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Forced Response of
Lumped-parameter
Systems

5.1 INTRODUCTION

Up to this point, with the exception of Section 1.4 and some brief comments about feedback
control, only the free response of a system has been discussed. In this chapter the forced
response of a system is considered in detail. Such systems are called nonhomogeneous.
Here, an attempt is made to extend the concepts used for the forced response of a single-
degree-of-freedom system to the forced response of a general lumped-parameter system. In
addition, the concept of stability of the forced response, as well as bounds on the forced
response, is discussed. The beginning sections of this chapter are devoted to the solution
for the forced response of a system by modal analysis, and the latter sections are devoted
to introducing the use of a forced modal response in measurement and testing. The topic
of experimental modal testing is considered in detail in Chapter 8. This chapter ends with
an introduction to numerical simulation of the response to initial conditions and an applied
force.

Since only linear systems are considered, the superposition principle can be employed. This
principle states that the total response of the system is the sum of the free response (the homo-
geneous solution) plus the forced response (the nonhomogeneous solution). Hence, the form
of the transient responses calculated in Chapter 3 are used again as part of the solution of a
system subject to external forces and nonzero initial conditions. The numerical integration
technique presented at the end of the chapter may also be used to simulate nonlinear system
response, although that is not presented.

5.2 RESPONSE VIA STATE-SPACE METHODS

This section considers the state-space representation of a structure given by

ẋ�t� = Ax�t� + f�t� (5.1)

Vibration with Control D. J. Inman
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01051-7



124 FORCED RESPONSE OF LUMPED-PARAMETER SYSTEMS

where A is a 2n×2n matrix containing the generalized mass, damping, and stiffness matrices
as defined in Equation (2.20). The 2n × 1 state vector x�t� contains both the velocity and
position vectors and will be referred to as the response in this case. Equation (5.1) reflects
the fact that any set of n differential equations of second order can be written as a set
of 2n first-order differential equations. In some sense, Equation (5.1) represents the most
convenient form for solving for the forced response, since a great deal of attention has been
focused on solving state-space descriptions numerically (such as the Runge–Kutta method),
as discussed in Sections 1.10, 3.9, and 5.8, as well as analytically. In fact, several software
packages are available for solving Equation (5.1) numerically on virtually every computing
platform. The state-space form is also the form of choice for solving control problems
(Chapter 7).

Only a few of the many approaches to solving this system are presented here; the reader
is referred to texts on numerical integration and systems theory for other methods. More
attention is paid in this chapter to developing methods that cater to the special form of
mechanical systems, i.e., systems written in terms of position, velocity, and acceleration
rather than in state space.

The first method presented here is simply that of solving Equation (5.1) by using the
Laplace transform. Let X�0� denote the Laplace transform of the initial conditions. Taking
the Laplace transform of Equation (5.1) yields

sX�s� = AX�s� + F�s� + X�0� (5.2)

where X�s� denotes the Laplace transform of x�t� and is defined by

X�s� =
∫ �

0
x�t� e−st dt (5.3)

Here, s is a complex scalar. Algebraically solving Equation (5.2) for X�s� yields

X�s� = �sI − A�−1X�0� + �sI − A�−1F�s� (5.4)

The matrix �sI − A�−1 is referred to as the resolvent matrix. The inverse Laplace transform
of Equation (5.4) then yields the solution x�t�. The form of Equation (5.4) clearly indi-
cates the superposition of the transient solution, which is the first term on the right-hand
side of Equation (5.4), and the forced response, which is the second term on the right-hand
side of Equation (5.4). The inverse Laplace transform is defined by

x�t� = £−1�X�s�� = lim
a→�

1
2�j

∫ c+ja

c−ja
X�s� est ds (5.5)

where j =√−1. In many cases, Equation (5.5) can be evaluated by using a table such as the
one found in Thomson (1960) or a symbolic code. If the integral in Equation (5.5) cannot be
found in a table or calculated, then numerical integration can be used to solve Equation (5.1)
as presented in Section 5.8.
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Example 5.2.1

Consider a simple single-degree-of-freedom system ẍ + 3ẋ + 2x = ��t�, written in the state-space
form defined by Equation (5.1) with

A =
[

0 1
−2 −3

]
� f�t� =

[
f1�t�
f2�t�

]
� x�t� =

[
x�t�
ẋ�t�

]

subject to a force given by f1 = 0 and

f2�t� =
{

0� t < 0
1� t > 0

the unit step function, and initial condition given by x�0� = �0 1�T . To solve this, first calculate

�sI − A� =
[

s −1
2 s + 3

]

and then determine the resolvent matrix

�sI − A�−1 = 1
s2 + 3s + 2

[
s + 3 1

−2 s

]

Equation (5.4) becomes

X�s� = 1
s2 + 3s + 2

[
s + 3 1

−2 s

][
0
1

]
+ 1

s2 + 3s + 2

[
s + 3 1
−2 s

][0
1
s

]
=
⎡
⎢⎣

s + 1
s3 + 3s2 + 2s

s + 1
s2 + 3s + 2

⎤
⎥⎦

Taking the inverse Laplace transform by using a table yields

x�t� =
⎡
⎣ 1

2
− 1

2
e−2t

e−2t

⎤
⎦

This solution is in agreement with the fact that the system is overdamped. Also note that ẋ1 = x2,
as it should in this case, and that setting t = 0 satisfies the initial conditions.

