. IB) GO TO 250
2=A(1,1B)
A(I,1B)=0.0
DO 230 J=1,N

230 A(I,J)=A(I,J)-A(1B,J)*2Z
IF (IND .EQ. 0) GO TO 250
B(1)=B(1)-B(IB)*2Z

250 CONTINUE
DO 270 1=1,N
J=N-1+1
IF (LB(J,1) .EQ. LB(J,2)) GO TO 270
1A=LB(J,1)
1B=LB(J,2)
DO 260 K=1,N
=A(K,1A)
A(K,IA)=A(K,1B)
A(K,IB)=Z

260 CONTINUE

270 CONTINUE

300 RETURN
END

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

ORIGINAL COEFFICIENT MATRIX

0.1000E+01  0.1000E+02  0.1000E+01
0.2000E+01 0.0000E+00  0.1000E+01
0.3000E+01  0.3000E+01  0.2000E+01

RIGHT HAND SIDE VECTOR
0.7000E+01  0.0000E+00  0.1400E+02
INVERSE OF COEFFICIENT MATRIX
0.4286E+00  0.2429E+01 ~-0.1429E+01

0.1429E+00  0.1429E+00 -0.1429E+00
-0.8571E+00 -0.3857E+01  0.2857E+01

SOLUTION VECTOR
-0.1700E+02 -0.1000E+01  0.3400E+02
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REVIEW QUESTIONS

6.1.

6.2,

63.

6.4.
6.5.
6.6.

Define the flexibility and stiffness influence coefficients. What is the relation between
them?

Write the equations of motion of a multidegree of freedom system in matrix form using
(1) the flexibility matrix and (2) the stiffness matrix.

Express the potential and kinetic energy of an n degree of freedom system, using matrix
notation.

What is a generalized mass matrix?
Why is the mass matrix [m] always positive definite?
Is the stiffness matrix [k} always positive definite? Why?
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6.7.
6.3,
6.9.
6.10.
6.11.

6.12.

6.13.

6.14.

6.15.
6.16.
6.17.
6.18.
6.19.
6.20.

6.21.

6.22.

6.23.
6.24.

What is the difference between generalized coordinates and Cartesian coordinates?
State Lagrange’s equations.

What is an eigenvalue problem?

What is a mode shape? How is it computed?

How many distinct natural frequencies can exist for an »n degree of freedom system?
What is a dynamical matrix? What is its use?

How is the frequency equation derived for a multidegree of freedom system?

What is meant by the orthogonality of normal modes? What are orthonormal modal
vectors?

What is a basis in n-dimensional space?

What is the expansion theorem? What is its importance?
Explain the modal analysis procedure.

What is a rigid body mode? How is it determined?
What is a degenerate system?

How can we find the response of a multidegree of freedom system using the first few
modes only?

Define Rayleigh’s dissipation function.

Define these terms: proportional damping, modal damping ratio, and modal participa-
tion factor.

When do we get complex eigenvalues?

What is the reason for the occurrence of an irregular mode instead of a principal mode
of vibration?

PROBLEMS

The problem assignments are organized as follows:

Section

Problems covered Topic covered

6.1-6.9 6.3 Influence coefficients

6.10
6.11

6.4 Potential and kinetic energies
6.5 Generalized coordinates

6.12-6.16 6.6 Lagrange’s equations

6.17-
6.19-

6.18 6.8 Eigenvalue problem

6.34 6.9 Solution of the eigenvalue
problem

6.35-6.36 6.11 Unrestrained systems
6.37-6.41 6.12 Forced vibration
6.42-643 613  Viscously damped systems
6.44-6.50 6.15 Computer programs

6.51

- Project
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6.1.  Find the flexibility and stiffness influence coefficients of the torsional system shown in
Fig. 6.10. Also write the equations of motion of the system.

=y [

N — ] T —] T
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.| T N
N (G, (G)), r—L (G))s | i (GJ)s
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Compressor Turbine Generator
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Figure 6.10
A K ky k3 ks
m, N my MW ms
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Figure 6.11

6.2.  Find the flexibility and stiffness influence coefficients of the system shown in Fig. 6.11.
Also, derive the equations of motion of the system.
63. An airplane wing, Fig. 6.12(a), is modeled as a three degree of freedom lumped mass
system as shown in Fig. 6.12(b). Derive the flexibility matrix and the equations of

Figure 6.12
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6.4,

motion of the wing by assuming that all 4, = 4, (EI), = EI, I, = I, and the root is
fixed.

Determine the flexibility matrix of the uniform beam shown in Fig. 6.13. Disregard the
mass of the beam compared to the concentrated masses placed on the beam apg
assume all /, = 1.

k
[]

v,

7

f—t—ob—l,—p—1, 1— k; &

6.5.

6.6.

6.7
68
6.9

Figure 6.13 Figure 6.14

Derive the flexibility and stiffness matrices of the spring-mass system shown in Fig,
6.14, assuming that all the contacting surfaces are frictionless.

Drive the equations of motion for the tightly stretched string carrying three masses, as
shown in Fig. 6.15. Assume the ends of the string to be fixed.

ANNNVIUNRNVENNNNY

L h 2
x(0) 2m l 2%
my 2
3
k <
I ) 3
x(0) s
SEC N o B
3
Iy 3
Py i k3
AN\ N\ N\NNNANNNNNN\
Figure 6.15 Figure 6.16

Derive the equations of motion of the system shown in Fig. 6.16.
Find the stiffness influence coefficients for the spring-mass system shown in Fig. 6.2(a)-

Four identical springs, each having a stiffness k, are arranged symmetrically at 90°
from each other, as shown in Fig. 2.33. Find the influence coefficient of the junction
point in an arbitrary direction.
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6.10. Show that the stiffness matrix of the spring-mass system shown in Fig. 6.1 is a band

matrix along the diagonal.
6.11. For the four-story shear building shown in Fig. 6.17, there is no rotation of the

horizontal section at the level of floors. Assuming that the floors are rigid and the total

mass is concentrated at the levels of the floors, derive the equations of motion of the
building using (a) Newton’s second law of motion and (b) Lagrange’s equations.
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Figure 6.17 Figure 6.18

6.12. Derive the equations of motion of the system shown in Fig. 6.18 by using Lagrange’s
equations with x and @ as generalized coordinates.

6.13. Derive the equations of motion of the system shown in Fig. 5.9(a), using Lagrange’s
equations with (1) x; and x, as generalized coordinates and (2) x and @ as

generalized coordinates.
6.14. Derive the equations of motion of the system shown in Fig. 6.11, using Lagrange’s

equations.

6.15. Derive the equations of motion of the triple pendulum shown in Fig. 6.4, using
Lagrange’s equations.

6.16.* When an airplane undergoes symmetric vibrations, the fuselage can be idealized as a
concentrated central mass M, and the wings can be modeled as rigid bars carrying end
masses M, as shown in Fig. 6.19(b). The flexibility between the wings and the fuselage
can be represented by two torsional springs of stiffness k, each. (i) Derive the
equations of motion of the airplane, using Lagrange’s equations with x and 8 as
generalized coordinates. (ii) Find the natural frequencies and mode shapes of the

airplane. (iii) Find the torsional spring constant in order to have the natural frequency
of vibration, in torsional mode, greater than 2 Hz when M, = 1000 kg, M = 500 kg,

and /= 6 m.
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6.17.

6.18.
6.19.

6.20.

6.21.

6.22.*

6.23.

6.24.

(a)

Figure 6.19

Set up the eigenvalue problem of Example 6.4 in terms of the coordinates g, = x,,
g, = x; — x; and g3 = x; — X, and solve the resulting problem. Compare the results
obtained with those of Example 6.4 and draw conclusions.

Derive the frequency equation of the system shown in Fig. 6.11.

Find the natural frequencies and mode shapes of the system shown in Fig. 6.2 when
k, =k, ky =2k, ky =3k, m; = m, m, =2m, and m; = 3m. Plot the mode shapes.
Set up the matrix equation of motion and determine the three principal modes of
vibration for the system shown in Fig. 6.2 with k, = 3k, k, = ky = k, m; = 3m, and
m, = my = m. Check the orthogonality of the modes found.

Find the natural frequencies of the system shown in Fig. 6.4 with /;, = 20 cm, /, = 30
cm, /3 =40 cm, m = 1 kg, m, = 2 kg, and m, = 3 kg.

(a) Find the natural frequencies of the system shown in Fig. 6.13 with m, = m, = m;
=mand /, =1, = I, =1, = I/4 (b) Find the natural frequencies of the beam when
m =10 kg, / = 0.5 m, cross section is solid circular section with diameter 2.5 ¢m, and
the material is steel. (c) Consider using hollow circular, solid rectangular, or hollow
rectangular cross section for the beam to achieve the same natural frequencies as 1n
(b). Identify the cross section corresponding to the least weight of the beam.

The frequency equation of a three degree of freedom system is given by

A-5 -3 -2
- -3 A-6 -4/=0
-1 -2 A-6

Find the roots of this equation.

Determine the eigenvalues and eigenvectors of the system shown in Fig. 6.12, taking
ki=ky=ky=ks=kand m =my=my=m.
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6.25.

6.26.

6.27.

6.28.

629.

6.30.

631.

6.32.

6.33.

6.34.

Find the natural frequencies and mode shapes of the system shown in Fig. 6.12 for
ky=ky=ky=ky=k, my =2m, my, =3m, and m; = 2m-

Find the natural frequencies and principal modes of the triple pendulum shown in Fig,
6.4, assuming that /, =/, = /; =/ and m; = m, = my = m

Find the natural frequencies and mode shapes of the system considered in Problem 6.5
with my = m, my = 2m, my = m, ky = ky = k, and k; = 2k.

Show that the natural frequencies of the system shown in Fig. 6.2(a), with k, = 3k,
ky=ky=k, my=4m, m,=2m, and m; = m, are given by o, = OA()W.
w, = {k/m, and w;, = 1.34/k/m . Find the eigenvectors of the system.

Find the natural frequencies of the system considered in Problem 6.6 with m, = 2m,
my=m, my=3m,and ), =L, =L =1I,=1I

Find the natural frequencies and principal modes of the torsional system shown in
Fig. 611 for (GJ), =GJ, i=1,2,3,4, J,=Jp=Jy=Jo, and [, =, =, =1,
=1

The mass matrix [m] and the stiffness matrix [k} of a uniform bar are

100 1 -1 0

Al 2

[m] = B4 [0 2 0] and [k]=L)E[—1 2 -1
0 0 1 0 -1 1

where p is the density, A is the cross-sectional area, E is Young’s modulus, and / is
the length of the bar. Find the natural frequencies of the system by finding the roots of
the characteristic equation. Also find the principal modes.

