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Stability

4.1 INTRODUCTION

A rough idea concerning the concept of stability was introduced for single-degree-of-freedom
systems in the first chapter. It was pointed out that the sign of the coefficients of the
acceleration, velocity, and displacement terms determined the stability behavior of a given
single-degree-of-freedom system. That is, if the coefficients have the proper sign, the motion
will always remain within a given bound. This idea is extended in this chapter to the multiple-
degree-of-freedom systems described in the previous two chapters. As in the case of the
oscillatory behavior discussed in Chapter 3, the criterion based on the sign of the coefficients
is translated into a criterion based on the definiteness of certain coefficient matrices.

It should be noted that no universal definition of stability exists, but rather variations are
adopted depending on the nature of the particular problem under consideration. However, all
definitions of stability are concerned with the response of a system to certain disturbances
and whether or not the response stays within certain bounds.

4.2 LYAPUNOV STABILITY

The majority of the work done on the stability behavior of dynamical systems is based on
a formal definition of stability given by Lyapunov (see, for instance, Hahn, 1963). This
definition is stated with reference to the equilibrium point, x0, of a given system. In the case
of the linear systems considered in this chapter, the equilibrium point can always be taken
to be the zero vector. In addition, the definition of Lyapunov is usually stated in terms of
the state vector of a given system rather than in physical coordinates directly, so that the
equilibrium point refers to both the position and velocity.

Let x�0� represent the vector of initial conditions for a given system (both position and
velocity). The system is said to have a stable equilibrium if, for any arbitrary positive number
�, there exists some positive number ���� such that, whenever ��x�0��� < �, then ��x�t��� < �
for all values of t > 0. A physical interpretation of this mathematical definition is that, if
the initial state is within a certain value, i.e., ��x�0��� < ����, then the motion stays within
another bound for all time, i.e., ��x�t��� < �. Here, ��x�t���, called the norm of x, is defined
by ��x�t��� = �xT x�1/2.
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To apply this definition to the single-degree-of-freedom system of Equation (1.1), note
that x�t� = �x�t� ẋ�t��T . Hence

��x�t��� = �xT x�1/2 =√
x2�t� + ẋ2�t�

For the sake of illustration, let the initial conditions be given by x�0� = 0 and ẋ�0� = �n =√
k/m. Then the solution is given by x�t� = sin �nt. Intuitively, this system has a stable

response as the displacement response is bounded by 1, and the velocity response is bounded
by �n. The following simple calculation illustrates how this solution satisfies the Lyapunov
definition of stability.

First, note that

�x�0�� = �x2�0� + ẋ2�0��1/2 = �0 + �2
n�

1/2 = �n (4.1)

and that

�x�t�� = �sin2 �nt + �2
n cos2 �nt�

1/2 < �1 + �2
n�

1/2 (4.2)

These expressions show exactly how to choose � as a function of � for this system. From
Equation (4.2) note that, if �1 + �2

n�
1/2 < �, then �x�t�� < �. From Equation (4.1) note that,

if ���� is chosen to be ���� = ��n�1 + �2
n�

−1/2, then the definition can be followed directly
to show that, if

�x�0�� = �n < ���� = ��n√
1 + �2

n

is true, then �n < ��n/
√

1 + �2
n. This last expression yields

√
1 + �2

n < �

That is, if ��x�0��� < ����, then
√

1 + �2
n < � must be true, and Equation (4.2) yields that

�x�t�� ≤
√

1 + �2
n < �

Hence, by a judicious choice of the function ����, it has been shown that, if ��x�0���< ����,
then ��x�t��� < � for all t > 0. This is true for any arbitrary choice of the positive number �.

The preceding argument demonstrates that the undamped harmonic oscillator has solutions
that satisfy the formal definition of Lyapunov stability. If dissipation, such as viscous damping,
is included in the formulation, then not only is this definition of stability satisfied, but also

lim
t→� �x�t�� = 0 (4.3)

Such systems are said to be asymptotically stable. As in the single-degree-of-freedom case,
if a system is asymptotically stable it is also stable. In fact, by definition, a system is
asymptotically stable if it is stable and the norm of its response goes to zero as t becomes
large. This can be seen by examining the definition of a limit (see Hahn, 1963).

The procedure for calculating ���� is similar to that of calculating � and � for limits
and continuity in beginning calculus. As in the case of limits in calculus, this definition of
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stability does not provide the most efficient means of checking the stability of a given system.
Hence, the remainder of this chapter develops methods to check the stability properties of a
given system that require less effort than applying the definition directly.

There are many theories that apply to the stability of multiple-degree-of-freedom systems,
some of which are discussed here. The most common method of analyzing the stability of
such systems is to show the existence of a Lyapunov function for the system. A Lyapunov
function, denoted by V�x�, is a real scalar function of the vector x�t�, which has continuous
first partial derivatives and satisfies the following two conditions:

1. V�x� > 0 for all values of x�t� �= 0.
2. V̇ �x� < 0 for all values of x�t� �= 0.

Here, V̇ �x� denotes the time derivative of the function V�x�. Based on this definition of a
Lyapunov function, several extremely useful stability results can be stated. The first result
states that, if there exists a Lyapunov function for a given system, then that system is stable.
If, in addition, the function V̇ �x� is strictly less than zero, then the system is asymptotically
stable. This is called the direct, or second, method of Lyapunov. It should be noted that, if
a Lyapunov function cannot be found, nothing can be concluded about the stability of the
system, as the Lyapunov theorems are only sufficient conditions for stability.

The stability of a system can also be characterized by the eigenvalues of the system. In
fact, it can easily be shown that a given linear system is stable if and only if it has no
eigenvalue with a positive real part. Furthermore, the system will be asymptotically stable if
and only if all of its eigenvalues have negative real parts (no zero real parts allowed). These
statements are certainly consistent with the discussion in Section 4.1. The correctness of
the statements can be seen by examining the solution using the expansion theorem (modal
analysis) of the previous chapter [Equation (3.68)]. The eigenvalue approach to stability has
the attraction of being both necessary and sufficient. However, calculating all the eigenvalues
of the state matrix of a system is not always desirable.

The preceding statements about stability are not always the easiest criteria to check. In
fact, use of the eigenvalue criteria requires almost as much calculation as computing the
solution of the system. The interest in developing various different stability criteria is to
find conditions that (1) are easier to check than calculating the solution, (2) are stated
in terms of the physical parameters of the system, and (3) can be used to help design
and/or control systems to be stable. Again, these goals can be exemplified by recalling the
single-degree-of-freedom case, where it was shown that the sign of the coefficients m	c,
and k determine the stability behavior of the system. To this end, more convenient stability
criteria are examined on the basis of the classifications of a given physical system stated in
Chapter 2.

4.3 CONSERVATIVE SYSTEMS

For conservative systems of the form

Mq̈ + Kq = 0 (4.4)

where M and K are symmetric, a simple stability condition results – namely if M and K
are positive definite, the eigenvalues of K are all positive, and hence the eigenvalues of the
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system are all purely imaginary. The solutions are then all linear combinations of terms of
the form e±�njt, or, by invoking Euler’s formula, all terms are of the form A sin��nt + 
�.
Thus, from the preceding statement, the system of Equation (4.4) is stable, since both the
displacement and velocity response of the system are always less than some constant (A and
�nA respectively) for all time and for any initial conditions.

