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Preface

This book provides the background and techniques that will allow successful modeling, analysis,
monitoring, testing, design, modification, and control of vibration in engineering systems. It is
suitable as both a course textbook for students and instructors, and a practical reference tool for
engineers and other professionals. As a textbook, it can be used in a single-semester course for
third-year (junior) and fourth-year (senior) undergraduate students, or for Master’s level graduate
students in any branch of engineering such as aeronautical and aerospace, civil, mechanical, and
manufacturing engineering. But, in view of the practical considerations, design issues, experimental
techniques, and instrumentation that are presented throughout the book, and in view of the simplified
and snapshot-style presentation of fundamentals and advanced theory, the book will also serve as
a valuable reference tool for engineers, technicians, and other professionals in industry and in
research laboratories.

The book is an outgrowth of the author’s experience in teaching undergraduate and graduate
courses in Dynamics, Mechanical Vibration, Dynamic System Modeling, Instrumentation and
Design, Feedback Control, Modern Control Engineering, and Modal Analysis and Testing in the
U.S. and Canada (Carnegie Mellon University and the University of British Columbia) for more
than 20 years. The industrial experience and training that he received in product testing and
qualification, analysis, design, and vibration instrumentation at places like Westinghouse Electric
Corporation in Pittsburgh, IBM Corporation in Boca Raton, NASA’s Langley and Lewis Research
Centers, and Bruel and Kjaer in Denmark enabled the author to provide a realistic and practical
treatment of the subject.

Design for vibration and control of vibration are crucial in maintaining a high performance
level and production efficiency, and prolonging the useful life of machinery, structures, and indus-
trial processes. Before designing or controlling an engineering system for good vibratory perfor-
mance, it is important to understand, represent (i.e., model), and analyze the vibratory characteristics
of the system. Suppression or elimination of undesirable vibrations and generation of required
forms and levels of desired vibrations are general goals of vibration engineering. In recent years,
researchers and practitioners have devoted considerable effort to studying and controlling vibration
in a range of applications in various branches of engineering. With this book, designers, engineers,
and students can reap the benefits of that study and experience, and learn the observation, instru-
mentation, modeling, analysis, design, modification, and control techniques that produce mechan-
ical and aeronautical systems, civil engineering structures, and manufacturing processes that are
optimized against the effects of vibration.

The book provides the background and techniques that will allow successful modeling, analysis,
design, modification, testing, and control of vibration in engineering systems. This knowledge will
be useful in the practice of vibration, regardless of the application area or the branch of engineering.
A uniform and coherent treatment of the subject is presented, by introducing practical applications
of vibration, through examples, in the very beginning of the book, along with experimental tech-
niques and instrumentation, and then integrating these applications, design, and control consider-
ations into fundamentals and analytical methods throughout the text. To maintain clarity and focus
and to maximize the usefulness of the book, an attempt has been made to describe and illustrate
industry-standard and state-of-the-art instrumentation, hardware, and computational techniques
related to the practice of vibration. As its main features, the book:
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• Introduces practical applications, design, and experimental techniques in the very begin-
ning, and then uniformly integrates them throughout the book

• Provides 36 “Summary Boxes” that present key material covered in the book, in point
form, within each chapter, for easy reference and recollection (these items are particularly
suitable for use by instructors in their presentations)

• Outlines mathematics, dynamics, modeling, fast Fourier transform (FFT) techniques, and
reliability analysis in appendices

• Provides over 60 worked examples and case studies, and over 300 problems
• Will be accompanied by an Instructor’s Manual, for instructors, that contains complete

solutions to all the end-of-chapter problems
• Describes sensors, transducers, filters, amplifiers, analyzers, and other instrumentation

that is useful in the practice of vibration
• Describes industry-standard computer techniques, hardware, and tools for analysis,

design, and control of vibratory systems, with examples
• Provides a comprehensive coverage of vibration testing and qualification of products
• Offers analogies of mechanical and structural vibration, to other oscillatory behavior

such as in electrical and fluid systems, and contrasts these with thermal systems.

A NOTE TO INSTRUCTORS

The book is suitable as the text for a standard undergraduate course in Mechanical Vibration or for
a specialized course for final-year undergraduate students and Master’s level graduate students.
Three typical course syllabuses are outlined below.

A.  A Standard Undergraduate Course

As the textbook for an undergraduate (3rd year or 4th year) course in Mechanical Vibration, it may
be incorporated into the following syllabus for a 12 week course consisting of 36 hours of lectures
and 12 hours of laboratory experiments:

Lectures

Chapter 1 (1 hour)
Sections 8.1, 8.2, 8.4, 9.1, 9.2, 9.8 (3 hours)
Chapter 2 (6 hours)
Chapter 3 (6 hours)
Section 11.4 (2 hours)
Chapter 5 (6 hours)
Chapter 6 (6 hours)
Sections 12.1, 12.2, 12.3, 12.4, 12.5 (6 hours)

Laboratory Experiments

The following four laboratory experiments, each of 3-hour duration, may be incorporated.

1. Experiment on modal testing (hammer test and other transient tests) and damping mea-
surement in the time domain (see Section 11.4)

2. Experiment on shaker testing and damping measurement in the frequency domain (see
Section 11.4)

3. Experiment on single-plane and two-plane balancing (see Section 12.3)
4. Experiment on modal testing of a distributed-parameter system (see Section 11.4)
©2000 CRC Press

http://www.semeng.ir


     

www.20file.org
B.  A Course in Industrial Vibration

Chapter 1 (1 hour)
Chapter 4 (3 hours)
Chapter 7 (5 hours)
Chapter 8 (5 hours)
Chapter 9 (4 hours)
Chapter 10 (6 hours)
Chapter 11 (6 hours)
Chapter 12 (6 hours)

A project may be included in place of a final examination.

C.   A Course in Modal Analysis and Testing

Chapter 1 (1 hour)
Chapter 4 (3 hours)
Chapter 5 (6 hours)
Chapter 6 (6 hours)
Chapter 7 (5 hours)
Chapter 10 (6 hours)
Chapter 11 (6 hours)
Section 12.6 (hours)

A project may be included in place of a final examination.
Clarence W. de Silva

Vancouver, Canada
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Dedication

Professor David N. Wormley.

“For the things we have to learn before we can do them,
we learn by doing them.”

— Aristotle (Author of Mechanics and Acoustics, 384–322 B.C.)
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1 Vibration Engineering
Vibration is a repetitive, periodic, or oscillatory response of a mechanical system. The rate of the
vibration cycles is termed “frequency.” Repetitive motions that are somewhat clean and regular,
and that occur at relatively low frequencies, are commonly called oscillations, while any repetitive
motion, even at high frequencies, with low amplitudes, and having irregular and random behavior
falls into the general class of vibration. Nevertheless, the terms “vibration” and “oscillation” are
often used interchangeably, as is done in this book.

Vibrations can naturally occur in an engineering system and may be representative of its free
and natural dynamic behavior. Also, vibrations may be forced onto a system through some form
of excitation. The excitation forces may be either generated internally within the dynamic system,
or transmitted to the system through an external source. When the frequency of the forcing excitation
coincides with that of the natural motion, the system will respond more vigorously with increased
amplitude. This condition is known as resonance, and the associated frequency is called the resonant
frequency. There are “good vibrations,” which serve a useful purpose. Also, there are “bad vibra-
tions,” which can be unpleasant or harmful. For many engineering systems, operation at resonance
would be undesirable and could be destructive. Suppression or elimination of bad vibrations and
generation of desired forms and levels of good vibration are general goals of vibration engineering.

This book deals with

1. Analysis
2. Observation
3. Modification

of vibration in engineering systems. Applications of vibration are found in many branches of
engineering such as aeronautical and aerospace, civil, manufacturing, mechanical, and even elec-
trical. Usually, an analytical or computer model is needed to analyze the vibration in an engineering
system. Models are also useful in the process of design and development of an engineering system
for good performance with respect to vibrations. Vibration monitoring, testing, and experimentation
are important as well in the design, implementation, maintenance, and repair of engineering systems.
All these are important topics of study in the field of vibration engineering, and the book will cover
pertinent

1. Theory and modeling
2. Analysis
3. Design
4. Experimentation
5. Control

In particular, practical applications and design considerations related to modifying the vibrational
behavior of mechanical devices and structures will be studied. This knowledge will be useful in the
practice of vibration regardless of the application area or the branch of engineering; for example, in
the analysis, design, construction, operation, and maintenance of complex structures such as the
Space Shuttle and the International Space Station. Note in Figure 1.1 that long and flexible compo-
nents, which would be prone to complex “modes” of vibration, are present. The structural design
should take this into consideration. Also, functional and servicing devices such as robotic manipu-
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lators (e.g., Canadarm) can give rise to vibration interactions that need to be controlled for accurate
performance. The approach used in the book is to introduce practical applications of vibration in
the very beginning, along with experimental techniques, and then integrate these applications and
design considerations into fundamentals and analytical methods throughout the text.

1.1 STUDY OF VIBRATION

Natural, free vibration is a manifestation of the oscillatory behavior in mechanical systems, as a
result of repetitive interchange of kinetic and potential energies among components in the system.
Such natural oscillatory response is not limited, however, to purely mechanical systems, and is found
in electrical and fluid systems as well, again due to a repetitive exchange of two types of energy
among system components. But, purely thermal systems do not undergo free, natural oscillations,
primarily because of the absence of two forms of reversible energy. Even a system that can hold
two reversible forms of energy may not necessarily display free, natural oscillations. The reason for
this would be the strong presence of an energy dissipation mechanism that could use up the initial
energy of the system before completing a single oscillation cycle (energy interchange). Such dissi-
pation is provided by damping or friction in mechanical systems, and resistance in electrical systems.
Any engineering system (even a purely thermal one) is able to undergo forced oscillations, regardless
of the degree of energy dissipation. In this case, the energy necessary to sustain the oscillations will
come from the excitation source, and will be continuously replenished.

Proper design and control are crucial in maintaining a high performance level and production
efficiency, and prolonging the useful life of machinery, structures, and industrial processes. Before
designing or controlling an engineering system for good vibratory performance, it is important to
understand, represent (model), and analyze the vibratory characteristics of the system. This can be

FIGURE 1.1 The U.S. Space Shuttle and the International Space Station with the Canadarm. (Courtesy of
NASA Langley Research Center, Hampton, VA. With permission.)
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accomplished through purely analytical means, computer analysis of analytical models, testing and
analysis of test data, or a combination of these approaches. As an example, a schematic diagram
of an innovative elevated guideway transit system is shown in Figure 1.2(a). This is an automated
transit system that is operated without drivers. The ride quality, which depends on the vibratory
motion of the vehicle, can be analyzed using an appropriate model. Usually, the dynamics (inertia,
flexibility, and energy dissipation) of the guideway, as well as the vehicle, must be incorporated
into such a model. A simplified model is shown in Figure 1.2(b). It follows that modeling, analysis,
testing, design, and control are all important aspects of study in mechanical vibration.

The analysis of a vibrating system can be done either in the time domain or in the frequency
domain. In the time domain, the independent variable of a vibration signal is time. In this case,
the system itself can be modeled as a set of differential equations with respect to time. A model
of a vibrating system can be formulated by applying either force-momentum rate relations (New-
ton’s second law) or the concepts of kinetic and potential energies. Both Newtonian (force-motion)
and Lagrangian (energy) approaches will be utilized in this book.

In the frequency domain, the independent variable of a vibration signal is frequency. In this
case, the system can be modeled by input-output transfer functions which are algebraic, rather than
differential, models. Transfer function representations such as mechanical impedance, mobility,
receptance, and transmissibility can be conveniently analyzed in the frequency domain, and effec-
tively used in vibration design and evaluation. Modeling and vibration-signal analysis in both time
and frequency domains will be studied in this book. The two domains are connected by the Fourier
transformation, which can be treated as a special case of the Laplace transformation. These
transform techniques will be studied, first in the purely analytical and analog measurement situation
of continuous time. In practice, however, digital electronics and computers are commonly used in
signal analysis, sensing, and control. In this situation, one needs to employ concepts of discrete
time, sampled data, and digital signal analysis in the time domain. Correspondingly, then, concepts
of discrete or digital Fourier transformation and techniques of fast Fourier transform (FFT) will be
applicable in the frequency domain. These concepts and techniques are also studied in this book.

An engineering system, when given an initial disturbance and allowed to execute free vibrations
without a subsequent forcing excitation, will tend to do so at a particular “preferred” frequency
and maintaining a particular “preferred” geometric shape. This frequency is termed a “natural
frequency” of the system, and the corresponding shape (or motion ratio) of the moving parts of
the system is termed a “mode shape.” Any arbitrary motion of a vibrating system can be represented
in terms of its natural frequencies and mode shapes. The subject of modal analysis primarily
concerns determination of natural frequencies and mode shapes of a dynamic system. Once the

FIGURE 1.2(a) An elevated guideway transit system.
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modes are determined, they can be used in understanding the dynamic nature of the systems, and
also in design and control. Modal analysis is extremely important in vibration engineering, and
will be studied in this book. Natural frequencies and mode shapes of a vibrating system can be
determined experimentally through procedures of modal testing. In fact, a dynamic model
(an experimental model) of the system can be determined in this manner. The subject of modal
testing, experimental modeling (or model identification), and associated analysis and design is
known as experimental modal analysis. This subject will also be treated in this book.

Energy dissipation (or damping) is present in any mechanical system. It alters the dynamic
response of the system, and has desirable effects such as stability, vibration suppression, power
transmission (e.g., in friction drives), and control. Also, it has obvious undesirable effects such as
energy wastage, reduction of the process efficiency, wear and tear, noise, and heat generation. For

FIGURE 1.2(b) A model for determining the ride quality of the elevated guideway transit system.
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these reasons, damping is an important topic of study in the area of vibration, and will be covered
in this book. In general, energy dissipation is a nonlinear phenomenon. But, in view of well-known
difficulties of analyzing nonlinear behavior, and because an equivalent representation of the overall
energy dissipation is often adequate in vibration analysis, linear models are primarily used to
represent damping in the analyses herein. However, nonlinear representations are discussed as well;
and how equivalent linear models can be determined for nonlinear damping are described.

Properties such as mass (inertia), flexibility (spring-like effect), and damping (energy dissipa-
tion) are continuously distributed throughout practical mechanical devices and structures to a large
extent. This is the case with distributed components such as cables, shafts, beams, membranes,
plates, shells, and various solids, as well as structures made of such components. Representation
(i.e., modeling) of these distributed-parameter (or continuous) vibrating systems will require inde-
pendent variables in space (spatial coordinates) in addition to time; these models are partial
differential equations in time and space. The analysis of distributed-parameter models will require
complex procedures and special tools. This book studies vibration analysis, particularly modal
analysis, of several types of continuous components, as well as how approximate lumped-parameter
models can be developed for continuous systems, using procedures such as modal analysis and
energy equivalence.

Vibration testing is useful in a variety of stages in the development and utilization of a product.
In the design and development stage, vibration testing can be used to design, develop, and verify
the performance of individual components of a complex system before the overall system is built
(assembled) and evaluated. In the production stage, vibration testing can be used for screening of
selected batches of products for quality control. Another use of vibration testing is in product
qualification. Here, a product of good quality is tested to see whether it can withstand various
dynamic environments that it may encounter in a specialized application. An example of a large-
scale shaker used for vibration testing of civil engineering structures is shown in Figure 1.3. The
subject of vibration testing is addressed in some detail in this book.

Design is a subject of paramount significance in the practice of vibration. In particular, mechan-
ical and structural design for acceptable vibration characteristics will be important. Modification
of existing components and integration of new components and devices, such as vibration dampers,
isolators, inertia blocks, and dynamic absorbers, can be incorporated into these practices. Further-
more, elimination of sources of vibration — for example, through component alignment and
balancing of rotating devices — is a common practice. Both passive and active techniques are used
in vibration control. In passive control, actuators that require external power sources are not
employed. In active control, vibration is controlled by means of actuators (which need power) to
counteract vibration forces. Monitoring, testing, and control of vibration will require devices such
as sensors and transducers, signal conditioning and modification hardware (e.g., filters, amplifiers,
modulators, demodulators, analog-digital conversion means), and actuators (e.g., vibration exciters
or shakers). The underlying subject of vibration instrumentation will be covered in this book.
Particularly, within the topic of signal conditioning, both hardware and software (numerical)
techniques will be presented.

1.2 APPLICATION AREAS

The science and engineering of vibration involve two broad categories of applications:

1. Elimination or suppression of undesirable vibrations
2. Generation of the necessary forms and quantities of useful vibrations

Undesirable and harmful types of vibration include structural motions generated due to earthquakes,
dynamic interactions between vehicles and bridges or guideways, noise generated by construction
equipment, vibration transmitted from machinery to its supporting structures or environment, and
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damage, malfunction, and failure due to dynamic loading, unacceptable motions, and fatigue caused
by vibration. As an example, dynamic interactions between an automated transit vehicle and a
bridge (see Figure 1.4) can cause structural problems as well as degradation in ride quality. Rigorous
analysis and design are needed, particularly with regard to vibration, in the development of these
ground transit systems. Lowering the levels of vibration will result in reduced noise and improved
work environment, maintenance of a high performance level and production efficiency, reduction
in user/operator discomfort, and prolonging the useful life of industrial machinery. Desirable types
of vibration include those generated by musical instruments, devices used in physical therapy and
medical applications, vibrators used in industrial mixers, part feeders and sorters, and vibratory
material removers such as drills and polishers (finishers). For example, product alignment for

FIGURE 1.3 A multi-degree-of-freedom hydraulic shaker used in testing civil engineering structures.
(Courtesy of Prof. C.E. Ventura, University of British Columbia. With permission.)
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FIGURE 1.4 The SkyTrain in Vancouver, Canada, a modern automated transit system. (Photo by Mark Van
Manen, courtesy of BC Transit. With permission.)

FIGURE 1.5 An alignment shaker. (Key Technology, Inc., of Walla Walla, WA. With permission.)
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industrial processing or grading can be carried out by means of vibratory conveyors or shakers, as
shown in Figure 1.5.

Concepts of vibration have been used for many centuries in practical applications. Recent
advances of vibration are quite significant, and the corresponding applications are numerous. Many
of the recent developments in the field of vibration were motivated perhaps for two primary reasons:

1. The speeds of operation of machinery have doubled over the past 50 years and, conse-
quently, the vibration loads generated due to rotational excitations and unbalances would
have quadrupled if proper actions of design and control were not taken.

2. Mass, energy, and efficiency considerations have resulted in lightweight, optimal designs
of machinery and structures consisting of thin members with high strength. Associated
structural flexibility has made the rigid-structure assumption unsatisfactory, and given
rise to the need for sophisticated procedures of analysis and design that govern distrib-
uted-parameter flexible structures.

One can then visualize several practical applications where modeling, analysis, design, control,
monitoring, and testing, related to vibration are important.

A range of applications of vibration can be found in various branches of engineering: partic-
ularly civil, mechanical, aeronautical and aerospace, and production and manufacturing. Modal
analysis and design of flexible civil engineering structures such as bridges, guideways, tall buildings,
and chimneys directly incorporate theory and practice of vibration. A fine example of an elongated
building where vibration analysis and design are crucial is the Jefferson Memorial Arch, shown in
Figure 1.6.

In the area of ground transportation, vehicles are designed by incorporating vibration engineer-
ing, not only to ensure structural integrity and functional operability, but also to achieve required
levels of ride quality and comfort. Specifications such as the one shown in Figure 1.7, where limits
on root-mean-square (rms) levels of vibration (expressed in units of acceleration due to gravity, g)
for different frequencies of excitation (expressed in cycles per second, or hertz, or Hz) and different
trip durations, are used to specify ride quality requirements in the design of transit systems. In
particular, the design of suspension systems, both active and passive, falls within the field of
vibration engineering. Figure 1.8 shows a test setup used in the development of an automotive
suspension system. In the area of air transportation, mechanical and structural components of
aircraft are designed for good vibration performance. For example, proper design and balancing
can reduce helicopter vibrations caused by imbalance in their rotors. Vibrations in ships can be
suppressed through structural design, propeller and rudder design, and control. Balancing of internal
combustion engines is carried out using principles of design for vibration suppression.

Oscillation of transmission lines of electric power and communication signals (e.g., overhead
telephone lines) can result in faults, service interruptions, and sometimes major structural damage.
Stabilization of transmission lines involves direct application of the principles of vibration in cables
and the design of vibration dampers and absorbers.

In the area of production and manufacturing engineering, mechanical vibration has direct
implications of product quality and process efficiency. Machine tool vibrations are known to not
only degrade the dimensional accuracy and the finish of a product, but also will cause fast wear
and tear and breakage of tools. Milling machines, lathes, drills, forging machines, and extruders,
for example, should be designed for achieving low vibration levels. In addition to reducing the tool
life, vibration will result in other mechanical problems in production machinery, and will require
more frequent maintenance. Associated downtime (production loss) and cost can be quite significant.
Also, as noted before, vibrations in production machinery will generate noise problems and also
will be transmitted to other operations through support structures, thereby interfering with their
performance as well. In general, vibration can degrade performance and production efficiency of
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FIGURE 1.6 Jefferson Memorial Arch in St. Louis, MO.

FIGURE 1.7 A typical specification of vehicle ride quality for a specified trip duration.
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manufacturing processes. Proper vibration isolation (e.g., mountings) will be needed to reduce these
transmissibility problems.

Heavy machinery in the construction industry (e.g., cranes, excavators, pile drivers, impacting
and compacting machinery, and bulldozers) rely on structural integrity, reliability, and safety. Their
design must be based on sound principles of engineering. Although the dynamic loading in these
machines is generally random, it is also quite repetitive from the point of view of both the excitation
generated by the engine and the functional operation of the tasks performed. Design based on
vibration and fatigue is an important requirement for these machines: for maintaining satisfactory
performance, prolonging the useful life, and reducing the cost and frequency of maintenance.

1.3 HISTORY OF VIBRATION

The origins of the theory of vibration can be traced back to the design and development of musical
instruments (good vibration). It is known that drums, flutes, and stringed instruments existed in
China and India for several millennia B.C. Also, ancient Egyptians and Greeks explored sound and
vibration from both practical and analytical points of view. For example, while Egyptians had known
of a harp since at least 3000 B.C., the Greek philosopher, mathematician, and musician Pythagoras
(of the Pythagoras theorem fame) who lived during 582 to 502 B.C., experimented on sounds
generated by blacksmiths and related them to music and physics. The Chinese developed a mechan-
ical seismograph (an instrument to detect and record earthquake vibrations) in the 2nd century A.D.

The foundation of the modern-day theory of vibration was probably laid by scientists and
mathematicians such as Robert Hooke (1635–1703) of the Hooke’s law fame, who experimented
on the vibration of strings; Sir Isaac Newton (1642–1727), who gave us calculus and the laws of
motion for analyzing vibrations; Daniel Bernoulli (1700–1782) and Leonard Euler (1707–1783),
who studied beam vibrations (Bernoulli-Euler beam) and also explored dynamics and fluid mechan-
ics; Joseph Lagrange (1736–1813), who studied vibration of strings and also explored the energy
approach to formulating equations of dynamics; Charles Coulomb (1736–1806), who studied

FIGURE 1.8 Cone suspension system installed on a Volvo 480ES automobile for testing. (Copyright Mechan-
ical Engineering magazine; the American Society of Mechanical Engineers International. With permission.)
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torsional vibrations and friction; Joseph Fourier (1768–1830), who developed the theory of fre-
quency analysis of signals; and Simeon-Dennis Poisson (1781–1840), who analyzed vibration of
membranes and also analyzed elasticity (Poisson’s ratio). As a result of the industrial revolution
and associated developments of steam turbines and other rotating machinery, an urgent need was
felt for developments in the analysis, design, measurement, and control of vibration. Motivation
for many aspects of the existing techniques of vibration can be traced back to related activities
since the industrial revolution.

Much credit should go to scientists and engineers of more recent history, as well. Among the
notable contributors are Rankine (1820–1872), who studied critical speeds of shafts; Kirchhoff
(1824–1887), who analyzed vibration of plates; Rayleigh (1842–1919), who made contributions to
the theory of sound and vibration and developed computational techniques for determining natural
vibrations; de Laval (1845–1913), who studied the balancing problem of rotating disks; Poincaré
(1854–1912), who analyzed nonlinear vibrations; and Stodola (1859–1943), who studied vibrations
of rotors, bearings, and continuous systems. Distinguished engineers who made significant contri-
butions to the published literature and also to the practice of vibration include Timoshenko, Den
Hartog, Clough, and Crandall.

1.4 ORGANIZATION OF THE BOOK

This book provides the background and techniques for modeling, analysis, design, instrumentation
and monitoring, modification, and control of vibration in engineering systems. This knowledge will
be useful in the practice of vibration, regardless of the application area or the branch of engineering.
A uniform and coherent treatment of the subject is given by introducing practical applications of
vibration in the very beginning of the book, along with experimental techniques and instrumentation,
and then integrating these applications, design and experimental techniques, and control consider-
ations into fundamentals and analytical methods throughout the text.

The book consists of 12 chapters and 5 appendices. The chapters have summary boxes for easy
reference and recollection. Many worked examples and problems (over 300) are included. Some
background material is presented in the appendices, rather than in the main text, in order to avoid
interference with the continuity of the subject matter.

The present introductory chapter provides some background material on the subject of vibration
engineering, and sets the course for the study. It gives the objectives and motivation of the study
and indicates key application areas. A brief history of the field of vibration is given as well.

Chapter 2 provides the basics of time response analysis of vibrating systems. Both undamped
and damped systems are studied. Also, analysis of both free (unforced) and forced response is
given. The concept of a state variable is introduced. Some analogies of purely mechanical and
structural vibrating systems — specifically, translatory, flexural, and torsional; to electrical and
fluid oscillatory systems — are introduced. An energy-based approximation of a distributed-
parameter system (a heavy spring) to a lumped-parameter system is developed in detail. The
logarithmic decrement method of damping measurement is developed. Although the chapter pri-
marily considers single-degree-of-freedom systems, the underlying concepts can be easily extended
to multi-degree-of-freedom systems.

Chapter 3 concerns frequency response analysis of vibrating systems. First, the response of a
vibrating system to harmonic (sinusoidal) excitation forces (inputs) is analyzed, primarily using the
time-domain concepts developed in Chapter 2. Then, its interpretation in the frequency domain is given.
The link between the time domain and the frequency domain, through Fourier transform, is highlighted.
In particular, Fourier transform is interpreted as a special case of Laplace transform. The response
analysis using transform techniques is presented, along with the associated basic ideas of convolution
integral, and the impulse response function whose Laplace transform is the transfer function, and
Fourier transform is the frequency response function. The half-power bandwidth approach of measuring
damping is given. Special types of frequency transfer functions — specifically, force transmissibility,
©2000 CRC Press

http://www.semeng.ir


  

www.20file.org
motion transmissibility, and receptance — are studied and their complementary relationships are
highlighted. Their use in the practice of vibration, particularly in vibration isolation, is discussed.

Chapter 4 presents the fundamentals of analyzing vibration signals. First, the idea of frequency
spectrum of a time signal is given. Various types and classifications of signals encountered in
vibration engineering are discussed. The technique of Fourier analysis is formally introduced and
linked to the concepts presented in Chapter 3. The idea of random signals is introduced, and useful
analytical techniques for these signals are presented. Practical issues pertaining to vibration signal
analysis are raised. Computational techniques of signal analysis are given and various sources of
error, such as aliasing and truncation, are indicated; and ways of improving the accuracy of digital
signal analysis are given.

Chapter 5 deals with the modal analysis of lumped-parameter vibrating systems. The basic
assumption made is that distributed effects of inertia and flexibility in a vibrating system can be
represented by an interconnected set of lumped inertia and spring elements. The total number of
possible independent, incremental motions of these inertia elements is the number of degrees of
freedom of the system. For holonomic systems, this is also equal to the total number of independent
coordinates needed to represent an arbitrary configuration of the system; but for non-holonomic
systems, the required number of coordinates will be larger. For this reason, the concepts of
holonomic and non-holonomic systems and the corresponding types of constraints are discussed.
The representation of a general lumped-parameter vibrating system by a differential equation model
is given, and methods of obtaining such a model are discussed. Apart from the Newtonian and
Lagrangian approaches, the influence coefficient approach is given for determining the mass and
stiffness matrices. The concepts of natural frequencies and mode shapes are discussed, and the
procedure for determining these characteristic quantities, through modal analysis, is developed.
The orthogonality property of natural modes is derived. The ideas of static modes and rigid body
modes are explored, and the causes of these conditions will be indicated. In addition to the standard
formulation of the modal analysis problem, two other modal formulations are developed. The
analysis of the problem of forced vibration, using modal analysis, is given. Damped lumped-
parameter vibrating systems are studied from the point of view of modal analysis. The conditions
of existence of real modes for damped systems are explored, with specific reference to proportional
damping. The state-space approach of representing and analyzing a vibrating system is presented.
Practical problems of modal analysis are presented.

Chapter 6 studies distributed-parameter vibrating systems such as cables, rods, shafts, beams,
membranes, and plates. Practical examples of associated vibration problems are indicated. Vibration
of continuous systems is treated as a generalization of lumped-parameter systems, discussed in
Chapter 5. In particular, the modal analysis of continuous systems is addressed in detail. The issue
of orthogonality of modes is studied. The influence of system boundary conditions on the modal
problem in general and the orthogonality in particular is discussed, with special emphasis on
“inertial” boundary conditions (e.g., continuous systems with lumped masses at the boundaries).
The influence of damping on the modal analysis problem is discussed. The analysis of response to
a forcing excitation is performed.

Chapter 7 exclusively deals with the problem of energy dissipation or damping in vibrating
systems. Various types of damping present in mechanical and structural systems are discussed, with
practical examples, and particular emphasis on interface damping. Methods of representation or
modeling of damping in the analysis of vibrating systems are indicated. Techniques and principles
of measurement of damping are given, with examples.

Chapter 8 studies instrumentation issues in the practice of vibration. Applications range from
monitoring and fault diagnosis of industrial processes, to product testing for quality assessment
and qualification, experimental modal analysis for developing experimental models and for design-
ing of vibrating systems, and control of vibration. Instrumentation types, basics of operation,
industrial practices pertaining to vibration exciters, control systems, motion sensors and transducers,
torque and force sensors, and other types of transducers are addressed. Performance specification
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of an instrumented system is discussed. Issues and implications of component interconnection in
the practical use of instrumentation are addressed.

Chapter 9 addresses signal conditioning and modification for practical vibration systems. These
considerations are closely related to the subject of instrumentation discussed in Chapter 8 and
signal analysis discussed in Chapter 4. Particular emphasis is given to commercial instruments and
hardware that are useful in monitoring, analyzing, and control of vibration. Specific devices
considered include amplifiers, analog filters, modulators and demodulators, analog-to-digital con-
verters, digital-to-analog converters, bridge circuits, linearizing devices, and other types of signal
modification circuitry. Commercial spectrum analyzers and digital oscilloscopes commonly
employed in the practice of vibration are discussed as well.

Chapter 10 deals with vibration testing. This is a practical topic that is directly applicable to
product design and development, experimental modeling, quality assessment and control, and
product qualification. Various methods of representing a vibration environment in a test program
are discussed. Procedures that need to be followed prior to testing an object (i.e., pre-test procedures)
are given. Available testing procedures are presented, with a discussion of appropriateness, advan-
tages, and disadvantages of various test procedures. The topic of product qualification testing is
addressed in some length.

Chapter 11 studies experimental modal analysis, which is directly related to vibration testing
(Chapter 10), experimental modeling, and design. It draws from the analytical procedures presented
in previous chapters, particularly Chapters 5 and 6. Frequency domain formulation of the problem
is given. The procedure of developing a complete experimental model of a vibrating system is
presented. Procedures of curve fitting of frequency transfer functions, which are essential in model
parameter extraction, are discussed. Several laboratory experiments in the area of vibration testing
(modal testing) are described, giving details of the applicable instrumentation. Features and capa-
bilities of several commercially available experimental modal analysis systems are described, and
a comparative evaluation is given.

Chapter 12 addresses practical and analytical issues of vibration design and control. The
emphasis here is in the ways of designing, modifying, or controlling a system for good performance
with regard to vibration. Ways of specification of vibration limits for proper performance of an
engineering system are discussed. Techniques and practical considerations of vibration isolation
are described, with an emphasis on the use of transmissibility concepts developed in Chapter 3.
Static and dynamic balancing of rotating machinery is studied by presenting both analytical and
practical procedures. The related topic of balancing multi-cylinder reciprocating machines is
addressed in some detail. The topic of whirling of rotating components and shafts is studied. The
subject of design through modal testing, which is directly related to the material in chapters 10
and 11, is discussed. Both passive control and active control of vibration are studied, giving
procedures and practical examples.

The background material that is not given in the main body of the text, but is useful in
comprehending the underlying procedures, is given in the appendices. Reference is made in the
main text to these appendices, for further reading. Appendix A deals with dynamic models and
analogies. Main steps of developing analytical models for dynamic systems are indicated. Analogies
between mechanical, electrical, fluid, and thermal systems are presented, with particular emphasis
on the cause of free natural oscillations. Development procedure of state-space models for these
systems is indicated. Appendix B summarizes Newtonian and Lagrangian approaches to writing
equations of motion for dynamic systems. Appendix C reviews the basics of linear algebra. Vector-
matrix techniques that are useful in vibration analysis and practice are summarized. Appendix D
further explores the topic of digital Fourier analysis, with a special emphasis on the computational
procedure of fast Fourier transform (FFT). As the background theory, the concepts of Fourier series,
Fourier integral transform, and discrete Fourier transform are discussed and integrated, which leads
the digital computation of these quantities using FFT. Practical procedures and applications of
digital Fourier analysis are given. Appendix E addresses reliability considerations for multicom-
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ponent devices. These considerations have a direct relationship to vibration monitoring and testing,
failure diagnosis, product qualification, and design optimization.

PROBLEMS

1.1 Explain why mechanical vibration is an important area of study for engineers. Mechanical
vibrations are known to have harmful effects as well as useful ones. Briefly describe five
practical examples of good vibrations and also five practical examples of bad vibrations.

1.2 Under some conditions it may be necessary to modify or redesign a machine with respect
to its performance under vibrations. What are possible reasons for this? What are some
of the modifications that can be carried out on a machine in order to suppress its
vibrations?

1.3 On the one hand, modern machines are designed with sophisticated procedures and
computer tools, and should perform better than the older designs, with respect to mechan-
ical vibration. On the other hand, modern machines have to operate under more stringent
specifications and requirements in a somewhat optimal fashion. In general, design for
satisfactory performance under vibration takes an increased importance for modern
machinery. Indicate some reasons for this.

1.4 Dynamic modeling — both analytical and experimental (e.g., experimental modal anal-
ysis) — is quite important in the design and development of a product, for good perfor-
mance with regard to vibration. Indicate how a dynamic model can be utilized in the
vibration design of a device.

1.5 Outline one practical application of mechanical vibration in each of the following
branches of engineering:

1. Civil engineering
2. Aeronautical and aerospace engineering
3. Mechanical engineering
4. Manufacturing engineering
5. Electrical engineering
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2 Time Response
Vibrations are oscillatory responses of dynamic systems. Natural vibrations occur in these systems
due to the presence of two modes of energy storage. Specifically, when the stored energy is converted
from one form to the other, repeatedly back and forth, the resulting time response of the system
is oscillatory in nature. In a mechanical system, natural vibrations can occur because kinetic energy,
which is manifested as velocities of mass (inertia) elements, can be converted into potential energy
(which has two basic types: elastic potential energy due to the deformation in spring-like elements,
and gravitational potential energy due to the elevation of mass elements against the Earth’s grav-
itational pull) and back to kinetic energy, repetitively, during motion. Similarly, natural oscillations
of electrical signals occur in circuits due to the presence of electrostatic energy (of the electric
charge storage in capacitor-like elements) and electromagnetic energy (due to the magnetic fields
in inductor-like elements). Fluid systems can also exhibit natural oscillatory responses as they
possess two forms of energy. But purely thermal systems do not produce natural oscillations because
they, as far as anyone knows, have only one type of energy. These ideas are summarized in Appendix
A. Note, however, that an oscillatory forcing function is able to make a dynamic system respond
with an oscillatory motion (usually at the same frequency as the forcing excitation) even in the
absence of two forms of energy storage. Such motions are forced responses rather than natural or
free responses. This book concerns vibrations in mechanical systems. Nevertheless, clear analogies
exist with electrical and fluid systems as well as mixed systems such as electromechanical systems.

Mechanical vibrations can occur as both free (natural) responses and forced responses in
numerous practical situations. Some of these vibrations are desirable and useful, and others are
undesirable and should be avoided or suppressed. The sound that is generated after a string of a
guitar is plucked is a free vibration, while the sound of a violin is a mixture of both free and forced
vibrations. These sounds are generally pleasant and desirable. The response of an automobile after
it hits a road bump is an undesirable free vibration. The vibrations felt while operating a concrete
drill are desirable for the drilling process itself, but are undesirable forced vibrations for the human
who operates the drill. In the design and development of a mechanical system, regardless of whether
it is intended for generating desirable vibrations or for operating without vibrations, an analytical
model of the system can serve a very useful function. The model will represent the dynamic system,
and can be analyzed and modified more quickly and cost effectively than one could build and test
a physical prototype. Similarly, in the control or suppression of vibrations, it is possible to design,
develop, and evaluate vibration isolators and control schemes through analytical means before they
are physically implemented. It follows that analytical models (see Appendix A) are useful in the
analysis, control, and evaluation of vibrations in dynamic systems, and also in the design and
development of dynamic systems for desired performance in vibration environments.

An analytical model of a mechanical system is a set of equations, and can be developed either
by the Newtonian approach where Newton’s second law is explicitly applied to each inertia element,
or by the Lagrangian or Hamiltonian approach, which is based on the concepts of energy (kinetic
and potential energies). These approaches are summarized in Appendix B. A time-domain analytical
model is a set of differential equations, with respect to the independent variable time (t). A
frequency-domain model is a set of input-output transfer functions with respect to the independent
variable frequency (ω). The time response will describe how the system moves (responds) as a
function of time. Both free and forced responses are useful. The frequency response will describe
the way the system moves when excited by a harmonic (sinusoidal) forcing input, and is a function
of the frequency of excitation. This chapter introduces some basic concepts of vibration analysis
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using time-domain methods. The frequency-domain analysis will be studied in subsequent chapters
(Chapters 3 and 4, in particular).

2.1 UNDAMPED OSCILLATOR

Consider the mechanical system that is schematically shown in Figure 2.1. The inputs (or excitation)
applied to the system are represented by the force f(t). The outputs (or response) of the system are
represented by the displacement y. The system boundary demarcates the region of interest in this
analysis. This boundary could be an imaginary one. What is outside the system boundary is the
environment in which the system operates. An analytical model of the system can be given by one
or more equations relating the outputs to the inputs. If the rates of changes of the response (outputs)
are not negligible, the system is a dynamic system. In this case, the analytical model in the time
domain becomes one or more differential equations rather than algebraic equations. System param-
eters (e.g., mass, stiffness, damping constant) are represented in the model, and their values should
be known in order to determine the response of the system to a particular excitation. State variables
are a minimum set of variables that completely represent the dynamic state of a system at any
given time t. These variables are not unique (more than one choice of a valid set of state variables
is possible). The concepts of state variables and state models are introduced in Appendix A and
also in this chapter. For a simple oscillator (a single-degree-of-freedom mass-spring-damper system
as in Figure 2.1), an appropriate set of state variables would be the displacement y and the velocity

. An alternative set would be  and the spring force.
This chapter provides an introduction to the response analysis of mechanical vibrating systems in

the time domain. In this introductory chapter, single-degree-of-freedom systems that require only one
coordinate (or one independent displacement variable) in their model, are considered almost exclusively.
Higher-degree-of-freedom systems will be analyzed elsewhere in the book (e.g., Chapter 5). Mass
(inertia) and spring are the two basic energy storage elements in a mechanical vibrating system. A
mass can store gravitational potential energy as well when located against a gravitational force. These
elements are analyzed first. In a practical system, mass and stiffness properties can be distributed
(continuous) throughout the system. But in this present analysis, lumped-parameter models are
employed where inertia, flexibility, and damping effects are separately lumped into single parameters,
with a single geometric coordinate used to represent the location of each lumped inertia.

This chapter section first shows that many types of oscillatory systems can be represented by
the equation of an undamped simple oscillator. In particular, mechanical, electrical, and fluid systems
are considered. Please refer to Appendix A for some foundation material on this topic. The conser-
vation of energy is a straightforward approach for deriving the equations of motion for undamped
oscillatory systems (or conservative systems). The equations of motion for mechanical systems can

FIGURE 2.1 A mechanical dynamic system.

ẏ ẏ
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be derived using the free-body diagram approach with the direct application of Newton’s second
law. An alternative and rather convenient approach is the use of Lagrange equations, as described
in Appendix B. The natural (free) response of an undamped simple oscillator is a simple harmonic
motion. This is a periodic, sinusoidal motion. This simple time response is also discussed.

2.1.1 ENERGY STORAGE ELEMENTS

Mass (inertia) and spring are the two basic energy storage elements in mechanical systems. The
concept of state variables can be introduced as well through these elements (see Appendix A for
details), and will be introduced along with associated energy and state variables.

Inertia (m)

Consider an inertia element of lumped mass m, excited by force f, as shown in Figure 2.2. The
resulting velocity is v.

Newton’s second law gives

(2.1)

Kinetic energy stored in the mass element is equal to the work done by the force f on the mass.
Hence,

or

(2.2)

Note: v is an appropriate state variable for a mass element because it can completely represent the
energy of the element.

Integrate equation (2.1) from a time instant immediately before t = 0 (i.e., t = 0–).

(2.3)

Hence, with t = 0+, for a time instant immediately after t = 0, one obtains

(2.4)

FIGURE 2.2 A mass element.
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Since the integral of a finite quantity over an almost zero time interval is zero, these results imply
that a finite force will not cause an instantaneous change in velocity in an inertia element. In
particular, for a mass element subjected to finite force, since the integral on the RHS of equation
(2.4) is zero, one obtains

(2.5)

Spring (k)

Consider a massless spring element of lumped stiffness k, as shown in Figure 2.3. One end of the
spring is fixed and the other end is free. A force f is applied at the free end, which results in a
displacement (extension) x in the spring.