The mass matrix of a vibrating system is given by

1 0 0
[m]=[0 2 0]

0 0 1

S

Find the [m]-orthonormal modal matrix of the system.
For the system shown in Fig. 6.20, (a) determine the characteristic polynomial

A(w?) = det |[[k] — w?[m]}, (b) plot A(w?) from w? = 0 to w® = 4.0 (using increments
Aw? = 0.2), and (c) find w?, w3, and w3.
(a) Two of the eigenvectors of a vibrating system are known to be
0.2754946 0.6916979
0.3994672 and 0.2974301
0.4490562 —0.3389320
Prove that these are orthogonal with respect to the mass matrix
1 00
[m]=}0 2 0
0 0 3

Find the remaining [m]-orthogonal eigenvector. (b) If the stiffness matrix of the

and the eigenvectors by



CHAPTER 6 Multidegree of Freedom Systems

AANSNSNRNASASRRNNNANNANY

| X (1)
my=20

AAAA
NAAALS
x-
)
=]

AAAAA—
VWW

Figure 6.20

system is given by

6 -4 0
-4 10 0
0 0 6

determine ail the natural frequencies of the system, using the eigenvectors of part (a).
6.35. Find the natural frequencies and mode shapes of the system shown in Fig. 6.7 with
m =m, my=2m, my=3m,and k, = k, = k.

6.36. Find the modal matrix for the semi-definite system shown in Fig. 6.21 for J, = J, = J;
=Jy k, = k,, and k,, = 2k,.

- ———t — — 4
kn . ko
15,65
Ji, 9, B
1,6,

Figure 6.21
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6.37.

6.38.

6.39.

6.40.

6.41.

Determine the amplitudes of motion of the three masses in Fig. 6.22 when a harmonic
force F(t) = Fysinwt is applied to the lower left mass with m =1 kg, k = 1000
N/m, F, = 5N and w = 10 rad/sec using the mode superposition method.
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Figure 6.22

(a) Determine the natural frequencies and mode shapes of the torsional system shown
in Fig. 6.5 for ky = k,; = k3 =k, and J, = J, = J; = J,. (b) If a torque M,,(¢) =
M, cos wt, with M,, = 500 N-m and w = 100 rad/sec, acts on the generator (J;), find
the amplitude of each component. Assume M, = M,, = 0, k, = 100 N-m/rad, and
Jo =1 kg-m?,

Using the results of Problems 6.2 and 6.24, determine the modal matrix { X] of the
system shown in Fig, 6.11 and derive the uncoupled equations of motion.

An approximate solution of a multidegree of freedom system can be obtained using
the mode acceleration method. According to this method, the equations of motion of
an undamped system, for example, are expressed as

7 =[k]"(F=[m]%) (E1)
and X is approximated using the first r modes (r < n) as
-0x17 (E2)
nx1 axr rx1
Since ({k] — w[m]) X' = 0, Eq. (E.1) can be written as
-1z A T
HORIU R IOREDY R 10 (E3)

=1 "
Find the approximate response of the system described in Example 6.9 (without
damping), using the mode acceleration method with r = 1.
Determine the response of the system in Problem 6.19 to the initial conditions
x1(0) =1, %(0) =0, x5(0) =2, %,(0) =1, x3(0) =1, and *;(0) = — 1. Assume
k/m=1.
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6.42. Find the steady state response of the system shown in Fig. 6.9 with k, = k, = k; =k,
=100N/m,c, =¢; = ¢3=¢, = 1N-s/m, m; = m, = my =1kg, F(¢t) = F,cos wt,
F,=10 N and w =1 rad/sec. Assume that the spring k, and the damper ¢, are
connected to a rigid wall at the right end. Use the mechanical impedance method
described in Section 5.6 for solution.

6.43. An airplane wing, Fig. 6.23(a), is modeled as a twelve degree of freedom lumped mass
system as shown in Fig. 6.23(b). The first three natural frequencies and mode shapes,
obtained experimentally, are given below.

Degree of Freedom

dode
hape 0 1 2 3 4 5 6 7 8 9 10 1 12

Fy 00 0126 0249 0369 0483 0589 068 0772 0.846 0.907 0.953 0.984 1.000
K> 00 —-0.375 —0697 -0.922 -1017 —0.99 -0.785 —0491 —0.127 0254 0.599 0.860 1.000

K> 00 0618 1000 1000 0618 0000 —0.618 —1.000 —1.000 —0.618 0.000 0.618 1.000
]

w, = 225 rad/sec, w, = 660 rad/sec, and w, = 1100 rad/sec. If the fuselage of the
airplane is subjected to a known vertical motion x4(¢), derive the uncoupled equations
for determining the dynamic response of the wing by approximating it as a linear

XL X2 Xy Xy Xs Xo X7 Xg Xy Vop Yo Ae

Figure 6.23
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6.44.

6.45.

6.46.
6.47.
6.48.

6.49.

combination of the first three normal modes. Hint: The equation of motion of the
airplane wing can be written, similar to Eq. (3.64), as

[m]Z + [e](% - %0 ) + [K](Z - xo) =0
or
[m]Z + [c] R + [k]R = —xo[m]d,

where i, = {1,0,0,...,0}7 is a unit vector.

Write a computer program for finding the eigenvectors using the known eigenvalues in
Eq. (6.55). Find the mode shapes of Problem 6.25 using this program.

Write a computer program for generating the {m]-orthonormal modal matrix { X]. The
program should accept the number of degrees of freedom, the normal modes, and the
mass matrix as input. Solve Problem 6.32 using this program.

Generate the characteristic polynomial of Problem 6.23 using subroutine POLCOF.
Find the characteristic values of Problem 6.46 using subroutine CROOTS.

Write a computer program for finding the natural frequencies and mode shapes of a
multidegree of freedom system when the mass and stiffness matrices are known, using
the following steps:

1. Find the dynamical matrix using subroutines DECOMP and MATMUL.
2. Find the characteristic polynomial using subroutine POLCOF.

3. Find the natural frequencies using subroutine CROOTS.

4. Find the mode shapes using subroutine SIMUL.

Solve Problem 6.21 using this program.

The equations of motion of an undamped system in SI units are given by

2 0 0. 16 -8 0 10sin we
0 2 O|x+|-8 16 -8|x={0
0 0 2 0 -8 16 0

Find the steady-state response of the system when w = 5 rad/s, using subroutine
MODAL.
Find the response of the system in Problem 6.49 by varying w between 1 and 10

rad/sec in increments of 1 rad/sec. Plot the graphs showing the variations of
magnitudes of the first peaks of x,(¢), i = 1,2,3 with respect to .

Project:

6.51.

A heavy machine tool mounted on the first floor of a building, Fig. 6.24(a), has been
modeled as a three degree of freedom system as indicated in Fig. 6.24(b). (i) l?or
k, = 5000 Ib/in., k, = 500 Ib/in., ky = 2000 Ib/in., ¢, = ¢, = ¢; = 10 Ib-sec/in.,
m, = 50 Ib-sec?/in, m, = 10 Ib-sec’/in., m, =2 Ib-sec’/in, and F(1) =
1000 cos60¢ b, find the steady state vibration of the system using the mechanical
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Figure 6.24

impedance method described in Section 56 (i) If the maximum response of, the
machine tool head (x;) has to be reduced by 25%. how should the suffness of the
mounting (4 ,) be changed? (iii) Is there any better way of achieving the goal stated in
(i)? Gave the details.



CHAPTER 7

Determination of
Natural Frequencies
and Mode Shapes

John Witham Strutt, Lord Rayteigh (1842 - 1919), was an
English physicist who held the positions of professor of
expenmental physics at Cambndge University professor
of natural philosophy at the Royal Insttution in London,
president of the Royal Society. and chancellor of
Cambridge University His works 1n optics and acoustics
are well known. with Theory of Sound (1877) considered
s a standard reference even today The method of
omputing approximate natural frequencres of vibrating
odies using an energy approach has become known as
Rayleigh's method " (Courtesy Brown Brothers)

7.1 INTRODUCTION

In the preceding chapter. the natural frequencies (eigenvalues) and the natural
modes (eigenvectors) of a multidegree of freedom system were found by setting the
characteristic determinant equal to zero. Although this is an exact method. the
expansion of the characteristic determinant and the solution of the resulting nth
degree polynomial equation to obtain the natural frequencies can become quite
tedious for large values of n. Several analytical and numerical methods have been
developed to compute the natural frequencies and mode shapes of multidegree of
freedom systems. In this chapter, we shall consider Dunkerley’s formula, Rayleigh’s
method. Holzer's method, the matrix iteration method. and Jacobi's method.
Dunkerley’s formula and Rayleigh’s method are useful for estimating the fundamen-
tal natural frequency only. Holzer’s method is essentially a tabular method that can
be used to find partial or full solutions to eigenvalue problems. The matrix iteration
method finds one natural frequency at a time. usually starting from the lowest value.
The method can thus be terminated after finding the required number of natural
frequencies and mode shapes. When all the natural frequencies and mode shapes are
required. Jacobi’s method can be used: 1t finds all the eigenvalues and eigenvectors
simultaneously.
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Dunkerley's formula gives the approximate value of the fundamental frequency of a
composite system in terms of the natural frequencies of its component parts. It is
derived by making use of the fact that the higher natural frequencies of most
vibratory systems are large compared to their fundamental frequencies {7.1~7.3]. To
derive Dunkerley's formula. consider a general n degree of freedom system whose
eigenvalues can be determined by solving the frequency equation, Eq. (6.57):

|-k + W*[m]] =0

=51+ [allm]| = 0 (7.1)

For a lumped mass system with a diagonal mass matrix. Eq. (7.1) becomes

10 --- 0 ay ap o a,ffm0 - 0
1 . a, a Sy, 0Om, --- 0
- 01 0 | 02 Ta : ) -0
Wil : :
60 --- 1 Ay Gy 0 4y, Jl 00 - om,
that is,
1
-3 taym apm; a,,m,
w
a,m { 1 +a m)
nm ) 2M, a,,m
o 2 20"y -0 (7.2)
1
a,m a,2m; ] +a,m,
The expansion of Eq. (7.2) leads to f
] - 1 n-1
(‘w_z) = (aym +apm, + - +“m.’".1)("ﬁ)
+(ayagpmm, + ajaymmy + - +a, . \a,,m, \m, i
L yn2
Tapax;mmy — - — au-|.,.anAy.—|'",.-|'"..)(E) - =0 (7'3)

This is a polynomial equation of nth degree in (1/w?). Let the roots of Eq. (7.3) be
denoted as 1 /w}, 1/w2.. ... 1/w?. Thus

r_ 1

(02 wz

o\ )
o Wi flw? Wl .

_(1 ! 1 1 Ly ! .
=\ - :2..9.54..4.4—} ;) - = (7.4,




1 ] 1
—z+—‘+“'+”‘;=“1|m1+”:2"’2+"'+” m

3 3 anMa
wi w3 w,
In most cases. the higher frequencies w,. wy..... w, are considerably larger 1
fundamental frequency w,. and so
1 1
5 & — i=2.3..... n
@, @i

Thus. Eq. (7.5) can be approximately written as

1
5 =aym + apmy + - +a,,m,
@y
This equation is known as Dunkerley's formula. The fundamental frequen
by Eq. (7.6) will always be smaller than the exact value. In some cases, i
more convenient to rewrite Eq. (7.6) as
1 1 1 1

=5t 5+ -+
Wy Wy, W w

n nn

where ,, = (1/a,m,)"/? = (k,,/m,)'/? denotes the natural frequency of
degree of freedom system consisting of mass m, and spring of stiffi
+=1.2,..., n. The use of Dunkerley’s formula for finding the lowest freq
elastic systems is presented in Refs. [7.4,7.5).