A second method for solving Equation (5.1) imitates the solution of a first-order scalar
equation, following what is referred to as the method of ‘variation of parameters’ (Boyce
and DiPrima, 2005). For the matrix case, the solution depends on defining the exponential
of a matrix. The matrix exponential of matrix A is defined by the infinite series

eA =
�∑

k=0

Ak

k! (5.6)

where k! denotes the k factorial with 0! = 1 and A0 = I , the n × n identity matrix. This
series converges for all square matrices A. By using the definition of Section 2.1 of a scalar
multiplied by a matrix, the time-dependent matrix eAt is similarly defined as

eAt =
�∑

k=0

Aktk

k! (5.7)
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which also converges. The time derivative of Equation (5.7) yields

d

dt
�eAt� = AeAt = eAtA (5.8)

Note that matrix A and the matrix eAt commute because a matrix commutes with its powers.
Following the method of variation of parameters, assume that the solution of Equation (5.1)

is of the form

x�t� = eAtc�t� (5.9)

where c�t� is an unknown vector function of time. The time derivative of Equation (5.9)
yields

ẋ�t� = AeAtc�t� + eAt ċ�t� (5.10)

This results from the product rule and Equation (5.8). Substitution of Equation (5.9) into
Equation (5.1) yields

ẋ�t� = AeAtc�t� + f�t� (5.11)

Subtracting Equation (5.11) from Equation (5.10) yields

eAt ċ�t� = f�t� (5.12)

Premultiplying Equation (5.12) by e−At (which always exists) yields

ċ�t� = e−Atf�t� (5.13)

Simple integration of this differential equation yields the solution for c�t�:

c�t� =
∫ t

0
e−A	f�	�d	 + c�0� (5.14)

Here, the integration of a vector is defined as integration of each element of the vector, just
as differentiation is defined on a per element basis. Substitution of Equation (5.14) into the
assumed solution (5.9) produces the solution of Equation (5.1) as

x�t� = eAt
∫ t

0
e−A	f�	�d	 + eAtc�0� (5.15)

Here, c�0� is the initial condition on x�t�. That is, substitution of t = 0 into (5.9) yields

x�0� = e0c�0� = Ic�0� = c�0�

so that c�0� = x�0�, the initial conditions on the state vector. The complete solution of
Equation (5.1) can then be written as

x�t� = eAtx�0� +
∫ t

0
eA�t−	�f�	�d	 (5.16)
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The first term represents the response due to the initial conditions, i.e., the free response of
the system. The second term represents the response due to the applied force, i.e., the steady
state response. Note that the solution given in Equation (5.16) is independent of the nature of
the viscous damping in the system (i.e., proportional or not) and gives both the displacement
and velocity time response.

The matrix eAt is often called the state transition matrix of the system defined by Equa-
tion (5.1). Matrix eAt ‘maps’ the initial condition x�0� into the new or next position x�t�.
While Equation (5.16) represents a closed-form solution of Equation (5.1) for any state
matrix A, use of this form centers on the calculation of matrix eAt. Many papers have been
written on different methods of calculating eAt (Moler and Van Loan, 1978).

One method of calculating eAt is to realize that eAt is equal to the inverse Laplace
transform of the resolvent matrix for A. In fact, a comparison of Equations (5.16) and (5.4)
yields

eAt = £−1
�sI − A�−1� (5.17)

Another interesting method of calculating eAt is restricted to those matrices A with diagonal
Jordan form. Then it can be shown [recall Equation (3.31)] that

eAt = Ue�tU−1 (5.18)

where U is the matrix of eigenvectors of A, and � is the diagonal matrix of eigenvalues
of A. Here, e�t = diag

[
e1t e2t · · · ent

]
, where the i denote the eigenvalues of matrix A.

Example 5.2.2

Compute the matrix exponential eAt for the state matrix

A =
[−2 3
−3 −2

]

Using the Laplace transform approach of Equation (5.18) requires forming of the matrix (sI − A):

sI − A =
[

s + 2 −3
3 s + 2

]

Calculating the inverse of this matrix yields

�sI − A�−1 =
⎡
⎢⎣

s + 2
�s + 2�2 + 9

3
�s + 2�2 + 9−3

�s + 2�2 + 9
s + 2

�s + 2�2 + 9

⎤
⎥⎦

The matrix exponential is now computed by taking the inverse Laplace transform of each element.
This results in

eAt = £−1
�sI − A�−1� =
[

e−2t cos 3t e−2t sin 3t
−e−2t sin 3t e−2t cos 3t

]
= e−2t

[
cos 3t sin 3t

− sin 3t cos 3t

]
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5.3 DECOUPLING CONDITIONS AND MODAL ANALYSIS

An alternative approach to solving for the response of a system by transform or matrix
exponent methods is to use the eigenvalue and eigenvector information from the free response
as a tool for solving for the forced response. This provides a useful theoretical tool as
well as a computationally different approach. Approaches based on the eigenvectors of the
system are referred to as modal analysis and also form the basis for understanding modal
test methods (see Chapter 8). Modal analysis can be carried out in either the state vector
coordinates of first-order form or the physical coordinates defining the second-order form.

First consider the system described by Equation (5.1). If matrix A has a diagonal Jordan
form (Section 3.4), which happens when it has distinct eigenvalues, for example, then matrix
A can be diagonalized by its modal matrix. In this circumstance, Equation (5.1) can be
reduced to 2n independent first-order equations. To see this, let ui be the eigenvectors
of the state matrix A with eigenvalues �i. Let U = �u1 u2 · · ·u2n� be the modal matrix of
matrix A. Then substitute x = Uz into Equation (5.1) to obtain

U ż = AUz + f (5.19)

Premultiplying Equation (5.19) by U−1 yields the decoupled system

ż = U−1AUz + U−1f (5.20)

each element of which is of the form

żi = �izi + Fi (5.21)

where zi is the ith element of the vector z and Fi is the ith element of the vector F = U−1f .
Equation (5.21) can now be solved using scalar integration of each of the equations subject
to the initial condition zi�0�= �U−1x�0��i� In this way, the vector z�t� can be calculated, and
the solution x�t� in the original coordinates becomes

x�t� = Uz�t� (5.22)

The amount of effort required to calculate the solution via this method is comparable with
that required to calculate the solution via Equation (5.17). The modal form offered by
Equations (5.21) and (5.22) provides a tremendous analytical advantage.

