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Control of Vibrations

7.1 INTRODUCTION

This chapter formalizes the aspects of control theory introduced in previous chapters and
applies the theory to vibration suppression of structures. This topic is usually called structural
control and has become increasingly important, as the design of mechanisms and structures
has become more precise and less tolerant of transient vibrations. Many structures, such as
tall buildings, robotic manipulator arms, and flexible spacecraft, have been designed using
active vibration suppression as part of the total design. Active control provides an important
tool for the vibration engineer.

Control technology of linear systems is a mature discipline with many excellent texts and
journals devoted to the topic. Control methods can be split into three categories: single-
input, single-output frequency domain methods (classical control), state-space methods which
allow multiple-input, multiple-output (MIMO) control (focused on time domain control),
and modern control theory, which looks at MIMO control in the frequency domain. Like
design methods, most classical control depends on being able to use low-order models of the
structure (also called the plant). On the other hand, state-space control theory uses matrix
theory that is compatible with the vector differential equation commonly used to describe
the vibrations of structures. Hence, in this chapter, more emphasis is placed on time domain
methods relying on matrix techniques. The concepts of frequency response function and
other frequency domain topics common to classical control are, however, very useful in
vibrations. In particular, Chapter 8, on modal testing, uses many frequency domain ideas to
aid in measuring vibration properties of structures.

The words structure and plant are used interchangeably to describe the vibrating mechan-
ical part or system of interest. The phrase control system refers to an actuator (or group of
actuators), which is a force-generating device used to apply control forces to the structure,
the sensors used to measure the response of the structure (also called the output), and the
rule or algorithm that determines how the force is applied. The structure is often called the
open-loop system, and the structure along with the control system is called the closed-loop
system. The topic of control has been briefly introduced in Sections 1.8, 2.3, 4.10, and 6.6.
The notation of these sections is summarized here as an introduction to the philosophy of
active control.

Feedback control of a vibrating structure or machine requires measurements of the response
(by using sensing transducers) and the application of a force to the system (by using force
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transducers) on the basis of these measurements. The mathematical representation of the
method of computing how the force is applied on the basis of the measurements is called
the control law. As is often the case in modeling physical systems, there are a variety
of mathematical representations of feedback control systems. Equation (2.17) represents a
method of modeling the use of control forces proportional to position (denoted by Kpq) and
velocity (denoted by Kvq̇) used to shape the response of the structure. In the notation of
Section 2.3, the closed-loop system is modeled by

Mq̈ + �D + G�q̇ + �K + H�q = −Kpq − Kvq̇ + f

as given in Equation (2.17) and represents state variable feedback (or position and velocity
feedback).

Another form of feedback, called output feedback, is discussed in Section 4.10 and results
if Equation (4.24) is substituted into Equation (4.23) to yield the closed-loop system (with
f = 0)

Mq̈ + A2q̇ + Kq = Bf u

In this case, the control vector u is a function of the response coordinates of interest, denoted
by the vector y, i.e., u�t�=−Gf y. This form of control is called output feedback. The vector
y can be any combination of state variables (i.e., position and velocities), as denoted by the
output equation [Equation (4.25)], which is

y = Cpq + Cvq̇

The matrices Cp and Cv denote the locations of and the electronic gains associated with the
transducers used to measure the various state variables.

Each of these two mathematical formulations can also be expressed in state-space form,
as indicated in Equation (2.20) and repeated here. The difference between output feedback
and state variable feedback is discussed in Section 7.2. The important point is that each
of these various mathematical models is used to determine how to design a system with
improved vibration performance using active feedback control, which provides an alternative
to passive design methods.

Active control is most often formulated in the state space by

ẋ = Ax + Bu

as given by Equation (2.18), with the output equation

y = Cx

as used in the following section. The relationships between the physical coordinates (M, A2,
K , and Bf � and the state-space representation (A, B, and C) are given in Equation (2.20).
Most control results are described in the state-space coordinate system. The symbols y and
u in both the physical coordinate system and the state-space coordinate system are the same
because they represent different mathematical models of the same physical control devices.
The various relationships between the measurement or output y and the control input u
determine the various types of control law, some of which are discussed in the following
sections.
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7.2 CONTROLLABILITY AND OBSERVABILITY

As pointed out in Section 6.6 using pole placement, it is not always possible to find a control
law of a given form that causes the eigenvalues of the closed-loop system to have desired
values. This inability to find a suitable control law raises the concept of controllability.
A closed-loop system, meaning a structure and the applied control system, is said to be
completely controllable, or state controllable, if every state variable (i.e., all positions and
velocities) can be affected in such a way as to cause it to reach a particular value within a
finite amount of time by some unconstrained (unbounded) control, u�t�. If one state variable
cannot be affected in this way, the system is said to be uncontrollable. Figures 7.1(a) and
(b) illustrate two mechanical oscillators subject to the same control force u�t� acting on the
mass m2. System (a) of the figure is uncontrollable because m1 remains unaffected for any
choice of u�t�. On the other hand, system (b) is controllable, since any nonzero choice of
u�t� affects both masses. Note that, if a second control force is applied to m1 in Figure 7.1(a),
then that system becomes controllable too. Hence, controllability is a function of both the
system dynamics and of where and how many control actuators are applied. For instance,
the system in Figure 7.1(b) is controllable with a single actuator, while that in Figure 7.1(a)
requires two actuators to be controllable.

The formal definition of controllability for linear time-invariant systems is given in state
space rather than in physical coordinates. In particular, consider the first-order system defined
as before by

ẋ�t� = Ax�t� + Bu�t� (7.1)

y�t� = Cx�t� (7.2)

Recall that x�t� is the 2n × 1 state vector, u�t� is an r × 1 input vector, y�t� is a p × 1
output vector, A is the 2n × 2n state matrix, B is a 2n × r input coefficient matrix, and C
is a p × 2n output coefficient matrix. The control influence matrix B is determined by the
position of control devices (actuators) on the structure. The number of outputs is p, which is
the same as 2s, where s is defined in Equation (4.25) in physical coordinates as the number
of sensors. In state space the state vector includes velocity and position coordinates and
hence has twice the size (p = 2s� since the velocities can only be measured at the same
locations as the position coordinates. The state, x�t�, is said to be controllable at t = t0 if
there exists a piecewise continuous bounded input u�t� that causes the state vector to move

Figure 7.1 Example of (a) an uncontrollable mechanical system and (b) a controllable mechanical
system.
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to any final value x�tf � in a finite time tf > t0. If each state x�t0� is controllable, the system
is said to be completely state controllable, which is generally what is implied when a system
is said to be controllable (see, for instance, Kuo and Gholoaraghi, 2003, or Kailath, 1980).

The standard check for the controllability of a system is a rank test of a certain matrix,
similar to the stability conditions used earlier for the asymptotic stability of systems with
semidefinite damping. That is, the system of Equation (7.1) is completely state controllable
if and only if the 2n × 2nr matrix R, defined by

R = �B AB A2B · · ·A2n−1B� (7.3)

has rank 2n. In this case the pair of matrices [A� B] is said to be controllable. The matrix R
is called the controllability matrix for the matrix pair [A� B].

Example 7.2.1

It is easily seen that a damped single-degree-of-freedom system is controllable. In this case,
n = 1� r = 1. Then

A =
[

0 1
−k/m −c/m

]
� B =

[
0

f/m

]

so that the controllability matrix becomes

R =
[

0 f/m
f/m −cf/m2

]

which has rank 2 = 2n. Thus, this system is controllable (even without damping, i.e., even if c = 0).

Example 7.2.2

As a second simple example, consider the state matrix of example 7.2.1 with k/m = 1� c/m = 2,
and a control force applied in such a way as to cause B = �1 −1�T . Then, the controllability matrix
R becomes

R =
[

1 −1
−1 1

]

which has rank 1 �= 2n and the system is not controllable. Fortunately, this choice of B is not an
obvious physical choice for a control law for this system. In fact, this choice of B causes the applied
control force to cancel.

A similar concept to controllability is the idea that every state variable in the system has
some effect on the output of the system (response) and is called observability. A system
is observable if examination of the response (system output) determines information about
each of the state variables. The linear time-invariant system of Equations (7.1) and (7.2) is
completely observable if, for each initial state x�t0�, there exists a finite time tf > t0 such
that knowledge of u�t�� A� B� C, and the output y�t� is sufficient to determine x�t0� for any
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(unbounded) input u�t�. The test for observability is very similar to that for controllability.
The system described by Equations (7.1) and (7.2) is completely observable if and only if
the 2np × 2n matrix O defined by

O =

⎡
⎢⎢⎢⎢⎣

C
CA
���

CA2n−1

⎤
⎥⎥⎥⎥⎦ (7.4)

has rank 2n. The matrix O is called the observability matrix, and the pair of matrices [A� C]
are said to be observable if the rank of the matrix O is 2n. The concept of observability is
also important to vibration measurement and is discussed in Chapter 8.

Example 7.2.3

Consider again the single-degree-of-freedom system of example 7.2.1. If just the position is mea-
sured, the matrix C reduces to the row vector [1 0] and y�t� becomes a scalar. The observability
matrix becomes

O =
[

1 0
0 1

]

which has rank 2�= 2n�, and this system is observable. This condition indicates that measurement
of the displacement x�t� (the output in this case) allows determination of both the displacement and
the velocity of the system, i.e., both states are observable.

The amount of effort required to check controllability and observability can be substantially
reduced by taking advantage of the physical configuration rather than using the state-space
formulation of Equations (7.1) and (7.2). For example, Hughes and Skelton (1980) have
examined the controllability and observability of conservative systems

Mq̈�t� + Kq�t� = ff �t� (7.5)

with observations defined by

y = Cpq + Cvq̇ (7.6)

Here, ff �t� = Bf u�t� and u�t� = −Gf y�t� defines the input as specified in Section 4.10. In
this case it is convenient to assign Gf = I . Then, the system of Equation (7.5) is controllable
if and only if the n × 2n matrix Rn defined by

Rn = �B̃f �K B̃f · · ·�n−1
K B̃f � (7.7)

has rank n, where B̃f =ST
mBf and �K =ST

mKSm. Here, Sm is the modal matrix of Equation (7.5),
and �K is the diagonal matrix of eigenvalues of Equation (7.5). Thus, controllability for a
conservative system can be reduced to checking the rank of a smaller-order matrix than the
2n × 2nr matrix R of Equation (7.3).
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This condition for controllability can be further reduced to the simple statement that
system (7.5) is controllable if and only if the rank of each matrix Bq is nq, where Bq are
the partitions of the matrix B̃f according to the multiplicities of the eigenvalues of K . Here,
d<n denotes the number of distinct eigenvalues of the stiffness matrix, and q =1� 2� 	 	 	 � d.
The integer nq refers to the order of a given multiple eigenvalue. The matrix B̃f is partitioned
into nq rows. For example, if the first eigenvalue is repeated (
1 = 
2), then n1 = 2 and B1

consists of the first two rows of the matrix B̃f . If the stiffness matrix has distinct eigenvalues,
the partitions Bq are just the rows of B̃f . Thus, in particular, if the eigenvalues of K are
distinct, then the system is controllable if and only if each row of B̃f has at least one
nonzero entry.

For systems with repeated roots, this last result can be used to determine the minimum
number of actuators required to control the response. Let d denote the number of dis-
tinct eigenvalues of K , and let nq denote the multiplicities of the repeated roots so that
n1 + n2 + · · · + nq = n, the number of degrees of freedom of the system, which corresponds
to the partitions B̃q of B̃f . Then the minimum number of actuators for the system to be
controllable must be greater than or equal to the maximum of the set �n1� n2� 	 	 	 � nd�. Note
that, in the case of distinct roots, this test indicates that the system could be controllable
with one actuator. Similar results for general asymmetric systems can also be stated. These
are discussed by Ahmadian (1985).

As in the rank conditions for stability, if the controllability or observability matrix is
square, then the rank check consists of determining if the determinant is nonzero. The usual
numerical question then arises concerning how to interpret the determinant having a very
small value of, say, 10−6. This situation raises the concept of ‘degree of controllability’
and ‘degree of observability.’ One approach to measuring the degree of controllability is to
define a controllability norm, denoted by Cq, of

Cq = �det�BqBT
q ��1/�2nq� (7.8)

where q again denotes the partitioning of the control matrix B̃f according to the repeated
eigenvalues of K . According to Equation (7.8), the system is controllable if and only if Cq >
0 for all q. In particular, the larger the value of Cq, the more controllable are the modes
associated with the qth natural frequency. Unfortunately, the definition in Equation (7.8) is
dependent on the choice of coordinate systems. Another more reliable measure of control-
lability is given later in Section 7.7, and a modal approach is given in Section 7.9.