LE 7.1 Fundamental Frequency of a Beam . % ~¥

Estimate the fundamental natural frequency of a simply supported beam carry
wdentical equally spaced masses, as shown in Fig 71

Giwen: Simply supported beam with equal masses as shown in Fig. 7.1
| Find: Fundamemtal natural frequency.
) Approach: Dunkerley’s formula.

Solution. The flexibility influence coefficients (see Example 6.2) required for the a
of Dunkerley’s formula are given by

_ r _ir
MTINTIEET T RE

&\é\v | ENTI SR T < @

( L L1 (R
i (b e S S et |
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Fiqure 7.1



Equation (7.6) thus gives, using m; = ni, = ny, = m,

(3 1 3M
)El

w, = 4.75]75‘[ L"
ml

This value can be compared with the exact value of the fundamental frequency

4,934‘/ £
m|

mi’
= 0.04427—E-I-

.3 RAYLEIGH'S METHOD

Rayleigh’s method was presented in Section 2.5 to find the natural frequencies o
single degree of freedom systems. The method can be extended to find the approxi
mate value of the fundamental natural frequency of a discrete system.* The method
is based on Rayleigh’s principle, which can be stated as follows [7.6]:

The frequency of wibration of u conservative system vibrating about an equibibrium
posttion has a stationary value i the neighborhood of a natural node. This stationary
value, i fact, is a rmummum talue in the neighborhood of the fundamental natural
mode.

We shall now derive an expression for the approximate value of the first natural
frequency of a multidegree of freedom system according to Rayleigh's method.

The kinetic and potential energies of an n degree of freedom discrete system
can be expressed as

m)% (7.8)

V= ox"[k]% (79)

To find the natural frequencies. we assume harmonic motion to be

%= Xcos wt (7.10)

where X denotes the vector of amplitudes (mode shape) and w represents the

natural frequency of vibration. If the system is conservative. the maximum kinetic

energy is equal to the maximum potential energy:
Tou = V.

max max

(711)

* Rayleigh's method for continuous systems is presenled in Seclion 8 7
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droperties of
Rayleigh’s
Quotient

By substituting Eq. (7.10) into Egs. (7.8) and (7.9). we find

orp 1o

Toax = in[m]Xw' (7
1. _

Vo = 3471617 @

By equating T, and V.. we obtain*
. XT[k]X
w = (4] = (7
X r[m] X

The right-hand side of Eq. (7.14) is known as Rayleigh’s quotient and is denote
R(X).

As stated earlier. R( X)has a stationary value when the arbitrary vector Xisin
neighborhood of any eigenvector X', To prove this, we express the arbitrary ve
X in terms of the normal modes of the system, X", as

X=XV 4 e, X 4 0, X 4 .. (7
Then
XT[k]X = cff“"[k])?‘” + C%fm’[k])}'m + CJZ)?'(J)'[k]f(SI +-- (7
and
XT[m) X = RO [m] £ + R [m] K2 + RO [m] X9 + - (0

as the cross terms of the form c,c,i""[k])?"’ and c,c, X" [m] X0 i # . are
by the orthogonality property. Using Eqs. (7.16) and (7.17) and the relation

RO (K] X0 = 2B [ m] X0 (1
the Rayleigh’s quotient of Eq. (7.14) can be expressed as

A XN [m] XD + 22 XD [m] XD + .-

w? = R( )?) = = = p— = (7
XM m] XM + XD [m] XD+ .-
If the normal modes are normalized, this equation becomes
wZ=R(X-)=(‘,2wf+C§w§+~~ (7

drcie

If X differs little from the eigenvector X", the coefficient ¢, will be much l¢

* Equation (7.14) can also be oblained from ihe relation [A]X = w’[m]X Premuliplyn
equation by X7 and solving the resulting equation gives Eq (7.14)
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7.3.2
Computation of
the Fundamental
Natural
Frequency
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than the remaining coefficients ¢, (+ # r) and Eq. (7.20) can be written as

¢ 2
Gt T (%)
e=1.2.
R(i)=f—;*L—TT (7.21)
a+va T (%)
r=1.2. 4

r#E

Since |c,/c,| = ¢, < | where ¢, 15 a small number for all ; # r. Eq. (7.21) gives
R(X) = {1 + 0(2)) (7.22)

where O(¢e?) represents an expression in & of the second order or higher. Equation
(7.22) indicates that if the arbitrary vector X differs from the elgenvecmr X by a
small quantity of the first order. R( X) differs from the eigenvalue w? by a smull
quantity of the second order. This means that Rayleigh’s quotient has a stationary
value in the neighborhood of an eigenvector.

The stationary value is actually a minimum value in the neighborhood of the
fundamental mode, X*. To see this. let r = 1 in Eq. (7.21) and write

R(X)

0
£
+
™
o
£
Y
I
e
£
™
-
Y

1=2.3. 1=2.3.
=oi+ L (0] - of)e (123
=23

Since, in general, w,z > w} fori=2,3,..., Eq. (7.23) leads to
‘ R(X) 2 w? (7.24)

which shows that Rayleigh’s quotient is never lower than the first eigenvalue. By
proceeding in a similar manner. we Can show that

R(X) < w? (7.25)

which means that Rayleigh’s quotient is never higher than the highest eigenvalue.
Thus Rayleigh’s quotient provides an upper bound for w? and a lower bound for w,.

Equation (7.14) can be used to find an approximate value of the first natural
frequency (w,) of the system. For this, we select a trial vector Xto represent the
first natural mode X and subsmule it on the right-hand side of Eq. (7.14). This
yields the approximate value of w, Because Rayleigh’s quotient is stationary.
remarkably good estimates of w«j can be obtained even if the tnal vector X deviates
greatly from the true natural mode X*. Obviously. the estimated value of the
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fundamental frequency_«.:l 1s more accurate if the trial vector ( X) chosen resembles
the true natural mode X'V closely. Rayleigh’s method is compared with Dunkerley's
and other methods in Refs. [7.7-7.9].

7.2

Fundamental Frequency of a 3 Degree-of-Freedom System

Estimate the fundamental frequency of vibration of the swstem shown in Fig 72, Assume
that my = my = m, =m, k, =k, =k, =k, and the mode shape 1»

-4

Guen: A three degree of freedom <ystem given in Fig. 7.2 with m; =m, = m, = m.

_ 1
k) = k, = ky = k, and mode <hape X = {2}
3

Find. Fundamental frequency of vibration.

Approach: Rayleigh’s quotient

Y B

[— — m
()
ks
m l
R O] l

Figure 7.2
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Solution. The suffness and mass matrices of the system are:

-1 0
[k} = k| -1 2 -1 (LN
0 -1 1
1 0 O
[m] = m[O 1 0:\ (I 3)‘
0 0 1

By substituting the assumed mode shape in the cxpression for Ravleigh™s quotient. we obtaig

[ 2 1 ]‘I
o2 Nkl -1 2 -1 z}
¥k X 0 -1 I3 i

T
o o 1]t |

-o0nak (3
m '

k
w, = 0.4629)/ - (1 4)

This value is 4.0225% larger than the exact value of 04450y/k/m . The cxact fundamuna‘
mode shape (see Example 6.4) in this case is i

=
>
I
€.
|
!
]

. { 1 00001
Xt = {18019 (£5)

22470/
7.3.3 Although the procedure outlined above is applicable to all discrete systems. &
Fundamenta! simpler equation can be derived for the fundamental frequency of the la(era}
Frequency of vibration of a beam or a shaft carrying several masses such as pulleys. gears. o

Beams and Shafts fiywheels. In these cases. the static defiection curve 1s used as an approximation oﬂ
the dynamic defiection curve.

Consider a shaft carrying several masses, as shown in Fig. 7.3. The shaft s
assumed to have negligible mass. The potential energy of the system is the s(ra|r1
energy of the deflected shaft, which is equal to the work done by the static loads,
Thus

1 1
Vi = j(mlgwI + omagw, + o) (7.26).

where m,g is the static load due to the mass m,. and w, is the total static defiection.
of mass m, due to all the masses. For harmonic oscillation (free vibration). the
r maximum kinetic energy due to the masses is

2

w” 2 )
Toax = T(m,w; +maws + ) (727)

max
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and T,

where w is the frequency of oscillation. Equating V, e We obtain

X

1,2
w={g(mlwl+m2w2+ )} (7.28

(mwi + mwi+ )

Fundamental Frequency of a Shatt with Rotors

Estimate the fundamental frequency of lateral vibraton of a shaft carrying three rotor
(masses) as shown in Fig. 7.3 with m; = 20 kg, m, = 50 kg, m, = 40kg. /, =1m. }, =3n
!y =4 m, and !, =2 m. The shaft is made of steel with solid circular cross section ¢
diameter 10 cm.

Guwen: Simply supported shalt carrying three masses as shown in Fig. 73. m, = 20 k¢
my =50 kg, mi=40 kg, h=1m, L=3m L=4m I, =2m, dameter of shal
(d) =10 cm, and E = 207 x 10° N/m’,

Find: Fundamental frequency of lateral vibration.

Approach: Eq. (728) along with the static deflection curve for beams.