Hooke’s law gives

(2.6)

Elastic potential energy stored in the spring is equal to the work done by the force on the
spring. Hence,

or

(2.7)

Note: f is an appropriate state variable for a spring, and so is x, because they can completely
represent the energy in the spring.

Integrate equation (2.6).

(2.8)

Set t = 0+. Then,

(2.9)

FfIGURE 2.3 A spring element.

v v0 0+ −( ) = ( )

f kx
df

dt
kv= =or

Energy : E fdx kxdx kx

f
dx

dt
dt fvdt f

k

df

dt
dt

k
fdf

k
f

= = =

= = = = =

∫ ∫
∫ ∫ ∫ ∫

1
2

2

21 1 1
2

Elastic potential energy PE kx
f

k
= =1

2
1
2

2
2

f t f
k

vdt

t

( ) = ( ) +−

−
∫0

1

0

f f
k

vdt0 0
1

0

0

+ −( ) = ( ) +
−

+

∫

©2000 CRC Press

http://www.semeng.ir


                      

www.20file.org
From these results, it follows that at finite velocities, there cannot be an instantaneous change in
the force of a spring. In particular, from equation (2.9) one sees that at finite velocities of a spring

(2.10)

Also, it follows that

(2.11)

Gravitational Potential Energy

The work done in raising an object against the gravitational pull is stored as gravitational potential
energy of the object. Consider a lumped mass m, as shown in Figure 2.4, that is raised to a height
y from some reference level. The work done gives

Hence,

(2.12)

2.1.2 CONSERVATION OF ENERGY 

There is no energy dissipation in undamped systems, which contain energy storage elements only.
In other words, energy is conserved in these systems, which are known as conservative systems.
For mechanical systems, conservation of energy gives

(2.13)

These systems tend to be oscillatory in their natural motion, as noted before. Also, as discussed in
Appendix A, analogies exist with other types of systems (e.g., fluid and electrical systems). Consider
the six systems sketched in Figure 2.5.

System 1 (Translatory)

Figure 2.5 (a) shows a translatory mechanical system (an undamped oscillator) that has just one
degree of freedom x. This can represent a simplified model of a rail car that is impacting against
a snubber. The conservation of energy (equation (2.13)) gives

FIGURE 2.4 A mass element subjected to gravity.

f f0 0+ −( ) = ( )

x x0 0+ −( ) = ( )

Energy :  E fdy mgdy= =∫ ∫

Gravitational potential energy :  PE mgy=

KE PE const+ =
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(2.14)

Here, m is the mass and k is the spring stiffness. Differentiate equation (2.14) with respect to time t
to obtain

Since  ≠ 0 at all t, in general, one can cancel it out. Hence, by the method of conservation
of energy, one obtains the equation of motion

(2.15)

System 2 (Rotatory)

Figure 2.5(b) shows a rotational system with the single degree of freedom θ. It may represent a
simplified model of a motor drive system. As before, the conservation energy gives

(2.16)

In this equation, J is the moment of inertia of the rotational element and K is the torsional stiffness
of the shaft. Then, by differentiating equation (2.16) with respect to t and canceling , one obtains
the equation of motion

(2.17)

System 3 (Flexural)

Figure 2.5(c) is a lateral bending (flexural) system, which is a simplified model of a building
structure. Again, a single degree of freedom x is assumed. Conservation of energy gives

(2.18)

Here, m is the lumped mass at the free end of the support and k is the lateral bending stiffness of
the support structure. Then, as before, the equation of motion becomes

(2.19)

System 4 (Swinging)

Figure 2.5(d) shows a simple pendulum. It may represent a swinging-type building demolisher or
a skilift and has a single-degree-of-freedom θ. Thus,

1
2

1
2

2 2mx kx const˙ + =

mxx kxx˙˙̇ ˙+ = 0

ẋ

˙̇x
k

m
x+ = 0

1
2

1
2

2 2J K constθ̇ θ+ =
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˙̇θ θ+ =K

J
0

1
2

1
2

2 2mx kx const˙ + =

˙̇x
k

m
x+ = 0

KE m l

PE E mglref

= ( )
= −

1
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Here, m is the pendulum mass, l is the pendulum length, g is the acceleration due to gravity, and
Eref  is the PE at the reference point, which is a constant. Hence, conservation of energy gives

(2.20)

Differentiate with respect to t after canceling the common ml:

Since  ≠ 0 at all t, the equation of motion becomes

(2.21)

This system is nonlinear, in view of the term sin θ. For small θ, sin θ is approximately equal to θ.
Hence, the linearized equation of motion is

(2.22)

FIGURE 2.5 Six examples of single D.O.F. oscillatory systems: (a) translatory, (b) rotatory, (c) flexural,
(d) swinging, (e) liquid slosh, and (f) electrical.

1
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System 5 (Liquid Slosh)

Consider a liquid column system shown in Figure 2.5(e). It may represent two liquid tanks linked
by a pipeline. The system parameters are

Area of cross section of each column = A
Mass density of liquid = ρ
Length of liquid mass = l

Then,

Note that the center of gravity of each column is used in expressing the gravitational PE. Hence,
conservation of energy gives

(2.23)

Differentiate:

But, one has

Hence,

or

(2.24)

System 6 (Electrical)

Figure 2.5(f) shows an electrical circuit with a single capacitor and a single inductor. Again,
conservation of energy can be used to derive the equation of motion. First, an alternative is given.

Voltage balance gives

(2.25)

where vL and vC are the voltages across the inductor and the capacitor, respectively.

KE lA y

PE A h y
g

h y A h y
g

h y

= ( )

= +( ) +( ) + −( ) −( )

1
2

2 2

2ρ

ρ ρ

˙

Gravitational

1
2

1
2

1
2

2 2 2ρ ρ ρlAy Ag h y Ag h y const˙ + +( ) + −( ) =

lyy g h y y g h y y˙˙̇ ˙ ˙+ +( ) − −( ) = 0

˙ .y t≠ 0 for all 

˙̇y g h y g h y+ +( ) − −( ) = 0

˙̇y
g

l
y+ =2
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The constitutive equation for the inductor is

(2.26)

The constitutive equation for the capacitor is

(2.27)

Hence, by differentiating equation (2.26), substituting equation (2.25), and using equation (2.27),
one obtains

or

(2.28)

Now consider the energy conservation approach for this electrical circuit, which will give the
same result. Note that power is given by the product vi.

Capacitor

(2.29)

Here, v denotes vC. Also,

(2.30)

Since the current i is finite for a practical circuit, then .

Hence, in general, the voltage across a capacitor cannot change instantaneously. In particular,

(2.31)

Inductor

L
di

dt
vL=

C
dv

dt
iC =

L
d i

dt

dv

dt

dv

dt

i

C
L C

2

2 = = − = −

LC
d i

dt
i

2

2 0+ =

Electrostatic energy :  E vidt vC
dv

dt
dt C vdv

Cv= = = =∫ ∫ ∫
2

2

v
C

idt= ∫1

idt

0

0

0
−

+

∫ =
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Electromagnetic energy  E vidt L
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idt L idi
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Here, v denotes vL. Also,

(2.32)

Since v is finite in a practical circuit, then .

Hence, in general, the current through an inductor cannot change instantaneously. In particular,

(2.33)

Since the circuit in Figure 2.5(f) does not have a resistor, there is no energy dissipation. As a result,
conservation energy gives

(2.34)

Differentiate equation (2.34) with respect to t.

Note that v = vc in this equation.
Substitute the capacitor constitutive equation (2.27).

Since i ≠ 0 in general, one can cancel it. Now, by differentiating equation (2.27), one has .

Substitute this in the above equation to obtain

(2.35)

Similarly, one obtains

(2.36)

2.1.3 FREE RESPONSE

Note that the equation of free (i.e., no excitation force) motion of the six linear systems considered
above (Figure 2.5) is of the same general form

(2.37)

i
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vdt= ∫1
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0

0

0
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∫ =
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This is the equation of an undamped, simple oscillator. For a mechanical system of mass m and
stiffness k,

(2.38)

To determine the time response x of this system, use the trial solution

(2.39)

in which A and φ are unknown constants, to be determined by the initial conditions (for x and ); say,

(2.40)

Substitute the trial solution into equation (2.37) and obtain

This equation is identically satisfied for all t. Hence, the general solution of equation (2.37) is
indeed equation (2.39), which is periodic and sinusoidal.

This response is sketched in Figure 2.6. Note that this sinusoidal oscillatory motion has a
frequency of oscillation of ω rad/s). Hence, a system that provides this type of natural motion is
called a simple oscillator. In other words, the response exactly repeats itself in time periods of T,

corresponding to a cyclic frequency  (Hz). The frequency ω is in fact the angular frequency

given by ω = 2πf. Also, the response has an amplitude A, which is the peak value of the sinusoidal
response. Now, suppose that the response curve is shifted to the right through φ/ω. Consider the
resulting curve to be the reference signal (with signal value = 0 at t = 0, and increasing). It should
be clear that the response shown in Figure 2.6 leads the reference signal by a time period of φ/ω.
This can be verified from the fact that the value of the reference signal at time t is the same as that
of the signal in Figure 2.6 at time t – φ/ω. Hence, φ is termed the phase angle of the response, and
it represents a phase lead.

The left-hand portion of Figure 2.6 is the phasor representation of a sinusoidal response. In
this representation, an arm of length A rotates in the counterclockwise direction at angular speed
ω. This is the phasor. The arm starts at an angular position φ from the horizontal axis, at time t = 0.
The projection of the arm onto the vertical (x) axis is the time response. In this manner, the phasor
representation can conveniently indicate the amplitude, frequency, phase angle, and the actual time
response (at any time t) of a sinusoidal motion.

As noted previously, a repetitive (periodic) motion of the type (2.39) is called simple harmonic
motion, meaning it is a pure sinusoidal oscillation at a single frequency.

Next, it is shown that the amplitude A and the phase angle φ both depend on the initial conditions.
Substitute the ICs (2.40) into equation (2.39) and its time derivative to get

(2.41)

(2.42)

ωn

k

m
=

x A tn= +( )sin ω φ

ẋ

x x x vo o0( ) = ( ) =, ˙ 0

− +( ) +( ) =A A tn n nω ω ω φ2 2 0sin

f
T

= 1

x Ao = sin φ

v Ao n= ω φcos
©2000 CRC Press

http://www.semeng.ir


www.20file.org
Now divide equation (2.41) by (2.42), and also use the fact that sin2φ + cos2φ = 1 and obtain

Hence,

(2.43)

(2.44)

EXAMPLE 2.1

A simple model for a tracked gantry conveyor system in a factory is shown in Figure 2.7.
The carriage of mass (m) moves on a frictionless track. The pulley is supported on frictionless

bearings, and its axis of rotation is fixed. Its moment of inertia about this axis is J. The motion of
the carriage is restrained by a spring of stiffness k1, as shown. The belt segment that drives the
carriage runs over the pulley without slip, and is attached at the other end to a fixed spring of
stiffness k2. The displacement of the mass is denoted by x and the corresponding rotation of the
pulley is denoted by θ. When x = 0 (and θ = 0), the springs k1 and k2 have an extension of x10 and
x20, respectively, from their unstretched (free) configurations. Assume that the springs will remain
in tension throughout the motion of the system.

a. Using Newton’s second law, first principles, and free-body diagrams, develop an equiv-
alent equation of motion for this system in terms of the response variable x. What is the
equivalent mass, and what is the equivalent stiffness of the system?

b. Verify the result in part (a) using the energy method.

FIGURE 2.6 Free response of an undamped simple oscillator.
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c. What is the natural frequency of vibration of the system?
d. Express the equation of the system in terms of the rotational response variable θ.

What is the natural frequency of vibration corresponding to this rotational form of the system
equation?

What is the equivalent moment of inertia and the equivalent torsional stiffness of the rotational
form of the system?

SOLUTION

A free-body diagram for the system is shown in Figure 2.8.

a. Hooke’s law for the spring elements:

(i)

(ii)

Newton’s second law for the inertia elements:

(iii)

(iv)

Compatibility:

FIGURE 2.7 A tracked conveyor system.

FIGURE 2.8 A free-body diagram for the conveyor system.

F k x x1 1 10= +( )

F k x x2 2 20= −( )

mx F F˙̇ = − 1

J rF rF˙̇θ = −2
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(v)

Straightforward elimination of F1, F2, F, and θ in (i) to (v), using algebra, gives

(vi)

It follows that

b. Total energy in the system:

Differentiate w.r.t. time:

Substitute the compatibility relation,  = r , to get

Eliminate the common velocity variable  (which cannot be zero for all t). Obtain

which is the same result as before.
c. The natural frequency (undamped) of the system is

(vii)

d. Substitute for x and its derivatives into (vi) using the compatibility condition (v) to obtain

The natural frequency

x r= θ
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(viii)

is identical to the previous answer (vii). This is to be expected, as the system has not
changed (only the response variable was changed).

�

Common approaches of developing equations of motion for mechanical systems are summarized
in Box 2.1.

BOX 2.1 Approaches for Developing Equations of Motion

1. Conservative Systems (No Nonconservative Forces/No Energy Dissipation):
Kinetic energy = T
Potential energy = V

Conservation of energy: T + V = const
Differentiate with respect to time t

2. Lagrange’s Equations:
Lagrangian L = T – V

n = number of degrees of freedom
Qi = generalized force corresponding to generalized coordinate qi.

Find Qi using: δW = Σ Qi δqi

where δW = work done by nonconservative forces in a general incremental motion
(δq1, δq2, …, δqn).

3. Newtonian Approach:

d

dt
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q
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q
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i i
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2.2 HEAVY SPRINGS

A heavy spring has its mass and flexibility properties continuously distributed throughout its body.
In that sense, it has an infinite number of degrees of freedom, and a single coordinate cannot
represent its motion. However, for many practical purposes, a lumped-parameter approximation
with just one lumped mass to represent the inertial characteristics of the spring may be sufficient.
Such an approximation can be obtained using the energy approach. Here, the spring is represented
by a lumped-parameter “model” such that the original spring and the model have the same net
kinetic energy and potential energy. This energy equivalence is used in deriving a lumped mass
parameter for the model. Although damping (energy dissipation) is neglected in the present analysis,
it is not difficult to incorporate that as well in the model. 

2.2.1 KINETIC ENERGY EQUIVALENCE

Consider the uniform, heavy spring shown in Figure 2.9, with one end fixed and the other end
moving at velocity v. Note that:

k = stiffness of spring

ms = mass of spring

l = length of spring

Local speed of element δx of the spring is given by .

Element mass = .

Hence, element .

In the limit, δx → dx. Then,

(2.45)

Hence,

Equivalent lumped mass concentrated at the free end  spring mass.

Note: This derivation assumes that one end of the spring is fixed and, furthermore, that the conditions
are uniform along the spring.

An example of utilizing this result is shown in Figure 2.10. Here, a system with a heavy spring
and a lumped mass is approximated by a light spring (having the same stiffness) and a lumped mass.

FIGURE 2.9 A uniform heavy spring.
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Another example is shown in Figure 2.11. In this case, it is not immediately clear which of
the approximations shown on the right-hand side is most appropriate.

EXAMPLE 2.2

A uniform heavy spring of mass ms and stiffness k is attached at one end to a mass m that is free
to roll on a frictionless horizontal plane. The other end is anchored to a vertical post. A schematic
diagram of this arrangement is shown in Figure 2.12.

The unstretched length of the spring is l. Assume that when the velocity of the connected mass
is v, the velocity distribution along the spring is given by

FIGURE 2.10 Lumped-parameter approximation for an oscillator with heavy spring.

FIGURE 2.11 An example where the lumped-parameter approximation for a spring is ambiguous.

FIGURE 2.12 A heavy spring connected to a rolling stock.
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where x is the distance of a point along the spring, as measured from the fixed end. Determine an
equivalent lumped mass located at the moving end of the spring (i.e., at the moving mass m) to
represent the inertia effects of the spring. What are the limitations of your result?

SOLUTION

Consider an element of length δx at location x of the spring. Since the spring is uniform, the element

mass = . Also, according to the given assumption, the element velocity = . Hence,

the kinetic energy of the spring is

It follows that the equivalent lumped mass to be located at the moving end of the spring is .

This result is valid only for the assumed velocity distribution, and corresponds to the first mode
of motion only. In fact, a linear velocity distribution would be more realistic in this low-frequency

(quasi-static motion) region, which will give an equivalent lumped mass of , as seen before.

Such approximations will not be valid for high frequencies (say, higher than ).

�

2.3 OSCILLATIONS IN FLUID SYSTEMS

As discussed in Appendix A, fluid systems can undergo oscillations (vibrations) quite analogous
to mechanical and electrical systems. Again, the reason for their natural oscillation is the ability
to store and repeatedly interchange two types of energy — kinetic energy and potential energy.
The kinetic energy comes from the velocity of fluid particles during motion. The potential energy
arises primarily from the following three main sources.

1. Gravitational potential energy
2. Compressibility of the fluid volume
3. Flexibility of the fluid container

A detailed analysis of these three effects is not undertaken here. However, one sees from the
example in Figure 2.5(e) how a liquid column can oscillate due to repeated interchange between
kinetic energy and gravitational potential energy. Now consider another example.
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EXAMPLE 2.3

A university laboratory has developed a procedure for optimal cutting (portion control) of fish for
can filling, with the objective of minimizing the wastage (overfill) and regulatory violations (under-
fill). The procedure depends on the knowledge of the volumetric distribution of a dressed (cleaned)
fish. In fact, a group of volumeteric models is developed through off-line experimentation so that
extensive measurements need not be made on-line, during processing. One set of such off-line
experiments consists of dipping a fish into a tank of water in fixed increments and measuring the
volume of water that is displaced. An illustration of the experimental setup is given in Figure 2.13(a).

One day, an adventurous student decided to try a different test with the experimental system.
Instead of a fish, he used a cylindrical wooden peg of uniform cross section and height h. Realizing
that the object could not be completely immersed in water, he pushed it down by hand, in the
upright orientation (see Figure 2.13(b)). The object oscillated up and down while floating in the
tank. Let ρb and ρl be the mass densities of the body (peg) and the liquid (water), respectively.

a. Clearly stating the assumptions that are made, obtain an expression for the natural
frequency of oscillations.

b. If the object is slightly tilted to one side would it return to its upright configuration?
Explain.

(a)

(b)

FIGURE 2.13 (a) An experimental system for determining the volumetric distribution of a fish body.
(b) Buoyancy experiment.
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SOLUTION

a. Suppose that, under equilibrium in the upright position of the body, the submersed length
is l. The mass of the body is

(i)

where A is the area of cross section (uniform).
By Archimedes principle, the buoyancy force R is equal to the weight of the liquid

displaced by the body. Hence,

(ii)

For equilibrium, one has

(iii)

or

Hence,

(iv)

For a vertical displacement y from the equilibrium position, the equation of motion
is (Figure 2.14(a))

Substitute equations (ii) and (iii) to obtain

Substitute equation (i):

or

The natural frequency of oscillations is

m Ah b= ρ
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Note that this result is independent of the area of cross section of the body.
Assumptions:
1. The tank is very large compared to the body. The change in liquid level is negligible

as the body is depressed into the water.
2. Fluid resistance (viscous effects, drag, etc.) is negligible.
3. Dynamics of the liquid itself are negligible. Hence, “added inertia” due to liquid

motion is neglected.
The buoyancy force R acts through the centroid of the volume of displaced water [Figure
2.14(b)]. Its line of action passes through the central axis of the body at point M. The
point is known as the metacenter. Let C be the centroid of the body.

FIGURE 2.14 (a) Upright oscillations of the body. (b) Restoring buoyancy couple due to a stable metacenter.

FIGURE 2.15 A damped simple oscillator and its free-body diagram.
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If M is above C, then, when tilted, there will be a restoring couple that will tend to restore the
body to its upright position. Otherwise, the body will be in an unstable situation, and the buoyancy
couple will tend to tilt it further toward a horizontal configuration.

�

2.4 DAMPED SIMPLE OSCILLATOR

Now consider the free (natural) response of a simple oscillator in the presence of energy dissipation
(damping).

Assume viscous damping, and consider the oscillator shown in Figure 2.15. The free-body
diagram of the mass is shown separately.

The following notation is used in this book.

ωn  = undamped natural frequency
ωd  = damped natural frequency
ωr  = resonant frequency
ω   = frequency of excitation.

The concept of resonant frequency will be addressed in Chapter 3.
The viscous damping constant is denoted by b (but sometimes c will be used instead of b, as

done in some literature).
Apply Newton’s second law. From the free-body diagram in Figure 2.15, one has the equation

of motion

or

(2.46)

or

(2.47)

This is a free (or unforced, or homogeneous) equation of motion. Its solution is the free (natural)

response of the system and is also known as the homogeneous solution. Note that , which

is the natural frequency when there is no damping, and

(2.48)

Hence, 

or
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(2.49)

Also note that ζ is called the damping ratio. The formal definition and the rationale for this
terminology will be discussed later.

Assume an exponential solution:

(2.50)

This is justified by the fact that linear systems have exponential or oscillatory (i.e., complex
exponential) free responses. A more detailed justification will be provided later.

Substitute equation (2.50) into (2.47) to obtain

Note that Ceλt is not zero in general. It follows that when λ satisfies the equation

(2.51)

then equation (2.50) will represent a solution of equation (2.47).
Equation (2.51) is called the characteristic equation of the system. This equation depends on

the natural dynamics of the system, not forcing excitation or initial conditions.
Solution of equation (2.51) gives the two roots:

(2.52)

These are called eigenvalues or poles of the system.
When λ1 ≠ λ2, the general solution is

(2.53)

The two unknown constants C1 and C2 are related to the integration constants, and can be determined
by two initial conditions, which should be known.

If λ1 = λ2 = λ; one has the case of repeated roots. In this case, the general solution (2.53) does
not hold because C1 and C2 would no longer be independent constants, to be determined by two
initial conditions. The repetition of the roots suggests that one term of the homogenous solution
should have the multiplier t (a result of the double-integration of zero). Then, the general solution is

(2.54)

One can identify three categories of damping level, as discussed below, and the nature of the
response will depend on the particular category of damping.

ζ = 1
2

b

km

x Ce t= λ

λ ζω λ ω λ2 22 0+ +[ ] =n n
tCe

λ ζω λ ω2 22 0+ + =n n

λ ζω ζ ω

λ λ

= − ± −

=

n n
2

1

1 

 and 2

x C e C e t= +1 2
1 2λ λ

x C e C tet t= +1 2
λ λ
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2.4.1 CASE 1: UNDERDAMPED MOTION (ζ < 1)

In this case, it follows from equation (2.52) that the roots of the characteristic equation are

(2.55)

where, the damped natural frequency is given by

(2.56)

Note that λ1 and λ2 are complex conjugates. The response (2.53) in this case can be expressed as

(2.57)

The term within the square brackets of equation (2.57) has to be real because it represents the time
response of a real physical system. It follows that C1 and C2, as well, have to be complex conjugates.

Note:

Thus, an alternative form of the general solution would be

(2.58)

Here, A1 and A2 are the two unknown constants. By equating the coefficients, it can be shown that

(2.59)

Hence,

(2.60)

which are complex conjugates, as required.

Initial Conditions:
Let, x(0) = xo, (0) = vo as before. Then,

λ ζω ζ ω ζω ω λ λ= − ± − = − ± =n n n dj j1 2
1  and 2

ω ζ ωd = −1 2  n

x e C e C en d dt j t j t= +[ ]− −ζω ω ω
1 2

e t j t

e t j t

j t
d d

j t
d d

d

d

ω

ω

ω ω

ω ω

= +

= −−

cos sin

cos sin

x e A t A tnt
d d= +[ ]−ζω ω ω1 2cos sin

A C C

A j C C

1 1 2

2 1 2

= +

= −( )

C A jA

C A jA

1 1 2

2 1 2

1
2

1
2

= −( )

= +( )

ẋ

x Ao = 1 
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and (2.61)

or

(2.62)

Yet, another form of the solution would be:

(2.63)

Here, A and φ are the unknown constants with

(2.64)

Also, (2.65)

Note that the response x → 0 as t → ∞. This means the system is asymptotically stable.

2.4.2 LOGARITHMIC DECREMENT METHOD

The damping ratio ζ can be experimentally determined from the free response by the logarithmic
decrement method. To illustrate this approach, note from equation (2.63) that the period of damped
oscillations is

(2.66)

Also, from equation (2.63),

But, 

Hence,

(2.67)
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Take the natural logarithm of equation (2.67), the logarithmic decrement:

But, . Hence, with , one has the logarithmic

decrement

Note that  is the “per-cycle” logarithmic decrement, and  is the “per-radian” loga-

rithmic decrement. The latter is

(2.68)

Then, one has

(2.69)

This is the basis of the logarithmic decrement method of measuring damping. Start by measuring
a point x(t) and another point x(t + nT) at n cycles later. For high accuracy, pick the peak points
of the response curve for the measurement of x(t) and x(t + nT). From equation (2.68), it is clear
that for small damping, ζ = α = per-radian logarithmic decrement.

2.4.3 CASE 2: OVERDAMPED MOTION (ζ > 1)

In this case, roots λ1 and λ2 of the characteristic equation (2.51) are real. Specifically,

(2.70)

(2.71)

and the response (2.53) is nonoscillatory. Also, it should be clear from equations (2.70) and (2.71)
that both λ1 and λ2 are negative. Hence, x → 0 as t → ∞. This means the system is asymptotically stable.

From the initial conditions

we get

(i)

ζωnnT
x t

x t nT
= ( )

+( )
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ω

ω π

ζ ω
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ζn n
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T = =
−
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2 2
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12 2
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2

1 2

π ζ
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n
r

−
= ln

1
n

rln
1

2πn
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ζ π
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1

1
22−

= =
n

rln

ζ α
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+
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21

λ ζω ζ ω1
2 1 0= − + − <n n
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2 1 0= − − − <n n
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and

(ii)

Multiply the first IC(i) by λ1 to obtain . (iii)

Then subtract (iii) from (ii) to obtain 

and (2.72)

Similarly, multiply the first IC(i) by λ2 and subtract from (ii). One obtains

Hence,

(2.73)

2.4.4 CASE 3: CRITICALLY DAMPED MOTION (ζ = 1)

Here, we have repeated roots, given by

(2.74)

The response for this case is given by (see equation (2.54))

(2.75)

Since the term  goes to zero faster than t goes to infinity, one has

. Hence, the system is asymptotically stable.

Now use the initial conditions x(0) = xo, (0) = vo. One obtains

Hence,

(2.76)

(2.77)
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Note: When ζ = 1, one has the critically damped response because below this value, the response
is oscillatory (underdamped), and above this value, the response is nonoscillatory (overdamped).
It follows that one can define the damping ratio as

(2.78)

2.4.5 JUSTIFICATION FOR THE TRIAL SOLUTION

In the present analysis, the trial solution (2.50) has been used for the response of a linear system
having constant parameter values. A justification for this is provided now.

First-Order System

Consider a first-order linear system given by (homogeneous, no forcing input)

(2.79)

This equation can by written as

Integrate:

Here, ln C is the constant of integration. Hence,

(2.80)

This is then the general form of the free response of a first-order system. It incorporates one constant
of integration and, hence, will need one initial condition.

Second Order System

One can write the equation of a general second-order (homogenous, unforced) system in the
operational form

(2.81)

By reasoning as before, the general solution would be of the form . Here, C1 and
C2 are the constants of integration, which are determined using two initial conditions.

Repeated Roots

The case of repeated roots deserves a separate treatment. First consider

(2.82)

ζ = Damping ratio =
Damping constant

Damping constant for critically damped condition

d

dt
x x x−
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d
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 −
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Integrate twice: (2.83)

Note the term with t in this case. Hence, a suitable trial solution for the system

(2.84)

would be .
The main results for free (natural) response of a damped oscillator are given in Box 2.2.

2.4.6 STABILITY AND SPEED OF RESPONSE

The free response of a dynamic system (particularly a vibrating system) can provide valuable
information concerning the natural characteristics of the system. The free (unforced) excitation can
be obtained, for example, by giving an initial-condition excitation to the system and then allowing
it to respond freely. Two important characteristics that can be determined in this manner are:

1. Stability
2. Speed of response

The stability of a system implies that the response will not grow without bounds when the excitation
force itself is finite. This is known as bounded-input-bounded-output (BIBO) stability. In particular,
if the free response eventually decays to zero, in the absence of a forcing input, the system is said
to be asymptotically stable. It was shown that a damped simple oscillator is asymptotically stable,
but an undamped oscillator, while being stable in a general (BIBO) sense, is not asymptotically
stable. It is marginally stable.

Speed of response of a system indicates how fast the system responds to an excitation force.
It is also a measure of how fast the free response (1) rises or falls if the system is oscillatory; or
(2) decays, if the system is non-oscillatory. Hence, the two characteristics — stability and speed
of response — are not completely independent. In particular, for non-oscillatory (overdamped)
systems, these two properties are very closely related. It is clear then, that stability and speed of
response are important considerations in the analysis, design, and control of vibrating systems.

The level of stability of a linear dynamic system depends on the real parts of the eigenvalues
(or poles, which are the roots of the characteristic equations). Specifically, if all the roots have real
parts that are negative, then the system is stable. Also, the more negative the real part of a pole,
the faster the decay of the free response component corresponding to that pole. The inverse of the
negative real part is the time constant. Hence, the smaller the time constant, the faster the decay
of the corresponding free response and, hence, the higher the level of stability associated with that
pole. One can summarize these observations as follows:

Level of stability: Depends on decay rate of free response (and hence on time constants
or real parts of poles)

Speed of response: Depends on natural frequency and damping for oscillatory systems and
decay rate for non-oscillatory systems

Time constant: Determines stability and decay rate of free response (and speed of
response in non-oscillatory systems)

Now consider the specific case of a damped simple oscillator given by equation (2.47).

dx

dt
C x Ct D= = +;

d

dt

d

dt
x−



 −



 =λ λ 0

x C e C tet t= +1 2
λ λ
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BOX 2.2 Free (Natural) Response of a Damped Simple Oscillator

System Equation: 

Undamped natural frequency 

Damping ratio 

Characteristic equation: 

Roots (eigenvalues or poles): 

Response:

Initial conditions: x(0) = xo, (0) = vo

Case 1: Underdamped (ζ < 1)
Poles are complex conjugates: –ζωn ± jωd

Damped natural frequency 

ICs give: 

Logarithmic decrement per radian: 

where  = decay ratio over n complete cycles.

For small 

Case 2: Overdamped (ζ > 1)

Poles are real and negative:

Case 3: Critically Damped (ζ = 1)

Two identical poles: 
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Case 1(ζ < 1): The free response is given by 

(2.85)

The system is asymptotically stable. The larger the ζωn the more stable the system. Also, the speed
of response increases with both ωd and ζωn.
Case 2 (ζ > 1): The response is non-oscillatory, and is given by

where, 

This system has two time constants:

(2.86)

Note that τ1 is the dominant (slower) time constant. The system is also asymptotically stable. The
larger the �λ1�, the faster and more stable the system.
Consider an underdamped system and an overdamped system with damping ratios ζu and ζo,
respectively. One can show that the underdamped system is more stable than the overdamped system
if and only if:

(2.87a)

or equivalently,

(2.87b)

where ζ0 > 1 > ζu > 0 by definition.

Proof

To be more stable, one should have the underdamped pole located farther away than the dominant
overdamped pole, from the imaginary axis of the pole plane; thus,

Hence,

x Ae tnt
d= +( )−ζω ω φsin
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1τ
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1 2λ λ

decays slower decays faster

λ ζω ζ ω λ ζω ζ ω1
2

2
21 1= − + − = − − −n n n n  and 

τ
λ

τ
λ1

1
2

2

1 1= =and

ζ ζ ζo o u− − <2 1

ζ
ζ

ζo
u

u

>
+2 1

2

ζ ω ζ ω ζ ωu n o n o n> − −2 1 

ζ ζ ζu o o> − −2 1
©2000 CRC Press

http://www.semeng.ir


www.20file.org
Now, bring the square-root term to the LHS and square it.

Hence,

or

This completes the proof.
To explain this result further, consider an undamped (ζ = 0) simple oscillator of natural

frequency ωn. Its poles are at ± jωn (on the imaginary axis of the pole plane). Now add damping
and increase ζ from 0 to 1. Then the complex conjugates poles –ζωn ± jωd will move away from
the imaginary axis as ζ increases (because ζωn increases) and, hence, the level of stability will
increase. When ζ reaches the value 1 (critical damping), one obtains two identical and real poles
at –ωn. When ζ is increased beyond 1, the poles will be real and unequal, with one pole having a
magnitude smaller than ωn and the other having a magnitude larger than ωn. The former (closer to
the “origin” of zero) is the dominant pole, and will determine both stability and the speed of
response of the overdamped system. It follows that as ζ increases beyond 1, the two poles will
branch out from the location –ωn, one moving toward the origin (becoming less stable) and the
other moving away from the origin. It is now clear that as ζ is increased beyond the point of critical
damping, the system becomes less stable. Specifically, for a given value of ζu < 1.0, there is a value
of ζo > 1, governed by (2.87), above which the overdamped system is less stable and slower than
the underdamped system.

EXAMPLE 2.4

Consider the simple oscillator shown in Figure 2.15, with parameters m = 4 kg, k = 1.6 × 103 N m–1,
and the two cases of damping:

1. b = 80 N m–1 s–1

2. b = 320 N m–1 s–1

Study the nature of the free response in each case.

SOLUTION

The undamped natural frequency of the system is

Case 1:

ζ ζ ζ ζ ζ ζ ζo o u o o u u
2 2 2 21 2− > −( ) = − +

2 12ζ ζ ζo u u> +

ζ
ζ
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u

u

>
+2 1

2

ωn

k

m
= = × =1 6 10

4
20 0

3.
.  rad s-1

2 2 20
80
4

ζω ζn

b

m
= × =or
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Then,

The system is underdamped in this case.

Case 2:

Then,

The system is overdamped in this case.
Case 1: The characteristic equation is

or

The roots (eigenvalues or poles) are

The free (no force) response is given by

The amplitude A and the phase angle φ can be determined using initial conditions.

Case 2: The characteristic equation is

or

The roots are

ζ u = 0 5.

2 20
320

4
ζ × =

ζ o = 2 0.

λ λ2 22 0 5 20 20 0+ × × + =.
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The free response is given by

The constants C1 and C2 can be determined using initial conditions. The second term on the
RHS goes to zero much faster than the first term, as shown in Figure 2.16. Hence, the first term
will dominate and will determine the dominant time constant, level of stability, and speed of
response. Specifically, the response may be approximated as

FIGURE 2.16 The free (homogeneous) response components of an overdamped system.

TABLE 2.1
Natural Characteristics of a Damped Oscillator

Damping
ratio Level of damping

Oscillatory
response Stability

Speed of
response Time constant

ζ < 1 Underdamped Yes Asymptotically stable (less 
stable than ζ = 1 case but 
not necessarily less stable 
than the overdamped 
case)

Better than
overdamped

ζ > 1 Overdamped No Asymptotically stable; less 
stable than the critically 
damped case

Lower than
critical

ζ = 1 Critically damped No Asymptotically stable; 
most stable

Good

x C e C et t= +− −
1

5 36
2

74 64. .

x C e t≅ −
1

5 36.

1 ζωn( )

1 12ζω ζ ωn n± −( )
1 ωn
©2000 CRC Press

http://www.semeng.ir


www.20file.org
Hence,

This value is double that of Case 1. Consequently, it is clear that the underdamped system (Case
1) decays faster than the overdamped system (Case 2). In fact, according to equation (2.87b), with

ζu = 0.5, we have  Hence, an overdamped system of damping ratio greater

than 1.25 will be less stable than the underdamped system of damping ratio 0.5.

FIGURE 2.17 Free response of a damped oscillator: (a) underdamped, (b) critically damped, (c) overdamped.
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Table 2.1 summarizes some natural characteristics of a damped simple oscillator under three 
different levels of damping. The nature of the natural response for these three cases is sketched in 
Figure 2.17.

�

2.5 FORCED RESPONSE

Thus far only the “free response” of a vibratory system has been studied. This is the response to
some initial excitation and in the absence of any subsequent forcing input. This corresponds to the
“natural” response of the system. Mathematically, it is the homogeneous solution because it is
obtained by solving the homogeneous equation of the system (i.e., without the input terms). The
natural response, the free response, and the homogeneous solution are synonymous in the absence
of a forcing input to the system. But when there is a forcing excitation (i.e., an input), the equation
of motion will be non-homogeneous (i.e., the right-hand side will not be zero). Then, the total
solution (total response T) will be given by the sum of the homogeneous solution (H) and the
particular integral (P), subject to the system initial conditions. This is a mathematical solution of
the equation of motion. This total response can be separated into the terms that depend on the
initial conditions (X) and the terms that depend on the forcing excitation (F). This is the physical
interpretation of the total solution. Note that X is called the “free response,” “initial-condition
response,” or the “zero-input response.” The term F is called the “forced response,” the “zero-
initial condition response,” or the “zero-state response.” In general, H is not identical to X, and
P is not identical to F. But when there is no forcing excitation (no input), then by definition H
and X will be identical. Furthermore, under steady state, the homogeneous part or initial-condition
response will die down (assuming that the system is stable). Then, F will become equal to P. Note
that, even when the initial conditions are zero, F and P may not be identical because F may
contain a natural response term that is excited by the forcing input. This term will die out with
time, however.

This section will look at the forced response of a dynamic (vibratory) system. This is the
response of the system to a forcing input. The total response will depend on the natural character-
istics of the system (as for the free response) and also on the nature of the forcing excitation.
Mathematically, then, the total response will be determined by both the homogeneous solution and
the particular solution. The complete solution will require a knowledge of the input (forcing
excitation) and the initial conditions.

The behavior of a dynamic system when subjected to a certain forcing excitation can be studied
by analyzing a model of the system. This is commonly known as system-response analysis. System
response can be studied either in the time domain, where the independent variable of system
response is time, or in the frequency domain, where the independent variable of system response
is frequency. Time-domain analysis and frequency-domain analysis are equivalent. Variables in the
two domains are connected through Fourier (integral) transform. The preference of one domain
over the other depends on such factors as the nature of the excitation input, the type of analytical
model available, the time duration of interest, and the quantities that need to be determined. The
frequency-domain analysis will be addressed in detail in Chapters 3 and 4. The present section
concentrates only on the time-domain analysis of the forced response. In particular, the impulse-
response approach will be presented.

2.5.1 IMPULSE RESPONSE FUNCTION

Consider a linear dynamic (vibratory) system; then, the principle of superposition holds. More
specifically, if y1 is the system response to excitation u1(t) and y2 is the response to excitation u2(t),
then αy1 + βy2 is the system response to input αu1(t) + βu2(t) for any constants α and β and any
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excitation functions u1(t) and u2(t). This is true for both time-variant-parameter linear systems and
constant-parameter linear systems.

A unit pulse of width ∆τ starting at time t = τ is shown in Figure 2.18(a). Its area is unity. A
unit impulse is the limiting case of a unit pulse when ∆τ → 0. Unit impulse acting at time t = τ
is denoted by δ(t – τ) and is graphically represented as in Figure 2.18(b). In mathematical analysis,
this is known as the Dirac delta function. It is mathematically defined by the two conditions:

(2.88)

and

(2.89)

The Dirac delta function has the following well-known and useful properties:

(2.90)

and

(2.91)

for any well-behaved time function f(t).
The system response (output) to a unit-impulse excitation (input) acted at time t = 0 is known

as the impulse-response function and is denoted by h(t).

FIGURE 2.18 Illustrations of (a) unit pulse and (b) unit impulse.
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2.5.2 FORCED RESPONSE

The system output to an arbitrary input can be expressed in terms of its impulse-response function.
This is the essence of the impulse-response approach to determining the forced response of a
dynamic system.

Without loss of generality, assume that the system input u(t) starts at t = 0; that is,

(2.92)

For physically realizable systems, the current response does not depend on the future values of the
input. Consequently,

(2.93)

and

(2.94)

where y(t) is the response of the system to any general excitation u(t).
Furthermore, if the system is a constant-parameter system, then the response does not depend

on the time origin used for the input. Mathematically, this is stated as follows: if the response to
input u(t) satisfying equation (2.92) is y(t), which satisfies equation (2.93), then the response to
input u(t – τ), which satisfies,

(2.95)

is y(t – τ), and it satisfies

(2.96)

This situation is illustrated in Figure 2.19. It follows that the delayed-impulse input δ(t – τ), having
time delay τ, produces the delayed response h(t – τ).

A given input u(t) can be divided approximately into a series of pulses of width ∆τ and
magnitude u(τ)∆τ. In Figure 2.20, for ∆τ → 0, the pulse shown by the shaded area becomes an
impulse acting at t = τ, having the magnitude u(τ)dτ. This impulse is given by δ(t – τ)u(τ)dτ. In a
linear, constant-parameter system, it produces the response h(t – τ)u(τ)dτ. By integrating over the
entire time duration of the input u(t), the overall response y(t) is obtained as

(2.97)

Equation (2.97) is known as the convolution integral. This is, in fact, the forced response under
zero initial conditions. In view of equation (2.94), it follows that h(t – τ) = 0 for τ > t. Consequently,
the upper limit of integration in equation (2.97) could be made equal to t without affecting the
result. Similarly, in view of equation (2.92), the lower limit of integration in equation (2.97) could
be made –∞. Furthermore, by introducing the change of variable τ → t – τ, an alternative version
of the convolution integral is obtained. Several valid versions of the convolution integral (or response
equation) for linear, constant-parameter systems are as follows:

u t t( ) = <0 0for

y t t( ) = <0 0for

h t t( ) = <0 0for

u t t−( ) = <τ τ0 for

y t t−( ) = <τ τ0 for

y t h t u d( ) = −( ) ( )
∞

∫ τ τ τ
0
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(2.97a)

(2.97b)

(2.97c)

(2.97d)

(2.97e)

(2.97f)

(2.97g)

In fact, the lower limit of integration in the convolution integral could be any value satisfying
τ ≤ 0, and the upper limit could be any value satisfying τ ≥ t. The use of a particular pair of
integration limits depends on whether the functions h(t) and u(t) implicitly satisfy the conditions
given by equations (2.93) and (2.94) or these conditions have to be imposed on them by means of
the proper integration limits. It should be noted that the two versions given by equations (2.97f)
and (2.97g) explicitly take these conditions into account and therefore are valid for all inputs and
impulse-response functions.