Example 7.2.4

Consider the two-degree-of-freedom system of Figure 7.2. If k1 is chosen to be unity and k2 = 0�01,
two orders of magnitude smaller, then the mass m2 is weakly coupled to the mass m1. Because of
the increased number of forces acting on the system, a control system that acts on both m1 and m2

should be much more controllable than a control system acting just on the mass m1. The following
calculation, based on the controllability norm of Equation (7.8), verifies this notion. For simplicity,
the masses are set at unity, i.e., m1 = m2 = 1. The equation of motion for the system of Figure 7.2
becomes

[
1 0
0 1

]
ẍ +

[
1 −0�01

−0�01 1�01

]
x =

[
1 0
0 1

][
u1

u2

]
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Figure 7.2 Two-degree-of-freedom structure with two control forces acting on it.

so that u = �u1 u2�
T . In this case, Bf = I, so that B̃f = ST

m, the transpose of the normalized modal
matrix of the stiffness matrix K . Matrix K has distinct eigenvalues, so that Equation (7.8) yields
C1 = C2 = 1, and both modes are controllable in agreement with the physical notion that u affects
both x1 and x2. Next, consider a second control configuration with a single actuator acting on mass
m1 only. In this case, u2 = 0, and Bf becomes the vector �1 0�T , since the vector u collapses to the
scalar u =u1. Alternatively, u could still be considered to be a vector, i.e., u = �u1 0�T , and Bf could
then be the matrix

Bf =
[

1 0
0 0

]

Using either model, calculation of B̃f yields C1 = 0�8507 and C2 = 0.5207. Both of these numbers
are smaller than 1, so the controllability measure has decreased from the two-actuator case. In
addition, the second mode measure is smaller than the first mode measure �C2 < C1�, so that the
second mode is not as controllable as the first with the actuator placed at m1. In addition, neither
mode is as controllable as the two-actuator case. This numerical measure provides quantification
of the controllability notion that, for the weakly coupled system of this example, it would be more
difficult to control the response of m2 �x2� by applying a control force at m1�C2 = 0�5207�. The
system is still controllable, but not as easily so. Again, this is in agreement with the physical notion
that pushing on m1 will affect x2, but not as easily as pushing on m2 directly.

Complete controllability results if (but not only if) complete state feedback is used.
Complete state feedback results if each of the state variables is used in the feedback law.
In the physical coordinates of Equation (2.17), this use of full state feedback amounts to
nonzero choices of Cp and Cv. In state space, state feedback is obtained by controls of
the form

u = −Kf x (7.9)

where Kf is a feedback gain matrix of appropriate dimension. If the control u is a scalar,
then Kf is a row vector given by

kf = [
g1 g2 · · · g2n

]
(7.10)

and u is a scalar with the form

u = g1x1 + g2x2 + · · · + g2nẋ2n (7.11)
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The state equation [Equation (7.1)] becomes

ẋ = �A − bkf �x (7.12)

where B is reduced to a column vector b. The product bkf is then a matrix (a column vector
times a row vector). For complete state feedback, each gain gi is nonzero, and the gains can
be chosen such that the closed-loop system defined by the matrix �A + bkf � has the desired
behavior (see problem 7.6).

By contrast, output feedback is defined for the system of Equation (7.1) by

u�t� = −Gf y (7.13)

where Gf is the output feedback gain matrix of dimensions r × p. Note that, since y = Cx,
where C indicates which states are measured, Equation (7.13) becomes

u�t� = −Gf Cx (7.14)

This expression appears to be similar to state feedback. The difference between state feedback
and output feedback is that, unless Gf C = Kf , of full rank, output feedback does not use
information about each state directly. On the other hand, use of the complete state variable
feedback implies that a measurement of each state variable is available and is used in
designing the control law. In output feedback, the output y is used to determine the control
law, whereas in state feedback the state vector x is used. In general, the vector y is of
lower order than x. Thus, in state feedback there are more ‘gains’ that can be manipulated
to produce the desired effect than there are in output feedback (recall example 6.6.1). Any
control performance achievable by output feedback can also be achieved by complete state
feedback, but the converse is not necessarily true.

In the next section, pole placement by output feedback is considered. Problem 7.6
illustrates that this task is easier with complete state feedback. Obviously, complete state
feedback is the more versatile approach. However, complete state feedback requires knowl-
edge (or measurement) of each state, which is not always possible. In addition, the hardware
required to perform full state feedback is much more extensive than that required for output
feedback. Section 7.5 discusses how state observers can be used to mimic state feedback
when output feedback is not satisfactory for a given application, or when hardware issues
do not allow for measurement of all of the states.

7.3 EIGENSTRUCTURE ASSIGNMENT

Section 6.6 points out a simple method for designing a feedback control system that causes
the resulting closed-loop system to have eigenvalues (poles) specified by the designer. In
this section, the concept of placing eigenvalues is improved and extended to placing mode
shapes as well as natural frequencies. From an examination of the modal expansion for the
forced response, it is seen that the mode shapes as well as the eigenvalues have a substantial
impact on the form of the response. Hence, by placing both the eigenvalues and eigenvectors,
the response of a vibrating system may be more precisely shaped.
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First, the procedure of Section 6.6 is formalized into matrix form. To this end, let M0 and
K0 define a desired mass and stiffness matrix resulting from a redesign process. Therefore,
the desired system

q̈ + M−1
0 K0q = 0 (7.15)

has the eigenstructure, i.e., eigenvalues and eigenvectors, that are desired by design. Next,
consider the closed-loop system with the existing structure (M and K) as the plant and only
position feedback (so that Cv = 0). The system is

Mq̈ + Kq = Bf u (7.16)

y = Cpq (7.17)

where the various vectors and matrices have the dimensions and definitions stated for
Equations (4.24) and (4.25). Recall that the constant matrix Cp represents the placement and
instrument gains associated with measurement of the positions, and Bf denotes the position
of the force actuators.

The class of control problems considered here uses output feedback. Output feedback uses
only the output vector y rather than the state vector x in computing the gain and is defined
as calculating the matrix Gf such that the control law

u�t� = −Gf y�t� (7.18)

yields the desired response. In this case, it is desired to calculate the gain matrix Gf such that
the closed-loop system has the form of Equation (7.15), which has the required eigenvalues
and eigenvectors. This procedure is a form of mechanical design, as discussed in Chapter 6.

Proceeding, the closed-loop system (7.16) under output feedback becomes

q̈ + M−1Kq = −M−1Bf Gf Cpq

or

q̈ + M−1�K + Bf Gf Cp�q = 0 (7.19)

which has the same form as Equation (4.27) without damping or velocity feedback. If
Equation (7.19) is to have the same eigenstructure as the design choice given by the matrices
M0 and K0, then comparison of Equations (7.19) and (7.15) indicates that Gf must satisfy

M−1K + M−1Bf Gf Cp = M−1
0 K0 (7.20)

Solving this expression for Gf following the rules of matrix algebra yields

Bf Gf Cp = M�M−1
0 K0 − M−1K� (7.21)

In general, the matrices Bf and Cp are not square matrices (unless each mass has an actuator
and sensor attached), so the inverses of these matrices, required to solve for Gf , do not exist.
However, a left generalized inverse, defined by

BI
f = �BT

f Bf �
−1BT

f (7.22)
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and a right generalized inverse, defined by

CI
p = CT

p �CpCT
p �−1 (7.23)

can be used to ‘solve’ Equation (7.21). The matrices CI
p and BI

f are called generalized
inverses in the sense that

BI
f Bf = �BT

f Bf �
−1BT

f Bf = Ir×r (7.24)

and

CpCI
p = CpCT

p �CpCT
p �−1 = Is×s (7.25)

where the subscripts on the identity matrices indicate their size. Note that the calculation
of the generalized inverses given by Equations (7.22) and (7.23) requires that the matrices
BT

f Bf and CpCT
p both be nonsingular. Other solutions can still be found using a variety of

methods (see, for instance, Golub and Van Loan, 1996). Generalized inverses are briefly
discussed in Appendix B.

Premultiplying Equation (7.21) by Equation (7.22) and postmultiplying Equation (7.21)
by Equation (7.23) yields a solution for the m × s gain matrix Gf to be

Gf = �BT
f Bf �

−1BT
f M�M−1

0 K0 − M−1K�CT
p �CpCT

p �−1 (7.26)

If this value of the gain matrix Gf is implemented, the resulting closed-loop system will
have the eigenstructure and response approximately equal to that dictated by the design set
M0 and K0. Note, if the system is very close to the desired system, the matrix difference
�M−1

0 K0 − M−1K� will be small and Gf will be small. However, the matrix Gf depends on
where the measurements are made because it is a function of Cp and also depends on the
position of the actuators because it is a function of Bf .

Example 7.3.1

Consider the two-degree-of-freedom system with original design defined by M = I and

K =
[

2 −1
−1 1

]

Suppose it is desired to build a control for this system so that the resulting closed-loop system has
eigenvalues 
1 =2 and 
2 =4 and eigenvectors given by v1 = �1 − 1�T /

√
2 and v2 = �1 1�T /

√
2,

which are normalized. A system with such eigenvalues and eigenvectors can be calculated from
Equation (3.21) or

M−1/2
0 K0M−1/2

0 = S diag
[

2 4
]

ST

This expression can be further simplified if M0 is taken to be the identity matrix I . Then

K0 = S diag
[

2 4
]

ST =
[

3 1
1 3

]
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The pair �I� K0� then represents the desired system.
Next, based on knowledge of controllability and observability, the matrices Cp and Bf are each

chosen to be identity matrices, i.e., each position is measured and each mass has a force applied to it
(i.e., an actuator attached to it). This condition ensures that the system is completely controllable and
observable and that the controllability and observability norms are large enough. Equation (7.26)
for the gain matrix Gf becomes

Gf =
([

3 1
1 3

]
−
[

2 −1
−1 1

])
=
[

1 2
2 2

]

which causes the original system with closed-loop control [i.e., Equation (7.16)] to have the desired
eigenstructure. Note that the eigenvalues of K are 0.382 and 2.618 and those of Gf + K are 2 and
4, as desired. In addition, the eigenvectors of Gf + K are computed to be as desired:

v1 = 1√
2

[
1

−1

]
and v2 = 1√

2

[
1
1

]

Although not obvious from the introductory material just presented, Wonham (1967) has
shown that all the eigenvalues can be placed if and only if the system is controllable. In
case more than one actuator is used, i.e., in the multi-input case, the calculated feedback
gain matrix Gf is not uniquely determined by assigning just the eigenvalues (see Moore,
1976). Hence, the remaining freedom in the choice of Gf can also be used to place the mode
shapes, as was the case in the preceding example. However, only mode shapes that satisfy
certain criteria can be placed. These issues are discussed in detail by Andry, Shapiro, and
Chung (1983), who also extended the process to damped and asymmetric systems.

7.4 OPTIMAL CONTROL

One of the most commonly used methods of modern control theory is called optimal
control. Like optimal design methods, optimal control involves choosing a cost function
or performance index to minimize. Although this method again raises the issue of how to
choose the cost function, optimal control remains a powerful method of obtaining a desirable
vibration response. Optimal control formulations also allow a more natural consideration of
constraints on the state variables as well as consideration for reducing the amount of time,
or final time, required for the control to bring the response to a desired level.

Consider again the control system and structural model given by Equations (4.23) and
(4.24) in Section 4.10 and its state-space representation given in Equations (7.1) and (7.2).
The optimal control problem is to calculate the control u�t� that minimizes some specified
performance index, denoted by J = J�q� q̇� t� u�, subject to the constraint that

Mq̈ + A2q̇ + Kq = Bf u

is satisfied, and subject to the given initial conditions q�t0� and q̇�t0�. This last expression is
called a differential constraint and is usually written in state-space form. The cost function
is usually stated in terms of an integral. The design process in optimal control consists of
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the judicious choice of the function J . The function J must be stated in such a way as to
reflect a desired performance. The best, or optimal, u, denoted by u∗, has the property that

J�u∗� < J�u� (7.27)

for any other choice of u. Solving optimal control problems extends the concepts of max-
imum and minimum from calculus to functionals J . Designing a vibration control system
using optimal control involves deciding on the performance index J . Once J is chosen, the
procedure is systematic.

Before proceeding with the details of calculating an optimal control, u∗, several examples
of common choices of the cost function J , corresponding to various design goals, will be
given. The minimum time problem consists of defining the cost function by

J = tf − t0 =
∫ tf

t0

dt

which indicates that the state equations take the system from the initial state at time
t0 [i.e., x�t0�] to some final state x�tf � at time tf , in a minimum amount of time.