Solution. From strength of materials, the deflection of the beam shown in Fig 74 due to
static load P [7.10] is given by

Pbx 2 a .
o] TERESA O (E1)
Y _Pal-x) L, E2
——(1-(657{-)-[«'+x'*2lx]1 agxg! (E2)

Deflection due 10 1the weight of m;: At the location of mass m, (with x = 1 m. b = 9 m. anc
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L
—

i |

L | |

Figure 7.4

= 10min Eq (E.1)):

, (20 x 9.81)(9)(1) 52974
w,=——&m—lﬁ)~*-(100—ﬂl*l)~v£,l (E 3)

Al the location of m, (with ¢ =1 m, x =4 m,and I = 10 m in Eq. (E2)):

20X 98O (), 16 - 210)(4)) - BEE (4

’ =

"= T TTTGEN0)
At the location of m, (with ¢ =1 m. » = 8 m. and ! = 10 m in Eq. (E2)):
L (20 x 9.81)(1)(2) _ 6213
WS TR0 {1+ 64 - 2000(8)] = =7~ (E5)

Deflecnion due 10 1he weight of m,: At the location of m, (with x =1m, b=6m, and /=
10 m in Eq. (E1)):
L _ (50 x 9.81)(6)(1) 3090.15

wy 6EI(10) (100 - 36 - 1) = 3] (E6)
At the location of m, (with x =4 m, b= 6m, and ! = 10 m in Eq. (E.1)):
L, _ (50 x 9.81)(6)(4) 9417.6 .
wy = 6E1(10) (100 - 36 — 16) = - (E7)
At the locanon of m; (with ¢ =4 m, x = 8 m, and 1 = 10 m in Eq. (E.2)):
(50 x 9.81)(4)(2) _ 52320
V= GEI(10) [16+64—2(10)(x)]——57—— (E 8)

Defleciion due 10 the weight of m,: At the location of m, (with x=1m. b=2 m, and /
=10 m in Eq. (E.1)):

40 x 9.81)(2 2,
m = ( );El(ll)()() XD (100 -4 - 1) - 122‘16 (E.9)

At the location of m, (with x =4 m, b =2m, and ! = 10 mn Eq. (E.1)):
(40 x 9.81)(2)(4) 4185.6
=2 L ASRY —4-16) = —
GEI(10) (100 - 4 ) 3] (E.10)
At the location of m, (with \ = 8 m, b = 2 m. and ! = 10 mn Eq. (E.1)):

(40 x 9.81)(2)(8) gy _ 3348.48
= ) (0 dm e =T (E.11)

Wy

e

wy
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The total deflections of the masses my, m,. and m, arc

. 4R62.49
W, = WI’ + W!” +w, = .__l‘:,
.. 1483926
I\': = M': + W: + W-_, = -- I‘.’I
S 920178
W= W " = s

Substituting into Eq. (7.28). we tind the fundamental natural frequency

For the shalt,
Eq. (E 12) gives

B { 9.81(20 x 4862.49 + SO X 14839.26 + 40 X 9201.78) KI
20 x (4862.49)° + SO x (14839.26) + 40 x (9201.78)°

[
} = 6.5591 x 10

(

" =207 x 10" N/or' and 1 = #(01)*/64 = 490875 x 10 * m* and

w = 0.66117 rad/scc

4 HOLZER'S METHOD

Holzer’s method is essentially a trial-and-error scheme to find the natural frec
cies of undamped. damped. semi-definite, fixed. or branched vibrating sy
involving linear and angular displacements [7.11.7.12]. The method can als
programmed for computer applications. A trial frequency of the system is
assumed. and a solution is found when the assumed frequency satisfies the
straints of the system. This generally requires several trials. Depending on the
frequency used. the fundamental as well as the higher frequencies of the systen
be determined. The method also gives the mode shapes.

A Consider the undamped torsional semi-definite system shown in Fig. 7.5.
rsional equations of motion of the discs can be derived as follows:
stems .
’ 1+ ka(9, - 8,) =0 (
Sy + ke, (8, - 6) + k,,(8, - 8,) =0 (
by + k,,(0, - 8,) =0 (

Shaft ¢

Figure 7.5

Shaft 2
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Since the motion is harmonic in a natural mode of vibration. we assume that
6, = © cos(wt + ¢) in Egs. (7.29) to (7.31) and obtain

WO, =k, (0, - ,) (7.32)4
@0, = ky(0; - 8,) + k,,(O, - ©;) (7.33)!
W0, = k(0 - ©,) (7.34)'

Summing these equations gives
1
Y WO, =0 (7‘35)}
=1
Equation (7.35) states that the sum of the inertia torques of the semi-definite system’
must be zero. This equation can be treated as another form of the frequency‘
equation, and the tnal frequency must sansfy this requirement.
In Holzer's method. a trial frequency w is assumed. and ©), is arbitrarily chosenj
as unity. Next, @, is computed from Eq. (7.32). and then 6, is found from Eq.
(7.33). Thus we obtain

0,=1 (7.36)
0,=6, - %‘6' (7‘37)3
n
wZ
0,= 6, - 1-(48, +/9,) (7 38)

These values are substituted in Eq. (7.35) to verify whether the constraint 1s
satisfied. If Eq. (7.35) is not satisfied. a new trial value of w 1s assumed and th
process repeated. Equations (7.35), (7.37). and (7.38) can be generalized for an n
disc system as follows:

Y w0, =0 (7.39)

=1 ;

0,=6,_,- 17— (219‘) i=23.... n (7.40)
’ T \A=1

Thus the method uses Egs. (7.39) and (7.40) repeatedly for different trial frequen-’
cies. If the assumed trial frequency is not a natural frequency of the system, Eq.
(7.39) is not satisfied. The resultant torque in Eq. (7.39) represents a torque applied
at the last disc. This torque M, is then plotted for the chosen w. When the
calculation is repeated with other values of w, the resulting graph appears as shown;
in Fig. 7.6. From this graph. the natural frequencies of the system can be identified,
as the values of w at which M, = 0. The amplitudes ©, (: = 1.2...., n) correspond-
ing to the natural frequencies are the mode shapes of the system.

Holzer's method can also be applied to systems with fixed ends. At a fixed end
the amplitude of vibration must be zero. In this case. the natural frequencies can b
found by plotting the resulting amplitude (instead of the resultant torque) against!
the assumed frequencies. For a system with one end free and the other end fixed,
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M, =M.

019 x t07

T

wy =075

o = 1224.7

-063 x 1ty

T

Figure 7.6

Eq. (7.40) can be used for checking the amplitude at the fixed end. An improvement
of Holzer’s method was presented in Refs. {7.13.7.14].

Natural-Frequencies of. a Torsional System

DT T
A 8,

e

The arrangement of the compressor, turbine, and generator 1n a thermal power plant 1s showr
in Fig. 7.7. Find the nawral frequencies and mode shapes of the system.

Gwen: Compressor-turbine-generator arrangement shown in Fig. 7.7.
Find: Nawral frequencies and mode shapes

Approach: Holzer's method.

Suffness, Suffness.
k,y = 4 MN-m/rad ki» = 2 MN-m/rud
]i:]]
—
Compressor, Turbine Generator _
(J, = R kgm) (J: = 6 hg-m) (J: = 4 kg-m’)

Figure 7.7



meters of the

m Quantity 1 2 3 .o 71 7
© 0 10 20 700 710
w? 0 100 400 490000 504100
on 1:
-8 8, 10 10 1.0 1.0 1.0
=4 x 10° M, = w8, 0 800 3200 0.392E7 0403E7
n 2
M,
=6 8,=1-" 1.0 09998 09992 0.0200 -0.0082
"
=2x10° M, = M, + w8, 0 1400 5598 0.398E7 0.401E7
PER
M,
[ 4 6,=86,- 10 09991 09964 —-1.96%0 -2.0120
12
Eo My =M, + 186, 0 1800 7192 0.119E6 - 0.494ES

Solution. This system represents an unrestrained or [ree-free torsional system Table 71
shows 1ts parameters and the sequence of computations. The calculations for the tnal
frequencies w = 0. 10, 20, 700, and 710 are shown in this table. The quantity M,, denotes the'
torque to the right of Station 3 (generator) which must be zero at the natural frequencies.
Figure 7§ shows the graph of M,; versus w. Closely spaced trial values of w arc used in the
vicinity of M,; = 0 10 obtain accurate values of the first two flexible mode shapes. shown in
Fig 7.8. Note that the value w = 0 corresponds to the rigid body rotation.

‘o w, = 707.5
17 S 0.99
N4

\ \\\\ /
0 M\ b s
\ —0 001N

\
fl,(?— / \\\—LO—
/N

wy= 247> ~
—2.0¥ ~2.0%

Compressor Turbine Generator

Figure 7.8
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pring-Mass
ystems

|

R e

Figure 7.9

Although Holzer’s method has been extensively apphed to torsional systems. the

procedure is equally apphicable to the vibration analysis of spring-mass systems. The
equations of motion of a spring-mass system (see Fig. 7.9) can be expressed us

m ¥ + k(x, - x,) =0 (7.41)

My +k(xs—0) + ky(x;—xy) =0 (7.42)

For harmonic motion. x,(1) = X, cos wt. where X, is the amplitude of mass m,. and
Eqs. (7.41) and (7.42) can be rewritten as

w"mIXl =k(X - X)) (7.43)

Wiy Xy = k(Xy = X))+ A Xy = X)) = —wlm X+ k(X - X)) (7.44)

The procedure of Holzer's method starts with a trial frequency « and the amplitude

of mass m, as X, = 1. Equations (7.43) and (7.44) can then be used to obtain the
amplitudes of the masses m,. m,..... m,:

P
“my X,
X, = X, - S0 (7.45)
) 1

2
X, =X, - %(m,X,*»mzx\’:) (7.46)

2

wz /»l”‘

X=X - X {Zm‘/\")‘ i=2.3..... n (7.47)

-\ T

As in the case of torsional systems. the resultant force applied to the last (nth) mass
can be computed as follows:

”
F=Y w'm,X, (7.48)
)=
The calculations are repeated with several other trial frequencies w. The natural
frequencies are identified as those values of w that give £ = 0 for a free-free system.
For this, it is convenient to plot a graph between F and «. using the same
procedure for spring-mass systems as for torsional systems.

.5 MATRIX ITERATION METHOD

The matrix iteration method assumes that the natural frequencies are distinct and
well separated such that w, < w; < --+ < w,. The iteration is started by selecting 2
trial vector X,. which is then premultiphed by the dynamical matnix [D]. The
resulting column vector is then normahzed. usually by making one of 1ts compo-



nents to unity, The normalized column vector is premultiphed by [D] 1o obtan a
third column vector, which is normalized in the same way as before and becomes
still another trial column vector. The process is repeated unul the successive
normalized column vectors converge to a common vector: the fundamental eigen-
vector. The normalizing factor gives the largest value of A = 1/w?—that is. the
smallest or the fundamental natural frequency [7.15). The convergence of the
process can be explained as follows. i

According to the expansion theorem. any arbitrary n-dimensional vector X, can
be expressed as a linear combination of the n orthogonal eigenvectors of the system
X" =12..,n

,\7' - fu'fm*‘ (2/\7‘2) 4o +C"X'm) (7.49)

where ¢, ¢cy,...,c, are constants. In the iteration method. the trial vector /\7, is
selected arbitrarily and is therefore a known vector. The modal vectors X',
although unknown, are constant vectors because they depend upon the properties of
the system. The constants ¢, are unknown numbers to be determined. According to
the iteration method, we premultiply X, by the matrix [D]. In view of Eq, (7.49).,
this gives

[D]X, = ¢,[D)X™M 4 ¢,[ D] XD + -« +¢,[D] X" (7.50)
Now. according to Eq. (6.60). we have
[D]i"’=>\,[1]i"'=%im; i=1.2.....n (7.51) |
(%)

0

Substitution of Eq. (7.51) into Eq. (7.50) yields

[D]’fl =X, .
C — Py .
- _IZX(I)+ C_lzx(Z;+ +C—",X"" (7.52)
wi wy w,

where /\72 is the second trial vector. We now repeat the process and premultiply X,
by [D] to obtain, by Eqs. (7.49) and (6.60),

[D]’\;zle
¢ — Cy — [ :
= -w!l‘ Xm 4 «.jz‘ Xo 4 o4 __w4 X (7.53)

By repeating the process we obtain, after the 7 th iteration.

