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Matrices and the Free
Response

3.1 INTRODUCTION

As illustrated in Chapter 1, the nature of the free response of a single-degree-of-freedom
system is determined by the roots of the characteristic equation [Equation (1.8)]. In addi-
tion, the exact solution is calculated using these roots. A similar situation exists for the
multiple-degree-of-freedom systems described in the previous chapter. Motivated by the
single-degree-of-freedom system, this chapter examines the problem of characteristic roots
for systems in matrix notation and extends many of the ideas discussed in Chapter 1 to the
multiple-degree-of-freedom systems described in Chapter 2. The mathematical tools needed
to extend the ideas of Chapter 1 are those of linear algebra, which are introduced here in an
informal way, as needed.

Chapter 2 illustrated that many types of mechanical system can be characterized by vector
differential equations with matrix coefficients. Just as the nature of the scalar coefficients
in the single-degree-of-freedom case determines the form of the response, the nature of
the matrix coefficients determines the form of the response of multiple-degree-of-freedom
systems.

In fact, if we attempt to follow the method of solving single-degree-of-freedom vibra-
tion problems in solving multiple-degree-of-freedom systems, we are led immediately to a
standard matrix problem called the algebraic eigenvalue problem. This chapter introduces
the matrix eigenvalue problem and applies it to the multiple-degree-of-freedom vibration
problems introduced in Chapter 2. The eigenvalues and eigenvectors can be used to deter-
mine the time response to initial conditions by the process called modal analysis which is
introduced here. The use of high-level codes such as Matlab is introduced to compute mode
shapes and natural frequencies. The chapter concludes with simulation of the time response
to initial condition disturbances, using numerical integration as an alternative to modal
analysis.
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3.2 EIGENVALUES AND EIGENVECTORS

This section introduces topics from linear algebra and the matrix eigenvalue problem needed
to study the vibrations of multiple-degree-of-freedom systems. Consider first the simple
conservative vibration problem of Equation (2.11), repeated here:

Mẍ + Kx = 0

for the free response case where F = 0. Since M is assumed to be positive definite, it has
an inverse. Premultiplying the equation of motion by the matrix M−1 yields the following
equation for the free response:

q̈ + M−1Kq = 0

Following the mathematical approach of Section 1.2 and the physical notion that the solution
should oscillate suggests that a solution may exist of the form of nonzero constant u, in this
case a vector, times the exponential e�jt , i.e., q�t� = u e�jt . Substitution of this expression
into the preceding equation yields

−�2u + Au = 0� u �= 0

where A = M−1K . Rearrangement of this expression yields the equation

Au = �u� u �= 0

where � = �2 and u cannot be zero. This expression is exactly a statement of the matrix
eigenvalue problem. As in the case of the single-degree-of-freedom system, the constants
� = �2 characterize the natural frequencies of the system. With this as a motivation, the
matrix eigenvalue problem is described in detail in this section and applied to the linear
vibration problem in Section 3.3. Computational considerations are discussed in Section 3.8.

Square matrices can be characterized by their eigenvalues and eigenvectors, defined in
this section. Let A denote an n × n square matrix. The scalar � is defined as an eigenvalue
of matrix A with corresponding eigenvector x, which must be nonzero, if � and x satisfy the
equation

Ax = �x� x �= 0 (3.1)

Geometrically, this means that the action of matrix A on vector x just changes the length of
vector x and does not change its direction or orientation in space. Physically, the eigenvalue
� will yield information about the natural frequencies of the system described by matrix A.
It should be noted that, if x is an eigenvector of A, then so is the vector �x, where � is any
scalar. Thus, the magnitude of an eigenvector is arbitrary.

A rearrangement of Equation (3.1) yields

�A − �I�x = 0 (3.2)

where I is the n × n identity matrix. Since x cannot be zero, by the definition of an eigen-
vector, the inverse of the matrix �A −�I� must not exist. That is, there cannot exist a matrix
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�A − �I�−1 such that, �A − �I�−1�A − �I� = I . Otherwise, premultiplying Equation (3.2)
by this inverse would mean that the only solution to Equation (3.2) is x = 0, violating the
definition of an eigenvector. Matrices that do not have inverses are said to be singular, and
those that do have an inverse are called nonsingular.

Whether or not a matrix is singular can also be determined by examining the determinant
of the matrix. The determinant of an n × n matrix A is defined and denoted by

det A = �A� =
n∑

s=1

ars�Ars� (3.3)

for any fixed r, where ars is the element of A at the intersection of the rth row and sth column
of A and �Ars� is the determinant of the matrix formed from A by striking out the rth row and
sth column multiplied by �−1�r+s. An illustration of this for n = 2 is given in Section 2.3.
The value of the determinant of a matrix is a unique scalar. In addition, it is a simple matter
to show that

�A� = �AT � (3.4)

�AB� = �A��B� (3.5)

Whether or not the determinant of a matrix is zero is very significant and useful. The
following five statements are entirely equivalent:

1. A is nonsingular.
2. A−1 exists.
3. det A �= 0.
4. The only solution of the equation Ax = 0 is x = 0.
5. Zero is not an eigenvalue of A.

Note that, if det�A� = 0, then A−1 does not exist, A is singular, and Ax = 0 has a nontrivial
solution; i.e., zero is an eigenvalue of A.

Example 3.2.1

The determinant of matrix A is calculated from Equation (3.3) (r is chosen as the fixed value 1) as

det A =
⎡
⎣1 3 −2

0 1 1
2 5 3

⎤
⎦= 1��1��3� − �1��5�	 − 3��0��3� − �1��2�	 − 2��0��5� − �1��2�	 = 8

Applying the concept of the determinant of a matrix to the eigenvalue problem stated in Equa-
tion (3.2) indicates that, if � is to be an eigenvalue of matrix A, then � must satisfy the
equation

det�A − �I� = 0 (3.6)
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This expression results in a polynomial in �, which is called the characteristic equation of
matrix A.

Since A is an n×n matrix, Equation (3.6) will have n roots (or A will have n eigenvalues),
which are denoted by �i. Then, Equation (3.6) can be rewritten as

det�A − �I� =
n∏

i=1

�� − �i� = 0 (3.7)

If �i happens to be a root that is repeated mi times, then this becomes

det�A − �I� =
k∏

i=1

�� − �i�
mi � where

k∑
i=1

mi = n (3.8)

Also, note from examination of Equation (3.2) that any given eigenvalue may have
many eigenvectors associated with it. For instance, if x is an eigenvector of A with corre-
sponding eigenvalue �, and � is any scalar, �x is also an eigenvector of A with corresponding
eigenvalue �. Eigenvectors have several other interesting properties, many of which are
useful in calculating the free response of a vibrating system.

The first property has to do with the concept of linear independence. A set of vec-
tors, denoted by 
ei�

n
i=1 = 
e1� e2� � � � � en�, is said to be linearly independent, or just

independent, if

�1e1 + �2e2 + · · · + �nen = 0 (3.9)

implies that each of the scalars �i is zero. If this is not the case, i.e., if there exists one or more
nonzero scalars �i satisfying Equation (3.9), then the set of vectors 
xi� is said to be linearly
dependent. The set of all linear combinations of all n-dimensional real vectors is called the
span of the set of all n-dimensional real vectors. A set of n linearly independent vectors,

e1� e2� � � � � en� is said to form a basis for the span of vectors of dimension n. This means
that, if x is any vector of dimension n, then there exists a unique representation of vector x
in terms of the basis vectors ei, given by

x = a1e1 + a2e2 + · · · + anen (3.10)

The coefficients ai are sometimes called the coordinates of vector x in the basis 
ei�
n
i=1. One

familiar basis is the basis consisting of unit vectors
(

î� ĵ� k̂
)

of a rectangular coordinate
system, which forms a basis for the set of all three-dimensional real vectors.

Another important use of the idea of linear independence is contained in the concept of
the rank of a matrix. The rank of a matrix is defined as the number of independent rows
(or columns) of the matrix when the rows (columns) are treated like vectors. This property
is used in stability analysis in Chapter 4, and in control in Chapter 7. Note that a square
n × n matrix is nonsingular if and only if its rank is n (i.e., if and only if it has full rank).

If the scalar product, or dot product, of two vectors is zero, i.e., if xT
i xj = 0, then the two

vectors are said to be orthogonal. If xT
i xi = 1, the vector xi is called a unit vector. If a set of

unit vectors is also orthogonal, i.e., if

xT
i xj = ij =

{
0� i �= j

1� i = j
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they are said to be an orthonormal set. Here, ij is the Kronecker delta. Again, the familiar
unit vectors of rectangular coordinate systems are an orthonormal set of vectors. Also, as
discussed later, the eigenvectors of a symmetric matrix can be used to form an orthonormal
set. This property is used in this chapter and again in Chapter 5 to solve various vibration
problems.

Another important property of eigenvectors is as follows. If A is a square matrix and if
the eigenvalues of A are distinct, then the eigenvectors associated with those eigenvalues
are independent. If A is also symmetric, then an independent set of eigenvectors exist even
if the eigenvalues are repeated. Furthermore, if zero is not an eigenvalue of A and A has
eigenvalues �i with corresponding eigenvectors xi, then the eigenvectors of A−1 are also xi

and the eigenvalues are �−1
i . Thus, A and A−1 have related eigenvalue problems. Yet another

useful result for the eigenvalues, �i, of matrix A is that the eigenvalues of (A ± �I) are just
�i ± �, where � is any scalar (called a shift).

Matrix A is similar to matrix B if there exists a nonsingular matrix P such that

A = PBP−1 (3.11)

In this case, P is referred to as a similarity transformation (matrix) and may be used to change
vibration problems from one coordinate system, which may be complicated, to another
coordinate system that has a simple or canonical form.

The reason that similarity transformations are of interest is that, if two matrices are
similar, they will have the same eigenvalues. Another way to state this is that similarity
transformations preserve eigenvalues, or that eigenvalues are invariant under similarity
transformations. Some square matrices are similar to diagonal matrices. Diagonal matrices
consist of all zero elements except for those on the diagonal, making them easy to manipulate.
The algebra of diagonal matrices is much like that of scalar algebra. This class of matrices
is examined in detail next.

If matrix A is similar to a diagonal matrix, denoted by �, then A can be written as

A = P�P−1 (3.12)

Postmultiplying this expression by P yields

AP = P� (3.13)

Now, let the vectors pi� i = 1� 2� � � � � n, be the columns of matrix P, i.e.,

P = �p1 p2 p3 · · · pn	 (3.14)

Note that no pi can be a zero vector since P is nonsingular. If �ii denotes the ith diagonal
element of diagonal matrix �, then Equation (3.13) can be rewritten as the n separate
equations

Api = �iipi� i = 1� 2� � � � � n (3.15)
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Equations (3.15) state that pi is the ith eigenvector of matrix A and that �ii is the associated
eigenvalue, �i. The preceding observation can be summarized as follows:

1. If A is similar to a diagonal matrix, the diagonal elements of that matrix are the
eigenvalues of A (i.e., �i = �ii).

2. A is similar to a diagonal matrix if and only if A has a set of n linearly independent
eigenvectors.

3. If A has distinct eigenvalues, then it is similar to a diagonal matrix.

As an important note for vibration analysis: if A is a real symmetric matrix, then there exists
a matrix P such that Equation (3.12) holds.