Another common optimal control problem is called the linear regulator problem. This
problem has specific application in vibration suppression. In particular, the design objective
is to return the response (actually, all the states) from the initial state value x�t0� to the
system equilibrium position (which is usually xe = 0 in the case of structural vibrations).
The performance index for the linear regulator problem is defined as

J = 1
2

∫ tf

t0

�xT Qx + uT Ru� dt (7.28)

where Q and R are symmetric positive definite weighting matrices. The larger the matrix
Q, the more emphasis is placed by optimal control on returning the system to zero, since
the value of x corresponding to the minimum of the quadratic form xT Qx is x = 0. On the
other hand, increasing R has the effect of reducing the amount, or magnitude, of the control
effort allowed. Note that positive quadratic forms are chosen so that the functional being
minimized has a clear minimum. Using both nonzero Q and R represents a compromise
in the sense that, based on a physical argument, making x�tf � zero requires u�t� to be
large. The linear regulator problem is an appropriate cost function for control systems that
seek to eliminate, or minimize, transient vibrations in a structure. The need to weight the
control effort (R) results from the fact that no solution exists to the variational problem when
constraining the control effort. That is, the problem of minimizing J with the inequality
constraint �u�t�� < c, where c is a constant, is not solved. Instead, R is adjusted in the cost
function until the control is limited enough to satisfy �u�t�� < c.

On the other hand, if the goal of the vibration design is to achieve a certain value of the
state response, denoted by the state vector xd�t�, then an appropriate cost function would be

J =
∫ tf

0
�x − xd�

T Q�x − xd� dt (7.29)

where Q is again symmetric and positive definite. This problem is referred to as the tracking
problem, since it forces the state vector to follow, or track, the vector xd�t�.
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In general, the optimal control problem is difficult to solve and lends itself very few
closed-form solutions. With the availability of high-speed computing, the resulting numerical
solutions do not present much of a drawback. The following illustrates the problem by
analyzing the linear regulator problem.

Consider the linear regulator problem for the state-space description of a structure given
by Equations (7.1) and (7.2). That is, consider calculating u such that J�u� given by
Equation (7.28) is a minimum subject to the constraint that Equation (7.1) is satisfied. A
rigorous derivation of the solution is available in most optimal control texts (see, for instance,
Kirk, 1970). Proceeding less formally, assume that the form of the desired optimal control
law will be

u∗�t� = −R−1BT S�t�x∗�t� (7.30)

where x∗�t� is the solution of the state equation with optimal control u∗ as input, and S�t�
is a symmetric time-varying 2n × 2n matrix to be determined (not to be confused with the
orthogonal matrix of eigenvectors S). Equation (7.30) can be viewed as a statement that the
desired optimal control be in the form of state feedback. With some manipulation (see, for
instance, Kirk, 1970), S�t� can be shown to satisfy what is called the matrix Riccati equation
given by

Q − S�t�BR−1BT S�t� + AT S�t� + S�t�A + dS�t�

dt
= 0 (7.31)

subject to the final condition S�tf �= 0. This calculation is a backward-in-time matrix differ-
ential equation for the unknown time-varying matrix S�t�. The solution for S�t� in turn gives
the optimal linear regulator control law (7.28), causing J�u� to be a minimum. Unfortu-
nately, this calculation requires the solution of 2n�2n + 1�/2 nonlinear ordinary differential
equations simultaneously, backward in time (which forms a difficult numerical problem).

In most practical problems – indeed, even for very simple examples – the Riccati equa-
tion must be solved numerically for S�t�, which then yields the optimal control law via
Equation (7.30).

The Riccati equation, and hence the optimal control problem, becomes simplified if one
is interested only in controlling the steady state vibrational response and controlling the
structure over a long time interval. In this case, the final time in the cost function J�u� is set
to infinity and the Riccati matrix S�t� is constant for completely controllable, time-invariant
systems (see, for instance, Kirk, 1970). Then, dS�t�/dt is zero and the Riccati equation
simplifies to

Q − SBR−1BT S + AT S + SA = 0 (7.32)

which is now a nonlinear algebraic equation in the constant matrix S. The effect of this
method on the vibration response of a simple system is illustrated in example 7.4.1.

Example 7.4.1

This example calculates the optimal control for the infinite time linear quadratic regulator problem
for a single-degree-of-freedom oscillator of the form

ẍ�t� = 4x�t� = f�t�
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In this case, the cost function is of the form

J =
∫ �

0
�xT Qx + uT Ru� dt

which is Equation (7.28) with tf = �. A control (state feedback) is sought of the form

u = −R−1BT Sx�t� = −Kf x�t�

The state equations are

ẋ =
[

0 1
−4 0

]
x +

[
0 0
0 1

]
u

Two cases are considered to illustrate the effect of the arbitrary (but positive definite) weighting
matrices Q and R. The system is subject to the initial condition x�0� = �1 1�T . In the first case, let
Q = R = I , and the optimal control is calculated from Equation (7.32) using Matlab (Moler et al.,
1985) to be

Kf =
[

0 0
−0�1231 −1�1163

]

The resulting response and control effort are plotted in Figures 7.3 through 7.5. Figure 7.5 is the
control law, u∗, calculated by using Equation (7.30); Figures 7.3 and 7.4 illustrate the resulting
position and velocity response to initial conditions under the action of the control system.

In case 2, the same problem is solved again, with the control weighting matrix set at R = �10�I .
The result is that the new control law is given by

Gf =
[

0 0
−0�0125 −0�3535

]

which is ‘smaller’ than the first case. The resulting position response, velocity response, and control
effort are plotted in Figures 7.6 through 7.8 respectively.

Figure 7.3 Position, x1�t�, versus time for the case Q = R = I .
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Figure 7.4 Velocity, x2�t�, versus time for the case Q = R = I .

Figure 7.5 Control, u∗�t�, versus time for the case Q = R = I .

In the second case, with larger values for R, the control effort is initially much more limited, i.e.,
a maximum value of 0.7 units as opposed to 1.75 units for the first case. In addition, the resulting
response is brought to zero faster in the case with more control effort (i.e., Figures 7.3, 7.4, and
7.6). These examples illustrate the effect that the weighting matrices have on the response. Note, a
designer may have to restrict the control magnitude (hence, use large relative values of R) because
the amount of control energy available for a given application is usually limited even though a better
response (shorter time to settle) is obtained with larger values of control effort.

Optimal control has a stabilizing effect on the closed-loop system. Using a quadratic form
for the cost function guarantees stability (bounded output) of the closed-loop system. This
guaranty can be seen by considering the uncontrolled system subject to Equation (7.29)
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Figure 7.6 Position, x1�t�, versus time for the case Q = I� R = 10I .

Figure 7.7 Velocity, x2�t�, versus time for the case Q = I� R = 10I .

with xd taken as the origin. Asymptotic stability requires that x approaches zero as time
approaches infinity so that the integral

J =
∫ �

0
xT Qx dt

converges as long as Q is positive semidefinite. Define the quadratic from V�t� = xT Px,
where P is the positive definite solution of the Lyapunov equation [Equation (4.29)]

PA + AT P = −Q
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Figure 7.8 Control, u∗�t�, versus time for the case Q = I� R = 10I .

Here, A is the state matrix satisfying Equation (7.1) with B=0. Computing the time derivative
of V�t� yields

V̇�t� = d

dt
�xT Px� = ẋT Px + xT Pẋ = xT �AT P + PA�x = −xT Qx < 0

Hence, V�t� is positive definite with a negative definite time derivative and is thus a
Lyapunov function of the system of Equation (7.1). As a result, the homogeneous system is
asymptotically stable (recall Section 4.10). Since the homogeneous system is asymptotically
stable, the closed-loop system (forced response) will be bounded-input, bounded-output
stable, as discussed in Section 5.5. Also, note that, if x0 is the initial state, integrating the
cost function yields

J =
∫ �

0
xT Qx dt =

∫ �

0

d

dt
�−xT Px� dt = xT

0 Px0

since asymptotic stability requires that x approach zero at the upper limit. This calculation
indicates that the value of the cost function depends on the initial conditions.

This section is not intended to provide the reader with a working knowledge of optimal
control methods. It is intended to illustrate the use of optimal control as an alternative
vibration suppression technique and to encourage the reader to pursue the use of optimal
control through one of the references.

7.5 OBSERVERS (ESTIMATORS)

In designing controllers for vibration suppression, often not all of the velocities and displace-
ments can be conveniently measured. However, if the structure is known and is observable,
i.e., if the state matrix A is known and if the measurement matrix C is such that O has
full rank, one can design a subsystem, called an observer (or estimator, in the stochastic
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case), from measurements of the input and of the response of the system. The observer then
provides an approximation of the missing measurements.

Consider the state-space system given by Equations (7.1) and (7.2) with output feedback as
defined by Equation (7.13). To simplify this discussion, consider the case where the control
u�t� and the output y�t� are both scalars. This is the single-input, single-output (SISO) case.
In this situation the matrix B becomes a column vector, denoted by b, and the matrix C
becomes a row vector, denoted by cT .

The output y�t� is proportional to a state variable or linear combination of state variables.
Sometimes recovering the state vector from the measurement of y�t� is trivial. For instance,
if each state is measured (multiple output), C is square and nonsingular, so that x = C−1y.
In this section it is assumed that the state vector is not directly measured and is not easily
determined from the scalar measurement y�t�. However, since the quantities A� b, and cT ,
as well as measurements of the input u�t� and the output y�t�, are known, the desired state
vector can be estimated. Constructing this estimated state vector, denoted by xe, is the topic
of this section. State observers can be constructed if the system is completely observable
(see, for instance, Chen, 1998).

The simplest observer to implement is the open-loop estimator. An open-loop estimator
is simply the solution of the state equations with the same initial conditions as the system
under consideration. Let xe denote the estimated state vector. The integration of

ẋe = Axe + bu (7.33)

yields the desired estimated state vector. The estimated state vector can then be used to
perform state feedback or output feedback. Note that integration of Equation (7.33) requires
knowledge of the initial condition, xe�0�, which is not always available.

Unfortunately, the open-loop estimator does not work well if the original system is unstable
(or almost unstable) or if the initial conditions of the unmeasured states are not known
precisely. In most situations, the initial state is not known. A better observer can be obtained
by taking advantage of the output of the system, y�t�, as well as the input. For instance,
consider using the difference between the output y�t� of the actual system and the output
ye�t� of the estimator as a correction term in the observer of Equation (7.33). The observer
then becomes

ẋe = Axe + re�y − ye� + bu (7.34)

where re is the gain vector of the observer and is yet to be determined. Equation (7.34) is
called an asymptotic state estimator, which is designed by choosing the gain vector re. The
error between the actual state vector x and the estimated state vector xe must satisfy the
difference between Equation (7.34) and Equation (7.1). This difference yields

�ẋ − ẋe� = A�x − xe� + re�ye − y� (7.35)

Since ye − y = cT �xe − x�, this last expression becomes

ė = �A − rec
T �e (7.36)

where the error vector e is defined to be the difference vector e = x − xe. This expression
is the dynamic equation that determines the error between the actual state vector and the
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estimated state vector. Equation (7.36) describes how the difference between the actual initial
condition x�0� and the assumed condition xe�0� evolves in time.

The idea here is to design the observer, i.e., to choose re, so that the solution of
Equation (7.36) remains as close to zero as possible. For instance, if the eigenvalues of
�A − rec

T � are chosen to have negative real parts that are large enough in absolute value,
the vector e goes to zero quickly, and xe approaches the real state x. Thus, any difference
between the actual initial conditions and the assumed initial conditions for the observer dies
out with time instead of increasing with time, as could be the case with the open-loop
observer.

Obviously, there is some difference between using the actual state vector x and the
estimated state vector xe in calculating a control law. This difference usually shows up as
increased control effort; that is, a feedback control based on xe has to exert more energy
than one based on the actual state variables x. However, it can be shown that, as far as
placing eigenvalues are concerned, there is no difference in state feedback between using
the actual state and the estimated state (Chen, 1970). Furthermore, the design of the observer
and the control can be shown to be equivalent to performing the separate design of a control,
assuming that the exact states are available, and the subsequent design of the observer (called
the separation theorem).

To solve the control problem with state estimation, the state equation with the estimated
state vector used as feedback (u = gy = gcT xe, recalling that cT is a row vector) must be
solved simultaneously with the state estimation equation [Equation (7.36)]. This solution
can be achieved by rewriting the state equation as

ẋ = Ax + gbcT xe (7.37)

and substituting the value for xe. Then

ẋ = Ax + gbcT �x − e� (7.38)

or upon rearranging

ẋ = �A + gbcT �x − gbcT e (7.39)

Combining Equations (7.36) and (7.39) yields

[
ẋ
ė

]
=
[

A + gbcT −gbcT

0 A − rec
T

][
x
e

]
(7.40)

Here, the zero in the state matrix is a 2n×2n matrix of zeros. Expression (7.40) is subject to
the actual initial conditions of the original state equation augmented by the assumed initial
conditions of the estimator. These estimator initial conditions are usually set at zero, so that
�xT �0� eT �0��T = �xT �0� 0�T . Solution of Equation (7.40) yields the solution to the state
feedback problem with the states estimated, rather than directly measured.