[D]X, = X,

) Cy = ¢, -
= w_zlrxll)+ w_zzfxll)+ +w_;'rxln) (7.54)
1 2 n

Since the natural frequencies are assumed to be w; < w, < -+ < w,. a sufficiently
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large value of r vields

1 1 1
L 7.55
wf’ > wf’ w,?’ ( )

Thus the first term on the right-hand side of Eq. (7.54) becomes the only significant
one. Hence we have

= Ly (1.56)

+1
- "’1

which means that the (r + Dith trial vector becomes identical to the fundamental
modal vector to within a multiplicative constant. Since

X

= 2(,_”X“’ (7.57)
the fundamental natural frequency w, can be found by taking the ratio of any two
corresponding components in the vectors X, and X,
b Xn r
wj=p=—. forany:=1.2,....n (7.58)

el

where X, , and X, , | are the sth elements of the vectors X, and ,\7,, 1 Tespectively.
Discussion

L. In the above proof, nothing has been said about the normalization of the
successive trial vectors X,. Actually, it is not necessary to establish the proof of
convergence of the method. The normalization amounts to a readjustment of
the constants ¢,. ¢,..... ¢, in each iteration.

2. Although it is theoretically necessary to have r — oo for the convergence of the
method. in practice only a finite number of iterations suffices to obtain a
reasonably good estimate of w,.

3. The actual number of iterations necessary to find the value of w, to within a
desired degree of accuracy depends on how closely the arbitrary trial vector X,
resembles the fundamental mode X and on how well w, and w, are
separated. The required number of iterations is less if w, is very large compared
10 w,.

4. The method has a distinct advantage in that any compuldllonal errors made do
not yield incorrect results. Any error made in premultiplying X, by [D] results
in a vector other than the desired one. X, . But this wrong vector can be

considered as a new trial vector. This may delay the convergence but does not

produce wrong results.

5. One can take any set of n numbers for the first trial vector X' and still achieve
convergence to the fundamental modal vector. Only in the unusual case in
which the trial vector X, is exactly proportional to one of the modes X
(1 # 1) does the method fail to converge to the first mode. In such a_case. the
premultiplication of X*) by [ D] results in a vector proportional to X'’ itself.
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i
To obtain the highest natural frequency w, and the corresponding mode shape pr
eigenvector X'*' by the matrix iteration method. we first rewrite Eq. (6.60) as

[D) "X =[1]X =X (7.59)

where [D] ! is the inverse of the dynamical matrix [ D] given by
[D] ' =[m] '[A] (7.60)
Now we select any arbllmry trial vector X and prnmulupl» itby [D] ' toobtamn an

improved trial vector X,. The sequence of trial vectors X,_, (i = 1.2,...) obtaned
by premultiplying by [D] converges to the highest normal mode X’ It can be
seen that the procedure is similar to the one already described. The constant of
proportionality m this case is w? instead of 1/w™.

Once the first natural frequency w, (or the largest eigenvalue A, = 1/w}) and the
corresponding eigenvector X are determined. we can proc::ed to find the higher
natural frequencies and the corresponding mode shapes by the matrix iteration
method. Before we proceed. it should be remembered that any arbitrary trial vector
premultiplied by [ D] would lead again to the largest eigenvalue. It is thus necessary
to remove the largest eigenvalue from the matrix [D]. The succeeding eigenvalues
and eigenvectors can be obtained by eliminating the root A, from the characteristic
or frequency equation

[p] =Al1]]=0 (7.61)
A procedure known as matrix deflation can be used for this purpose [7.16]. To find

the eigenvector X' by this procedure, the previous eigenvector X "V 1s normal-
ized with respect to the mass matrix such that

Xe=Wm]xe-b =1 (7.62)
Then the defiated matrix [ D,] is constructed as
[D]=1[D_,) - A, _ XX [m],  1=23....n (763
where [ D] = [D]. Once [ D,] is constructed. the iterative scheme
X =[D]X (7.64)

is used, where X| is an arbitrary trial eigenvector.

EXAMPLE 7.5

Natural Frequencies of a 3-Degree-ot-?reedom System

Find the natural frequencies and mode shapes of the system shown in Fig 72 for A, = hy =
ki, =k and m; = my = m, = m by the matnix iteration method.

Giren A three degree of freedom spring-mass system. shown in Fig 7.2 with m, = nm, =
m.=mand Ay =k, =k, = A,

Find Natural frequencies and mode shapes
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Approach: Matrix iteration method.

349

Solution. The mass and stifiness matrices of the system are given in Example 7.2. The

flexibility matrix is
1 1

bl
SRR S

and so the dynamical matnx is
1

(x] '[m} = ;»[;

N -
[
[a—

The eigenvalue problem can be stated as

[D]X=AX

1
[Dl=[l

1

where

[SENES
W -
——

and

>
I

3>~
|

w

(E.1)

(E.3)

(E4)

(E.5)

First natural frequency: By assuming the first trial eigenvector or mode shape to be

Lo 1
X ={1
1

the second trial eigenvector can be obtained:

. . 3
X, =[D]X ={5

6

By making the first element equal to unity. we obtain
i 1.0000

X, = 3.0{ 1.6667

2.0000

and the corresponding eigenvalue is given by

A =30 o w =05773y k
m

The subsequent trial eigenvector can be obtained from the relation

X; a1 =1[D] xl
and the corresponding eigenvalues are given by
A =X

borv b

where X, ., is the first component of the vector X .1 before normalization

(E6)

(E7)

(ES8)

(E.9)

(E.10)

(E.11)

The various
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trial eigenvectors and eigenvalues obtained by using Egs. (E.10) and (E.11) are shown below:

X, with
i X, =1 X, = IDIX, A= Xy wg
1 3 k
1 1 s 3.0 0.5773
1 6
f 1 00000 4.66667 | P
2 1 66667 8 33333 466667 0.4629y/ -
| 2 00000 10 33333
; 1.0000
3 1.7857 S 00000 04472
| 22143 11 2143
1.00000 5.04891 | P
7 1.80193 9.09781 5.04891 0.44504‘/ -
2.24697 11 34478
1.00000 5.04892 | X
8 1.80194 9.09783 5.04892 0 44504‘/ ™
2.24698 11.34481

It can be seen that the mode shape and the natural frequency converged (to the fourth
decimal place) in eight iterations. Thus the first eigenvalue and the corresponding natural
frequency and mode shape are given by

A = 5.04892,  w = 0.44504115

B 1.00000
X = {1.80194 (E.12)
2.24698

Second natural frequency: To compute the second eigenvalue and the eigenvector, we must
first produce a deflated matrix.

[D:] = [ D} = A XXV [ m) (E.13)

This equation, however, calls for a normalized vector XV satisfying ¥'"[m) X" = 1. Let
the normalized vector be denoted as

- 1.00000
X = a{ 1.80194

2.24698

where a is a constant whose value must be such that

o 1.00000) [1 0 07/ 1.00000
X ml XY =a’m{ 180194} [0 1 0{{ 180194
2.24698) L0 0 111224698

= a’m(9.29591) = 1 (E 14)
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from which we obtain @ = 032799m '/>. Hence the first normalized eigenvector 1s

. 032799
XY =m '”{ 0.59102}
073699

(E.15)

Next we use Eq. (E.13) and form the first deflated matrix
111 0.32799) (032799 Tt o o
[Dy) =11 2 2]- 504892059102 )¢ 059102) [0 1 0
12 03 0.736%) 1073699 Lo o0 1

045684 0.02127 -0 22048
= 0.02127 0.23641  -0.19921 (E.16)
-0.22048 —-0.19921 025768

Since the trial vector can be chosen arbitrarily, we again take

A
Xo={1; (E.17)
1)
By using the iterative scheme
1= [0 X (E18)
we obtain Xy
- 0.25763 1.00000
Xy ={ 005847} = 025763( 0.22695 (E19)
-0.16201 -0.62885
Hence X, can be found from the general relation
A= X (E.20)

as 0.25763. Continuation of this procedure gives the following results:
X, with
i X =1 X IDx|x A= Xy L]

1 0.25763 X
1 0.05847 0.25763 197016/ -
1

-0.16201
1.00000 s
0.60032 1 29065‘/ m
~-0.62885

0.60032
0.22695
0.64300 P
10 0 44443 0.28600 0.64300 1.24708\/—’—;

~0.42773
0.64307
0.28614

0.20020

~0 80149 ~0.51554
[k
0.64307 1.24701 s

~0.51569

044479}
0.80177
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Thus the converged second eigenvalue and the eigenvector are

Ay = 064307, =1 24701]/£

1 00000

X = { 0.44496} (E.21)
- 0.80192

Third natural frequency: For the third eigenvalue and the eigenvector, we use a simlar

procedure The detailed calculations are left as an exercise to the reader Note thar before

computing the deflated matnx [ D,), we need to normalize X by using Eq (762). which

gives

~ 0.73700
X =m 2 032794 (E22)
-0.59102

7.6 JACOBI'S METHOD

The matrix iteration method described in the preceding section produces the
eigenvalues and eigenvectors of a matrix [ D] one at a time. Jacobi’s method is also
an iterative method but produces all the eigenvalues and eigenvectors of [D]
simultaneously, where [D] = [d, | is a real symmetric matrix of order n X n. The
method is based on a theorem in linear algebra that states that a real symmetric
matrix [ D] has only real eigenvalues and that there exists a real orthogonal matrix
[ R] such that [R]"[ D][ R] is diagonal [7.17). The diagonal elements are the eigenval-
ues, and the columns of the matrix [ R] are the eigenvectors. In Jacobi’s method. the
matrix [R] is generated as a product of several rotation matrices [7.18] of the form

ithcolumn  jth column

[R] = cos 0 -sind ithrow  (7.65)
1= .

sind cos § Jjthrow

L 1]

where all elements other than those appearing in columns and rows ¢ and ; are

identical with those of the identity matrix [/]. If the sine and cosine entries appear

in posmons (1.1), (i, ). (4.0), and (/. j). then the corresponding elements of
[RIT[D][R, ]can be computed as follows:

d, = d,cos? + 2d, sinfcos 8 + d, sin’f {7.66)

d,=d, =(d,-d,)sin0cos8 +d, (cos’d - sin%) (7.67)

d, = d,sin’ - 2d,,sinfcos§ + d,cos’f (7.68)

=1
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1f @ 1s chosen to be
] 2d,, ;
tan26 = ( m; ( .69)

then 1t makes d,, = d, = 0. Thus each step of Jacobi's method reduces a pair of
off-diagonal elements to zero. Unfortunately. in the next step. while the method
reduces a new pair of zeros. it introduces nonzero contributions to formerly zero

positons. However. successive matrices of the form

[RTIRI[DIRIR) (R [RIIR)T[DIRIRAR]...
converge to the required diagonal form: the final matrix [ R]. whose columns give
the eigenvectors, then becomes

[R]=[R1][R:][R.\]-~~ (7.70)

E76

Eigenvalue Solution Using Jacobl Method

Find the cigenvalues and cigenvectors of the matrix

using Jacobi's method.

