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Forced Response and
Control

12.1 INTRODUCTION

This chapter considers the response of distributed-parameter structures that are under some
external influence. This includes consideration of the response of distributed-mass structures
to applied external forces, the response of distributed-mass structures connected to lumped-
mass elements, and the response of distributed-mass structures under the influence of both
passive and active control devices.

If the equations of motion can be decoupled, then many of the results used for lumped-
mass systems described in Chapter 5 can be repeated for the distributed-mass case. However,
because of the infinite-dimensional nature of distributed-mass systems, convergence of
solutions occasionally preempts the use of these methods. Convergence issues are especially
complicated if the structure is subjected to control forces or unknown disturbances.

12.2 RESPONSE BY MODAL ANALYSIS

This section considers the forced response of damped distributed-parameter systems of
Equation (10.14) of the form

wtt�x� t� + L1wt�x� t� + L2w�x� t� = f�x� t�� x ∈ � (12.1)

with appropriate boundary and initial conditions. Here, the operators L1 and L2 are self-
adjoint, positive definite operators; L2 has a compact inverse, and L1 shares the set of
eigenfunctions ��n�x�� with L2 (i.e., L1 and L2 commute). For the moment, the only
assumption made of f�x� t� is that it lies in �R

2 ���.
Since f�x� t� ∈�R

2 ���, Equation (12.1) can be multiplied by the function �n�x� and then
integrated over �. This integration yields

�wtt��n� + �L1wt��n� + �L2w��n� = �f��n� (12.2)
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The left-hand side of this equation is identical to Equation (10.16). Applying the analysis of
Section 11.6, Equation (12.2) becomes

än�t� + 	�1�
n ȧn�t� + 	�2�

n an�t� = fn�t�� n = 1� 2� 3 (12.3)

where fn�t� has the form

fn�t� =
∫

�
f�x� t��n�x� d�� n = 1� 2� 3 (12.4)

This scalar equation in the function an�t� can be solved and analyzed using the single-
degree-of-freedom model of Section 1.4.

Equation (12.3) is essentially the same as Equation (5.38), and the solution is thus given
by Equation (5.39). That is, if the system is underdamped (4L2 − L2

1 > 0), then for zero
initial conditions

an�t� = 1

dn

∫ t

0
e−�n
n�fn�t − �� sin�
dn�� d� (12.5)

where for each value of the index n


n =
√

	
�2�
n � the nth natural frequency (12.6)

�n = 	�1�
n

2
√

	
�2�
n

� the nth modal damping ratio (12.7)


dn = 
n

√
1 − �2

n� the nth damped natural frequency (12.8)

Thus, in the solution where the operators L1 and L2 commute, the temporal coefficients
in the series solution are determined by using results from single-degree-of-freedom theory
discussed in Chapter 1. The solution to Equation (12.1) is the sum

w�x� t� =
�∑

n=1

an�t��n�x� (12.9)

where the an�t� are determined by Equation (12.5) for the case where the initial conditions
are set to zero and the set ��n�x�� consists of the eigenfunctions of the operator L2. Since the
set of functions ��n�x�� consists of the modes of free vibration, the procedure just described
is referred to as a modal analysis solution of the forced response problem.

Example 12.2.1

Consider the hinged–hinged beam of example 10.3.1. Assuming the beam is initially at rest (t = 0),
calculate the response of the system to a harmonic force of sin(t) applied at x = 
/2, where 
 is
the length of the beam. Assume the damping in the beam is of the form 2�wt�x� t�, where � is a
constant. First, note that the operator

L2 = EI

m

�4

�x4
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has a compact inverse and is self-adjoint and positive definite with respect to the given boundary
conditions. Furthermore, the eigenfunctions of the operator L2 serve as eigenfunctions for the
operator L1 = 2�I . Thus, the eigenvalues of the operator 4L2 − L2

1 are (for the given boundary
conditions)

4
[
n4�4 EI

m
4
− �2

]

which are greater than zero for every value of the index n if

�2


2

√
EI

m
> �

Hence, each coefficient, an�t�, is underdamped in this case. The solution given by Equation (12.5)
then applies.

The forcing function for the system is described by

f�x� t� = �

(
x − 


2

)
sin t

where ��x− 
/2� is the Dirac delta function. Substitution of this last expression into Equation (12.4)
along with the normalized eigenfunctions of example 10.3.1 yields

fn�t� =
√

2



sin t
∫ 


0 sin
(

n�x



)
�
(
x − 


2

)
dx

=
√

2



sin t sin n�
2

In addition, the natural frequency, damping ratio, and damped natural frequency become


n =
(n�




)2
√

EI

m

�n = �


n


dn = 
n

√
1 − �2


2
n

With these modal damping properties determined, specific computation of Equation (12.5) can be
performed. Note that the even modes are not excited in this case, since f2n =0 for each n. Physically,
these are zero because the even modes all have nodes at the point of excitation, x = 
/2.