Also, note that, if K has a negative eigenvalue, then the system has a positive real
exponent. In this case one mode has a temporal coefficient of the form eat	 a > 0, which
grows without bound, causing the system to become unstable (note that, in this case, ����

cannot be found).
The condition that K be positive definite can be coupled with the determinant condition,

discussed in Section 3.3, to yield inequalities in the system parameters. In turn, these
inequalities can be used as design criteria. It should be pointed out that, in most mechanical
systems, K will be positive definite or positive semidefinite, unless some applied or external
force proportional to displacement is present. In control theory, the applied control force is
often proportional to position, as indicated in Equation (2.17) and example 2.4.4.

It is instructive to note that the function V�q� defined by (the energy in the system)

V�q� = 1
2

�q̇T �t�Mq̇�t� + qT �t�Kq�t�� (4.5)

serves as a Lyapunov function for the system in Equation (4.4). To see this, note first that
V�q� > 0, since M and K are positive definite, and that

d

dt
�V�q�� = q̇T Mq̈ + q̇T Kq (4.6)

Now, if q�t� is a solution of Equation (4.4), it must certainly satisfy Equation (4.4). Thus,
premultiplying Equation (4.4) by q̇T yields

q̇T Mq̈ + q̇T Kq = 0 (4.7)

This, of course, shows that V̇ �q� = 0. Hence, V�q� is a Lyapunov function and, by the
second method of Lyapunov, the equilibrium of the system described by Equation (4.4) is
stable.

In cases where K may be positive semidefinite, the motion corresponding to the zero
eigenvalue of K is called a rigid body mode and corresponds to a translational motion.
Note that in this case Equation (4.5) is not a Lyapunov function because V�q� = 0 for
q �= 0, corresponding to the singularity of matrix K . Since the other modes are purely
imaginary, such systems may still be considered well behaved because they consist of
stable oscillations superimposed on the translational motion. This is common with mov-
ing mechanical parts. This explains why the concept of stability is defined differently
in different situations. For instance, in aircraft stability, some rigid body motion is
desirable.
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4.4 SYSTEMS WITH DAMPING

As in the single-degree-of-freedom system case, if damping is added to a stable system (4.4),
the resulting system can become asymptotically stable. In particular, if M	 D, and K are all
symmetric and positive definite, then the system

Mq̈ + Dq̇ + Kq = 0 (4.8)

is asymptotically stable. Each of the eigenvalues of Equation (4.8) can be shown to have
a negative real part. Again, since the conditions of stability are stated in terms of the
definiteness of the coefficient matrices, the stability condition can be directly stated in terms
of inequalities involving the physical constants of the system.

To see that this system has a stable equilibrium by using the Lyapunov direct method,
note that V�q� as defined by Equation (4.5) is still a Lyapunov function for the damped
system of Equation (4.8). In this case, the solution q�t� must satisfy

q̇T Mq̈ + q̇T Kq = −�q̇T Dq̇� (4.9)

which comes directly from Equation (4.8) by premultiplying by q̇T �t�. This means that the
time derivative of the proposed Lyapunov function, V̇ �q�, is given by Equation (4.9) to be

d

dt
V�q�t�� = −q̇T Dq̇ < 0 (4.10)

This is negative for all nonzero values of q�t� because matrix D is positive definite. Hence,
V�q� defined by Equation (4.5) is in fact a Lyapunov function for the system described by
Equation (4.8), and the system equilibrium is stable. Furthermore, since the inequality in
expression (4.10) is strict, the equilibrium of the system is asymptotically stable.

An illustration of an asymptotically stable system is given in example 2.4.4. The matrices
M	 D, and K are all positive definite. In addition, the solution of problem 3.10 shows that
both elements of the vector q�t� are combinations of the functions e−at sin �nt	a> 0. Hence,
each element goes to zero as t increases to infinity, as the definition (4.3) indicates it should.

4.5 SEMIDEFINITE DAMPING

An interesting situation occurs when the damping matrix in Equation (4.8) is only positive
semidefinite. Then the above argument for the existence of a Lyapunov function is still
valid, so that the system is stable. However, it is not clear whether or not the system
is asymptotically stable. There are two equivalent answers to this question of asymptotic
stability for systems with a semidefinite damping matrix.

The first approach is based on the null space of the matrix D. The null space of matrix D is
the set of all nonzero vectors x such that Dx = 0, i.e., the set of those vectors corresponding
to the zero eigenvalues of matrix D. Since D is semidefinite in this situation, there exists
at least one nonzero vector x in the null space of D. Moran (1970) showed that, if D
is semidefinite in Equation (4.8), then the equilibrium of Equation (4.8) is asymptotically
stable if and only if none of the eigenvectors of matrix K lies in the null space of D.
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This provides a convenient, necessary, and sufficient condition for asymptotic stability of
semidefinite systems, but it requires the computation of the eigenvectors for K or at least
the null space of D.

Physically, this result makes sense because, if there is an eigenvector of matrix K in
the null space of D, the vector also becomes an eigenvector of the system. Furthermore,
this eigenvector results in a zero damping mode for the system, and hence a set of initial
conditions exists that excites the system into an undecaying harmonic motion.

The second approach avoids having to solve an eigenvector problem to check for asymp-
totic stability. Walker and Schmitendorf (1973) showed that the system of Equation (4.8)
with semidefinite damping will be asymptotically stable if and only if

Rank

⎡
⎢⎢⎢⎢⎢⎣

D
DK
DK2

���
DKn−1

⎤
⎥⎥⎥⎥⎥⎦

= n (4.11)

where n is the number of degrees of freedom of the system. The rank of a matrix is the
number of linearly independent rows (or columns) the matrix has (see Appendix B). This
type of rank condition comes from control theory considerations and is used and explained
again in Chapter 7.

These two approaches are equivalent. They essentially comment on whether or not the
system can be transformed into a coordinate system in which one or more modes are
undamped. It is interesting to note that, if D is semidefinite and KM−1D is symmetric, then
the system is not asymptotically stable. This results since, as pointed out in section 3.5,
if KM−1D = DM−1K , then K̃ and D̃ have the same eigenvectors and the system can be
decoupled. In this decoupled form there will be at least one equation with no velocity term
corresponding to the zero eigenvalue of D. The solution of this equation will not go to zero
with time, and hence the system cannot be asymptotically stable.

4.6 GYROSCOPIC SYSTEMS

The stability properties of gyroscopic systems provide some very interesting and unexpected
results. First, consider an undamped gyroscopic system of the form

Mq̈ + Gq̇ + Kq = 0 (4.12)

where M and K are both positive definite and symmetric and where G is skew-symmetric.
Since the quadratic form q̇T Gq̇ is zero for any choice of q, the Lyapunov function for the
previous system [Equation (4.5)] still works for Equation (4.12), and the equilibrium of
Equation (4.12) is stable.