Given: Dynamical matnx [ D).

Find. Eigenvalues and eigenvectors.

Approach. Jacobi’s method.

Solution. We start with the largest ofi-diagonal term «,, = 2 in the matrix [ D] and try to
reduce it to zero From Eq. (7.69),

1 | 2d,, ! . 4
9 = 3 tan (Fd—" =3 tan (2—_—3) = —37981878°

1.0 00 0.0
[Ri]=]00 07882054 06154122
0.0 -0.6154122 0 7882054
0 0.1727932  1.4036176
(01 =[RYIDIR] = [o 1727932 0.4384472 00 l
1.4036176 0.0 4.5615525
Next we try to reduce the largest off-diagonal term of [ D°), namely. ¢/, = 1 4036176 to zero.
Equation (7.69) gives

1 2dy, 1 , 2.8072352 o
6, = 3 tan (m) =y un (W&Tsﬁ) - -19.122686
0.9448193 0.0 0.3275920
[R]=[ 00 10 00 ]
-03275920 0.0 0.9448193
0.5133313  0.1632584 0.0
[0} =R} [DNR:) = [0 1632584  0.4384472 00566057]
0.0 00566057  5.0482211
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The largest ofi-diagonal element in [D”] is d}3 = 0.1632584 0, van be obtained from by

(769) as
1 f_2di V) ,( © 03265167\ _ . o
f. = 3 tan (d,‘,’ —an) =2 o5 - 04334472) 3 541315
07821569 ~0.6230815 00
[R.J =]06230815  0.7821569 0.0
0.0 00 10
06433861 00 00352699
(D] =[R)[D][R} =00 03083924 00442745
00352699 00442745 50482211

Assuming that all the off-diagonal terms in [ D ] are close to zero. we can stop the process
here The diagonal elements of [ D’} give the eigenvalues (values of 1/w") as 0.6433861.
03083924, and 5 0482211. The corresponding eigenvectors are given by the columns of the
matrix | R} where
0.7389969 - 0.5886994 0 3275920
[R}=[RI[R:][R:] =] 03334301  0.7421160 0 514533
—05854125 -0.3204631 0.7447116
The iterative process can be continued for obtaining a more accurate solution. The present
eigenvalues can be compared with the exact values: 0 6431041, 0 3079786. and 5.0489173.

STANDARD EIGENVALUE PROBLEM

In the preceding chapter. the eigenvalue problem was stated as

(K1 X = 2 [m] X (7.1)
which can be rewritten in the form of a standard eigenvalue problem [7.19] as
[D]X =AX (1.72)
where
[D) = [k]""[m] (1.73)
and .
A= L (7.74)
w? S

In general, the matrix { D] is nonsymmetric, although the matrices [k] and [m] are
both symmetric. Since Jacobi’s method (described in Section 7.6) is applicable only
to symmetric matrices { D]. we can adopt the following procedure (7.18] to derive a
standard eigenvalue problem with a symmetric matrix [ D].

Assuming that the matrix (k] is symmetric and positive definite. we can use
Choleski decomposition (see Section 7.7.1) and express [A] as

(k1= (v]"{U] (1.75)

where [U] is an upper triangular matrix. Using this relation. the eigenvalue problem
of Eq. (7.71) can be stated as



sleski
romposition

77 Standard Eigenvalue Problem

AU [U]X = [m]X
Premultiplying this equation by ((U]7) ', we obtain
. -1 — t - -
MUIX = ([U]") [m]X=([U])") [m)U)-'[U])X
By defining a new vector Y as
Y=[U]X
Eq. (7.77) can be written as a standard eigenvalue problem:
[D)Y =AY
where

(0] = ((v]") '[mliv]™

35¢

(7.76)

(7.17)

(1.78)

(7.79)

(7.80)

Thus, to formulate [ D] according to Eq. (7.80), we first decompose the symmetric
matrix [k] as shown in Eq. (7.75). find (U] and ((U]") ' = (U] ")7 as outlined
in the next section, and then carry out the matrix multiplication as stated in Eq.
(7.80). The solution of the eigenvalue problem stated in Eq. (7.79) yields A, and
Y'". Then we apply inverse transformation and find the desired eigenvectors:

Xt = [U] lym

(7.81)

Any symmetric and positive definite matrix [ 4] of order n X n can be decomposed

uniquely [7.20]:
[4] = [U]"[V]

where [U] is an upper triangular matrix given by

Uy Uy Wy ot Uy,
O uy uy o uy,
v] = 0 0 uy - uy,
0 0 0 u,,
with
2
"n‘(“n)l/
a,,
u|,~u—“ =2.3..... n

=
1]
——
o
|
=
e
~
S
S
]
[
w
=

=
|

(7.82)

(7.83)

(-
[u,,— Z"m“x,}- i=2.3...., nand y=i+1l.0+2...n

(7.84)
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Inverse of the Matrix JUJ. If the inverse of the upper triangular matrix {U] is
denoted as {a,,]. the elements «,, can be determined from the relaton

‘ uitvy ' =) (7.:85)
which gives

2
N
1
=||
-
—
Py
S
5
R
A
.

N k=isd
a, =0, t>) (7.86)

Thus the inverse of [U] is also an upper triangular matrix.

Decomposition of a Symmetric Matrix

Decompose the matrix

into the form of Eq. (7.82).

Gwen: Symmetnc and positive definrte matrix [ 4]

Find: Upper triangular matrix {/) such that | 4] = [U]7[U].
Approach. Choleski decomposition.

Solution. Equations (7.84) give

wy = Ja, =5 = 22360680
= ap/uy, = 1/2.236068 = 0.4472136
= an /iy, =0
un = [ap ~ uh]" = (3~ 044721367) 7 = 1.6733201
v 3 3172
Uy = [“.ﬂ —up -~ "3;]
where
Uy = (@sy = ) /s = (2~ 0 4472136 X 0) /1.6733201 = 1.1952286
uy = (8- 0% — 1.1952286%) " = 25634799
Since u,, = 0 for 1 > j, we have
22360680 04472136 0.0

[U] =100 1.6733201  1.1952286
0.0 0.0 2.5634799

Several other methods have been developed for finding the numenical solution of im
eigenvalue problem (7.18,7.21]. Bathe and Wilson [7.22] have done a comparative
study of some of these methods. Recent emphasis has been on the economical
solution of large eigenproblems [7.23.7.24]. The estimation of natural frequencies by
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the use of Sturm sequences is presented in Refs. {7.25] and {7.26]. An alternative
way to solve a class of lumped mechanical vibration problems using topological
methods is presented in Ref. [7.27].

.8 COMPUTER PROGRAMS

.8.1 A Fortran program, in the form of subroutine JACOBI. is given for finding the
acobi’'s Method  eigenvalues and eigenvectors of a real symmetric matrix [ D] according to Jacobi's
method. The arguments of this subroutine are as follows:

D =

EPS =

ITMAX =

Array of size N X N, containing the elements of the matrix [D].
Input data. The diagonal elements of the array contain the
eigenvalues upon return to the main program: D(/, 1) = 1/
Qutput.

Order of the matrix { D). Input data.

Array of size N X N in which the eigenvectors are stored
columnwise. Qutput.

Convergence specification. A small quantity on the order of
10 is to be used. Input data.

Maximum number of iterations or rotations permitted. Input
data.

By way of illustration, Example 7.6 is solved using subroutine JACOBI. The main
program, subroutine JACOBI, and the output are given below.

c
c
C PROGRAM 13

C MAIN PROGRAM FOR CALLING JACOBI

ooo

FOLLOWING 3 LINES CONTAIN PROBLEM-DEPENDENT DATA

DIMENSION D(3,3),E(3,3)
DATA N, ITMAX,EPS/3,200,1.0E-05/

DATA D/1.0,

1.0,1.0,1.0,2.0,2.0,1.0,2.0,3.0/

C END OF PROBLEM-DEPENDENT DATA

PRINT 50

50  FORMAT (//,37H EIGENVALUE SOLUTION BY JACOBI METHOD)

PRINT 40

40  FORMAT (/,13H GIVEN MATRIX)

DO 30 I=1,N

30 PRINT 20, (D(I,J),J=1,N)
20  FORMAT (3E15.6)

CALL JACOBI

(D,N,E,EPS, ITMAX)

PRINT 10, (D(I,I),I=1,N), ((E(I,J),J=1,N),I=1,N)
10 FORMAT (/,1X,17H EIGEN VALUES ARE,/,3E15.6,//,1X,
2 14H EIGEN VECTORS,/,6X,SHFIRST, 10X, 6HSECOND,9X,SHTHIRD, /,

3 (1X,3E15
STOP
END

-6))
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SUBROUTINE JACOBI

ooooo

SUBROUTINE JACOBI (D,N,E,EPS,ITMAX)
DIMENSION D(N,N),E(N,N)
ITER=0
DO 110 I=
DO 110 J=
E(I,J)=0.0
110 E(I,I)=1.0
120 22=0.0
NM1=N-1
DO 130 I=1,NM1
IP1=1+1
DO 130 J=IP1,N
IF (ABS(D(I,J)) .LE. 2Z) GO TO 130
22=ABS(D(1,J))
IR=1
16=J
130 CONTINUE
IF (ITER .EQ. 0) YY=ZZ*EPS
IF (22 .LE. YY) GO TO 210
DIF=D(IR,IR) - D(IC,IC)
TANZ=(-DIF+SQRT(DIF**2+4 0%2Z%*2))/(2.0*D(IR,IC))
COSZ=1.0/SQRT(1.0+TANZ**2)
SINZ=COSZ*TANZ
DO 140 I=1,N
222=E(1,1R)
E(I,IR)=COSZ*ZZZ+SINZ*E(I,IC)
140 E(I,I1C)=COSZ*E(I,IC)-SINZ*2Z2
1=1
150 IF (I .EQ. IR) GO TO 160
YYY=D(I,IR)
D(I,IR)=COSZ*YYY+SINZ*D(I,IC)
D(I,IC)=COSZ*D(I,IC)-SINZ*YYY
I=1+1
GO TO 150
160 I=IR+1
170 IF (I .EQ. IC) GO TO 180
YYY=D(IR, 1)
D(IR,1)=COSZ*YYY+SINZ*D(I,IC)
D(I,IC)=COSZ*D(I,IC)-SINZ*YYY
I=1+1
GO TO 170
180 I=IC+l
190 IF (I .GT. N) GO TO 200
222=D(IR,1)
D(IR,1)=COSZ*ZZZ+SINZ*D(IC,1)
D(IC,1)=COSZ*D(IC,I)-SINZ*222Z
I=1+1
GO TO 190
200 YYY=D(IR,IR)
D(IR,IR)=YYY*COSZ**2+D(IR,IC)*2.0*COSZ*SINZ+D(IC, IC)

1,N
1,N
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2 *SINZ**2
D(IC,IC)=D(IC,IC)*COSZ**2+YYY*SINZ**2-D(IR,IC)*2.0*COSZ*SINZ
D(IR,IC)=0.0

ITER=ITER+1

IF (ITER .LT. ITMAX) GO TO 120
210 RETURN

END

EIGENVALUE SOLUTION BY JACOBI METHOD

GIVEN MATRIX

0.100000E+01
0.100000E+01
0.100000E+01

0.100000E+01 0.100000E+01
0.200000E+01 0.200000E+01
0.200000E+01 0.300000E+01

EIGEN VALUES ARE

0.504892E+01

EIGEN VECTORS

FIRST

0.327985E+00
0.591007E+00
0.736978E+00

0.643104E+00  0.307979E+00

SECOND THIRD
-0.736984E+00  0.590999E+00
-0.327977E+00 -0.736981E+00

0.591004E+00  0.327991E+00

Subroutine MITER is given for implementing the matrix iteration method. This
subroutine uses the following arguments:

D
X, XX

XS

N
NVEC
B,C
XM
EPS

FREQ

EIG

Array of size N X N, contaiming the matnx [D]. Input data.
Arrays of size N each.