If the damping in the system is such that the system is overdamped or mixed damped,
the solution procedure is the same. The only difference is that the form of an�t� given
by Equation (12.5) changes. For instance, if there is zero damping in the system, then
�n → 0�
 → 
n, and the solution of Equation (12.5) becomes

an�t� = 1

n

∫ t

0
fn�t − �� sin�
n�� d� (12.10)
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12.3 MODAL DESIGN CRITERIA

The previous section indicates how to calculate the forced response of a given structure to
an external disturbance by modal analysis. This modal approach is essentially equivalent to
decoupling a partial differential equation into an infinite set of ordinary differential equations.
This section examines some of the traditional design formulae for single-degree-of-freedom
oscillators applied to the modal coordinates of a distributed-parameter structure of the form
given in Equation (12.9). This modal design approach assumes that the summation of
Equation (12.9) is uniformly convergent and the set of eigenfunctions ��n�x�� is complete.
Hence, there is a value of the index n, say n = N , for which the difference between w�x� t�
and the partial sum

N∑
n=1

an�t��n�x�

is arbitrarily small. Physically, observation of certain distributed-mass systems indicates that
some key modes seem to dominate the response, w�x� t�, of the system. Both the mathematics
and the physics in this case encourage the use of these dominant modes in the design
criteria.

As an illustration of modal dominance, consider again the problem of example 12.2.1.
With zero initial conditions, the response an�t� is of the same form as Equation (1.18)
multiplied by 0, 1, or −1, depending on the value of n (i.e., sin n�/2). In fact, integration
of Equation (12.5) for the case fn�t� = fn0 sin 
t yields

an�t� = Xn sin�
t + �n� (12.11)

The coefficient Xn is determined (see Section 1.4) to be

Xn = fn0√
�	

�2�
n − 
2�2 + �	

�1�
n 
�2

(12.12)

and the phase shift �n becomes

�n = tan−1 	�1�
n 


	
�2�
n − 
2

(12.13)

The quantity Xn can be thought of as a modal participation factor in that it is an indication
of how dominant the nth mode is. For a fixed value of the driving frequency 
, the values
of Xn steadily decrease as the index n increases. The modal participation factor decreases
unless the driving frequency is close to the square root of one of the eigenvalues of the
operator L2. In this case the modal participation factor for that index may be a maximum. By
examining the modal participation factors or modal amplitudes, the designer can determine
which modes are of interest or which modes are most important. The following example
illustrates this point.
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Example 12.3.1

Calculate the modal amplitudes for the clamped beam of example 12.2.1. Note that in this case the
driving frequency is 1, i.e., 
 = 1. For the sake of simplicity, let EI = m = � = 1and 
 = 2, so that
the system is underdamped. From example 12.2.1, fn0 = 1 for each n. Also, 	

�1�
n = 2 for each n and

	�2�
n = 6�088n4

for each value of the index n. In this case, Equation (12.12) yields

X1 = 0�183� X2 = 0�010� X3 = 0�002

Note that the modal participation factor, Xn� decreases rapidly with increasing n.
Next, consider the same problem with the same physical parameters, except with a new driving

frequency of 
 = 22. In this case the modal participation factors are

X1 = 0�002� X2 = 0�003

X3 = 0�022� X4 = 0�0009

X5 = 0�0003� X6 = 0�0001

This example illustrates that, if the driving frequency is close to a given mode frequency (X3 in this
case), the corresponding modal amplitude will increase in absolute value.

By examining the solution w�x� t� mode by mode, certain design criteria can be formulated
and applied. For example, the magnification curve of Figure 1.9 follows directly from
Equation (12.12) on a per mode basis. Indeed, all the design and response characterizations
of Section 1.4, such as bandwidth and overshoot, can be applied per mode. However, all
the design procedures become more complicated because of coefficient coupling between
each of the mode equations given by Equation (12.11). While the equations for an�t� are
decoupled in the sense that each an�t� can be solved for independently of each other, the
coefficients in these equations will depend on the same physical parameters (i.e., E� I���m�
and so on). This is illustrated in the following example.

Example 12.3.2

Consider the step response of the clamped beam of example 12.2.1. A modal time to peak can
be defined for such a system by using Equation (1.27) applied to Equation (12.3). With a proper
interpretation of �n and 
n, the modal time to peak, denoted by tpn, is

tpn = �


n

√
1 − �2

n

where 
n = �n2�2/
2�
√

EI/m and �n =�/
n� Examination of this formula shows that, if E� I�m,
and � are chosen so that tp2 has a desired value, then tp3� tp4� � � � are fixed. Thus, the peak time,
overshoot, and so on, of a distributed-mass system cannot be independently chosen on a per mode
basis even though the governing equations decouple.
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12.4 COMBINED DYNAMICAL SYSTEMS

Many systems are best modeled by combinations of distributed-mass components and
lumped-mass components. Such systems are called hybrid systems, distributed systems with
lumped appendages, or combined dynamical systems. This section discusses the natural fre-
quencies and mode shapes of such structures and the use of the eigensolution to solve for
the forced response of such structures.