If matrix K in Equation (4.12) is indefinite, semidefinite, or negative definite, the system
may still be stable. This is a reflection of the fact that gyroscopic forces can sometimes be
used to stabilize an unstable system. A child’s spinning top provides an example of such
a situation. The vertical position of the top is unstable until the top is spun, providing a
stabilizing gyroscopic force.
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Easy-to-use conditions are not available to check if Equation (4.12) is stable when K is not
positive definite. Hagedorn (1975) has been able to show that, if K is negative definite and if
the matrix 4K − GM−1G is negative definite, then the system is definitely unstable. Several
authors have examined the stability of Equation (4.12) when the dimension of the system
is n = 2. Teschner (1977) showed that, if n = 2	 K is negative definite, and 4K − GM−1G
is positive definite, then the system is stable. Inman and Saggio (1985) showed that, if
n = 2	 K is negative definite, det K > 0, and the trace of 4K − GM−1G is positive, then the
system is stable.

Huseyin, Hagedorn, and Teschner (1983) showed that, for any degree-of-freedom sys-
tem, if 4K − GM−1G is positive definite and if the matrix (GM−1K − KM−1G) is positive
semidefinite, then the system is stable. In addition, they showed that, if GM−1K = KM−1G,
then the system is stable if and only if the matrix 4K − GM−1G is positive definite. These
represent precise conditions for the stability of undamped gyroscopic systems. Most of these
ideas result from Lyapunov’s direct method. The various results on gyroscopic systems
are illustrated in example 4.6.1. Bernstein and Bhat (1995) give additional examples and
summarize known stability conditions up to 1994.

Example 4.6.1

Consider a simplified model of a mass mounted on a circular, weightless rotating shaft that is also
subjected to an axial compression force. This system is described by Equation (4.12) with

M = I	 G = 2�

[
0 −1
1 0

]
	 K =

[
c1 − �2 −  0

0 c2 − �2 − 

]

where � represents the angular velocity of the shaft and  the axial force. The parameters c1 and c2

represent the flexural stiffness in two principal directions, as illustrated in Figure 4.1.
It is instructive to consider this problem first for fixed rotational speed (� = 2) and for  = 3.

Then the relevant matrices become �M = I�

K =
[

c1 − 7 0
0 c2 − 7

]

4K − GM−1G = 4
[

c1 − 3 0
0 c2 − 3

]

Figure 4.2 shows plots of stable and unstable choices of c1 and c2 using the previously mentioned
theories. To obtain the various regions of stability illustrated in Figure 4.2, consider the following
calculations:

1. K positive definite implies that c1 − 7 > 0 and c2 − 7 > 0, a region of stable operation.
2. detK > 0 implies that �c1 − 7��c2 − 7� > 0, or that c1 < 7	 c2 < 7. The tr�4K − GM−1G� > 0

implies that 4��c1 − 3�+ �c2 − 3�� > 0, or that c1 + c2 > 6, which again yields a region of stable
operation.

3. 4K − GM−1G negative definite implies that c1 < 3 and c2 < 3, a region of unstable operation.
4. 4K −GM−1G positive definite implies that c1 >3 and c2 >3, a region of either stable or unstable

operation depending on other considerations. If, in addition, the matrix

GM−1K − KM−1G = 4
[

0 c1 − c2

c1 − c2 0

]

is zero, i.e., if c1 = c2, then the system is stable. Thus, the line c1 = c2 represents a region of
stable operation for c1 = c2 > 3 and unstable operation for c1 = c2 < 3.
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p
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γ

�

c1, c2

Figure 4.1 Schematic of a rotating shaft subject to an axial compression force.

Figure 4.2 Regions of stable and unstable operation of a conservative gyroscopic system as a function
of stiffness coefficients.

4.7 DAMPED GYROSCOPIC SYSTEMS

As the previous section illustrated, gyroscopic forces can be used to stabilize an unstable
system. The next logical step is to consider adding damping to the system. Since added
positive definite damping has caused stable symmetric systems to become asymptotically
stable, the same effect is expected here. However, this turns out not to be the case in all
circumstances.

Consider a damped gyroscopic system of the form

Mq̈ + �D + G�q̇ + Kq = 0 (4.13)
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where M =MT > 0	 D =DT 	 G=−GT , and K =KT . The following results are due to Kelvin,
Tait, and Chetaev and are referred to as the KTC theorem by Zajac (1964, 1965):

1. If K and D are both positive definite, the system is asymptotically stable.
2. If K is not positive definite and D is positive definite, the system is unstable.
3. If K is positive definite and D is positive semidefinite, the system may be stable

or asymptotically stable. The system is asymptotically stable if and only if none of
the eigenvectors of the undamped gyroscopic system is in the null space of D. Also,
proportionally damped systems will be stable.

Hughes and Gardner (1975) showed that the Walker and Schmitendorf rank condition
[Equation (4.11)] also applies to gyroscopic systems with semidefinite damping and positive
definite stiffness. In particular, let the state matrix A and the ‘observer’ matrix C be defined
and denoted by

A =
[

0 I
−M−1K −M−1G

]
	 C = �0 D�

Then the equilibrium of Equation (4.13) is asymptotically stable if the rank of the 2n × 2n2

matrix RT = [
CT AT CT · · · �AT �n−1CT

]
is full, i.e., rank RT = 2n. Systems that satisfy either

this rank condition or Equation (4.11) are said to be pervasively damped, meaning that the
influence of the damping matrix D pervades each of the system coordinates. Each mode of
a pervasively damped system is damped, and such systems are asymptotically stable.

Note that condition 2 points out that, if one attempts to stabilize an unstable system by
adding gyroscopic forces to the system and at the same time introduces viscous damping,
the system will remain unstable. A physical example of this is again given by the spinning
top if the friction in the system is modeled as viscous damping. With dissipation considered,
the top is in fact unstable and eventually falls over after precessing because of the effects of
friction.

4.8 CIRCULATORY SYSTEMS

Next, consider those systems that have asymmetries in the coefficient of the displacement
term. Such systems are called circulatory. A physical example is given in example 2.4.3.
Other examples can be found in the fields of aeroelasticity, thermoelastic stability, and in
control (see example 2.4.4). The equation of motion of such systems takes the form

Mq̈ + �K + H�q = 0 (4.14)

where M = MT 	 K = KT , and H = −HT . Here, K is the symmetric part of the position
coefficient and H is the skew-symmetric part. Results and stability conditions for circulatory
systems are not as well developed as for symmetric conservative systems.

Since damping is not present, the stability of Equation (4.14) will be entirely determined
by the matrix A3 =K +H, as long as M is nonsingular. In fact, it can be shown (see Huseyin,
1978, p. 174) that Equation (4.14) is stable if and only if there exists a symmetric and positive
definite matrix P such that PM−1A3 is symmetric and positive definite. Furthermore, if the
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matrix PM−1A3 is symmetric, there is no flutter instability. On the other hand, if such a
matrix P does not exist, Equation (4.14) can be unstable both by flutter and by divergence.
In this case, the system will have some complex eigenvalues with positive real parts.