If the eigenvectors of A are linearly independent, they can be used to form an orthonormal
set. Let si denote the orthonormal eigenvectors of A so that sT

i sj = ij , the Kronecker delta.
Forming a matrix out of this set of normalized eigenvectors then yields

S = �s1 s2 s3 � � � sn	 (3.16)

Here, note that expanding the matrix product ST S yields

ST S = I (3.17)

where I is the n×n identity matrix, because of the orthonormality of the rows and columns
of S. Equation (3.17) implies immediately that ST =S−1. Such real-valued matrices are called
orthogonal matrices, and Equation (3.12) can be written as

A = S�ST (3.18)

In this case, A is said to be orthogonally similar to �. (If S is complex valued, then S∗S = I ,
where the asterisk indicates the complex conjugate transpose of S, and S is called a Hermitian
matrix.) Orthonormal sets are used to compute the time response of vibrating systems from
the eigenvalues and eigenvectors.

Often it is convenient in vibration analysis to modify the concept of orthogonally similar
matrices by introducing the concept of a weighting matrix. To this end, the eigenvectors of
a matrix K can be normalized with respect to a second positive definite matrix, which in
this case is chosen to be the matrix M. That is, the magnitude of the eigenvectors of K� xi,
are chosen such that

xT
i Mxj = ij (3.19)

In this case the weighted transformation, denoted by Sm, has the following properties:

ST
mMSm = I (3.20)

ST
mKSm = diag��2

i 	 (3.21)

where �2
i denote the eigenvalues of matrix K . This is not to be confused with the diagonal

matrix ST KS, where S is made up of the (not weighted) eigenvectors of matrix K .
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3.3 NATURAL FREQUENCIES AND MODE SHAPES

As mentioned previously, the concept of the eigenvalue of a matrix is closely related to
the concept of natural frequency of vibration in mechanical structures, just as the roots
of the characteristic equation and natural frequency of a single-degree-of-freedom system
are related. To make the connection formally, consider again the undamped nongyroscopic
conservative system described by

Mq̈�t� + Kq�t� = 0 (3.22)

subject to initial conditions q0 and q̇0. Here, the matrices M and K are assumed to be
symmetric and positive definite.

In an attempt to solve Equation (3.22), a procedure similar to the method used to solve a
single-degree-of-freedom system is employed by assuming a solution of the form

q�t� = u e�jt (3.23)

Here, u is a nonzero, unkown vector of constants, � is a scalar value to be determined, j =√−1, and t is, of course, the time. Substitution of Equation (3.23) into Equation (3.22) yields

�−M�2 + K�u e�jt = 0 (3.24)

This is identical to the procedure used in Section 1.2 for single-degree-of-freedom systems.
Since e�jt is never zero for any value of � or t, Equation (3.24) holds if and only if

�−M�2 + K�u = 0 (3.25)

This is starting to look very much like the eigenvalue problem posed in Equation (3.2). To
make the analogy more complete, let �2 = �, so that Equation (3.25) becomes

�K − �M�u = 0 (3.26)

Since it is desired to calculate nonzero solutions of Equation (3.22), the vector u should be
nonzero. This corresponds very well to the definition of an eigenvector, i.e., that it be nonzero.
Eigenvalue problems stated in terms of two matrices of the form Ax =�Bx� x �= 0, are called
generalized eigenvalue problems. Now recall, that a nonzero solution u of Equation (3.26)
exists if and only if the matrix �K − �M� is singular or if and only if

det�K − �M� = 0 (3.27)

Next, note that, since M is positive definite, it must have an inverse. To see this, note that,
if M−1does not exist, then there is a nonzero vector x such that

Mx = 0� x �= 0 (3.28)

Premultiplying by xT results in

xT Mx = 0� x �= 0 (3.29)

which clearly contradicts the fact that M is positive definite (recall the end of Section 2.1).
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Since M−1 exists, det�M−1� �=0 and we can multiply Equation (3.27) by det�M−1� [invok-
ing Equation (3.5)] to obtain

det�M−1K − �I� = 0 (3.30)

which is of the same form as Equation (3.6) used to define eigenvalues and yields a
polynomial in � of order n. As will be illustrated, each root of Equation (3.30), or eigenvalue
of the matrix M−1K , is the square of one of the natural frequencies of Equation (3.22).

There are several alternative ways to relate the eigenvalue problem of Equation (3.1) to
the natural frequency problem of Equation (3.22). For instance, since M is positive definite,
it has a positive definite square root. That is, there exists a unique positive definite matrix
M1/2 such that M1/2M1/2 =M. The eigenvalues of M1/2 are �

1/2
i , where �i are the eigenvalues

of M. Both M and its matrix square root have the same eigenvectors. Furthermore, if P is
the matrix of eigenvectors of M, then

M1/2 = P�
1/2
M P−1 (3.31)

where �
1/2
M is a diagonal matrix with diagonal elements �

1/2
i . Many times in modeling

systems, M is already diagonal, in which case the matrix square root is calculated by taking
the square root of each of the diagonal elements. Systems with a non-diagonal mass matrix
are called dynamically coupled systems. The existence of this matrix square root provides
an important alternative relationship between matrix eigenvalues and vibrational natural
frequencies and allows a direct analogy with the single-degree-of-freedom case. Matrix
factorizations, such as the square root, lead to more computationally efficient algorithms
(see Section 3.8).

Since M1/2 is positive definite, it has an inverse M−1/2, and pre- and postmultiplying
Equation (3.27) by det(M−1/2� and factoring out −1 yields

det��I − M−1/2KM−1/2� = 0 (3.32)

Equation (3.32) is an alternative way of expressing the eigenvalue problem. The difference
between Equations (3.32) and (3.30) is that the matrix K̃ = M−1/2KM−1/2 is symmetric and
positive definite, whereas M−1K is not necessarily symmetric. Matrix symmetry provides
both a theoretical and computational advantage. Specifically, a symmetric matrix is similar
to a diagonal matrix consisting of its eigenvalues along the diagonal, and the eigenvectors of
a symmetric matrix are linearly independent and orthogonal. The corresponding differential
equation then becomes

I r̈�t� + M−1/2KM−1/2r�t� = 0 (3.33)

where q�t�=M−1/2r�t� has been substituted into Equation (3.22) and the result premultiplied
by M−1/2.

As expected and shown later, the numbers �i are directly related to the natural frequencies
of vibration of the system described by Equation (3.22): �2

i = �2
i = �i. It is expected, as in

the case of single-degree-of-freedom systems with no damping, that the natural frequencies
will be such that the motion oscillates without decay. Mathematically, this result follows
from realizing that the matrix K̃ =M−1/2KM−1/2 is symmetric and positive definite, ensuring
the nature of the natural frequencies and eigenvectors.
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To see that a real, symmetric, positive definite matrix such as K̃ = M−1/2KM−1/2 has
positive real eigenvalues (and, hence, real eigenvectors) requires some simple manipulation
of the definitions of these properties. First, note that, if x is an eigenvector of A with
corresponding eigenvalue ��then

Ax = �x (3.34)

Assuming that � and x are complex and taking the conjugate transpose of this expression
yields (because A is symmetric)

x∗A = x∗�∗ (3.35)

Premultiplying Equation (3.34) by x∗, postmultiplying Equation (3.35) by x, and subtracting
the two yields

0 = x∗Ax − x∗Ax = �� − �∗�x∗x

or, since x �= 0, that � = �∗. Hence, � must be real valued.
Next, consider that A can be written as A = S�ST . Therefore, for any and all arbitrary

vectors x,

xT Ax = xT S�ST x = yT �y

where y = ST x is also free to take on any real value. This can be expressed as

yT �y =
n∑

i=1

�iy
2
i > 0

since A is positive definite. If the vectors y1 = �1 0 0 · · · 0	T , y2 = �0 1 0 · · · 0	T ,
� � � , yn = �0 0 0 · · · 1	T are, in turn, substituted into this last inequality, the result
is �i > 0, for each of the n values of index i. Hence, a positive definite symmetric
matrix has positive real eigenvalues (the converse is also true).

Applying this fact to Equation (3.32) indicates that each eigenvalue of the mass normalized
stiffness matrix K̃ = M−1/2KM−1/2 is a positive real number. From Equation (3.25) we see
that the natural frequencies of Equation (3.22) are � = �, where �2 = �, a positive real
number. Hence, the coefficient of t in Equation (3.23) has the form � = ±√

�j, just as
in the single-degree-of-freedom case. The square roots of �i are the natural frequencies of
the system, i.e., �i =

√
�i, where i ranges from 1 to n, n being the number of degrees of

freedom. That is, there is one natural frequency for each degree of freedom.
The concept of a positive definite matrix can also be related to conditions on the elements

of the matrix in a useful manner. Namely, it can be shown that a symmetric matrix A is
positive definite if and only if the leading principal minors of A are positive. That is, if

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

���
���

���
���

an1 an2 · · · amn

⎤
⎥⎥⎥⎦
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then A is positive definite if and only if

a11 > 0

det
[

a11 a12

a21 a22

]
> 0

det

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦> 0

���

detA > 0

This condition provides a connection between the condition that a matrix be positive definite
and the physical parameters of the system. For example, the stiffness matrix of example 2.4.1
will be positive definite if and only if k1 + k2 > m�2 and 2k2 > m�2, by the preceding
principle minor condition. That is, for A = K in example 2.4.1, the first two conditions
yield the two inequalities in ki�m, and �. This provides physical insight as it indicates
that stability may be lost if the system spins faster (�) than the stiffness can handle. These
inequalities are very useful in vibration design and in stability analysis.

Another interesting fact about symmetric matrices is that their eigenvectors form a com-
plete set, or a basis. Recall that a set of real vectors 
ui� of dimension n is a basis for the
set of all real n-dimensional vectors if and only if they are linearly independent and every
other real vector of dimension n can be written as a linear combination of ui. Thus, the
solution q�t� can be expanded in terms of these eigenvectors. The set of eigenvectors of the
matrix K̃ =M−1/2KM−1/2 forms a linearly independent set such that any vector of dimension
n can be written as a linear combination of these vectors. In particular, the solution of the
vibration problem can be expanded in terms of this basis.