It should be emphasized that the response given by the convolution integral assumes a zero
initial state, and is known as the zero-state response because the impulse response itself assumes
a zero initial state. As stated, this is not necessarily equal to the “particular solution” in mathematical
analysis. Also, as t increases (t → ∞), this solution approaches the steady-state response denoted
by yss, which is typically the particular solution. The impulse response of a system is the inverse
Laplace transform of the transfer function. Hence, it can be determined using Laplace transform
techniques. This aspect will be addressed in Chapter 3. Some useful concepts of forced response
are summarized in Box 2.3.

2.5.3 RESPONSE TO A SUPPORT MOTION

An important consideration in vibration analysis and testing of machinery and equipment is the
response to a support motion. To illustrate the method of analysis, consider the linear, single-degree-
of-freedom system consisting of mass m, spring constant k, and damping constant b, subjected to

y t h u t d( ) = ( ) −( )
∞

∫ τ τ τ
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y t h t u d( ) = −( ) ( )
−∞

∞

∫ τ τ τ
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support motion (displacement) u(t). Vertical and horizontal configurations of this system are shown
in Figure 2.21. Both configurations possess the same equation of motion, provided the support
motion u(t) and the mass response (displacement) y are measured from the fixed points that
correspond to the initial, static-equilibrium position of the system. In the vertical configuration, the
compressive force in the spring exactly balances the weight of the mass when it is in static
equilibrium. In the horizontal configuration, the spring is unstretched when in static equilibrium.
It may be easily verified that the equation of motion is given by

FIGURE 2.19 Response to a delayed input.

FIGURE 2.20 General input treated as a continuous series of impulses.
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Box 2.3 Concepts of Forced Response

Note: In general, H ≠ X and P ≠ F
With no input (no forcing excitation), by definition, H ≡ X
At steady state, F becomes equal to P.

Convolution Integral: Response 

where u = excitation (input) and h = impulse response function (response to a unit impulse input).

Damped Simple Oscillator: 

Poles (eigenvalues)

ωn = undamped natural frequency, ωd = damped natural frequency

ζ = damping ratio. Note: 

Note:  

Total Response Homogeneous solution Particular integral

Free response Forced response

Initial - condition response Zero - initial - condition response
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(2.98)

in which  and . The two parameters ωn and ζ are undamped natural

frequency and damping ratio, respectively, given by  and , as usual. This

results in the equivalent equation of motion

(2.99)

There are several ways to determine the response y from equation (2.99) once the excitation
function u(t) is specified. The procedure adopted here is to first solve the modified equation

(2.100)

This can be identified as the equation of motion of the single-degree-of-freedom system shown in
Figure 2.15. Once this response is known, the response of the system (2.99) is obtained by the
principle of superposition.

Impulse Response

Many important characteristics of a system can be studied by analyzing the system response to an
impulse or a step-input excitation. Such characteristics include system stability, speed of response,
time constants, damping properties, and natural frequencies. In this way, an idea of the system
response to an arbitrary excitation is gained. A unit impulse or a unit step are baseline inputs or
test inputs. Responses to such inputs can also serve as the basis for system comparison. In particular,
it is usually possible to determine the degree of nonlinearity in a system by exciting it with two
input intensity levels, separately, and checking whether the proportionality is retained at the output;
or whether limit cycles are encountered by the response when the excitation is harmonic.

The response of the system (2.100) to a unit impulse u(t) = δ(t) can be conveniently determined
by the Laplace transform approach (See Chapter 3). In the present section, a time-domain approach
is used instead. First integrate equation (2.100) over the almost zero interval from t = 0– to t = 0+.
One obtains

FIGURE 2.21 A system subjected to support motion: (a) vertical configuration, (b) horizontal configuration.
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(2.101)

Suppose that the system starts from rest. Hence, y(0–) = 0 and (0–) = 0. Also, when an impulse
is applied over an infinitesimal time period [0–,0+], the system will not be able to move through a
finite distance during that time. Hence, y(0+) = 0 as well, and furthermore, the integral of y on the
RHS of equation (2.101) will also be zero. Now, by definition of a unit impulse, the integral of u

on the RHS of equation (2.101) will be unity. Hence, . It follows that as soon as a unit

impulse is applied to the system (2.100), the initial conditions will become

(2.102)

Also, beyond t = 0+, the excitation u(t) = 0, according to the definition of an impulse. Hence, the
impulse response of the system (2.100) is obtained by its homogeneous solution (as carried out
before, under free response), but with the initial conditions (2.102). The three cases of damping
ratio (ζ < 1, ζ > 1, and ζ = 1) should be considered separately. Then, one can conveniently obtain
the following results:

(2.103a)

(2.103b)

(2.103c)

An explanation concerning the dimensions of h(t) is appropriate at this juncture. Note that y(t) has
the same dimensions as u(t). Since h(t) is the response to a unit impulse δ(t), it follows that they
have the same dimensions. The magnitude of δ(t) is represented by a unit area in the u(t) vs. t
plane. Consequently, δ(t) has the dimensions of time–1, or frequency. It follows that h(t) also has
the dimensions of time–1 or frequency.

The Riddle of Zero Initial Conditions

For a second-order system, zero initial conditions correspond to y(0) = 0 and (0) = 0. It is clear
from equations (2.103) that h(0) = 0, but (0) ≠ 0, which appears to violate the zero-initial-
conditions assumption. This situation is characteristic in system response to impulses and their
derivatives and can be explained as follows. When an impulse is applied to a system at rest (zero
initial state), the highest derivative of the system differential equation becomes infinity momentarily.
As a result, the next lower derivative becomes finite (nonzero) at t = 0+. The remaining lower
derivatives maintain their zero values at that instant. When an impulse is applied to the system
given by equation (2.100), for example, the acceleration (t) becomes infinity, and the velocity

(t) takes a non-zero (finite) value shortly after its application (t = 0+). The displacement y(t),
however, would not have sufficient time to change at t = 0+. The impulse input is therefore equivalent
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ḣ

˙̇y
ẏ
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to a velocity initial condition in this case. This initial condition is determined using the integrated
version (2.101) of the system equation (2.100), as has been done.

The impulse-response functions given by equations (2.103) are plotted in Figure 2.22 for some
representative values of damping ratio. It should be noted that, for 0 < ζ < 1, the angular frequency
of damped vibrations is ωd, which is smaller than the undamped natural frequency ωn.

Step Response

A unit step excitation is defined by

(2.104)

Unit impulse excitation δ(t) can be interpreted as the time derivative of �(t):

(2.105)

Note that equation (2.105) re-establishes the fact that for nondimensional �(t), the dimension of
δ(t) is time–1Then, because a unit step is the integral of a unit impulse, the step response can be
obtained directly as the integral of the impulse response; thus,

(2.106)

FIGURE 2.22 Impulse-response functions of a damped oscillator.
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This result also follows from the convolution integral (2.97g) because, for a delayed unit step, one has

(2.107)

Thus, by integrating equations (2.103) with zero initial conditions, the following results are obtained
for step response:

(2.108a)

(2.108b)

(2.108c)

(2.109)

The step responses given by equations (2.108) are plotted in Figure 2.23 for several values of
damping ratio.

FIGURE 2.23 Unit step response of a damped simple oscillator.
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Note that, because a step input does not cause the highest derivative of the system equation to
approach infinity at t = 0+, the initial conditions required to solve the system equation remain
unchanged at t = 0+, provided there are no derivative terms on the input side of the system equation.
If there are derivative terms in the input, then, for example, a step can become an impulse and the
situation changes.

Now the response of the system in Figure 2.21, when subjected to a unit step of support
excitation (see equation (2.99)), is obtained using the principle of superposition, as the sum of the
unit step response and (2ζ/ωn) times the unit impulse response of equation (2.100). Thus, from
equations (2.103) and (2.108), one obtains the step response of the system in Figure 2.21 as

(2.110a)

(2.110b)

(2.110c)

Liebnitz’s Rule

The time derivative of an integral for which the limits of integration are also functions of time can
be obtained using Liebnitz’s rule. It is expressed as

(2.111)

By repeated application of Liebnitz’s rule to equation (2.97g), one can determine the ith derivative
of the response variable; thus,

(2.112)

From this result, it follows that the zero-state response to input [diu(t)]/dti is [diy(t)]/dti, provided
that all lower-order derivatives of u(t) vanish at t = 0. This result verifies the fact, for instance, that
the first derivative of the unit step response gives the impulse-response function.

It should be emphasized that the convolution integral (2.97) gives the forced response of a
system, assuming that the initial conditions are zero. For non-zero initial conditions, the homoge-
neous solution (e.g., equation (2.54) or (2.58)) should be added to this zero-IC response and then
the unknown constants should be evaluated by using the initial conditions. Care should be exercised
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in the situation where there is an initial velocity in the system and then an impulsive excitation is
applied. In this case, one approach would be to first determine the velocity at t = 0+ by adding to
the initial velocity at t = 0–, the velocity change in the system due to the impulse. The initial
displacement will not change, however, due to the impulse. Once the initial conditions at t = 0+

are determined in this manner, the complete solution can be obtained as usual.

PROBLEMS

2.1 From the point of view of energy, explain the phenomenon of natural mechanical vibra-
tion. Compare this with natural oscillations in electrical circuits by giving the electro-
mechanical analogy, associated variables, and parameters.

2.2 Consider the undamped, simple oscillator given by

It is known that x = A sin(ωnt + φ) represents the complete solution to this system equation.
a. What are the physical meanings of the parameters ωn and φ? Show that the velocity

 leads the displacement x by an angle of π/2.
b. Explain why x alone does not represent a complete state of this system, but the pair

x and  does.
c. With x(0) = x0 and (0) = v0 as initial conditions of the system, one can show that

 and .

Using these results, explain how the amplitude and the phase angle of the motion are
affected by the initial conditions and the natural frequency of the system. Why are these
observations intuitively clear as well?

2.3 It is claimed that “the natural variable for representing the response of a simple mass
(inertia) element is its velocity and not displacement.” Can you justify this statement?

Consider a mass m moving in a straight line on a horizontal, frictionless plane. If the
velocity of the mass is v and the displacement is x, what is its equation of motion? Show
that x alone cannot completely represent the “state” of the mass, but either v alone or x
and v taken together can. What is the kinetic energy of the mass? Can it be represented
in terms of x?

2.4 Discuss how mechanical vibrations in a robot arm could adversely affect its performance.
Consider the simplified model of a single-degree-of-freedom robot arm (single link)

shown in Figure P2.4. The link is driven by a DC motor through a light shaft of torsional
stiffness ks.

The moments of inertia of the motor rotor and the robot arm (link) are Jm and Jl,
respectively, about the common axis of rotation. The rotations of the motor and the link
are denoted by θm and θl, respectively, as shown in the figure. 
a. Write a single equation representing the differential motion θm – θl of the robot.
b. What is the natural frequency of vibration of the robot joint?
c. Practically, would you design the robot to have a high natural frequency or a low

natural frequency? Why? Explain how the natural frequency of vibration depends on
the parameters ks, Jm, and Jl. Which of these parameters can be adjusted in order to
obtain the required (design) natural frequency?

2.5 Discuss how the mass of a spring can affect the natural frequency of vibration of a system
of which the spring is a component.
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Consider two rail cars of mass m1 and m2 linked by a spring of mass ms and stiffness
ks, as shown by the simplified model in Figure P2.5.

Assume that the spring is uniform with a uniform velocity distribution along its length
(l). The displacements of the two cars are denoted by x1 and x2, as shown, such that
x1 = 0 and x2 = 0 correspond to the unstretched configuration of the spring.
a. Obtain expressions for the total kinetic energy and the elastic potential energy of the

system.
b. Clearly providing justification, suggest an approximate lumped-parameter model of

the system where the mass of the spring is lumped at one or more locations. You must
give all the mass elements, spring elements, and their parameters in terms of m1, m2,
ms, and ks.

2.6 Define the terms:
a. Undamped natural frequency
b. Damped natural frequency

Consider the damped second-order system given by

Define the parameters ωn and ζ, giving their physical meanings within the context of
mechanical vibration. Give an expression for damped natural vibration ωd of this system.

Describe the free response of the system for the three cases:
(i) ζ < 1
(ii) ζ > 1
(iii) ζ = 1

2.7 a. Consider a heavy uniform spring of mass ms and stiffness k, with one end fixed and
the other end free to move. Clearly showing all the steps and stating the necessary

FIGURE P2.4 A single-link robot arm.

FIGURE P2.5 A two-car train.

˙̇ ˙x x xn n+ + =2 02ζω ω
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assumptions, show that this distributed-parameter system can be approximated by a
massless spring of stiffness k, with a lumped mass ms /3 at the free end.
Hint: Obtain the kinetic energy (KE) and the elastic potential energy (PE) of the
system and then establish a lumped-parameter system having the same KE and PE.

b. Explain why the lumped-parameter approximation obtained in part (a) essentially
corresponds to the first mode of the heavy (distributed-parameter) spring, and not a
higher mode. No analysis is needed.
Hint: Consider the assumptions that were made in obtaining the lumped-parameter
approximation.

c. A heavy spring of mass ms was fixed at one end. The free end was pressed through
a distance of A1 from the static equilibrium position, held stationary, and released. At
the completion of the first cycle of vibration, from this starting time, the free end was
found to be deflected through A2 from the static equilibrium position (Note: A2 < A1).
Also, the time period of the cycle was found to be T. Obtain expressions for the
following, in terms of the measured parameters ms, A1, A2, and T:
(i) Damping ratio ζ
(ii) Undamped natural frequency ωn

(iii) Spring stiffness k
2.8 Energy method is useful in determining the equivalent mass and equivalent stiffness of

a vibrating system. Consider the example shown in Figure P2.8.
First consider the lumped-parameter system shown in Figure P2.8(a). A light, yet rigid

beam is hinged at one end using a frictionless pivot, and restrained using a torsional
spring, with torsional stiffness k at the hinged end. Two point masses m1 and m2 are
attached at distances l1 and l2, respectively, from the hinged end. Under static equilibrium
conditions, the beam remains in a horizontal configuration.

Suppose that the beam is excited by an initial push and left to vibrate in a small
angular displacement θ. As a result, the mass m2 undergoes a lateral-displacement
vibration y. An equivalent vibratory system is shown in Figure P2.8(b). Here, meq is an
equivalent mass assumed to be present at the location of m2 and restrained by an
equivalent linear spring there with stiffness keq.
a. Explain why gravity effects do not enter the equations of motion of Figure P2.8,

assuming that θ and y are measured from the static equilibrium configuration.
b. Obtain expressions for meq and keq in terms of the parameters of the original system

shown in Figure P2.8(a).
c. What is the natural frequency of the system in Figure P2.8(a)?

What is the natural frequency of the system in Figure P2.8(b)?
Comment on these results.

FIGURE P2.8 (a) A lumped-parameter mechanical system; (b) an equivalent system.
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2.9 Consider the second-order, nonlinear, autonomous, dynamic system that is represented
by the state-space model.

where q1 and q2 are the state variables and r(t) is the excitation (input) variable.
a. Linearize this system about an operating point where a steady excitation r is applied,

and the resulting state of the system is . Identify the matrices A and B of the
linear state-space model (see Appendix A).

b. Discuss the stability of the linearized model.
2.10 Consider a test setup for a delicate instrument enclosed in a massless casing. The system

is modeled as in Figure P2.10. A velocity excitation u(t) is applied to the shaker table
using a linear, electromagnetic actuator. Determine a state-space model for the system
that can be used to study the velocity (v) of the instrument.

2.11 A heavy engine was placed on a flexible mount of sufficient stiffness and negligible
damping. The mount was displaced through a vertical distance of y0 from its relaxed
position, due to the weight of the engine. A sketch of the system is shown in Figure P2.11.

What is the natural frequency (undamped) of the engine-mount system? If the damping
in the engine mount is such that the damping ratio is ζ, what is the true (damped) natural
frequency?  

2.12 A compound pendulum of mass m is suspended from a smooth pivot at the point O, as
shown in Figure P2.12.

The radius of gyration of the pendulum about O is k0. Suppose that the centroid G of
the pendulum is at a distance l from O.

FIGURE P2.10 Model for an instrument test setup.
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a. Write an equation of motion for the pendulum in terms of the angle of swing θ about
the vertical equilibrium configuration. What is the natural frequency of motion of the
pendulum? Show that this is less than the natural frequency of a simple pendulum
of length l.

b. The center of precession P of the pendulum is defined, with OP = lp, such that the
natural frequency of the compound pendulum is equal to that of a simple pendulum
of length lp. Obtain an expression for lp in terms of l and k0.

c. Show that if the compound pendulum is hung at P instead of O, its natural frequency
of motion will remain the same as before. (Note: This is a defining property of the
center of precession of a compound pendulum.)

2.13 The inverted pendulum is a simple model that is used in the stability study of inherently
unstable systems such as rockets. Consider an inverted pendulum of point mass m and
length l that is restrained at its pivot (smooth) by a torsional spring of stiffness k. This
arrangement is sketched in Figure P2.13.
a. Derive an equation of motion for this system?
b. Obtain an expression for the natural frequency of small oscillations θ about the vertical

configuration. Under what conditions would such oscillations not be possible (i.e.,
the system become unstable)?  

2.14 Some types of industrial conveyors have sequentially placed holding pockets (pans) for
the objects that are transported on these conveyors. Each pocket is appropriately curved
for stable holding of an object. Consider the idealized case where a holding pocket has
a circular curvature of radius R. Three types of uniform objects are placed in the pockets 

FIGURE P2.11 An engine placed on a flexible mount.

FIGURE P2.12 A compound pendulum.
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where Jc is the moment of inertia about the rolling axis through the center of the object,
m is the mass, and r is the radius of the object. This arrangement is illustrated in Figure
P.2.14.

Suppose that the object rolls up slightly from its equilibrium position as a result of
an initial jerk in the conveyor. Determine the natural frequency of the rolling motion that
ensues, assuming that there is no slip between the object and the pan.

2.15 A simple analysis can be carried out to study the stability of rolling (or pitch) motions of
a ship. It is known that the requirement for stability is that the metacenter M should fall
above the centroid C of the ship. The Archimedes principle states that the buoyancy force
R on an object immersed in a liquid is equal to the weight of the liquid displaced by the
object. Furthermore, R acts upward through the centroid of the liquid mass that is dis-
placed. Its line of action will intersect the upright axis of the body that passes through
the centroid C. This point of intersection is the metacenter M, as shown in Figure P2.15.

FIGURE P2.13 Spring-restrained inverted pendulum used in stability studies.

FIGURE P2.14 A conveyor with holding pans (pockets) for curved objects.
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Consider a ship of mass m and rolling moment of inertia J about its centroid. Let
CM = a as in Figure P2.15. Obtain an equation for rolling motion θ of the ship for the
stable configuration. What is the natural frequency of small oscillations?

2.16 A reciprocating carriage system of a photocopier is sketched in Figure P2.16. It consists
of a carriage of mass M driven by a spring-loaded linkage mechanism. The four-bar
linkage is symmetric with each bar (which is assumed light and rigid) having a length l.
The cross spring has a stiffness k, and has two end masses m as shown.

Consider a general configuration where each linkage bar makes an angle θ with the
cross spring axis. What is the equivalent mass meq and the equivalent stiffness keq of the
system, with respect to the location of the carriage M? What is the natural frequency of
motion of the carriage system in the close neighborhood of this configuration? Neglect
energy dissipation and consider the free (i.e., no drive force) motion. You may assume
that the plane of motion is horizontal.

FIGURE P2.15 Stable rolling oscillations of a ship.

FIGURE P2.16 The carriage mechanism of a photocopier.
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Would the natural frequency of motion be different if the plane of motion is vertical
with the carriage (M) moving
a. Horizontally?
b. Vertically?

2.17 Cam-follower mechanisms are commonly used to realize timed, periodic motions having
some desired characteristics. For example, they are used in synchronized opening and
closing of valves in internal combustion (IC) engines. A schematic representation of such
an arrangement is shown in Figure P2.17.

The rocker arm is supported on a smooth pivot. One end of it carries a spring-loaded
valve. The other end (drive end) has the follower (roller-type) for which the input motion
is determined by the shape profile and the rotatory speed of the cam that is in intimate
contact with the follower. The following parameters are given:

J = moment of inertia of the rocker arm and follower combination about the support-
ing pivot

m = mass of the valve and stem combination (not included in J)
l = lever arm length of the valve weight from the pivot point
k = stiffness of the valve spring

a. Determine expressions for the equivalent mass meq and the equivalent stiffness keq of
the entire system as located at the valve.

b. What is the undamped natural frequency of rocking motions? What is the significance
of this frequency in the proper operation of the cam-follower system?

c. If the equivalent (linear, viscous) damping constant at the valve location is b, what is
the damped natural frequency and the damping ratio of the system?

2.18 Consider a heavy coil of helical spring, as shown in Figure P2.18. The force (f) vs.
deflection (x) relationship of the spring is given by

where
 d = diameter of the coil wire of the spring
D = mean diameter of the spring (coil)
 n = number of (active) turns in the spring
G  = shear modulus of the coil wire

FIGURE P2.17 A vibrating cam-follower mechanism.
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Assuming that the mass density of the spring material is ρ, derive an expression for
the first undamped natural frequency of oscillation of the spring in the fixed-free con-
figuration of end conditions shown in the figure.

2.19 An excavator boom/stick along with its bucket is modeled as a light rigid rod of length l
with a lumped end mass m, as shown in Figure P2.19. The flexibility in the system is
modeled as a torsional spring of stiffness k located at the base O. Write an equation of
motion for the boom for small rotations α from the static equilibrium configuration where
the boom is inclined at an angle θ with the vertical. What is the corresponding natural
frequency of oscillation? Determine the condition of stability. Neglect damping effects.

2.20 Consider a uniform elastic post of mass m, length l, and area of cross section A that is
vertically mounted on a rigid concrete floor. There is a mss M attached to the top end
of the post, as shown in Figure P2.20(a). In studying longitudinal vibrations of the post,
we wish to obtain an equivalent model as shown in Figure P2.20(b), where me is the
equivalent mass of the post as concentrated at the top end and ke is the equivalent stiffness
for longitudinal motions. Assuming a linear variation of longitudinal deflection and
velocity along the post, determine keq and meq. What is the natural frequency of undamped
longitudinal vibrations? The Young’s modulus of the post material is E.

FIGURE P2.18 A heavy helical spring.

FIGURE P2.19 An excavator stick (boom) with the bucket.
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2.21 This problem deals with resolving the direction of a spring force in vibration studies.
Consider the spring-loaded carriage mechanism sketched in Figure P2.21. The carriage
unit of mass m is supported by two springs (with restraining guide plates), one vertical
having stiffness k and the other inclined at θ to the horizontal, with stiffness ka.

Show that the equivalent stiffness keq on the carriage M in the vertical direction is
k + ka /sin2θ. What is the undamped natural frequency of vibration of the carriage system?

2.22 A centrifugal water pump is to be located at the free end of an overhung beam, as shown
in Figure P2.22. It is required that the operating speed of the pump does not correspond
to a natural frequency (strictly, a resonant frequency) of the structural system. Given that:

M = mass of the pump
m = mass of the beam
l = length of the beam
I = 2nd moment of area of the beam cross section about the horizontal neutral axis of

bending
E = Young’s modulus of the beam material

Hint:

FIGURE P2.20 (a) A vertical post with an end mass.; (b) an equivalent model for longitudinal vibrations.
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determine an expression for the equivalent linear stiffness keq and mass meq of the beam,
as located at the free end. What is the corresponding natural frequency of vibration of
the pump-beam system?

2.23 A gear transmission has a meshed pair of gear wheels of moments of inertia Jd and Jl

about their axes of rotation, and a step-down gear ratio r. The load gear wheel is connected
to a purely torsional load of stiffness kl as shown in Figure P2.23. Suppose that the angle
of rotation of the drive gear wheel is θ and that of the load gear wheel is α in the opposite
direction, so that r = θ/α. Determine the equivalent moment of inertia and the equivalent
torsional stiffness of the system, both with respect to the drive side and the load side of
the transmission. For each case, what is the natural frequency of torsional vibration?
Justify the results. 

FIGURE P2.21 A carriage with bi-directional spring restraints.

Hint:

FIGURE P2.22 A water pump mounted on an overhung beam.
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2.24 The handle of a hoist is modeled as a rigid light rod pivoted at the bottom and restrained
by a torsional spring of stiffness k, along with a uniform circular disk of mass m and
radius r attached to the top end, as shown in Figure P2.24. The distance from the bottom
pivot to the center of the disk is l. Initially, the handle is in its vertical configuration,
where the spring is in its relaxed position. Obtain an equation for angular motion θ of

Hint:

FIGURE P2.22 A water pump mounted on an overhung beam.

FIGURE P2.23 A gear transmission with a torsional load.
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the handle with respect to this configuration. What is the natural frequency of small
vibrations of the handle about its upright position? Under what conditions would such
vibrations be not possible? Neglect energy dissipation.    

2.25 A simplified model of an elevator is shown in Figure P2.25.
Note that:

J = moment of inertia of the cable pulley
r = radius of the pulley
k = stiffness of the cable
m = mass of the car and occupants.

a. Which system parameters are variable? Explain.
b. Suppose that the damping torque Td(ω) at the bearings of the pulley is a nonlinear

function of the angular speed ω of the pulley. Taking the state vector x as

in which

f = tension force in the cable
v = velocity of the car (taken positive upwards)

the input vector u as

in which

Tm = torque applied by the motor to the pulley
(positive in the direction indicated in figure)

and, the output vector y as

obtain a complete, nonlinear state-space model for the system.
c. With Tm as the input and v as the output, convert the state-space model into the

nonlinear input-output differential equation model. What is the order of the system?
d. Give an equation for which the solution provides the steady-state operating speed v

of the elevator car.
e. Linearize the nonlinear input/output differential-equation model obtained in part (c),

for small changes m of the input and  of the output, about an operating point.
Note: Tm = steady-state operating-point torque of the motor (assumed known).

Hint:  

f. Linearize the state-space model obtained in part (b) and give the model matrices A, B,
C, and D in the usual notation. Obtain the linear input/output differential equation from
this state-space model and verify that it is identical to what was obtained in part (e).

x = [ ]ω    f v
T

u = [ ]Tm

y = [ ]v

T̂ v̂

Denote  as 
d

d
T bdω

ω ω( ) ( ).
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2.26 An automated wood cutting system contains a cutting unit that consists of a DC motor and
a cutting blade, linked by a flexible shaft and coupling. The purpose of the flexible shaft
is to locate the blade unit at any desirable configuration, away from the motor itself. A
simplified, lumped-parameter, dynamic model of the cutting unit is shown in Figure P2.26.

FIGURE P2.24 A handle of a mechanical hoist.

FIGURE P2.25 A simplified model of an elevator.
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The following parameters and variables are shown in the figure:

Jm = axial moment of inertia of the motor rotor
bm = equivalent viscous damping constant of the motor bearings
k = torsional stiffness of the flexible shaft
Jc = axial moment of inertia of the cutter blade
bc = equivalent viscous damping constant of the cutter bearings
Tm = magnetic torque of the motor
ωm= motor speed
Tk = torque transmitted through the flexible shaft
ωc = cutter speed
TL = load torque on the cutter from the workpiece (wood)

In comparison with the flexible shaft, the coupling unit is assumed rigid, and is also
assumed light. The cutting load is given by

The parameter c, which depends on factors such as the depth of cut and the material
properties of the workpiece, is assumed to be constant in the present analysis.

a. Using Tm as the input, TL as the output, and  as the state vector,

develop a complete (nonlinear) state model for the system shown in Figure P2.26.
What is the order of the system?

b. Using the state model derived in part (a), obtain a single input-output differential
equation for the system, with Tm as the input and ωc as the output.

c. Consider the steady operating conditions, where Tm = Tm, ωm = ωm, Tk = Tk, ωc = ωc,
and TL = TL are all constants. Express the operating point values ωm, Tk, ωc, and TL

in terms of Tm and the model parameters. You must consider both cases: Tm > 0 and
Tm < 0.

d. Now consider an incremental change m in the motor torque and the corresponding

changes m, k, c, and L in the system variables. Determine a linear state model
(A, B, C, D) for the incremental dynamics of the system in this case, using

 as the state vector,  as the input and  as the output.

FIGURE P2.26 A wood cutting machine.

T cL c c= ω ω

x = [ ]ˆ ˆ , ˆ
,ω ωm k c

T
T
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T
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e. In the nonlinear model (see part (a)), if the twist angle of the flexible shaft (i.e.,
θm – θc) is used as the output what would be a suitable state model? What is the system
order then?

f. In the nonlinear model, if the angular position θc of the cutter blade is used as the
output variable, explain how the state model obtained in part (a) should be modified.
What is the system order in this case?

Hint for Part (b):

2.27 It is required to study the dynamic behavior of an automobile during the very brief period
of a sudden start from rest. Specifically, the vehicle acceleration a in the direction of
primary motion, as shown in Figure P2.27(a), is of interest and should be considered as
the system output. The equivalent force f(t) of the engine, applied in the direction of
primary motion, is considered as the system input. A simple dynamic model that can be
used for the study is shown in Figure P2.27(b).

Note that k is the equivalent stiffness, primarily due to tire flexibility, and b is the
equivalent viscous damping constant, primarily due to energy dissipations at the tires
and other moving parts of the vehicle, taken in the direction of a. Also, m is the mass
of the vehicle.
a. Discuss advantages and limitations of the proposed model for the specific purpose.
b. Using force fk of the spring (stiffness k) and velocity v of the vehicle as the state

variables, engine force f(t) as the input, and the vehicle acceleration a as the output,
develop a complete state-space model for the system.
(Note: You must derive the matrices A, B, C, and D for the model.)

c. Obtain the input/output differential equation of the system.
d. Discuss the characteristics of this model by observing the nature of matrix D, and the

input and output orders of the input-output differential equation.
2.28 a. Briefly explain why a purely thermal system typically does not have a free oscillatory

response, whereas a fluid system can.
b. Figure P2.28 shows a pressure-regulated system that can provide a high-speed jet of

liquid. The system consists of a pump, a spring-loaded accumulator, and a fairly long
section of piping that ends with a nozzle. The pump is considered as a flow source
of value Qs. The following parameters are important:

A = area of cross section (uniform) of the accumulator cylinder
k = spring stiffness of the accumulator piston wall
L = length of the section of piping from the accumulator to the nozzle
Ap = area of cross section (uniform, circular) of the piping
Ao = exit area of the nozzle
Cd = discharge coefficient of the nozzle
ρ = mass density of the liquid  

Assume that the liquid is incompressible. The following variables are important:

P1r = P1 – Pr = pressure at the inlet of the accumulator with respect to the ambient
reference Pr

d
dt

d
dt

c c c c

c c c c c c

ω ω ω ω

ω ω ω ω ω ω

( ) =

( ) = + ( )

2

2 2
2

2
2

«
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FIGURE P2.27 (a) A vehicle suddenly accelerating from rest; (b) a simplified model.

FIGURE P2.28 Pressure regulated liquid jet system.
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Q = volume flow rate through the nozzle
h = height of the liquid column in the accumulator

Note that the piston (wall) of the accumulator can move against the spring, thereby
varying h.
i. Considering the effects of the movement of the spring-loaded wall and the gravity

head of the liquid, obtain an expression for the equivalent fluid capacitance Ca of
the accumulator in terms of k, A, ρ, and g. Are the two capacitances that contribute
to Ca (i.e., wall stretching and gravity) connected in parallel or in series?
Note: Neglect the effect of bulk modulus of the liquid.

ii. Considering the capacitance Ca, the inertance I of the fluid volume in the piping
(length L and cross-sectional area Ap), and the resistance of the nozzle only, develop

a nonlinear state-space model for the system. The state vector  and the

input .

For flow in the (circular) pipe with a parabolic velocity profile, the inertance is
given by

and the discharge through the nozzle is given by

in which P2r is the pressure inside the nozzle with respect to the outside reference
pressure Pr.

2.29 Give reasons for the common experience that in the flushing tank of a household toilet,
some effort is needed to move the handle for the flushing action but virtually no effort
is needed to release the handle at the end of the flush.
A simplified model for the valve movement mechanism of a household flushing tank is
shown in Figure P2.29. The overflow tube on which the handle lever is hinged is assumed
rigid. Also, the handle rocker is assumed light, and the rocker hinge is assumed friction-
less. The following parameters are indicated in the figure:

 = the lever arm ratio of the handle rocker

m = equivalent lumped mass of the valve flapper and the lift rod
k = stiffness of the spring action on the valve flapper

The damping force fNLD on the valve is assumed quadratic and is given by

where the positive parameter

a = au for upward motion of the flapper (vNLD ≥ 0)
= ad for downward motion of the flapper (vNLD ≤ 0)

x = [ ]P Qr

T

1 ,

u = [ ]Qs

I
L

Ap

= 2ρ

Q A C
P

d
r= 0

22

ρ

r
l

l
v

h

=

f a v vNLD NLD NLD=
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with

au >> ad

The force applied at the handle is f(t), as shown. 
We are interested in studying the dynamic response of the flapper valve. Specifically,

the valve displacement x and the valve speed v are considered outputs, as shown in
Figure P2.29. Note that x is measured from the static equilibrium point of the spring
where the weight mg is balanced by the spring force.
a. Using valve speed (v) and the spring force (fk) as the state variables, develop a

(nonlinear) state-space model for the system.
b. Linearize the state-space model about an operating point where the valve speed is v.

For the linearized model, obtain the model matrices A, B, C, and D in the usual
notation. Note that the incremental variables  and  are the outputs in the linear
model, and the incremental variable (t) is the input.

c. From the linearized state-space model, derive the input-output model relating (t)
and .

d. Give expressions for the undamped natural frequency and the damping ratio of the
linear model in terms of the parameters a, v, m, and k. Show that the damping ratio
increases with the operating speed.

2.30 The electrical circuit shown in Figure P2.30 has two resistors R1 and R2, an inductor L,
a capacitor C, and a voltage source u(t). The voltage across the capacitor is considered
the output y of the circuit.
a. What is the order of the system and why?
b. Show that the input-output equation of the circuit is given by

FIGURE P2.29 Simplified model of a toilet flushing mechanism.
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Express the coefficients a0, a1, b0, and b1 in terms of the circuit parameters R1, R2, L,
and C. What is the undamped natural frequency? What is the damping ratio?

c. Starting with the auxiliary differential equation

and using  as the state vector, obtain a complete state-space model for the
system in Figure P2.30. Note that this is the “superposition method” of developing a
state model.

d. Clearly explain why, for the system in Figure P2.30, neither the current ic through
the capacitor, nor the time derivative of the output (i.e., ) can be chosen as a state
variable.

2.31 Consider two water tanks joined by a horizontal pipe with an on/off valve. With the valve
closed, the water levels in the two tanks were initially maintained unequal. When the
valve is suddenly opened, some oscillations were observed in the water levels of the
tanks. Suppose that the system is modeled as two gravity-type capacitors linked by a
fluid resistor. Would this model exhibit oscillations in the water levels when subjected
to an initial-condition excitation? Clearly explain your answer.

A centrifugal pump is used to pump water from a well into an overhead tank. This
fluid system is schematically shown in Figure P2.31(a). The pump is considered as a
pressure source Ps(t) and the water level h in the overhead tank is the system output.
The ambient pressure is denoted by Pa. The following parameters are given:

Lv, dv = length and the internal diameter of the vertical segment of the pipe

FIGURE P2.30 An RLC circuit driven by a voltage source.

a
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Lh, dh = length and the internal diameter of the horizontal segment of the pipe
At = area of cross section of the overhead tank (uniform)
ρ = mass density of water
µ = dynamic viscosity of water
g = acceleration due to gravity

Suppose that this fluid system may be approximated by the lumped parameter model
shown in Figure P2.31(b).
a. Give expressions for the equivalent linear fluid resistance of the overall pipe (i.e.,

combined vertical and horizontal segments) Req, the equivalent fluid inertance within

FIGURE P2.31 (a) A system for pumping water from a well into an overhead tank; (b) lumped parameter
model of the fluid system.
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the overall pipe Ieq, and the gravitational fluid capacitance of the overhead tank Cgrv

in terms of the system parameters defined above.

b. Treating  as the state vector,

where

P3a = pressure head of the overhead tank
Q = volume flow rate through the pipe

develop a complete state-space model for the system. Specifically, obtain the matrices
A, B, C, and D.

c. Obtain the input-output differential equation of the system. What is the characteristic
equation of this system?

d. Using the following numerical values for the system parameters:
Lv = 10.0 m, Lh = 4.0 m, dv = 0.025 m, dh = 0.02 m
ρ = 1000.0 kg m–3, µ = 1.0 × 10–3 N s m–2, and tank diameter = 0.5 m,
compute the undamped natural frequency ωn and the damping ratio ζ of the system.
Will this system provide an oscillatory natural response? If so, what is the correspond-
ing frequency? If not, explain why.

2.32 a. Define the following terms with reference to the response of a dynamic system:
i. Homogeneous solution
ii. Particular solution (or particular integral)
iii.Zero-input (or free) response
iv. Zero-state (or forced) response
v. Steady-state response

b. Consider the first-order system

in which u is the input, y is the output, and τ is a system constant.
i. Suppose that the system is initially at rest with u = 0 and y = 0, and suddenly a

unit step input is applied. Obtain an expression for the ensuing response of the
system. Into which of the above five categories does this response fall? What is
the corresponding steady-state response?

ii. If the step input in part (i) above is of magnitude A, what is the corresponding
response?

iii. If the input in part (i) above was an impulse of magnitude P, what would be the
response?

2.33 Consider a mechanical system that is modeled by a simple mass-spring-damper unit with
a forcing excitation. Its equation of motion is given by the normalized form

in which u(t) is the forcing excitation and y is the resulting displacement response. The
system is assumed to be underdamped (ζ < 1).

Suppose that a unit step excitation is applied to the system. At a subsequent time
(which can be assumed t = 0, without loss of generality) when the displacement is y0

and the velocity is v0, a unit impulse is applied to the mass of the system. Obtain an
expression for y that describes the subsequent response of the system, with proper initial
conditions.

x = [ ]P Qa

T

3   

τ dy

dt
y u t+ = ( )

˙̇ ˙y y y u tn n n+ + = ( )2 2 2ζω ω ω
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3 Frequency Response
In many vibration problems, the primary excitation force typically has a repetitive periodic nature
and in some cases this periodic forcing function may be even purely sinusoidal. Examples are
excitations due to mass eccentricity and misalignments in rotational components, tooth meshing in
gears, and electromagnetic devices excited by ac or periodic electrical signals. In basic terms, the
frequency response of a dynamic system is the response to a pure sinusoidal excitation. As the
amplitude and frequency of the excitation are changed, the response also changes. In this manner,
the response of the system over a range of excitation frequencies can be determined and this
represents the frequency response. In this case, frequency (ω) is the independent variable and hence
one is dealing with the frequency domain. In contrast, in Chapter 2 for response consideration in
the time domain, the independent variable is time (t).

Frequency-domain considerations are applicable even when the signals are not periodic. In fact,
a time signal can be transformed into its frequency spectrum through the Fourier transform. This
subject will be studied in more detail in Chapter 4. For the time being, it is adequate to realize that
for a given time signal, an equivalent Fourier spectrum, which contains all the frequency (sinusoidal)
components of the signal, can be determined either analytically or computationally. Hence, a time-
domain representation and analysis has an equivalent frequency-domain representation and analysis,
at least for linear dynamic systems. For this reason, and also because of the periodic nature of
typical vibration signals, frequency response analysis is extremely useful in the subject of mechan-
ical vibrations. This chapter considers the topic of frequency response analysis of dynamic (and
vibratory) systems. Because the response to a particular form of “excitation” is what is considered
here, one is specifically dealing with the subject of “forced response” analysis — albeit in the
frequency domain.

3.1 RESPONSE TO HARMONIC EXCITATIONS

Consider a simple oscillator with an excitation force f(t), as shown in Figure 3.1. The equation of
motion is given by

(3.1)

Suppose that f(t) is sinusoidal (i.e., harmonic). Pick the time reference such that:

(3.2)

where ω = excitation frequency
fo = forcing excitation amptitude

From Chapter 2, for a system subjected to a forcing excitation,

mx bx kx f t˙̇ ˙+ + = ( )

f t f to( ) = cosω
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With this in mind, proceed to analyze the problem. Thus,

(3.3)

or

(3.4)

where u(t) is the modified excitation.
Total response is

(3.5)

with

(3.6)

as obtained in Chapter 2. The particular solution xp, by definition, is one solution that satisfies
equation (3.4). It should be intuitively clear that this will be of the form

(3.7)

FIGURE 3.1 A forced simple oscillator.
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where the constants a1 and a2 are determined by substituting equation (3.7) into the system equation
(3.4) and equating the like coefficient — the method of undetermined coefficients.

Now consider several important cases.

3.1.1 RESPONSE CHARACTERISTICS

Case 1: Undamped Oscillator with Excitation Frequency ≠ Natural Frequency

In this case,

(3.8)

Homogeneous solution: (3.9)

Particular solution: (3.10)

It can be easily verified that xp given by equation (3.10) satisfies the forced system equations (3.8)
or (3.4), with ζ = 0. Hence, it is a particular solution.
Complete solution:

(3.11)

Now A1 and A2 are determined using the initial conditions (ICs):

(3.12)

Specifically, one obtains

(3.13a)

(3.13b)

Hence, the complete response is

(3.14a)
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(3.14b)

This is a stable response in the sense of bounded-input-bounded-output (BIBO) stability, as it is
bounded and does not increase steadily.
Note: If there is no forcing excitation, the homogeneous solution H and the free response X will
be identical. With a forcing input, the natural response (the homogeneous solution) will be influ-
enced by it in general, as discussed in Chapter 2, and as clear from equation (3.14a).