The following example illustrates the computation of a state observer as well as the
difference between using a state observer and using the actual state in a feedback control
problem.
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Example 7.5.1

Consider a single-degree-of-freedom oscillator (
2
n =4� � =0�25) with displacement as the measured

output. The state-space formulation for a single-input, single-output system is

ẋ =
[

0 1
−4 −1

]
x + bu� b =

[
0
1

]
(7.41)

y = �1 0� x

If output feedback is used, then u = gy = gcT x, and the system becomes

ẋ =
[

0 1
−4 −1

]
x + g

[
0 0
1 0

]
x (7.42)

Combining yields

ẋ =
[

0 1
g − 4 −1

]
x (7.43)

The asymptotic estimator in this case is given by

ẋe = Axe + re�y − cT xe� + bu (7.44)

where re is chosen to cause the eigenvalues of the matrix (A − rec
T ) to have negative real parts that

are large in absolute value. As mentioned previously, in this case cT = �1 0� is a row vector, so that
the product rec

T is a matrix. Here, the eigenvalues of (A− rec
T ) are chosen to be −6 and −5 (chosen

only because they cause the solution of Equation (7.36) to die out quickly; other values could be
chosen). These equations are equivalent to requiring the characteristic equation of (A − rec

T ) to be
�
 + 6��
 + 5�, i.e.,

det�
I − A + rec
T � = 
2 + �r1 + 1�
 + �r1 + r2 + 4�

= 
2 + 11
 + 30 (7.45)

Equating coefficients of 
 in this expression yields the desired values for re = �r1 r2�
T to be r1 = 10

and r2 = 16. Thus, the estimated state is taken as the solution of

ẋe =
[

0 1
−4 1

]
xe +

[
10
16

]
�y − cT xe� + bu (7.46)

The solution xe can now be used as feedback in the original control problem coupled with the state
estimation equation. This solution yields [from Equation (7.40) with the control taken as g = −1]

[
ẋ
ė

]
=

⎡
⎢⎢⎣

0 1 0 0
−5 −1 1 0
0 0 −10 1
0 0 −20 1

⎤
⎥⎥⎦
[

x
e

]
(7.47)

The plots in Figure 7.9 show a comparison between using the estimated state and the same control
with the actual state used. In the figure, the control is fixed to be g = −1 and the actual initial
conditions are taken to be x�0�= �1 1�T . The response for various different initial conditions for the
observer xe�0� are also plotted.
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Note that in both cases the error in the initial conditions of the estimator disappears by
about 1.2 time units, lasting just a little longer in Figure 7.10 than in Figure 7.9. This results
because the assumed initial conditions for the observer are farther away from the actual
initial condition in Figure 7.10 than in Figure 7.9. Comparison of the actual response in
Figure 7.9 and Figure 7.10 with that of Figure 7.11 shows that the control law calculated
using estimated state feedback is only slightly worse (takes slightly longer to decay) than
those calculated using actual state feedback for this example.

In the preceding presentation of state observers, the scenario is that the state vector x is
not available for use in output feedback control. Thus, estimated output feedback control
is used instead, i.e., u�t� = gcT xe. A practical alternative use of an observer is to use the
estimated state vector xe to change a problem that is output feedback control (gcT x) because

Figure 7.9 Comparison of the error vector e�t� versus time and the components of the state vector
x�t� versus time for the initial condition e�0� = �1 0�T .

Figure 7.10 Components of the error vector e�t� versus time and the components of the state vector
x�t� versus time for the initial condition e�0� = �1 1�T .
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Figure 7.11 Components of the state vector x�t� versus time for the case of complete state feedback.

of hardware limitations to one that is augmented by the observer to use complete state
variable feedback, i.e., u�t� = gcT x + kT xe. Here, the vector k makes use of each state
variable, as opposed to c, which uses only some state variables.

If multiple inputs and outputs are used, this analysis can be extended. The resulting
observer is usually called a Luenberger observer. If, in addition, a noise signal is added as
input to Equation (7.1), the estimation equation can still be developed. In this case they are
referred to as Kalman filters (see, for instance, Anderson and Moore, 1979).

7.6 REALIZATION

In the preceding section, the state matrix A (and hence the coefficient matrices M, D, and
K) and also the input matrix B and the output matrix C are all assumed to be known. In
this section, however, the problem is to determine A, B, and C from the transfer function
of the system. This problem was first introduced in Section 1.6, called plant identification,
where the scalar coefficients m�c� and k were determined from Bode plots. Determining the
matrices A, B, and C from the transfer function of a system is called system realization.

Consider again the SISO version of Equations (7.1) and (7.2). Assuming that the initial
conditions are all zero, taking the Laplace transform of these two expressions yields

sX�s� = AX�s� + bU�s� (7.48)

y�s� = cT X�s� (7.49)

Solving Equation (7.48) for X�s� and substituting the result into Equation (7.49) yields

Y�s� = cT �sI − A�−1bU�s� (7.50)
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Since y and u are scalars here, the transfer function of the system is just

Y�s�

U�s�
= G�s� = cT �sI − A�−1b (7.51)

Here and in the following, G�s� is assumed to be a rational function of s. If, in addition,
G�s� is such that

lim
s→� G�s� = 0 (7.52)

then G�s� is called a proper rational function. These two conditions are always satisfied for
the physical models presented in Chapter 2. The triple A� b, and c is called a realization of
G�s� if Equation (7.51) holds. The function G�s� can be shown to have a realization if and
only if G�s� is a proper rational function. The triple (A� b� c) of minimum order that satisfies
Equation (7.51) is called an irreducible realization, or a minimal realization. The triple
(A� b� c) can be shown to be an irreducible realization if and only if it is both controllable
and observable (see, for instance, Chen, 1998).

A transfer function G�s� is said to be irreducible if and only if the numerator and denom-
inator of G have no common factor. This statement is true if and only if the denominator of
G�s� is equal to the characteristic polynomial of the matrix A, and if and only if the degree of
the denominator of G�s� is equal to 2n, the order of the system. While straightforward con-
ditions are available for ensuring the existence of an irreducible realization, the realization
is not unique. In fact, if (A� b� c) is an irreducible realization of the transfer function G�s�,
then (A′� b′� c′) is an irreducible realization if and only if A is similar to A′, i.e., there exits a
nonsingular matrix P such that A = PA′P−1� b = Pb′, and c = c′P−1. Hence, a given transfer
function has an infinite number of realizations. This result is very important to remember
when studying modal testing in Chapter 8.

There are several ways to calculate a realization of a given transfer function. The easiest
method is to recall from differential equations the method of writing a 2n-order differential
equation as 2n first-order equations. Then, if the transfer function is given as

y�s�

u�s�
= G�s� = �

s2n + �1s
2n−1 + �2s

2n−2 + · · · + �2n−1s + �2n

(7.53)

the time domain equivalent is simply obtained by multiplying this out to yield

s2ny�s� + �1s
2n−1y�s� + · · · = �u�s� (7.54)

and taking the inverse Laplace transform of Equation (7.54) to obtain

y2n + �1y
�2n−1� + · · · + �2ny�t� = �u�t� (7.55)

Here, y�2n� denotes the 2nth time derivative of y�t�. Next, define the state variables by the
scheme

x1�t� = y�t�

x2�t� = y�1��t�

���

x2n�t� = y�2n−1��t�
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The state equations for Equation (7.55) then become

ẋ�t� =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
���

���
���

���
0 0 0 · · · 1

−�2n −�2n−1 −�2n−2 · · · −�1

⎤
⎥⎥⎥⎥⎥⎦x�t� +

⎡
⎢⎢⎢⎢⎢⎣

0
0
���
0
�

⎤
⎥⎥⎥⎥⎥⎦u�t� (7.56)

and

y�t� = �1 0 0 · · · �x�t� (7.57)

The triple (A� b� c) defined by Equations (7.56) and (7.57) constitutes an irreducible realiza-
tion of the transfer function given by Equation (7.53).

Realization procedures are also available for multiple-input, multiple-output (MIMO)
systems (see, for instance, Ho and Kalman, 1965). In Chapter 8, realization methods are
used to determine the natural frequencies, damping ratios, and mode shapes of a vibrating
structure by measuring the transfer function and using it to construct a realization of the test
structure.

Example 7.6.1

Consider the transfer function of a simple oscillator, i.e.,

G�s� = 1
s2 + 2�
s + 
2

Following Equation (7.56), a state-space realization of this transfer function is given by

A =
[

0 1
−
2 −2�


]
� b =

[
0
1

]
� c =

[
1
0

]

7.7 REDUCED-ORDER MODELING

Most control methods work best for structures with a small number of degrees of freedom.
Many modeling techniques produce structural models of a large order. Hence, it is often
necessary to reduce the order of a model before performing a control analysis and designing
a control law. This topic was first introduced in Section 6.8. In that section the method
of model reduction was based on knowledge that certain coordinates, such as those cor-
responding to a bending mode in a longitudinally excited beam, will not contribute to the
response. These coordinates are then removed, producing a model of lower order. In this
section, the coordinates to be removed are calculated in a more formal way as part of the
reduction process, rather than specified through experience as in the Guyan reduction of
Section 6.8.
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The approach taken in this section is to reduce the order of a given model on the basis
of deleting those coordinates, or modes, that are the least controllable and observable. The
idea here is that controllability and observability of a state (coordinate) are indications of the
contribution of that state (coordinate) to the response of the structure, as well as the ability
of that coordinate to be excited by an external disturbance.

To implement this idea, a measure of the degree of controllability and observability is
needed. One such measure of controllability is given by the controllability norm of Equation
(7.8). However, an alternative, more useful measure is provided for asymptotically stable
systems of the form given by Equations (7.1) and (7.2) by defining the controllability
grammian, denoted by WC, as

W 2
C =

∫ �

0
eAtBBT eATt dt (7.58)

and the observability grammian, denoted by WO, as

W 2
O =

∫ �

0
eATtCT C eAt dt (7.59)

Here, the matrices A� B, and C are defined as in Equations (7.1) and (7.2). The properties
of these two matrices provide useful information about the controllability and observabil-
ity of the closed-loop system. If the system is controllable (or observable), the matrix
WC (or WO� is nonsingular. These grammians characterize the degree of controllability
and observability by quantifying just how far away from being singular the matrices WC

and WO are. This is equivalent to quantifying rank deficiency. The most reliable way to
quantify the rank of a matrix is to examine the singular values of the matrix, which is
discussed next.

For any real m × n matrix A there exist orthogonal matrices Um×m and Vn×n such that

UT AV = diag
[
�1 �2 · · · �p

]
� p = min�m�n� (7.60)

where the �i are real and ordered via

�1 > �2 > · · · > �p > 0 (7.61)

(see, for instance, Golub and Van Loan, 1996). The numbers �i are called the singular
values of matrix A. The singular values of matrix A are the nonnegative square roots of the
eigenvalues of the symmetric positive definite matrix AT A. The vectors ui consisting of the
columns of matrix U are called the left singular vectors of A. Likewise, the columns of V ,
denoted by vi, are called the right singular vectors of A. The process of calculating U, V ,
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and diag��1 · · ·�p� is called the singular value decomposition (denoted by SVD) of matrix A.
Note that the singular values and vectors satisfy

Avi = �iui� i = 1� 	 	 	 � p (7.62)

AT ui = �ivi� i = 1� 	 	 	 � p (7.63)

Note that if A is a square symmetric positive definite matrix, then U = V , and the ui are
the eigenvectors of matrix A and the singular values of A are identical to the eigenvalues
of A2.

The real square symmetric semipositive definite matrix A is, of course, singular, or rank
deficient, if and only if it has a zero eigenvalue (or singular value). This statement leads
naturally to the idea that the size of the singular values of a matrix quantify how close the
matrix is to being singular. If the smallest singular value, �n, is well away from zero, then
the matrix is of full rank and ‘far away’ from being singular (note: unlike frequencies, we
order singular values from largest to smallest).

Applying the idea of singular values as a measure of rank deficiency to the controllability
and observability grammians yields a systematic model reduction method. The matrices WO

and WC are symmetric and hence are similar to a diagonal matrix. Moore (1981) showed
that there always exists an equivalent system for which these two grammians are both equal
and diagonal. Such a system is then called balanced.