The preceding results are obtained by considering an interesting subclass of circulatory
systems that results from a factorization of the matrix M−1A3. Taussky (1972) showed that
any real square matrix can be written as the product of two symmetric matrices. That is,
there exist two real symmetric matrices S1 and S2 such that M−1A3 = S1S2. With this factor-
ization in mind, all asymmetric matrices M−1A3 can be classified into two groups: those for
which at least one of the matrix factors, such as S1, is positive definite and those for which
neither of the factors is positive definite. Matrices for which S1 (or S2) is positive definite
are called symmetrizable matrices or pseudosymmetric matrices. The corresponding systems
are referred to as pseudoconservative systems, pseudosymmetric systems, or symmetrizable
systems and behave essentially like symmetric systems. One can think of this transforma-
tion as a change of coordinate systems to one in which the physical properties are easily
recognized.

In fact, for M−1A3 = S1S2	 S1 positive definite, the system described by Equation (4.14)
is stable if and only if S2 is positive definite. Furthermore, if S2 is not positive definite,
instability can only occur through divergence, and no flutter instability is possible. Complete
proofs of these statements can be found in Huseyin (1978), along with a detailed discussion.
The proof follows from the simple idea that, if M−1A3 is symmetrizable, then the system
is mathematically similar to a symmetric system. Thus, the stability problem is reduced to
considering that of the symmetric matrix S2.

The similarity transformation is given by the matrix S1/2
2 , the positive definite square root

of matrix S1. To see this, premultiply Equation (4.14) by S−1/2
1 , which is nonsingular. This

yields

S−1/2
1 q̈ + S−1/2

1 �M−1A3�q = 0 (4.15)

which becomes

S−1/2
1 q̈ + S−1/2

1 S1S2q = 0

or

S−1/2
1 q̈ + S1/2

1 S2q = 0 (4.16)

Substitution of q = S1/2
1 y into this last expression yields the equivalent symmetric system

ÿ + S1/2
1 S2S1/2

1 y = 0 (4.17)

Thus, there is a nonsingular transformation S1/2
1 relating the solution of symmetric prob-

lems given by Equation (4.17) to the asymmetric problem of Equation (4.14). Because the
transformation is nonsingular, the eigenvalues of Equations (4.14) and (4.17) are the same.
Thus, the two representations have the same stability properties. Here, the matrix S1/2

1 S2S1/2
1

is seen to be symmetric by taking its transpose, i.e., �S1/2
1 S2S1/2

1 �T = S1/2
1 S2S1/2

1 . Thus, if S2 is
positive definite, then S1/2

1 S2S1/2
1 is positive definite (and symmetric) so that Equation (4.17)

is stable. Methods for calculating the matrices S1 and S2 are discussed in the next section.
Note that, if the system is not symmetrizable, i.e., if S1 is not positive definite, then S1/2

1

does not exist and the preceding development fails. In this case, instability of Equation (4.14)
can be caused by either flutter or divergence.
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4.9 ASYMMETRIC SYSTEMS

For systems that have both asymmetric velocity and stiffness coefficients not falling into
any of the previously mentioned classifications, several different approaches are available.
The first approach discussed here follows the idea of a pseudosymmetric system introduced
in the previous section, and the second approach follows methods of constructing Lyapunov
functions. The systems considered in this section are of the most general form [Equation (2.7)
with f = 0]

A1q̈ + A2q̇ + A3q = 0 (4.18)

where A1 is assumed to be nonsingular, A2 =D +G, and A3 =K +H. Since A1 is nonsingular
and since A2 and A3 are symmetric, it is sufficient to consider the equivalent system

q̈ + A−1
1 A2q̇ + A−1

1 A3q = 0 (4.19)

The system described by Equation (4.19) can again be split into two classes by examining
the factorization of the matrices A−1

1 A2 and A−1
1 A3 in a fashion similar to the previous section.

First note that there exists a factorization of these matrices of the form A−1
1 A2 = T1T2 and

A−1
1 A3 =S1S2, where the matrices S1	 S2	 T1, and T2 are all symmetric. This is always possible

because of the result of Taussky just mentioned, i.e., any real square matrix can always be
written as the product of two symmetric matrices. Then, the system in Equation (4.19) is
similar to a symmetric system if and only if there exists at least one factorization of A−1

1 A2 and
A−1

1 A3 such that S1 = T1, which is positive definite. Such systems are called symmetrizable.
Under this assumption, it can be shown that the equilibrium position of Equation (4.18) is
asymptotically stable if the eigenvalues of the matrix A−1

1 A2 and the matrix A−1
1 A3 are all

positive real numbers. This corresponds to requiring the matrices S2 and T2 to be positive
definite.

Deciding if the matrices A−1
1 A2 and A−1

1 A3 are symmetrizable is, in general, not an easy
task. However, if the matrix A2 is proportional, i.e., if A2 = �A1 + �A3, where � and � are
scalars, and if A−1

1 A3 is symmetrizable, then A−1
1 A2 is also symmetrizable, and there exists

a common factor S1T1. It can also be shown that, if two real matrices commute and one of
them is symmetrizable, then the other matrix is also symmetrizable, and they can be reduced
to a symmetric form simultaneously.

Several of the usual stability conditions stated for symmetric systems can now be stated
for symmetrizable systems. If A−1

1 A2 has nonnegative eigenvalues (i.e., zero is allowed) and
if A−1

1 A3 has positive eigenvalues, Equation (4.18) is asymptotically stable if and only if the
n2 × n matrix

R =

⎡
⎢⎢⎢⎢⎢⎣

A−1
1 A2

A−1
1 A2�A−1

1 A3�
A−1

1 A2�A−1
1 A3�

2

���
A−1

1 A2�A−1
1 A3�

n−1

⎤
⎥⎥⎥⎥⎥⎦

(4.20)

has rank n. This, of course, is equivalent to the statement made by Moran (1970) for
symmetric systems, mentioned in section 4.5, that the system is asymptotically stable if and
only if none of the eigenvectors of A−1

1 A3 lies in the null space of A−1
1 A2.
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The KTC theorem can also be extended to systems with asymmetric but symmetrizable
coefficients. However, the extension is somewhat more complicated. Consider the matrix
S = �A−1

1 A2�T1 +T1�A−1
1 A2�

T , and note that S is symmetric. If S is positive definite and if A3

is nonsingular, then Equation (4.18) is stable if and only if all of the eigenvalues of A−1
1 A3

are positive numbers. If S1 �= T1, the matrix A−1
1 A2 contains a gyroscopic term, and this

result states the equivalent problem faced in using gyroscopic forces to stabilize an unstable
system, that it cannot be done in the presence of damping. Hence, in the case where S1 �= T1,
the stability of the system is determined by the eigenvalues of T2 (which are the eigenvalues
of A3) for systems with a symmetrizable stiffness coefficient matrix.

The following two examples serve to illustrate the above discussion as well as indicate
the level of computation required.