As an example of such a system, consider the free vibration of a beam of length 

connected to a lumped mass and spring as illustrated in Figure 12.1. The equation of motion
of the beam with the effect of the oscillator modeled as an external force, f�t���x − x1�, is

EIwxxxx + �Awtt = f�t���x − x1�� x ∈ �0� 
� (12.14)

The equation of motion of the appended system is given by

mz̈�t� + kz�t� = −f�t� (12.15)

where m is the appended mass and k is the associated stiffness. Here, the coordinate, z�t�, of
the appended mass is actually the displacement of the beam at the point of attachment, i.e.,

z�t� = w�x1� t� (12.16)

Combining Equations (12.14) and (12.15) yields

[
EI

�4

�x4
+ k��x − x1�

]
w�x� t� + ��A + m��x − x1��wtt�x� t� = 0 (12.17)

The solution w�x� t� is now assumed to separate, i.e., w�x� t� = u�x�a�t�. Following the
method of separation of variables, substitution of the separated form into Equation (12.17)
and rearrangement of terms yields

EIu′′′′�x� + k��x − x1�u�x�

��A + m��x − x1��u�x�
= − ä�t�

a�t�
(12.18)

y

x
x1

w (x, t )

m

k

l0

Figure 12.1 A beam with an attached lumped mass–spring system.
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As before (see Section 9.2), each side of the equality must be constant. Taking the separation
constant to be 
2, the temporal function a�t� has the harmonic form

a�t� = A sin�
t� + B cos�
t� (12.19)

where A and B are constants of integration determined by the initial conditions. The spatial
equation becomes

ELu′′′′�x� + [
�k − m
2���x − x1� − �A
2

]
u�x� = 0 (12.20)

subject to the appropriate boundary conditions.
Solution of Equation (12.20) yields the generalized eigenfunctions, �n�x�, and eigen-

values, 
2
n, for the structure. These are called generalized eigenfunctions because Equa-

tion (12.20) does not formally define an operator eigenvalue problem, as specified in
Section 10.2. Hence, the procedure and modal analysis are performed formally. Note,
however, that, if k/m = 
2

n, i.e., if the appended spring–mass system is tuned to a natural
frequency of the beam, the related eigenfunction becomes that of the beam without the
appendage. The solution of Equation (12.20) can be constructed by use of a Green’s function
for the vibrating beam.

The Green’s function g�x� x1� for a beam satisfies

g′′′′ − �4g = ��x − x1� (12.21)

where �4 = �A
2/�EI� and g satisfies the appropriate boundary conditions. Following the
development of Section 10.6, Equation (12.21) has the solution

g�x� x1� = − 1
2�3 sin �
 sinh �


{
y�x� x1�� 0 < x < x1

y�x1� x�� x1 < x < 

(12.22)

where the function y�x� x1� is symmetric in x1 and x and has the form

y�x� x1� = sin��
 − �x1� sin��x� sinh��
�

− sinh��
 − �x1� sinh��x� sin��
� (12.23)

In terms of the Green’s function just defined, the solution to Equation (12.20) for the simply
supported case can be written as (see Nicholson and Bergman, 1986)

u�x� = 1
EI

�m
2 − k�g�x� x1�u�x1� (12.24)

If u�x1� were known, then Equation (12.24) would specify the eigenfunctions of the system.
Fortunately, the function u�x1� is determined by writing Equation (12.24) for the case x=x1,
resulting in [

EI −
{

m

(

2 − k

m

)}
g �x1� x1�

]
u�x1� = 0 (12.25)

which yields the characteristic equation for the system. In order to allow u�x1� to be nonzero,
the coefficient in Equation (12.25) must vanish, yielding an expression for computing the
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natural frequencies, 
. This transcendental equation in 
 contains terms of the form sin �

and hence has an infinite number of roots, denoted by 
n. Thus, Equation (12.24) yields an
infinite number of eigenfunctions, denoted by un�x�.

Both the free and forced response of a combined dynamical system, such as the one
described in Figure 12.1, can be calculated using a modal expansion for a cantilevered
beam. Following Section 9.4, the eigenfunctions are, from Equation (12.20), those of a
nonappended cantilevered beam, i.e.,

�i�x� = cosh �ix − cos �ix − �i�sinh �ix − sin �ix� (12.26)

Here, the constants �i are given by

�i =
cosh �i
 + cos �i


sinh �i
 + sin �i

(12.27)

and the eigenvalues �i are determined from the transcendental equation

1 + cosh �i
 cos �i
 = 0 (12.28)

Note that in this case the arguments of Section 11.6 hold and the functions �i�x� form a
complete orthogonal set of functions. Hence, the spatial solution u�x� can be written as

u�x� =
�∑

i=1

bi�i�x� (12.29)

with the set {�i} normalized so that

��i��j� = 
�ij (12.30)

Substitution of Equation (12.29) for u�x� in Equation (12.20), multiplying by �j�x�, using
the property