Combining the preceding matrix results leads to the following solution for the response
r�t�. There are n solutions of Equation (3.33) of the form

rk�t� = uk e�kjt (3.36)

As just shown, under the assumption that M−1/2KM−1/2 is positive definite, the numbers �k

must all be of the form

�k = ±√
�k (3.37)

where �k are the positive eigenvalues of the matrix M−1/2KM−1/2. Combining Equation (3.36)
and (3.37) it can be seen that each rk�t� must have the form

rk�t� =
(
ak e−

√
�kjt + bk e+

√
�kjt

)
uk (3.38)
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where ak and bk are arbitrary constants. Since uk are the eigenvectors of a symmetric matrix,
they form a basis, so the n-dimensional vector r�t� can be expressed as a linear combination
of these. That is,

r�t� =
n∑

k=1

(
ak e−

√
�k jt + bk e

√
�k jt

)
uk (3.39)

where the arbitrary constants ak and bk can be determined from the initial conditions r�0�
and ṙ�0�. This amounts to solving the 2n algebraic equations given by

r�0� =
n∑

k=1

�ak + bk�uk

ṙ�0� = j
n∑

k=1

√
�k�bk − ak�uk (3.40)

for the 2n constants ak and bk, k = 1� � � � � n.
Since the symmetric properties of the matrix M−1/2KM−1/2 were used to develop the solu-

tion given by Equation (3.39), note that the solution expressed in Equation (3.39)
is the solution of a slightly different problem to the solution q�t� of Equation (3.22). The
two are related by the transformation

q�t� = M−1/2r�t� (3.41)

which also specifies how the initial conditions in the original coordinates are to be
transformed.

Equation (3.39) can be manipulated, using Euler’s formulae for trigonometric functions,
to become

r�t� =
n∑

k=1

ck sin ��kt + �k� uk (3.42)

where ck and �k are constants determined by the initial conditions. This form clearly
indicates the oscillatory nature of the system and defines the concept of natural frequency.
Here, �k = +√

�k denotes the undamped natural frequencies. Note that the frequencies are

always positive because the Euler formula transformation from e±
√

�kt to sin �kt effectively
uses the ± sign in defining oscillation at the (positive) frequency �k. This expression
extends the undamped single-degree-of-freedom result to undamped multiple-degree-of-
freedom systems.

To evaluate the constants ck and �k, the orthonormality of vectors uk is again used.
Applying the initial conditions to Equation (3.42) yields

r�0� =
n∑

k=1

ck sin��k�uk (3.43)

and

ṙ�0� =
n∑

k=1

ck�k cos��k�uk (3.44)
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Equation (3.41) is used to yield r�0�= M1/2q�0� and ṙ�0�= M1/2q̇�0� from the given initial
conditions q�0� and q̇�0�. Premultiplying Equation (3.43) by uT

i yields

uT
i r�0� =

n∑
k=1

ck sin��k�uT
i uk

Invoking the orthonormality for vectors ui yields

ci sin �i = uT
i r�0� (3.45)

Likewise, Equation (3.44) yields

ci cos �i =
uT

i ṙ�0�

�i

(3.46)

Combining Equations (3.45) and (3.46) and renaming the index yields

�i = tan−1

{
�iu

T
i r�0�

uT
i ṙ�0�

}

and

ci =
uT

k r�0�

sin �i

Note that, if the initial position r�0� is zero, then Equation (3.45) would imply that �i = 0
for each i, then Equation (3.46) is used to compute the coefficients ci. Once the constants ci

and �i are determined, then the index is changed to k to fit into the sum of Equation (3.42)
which is written in terms of ck and �k.

Next, consider the eigenvectors uk to see how they represent the physical motion of the
system. Suppose the initial conditions r�0� and ṙ�0� are chosen in such a way that ck = 0
for k = 2� 3� · · · � n, c1 = 1, and �k = 0 for all k. Then, the expansion (3.42) reduces to one
simple term, namely

r�t� = sin��1t�u1 (3.47)

This implies that every mass is vibrating with frequency �1 or is stationary and that the
relative amplitude of vibration of each of the masses is the value of the corresponding element
of u1. Thus, the size and sign of each element of the eigenvector indicates the positions of
each mass from its equilibrium position, i.e., the ‘shape’ of the vibration at any instant of
time. Transforming this vector back into the physical coordinate system via v1 = M−1/2u1

allows the interpretation that vector v1 is the first mode shape of the system, or the mode
shape corresponding to the first natural frequency. This can clearly be repeated for each of
the subscripts k, so that vk is the kth mode shape. Hence, the transformed eigenvectors are
referred to as the modes of vibration of the system. Since eigenvectors are arbitrary to within
a multiplicative constant, so are the mode shapes. If the arbitrary constant is chosen so that
vk is normalized, i.e., so that vT

k vk = 1, and the vector vk is real, the vk is called a normal
mode of the system. The constants ck in Equation (3.42) are called modal participation
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factors because their relative magnitudes indicate how much the indexed mode influences
the response of the system.

The procedure just described constitutes a theoretical modal analysis of the system of
Equation (3.22). Some researchers refer to Equations (3.39) and (3.42) as the expansion
theorem. They depend on the completeness of the eigenvectors associated with the system,
i.e., of the matrix M−1/2KM−1/2.

Example 3.3.1

It should be obvious from Equations (3.27) and (3.32) how to calculate the eigenvalues and hence
the natural frequencies of the system as they are the roots of the characteristic polynomial following
from det�K̃ − �I� = 0. How to calculate the eigenvectors, however, may not be as obvious; thus,
calculation is illustrated in this example. Let �1 be an eigenvalue of A; then �1 and u1 = �x1 x2	

T

satisfy the vector equation [
a11 − �1 a12

a21 a22 − �1

][
x1

x2

]
=
[

0
0

]
(3.48)

This represents two dependent equations in x1 and x2, the two components of the eigenvector u1.
Hence, only their ratio can be determined. Proceeding with the first equation in system (3.48) yields

�a11 − �1�x1 + a12x2 = 0

which is solved for the ratio x1/x2. Then, the vector u1 is ‘normalized’ so that uT
1 u1 = x2

1 + x2
2 = 1.

The normalization yields specific values for x1 and x2. As a consequence of the singularity of
�A −�I�, the second equation in system (3.48), a21 + x1 + �a22 −��x2 = 0, is dependent on the first
and does not yield new information.

Example 3.3.2

This example illustrates the procedure for calculating the free vibrational response of a
multiple-degree-of-freedom system by using a modal expansion. The procedure is illustrated by a
two-degree-of-freedom system, since the procedure for a larger number of degrees of freedom is the
same. The purpose of the example is to develop an understanding of the eigenvector problem, and it is not
intended to imply that this is the most efficient way to calculate the time response of a system (it is not).

Consider the system described in Figure 2.4 with c1 = c2 =0�m1 =9�m2 =1� k1 =24, and k2 =3.
Then, the equation of motion becomes[

9 0
0 1

]
q̈ +

[
27 −3
−3 3

]
q = 0

subject to the initial condition q�0� = �1 0	T and q̇�0� = �0 0	T in some set of consistent units.
The matrix K̃ = M−1/2KM−1/2 becomes[

1/3 0
0 1

][
27 −3
−3 3

][
1/3 0
0 1

]
=
[

3 −1
−1 3

]

The characteristic equation [equation (3.32)] becomes

�2 − 6� + 8 = 0
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which has roots �1 = 2��2 = 4. The corresponding normalized eigenvectors are computed to be
u1 = �1/

√
2 1/

√
2	T and u2 = �−1/

√
2 1/

√
2	T , so that the orthogonal matrix of eigenvectors is

S = 1√
2

[
1 −1
1 1

]
(3.49)

Also note that ST �M−1/2KM−1/2�S = diag�2 4	, as it should. The transformed initial conditions
become

r�0� =
[

3 0
0 1

][
1
0

]
=
[

3
0

]

and of course ṙ�0� = �0 0	T . The values of the constants in Equation (3.42) are found from

�1 = tan−1

[
�1uT

1 r�0�

uT
1 ṙ�0�

]
= tan−1 � = �

2

c1 = uT
1 r�0�

sin �1
= 3√

2

�2 = tan−1

[
�2uT

2 r�0�

uT
2 ṙ�0�

]
= tan−1 � = �

2

c2 = uT
2 r�0�

sin �2
= −3√

2

Hence, the solution r�t� is given by

r�t� = 1�5 cos
√

2t

[
1
1

]
− 1�5 cos 2t

[−1
1

]

In the original coordinates this becomes q�t� = M−1/2r�t�

q�t� = 1�5 cos
√

2t

[
1/3
1

]
− 1�5 cos 2t

[−1/3
1

]

Multiplying this out yields the motion of the individual masses:

q1�t� = 0�5 cos
√

2t + 0�5 cos 2t

q2�t� = 1�5 cos
√

2t − 1�5 cos 2t

The two mode shapes are �vi = M1/2ui�

v1 = 1√
2

[
1/3
1

]
and v2 = 1√

2

[−1/3
1

]

If K is not symmetric, i.e., if we have a system of the form

Mq̈�t� + �K + H�q�t� = 0
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then proceed by solving an eigenvalue problem of the form

M−1�K + H�x = �x

or

Ax = �x

where A is not a symmetric matrix. In this case the eigenvalues �i and the eigenvectors
xi are in general complex numbers. Also, because of the asymmetry, matrix A has a left
eigenvector, yk, which satisfies

yT
k A = �kyT

k

and, in general, may not equal the right eigenvector, xk. Now, let yk be a left eigenvector
and xi be a right eigenvector. Then

Axi = �ixi or yT
k Axi = �iy

T
k xi (3.50)

and

yT
k A = �kyT

k or yT
k Axi = �kyT

k xi (3.51)

where the ith eigenvalues of xi and yi are the same. Subtracting Equation (3.51) from
Equation (3.50) yields ��i − �k�yT

k xi = 0, so that, if �i �= �k, then yT
k xi = 0. This is called

biorthogonality.
For distinct eigenvalues, the right and left eigenvectors of A each form a linearly indepen-

dent set and can then be used to express any n × 1 vector, i.e., an expansion theorem still
exists. These relations are useful for treating gyroscopic systems, systems with constraint
damping, systems with follower forces, and feedback control systems.

3.4 CANONICAL FORMS

The diagonal matrix of eigenvalues of Section 3.3 is considered a canonical, or simple, form
of a symmetric matrix. This is so because of the ease of manipulation of a diagonal matrix.
For instance, the square root of a diagonal matrix is just the diagonal matrix with nonzero
elements equal to the square root of the diagonal elements of the original matrix.

From the point of view of vibration analysis, the diagonal form provides an immediate
record of natural frequencies of vibration of systems. In addition, the similarity transformation
equation [Equation (3.12)] can be used to solve the undamped vibration problem of Equation
(3.33). To see this, let S be the orthogonal similarity transformation associated with the
symmetric matrix K̃ = M−1/2KM−1/2. Substitution of r�t� = Sy�t� into Equation (3.33) and
premultiplying by ST yields

ÿ�t� + �y�t� = 0 (3.52)
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where � is diagonal. Thus, Equation (3.52) represents n scalar equations, each of the form

ÿi�t� + �2
i yi�t� = 0� i = 1� 2� � � � � n (3.53)

These expressions can be integrated separately using the initial conditions y�0�=ST r�0� and
ẏ�0� = ST ṙ�0� to yield a solution equivalent to Equation (3.42). This argument forms the
crux of what is called modal analysis and is repeated many times in the following chapters.