Example 4.9.1

The preceding results are best understood by considering some examples. First, consider a system
described by [

1 0
0 1

]
q̈ +

[
2 4
4 2

]
q̇ +

[
10 8
0 1

]
q = 0

Here note that

A−1
1 A2 =

[
2 4
1 2

]
=
[

1�2461 −0�2769
−0�2769 0�3115

][
2�8889 5�7778
5�7778 11�5556

]

A−1
1 A3 =

[
10 8
0 1

]
=
[

1�2461 −0�2769
−0�2769 0�3115

][
10 8�8889

8�8889 11�1111

]

so that T1 = S1, and the coefficient matrices have a common factor. Then the eigenvalue problem
associated with this system is similar to a symmetric eigenvalue problem. An illustration on how to
calculate the symmetric factors of a matrix is given in example 4.9.3.

According to the previous theorems, the stability of this equation may be indicated by calculating
the eigenvalues of A−1

1 A2 and of A−1
1 A3. The eigenvalues of A−1

1 A2 in this example are �1	2 = 0	 4,
and those of A−1

1 A3 are �1	2 = 1	 10. Hence, A−1
1 A3 has positive real eigenvalues and A−1

1 A2 has
nonnegative real eigenvalues. Because of the singularity of the matrix A−1

1 A2, knowledge of the
rank of the matrix equation [Equation (4.20)] is required in order to determine if the system is
asymptotically stable or just stable. The matrix of Equation (4.20) is

⎡
⎢⎢⎣

2 4
1 2

20 20
10 10

⎤
⎥⎥⎦∼

⎡
⎢⎢⎣

0 0
1 2
0 0
1 1

⎤
⎥⎥⎦∼

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦

which obviously has rank = 2, the value of n. Here, the symbol ∼ denotes column (or row) equivalence,
as discussed in Appendix B. Thus, the previous result states that the equilibrium of this example is
asymptotically stable. This is in agreement with the eigenvalue calculation for the system, which yields

�1	2 = −1 ± 2j

�3	4 = −1 ± j

showing clearly that the equilibrium is in fact asymptotically stable, as predicted by the theory.
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Example 4.9.2

As a second example, consider the asymmetric problem given by
[

1 1
0 1

]
q̈ +

[
9 20
3 8

]
q̇ +

[−5 −6
−4 0

]
q = 0

Premultiplying this by A−1
1 yields

Iq̈ +
[

6 12
3 8

]
q̇ +

[−1 −6
−4 0

]
q = 0

The eigenvalues of A−1
1 A2 are �1	2 =7± �1/2�

√
148 and those of A−1

1 A3 are �1	2 =−1/2± �1/2�
√

97.
Thus, both coefficient matrices have real distinct eigenvalues and are therefore symmetrizable.
However, a simple computation shows that there does not exist a factorization of A−1

1 A2 and A−1
1 A3

such that T1 = S1.
Thus, the generalized KTC theorem must be applied. Accordingly, if the matrix �A−1

1 A2�T1 +
T1�A−1

1 A2�
T ispositivedefinite, then theequilibriumof thissystemisunstable, sinceA−1

1 A3 hasanegative
eigenvalue. To calculate T2, note that �A−1

1 A3� = T1T2, where T1 is positive definite and hence nonsin-
gular. Thus, multiplying by T−1

1 from the right results in the matrix T2 being given by T2 = T−1
1 �A−1

1 A3�.
Let T−1

1 be a general generic symmetric matrix denoted by

T−1
1 =

[
a b
b c

]

where it is desired to calculate a, b, and c so that T1 is positive definite. Thus

T2 =
[

a b
b c

][−1 −6
−4 0

]
=
[−a − 4b −6a

−b − 4c −6b

]

Requiring T2 to be symmetric and T1 to be positive definite yields the following relationships for a,
b, and c:

ac > b2

6a = b + 4c

This set of equations has multiple solutions; one convenient solution is a=2, b =0, and c =3. Then
T1 becomes

T1 =
⎡
⎢⎣

1
2

0

0
1
3

⎤
⎥⎦

Thus, �A−1
1 A2�T1 + T1�A−1

1 A2�
T becomes

�A−1
1 A2�T1 + T1�A−1

1 A2�
T =

⎡
⎢⎣

6
11
2

11
2

16
3

⎤
⎥⎦

which is positive definite. Thus, the equilibrium must be unstable.
This analysis again agrees with calculation of the eigenvalues, which are �1 = 0�3742	�2 =

−13�5133, and �3	4 = −0�4305 ± 0�2136j, indicating an unstable equilibrium, as predicted.



112 STABILITY

Example 4.9.3

The question of how to calculate the factors of a symmetrizable matrix is discussed by Huseyin (1978)
and Ahmadian and Chou (1987). Here it is shown that the matrices A−1

1 A3 = S1S2 and A−1
1 A2 = T1T2

of example 4.9.2 do not have any common factorization such that T1 = S1. Hence, A−1
1 A2 and A−1

1 A3

cannot be simultaneously symmetrized by the same transformation.
It is desired to find a symmetric positive definite matrix P such that PA−1

1 A2 and PA−1
1 A3 are

both symmetric. To that end, let

P =
[

a b
b c

]

Then

PA−1
1 A2 =

[
6a + 3b 12a + 8b
6b + 3c 12b + 8c

]

and

PA−1
1 A3 =

[−a − 4b −6a
−b − 4c −6b

]

Symmetry of both matrices then requires that

6b + 3c = 12a + 8b

b + 4c = 6a (4.21)

Positive definiteness of P requires

a > 0

ac > b2 (4.22)

It will be shown that the problem posed by Equations (4.21) and (4.22) does not have a solution.
Equations (4.21) may be written in matrix form as

[−2 3
1 4

][
b
c

]
= 6a

[
2
1

]

which has the unique solution

[
b
c

]
= a

[
2�73
2�18

]

for all values of a. Thus, b = 2�73a and c = 2�18a, so that b2 = 7�45a2 and ac = 2�18a2. Then

ac = 2�18a2 < 7�45a2 = b2

and condition (4.22) cannot be satisfied.
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Other alternatives exist for analyzing the stability of asymmetric systems. Walker (1970),
approaching the problem by looking for Lyapunov functions, was able to state several results
for the stability of Equation (4.18) in terms of a fourth matrix R. If there exists a symmetric
positive definite matrix R such that RA−1

1 A3 is symmetric and positive definite (this is the
same as requiring A−1

1 A3 to be symmetrizable), then the system is stable if the symmetric part
of RA−1

1 A2 is positive semidefinite and asymptotically stable if the symmetric part of RA−1
1 A2

is strictly positive definite. This result is slightly more general than the symmetrizable results
just stated in that it allows the equivalent symmetric systems to have gyroscopic forces.