In addition, Moore showed that WC and WO must satisfy the two Liapunov-type equations

AW 2
C + W 2

C AT = −BBT

AT W 2
O + W 2

O A = −CT C (7.64)

for asymptotically stable systems.
Let the matrix P denote a linear similarity transformation, which when applied to Equa-

tions (7.1) and (7.2) yields the equivalent system

ẋ′ = A′x′ + B′u

y = C′x′ (7.65)

These two equivalent systems are related by

x = Px′ (7.66)

A′ = P−1AP (7.67)

B′ = P−1B (7.68)

C′ = CP (7.69)
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Here, matrix P can be chosen such that the new grammians defined by

W ′
C = P−1WCP (7.70)

and

W ′
O = P−1WOP (7.71)

are equal and diagonal. That is,

W ′
C = W ′

O = �W = diag��1 �2 · · · �2n� (7.72)

where the numbers �i are the singular values of the grammians and are ordered such that

�i > �i+1� i = 1� 2� 	 	 	 � 2n − 1 (7.73)

Under these circumstances, i.e., when Equations (7.72) and (7.73) hold, the system given by
Equations (7.65) is said to be internally balanced.

Next, let the state variables in the balanced system be partitioned into the form

[
ẋ′

1

ẋ′
2

]
=
[

A11 A12

A21 A22

][
x′

1

x′
2

]
+
[

B1

B2

]
u (7.74)

y = �C1 C2�

[
x′

2

x′
1

]
(7.75)

where A11 is a k × k matrix and x′
2 is the vector containing those states corresponding to the

�2n − k� smallest singular values of WC. It can be shown (Moore, 1981) that the x′
2 part of

the state vector for Equations (7.74) and (7.75) affects the output much less than x′
1 does.

Thus, if �k is much greater than �k+1, i.e., �k >> �k+1, the x′
2 part of the state vector does

not affect the input–output behavior of the system as much as x′
1 does.

The preceding comments suggest that a suitable low-order model of the system of Equa-
tions (7.1) and (7.2) is the subsystem given by

ẋ′
1 = A11x′

1 + B1u (7.76)

y = C1x′
1 (7.77)

This subsystem is referred to as a reduced-order model (often referred to as ROM). Note
that, as pointed out by Moore (1981), a realization of Equations (7.1) and (7.2) should yield
the reduced model of equations (7.76) and (7.77).

The reduced-order model can be calculated by first calculating an intermediate transfor-
mation matrix P1 based on the controllability grammian. Solving the eigenvalue problem for
WC yields

WC = VC�2
CV T

C (7.78)
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where VC is the matrix of normalized eigenvectors of WC and �2
C is the diagonal matrix of

eigenvalues of WC. The square on �C is a reminder that WC is positive definite. Based on
this decomposition, a nonsingular transformation P1 is defined by

P1 = VC�C (7.79)

Application of the transformation P1 to the state equations yields the intermediate state
equations defined by

A′′ = P−1
1 AP1 (7.80)

B′′ = P−1
1 B (7.81)

C′′ = CP1 (7.82)

To complete the balancing algorithm, these intermediate equations are balanced with respect
to W ′′

O. That is, the eigenvalue problem for W ′′
O yields the matrices V ′′

O and �′′
O

2 such that

W ′′
O = V ′′

O�′′
O

2V ′′
O

T (7.83)

These two matrices are used to define the second part of the balancing transformation, i.e.,

P2 = V ′′
O�′′

O
−1/2 (7.84)

The balanced version of the original state equations is then given by the product transfor-
mation P = P1P2 in Equation (7.65). They are

A′ = P−1
2 P−1

1 AP1P2 (7.85)

B′ = P−1
2 P−1

1 B (7.86)

C′ = CP1P2 (7.87)

The balanced system is then used to define the reduced-order model of Equations (7.76) and
(7.77) by determining the value of k such that �k >>�k+1. The following example illustrates
an internally balanced reduced-order model.

Example 7.7.1

Consider the two-degree-of-freedom system of Figure 2.4 with m1 = m2 = 1� c1 = 0�2� c2 = 0�1, and
k1 = k2 = 1. Let an impulse force be applied to m2 and assume a position measurement of m2 is
available. The state matrix is

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−2 1 −0�3 0�1
1 −1 0�1 −0�1

⎤
⎥⎥⎦

In addition, B becomes the vector b = �0 0 0 1�T , and the output matrix C becomes the vector
cT = �0 1 0 0�.
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The controllability and observability grammians can be calculated (for t → �) from
Equation (7.64) to be

WC =

⎡
⎢⎢⎣

4�0569 6�3523 0�0000 −0�3114
6�3523 10�5338 0�3114 0�0000
0�0000 0�3114 1�7927 2�2642

−0�3114 0�0000 2�2642 4�1504

⎤
⎥⎥⎦

WO =

⎡
⎢⎢⎣

1�8198 2�2290 0�5819 1�1637
2�2290 4�2315 −0�8919 0�4181
0�5819 −0�0819 4�0569 6�3523
1�1637 0�4181 6�3523 10�5338

⎤
⎥⎥⎦

Calculation of the matrix P that diagonalizes the two grammians yields

P =

⎡
⎢⎢⎣

0�4451 −0�4975 0�4962 −0�4437
0�7821 −0�7510 −0�2369 0�3223
0�2895 0�2895 0�6827 0�8753
0�4419 0�5112 −0�4632 −0�4985

⎤
⎥⎥⎦

The singular values of WO and WC are then �1 =9�3836��2 =8�4310��3 =0�2724, and �4 =0�2250.
From examination of these singular values, it appears that the coordinates x1 and x2 associated with
A′ of Equation (7.85) are likely candidates for a reduced-order model (i.e., k= 1 in this case). Using
Equations (7.85) through (7.87) yields the balanced system given by

A′ =

⎡
⎢⎢⎣

−0�0326 0�6166 0�0192 −0�0275
−0�6166 −0�0334 −0�0218 0�0280
0�0192 0�0218 −0�1030 1�6102
0�0275 0�0280 1�6102 −0�2309

⎤
⎥⎥⎦

B′T = [
0�7821 0�7510 −0�2369 −0�03223

]T

C′ = [
0�7821 −0�7510 −0�2369 0�3223

]

Given that k = 2 (from examination of the singular values), the coefficients in Equations (7.76) and
(7.77) for the reduced-order model become

A11 =
[−0�0326 0�6166
−0�6166 −0�0334

]

B1 = �0�7821 0�7510�T

C1 = �0�7821 − 0�7510�

Plots of the response of the full-order model and the balanced model are given in Figures 7.12
and 7.13 respectively. Note in Figure 7.13 that the two coordinates �x′

3 and x′
4� neglected in the

reduced-order model do not contribute as much to the response and, in fact, die out after about
15 time units. However, all the coordinates in Figure 7.12 and x′

1 and x′
2 are still vibrating after

15 time units.
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Figure 7.12 Response of the original state variables.

Figure 7.13 Response of the balanced state variables.

Note that the balanced reduced-order model will change if different inputs and outputs are
considered, as the B and C matrices would change, altering the reduction scheme.

7.8 MODAL CONTROL IN STATE SPACE

In general, modal control refers to the procedure of decomposing the dynamic equations
of a structure into modal coordinates, such as Equations (5.29) and (5.37), and designing
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the control system in this modal coordinate system. In broad terms, any control design
that employs a modal description of the structure is called a modal control method. Modal
control works well for systems in which certain (just a few) modes of the structure dominate
the response. That is, modal control works well for systems in which only a few of the
modal participation factors (see Section 3.3) are large and the rest are relatively small.
Modal control can be examined in either state space, via Equations (7.1) and (7.2), or in
physical space, via Equations (4.23) through (4.25). This section examines modal control in
the state-space coordinate system, and the following section examines modal control in the
physical coordinate system.

Consider the state-space description of Equations (7.1) and (7.2). If matrix A has a diagonal
Jordan form, then – following Section 5.3 – there exists a nonsingular matrix U such that

U−1AU = �

where � is a diagonal matrix of the eigenvalues of the state matrix A. Note that the diagonal
elements of � will be complex if the system is underdamped. Substituting x = Uz into
Equation (7.1) and premultiplying by the inverse of the nonsingular matrix U yields the
diagonal system

ż = �z + U−1Bu (7.88)

Here, the vector z is referred to as the modal coordinate system. In this form, the controlla-
bility problem and the pole placement problem become more obvious.

Consider first the controllability question for the case of a single input (i.e., u becomes
a scalar). Then B is a vector b and U−1b is a vector consisting of 2n elements denoted
by bi. Clearly, this system is controllable if and only if each bi �=0, i = 1� 2� 	 	 	 � 2n. If,
on the other hand, bi should happen to be zero for some index i, then the system is not
controllable. With bi = 0 the ith mode is not controllable, as no feedback law could possibly
affect the ith mode. Thus, the vector U−1b indicates the controllability of the system by
inspection.

The form of Equation (7.88) can also be used to perform a quick model reduction (see
problem 7.28). Suppose it is desired to control just the fastest modes or modes in a certain
frequency range. Then these modes of interest can be taken as the reduced-order model and
the others can be neglected.

Next, consider the pole placement problem. In modal form, it seems to be a trivial matter
to choose the individual modal control gains bi to place the eigenvalues of the system. For
instance, suppose output feedback is used. Then u = cT Uz, and Equation (7.88) becomes

ż = �z + U−1bcT Uz = �� + U−1bcT U�z (7.89)

where cT is a row vector. The closed-loop system then has poles determined by the matrix
(�+ U−1bcT U). Suppose that the matrix U−1bcT U is also diagonal. In this case the controls
are also decoupled, and Equation (7.89) becomes the 2n decoupled equations

żi = �
i + ui�zi� i = 1� 2� 	 	 	 � 2n (7.90)

Here, ui denotes the diagonal elements of the diagonal matrix U−1bcT U. Note that the
vector U−1bcT Uz in Equation (7.89) is identical to the vector U−1f in Equation (5.20). The
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difference between the two equations is simply that in this section the forcing function is
the result of a control force manipulated by a designer to achieve a desired response. In the
development of Section 5.3, the forcing term represents some external disturbance.

The matrix U−1bcT U in Equation (7.89) may not be diagonal. In this case, Equation (7.89)
is not decoupled. The controls in this situation reintroduce coupling into the system. As a
result, if it is desired to change a particular modal coordinate, the control force chosen to
change this mode will also change the eigenvalues of some of the other modes. Following the
arguments of Section 3.5, a necessary and sufficient condition for U−1bcT U to be diagonal
is for the matrix bcT to commute with the state matrix A. The remainder of this section is
devoted to discussing the coupling introduced by control laws and measurement points in
the case where it is desired to control independently a small number of modes of a given
structure.

Suppose, then, that it is desired to control independently a small number of modes. For
example, it may be desired to place a small number of troublesome poles while leaving
the remaining poles unaffected. Let k denote the number of modes that are to be controlled
independently of the remaining 2n − k modes. Furthermore, assume that it is the first k
modes that are of interest, i.e., the desired modes are the lowest k. Then, partition the modal
equations with state feedback into the k modal coordinates that are to be controlled and the
2n − k modal coordinates that are to be left undisturbed. This yields[

żk

ż2n−k

]
=
([

�k 0
0 �2n−k

]
+
[

bkcT
k bkcT

2n−k

b2n−k cT
k b2n−k cT

2n−k

])[
zk

z2n−k

]
(7.91)

Here, the matrix U−1bcT U is partitioned into blocks defined by

U−1b =
[

bk

b2n−k

]

cT U = �cT
k cT

2n−k�

where bk denotes the first k elements of the vector b, b2n−k denotes the last 2n−k elements,
and so on. Likewise, the matrices �k and �2n−k denote diagonal matrices of the first k
eigenvalues and the last 2n − k eigenvalues respectively. Let bi denote the elements of the
vector U−1b and ci denote the elements of the vector cT U. Then, bkcT

k is the k × k matrix

bkcT
k =

⎡
⎢⎢⎢⎣

b1c1 b1c2 · · · b1ck

b2c1 b2c2 · · · b2ck

���
���

���
bkc1 bkc2 · · · bkck

⎤
⎥⎥⎥⎦ (7.92)

Examination of Equation (7.91) illustrates that the first k modes of the system can be
controlled independently of the last (2n − k) modes if and only if the two vectors b2n−k

and c2n−k are both zero. Furthermore, the first k modes can be controlled independently of
each other only if Equation (7.92) is diagonal. This, of course, cannot happen, as clearly
indicated by setting the off-diagonal terms of Equation (7.92) to zero. Takahashi et al. (1968)
discussed decoupled or ideal control in detail. In general, it is difficult to control modes
independently, unless a large number of actuators and sensors are used. The vector cT

2n−k

indicates the coupling introduced into the system by measurement, and the vector b2n−k
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indicates coupling due to control action. This phenomenon is known as observation spillover
and control spillover (Balas, 1978).