Unfortunately, not every square matrix is similar to a diagonal matrix. However, every
square matrix is similar to an upper triangular matrix. That is, let matrix A have eigenvalues
�1��2� � � � � �n; there then exists a nonsingular matrix P such that

P−1AP =

⎡
⎢⎢⎢⎢⎢⎣

�1 t12 0 · · · 0 0
0 �2 t23 · · · 0 0
���

���
���

���
���

0 0 0 · · · �n−1 tn−1�n

0 0 0 · · · 0 �n

⎤
⎥⎥⎥⎥⎥⎦ (3.54)

The matrix P−1AP is said to be upper triangular. If the matrix is symmetric, then the tij in
Equation (3.54) are all zero, and the upper triangular matrix becomes a diagonal matrix.

A classic result in the theory of matrices is known as Jordan’s theorem and states the
following. Let A be n × n with eigenvalues �i of multiplicities mi, so that

det�A − �I� =
k∏

i=1

��i − ��mi � where
k∑

i=1

mi = n

Then, every matrix A is similar to a block-diagonal matrix of the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

�1 0 0 · · · 0
0 �2 0 · · · 0

0 0 �3 · · · ���
���

��� · · · � � � 0
0 0 · · · 0 �i

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.55)

where each block �i is of the form

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�i a 0 · · · 0

0 �i a
� � �

���
��� 0

� � �
� � � 0

0 · · · � � � �i a
0 0 · · · 0 �i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Here a=0 or 1, depending on whether or not the associated eigenvectors are dependent. The
value of a is determined as follows. If �i are distinct, then a = 0, always. If �i is repeated
mi times but has mi linearly independent eigenvectors, then a = 0. If the eigenvector xi is
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dependent (degenerate), then a = 1. If the preceding matrix describes a vibration problem,
the value of a determines whether or not a given system can be diagonalized. Note, then,
that in general it is eigenvector ‘degeneracy’ that causes problems in vibration analysis –
not just repeated eigenvalues.

Next, recall again that the determinant of a matrix is invariant under a similarity transfor-
mation. Expanding the determinant yields

det�A − �I� = �−1�n�� − �1��� − �2� · · · �� − �n�

which is the characteristic polynomial and hence is equal to

det�A − �I� = �−1�n��n + c1�
n−1 + · · · + cn−1� + cn� (3.56)

Thus, the coefficients ci of the characteristic polynomial must also be invariant under
similarity transformations. This fact is used to some advantage.

The trace of a matrix A is defined as

tr�A� =
n∑

i=1

aii (3.57)

That is, the trace is the sum of the diagonal entries of the matrix. Some manipulation yields

c1 = −tr�A� (3.58)

and

tr�A� =
n∑

i=1

�i (3.59)

Thus, the trace of a matrix is invariant under similarity transformations. Some additional
properties of the trace are

tr�AB� = tr�BA� (3.60)

For nonsingular matrix P

tr�A� = tr�P−1AP� (3.61)

For � and � scalars

tr��A + �B� = �tr�A� + �tr�B� (3.62)

and

tr�A� = tr�AT � (3.63)

It is interesting to note that the tr(A) and det(A) can be used for a check of computational
accuracy because they are invariant under similarity transformations.
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3.5 LAMBDA MATRICES

Since many structures exhibit velocity-dependent forces, the ideas of Section 3.4 need to be
extended to equations of the form

A1q̈ + A2q̇ + A3q = 0 (3.64)

Of course, this expression could be placed in the state-space form of Equation (2.20), and the
methods of Section 3.4 can be applied. In fact, many numerical algorithms do exactly that.
However, the second-order form does retain more of the physical identity of the problem
and hence is worth developing.

Again, assume solutions of Equation (3.64) of the form q�t�= u e�t, where u is a nonzero
vector of constants. Then Equation (3.64) becomes

��2A1 + �A2 + A3�u e�t = 0

or, since e�t is never zero,

��2A1 + �A2 + A3�u = 0

This last expression can be written as

D2���u = 0 (3.65)

where D2��� is referred to as a lambda matrix and u is referred to as a latent vector. In fact,
in this case u is called the right latent vector (Lancaster, 1966).

Here, it is important to distinguish between the concept of eigenvalues and eigenvectors
of a matrix [Equation (3.1)] and eigenvalues and eigenvectors of a system [Equation (3.65)]
Lancaster (1966) has suggested referring to � and u of the system as latent roots and latent
vectors respectively, in order to make this distinction clear. Unfortunately, this did not catch
on in the engineering literature. In order to be compatible with the literature, the distinction
between eigenvectors (of a single matrix) and latent vectors (of the system) must be made
from context. Equation (3.65) expresses the system eigenvectors and occasionally is referred
to as a nonlinear eigenvalue problem, a matrix polynomial problem, or a lambda matrix
problem.

For the existence of nonzero solutions of Equation (3.65), the matrix D2��� must be
singular, so that

det�D2���� = 0 (3.66)

The solutions to this 2n-degree polynomial in � are called latent roots, eigenvalues, or
characteristic values and contain information about the natural frequencies of the system.
Note that the solution of Equation (3.66) and the solution of det�A − �I� = 0 are the same.
Here, A is the state matrix [see Equation (2.20)] given by

A =
[

0 I
−A−1

1 A3 −A−1
1 A2

]
(3.67)
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Also, the eigenvectors of A are just �ui �iui	
T , where ui are the latent vectors of Equation

(3.65) and �i are the solutions of Equation (3.66).
An n×n lambda matrix, D2���, is said to be simple if A−1

1 exists and if, for each eigenvalue
(latent root) �i satisfying Equation (3.65), the rank of D2��i� is n − �i, where �i is the
multiplicity of the eigenvalue �i. If this is not true, then D2��� is said to be degenerate. If
each of the coefficient matrices are real and symmetric and if D2��� is simple, the solution
of Equation (3.64) is given by

q�t� =
2n∑
i=1

ciui e�it (3.68)

Here the ci are 2n constants to be determined from the initial conditions, and the ui are the
right eigenvectors (latent vectors) of D2���. Note that, if A2 = 0, Equation (3.65) collapses
to the eigenvalue problem of a matrix. The definitions of degenerate and simple still hold
in this case.

Since, in general, ui and �i are complex, the solution q�t� will be complex. The physical
interpretation is as follows. The displacement is the real part of q�t�, and the velocity is the
real part of q̇�t�. The terms modes and natural frequencies can again be used if care is taken
to interpret their meaning properly. The damped natural frequencies of the system are again
related to the �i in the sense that, if the initial conditions q�0� and q̇�0� are chosen such that
ci = 0 for all values of i except i = 1, each coordinate qi�t� will oscillate (if underdamped)
at a frequency determined by �i. Furthermore, if the ui are normalized, i.e., if u∗

i ui = 1,
then the elements of ui indicate the relative displacement and phase of each mass when the
system vibrates at that frequency. Here, u∗ denotes the complex conjugate of the transpose
of vector u.

In many situations, the coefficient matrices are symmetric and the damping matrix D is
chosen to be of a form that allows the solution (2.13) to be expressed as a linear combination
of the normal modes, or eigenvectors, of the matrix K̃ , which, of course, are real. In this
case, the matrix of eigenvectors decouples the equations of motion. In fact the main reason
for this assumption is the convenience offered by the analysis of systems that decouple. The
advantage in the normal mode case is that the eigenvectors are all real valued. To this end,
consider the symmetric damped system of Equation (2.13) and note the following:

1. If D = �M + �K , where � and � are any real scalars, then the eigenvectors (latent
vectors) of Equation (3.65) are the same as the eigenvectors of the same eigenvalue
problem with D = 0.

2. If D = n∑
i=1

�i−1K i−1, where �i are real scalars, then the eigenvectors of Equation (2.13)

are the same as the eigenvectors of the undamped system (D = 0).
3. The eigenvectors of Equation (2.13) are the same as those of the undamped system (with

D = 0) if and only if DM−1K = KM−1D (Caughey and O’Kelly, 1965).

Systems satisfying any of the above rules are said to be proportionally damped, to have
Rayleigh damping, or to be normal mode systems. Such systems can be decoupled by the
modal matrix associated with matrix K̃ .

Of the cases just mentioned, the third is the most general and includes the other two as
special cases. It is interesting to note that case 3 follows from a linear algebra theorem that
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states that two symmetric matrices have the same eigenvectors if and only if they commute
(Bellman, 1970), i.e., if and only if there exists a similarity transformation simultaneously
diagonalizing both matrices. It is also worth noting that, in the normal mode case, the
eigenvectors are real, but the reverse is not true (see the discussion of overdamping below).
That is, some structures with real-valued eigenvectors are not normal mode systems because
the matrix of modal vectors does not decouple the equations of motion (i.e., diagonalize
the coefficient matrices). The significance of complex eigenvectors is that the elements are
not in phase with each other as they are in the normal mode case. Some researchers have
incorrectly stated that, if the damping is small in value, normal modes can be assumed.
However, even small amounts of damping can cause condition 3 above to be violated,
resulting in complex mode shapes (see, for example, Lallament and Inman, 1995).

As a generic illustration of a normal mode system, let Sm be the matrix of eigenvectors
of K normalized with respect to the mass matrix M (i.e., Sm = M−1/2S� so that

ST
mMSm = I

ST
mKSm = �K = diag��2

i 	 (3.69)

where �2
i are the eigenvalues of matrix K and correspond to the square of the natural

frequencies of the undamped system. If case 3 holds, then the damping is also diagonalized
by the transformation Sm, so that

ST
mDSm = diag�2�i�i	 (3.70)

where �i are called the modal damping ratios. Then, Equation (3.64) can be transformed into
a diagonal system via the following. Let q�t� = Sm y�t� in Equation (2.13) and premultiply
by ST

m to get

ÿi�t� + 2�i�iẏi�t� + �2
i yi�t� = 0� i = 1� 2� � � � � n (3.71)

where yi�t� denotes the ith component of vector y�t�. Each of the n equations of system (3.71)
is a scalar, which can be analyzed by the methods of Chapter 1 for single-degree-of-freedom
systems. In this case the �i are called modal damping ratios and the �i are the undamped
natural frequencies, or modal frequencies.

Alternatively, the modal decoupling described in the above paragraph can be obtained
by using the mass normalized stiffness matrix. To see this, substitute q = M−1/2r into
Equation (2.12), multiply by M−1/2 to form K̃ = M−1/2KM−1/2, compute the normalized
eigenvectors of K̃ , and use these to form the columns of the orthogonal matrix S. Next, use
the substitution r = Sy in the equation of motion, premultiply by ST , and Equation (3.71)
results. This procedure is illustrated in the following example.