�′′′′
j �x� = �4

j �j�x�

and integrating over the interval (0,
) yields

EI
�4
i bi + �k−m
2��i�x1�bi�i�x1� − �A

2bi = 0 for i = j

�k − m
2��j�x1�bi�i�x1� = 0 for i �= j (12.31)

Dividing this last expression by �A
 and defining two new scalars, Aij and Bij , by

Aij = k�i�x1��j�x1�

�A

+ EI�4

i

�A
�ij (12.32)

Bij = 1
�A


m�i�x1��j�x1� + �ij (12.33)
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allows Equation (12.31) to be simplified. Equation (12.31) can be rewritten as

�∑
j=1

Aijbj = 
2
�∑

j=1

Bijbj (12.34)

This last expression is in the form of a generalized infinite matrix eigenvalue problem for

2 and the generalized Fourier coefficients bj . The elements bj are the modal participation
factors for the modal expansion given by Equation (12.29).

The orthogonality relationship for the eigenfunctions ��n�x�� is calculated from Equa-
tion (12.20) and rearranged in the form

�′′′′
n �x� −

(
�A
2

EI

)
�n�x� = 1

EI
�
2

nm − k���x − x1��n�x� (12.35)

Premultiplying Equation (12.35) by �m�x� and integrating yields (see problem 12.5)

�A
∫ 


0
�m�x��n�x� dx = −

∫ 


0
m��x − x1��m�x��n�x� dx

or ∫ 


0

[
1 + m

A�
��x − x1�

]
�m�x��n�x� dx = �nm (12.36)

The preceding characteristic equation and orthogonality relationship completes the modal
analysis of a cantilevered Euler–Bernoulli beam connected to a spring and lumped mass.

Equipped with the eigenvalues, eigenfunctions, and the appropriate orthogonality condi-
tion, a modal solution for the forced response of a damped structure can be carried out
for a proportionally damped beam connected to a lumped spring–mass dashpot arrangement
following these procedures. Bergman and Nicholson (1985) showed that the modal equations
for a damped cantilevered beam attached to a spring–mass dashpot appendage have the form

än�t� +
�∑

m=1

{
�b�nm + �

(
��4

m�4
n

�8
0

− �b

)
AmAn�m�x1��n�x1�ȧm�t�

}
+ �4

nan�t� = fn�t�

(12.37)
Here

fn�t� = �
∫ L

0
�n�x�f�x� t� dx

f�x� t� = externally applied force

�b = distributed damping coefficient

� = lumped damping rate

� = lumped mass

�2
n = system natural frequencies

�0 = lumped stiffness

An = �4
0

�4
0 − �4

n



324 FORCED RESPONSE AND CONTROL

With the given parameters and orthogonality conditions, the combined system has a modal
solution given by

w�x� t� =
�∑

n=1

an�t��n�x� (12.38)

where an�t� satisfies Equation (12.37) and the appropriate initial conditions. Note from
Equation (12.37) that proportional damping results if ��4

m�4
n = �b�

8
0.

12.5 PASSIVE CONTROL AND DESIGN

The lumped appendage attached to a beam of the previous section can be viewed as a passive
control device, much in the same way that the absorber of Section 6.2 can be thought of as
a passive control element. In addition, the layered materials of Section 9.6 can be thought
of as either a passive control method or a redesign method. In either case, the desired result
is to choose the parameters of the system in such a way that the resulting structure has
improved vibration response.

First, consider a single absorber added to a cantilevered beam. The equations of motion as
discussed in the previous section have a temporal response governed by Equation (12.37).
Thus, the rate of decay of the transient response is controlled by the damping terms:

�∑
m=1

{
�b�nm + �

��4
m�4

n

�8
0

− �bAmAn�m�x1��n�x1�

}
ȧm�t� (12.39)

The design problem becomes that of choosing x1� �� �, and �0 so that Equation (12.39)
has the desired value. With only four parameters to choose and an infinite number of modes
to effect, there are not enough design parameters to solve the problem. In addition, the
summation in Equation (12.39) effectively couples the design problem so that passive control
cannot be performed on a per mode basis. However, for specific cases the summation can
be truncated, making the design problem more plausible.

Next, consider the layered material of Section 9.6. Such materials can be designed to
produce both a desired elastic modulus and a desired loss factor (Nashif, Jones, and Hen-
derson, 1985). Consider the problem of increasing the damping in a beam so that structural
vibrations in the beam decay quickly. Researchers in the materials area often approach the
problem of characterizing the damping in a material by using the concept of loss factor,
introduced as � in Section 1.4, and the concept of complex modulus introduced next.

For a distributed-mass structure, it is common practice to introduce damping in materials
by simply replacing the elastic modulus for the material, denoted by E, with a complex
modulus of the form

E�1 + i�� (12.40)

where � is the experimentally determined loss factor for the material and i is the square root
of �−1�. The rationale for this approach is based on an assumed temporal solution of the form
A ei
t. If A ei
t is substituted into the equation of motion of a damped structure, the velocity
term yields a coefficient of the form i
, so that the resulting equation may be viewed as



PASSIVE CONTROL AND DESIGN 325

having a complex stiffness. This form of damping is also called the Kimball–Lovell complex
stiffness (see Bert, 1973).