The above process can also be used on systems described in the second-order form.
The differences are that the eigenvector–eigenvalue problem is solved in n dimensions
instead of 2n dimensions and the solution is the position vector instead of the state vector
of position and velocity. In addition, the modal vectors used to decouple the equations of
motion have important physical significance when viewed in second-order form which is
not as apparent in the state-space form.

Consider examining the forced response in the physical or spatial coordinates defined by
Equation (2.7). First consider the simplest problem, that of calculating the forced response
of an undamped nongyroscopic system of the form

Mq̈�t� + Kq�t� = f�t� (5.23)
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where M and K are n×n real positive definite matrices, q�t� is the vector of displacements,
and f�t� is a vector of applied forces. The system is also subject to an initial position given
by q(0) and an initial velocity given by q̇�0�.

To solve Equation (5.23) by eigenvector expansions, one must first solve the eigenvalue–
eigenvector problem for the corresponding homogeneous system. That is, one must calculate
i and ui such that �i = �2

i �

iui = K̃ui (5.24)

Note that ui now denotes an n×1 eigenvector of the mass normalized stiffness matrix. From
this, the modal matrix Sm is calculated and normalized such that

ST
mMSm = I

ST
mKSm = � = diag��2

i � (5.25)

This procedure is the same as that of Section 3.3 except that, in the case of the forced
response, the form that the temporal part of the solution will take is not known. Hence, rather
than assuming that the dependence is of the form sin��t�, the temporal form is computed
from a generic temporal function designated as yi�t�.

Since the eigenvectors ui form a basis in an n-dimensional space, any vector q�t1�, where
t1 is some fixed but arbitrary time, can be written as a linear combination of the vectors
ui; thus

q�t1� =
n∑

i=1

yi�t1�ui = Sm y�t1� (5.26)

where y�t1� is an n-vector with components yi�t1� to be determined. Since t1 is arbitrary, it
is reasoned that Equation (5.25) must hold for any t. Therefore

q�t� =
n∑

i=1

yi�t�ui = Sm y�t�� t ≥ 0 (5.27)

This must be true for any n-dimensional vector q. In particular this must hold for solutions of
Equation (5.23). Substitution of Equation (5.27) into Equation (5.23) shows that the vector
y�t� must satisfy

MSm ÿ�t� + KSm y�t� = f�t� (5.28)

Premultiplying by ST
m yields

ÿ�t� + �y�t� = ST
m f�t� (5.29)

Equation (5.28) represents n decoupled equations, each of the form

ÿi�t� + �2
i yi�t� = fi�t� (5.30)

where fi�t� denotes the ith element of the vector ST
m f�t�.
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If K is assumed to be positive definite, each �2
i is a positive real number. Denoting the

‘modal’ initial conditions by yi(0) and ẏi�0�, the solutions of Equation (5.30) are calculated
by the method of variation of parameters to be

yi�t� = 1
�i

∫ t

0 fi�t − 	� sin��i	� d	 + yi�0� cos��it� + ẏi�0�

�i

sin��it�� i = 1� 2� 3� � � � � n

(5.31)
(see Boyce and DiPrima, 2005, for a derivation).

If K is semidefinite, one or more values of �2
i might be zero. Then, Equation (5.30) would

become

ÿi�t� = fi�t� (5.32)

Integrating Equation (5.32) then yields

yi�t� =
∫ t

0

[∫ 	

0
fi�s� ds

]
d	 + yi�0� + ẏi�0�t (5.33)

which represents a rigid body motion.
The initial conditions for the new coordinates are determined from the initial conditions

for the original coordinates by the transformation

y�0� = S−1
m q�0� (5.34)

and

ẏ�0� = S−1
m q̇�0� (5.35)

This method is often referred to as modal analysis and differs from the state-space modal
approach in that the computations involve matrices and vectors of size n rather than 2n.
They result in a solution for the position vector rather than the 2n-dimensional state vector.
The coordinates defined by the vector y are called modal coordinates, normal coordinates,
decoupled coordinates, and (sometimes) natural coordinates. Note that, in the case of a free
response, i.e., fi = 0, then yi�t� is just e±�ijt, where �i is the ith natural frequency of the
system, as discussed in Section 3.3.

Alternatively, the modal decoupling described in the above paragraphs can be obtained by
using the mass normalized stiffness matrix. To see this, substitute q = M1/2r into Equation
(2.11), multiply by M−1/2 to form K̃ = M−1/2KM−1/2, compute the normalized eigenvectors
of K̃ , and use these to form the columns of the orthogonal matrix S. Next, use the substitution
r = Sy in the equation of motion, premultiply by ST , and equation (5.30) results. This
procedure is illustrated in the following example.

Example 5.3.1

Consider the undamped system of example 3.3.2 and Figure 2.4 subject to a harmonic force applied
to m2, given by

f�t� =
[

0
1

]
sin 3t
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Following the alternative approach, compute the modal force by multiplying the physical force by
ST M−1/2:

ST M−1/2f�t� = 1√
2

[
1 1

−1 1

][1/
3 0

0 1

][
0
1

]
sin 3t = 1√

2

[
1
1

]
sin 3t

Combining this with the results of example 3.32 leads to the modal equations [Equation (5.30)]

ÿ1�t� + 2y1�t� = 1√
2

sin 3t

ÿ2�t� + 4y2�t� = 1√
2

sin 3t

This of course is subject to the transformed initial conditions, and each equation can be solved by
the methods of Chapter 1. For instance, if the initial conditions in the physical coordinates are

q�0� =
[

0�1
0

]
and q̇�0� =

[
0
0

]

then in the modal coordinates the initial velocity remains zero but the initial displacement is
transformed (solving q = M−1/2 r and r = Sy, for y) to become

y�0� = ST M1/2q�0� = 1√
2

[
1 1

−1 1

][
3 0
0 1

][
0�1
0

]
= 0�3√

2

[
1

−1

]