Example 3.5.1

Let the coefficient matrices of Equation (2.13) have the values

M =
[

9 0
0 1

]
� D =

[
9 −1

−1 1

]
� K =

[
27 −3
−3 3

]
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Calculating DM−1K yields

DM−1K =
⎡
⎣ 30 −6

−6
10
3

⎤
⎦

which is symmetric and hence equal to KM−1D, so that condition 3 is satisfied. From exam-
ple 3.3.2, the eigenvectors and eigenvalues of matrix K̃ are as follows: uT

1 = �1 1	/
√

2��1 =2� uT
2 =

�−1 1	/
√

2, and �2 = 4.
Then ST M−1/2DM−1/2S = diag�2/3 4/3	, and ST M−1/2KM−1/2S = diag�2 4	. Hence, Equation

(2.13) with f = 0 is equivalent to the two scalar equations given by

ẏ1�t� + �2/3�ẏ1�t� + 2y1�t� = 0

and

ÿ2�t� + �4/3�ẏ2�t� + 4y2�t� = 0

each of which can easily be solved by the methods of Chapter 1. From the displacement coefficient,
the frequencies are

�1 = √
2 rad/s and �2 = √

4 = 2 rad/s

and from the velocity coefficients the damping ratios are

�1 = 2
3

1
2�1

= 1

3
√

2
and �2 = 4

3
1

2�2
= 1

3

3.6 OSCILLATION RESULTS

The definition of critical damping, overdamping, and underdamping, stated for single-
degree-of-freedom systems in Chapter 1, can be extended to some of the lumped-parameter
systems of this chapter. In particular, consider the symmetric positive definite system
given by

r̈�t� + D̃ṙ�t� + K̃r�t� = 0 (3.72)

Here, D̃ = M−1/2DM−1/2� K̃ = M−1/2KM−1/2, and r�t� = M1/2q�t� in Equation (2.13). In a
form imitating the single-degree-of-freedom case, a critical damping matrix is defined as
D̃cr = 2K̃1/2. Then, the following classifications can be derived (Inman and Andry, 1980,
and Barkwell and Lancaster, 1992):

1. If D̃ = D̃cr, then Equation (3.72) is said to be a critically damped system, each mode
of vibration is critically damped, and each eigenvalue of Equation (3.72) is a repeated
negative real number. The response of such systems will not oscillate, and all the
eigenvectors are real.
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2. If the matrix D̃ − D̃cr is positive definite and D̃K̃ = K̃D̃, then Equation (3.72) is said
to be an overdamped system, each ‘mode’ of the structure is overdamped, and each
eigenvalue is a negative real number. The response of such systems will not oscillate,
and all the eigenvectors are real.

3. If the matrix D̃cr − D̃ is positive definite, then Equation (3.72) is said to be an under-
damped system, each mode of vibration is underdamped, and each eigenvalue is a
complex conjugate pair with a negative real part. The response of such systems oscillates
with decaying amplitude and the eigenvectors are, in general, complex (unless the matrix
DM−1K is symmetric).

A fourth possibility exists for the matrix case. That is, the matrix D̃ − D̃cr could be indefinite.
In this case, Equation (3.72) is said to exhibit mixed damping, and at least one mode oscillates
and at least one mode does not oscillate. In addition, if A is the state matrix associated with
Equation (3.72), then the system is overdamped if and only if A can be factored into the
product of two positive definite Hermitian matrices (Nicholson, 1983). In order to relax the
condition of normal modes in the overdamped case (case 2 above), Barkwell and Lancaster
(1992) showed that Equation (3.72) has all negative real eigenvalues if �1 > 2�n, where �1

is the smallest eigenvalue of the damping matrix D̃ and �n is the largest undamped natural
frequency.

The determinant condition of Section 3.2 for the positive definiteness of a matrix can be
used on the matrix D̃ − D̃cr to provide a system of nonlinear inequalities in the physical
parameters mi� ci, and ki of a given structure. These inequalities can be solved for low-order
systems to yield choices of mi� ci, and ki that will cause the system to be overdamped or
underdamped as desired. The following example illustrates the process.

Example 3.6.1

Consider the two-degree-of-freedom system of Figure 2.4, which has equations of motion given by

[
m1 0
0 m

]
q̈�t� +

[
c1 + c2 −c2

−c2 c2

]
q̇�t� +

[
k1 + k2 −k2

−k2 k2

]
q�t� = 0 (3.73)

where q�t� = �x1�t� x2�t�	
T .

To form the matrix 2K̃1/2 requires the computation of the square root of a matrix. This computa-
tional burden can be reduced by noting that Bellman (1968) has shown that, if 4K̃ − D̃2 is positive
definite, so is the matrix 2K̃1/2 − D̃. Hence, it is sufficient to calculate only the square of a matrix
instead of the square root of a matrix. To proceed, calculation of the square of the damping matrix
in terms of the generic values of the system parameters yields the following:

�4K̃ − D̃2�11 = 4
k1 + k2

m1
− �c1 + c2�

2

m2
1

− c2
2

m1m2

�4K̃ − D̃2�12 = − 4k2√
m1m2

+ c1c2 + c2
2

m1
√

m1m2
+ c2

2

m2
√

m1m2

�4K̃ − D2�22 = 4k2

m2
− c2

2

m2
2

− c2
2

m1m2
(3.74)
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Applying the determinant condition to the matrix defined by Equation (3.74) yields the inequalities

4
k1 + k2

m1
>

�c1 + c2
2�

m2
1

+ c2
2

m1m2
(3.75)

[
4k2

�m1m2�
1/2

− c1c2 + c2
2

�m3
1m2�

1/2
− c2

2

�m1m
3
2�

1/2

]2

>
c1 + c2

m2
1

+ c2
2

m1m2
− 4

k1 + k2

m1

c2
2

m2
2

+ c2
2

m1m2
− 4

k2

m2

These inequalities have many solutions. One possibility is to choose m1 =m2 =1� c1 =2� c2 =1� k1 =
5, and k2 = 4. With this choice, the motion should oscillate.

To check to see that this is, in fact, the case, these values of mi� ci, and ki can be substituted into
Equation (3.73). The characteristic equation then becomes

�4 + 4�3 + 15�2 + 13� + 20 = 0 (3.76)

This has roots

�1 = −0�312 − 1�306j
�2 = −0�312 + 1�306j

}
⇒ �1 = 1�343 rad/s and �1 = 0�232 < 1

�3 = −1�688 − 2�870j
�4 = −1�688 + 2�870j

}
⇒ �2 = 3�33 rad/s and �2 = 0�507 < 1

This clearly indicates that the system oscillates as indicated by the theory. Here, the natural frequen-
cies and damping ratios are determined from the complex eigenvalues by solving the two equations
�1�2 = −�1�1 ± �1

√
1 − �2

1 j for the two unknowns �1 and �1. Note that the matrix elements in
Equation (3.74) and the determinant in Equation (3.75) can be derived using symbolic computations
in Mathcad, Matlab, or Mathematica.

The condition of critical damping is a very special situation and is not easily obtainable. In
fact, unlike single-degree-of-freedom structures, not all multiple-degree-of-freedom systems
can be made critically damped by adjusting the spring, mass, and/or damping parameters.
For instance, consider the example in Figure 2.4. In order for this system to be critically
damped, each of the elements of matrix (3.74) must be zero. Since the matrix is symmetric,
this yields the three equalities

�c1 + c2�
2

m2
1

+ c2
2

m1m2

= 4
k1 + k2

m1

(3.77)

c2
2 + c1c2

m1

+ c2
2

m2

= 4k2 (3.78)

c2
2

m2
2

+ c2
2

m1m2

= 4
k2

m2

(3.79)

Manipulation of these equations shows that all three equalities can be satisfied if and only
if one of the pairs �k1� c1� or �k2� c2� is zero. This means critical damping can result only
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if the system is reduced to a single degree of freedom, or perhaps by adding additional
components.

If structural changes are allowed, the two-degree-of-freedom system in Figure 2.4 can be
made critically damped. For example, consider adding one more dashpot, c3, and one more
spring, k3, to the system in Figure 2.4 by attaching them from m2 to ground. The equation
of motion then becomes[

m1 0
0 m2

]
q̈ +

[
c1 + c2 −c2

−c2 c2 + c3

]
q̇ +

[
k1 + k2 −k2

−k2 k2 + k3

]
q = 0 (3.80)

Choosing the mass matrix to be the identity matrix, the three equalities resulting from setting
D̃2 = 4K̃ become

�c1 + c2�
2 + c2

2 = 4�k1 + k2�

c2�c1 + c3 + 2c2� = 4k2

�c2 + c3�
2 + c2

2 = 4�k2 + k3� (3.81)

One solution for this system is

c1 = 4� k1 = 4

c2 = 2� k2 = 6

c3 = 4� k3 = 4

The characteristic equation then becomes

�4 + 12�3 + 52�2 + 96� + 64 = 0 (3.82)

which has roots

�1�2 = −2 ⇒ �1 = 2 and �1 = 1

�3�4 = −4 ⇒ �2 = 4 and �2 = 1

Hence, each mode is critically damped, as predicted by the theory.
The preceding methods of defining critical damping, overdamping, and underdamping

are based on a ‘permode’ concept of critical damping. That is, a critically damped system
is one in which each mode is critically damped. However, as pointed out in problem 1.5,
critical damping can be viewed as the smallest value of the damping rate such that the
system does not oscillate. This latter approach, taken by Beskos and Boley (1980), can
be used for multiple-degree-of-freedom systems to generate critical damping surfaces in
spaces defined by the damping parameters of the system. These surfaces can be calculated
for two-degree-of-freedom systems of the same structure as in Figure 2.4. Such curves are
computed by finding solutions for values of c1 and c2 that satisfy

d

db
�det�Mb2 − Db + K�	 = 0 (3.83)
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Figure 3.1 Critical damping curves for a two-degree-of-freedom system.

where b is restricted to be a positive real number and d/db indicates the derivative with
respect to b. The curves are given in Figure 3.1. Systems with values of c1 and c2 lying in
region I exhibit oscillation in both modes. In region II, one mode oscillates and one does
not. In region III, neither mode oscillates. The two curves, called critical damping curves,
are the solutions to Equation (3.83) for fixed values of mi and ki.

Several extensions of the preceding ideas have been developed in the literature. Papargyri-
Beskou, Thessaloniki, and Beskos (2002) present the latest discussion of critical damping
and examine a system with an indefinite damping matrix, followed by a comparison of the
published definitions. The interest in calculating the critical damping matrix is for comparison
and design, as is often the case for single-degree-of-freedom systems.

3.7 EIGENVALUE ESTIMATES

In many instances it is enough to know an approximate value, or estimate, of a particular
eigenvalue or how changes in certain parameters affect the natural frequencies. Methods
that require less computation than solving the characteristic equation of a given system but
yield some information about the eigenvalues of the system may be useful. As an example,
consider the single-degree-of-freedom spring–mass system driven by F0 sin �t. If, in a given
design situation, one wanted to avoid resonance, it would be enough to know that the natural
frequency is less than the driving frequency �. Also, since the free response of the system
is a function of the eigenvalues, estimates of eigenvalues yield some estimates of the nature
of the free response of the structure and may lead to design inequalities.

One of the most basic estimates of the eigenvalues of a symmetric matrix is given by
Rayleigh’s principle. This principle states that, if �min is the smallest eigenvalue of the
symmetric matrix A and �max is its largest, then for any nonzero vector x

�min <
xT Ax
xT x

< �max (3.84)
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This quotient defines what is called the Rayleigh quotient for matrix A; i.e., the Rayleigh
quotient is defined as the scalar ratio R�x� = xT Ax/xT x (see, for instance, Huseyin (1978)
for a proof).