Example 7.8.1

Consider an overdamped two-degree-of-freedom structure with the state matrix given by

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−3 1 −9 4
1 −1 4 −4

⎤
⎥⎥⎦

Solving the eigenvalue problem for A yields the matrices �, U, and U−1 given by

� =

⎡
⎢⎢⎣

−10�9074 0 0 0
0 −1�2941 0 0
0 0 −0�5323 0
0 0 0 −0�2662

⎤
⎥⎥⎦

U =

⎡
⎢⎢⎣

−0�0917 −0�4629 0�7491 −0�0957
0�0512 −0�7727 1�0000 1�0000
1�0000 0�5990 −0�3988 0�0255

−0�5584 1�0000 0�5323 −0�2662

⎤
⎥⎥⎦

U−1 =

⎡
⎢⎢⎣

0�2560 −0�1121 0�7846 −0�4381
0�7382 0�3741 0�7180 1�1986
1�6791 0�3378 0�5368 0�7167

−1�1218 0�9549 −0�0222 0�2320

⎤
⎥⎥⎦

which constitutes a modal decomposition of the state matrix (note that A = U�U−1). Suppose next
that b = �0 0 1 0�T and cT = �0 0 1 1� are the control and measurement vectors respectively. In the
decoupled coordinate system, the control and measurement vectors become

U−1b = [
0�7846 0�7180 0�5368 −0�0222

]T

and

cT U = [
0�44161 0�5990 −0�9311 −0�2407

]
Notice that these vectors are fully populated with nonzero elements. This leads to the fully coupled
closed-loop system given by Equation (7.89), since the term U−1bcT U becomes

U−1bcT U =

⎡
⎢⎢⎣

0�3465 1�2545 −0�7305 −0�1888
0�3171 1�1481 −0�6685 −0�1728
0�2371 0�8584 −0�4999 −0�1292
0�0098 −0�0355 0�0207 0�0053

⎤
⎥⎥⎦

This last expression illustrates the recoupling effect caused by the control and measurement locations.
Note that the matrix �+U−1bcT U of Equation (7.89) is not diagonal but fully populated, recoupling
the dynamics.
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7.9 MODAL CONTROL IN PHYSICAL SPACE

As indicated in Section 3.4, the left-hand side of Equation (4.23) can be decoupled into
modal coordinates if and only if DM−1K =KM−1D. This was used in Section 5.4 to decouple
Equation (5.35) into modal coordinates to solve for the forced response. A similar approach
is taken here, except that the input force ST

mf of Equation (5.37) becomes the control force
ST

mBf u. As in the state space, the difficulty lies in the fact that the transformation, Sm, of
the equations of motion into modal coordinates, z, does not necessarily decouple the control
input ST

mBf u. (Note that in this section z is an n × 1 vector of modal positions, whereas in
the previous section z is a 2n × 1 vector of modal state variables.) The control problem in
second-order physical coordinates transformed into modal coordinates is, in the notation of
Sections 4.10 and 5.4,

I z̈ + �D ż + �K z = ST
mBf u (7.93)

y = CpSmz + CvSmż (7.94)

Here, the dimensions of the matrices Cp and Cv are as indicated in Equation (4.25). Note
that in Equation (7.93) the relative magnitudes of the elements �ST

mBf u�i are an indication of
the degree of controllability for the ith mode. If �ST

mBf u�i is very small, the ith mode is hard
to control. If it happens to be zero, then the ith mode is not controllable. If, on the other
hand, �ST

mBf u�i is relatively large, the ith mode is very controllable.
If output feedback of the form suggested in Equation (4.26) is used, then u = −Gf y.

Combining Equation (7.93) with Equation (7.94) and the control law, the system equation
becomes

I z̈ + �Dż + �K z = −ST
mBf KpSmz − ST

mBf KvSmż (7.95)

where Kp =Gf Cp and Kv =Gf Cv represent measurement positions and Bf is taken to represent
the control actuator locations. Note that, by this choice of u, the discussion is now restricted
to state variable feedback, i.e., position and velocity feedback. Equation (7.95) can be
rewritten as

I z̈ + ��D + ST
mBf KvSm�ż + ��K + ST

mBf KpSm�z = 0 (7.96)

Now, Equation (7.96) is posed for modal pole placement control.
To cause the closed-loop system of Equation (7.96) to have the desired eigenvalues and,

hence, a desired response, the control gain matrix Bf and the measurement matrices Kv and
Kp must be chosen (a design process) appropriately. If, in addition, it is desired to control
each mode independently, i.e., each zi in Equation (7.96), then further restrictions must be
satisfied. Namely, it can be seen from Equation (7.96) that an independent control of each
mode is possible if and only if the matrices ST

mBf KvSm and ST
mBf KpSm are both diagonal. In

the event where the matrix Bf Kv and the matrix Bf Kp are both symmetric, this will be true
if and only if
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Bf KvM
−1D = DM−1Bf Kv (7.97)

and

Bf KpM−1K = KM−1Bf Kp (7.98)

Unfortunately, this puts very stringent requirements on the location and number of sensors
and actuators. If, however, the conditions given by Equations (7.97) and (7.98) are satisfied,
Equation (7.96) reduces to n single-degree-of-freedom control problems of the form

z̈i + �2�i
i + �i�żi + �
2
i + �i�zi = 0 (7.99)

where �i and �i are the diagonal elements of the matrices ST
mBf KvSm and ST

mBf KpSm respec-
tively. This last expression represents an independent set of equations that can be solved for
�i and �i given desired modal response information. That is, if it is desired that the closed-
loop system have a first-mode natural frequency of 10, for instance, then Equation (7.99)
requires that 
2

1 +�1 = 10, or �1 = 10 −
2
1. If the known open-loop system has 
2

1 = 6, then
�1 = 4 is the desired control gain.

While the modal control equations [Equations (7.99)] appear quite simple, the problem of
independent control remains complicated and requires a larger number of sensor and actuator
connections. This happens because the �i and �i of Equation (7.99), while independent, are
not always capable of being independently implemented. The design problem is to choose
actuator and sensor locations as well as gains such that B, Kv, and Kp satisfy Equations (7.97)
and (7.98). The choice of these gains is not independent but rather coupled through the
equations

ST
mBf KvSm = diag��i� (7.100)

and

ST
mBf KpSm = diag��i� (7.101)

The modal control of a system in physical coordinates as well as the problem of performing
independent modal control are illustrated in the following example.

Example 7.9.1

Consider the system of Figure 2.4 with coefficient values (dimensionless) of m1 = 9, m2 = 1, c1 = 8,
c2 = 1, k1 = 24, and k2 = 3. This produces a system equivalent to the one of example 3.5.1, where
it is shown that DM−1K = KM−1D, so that the system decouples. The matrix Sm is given by

Sm = 1√
2

[ 1
3

−1
3

1 1

]
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The decoupled coordinates, listed in example 3.5.1, yield the modal frequencies and damping
ratios as

�1 = 0�2357� 
1 = √
2 = 1�414 rad/s

�2 = 0�3333� 
2 = 2�0 rad/s

Consider the control problem of calculating a feedback law that will cause the closed-loop system
(7.95) to have a response with a modal damping ratio of 0.4 in the first mode. Three cases of
different sensor and actuator placements are considered.

In the first case, consider an SISO system with non-collocated control. Suppose one actuator is
used to achieve the desired control and it is connected to only one mass, m2, and one sensor is used
to measure the velocity of m1. Then

Kv = �g1 0 �� Kp = 0

Bf =
[

0
g2

]

since u is a scalar in this case. Calculating the control and measurement quantities from Equa-
tion (7.96) yields

ST
mBf KpSm = 0

ST
mBf KvSm = g1g2

6

[
1 −1
1 −1

]

It should be clear from this last expression that no choice of g1 and g2 will allow just the first mode
damping to be changed, i.e., ST

mBf KvSn cannot be diagonal.
For the second case, consider using two actuators, one at each mass, and two sensors measuring

the two velocities. This is a MIMO system with velocity feedback. Then

Kv =
[

g1 0
0 g2

]

and

Bf =
[

g3 0
0 g4

]

Equation (7.96) then yields

ST
mBf KvSm = 1

18

[
g1g3 + 9g2g4 9g2g4 − g1g3

9g2g4 − g1g3 g1g3 + 9g2g4

]

An obvious choice for decoupled control is 9g2g4 = g1g3, as this makes the above matrix diago-
nal. Then

ST
mBf KvSm =

[
g2g4 0

0 g2g4

]

Comparing the desired first mode damping ratio yields

2�1
1 + g2g4 = 2�0�4�
√

2
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Solving this equation for the two unknown a = g2g4 yields g2g4 = 0�164. This choice of the gain
keeps the equations of motion decoupled and assigns the first damping ratio the desired value of
0.4. Unfortunately, because of the way the gains appear in closed-loop system, the effect on the
second mode velocity coefficient is

2�2
2 + g2g4 = 2�̂2
2

This results in a new damping ratio for mode 2 of �̂2 = 0�449. Hence, although a decoupled control
has been found, it is still not possible independently to change the damping ratio of mode 1 without
affecting mode 2. This would require g1g3 + 9g2g4 to be zero, which of course would also not allow
�1 to be controlled at all.

For the third case, then consider a MIMO controller with the velocity signal at m1 to be fed back
to mass m2, and vice versa. This means that Kv now has the form

Kv =
[

g1 g5

g6 g2

]

In this case, calculating the velocity feedback coefficient yields

ST
mBf KvSm = 1

18

[
g3g1 + 3g3g5 + 9g2g4 + 3g4g6 9g2g4 + 3g3g5 − 3g4g6 − g3g1

9g2g4 − 3g3g5 + 3g4g6 − g3g1 9g2g4 + g3g1 − 3g4g6 − 3g3g5

]

Examining this new feedback matrix shows that independent modal control will be possible if and
only if the off-diagonals are set to zero, decoupling the system, and the element in the (2, 2) position
is zero, leaving the second mode unchanged. To change the first mode-damping ratio to 0.4, the
first entry in the matrix above requires that

2�1
1 + g1g3 + 3g3g5 + 9g2g4 + 3g4g6

18
= 2�0�4�
1

To ensure that the controller does not recouple the equations of motion, the off-diagonal elements
are set to zero, resulting in the two equations

9g2g4 + 3g3g5 − 3g4g6 − g3g1 = 0 and 9g2g4 − 3g3g5 + 3g4g6 − g3g1 = 0

To ensure that the second mode damping is not changed, the element in the (2, 2) position is also
set to zero, resulting in the additional condition

9g2g4 + g3g1 − 3g4g6 − 3g3g5 = 0

This last set of equations can be recognized as four linear equations in the four unknowns

a = g1g3� b = g2g4� c = g3g5� d = g4g6

These equations in matrix form are

− a + 9b + 3c + 3d = 0

− a + 9b − 3c + 3d = 0

a + 9b − 3c − 3d = 0

a

18
+ 1

2
b + 1

6
c + 1

6
d = 2�0�4�
1 − 2�1
1
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Solving this set of equations with the open-loop values of 
1 and �1 given above yields

a = 2�09� b = 0�232� c = 0�697� d = 0�697

Substitution of these values along with the free choice of g3 = g4 = 1 into the feedback matrix yields

ST
mBf KvSm =

[
0�464 0

0 0

]

The resulting closed-loop system yields a new system with the desired first mode damping ratio of
0.4 and the second mode damping ratio unchanged. Furthermore, the closed-loop system remains
decoupled. Hence, independent mode control is achieved.

Note that, of the six gain values, only four can be determined. In fact, Bf could have been
chosen as the identity matrix from the start with the same result. However, in practice, each sensor
and actuator will have a coefficient that needs to be accounted for. In many cases each sensor
and actuator will have significant dynamics, ignored here, that could change the plant by adding
additional poles and zeros.

Example 7.9.1 illustrates how many control actuators and sensors must be used in order to
accomplish an independent control of one mode of a simple two-degree-of-freedom system.
In the case of the last example, as many sensors and actuators were required as degrees
of freedom in the system. Hence, it is important in practical control design to consider
the placement of actuators and sensors and not just the relationships among the various
coefficient matrices for the system.

7.10 ROBUSTNESS

The concept of robust control systems, or robust systems, has been defined in many ways,
not all of which are consistent. However, the basic idea behind the concept of robustness is
an attempt to measure just how stable a given system is in the presence of some uncertainty
or perturbation in the system. That is, if a system is stable, is it still stable after some
changes have been made in the physical or control parameters of the system? This is called
stability robustness. This same question can be asked with respect to the performance of the
system. In this latter case, the question is asked in terms of a given level of acceptability
of a specific performance criterion such as overshoot or settling time. For example, if it is
required that a given control system have an overshoot of less than 10% and there is an
uncertainty in the control gain, does the overshoot still remain less than 10% in the presence
of that uncertainty? This is called performance robustness.