The loss factor for a given structure made of standard metal is usually not large enough to
suppress unwanted vibrations in many applications. One approach to designing more highly
damped structures is to add a layer of damping material to the structure, as indicated in
Figure 12.2. The new structure then has different elastic modulus (frequencies) and loss
factor. In this way, the damping material can be thought of as a passive control device used
to change the poles of an existing structure to more desirable locations. Such a treatment of
structures is called extensional damping. Sometimes it is referred to as unconstrained layer
damping, or free layer damping.

Let E and � denote the elastic modulus and loss factor of the combined system of
Figure 12.2. Let E1 and �1 denote the modulus and loss factor of the original beam, and let
E2 and �2 denote the modulus and loss factor of the added damping material. In addition,
let H2 denote the thickness of the added damping layer and H1 denote the thickness of
the original beam. Let e2 = E2/E1 and h2 = H2/H1. The design formulae relating the ‘new’
modulus and loss factor to those of the original beam and added damping material are given
in Nashif, Jones, and Henderson (1985) as

EI

E1I1

= 1 + 4e2h2 + 6e2h
2
2 + 4e2h

3
2 + e2

2h
4
2

1 + e2h2

(12.41)

and

�

�1

= e2h2�3 + 6h2 + 4h2
2 + 2e2h

3
2 + e2

2h
4
2�

�1 + e2h2��1 + 4e2h2 + 6e2h
2
2 + 4e2h

3
2 + e2

2h
4
2�

(12.42)

where (e2h2�
2 is assumed to be much smaller than e2h2.

Equations (12.41) and (12.42) can be used to choose an appropriate damping material to
achieve a desired response.

The preceding complex modulus approach can also be used to calculate the response of
a layered structure. Note that the response of an undamped uniform beam can be written in
the form

w�x� t� =
�∑

n=1

g�E�an�t�E��n�x�E� (12.43)

where g�E� is some function of the modulus E. This functional dependence is usually
not explicitly indicated but rather is contained in the eigenvalues of the eigenfunctions

Figure 12.2 Passive vibration control by using a damping layer.
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�n�x�E� and in the temporal coefficients an�t�E�. One approach used to include the effects
of damping in a layered beam is simply to substitute the values of E + i� obtained from
Equations (12.41) and (12.42) into g� an, and �n in Equation (12.43). Each term of the series
(12.43) is complex and of the form g�E�1 + i��an�t�E�1 + i����n�x�E�1 + i���, so some
manipulation is required to calculate the real and imaginary parts. This approach should be
treated as an approximation, as it is not rigorous.

12.6 DISTRIBUTED MODAL CONTROL

In this section, the control of systems governed by partial differential equations of the form
of Equation (12.1) is considered. The control problem is to find some function f�x� t� such
that the response w�x� t� has a desired form. If f�x� t� is a function of the response of the
system, then the resulting choice of f�x� t� is called active control. If, on the other hand,
f�x� t� is thought of as a change in the design of the structure, it is referred to as passive
control (or redesign). Modal control methods can be used in either passive or active control.
Any control method that uses the eigenfunctions, or modes, of the system in determining
the control law f�x� t� is considered to be a modal control method.

Repeating the analysis of Section (12.2) yields the modal control equations. For the control
problem, the functions fn�t� of Equation (12.4) are thought of as modal controls, or inputs,
in the jargon of Chapter 7. As indicated in Chapter 7, there are many possible control
techniques to apply to Equation (12.3). Perhaps the simplest and most physically understood
is state feedback. Viewed by itself, Equation (12.3) is a two-state model, with the states
being the generalized velocity, ȧn�t�, and position, an�t�. If fn�t� is chosen in this way,
Equation (12.3) becomes

än�t� + 	�1�
n ȧn�t� + 	�2�

n an�t� = −c p
n an�t� − cv

nȧn�t� (12.44)

where cp
n and cv

n are modal position and velocity gains respectively. Obviously, the choice
of the position and velocity feedback gains completely determines the nth temporal coeffi-
cient in the free response given by Equation (12.10). In theory, cp

n and cv
n can be used to

determine such performance criteria as the overshoot, decay rate, speed of response, and so
on. These coefficients can be chosen as illustrated for the single-degree-of-freedom problem
of example 12.6.1.