The variational characterization of Rayleigh’s quotient can also be used to characterize the
other eigenvalues of A. If the minimization of the Rayleigh quotient is carried out over all
vectors orthogonal to the first eigenvector, the second eigenvalue results. The ith eigenvalue
is calculated by

�i = min
xT x=1
xT xk=0

�xT Ax�� k = 1� 2� � � � � i − 1 (3.85)

which states that the ith eigenvalue is obtained by taking the minimum value of xT Ax over
all vectors x that satisfy xT x = 1 and that are orthogonal to the first (i − 1) eigenvectors.

To apply Rayleigh’s quotient to the vibration problem of a conservative system

Mq̈ + Kq = 0 (3.86)

requires little manipulation. Recall that the eigenvalue problem for Equation (3.86) can be
written as

�Mu = Ku

or

R��� u� = uT Ku
uT Mu

(3.87)

where the notation R��� u� denotes the Rayleigh quotient. Equation (3.87) can be examined
for all vectors such that uT Mu = 1. Alternatively, R��� u� can be formed for system of
equations (3.32) to yield

R��� q� = qT M−1/2KM−1/2q (3.88)

which can be examined for all vectors q with �q� =√
qT q = 1, called the norm of q.

Example 3.7.1

Consider the system in Figure 2.4 with c1 = c2 = 0�m1 = 1�m2 = 4� k1 = 2, and k2 = 1. The nondi-
mensional equation of motion is then given by

[
1 0
0 4

]
q̈ +

[
3 −1

−1 1

]
q = 0

where q = �x1 x2	
T . Since M is diagonal,

M−1/2 =
[

1 0
0 0�5

]



EIGENVALUE ESTIMATES 83

and R��� q� from Equation (3.88) becomes

R��� q� = qT

[
3 −1/2

−1/2 1/4

]
q

If a trial vector is chosen (out of thin air and then normalized) of q = �0�243 0�970	T , then R��� q� =
0�176. Since the actual value is �1 = 0�1619, the Rayleigh quotient appears to be a reasonable estimate.

Again, note that the Rayleigh method provides an estimate of �1 without having to solve
for the roots of the characteristic equation. It should also be noted that the method is not as
accurate as it may sometimes appear from the usual textbook examples. If the trial vector q
is ‘near’ the first eigenvector, the estimate will be fairly close. If not, the estimate will not be
as good. For instance, if q = �1 0	T is chosen in the preceding example, then R��� q� = 3,
which is not a very good estimate of �1. However, while of little computational value for
computing frequencies, the Rayleigh quotient is of use in analysis and design.

Several other results of interest involving eigenvalue inequalities are useful in vibration
analysis. One is a method for determining the effect of truncating the degrees of freedom
of a system on the eigenvalues of the system. Let the symmetric matrix A be n × n with
eigenvalues, �i, ordered as

�1 < �2 < · · · < �n

and let matrix B be formed from matrix A by deleting a row and column. Hence, B is (n− 1)
by (n − 1), so it will have n − 1 eigenvalues, which are denoted by

�1 < �2 < · · · < �n−1

It can be shown that these two sets of eigenvalues are interlaced, i.e., that

�1 < �1 < �2 < �2 < �3 < · · · < �n−1 < �n (3.89)

This last statement shows that the natural frequencies of a system decrease as the number
of degrees of freedom increase. In fact, if Ar denotes a symmetric r × r matrix and �i�Ar �
denotes the ith eigenvalue of matrix Ar , then

�i�Ar+1� < �i�Ar � < �i+1�Ar+1� (3.90)

This is referred to as a Sturmian separation theorem (see, for instance, Bellman, 1970) and
is useful in illustrating how the order of a vibration model affects the natural frequencies,
such as when model reduction is used (defined in Section 6.8).

Another useful result reported by Bellman (1970) is that, if A and B are n × n symmetric
matrices, then

�k�A + B� > �k�A�� k = 1� 2� � � � � n (3.91)

if B is positive semidefinite, and

�k�A + B� > �k�A�� k = 1� 2� � � � � n (3.92)
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if B is positive definite. Here, �k�A + B� refers to the kth eigenvalue of the matrix A + B,
and so on.

The physical parameters of a system are often known only to a certain precision. For
instance, mass and stiffness coefficients may be measured quite accurately for most systems,
but viscous damping coefficients are very hard to measure and are not always known to a
high degree of accuracy.

A symmetric matrix with error in its elements can be written as the sum

B = A + Ee (3.93)

where B is a known symmetric matrix with known eigenvalues

�1 < �2 < · · · < �n

and A is a symmetric matrix with unknown eigenvalues

�1 < �2 < · · · < �n

and Ee is a symmetric matrix representing the errors in matrix B. The objective is to estimate
�i given the numbers �i, without knowing too much about matrix Ee. It can be shown that

��i − �i� < �Ee� (3.94)

where �Ee� denotes the Euclidian norm of matrix Ee, defined as the square root of the sum of
the squares of each element of Ee. It is easy to see that �Ee�< n�, where n is the dimension
of Ee and � is the absolute value of the largest element in matrix Ee. Combining these two
inequalities yields

��i − �i� < n� (3.95)

Inequality (3.95) can be used to measure the effects of errors in the parameters of a physical
system on the eigenvalues of the system. For instance, let K̃ be the mass normalized stiffness
matrix of the actual system associated with Equation (3.33), which is measured by some
experiment. Let B denote the matrix consisting of all measured values, and let Ee be the
matrix consisting of all the measured errors. Then, from expression (3.95), with A = K̃ and
with eigenvalues �2

i , the inequality becomes ��i − �2
i � < n�, or −n� < �2

i < �i + n�, which
in turn can be written as

�i − n� < �2
i < �i + n� (3.96)

This last expression indicates how the actual natural frequencies, �i, are related to the
calculated natural frequencies, �

1/2
i , and the measurement error, �. Note that the assumption

of symmetry will be satisfied for the matrix Ei since each element is the sum of the errors
of the stiffness elements in that position so that the ijth element of Ei will contain the same
measurement error as the jith element of Ei.
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A fundamental theorem from linear algebra that yields simple estimates of the eigenvalues
of a matrix from knowledge only of its elements is attributed to Gerschgorin (Todd, 1962).
Simply stated, let aij denote the ijth element of a matrix A. Then every eigenvalue of A lies
inside at least one of the circles in the complex plane centered at aii of radius

ri =
n∑

j=1
j �=i

�aij� (3.97)

If a disc has no point in common with any other disc, it contains only one eigenvalue. The
following example serves to illustrate the statement of Gerschgorin’s theory for a symmetric
matrix.

Example 3.7.2

Let matrix A be

A =
⎡
⎣2�5 −1 0

−1 5 −√
2

0 −√
2 10

⎤
⎦

Then, using formula (3.97), define three circles in the plane. The first one has its center at 2.5 and a
radius r1 =�a12�+ �a13�=1, the second has its center at 5 with a radius r2 =�a21�+ �a23�= �1 +√

2�,
and the third is centered at 10 with a radius of

√
2. The circles are illustrated in Figure 3.2. The

actual eigenvalues of the system are

�1 = 2�1193322

�2 = 5�00

�3 = 10�380678

which lie inside the Gerschgorin circles, as illustrated in Figure 3.2.

Figure 3.2 Gerschgorin circles and eigenvalues.
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In the course of the development of a prototype, a system is built, analyzed, and finally
tested. At that point, small adjustments are made in the design to fine-tune the system so that
the prototype satisfies all the response specifications. Once these design changes are made,
it may not be desirable or efficient to recalculate the eigensolution. Instead, a perturbation
technique may be used to show how small changes in the elements of a matrix affect its
eigensolution.

Perturbation methods are based on approximations of a function obtained by writing
down a Taylor series expansion (see any introductory calculus text) for a function about
some point. The equivalent statement for matrix and vector functions is more difficult to
derive. However, with proper assumptions, a similar expansion can be written down for the
eigenvalue problem.

In the following, let A denote an n×n symmetric matrix with distinct eigenvalues, denoted
by �i, and refer to A as the unperturbed matrix. Define the matrix A��� by A��� = A + �B.
Matrix A��� is called the perturbed matrix. Note that A�0� = A. Furthermore, denote the
eigenvalues of A��� by �i��� and the corresponding eigenvectors by xi���. It is clear that,
as � approaches zero, �i��� approaches �i and xi��� approaches xi for each value of index
i. Here, �i and xi are the eigenvalues and eigenvectors of A respectively (see, for instance,
Lancaster, 1969). For sufficiently small � and symmetric A and B, the expansions for �i���
and xi��� are

�i��� = �i + ��
�1�
i + �2�

�2�
i + · · · (3.98)

and

xi��� = xi + �x�1�
i + �2x�2�

i + · · · (3.99)

where xT
i xi =1. Here, the parenthetical superscript (k) denotes the kth derivative, with respect

to the parameter �, evaluated at � = 0 and multiplied by (1/k!). That is,

�
�k�
i =

(
1
k!
)[

dk�i

d�k

]
�=0

Here, differentiation of vector x is defined by differentiating each element of x.
Next, consider the ith eigenvalue problem for the perturbed matrix

A���xi��� = �i���xi��� (3.100)

Substitution of Equations (3.98) and (3.99) into Equation (3.100) yields

�A + �B��xi + �x�1�
i + �2x�2�

i + · · · � = ��i + ��
�1�
i + �2�

�2�
i + · · · ��xi + �x�1�

i + · · · � (3.101)

Multiplying out this last expression and comparing coefficients of the powers of � yields
several useful relationships. The result of comparing the coefficients of �0 is just the
eigenvalue problem for the unperturbed system. The coefficient of �1, however, yields the
expression

��iI − A�x�1�
i = �B − �

�1�
i I�xi (3.102)
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Premultiplying this by xT
i (suppressing the index) results in

xT �B − ��1�I�x = xT ��I − A�x�1� = 0 (3.103)

The last term in Equation (3.103) is zero, since xT is the left eigenvector of A, i.e., �xT
i =xT

i A.
Hence, the first term in the perturbation of the eigenvalue (recall that xT x = 1� becomes

�
�1�
i = xT

i Bxi (3.104)

Equation (3.104) indicates how the eigenvalues of a matrix, and hence the natural frequencies
of an undamped system, change as the result of a small change, �B, in the matrix values.
This is illustrated in example 3.7.3. The preceding formulae can be used to calculate the
eigenvalues of the perturbation matrix in terms of the perturbation matrix itself and the
known eigensolution of the unperturbed system defined by A. Equation (3.98) can be used
to yield the eigenvalues of the ‘new,’ or perturbed, system by making the approximations
�i��� = �i + ��

�1�
i and using Equation (3.104). This method is good for small values of �.

Perturbation schemes can also be used to calculate the effect of the perturbation on
the eigenvectors as well. In addition, the method can be easily used for nongyroscopic
conservative systems of the forms given in Equation (3.32). It has also been used for damped
systems and for systems with gyroscopic forces. Example 3.7.3 illustrates its use for systems
in the form of Equation (3.33).