Array of size N. Contains the initial guess vector such as
Input data.

Order of the matrix [D). Input data.

Number of eigenvalues and eigenvectors to be found. Input data.
Arrays of size N X N each.

Array of size N X N, containing the mass matrix [m]. Input data.
Convergence requirement. A small number on the order of 10~°
is to be used. Input data.

Array of size NVEC, containing the computed natural frequen -
cies. Output.

Array of size N X NVEC, containing the computed eigenvectors
columnwise. Output.

Examplg 7.5 is solved using subroutine MITER. The main program that calls
subroutine MITER, subroutine MITER, and the output of the program are given

below.



YUv

CHAPTER 7 Determination of Naturat Frequencies and Mode Shapes

c
c
C PROGRAM 14
C MAIN PROGRAM FOR CALLING THE SUBROUTINE MITER
c
c
C FOLLOWING 8 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION n(a,a),x(a),xs(a),n(a,a),C(3,3),XX(3).XM(3,3),FREQ(3).
2 EIG(3,3)
N=3
NVEC=3
DATA n/1‘o.1.o,1.0,1.0,2,0,2Ao,1,o,2.o,3.0/
DATA xn/l.o.vo,o.o,o.o,1Ao,o.o,o.o,o.o,1A0/
EPS=0.00001
DATA X$/1.0,1.0,1.0/
C END OF PROBLEM-DEPENDENT DATA
CALL MITER (D,X,XS,N,NVEC,B,C,XX,XM,EPS,FREQ,EIG)
PRINT 10
10 FORMAT (//,34H SOLUTION OF EIGENVALUE PROBLEM BY,/,
2 24H MATRIX ITERATION METHOD)
PRINT 20, (FREQ(I), I=1,NVEC)
20  FORMAT (//,20H NATURAL FREQUENCIES,//,3(E15.8,1X))
PRINT 30
30 FORMAT (//,26H MODE SHAPES (COLUMNWISE):, /)
DO 40 I=1,NVEC
40 PRINT 50, (EIG(I,J),J=1,N)
50  FORMAT (3(E15.8,1X),/)
STOP
END
c
c
C SUBROUTINE MITER
¢
c
SUBROUTINE MITER (D,X,XS,N,NVEC,B,C,XX,XH,EPS,FREQ,EIG)
DIMENSION D(N,N),X(N),XS(N).B(N.N),C(N,N).XX(N),XH(N,N).
2 FREQ(NVEC) ,EIG(N,NVEC)
CON=XS (1)
DO 10 I=1,N
10 X(I)=XS(I)/CON
50  ICON=0
CALL MULT(D,X,N,XX)
ALAM=XX (1)
DO 20 1=1,N
20 XX(I)=XX(I)/ALAM
DO 30 I=1,N
30 IF(ABS((XX(I)-x(I))/x(I)) .GT. EPS) ICON=1
DO 40 1=1,N
40 X(I)=XX(I)
IF (ICON .EQ. 0) GO TO 60
GO TO 50
60  ICON=0
FREQ(1)=SQRT(1.0/ALAM)
DO 70 I=1,N
70 EIG(I,1)=X(I)
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100

110

120

130

140

150
250

220

230

240

260

270

300

11=1
11=11+1

SUM=0.0

DO 110 I=1,N

SUM=SUM+X (1)#**2
ALP=SQRT(1.0/SUM)

DO 120 I=1,N

X(1)=X(1)*ALP

DO 130 I=1,N

DO 130 J=1,N
C(1,3)=X(1)*X(J)

CALL MATMUL (B,C,XM,N,N,N)
DO 140 I=1,N

DO 140 J=1,N
D(1,J)=D(1,J)-ALAM*B(I,J)
CON=XS(1)

DO 150 I=1,N
X(1)=XS(1)/CON

ICON=0

CALL MULT (D,X,N,XX)
ALAM=XX(1)

DO 220 I=1,N

XX (1)=XX(1)/ALAM

DO 230 I=1,N

IF (ABS((XX(I)-X(I))/X(1))
DO 240 I=1,N

X(I1)=XX(I)

IF (ICON .EQ. 0) GO TO 260
GO TO 250

ICON=0
FREQ(II)=SQRT(1.0/ALAM)

DO 270 I=1,N
EIG(I,II)=X(I)

IF (I1 .EQ. NVEC) GO TO 300
GO TO 100

RETURN

END

.GT. EPS) ICON=1

361

SUBROUTINE MULT

10
20

SUBROUTINE MULT (D,X,N,XX)
DIMENSION D(N,N),X(N),XX(N)
DO 20 I=1,N

XX(1)=0.0

DO 10 J=1,N
XX(1)=XX(I)+D(1,J)*X(J)
CONTINUE

RETURN

END
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SOLUTION OF EIGENVALUE PROBLEM BY
MATRIX ITERATION METHOD

NATURAL FREQUENCIES

0.44504240E+00 0.12469811E+01 0.18019377E+01

MODE SHAPES (COLUMNWISE):
0.10000000E+01 0.10000000E+01 0.10000000E+01
0.18019372E+01 0.44503731E+00 -0.12469926E+01

0.22469788E+01 -0.80193609E+00 0.55496848E+00

Subroutine DECOMP s given for decomposing a matrix [A4] of order N using
ki Choleski decomposition. The program gives the upper triangular matrix [U] ag
position output. The listing of DECOMP s given below.

PROGRAM 15
MAIN PROGRAM WHICH CALLS DECOMP

oooaooo0

DIMENSION A(3,3),U(3,3)
DATA A/5.0,1.0,0.0,1.0,3.0,2.0,0.0,2.0,8.0/
N=3
CALL DECOMP (A,U,N)
PRINT 10
10  FORMAT (/,25H UPPER TRIANGULAR MATRIX:,/)
DO 30 I=1,N
PRINT 20, (U(I,J),J=1,N)
20  FORMAT (3E15.8)
30  CONTINUE
STOP
END

SUBROUTINE DECOMP

ooo0oo

SUBROUTINE DECOMP (A,U,N)
DIMENSION A(N,N),U(N,N)
DO 10 I=1,N
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DO 10 J=1,N
10 U(I,J)=0.0
U(1,1)=SQRT(A(1,1))
DO 90 J=2,N
90 U(1,J)=A(1,J)/U(1,1)
DO 40 I=2,N
IM=I-1
SUM=C.0
DO 30 K=1,IM
30 SUM=SUM+U(K,I)**2
U(I,T)=SQRT(A(I,I)-SUM)
J=1+1
SUM=0.0
DO 50 K=1,IM
50  SUM=SUM+U(K,I)*U(K,J)
U(1,J)=(A(I,J)-SUM)/U(1,T)
40 CONTINUE
RETURN
END

UPPER TRIANGULAR MATRIX:
0.22360680E+01 0.44721359E+00 0.00000000E+00

0.00000000E+00 0.16733201E+01 0.11952286E+01
0.00000000E+00 0.00000000E+00 0.25634799E+01

A Fortran program is written for solving the general eigenvalue problem
[k]X = &?[m]X
The problem is converted into a special eigenvalue problem
(DI¥ = S(1]¥
o?
by generating the matrix [ D] using the relation
T\7! -
(2] = ((v1") [mitv)™
The following data is needed for this program:

BK = Array of size N X N, containing the matrix [k].
BM Array of size N X N, containing the matnx [m].
ND = Order of the matrices k] and [m].

The following quantities need to be defined and dimensioned in the program:

U,ULLUTI = Arrays of size N X ¥, indicating the matrices (U], [U]"
and ((U] ") respectively.
BMU,UMU,EV = Arrays of size ¥ X N each.

XF = Array of size N X N. The computed eigenvectors Xt
are stored columnwise in XF.
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To illustrate the use of the program, the matrices of Example 7.2 are used with

2 -1 0 1.0 0
{k]1=]-1 2 -1 and [m]=1]0 1 0
0 -1 1 0 0 1
The listing of the program and the output are given below.
c
c
C PROGRAM 16
C DETERMINATION OF EIGENVALUES AND EIGENVECTORS BY FINDING THE MATRIX
C [D] ACCORDING TO THE RELATION [D] = [UTI][M][UI]
¢
¢
C FOLLOWING 5 LINES CONTAIN PROBLEM-DEPENDENT DATA

DIMENSION BK(3,3),BM(3,3),U(3,3),UI(3,3),UTI(3,3),BMU(3,3),
2 UMU(3,3),XF(3,3),EV(3,3)
DATA BK/2.0,-1.0,0.0,-1.0,2.0,-1.0,0.0,-1.0,1.0/
DATA BM/1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0/
ND=3
C END OF PROBLEM-DEPENDENT DATA
C DECOMPOSING THE MATRIX [BK) INTO TRIANGULAR MATRICES
CALL DECOMP (BK,U,ND)
PRINT 100
100 FORMAT (//,29H UPPER TRIANGULAR MATRIX [U]:,/)
DO 110 I=1,ND
110 PRINT 120, (U(I,J),J=1,ND)
120 FORMAT (4(1X,E15.6))
DO 130 I=1,ND
DO 130 J=1,ND
130 UI(I,J)=0.0
DO 140 I=1,ND
140 UI(I,1)=1.0/U(I,I)
DO 160 J=1,ND
DO 160 II=1,ND
I=ND-11+1
IF (I .GE. J) GO TO 160
1P=1+1
SUM=0.0
DO 150 K=IP,J
150 SUM =SUM+U(I,K)*UI(K,J)
UI(I,J)=-SUM/U(I,T)
160 CONTINUE
PRINT 170
170 FORMAT (/,46H INVERSE OF THE UPPER TRIANGULAR MATRIX, [UI],/)
DO 180 I=1,ND
180 PRINT 120, (UI(I,J),J=1,ND)
DO 190 I=1,ND
DO 190 J=1,ND
190 UTI(I,J)=UI(J,I)
CALL MATMUL (BMU,BM,UI,ND,ND,ND)
CALL MATMUL (UMU,UTI,BMU,ND,ND,ND)
PRINT 200
200 FORMAT (/,29H MATRIX [UMU] = [UTI][M][UI]:,/)
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210

