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B.1 VECTOR SPACE

Fundamental to the discipline of matrix theory as well as the operator theory of functional
analysis is the definition of a linear space, also called a vector space. A linear space, denoted
by V , is a collection of objects (vectors or functions in the cases of interest here) for which
the following statements hold for all elements x, y, z ∈V (this denotes that the vectors x, y�
and z are all constrained in the set V ) and for any real-valued scalars � and �:

1. x + y ∈ V , �x ∈ V .
2. x + y = y + x.
3. �x + y� + z = x + �y + z�.
4. There exists an element 0 ∈ V such that 0x = 0.
5. There exists an element 1 ∈ V such that 1x = x.
6. ���x� = ����x.
7. �� + ��x = �x + �x�
8. ��x + y� = �x + �y�

The examples of linear spaces V used in this text are the set of real vectors of dimension n,
the set of complex vectors of dimension n, and the set of functions that are square integrable
in the Lebseque sense.

B.2 RANK

An extremely useful concept in matrix analysis is the idea of rank introduced in Section 3.2.
Let �m×n denote the set of all m × n matrices with m rows and n columns. Consider the
matrix A∈�m×n. If the columns of matrix A are considered as vectors, the number of linearly
independent columns is defined as the column rank of matrix A. Likewise, the number of
linearly independent rows of matrix A is called the row rank of A. The row rank of a matrix
and the column rank of the matrix are equal, and this integer is called the rank of matrix A.
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The concept of rank is useful in solving equations as well as checking stability of a system
(Chapter 4) or the controllability and observability of a system (Chapter 7). Perhaps the best
way to determine the rank of a matrix is to calculate the singular values of the matrix of
interest (see Section 7.7 and the following comments). The rank of a matrix can be shown
to be equal to the number of nonzero singular values of the matrix. The singular values also
provide a very precise way of investigating the numerical difficulties frequently encountered
in situations where the rank of the matrix is near the desired value. This shows up as very
small but nonzero singular values, as discussed following Equation (8.53).

A simple procedure to calculate the singular values of a matrix A, and hence determine
its rank, is provided by calculating the eigenvalues of the symmetric matrix:

Ã =
[

0 AT

A 0

]

If A ∈ Rm×n of rank r, the first r eigenvalues of Ã are equal to the singular values of A, the
next r eigenvalues are equal to the negative of the singular values of A, and the remaining
eigenvalues of Ã are zero. The rank of A is thus the number of positive eigenvalues of the
symmetric matrix Ã.

B.3 INVERSES

For A ∈�m×n the linear equation

Ax = b

with det A �= 0 has the solution x = A−1b, where A−1 denotes the unique inverse of matrix A.
The matrix A−1 is the matrix that satisfies

A−1A = AA−1 = In

Next, consider A∈�m×n. If m > n and if the rank of A is n, then there exists an n × m matrix
AL of rank n such that

ALA = In

where In denotes the n × n identity matrix. The matrix AL is called the left inverse of A. If,
on the other hand, n > m and the rank of A is m, then there exists an n × m matrix AR of
rank m, called a right inverse of A, such that

AAR = Im

Where Im denotes the m × m identity matrix. If m = n = rank A, then A is nonsingular and
AR = AL = A−1.

Consider the matrix AT A and note that it is an n × n symmetric matrix. If A is of rank n
(this requires that m > n), then AT A is nonsingular. A solution of

Ax = b
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for A ∈�m×n can then be calculated by multiplying both sides of this last expression by
�AT A�−1AT , which yields

x = �AT A�−1AT b

The quantity (AT A�−1AT is called the generalized inverse of A, denoted by A†.
The matrix A† is also called a pseudoinverse or Moore–Penrose inverse and can be

expressed in terms of a singular-value decomposition (Section 7.7) of matrix A. In the
notation of Section 7.7, any matrix A ∈�m×n can be expressed in terms of its singular-value
factors as

A = U�V T

where � denotes the diagonal matrix of singular values of A and U and V are orthogonal.
For the case where m > n, if the rank of A is r, then the last n − r (or m − r if m < n)
singular values are zero, so that � has the partitioned form

�=
[

�r 0
0 0

]

where the zeros indicate matrices of zeros of the appropriate size and �r is an r × r diagonal
matrix of the nonzero singular values of A. Define the matrix �′ by

�′ =
[

�−1
r 0
0 0

]

The matrix A† can be shown to be

A† = V�UT

which is the singular-value decomposition of the generalized inverse. This last expression
constitutes a more numerically stable way of calculating the generalized inverse than using
the definition �AT A−1�AT .

The following Moore–Penrose conditions can be stated for the pseudoinverse. If A∈�m×n

has the singular-value decomposition A = U�V T , then A† = V�′UT satisfies

AA†A = A

A†AA† = A†

�AA†�T = AA†

�A†A�T = A†A

The matrix A† satisfying all four of these conditions is unique. If A has full rank, then A† is
identical to the left (and right) inverse just discussed.

Finally, note that the least-squares solution of the general equation Ax = b calculated by
using the generalized inverse of A is not a solution in the sense that x = A−1b is a solution
in the nonsingular case but is rather a vector x that minimizes the quantity ��Ax − b��.
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The preceding is a quick summary of material contained in most modern texts on linear
algebra and matrix theory, such as the excellent text by Ortega (1987). Computational issues
and algorithms are discussed in the text by Golub and Van Loan (1983), which also mentions
several convenient software packages. In most cases, the matrix computations required in
the vibration analysis covered in this text can be performed by using standard software
packages, most of which are in the public domain.
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