In addition to these results, Walker (1970) showed that, if there exists a symmetric matrix
R such that RA−1

1 A2 is skew-symmetric and RA−1
1 A3 is symmetric, and such that R and

RA−1
1 A3 have the same definiteness, then the system is stable but not asymptotically stable.
Another approach to the stability of Equation (4.18), not depending on symmetrizable

coefficients, has been given by Mingori (1970). He showed that, if the coefficient matrices
M	 D	 G	 H	 and K satisfy the commutivity conditions

HD−1M = MD−1H
HD−1G = GD−1H
HD−1K = KD−1H

then the stability of the system is determined by the matrix

Q = HD−1MD−1H − GD−1H + K

This theory states that the system is stable, asymptotically stable, or unstable if the matrix Q
possesses nonnegative, positive, or at least one negative eigenvalue respectively. Although
the problem addressed is general, the restrictions are severe. For instance, this method cannot
be used for systems with semidefinite damping (D−1 does not exist).

Other more complicated and more general stability conditions are due to Walker (1974)
and an extension of his work by Ahmadian and Inman (1986). The methods are developed
by using Lyapunov functions to derive stability and instability conditions on the basis of
the direct method. These are stated in terms of the symmetry and definiteness of certain
matrices consisting of various combinations of the matrices A1	 A2, and A3. These conditions
offer a variety of relationships among the physical parameters of the system, which can aid
in designing a stable or asymptotically stable system.

4.10 FEEDBACK SYSTEMS

One of the major reasons for using feedback control is to stabilize the system response.
However, most structures are inherently stable to begin with, and control is applied to improve
performance. Unfortunately, the introduction of active control can effectively destroy the
symmetry and definiteness of the system, introducing the possibility of instability. Thus,
checking the stability of a system after a control is designed is an important step. A majority
of the work in control takes place in state space (first-order form). However, it is interesting to
treat the control problem specifically in ‘mechanical’ or physical coordinates in order to take
advantage of the natural symmetries and definiteness in the system. Lin (1981) developed
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a theory for closed-loop asymptotic stability for mechanical structures being controlled by
velocity and position feedback. The systems considered here have the form (see Section 2.3)

Mq̈ + A2q̇ + Kq = ff + f (4.23)

where M =MT is positive definite, A2 =D + G is asymmetric, and K is symmetric. Here, the
vector f represents external disturbance forces (taken to be zero in this section) and the vector
ff represents the control force derived from the action of r force actuators represented by

ff = Bf u (4.24)

where the r × 1 vector u denotes the r inputs, one for each control device (actuator), and Bf

denotes the n × r matrix of weighting factors (influence coefficients or actuator gains) with
structure determined by the actuator locations. In order to be able to feed back the position
and velocity, let y be an s × 1 vector of sensor outputs denoted and defined by

y = Cpq + Cvq̇ (4.25)

Here, Cp and Cv are s × n matrices of displacement and velocity influence coefficients
respectively, with structure determined by the sensor locations and where s is the number
of sensors. Equation (4.25) represents those coordinates that are measured as part of the
control system and is a mathematical model of the transducer and signal processing used to
measure the system response. The input vector u is chosen to be of the special form

u�t� = −Gf y = −Gf Cpq − Gf Cvq̇ (4.26)

where the r × s matrix Gf consists of constant feedback gains. This form of control law is
called output feedback, because the input is proportional to the measured output or response, y.

In Equation (4.24) the matrix Bf reflects the location on the structure of any actuator or
device being used to supply the forces u. For instance, if an electromechanical or piezoelectric
actuator is attached to mass m1 in Figure 2.4, and if it supplies a force of the form F0 sin �t,
the vector u reduces to the scalar u = F0 sin��t� and the matrix Bf reduces to a vector
BT

f = �1 0�. Alternatively, the control force can be written as a column vector u, and Bf

can be written as a matrix

u =
[

F0 sin �t
0

]
and Bf =

[
1 0
0 0

]

If, on the other hand, there are two actuators, one attached to m1 supplying a force
F1 sin��1t� and one at m2 supplying a force F2 sin��2t�, then the vector u becomes uT =
�F1 sin��1t� F2 sin��2t�� and the matrix Bf becomes Bf = I , the 2 × 2 identity matrix.
Likewise, if the positions x1 and x2 are measured, the matrices in Equation (4.25) become
Cp = I and Cv = 0, the 2 × 2 matrix of zeros. If only the position x1 is measured and the
control force is applied to x2, then

Bf =
[

0 0
0 1

]
and Cp =

[
1 0
0 0

]
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Making the appropriate substitutions in the preceding equations and assuming no external
disturbance (i.e., f = 0) yields an equivalent homogeneous system, which includes the effect
of the controls. It has the form

Mq̈ + �D + G + Bf Gf Cv�q̇ + �K + Bf Gf Cp�q = 0 (4.27)

For the sake of notation, define the matrices D∗ =Bf Gf Cv and K∗ =Bf Gf Cp. Note that, since
the number of actuators r is usually much smaller than the number of modeled degrees of
freedom n (the dimension of the system), the matrices K∗ and D∗ are usually singular. Since,
in general, D + D∗ and K + K∗ may not be symmetric or positive definite, it is desired to
establish constraints on any proposed control law to ensure the symmetry and definiteness
of the coefficient matrices and hence the stability of the system (see problem 4.11). These
constraints stem from requiring D + D∗ and K + K∗ to be symmetric positive definite. The
problem of interest in control theory is how to choose the matrix Gf so that the response
q has some desired property (performance and stability). Interest in this section focuses on
finding constraints on the elements of Gf so that the response q is asymptotically stable or
at least stable. The stability methods of this chapter can be applied to Equation (4.27) to
develop these constraints. Note that the matrices Bf Gf Cp and Bf Gf Cv are represented as the
matrices Kp and Kv respectively in Equation (2.17).

Collocated control refers to the case where the sensors are located at the same physical
location as the actuators. If the sensors or the actuators add no additional dynamics, then
collocated controllers provide improved stability of the closed-loop system. As seen above,
the closed-loop system coefficients D∗ and K∗ generally lose their symmetry for many
choices of Bf , Cf , Bv, and Cv. If, however, the gain matrices Gf and Gv are symmetric, and
if BT

f = Cf and BT
v = Cv, then the matrices D∗ and K∗ remain symmetric. The symmetry then

results in the possibility of choosing the gain matrices so that D∗ and K∗ remain positive
definite, ensuring closed-loop stability for stable open-loop systems (D and K positive
definite). Placing sensors and actuators at the same location causes BT

f = Cf and BT
v = Cv,

so that collocated control enhances closed-loop stability. The controller design consists of
choosing gains Gf and Gv that are symmetric and positive definite (or at least semidefinite)
with collocated sensors and actuators to ensure a stable closed-loop response.