Example 3.7.3

This example illustrates the use of perturbation calculations to find the result of making a small
perturbation to a given system [here A is perturbed to A���]

M−1/2KM−1/2 = A =
⎡
⎣ 3 −1 0

−1 1 −1
0 −1 5

⎤
⎦ and A��� =

⎡
⎣ 3�1 −1�1 0

−1�1 1�1 −1
0 −1 5

⎤
⎦

Suppose the eigensolution of A is known, i.e.,

�1 = 0�3983

�2 = 3�3399

�3 = 5�2618

xi = �0�3516 0�9148 0�1988	T

x2 = �−0�9295 0�3159 0�1903	T

x3 = �0�1113 − 0�2517 0�9614	T

Given this information, the eigensolution of the new system A��� is desired, where

�B = A��� − A = �0�1�

⎡
⎣ 1 −1 0

−1 1 0
0 0 0

⎤
⎦
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Here, � = 0�1 is small, so that the series in Equation (3.98) converges and can be truncated.
Equation (3.104) yields

��
�1�
1 = xT

1 �Bx1 = 0�03172

��
�1�
2 = xT

2 �Bx2 = 0�15511

��
�1�
3 = xT

3 �Bx3 = 0�01317

Then, the new (perturbed) eigenvalues are �i��� = �i + ��
�1�
i

�1��� = 0�43002 �0�4284�

�2��� = 3�55410 �3�4954�

�3��� = 5�27497 �5�2762�

Here, the actual values are given in parentheses for comparison.

The methods presented in this section are not really needed to compute eigenvalues. Rather,
the methods of the following section should be used for computing accurate eigenvalues
and modal data. The eigenvalue approximations and bounds presented in this section are
significant analytical tools that can be used in design and redesign to understand how changes
in the system or system model affect modal data.

3.8 COMPUTATION EIGENVALUE PROBLEMS IN MATLAB

The availability of cheap, high-speed computing and the subsequent development of high-
level mathematically oriented computer codes (Matlab, Mathcad, and Mathematic in partic-
ular) almost negate the need for eigenvalue approximation methods and schemes presented
in the previous section. The very nature of many computational schemes demands that
the analytical formulation change. The following presents some alternative formulations to
matrix-related computations based on the available codes. The details of the various algo-
rithms used in these codes are left to the references (Meirovitch, 1980; Golub and Van Loan,
1996; Datta, 1995). Table 3.1 lists various Matlab commands useful in computing natural
frequencies, damping ratios, and mode shapes.

The best way to compute a matrix inverse is not to. Rather, Gaussian elimination can be
used effectively to solve for the inverse of a matrix. The matrix inverse can be thought of
as the solution to a system of n linear equations in n variables written in the matrix form
Ax = b. Solving this by Gaussian elimination yields the effective inverse x = A−1b.

The best way to compute the eigenvalues and eigenvectors of a matrix is to use one of
the many eigenvalue routines developed by the numerical linear algebra community and
packaged nicely in a variety of commercial codes. These are both numerically superior to
computing the roots of the polynomial derived from det(�I − A� and applicable to systems
of much larger order.
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Table 3.1 Sample Matlab matrix commands for solving the eigenvalue problem.

M = [1 0; 0 4] creates the mass matrix of example 3.7.1
Chol(M) computes the Cholesky factor of matrix M
Sqrtm(M) computes the matrix square root of M
inv(M) computes the inverse of matrix M
M\I computes the inverse of matrix M, using Gaussian elimination
d = eig(A) returns a vector d containing the eigenvalues of A
[V,D] = eig(A) returns a matrix V of eigenvectors and a matrix D of

eigenvalues
[V,D] = eig(A,‘nobalance’) returns a matrix V of eigenvectors and a

matrix D of eigenvalues without balancing
d = eig(A,B) returns a vector d of eigenvalues, using the generalized problem

Ax = �Bx (works for a singular B matrix)
[V,D] = eig(A,B) returns a matrix D of eigenvalues and a matrix V of mode

shapes, solving the generalized problem Ax = �Bx

The matrix square root can be computed by using the function of a matrix approach,
which is trivial for diagonal matrices (as is often, but not always, the case for the mass
matrix). However, for nondiagonal matrices, the square root involves solving the eigenvalue
problem for the matrix. This is given in Equation (3.31) and repeated here. If M is a positive
definite matrix, then its eigenvalues �i are all positive numbers, and its eigenvectors ui form
an orthonormal set and can be used to form an orthogonal matrix S = �u1u2 · · ·un	 such that
ST MS = diag��i�. Then, any scalar function f of matrix M can be computed by

f�M� = Sdiag�f��1� f��2� · · · f��n�	S
T (3.105)

In particular, the inverse and matrix square root of any positive definite matrix can be
computed with Equation (3.105).

An alternative to the eigenvalue decomposition of Equation (3.105) is to use the Cholesky
decomposition, or Cholesky factors, of a positive definite matrix. Cholesky noted that every
positive definite matrix can be factored into the product of an upper triangular matrix R and
its transpose: M = RT R. In this case it follows that

�RT �−1MR−1 = I

Hence, the Cholesky factor R behaves like a square root. In fact, if M is diagonal, R = RT

is the square root of M.
The most efficient way to compute the undamped eigenvalues is to use the Cholesky

factors. In this case the transformations of Equations (3.33) and (3.72) become

K̃ = �RT �−1KR−1 and C̃ = �RT �−1CR−1

So far, several different approaches to computing the natural frequencies and mode shapes
of a conservative system have been presented. These are summarized in Table 3.2, along
with a computational ‘time’ measured by listing the floating-point operations per second
(flops) for a given example in Matlab.

Note from Table 3.2 that using the Cholesky factor R requires the least flops to produce
the eigenvalues and eigenvectors. The next ‘fastest calculation’ is using Gaussian elimination
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Table 3.2 Comparison of the computing ‘time’ required to calculate
eigenvalues and eigenvectors for the various methods for a conservative
system.

Method Flops

inv (R’)*K*inv (R) 118
M\K 146
inv (M)*K 191
inv (sqrtm(M))*K* inv (sqrtm(M)) 228
[V,D]=eig (K,M) 417

to compute M−1K , but this becomes an asymmetric matrix so that the eigenvectors are not
orthogonal, and hence an additional computational step is required.

The eigenvalue problem can also be placed into a number of state matrix forms, and
these are now presented. The first and most common case is given by Equation (2.20).
The associated eigenvalue problem for the state matrix is asymmetric and in general gives
complex eigenvalues and eigenvectors. In addition, the eigenvectors of the state matrix are
twice as long and related to the eigenvectors ui in second-order form by

Az = �z� A =
[

0 I
−M−1K −M−1C

]
⇒ zi =

[
ui

�iui

]
(3.106)

The eigenvalues, however, are exactly the same.
Other state-space approaches can be formulated by rearranging the equations of motion

in state-space form. For instance, in Equation (3.64) let

y1 = q and y2 = q̇

This then implies that

ẏ1 = y2

and hence

−K ẏ1 = −Ky2

Then the equation of motion can be written as

Mẏ2 = −Cy2 − Ky1

Combining the last two expressions yields the state-space system and symmetric generalized
eigenvalue problem: [−K 0

0 M

] [
ẏ1

ẏ2

]
=
[

0 −K
−K −C

] [
y1

y2

]
⇒ �Ay = By

A B

which does not require a matrix inverse.
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Alternative forms of solving the eigenvalue problem can be useful for special cases,
such as a nearly singular mass matrix. Such formulae can also be useful for analysis.
Once the state-space eigenvalue problem is solved, the data need to be related to natural
frequencies, damping ratios, and mode shapes of the physical system. This can be done in the
case of an underdamped system by representing all of the eigenvalues as the complex
pairs

�i = −�i�i − �i

√
1 − �2

i j and �i+1 = −�i�i + �i

√
1 − �2

i j

Comparing this form with the complex form �i =�i +�ij = Re��i�+ Im��i�j shows that the
modal frequencies and damping ratios can be determined by

�i =
√

�2
i + �2

i =√
Re��i�

2 + Im��i�
2

�i =
−�i√

�2
i + �2

i

= −Re��i�√
Re��i�

2 + Im��i�
2

(3.107)

The mode shapes are taken as the first n values of the 2n state vector by the relationship
given in Equation (3.106). The mode shapes in this case are likely to be complex valued
even if the condition for normal modes to exist is satisfied (DM−1K = KM−1D). In this
case there will be a normalizing condition on u in Equation (3.106) that will normal-
ize the modes to be real valued. If, however, DM−1K �= KM−1D, then vector u will be
complex, meaning that the masses pass through their equilibrium out of phase with each
other.

3.9 NUMERICAL SIMULATION OF THE TIME RESPONSE IN
MATLAB

The time response can be computed by calculating the eigenvalues and eigenvectors of the
system and then forming the summation of modes as outlined in example 3.3.2. This same
procedure also works for the damped case as long as the damping is proportional. However,
for systems that do not have proportional damping (the nonsymmetric KM−1C matrix), the
modal summations are overcomplex values, which can occasionally lead to confusion. In
these cases, numerical simulation can be performed to compute the time response directly
without computing the eigenvalues and eigenvectors. The method follows directly from the
material in Section 1.10 with the state-space model of Equations (2.20) and (3.106). For any
class of second-order systems, the equations of motion can be written in state-space form as
given in Equation (2.20) and repeated here (for the free response case, f�t� = 0�:

ẋ = Ax� x�0� = x0

where

x =
[

q
q̇

]
and A =

[
0 I

−M−1�K + H� −M−1�D + G�

]
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To solve this using numerical integration, the Runge–Kutta ode command in Matlab is used.
The ode command uses a fifth-order Runge–Kutta automated time step method for numer-
ically integrating the equation of motion (see, for instance, Inman, 2001). The following
example illustrates the procedure.

Example 3.9.1

Compute the response of the system

M =
[

4 0
0 3

]
� D =

[
2 −1

−1 1

]
� G =

[
0 1

−1 0

]
� K =

[
10 −4
−4 4

]

to the initial conditions

x�0� =
[

0�1
0

]
m� ẋ�0� =

[
0
0

]
m/s

using Matlab numerical integration.
In order numerically to integrate the equations of motion in Matlab using Runge–Kutta, an

m-file containing the system dynamics must first be created and stored (see example 1.10.2). The
following file sets up the equations of motion in state-space form:

function v=f391(t,x)
M=[4 0; 0 3];D=[2 -1;-1 1];G=[0 1; -1 0];K=[10 -4;-4 4];
A=[zeros(2) eye(2);-inv(M)*K -inv(M)*(D+G)];
v=A*x;

This function must be saved under the name f391.m. Note that the command zeros(n) produces
an n × n matrix of zeros and that the matrix eye(n) creates an n × n identity matrix. Once this is
saved, the following is typed in the command window:

EDU>clear all
EDU>xo=[0.1;0;0;0];
EDU>ts=[0 40];
EDU>[t,x]=ode45(’f391’,ts,xo);
EDU>plot(t,x(:,1),t,x(:,2),’--’)

This returns the plot shown in Figure 3.3. Note that the command x(:,1) pulls off the record
for x1�t� and the command ode45 calls a fifth-order Runge–Kutta program. The command ts=[0
40]; tells the code to integrate from 0 to 40 time units (seconds in this case).