Case 2: Undamped Oscillator with ω = ωn (Resonant condition)

In this case, the xp that was used before is no longer valid (this is the degenerate case), because
otherwise the particular solution cannot be distinguished from the homogeneous solution and the
former will be completely absorbed into the latter. Instead, in view of the double-integration nature
of the forced system equation when ω = ωn, use the particular solution (P):

(3.15)

This choice of particular solution is strictly justified by the fact that it satisfies the forced system
equation.

Complete solution:

(3.16)

ICs:

One obtains

(3.17a)

(3.17b)

The total response is
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(3.18)

Since the forced response increases steadily, this is an unstable response in the bounded-input-
bounded-output (BIBO) sense. Furthermore, the homogeneous solution H and the free response X
are identical, and the particular solution P is identical to the forced response F in this case.

Note that the same system (undamped oscillator) gives a bounded response for some excitations
while producing an unstable (steady linear increase) response when the excitation frequency is
equal to its natural frequency. Hence, the system is not quite unstable, but is not quite stable either.
In fact, the undamped oscillator is said to be marginally stable. When the excitation frequency is
equal to the natural frequency, it is reasonable for the system to respond in a complementary and

FIGURE 3.2 Forced response of a harmonically excited undamped simple oscillator: (a) for a large frequency
difference, (b) for a small frequency difference (beat phenomenon), and (c) response at resonance.
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steadily increasing manner because this corresponds to the most “receptive” excitation. Specifically,
in this case, the excitation complements the natural response of the system. In other words, the
system is “in resonance” with the excitation, and the condition is called a resonance. This aspect
for the more general case of a damped oscillator is addressed in Case 3.

Figure 3.2 shows typical forced responses of an undamped oscillator for a large difference
between the excitation and the natural frequencies (Case 1); for a small difference between the
excitation and the natural frequencies (also Case 1), where a beat phenomenon is clearly manifested;
and for the resonant case (Case 2).

Case 3: Damped Oscillator

The equation of forced motion is

(3.19)

Particular Solution (Method 1)

Since derivatives of both odd order and even order are present in this equation, the particular
solution should have terms corresponding to odd and even derivatives of the forcing function (i.e.,
sin ωt and cos ωt). Hence, the appropriate particular solution will be of the form

(3.20)

Substitute equation (3.20) in (3.19) to obtain

Equate like coefficients:

Hence,

(3.21a)

(3.21b)

This can be written in the matrix-vector form:

(3.21c)
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(3.22)

with the determinant

(3.23)

On simplification,

(3.24a)

(3.24b)

This is the method of undetermined coefficients.

Particular Solution (Method 2): Complex Function Method

Consider

(3.25)

where the excitation is complex. (Note: ).
The resulting “complex” particular solution is

(3.26)

Note that one should take the “real part” of this solution as the true particular solution.
First substitute equation (3.26) into (3.25):

Hence (since ejωt ≠ 0 in general),

(3.27)

It is known (see Chapter 2) that the characteristic polynomial of the system is

(3.28a)

or, with the Laplace variable s,
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(3.28b)

If s = jω, one obtains

(3.28c)

Note that equation (3.28c) is indeed the denominator of (3.27). Hence, equation (3.27) can be
written as

(3.29)

It follows from equation (3.26) that the complex particular solution is

(3.30)

Next, let

(3.31)

Then, by substituting equation (3.31) in (3.30), obtain

(3.32)

where it is clear from equation (3.31) that

The actual (real) particular solution is the real part of equation (3.32) and is given by

(3.33)

It can be easily verified that this result is identical to that obtained previously (by Method 1), as
given by equation (3.20) together with (3.23) and (3.24).

In passing, note here that the frequency-domain transfer function (i.e., response/excitation in
the frequency domain) of the system (3.19) is:

(3.34)
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This frequency transfer function (also known as the frequency response function) is obtained from
the Laplace transfer function G(s) by setting s = jω; this aspect is discussed in more detail later.

As observed in Chapter 2, the particular solution (P) is equal to the steady-state solution because
the homogeneous solution dies out due to damping. The particular solution (3.33) has the following
characteristics:

1. Frequency is same as the excitation frequency ω.

2. Amplitude is amplified by the magnitude .

3. Response is lagged by the phase angle φ of ∆ (or led by the phase angle of G(jω), denoted
by ∠ G(jω)).

4. Because the homogenous solution of a stable system decays to zero, the particular
solution is also the steady-state solution.

Resonance

The amplification  is maximum (i.e., resonance) when �∆� is a minimum or �∆�2 is a

minimum. As noted earlier, this condition of peak amplification of a system when excited by a
sinusoidal input is called resonance, and the associated frequency of excitation is called resonant
frequency. One can determine the resonance of the system (3.19) as follows.

Equation (3.28c) is: 
Hence,

(3.35)

The resonance corresponds to a minimum value of D; or

(3.36)

Hence, with straightforward algebra, the required condition for resonance is

or

or

This is the resonant frequency, and is denoted as

(3.37)
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Note that ωr ≤ ωd ≤ ωn, where ωd is the damped natural frequency given by , as
discussed in Chapter 2. These three frequencies (resonant frequency, damped natural frequency,
and undamped natural frequency) are almost equal for small ζ (i.e., for light damping).

The magnitude and the phase angle plots of G(jω) are shown in Figure 3.3. These curves
correspond to the amplification and the phase change of the particular response (or the steady-state
response) with respect to the excitation input. This pair of magnitude and phase angle plots of a
transfer function with respect to frequency is termed a Bode plot. Usually, logarithmic scales are
used for both magnitude (e.g., decibels) and frequency (e.g., decades). In summary, the steady-
state response of a linear system to a sinusoidal excitation is completely determined by the frequency
transfer function of the system. The total response is determined by adding H to P and substituting
ICs, as usual.

For an undamped oscillator (ζ = 0), note from equation (3.34) that the magnitude of G(jω)
becomes infinity when the excitation frequency is equal to the natural frequency (ωn) of the

FIGURE 3.3 Magnitude and phase angle curves of a simple oscillator (a Bode plot).

ω ζ ωd n= −1 2  
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oscillator. This frequency (ωn) is clearly the resonant frequency (as well as natural frequency) of
the oscillator. This fact has been further supported by the nature of the corresponding time response
[see equation (3.18) and Figure 3.2(c)], which grows (linearly) with time.

3.1.2 MEASUREMENT OF DAMPING RATIO (Q-FACTOR METHOD)

The frequency transfer function of a simple oscillator (3.19) can be used to determine the damping
ratio. This frequency-domain method is also termed the half-power point method, for reasons that
should be clear from the following development.

First assume that . Strictly speaking, one should assume that .

Without loss of generality, consider the normalized (or nondimensionalized) transfer function

(3.38)

As noted before, the transfer function G(s), where s is the Laplace variable, can be converted into
the corresponding frequency transfer function by simply setting s = jω. Its value at the undamped
natural frequency is

(3.39a)

Hence, the magnitude of G(jω) (amplification) at ω = ωn is

(3.39b)

For small ζ, ωr ≅  ωn. Hence,  is approximately the peak magnitude at resonance (resonant peak).

The actual peak is slightly larger.
It is clear from equation (3.39a) that the phase angle of G(jω) at ω = ωn is –π/2.

When the amplification is  of the peak value (i.e., when power is  of the peak power

value; because, for example, the displacement squared is proportional to potential energy, the
velocity squared is proportional to kinetic energy, and power is the rate of change of energy), the
half-power points are given by:

(3.40)
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Hence,

or

(3.41)

Now assume that  or, . Otherwise, one will not get two positive roots for .

Solve for , which will give two roots  and  for ω2. Next, assume . Compare

 with equation (3.41).
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Hence, the damping ratio

(3.44)

It follows that, once the magnitude of the frequency response function G(jω) is experimentally
determined, the damping ratio can be estimated from equation (3.44), as illustrated in Figure 3.4.
The Q-factor, which measures the sharpness of resonant peak, is defined by

Q-factor (3.45)

The term originated from the field of electrical tuning circuits where sharpness of the resonant
peak is a desirable thing (quality factor). Some useful results on the frequency response of a simple
oscillator are summarized in Box 3.1.

EXAMPLE 3.1

A dynamic model of a fluid coupling system is shown in Figure 3.5. The fluid coupler is represented
by a rotatory viscous damper with damping constant b. It is connected to a rotatory load of moment
of inertia J, restrained by a torsional spring of stiffness k, as shown. Obtain the frequency transfer
function of the system relating the restraining torque τ of the spring to the angular displacement
excitation α(t) that is applied at the free end of the fluid coupler. If α(t) = αosinωt, what is the
magnitude (i.e., amplitude) of τ at steady state?

SOLUTION

Newton’s second law gives

FIGURE 3.4 The Q-factor method of damping measurement.
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Hence,

(i)

Motion transfer function is

(ii)

Note that the frequency transfer function is obtained simply by setting s = jω.
Restraining torque of the spring is τ = kθ. Hence,

(iii)

Then, the corresponding frequency response function (frequency transfer function) is

(iv)

For a harmonic excitation of

(v)

one has

(vi)

at steady state.
Here, the phase “lead” of τ with respect to α is

(vii)
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BOX 3.1 Harmonic Response of a Simple Oscillator

Undamped Oscillator: 

Damped Oscillator: 

Particular solution P is also the steady-state response.

A1 and A2 are determined from ICs: 

Resonant Frequency: 

The magnitude of P will peak at resonance.

Damping Ratio: 

where, ∆ω = half-power bandwidth = ω2 – ω1

Note: Q-factor  for low damping.
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(viii)

or

(ix)

with  undamped natural frequency of the load.

Now define the normalized frequency

(x)

Then, from (ix), one obtains

(xi)

(xii)

This means, at resonance, the applied twist is directly transmitted to the load spring.

(xiii)

which is small, and becomes zero at r = 0. Hence, at low frequencies, the transmitted torque is small.

FIGURE 3.5 A fluid coupling system.
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(xiv)

which is small, and goes to zero. Hence, at high frequencies as well, the transmitted torque is small.
The variation of τo with the frequency ratio r is sketched in Figure 3.6.

�

3.2 TRANSFORM TECHNIQUES

Concepts of frequency-response analysis originate from the nature of the response of a dynamic
system to a sinusoidal (i.e., harmonic) excitation. These concepts can be generalized because the
time-domain analysis, where the independent variable is time (t) and the frequency-domain analysis,
where the independent variable is frequency (ω) are linked through the Fourier transformation.
Analytically, it is more general and versatile to use the Laplace transformation, where the inde-
pendent variable is the Laplace variable (s) which is complex (non-real). This is true because
analytical Laplace transforms may exist even for time functions that do not have “analytical” Fourier
transforms. But with compatible definitions, the Fourier transform results can be obtained form the
Laplace transform results simply by setting s = jω. This chapter section formally introduces the
Laplace transformation and the Fourier transformation, and illustrates how these techniques are
useful in the response analysis of vibrating systems. Fourier analysis and techniques will be
discussed further in Chapter 4. The preference of one domain over another will depend on such
factors as the nature of the excitation input, the type of the analytical model available, the time
duration of interest, and the quantities that need to be determined.

3.2.1 TRANSFER FUNCTION

The Laplace transform of a piecewise-continuous function f(t) is denoted here by F(s) and is given
by the Laplace transformation

FIGURE 3.6 Variation of the steady-state transmitted torque with frequency.
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(3.46)

in which s is a complex independent variable known as the Laplace variable, expressed as

(3.47)

and . Laplace transform operation is denoted as �f(t) = F(s). The inverse Laplace transform
operation is denoted by f(t) = �–1F(s) and is given by

(3.48)

The integration is performed along a vertical line parallel to the imaginary (vertical) axis, located
at σ from the origin in the complex Laplace plane (s-plane). For a given piecewise-continuous
function f(t), the Laplace transform exists if the integral in equation (3.46) converges. A sufficient
condition for this is

(3.49)

Convergence is guaranteed by choosing a sufficiently large and positive σ. This property is an
advantage of the Laplace transformation over the Fourier transformation (For a more complete
discussion of the Fourier transformation, see later in this chapter and Chapter 4).

By use of Laplace transformation, the convolution integral equation can be converted into an
algebraic relationship. To illustrate this, consider the convolution integral that gives the response
y(t) of a dynamic system to an excitation input u(t), with zero ICs, as discussed in Chapter 2. By
definition (3.46), its Laplace transform is written as

(3.50)

Note that h(t) is the impulse response function of the system. Because the integration with respect
to t is performed while keeping τ constant, dt = d(t – τ). Consequently,

The lower limit of the first integration can be made equal to zero, in view of the fact that u(t) = 0
for t < 0. Again, using the definition of Laplace transformation, the foregoing relation can be
expressed as

(3.51)

F s f t st dt( ) = ( ) −( )
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∫ exp
0

s j= +σ ω

j = −1

f t
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j
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+ ∞
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2π
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exp
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∫ exp σ
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00
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in which

(3.52)

Note that, by definition, the transfer function of a system, denoted by H(s), is given by equation
(3.51). More specifically, system transfer function is given by the ratio of the Laplace-transformed
output and the Laplace-transformed input, with zero initial conditions. In view of equation (3.52),
it is clear that the system transfer function can be expressed as the Laplace transform of the impulse-
response function of the system. Transfer function of a linear and constant-parameter system is a
unique function that completely represents the system. A physically realizable, linear, constant-
parameter system possesses a unique transfer function, even if the Laplace transforms of a particular
input and the corresponding output do not exist. This is clear from the fact that the transfer function
is a system model and does not depend on the system input itself. Note: The transfer function is
also commonly denoted by G(s). But in the present context, we use H(s) in view of its relation to
h(t). Some useful Laplace transform relations are given in Table 3.1.

Consider the nth-order linear, constant-parameter dynamic system given by

TABLE 3.1
Important Laplace Transform Relations

�–1F(s) = f (t) �f (t) = F(s)

Impulse function δ(t) 1
Step function �(t)
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(3.53)

For physically realizable systems, m ≤ n. By applying Laplace transformation and then integrating
by parts, it may be verified that

(3.54)

By definition, the initial conditions are set to zero in obtaining the transfer function. This results in

(3.55)

for m ≤ n. Note that equation (3.55) contains all the information that is contained in equation (3.53).
Consequently, transfer function is an analytical model of a system. The transfer function may be
employed to determine the total response of a system for a given input and any initial conditions,
although it is defined in terms of the response under zero initial conditions. This is quite logical
because the analytical model of a system is independent of the system’s initial conditions.

The denominator polynomial of a transfer function is the system’s characteristic polynomial.
Its roots are the poles or the eigenvalues of the system. If all the eigenvalues have negative real
parts, the system is stable. Response of a stable system is bounded (i.e., remains finite) when the
input is bounded (which is the BIBO stability). The zero-input response of an asymptotically stable
system approaches zero with time.

3.2.2 FREQUENCY-RESPONSE FUNCTION (FREQUENCY-TRANSFER FUNCTION)

The Fourier integral transform of the impulse-response function is given by

(3.56)

where f is the cyclic frequency (measured in cycles per second or hertz). This is known as the
frequency-response function (or frequency transfer function) of a system. Fourier transform oper-
ation is denoted as �h(t) = H(f). In view of the fact that h(t) = 0 for t < 0, the lower limit of
integration in equation (3.56) could be made zero. Then, from equation (3.52), it is clear that H(f)
is obtained simply by setting s = j2πf in H(s). Hence, strictly speaking, one should use the notation
H(j2πf) and not H(f). But for the notational simplicity, denote H(j2πf) by H(f). Furthermore, since
the angular frequency ω = 2πf, one can express the frequency response function by H(jω), or simply
by H(ω) for the notational convenience. It should be noted that the frequency-response function,
like the (Laplace) transfer function, is a complete representation of a linear, constant-parameter
system. In view of the fact that both u(t) = 0 and y(t) = 0 for t < 0, one can write the Fourier
transforms of the input and the output of a system directly by setting s = j2πf = jω in the
corresponding Laplace transforms. Specifically, according to the notation used here,
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Then, from equation (3.51),

(3.57)

Note: Sometimes, for notational convenience, the same lowercase letters are used to represent the
Laplace and Fourier transforms as well as the original time-domain variables.

If the Fourier integral transform of a function exists, then its Laplace transform also exists.
The converse is not generally true, however, because of poor convergence of the Fourier integral
in comparison to the Laplace integral. This arises from the fact that the factor exp(–σt) is not
present in the Fourier integral. For a physically realizable, linear, constant-parameter system, H(f)
exists even if U(f) and Y(f) do not exist for a particular input. The experimental determination of
H(f), however, requires system stability. For the nth-order system given by equation (3.53), the
frequency-response function is determined by setting s = j2πf in equation (3.55) as

(3. 58)

This generally is a complex function of f that has a magnitude denoted by �H(f)� and a phase angle
denoted by ∠ H(f).

A further interpretation of the frequency-response function can be given in view of the devel-
opments in Section 3.1. Consider a harmonic input having cyclic frequency f, expressed by

(3.59a)

In analysis, it is convenient to use the complex input

(3.59b)

and take only the real part of the final result. Note that equation (3.59b) does not implicitly satisfy
the requirement of u(t) = 0 for t < 0. Therefore, an appropriate version of the convolution integral
where the limits of integration automatically accounts for this requirement should be used. For
example, one can write

(3.60a)

or

(3.60b)

in which Re[ ] denotes the real part. As t → ∞, the integral term in equation (3.60b) becomes the
frequency-response function H(f), and the response y(t) becomes the steady-state response yss.
Accordingly,
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(3.61a)

or

(3.61b)

for a harmonic excitation, in which the phase lead angle φ = ∠ H(f). It follows from equation (3.61b)
that, when a harmonic excitation is applied to a stable, linear, constant-parameter dynamic system having
frequency-response function H(f), its steady-state response will also be harmonic at the same frequency,
but with an amplification factor of �H(f)� in its amplitude and a phase lead of ∠ H(f). This result has
been established previously, in Section 3.1. Consequently, the frequency-response function of a stable
system can be experimentally determined using a sine-sweep test or a sine-dwell test (see Chapter 10).
With these methods, a harmonic excitation is applied as the system input, and the amplification factor
and the phase-lead angle in the corresponding response are determined at steady state. The frequency
of excitation is varied continuously for a sine sweep, and in steps for a sine dwell. The sweep rate
should be slow enough, and the dwell times should be long enough to guarantee steady-state conditions
at the output (see Chapter 10). The pair of plots of �H(f)� and ∠ H(f) against f completely represents the
complex frequency-response function, and is the Bode plot or the Bode diagram, as noted before. In
Bode plots, logarithmic scales are normally used for both frequency f and magnitude �H(f)�.

Impulse Response

The impulse-response function of a system can be obtained by taking the inverse Laplace transform of
the system transfer function. For example, consider the damped simple oscillator given by the normalized
transfer function:

(3.62)

The characteristic equation of this system is given by

(3.63)

The eigenvalues (poles) are given by its roots. Three possible cases exist, as discussed below and also
in Chapter 2.

Case 1 (ζ < 1)

This is the case of complex eigenvalues λ1 and λ2. Because the coefficients of the characteristic equation
are real, the complex roots should occur in conjugate pairs. Hence,

(3.64)

in which

(3.65)

is the damped natural frequency.

y H f u j ftss = ( ) ( )[ ]Re exp0 2π
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Case 2 (ζ > 1)

This case corresponds to real and unequal eigenvalues

(3.66)

with a ≠ b, in which

(3.67)

and

(3.68)

Case 3 (ζ = 1)

In this case, the eigenvalues are real and equal:

(3.69)

In all three cases, the real parts of the eigenvalues are negative. Consequently, these second-order
systems of a damped simple oscillator are always stable.

The impulse-response functions h(t) corresponding to the three cases are determined by taking
the inverse Laplace transform (Table 3.1) of equation (3.62) for ζ < 1, ζ > 1, and ζ = 1, respectively.
The following results are obtained:

(3.70a)

(3.70b)

(3.70c)

These results are identical to what was obtained in Chapter 2.

Step Response

Unit step function is defined by

(3.71)

Unit impulse function δ(t) can be interpreted as the time derivative of �(t); thus,

(3.72)
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Note that equation (3.72) reestablishes the fact that for nondimensional �(t), the dimension of δ(t)
is (time)–1. Because ��(t) = 1/s (see Table 3.1), the unit step response of the dynamic system
(3.62) can be obtained by taking the inverse Laplace transform of

(3.73)

which follows from equation (3.73).
To facilitate using Table 3.1, partial fractions of equation (3.73) are determined in the form

in which the constants a1, a2, and a3 are determined by comparing the numerator polynomial; thus,

Then a1 = 1, a2 = –2ζωn, and a3 = 1.
The following results are obtained:

(3.74a)

(3.74b)

(3.74c)

In equation (3.74c),

(3.75)

These results are the same as those obtained in Chapter 2.

3.2.3 TRANSFER FUNCTION MATRIX

Consider again the state-space model of a linear dynamic system as discussed in Chapter 2 and
Appendix A. It is given by

(3.76a)

(3.76b)

where, x = nth order state vector, u = rth order input vector, y = mth order output vector, A =
system matrix, B = input gain matrix, C = output (measurement) gain matrix, and D = feedforward
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gain matrix. One can express the input-output relation between u and y, in the Laplace domain, by
a transfer function matrix of the order m × r.

To obtain this relation, Laplace transform the equations (3.76a) and (3.76b) and use zero initial
conditions for x; thus,

(3.77a)

(3.77b)

From equation (3.77a), it follows that,

(3.78)

in which, I is the nth order identity matrix. By substituting equation (3.78) into (3.77b), one obtains
the transfer relation

(3.79a)

or

(3.79b)

The transfer-function matrix G(s) is an m × r matrix given by

(3.80)

In practical systems with dynamic delay, the excitation u(t) is not fed forward into the response y.
Consequently, D = 0 for systems that are normally encountered. For such systems,

(3.81)

Several examples are given now to illustrate the approaches of obtaining transfer function
models when the time domain differential equation models are given and to indicate some uses of
a transfer function model. Some useful results in the frequency domain are summarized in Box 3.2.

EXAMPLE 3.2

Consider the simple oscillator equation given by

(i)

Note that u(t) can be interpreted as a displacement input (e.g., support motion) or ku(t) can be
interpreted as the input force applied to the mass. Take the Laplace transform of the system equation
(i) with zero initial conditions; thus,

(ii)

s s s sX AX BU( ) = ( ) + ( )

Y CX DUs s s( ) = ( ) + ( )

X I A BUs s s( ) = −( ) ( )−1

Y C I A B D Us s s( ) = −( ) +[ ] ( )−1

Y G Us s s( ) = ( ) ( )

G C I A B Ds s( ) = −( ) +−1

G C I A Bs s( ) = −( )−1

my by ky ku t˙̇ ˙+ + = ( )

ms bs k Y s kU s2 + +( ) ( ) = ( )
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The corresponding transfer function is

(iii)

BOX 3.2 Useful Frequency-Domain Results

Laplace Transform (�): 

Fourier Transform (�): 

Note:  May use F(ω) to denote F(jω)
Note:  Set s = jω = j2πf to convert Laplace results into Fourier results.

Transfer function  in Laplace domain, with zero ICs.

Frequency transfer function (or frequency response function) = H(jω)
Note: Notation G(s) is also used to denote a system transfer function
Note: H(s) = �h(t)

h(t) = impulse response function = response to a unit impulse input.

Frequency Response:

Y(jω) = H(jω)U(jω)

where, U(jω) = Fourier spectrum of input u(t)
Y(jω) = Fourier spectrum of output y(t)

Note: �H(jω)� = response amplification for a harmonic excitation of frequency ω
∠ H(jω) = response phase “lead” for a harmonic excitation

Multivariable Systems:

State-space model:

Transfer-matrix model: 

where
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∞
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or, in terms of the undamped natural frequency ωn and the damping ratio ζ, where,  and
, the transfer function is given by

(iv)

This is the transfer function corresponding to the displacement output. It follows that the output
velocity transfer function is

(v)

and the output acceleration transfer function is

(vi)

In the output acceleration transfer function, m = n = 2. This means that if the acceleration of the
mass that is caused by an applied force is measured, the input (applied force) is instantly felt by
the acceleration. This corresponds to a feedforward action of the input excitation or a lack of
dynamic delay. For example, this is the primary mechanism through which road disturbances are
felt inside a vehicle that has very hard suspensions.

EXAMPLE 3.3

Again consider the simple oscillator differential equation

(i)

By defining the state variables as

(ii)

a state model for this system can be expressed as

(iii)

If one considers both displacement and velocity as outputs, then

(iv)

Note that the output gain matrix C is the identity matrix in this case. From equations (3.79b) and
(3.81), it follows that:
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(v)

(vi)

The transfer function matrix is

(vii)

in which  is the characteristic polynomial of the system. The first element in
the only column in G(s) is the displacement-response transfer function and the second element is
the velocity-response transfer function. These results agree with the expressions obtained in the
previous example.

Now consider the acceleration  as an output and denote it by y3. It is clear from the system
equation (i) that,

(viii)

or, in terms of the state variables,

(ix)

Note that this output explicitly contains the input variable. The feedforward situation implies that
the matrix D is non-zero for the output y3. Now,

which simplifies to

(x)

This again confirms the result for the acceleration output transfer function that was obtained in the
previous example.
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EXAMPLE 3.4

a. Briefly explain an approach that one could use to measure the resonant frequency of a
mechanical system. Do you expect this measured frequency to depend on whether dis-
placement, velocity or acceleration is used as the response variable? Justify your answer.

b. A vibration test setup is schematically shown in Figure 3.7.

In this experiment, a mechanical load is excited by a linear motor and its acceleration response is
measured by an accelerometer and charge amplifier combination. The force applied to the load by
the linear motor is also measured, using a force sensor (strain-gage type). The frequency response
function [acceleration/force] is determined from the sensor signals, using a spectrum analyzer.

Suppose that the mechanical load is approximated by a damped oscillator with mass m, stiffness
k, and damping constant b, as shown in Figure 3.7. If the force applied to the load is f(t) and the
displacement in the same direction is y, show that the equation of motion of the system is given by

Obtain an expression for the acceleration frequency response function G(jω) in the frequency
domain, with excitation frequency ω as the independent variable. Note that the applied force f is
the excitation input and the acceleration a of the mass is the response, in this case.

Express G(jω) in terms of (normalized) frequency ratio , where ωn is the undamped

natural frequency.
Giving all the necessary steps, determine an expression for r at which the acceleration frequency

response function will exhibit a resonant peak. What is the corresponding peak magnitude of �G�?
For what range of values of damping ratio ζ would such a resonant peak be possible?

FIGURE 3.7 Measurement of the acceleration spectrum of a mechanical system.

my by ky f t˙̇ ˙+ + = ( )

r
n

= ω
ω

©2000 CRC Press

http://www.semeng.ir


www.20file.org
SOLUTION

(a) For a single-degree-of-freedom (dof) system, apply a sinusoidal forcing excitation at the
dof and measure the displacement response at the same location. Vary the excitation
frequency ω in small steps and, for each frequency at steady state, determine the ampli-
tude ratio of the [displacement response/forcing excitation]. The peak amplitude ratio
will correspond to the resonance. For a multi-dof system, several tests may be needed,
with excitations applied at different locations of freedom and the response measured at
various locations as well. (See Chapters 10 and 11). In the frequency domain:

It follows that the shape of the frequency response function will depend on whether the
displacement, velocity, or acceleration is used as the response variable. Hence, it is likely
that the frequency at which the peak amplification occurs (i.e., resonance) will also
depend on the type of response variable that is used.

(b) A free-body diagram of the mass element is shown in Figure 3.8.
Newton’s second law gives

(i)

Hence, the equation of motion is

(ii)

The displacement transfer function is

(iii)

Note that, for notational convenience, the same lowercase letters are used to represent
the Laplace transforms as well as the original time-domain variables (y and f). The
acceleration transfer function is obtained by multiplying equation (iii) by s2. (From

Table 3.1, the Laplace transform of  is s, with zero ICs). Hence,

(iv)

In the frequency domain, the corresponding frequency response function is obtained by
substituting jω for s. Hence,

(v)

Velocity response spectrum Displacement response spectrum

Acceleration response spectrum Velocity response spectrum
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Divide throughout by m and use  and , where ωn = undamped natural

frequency, and ζ = damping ratio.
Then,

(vi)

where . The magnitude of G(jω) gives the amplification of the acceleration signal

with respect to the forcing excitation:

(vii)

Its peak value corresponds to the peak value of

(viii)

and gives the resonance. This occurs when . Hence,

The solution is

The first result (r = 0) corresponds to static conditions, and is ignored. Hence, the resonant
peak occurs when

FIGURE 3.8 Free-body diagram.
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which has the valid root

(ix)

Note that r has to be real and positive. It follows that, for a resonance to occur,

Substitute in (vii) the resonant value of r to get

or

(x)

�

3.3 MECHANICAL IMPEDANCE APPROACH

Any type of force or motion variable can be used as input and output variables in defining a system
transfer function. In vibration studies, three particular choices are widely used. The corresponding
frequency transfer functions are named impedance functions, mobility functions, and transmissibility
functions. These are described in the present section and in the subsequent section, and their use
is illustrated.

Through variables (force) and across variables (velocity), when expressed in the frequency
domain (as Fourier spectra), are used in defining the two important frequency transfer functions:
mechanical impedance and mobility. In the case of impedance function, velocity is considered the
input variable and the force is the output variable; whereas in the case of mobility function, the
converse applies. Specifically,

(3.82)

It is clear that mobility (M) is the inverse of impedance (Z). Either transfer function can be used
in a given problem. One can define several other versions of frequency transfer functions that might
be useful in the modeling and analysis of mechanical systems. Some of the relatively common
ones are listed in Table 3.2. Note that, in the frequency domain, since Acceleration = jω × Velocity;
and Displacement = Velocity/(jω), the alternative types of transfer functions as defined in Table 3.2
are related to Mechanical Impedance and Mobility through a factor of jω; specifically,
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In these definitions, the variables — force, acceleration, and displacement — should be interpreted
as the corresponding Fourier spectra.

The time-domain constitutive relations for the mass, spring, and the damper elements are well
known. The corresponding transfer relations are obtained by replacing the derivative operator d/dt
by the Laplace operator s. The frequency transfer functions are obtained by substituting jω or j2πf
for s. These results are derived below.

Mass Element:

In the frequency domain,

Hence,

(3.83 a and b)

Spring Element:

TABLE 3.2
Definitions of Useful Mechanical Transfer Functions

Transfer Function
Definition

(in the frequency domain)

Dynamic stiffness Force/displacement
Receptance, dynamic flexibility, or compliance Displacement/force
Impedance (Z) Force/velocity
Mobility (M) Velocity/force
Dynamic inertia Force/acceleration
Accelerance Acceleration/force
Force transmissibility (Tf) Transmitted force/applied force
Motion transmissibility (Tm) Transmitted velocity/applied velocity

Dynamic inertia = Force acceleration Impedance j

Accelerance = Acceleration force Mobility j

Dynamic stiffness = Force displacement Impedance j

Receptance = Displacement / force Mobility j
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In the frequency domain,

Hence,

(3.84 a and b)

Damper Element:

Then,

(3.85 a and b)

These results are summarized in Table 3.3.

3.3.1 INTERCONNECTION LAWS

Any general impedance element or a mobility element can be interpreted as a two-port element in
which, under steady conditions, energy (or power) transfer into the device takes place at the input
port and energy (or power) transfer out of the device takes place at the output port. Each port of
a two-port element has a through variable, such as force or current, and an across variable, such
as velocity or voltage, associated with it. Through variables are called flux variables, and across
variables are called potential variables. Through variables are not always the same as flow variables
(velocity and current). Similarly, across variables are not the same as effort variables (force and
voltage). For example, force is an effort variable, but it is also a through variable. Similarly, velocity
is a flow variable and is also an across variable. The concept of effort and flow variables is useful
in giving unified definitions for electrical and mechanical impedance. But in component intercon-
necting and circuit analysis, mechanical impedance is not analogous to electrical impedance. The

TABLE 3.3
Impedance and Mobility Functions of
Basic Mechanical Elements

Element

Frequency Transfer Function (Set s = jω = j2πf)

Impedance Mobility Receptance

Mass, m

Spring, k

Damper, b
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definition of mechanical impedance is force/velocity in the frequency domain. This is a ratio of
(through variable)/(across variable), whereas electrical impedance, defined as voltage/current in the
frequency domain, is a ratio of (across variable)/(through variable). Because both force and voltage
are “effort” variables and velocity and current are flow variables, it is then convenient to use the
definition

In other words, impedance measures how much effort is needed to drive a system at unity flow.
Nevertheless, this definition does not particularly help in analyzing interconnected systems with
mechanical impedance, because mechanical impedance cannot be manipulated using the rules for
electrical impedance. For example, if two electric components are connected in series, the current
(through variable) will be the same for both components, and the voltage (across variable) will be
additive. Accordingly, impedance of a series-connected electrical system is just the sum of the
impedances of the individual components. Now consider two mechanical components connected
in series. Here, the force (through variable) will be the same for both components, and velocity
(across variable) will be additive. Hence, it is mobility, not impedance, that is additive in the case
of series-connected mechanical components. It can be concluded that, in circuit analysis, mobility
behaves like electrical impedance, and mechanical impedance behaves like electrical admittance.
Hence, the “generalized series element” is electrical impedance or mechanical mobility, and the
“generalized parallel element” is electrical admittance or mechanical impedance. The corresponding
interconnection laws are summarized in Table 3.4.

Now, two examples are given to demonstrate the use of impedance and mobility methods in
frequency-domain problems.

TABLE 3.4
Interconnection Laws for Impedance and Mobility

Series Connections Parallel Connections

v v v
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EXAMPLE 3.5

Consider the simple oscillator shown in Figure 3.9(a). A schematic mechanical circuit is given in
Figure 3.9(b). Note that in this circuit, the broken line from the mass to the ground represents how
the “inertia force” of the mass is felt by (or virtually transmitted to) the ground. This is the case
because the net force that generates the acceleration in the mass (i.e., the inertia force) must be
transmitted to the ground at the reference point of the force source. This is the same reference with
respect to which the velocity of the mass is expressed. If the input is the force f(t), the source
element is a force source. The corresponding response is the velocity v, and in this situation the
transfer function V(f)/F(f) is a mobility function. On the other hand, if the input is the velocity v(t),
the source element is a velocity source. Then, f is the output, and the transfer function F(f)/V(f) is
an impedance function.

Suppose that a known forcing function is applied to this system (with zero initial conditions)
using a force source, and the velocity is measured. Now, if one were to move the mass exactly at
this predetermined velocity (using a velocity source), the force generated at the source would be
identical to the originally applied force. In other words, mobility is the reciprocal (inverse) of
impedance, as noted earlier. This reciprocity should be intuitively clear because one is dealing with
the same system and same initial conditions. Due to this property, one can use either the impedance
representation or the mobility representation, depending on whether the elements are connected in
parallel or in series, irrespective of whether the input is a force or a velocity. Once the transfer
function is determined in one form, its reciprocal gives the other form.

In the present example, the three elements are connected in parallel, as clear from the mechanical
circuit shown in Figure 3.9(b). Hence, the impedance representation is appropriate. The overall
impedance function of the system is

(3.86)

Then, the mobility function is

(3.87)

Note that if in fact the input is the force, the mobility function will govern the system behavior. In
this case, the characteristic polynomial of the system is s2 + bs + k, which corresponds to a simple
oscillator and, accordingly, the (dependent) velocity response of the system would be governed by
this. If, on the other hand, the input is the velocity, the impedance function will govern the system
behavior. The characteristic polynomial of the system in this case is s, which corresponds to a
simple integrator. This is a physically non-realizable system because the numerator order (2) is
greater than the denominator order (1). The (dependent) force response of the system would be
governed by an integrator-type behavior. To explore this behavior further, suppose that the velocity
source has a constant value. The inertia force will be zero. The damping force will be constant.
The spring force will increase linearly. Hence, the net force will have an integration (linearly
increasing) effect. If the velocity source provides a linearly increasing velocity (constant acceler-
ation), the inertia force will be constant, the damping force will increase linearly, and the spring
force will increase quadratically.
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FIGURE 3.9 (a) A ground-based mechanical oscillator; (b) schematic mechanical circuit; and (c) impedance
circuit.
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EXAMPLE 3.6

Consider the system shown in Figure 3.10(a). In this example, the motion of the mass m is not
associated with an external force. The support motion v, however, is associated with a force f.

The schematic mechanical circuit representation shown in Figure 3.10(b) and the corresponding
impedance circuit shown in Figure 3.10(c) indicate that the spring and the damper are connected
in parallel and the mass is connected in series with this pair. By impedance addition for parallel
elements and mobility addition for series elements, it follows that the mobility function is

(3.88)

It also follows that when the support force is the input (force source) and the support velocity is
the output, the system characteristic polynomial is ms(bs + k), which is known to be inherently
unstable due to the presence of a free integrator, and has a nonoscillatory transient response.

The impedance function that corresponds to support velocity input (velocity source) is the
reciprocal of the previous mobility function; thus,

(3.89)

and

(3.90)

The resulting impedance function F(f)/Vm(f) is not admissible and physically nonrealizable since
Vm cannot be an input because the associated force can become infinity. This is confirmed by the
fact that the corresponding transfer function is a differentiator, which is not physically realizable.
The mobility function Vm(f)/F(f) corresponds to a simple integrator. Physically, when a force f is
applied to the support, it is transmitted to the mass, unchanged, through the parallel spring-damper
unit. Accordingly, when f is constant, a constant acceleration is produced at the mass, causing its
velocity to increase linearly (an integration behavior).

Maxwell’s principle of reciprocity can be demonstrated by noting that the mobility function
Vm(f)/F(f) obtained in this example will be identical to the mobility function when the locations of
f and vm are reversed (i.e., when a force f is applied to the mass m and the resulting motion vm of
the support, which is not restrained by a force, is measured), with the same initial conditions. The
reciprocity property is valid for linear, constant-parameter systems in general, and is particularly
useful in vibration analysis and testing of multi-degree-of-freedom systems; for example, to deter-
mine a transfer function that is difficult to measure, by measuring its symmetrical counterpart in
the transfer function matrix.

3.4 TRANSMISSIBILITY FUNCTIONS

Transmissibility functions are transfer functions that are particularly useful in the analysis of
vibration isolation in machinery and other mechanical systems. Two types of transmissibility
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FIGURE 3.10 (a) An oscillator with support motion; (b) schematic mechanical circuit; and (c) impedance
circuit.
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functions — force transmissibility and motion transmissibility — can be defined as given in Table
3.2. Due to a reciprocity characteristic in linear systems, it can be shown that these two transfer
functions are equal and, consequently, it is sufficient to consider only one of them. However,
consider both types first to show their equivalence.

3.4.1 FORCE TRANSMISSIBILITY

Consider a mechanical system that is supported on a rigid foundation through a suspension system.
If a forcing excitation is applied to the system, the force is not directly transmitted to the foundation.
The suspension system acts as a vibration isolation device (see Chapter 12). Force transmissibility
determines the fraction of the forcing excitation that is transmitted to the support structure (foun-
dation) through the suspension, at different excitation frequencies, and is defined as:

(3.91)

Note that this is defined in the frequency domain and, accordingly, Fs and F should be interpreted
as the Fourier spectra of the corresponding forces.

A schematic representation of the force transmissibility mechanism is shown in Figure 3.11(a).
The reason for the suspension force fs being not equal to the applied force f is attributed to the
inertia paths (broken line in the figure) that are present in a mechanical system.

3.4.2 MOTION TRANSMISSIBILITY

Consider a mechanical system that is supported through a suspension on a structure that may be
subjected to undesirable motions (e.g., guideway deflections, vehicle motions, seismic distur-
bances). Motion transmissibility determines the fraction of the support motion that is transmitted
to the system through its suspension at different frequencies. It is defined as

(3.92)

The velocities Vm and V are expressed in the frequency domain as Fourier spectra.
A schematic representation of the motion transmissibility mechanism is shown in Figure 3.11(b).

Typically, the motion of the system is taken as the velocity of one of its critical masses. Different
transmissibility functions are obtained when different mass points (or degrees of freedom) of the
system are considered.

Next, two examples are given to show a reciprocity property that makes the force transmissibility
and the motion transmissibility functions identical in complementary (reciprocal) systems.

System Suspended on a Rigid Base (Force Transmissibility)

Consider the system suspended on a rigid base and excited by force f(t), as shown earlier in
Figure 3.9(a). Here the system is the inertia element m, and the suspension is the parallel spring
and damper combination. Note that the three elements m, k, and b are all in parallel.

Here, Zm = mjω; Zb = b; and , as given in Table 3.3. Now, because the elements are

connected in parallel, one has (see Table 3.4)

(3.93)
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Hence,

(3.94)

Also, suspension impedance is

(3.95)

where, fs is the force transmitted to the support structure (foundation). Then,

(3.96)

This result should be immediately clear because force is divided among parallel branches in
proportion to their impedance values (because the velocity is common). Now,

(3.97)

Substitute parameters:

FIGURE 3.11 (a) An inertial system with ground-based suspension, and (b) the counterpart (reciprocal)
system with support motion.
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On simplification one obtains

(3.98)

where the normalized frequency

At r = 0,                                                          �Tf� = 1

At r = 1, (3.99)

This transmissibility magnitude curve is shown in Figure 3.12.

FIGURE 3.12 Transmissibility curve for a simple mechanical oscillator.
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System with Support Motion (Motion Transmissibility)

Consider again the system suspended on a moving platform as shown in Figure 3.10(a).
For this system,

for the mass element. Since, the damper and the spring are connected in parallel, the corresponding
impedances are additive. Hence,

(3.100)

This directly follows from the fact that the velocity is divided among series elements in proportion
to their mobilities (because the force is common).