230

240

250

309

DO 210 I=1,ND
PRINT 120, (UMU(I,J),J=1,ND)

CALL JACOBI (UMU,ND,EV,1.0E-05,200)

PRINT 230

FORMAT (/,13H EIGENVALUES:,/)

PRINT 120, (UMU(I,I),1=1,ND)

PRINT 240

FORMAT (/,27H EIGENVECTORS (COLUMNWISE):,/)
CALL MATMUL (XF,UI,EV,ND,ND,ND)

DO 250 I=1,ND

PRINT 120, (XF(I,J),J=1,ND)

STOP

END

UPPER TRIANGULAR MATRIX [U]:

0.141421E+01 -0.707107E+00 0.000000E+00
0.000000E+00 0.122474E+01 -0.816497E+00
0.000000E+00 0.000000E+00 0.577350E+00

INVERSE OF THE UPPER TRIANGULAR MATRIX, [UI],

0.707107E+00 0.408248E+00
0.000000E+00 0.816497E+00

.577350E+00

0
0.115470E+01

0.000000E+00 0.000000E+00 0.173205E+01

MATRIX [UMU] = [UTI][M][UI):

0.500000E+00 0.288675E+00 0.408248E+00

0.288675E+00 0.833333E+00 0.117851E+01

0.408248E+00 0.117851E+401 0.466667E+01
EIGENVALUES:

0.504892E+01 0.643104E+00 0.307979E+00
EIGENVECTORS (COLUMNWISE):

0.736973E4+00  -0.590976E+00 0.328051E+00

0.132799E+01 -0.263064E+00  -0.408952E+00

0.165597E+01 0.473971E+00 0.181988E+00
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REVIEW QUESTIONS

7.1. Name a few methods for finding the fundamental natural frequency of a multidegree of
freedom system.

7.2. What is the basic assumption made in deriving Dunkerley’s formula?

7.3. What is Rayleigh’s principle?

74. State whether we get a lower bound or an upper bound to the fundamental natural
frequency if we use (a) Dunkerley’s formula and (b) Rayleigh’s method.

7.5. What is Rayleigh’s quotient?

7.6. What is the basic principle used in Holzer’s method?

7.7. What is the matrix iteration method?

7.8. Can we use any trial vector )—('1 in the matrix iteration method to find the largest natural
frequency?

79. How do you find the intermediate natural frequencies using the matrix iteration
method?

7.10. What is the difference between the matrix iteration method and Jacobi’s method?

7.11. What is a rotation matrix? What is its purpose in Jacobi’s method?

7.12. What is a standard eigenvalue problem?

7.13. What is the role of Choleski decomposition in deriving a standard eigenvalue problem?

7.14. How do you find the inverse of an upper triangular matrix?
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PROBLEMS

The problem assignments are organized as follows:

Section
Problems covered Topic covered
7.1-7.6,17.32 7.2 Dunkerley’s formula
7.7-7.12 73 Rayleigh’s method
7.13-717 74 Holzer’s method
7.18-17.23 7.5 Matrix iteration method
7.24-7.25,7.29 7.6 Jacobi’s method
7.26-7.28, 7.30-7.31 77 Standard eigenvalue

problem

7.33-7.39 7.8 Computer programs
7.40, 7.41 — Projects

7.1

72

73.

7.4.

Estimate the fundamental frequency of the beam shown in Fig. 6.3 using Dunkerley’s
formula for the following data: (a) m) = m; = Sm, m, = m; and (b) m = my = m,
m, = 5m.

Find the fundamental frequency of the torsional system shown in Fig. 6.5, using
Dunkerley’s formula for the following data: (a) J; =J, =J5 = J; kg =k, =k, =
K;and (b) Jy = &y, o = 24y, Sy =3 ky = ki, Ky = 2k, Ky = 3k,

Estimate the fundamental frequency of the shaft shown in Fig. 7.3, using Dunkerley’s
formula for the following data: my = m, m, = 2m, my; =3m, L, =L, =1L, =1,=1/4

The natural frequency of vibration, in bending, of the wing of a military aircraft is
found to be 20 Hz. Find the new frequency of bending vibration of the wing when a
weapon, weighing 2000 1b, is attached at the tip of the wing (Fig, 7.10). The stiffness of
the wing tip, in bending, is known to be 50,000 Ib/ft.

Bending axis

Figure 7.10
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Problems

7.5. In an overhead crane (see Fig. 7.11) the trolley weighs ten times the weight of the
girder. Estimate the fundamental frequency of the system using Dunkerley’s formula.

| Trolley
/Glrder

>
:

5

4
I
|

o

Figure 7.11

7.6. Determine the fundamental natural frequency of the stretched string system shown in
Fig. 5.22 with m; = m, = m and /|, = [, = [; = [, using Dunkerley’s formula.

7.7. Determine the first natural frequency of vibration of the system shown in Fig. 7.2,
using Rayleigh’s method. Assume &, = k, k, = 2k, k3 = 3k,and m;, = m, m, = 2m,
my = 3m.

78. Find the fundamental natural frequency of the torsional system shown in Fig. 6.5

using Rayleigh’s method. Assume that J; = J,, J, = 2J,, J; =3/, and k, = k,, =

k= k,.

7.9.  Solve Problem 7.6 using Rayleigh’s method.

7.10. Determine the fundamental natural frequency of the system shown in Fig. 5.22 when
m, = m, my=5m, I, =1, = [; = I, using Rayleigh’s method.

7.11. A two-story shear building is shown in Fig. 7.12 in which the floors are assumed to be
rigid. Compute the first natural frequency of the building, using Rayleigh’s method,
for my = 2m, my = m, hy = h, = h, and k, = k, = 3EI/h* Assume the first mode
configuration to be the same as the static equilibrium shape due to loads proportional

to the floor weights.
X2

T/
k.
L I/ 2 ~ ,'/

i m
/

/I k

k 1 !/

/ 1 /

hl "l/ \ /

‘L '

i
77"77 7777777

Figure 7.12
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7.12.
7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.20.

7.21.

7.22.
7.23.

Prove that Rayleigh’s quotient is never higher than the highest eigenvalue.

Find the natural frequencies and mode shapes of the system shown in Fig. 6 7, With
m; = 100 kg, m, = 20 kg, m; = 200 kg, k, = 8000 N/m, and &, = 4000N/m,u3,-ng
Holzer’s method.

The stiffness and mass matrices of a vibrating system are given by

2 -1 0 1 00

[k] = 4| -1 2 -1f, [ml=ml0o 1 0

0 -1 3 0 0 2
Determine all the principal modes and the natural frequencies, using Holzer’s methog_
For the torsional system shown in Fig. 6.5, determine a principal mode and the
corresponding frequency by Holzer’s method. Assume &, = k,, = k,; = k, and =
gy =J =
Find the natural frequencies and mode shapes of the shear building shown in Fig. 7.12
using Holzer’s method. Assume that m, =2m, my=m, h = h,=h, k =2,
k, = k,and k = 3EI/h’.
Find the natural frequencies and mode shapes of the system shown in Fig. 6 21 with
Jy = 10 kg, J, = Skg-n?, J; = 1 kg-m’, and k, = k,, = 1 X 10° N-m/rad. using
Holzer’s method.
The largest eigenvalue of the matrix

25 -1 0
[D]=]-1 s -2
0 V2 10

is given by A, = 10.38068. Find the other eigenvalues and all the eigenvectors of the
matrix, using the matrix iteration method. Assume [(m] = [7].

The mass and stiffness matrices of a spring-mass system are known to be
1 0 0 2 -1 0

[m]=m|0 1 0 and [k] = k| -1 3 =2

0 0 2 0 -2 2

Find the natural frequencies and mode shapes of the system, using the matrix itcration

method.

Find the natural frequencies and mode shapes of the system shown in Fig. 6 2 v{ilh

k, =k, ky =2k, ky =3k, and m, =m, = m; = m, using the matrix itcration

method.

Find the natural frequencies of the system shown in Fig. 6.10, using the matrix

iteration method. Assume that J,; = J,, = Jy, = Jy, [, = /, and (GJ), = GJ for i =1

to 4.

Solve Problem 7.6 using the matrix iteration method.

The stiffness and mass matrices of a vibrating system are given by
4 -2 0 0 3

-2 3 -1 o0 _
[k] =k 0 -1 2 -1 and  [m]=m

0 0 -1 1

oSO NO
oo o
oo o

0
0
0
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1.24.

7.25.

7.26.

7.27.

7.28.

7.29.
7.30.
731,

7.32.*

7.33.

Find the fundamental frequency and the mode shape of the system, using the matrix
iteration method.

Find the eigenvalues and eigenvectors of the matrix
3 -2 0
[D]=|-2 s -3
0 -3 3

using Jacobi’s method.
Find the eigenvalues and eigenvectors of the matrix

3 21
[D]=|2 2 1
1 11
using Jacobi’s method.
Decompose the matrix
4 -2 6 4
_|-2 2 -1 3
=" 1 2 13
4 3 13 46
using the Choleski decomposition technique.
Find the inverse of the following matrix, using the decomposition [4] = (U] (U ]:
5 -1 1
[4]=]-1 ¢ -4
1 -4 3

Find the inverse of the following matrix, using Choleski decomposition:

2 5 8
[A]=]|5 16 28
8 28 54

Find the eigenvalues of the matrix [ 4] given in Problem 7.26, using Jacobi’s method.
Convert Problem 7.23 to0 a standard eigenvalue problem with a symmetric matrix.

Using the Choleski decomposition technique, express the following matrix as the
product of two triangular matrices:

16 -20 -24
[4]=]-20 89 -50
24 -50 280

Design a minimum weight tubular section for the shaft shown in Fig. 7.3 to achieve a
fundamental frequency of vibration of 0.5 Hz. Assume m, = 20 kg, m, = 50 kg,
my=40kg, [, =1m,,=3m L =4m, [, =2m and E = 207 x 10" N/m%
Find the eigenvalues and eigenvectors of the matrix (D] given in Problem 7.18, using
subroutine JACOBI.
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7.34. Solve the general eigenvalue problem stated in Problem 7.19, using the computer
program of Section 7.8.4.

735. Solve the general eigenvalue problem stated in Problem 7.23, using the computer
program of Section 7.8.4.

7.36. Find the eigenvalues and eigenvectors of Problem 7.14, using the computer program of
Section 7.8.4.

7.37. Solve Problem 7.25, using subroutine MITER.

7.38. Find the eigensolution of the matrix [ 4] of Problem 7.27, using subroutine JACOBI.

7.39. Find the eigensolution of the matrix (4] given in Problem 7.31, using subroutine
JACOBIL

my = 100 kg > = 50 kg
« A A«
U
i 1
Figure 7.13

/ 30 ft

Trolley
(weight = 40,000 1b)

Wall Wire rope 20ft

/ (rigid)

Load tifted
(10,000 1b)

|
1
1
1
|
Figure 7.14
1