Example 4.10.1

Consider the two-degree-of-freedom system in figure 2.4, with a control force applied to m1 and a
measurement made of x2 so that the control system is not collocated. Then the input matrix, output
matrix, and symmetric control gain matrix are

Bf =
[

1 0
0 0

]
	 Cp =

[
0 1
0 0

]
	 G =

[
g1 0
0 g2

]

Note that this is not collocated because BT
f �=Cf . The closed-loop system of Equation (4.27) becomes

[
m1 0
0 m2

][
ẍ1

ẍ2

]
+
[

c1 + c2 −c2

−c2 c2

][
ẋ1

ẋ2

]
+
[

k1 + k2 −k2 + g1

−k2 k2

][
x1

x2

]
=
[

0
0

]
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This has an asymmetric displacement coefficient, implying the potential loss of stability. If, on the
other hand, a control force is applied to m1 and a measurement made of x1, then the control system
is collocated and the input matrix, output matrix, and control gain matrix are

Bf =
[

1 0
0 0

]
	 Cp =

[
1 0
0 0

]
	 G =

[
g1 0
0 g2

]

so that BT
f = Cf and the closed-loop system of Equation (4.27) becomes

[
m1 0
0 m2

][
ẍ1

ẍ2

]
+
[

c1 + c2 −c2

−c2 c2

][
ẋ1

ẋ2

]
+
[

k1 + k2 + g1 −k2

−k2 k2

][
x1

x2

]
=
[

0
0

]

which is symmetric and stable for any choice of g1 such that k1 + k2 + g1 > 0.

The topic of control and Equation (4.27) is discussed in more detail in section 6.6 and
in Chapter 7. Historically, most of the theory developed in the literature for the control of
systems has been done using a state-space model of the structure. The next section considers
the stability of systems in the state variable coordinate system.

4.11 STABILITY IN STATE SPACE

In general, if none of the stability results just mentioned is applicable, the problem can be
cast in first-order form as given in Section 2.3. The system of Equation (4.18) then has
the form

ẋ = Ax (4.28)

where A is a 2n × 2n state matrix and x is a 2n state vector. In this setting, it can easily be
shown that the system is asymptotically stable if all the eigenvalues of A have negative real
parts and is unstable if A has one or more eigenvalues with positive real parts.

The search for stability by finding a Lyapunov function in first-order form leads to the
Lyapunov equation

AT B + BA = −C (4.29)

where C is positive semidefinite and B is the symmetric, positive definite, unknown matrix
of the desired (scalar) Lyapunov function:

V�x� = xT Bx (4.30)

Do not confuse the arbitrary matrices B and C used here with the B and C used for input
and output matrices. To see that V�x� is, in fact, the desired Lyapunov function, note that
differentiation of Equation (4.30) yields

d

dt
�V�x�� = ẋT Bx + xT Bẋ (4.31)
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Substitution of the state equation [Equation (4.28)] into Equation (4.31) yields

d

dt
�V�x�� = xT AT Bx + xT BAx

= xT �AT B + BA�x

= −xT Cx (4.32)

Here, taking the transpose of Equation (4.28) yields ẋT = xT AT , which is used to remove
the time derivative in the second term. Hence, if V�x� is to be a Lyapunov function, matrix
C must be positive semidefinite. The problem of showing stability by this method for a
system represented by matrix A then becomes one, given the symmetric positive semidefinite
matrix C, of finding a positive definite matrix B such that Equation (4.29) is satisfied. This
approach involves solving a system of linear equations for the n�n + 1�/2 elements bik of
matrix B.

As explained by Walker (1974), Hahn (1963) has shown that, for a given choice of
symmetric positive definite matrix C, there exists a unique solution, i.e., there exists a
symmetric matrix B satisfying Equation (4.29) if the eigenvalues of A	�i, satisfy �i +�k �=0
for all i	 k = 1	 2	 � � � 	 2n. Furthermore, matrix B is positive definite if and only if each
eigenvalue of A has a negative real part, in which case the system is asymptotically stable.
Matrix B is indefinite if and only if at least one eigenvalue of A has a positive real part,
in which case the equilibrium of the system is unstable. Many theoretical and numerical
calculations in stability theory are based on the solution of Equation (4.29). Walker (1974)
has shown that this system of linear equations has a unique solution.

Solving for the eigenvalues of Equation (4.28) can involve writing out the characteristic
equation of the system. In such cases where this can be done analytically and the coefficients
of the characteristic equation are available, a simple stability condition exists, namely if the
characteristic equation is written in the form

�n + a1�
n−1 + a2�

n−2 + · · · + an = 0 (4.33)

then the system is asymptotically stable if and only if the principal minors of the n × n
Hurwitz matrix defined by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 a1 1 · · · 0
· ·
· ·
· ·
· · · · · · · an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

are all positive. In addition, if any of the coefficients ai are nonpositive (i.e., negative or
zero), then the system may be unstable. This is called the Hurwitz test.

Writing out the (determinant) principal minors of the Hurwitz matrix yields nonlinear
inequalities in the coefficients that provide relationships in the physical parameters of the
system. If these inequalities are satisfied, asymptotic stability is ensured.
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Example 4.11.1

As an illustration of the Hurwitz method, consider determining the asymptotic stability of a system
with the characteristic equation

�3 + a1�
2 + a2� + a3 = 0

The Hurwitz matrix is ⎡
⎣a1 1 0

a3 a2 a1

0 0 a3

⎤
⎦

From the Hurwitz test, a1 > 0	 a2 > 0, and a3 > 0 must be satisfied. From the principal minors of
the Hurwitz matrix, the inequalities

a1 > 0

a1a2 − a3 > 0

a1�a2a3� − a2
3 = a1a2a3 − a2

3 > 0

must be satisfied. The above set reduces to the conditions that a1 >0	 a2 >0	 a3 >0, and a1a2 −a3 >0
be satisfied for the system to be asymptotically stable.

4.12 STABILITY BOUNDARIES

An alternative way of looking at stability has been summarized by Huseyin (1978) and
involves examining the characteristic equation as a surface from which stability properties
can be deduced by plotting various stability boundaries. These methods are especially useful
when examining stability questions that arise because of an applied load. A typical example
is the case of a circulatory force given in example 4.6.1 above.

The point of view taken here is that a system without an applied load is represented by a
symmetric system. For example

Mq̈ + Kq = 0 (4.34)

where M and K are positive definite and symmetric, i.e., the system is stable. This system
is now subjected to a load proportional to position and results in the equation

Mq̈ + �K − E�q = 0 (4.35)

where  is a parameter characterizing the magnitude of the applied load and E is a matrix
representing the point, or points, of application of the load. If there are several loads present,
they can be indexed, kEk, summed, and included in the equation of motion as

Mq̈ + �K −∑
kEk�q = 0 (4.36)

In some sense, this equation is similar to the feedback control systems described in the
previous sections, the difference being that the extra term kEk results in this case from
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some physical loading of a structure, whereas the position feedback term Gf Cp in Equa-
tion (4.26) results from adding actuators to the structure. In the case of feedback, the matrix
Gf Cp is found that causes the system to have a desired (stable) response. In the case of
Equation (4.35), it is desired to see how the stability properties are affected by changes in
the scalar parameter k.