The question arises, however, about the convergence of f�x� t�. Since

fn�t� = −c p
n an�t� − cv

nȧn�t� =
∫

�
f�x� t��n�x� d� (12.45)

the series

f�x� t� =
�∑

n=1

�−c p
n an�t� − cv

nȧn�t���n�x� d� (12.46)

must converge. Furthermore, it must converge to some function f�x� t� that is physically
realizable as a control. Such controls f�x� t� are referred to as distributed controls because
they are applied along the spatial domain �.
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Example 12.6.1

Consider the problem of controlling the first mode of a flexible bar. An internally damped bar clamped
at both ends has equations of motion given by Equation (12.1) with

L1 = −2b
�2

�x2
� L2 = −�

�2

�x2

andboundaryconditionsw�x� t�=0 atx=0 andx=1.Here,b is theconstantdenoting the rateof internal
damping, and�denotes a constant representing the stiffness in the bar �EI/��. Solution of the eigenvalue
problem for L1 and L2 and substitution of the appropriate eigenvalues into Equation (12.3) yields

än�t� + 2bn2�2ȧn�t� + �n2�2an�t� = fn�t�

For the sake of illustration, assume that � = 400�2 and b = 1 in the appropriate units.
Suppose it is desired to control only the lowest mode. Furthermore, suppose it is desired to shift

the frequency and damping ratio of the first mode. Note that the equation for the temporal coefficient
for the first mode is

ä1�t� + 2�2ȧn�t� + 400�4a1�t� = f1�t�

so that the first mode has an undamped natural frequency of 
1 = 20�2 and a damping ratio of
�1 = 0�05.

The control problem is taken to be that of calculating a control law, f�x� t�, that raises the natural
frequency to 25�2 and the damping ratio to 0.1. This goal will be achieved if the displacement
coefficient, after control is applied, has the value

�25�2�2 = 624�4

and the velocity coefficient of the closed-loop system has the value

2�1
1 = 2�0�1��25
2� = 5
2

Using Equation (12.44) with n = 1 yields

ä1�t� + 2�2ȧn�t� + 400�4a1�t� = −c
p
1 a1�t� − cv

1ȧ1�t�

Combining position coefficients and then velocity coefficients yields the following two simple
equations for the control gains:

c
p
1 + 400�4 = 625�4

cv
1 + 2�2 = 5�2

Thus, c p
1 = 225�4 and cv

1 = 3�2 will yield the desired first mode values. The modal control force is thus

f1�t� = −225�4a1�t� − 3�2ȧ1�t�

In order to apply this control law only to the first mode, the control force must be of the form

f�x� t� = f1�t��1�x�

For this choice of f�x� t� the other modal controls, fn�t�� n > 1, are all zero, which is very difficult
to achieve experimentally because the result requires f�x� t� to be distributed along a single mode.
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Unfortunately, designing distributed actuators is difficult in practice. The design of actuators
that produce a spatial distribution along a given mode, as required by the example, is even
more difficult. Based on the availability of actuators, the more practical approach is to
consider actuators that act at a point, or points, in the domain of the structure. The majority
of control methods used for distributed-parameter structures involve using finite-dimensional
models of the structure. Such models are often obtained by truncating the series expansion
of the solution of Equation (12.9). The methods of Chapter 7 are then used to design a
vibration control system for the structure. The success of such methods is tied to the process
of truncation (Gibson, 1981). Truncation is discussed in more detail in Chapter 13.

12.7 NONMODAL DISTRIBUTED CONTROL

An example of a distributed actuator that provides a nonmodal approach to control is the
use of a piezoelectric polymer. Piezoelectric devices offer a convenient source of distributed
actuators. One such actuator has been constructed and used for vibration control of a beam
(Bailey and Hubbard, 1985) and is presented here.

Consider the transverse vibrations of a cantilevered beam of length 
 with a piezoelectric
polymer bonded to one side of the beam. The result is a two-layer material similar to the
beam illustrated in Figure 12.2. Bailey and Hubbard (1985) have shown that the equation
governing the two-layer system is

�2

�x2

[
EI

�2w

�x2

]
+ �A

�2

�t2
= 0� x ∈ � (12.47)

with boundary conditions

w�0� t� = wx�0� t� = 0

EIwxx�
� t� = −cf�t� and wxxx�
� t� = 0 (12.48)

where it is assumed that the voltage applied by the polymer is distributed evenly along x,
i.e., that its spatial dependence is constant. Here, EI reflects the modulus and inertia of both
the beam and the polymer, � is the density, and A is the cross-sectional area. The constant c
is the bending moment per volt of the material and f�t� is the voltage applied to the polymer.
This distributed actuator behaves mathematically as a boundary control.

One approach to solving this control problem is to use a Lyapunov function, V�t�, for the
system, and choose a control, f�t�, to minimize the time rate of change of the Lyapunov
function.

The chosen Lyapunov function is

V�t� = 1
2

∫ 


0

[(
�2w

�x2

)2

+
(

�w

�t

)2
]

dt (12.49)

which is a measure of how far the beam is from its equilibrium position. Minimizing
the time derivative of this functional is then equivalent to trying to bring the system to
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rest (equilibrium) as fast as possible. Differentiating Equation (12.49) and substitution of
Equation (12.47) yields

�V

�t
=
∫ 


0

[
1 − EI

�A

]
wxxtwxx dx + c

�A
f�t�wxx�
� t� (12.51)

The voltage f�t� is thus chosen to minimize this last quantity. Bailey and Hubbard (1985)
showed that f�t�, given by

f�t� = −sgn�cwxt�
� t��fmax (12.52)

is used as a minimizing control law. Here, sgn denotes the signum function.
Not only is the control law of Equation (12.52) distributed and independent of the modal

description of the structure but it also allows the control force to be magnitude limited, i.e.,
�f�t�� < fmax. These are both very important practical features. In addition, the control law
depends only on feeding back the velocity of the tip of the beam. Hence, this distributed
control law requires that a measurement be taken at a single point at the tip (x = 
�.