However,

(3.101)

Hence,

(3.102)

It follows that

(3.103)

This establishes the reciprocity property.

3.4.3 GENERAL CASE

Consider an inertial system with a ground-based suspension, as shown in Figure 3.11(a) and its
counterpart with a moving support, as shown in Figure 3.11(b). The corresponding impedance
circuits are shown in Figure 3.13.      
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For system (b):

It follows that

(3.104)

for this more general situation.

EXAMPLE 3.7

Consider again the problem of fluid coupling system shown in Figure 3.5 and studied in Example
3.1. A schematic mechanical circuit for the system is shown in Figure 3.14(a). The corresponding
impedance circuit is shown in Figure 3.14(b). Use the impedance method to solve the same problem.

For this problem: Input angular velocity = (t); Angular velocity of the load = ; and Load
impedance Zl = Zm + Zk. In view of the series connection of Zb and Zl, one has

(i)

FIGURE 3.13 Impedance circuits: (a) inertial system with ground-based suspension; and (b) system and
suspension with support motion.
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For the torsional spring,

(ii)

Multiply the equations (i) and (ii) together.

(iii)

Because time derivative corresponds to multiplication by jω in the frequency domain, one can write
(iii) in the form

(iv)

Substituting Zb = b, Zm = jωJ, and , one obtains

which is identical to what we obtained in Example 3.1.

3.4.4 PEAK VALUES OF FREQUENCY-RESPONSE FUNCTIONS

The peak values of a frequency transfer function correspond to the resonances. The frequencies at
these points are called resonant frequencies. Because a transfer function is the ratio of a response
variable to an input variable, it is reasonable to get different peak frequencies for the same excitation
input, if the response variable that is considered is different. Some results obtained for a damped
oscillator model are summarized in Table 3.5.

FIGURE 3.14 (a) Schematic mechanical circuit of the fluid coupling system, and (b) impedance circuit.
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3.5 RECEPTANCE METHOD

Receptance is another name for dynamic flexibility or compliance and is given by the transfer
function Output displacement/Input force, in the frequency domain (see Table 3.2). Also, as men-
tioned previously, it is directly related to mobility through

(3.105)

and this relationship should be clear due to the fact that Velocity = jω × Displacement, with zero
initial conditions, in the frequency domain. Hence, the receptance functions for the basic elements
mass (m), spring (k), and damper (b) can be derived from the mobility functions of these elements,
as given in Table 3.3. Furthermore, as a result, the interconnection laws given for mobility (M) will
be valid for receptance (R) as well. Specifically, for two receptance elements R1 and R2 connected
in series, the combined receptance is

(3.106)

because the displacements are additive and the force is common. For two receptance elements
connected in parallel, the combined receptance R is given by

(3.107)

because the forces are additive and the displacement is common. The inverse of receptance is
dynamic stiffness.

TABLE 3.5
Some Practical Frequency Response Functions and Their Peaks

System Response/Excitation
Frequency Response

Function (Normalized)

Normalized
Frequency
at Peak (rp)

Peak Magnitude
(Normalized)

Simple oscillator Displacement/force

Simple oscillator with 
velocity response

Velocity/force 1

Simple oscillator with 
acceleration response

Acceleration/force

Fluid coupling system Torque/displacement 1 1

Force transmissibility Force/force

Motion transmissibility Velocity/velocity Same Same Same
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3.5.1 APPLICATION OF RECEPTANCE

The receptance method is widely used in the frequency-domain analysis of multi-degree-of-freedom
systems. This is true particularly because the receptance of a multi-component system can be
expressed in a convenient form in terms of the receptances of its constituent components. In deriving
such relations, one can use the conditions of continuity (force balance at points of interconnection,
or nodes) and compatibility (relative displacements in a loop add to zero). In fact, equations (3.106)
and (3.107) are special cases of receptance relations for multi-component systems.

It should be clear from Table 3.3 that the receptance Rm of an inertia element (–1/ω2m)) and
the receptance Rk of a spring element (1/k) are real quantities, unlike the corresponding mobility
functions. The receptance Rb of a damper (1/(bjω)) is imaginary, however. It follows that receptance
functions of undamped systems are real, and one will have to deal only with real quantities in the
receptance analysis of undamped systems. This makes the analysis quite convenient. Also, because
the displacement response of an undamped system becomes infinite when excited by a harmonic
force at its natural frequency, one can see that the receptance function of an undamped system goes
to infinity (or its inverse becomes zero) at its natural frequencies. This property can be utilized in
determining an undamped natural frequency (say, the fundamental natural frequency) of a system
using the receptance method. In particular, the characteristic equations for a system with two
interconnected components are

(3.108)

(3.109)

and their solutions will give the undamped natural frequencies of the combined system. Now
consider two examples to illustrate the application of receptance techniques.

Undamped Simple Oscillator

Consider the simple oscillator shown in Figure 3.9, but assume that the damper is not present. As
has been noted before, the mass and the spring elements are connected in parallel. Hence, the
characteristic equation of the undamped system is

(3.110)

or

(3.111)

or

whose positive solution is

Series :
1

0
1 2R R+

=

Parallel : R R1 2 0+ =

R Rm k+ = 0

− + =1 1
02ω m k

− + =k mω2 0
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which gives the undamped natural frequency.

Dynamic Absorber 

Dynamic absorbers are commonly used in practice for vibration suppression in machinery over
narrow frequency ranges. Specifically, a dynamic absorber can “absorb” the vibration energy from
the main system (machine) at a specific frequency (tuned frequency) and thereby completely balance
the vibration excitation in the system. Details are found in Chapter 12.

Consider a machine of equivalent mass M and equivalent stiffness K that is mounted on a rigid
foundation, as modeled in Figure 3.15(a). A dynamic absorber, which is a lightly damped oscillator,
of mass m and stiffness k is mounted on the machine. The damping is neglected in the model. The
machine receives a vibration excitation f(t), and the objective of the absorber is to counteract this
excitation. A schematic mechanical circuit of the system is shown in Figure 3.15(b). The overall
system can be considered to consist of the two subsystems: the subsystem a, representing the

FIGURE 3.15 (a) A machine with a vibration absorber; (b) schematic mechanical circuit; (c) component
receptance circuit; and (d) subsystem receptance circuit.

ω ω= =n
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machine, has M and K connected in parallel with the excitation source; and the subsystem b,
representing the vibrating absorber, has m and k connected in series, as is clear from Figure 3.15(b).
The corresponding receptance circuit, indicating the two subsystems with receptances Ra and Rb,
is shown in Figure 3.15(d).

Because M and K are connected in parallel, from equation (3.107) one obtains

 (3.112)

Because m and k are connected in series, from equation (3.106) one obtains

(3.113)

Now, because the subsystems a and b are connected in parallel, from equation (3.109), the
characteristic equation of the overall system is given by

(3.114)

Substituting equations (3.112) and (3.113) into (3.114), one obtains

BOX 3.3 Concepts of Reception

Note: R is real for undamped systems.
Natural frequency: R → ∞ (undamped case)

Characteristic Equation:

For system with series components: 

For system with parallel components: 

(e.g., for two parallel components: R1 + R2 = 0 gives natural frequency.)

Receptance  

Compliance,  Dynamic flexibility
Displacement

Force

R

( ) =
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=
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(3.115)

On simplification, after multiplying throughout by the common denominator, one obtains the
characteristic equation

(3.116)

This will give two positive roots for ω, which are the two undamped natural frequencies of the
system. Typically, the natural frequency of the vibration absorber must be tuned to the frequency
of excitation in order to achieve effective vibration suppression, as discussed in Chapter 12.

Here, one has only considered direct receptance functions, where the considered excitation and
response are both for the same node. For more complex, multi-component, multi-degree-of-freedom
systems, one needs to consider cross receptance functions, where the response is considered at a
node other than where the excitation force is applied. Such situations are beyond the scope of the
present introductory material. Some concepts of receptance are summarized in Box 3.3.

PROBLEMS

3.1 What is meant by the frequency spectrum of a signal?
a. Define the following terms:

i. Mechanical impedance
ii. Mobility
iii.RMS value of a signal

b. Using sketches, show how the following specifications can be represented in the
frequency domain:
i. Ride quality of a ground transit vehicle for short trips and for long trips
ii. Specification for a vibration (shaker) test

3.2 a. Define the following terms:
i. Undamped natural frequency
ii. Damped natural frequency
iii.Resonant frequency
iv. Damping constant
v. Damping ratio
vi. Half-power frequencies
vii.Q-factor

For the mass-spring-damper system described by  

with the usual notation, give expressions for each of the six quantities that you have defined,
in terms of the system parameters m, b, and k. Full credit will be given if you can correctly
and completely describe the procedure for deriving expressions for these quantities.

Four tests are carried out on the same mass-spring-damper system, as schematically
shown in Figure P3.2. Assume that the damping ratio of the test object is less than 0.7.
The experiments (i) and (ii) are “hammar tests,” and (iii) and (iv) are “sine tests.” In a
hammar test, a single quick impact is given to the mass and the response (displacement)
of the mass is measured. From that, the most significant frequency of oscillation is
determined; for example, using a spectrum analyzer. In a sine test, a sinusoidal forcing
function f0sinωt is applied to the test object and its steady-state response is measured for

1 1 1
02 2− +

+
−

+ =
ω ωM K m k

mM kM Km km kKω ω4 2 0− + +( ) + =

mx bx kx f t˙̇ ˙+ + = ( )
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a given frequency ω. The test is repeated for a range of frequencies, and from the results
the excitation frequency that corresponds to the highest amplification of the object
response is observed.

Note that the tests (i) and (iii) are carried out for the vertical configuration of the
object in the presence of gravity. Tests (ii) and (iv) are done in the horizontal configu-
ration, so that the gravity effects can be neglected.

By carrying out the four tests, the four frequency values are determined as explained
in the above procedure. Are the four frequencies obtained from the four tests identical
or different? Clearly justify your answer.

3.3 a. In relation to a mechanical system that executes forced vibrations, define, compare,
and contrast the following pairs of terms:
i. Homogeneous solution and Free response
ii. Particular solution and Forced response

b. Vibrations in the flexible coupling unit of a motor-driven mechanical device is to be
investigated. A simple schematic diagram of the test arrangement that is being con-
sidered is shown in Figure P.3.3(a). A simplified model is shown in Figure P3.3b.
Assume that all forms of dissipation are negligible. The motor is harmonically excited
so that the magnetic torque generated is given by

FIGURE P3.2 Several possibilities of vibration testing.
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i. Show that the equation of motion of the simplified model is given by

in the usual notation.
ii. Suppose that the excitation is applied at t = 0, when the system has the initial

conditions:

Obtain expressions for the total (complete) response θ of the system for the two
cases of

where ωn is the natural frequency of the system.
Sketch the behavior of the time response for the following three cases:

1. ω very close to ωn

2. ω quite different from ωn

3. ω equal to ωn

3.4 a. Define the terms: Mechanical impedance; Mobility; Force transmissibility; and
Motion transmissibility.

FIGURE P3.3 (a) Vibration investigation of a flexible coupling system; and (b) a simplified model.
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In a vibration test, a harmonic forcing excitation is applied to the test object by
means of a shaker and the velocity response at some other location is measured by
using an accelerometer.
i. Strictly speaking, is this a mobility test or an impedance test? Justify your answer.
ii. How could the velocity response be measured using an accelerometer?

b. A machine of mass m has a rotating device that generates a harmonic forcing excitation
f(t) in the vertical direction. The machine is mounted on the factory floor using a
vibration isolator of stiffness k and damping constant b. The harmonic component of
the force that is transmitted to the floor, due to the forcing excitation, is fs(t). A
corresponding model is shown in Figure P3.4. Giving all necessary steps, obtain an
expression for the force transmissibility magnitude �Tf� from f to fs in terms of r and
ζ where

 of the system; and

ω = excitation frequency (of f(t)).

c. Suppose that in part (b), m = 100 kg and k = 1.0 × 106 N m–1. Also, the frequency of
the excitation force f(t) in the operating range of the machine is known to be 200 rad
s–1 or higher. Determine the damping constant b of the vibration isolator so that the
force transmissibility magnitude is 0.5 or less.

3.5 Piezoelectric accelerometers are commonly used in vibration testing. A schematic dia-
gram of a typical version of uniaxial piezoelectric accelerometer is shown in Figure
P3.5(a). The piezoelectric element is sandwiched between a seismic mass and the base
of the accelerometer housing, and an intimate contact is maintained by means of a high-
stiffness spring that is placed between the seismic mass and the housing. The acceler-
ometer typically has a magnetic base, with screw-in threading as well. It is mounted on
an object whose acceleration needs to be measured. As the object accelerates, the seismic
mass will accelerate together. There will be some energy dissipation (damping) due to
the relative movement between the seismic mass and the accelerometer housing. This
dissipation is present primarily in the piezoelectric element, but also can take place in

FIGURE P3.4 Model of a machine mounted on a vibration isolator.

r
n

n= = =ω
ω
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the spring element and attachments. Strain (stress) in the piezoelectric element, due to
its deflection, creates an electric charge and it is sensed through associated signal con-
ditioning hardware (e.g., charge amplifier). This charge signal is known to represent the
base acceleration of the accelerometer.

A simplified model of the accelerometer is shown in Figure P3.5(b). In this model,
m is the equivalent moving mass within the accelerometer housing and it primarily
represents the seismic mass. The stiffness k represents the equivalent spring restraint
between the seismic mass and the accelerometer housing and is contributed by both the
high-stiffness holding spring and the piezoelectric element. The linear viscous damping
element with damping constant b represents the overall energy dissipation, as noted
before. Also,

Base acceleration, a = , is the variable that needs to be measured. Assume that the
charge generated in the piezoelectric element is given by

in which g is a constant of the piezoelectric element, and y – ym is the net deflection of
the piezoelectric element along its axis of sensitivity. We are interested in studying the
relation between the sensed (measured) signal (q) and the quantity that is measured (a).
a. Write a differential equation in y and ym to describe the motion of the system in

Figure P3.5(b). Assume that the displacements are measured from the static equilib-
rium configuration so that gravity effects do not enter into the equation of motion.

b. Obtain a frequency transfer function G(jω) for the ratio , which is equal

to .

c. Determine the frequency at which the magnitude of the accelerometer transfer function
G(jω) will be a maximum. Suggest a frequency range in which the accelerometer
should be used, in order to obtain an acceptable measurement accuracy.

FIGURE P3.5 (a) Schematic diagram of a piezoelectric accelerometer; and (b) a simplified model.
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3.6 Define the following terms:
a. Mechanical impedance c. Force transmissibility
b. Mechanical mobility d. Motion transmissibility
Compare and contrast mechanical impedance and electrical impedance.

Consider an object (say, a piece of equipment) having mechanical impedance Zo and
mobility Mo. It is suspended on a supporting structure of mechanical impedance Zs and
mobility Ms. Two types of structural arrangements, as shown by the circuits in Figures
P3.6(a) and (b) are of interest here.

Show that the force transmissibility  of the system in Figure P3.6(a) is identical

to the motion transmissibility  of the system in Figure P3.6(b).

Interpret (i.e., give the meanings of) the variables Fs, F, Vo, and V of these expressions
in the frequency domain.

Sketch a mechanical system consisting of mass, spring, and damper elements, that
would be in the form of Figure P3.6(a) and give expressions for its Zo and Zs. Sketch
the corresponding Figure P3.6(b) for a mechanical system and give the expressions for
Mo and Ms for that system.

3.7 A machine tool and its supporting structure are modeled as the simple mass-spring-
damper system shown in Figure P3.4.
a. Draw a mechanical-impedance circuit for this system in terms of the impedances of

the three elements: mass (m), spring (k), and viscous damping (b). Show that the
magnitude force transmissibility �Tf� of the system is given by

in which

FIGURE P3.6 (a) A mechanical circuit with parallel-connected impedances; and (b) a mechanical circuit
with series-connected impedances.
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b. Determine the exact value of r, in terms of ζ, at which the transmissibility magnitude
will peak. Show that for small ζ, this value is r = 1.

c. Plot �Tf� vs. r, for the interval r = [0,5], with one curve for each of the five ζ values
0.0, 0.3, 0.7, 1.0, and 2.0 on the same plane. Discuss the behavior of these transmis-
sibility curves.

d. From part (c), determine for each of the five ζ values, the excitation frequency range,
with respect to ωn, for which the transmissibility magnitude is
i. Less than 1.05
ii. Less than 0.5.

e. Suppose that the device in Figure P3.4 has a primary, undamped natural frequency
of 6 Hz and a damping ratio of 0.2. It is required that the system has a force
transmissibility magnitude of less than 0.5 for operating frequency values greater than
12 Hz.

Does the existing system meet this requirement? If not, explain how you should
modify the system to meet the requirement.

3.8 a. A vibrating system has a frequency-domain transfer function of G(jω). If a forcing
excitation with a frequency spectrum F(jω) is applied to this system, the resulting
motion response x(t) can be given by its frequency spectrum X(jω). Customarily we
use the relation

i. Give the main assumptions that are made in arriving at this relation.
ii. What are the advantages and disadvantages of using this relation?

b. An overhead transport device that is used for the transfer of parts and tools in a factory
is schematically shown in Figure P3.8(a). The cart is driven by rubber tires on a
supporting structure and is suspended from the overhead guiding track by means of
a guiding wheel. Assume that the damping effects in the tires dominate over their
elastic effects. Also, the overhead suspension mechanism has some flexibility but
negligible damping

A simplified model that may be used to study the vertical force transmitted to the
overhead guiding track due to surface irregularities of the driven-on surface, is shown
in Figure P3.8(b). Specifically, one is interested in determining the force f transmitted
to the guiding track due to a harmonic component u = u0sinωt of the vertical dis-
placement of the tires.
i. What does ω depend on?
ii. Under steady conditions, express the forcing response f in terms of r = ω/ωn, ζ, k,

and u0, where  and 2ζωn = b/m.
iii.Determine the value of r at which the amplitude of f will peak.

3.9 The Laplace transform of a signal x(t) is given by

What is the signal?

r
n
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=
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3.10 Consider one joint (one degree of freedom) of a direct-drive robotic manipulator as
shown in Figure P3.10. The joint is driven by an armature-controlled DC motor. Since
the electrical time constant is negligible, the magnetic torque Tm of the motor is propor-
tional to the input voltage va of the armature circuit; thus,

The following parameters are defined:

Jm = motor rotor inertia (kg m2)

FIGURE P3.8 (a) Schematic representation of an overhead transport system in a factory; and (b) an
approximate model for studying the vertical force-transfer characteristics.
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bm = motor mechanical damping constant (N m rad–1 s–1)
Jr = inertia of the robot arm
br = damping constant at the robot arm

Assume that the motor rotor is directly and rigidly linked to the robot arm. Neglect the
effects of other joints (i.e., assume a one-degree-of-freedom robot arm).
i. Can the system produce an oscillatory motion under (a) free conditions? (b) forced

conditions? Explain your answer.
ii. Write the differential equation relating the motor (magnetic) torque Tm to the arm

speed ω.
iii. Obtain the transfer function of the system with va as the input and ω as the output.
iv. A unit step voltage input is applied to the arm that is initially at rest. Obtain an

expression for the subsequent speed ω(t) of the arm as a function of time, in terms
of km, bm, br, Jm, and Jr. Hint: Use the Laplace transform method.

3.11 A second order mechanical device (with transfer function Gp(s)) has the following
characteristics:

When a step input is applied to the device, the subsequent response appeared to be
damped oscillations with frequency 2 rad s–1 and a time constant of 0.5 s. Also, at
steady state, the output was found to be equal to the input (i.e., steady-state error = 0).

What is the transfer function Gp(s) of the device?
3.12 A mechanical system that is at rest is subjected to a unit step input �(t). Its response is

given by

a. Write the input-output differential equation of the system.
b. What is the transfer function?
c. Determine the damped natural frequency, undamped natural frequency, and the damp-

ing ratio.
d. Write the response of the system to a unit impulse and find the corresponding initial

condition y(0+).
e. What is the steady-state response for a unit step input?

3.13 A mechanical dynamic system is represented by the transfer function

with positive parameters ζ and ωn.
a. Is the system asymptotically stable?

FIGURE P3.10 A joint of a direct-drive robotic arm.
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b. If the system is given an impulse input, at what frequency will it oscillate? What is
the steady-state value of the output?

c. If the system is given a unit step input, what is the frequency of the resulting output
oscillations? What is its steady-state value?

d. The system is given the sinusoidal input . Determine an expression for
the output y(t) at steady state in terms of a, ω, ωn, and ζ. At what value of the excitation
frequency ω will the amplitude of the output y(t) be maximum at steady state?

3.14 Consider the dynamic system represented by the transfer function

a. Indicate the correct statement among the following:
i. The system is stable
ii. The system is unstable
iii.System stability depends on the input
iv. None of the above

b. Obtain the system differential equation.
c. Using the Laplace transform technique determine the system response y(t) to a unit

step input with zero initial conditions.
d. Determine the steady-state value of the system for a unit step input.

3.15 The rigid output shaft of a diesel engine prime mover is running at a known angular
velocity Ω(t). It is connected through a friction clutch to a flexible shaft that, in turn,
drives a hydraulic pump (see Figure P3.15(a)).

FIGURE P3.15 (a) A pump driven by a diesel engine through a clutch and a flexible shaft.; (b) schematic
diagram of the system; and (c) possibilities of equivalent translatory mechanical systems.
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A linear model for this system is shown schematically in Figure P3.15(b). The clutch
is represented by a viscous rotatory damper of damping constant B1 (units: torque/angular
velocity). The stiffness of the flexible shaft is K (units: torque/angular rotation). The
pump is represented by a rotor of moment of inertia J (units: torque/ angular acceleration)
and viscous damping constant B2.
a. Write the two state equations relating the state variables T and ω to the input Ω, where

T = torque in flexible shaft and ω = pump speed.
Hints: 1. Use a free-body diagram for the shaft, with ω1 as the angular speed at the

left end of the shaft.
2. Write the “torque balance” and “constitutive” relations for the shaft and

eliminate ω1.
3. Draw the free-body diagram for the rotor J and use D’Alembert’s principle

(Newton’s second Law).
b. Obtain the system transfer functions, with Ω as the input, and T and ω as the outputs.
c. Which one of the translatory systems shown in Figure P3.15(c) is analogous to the

system in Figure P3.15(b)?
3.16 A dynamic system that is at rest is subjected to a unit step input �(t). Its response is

given by

a. Write the input-output differential equation for the system.
b. What is its transfer function?
c. Determine the damped natural frequency, undamped natural frequency, and the damp-

ing ratio.
d. Write the response of the system to a unit impulse.

3.17 An air circulation fan system of a building is shown in Figure P3.17(a); and a
simplified model of the system has been developed, as represented in Figure P3.17
(b). The induction motor is represented as a torque source τ(t). The speed ω of the
fan, which determines the volume flow rate of air, is of interest. The moment of inertia
of the fan impeller is J. The energy dissipation in the fan is modeled by a linear
viscous component (of damping constant b) and a quadratic aerodynamic component
(of coefficient d).   

a. Show that the system equation can be given by 

b. Suppose that the motor torque is given by

in which τ is the steady torque and a is a very small amplitude (compared to τ) of
the torque fluctuations at frequency Ω. Determine the steady-state operating speed ω,
which is assumed positive, of the fan.

c. Linearize the model about the steady-state operating conditions and express it in terms
of the speed fluctuations . From this, estimate the amplitude of the speed fluctua-
tions.

3.18 When body flexibilities are neglected, an aircraft has six major degrees of freedom. These
can be defined as three translatory motions (longitudinal, heave, and lateral) and three
angular motions (roll, yaw, and pitch). Usually, all six degrees of freedom are coupled.

y e t t tt= −( ) ( )−2 cos sin �

J b d tω̇ ω ωω τ+ + = ( )
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For a very preliminary analysis, however, each degree-of-freedom can be modeled sep-
arately (i.e., an uncoupled model).
Suppose that the yaw motion of an aircraft is given by the transfer function:

A yaw rate gyro with transfer function

FIGURE P3.17 (a) A motor/fan combination of a building ventilation system; and (b) a simplified model
of the ventilation fan.

FIGURE P3.18 An uncoupled control system for yaw motion of an aircraft.
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is used as the feedback sensor in the control of the yaw motion. The controller is
approximated by a simple gain Gc(s) = 2. Accordingly, the yaw control loop is represented
by the block diagram shown in Figure P3.18.
a. Compute the eigenvalues (poles) of the closed loop system (transfer function = y/u).

Is the control system stable?

Hint: 

b. Suppose that a sinusoidal yaw command

is applied to the system. What is the yaw response y at steady state?
3.19 Consider the intuitively degenerate example of a mechanical system as shown in Figure

P3.19. Note that the support motion v1 is not associated with an external force. The
mass m has an external force f and velocity v. The mass is supported on a spring of
stiffness k and a linear damper of damping constant b.
a. Draw a schematic mechanical circuit and an impedance circuit for the system. Can

the velocity v be considered as an input to the system? Explain.
b. Obtain various possibilities of impedance and mobility functions for this system.   

3.20 Consider the two-degree-of-freedom systems shown in Figure P3.20(a) and (b). The
mechanical elements m1, m2, k1, k, b1, and b are the same for both systems. The first
system is supported on a rigid foundation and a force f(t) is applied to mass m1. The
second system is supported on a light platform that is moved at velocity v(t).
a. Draw an impedance circuit for the system (a) and a mobility circuit for the system (b).
b. Determine the force transmissibility fs/f for system (a) where fs is the force transmitted

to the foundation.
c. Determine the motion transmissibility vm/v for system (b), where vm is the velocity

transmitted to mass m1.
d. Show that the transmissibility functions obtained in parts (b) and (c) above are

identical.
3.21 The tachometer is a velocity-measuring device (passive) that uses the principle of elec-

tromagnetic generation. A DC tachometer is shown schematically in Figure P3.21(a).
The field windings are powered by DC voltage vf. The across variable at the input port
is the measured angular speed ωi. The corresponding torque Ti is the through variable at
the input port. The output voltage vo of the armature circuit is the across variable at the
output port. The corresponding current io is the through variable at the output port. A

FIGURE P3.19 A degenerate mechanical system.
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free-body diagram for the motor armature is shown in Figure P3.21(b). Obtain a transfer-
function model for this device.

3.22 Consider the linear state-space model of a mechanical system as given by

in the usual notation. Obtain a frequency transfer function relationship between the
system output y and the input u.

3.23 Consider again, the model of an instrument test setup, as schematically shown in Figure
P3.23. The springs A and B have a combined stiffness of k1. Show that the transfer
function between the excitation (support displacement) u and the response (velocity of m)
v is given by

FIGURE P3.20 A two-degree-of-freedom mechanical system supported on a (a) rigid foundation, (b) light
moving platform.
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FIGURE P3.21 A DC tachometer example: (a) equivalent circuit; and (b) free-body diagram.

FIGURE P3.23 A model of an instrument test setup.
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3.24 Consider a mass-spring-damper system (a simple oscillator). What is its force transmis-
sibility function? What is its motion transmissibility function? Approximate them for the
case of light damping. Indicate a use of this approximate result.

3.25 A two-degree-of-freedom, undamped, mechanical system is shown in Figure P3.25(a).
Verify that the receptance circuit of the system is as given in Figure P3.25(b). Show that
the receptance relations for this system can be expressed in the vector-matrix form as

where

and Xi and Fi are the frequency spectra of the variables xi and fi, respectively, for i = 1,
2. Using this result, obtain the characteristic equation of the system, whose roots give
the natural frequencies.

FIGURE P3.25 (a) A two-degree-of-freedom mechanical system; and (b) impedance circuit.
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4 Vibration Signal Analysis
Numerous examples can be drawn from engineering applications for vibrating (dynamic) systems
— a steam generator of a nuclear power plant that undergoes flow-induced vibration; a high-rise
building subjected to seismic motions at its foundation; an incinerator tower subjected to aerody-
namic disturbances; an airplane excited by atmospheric turbulence, a gate valve under manual
operation; and a heating, ventilating, and air conditioning (HVAC) control panel stressed due to
vibrations in its support structure are such examples.

Consider an aircraft in flight, as schematically shown in Figure 4.1. There are many excitations
on this dynamic system. For example, jet engine forces and control surface movements are inten-
tional excitations, whereas aerodynamic disturbances are unintentional (and unwanted) excitations.
The primary response of the aircraft to these excitations will be the motions in various degrees of
freedom, including rigid-body and flexible (vibratory) mode motions.

Although the inputs and outputs (excitations and responses) are functions of time, they can
also be represented as functions of frequency, through Fourier transformation. The resulting Fourier
spectrum of a signal can be interpreted as the set of frequency components that the original signal
contains. As noted in Chapter 3, this frequency-domain representation of a signal can highlight
many salient characteristics of the signal and also those of the corresponding system. For this
reason, frequency-domain methods, particularly Fourier analysis, are used in a wide variety of
applications such as data acquisition and interpretation, experimental modeling and modal analysis,
diagnostic techniques, signal/image processing and pattern recognition, acoustics and speech
research, signal detection, telecommunications, and dynamic testing for design development, quality
control, and qualification of products. Many such applications involve the study of mechanical
vibrations. This chapter discusses the nature and analysis of vibration signals.

4.1 FREQUENCY SPECTRUM

Excitations (inputs) to a dynamic system progress with time, thereby producing responses (outputs)
which themselves vary with time. These are signals that can be recorded or measured. A measured
signal is a time history. Note that in this case, the independent variable is time and the signal is
represented in the time domain. A limited amount of information can be extracted by examining a
time history. As an example, consider the time history record that is shown in Figure 4.2. It can
be characterized by parameters such as the following.

ap = peak amplitude
Tp = period in the neighborhood of the peak

= 2 × interval between successive zero crossings near the peak
Te = duration of the record
Ts = duration of strong response (i.e., the time interval beyond which no peaks occur that

are larger than ap/2)
Nz = number of zero crossings within Ts (Nz = 14 in Figure 4.2)

It is obviously cumbersome to keep track of so many parameters and, furthermore, not all of them
are equally significant in a given application. Note, however, that all the parameters listed above
are directly or indirectly related to either the amplitude or the frequency of zero crossings within
©2000 CRC Press
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a given time interval. This signifies the importance of a frequency variable in representing a time
signal. This is probably the fundamental motivation for using frequency-domain representations.
In this context, more rigorous definitions are needed, however, for the parameters amplitude and
frequency. A third parameter, known as phase angle, is also needed for unique representation of a
signal in the frequency domain.

4.1.1 FREQUENCY

Let us further examine the basis of frequency domain analysis. Consider the periodic signal of
period T that is formed by combining two harmonic (or, sinusoidal) components of periods T and
T/2 and amplitudes a1 and a2, as shown in Figure 4.3. The cyclic frequency (cycles per second, or
hertz, Hz) of the two components are f1 = 1/T and f2 = 2/T. Note that in order to obtain the angular
frequency (radians per second), the cyclic frequency must be multiplied by 2π.

4.1.2 AMPLITUDE SPECTRUM

An alternative graphical representation of the periodic signal shown in Figure 4.3 is given in
Figure 4.4. In this representation, the amplitude of each harmonic component of the signal is plotted
against the corresponding frequency. This is known as the amplitude spectrum of the signal, and
it forms the basis of the frequency domain representation. Note that this representation is often

FIGURE 4.1 In-flight excitations and responses of an aircraft.

FIGURE 4.2 A time history record.
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more compact and can be far more useful than the time domain representation. Note further that
in the frequency domain representation, the independent variable is frequency.

4.1.3 PHASE ANGLE

In its present form, Figure 4.4 does not contain all the information of Figure 4.3. For example, if
the high-frequency component in Figure 4.3 is shifted through half its period (T/4), the resulting
signal is shown in Figure 4.5; this signal is quite different from that in Figure 4.3. But because the
amplitudes and the frequencies of the two harmonic components are identical for both signals, they
possess the same amplitude spectrum. Then, what is lacking in Figure 4.3 in order to make it a
unique representation of a signal, is the information concerning the exact location of the harmonic
components with respect to the time reference or origin (t = 0). This is known as the phase
information. As an example, the distance of the first positive peak of each harmonic component
from the time origin can be expressed as an angle (in radians) by multiplying it by 2π/T; this is
termed the phase angle of the particular component. In both signals (shown in Figures 4.3 and
4.5), the phase angle of the first harmonic component is the same and equals π/2 according to the
present convention. The phase angle of the second harmonic component is π/2 in Figure 4.3 and
zero (0) in Figure 4.5.

FIGURE 4.3 Time domain representation of a periodic signal. 

FIGURE 4.4 The amplitude spectrum of a periodic signal.
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4.1.4 PHASOR REPRESENTATION OF HARMONIC SIGNALS

A convenient geometric representation of a harmonic signal of the form

(4.1)

is possible by means of a phasor. This representation is illustrated in Figure 4.6. Specifically,
consider a rotating arm of radius a, rotating in the counterclockwise (ccw) direction at an angular
speed of ω rad s–1. Suppose that the arm starts (i.e., at t = 0) at an angular position φ with respect
to the y-axis (vertical axis) in the ccw sense; then, it is clear from Figure 4.6(a) that the projection
of the rotating arm on the y-axis gives the time signal y(t). This is the phasor representation, where

It should be clear that a phase angle makes practical sense only when two or more signals are
compared. This is so because, for a given harmonic signal, one can pick any point as the time
reference (t = 0); but when two harmonic signals are compared, as in Figure 4.6(b), for example,
one may consider one of those signals that starts (at t = 0) at its position peak as the reference
signal. This will correspond to a phasor whose initial configuration coincides with the positive y-
axis. As is clear from Figure 4.6(b), for this reference signal, φ = 0. Then the phase angle φ of any
other harmonic signal will correspond to the angular position of its phasor with respect to the
reference phasor. Note that, in this example, the time shift between the two signals is φ/ω, which
is also a direct representation of the phase. It should be clear, then, that the phase difference between
two signals is also a representation of the time lead or time lag (delay) of one signal with respect
to the other. Specifically, the phase that is ahead of the reference phasor is considered to “lead”
the reference signal. In other words, the signal acos(ωt + φ) has a phase “lead” of φ or a time
“lead” of φ/ω with respect to the signal of acosωt.

Another important observation can be made with regard to the phasor representation of a
harmonic signal. A phasor can be expressed as the complex quantity

FIGURE 4.5 A periodic signal having an identical amplitude spectrum as for Figure 4.3.

y t a t( ) = +( )cos ω φ

Signal amplitude = Length of the phasor

Signal frequency = Angular speed of the phasor

Signal phase angle = Initial position of the phasor with respect to the -axisy
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(4.2)

whose real part is acos(ωt + φ) — which is in fact the signal of interest. It is clear from Figure 4.6
that if one takes the y-axis to be real and the x-axis to be imaginary, then the complex representation
(4.2) is indeed a complete representation of a phasor. By using the complex representation (4.2)
for a harmonic signal, significant benefits of mathematical convenience can be derived in vibration
analysis. It suffices to remember that practical vibrations are “real” signals, and regardless of the
type of mathematical analysis that is used, only the real part of a complex signal of the form (4.2)
will make physical sense.

4.1.5 RMS AMPLITUDE SPECTRUM

If a harmonic signal y(t) is averaged over one period T, the negative portion cancels out with the
positive portion, giving zero. Consider a harmonic signal of angular frequency ω (or cyclic fre-
quency f), phase angle φ and amplitude a, as given by

(4.3)

FIGURE 4.6 Phasor representation of a harmonic signal: (a) a phasor and the corresponding signal, and
(b) representation of a phase angle (phase lead) φ.

y t ae a t ja tj t( ) = = +( ) + +( )+( )ω φ ω φ ω φcos sin

y t a t a ft( ) = +( ) = +( )cos cosω φ π φ2
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Its average (mean) value is

(4.4)

which can be verified by direct integration, while noting that

(4.5)

For this reason, the mean value is not a measure of the “strength” of a signal in general. Now
define the root-mean-square (rms) value of a signal. This is the square root of the mean value of
the square of the signal. By direct integration, it can be shown that for a sinusoidal (or harmonic)
signal, the rms value is given by

(4.6)

It follows that the rms amplitude spectrum is obtained by dividing the amplitude spectrum by .
For example, for the periodic signal formed by combining two harmonic components as in Figure 4.3,
the rms amplitude spectrum is shown in Figure 4.7. This again is a frequency domain representation
of a signal, and the independent variable is frequency.

4.1.6 ONE-SIDED AND TWO-SIDED SPECTRA

The mean squared amplitude spectrum of a signal (sometimes called power spectrum because the
square of a variable such as voltage and velocity is a measure of quantities such as power and
energy, although it is not strictly the spectrum of power in the conventional sense) is obtained by
plotting the mean squared amplitude of the signal against frequency. Note that these are one-sided
spectra because only the positive frequency band is considered. This is a realistic representation
because one cannot talk about negative frequencies for a real system. However, from a mathematical
point of view, one can consider negative frequencies as well. In a spectral representation, it is at
times convenient to consider the entire frequency band (consisting of both negative and positive
values of frequency) — then it becomes a two-sided spectrum. In this case, the spectral component
at each frequency value should be equally divided between the positive and the negative frequency
values (hence, the spectrum is symmetric) such that the overall mean squared amplitude (or power,
or energy) remains the same.

FIGURE 4.7 The rms amplitude spectrum of a periodic signal.
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It has been seen that, for a harmonic signal component of amplitude a and frequency f (e.g.,
acos(2πf + φ), the rms amplitude is a2/2 at frequency f; whereas, the two-side spectrum has a
magnitude of a2/4 at both the frequency values –f and +f.

Note that, although it is possible to interpret the meaning of a negative time (which represents
the past, previous to the starting point), it is not possible to give a realistic meaning to a negative
frequency. This concept is introduced primarily for analytical convenience, and may be interpreted
as clockwise rotation of a phasor.

4.1.7 COMPLEX SPECTRUM

It has been shown that, for unique representation of a signal in the frequency domain, both amplitude
and phase information should be provided for each frequency component. Alternatively, the spec-
trum can be expressed as a complex function of frequency, having a real part and an imaginary
part. For example, for a harmonic component given by acos(2πfi + φ), the two-sided complex
spectrum can be expressed as

and

(4.7)

in which j is the imaginary unity as given by . Note that the spectral component at the
negative frequency is the complex conjugate of that at the positive frequency. This concept of
complex spectrum is the basis of (complex) Fourier series expansion that will be considered in
detail in a later section. It should be clear that the complex conjugate of a spectrum is obtained by
changing either j to –j or ω to –ω (or f to –f).

4.2 SIGNAL TYPES

Signals can be classified into different types, depending on their characteristics. Note that the signal
itself is a time function, but its frequency domain representation can bring up some of its salient
features. Signals particularly important in the present study are the excitations and responses of
vibrating systems. These can be divided into two broad classes: deterministic signals and random
signals, depending on whether one is dealing with deterministic vibrations or random vibrations.
Consider a damped cantilever beam that is subjected to a sinusoidal base excitation of frequency
ω and amplitude uo in the lateral direction (Figure 4.8). In the steady state, the tip of the beam will
also oscillate at the same frequency, but with a different amplitude yo; and furthermore, there will
be a phase shift by an angle φ. For a given frequency and known beam properties, the quantities
yo and φ can be completely determined. Under these conditions, the tip response of the cantilever
is a deterministic signal in the sense that when the experiment is repeated, the same response is
obtained. Furthermore, the response can be expressed as a mathematical relationship in terms of
parameters for which the values are determined with 100% certainty, and probabilities are not
associated with these parameters (such parameters are termed deterministic parameters). Random
signals are nondeterministic (or stochastic) signals. Their mathematical representation requires
probability considerations. Furthermore, if the process were to repeat, there would always be some
uncertainty as to whether an identical response signal could be obtained again.

Deterministic signals can be classified as periodic, quasi-periodic, or transient. Periodic signals
repeat exactly at equal time periods. The frequency (Fourier) spectrum of a periodic signal consti-
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tutes a series of equally spaced impulses. Furthermore, a periodic signal will have a Fourier series
representation. This implies that a periodic signal can be expressed as a sum of sinusoidal compo-
nents for which the frequency ratios are rational numbers (not necessarily integers). Quasi-periodic
(or almost periodic) signals, as well, have discrete Fourier spectra but the spectral lines are not
equally spaced. Typically, a quasi-periodic signal can be generated by combining two or more
sinusoidal components, provided that at least two of the components have as their frequency ratio
an irrational number. Transient signals have continuous Fourier spectra. These types of signals
cannot be expressed as a sum of sinusoidal components (or a Fourier series). All signals that are
not periodic or quasi-periodic can be classified as transient. Most often, highly damped (over-
damped) signals with exponentially decaying characteristics are termed “transient,” although var-
ious other forms of signals such as exponentially increasing (unstable) responses, sinusoidal decays
(underdamped responses), and sine sweeps (sinewaves with variable frequency) also fall into this
category. Table 4.1 gives examples for these three types of deterministic signals. The corresponding
amplitude spectra are sketched in Figure 4.9. A general classification of signals, with some exam-
ples, is given in Box 4.1.

4.3 FOURIER ANALYSIS

Fourier analysis is the key to frequency analysis of vibration signals. The frequency domain
representation of a time signal is obtained through the Fourier transform. One immediate advantage
of the Fourier transform is that, through its use, differential operations (differentiation and integra-
tion) in the time domain are converted into simpler algebraic operations (multiplication and divi-
sion). Transform techniques are quite useful in mathematical applications. For example, a simple,

FIGURE 4.8 Response to base excitations of a tall structure (cantilever).

TABLE 4.1
Deterministic Signals

Primary
Classification

Nature of the
Fourier Spectrum An Example

Periodic Discrete and equally spaced

Quasi-periodic Discrete and irregularly spaced

Transient Continuous

y t y to sin sinω ω φ+ +



1

5
3

y t y to sin sinω ω φ+ +( )1 2

y t to exp sin−( ) ( )+λ ω φ
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yet versatile, transformation from products into sums is accomplished through the use of the
logarithm. Three versions of Fourier transform are important: the Fourier integral transform can
be applied to any general signal, the Fourier series expansion is applicable only to periodic signals,
and the discrete Fourier transform is used for discrete signals. As shall be seen, all three versions
of transform are interrelated. In particular, one must use the discrete Fourier transform in digital
computation of both Fourier integral transform and Fourier series expansion.