An example of performance robustness is given by Davison (1976). The steady state error
of a control system is defined to be the difference between the response of the system and the
desired response of the system as t becomes large in the regulator problem of Section 7.4.
A logical measure of control system performance is then whether or not the steady state
error is zero. A given system is then said to be robust if there exists a control that regulates
the system with zero steady state error when subjected to perturbations in any of the matrices
A, B, or C in Equations (7.1) and (7.2).
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In the remainder of this section, only stability robustness is discussed. The approach
presented here follows that of Patel and Toda (1980). As an example of stability robustness,
consider a closed-loop system under state variable feedback of the form

ẋ = �A + BKf �x = A′x (7.102)

The matrix A′ contains the measurement and control matrices and is such that the closed-
loop system is asymptotically stable. Let the matrix Ee denote the uncertainty in the system
parameters (A) and gains (BKf ). Then, rather than having Equation (7.102), the system may
be of the form

ẋ = �A′ + Ee�x (7.103)

In this equation the matrix Ee is not known [recall the discussion following Equation (3.93)],
but rather only bounds on its elements are known. In particular, it is assumed here that each
element of the uncertainty is bounded in absolute value by the same number, �, so that

∣∣�Ee�ij

∣∣< � (7.104)

for each value of the indices i and j. It was shown by Patel and Toda (1980) that the system
with the uncertainty given by Equation (7.104) is asymptotically stable if

� < ��

where

�� = 1
2n

(
1

�max�F�

)
(7.105)

Here, F is a solution of the Lyapunov matrix equation [Equation (4.29)] in the form

A′T F + FA′ = −2I (7.106)

where I is the 2n × 2n identity matrix. The notation �max�F� refers to the largest singular
value of the matrix F.

Example 7.10.1

Consider a closed-loop system defined by the augmented state matrix given by

A′ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−3 1 −9 4
1 −1 4 −4

⎤
⎥⎥⎦
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the solution of the Lyapunov equation [Equation (7.106)] yields

F =

⎡
⎢⎢⎣

3�5495 −0�6593 0�3626 0�0879
0�6593 4�6593 0�6374 1�6374
0�3626 0�6374 0�3956 0�5495
0�0879 1�6374 0�5495 1�2088

⎤
⎥⎥⎦

The singular values of F are calculated to be

�1 = 5�5728� �2 = 3�5202� �3 = 0�6288� �4 = 0�0914

From Equation (7.105) the value of �� becomes (n = 2)

�� =
(

1
4

)(
1

5�5728

)

Hence, as long as the parameters are not changed more than 1.3676, i.e., as long as

∣∣�Ee�ij

∣∣< 1�3676

the system defined by (A′ + Ee) will be asymptotically stable.

Many other formulations and indices can be used to discuss stability robustness. For instance,
Rew and Junkins (1986) use the sensitivity (see Section 6.5) of the closed-loop matrix A′

in Equation (7.102) to discuss robustness in terms of the condition number of A′. Kissel
and Hegg (1986) have discussed stability robustness with respect to neglected dynamics in
control system design. They examine how stability of a closed-loop system is affected if a
reduced-order model is used in designing the feedback law. Zhou and Doyle (1997) provide
a complete account of the use of robustness principles in control design for both stability
and performance.

7.11 POSITIVE POSITION FEEDBACK

A popular modal control method with experimentalists and structural control engineers is
called positive position feedback (Goh and Caughey, 1985), which adds additional dynamics
to the system through the control law. A unique feature of the positive position feedback
(PPF) approach is that it can be designed around an experimental transfer function of the
structure and does not require an analytical model of the system or plant to be controlled.
Goh and Caughey proposed using a special dynamic feedback law designed specifically for
use in the second-order form, compatible with Newton’s formulation of the equations of
motion of a structure. These PPF control circuits are designed to roll off at higher frequency
and hence are able to avoid exciting residual modes and introducing spillover as discussed
in Section 7.8.

To illustrate the PPF formulation, consider the single-degree-of-freedom system (or alter-
natively, a single mode of the system)

ẍ + 2�
nẋ + 
2
nx = bu (7.107)
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where � and 
n are the damping ratio and natural frequency of the structure, and b is the
input coefficient that determines the level of force applied to the mode of interest. The PPF
control is implemented using an auxiliary dynamic system (compensator) defined by

�̈ + 2 �f 
f �̇ + 
2
f � = g
2

f x

u = g

b

2

f � (7.108)

Here, �f and 
f are the damping ratio and natural frequency of the controller, and g is a
constant. The particular form of Equation (7.108) is that of a second-order system much
like a damped vibration absorber. The idea is to choose the PPF frequency and damping
ratio so that the response of the structural mode has the desired damping. Combining
Equations (7.107) and (7.108) gives the equations of motion in their usual second-order
form, which, assuming no external force, is as follows:

[
ẍ
�̈

]
+
[

2�
n 0
0 2�f 
f

] [
ẋ
�̇

]
+
[


2
n −g
2

f

−g
2
f 
2

f

] [
x
�

]
=
[

0
0

]
(7.109)

Since the stiffness matrix couples the two coordinates, increasing the filter damping, �f , will
effectively add damping to the structural mode. Note also that this is a stable closed-loop
system if the symmetric ‘stiffness’ matrix is positive definite for appropriate choices of
g and 
f , that is, if the determinant of displacement coefficient matrix is positive, which
happens if

g2
2
f < 
2

n (7.110)

Notice that the stability condition only depends on the natural frequency of the structure, and
not on the damping or mode shapes. This is significant in practice because, when building an
experiment, the frequencies of the structure are usually available with a reasonable accuracy,
while mode shapes and damping ratios are much less reliable. The design of the controller
then consists of choosing g and 
f that satisfy inequality (7.110) and choosing �f large
enough to add significant damping to the structural mode. Note that the gains of the controller
�f , g, and 
f are chosen electronically.

The stability property of PPF is also important because it can be applied to an entire
structure, eliminating spillover by rolling off at higher frequencies. That is, the frequency
response of the PPF controller has the characteristics of a low-pass filter. The transfer
function of the controller is

��s�

X�s�
= g
2

f

s2 + 2�f 
f s + 
2
f

(7.111)

illustrating that it rolls off quickly at high frequencies. Thus, the approach is well suited to
controlling a mode of a structure with frequencies that are well separated, as the controller
is insensitive to the unmodeled high-frequency dynamics. If the problem is cast in the state
space, the term b2n−k in Equation (7.91) is zero, and no spillover results.
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The positive position terminology in the name PPF comes from the fact that the position
coordinate of the structure equation is positively fed to the filter, and the position coordinate
of the compensator equation is positively fed back to the structure.

Next, suppose a multiple-degree-of-freedom analytical model of the structure is available.
Following the formulation of output feedback discussed in Section 4.10 for an SISO system
with no applied force yields

Mq̈ + Dq̇ + Kq = Bf u (7.112)

Coupling this with the PPF controller in the form given in Equation (7.108) written as

�̈ + 2 �f 
f �̇ + 
2
f � = g
2

f BT
f q

u = g 
2
f � (7.113)

yields[
M 0

0 1

][
q̈

�̈

]
+
[

D 0

0 2�f 
f

][
q̇

�̇

]
+
[

K −g
f Bf

−g
f B
T
f 
2

f

][
q

�

]
=
[

0

0

]
(7.114)

The system is SISO, so that Bf is a vector since u is a scalar. The augmented mass matrix
in Equation (7.114) is symmetric and positive definite, the augmented damping matrix
is symmetric and positive semidefinite, so the closed-loop stability will depend on the
definiteness of the augmented stiffness matrix.

Consider then the definiteness of the augmented stiffness matrix defined by

K̂ =
[

K −g
f Bf

−g
f B
T
f 
2

f

]
(7.115)

Let x be an arbitrary vector partitioned according to K̂ and compute

xT K̂x=[
xT

1 xT
2

][ K −g
f Bf

−g
f B
T
f 
2

f

][
x1

x2

]
=xT

1 Kx1 −g
f x
T
1 Bf x2 −g
f x

T
2 BT

f x1 +
2
f xT

2 x2

Completing the square and factoring yields

xT K̂x = xT
1 �K − g2BT

f Bf �x1 +
(
gBT

f x1 − 
f x2

)T (
gBT

f x1 − 
f x2

)
This is of the form

xT K̂x = xT
1 �K − g2BT

f Bf �x1 + yT y

for arbitrary x1 and y. Since yT y is always nonnegative, K̂ will be positive definite if the
matrix K − g2BT

f Bf is positive definite. If g is chosen such that K − g2BT
f Bf is positive

definite, then the closed-loop system will be stable (in fact asymptotically stable via the
discussion in Section 4.5 since the coefficient matrices do not commute).
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Example 7.11.1

Consider the two-degree-of-freedom system of example 7.9.1 and design a PPF controller to add
damping to the first mode of the system without affecting the second mode.

For a single actuator at the location of the first mass, the input matrix becomes

Bf =
[

1
0

]

The augmented mass and stiffness matrices of Equation (7.114) become

M̂ =
⎡
⎣9 0 0

0 1 0
0 0 1

⎤
⎦ � D̂ =

⎡
⎣ 9 −1 0

−1 1 0
0 0 2�f 
f

⎤
⎦ � K̂ =

⎡
⎣ 27 −3 −g
f

−3 3 0
−g
f 0 
2

f

⎤
⎦

Following the constraint given by inequality (7.110) for controlling the first mode g2
2
f < 
2

1 = 2,
one free choice is g = 
f = 1. Choosing the PPF damping of �f = 0�5 results in the following
closed-loop damping ratios and frequencies:


1 = 1�43� �1 = 0�237


2 = 2�00� �2 = 0�332


f = 0�966� �f = 0�531

as computed from the corresponding state matrix. Note that damping is added to the first mode
(from 0.235 to 0.237) while mode two damping is only slightly changed and the frequency is not
changed at all. All the modes change slightly because the system is coupled by the filter and,
as was shown in example 7.9.1, multiple sensors and actuators are required to affect only one
mode.

7.12 MATLAB COMMANDS FOR CONTROL CALCULATIONS

Most of the calculations in this chapter are easily made in Matlab. Matlab contains a
‘toolbox’ just for controls, called the Control System Toolbox (Grace et al., 1992). This
is a series of algorithms expressed in m-files that implements common control design,
analysis, and modeling methods. Many websites are devoted to using and understanding the
Control System Toolbox. Table 7.1 lists some common commands useful in implementing
calculations for active control. The control commands in Matlab assume the control problem
is a linear time-invariant system of the form

ẋ = Ax + Bu� y = Cx + Du (7.116)

The developments in this chapter assume that D = 0.
The following examples illustrate the use of some of the commands listed in Table 7.1 to

perform some of the computations developed in the previous sections.
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Table 7.1 Matlab commands for control.

ss2tf converts the state-space model to the system transfer function
tf2ss converts a system transfer function to a state-space model
step computes the step response of a system
initial computes the response of a system to initial conditions
impulse computes the response of a system to a unit impulse
ctrb computes the controllability matrix
obsv computes the observability matrix
gram computes the controllability and observability grammians
balreal computes the balanced realization
place computes the pole placement gain matrix
lqr computes the linear quadratic regulator solution
modred computes the reduced-order model

Example 7.12.1

The function initial can be used to plot the response of the system of Equation (7.116) to
a given initial condition. Consider the system in state-space form of a single-degree-of-freedom
system given by

[
ẋ1

ẋ2

]
=
[

0 1
−4 −2

][
x1

x2

]
+
[

1
0

]
u� y = [

1 0
][x1

x2

]
�

[
x1�0�
x2�0�

]
=
[

1
0

]

and plot the response using initial . Type the following in the command window:

>>clear all
>>A=[0 1;-4 -2];
>>b=[1;0];
>>c=[1 0];
>>d=[0];
>>x0=[1 0];
>>t=0:0.1:6;
>>initial(A,b,c,d,x0,t);

This results in the plot given in Figure 7.14.

Next, consider using Matlab to solve the pole placement problem. Matlab again works
with the state-space model of Equation (7.116) and uses full-state feedback (u = −Kx)
to find the gain matrix K that causes the closed-loop system (A − bK) to have the poles
specified in the vector p. The following example illustrates the use of the place command.

Example 7.12.2

Use the system of example 7.12.1 and compute the gain that causes the closed-loop system to
have two real poles: −2 and −4. Using the code in Figure 7.12.1 to enter the state-space model
(A, b, c, d), then type the following in the command window:
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Time (sec.)
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Initial Condition Results

0 2 3 4 5 6
– 0.2

0

0.2

0.4

0.6

0.8

1

1.2

1

Figure 7.14 Response computed and plotted using the initial command.

>>p=[ -2 -4];
>>K=place(A,b,p)
place: ndigits= 15
K =

4 1

Thus, the proper gain matrix is a vector in this case. To check that the result works, type

>>eig(A-b*K)
ans =

-2
-4

>>eig(A)
ans =
-1.0000+ 1.7321i
-1.0000- 1.7321i

This shows that the computed gain matrix causes the system to move its poles from the two complex
values −1±1�7321i to the two real values −2 and −4.

Next, consider solving the optimal control problem using the linear quadratic regulator prob-
lem defined by Equation (7.28). The Matlab command lqr computes the solution of the
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matrix Ricatta equation [Equation (7.32)], calculates the gain matrix K , and then calculates
the eigenvalues of the resulting closed-loop system (A − BK) for a given choice of the
weighting matrices Q and R defined in Section 7.4. In this case, the output matrix B must
have the same number of columns as the matrix R. The following example illustrates the
procedure.

Example 7.12.3

Compute an optimal control for the system of example 7.12.1. Here, we chose Q to be the identity
matrix and R to be 2Q. The following is typed into the command window:

>>A=[0 1;-4 -2];
>>B=eye(2);% the 2x2 identity matrix
>>c=[1 0];
>>d=[0];
>>Q=eye(2);R= 2*Q;% weighting matrices in the
cost function
>>[K,S,E]=lqr(A,B,Q,R)
K =

0.5791 0.0205
0.0205 0.1309

S =
1.1582 0.0410
0.0410 0.2617

E =
-1.3550+ 1.8265i
-1.3550- 1.8265i

The vector E contains new (closed-loop) eigenvalues of the system with the gain computed (K)
from the solution of the Ricatta equation (S). Note that the closed-loop eigenvalues are more heavily
damped then the open-loop eigenvalues (−1 ± 1�7321j).

Next, consider the model reduction problem of Section 7.7. The balanced realization can
be obtained from the balreal command, and the corresponding reduced-order model
can be obtained from the modred command. The procedure is illustrated in the next
example.

Example 7.12.4

Compute the balanced realization of the system

ẋ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−2 1 −0�3 0�1
1 −1 0�1 −0�1

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦u� y = [

0 1 0 0
]

x
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Use the balance realization to reduce the order of the model on the basis of its singular values. First
the state-space model is typed into the command window. Then a balanced realization is formed
and the singular values computed. The singular values (denoted by g in the code that follows) are
then used with the model reduction routine to compute a reduced-order model. Type the following
into the command window:

>>A=[0 0 1 0;0 0 0 1;-2 1 -0.3 0.1;1 -1 0.1 -0.1];
>>b=[0;0;0;1]; c=[0 1 0 0]; d=[0];
>>[ab,bb,cb,g]=balreal(A,b,c) % computes the balanced
version and singular values
ab =

-0.0326 0.6166 0.0192 -0.0275
-0.6166 -0.0334 -0.0218 0.0280

0.0192 0.0218 -0.1030 1.6102

0.0275 0.0280 -1.6102 -0.2309
bb =

0.7821

0.7510
-0.2369
-0.3223

cb =
0.7821 -0.7510 -0.2369 0.3223

g =
9.3836
8.4310
0.2724
0.2250

>>elim=find(g<1); %eliminate states with singular values less
than 1
>>[ar,br,cr]=modred(ab,bb,cb,d,elim) % compute the reduced
order model based on eliminating the states with g<1
ar =
-0.0319 0.6173
-0.6173 -0.0342

br =
0.7743
0.7595

cr =
0.7743 -0.7595

The matrix ar and the vectors br and cr are the reduced-order state matrix and the input and
output vectors and form the reduced-order model as defined in Equations (7.76) and (7.77).

There are other commands in the Control System Toolbox that can be used to sim-
plify the calculation of control laws and models and to perform analysis of control
systems. Texts in control and the web should be consulted for additional samples and
commands.
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CHAPTER NOTES

This chapter attempts to introduce some control concepts useful in vibration analysis and
design. Linear control engineering is, of course, a topic in its own right, and hence many
texts have been written on the subject. The reader is referred to the excellent text by Kuo and
Gholoaraghi (2003) for an introduction to control topics and to Kailath (1980) for a more
advanced treatment of linear systems and control topics. Section 7.2 on controllability and
observability stresses the use of these concepts in physical coordinate systems. However,
literally hundreds of papers have been written on the topic in the state-space formulation.
In addition to those references listed in the text, useful conditions for controllability and
observability in second-order models are given by Laub and Arnold (1984) and Bender and
Laub (1985). The early important papers in linear control and computation are presented in
Patel, Laub, and Van Dooren (1994).

Section 7.3 on eigenstructure assignment extends the pole placement topics of Section 6.6
to include placing eigenvectors as well as eigenvalues. Again, hundreds of papers appear
in the literature on pole placement methods in the state space. The most comprehen-
sive treatment of eigenstructure assignment with structures in mind is that by Andry,
Shapiro, and Chung (1983), which motivated the development of Section 7.3. An excel-
lent text on eigenstructure assignment including Matlab codes is the one by Liu and
Patton (1998).

The section on optimal control, Section 7.4, should be viewed by the reader as a very
brief introduction. Again, optimal control is a topic that should be studied in detail by
using one of the many texts written on the subject (see, for instance, Kirk, 1970). In addi-
tion, optimal control is an intense area of current research, with several journals devoted
to the topic. Optimal control is an extremely useful tool in controlling unwanted vibra-
tion. As pointed out by example 7.4.1, however, an element of art remains in optimal
control by virtue of the freedom to choose a cost function. Section 7.5 on observers
and estimators follows the development given by Chen (1970, 1998) and Kailath (1980).
Section 7.6 on realization also closely follows the development in Chen (1998). The
purpose of introducing realization is to set the stage for its use in vibration testing in
Section 8.6. This illustrates a recent application of a standard control topic (realization) to
a vibration problem (testing) and hence should motivate serious vibration engineers to pay
more attention to the topic of linear systems and control theory as a source of alternative
solutions.

Model reduction first introduced in Section 6.8 is revisited in Section 7.7 in the state
space. The balancing method presented is improved numerically by Laub (1980). This is
again an important area of vibration research and design that benefits from developments
that have taken place in linear system theory. There are many other approaches to model
reduction, notably the work of Hyland and Bernstein (1985) and Skelton, Hughes, and
Hablani (1982).

Section 7.8 on modal control in the state space follows the development given by
Takahashi, Rabins, and Auslander (1970). Modal control is popular and appears as a
tool in a large number of papers. The section on modal control in physical coordinates
is an attempt to extend the idea of modal coordinates to second-order systems. This
is again a popular method in vibration control problems (see, for instance, Meirovitch
and Baruh, 1982). The section on robustness is intended to provide a brief introduction
to a very popular topic in control. The development follows that used by Ridgely and
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Banda (1986). Note the similarity between robustness and design sensitivity discussed
in Section 6.5. Much activity surrounds the topic of robust control, and space has pre-
vented the inclusion of much material in this area. Instead the reader is referred to Zhou
and Doyle (1997). The material on PPF control of Section 7.10 comes from the article
by Friswell and Inman (1999), which contains additional references to PPF formulations
in first-order form and connects PPF to standard output feedback and optimal control
laws.
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PROBLEMS

7.1 Consider the system of example 7.3.1 and determine if the system is controllable with
one actuator placed at m1 and observable with one sensor placed at m2.

7.2 Recalculate the gain matrix Gf for example 7.3.1 with one actuator placed at m2 and
one sensor placed at m1 to measure q1�t� only. Does the resulting system have the
desired eigenstructure?

7.3 Consider the system given by M = I

D = diag�0�1 0�2� and K = diag�1 2�

Is the system controllable for B = �0 1�T ? For B = �1 0�T ?
7.4 Repeat example 7.3.1 with desired eigenvectors �1 − 1� and �1 1�, desired eigen-

values 
1 = 1 and 
2 = 2, and desired mass matrix

MO =
[

1 0
0 2

]

Assume the same structures as in example 7.3.1, and place the sensors and actuators
as you see fit.

7.5 Calculate Gf in example 7.3.1 if the desired eigenvalues are 
1 = 10 and 
2 = 20 with
no specification of the system eigenvectors.

7.6 Show that for b = �1 0 0 · · · �T the system of Equation (7.12) can be assigned any
eigenvalues by proper choice of the gain gi.

7.7 Show that the mode participation factors are unique for a given set of initial conditions.
7.8 Show that the control given in example 7.4.1 for the case Q=R= I satisfies inequality

(7.27) by calculating some other values of u (i.e., Hf ).
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7.9 Consider example 7.5.1. Let the observer poles be placed at −2 and −2 so that the
speed of the observer is comparable with that of the system. Calculate e�t� versus
time and x�t� versus time for e�0�= �1 0�T and plot the results. Note that in this case,
the observer does not do as well.

7.10 Calculate a realization for the vibration absorber problem of Section 6.2.
7.11 Calculate WC and WO for the vibration absorber problem of Equation (6.14). Use

m0 = 1�m = 10� k = 5, and k0 = 
2.
7.12 Calculate the singular value decomposition of the following matrices

[
1 0 1
2 3 4

]
�

[
1 2
0 3

]
�

⎡
⎣1 6

5 −1
1 0

⎤
⎦

7.13 Consider a two-degree-of-freedom system similar to that of Figure 2.4. Discuss in
physical terms how such a system would have to behave if it could be reduced to a
single-degree-of-freedom model very accurately.

7.14 Using available software subroutines (for things like SVD), write a program to per-
form model reduction using balancing. Then reproduce the reduction illustrated in
example 7.7.1.

7.15 Consider example 2.4.4. Write the system of Equation (2.26) in state-space form. Let
m1 = 1�m2 = 2� c1 = c2 = 0�1� k1 = 1, and k2 = 4. Use the modal control approach of
Section 7.8 to design a control (i.e., choose g1 and g2� to raise the natural frequencies
of the structure above 5 Hz. Add additional controls or measurements as necessary.

7.16 Referring to the statement of problem 7.15, calculate the minimum number of sensors
and actuators required to control independently the lowest frequency; that is, for k=2
in Equation (7.91), what control configuration is required for

b2n−k = cT
2n−k = 0

7.17 Again consider the feedback control problem for the example of Figure 2.4. Calculate
Bf � Kv, and Kp for this system such that Equation (7.96) is diagonal (decoupled).

7.18 Make a physical interpretation of the calculation in problem 7.16 (i.e., where are the
sensors and actuators located and does it make sense?).

7.19 Prove, or derive, that Equations (7.97) and (7.98) are in fact sufficient conditions for
the closed-loop system to decouple.

7.20 Suppose that the commutivity condition assumed in Section 7.9 is not satisfied. Then
the coefficient of ż in Equation (7.93) is not diagonal. Calculate conditions on the
matrices Bf and Kv so that the coefficient ż in Equation (7.96) becomes diagonal.
Such a control decouples a coupled system.

7.21 Based on your answer to problem 7.20, discuss the physical implications of the control
in terms of, say, Figure 2.4.

7.22 Is the condition of problem 7.20 robust? Please discuss your answer.
7.23 Repeat example 7.10.1 for the system of problem 7.15, assuming that the coefficients

c1 and c2 are only accurate to within 25%.
7.24 Compare the controllability norm of Equation (7.8) with the controllability grammian

of Equation (7.58). Is there a mathematical relationship between them?
7.25 Show that the realization of example 7.6.1 is both controllable and observable. In

general, show that Equations (7.56) and (7.57) are controllable and observable.
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7.26 Using the criterion given in Equation (7.3), show that the system of Figure 7.1(a) is
uncontrollable and that the system of Figure 7.1(b) is controllable.

7.27 Show that Equations (7.56) and (7.53) reduce to Equation (7.53) by using the definition
of a transfer function given in Equation (7.51).

7.28 One method of performing a model reduction (Section 7.7) is to represent the open-
loop system by the first few modes of the structure. Try this by using the first two
(state-space) modes of example 7.7.1 as the ROM of the system. Then compare
the response of this ROM to the ROM obtained in example 7.7.1 by the balancing
method.

7.29 Design a PPF controller for the mode r̈i + 0�6ṙi + 9ri = 0 that increases the modal
damping ratio to 0.3.

7.30 Compute the mode shapes, natural frequencies, and modal damping ratios for the
closed-loop system of example 7.9.1, case 3, to see if the controller does just change
the first mode damping ratio.

7.31 Consider example 7.9.1 and use pole placement to attempt to change just the first
mode damping ratio (to 0.4).

7.32 Consider example 7.9.1 and use eigenstructure assignment to attempt to change just
the first mode damping ratio (to 0.4).

7.33 Consider the system of example 7.9.1. Using pole placement, derive a control law
that will cause the first natural frequency of the closed-loop system to be 1.6 rad/s
and leave the second natural frequency fixed at 2 rad/s.

7.34 Use the eigenstructure assignment method to place the mode shapes of the system of
example 7.3.1 to shift the second eigenvector to [0.316 0.949].

7.35 Compute the time response of the system of example 7.9.1 using the gains from cases
1 and 3 and compare your results. Use an initial condition of zero velocity and the
first coordinate displaced by 0.1 units.