12.8 STATE-SPACE CONTROL ANALYSIS

This section examines the control problem for distributed-parameter structures cast in the
state-space formulation. Considering Equation (12.1), define the two-dimensional vector
z�x� t� by

z�x� t� = �w�x� t� wt�x� t��T (12.53)

The state equation for the system of Equation (12.2) then becomes

zt = Az + bu (12.54)

where the matrix of operators A is defined by

A =
[

0 I
−L2 −L1

]
(12.55)

the vector b is defined by b = �0 1�T , and u = u�x� t� is now used to denote the applied
force, which in this case is a control. As in the lumped-mass case, there needs to be an
observation equation, denoted here as

y�x� t� = Cz�x� t� (12.56)

In addition, the state vector z is subject to boundary conditions and initial conditions and
must have the appropriate smoothness (i.e., the elements z belong to a specific function
space). Equations (12.55) and (12.56) form the state-space equations for the control of
distributed-mass systems and are a direct generalization of Equations (7.1) and (7.2) for the
control of lumped-mass systems.
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As discussed in the preceding sections, the input or control variable u�x� t� can be either
distributed or lumped in nature. In either case the general assumption is that the function
u�x� t� separates in space and time. The most common form taken by the control u�x� t�
describes the situation in which several time-dependent control forces are applied at various
points in the domain of the structure. In this case

u�x� t� =
m∑

i=1

��x − xi�ui�t� (12.57)

where the m control forces of the form ui�t� are applied to the m locations xi. Note that
this formulation is consistent with the development of combined dynamical systems of
Section 12.4.

The output, or measurement, of the system is also subject to the physical constraint that
most devices are lumped in nature. Measurements are most often proportional to a state or
its derivatives. In this case, y�x� t� takes the form

y�x� t� =
p∑

j=1

cj��x − xj�z�x� t� (12.58)

where cj are measurement gains of each of the p sensors located at the p points, xj , in the
domain of the structure.

The concepts of controllability and observability are of course equally as critical for
distributed-mass systems as they are for lumped-mass systems. Unfortunately, a precise
definition and appropriate theory is more difficult to develop and hence is not covered
here. Intuitively, however, the actuators and sensors should not be placed on nodes of the
vibrational modes of the structures. If this practice is adhered to, then the system will be
controllable and observable. This line of thought leads to the idea of modal controllability
and observability (see, for instance, Goodson and Klein, 1970).

An optimal control problem for a distributed-parameter structure can be formulated fol-
lowing the discussion in Section 7.4 by defining various cost functionals. In addition, pole
placement and state feedback schemes can be devised for distributed-parameter systems,
generalizing the approaches used in Chapter 7. Note, however, that not all finite-dimensional
control methods have direct analogs in distributed-parameter systems. This lack of analogy
is largely due to the difference between functional analysis and linear algebra.

CHAPTER NOTES

This chapter discusses the analysis of the forced response and control of structures with
distributed mass. Section 12.2 presents standard, well-known modal analysis of the forced
response of a distributed-mass system. Such an approach essentially reduces the distributed-
mass formulation to a system of single-degree-of-freedom models that can be analyzed by the
methods of Chapter 1. Section 12.3 examines some design specifications for distributed-mass
systems in modal coordinates. One cannot assign design criteria to each mode independently,
as is sometimes suggested by using modal coordinates.

Section 12.4 examines a method of calculating the response of hybrid systems, i.e., systems
composed of both distributed-mass elements and lumped-mass elements. Several authors
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have approached this problem over the years. Most recently, Nicholson and Bergman (1986)
produced a series of papers (complete with computer code) discussing combined dynamical
systems based on beam equations. Their paper is essentially paraphrased in Section 12.4.
Banks et al. (1998) clarify the existence of normal modes in combined dynamical systems.
The papers by the Bergman group also contain an excellent bibliography of this area. The
importance of the analysis of combined dynamical systems is indicated in Section 12.5 on
passive control. The most common passive vibration suppression technique is to use an
absorber or an isolator. The theory by Bergman et al. provides an excellent analytical tool for
the design of such systems. An alternative and very useful approach to vibration design and
passive control is to use layers of material and high damping (loss factor). This approach is
discussed extensively in the book by Nashif, Jones, and Henderson (1985), which provides
a complete bibliography.

Section 12.6 discusses the concept of modal control for distributed-mass structures with
distributed actuators and sensors. This material is expanded in a paper by Inman (1984).
The details of using a modal control method are outlined by Meirovitch and Baruh (1982)
and were originally introduced by Gould and Murray-Lasso (1966). Gibson (1981) discusses
some of the problems associated with using finite-dimensional state models in designing
control laws for distributed-mass systems. This result has sparked interest in nonmodal con-
trol methods, an example of which is discussed in Section 12.7. The material of Section 12.7
is taken from the paper by Bailey and Hubbard (1985).