FIGURE 4.9 Magnitude spectra for three types of deterministic signals: (a) periodic; (b) quasi-periodic; and
(c) transient.
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4.3.1 FOURIER INTEGRAL TRANSFORM (FIT)

The Fourier spectrum X(f) of a time signal x(t) is given by the forward transform relation

(4.8)

with  and f the cyclic frequency variable. When equation (4.8) is multiplied by exp(j2πfτ)
and integrated with respect to f using the orthogonal property (which can be considered as a
definition of the Dirac delta function δ)

(4.9)

one obtains the inverse transform relation

(4.10)

The forward transform is denoted by the operator �, and the inverse transform by �–1. Hence, the
Fourier transform pair is given by

BOX 4.1 Signal Classification

e.g.,

* Blade-passing signal of a 
turbine at constant speed

* Counter-rotating-mass shaker 
signal at constant speed

* Step response of an undamped 
oscillator

* Steady-state response of a 
damped system to a sine 
excitation

e.g.,

* Shock wave generated from an 
impact test with known impulse

* Step response of a damped 
oscillator

* Response of a variable-speed rotor.
* Excitation of a variable-frequency 

shaker

e.g.,

* Machine tool vibration
* Jet engine noise
* Aerodynamic gusts
* Road irregularity disturbances
* Atmospheric temperature
* Earthquake motions
* Electrical line noise

SIGNAL TYPES

Deterministic Random

(Future not precisely known through
finite observations or analysis)

Periodic Transient

X f x t j ft dt( ) = ( ) −( )
−∞

∞

∫ exp 2π

j = −1

exp j f t dt t2π τ δ τ−( )[ ] = −( )
−∞

∞

∫

x t X f j ft df( ) = ( ) ( )
−∞

∞

∫ exp 2 π
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(4.11)

Note that for real systems, x(t) is a real function but X(f) is a complex function in general. Hence,
the Fourier spectrum of a signal can be represented by the magnitude �X(f)� and the phase angle
∠ X(f) of the (complex) Fourier spectrum X(f). Alternatively, the real part Re X(f) and the imaginary
part ImX(f) together can be used to represent the Fourier spectrum.

According to the present definition, the Fourier spectrum is defined for negative frequency
values as well as positive frequencies (i.e., a two-sided spectrum). The complex conjugate of a
complex value is obtained by simply reversing the sign of the imaginary part; in other words, by
replacing j by –j. By noting that replacing j by –j in the forward transform relation is identical to
replacing f by –f it should be clear that the Fourier spectrum (of real signals) for negative frequencies
is given by the complex conjugate X*(f) of the Fourier spectrum for positive frequencies. As a
result, only the positive-frequency spectrum needs to be specified and the negative-frequency
spectrum can be conveniently derived from it — through complex conjugation.

The Laplace transform, which was introduced in Chapter 3, is similar to the Fourier integral
transform. The Laplace transform is defined by the forward and inverse relations

(4.12)

and

(4.13)

Since the signal itself is zero for t < 0, it is seen that for all practical purposes, Fourier transform
results can be deduced from the Laplace transform analysis, simply by substituting s = j2πf = jω
and σ = 0.

4.3.2 FOURIER SERIES EXPANSION (FSE)

For a periodic signal x(t) of period T, the Fourier series expansion (FSE) is given by

(4.14)

with ∆F = 1/T. Strictly speaking (see FIT relations), this is the inverse transform relation. The
scaling factor ∆F is not essential, but is introduced so that the Fourier coefficients An will have the
same units as the Fourier spectrum. The Fourier coefficients are obtained by multiplying the inverse
transform relation by exp(–j2πmt/T) and integrating with respect to t, from 0 to T, using the
orthogonality condition

(4.15)

Note that the Kronecker delta δmn is defined as
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(4.16)

for integer values of m and n. The forward transform that results is given by

(4.17)

Note that An are complex quantities in general.
It can be shown that for periodic signals, FSE is a special case of FIT — as expected. Consider

a Fourier spectrum consisting of a sum of equidistant impulses separated by the frequency interval
∆F = 1/T;

(4.18)

This is shown in Figure 4.10 (only the magnitudes �An� can be plotted in this figure because An is
complex in general). Substituting this spectrum into the inverse FIT relation given earlier, one
obtains the inverse FSE relation (4.14). Furthermore, this shows that the Fourier spectrum of a
periodic signal is a series of equidistant impulses.

4.3.3 DISCRETE FOURIER TRANSFORM (DFT)

The discrete Fourier transform relates an N-element sequence of sampled (discrete) data signal

(4.19)

to an N-element sequence of spectral results

(4.20)

through the forward transform relation

FIGURE 4.10 Fourier spectrum of a periodic signal and its relation to Fourier series.
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(4.21)

with n = 0, 1, …, N – 1. The values Xn are called the spectral lines. It can be shown that these
quantities approximate the values of the Fourier spectrum (continuous) at the corresponding discrete
frequencies. Identify ∆T as the sampling period (i.e., the time step between two adjacent points of
sampled data).

The inverse transform relation is obtained by multiplying the forward transform relation by
exp(j2πnr/N) and summing over n = 0 to N – 1, using the orthogonality property

(4.22)

Note that this orthogonality relation can be considered as a definition of Kronecker delta. The
inverse transform is

(4.23)

The data record length is given by

(4.24)

The DFT is a transform, in its own right, independent of the FIT. It is possible, however, to interpret
this transformation as the trapezoidal integration approximation of FIT. (The author has deliberately
chosen appropriate scaling factors ∆T and ∆F in order to maintain this equivalence, and it is very
useful in computing the Fourier spectrum of a general signal or the Fourier coefficients of a periodic
signal using a digital computer.) Proper interpretation of the digital results is crucial, however, in
using DFT to compute (approximate) Fourier spectra of a (continuous) signal. In particular, two
types of error — aliasing and leakage (or truncation error) — should be considered. This subject
will be treated later. The three transform relations, corresponding inverse transforms, and the
othogonality relations are summarized in Table 4.2.

The link between the time domain signals and models, and the corresponding frequency
domain equivalents is the Fourier integral transform. Table 4.3 provides some important properties
of the FIT and the corresponding time-domain relations that are useful in the analysis of signals
and system models. These properties can be easily derived from the basic FIT relations (4.8)
through (4.10). It should be noted that, inherent in the definition of the DFT given in Table 4.2
is the N-point periodicity of the two sequences; that is, Xn = Xn+iN and xm = xm+iN, for i = ±1, ±2, ….

The definitions given in Table 4.2 may differ from the versions available in the literature by a
multiplicative constant. However, it is observed that according to the present definitions, the DFT
may be interpreted as the trapezoidal integration of the FIT. The close similarity between the
definitions of the FSE and the DFT is also noteworthy. Furthermore, according to the last column
in Table 4.2, the FSE can be expressed as a special FIT consisting of an equidistant set of impulses
of magnitude An/T located at f = n/T.
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4.3.4 ALIASING DISTORTION

Recalling that the primary task of digital Fourier analysis is to obtain a discrete approximation to
the FIT of a piecewise continuous function, it is advantageous to interpret the DFT as a discrete
(digital computer) version of the FIT, rather than an independent discrete transform. Accordingly,
the results from a DFT must be consistent with the exact results obtained if the FIT were used.
The definitions given in Table 4.2 are consistent in this respect because the DFT is given as the
trapezoidal integration of the FIT. However, it should be clear that if X(f) is the FIT of x(t), the
sequence of sampled values {X(n·∆F)} is not exactly the DFT of the sampled data sequence
{x(m·∆T)}. Only an approximate relationship exists.

A further advantage of the definitions given in Table 4.2 is apparent when dealing with the
Fourier series expansion. As previously noted, the FIT of a periodic function is a set of impulses.
One can avoid dealing with impulses by relating the complex Fourier coefficients to the DFT
sequence of sampled data from the periodic function, via the present definitions.

TABLE 4.2
Unified Definitions for Three Fourier Transform Types

Relation Name Fourier Integral Transform
Discrete Fourier Transform

(DFT)
Fourier Series Expansion

(FSE)

Forward transform

Inverse transform

Orthogonality

Notes:

TABLE 4.3
Important Properties of the Fourier Transform

Function of Time Fourier Spectrum

x(t) X(f)
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Aliasing distortion is an important consideration when dealing with sampled data from a
continuous signal. This error can enter into computation in both the time domain and the frequency
domain, depending on the domain in which the results are presented. This issue will now be
addressed.

Sampling Theorem

The basic relationships among the FIT, the DFT, and the FSE are summarized in Table 4.4. By
means of straightforward mathematical procedures, the relationship between the FIT and the DFT
can be established. Although {X(n·∆F)} is not the DFT of {x(m·∆T)}, the results in Table 4.4 show
that { (n·∆F)} is the DFT of { (m·∆T)} where the periodic functions (f) and (t) are as defined
in Table 4.4. This situation is illustrated in Figure 4.11. It should be recalled that X(f) is a complex
function in general and as such it cannot be displayed as a single curve in a two-dimensional
coordinate system. Both the magnitude and the phase angle variations with respect to frequency f
are needed. For brevity, only the magnitude �X(f)� is shown in Figure 4.11(a). Nevertheless, the
argument presented applies to the phase angle ∠ X(f) as well.    

It is obvious that in the time interval [0, T],  x(t) = (t) and xm = m. However, (n·∆F) is
only approximately equal to X(n·∆F) in the frequency interval [0, F]. This is known as the aliasing
distortion in the frequency domain. As ∆T decreases (i.e., as F increases), (f) will become closer
to X(f) in the frequency interval [0, F/2], as is clear from Figure 4.11(c). Furthermore, due to the
F-periodicity of (f), its value in the frequency range [F/2, F] will approximate X(f) in the frequency
range [–F/2, 0].

It is clear from the preceding discussion that if a time signal x(t) is sampled at equal steps of
∆T, no information regarding its frequency spectrum X(f) is obtained for frequencies higher than
fc = 1/(2∆T). This fact is known as Shannon’s sampling theorem, and the limiting (cutoff) frequency
is called the Nyquist frequency. In vibration signal analysis, a sufficiently small sample step ∆T
should be chosen in order to reduce aliasing distortion in the frequency domain, depending on the
highest frequency of interest in the analyzed signal. This, however, increases the signal processing
time and the computer storage requirements, which is undesirable particularly in real-time analysis.
It also can result in stability problems in numerical computations. The Nyquist sampling criterion
requires that the sampling rate (1/∆T) for a signal should be at least twice the highest frequency
of interest. Instead of making the sampling rate very high, a moderate value that satisfies the Nyquist

TABLE 4.4
Unified Fourier Transform Relationships

Description

Relationship

DFT and FIT DFT and FSE

Given

Form

Then

Where

x t X f( )  → ( )FIT x t An( )  → { }FSE

x̃ t x t kT
k
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FIGURE 4.11 Relation between FIT and DFT, with an illustration of aliasing error: (a) Fourier integral
transformation (FIT) of a signal; (b) periodically arranged time signal; (c) periodicity of the frequency spectrum;
(d) sampled time signal; (e) sampled frequency spectrum (with aliasing error); and (f) sampled original
spectrum (no aliasing error).
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sampling criterion is used in practice, together with an anti-aliasing filter to remove the distorted
frequency components. It should be noted that the DFT results in the frequency interval [fc , 2fc]
are redundant because they merely approximate the frequency spectrum in the negative frequency
interval [–fc , 0], which is known for real signals. This fact is known as the Hermitian property.

The last column of Table 4.4 presents the relationship between the FSE and the DFT. It is noted
that the sequence{ n} rather than the sequence of complex Fourier series coefficients {An} repre-
sents the DFT of the sampled data sequence {x(m·∆T)}. In practice, however, An → 0 as n → ∞.
Consequently, n is a good approximator to An in the range [–N/2 ≤ n ≤ N/2] for sufficiently large N.
This basic result is useful in determining the Fourier coefficients of a periodic signal using discrete
data that are sampled at time steps of ∆T = 1/F, in which F is the fundamental frequency of the
periodic signal. Again, the aliasing error ( n – An) can be reduced by increasing the sampling rate
(i.e., by decreasing ∆T or increasing N).

Aliasing Distortion in the Time Domain

In vibration applications, it is sometimes required to reconstruct the signal from its Fourier spectrum.
Inverse DFT is used for this purpose and is particularly applicable in digital equalizers in vibration
testing. Due to sampling in the frequency domain, the signal becomes distorted. The aliasing error
( m – x(m∆T)) is reduced by decreasing the sample period ∆F. It should be noted that no information
regarding the signal for times greater than T = 1/∆F is obtained from the analysis.

FIGURE 4.12 Aliasing distortion of frequency spectrum: (a) original spectrum, and (b) distorted spectrum
due to aliasing.
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Ã
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By comparing Figure 4.11(a) with (c), or (e) with (f), it should be clear that the aliasing error
in  in comparison with the original spectrum X, is caused by “folding” of the high-frequency
segment of X beyond the Nyquist frequency into the low-frequency segment of X. This is illustrated
in Figure 4.12(b).

Anti-Aliasing Filter  

It should be clear from Figure 4.12 that if the original spectrum is low-pass filtered at a cutoff
frequency equal to the Nyquist frequency, then the aliasing distortion would not occur due to
sampling. A filter of this type is call an anti-aliasing filter. In practice, it is not possible to achieve
perfect filtering. Hence, some aliasing could remain even after using an anti-aliasing filter. Such
residual errors can be reduced using a filter cutoff frequency that is slightly less than the Nyquist
frequency. Then the resulting spectrum would only be valid up to this filter cutoff frequency (and
not up to the theoretical limit of Nyquist frequency).

EXAMPLE 4.1

Consider 1024 data points from a signal, sampled at 1 millisecond (ms) intervals.

Sample rate fs = 1/0.001 samples/s = 1000 Hz = 1 kHz

Nyquist frequency = 1000/2 Hz = 500 Hz

Due to aliasing, approximately 20% of the spectrum (i.e., spectrum beyond 400 Hz) will be distorted.
Here, one can use an anti-aliasing filter.

Suppose that a digital Fourier transform computation provides 1024 frequency points of data
up to 1000 Hz. Half of this number is beyond the Nyquist frequency and will not give any new
information about the signal.

Spectral line separation = 1000/1024 Hz = 1 Hz (approx.)

Keep only the first 400 spectral lines as the useful spectrum.
Note: Almost 500 spectral lines can be retained if an accurate anti-aliasing filter is used.

Some useful information of signal sampling is summarized in Box 4.2.   

4.3.5 ANOTHER ILLUSTRATION OF ALIASING

A simple illustration of aliasing is given in Figure 4.13. Here, two sinusoidal signals of frequency
f1 = 0.2 Hz and f2 = 0.8 Hz are shown (Figure 4.13(a)). Suppose that the two signals are sampled
at the rate of fs = 1 sample per second. The corresponding Nyquist frequency is fc = 0.5 Hz. It is
seen that, at this sampling rate, the data samples from the two signals are identical. In other words,
the high-frequency signal cannot be distinguished from the low-frequency signal. Hence, a high-
frequency signal component of frequency 0.8 Hz will appear as a low-frequency signal component
of frequency 0.2 Hz. This is aliasing, as clear from the signal spectrum shown in Figure 4.13.
Specifically, the spectral segment of the signal beyond the Nyquist frequency (fc) cannot be recovered.

It is apparent from Figure 4.11(e) that the aliasing error becomes more and more prominent
for frequencies of the spectrum closer to the Nyquist frequency. With reference to the expression
for (f) in Table 4.4, it should be clear that when the true Fourier spectrum X(f) has a steep roll-
off prior to F/2 (=fc), the influence of the X (f – nF) segments for n ≥ 2 and n ≤ –1 is negligible
in the discrete spectrum in the frequency range [0, F/2]. Hence, the aliasing distortion in the
frequency band [0, F/2] comes primarily from X(f – F), which is the true spectrum shifted to the
right through F. Therefore, a reasonably accurate expression for the aliasing error is

X̃

X̃
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(4.25)

Note from equation (4.8) that the spectral value obtained when f in the complex exponential is
replaced by –f is the same as the spectral value obtained when j is replaced by –j. Since the signal
x(t) is real, it follows that the Fourier spectrum for the negative frequencies is simply the complex
conjugate of the Fourier spectrum for the positive frequencies; thus,

(4.26)

or, in the discrete case,

(4.27)

It follows from equation (4.25) that the aliasing distortion is given by

(4.28)

This result confirms that aliasing can be interpreted as folding of the complex conjugate of the true
spectrum beyond the Nyquist frequency fc(=F/2) over to the original spectrum. In other words, due
to aliasing, frequency components higher than the Nyquist frequency appear as lower frequency
components (due to folding). These aliasing components enter into the digital Fourier results in
the useful frequency range [0, fc].

Aliasing reduces the valid frequency range in digital Fourier results. Typically, the useful
frequency limit is fc /1.28 so that the last 20% of the spectral points near the Nyquist frequency
should be neglected. It should be clear that if a low-pass filter with its cutoff frequency set at fc is
used on the time signal prior to sampling and digital Fourier analysis, the aliasing distortion can

BOX 4.2 Signal Sampling Considerations

• The maximum useful frequency in digital Fourier results is half the sampling rate.

Nyquist Frequency or Cutoff Frequency or Computational Bandwidth:

Aliasing Distortion:
High-frequency spectrum beyond Nyquist frequency folds onto the useful spectrum, thereby
distorting it.

Summary:
1. Pick a sufficiently small sample step ∆T in the time domain to reduce the aliasing

distortion in the frequency domain.
2. The highest frequency for which the Fourier transform (frequency-spectrum) infor-

mation would be valid is the Nyquist frequency fc = 1/(2∆T)
3. DFT results that are computed for the frequency range [fc, 2fc] merely approximate

the frequency spectrum in the negative frequency range [–fc, 0].

fc = 1 ×
2

Sampling rate

e X F n F X n F F X X

n N

n N n n N= − − ⋅( )( ) − ⋅ −( ) = −
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be virtually eliminated. Analog hardware filters can be used for this purpose. They are the anti-
aliasing filters. Note that sometimes fc /1.28(≅  0.8 fc) is used as the filter cutoff frequency. In this
case, the computed spectrum is accurate up to 0.8 fc and not up to fc.

The buffer memory of a typical commercial Fourier analyzer can store N = 210 = 1024 samples
of data from the time signal. This is the size of the data block analyzed in each digital Fourier
transform calculation. This will result in N/2 = 512 spectral points (spectral lines) in the frequency
range [0, fc]. Out of this, only the first 400 spectral lines (approx. 80%) are considered free of
aliasing distortion.

EXAMPLE 4.2

Suppose that the frequency range of interest in a particular vibration signal is 0 to 200 Hz. One is
interested in determining the sampling rate (digitization speed) and the cutoff frequency for the
anti-aliasing (low-pass) filter.

FIGURE 4.13 A simple illustration of aliasing: (a) two harmonic signals with identical sampled data; and
(b) frequency spectra of the two harmonic signals.
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The Nyquist frequency fc is given by fc /1.28 = 200
Hence, fc = 256 Hz.

The sampling rate (or digitization speed) for the time signal that is needed to achieve this range of
analysis is F = 2fc = 512 Hz. With this sampling frequency, the cutoff frequency for the anti-aliasing
filter could be set at a value between 200 and 256 Hz.

4.4 ANALYSIS OF RANDOM SIGNALS

Random (stochastic) signals are generated by some random mechanism. Each time the mechanism
is operated, a new time history (sample function) is generated. The likelihood of any two sample
functions becoming identical is governed by some probabilistic law. If all sample functions are
identical (with unity probability), then the corresponding signal is a deterministic signal. A random
process is denoted by (t), while any sample function of it is denoted by x(t). No numerical
computations can be performed on (t) because it is not known for certainty. Its Fourier transform,
for example, can be written down as an analytical expression, but cannot be numerically computed.
However, once the signal is generated, numerical computations can be performed on that sample
function x(t) because it is a completely known function of time.

4.4.1 ERGODIC RANDOM SIGNALS

At any given time t1, (t1) is a random variable that has a certain probability distribution. Consider a
well-behaved function f{ (t)} of this random variable (which is also a random variable). Its expected
value (statistical mean) is E[f{ (t)}]. This is also known as the ensemble average because it is
equivalent to the average value at t of a collection (ensemble) of a large number of sample functions x(t).

Now consider the function f{x(t)} of one sample function x(t). Its temporal (time) mean is
expressed by

Now, if

(4.29)

then the random signal is said to be ergodic. It should be noted that the right-hand side of equation
(4.29) does not depend on time. Consequently, the left-hand side also should be independent of
the time point t1.

For analytical convenience, random vibration signals are usually assumed to be ergodic (the ergodic
hypothesis). Using this hypothesis, the properties of a random signal could be determined by perform-
ing computations on a sufficiently long record (sample function) of the signal. Because the ergodic
hypothesis is not exactly satisfied for vibration signals, and because it is impossible to analyze infinitely
long data records, the accuracy of the numerical results depends on various factors such as the record
length, sampling rate, frequency range of interest, and the statistical nature of the random signal (e.g.,
closeness to a deterministic signal, frequency content, periodicity, damping characteristics). Accuracy
can be improved, in general, by averaging the results for more than one data record.
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4.4.2 CORRELATION AND SPECTRAL DENSITY

If for a random signal (t), the joint statistical properties of (t1) and (t2) depend on the time
difference (t2 – t1) and not on t1 itself, then the signal is said to be stationary. Consequently, the
statistical properties of a stationary (t) will be independent of t. It is noted from equation (4.29)
that ergodic random signals are necessarily stationary. However, the converse is not true in general.

The cross-correlation function of two random signals (t) and (t) is given by E[ (t) (t + τ)].
If the signals are stationary, this expected value is a function of τ (not t) and is denoted by φxy(τ).
In view of the ergodic hypothesis, the cross-correlation function can be expressed as

(4.30)

The FIT of φxy(τ) is the cross-spectral density function, which is denoted by Φxy(f). When the two
signals are identical, one obtains the auto-correlation function φxx(τ) in the time domain and the
power spectral density (psd) Φxx(f) in the frequency domain. The continuous and discrete versions
of the correlation theorem are given in the first row of Table 4.5. It follows that the cross-spectral
density can be estimated using the DFT (FFT) of the two signals as, [Xn]*Yn /T, in which T is the
record length and [Xn]* is the complex conjugate of [Xn].

Parseval’s theorem (second row of Table 4.5) follows directly from the correlation theorem.
Consequently, the mean square value of a random signal can be obtained from the area under the
psd curve. This suggests a hardware-based method of estimating the psd, as illustrated by the
functional diagram in Figure 4.14(a). Alternatively, a software-based digital Fourier analysis could
be used (Figure 4.14(b)). A single sample function would not give the required accuracy, and
averaging is usually needed. In real-time digital analysis, the running average as well as the current
estimate are usually computed. In the running average, it is desirable to give a higher weighting
to the more recent estimates. The fluctuations in the psd estimate about the local average could be
reduced by selecting a large filter bandwidth ∆f and a large record length T. A measure of this
fluctuations is given by 

(4.31)

FIGURE 4.14 Power spectral density computation: (a) narrow-band filtering method, and (b) correlation
and fourier transformation method.
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φ τ τxy T

T

T
x t y t dt( ) = ( ) +( )











→∞ ∫lim

1

0

ε = 1

∆f T
©2000 CRC Press

http://www.semeng.ir


www.20file.org
It should be noted that a large ∆f results in reduction of the precision of the estimates while
improving the appearance. To offset this, T has to be increased further.  

4.4.3 FREQUENCY RESPONSE USING DIGITAL FOURIER TRANSFORM

Vibration test programs usually require a resonance search-type pretesting. In order to minimize
the damage potential, it is carried out at a much lower intensity than the main test. The objective
of such exploratory tests is to determine the significant frequency-response functions of the test
specimen. These provide the natural frequencies, damping ratios, and mode shapes of the test
specimen. Such frequency response data are useful in planning and conducting the main test. For
example, more attention is required when testing in the vicinity of the resonance points (slower
sweep rates, larger dwell periods, etc.). Also, the frequency-response data are useful in determining
the most desirable test input directions and intensities. The degree of nonlinearity and time variance
of the test object can be determined by conducting more than one frequency-response test at different
input intensities. If the deviation of the frequency-response function is sufficiently small, then linear,
time-invariant analysis is considered to be adequate. Often, frequency-response tests are conducted
at full test intensity. In such cases, it is considered as a part of the main test rather than a prescreening
test. Other uses of the frequency-response function include the following: it can be employed as a
system model (experimental model) for further analysis of the test specimen (experimental modal
analysis). Most desirable frequency range and sweep rates for vibration testing can be estimated
by examining frequency-response functions.

The time response h(t) to a unit impulse is known as the impulse response function. For each
pair of input and output locations (A, B) of the test specimen, a corresponding single response
function would be obtained (assuming linearity and time invariance). The entire collection of these
responses would determine the response of the test specimen to an arbitrary input signal. The
response y(t) at B to an arbitrary input u(t) applied at A is given by

TABLE 4.5
Some Useful Fourier Transform Results

Description Continuous Discrete

Correlation theorem If
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Parseval’s theorem If

Then

Convolution theorem If

Then

z x t y t dtτ τ( ) = ( ) +( )
−∞

∞

∫ z T x ym r r m

r

N

= +
=

−

∑∆
0

1

Z f X f Y f( ) = ( )[ ] ( )*
Z X Yn n n= [ ]*

y t Y f( )  → ( )FIT y Ym n{ }  → { }DFT

y t dt Y f df2 2( ) = ( )
−∞

∞

−∞

∞

∫ ∫ ∆ ∆T y F Ym

m

N

n

n

N
2

0

1
2

0

1

=

−

=

−

∑ ∑=

y t h u t d

h t u d

( ) = ( ) −( )

= −( ) ( )

−∞

∞

−∞

∞

∫

∫

τ τ τ

τ τ τ

y T h u

T h u

m r m r

r

N

m r r

r

N

=

=

−
=

−

−
=

−

∑

∑

∆

∆

0

1

0

1

Y f H f U f( ) = ( ) ( ) Y H Un n n=
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(4.32)

The right-hand side of equation (4.32) is the convolution integral of h(t) and u(t), and is denoted
by h(t) ∗  u(t). By substituting the inverse FIT relations (Table 4.2) in equation (4.32), the frequency-
response function (frequency-transfer function) H(f) is obtained as the ratio of the (complex) FITs
of the output and the input. It exists for physically realizable (causal) systems even when the
individual FITs of the input and output signals do not converge. The continuous convolution theorem
and the discrete counterpart are given in the last row of Table 4.5. The discrete convolution can be
interpreted as the trapezoidal integration of equation (4.32). The frequency-response function is a
valid representation (model) for linear, time-invariant systems. It is related to the system transfer
function G(s) (ratio of the Laplace transforms of output and input with zero initial conditions)
through

(4.33)

But for notational convenience, the frequency-response function corresponding to G(s) can be
denoted by either G(f) or G(ω), where ω is the angular frequency and f is the cyclic frequency.

Using Fourier transform theory, three methods of determining H(f) can be established. First,
using any transient excitation signal to a system at rest and the corresponding output, H(f) is
determined from their FITs (Table 4.5). Second, if the input is sinusoidal, the signal amplification
of the steady-state output is the magnitude �H(f)� at the input frequency, and the phase lead of the
steady-state output is the corresponding phase angle ∠ H(f). Third, using a random input signal and
the corresponding input and output spectral density functions, H(f) is determined as the ratio

(4.34)

4.4.4 LEAKAGE (TRUNCATION ERROR)

In digital processing of vibration signals (e.g., accelerometer signals), sampled data are truncated
to eliminate less significant parts. This is of course essential in real-time processing because, in
that case, only sufficiently short segments of continuously acquisitioned data are processed at one
time. The computer memory (and buffer) limitations, the speed and cost of processing, the frequency
range of importance, sampling rate, and the nature of the signal (level of randomness, periodicity,
decay rate, etc.) should be taken into consideration in selecting the truncation point of data.

The effect of direct truncation of a signal x(t) on its Fourier spectrum is shown in Figure 4.15.
In the time domain, truncation is accomplished by multiplying x(t) by the boxcar function b(t).
This is equivalent to a convolution (X(f) ∗  B(f)) in the frequency domain. This procedure introduces
ripples (side lobes) into the true spectrum. The resulting error (X(f) – X(f) ∗  B(f)) is known as
leakage or truncation error. Similar leakage effects arise in the time domain, as a result of truncation
of the frequency spectrum. The truncation error can be reduced by suppressing the side lobes,
which requires modification of the truncation function (window) from the boxcar shape b(t) to a
more desirable shape. Commonly used windows are the Hanning, Hamming, Parzen, and Gaussian
windows.
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4.4.5 COHERENCE

Random vibration signals (t) and (t) are said to be statistically independent if their joint
probability distribution is given by the product of the individual distributions. A special case of
this is the uncorrelated signals that satisfy

(4.35)

In the stationary case, the means  and  are time independent. The auto-
covariance functions are given by

(4.36)

(4.37)

and the cross-covariance function is given by

FIGURE 4.15 Illustration of truncation error: (a) signal and its frequency spectrum; (b) a rectangular (boxcar)
window and its frequency spectrum; and (c) truncated signal and its frequency spectrum.

X̃ Ỹ
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(4.38)

For uncorrelated signals, φxy(τ) = µxµy and ψxy(τ) =0. The correlation function coefficient is defined by

(4.39)

which satisfies –1 ≤ ρxy(τ) ≤ 1.
For uncorrelated signals, ρxy(τ) = 0. This function measures the degree of correlation of the two

signals. In the frequency domain, the correlation is determined by its (ordinary) coherence function

(4.40)

which satisfies the condition . In this definition, the signals are assumed to have zero
means. Alternatively, the FIT of the covariance functions can be used. If the signals are uncorrelated
(or better, independent), the coherence function vanishes. On the other hand, if (t) is the response
of a linear, time-invariant system to an input (t), then

(4.41)

(4.42)

Consequently, the coherence function becomes unity for this ideal case. In practice, however, the
coherence function of an excitation and the corresponding response are usually less than unity.
This is due to deviations such as measurement noise, system nonlinearities, and time-variant effects.
Consequently, the coherence function is commonly used as a measure of the accuracy of frequency
response estimates.

4.4.6 PARSEVAL’S THEOREM

For a pair of rapidly decaying (aperiodic) deterministic signals x(t) and y(t), the cross-correlation
function is given by

(4.43)

This is equivalent to equation (4.30), for a pair of ergodic, random (stochastic) signals x(t) and
y(t). Using the definition of the inverse FIT (see Table 4.2) in equation (4.43) and following
straightforward mathematical manipulation, it can be shown that

(4.44)

in which the cross-spectral density Φxy(f) is the FIT of φxy(τ), as given by
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(4.45)

and [ ]* denotes the complex conjugation operation. This result, which is known as the correlation
theorem (see Table 4.5), has applications in the evaluation of the correlation functions and psd
functions of finite-record-length data.

The inverse FIT relation corresponding to equation (4.45) is

(4.46)

From equation (4.44),

(4.47)

If τ = 0 and x = y in equation (4.47), one obtains

(4.48)

Similarly, from equation (4.43), one gets

(4.49)

By comparing equations (4.48) and (4.49), one obtains Parseval’s theorem; thus,

(4.50)

Using the discrete correlation theorem in an analogous manner, one can establish the discrete
version of equation (4.50):

(4.51)

These results are listed in the second row of Table 4.5.

4.4.7 WINDOW FUNCTIONS

Consider the unit boxcar window function w(t), defined as
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(4.52)

This is shown in Figure 4.15(b). The FIT of w(t) is

(4.53)

Clearly, this (rectangular) window function produces side lobes (leakage) in the frequency domain.
In the spectral analysis of vibration signals, one is often required to segment the time history

into several parts, and then perform spectral analysis on the individual results to observe the
time development of the spectrum. If segmenting is done by simple truncation (multiplication
by the boxcar window), the process would introduce rapidly fluctuating side lobes into the spectral
results. Window functions, or smoothing functions other than the boxcar function, are widely
used to suppress the side lobes (leakage error). Some common smoothing functions are defined
in Table 4.6.

A graphical comparison of these four window types is given in Figure 4.16. Hanning windows
are very popular in practical applications. A related window is the Hamming window, which is
simply a Hanning window with rectangular cutoffs at the two ends. A Hamming window will have
characteristics similar to those of a Hanning window, except that the side lobe fall-off rate at higher
frequencies is less in the Hamming window.

From Figure 4.16(b), one observes that the frequency-domain weight of each window varies
with the frequency range of interest. Obviously, the boxcar window is the worst. In practical
applications, the performance of any window could be improved by simply increasing the window
length T.

Characteristics of the signal that is being analyzed and also the nature of the system that
generates the signal should be considered in choosing an appropriate truncation window. In par-
ticular, the Hamming window is recommended for signals generated by heavily damped systems

TABLE 4.6
Some Common Window Functions

Function Name Time-Domain Representation [w(t)] Frequency-Domain Representation [W(f)]
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and the Hamming window is recommended for use with lightly damped system. Table 4.7 lists
some useful signal types and appropriate window functions.

4.4.8 SPECTRAL APPROACH TO PROCESS MONITORING

In mechanical systems, component degradation can be caused by vibration excitations, which can
result in malfunction or failure. In this sense, continuous monitoring during testing of mechanical
deterioration in various critical components of a vibratory system is of prime importance. This
usually cannot be done by simple visual observation, unless malfunction is detected by operability
monitoring of the system. Because mechanical degradation is always associated with a change in
vibration level, however, by continuously monitoring the development of Fourier spectra in time
(during system operation) at various critical locations of the system, it is possible to conveniently

FIGURE 4.16 Some common window functions: (a) time-domain function, and (b) frequency spectrum.
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detect any mechanical deterioration and impending failure. In this respect, real-time Fourier analysis
is very useful in process monitoring and failure detection and prediction. Special-purpose real-time
analyzers with the capability of spectrum comparison (often done by an external command) are
available for this purpose.

Various mechanical deteriorations manifest themselves at specific frequency values. A change
in spectrum level at a particular frequency (and its multiples) would indicate a specific type of
mechanical degradation or component failure. An example is given in Figure 4.17, which compares
the Fourier spectrum at a monitoring location of a vibratory system at the start of test with the
Fourier spectrum after some mechanical degradation has taken place. To facilitate spectrum
comparison within a narrow-frequency band, it is customary to plot such Fourier spectra on a
linear frequency axis. It is seen that the overall spectrum levels have increased as a result of
mechanical degradation. Also, a significant change has occurred near 30 Hz. This information is
useful in diagnosing the cause of degradation or malfunction. Figure 4.17 might indicate, for
example, impending failure of a component having resonant frequency close to 30 Hz.

4.4.9 CEPSTRUM

A function known as the cepstrum is sometimes used to facilitate the analysis of Fourier spectrum
in detecting mechanical degradation. The cepstrum (complex) C(τ) of a Fourier spectrum Y(f) is
defined by

(4.54)

The independent variable τ is known as quefrency, and it has the units of time.
An immediate advantage of cepstrum arises from the fact that the logarithm of the Fourier

spectrum is taken. From equation (4.33), it is clear that, for a system having frequency-transfer
function H(f), and excited by a signal having Fourier spectrum U(f), the response Fourier spectrum
Y(f) can be expressed in the logarithmic form:

(4.55)

TABLE 4.7
Signal Types and Appropriate Windows

Signal Type Window

Periodic with period = T Rectangular
Rapid transients within [0, T]
Periodic with period ≠ T Flat-top Cosine
Quasi-periodic
Slow transients beyond [0, T]
Nonstationary random
Beats-like signals with period ≈ T Bartlett

(Triangular)
Narrow-band random Hanning

(Cosine)
Stationary random
Important low-level components mixed with widely 
spaced high-level spectral components

Parzen

Broad-band random (white noise, pink noise, etc.)

C Y fτ( ) = ( )−� 1 log

log log logY f H f U f( ) = ( ) + ( )
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FIGURE 4.17 Effect of mechanical degradation on a monitored Fourier spectrum.
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Because the right-hand-side terms are added rather than multiplied, any variation in H(f) at a
particular frequency will be less affected by a possible low spectrum level in the excitation U(f) at
that frequency, when considering log Y(f) rather than Y(f). Consequently, any degradation will be
more conspicuous in the cepstrum than in the Fourier spectrum. Another advantage of cepstrum is
that it is better capable of detecting variation in phenomena that manifest themselves as periodic
components in the Fourier spectrum (e.g., harmonics and sidebands). Such phenomena that appear
as repeated peaks in the Fourier spectrum occur as a single peak in the cepstrum, and so any
variations can be detected more easily.

4.5 OTHER TOPICS OF SIGNAL ANALYSIS

This section briefly addresses some other important topics of signal analysis, starting with band-
width, in different contexts. Then, several practically useful analysis procedures and results on
vibration signals are presented.

4.5.1 BANDWIDTH   

Bandwidth has different meanings, depending on the particular context and application. For exam-
ple, when studying the response of a dynamic system, the bandwidth relates to the fundamental
resonant frequency and, correspondingly, to the speed of response for a given excitation. In bandpass
filters, the bandwidth refers to the frequency band within which the frequency components of the
signal are allowed through the filter, the frequency components outside the band being rejected by
it. With respect to measuring instruments, bandwidth refers to the range of frequencies within which
the instrument accurately measures a signal. Note that these various interpretations of bandwidth
are somewhat related. For example, if a signal passes through a bandpass filter, its frequency content
is within the bandwidth of the filter; but one cannot determine the actual frequency content of the
signal through such an observation. In this context, the bandwidth appears to represent a frequency
uncertainty in the observation (i.e., the larger the bandwidth of the filter, the less certain one can
be about the actual frequency content of a signal that is allowed through the filter).

4.5.2 TRANSMISSION LEVEL OF A BANDPASS FILTER

Practical filters can be interpreted as dynamic systems. In fact, all physical, dynamic systems (e.g.,
mechanical structures) are analog filters. It follows that the filter characteristic can be represented
by the frequency transfer function G(f) of the filter. A magnitude-squared plot of such a filter
transfer function is shown in Figure 4.18. In a logarithmic plot, the magnitude-squared curve is
obtained by simply doubling the corresponding magnitude (Bode plot) curve. Note that the actual
filter transfer function [Figure 4.18(b)] is not flat like the ideal filter shown in Figure 4.18(a). The
reference level Gr is the average value of the transfer function magnitude in the neighborhood of
its peak.

4.5.3 EFFECTIVE NOISE BANDWIDTH

Effective noise bandwidth of a filter is equal to the bandwidth of an ideal filter that has the same
reference level and that transmits the same amount of power from a white noise source. Note that
white noise has a constant (flat) power spectral density (psd). Hence, for a noise source of unity
psd, the power transmitted by the practical filter is given by

G f df( )
∞

∫ 2

0
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which, by definition, is equal to the power  transmitted by the equivalent ideal filter. Hence,
the effective noise bandwidth Be is given by  

(4.56)

4.5.4 HALF-POWER (OR 3dB) BANDWIDTH

Half of the power from a unity-psd noise source as transmitted by an ideal filter, is . Hence,

 is referred to as the half-power level. This is also known as a 3 dB level because 

= 10 log102 = 3 dB. (Note: 3 dB refers to a power ratio of 2 or an amplitude ratio of . Furthermore,
20dB corresponds to an amplitude ratio of 10 or a power ratio of 100). The 3 dB (or half-power)
bandwidth corresponds to the width of the filter transfer function at the half-power level. This is
denoted by Bp in Figure 4.18(b). Note that Be and Bp are different in general. In an ideal case where
the magnitude-squared filter characteristic has linear rise and fall-off segments, however, these two
bandwidths are equal (see Figure 4.19).

4.5.5 FOURIER ANALYSIS BANDWIDTH

In Fourier analysis, bandwidth is interpreted, again, as the frequency uncertainty in the spectral
results. In analytical Fourier integral transform (FIT) results, which assume that the entire signal
is available for analysis, the spectrum is continuously defined over the entire frequency range
[–∞, ∞] and the frequency increment df is infinitesimally small (df → 0). There is no frequency
uncertainty in this case, and the analysis bandwidth is infinitesimally narrow.

In digital Fourier transform, the discrete spectral lines are generated at frequency intervals of
∆F. This finite frequency increment ∆F, which is the frequency uncertainty, is therefore, the analysis
bandwidth B for this analysis. Note that ∆F = 1/T, where T is the record length (or window length
for a rectangular window). It follows also that the minimum frequency that has a meaningful
accuracy is the bandwidth. This interpretation for analysis bandwidth is confirmed by noting the
fact that harmonic components of frequency less than ∆F (or period greater than T) cannot be
studied by observing a signal record of length less than T. Analysis bandwidth carries information
regarding distinguishable minimum frequency separation in computed results. In this sense, band-
width is directly related to the frequency resolution of analyzed results. The accuracy of analysis
increases by increasing the record length T (or decreasing the analysis bandwidth B).

FIGURE 4.18 Characteristics of (a) an ideal bandpass filter; and (b) a practical bandpass filter.

G Br e
2

B G f df Ge r= ( )
∞

∫ 2 2

0

G Br e
2 2

Gr 2 20 210log

2

©2000 CRC Press

http://www.semeng.ir


www.20file.org
When a time window other than the rectangular window is used to truncate a measured vibration
signal, then reshaping of data occurs according to the shape of the window. This reshaping reduces
leakage due to suppression of side lobes of the Fourier spectrum of the window. At the same time,
however, an error is introduced due to the information lost through data reshaping. This error is
proportional to the bandwidth of the window itself. The effective noise bandwidth of a rectangular
window is only slightly less than 1/T because the main lobe of its Fourier spectrum is nearly
rectangular. Hence, for all practical purposes, the effective noise bandwidth can be taken as the
analysis bandwidth. Note that data truncation (multiplication in the time domain) is equivalent to
convolution of the Fourier spectrum (in the frequency domain). The main lobe of the spectrum
uniformly affects all spectral lines in the discrete spectrum of the data signal. It follows that a
window main lobe having a broader bandwidth (effective noise bandwidth) introduces a larger error
into the spectral results. Hence, in digital Fourier analysis, bandwidth is taken as the effective noise
bandwidth of the time window that is employed.