Solving for y1 proceeds by first computing the particular solution (see Section 1.4 with zero damping)
by assuming that y�t� = X sin 3t in the modal equation for y1to obtain

−9X sin 3t + 2X sin 3t = 1√
2

sin 3t

Solving for X leads to the particular solution y1p�t� =
(
−1/�7

√
2�
)

sin 3t. The total solution
(from Equation (1.21) with zero damping) is then

y1�t� = a sin
√

2t + b cos
√

2t − 1

7
√

2
sin 3t

Applying the modal initial conditions yields

y1�0� = b = 0�3√
2

� ẏ1�0� = √
2a − 3

7
√

2
= 0 ⇒ a = 3

14

Thus, the solution of the first modal equation is

y1�t� = 3
14

sin
√

2t + 0�3√
2

cos
√

2t − 1

7
√

2
sin 3t

Likewise, the solution to the second modal equation is

y2�t� = 0�3√
2

sin 2t − 0�3√
2

cos 2t − 0�2√
2

sin 3t

The solution in physical coordinates is then found from q�t� = M−1/2Sy�t�.
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5.4 RESPONSE OF SYSTEMS WITH DAMPING

The key to using modal analysis to solve for the forced response of systems with velocity-
dependent terms is whether or not the system can be decoupled. As in the case of the
free response, discussed in Section 3.5, this will happen for symmetric systems if and
only if the coefficient matrices commute, i.e., if KM−1D = DM−1K . Ahmadian and Inman
(1984a) reviewed previous work on decoupling and extended the commutivity condition to
systems with asymmetric coefficients. Inman (1982) and Ahmadian and Inman (1984b) used
the decoupling condition to carry out modal analysis for general asymmetric systems with
commuting coefficients. In each of these cases the process is the same, with an additional
transformation into symmetric coordinates, as introduced in Section 4.9. Hence, only the
symmetric case is illustrated here.

To this end, consider the problem of calculating the forced response of the nongyroscopic
damped linear system given by

Mq̈ + Dq̈ + Kq = f�t� (5.36)

where M and K are symmetric and positive definite and D is symmetric and positive
semidefinite. In addition, it is assumed that KM−1D = DM−1K � Let Sm be the modal matrix
of K normalized with respect to M, as defined by Equations (3.69) and (3.70). Then, the
commutivity of the coefficient matrices yields

ST
mMSm = I

ST
mDSm = �D = diag�2�i�i�

ST
mKSm = �K = diag��2

i � (5.37)

where �D and �K are diagonal matrices, as indicated. Making the substitution
q = q�t� = Smy�t� in Equation (5.36) and premultiplying by ST

m as before yields

I ÿ + �Dẏ + �K y = ST
mf�t� (5.38)

Equation (5.38) is diagonal and can be written as n decoupled equations of the form

ÿi�t� + 2�i�iẏi�t� + �2
i yi�t� = fi�t� (5.39)

Here, �i = i�D�/2�i, where i�D� denotes the eigenvalues of matrix D. In this case these
are the nonzero elements of �D. This expression is the nonhomogeneous counterpart of
Equation (3.71).

If it is assumed that 4K̃ − D̃2 is positive definite, then 0 < �i < 1, and the solution of
Equation (5.39) (assuming all initial conditions are zero) is

yi�t� = 1
�di

∫ t

0
e−�i�i	fi�t − 	� sin��di	� d	� i = 1� 2� 3� � � � � n (5.40)

where �di = �i

√
1 − �

�2�
i � If 4K̃ − D̃2 is not positive definite, other forms of yi�t� result,

depending on the eigenvalues of the matrix 4K̃ − D̃2, as discussed in Section 3.6.
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In addition to the forced response given by Equation (5.40), there will be a tran-
sient response, or homogeneous solution, due to any nonzero initial conditions. If this
response is denoted by yH

i , then the total response of the system in the decoupled coordinate
system is the sum yi�t� + yH

i �t�. This solution is related to the solution in the original
coordinates by the modal matrix Sm and is given by

q�t� = Sm�y�t� + yH�t�� (5.41)

For asymmetric systems, the procedure is similar, with the exception of computing a second
transformation; this transforms the asymmetric system into an equivalent symmetric system,
as done in Section 4.9.

For systems in which the coefficient matrices do not commute, i.e., for which
KM−1D �= DM−1K in Equation (5.36), modal analysis of a sort is still possible without
resorting to state space. To this end, consider the symmetric case given by the system

Mq̈ + Dq̇ + Kq = f�t� (5.42)

where M� D, and K are symmetric.
Let ui be the eigenvectors of the lambda matrix

�M2
i + Di + K�ui = 0 (5.43)

with associated eigenvalues i. Let n be the number of degrees of freedom (so there are 2n
eigenvalues), let 2s be the number of real eigenvalues, and let 2�n – s� be the number of
complex eigenvalues. Assuming that D2�� is simple and that the ui are normalized so that

uT
i �2Mi + D�ui = 1 (5.44)

a particular solution of Equation (5.42) is given by Lancaster (1966) in terms of the gener-
alized modes ui to be

q�t� =
2s∑

k=1

ukuT
k

∫ t

0
e−k�t+	�f�	� d	 +

2n∑
k=2s+1

∫ t

0
Re
ek�t−	�ukuT

k �f�	� d	 (5.45)

This expression is more difficult to compute but does offer some insight into the form of
the solution that is useful in modal testing, as will be illustrated in Chapter 8. Note that
the eigenvalues indexed 1 through 2s are real, whereas those labeled 2s+1 through 2n

are complex. The complex eigenvalues 2s+1 and 2�s+1� are conjugates of each other. Also,
note that the nature of the matrices D and K completely determines the value of s. In fact,
if 4K̃ − D̃2 is positive definite, s = 0 in Equation (5.44). Also note that, if k is real, so is
the corresponding uk. On the other hand, if k is complex, the corresponding eigenvector uk

is real if and only if KM−1D = DM−1K ; otherwise, the eigenvectors are complex valued.
The particular solution (5.45) has the advantage of being stated in the original, or phys-

ical, coordinate system. To obtain the total solution, the transient response developed in
Section (3.4) must be added to Equation (5.45). This should be done unless steady state
conditions prevail.
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Example 5.4.1

Consider example 5.3.1 with a damping force applied of the form D =0�1K (proportional damping).
In this case 4K̃ − D̃ is positive definite so that each mode will be underdamped. The alternative
transformation used in example 5.3.1 is employed here to find the modal equations given in
Equation (5.39). The equations of motion and initial conditions (assuming compatible units) are[

9 0
0 1

]
q̈�t�+

[
2�7 −0�3

−0�3 0�3

]
q̇�t�+

[
27 −3
−3 3

]
q�t�=

[
0
1

]
sin 3t� q�0�=

[
1
0

]
� q̇�0�=

[
0
0

]

Since the damping is proportional, the undamped transformation computed in examples 3.3.2 and
5.3.1 can be used to decouple the equations of motion. Using the transformation y�t� = ST M

1/2q�t�

and premultiplying the equations of motion by ST M
−1/2 yields the uncoupled modal equations

ÿ1�t� + 0�2ẏ1�t� + 2y1�t� = 1√
2

sin 3t� y1�0� = 3√
2

� ẏ1�0� = 0

ÿ2�t� + 0�4ẏ2�t� + 4y2�t� = 1√
2

sin 3t� y2�0� = −3√
2

� ẏ2�0� = 0

From the modal equations the frequencies and damping ratios are evident:

�1 = √
2 = 1�414 rad/s� �1 = 0�2

2
√

2
= 0�071 < 1� �d1

= �1

√
1 − �2

1 = 1�41 rad/s

�2 = √
4 = 2 rad/s� �2 = 0�4

�2��2�
= 0�1 < 1� �d2

= �2

√
1 − �2

2 = 1�99 rad/s

Solving the two modal equations using the approach of example 1.4.1 (y2 is solved there) yields

y1�t� = e−0�1t �0�3651 sin 1�41t + 2�1299 cos 1�41t� − 0�1015 sin 3t − 0�0087 cos 3t
y2�t� = −e−0�2t �0�0084 sin 1�99t + 2�0892 cos 1�99t� − 0�1325 sin 3t − 0�032 cos 3t

This forms the solution in modal coordinates. To regain the solution in physical coordinates, use
the transformation q�t� = M−1/2Sy�t�. Note that the transient term is multiplied by a decaying
exponential in time and will decay off, leaving the steady state to persist.

5.5 BOUNDED-INPUT, BOUNDED-OUTPUT STABILITY

In the previous chapter, several types of stability for the free response of a system were
defined and discussed in great detail. In this section the concept of stability as it applies
to the forced response of a system is discussed. In particular, systems are examined in the
state-space form given by Equation (5.1).

The stability of the forced response of a system is defined in terms of bounds of the
response vector x�t�. Hence, it is important to recall that a vector x�t� is bounded if

�x�t�� = √
xT x < M (5.46)

where M is some finite positive real number. The quantity 		x		 just defined is called the
norm of x�t�. The response x�t� is also referred to as the output of the system, hence the
phrase bounded-output stability.
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A fundamental classification of stability of forced systems is called bounded-input,
bounded-output (BIBO) stability. The system described by Equation (5.1) is called BIBO
stable if any bounded forcing function f�t�, called the input, produces a bounded response
x�t�, i.e., a bounded output, regardless of the bounded initial condition x�0�. An exam-
ple of a system that is not BIBO stable is given by the single-degree-of-freedom
oscillator

ÿ + �2
ny = sin �t (5.47)

In state-space form this becomes

ẋ =
[

0 1
−�2

n 0

]
x + f�t� (5.48)

where x = �y ẏ�T and f�t� = �0 sin �t�T . This system is not BIBO stable, since, for a
bounded input y�t�, and hence x�t�, blows up when � = �n (i.e., at resonance).

A second classification of stability is called bounded stability, or Lagrange stability, and
is a little weaker than BIBO stability. The system described in Equation (5.1) is said to be
Lagrange stable with respect to a given input f�t� if the response x�t� is bounded for any
bounded initial condition x�0�. Referring to the example of the previous paragraph, if � �=�n,
then the system described by Equation (5.48) is bounded with respect to f�t�= �0 sin �t�T

because, when � �= �n� x�t� does not blow up. Note that, if a given system is BIBO stable,
it will also be Lagrange stable. However, a system that is Lagrange stable may not be BIBO
stable.

As an example of a system that is BIBO stable, consider adding damping to the preceding
system. The result is a single-degree-of-freedom damped oscillator that has the state matrix

A =
[

0 1
−k/m −c/m

]
(5.49)

Recall that the damping term prevents the solution x�t� from becoming unbounded at res-
onance. Hence, y�t� and ẏ�t� are bounded for any bounded input f�t�, and the system is
BIBO stable as well as Lagrange stable.

The difference in the two examples is due to the stability of the free response of each
system. The undamped oscillator is stable but not asymptotically stable, and the forced
response is not BIBO stable. On the other hand, the damped oscillator is asymptotically
stable and is BIBO stable. To some extent this is true in general. Namely, it is shown by
Müller and Schiehlen (1977) that, if the forcing function f�t� can be written as a constant
matrix B times a vector u, i.e., f�t� = Bu, then, if

rank
[
B AB A2B A3B · · · A2n−1B

]= 2n (5.50)

where 2n is the dimension of matrix A, the system in Equation (5.1) is BIBO stable if and
only if the free response is asymptotically stable. If f�t� does not have this form or does not
satisfy the rank condition (5.50), then asymptotically stable systems are BIBO stable, and
BIBO stable systems have a stable free response.
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Another way to look at the difference between the above two examples is to con-
sider the phenomenon of resonance. The undamped single-degree-of-freedom oscillator of
Equation (5.48) experiences an infinite amplitude at �=�n, the resonance condition, which
is certainly unstable. However, the underdamped single-degree-of-freedom oscillator of
Equation (5.49) is bounded at the resonance condition, as discussed in Section 1.4. Hence,
the damping ‘lowers’ the peak response at resonance from infinity to some finite, or bounded,
value, resulting in a system that is BIBO stable.