Section 12.8 presents a very brief introduction to formulating the control problem in the
state space. Several books, notably Komkov (1970) and Lions (1972), discuss this topic
in more detail. A more practical approach to the control problem is presented in the next
chapter. Tzou and Bergman (1998) present a collection of works on the vibration and control
of distributed-mass systems.

REFERENCES
Bailey, T. and Hubbard, J.E. (1985) Distributed piezoelectric polymer active vibration control of a cantilevered

beam. AIAA Journal of Guidance Control and Dynamics, 8 (5), 605–11.
Banks, H.T., Bergman, L.A., Inman, D.J., and Luo, Z. (1998) On the existence of normal modes of damped discrete

continuous systems. Journal of Applied Mechanics, 65 (4), 980–9.
Bergman, L.A. and Nicholson, J.W. (1985) Forced vibration of a damped combined linear system. Trans. ASME,

Journal of Vibration, Acoustics, Stress and Reliability in Design, 107, 275–81.
Bert, C.W. (1973) Material damping: an introductory review of mathematical models measures and experimental

techniques. Journal of Sound and Vibration, 19 (2), 129–53.
Gibson, J.S. (1981) An analysis of optimal modal regulation: convergence and stability. SIAM Journal of Control

and Optimization, 19, 686–706.
Goodson, R.E. and Klein, R.E. (1970) A definition and some results for distributed system observability. IEEE

Transactions on Automatic Control, AC-15, 165–74.
Gould, L.A. and Murray-Lasso, M.A. (1966) On the modal control of distributed systems with distributed feedback.

IEEE Transactions on Automatic Control, AC-11 (4), 729–37.
Inman, D.J. (1984) Modal decoupling conditions for distributed control of flexible structures. AIAA Journal of

Guidance, Control and Dynamics, 7 (6), 750–2.
Komkov, V. (1970) Optimal Control Theory for the damping of Vibrations of Simple Elastic Systems,

Springer-Verlag, New York (Lecture Notes in Mathematics, 153).
Lions, J.L. (1972) Some Aspects of the Optimal Control of Distributed Parameter Systems, Society of Industrial

and Applied Mathematics, Philadelphia, Pennsylvania.
Meirovitch, L. and Baruh, H. (1982) Control of self-adjoint distributed parameter systems. AIAA Journal of

Guidance, Control and Dynamics, 5, 60–6.



332 FORCED RESPONSE AND CONTROL

Nashif, A.D., Jones, D.I.G., and Henderson, J.P. (1985) Vibration Damping, John Wiley & Sons, Inc., New York.
Nicholson, J.W. and Bergman, L.A. (1986) Free vibration of combined dynamical systems. ASCE Journal of

Engineering Mechanics, 112 (1), 1–13.
Tzou, H.S. and Bergman, L.A. (eds) (1998) Dynamics and Control of Distributed Systems, Cambridge University

Press, Cambridge, UK.

PROBLEMS

12.1 Calculate the response of the first mode of a clamped membrane of Equation (9.86)
subject to zero initial conditions and an applied force of

f�x� y� t� = 3 sin t��x − 0�5���y − 0�5�

12.2 Derive the modal response [i.e., an�t�] for the general system given by Equa-
tion (12.1) and associated assumptions if, in addition to f�x� t�, the system is subject
to initial conditions of the form

w�x� 0� = w0� wt�x� 0� = wt0

Use the notation of Equations (12.3) through (12.8).
12.3 Calculate an expression for the modal participation factor for problem (12.1).
12.4 Define a modal logarithmic decrement for the system of Equation (12.1) and calculate

a formula for it.
12.5 Derive Equation (12.36) from Equation (12.35) by performing the suggested inte-

gration. Integrate the term containing �′′′′
n 4 times using the homogeneous boundary

conditions and again using Equation (12.35) to evaluate �′′′′
m .

12.6 Discuss the possibility that the sum in Equation (12.37) can be truncated because

��4
m�4

n = �8
0�b

for some choices of m and n.
12.7 Show that the complex stiffness is a consistent representation of the equation of

motion by substituting the assumed solution A ei
t into Equation (10.14). What
assumption must be made on the operators L1 and L2?

12.8 (a) Calculate the terms g�E�� an�t�E�, and �n�t�E� explicitly in terms of the
modulus E for a damped free beam of unit length.

(b) Next, substitute e�1 + i�� for E in your calculation and compare your result
with the same beam having a damping operator of L1 = 2�I , where I is the
identity operator.

12.9 Formulate an observer equation for a beam equation using the state-space formulation
of Section 12.8.

12.10 Consider the transverse vibration of a beam of length 
, modulus E, and mass
density �. Suppose an accelerometer is mounted at the point x = 
/2. Determine the
observability of the first three modes.