The characteristic equation associated with Equation (4.36) is an equation (if no damping
or gyroscopic terms are present) in �2 and the variable k. This is denoted by ���2	k� and
defined by

���2	k� = det�M�2 + K − kEk� = 0 (4.37)

In most circumstances, k =0 corresponds to a stable state. Then the problem is to find values
of k at which the system loses stability. The initially stable system may, in general, lose
stability by either divergence or flutter. Many of the investigations using this method focus
on determining which way stability is lost. The locus of points in the k space corresponding
to zero roots, or divergence (recall Section 1.7), is called the divergence boundary. On the
other hand, flutter instability corresponds to repeated roots with degenerate eigenvectors.
The locus of points corresponding to repeated roots generates the flutter boundary. Together,
these two curves comprise the stability boundary.

Huseyin (1978) showed that the flutter condition results from those values of  such that

��

��2
= 0 (4.38)

A majority of Huseyin’s text is devoted to various ways of computing stability boundaries for
various classifications of systems. These curves allow design work to be done by examining
the relationship of  to the stability of the system.

CHAPTER NOTES

The classification of systems in this chapter is motivated by the text of Huseyin (1978).
This text provides a complete list of references for each type of system mentioned here,
with the exception of the material on control systems. In addition, Huseyin’s text provides
an in-depth discussion of each topic. The material of Section 4.2 is standard Lyapunov (also
spelled Liapunov in older literature) stability theory, and the definitions are available in most
texts. The reader who understands limits and continuity from elementary calculus should be
able to make the connection to the definition of stability. The material in Sections 4.3 and 4.4
is also standard fare and can be found in most texts considering stability of mechanical
systems. The material of Section 4.5 on semidefinite damping results from several papers
(as referenced) and is not usually found in text form. The material on gyroscopic systems
presented in Section 4.6 is also from several papers. The material on damped gyroscopic
systems is interesting because it violates instinct by illustrating that adding damping to a
structure may not always make it ‘more stable.’ The next section deals with asymmetric but
symmetrizable systems. The material of Section 4.9 is taken from Inman (1983). The major
contributors to the theories (Walker and Huseyin) developed separate methods, which turned
out to be quite similar and, in fact, related. The paper by Ahmadian and Chou (1987) should
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be consulted for methods of calculating symmetric factors of a matrix. Feedback control
systems are presented in this chapter (Section 4.10) before they are formally introduced
in Chapter 7 to drive home the fact that the introduction of a control to a system adds
energy to it and can make it unstable. The topic of Section 4.11 also presents material
from control texts. It is important to note that the controls community generally thinks of
a stable system as one that is defined as asymptotically stable in this text, i.e., one with
eigenvalues with negative real parts. Systems are said to be marginally stable by the controls
community if the eigenvalues are all purely imaginary. This is called stable in this and other
vibration texts. Recent survey articles on the stability of second-order systems are provided
by Bernstein and Bhat (1995) and Nicholson and Lin (1996). Vidyasagar (2002) includes
detailed stability analysis for both linear and nonlinear systems, as well as definitions of
other types of stability.
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PROBLEMS

4.1 Consider the system in figure 2.4 with c1 = c	 c2 =0	 f =0	 k1 =k2 =k, and m1 =m2 =
m. The equation of motion is

m�ẍ +
[

c 0
0 0

]
ẋ +

[
2k −k
−k k

]
x = 0

Use Moran’s theorem to see if this system is asymptotically stable.
4.2 Repeat problem 4.1 by using Walker and Schmitendorf’s theorem.
4.3 Again, consider the system in Figure 2.4, this time with c1 =0	 c2 =c	 f =0	 k1 =k2 =k	

and m1 = m2 = m. The equation of motion is

m�ẍ +
[

c −c
−c c

]
ẋ +

[
2k −k
−k k

]
x = 0

Is this system asymptotically stable? Use any method.
4.4 Discuss the stability of the system of Equation (2.24) using any method. Note that your

answer should depend on the relative values of 	m	 E	 I , and �.
4.5 Calculate a Lyapunov function for the system of example 4.9.1.
4.6 Show that, for a system with symmetric coefficients, if D is positive semidefinite and

DM−1K = KM−1D, then the system is not asymptotically stable.
4.7 Calculate the matrices and vectors Bf 	 u	 Cp and Cv, defined in Section 4.10 for the

system in Figure 2.4 for the case where the velocities of m1 and m2 are measured
and the actuator (f2) at m2 supplies a force of −g1ẋ1. Discuss the stability of this
closed-loop system as the gain g1 is changed.

4.8 The characteristic equation of a given system is

�4 + 10�3 + �2 + 15� + 3 = 0

Is this system asymptotically stable or unstable? Use a root solver to check your answer.
4.9 Consider the system defined by

[
m1 0
0 m2

]
q̈ +

[
0 0
0 0

]
q̇ +

[
k1 −k3

k3 k2

]
q = 0

Assume a value of matrix R from the theory of Walker (1970) of the form

R =
[

m1 g
g m2

]

and calculate relationships between the parameters mi	 ki	 and g that guarantee the
stability of the system. Can the system be asymptotically stable?
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4.10 Let

A2 =
[

c1 c4

c3 c2

]

in problem 4.9 and repeat the analysis.
4.11 Let y = CpBT

f q + CvB
T
f q̇, where Cp and Cv are restricted to be symmetric and show

that the resulting closed-loop system with Gf = I and G = 0 in Equation (4.27) has
symmetric coefficients (Junkins, 1986).

4.12 For the system of problem 4.10, choose feedback matrices Bf 	 Gf 	 Cp	 and Cv that
make the system symmetric and stable (see problem 4.11 for a hint).

4.13 Prove that collocated control is stable for the system of problem 4.10.
4.14 The characteristic equation of a two-link structure with stiffness at each joint and

loaded at the end by p2 and at the joint by p1 is

2�4 + p2
2 + �2p1 + 4�2p2 + p1p2 − 8�2 − p1 − 4p2 + 2 = 0

where the parameters of the structure are all taken to be unity (see Huseyin, 1978,
p. 84). Calculate and sketch the divergence boundary in the p1 − p2 space. Discuss
the flutter condition.

4.15 Use the Hurwitz test to discuss the stability of the system in problem 4.14.
4.16 Consider the system of example 2.4.4 [Equation (2.26)] and compute the Bf 	 Gf and

Cp matrices that correspond to the control law suggested in the example.
4.17 Consider the system of example 4.10.1 with M = I	 C = 0�1K , and k1 = k2 = 2.

Compute the values for the gain g1 that make the closed loop stable for the collocated
case.

4.18 Consider the system of example 4.10.1 with M = I	 C = 0�1K , and k1 = k2 = 2. Com-
pute the values for the gain g1 that make the closed loop stable for the noncollocated
case.

4.19 A common way of improving the response of a system is to add damping via velocity
feedback control. Consider the standard two-degree-of-freedom system in Figure 2.4
with open-loop values of m1 =m2 = 1	 c1 = c2 = 0�1	 k1 = 4, and k2 = 1. Add damping
to the system using a control system that measures ẋ1 and applies a force to the
mass m2 that is proportional to ẋ1 (i.e., −gẋ1�. Determine values of g that make the
closed-loop response asymptotically stable.

4.20 Consider the system of problem 4.5 and calculate the eigenvalues of the state matrix
in Matlab to determine the stability.