The obvious use of the preceding conditions is to use the stability results of Chapter 4
for the free response to guarantee BIBO stability or boundedness of the forced response,
x�t�. To this extent, other concepts of stability of systems subject to external forces are not
developed. Instead, some specific bounds on the forced response of a system are examined
in the next section.

5.6 RESPONSE BOUNDS

Given that a system is either BIBO stable or at least bounded, it is sometimes of interest to cal-
culate bounds for the forced response of the system without actually calculating the response
itself. A summary of early work on the calculation of bounds is given in review papers
by Nicholson and Inman (1983) and Nicholson and Lin (1996). More recent work is given
in Hu and Eberhard (1999). A majority of the work reported there examines bounds for
systems in the physical coordinates q�t� in the form of Equation (5.36). In particular, if
DM−1K = KM−1D and if the forcing function or input is of the form (periodic)

f�t� = f0ej�t (5.51)

where f0 is an n × 1 vector of constants, j2 = −1, and � is the driving frequency, then

		q�t�		
		f0		

�
max

j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
j�K�

if
j�K�

j�M�
<

2
j �D�

22
j �M�√

i�M�

2
i �D�i�K�

otherwise

(5.52)

Here, i�M��i�D�, and i�K� are used to denote the ordered eigenvalues of the matrices
M� D� and K respectively. The first inequality in expression (5.52) is satisfied if the free
system is overdamped, and the bound �2

i �D�i�K�/i�M��−1/2 is applied for underdamped
systems.

Bounds on the forced response are also available for systems that do not decouple, i.e., for
systems with coefficient matrices such that DM−1K �= KM−1D. One way to approach such
systems is to write the system in the normal coordinates of the undamped system. Then the
resulting damping matrix can be written as the sum of a diagonal matrix and an off-diagonal
matrix, which clearly indicates the degree of decoupling.

Substituting q�t� = Smx into Equation (5.36) and premultiplying by ST
m, where Sm is the

modal matrix for K , yields
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I ẍ + ��D + D1�ẋ + �K x = f̃�t� (5.53)

The matrix �D is the diagonal part of ST
mDSm, D1 is the matrix of off-diagonal elements of

ST
mDSm� �K is the diagonal matrix of squared undamped natural frequencies, and f̃ = ST

mf .
The steady state response of Equation (5.53) with a sinusoidal input, i.e., f̃ = f0ej�t and

Equation (5.53) underdamped, is given by

		q�t�		
		f0		

<
2

min��D�C�
e��		D1		/min� (5.54)

Here, min��D�C� denotes the smallest eigenvalue of the matrix �D�C , where �C = �4�K −
�2

D�1/2. Also, min is the smallest eigenvalue of the matrix �D� 		D1		 is the matrix norm
defined by the maximum value of the square root of the largest eigenvalue of DT

1 D1 = D2
1,

and � is defined by

� =
√∥∥I + ��−1

C �D�2
∥∥ (5.55)

Examination of the bound in Equation (5.53) shows that, the greater the coupling in the
system characterized by 		D1		, the larger is the bound. Thus, for small values of 		D1		, i.e.,
small coupling, the bound is good, whereas for large values of 		D1		 or very highly coupled
systems, the bound will be very large and too conservative to be of practical use. This is
illustrated in example 5.6.1.

Example 5.6.1

Consider a system defined by Equation (5.36) with M = I:

K =
[

5 −1
−1 1

]
� D = 0�5K + 0�5I + �

[
0 1
1 0

]

subject to a sinusoidal driving force applied to the first mass so that f0 = �1 0�T . The parameter �
clearly determines the degree of proportionality or coupling in the system. The bounds are tabulated
in Table 5.1 for various values of �, along with a comparison with the exact solution.

Examination of Table 5.1 clearly illustrates that, as the degree of coupling increases (larger �), the
bound gets farther away from the actual response. Note that the value given in the ‘exact’ column
is the largest value obtained by the exact response.

Table 5.1 Forced response bounds.

� Exact
solution

Bound

0 1.30 1.50
−0�1 1.56 2.09
−0�2 1.62 3.05
−0�3 1.70 4.69
−0�4 1.78 8.60
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5.7 FREQUENCY RESPONSE METHODS

This section attempts to extend the concept of frequency response introduced in Sections 1.5
and 1.6 to multiple-degree-of-freedom systems. In so doing, the material in this section
makes the connection between analytical modal analysis and experimental modal analysis
discussed in Chapter 8. The development starts by considering the response of a struc-
ture to a harmonic or sinusoidal input, denoted by f�t� = f0ej�t. The equations of motion
in spatial or physical coordinates given by Equation (5.36) with no damping (D = 0) or
Equation (5.23) are considered first. In this case, an oscillatory solution of Equation (5.23)
of the form

q�t� = uej�t (5.56)

is assumed. This is equivalent to the frequency response theorem stated in Section 1.5. That
is, if a system is harmonically excited, the response will consist of a steady state term that
oscillates at the driving frequency with different amplitude and phase.

Substitution of the assumed oscillatory solution into Equation (5.36) with D = 0
yields

(
K − �2M

)
uej�t = f0ej�t (5.57)

Dividing through by the nonzero scalar ej�t and solving for u yields

u = �K − �2M�−1f0 (5.58)

Note that the matrix inverse of �K − �2M� exists as long as � is not one of the natural
frequencies of the structure. This is consistent with the fact that, without damping, the system
is Lagrange stable and not BIBO stable. The matrix coefficient of Equation (5.58) is defined
as the receptance matrix, denoted by ����, i.e.,

���� = �K − �2M�−1 (5.59)

Equation (5.58) can be thought of as the response model of the structure. Solution of
Equation (5.58) yields the vector u, which, coupled with Equation (5.56), yields the steady
state response of the system to the input force f�t�.