The plot illustrated in Figure 3.3 can also be labeled and titled using additional plotting com-
mands in Matlab. For instance, typing ,title(‘displacement versus time’)
after the plot command in the code in example 3.9.1 would add a title to the plot.

This numerical solution technique also still applies if the system is nonlinear. In this
case the state-space formulation becomes a nonlinear vector rather than a matrix. This form
was illustrated in Equations (1.66) and (1.67), and again in Section 2.7. An example of the
state-space form of a nonlinear system is given in example 2.7.2.
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Figure 3.3 Response q1�t� versus time (solid line) and response q2�t� versus time (dashed line) as
computed in Matlab using numerical integration.

CHAPTER NOTES

The material of Section 3.2 can be found in any text concerning linear algebra or matrices,
such as Lancaster (1969). An excellent quick summary of relevant matrix results is available
in the first chapter of Huseyin (1978). A very good historical account and development can
be found in Bellman (1960, 1970). An explanation of mode shapes and undamped natural
frequencies in Section 3.3 can be found in any modern vibration text. Most linear algebra
and matrix texts devote several chapters to canonical forms (Section 3.4); for instance,
both Lancaster (1966) and Bellman (1970) do. The development of lambda matrices of
Section 3.5 stems mostly from the book and work of Lancaster (1966), who has published
extensively in that area. The idea of decoupling the equations of motion is based on the
result of commuting matrices discussed in Bellman (1960) and was set straight in the engi-
neering literature by Caughey and O’Kelly (1965). The extension of critical damping and
the like to multiple-degree-of-freedom systems of Section 3.6 comes directly from Inman
and Andry (1980), which contains all the references up to that date. Since then, several
results have appeared that examine more efficient means of computing a critical damp-
ing matrix. Nicholson and Inman (1983) provide a review of oscillation results. Barkwell
and Lancaster (1992) corrected the overdamping condition by pointing out that the result
initially reported (Inman and Andry, 1980) was only a local condition. Papargyri-Beskou,
Thessaloniki, and Beskos (2002) provide interesting examples and results regarding critical
damping. The material of Section 3.7 follows the pattern presented in Meirovitch (1980);
however, Rayleigh quotients are discussed in every vibration text and most texts on matrices –
in particular, Bellman (1970) and Lancaster (1969). Bellman (1970) also treats the lacing
of eigenvalues in a rigorous fashion. Gerschgorin’s result is also to be found in many texts
on matrices. An excellent treatment of perturbation methods can be found in Kato (1966).
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The results presented in Section 3.7 on perturbation of eigenvalues are due to Lancaster
(1969). Other applications of perturbation results to vibration problems are presented in
Hagedorn (1983) and Meirovitch and Ryland (1979). Key papers in the development of
linear systems and control using linear algebra can be found in Patel, Laub, and Van Dooren
(1994). Information and sample codes for solving dynamics problems in Matlab

can be found in Soutas-Little and Inman (1999) or by simply typing ‘Matlab’ into
Google.
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PROBLEMS

3.1 Check if the four vectors given by x1 = [
1 1 1 1

]T
� x2 = [

1 −1 1 1
]T

�

x3 = [
1 0 2 1

]T
, and x4 = [

1 0 2 1
]T

are independent.
3.2 Select a basis for R3, which denotes the set of all 3 × 1 vectors with real

elements, from the vectors x1 = [
1 1 1

]T
� x2 = [

2 −1 1
]T

� x3 = [
0 3 1

]T
,

and x4 = [
1 1 −1

]T
.

3.3 Determine whether the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
1 −1 0 1
1 1 2 −1
1 1 1 2

⎤
⎥⎥⎦

is singular or not by calculating the value of its determinant.
3.4 Determine the rank of the matrix

A =
⎡
⎣1 2 0 1

1 −1 3 1
1 1 2 −1

⎤
⎦

3.5 Consider the following system:[
1 1
1 4

]
ẍ +

[
3 −1

−1 1

]
x = 0

with initial conditions x�0� = [
0 1

]T
and ẋ�0� = [

0 0
]T

.
(a) Calculate the eigenvalues of the system.
(b) Calculate the eigenvectors and normalize them.
(c) Use (a) and (b) to write the solution x�t� for the preceding initial conditions.
(d) Sketch x1�t� versus t and x2�t� versus t.
(e) What is the solution if x�0� = �0 0	T and ẋ�0� = �0 0	T ?

3.6 Calculate the natural frequencies of the following system:⎡
⎣4 0 0

0 2 0
0 0 1

⎤
⎦ ẍ +

⎡
⎣ 4 −1 0

−1 2 −1
0 −1 1

⎤
⎦x = 0

3.7 Consider the matrix

A =
[

1 1
0 2

]

and calculate its eigenvalues and eigenvectors. Are the left and right eigenvectors the
same? Are they orthogonal? Are they biorthogonal?

3.8 Does the following system have normal modes (i.e., does it decouple)?[
1 0
0 1

]
ẍ +

[
15 −3
−3 3

]
ẋ +

[
5 −1

−1 1

]
x = 0
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3.9 Does the system in problem 3.8 oscillate? Why or why not?
3.10 Consider the following system

[
1 0
0 1

]
ẍ +

[
3 −1

−1 3

]
ẋ +

[
4 −2

−2 4

]
x = 0

(a) Calculate the eigenvalues of the system.
(b) Calculate the system eigenvectors and normalize them.
(c) Show that the eigenvectors can be used to diagonalize the system.
(d) Calculate the modal damping ratios and damped and undamped natural

frequencies.
(e) Calculate the free response for xT �0� = �1 0	� ẋT �0� = �0 0	.
(f ) Plot the responses x1�t� and x2�t� as well as ��x�t���.

3.11 Calculate the eigenvalues for the matrix

A =
[

3 −1
−1 2

]

what are the eigenvalues of the matrix

A =
[

5 −1
−1 4

]
?

Think before you calculate anything.
3.12 For the matrix in problem 3.11, calculate xT Ax1/xT

1 x1 and xT
2 Ax2/xT

2 x2� where x1

and x2 are the eigenvectors of A. Next, choose five different values of vector x
and calculate the five scalars xT Ax/xT x for your five choices. Compare all of these
numbers with the values of the eigenvalues computed in problem 3.11. Can you draw
any conclusions?

3.13 Consider the following model of a machine part that has equations of motion given by

[
1 0
0 4

]
ẍ +

[
k1 + k2 −k2

−k2 k2

]
x = 0

Let k1 = 2 and k2 = 1. The elements of M are known precisely, whereas the elements
of K are known only to within 0.01 at worst. (Everything here is dimensionless.) Note
that the machine will fail if it is disturbed by a driving frequency equal to one of the
natural frequencies of the system. If there is a disturbance to this system of frequency√

0�15 j �� = 0�15� will this system fail? Why or why not? Try to work this out with
a minimum of calculation.

3.14 Referring to problem 3.13, suppose that, in order to satisfy a given manufacturing
change, the spring coefficient k1 is required to change from 2 to 2.1 units. How will
this affect the natural frequencies of the system? Give a quantitative answer without
recalculating the eigenvalues, that is, use perturbation results.

3.15 If m1 is neglected in problem 3.13, i.e., if the order of the model is reduced by one,
by what would you expect the natural frequency of the new system to be bounded?
Check your result by calculation.
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3.16 Show that Gerschgorin’s theory works for the matrices

R =
[

3 −1
−1 2

]
� A1 =

[
1 1
0 2

]
� A2 =

[
1 1

−1 2

]

3.17 Show that the solution of Equations (3.77) through (3.79) requires either c1 = k1 = 0
or c2 = k2 = 0.

3.18 Prove that, if A is similar to a diagonal matrix, then the eigenvectors of A form a
linearly independent set.

3.19 Derive the relationship between Sm of Equation (3.20) and matrix S of Equation (3.17).
3.20 Show that the matrices M� M1/2� M−1 and M2 all have the same eigenvectors. How

are the eigenvalues related?
3.21 Prove that, if a real symmetric matrix has positive eigenvalues, then it must be positive

definite.
3.22 Derive Equation (3.40). Let n = 3, and solve symbolically for the constants of inte-

gration.
3.23 Derive Equation (3.42) from Equation (3.39).
3.24 Let S be the matrix of eigenvectors of the symmetric matrix A. Show that ST AS is

diagonal and compare it with SAST .
3.25 Derive the relationship between the modal matrix S of example 3.3.2 and the matrix

Sm of Equation (3.21).
3.26 Use perturbation to calculate the effect on the eigenvalues of matrix A given in

example 3.7.2 by making the following changes in A: change a11 by 0.1, a12 and a21

by 0.1, and a22 by 0.2.
3.27 A geometric interpretation of the eigenvector problem for a 2 × 2 matrix is that

the eigenvectors determine the principal axis of an ellipse. Calculate matrix A for
the quadratic form 2x2

1 + 2x1x2 + 2x2
2 = 3 = xT Ax. Then use the eigenvector of A to

determine the principal axis for the ellipse.
3.28 Show that the eigenvalues for the first-order form [Equation (2.20)] are equivalent to

the latent roots of Equation (3.65) by noting that

det
[

A D
C B

]
= det A det�B − CA−1D	

as long as A−1 exists, for the case where G = H = 0.
3.29 Show that the generic system of Equation (3.73) has normal modes if and only if

c1

c2

= k1

k2

�

3.30 Consider the system defined by the following coefficient matrices:

M =
⎡
⎣100 0 0

0 200 0
0 0 200

⎤
⎦ � K =

⎡
⎣ 2000 −1000 0

−1000 2000 −1000
0 −1000 1000

⎤
⎦

Compute the eigenvalues, eigenvectors, and natural frequencies.
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3.31 Consider again the system of problem 3.30 and determine the effects of damping.
Suppose a damping matrix of the form

C =
⎡
⎣ 10 −10 0

−10 30 −20
0 −20 20

⎤
⎦

is added to the system of problem 3.30. Is the system overdamped, underdamped,
critically damped, or does it exhibit mixed damping? Does the system have normal
modes or not?

3.32 Compute the eigenvalues and eigenvectors for the system of problem 3.31. Also
compute the natural frequencies and mode shapes. If you worked out problem 3.31,
do your computations agree with the results obtained there?

3.33 Compute the response of the system defined in problem 3.31 to the initial displacement
x�0� = [

0�01 0 0 −0�01
]T

and zero initial velocity.
3.34 Consider the system of problem 3.30 with a gyroscopic term added of the form

G =
⎡
⎣ 0 1 0

−1 0 1
0 −1 0

⎤
⎦

Compute the eigenvalues and eigenvectors. What are the natural frequencies?
3.35 Compute the time response of the system of problem 3.34 to the initial displacement

x�0� = [
0�01 0 0 −0�01

]T
and zero initial velocity.

3.36 Show that the coefficient ci in Equation (3.42) can be written as

ci = ± 1
�i

√
rT �0�uiu

T
i r�0� + ṙT �0�uiu

T
i ṙ�0�


