
10
Formal Methods of
Solution

10.1 INTRODUCTION

This chapter examines various methods of solving for the vibrational response of the
distributed-parameter systems introduced in the previous chapter. As in finite-dimensional
systems, the response of a given system is made up of two parts: the transient, or free,
response, and the steady state, or forced, response. In general the steady state response is
easier to calculate, and in many cases the steady state is all that is necessary. The focus in this
chapter is the free response. The forced response is discussed in more detail in Chapter 12.

Several approaches to solving distributed-parameter vibration problems are considered.
The formal notion of an operator and the eigenvalue problem associated with the operator are
introduced. The traditional separation of variables method used in Chapter 9 is compared with
the eigenvalue problem. The eigenfunction expansion method is introduced and examined
for systems including damping. Transform methods and integral formulations in the form of
Green’s functions are also introduced in less detail.

10.2 BOUNDARY VALUE PROBLEMS AND EIGENFUNCTIONS

As discussed in Section 9.6, a general formulation of the undamped boundary value prob-
lems presented in Chapter 9 can be written as (the subscript on L is dropped here for
notational ease)

wtt�x� t� + Lw�x� t� = 0� x ∈ � for t > 0

Bw = 0� x ∈ �� for t > 0 (10.1)

w�x� 0� = w0�x�� wt�x� 0� = ẇ0�x� at t = 0

where w�x� t� is the deflection, x is a three-dimensional vector of spatial variables, and
� is a bounded region in three-dimensional space with boundary ��. The operator L is
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a differential operator of spatial variables only. For example, for the longitudinal vibration
of a beam (string or rod) the operator L has the form

L = −�
�2

�x2
(10.2)

where � is a constant. An operator, or transformation, is a rule that assigns, to each function
w�x� t� belonging to a certain class, another function (−awxx in the case of the string operator)
belonging to another, perhaps different, class of functions. Note that a matrix satisfies this
definition. B is an operator representing the boundary conditions as given, for example, by
Equations (9.2). As indicated previously, the equations of (10.1) define a boundary value
problem. A common method of solving (10.1) is to use separation of variables, as illustrated
by the examples in Chapter 9. As long as the operator L does not depend on time, and if L
satisfies certain other conditions (discussed in the next chapter), this method will work.

In many situations, the separation of variables approach yields an infinite set of functions
of the form an�t��n�x� that are solutions of Equations (10.1). The most general solution is
then the sum, i.e.,

w�x� t� =
�∑

n=1

an�t��n�x� (10.3)

A related method, modal analysis, also uses these functions and is described in the next
section.

Similar to the eigenvectors of a matrix, some operators have eigenfunctions. A nonzero
function ��x� that satisfies the relationships

L��x� = 	��x�� x ∈ �

B��x� = 0� x ∈ ��

is called an eigenfunction of the operator L with boundary conditions B. The scalar 	
(possibly complex) is called an eigenvalue of the operator L with respect to the boundary
conditions B. In some cases the boundary conditions are not present, as in the case of
a matrix, and in some cases the boundary conditions are contained in the domain of the
operator L. The domain of the operator L, denoted by D�L�, is the set of all functions u�x�
for which Lu is defined and of interest.

To see the connection between separation of variables and eigenfunctions, consider sub-
stitution of the assumed separated form w�x� t�=a�t���x� into Equations (10.1). This yields

ä�t�

a�t�
= L��x�

��x�
� x ∈ �� t > 0 (10.4)

a�t�B��x� = 0� x ∈ ��� t > 0 (10.5)

a�0���x� = w0�x�� ȧ�0���x� = ẇ0�x� (10.6)

As before, Equation (10.4) implies that each side is constant, so that

L��x� = 	��x�� x ∈ � (10.7)
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where 	 is a scalar. In addition, note that, since a�t� �=0 for all t, Equation (10.5) implies that

B��x� = 0� x ∈ ��� t > 0 (10.8)

Equations (10.7) and (10.8) are, of course, a statement that ��x� and 	 constitute an
eigenfunction and eigenvalue of the operator L.

Example 10.2.1

Consider the operator formulation of the longitudinal bar equation presented in Section 9.3. The
form of the beam operator is

L = −�
�2

�x2
� x ∈ �0� 
�

with boundary conditions (B = 1 at x = 0 and B = �/�x at x = 
)

��0� = 0 (clamped end) and �x�
� = 0 (free end)

and where �� consists of the points x = 0 and x = 
. Here, the constant a represents the physical
parameters of the beam, i.e., � = EA/�. The eigenvalue problem L� = 	� becomes

−��xx = 	�

or

�xx + 	

�
� = 0

This last expression is identical to Equation (9.6) and the solution is

��x� = A1 sin

(√
	

�
x

)
+ A2 cos

(√
	

�
x

)

where A1 and A2 are constants of integration. Using the boundary conditions yields

0 = ��0� = A2 and 0 = �x�
� = A1

√
	

�
cos

√
	

�



This requires that A2 = 0 and

A1 cos

√
	

�

 = 0

Since A1 cannot be zero, √
	

�

 = n�

2

for all odd integers n. Thus, 	 depends on n and

	n = �n2�2

4
2
� n = 1� 3� 5�    ��
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Thus, there are many eigenvalues 	, denoted now by 	n, and many eigenfunctions �, denoted by
�n. The eigenfunctions and eigenvalues of the operator L are given by the sets

��n�x�� =
{
An sin

n�x

2


}
and �	n� =

{
�n2�2

4
2

}
� n odd

respectively. Note that, as in the case of a matrix eigenvector, eigenfunc-
tions are determined only to within a multiplicative constant (An in this case).

Comparison of the eigenfunctions of the operator for the beam with the spatial functions
calculated in Chapter 9 shows that the eigenfunctions of the operator correspond to the mode
shapes of the structure. This correspondence is exactly analogous to the situation for the
eigenvectors of a matrix.

10.3 MODAL ANALYSIS OF THE FREE RESPONSE

The eigenfunctions associated with the string equation are shown in the example of
Section 9.2 to be the mode shapes of the string. Also, by using the linearity of the equations
of motion, the solution is given as a summation of mode shapes. This summation of mode
shapes, or eigenfunctions, given in Equation (9.16), constitutes the eigenfunction expansion
or modal analysis of the solution and provides an alternative point of view to the separation
of variables technique.

First, as in the case of eigenvectors of a matrix, eigenfunctions are conveniently normalized
to fix a value for the arbitrary constant. To this end, let the eigenfunctions of interest be
denoted by An�n�x�. If the constants An are chosen such that∫

�
A2

n�n�x��n�x� d� = 1 (10.9)

then the eigenfunctions �n =An�n are said to be normalized, or normal. If, in addition, they
satisfy ∫

�
�n�md� = �mn (10.10)

the eigenfunctions are said to be orthonormal, exactly analogous to the eigenvector case. The
method of modal analysis assumes that the solution of Equations (10.1) can be represented
as the series

w�x� t� =
�∑

n=1

an�t��n�x� (10.11)

where �n�x� are the normalized eigenfunctions of the operator L. Substitution of Equa-
tion (10.11) into Equations (10.1), multiplying by �m�x�, and integrating (assuming uniform
convergence) over the domain � reduces Equations (10.1) to an infinite set of uncoupled
ordinary differential equations of the form

än�t� + 	nan�t� = 0� n = 1� 2�    �� (10.12)
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Equation (10.12) can then be used along with the appropriate initial conditions to solve for
each of the temporal functions. Here, 	n is the eigenvalue associated with the nth mode,
so that ∫

�
�nL�nd� = 	n

∫
�

�n�nd� = 	n (10.13)

where Equation (10.7) and (10.10) are used to evaluate the integral.

Example 10.3.1

Consider the transverse vibration of a Euler–Bernoulli beam with hinged boundary conditions.
Calculate the eigenvalues and eigenfunctions for the associated operator.

The stiffness operator for constant mass, cross-sectional area, and area moment of inertia is given
by (see Equation 9.46)

L = EI

m

�4

�x4
= �

�4

�x4

��0� = �xx�0� = 0

��
� = �xx�
� = 0

The eigenvalue problem Lu = 	u then becomes

��xxxx = 	�

which has a solution of the form

��x� = C1 sin �x + C2 cos �x + C3 sinh �x + C4 cosh �x

where �4 = 	/�. Applying the four boundary conditions to this expression yields the four simulta-
neous equations

��0� = C2 + C4 = 0

�xx�0� = −C2 + C4 = 0

��L� = C1 sin �
 + C2 cos �
 + C3 sin �
 + C4 cos �
 = 0

�xx�
� = −C1 sin �
 − C2 cos �
 + C3 sin �
 + C4 cos �
 = 0

These four equations in the four unknown constants Ci can be solved by examining the matrix
equation ⎡

⎢⎢⎣
0 1 0 1
0 −1 0 1

sin �
 cos �
 sinh �
 cosh �

− sin �
 − cos �
 sinh �
 cosh �


⎤
⎥⎥⎦
⎡
⎢⎢⎣

C1

C2

C3

C4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

Recall from Chapter 3 that, in order for a nontrivial vector c = �C1 C2 C3 C4�
T to exist, the

coefficient matrix must be singular. Thus, the determinant of the coefficient matrix must be zero.
Setting the determinant equal to zero yields the characteristic equation

4 sin��
� sinh��
� = 0
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This, of course, can be true only if sin��
� = 0, leading to

� = n�



� n = 1� 2�    ��

Here, n= 0 is excluded because it results in the trivial solution. In terms of the physical parameters
of the structure, the eigenvalues become (here n is an integer and m is the mass per unit length of
the beam)

	n = n4�4EI

m
4

Solving for the four constants Ci yields C2 = C3 = C4 = 0 and that is C1 arbitrary. Hence, the
eigenfunctions are of the form

[
An sin

(n�x




)]

The arbitrary constants An can be fixed by normalizing the eigenfunctions

∫ 


0
A2

n sin2
(n�x




)
dx = 1

so that A2
n
/2 = 1� or An = √

2/
. Thus, the normalized eigenfunctions are the set

��n� =
{√

2



sin
(n�x




)}�

n=1

Hence, the temporal coefficient in the series expansion of the solution (10.11) will be determined
from the initial conditions and the finite number of equations

än�t� + n4�4EI

m
4
an�t� = 0� n = 1�    ��

Equation (10.11) then yields the total solution.

10.4 MODAL ANALYSIS IN DAMPED SYSTEMS

As in the matrix case for lumped-parameter systems, the method of modal analysis (and
separation of variables) can still be used for certain types of viscous damping modeled
in a distributed structure. Systems that can be modeled by partial differential equations of
the form

wtt�x� t� + L1wt�x� t� + L2w�x� t� = 0� x ∈ � (10.14)

(where L1 and L2 are operators, with similar properties to L and such that L1 and L2

have the same eigenfunctions) can be solved by the method of modal analysis illustrated in
Equation (10.11) and example 10.3.1. Section 9.7 lists some examples.
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To see this solution method, let L1 have eigenvalues 	�1�
n and L2 have eigenvalues 	�2�

n .
Substitution of Equation (10.11) into Equation (10.14) then yields (assuming convergence)

�∑
n=1

[
än�n�x� + 	�1�

n ȧn�n�x� + 	�2�
n an�n�x�

]= 0 (10.15)

Multiplying by �n�x�, integrating over �, and using the orthogonality conditions (10.10)
yields the decoupled set of n ordinary differential equations

än�t� + 	�1�
n ȧn�t� + 	�2�

n an�t� = 0� n = 1� 2�    �� (10.16)

subject to the appropriate initial conditions.
The actual form of damping in distributed-parameter systems is not always clearly known.

In fact, the form of L1 is an elusive topic of current research and several texts (see, for
instance, Nashif, Jones, and Henderson, 1985, or Sun and Lu, 1995). Often, the damping is
modeled as being proportional, i.e., L1 = �I + �L2, where � and � are arbitrary scalars and
L1 satisfies the same boundary conditions as L2. In this case, the eigenfunctions of L1 are
the same as those of L2. Damping is often estimated using equivalent viscous proportional
damping of this form as an approximation.

Example 10.4.1

As an example of a proportionally damped system, consider the transverse free vibration of a mem-
brane in a surrounding medium, such as a fluid, providing resistance to the motion that is proportional
to the velocity. The equation of motion given by Equation (9.86) is Equation (10.14), with

L1 = 2
�

�

L2 = −T

�
�2

where ��T��, and �2 are as defined for Equation (9.86). The position x in this case is the vec-
tor [x y] in two-dimensional space. If 	

�2�
1 is the first eigenvalue of L2, then the solutions to

Equation (10.16) are of the form

an�t� = e− �
� t

[
An sin

√
	

�2�
n − �

�2

2
t + Bn cos

√
	

�2�
n − �

�2

2
t

]

where An and Bn are determined by the initial conditions (see Section 11.9).

Not all damped systems have this type of damping. Systems that have proportional
damping are called normal mode systems, since the eigenfunctions of the operator L2 serve
to ‘decouple’ the system. Decouple, as used here, refers to the fact that Equations(10.16)
depends only on n and not on any other index. This topic is considered in more detail in
Section 11.9.
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10.5 TRANSFORM METHODS

An alternative to using separation of variables and modal analysis is to use a transform
to solve for the vibrational response. As with the Laplace transform method used on the
temporal variable in state-space analysis for lumped-parameter systems, a Laplace transform
can also be used in solving Equations (10.1). In addition, a Fourier transform can be used
on the spatial variable to calculate the solution. These methods are briefly mentioned here.
The reader is referred to a text such as Churchill (1972) for a rigorous development.

The Laplace transform taken on the temporal variable of a partial differential equation
can be used to solve for the free or forced response of Equations (10.1) and (10.14). This
method is best explained by considering an example.

Consider the vibrations of a beam with constant force F0 applied to one end and fixed at
the other. Recall that the equation for longitudinal vibration is

wtt�x� t� = �2wxx�x� t� (10.17)

with boundary conditions

w�0� t� = 0� EAwx�
� t� = F0��t� (10.18)

Here, a2 = EA/�, as defined in Section 9.3. Assuming that the initial conditions are zero,
the Laplace transform of Equation (10.17) yields

s2W�x� s� − �2Wxx�x� s� = 0 (10.19)

and the Laplace transform of Equation (10.18) yields

Wx�
� s� = F0

EAs

W�0� s� = 0 (10.20)

Here, W denotes the Laplace transform of w. The solution of Equation (10.19) is of the form

W�x� s� = A1 sinh
sx

�
+ A2 cosh

sx

�

Applying the boundary condition at x = 0, gives A2 = 0. Differentiating with respect to x
and taking the Laplace transform yields the boundary condition at x = 
. The constant A1 is
then determined to be

A1 =
(

�F0

EA

)(
1

s2 cosh�s
/��

)

The solution in terms of the transform variable s then becomes

W�x� s� = �F0 sinh�sx/��

EAs2 cosh�s
/��
(10.21)
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By taking the inverse Laplace transform of Equation (10.21) using residue theory, the
solution in the time domain is obtained. The inverse is given by Churchill (1972) to be

w�x� t� = F0

E
x +

(
8


�

)2 �∑
n=1

�−1�n

�2n − 1�2
sin

�2n − 1��x

2

cos

�2n − 1��at

2

(10.22)

A text on transforms should be consulted for the details. Basically, the expansion comes
from the zeros in the complex plane of s2 cosh�s
/a�, i.e., the poles of W�x� s�.

This same solution can also be obtained by taking the finite Fourier sine transform of
Equations (10.17) and (10.18) on the spatial variable x rather than the Laplace transform of
the temporal variable (see, for instance, Meirovitch, 1967). Usually, transforming the spatial
variable is more productive because the time dependence is a simple initial value problem.

When boundary conditions have even-order derivatives, a finite sine transformation
(Fourier transform) is appropriate. The sine transform is defined by

W�n� t� =
∫ 


0
w�x� t� sin

n�x



dx (10.23)

Note here that the transform in this case is over the spatial variable.
Again, the method is explained by example. To that end, consider the vibration of a string

clamped at each end and subject to nonzero initial velocity and displacement, i.e.,

wxx = 1
c2

wtt�x� t�

w�0� t� = w�
� t� = 0� w�x� 0� = f�x�� wt�x� 0� = g�x� (10.24)

The finite sine transform of the second derivative is

Wxx�n� t� = n�




∣∣�−1�n+1W�
� t� + W�0� t�
∣∣− (n�




)2
W�n� t� (10.25)

which is calculated from integration by parts of Equation (10.23). Substitution of the bound-
ary conditions yields the transformed string equation

Wtt�n� t� +
(n�




)2
W�n� t� = 0 (10.26)

This equation is subject to the transform of the initial conditions, which are

W�n� 0� =
∫ 


0
f�x� sin

n�x



dx (10.27)

and

Wt�n� 0� =
∫ 


0
g�x� sin

n�x



dx

Thus

W�n� t� = W�n� 0� cos
n�ct



+ Wt�n� 0�




n�c
sin

n�ct



(10.28)
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Again, Equation (10.28) has to be inverted to obtain the solution w�x� t�. The inverse finite
Fourier transform is given by

w�x� t� = 2



�∑
n=1

W�n� t� sin
(n�x




)
(10.29)

so that

w�x� t� = 2



�∑
n=1

[{
W�n� 0� cos

(n�ct




)
+ Wt�n� 0�


n�c
sin

(n�ct




)}
sin

n�x




]
(10.30)

Transform methods are attractive for problems defined over infinite domains and for prob-
lems with odd boundary conditions. The transform methods yield a quick ‘solution’ in terms
of the transformed variable. However, the inversion back into the physical variable can be
difficult and may require as much work as using separation of variables or modal analysis.
However, in some instances, the only requirement may be to examine the solution in its
transformed state, such as is done in Section 8.5.

10.6 GREEN’S FUNCTIONS

Yet another approach to solving the free vibration problem is to use the integral formulation
of the equations of motion. The basic idea here is that the free response is related to the
eigenvalue problem

Lw = 	w

Bw = 0 (10.31)

where L is a differential operator and B represents the boundary conditions. The inverse of
this operator will also yield information about the free vibrational response of the structure.
If the inverse of L exists, Equation (10.31) can be written as

L−1w = 1
	

w (10.32)

where L−1 is the inverse of the differential operator or an integral operator.
The problem of solving for the free vibration of a string fixed at both ends by working

essentially with the inverse operator is approached in this section. This is done by introducing
the concept of a Green’s function. To this end, consider again the problem of a string fixed
at both ends and deformed from its equilibrium position. This time, however, instead of
looking directly at the vibration problem, the problem of determining the static deflection of
the string owing to a transverse load concentrated at a point is first examined. This related
problem is called the auxiliary problem. In particular, if the string is subject to a point load
of unit value at x0, which is somewhere in the interval (0,1), the equation of the deflection
w�x� for a string of tension T is

−T
d2w�x�

dx2
= ��x − x0� (10.33)
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where ��x − x0� is the Dirac delta function. The delta function is defined by

��x − x0�

{
0� x �= x0

�� x = x0

(10.34)

and

∫ 1

0
��x − x0�dx =

{
0 if x0 is not in (0,1)

1 if x0 is in (0,1)
(10.35)

If f�x� is a continuous function, then it can be shown that

∫ 1

0
f�x���x − x0�dx = f�x0� (10.36)

for x0 in (0,1). Note that the Dirac delta function is not really a function in the strict
mathematical sense (see, for instance, Stakgold, 1979).

Equation (10.33) can be viewed as expressing the fact that the force causing the deflection
is applied only at the point x0. Equation (10.33) plus boundary conditions is now viewed
as the auxiliary problem of finding a function g�x� x0�, known as Green’s function for the
operator L = −Td2/dx2, with boundary conditions g�0� x0� = 0 and g�1� x0� = 0. In more
physical terms, g�x� x0� represents the deflection of the string from its equilibrium position at
point x owing to a unit force applied at point x0. Green’s function thus defined is also referred
to as an influence function. The following example is intended to clarify the procedure for
calculating a Green’s function.

Example 10.6.1

Calculate Green’s function for the string of Figure 10.1. Green’s function is calculated by solving
the equation on each side of the point x0 and then matching up the two solutions. Thus, since g′′ = 0
for all x not equal to x0, integrating yields

g�x� x0� =
{

Ax + B� 0 < x < x0

Cx + D� x0 < x < 1

where A�B�C, and D are constants of integration. Applying the boundary condition at x = 0 yields

g�0� x0� = 0 = B

Figure 10.1 Statically deflected string fixed at both ends.
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and the boundary condition at 1 yields

g�1� x0� = 0 = C + D

Hence, Green’s function becomes

g�x� x0� =
{

Ax� 0 < x < x0

C�x − 1�� x0 < x < 1

Since the string does not break at x0� g�x� x0� must be continuous at x0, and this allows determination
of one more constant. In particular, this continuity condition requires that

Ax0 = C�x0 − 1�

Green’s function now becomes

g�x� x0�

⎧⎨
⎩

Ax 0 < x < x0

A
x0�x − 1�

x0 − 1
� x0 < x < 1

The remaining constant, A, can be evaluated by considering the magnitude of the applied force
required to produce the deflection. In this case, a unit force is applied, so that integration of
Equation (10.33) along a small interval containing x0, say, x0 − � < x < x0 + �, yields

∫ x0+�

x0−�

d2g

dx2
dx = − 1

T

∫ x0+�

x0−�
��x − x0� dx

or

dg

dx

∣∣∣∣x0+�

x0−�
= − 1

T

Denoting the derivative by a subscript and expanding yields

gx�x0 + ��x0� − gx�x0 − ��x0� = − 1
T

This last expression is called a jump discontinuity in the derivative. Upon evaluating the derivative,
the above expression becomes

A
x0

x0 − 1
− A = − 1

T

Solving this for the value of A yields

A = 1 − x0

T

Green’s function, with all the constants of integration evaluated, is thus

g�x� x0� =

⎧⎪⎨
⎪⎩

�1 − x0�x

T
� 0 < x < x0

�1 − x�x0

T
� x0 < x < 1
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Green’s function actually defines the inverse operator (when it exists) of the differential
operator L and can be used to solve for the forced response of the string. Consider the
equations (for the string operator of the example)

Lu = f�x�

Bu = 0 (10.37)

where f�x� is a piecewise continuous function, and L is a differential operator that has an
inverse. Let G denote the operator defined by

Gf�x� =
∫ 1

0
g�x� x0�f�x0� dx0

The operator G defined in this way is called an integral operator. Note that the function

u�x� =
∫ 1

0
g�x� x0�f�x0� dx0 (10.38)

satisfies Equation (10.37), including the boundary conditions, which follows from a straight-
forward calculation. Equation (10.38) can also be written as

u�x� =
∫ x−�

0
g�x� x0�f�x0� dx0 +

∫ 1

x+�
g�x� x0�f�x0� dx0

where the integration has been split over two separate intervals for the purpose of treating
the discontinuity in gx. Using the rules for differentiating an integral (Leibnitz’s rule) applied
to this expression yields

ux�x� =
∫ x−�

0
gx�x� x0�f�x0� dx0 + g�x� x − ��f�x − ��

+
∫ 1

x+�
gx�x� x0�f�x0� dx0 − g�x� x + ��f�x + ��

=
∫ x−�

0
gx�x� x0�f�x0� dx0 +

∫ 1

x+�
gx�x� x0�f�x0� dx0

Taking the derivative of this expression for ux yields

uxx�x� =
∫ x−�

0
gxx�x� x0�f�x0� dx0 + gx�x� x − ��f�x − ��

+
∫ 1

x+�
gxx�x� x0�f�x0� dx0 − gx�x� x + ��f�x + ��

The discontinuity in the first derivative yields

gx�x� x − ��f�x − �� − gx�x� x + ��f�x + �� = f�x�

T

Hence

uxx =
∫ x−�

0
gxx�x� x0�f�x0� dx0 +

∫ 1

x+�
gxx�x� x0�f�x0� dx0 − f�x�

T
(10.39)
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However, gxx = 0 in the intervals specified in the two integrals. Thus, this last expression is
just the equation Lu = f . The function u�x� then becomes

u�x� =
∫ 1

0
g�x� y�f�y� dy

which satisfies Equation (10.37) as well as the boundary condition.
Now note that Gf = u, so that G applied to Lu = f yields G�Lu� = Gf = u, and hence

GLu = u. Also, L applied to Gf = u yields LGf = Lu = f , so that LGf = f . Thus, the
operator G is clearly the inverse of the operator L.

In the same way, the Green’s function can also be used to express the eigenvalue problem
for the string. In fact,

∫ 1

0
g�x� x0���x0�dx0 = ���x� (10.40)

yields the eigenfunctions ��x� for the operator L as defined in Equation (10.2), where
� = 1/	 and Equation (10.32) is defined by G.

To summarize, consider the slightly more general operator given by

Lw = a0�x�wxx�x� + a1�x�wx�x� + a2�x�w�x� = 0 (10.41)

with boundary conditions given by

B1w�x=0 = 0 and B2w�x=1 = 0 (10.42)

Green’s function for the operator given by Equations (10.41) and (10.42) is defined as the
function g�x� x0� such that:

• 0 < x < 1� 0 < x0 < 1;
• g�x� x0� is continuous for any fixed value of x0 and satisfies the boundary conditions in

Equation (10.42);
• gx�x� x0� is continuous except at x = x0;
• as a function of x�Lg = 0 everywhere except at x = x0;
• the jump discontinuity gx�x� x0 + �� − gx�x� x0 − �� = 1/a0�x� holds.

Green’s function defines the inverse of the operators (10.41) and (10.42). Furthermore,
the eigenvalue problem associated with the vibration problem can be recast as an integral
equation as given by Equation (10.40). The Green’s function approach can be extended to
other operators. Both of these concepts are capitalized upon in the following chapters.

CHAPTER NOTES

The majority of this chapter is common material found in a variety of texts, only some of
which are mentioned here. Section 10.2 introduces eigenfunctions and makes the connection
between eigenfunctions and separation of variables as methods of solving boundary value
problems arising in vibration analysis. The method of separation of variables is discussed in
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most texts on vibration as well as those on differential equations, such as the text by Boyce
and DiPrima (2000). Eigenfunctions are also discussed in texts on operator theory, such as
Naylor and Sell (1982). Few texts make an explicit connection between the two methods.
The procedure is placed on a firm mathematical base in Chapter 11.

Section 10.3 examines, in an informal way, the method of modal analysis, a procedure
made popular by the excellent texts by Meirovitch (1967, 2001). Here, however, the method
is more directly related to eigenfunction expansions. Section 10.4 introduces damping as
a simple velocity-proportional operator commonly used as a first attempt, as described in
Section 9.7. Damping models represent a discipline by themselves. Here, a model of mathemat-
ical convenience is used. A brief look at using transform methods is provided in Section 10.5
for the sake of completeness. Transform methods have been developed by Yang (1992).
Most transform methods are explained in detail in basic text, for instance by Churchill
(1972). The last section on Green’s functions follows closely the development in Stakgold
(1979, 2000). Green’s function methods provide a strong basis for the theory to follow in
the next chapter. Most texts on applied mathematics in engineering discuss Green’s
functions.
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PROBLEMS

10.1 Compute the eigenvalues and eigenfunctions for the operator

L = − d2

dx2

with boundary conditions u�0� = 0� ux�1� + u�1� = 0.
10.2 Normalize the eigenfunctions of problem 10.1.
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10.3 Show that unm�x� y� = Anm sin n�x sin m�y is an eigenfunction of the operator

L = �2

�x2
+ �2

�y2

with boundary conditions u�x� 0�=u�x� 1�=u�1� y�=u�0� y�= 0. This is the mem-
brane operator for a unit square.

10.4 Normalize the eigenfunctions of a membrane (clamped) of problem 10.3 and show
that they are orthonormal.

10.5 Calculate the temporal coefficients, an�t�, for the problem of example 10.3.1.
10.6 Calculate the initial conditions required in order for an�t� to have the form given in

example 10.4.1.
10.7 Rewrite Equation (10.16) for the case where the eigenfunctions of L1 are not the

same as those of L2.
10.8 Solve for the free longitudinal vibrations of a clamped-free bar in the special case

where the damping is approximated by the operator L1 = 0�1I�EA = � = 1, and the
initial conditions are wt�x� 0� = 0 and w�x� 0� = 10−2.

10.9 Calculate Green’s function for the operator given by L = 106�2/�x2� u�0� = 0�
ux�
� = 0. This corresponds to a clamped bar.

10.10 Calculate Green’s function for the operator L = �4/�x4, with boundary condi-
tions u�0� = u�1� = uxx�1� = 0. (Hint: The jump condition is gxxx�x� x + �� − gxxx

�x� x − �� = 1.)
10.11 Normalize the eigenfunctions of example 9.31 and discuss the orthogonality

conditions.