Each element of the response matrix can be related to a single-frequency response function
by examining the definition of matrix multiplication. In particular, if all the elements of the
vector f0, denoted by fi, except the jth element are set equal to zero, then the ijth element
of ���� is just the receptance transfer function between ui, the ith element of the response
vector u, and fj . That is

�ij��� = ui

fj

� fi = 0� i = 0� � � � � n� i �= j (5.60)
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Note that, since ���� is symmetric, this interpretation implies that ui/fj = uj/fi.
Hence, a force applied at position j yields the same response at point i as a force applied
at i does at point j. This is called reciprocity.

An alternative to computing the inverse of the matrix �K − �2M� is to use the modal
decomposition of ����. Recalling Equations (3.20) and (3.21) from Section 3.2, the matrices
M and K can be rewritten as

M = S−T
m S−1

m (5.61)

K = S−T
m diag��2

r �S−1
m (5.62)

where �i are the natural frequencies of the system and Sm is the matrix of modal vectors
normalized with respect to the mass matrix. Substitution of these ‘modal’ expressions into
Equation (5.59) yields

���� = 
S−T
m �diag��2

r � − �2I�S−T
m �−1

= Sm
diag��2
r − �2�−1�ST

m (5.63)

Expression (5.63) can also be written in summation notation by considering the ijth element
of ����, recalling formula (2.6), and partitioning the matrix Sm into columns, denoted by sr .
The vectors sr are, of course, the eigenvectors of the matrix K normalized with respect to
the mass matrix M. This yields

���� =
n∑

r=1

��2
r − �2�−1srs

T
r (5.64)

The ijth element of the receptance matrix becomes

�ij��� =
n∑

r=1

��2
r − �2�−1�srs

T
r �ij (5.65)

where the matrix element �srs
T
r �ij is identified as the modal constant or residue for the rth

mode, and the matrix srs
T
r is called the residue matrix. Note that the right-hand side of Equa-

tion (5.65) can also be rationalized to form a single fraction consisting of the ratio of two
polynomials in �2. Hence, �srs

T
r �ij can also be viewed as the matrix of constants in the partial

fraction expansion of Equation (5.60).
Next, consider the same procedure applied to Equation (5.36) with nonzero damping. As

always, consideration of damped systems results in two cases: those systems that decouple
and those that do not.

First consider Equation (5.36) with damping such that DM−1K = KM−1D, so that the
system decouples and the system eigenvectors are real. In this case the eigenvectors of
the undamped system are also eigenvectors for the damped system, as was established
in Section 3.5. The definition of the receptance matrix takes on a slightly different form
to reflect the damping in the system. Under the additional assumption that the system is
underdamped, i.e., that the matrix 4K̃ − D̃2 is positive definite, the modal damping ratios �r

are all between 0 and 1. Equation (5.58) becomes

u = �K + j�D − �2M�−1f0 (5.66)
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Because the system decouples, matrix D can be written as

D = S−T
m diag�2�r�r�S−1

m (5.67)

Substitution of Equations (5.61), (5.62), and (5.67) into Equation (5.66) yields

u = Sm�diag��2
r + 2j�r�r� − �2�−1�ST

m f0 (5.68)

This expression defines the complex receptance matrix given by

���� =
n∑

r=1

��2
r + 2j�r�r� − �2�−1srs

T
r (5.69)

Next, consider the general viscously damped case. In this case the eigenvectors sr are
complex and the receptance matrix is given (see Lancaster, 1966) as

���� =
n∑

r=1

{
srs

T
r

j� − r

+ s∗
r s∗T

r

j� − ∗
r

}
(5.70)

Here, the asterisk denotes the conjugate, the r are the complex system eigenvalues, and the
sr are the system eigenvectors.

The expressions for the receptance matrix and the interpretation of an element of the
receptance matrix given by Equation (5.60) form the background for modal testing. In
addition, the receptance matrix forms a response model for the system. Considering the most
general case [Equation (5.70)], the phenomenon of resonance is evident. In fact, if the real
part of r is small, j� − r is potentially small, and the response will be dominated by
the associated mode sr . The receptance matrix is a generalization of the frequency response
function of Section 1.5. In addition, like the transition matrix of Section 5.2, the receptance
matrix maps the input of the system into the output of the system.

5.8 NUMERICAL SIMULATION IN MATLAB

This section extends Section 3.9 to include simulation of systems subject to an applied
force. The method is the same as that described in Section 3.9, with the exception that
the forcing function is now included in the equations of motion. All the codes mentioned
in Section 3.9 have the ability numerically to integrate the equations of motion including
both the effects of the initial conditions and the effects of any applied forces. Numerical
simulation provides an alternative to computing the time response by modal methods, as
done in Equation (5.45). The approach is to perform numerical integration following the
material in Sections 1.10 and 3.9 with the state-space model. For any class of second-order
systems the equations of motion can be written in the state-space form, as by Equation (5.1),
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subject to appropriate initial conditions on the position and velocity. While numerical
solutions are a discrete time approximation, they are systematic and relatively easy to com-
pute with modern high-level codes. The following example illustrates the procedure in
Matlab.