4.6 RESOLUTION IN DIGITAL FOURIER RESULTS

In digital Fourier analysis results, resolution is the frequency separation between spectral lines. For
a data record of length T, the resolution is ∆F = 1/T, irrespective of the type of window used. There
is a noteworthy distinction between analysis bandwidth and resolution. Suppose that one has a data
record of length T. If one doubles the length by augmenting it with trailing zeros, digital Fourier
analysis of the resulting record of length 2T will yield a spectral line separation of 1/(2T). Thus,
the resolution is halved. But, unless the true signal value is also zero in the second time interval
t[T, 2T], no new information in presented in the augmented record of duration [0, 2T] in comparison
to the original record of duration [0, T]. Thus, the analysis bandwidth (a measure of accuracy) will
remain unchanged. If, on the other hand, the signal itself was sampled over [0, 2T] and the resulting
2N data points were used in digital Fourier analysis, the bandwidth as well as the resolution would
be halved and the accuracy doubled.

Some relations that are useful in the digital computation of spectral results for signals are
summarized in Box 4.3.

4.7 OVERLAPPED PROCESSING

Digital Fourier analysis is performed on blocks of sampled data (e.g., 210 = 1024 samples at a
time). In overlapped processing, each data block is made to include part of the previous data block
that was analyzed. After completing a computation, the overlapped data at the end of the computed
block is moved to the beginning of the block, and the leading vacancy is filled with new data so

FIGURE 4.19 An idealized filter with linear segments.
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that the end data in one block is identical to the beginning data in the next block, in the overlapped
region. In other words, the overlapped portions of each data block (the two end portions) are
processed twice. It follows that if there is 50% (or more) overlapping, then the entire data block
is processed twice. Three main reasons can be given for using overlapped processing in digital
Fourier analysis:

1. It is an effective means of averaging spectral results.
2. It reduces the waiting time for assembling the data buffer.
3. It reduces the error caused by the end shaping effect of time windows (when a window

other than the rectangle window is used).

From reasons (1) and (2), it is clear that, due to overlapping, the statistical error of computations
is reduced for the same speed of computation, and the computing power is more efficiently used.

BOX 4.3 Useful Relations for Digital Spectral Computations

Note:

T = record length
B = bandwidth of digital analysis

(Min. freq. for which meaningful results are obtained) → includes window effect.

Periodic or stationary signals: Use power spectra
(infinite energy)
Transient signals: Energy spectra can be used
(finite energy)

One sided spectrum = 2 × (+ve frequency part of two-sided spectrum)

Coherent output power = Coherence  × Output power ← could be power spectrum or
(Spectrum or spectral density) psd of the output
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To explain reason (3), examine Figure 4.20. This example shows a 50% overlap in data. It is seen
that the window function can be assumed relatively flat at least over 50% of the window length
(record length). Then the entire data block will correspond to the flat part of the window in three
successive analyses. Consequently, the shaping error (or the error due to increased analysis band-
width) that is caused by a nonrectangular time window is virtually eliminated by overlapped
processing. The flatness of a time window is determined by its effective noise bandwidth Be. The
effective record length Te is defined as

(4.57)

which provides a measure for the flat segment of the window. The percentage effective record
length is given by Te as a percentage of the actual record length T. The degree of overlapping is
chosen using the relation

(4.58)

EXAMPLE 4.3

For a Hamming window, Be = 1.4/T. Hence, a typical value for the percentage overlap is

One might want to use a conservative overlap and even go up to 50% in this case because the
window is not quite flat.

4.7.1 ORDER ANALYSIS

Speed-related vibrations in rotation machinery can be analyzed through order analysis. Machinery
vibrations under startup (accelerating) and shutdown (decelerating) conditions are analyzed in this
manner. Orders represent the rotating-speed-related frequency components in a response signal.
The ratio of the response frequency to the rotating speed is termed “order.”

FIGURE 4.20 Overlapped processing of windowed signals.
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Order analysis is done essentially through digital Fourier analysis of a rotating-speed-related
response signal. Practically, this can be accomplished in many ways. The format in which the
spectral results are presented will depend on the procedure used in order analysis. Some of the
typical formats of data presentation are given below.

Speed Spectral Map

As the rotating speed of a machine is changing in a given range, the Fourier spectrum of the
response signal is determined for equal increments of speed. The results are presented as a speed
spectral map, which is a three-dimensional cascade diagram (or waterfall display). The two base
axes of the plot are spectral frequency and rotating speed. The third axis gives the spectral magnitude
(see Figure 4.21). These types of plots are useful in identifying order-related components during
startup or coast-down conditions. Note that for each speed, the frequency band of digital Fourier
analysis is kept the same (i.e., fixed sampling rate). Each distinct crest trace denotes an order-
related resonance. The fact that these traces are almost straight lines indicates the significance of
order (the ratio, frequency/rotating speed) in exciting these resonances.

Time Spectral Map

Under variable speed conditions (not necessarily accelerating or decelerating), the response signal
is Fourier analyzed at equal increments of time. The results are plotted in a cascade diagram, with
frequency and time as the base axes. The third axis again represents the magnitude of the Fourier

FIGURE 4.21 A speed spectral map obtained from order analysis.
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spectrum (see Figure 4.22). In this case, the crest traces are not necessarily straight, and can change
their orientation arbitrarily. This variation in crest orientation is determined by the degree of speed
variation.

Order Tracking

In order tracking, a “tracking frequency multiplier” monitors the rotating speed of the machine (as
for a speed spectral map). But, in the present case, the sampling rate of the response signal (for
Fourier analysis) is changed in proportion to the rotating speed. Note that, in this manner, the
maximum useful frequency (approximately 400/512 × Nyquist frequency) is increased as the
rotating speed increases, so that the aliasing effects are reduced. If the same sampling rate is used
for high speeds (as in Case 1 above), aliasing error can be significant at high rotating speeds.

In presenting order tracking spectral results, the frequency axis is typically calibrated in orders.
Both speed spectral maps and time spectral maps can be presented in this manner. Other types of
data presentation can be used, as well, in order analysis. For example, instead of the Fourier
spectrum of the response signal, the power spectrum or composite power spectrum (in which the
total signal power is computed in specified frequency bands and presented as a function of the
rotating speed) can be used in the schemes described in this section.

Order analysis provides information on most severe operating speeds with respect to vibration
(and dynamic stress). For example, suppose that for a given speed of operation, two major reso-
nances occur: one at 10 Hz and the other at 80 Hz. Then, the structure of the system (rotating
machine and its support fixtures) should be modified to change and preferably damp out these

FIGURE 4.22 A time spectral map obtained from order analysis.
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resonances. Furthermore, the most desirable operating speed can be chosen in terms of the lowest
resonant peaks by observing a speed spectral map.

PROBLEMS

4.1 The Fourier transform of a position measurement y(t) is Y(jω). The Fourier transform of
the corresponding velocity signal is:
a. Y(jω)
b. jωY(jω)
c. Y(jω)/(jω)
d. ωY(jω).

4.2 The Fourier transform of the acceleration signal in Problem 4.1 is:
a. Y(jω)
b. ω2Y(jω)
c. –ω2Y(jω)
d. Y(jω)/(jω).

4.3 What is the Fourier integral transform (FIT) of a unit impulse excitation δ(t)? The
excitation in a bump test or a hammer test that is commonly used in structural dynamic
testing can be approximated by an impulse. Discuss the implication of your answer in
such tests.

4.4 The real part and the imaginary part of the Fourier spectrum of a (real) signal are shown
in Figure P4.4. Complete these spectral curves by including the negative spectrum as well.

4.5 The frequency transfer function for a simple oscillator is given by

Determine an expression for the half-power (3dB) bandwidth at low damping.
4.6 An approximate frequency transfer function of a system was determined by Fourier

analysis of excitation-response data (measured) and fitting into an appropriate analytical
expression (by curve fitting using a least-squares method). This was found to be

What is its magnitude, phase angle, real part, and imaginary part at f = 2 Hz? If the
reference frequency is taken as 1 Hz, what is the transfer function magnitude at 2 Hz,
expressed in dB?

FIGURE P4.4 An example of one-sided spectra.
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4.7 Using the definition and direct analytical integration, determine the Fourier spectrum of
the signal

a. as a real part and an imaginary part
b. as a magnitude and a phase angle.

4.8 Consider the harmonic signal

defined over t = [–∞, ∞]. Determine, using analysis, the Fourier integral transform of x(t).
4.9 The discrete Fourier transform (DFT) of a sampled signal {xm} is denoted by {Xn} and

is given by

for n = 0, 1, …, N–1, where ∆T is the sample time step and N is the number of samples
in the data record.
The inverse DFT is given by

Describe a way to use a computer program that computes the forward DFT, and for
computing the inverse DFT as well.

4.10 Two signals y(t) and z(t) are sampled at time period ∆T to generate the data sequences
{yn} and {zn}, each having N points. Explain how the discrete Fourier spectra sequences
{Ym} and {Zm} of these data records could be computed using a single DFT operation.

4.11 Consider the two time signals u(t) and h(t). If the first signal is shifted through t1 and
the second signal is shifted through t2 in the same direction, show that the convolution
function

will be shifted by t1 + t2 in the same direction. If u(t) is a signal of short duration and
h(t) is a signal that is several times longer, describe an efficient way to compute the
convolution function, by sectioning h(t) into several segments and then computing the
convolution of each segment with u(t).

4.12 Give several interpretations of the term “bandwidth” in the frequency-domain analysis
of signals and systems. In particular, discuss the “analysis bandwidth” in the context of
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digital frequency analysis of a signal. Note the analysis bandwidth (B) corresponding to
several data window functions of length (truncation) T, as given in Table P4.12. 

4.13 a. What is an anti-aliasing filter? If a sensor signal is sampled at fs Hz, suggest a suitable
cutoff frequency for an anti-aliasing filter to be used in this application.

b. Suppose that a sinusoidal signal of frequency f1 Hz is sampled at the rate of fs samples
per second. Another sinusoidal signal of the same amplitude, but of a somewhat higher
frequency f2 Hz was found to yield the same data when sampled at fs. What is the
likely analytical relationship between f1, f2, and fs?

c. Consider an inertial system (e.g., mass and damper combination) having the transfer
function

What is the static gain of this system? Show that the magnitude of the transfer function
reaches  of the static gain when the excitation frequency is 1/τ rad s–1. Note that
the frequency, ωb = 1/τ rad s–1, can be considered as the operating bandwidth of the
system.

4.14 a. Define the following terms:
i. Sampling theorem
ii. Nyquist frequency
iii. Aliasing distortion
iv. Anti-aliasing filters
v. Truncation error or leakage
vi. Data windows.

b. Consider 1024 data points sampled at 0.1 s. Determine:
i. Sampling rate
ii. Data record length
iii. The number of points obtained by DFT analysis
iv. The number of spectral lines obtained
v. Spectral line separation
vi. Maximum useful frequency available in the spectrum
vii. The number of accurate spectral lines
viii. Maximum undistorted frequency.

4.15 A window function somewhat distorts a signal that is truncated and also changes the
amplitude and energy characteristics of the signal. Hence, the window is often scaled
by a multiplication factor in order to reduce the resulting error. The scaling factor that

TABLE P4.12
Analysis Bandwidths for Some 
Common Time Windows

Window Name Bandwidth B

Rectangular 1/T
Flat-top cosine 1.01/T
Bartlett (triangular) 1.4/T
Hamming 1.4/T
Hanning (cosine) 1.5/T
Parzen 1.9/T

G s
k

s
( ) =

+( )1 τ

1 2
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is sometimes used for a window in digital Fourier analysis, is simply the ratio of the
main lobe heights (in the frequency domain) of the particular window and the rectangular
window, both having the same window length T and the same peak value of unity.

A more logical approach is used in many hardware Fourier analyzers. The method is
based on scaling the peak value of the window (which is equivalent to scaling the
computed spectrum) such that the energy of the original signal in the interval [0, T] is
equal to the energy of the windowed signal. The instantaneous power of the original
signal is y(t)2, and that of the weighted signal is [w(t)y(t)]2 = w(t)2y(t)2, where w(t) is the
window function. Assuming that the signal is stationary (this is a necessary assumption
for spectral density computations as well), a good estimate for the energy reduction
factor Fe is given by

In the discrete case, the corresponding relation is 

TABLE P4.15
Common Window Functions

Window Name Describing Equation

Scaling Factor

Rectangular w(t) = 1 for t = 0 to T
= 0 elsewhere

Flat-top (cosine) w(t) = 0.5(1 – cos10πt/T)
for t = 0 to T/10
and t = 9T/10 to T

= 1 for t = T/10 to 9T/10
= 0 elsewhere

Bartlett (triangular) w(t) = 2t/T for t = 0 to T/2
= –2t/T + 2 for t = T/2 to T
= 0 elsewhere

Hamming w(t) = 0.8 + 0.46(cos2πt/T)
for t = 0 to T

= 0 elsewhere
Hanning
(cosine)

w(t) = 0.5(1 – cos2πt/T)
for t = 0 to T

= 0 elsewhere
Parzen w(t) = 1 – 6(2t/T – 1)2 + 6 �2t/T – 1�3

for t = T/4 to 3T/4
= 2(1 – �2t/T –1�3)

for t = 3T/4 to T
= 0 elsewhere
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in which wn are the sampled values of window, sampled at the same instants as the
original signal. The window amplitude must be scaled by the factor  in order to
achieve the energy equivalence. One can compute Fe using the above result and, for
example, using the typical value of N = 210 = 1024. Note that once the window is scaled
in this manner, one is not required to scale the results (rms spectra, psd, cross spectra,
etc.). Compute the scaling factors for common window functions as listed in Table P4.15.

4.16 a. Starting with the discrete Fourier transform relation

for a sampled data sequence {ym} of a signal y(t), provide consistent relations for
digital computation of the following functions:
i. Autocorrelation function of y(t)
ii. Power spectral density of y(t)
iii. Cross spectral density of u(t) and y(t)
iv. Power spectrum of y(t)
v. Energy spectrum of y(t)
vi. Energy spectral density of y(t)
vii. Coherence function of u(t) and y(t)
viii. Coherent output power spectral density for input u(t) and output y(t)
ix. Coherent output power spectrum for input u(t) and output y(t).

b. Consider an acceleration time signal given in units of acceleration due to gravity (g).
What are the corresponding units of correlation, Fourier spectrum, and spectral density
of the signal?

4.17 The transfer function of a dynamic system is the ratio:

in the frequency domain. Note that this is a model for the system, and it does not depend
on the nature of the input itself.
Is the frequency-transfer-function complex or real?
Methods of experimental computation of a system transfer function are:

1. Apply a transient input and measure the output
FFT (output)/FFT (input)

2. Apply a sinusoidal input
Measure amplification and phase shift of the output for various frequencies of interest.

3. Apply a random input
Cross-spectral density/PSD of input

In methods 1 and 3, averaging would be necessary to improve accuracy. Give analytical
relations used for the associated computations in these three methods.

4.18 A frequency-domain signal analysis package provides the following computational
options:

1. Power spectrum of a signal
2. rms spectrum of a signal
3. Power spectral density of a signal
4. Cross spectrum of two signals
5. Transfer function from an input signal and an output signal

1 Fe

Y T y j mn Nn m

m

N

= −( )
=
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∑∆ exp 2
0

1

π

Output
Input
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6. Transmissibility functions from input and output signals
7. Coherence of two signals
8. Coherent output power of a signal with respect to another signal
9. rms velocity spectrum of a signal
10. rms displacement spectrum of a signal.

In testing this package for its performance, the issues addressed would be:
(a) Parameter selection for sample problems to be used for testing the package
(b) Generation of input time histories
(c) Generation of the output (frequency-domain) data for verification.

a. Parameter Selection:
• Buffer (block) length for input data = T
• Buffer size (number of data points in the buffer) = N (typically 1024)

Then,
• Ordinary resolution in the frequency domain (or bandwidth) 

• Sampling period (in the time domain) 

• Amplitude parameter for the input signal = a (typically 0.1)
• Time constant of the input signal = τ (typically a fraction of T)
• Damping ratio of the dynamic system = ζ (typically 0.05)
• Undamped natural frequency (Hz) of the dynamic system = fn (typically within T,

i.e., Tfn = 4)
Then,

• Angular undamped natural frequency (rad s–1) ωn = 2πfn

• Damped natural frequency 

• Phase angle 

b. Input Time-History Generation
Input signal x(t) = ae–t/τ

(acceleration)

Normally, one samples both signals at sampling period ∆T and generate data in
multiples of N.
Outline a procedure for generating the output signal in the frequency domain and
subsequent computation of the ten functions listed above.

4.19 Define the following terms:
a. Sample record
b. Ensemble
c. Ergodic signal.
Explain why erogodicty is usually assumed in digital processing of random signals.

4.20 a. Define:
i. Octave
ii. Decade
iii. One-third octave
iv. Decibel (dB).
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b. How many decades are there in 100 Hz?
c. How many decades correspond to a frequency change from 0.1 rad s–1 to 10.0 rad s–1?
d. How many octaves correspond to a frequency change from 1 Hz to  Hz?
e. What are the dimensions of a decade?
f. What are the advantages of using log-log plots?

4.21 a. Give frequency bandwidths that are appropriate in the frequency-domain analysis of
the following situations:
i. Whole-body vibration of humans
ii. Ride quality considerations
iii. Transportation excitations
iv. Sound perceived by human ear
x. Physical systems (structures, circuits, etc.).

b. Indicate the rationale for using frequency-domain methods in vibration monitoring
and malfunction diagnosis of dynamic systems. Indicate examples.

2

©2000 CRC Press

http://www.semeng.ir


de Silva, Clarence W. “Modal Analysis”
Vibration: Fundamentals and Practice
Clarence W. de Silva
Boca Raton: CRC Press LLC, 2000

www.20file.org

http://www.semeng.ir


                            

www.20file.org
5  Modal Analysis
Complex vibrating systems usually consist of components that possess distributed energy-storage
and energy-dissipative characteristics. In these systems, inertial, stiffness, and damping properties
vary (piecewise) continuously with respect to the spatial location. Consequently, partial differential
equations, with spatial coordinates (e.g., Cartesian coordinates x, y, z) and time t as independent
variables, are necessary to represent their vibration response.

A distributed (continuous) vibrating system can be approximated (modeled) by an appropriate
set of lumped masses properly interconnected using discrete spring and damper elements. Such a
model is called a lumped-parameter model or discrete model. An immediate advantage resulting
from this lumped-parameter representation is that the system equations become ordinary differential
equations. Often, linear springs and linear viscous damping elements are used in these models. The
resulting linear ordinary differential equations can be solved by the modal analysis method. The
method is based on the fact that these idealized systems (models) have preferred frequencies and
geometric configurations (or natural modes), in which they tend to execute free vibration. An
arbitrary response of the system can be interpreted as a linear combination of these modal vibrations;
and as a result, its analysis can be conveniently done using modal techniques.

Modal analysis is an important tool in vibration analysis, diagnosis, design, and control. In
some systems, mechanical malfunction or failure can be attributed to the excitation of their
preferred motion such as modal vibrations and resonances. By modal analysis, it is possible to
establish the extent and location of severe vibrations in a system. For this reason, it is an important
diagnostic tool. For the same reason, modal analysis is also a useful method for predicting
impending malfunctions or other mechanical problems. Structural modification and substructuring
are techniques of vibration analysis and design, which are based on modal analysis. By sensitivity
analysis methods using a “modal” model, it is possible to determine what degrees of freedom of
a mechanical system are most sensitive to addition or removal of mass and stiffness elements. In
this manner, a convenient and systematic method can be established for making structural mod-
ifications to eliminate an existing vibration problem or to verify the effects of a particular
modification. A large and complex system can be divided into several subsystems that can be
independently analyzed. By modal analysis techniques, the dynamic characteristics of the overall
system can be determined from the subsystem information. This approach has several advantages,
including: (1) subsystems can be developed by different methods such as experimentation, finite
element method, or other modeling techniques and assembled to obtain the overall model; (2) the
analysis of a high-order system can be reduced to several lower-order analyses; and (3) the design
of a complex system can be done by designing and developing its subsystems separately. These
capabilities of structural modification and substructure analysis possessed by the modal analysis
method make it a useful tool in the design development process of mechanical systems. Modal
control, a technique that employs modal analysis, is quite effective in the vibration control of
complex mechanical systems.

5.1 DEGREES OF FREEDOM AND INDEPENDENT COORDINATES

The geometric configuration of a vibrating system can be completely determined by a set of
independent coordinates. This number of independent coordinates, for most systems, is termed the
number of degrees of freedom (dof) of the system. For example, a particle moving freely on a plane
requires two independent coordinates to completely locate it (e.g., x and y Cartesian coordinates
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or r and θ polar coordinates); its motion has two degrees of freedom. A rigid body that is free to
take any orientation in (the three-dimensional) space needs six independent coordinates to com-
pletely define its position. For example, its centroid is positioned using three independent Cartesian
coordinates (x, y, z). Any axis fixed in the body and passing through its centroid can be oriented
by two independent angles (θ, φ). The orientation of the body about this body axis can be fixed
by a third independent angle (ψ). Altogether, six independent coordinates have been utilized; the
system has six degrees of freedom.

Strictly speaking, the number of degrees of freedom is equal to the number of independent
“incremental” generalized coordinates that are needed to represent a general motion. In other words,
it is the number of “incremental independent motions” that are possible. For holonomic systems
(i.e., systems possessing holonomic constraints only), the number of independent incremental
generalized coordinates is equal to the number of independent generalized coordinates; hence,
either definition can be used for the number of degrees of freedom. If, on the other hand, the system
has nonholonomic constraints, the definition based on incremental coordinates should be used
because in these systems the number of independent incremental coordinates is in general less than
the number of independent coordinates required to completely position the system.

5.1.1 NONHOLONOMIC CONSTRAINTS

Constraints of a system that cannot be represented by purely algebraic equations in its generalized
coordinates and time are termed “nonholonomic constraints.” For a nonholonomic system, more
coordinates than the number of degrees of freedom are required to completely define the position
of the system. The number of excess coordinates is equal to the number of nonalgebraic relations
that define the nonholonomic constraints in the system. Examples for nonholonomic systems are
afforded by bodies rolling on surfaces (see Example 5.1), and bodies whose velocities are con-
strained in some manner (see Example 5.2).

EXAMPLE 5.1

A good example for a nonholonomic system is provided by a sphere rolling, without slipping, on
a plane surface. In Figure 5.1, the point O denotes the center of the sphere at a given instant, and
P is an arbitrary point within the sphere. The instantaneous point of contact with the plane surface
is denoted by Q, so that the radius of the sphere is OQ = a. This system requires five independent
generalized coordinates to position it. For example, the center O is fixed by the Cartesian coor-
dinates x and y. Because the sphere is free to roll along any arbitrary path on the plane and return
to the starting point, the line OP can assume any arbitrary orientation for any given position for
the center O. This line can be oriented by two independent coordinates θ and φ, defined as in
Figure 5.1. Furthermore, because the sphere is free to spin about the z-axis and is also free to roll
on any trajectory (and return to its starting point), it follows that the sphere can take any orientation
about the line OP (for a specific location of point O and line OP). This position can be oriented
by the angle ψ. These five generalized coordinates x, y, θ, φ, and ψ are independent. The corre-
sponding incremental coordinates δx, δy, δθ, δφ, and δψ are, however, not independent as a result
of the constraint of rolling without slipping. It can be shown that two independent differential
equations can be written for this constraint and, consequently, there exist only three independent
incremental coordinates; the system actually has only three degrees of freedom.

To establish the equations for the two nonholonomic constraints, note that the incremental
displacements δx and δy of the center O about the instantaneous point of contact Q can be written;

δ δβ

δ δα

x a

y a

=

= −
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in which the rotations of α and β are taken positive about the positive directions of x and y, respectively
(Figure 5.1). Next, one can express δα and δβ in terms of the generalized coordinates. Note that δβ
is directed along the z-direction and has no components along the x and y directions. On the other
hand, δφ has the components δφ cosθ in the positive y-direction and δφ sinθ in the negative x-
direction. Furthermore, the horizontal component of δψ is δψ sinφ. This in turn has the components
(δψ sinφ) cosθ and (δψ sinφ) sinθ in the positive x and y directions, respectively. It follows that

Consequently, the two nonholonomic constraint equations are

Note that these are differential equations that cannot be directly integrated to give algebraic
equations. A particular choice for the three independent incremental coordinates associated with
the three degrees of freedom in the present system of rolling sphere would be δθ, δφ, and δψ. The
incremental variables δα, δβ, and δθ will form another choice. The incremental variables δx, δy,
and δθ will also form a possible choice. Once three incremented displacements are chosen in this
manner, the remaining two incremental generalized coordinates are not independent and can be
expressed in terms of these three incremented variables, using the constraint differential equations.

�

EXAMPLE 5.2

A relatively simple example for a nonholonomic system is a single-dimensional rigid body (a
straight line) moving on a plane such that its velocity is always along the body axis. Idealized
motion of a ship in calm water is a practical situation representing such a system. This body needs
three independent coordinates to completely define all possible configurations that it can take. For
example, the centroid of the body can be fixed by two Cartesian coordinates x and y on the plane,

FIGURE 5.1 Rolling sphere on a plane (an example of a nonholonomic system).

δα δφ θ δψ φ θ

δβ δφ θ δψ φ θ

= − +

= +

sin sin cos

cos sin sin

δ δφ θ δψ φ θ

δ δφ θ δψ φ θ

x a

y a

= +( )
= −( )

cos sin sin

sin sin cos
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and the orientation of the axis through the centroid can be fixed by a single angle θ. Note that for
a given location (x, y) of the centroid, any arbitrary orientation (θ) for the body axis is feasible
because, as in the previous example, any arbitrary trajectory can be followed by this body and
return the centroid to the starting point, but with a different orientation of the axis of the body.
Because the velocity is always directed along the body axis, a nonholonomic constraint exists and
it is expressed as

It follows that there are only two independent incremental variables; the system has only two 
degrees of freedom. 

�

Some useful definitions and properties discussed in this section are summarized in Box 5.1.

5.2 SYSTEM REPRESENTATION

Some damped systems do not possess real modes. If a system does not possess real modes, modal
analysis could still be used but the results would be only approximately valid. In modal analysis,
it is convenient to first neglect damping and develop the fundamental results, and subsequently
extend them to damped systems — for example, by assuming a suitable damping model that
possesses real modes. Because damping is an energy dissipation phenomenon, it is usually possible
to determine a model that possesses real modes and also has an energy dissipation capacity
equivalent to that of the actual system.

Consider the three undamped system representations (models) shown in Figure 5.2. The motion
of the system (a) consists of the translatory displacements y1 and y2 of the lumped masses m1 and
m2. The masses are subjected to the external excitation forces (inputs) f1(t) and f2(t) and the
restraining forces of the discrete, tensile-compressive stiffness (spring) elements k1, k2, and k3.
Only two independent incremental coordinates (δy1 and δy2) are required to completely define the

BOX 5.1 Some Definitions and Properties of Mechanical Systems

Holonomic constraints: Constraints that can be represented by purely
algebraic relations

Nonholonomic constraints: Constraints that require differential relations for
their representation

Holonomic system: A system that possesses holonomic constraints
only

Nonholonomic system: A system that possesses one or more nonholo-
nomic constraints

Number of degrees of freedom: The number of independent incremental coordi-
(dof) nates that are needed to represent a general

incremental motion of a system; = Number of
independent incremental motions

Order of a system = 2 × number of dof (typically)
For a holonomic system:
# independent incremental coordinates = number of independent coordinates

= number of dof
For a nonholonomic system:
# independent incremental coordinates < number of independent coordinates

dy

dx
= tan θ
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incremental motion of the system subject to its inherent constraints. It follows that the system has
two degrees of freedom.

In system (b) shown in Figure 5.2, the elastic stiffness to the transverse displacements y1 and
y2 of the lumped masses is provided by three bending (flexural) springs, which are considered
massless. This flexural system is very much analogous to the translatory system (a) although the
physical construction and the motion itself are quite different. The system (c) in Figure 5.2 is the
analogous torsional system. In this case, the lumped elements m1 and m2 should be interpreted as
polar moments of inertia about the shaft axis, and k1, k2, and k3 as the torsional stiffness in the
connecting shafts. Furthermore, the motion coordinates y1 and y2 are rotations, and the external
excitations f1(t) and f2(t) are torques applied at the inertia elements. Practical examples where these
three types of vibration system models may be useful are: (a) two-car train, (b) bridge with two
separate vehicle loads, and (c) electric motor and pump combination.

The three systems shown in Figure 5.2 are analogous to each other in the sense that the dynamics
of all three systems can be represented by similar equations of motion. For modal analysis, it is
convenient to express the system equations as a set of coupled second-order differential equations
in terms of the displacement variables (coordinates) of the inertia elements. Since in modal analysis

FIGURE 5.2 Three types of two-degree-of-freedom systems.
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one is concerned with linear systems, the system parameters can be given by a mass matrix and a
stiffness matrix or a flexibility matrix. Lagrange’s equations of motion directly yield these matrices.
An intuitive method for identifying the stiffness and mass matrices is presented below.

The linear, lumped-parameter, undamped systems shown in Figure 5.2 satisfy the set of dynamic
equations

or

(5.1)

Here, M is the inertia matrix, which is the generalized case of mass matrix, and K is the stiffness
matrix. There are many ways to derive equations (5.1). Below is described an approach, termed
the influence coefficient method, that accomplishes the task by separately determining K and M.

5.2.1 STIFFNESS AND FLEXIBILITY MATRICES

In the systems shown in Figure 5.2, suppose the accelerations 1 and 2 both are zero at a particular
instant, so that the inertia effects are absent. The stiffness matrix K is given under these circum-
stances, by the constitutive relation for the spring elements:

or

(5.2)

in which f is the force vector [f1, f2]T and y is the displacement vector [y1, y2]T. Both are column
vectors. The elements of the stiffness matrix, in this two-degree-of-freedom (2 dof) case, are
explicitly given by

Suppose that y1 = 1 and y2 = 0 (i.e., give a unit displacement to m1 while holding m2 at its original
position). Then, k11 and k21 are the forces needed at location 1 and location 2, respectively, to
maintain this static configuration. For this condition, it is clear that f1 = k1 + k2 and f2 = –k2.
Accordingly,

Similarly, suppose that y1 = 0 and y2 = 1. Then, k12 and k22 are the forces needed at location 1 and
location 2, respectively, to maintain the corresponding static configuration. It follows that
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Consequently, the complete stiffness matrix can be expressed in terms of the stiffness elements in
the system as

From the foregoing development, it should be clear that the stiffness parameter kij represents what
force is needed at the location i to obtain a unit displacement at location j. Hence, these parameters
are called stiffness influence coefficients.

Observe that the stiffness matrix is symmetric. Specifically,

or

(5.3)

Note, however, that K is not diagonal in general (kij ≠ 0 for at least two values of i ≠ j). This means
that the system is statically coupled (or flexibly coupled).

The flexibility matrix L is the inverse of the stiffness matrix;

(5.4)

To determine the flexibility matrix using the influence coefficient approach, one must start with a
constitutive relation of the form

(5.5)

assuming that there are no inertia forces at a particular instant, and then proceed as before. For the
systems in Figure 5.2, for example, start with f1 = 1 and f2 = 0. In this manner, one can determine
the elements l11 and l21 of the flexibility matrix

But, here, the result is not as straightforward as in the previous case. For example, to determine
l11, one must find the flexibility contributions from either side of m1. The flexibility of the stiffness
element k1 is 1/k1. The combined flexibility of k2 and k3, which are connected in series, is 1/k2 + 1/k3

because the displacements (across variables) are additive in series. The two flexibilities on either
side of m1 are applied in parallel at m1. Since the forces (through variables) are additive in parallel,
the stiffness will also be additive. Consequently,
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After some algebraic manipulation, one obtains

Because there is no external force at m2 in the assumed loading configuration, the deflections at
m2 and m1 are proportioned according to the flexibility distribution along the path. Accordingly,

or

Similarly, one can obtain

and

Note that these results confirm the symmetry of flexibility matrices;

or

(5.6)

Also, one can verify the fact that L is the inverse of K. The series-parallel combination rules for
stiffness and flexibility that are useful in the present approach are summarized in Table 5.1.

The flexibility parameters lij represent the displacement at the location i when a unit force is
applied at location j. Hence, these parameters are called flexibility influence coefficients.

5.2.2 INERTIA MATRIX

Mass matrix, which is used in the case of translatory motions, can be generalized as inertia matrix M
in order to include rotatory motions as well. To determine M for the systems shown in Figure 5.2,
suppose the deflections y1 and y2 both are zero at a particular instant, so that the springs are in their
static equilibrium configuration. Under these conditions, the equation of motion (5.1) becomes

(5.7)
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For the present two-degree-of-freedom case, the elements of M are denoted by

To identify these elements, first set 1 = 1 and 2 = 0. Then, m11 and m21 are the forces needed at
the locations 1 and 2, respectively, to sustain the given accelerations; specifically, f1 = m1 and f2 = 0.
It follows that  

Similarly, by setting 1 = 0 and 2 = 1, one obtains

TABLE 5.1
Combination Rules for Stiffness and Flexibility Elements

Connection Graphical Representation Combined Stiffness Combined Flexibility

Series l1 + l2

Parallel k1 + k2

BOX 5.2 Influence Coefficient Method of Determining System Matrices (Undamped Case)

Stiffness Matrix (K):

1. Set 

2. Set yj = 1 and yi = 0 for all i ≠ j
3. Determine f from the system diagram

that is needed to main equilibrium
= jth column of K.
Repeat for all j.

Mass Matrix (M):

1. Set
 

2. Set j = 1 and i = 0 for all i ≠ j
3. Determine f to maintain this condition

= jth column of M.

Repeat for all j.
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Then, the mass matrix is obtained as

It should be clear now that the inertia parameter mij represents what force should be applied
at the location i in order to produce a unit acceleration at location j. Consequently, these parameters
are called inertia influence coefficients.

Note that the mass matrix is symmetric in general; specifically,

or

(5.8)

Furthermore, when the independent displacements of the lumped inertia elements are chosen as
the motion coordinates, as is typical, the inertia matrix becomes diagonal. If not, it can be made
diagonal using straightforward algebraic substitutions, so that each equation contains the second
derivative of just one displacement variable. Hence, one can assume that

(5.9)

Then the system is said to be inertially uncoupled. This approach to finding K and M is summarized
in Box 5.2. It can be conveniently extended to damped systems for determining the damping matrix C.

5.2.3 DIRECT APPROACH FOR EQUATIONS OF MOTION 

The influence coefficient approach that was described in the previous section is a rather indirect
way of obtaining the equations of motion (5.1) for a multi-degree-of-freedom (multi-dof) system.
The most straightforward approach, however, is to sketch a free-body diagram for the system, mark
the forces or torques on each inertia element, and finally apply Newton’s second law. This approach
is now illustrated for the system shown in Figure 5.2(a). The equations of motion for the systems
in Figures 5.2(b) and (c) will follow analogously.

The free-body diagram of the system in Figure 5.2(a) is sketched in Figure 5.3. Note that all
the forces on each inertia element are marked. Application of Newton’s second law to the two mass
elements separately gives

The terms can be rearranged to obtain the following two coupled, second-order, linear, ordinary
differential equations:

m

m m
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22 2
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M =
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which can be expressed in the vector-matrix form as

Observe that this result is identical to that obtained by the influence coefficient approach.
Another convenient approach that would provide essentially the same result is the energy method

through the application of Lagrange’s equations. This method, which is explained in Appendix B,
should be studied carefully, and is left as an exercise for the student. Two common types of models
used in vibration analysis and applications are summarized in Box 5.3.

5.3 MODAL VIBRATIONS

Among the infinite number of relative geometric configurations the lumped masses in a multi-
degree-of-freedom system could assume under free motion (i.e., with f(t) = 0) when excited by an
arbitrary initial state, there is a finite number of configurations that are naturally preferred by the
system. Each such configuration will have an associated frequency of motion. These motions are
termed modal motions. By choosing the initial displacement y(0) proportional to a particular modal
configuration, with zero initial velocity ( (0) = 0), that particular mode can be excited at the
associated natural frequency of motion. The displacements of different degrees of freedom retain
this initial proportion at all times. This constant proportion in displacement can be expressed as a
vector y for that mode, and represents the mode shape. Note that each modal motion is a harmonic
motion executed at a specific frequency ω known as the natural frequency (undamped). In view
of these general properties of modal motions, they can be expressed by

(5.10)

or, in the complex form, for its ease of analysis, as

(5.11)

When equation (5.11) is substituted into the equation of unforced (free) motion,

(5.12)

as required by the definition of modal motion, the following eigenvalue problem results:

FIGURE 5.3 Free-body diagram of the two-degree-of-freedom system.
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(5.13)

For this reason, natural frequencies are sometimes called eigenfrequencies, and mode shapes are
termed eigenvectors. The feasibility of modal motions for a given system is determined by the
existence of nontrivial solutions for (i.e.,  ≠ 0). Specifically, nontrivial solutions for  are
possible if and only if the determinant of the system of linear homogeneous equations (5.13)
vanishes; thus,

(5.14)

Equation (5.14) is known as the characteristic equation of the system. For an n-degree-of-freedom
system, both M and K are n × n matrices. It follows that the characteristic equation has n roots

BOX 5.3 Model Types

Linear Nonlinear

•  Coupled second-order equations:

Response vector: 

Excitation vector: 

M = mass matrix
C or B = damping matrix
K = stiffness matrix

•  Coupled first-order equations:
(state-space models)

State vector: 

Input (excitation) vector: 

Output (response) vector: 

Notes:
1. Definition of state: If x(t0), and u from t0 to t1, are known, x(t1) can be determined

completely.
2. State vector x contains a minimum number (n) of elements.
3. State model is not unique (different state models are possible for the same system).

4. One approach to obtaining a state model is to use 
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for ω2. For physically realizable systems, these n roots are all non-negative and they yield the n
natural frequencies ω1, ω2, …, ωn of the system. For each natural frequency ωi when substituted
into equation (5.13) and solved for , there results a mode shape vector i that is determined up
to one unknown parameter which can be used as a scaling parameter. Extra care should be exercised,
however, when determining mode shapes for zero natural frequencies (i.e., rigid body modes) and
repeated natural frequencies (i.e., for systems with a dynamic symmetry). These considerations are
discussed in later sections.

EXAMPLE 5.3

Consider a mechanical system modeled as in Figure 5.4. This is obtained from the systems in
Figure 5.2 by setting m1 = m, m2 = αm, k1 = k, k2 = βk, and k3 = 0. The corresponding mass matrix
and the stiffness matrix are

The natural frequencies are given by the roots of the characteristic equation

By expanding the determinant, this can be expressed as

or

One can define a frequency parameter . This parameter is identified as the natural
frequency of an undamped simple oscillator (single-degree-of-freedom mass-spring system) with
mass m and stiffness k. Consequently, the characteristic equation of the given two-degree-of-freedom
system can be written as

whose roots are

FIGURE 5.4 A modal vibration example.
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The mode shapes are obtained by solving for  in

or

In a mode shape vector, only the ratio of the elements is needed. This is because, in determining
a mode shape, one is concerned about the relative motions of the lumped masses, not the absolute
motions. From the above equation, it is clear that this ratio is given by

which is evaluated by substituting the appropriate value for (ω/ωo), depending on the mode, into
any one of the right-hand-side expressions above.

The dependence of the natural frequencies on the parameters α and β is illustrated by the curves
in Figure 5.5. Some representative values of the natural frequencies and mode shape ratios are
listed in Table 5.2.

Note that when β = 0, the spring connecting the two masses does not exist, and the system
reduces to two separate systems: a simple oscillator of natural frequency ωo and a single mass
particle (of zero natural frequency). It is clear that in this case, ω1/ωo = 0 and ω2/ωo = 1. This fact
can be established from the expressions for natural frequencies of the original system by setting
β = 0. The mode corresponding to ω1/ωo = 0 is a rigid body mode in which the free mass moves
indefinitely (zero frequency) and the other mass (restrained mass) stands still. It follows that the
mode shape ratio (ψ2/ψ1)1 → ∞. In the second mode, the free mass stands still and the restrained
mass moves. Hence, (ψ2/ψ1)1 = 0. These results are also obtained from the general expressions for
the mode shape ratios of the original system.

When β → ∞, the spring connecting the two masses becomes rigid and the two masses act as
a single mass (1 + α)m restrained by a spring of stiffness k. This simple oscillator has a squared

natural frequency of /(1 + α). This is considered the smaller natural frequency of the corresponding
system: (ω1/ωo)2 = 1/(1 + α). The larger natural frequency ω2 approaches ∞ in this case and it
corresponds to the natural frequency of a massless spring. These limiting results can be derived from
the general expressions for natural frequencies of the original system by using the fact that for small
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�x� << 1, the expression  is approximately equal to . (Proof: Use the Taylor series

expansion.) In the first mode, the two masses move as one unit and hence the mode shape ratio
(ψ2/ψ1)1 = 1. In the second mode, the two masses move in opposite directions restrained by an
infinitely stiff spring. This is considered the static mode that results from the redundant situation of
associating two degrees of freedom to a system that actually has only one lumped mass (1 + α)m.
In this case, the mode shape ratio is obtained from the general result as follows. For large β, one
can neglect α in comparison. Hence,

By substituting this result in the expression for the mode shape ratio, one obtains

FIGURE 5.5 Dependence of natural frequencies (ω/ωo) on mass ratio (α) and stiffness ratio (β).