Example 5.8.1

Consider the system in physical coordinates defined by:

[
5 0
0 1

][
q̈1

q̈2

]
+
[

3 −0�5
−0�5 0�5

][
q̇1

q̇2

]
+
[

3 −1
−1 1

][
q1

q2

]
=
[

1
1

]
sin�4t��

q�0� =
[

0
0�1

]
� q̇�0� =

[
1
0

]

In order to use the Runge–Kutta numerical integration, first put the system into the state-space form.
Computing the inverse of the mass matrix and defining the state vector x by

x =
[

q
q̇

]
= [

q1 q2 q̇1 q̇2

]T

the state equations become

ẋ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−3/5 1/5 −3/5 1/2
1 −1 1/2 −1/2

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣

0
0

1/5
1

⎤
⎥⎥⎦ sin 4t� x�0� =

⎡
⎢⎢⎣

0
0�1
1
0

⎤
⎥⎥⎦

The steps to solve this numerically in Matlab follow those of example 3.9.1, with the additional
term for the forcing function. The corresponding m-file is

function v=f581(t,x)
M=[5 0; 0 5]; D=[3 -0.5;-0.5 0.5]; K=[3 -1;-1 1];
A=[zeros(2) eye(2);-inv(M)* K -inv(M)* D]; b=[0;0;0.2;1];
v=A*x+b*sin(4*t);

This function must be saved under the name f581.m. Once this is saved, the following is typed
in the command window:

EDU>clear all
EDU>xo=[0;0.1;1;0];
EDU>ts=[0 50];
EDU>[t,x]=ode45(’f581’,ts,xo);
EDU>plot(t,x(:,1),t,x(:,2),’--’),title(‘x1,x2 versus time’)

This returns the plot shown in Figure 5.1. Note that the command x(:,1) pulls off the record for
x1�t� and the command ode45 calls a fifth-order Runge–Kutta program. The command ts=[0 50];
tells the code to integrate from 0 to 50 time units (seconds in this case).
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Figure 5.1 Displacement response to the initial conditions and forcing function of example 5.8.1

CHAPTER NOTES

The field of systems theory and control has advanced the idea of using matrix methods for
solving large systems of differential equations (see Patel, Laub and Van Dooren, 1994). Thus,
the material in Section 5.2 can be found in most introductory systems theory texts such as
Chen (1998) or Kailath (1980). In addition, those texts contain material on modal decoupling
of the state matrix, as covered in Section 5.3. Theoretical modal analysis (Section 5.3) is just
a method of decoupling the equations of motion of a system into a set of simple-to-solve
single-degree-of-freedom equations. This method is extended in Section 5.4 and generalized
to equations that cannot be decoupled. For such systems, modal analysis of the solution is
simply an expansion of the solution in terms of its eigenvectors. This material parallels the
development of the free response in Section 3.5. The material of Section 5.6 on bounds
is not widely used. However, it does provide some methodology for design work. The
results presented in Section 5.6 are from Yae and Inman (1987). The material on frequency
response methods presented in Section 5.7 is essential in understanding experimental modal
analysis and testing and is detailed in Ewins (2000). Section 5.8 is a brief introduction to
the important concept of numerical simulation of dynamic systems.
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PROBLEMS

5.1 Use the resolvent matrix to calculate the solution of

ẍ + ẋ + 2x = sin 3t

with zero initial conditions.
5.2 Calculate the transition matrix eAt for the system of problem 5.1.
5.3 Prove that e−A = �eA�−1 and show that eAe−A = I .
5.4 Compute eAt, where

A =
[

1 1
0 0

]

5.5 Show that, if z�t� = ae−j�e��+j��tf�t�, where a and f�t� are real and j2 = −1, then
Re�z� = af�t� e�t cos��t − ��.

5.6 Consider problem 3.6. Let f�t� = ���t� 0 0�T , where ��t� is the unit step function,
and calculate the response of that system with f�t� as the applied force and zero initial
conditions.

5.7 Let f�t� = �sin�t� 0�T in problem 3.10 and solve for x�t�.
5.8 Calculate a bound on the forced response of the system given in problem 5.7. Which

was easier to calculate, the bound or the actual response?
5.9 Calculate the receptance matrix for the system of example 5.6.1 with � = −1.
5.10 Discuss the similarities between the receptance matrix, the transition matrix, and the

resolvent matrix.
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5.11 Using the definition of the matrix exponential, prove each of the following:

(a) (eAt�−1 = e−At;
(b) e0 = I;
(c) eAeB = e�A+B�� if AB = BA.

5.12 Develop the formulation for modal analysis of symmetrizable systems by applying
the transformations of Section 4.9 to the procedure following Equation (5.23).

5.13 Using standard methods of differential equations, solve Equation (5.39) to obtain
Equation (5.40).

5.14 Plot the response of the system in example 5.6.1 along with the bound indicated in
Equation (5.54) for the case � = −1.

5.15 Derive the solution of Equation (5.39) for the case �i > 1.
5.16 Show that f0ej�t is periodic.
5.17 Compute the modal equations for the system described by[

1 0
0 4

]
q̈�t� +

[
5 −1

−1 1

]
q�t� =

[
0
1

]
sin 2t

subject to the initial conditions of zero initial velocity and an initial displacement of
x�0� = �0 1�T mm.

5.18 Repeat problem 5.17 for the same system with the damping matrix defined by
C = 0�1K .

5.19 Derive the relationship between the transformations S and Sm.
5.20 Consider example problem 5.4.1 and compute the total response in physical coordi-

nates.
5.21 Consider example problem 5.4.1 and plot the response in physical coordinates.
5.22 Consider the problem of example 5.4.1 and use the method of numerical integration

discussed in Section 5.8 to solve and plot the solution. Compare your results to the
analytical solution found in problem 5.21.

5.23 Consider the following undamped system:[
4 0
0 9

][
ẍ1

ẍ2

]
+
[

30 −5
−5 5

][
x1

x2

]
=
[

0�23500
2�97922

]
sin�2�756556t�

(a) Compute the natural frequencies and mode shapes and discuss whether or not
the system experiences resonance.

(b) Compute the modal equations.
(c) Simulate the response numerically.

5.24 For the system of example 5.4.1, plot the frequency response function over a range
of frequencies from 0 to 8 rad/s.

5.25 Compute and plot the frequency response function for the system of example 5.4.1
for the damping matrix having the value D = �K for several different values of �
ranging from 0.1 to 1. Discuss your results. What happens to the peaks?