TABLE 5.2
The Dependence of Natural Frequencies and Mode Shapes on Inertia and Stiffness

α 0.5 1.0 2.0

β ω1/ωo ω2/ωo (ψ2/ψ1)1 (ψ2/ψ1)2 ω1/ωo ω2/ωo (ψ2/ψ1)1 (ψ2/ψ1)2 ω1/ωo ω2/ωo (ψ2/ψ1)1 (ψ2/ψ1)2

0 0 1.0 ∞ 0 0 1.0 ∞ 0 0 1.0 ∞ 0
0.5 0.71 1.41 2.0 –1.0 0.54 1.31 2.41 –0.41 0.40 1.26 2.69 –0.19
1.0 0.77 1.85 1.41 –1.41 0.62 1.62 1.62 –0.62 0.47 1.51 1.78 –0.28
2.0 0.79 2.52 1.19 –1.69 0.66 2.14 1.28 –0.78 0.52 1.93 1.37 –0.37
5.0 0.81 3.92 1.07 –1.87 0.69 3.24 1.10 –0.91 0.55 2.86 1.14 –0.44
∞ 0.82 ∞ 1.0 –2.0 0.71 ∞ 1.0 –1.0 0.57 ∞ 1.0 –0.5
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Finally, consider the case α = 0 (with β ≠ 0). In this case, only one mass m is present, which
is restrained by a spring of stiffness k. The spring of stiffness βk has an open end. The first mode
corresponds to a simple oscillator of natural frequency ωo. Hence, ω1/ωo = 1. The open end has
the same displacement as the point mass. Consequently, (ψ2/ψ1)1 = 1. These results can be derived
from the general expressions for the original system. In the second mode, the simple oscillator
stands still and the open-ended spring oscillates (at an infinite frequency). Hence, ω2/ωo = ∞, and
this again corresponds to a static mode situation that arises by assigning two degrees of freedom
to a system that has only one degree of freedom associated with its inertia elements. Because the
lumped mass stands still, one has (ψ2/ψ1)2 = ∞.

Note that when α = 0 and β = 0, the system reduces to a simple oscillator, and the second
mode is completely undefined. Hence, the corresponding results cannot be derived from the general
results for the original system.

�

5.4 ORTHOGONALITY OF NATURAL MODES

One can write equation (5.13) explicitly for the two distinct modes i and j. Distinct modes are
defined as those having distinct natural frequencies (i.e., ωi ≠ ωj). Therefore,

(5.15)

(5.16)

Premultiply equation (5.15) by  and equation (5.16) by .

(5.17)

(5.18)

Take the transpose of equation (5.18), which is a scaler:

This, in view of the symmetry of M and K (see equations (5.8) and (5.3)), becomes

By subtracting this result from equation (5.17), one obtains
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Now, because ωi ≠ ωj, it follows that

(5.19)

Equation (5.19) is a useful orthogonality condition for natural modes.
Although the foregoing condition of M-orthogonality was proved for distinct (unequal) natural

frequencies, it is generally true even if two or more modes have repeated (equal) natural frequencies.
Indeed, if a particular natural frequency is repeated r times, there will be r arbitrary elements in the
modal vector. As a result, one can determine r independent mode shapes that are orthogonal with
respect to the M matrix. An example is given later in the problem of Figure 5.6. Note further that
any such mode shape vector corresponding to a repeated natural frequency will also be M-orthogonal
to the mode shape vector corresponding to any of the remaining distinct natural frequencies. Con-
sequently, one concludes that the entire set of n mode shape vectors is M-orthogonal, even in the
presence of various combinations of repeated natural frequencies.

5.4.1 MODAL MASS AND NORMALIZED MODAL VECTORS

Note that in equation (5.19), a parameter Mi has been defined to denote . This parameter
is termed generalized mass or modal mass for the ith mode. Because the modal vectors ψi are
determined up to one unknown parameter, it is possible to set the value of Mi arbitrarily. The process
of specifying the unknown scaling parameter in the modal vector, according to some convenient
rule, is called the normalization of modal vectors. The resulting modal vectors are termed normal
modes. A particularly useful method of normalization is to set each modal mass to unity (Mi = 1).
The corresponding normal modes are said to be “normalized with respect to the mass matrix,” or
“M-normal.” Note that if yi is normal with respect to M, then it follows from equation (5.18) that
–yi is also normal with respect to M. Specifically,

(5.20)

It follows that M-normal modal vectors are still arbitrary up to a multiplier of –1. A convenient
practice for eliminating this arbitrariness is to make the first element of each normalized modal
vector positive.

5.5 STATIC MODES AND RIGID BODY MODES

5.5.1 STATIC MODES

Modes corresponding to infinite natural frequencies are known as static modes. For these modes,
the modal mass is zero; in the normalization process with respect to M, static modes cannot be
included. If one assigns a degree of freedom for a massless location, the resulting mass matrix M
becomes singular (det M = 0) and a static mode arises. Two similar situations were observed in a
previous example: in one case, the stiffness of the spring connecting two masses is made infinite
so that they act as a single mass in the limit; and in the other case, one of the two masses is made
equal to zero so that only one mass is left. One should take extra precaution to avoid such situations
by using proper modeling practices; the presence of a static mode amounts to assigning a degree
of freedom to a system that it does not actually possess. In a static mode, the system behaves like
a simple massless spring.
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In the literature of experimental modal analysis, the static modes are represented by a residual
flexibility term in the transfer functions. Note that in this case, modes of natural frequencies that
are higher than the analysis bandwidth, or the maximum frequency of interest, are considered static
modes. Such issues of experimental modal analysis will be discussed in Chapter 11.

5.5.2 LINEAR INDEPENDENCE OF MODAL VECTORS

In the absence of static modes (i.e., modal masses Mi ≠ 0), the inertia matrix M will be non-singular.
Then the orthogonality condition (5.19) implies that the modal vectors are linearly independent,
and consequently, they will form a basis for the n-dimensional space of all possible displacement
trajectories y for the system. Any vector in this configuration space (or displacement space),
therefore, can be expressed as a linear combination of the modal vectors.

Note the assumption made in the earlier development that the natural frequencies are distinct
(or unequal). Nevertheless, linearly independent modal vectors are possessed by modes of equal
natural frequencies as well. An example is the situation where these modes are physically uncoupled.
These modal vectors are not unique, however; there will be arbitrary elements in the modal vector
equal in number to the repeated natural frequencies. Any linear combination of these modal vectors
can also serve as a modal vector at the same natural frequency. To explain this point further, without
loss of generality, suppose that ω1 = ω2. Then, from equation (5.15), one obtains

Multiply the first equation by α, the second equation by β, and add the resulting equations to obtain

This verifies that any linear combination αψ1 + βψ2 of the two modal vectors ψ1 and ψ2 will also
serve as a modal vector for the natural frequency ω1. The physical significance of this phenomenon
should be clear in Example 5.4.

5.5.3 MODAL STIFFNESS AND NORMALIZED MODAL VECTORS

It is possible to establish an alternative version of the orthogonality condition given as equation
(5.19) by substituting it into equation (5.18). This gives

(5.21)

This condition is termed K-orthoganlity.
Because the M-orthogonality condition (equation(5.19)) is true even for the case of repeated

natural frequencies, it should be clear that the K-orthogonality condition (equation (5.21)) is also
true in general, even with repeated natural frequencies. The newly defined parameter Ki represents
the value of  and is known as the generalized stiffness or modal stiffness corresponding to
the ith mode.

Another useful way to normalize modal vectors is to choose their unknown parameters so that
all modal stiffnesses are unity (Ki = 1 for all i). This process is known as normalization with respect
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to the stiffness matrix. The resulting normal modes are said to be K-normal. These normal modes
are still arbitrary up to a multiplier of –1. This can be eliminated by assigning positive values to
the first element of all modal vectors.

Note that, in general, it is not possible to normalize a modal vector simultaneously with respect
to both M and K. To understand this further, observe that  = Ki/Mi and, consequently, one is
unable to pick both Ki and Mi arbitrarily. In particular, for the M-normal case, Ki = ; and for
the K-normal case, Mi = 1/ .

5.5.4 RIGID BODY MODES

Rigid body modes are those for which the natural frequency is zero. Modal stiffness is zero for
rigid body modes; as a result, it is not possible to normalize these modes with respect to the stiffness
matrix. Note that when rigid body modes are present, the stiffness matrix becomes singular
(det K = 0). Physically, removing a spring and setting free an inertia element results in a rigid body
mode. Example 5.3 provided a similar situation. In experimental modal analysis applications, low-
stiffness connections or restraints that might be present in a test object could result in approximate
rigid body modes that would become prominent at low frequencies.

Some important results of modal analysis discussed thus far are summarized in Table 5.3.

EXAMPLE 5.4

Consider a light rod of length l having equal masses m attached to its ends. Each end is supported
by a spring of stiffness k, as shown in Figure 5.6. Note that this system may represent a simplified
model of a vehicle in heave and pitch motions. Gravity effects can be eliminated by measuring
the displacements y1 and y2 of the two masses about their respective static equilibrium positions.
Assume small front-to-back rotations θ in the pitch motion and small up-and-down displacements

 of the centroid in its heave motion.

Equation of Heave Motion

From Newton’s second law for rigid body motion, one obtains

FIGURE 5.6 A simplified vehicle model for heave and pitch motions.
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Equation of Pitch Motion

Note that for small angles of rotation, θ = (y1 – y2)/l. The moment of inertia of the system about

the centroid is . Hence, by Newton’s second law for rigid body rotation,

These two equations of motion can be written as

TABLE 5.3
Some Important Results of Modal Analysis

System

Symmetry

Modal problem

Characteristic equation
(gives natural frequencies)

M-orthogonality

K-orthogonality

Modal mass (generalized mass) Mi

Modal stiffness (generalized stiffness) Ki

Natural frequency

M-normal case

K-normal case

Presence of rigid body modes

Presence of static modes
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in which . By straightforward algebraic manipulation, a pair of completely uncoupled
equations of motion are obtained; thus,

It follows that the resulting mass matrix and the stiffness matrix are both diagonal. In this case,
there are an infinite number of choices for mode shapes, and any two linearly independent second-
order vectors can serve as modal vectors for the system. Two particular choices are shown in
Figure 5.7. Any of these mode shapes will correspond to the same natural frequency ωo.

In each of these two choices, the mode shapes have been chosen so that they are orthogonal
with respect to both M and K. This fact is verified below. Note that, in the present example,

FIGURE 5.7 Two possibilities of mode shapes for the symmetric heave–pitch vehicle.
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For Case 1:

For Case 2:

In general, because both elements of each eigenvector can be picked arbitrarily, one can write

where a and b are arbitrary, limited only by the orthogonality requirement for ψ1 and ψ2. The M-
orthogonality requires that

and K-orthogonality requires that

Both conditions give 1 + ab = 0, which corresponds to ab = –1. Note that Case 1 corresponds to
a = 1 and b = –1, and Case 2 corresponds to a = 0 and b → ∞. More generally, one can pick as
modal vectors

   

such that the two mode shapes are both M-orthogonal and K-orthogonal. In fact, if this particular 
system is excited by an arbitrary initial displacement, it will undergo free vibrations at frequency 
ωo while maintaining the initial displacement ratio. Hence, if M-orthogonality and K-orthogonality
are not required, any arbitrary second-order vector can serve as a modal vector to this system.

�

EXAMPLE 5.5

An example for a system possessing a rigid body mode is shown in Figure 5.8. This system, a
crude model of a two-car train, can be derived from the system shown in Figure 5.4 by removing
the end spring (inertia restraint), and setting α = 1 and β = 1. The equation for unforced motion
of this system is 
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Note that, det M = m2 ≠ 0 and hence the system does not possess static modes. This should also
be obvious from the fact that each degree of freedom (y1 and y2) has an associated, independent
mass element. On the other hand, det K = k2 – k-2 = 0, which signals the presence of rigid body modes.

The characteristic equation of the system is

or

The two natural frequencies are given by the roots: ω1 = 0 and . Note that the zero
natural frequency corresponds to the rigid body mode. The mode shapes can reveal further inter-
esting facts.

First Mode (Rigid Body Mode)

In this case, ω1 = 0. Consequently, from equation (5.15), the mode shape is given by

which has the general solution ψ1 = ψ2, or

The parameter a can be chosen arbitrarily. The corresponding modal mass is

FIGURE 5.8 A simplified model of a two-car train.
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If the modal vector is normalized with respect to M, then M1 = 2ma2 = 1. Then, , and

the corresponding normal mode vector would be

which is arbitrary up to a multiplier of –1. If the first element of the normal mode is restricted to
be positive, the former vector (one with positive elements) should be used.

As previously noted, it is not possible to normalize a rigid body mode with respect to K.
Specifically, the modal stiffness for the rigid body mode is

for any choice for a, as expected.

Second Mode

For this mode, . By substituting into equation (5.15), one obtains

the solution of which gives the corresponding modal vector (mode shape).
The general solution is ψ2 = –ψ1, or

in which a is arbitrary. The corresponding modal mass is given by

and the modal stiffness is given as

Then, for M-normality, one must have 2ma2 = 1 or .
It follows that the M-normal mode vector would be
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The corresponding value of the modal stiffness is K2 = 2k/m, which is equal to , as expected.

Similarly, for K-normality, one must have 4ka2 = 1, or . Hence, the K-normal modal
vector would be

The corresponding value of the modal mass is M2 = m/(2k), which is equal to , as expected.
The mode shapes of the system are shown in Figure 5.9. Note that in the rigid body mode,

both masses move in the same direction through the same distance, with the connecting spring
maintained in the unstretched configuration. In the second mode, the two masses move in opposite
directions with equal amplitudes. This results in a node point halfway along the spring. A node is
a point in the system that remains stationary under a modal motion. It follows that in the second
mode, the system behaves like an identical pair of simple oscillators, each possessing twice the
stiffness of the original spring (see Figure 5.10). The corresponding natural frequency is ,
which is equal to ω2.

Orthogonality of the two modes can be verified with respect to the mass matrix as

FIGURE 5.9 Mode shapes of the two-car train example.

FIGURE 5.10 Equivalent system for mode 2 of the two-car train example.
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and, with respect to the stiffness matrix as

Because K is singular, due to the presence of the rigid body mode, the first orthogonality condition
(equation (5.19)) — and not the second (equation (5.21)) — is the useful result for this system. In
particular, because M is non-singular, the orthogonality of the modal vectors with respect to the
mass matrix implies that they are linearly independent vectors by themselves. This is further verified
by the non-singularity of the modal matrix; specifically,

Since M is a scalar multiple of the identity matrix, one sees that the modal vectors are in fact
orthogonal, as is clear from

�

5.5.5 MODAL MATRIX

An n-degree-of-freedom system has n modal vectors ψ1, ψ2, …, ψn, which are independent. The n
× n square matrix Ψ, for which the columns are the modal vectors, is known as the modal matrix:

(5.22)

Because the mass matrix M can always be made non-singular through proper modeling practices
(in choosing the degrees of freedom), it can be concluded that the modal matrix is non-singular:

(5.23)

and the inverse Ψ–1 exists. Before showing this fact, note that the orthogonality conditions (5.19)
and (5.21) can be written in terms of the modal matrix as

(5.24)

(5.25)

in which M and K are the diagonal matrices of modal masses and modal stiffnesses, respectively.
Next, the result from linear algebra that states that the determinant of the product of two square

matrices is equal to the product of the determinants. Also, a square matrix and its transpose have
the same determinent. Then, by taking the determinant of both sides of equation (5.24), it follows that

(5.26)
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Here, one has also used the fact that in equation (5.24), the RHS matrix is diagonal. Now, Mi ≠ 0
for all i, since there are no static modes in a well-posed modal problem. It follows that

(5.27)

which implies that Ψ is nonsingular.

5.5.6 CONFIGURATION SPACE AND STATE SPACE

All solutions of the displacement response y span an Euclidean space known as the configuration
space. This is an n-Euclidean space (Ln). This is also the displacement space.

The trace of the displacement vector y is not a complete representation of the dynamic response
of a vibrating system because the same y can correspond to more than one dynamic state of the

system. Hence, y is not a state vector; but  is a state vector because it includes both displace-

ment and velocity, and completely represents the state of the system. This state vector spans the
state space (L2n), which is a 2n-Euclidean space.

State Vector

This is a vector x consisting of a minimal set of response variables of a dynamic system such that,
with the knowledge of the initial state x(t0) and the subsequent input u[t0, t1] to the system over a
finite time interval [t0, t1], the end state x(t1) can be uniquely determined. Each point in a state
space uniquely (and completely) determines the state of the dynamic system under these conditions.

Note: Configuration space can be thought of as a subspace of the state space that is obtained
by projecting the state space into the subspace formed by the axes of the y vector.

For an n-degree-of-freedom vibrating system (see equation (5.1)), the displacement response
vector y is of order n. If one knows the initial condition y(0) and the forcing excitation f(t), it is
not possible to completely determine y(t), in general. However, if one does know y(0) and (0) as
well as f(t), then it is possible to completely determine y(t) and (t). This says what was noted
before: that y alone does not constitute a state vector, but y and  together do. In this case, the
order of the state space is 2n, which is twice the number of degrees of freedom.

5.6 OTHER MODAL FORMULATIONS

The modal problem (eigenvalue problem) studied in the previous sections consists of the solution of

(5.28)

which is identical to equation (5.13). The natural frequencies (eigenvalues) are given by solving
the characteristic equation (5.14). The corresponding mode shape vectors (eigenvectors) ψi are
determined by substituting each natural frequency ωi into equation (5.13) and solving for a nontrivial
solution. This solution will have at least one arbitrary parameter. Hence, ψ represents the relative
displacements at the various degrees of freedom of the vibrating system, and not the absolute
displacements. Now, two other formulations are given for the modal problem.

The first alternative formulation given below involves solution of the eigenvalue problem of a
nonsymmetric matrix (M–1 K). The other formulation given consists of first transforming the original
problem into a new set of motion coordinates and then solving the eigenvalue problem of a

symmetric matrix , and then transforming the resulting modal vectors back to the
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original motion coordinates. Of course, all three formulations will give the same end result for the
natural frequencies and mode shapes of the system — because the physical problem would remain
the same regardless of what formulation and solution approach are employed. This fact will be
illustrated using an example.

5.6.1 NON-SYMMETRIC MODAL FORMULATION

Consider the original modal formulation given by equation (5.28), which has been studied previously.
Since the inertia matrix M is nonsingular, its inverse M–1 exists. The premultiplication of equation
(5.28) by M–1 gives

(5.29)

This vector-matrix equation is of the form

(5.30)

where λ = ω2 and S = M–1 K. Equation (5.30) represents the standard matrix eigenvalue problem
for matrix S. It follows that,

Squared natural frequencies = Eigenvalues of M–1 K

Mode shape vectors = Eigenvectors of M–1 K

5.6.2 TRANSFORMED SYMMETRIC MODAL FORMULATION

Now consider the free (unforced) system equations

(5.31)

whose modal problem needs to be solved. First, define the square-root of matrix M, as denoted by

 such that

(5.32)

Because M is symmetric,  must also be symmetric. Next, define  as the inverse of .
Specifically,

(5.33)

where I is the identity matrix. Note that  is also symmetric.

Once  is defined in this manner, transform the original problem (5.31) using the coordinate
transformation

(5.34)

Here, q denotes the transformed displacement vector, which is related to the actual displacement

vector y through the matrix transformation using .
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By differentiating equation (5.34) twice, one obtains

(5.35)

Substitute equations (5.34) and (5.35) into (5.31). This gives

Premultiply this result by  and use the fact that

which follows from equations (5.32) and (5.33). One obtains

(5.36)

Equation (5.36) is the transformed problem, whose modal response can be given by

(5.37)

where ω represents a natural frequency and φ represents the corresponding modal vector, as usual.
Then, in view of equation (5.34),

(5.38)

It follows that the natural frequencies of the original problem (5.31) are identical to the natural
frequencies of the transformed problem (5.36), and the modal vectors ψ of the original problem
are related to the modal vectors φ of the transformed problem through

(5.39)

Substitute the modal response (5.37) into (5.36) to obtain

(5.40)

where λ = ω2 and 
Equation (5.40), just like equation (5.30), represents a standard matrix eigenvalue problem. But

now, matrix P is symmetric. As a result, its eigenvectors φ will not only be real but also orthogonal.
The solution steps for the present, transformed, and symmetric modal problem are:

1. Determine .
2. Solve for eigenvalues λ and eigenvectors φ of . Eigenvalues are squares of

the natural frequencies of the original system.
3. Determine the modal vectors ψ of the original system using .
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The three approaches of modal analysis that have been studied are summarized in Table 5.4.

EXAMPLE 5.6

Use the two-degree-of-freedom vibration problem given in Figure 5.4 (Example 5.3) to demonstrate
the fact that all three approaches summarized in Table 5.4 will lead to the same results.

Consider the special case of α = 0.5 and β = 0.5. Then one has:

Using the standard approach, one obtains the modal results given in Table 5.3. Specifically, one

obtains the natural frequencies (normalized with respect to )

and the mode shapes

Now obtain these results using the other two approaches of modal analysis.

Approach 2

TABLE 5.4
Three Approaches of Modal Analysis

Approach Standard
Non-symmetric

Matrix Eigenvalue
Symmetric

Matrix Eigenvalue

Modal formulation

Squared natural frequencies ( ) Roots of Eigenvalues of Eigenvalues of

Mode-shape vectors (ψi) Nontrivial Solutions of Eigenvectors of Determine eigenvectors φi of
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Note that this is not a symmetric matrix. Solve the eigenvalue problem of .
Eigenvalues λ are given by

or

or

the roots of which are

It follows that  and , as before.

The eigenvector corresponding to λ1 (Mode 1) is given by

The solution is , as before.

The eigenvector corresponding to λ2 (Mode 2) is given by
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The solution is , as before.

Approach 3

Since M is diagonal, it is easy to obtain . Simply take the square root of the diagonal elements;
thus,

Its inverse is given by inverting the diagonal elements; thus,

Now,

Note that, as expected, this is a symmetric matrix. Solve for eigenvalues and eigenvectors of

Eigenvalues are given by

or
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or

which is identical to the characteristic equation obtained in the first two approaches. It follows that
the same two natural frequencies are obtained by this method. The eigenvector φ1 for Mode 1 is
given by

which gives 

Accordingly, one can use

The eigenvector φ2 for Mode 2 is given by

which gives 

Accordingly, use

Now, transform these eigenvectors back to the original coordinate system using equation (5.39) to
obtain

which gives , as before.
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Also,

which gives

, as before.

�

5.7 FORCED VIBRATION

The forced motion of a linear, n-degree-of-freedom undamped system is given by the nonhomo-
geneous equation of motion (5.1):

(5.41)

Although the following discussion is based on this undamped model, the results can be easily
extended to the damped case.

It has been observed that the modal vectors form a basis for the configuration space. In other
words, it is possible to express the response y as a linear combination of the modal vectors ψi:

(5.42)

The parameters qi are a set of generalized coordinates and are functions of time t. Equation (5.42)
is written in the vector-matrix form as

or

(5.43)

and can be viewed as a coordinate transformation from the trajectory space to the canonical space
of generalized coordinates (principal coordinates or natural coordinates). Note that the inverse
transformation exists because the modal matrix Ψ is non-singular. On substituting equation (5.43)
into (5.41), one obtains

This result is premultiplied by ΨT, and the orthogonality conditions (5.24) and (5.25) are substituted
to obtain the canonical form of the system equation:
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(5.44)

in which M and K are the diagonal matrices given by equations (5.24) and (5.25), and the
transformed forcing vector is given by

(5.45)

Since M and K are diagonal matrices, equation (5.44) corresponds to the set of n uncoupled simple
oscillator equations:

(5.46)

In other words, the coordinate transformation (5.43) using the modal matrix has uncoupled the
equations of forced motion. It follows from equation (5.46) that the natural frequencies of the
system are given by

(5.47)

as noted before.
It is particularly convenient to employ M-normal modal vectors. In this case, M becomes the

nth-order identity matrix, and K the diagonal matrix having  as its diagonal elements; thus,

(5.48)

(5.49)

The corresponding uncoupled equations (5.46) take the form

(5.50)

in which, the forcing terms fi(t) are given by equation (5.45), Ψ being M-normal.
Typically, the initial conditions for the original system are provided as the initial position y(0)

and the initial velocity (0). The corresponding initial conditions for the transformed equations of
motion are obtained using equation (5.43) as

(5.51)

(5.52)

The complete response of the original system can be conveniently obtained by first solving the
simple oscillator equations (5.50) and then transforming the results back into the trajectory space
using equation (5.43).

The complete solution to this linear system can be viewed as the sum of the initial condition
response in the absence of the forcing function, and the forced response with zero initial conditions,
as discussed in Chapter 2. For the simple oscillator equations (5.50), the initial condition response
qiI is given by
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(5.53)

The impulse response function (i.e., response to a unit impulse excitation) for the undamped
oscillator equation is

(5.54)

The forced response qiF, with zero initial conditions, is obtained using the convolution integral
method (see Chapter 2); specifically,

(5.55)

The complete solution in the canonical domain is

(5.56)

Each of the n responses is a modal response which is the contribution from that mode to the actual
response y. This approach is summarized in Box 5.4. Next, this approach of solving for the forced
vibration is illustrated by means of an example.

EXAMPLE 5.7

Consider again the system shown in Figure 5.8. A step input force f(t) given by

is applied to the left-hand mass (degree of freedom y1). Assume that the system starts from rest

.
As before, the M-normal modal matrix of the system is

No forcing input is applied to the second degree of freedom (y2). Hence, the overall forcing input
vector is
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BOX 5.4 Modal Approach to Forced Response

Forced system: 
Number of degrees of freedom = n

Modal transformation: y = Ψq

where, modal matrix Ψ = [ψ1, ψ2, …, ψn] = matrix of mode shape vectors.
We get the diagonalized system:

or

where

Initial conditions:

Steps:
Use the M-normal case: 
Then,

1. Free, initial-condition response (zero-input response):

2. Forced, zero IC response:

3.
4. Transform back to y using 

My Ky f˙̇ + = ( )t
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From equation (5.45), the transformed forcing input vector is obtained as

From equations (5.51) and (5.52), the initial conditions for the modal (canonical) variables are
obtained as, (0) = 0 and q(0) = 0. The modal responses q1(t) and q2(t) are obtained using equation
(5.56).

First Mode (Rigid Body Mode)

Note that: 

It follows that

Second Mode (Oscillatory Mode)

The overall response in the physical trajectory space is obtained by transforming the modal
responses using equation (5.43); thus,

with . The response of both masses grows (unstable) quadratically in an oscillatory
manner, as shown in Figure 5.11.
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�

5.8 DAMPED SYSTEMS

Now one can examine the possibility of extending the modal analysis results to damped systems.
Damping is an energy dissipation phenomenon. In lumped-parameter models of vibrating systems,
damping force can be represented by a resisting force at each lumped mass. In view of equation
(5.1), then, the system equations for a damped system can be written as

(5.57)

in which d is the damping force vector. Modeling of damping is usually quite complicated. Often,
a linear model, whose energy dissipation capacity is equivalent to that of the actual system, is
employed. Such a model is termed an equivalent damping model. The most popular model for
damping is the linear viscous model, in which the damping force is proportional to the relative
velocity. In lumped-parameter dynamic models (linear), viscous damping elements can be assigned
across pairs of degrees of freedom or across a degree of freedom and a fixed reference. The damping
force for such a model can be expressed as

(5.58)

FIGURE 5.11 Forced response obtained through modal analysis.

My Ky f d˙̇ + = ( ) −t

d Cy= ˙
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in which C is the damping matrix. The resulting damped system equation is

(5.59)

To determine the elements of C for a given system model, by the influence coefficient approach,
the same procedure outlined previously for obtaining the elements of K can be used, except that
the velocities i should be used in place of the displacements yi. The coefficients cij are called the
damping influence coefficients.

5.8.1 PROPORTIONAL DAMPING

Because the modal vectors are orthogonal with respect to both M and K, the transformation (5.43)
will decouple the undamped system equation (5.41). It should be clear, however, that the same
transformation will not diagonalize the C matrix in general. As observed in the previous section,
decoupling, or modal decomposition, is a convenient tool in response analysis. This is because each
uncoupled modal equation is a simple oscillator equation with a well-known solution that can be
transformed back (or recombined) to obtain the total response. This simple procedure cannot be
used for damped systems unless the modal vectors are orthogonal with respect to C as well.

In modal vibration, all degrees of freedom move in the same displacement proportion, as given
by the modal vector. This type of “synchronous” motion may not be possible in damped systems.
Another way to state this is that most damped systems do not possess real modes. If one tries to
excite such a damped system at one of its natural frequencies, one will notice that the constant
proportion given by the modal vector (for the undamped system) is violated during motion.
Furthermore, if the undamped system has a (fixed) node point in the particular mode, that point
would not remain fixed but would move in a cyclic manner when set to vibrate at the natural
frequency of the mode.

Note that viscous damping is just a “model” for energy dissipation. If one becomes rather
restrictive in choosing the parameters of viscous damping, one will be able to develop an equivalent
damping matrix with respect to which, the modal vectors of the undamped system would be
orthogonal. In other words, it is required that the transformed damping matrix C be a diagonal
matrix; thus,

(5.60)

In this case, the corresponding viscous damping model is termed proportional damping or Rayleigh
damping (after the person who first identified this simplification).

Modal decomposition of equation (5.59), assuming proportional damping, using the transfor-
mation (5.43) results in the canonical form (uncoupled modal equation)

(5.61)

or

Equation (5.61) can be written in the standard form for a damped simple oscillator:

(5.62)

My Cy Ky f˙̇ ˙+ + = ( )t

ẏ

ΨΨΨ ΨΨΨT
nC C CC C= [ ] =diag   ,  1 2, , K

Mq Cq Kq f˙̇ ˙+ + = ( )t

M q C q K q f t i ni i i i i i i
˙̇ ˙ , , ,+ + = ( ) =for    1 2 K
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in which the modal matrix is assumed M-normal (i.e., Mi = 1). It can be concluded that a
proportionally damped system possesses real modal vectors that are identical to the modal vectors
of its undamped counterpart. The damped natural frequency, however, is smaller than the undamped
natural frequency and is given by

(5.63)

One way to guarantee proportional damping is to pick a damping matrix that satisfies

(5.64)

This, however, is not the only way to achieve real modes in a damped system (equation (5.60)).
The first term on the right-hand side (RHS) of equation (5.64) is termed the inertial damping
matrix. The corresponding damping force on each lumped mass in the model will be proportional
to the momentum. This term may represent the energy loss associated with a momentum and is
termed momentum damping. Physically, this is incorporated by assigning a viscous damper between
each degree of freedom and its fixed reference, with the damping constant proportional to the mass
concentrated at that location.

The second term in equation (5.64) is termed the stiffness damping matrix. The corresponding
damping force is proportional to the rate of change of the local deformation forces (stresses) in
flexible structural members and joints. It may be interpreted as a simplified model for structural
damping. Physically, this model is realized by assigning a viscous damper across every spring
element in the model, with the damping constant proportional to the stiffness. It is known that rate
of change of stresses or rate of change of strains will give rise to viscoelastic damping, which is
associated with plasticity and viscoelasticity. This type of damping is known as strain-rate damping.

Usually, structural damping is most appropriately modeled as being present across (lumped)
stiffness elements. Coulomb damping is modeled as acting between an inertia element and its fixed
reference point. These intuitive observations also support the damping model given by equation
(5.64). Some terminology and properties of damped systems are summarized in Box 5.5.

EXAMPLE 5.8

Now examine the lumped-parameter damped model shown in Figure 5.12 to determine whether it
has real modes.

Note that if one modifies the model as in Figure 5.13, the damping matrix will become
proportional to the stiffness matrix. This will be a case of proportional damping and the modified
(damping) system will possess real modes with modal vectors that are identical to those for the
corresponding undamped system. It should be verified that the equations of motion for this modified
system (Figure 5.13) are

Notice the similarity between the stiffness matrix and the damping matrix.
Another damped system that possesses classical modes is shown in Figure 5.14. In this model,

the damping matrix is proportional to the mass (inertia) matrix. It can be easily verified that the
system equations are

Here, notice the similarity between the inertia matrix and the damping matrix.
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Returning to the original system shown in Figure 5.12, the equations of motion can be written as

From these equations, it is not obvious whether this system possesses real modes. The undamped
natural frequencies are given by the roots of the characteristic equation

BOX 5.5 Terminology and Properties of Damped Systems

Characteristic equation:

Roots s are the eigenvalues λi

Existence of real modes:
• Condition for existence of modes that are identical to undamped modes:

where

• Another (equivalent) condition:

(Prove)

i.e., M–1C and M–1K must commute
• Special case:

Proportional damping 
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The natural frequencies are  and . The corresponding mode shapes are
given by the nontrivial solution of

Also, one can normalize the modal vectors by choosing the first element of each vector to be
unity. Then, by following the usual procedure of modal analysis, one obtains the normalized modal
vectors

FIGURE 5.12 A system with linear viscous damping.

FIGURE 5.13 A system with proportional damping in proportion to stiffness.

FIGURE 5.14 A system with proportional damping in proportion to inertia.
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The modal matrix is

Consequently, one obtains

and

Notice that the transformed damping matrix C is not diagonal in general; consequently, real modes
will not exist. This is to be expected in the absence of the condition of proportional damping.
Proportional damping is realized in this model if c1 = 0. Then, C will be diagonal and the transformed
systems equations will be uncoupled. The uncoupled modal equations are

The first mode is always undamped for this choice of damping model. This confirms that, in the 
case of proportional damping, it is not generally possible to pick an arbitrary structure for the 
damping matrix. For this reason, proportional damping is sometimes an analytical convenience 
rather than a strict physical reality.

�

Modal analysis and response analysis of a system with general viscous damping can be
accomplished using state-space concepts as well. In this case, modal analysis is carried out in terms
of eigenvalues and eigenvectors of the system matrix of a suitable state variable model. These
“eigen results,” if complex, will occur in complex conjugate pairs, and then the modes are said to
be complex. This approach is outlined next.

5.9 STATE-SPACE APPROACH

The state-space approach to modal analysis can be used for any linear dynamic system. The starting
point is to formulate a state-space model of the system, which is a set of coupled first-order
differential equations:
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(5.65)

where

x = state vector
u = input vector
A = system matrix
B = input gain matrix.

There are many approaches to formulating a vibration problem as a state-space model (5.65). One
simple method is to first obtain the conventional, coupled, second-order differential equations:

(5.59)

Next, the state vector and the input vector are defined as

(5.66)

Note that equation (5.59) can be written as

(5.67)

which is identical to

(5.67)*

This, together with the identity  = , can be expressed in the form

(5.68)

which is in the state-space form (5.65) where,

(5.69)

Note that in equations (5.68) and (5.69), I denotes an identity matrix of an appropriate size.

5.9.1 MODAL ANALYSIS

Consider the free motion (u = 0) of the nth-order system given by equation (5.65). Its solution is
given by

(5.70)
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ẏ ẏ
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It is known that the state transition matrix Φ(t) is given by the matrix-exponential expansion
equation.

(5.71)

To discuss the rationale for this exponential response further, begin by assuming a homogeneous
solution of the form

(5.72)

By substituting equation (5.72) into the homogeneous equation of motion (that is, equation (5.65)
with u = 0), the following matrix-eigenvalue problem results:

(5.73)

Assume that the n eigenvalues (λ1, λ2, …, λn) of A are distinct. Then the corresponding eigenvectors
X1, X2, …, Xn are linearly independent vectors; that is, any one eigenvector cannot be expressed
as a linear combination of the rest of the eigenvectors in the set. Thus, the general solution for free
dynamics is

(5.74)

Each of the n eigenvectors has an unknown parameter. The total of n unknowns is determined using
n initial conditions:

(5.75)

5.9.2 MODE SHAPES OF NONOSCILLATORY SYSTEMS

Since the eigenvectors are independent, if the initial state is set at x0 = Xi , then the subsequent
motion should not have any Xj terms with j ≠ i in equation (5.74). Otherwise, when t = 0, Xi becomes
a linear combination of the remaining eigenvectors, which contradicts the linear independence.
Hence, the motion due to this eigenvector initial condition is given by x(t) = Xi exp(λit), for which
the vector is parallel to Xi throughout the motion. Thus, Xi gives the mode shape of the system
corresponding to the eigenvalue λi.

5.9.3 MODE SHAPES OF OSCILLATORY SYSTEMS

The analysis in the preceding section is valid for real eigenvalues and eigenvectors. In vibratory
systems, λi and Xi generally are complex. Let

(5.76)

(5.77)

Φ t t t t( ) = ( ) = + + +exp
!

A I A A
1
2

2 2 K

x X= ( )exp λt

A I X−( ) =s 0

x X X Xt t t tn n( ) = ( ) + ( ) + + ( )1 1 2 2exp exp expλ λ λK
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For real systems, there exist corresponding complex conjugates:

(5.78)

(5.79)

Equations (5.76) through (5.79) represent the ith mode of the system. The corresponding damped
natural frequency is ωi , and the damping parameter is σi. The net contribution of the ith mode to
the solution — equation (5.74) — is

It should be clear, for instance from equation (5.66) that only some of the state variables in x(t)
correspond to displacements of the masses (or spring forces). These can be extracted through an
output relationship of the form

(5.80)

The contribution of the ith mode to the displacement variables is

(5.81)

If equation (5.81) can be expressed in the form

(5.82)

in which Si is a constant vector that is defined up to one unknown, then it is possible to excite the
system so that every independent mass element undergoes oscillations in phase (hence, passing
through the equilibrium state simultaneously) at a specific frequency ωi. It has been noted that this
type of motion is known as normal mode motion. The vector Si gives the mode shape corresponding
to the (damped) natural frequency ωi. A normal mode motion is possible for undamped systems
and for certain classes of damped systems. The initial state that is required to excite the ith mode
is x0 = Ri. The corresponding displacement and velocity initial conditions are obtained from equation
(5.81); thus,

(5.83)

(5.84)

Note that the constant factor 2 has been ignored because Xi is known up to one arbitrary complex
parameter.

EXAMPLE 5.9

A torsional dynamic model of a pipeline segment is shown in Figure 5.15(a). Free-body diagrams
in Figure 5.15(b) show internal torques acting at sectioned inertia junctions for free motion. A state

λ σ ωi i ij= −

X R Ij i ij= −

R Ii i i i it t tcos sin expω ω σ−( ) ( )2

y Cx=

Y C R Ii i i i i it t t= −[ ] ( )cos sin expω ω σ2

Y Si i i i it t= +( ) ( )sin expω φ σ

Y CRi i0( ) =

Ẏ C R Ii i i i i0( ) = −( )σ ω
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model is obtained using the generalized velocities (angular velocities Ωi) of the inertia elements
and the generalized forces (torques Ti) as state variables. A minimum set that is required for complete
representation determines the system order. There are two inertia elements and three spring elements
— a total of five energy-storage elements. The three springs are not independent, however. The
motion of two springs completely determines the motion of the third. This indicates that the system
is a fourth-order system. One obtains the model as follows.
Newton’s second law gives:

(i)

(ii)

Hooke’s law gives:

(iii)

(iv)

Torque T3 is determined in terms of T1 and T2, using the displacement relation for the inertia I2:

(v)

This is in fact the motion compatibility condition. 
The state vector is chosen as

FIGURE 5.15 (a) Dynamic model of a pipeline segment, and (b) free-body diagrams.
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(vi)

The corresponding system matrix is

(vii)

The output-displacement vector is

(viii)

which corresponds to the output-gain matrix,

(ix)

For the special case given by I1 = I2 = I and k1 = k3 = k, the system eigenvalues are

(x)

(xi)

and the corresponding eigenvectors are

(xii)

(xiii)

In view of equation (5.81), the modal contributions to the displacement vector are
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These equations (xiv) are of the form given by equation (5.82). The mode shapes are given by the 
vectors S1 = [1,1]T and S2 = [1,–1]T, which are illustrated in Figure 5.16. In general, each modal 
contribution introduces two unknown parameters, ai and φi , into the free response (homogeneous 
solution), where φi are the phase angles associated with the sinusoidal terms. For an n-degree-of-
freedom (order-2n) system, this results in 2n unknowns, which require the 2n initial conditions x(0)

�

PROBLEMS

5.1 A bird swing is sketched in Figure P5.1. It consists of a rigid slender bar hung with two
wires from a branch of a tree. Assume that the wires are taut and the motions are small.
a. How many degrees of freedom does the system have?
b. Give two separate choices of complete and independent set of coordinates to describe

the motion of the swing.
5.2 Two thin disks are connected together at their centers by a spring and rest upright on a

horizontal plane. They are allowed to move along a straight line on the horizontal plane,
while remaining in a common, fixed, vertical plane, as shown in Figure P5.2. Give a
complete and independent set of coordinates to describe the motion of the system,
assuming that:
a. Slipping is allowed;
b. Slipping is not allowed.

5.3 A disk rolls upright (i.e., its plane remains vertical) on a horizontal plane, as shown in
Figure P5.3. Using clear discussions, indicate the number of degrees of freedom of the
system and whether the system is holonomic if:
a. Slipping is permitted between the disk and the plane;
b. Slipping is not permitted.

5.4 Define the terms natural frequency, mode shape, rigid-body mode, and node.
A centrifugal pump driven by an induction motor is modeled as in Figure P5.4. The rotor
inertia of the motor is represented by m1, drive-shaft stiffness by k, and pump rotor inertia
and equivalent fluid load by m2. Qualitatively describe the modes of vibration of the
system. Without analyzing the overall system equations, and by considering single-

FIGURE 5.16 Mode shapes of the pipeline segment.
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degree-of-freedom subsystems and the concept of “node,” completely obtain expressions
for the natural frequencies of the system in terms of m1, m2, and k. Completely determine
the corresponding mode shapes.

5.5 a. Consider a linear, lumped-parameter, undamped mechanical system given by the
vector-matrix form of equation of motion

FIGURE P5.1 A bird swing.

FIGURE P5.2 Two upright disks connected by a spring.

FIGURE P5.3 A disk rolling on a horizontal plane.
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What do f(t) and y represent in these equations? Describe three ways of obtaining the
stiffness matrix K and the mass matrix M of a system of this nature, assuming that a
sketch of the system, showing its point masses and the stiffness elements, is available.

b. A sketch of a two-story steel structure is shown in Figure P5.5(a). A model that can
be used to study its lateral planar motions is shown in Figure P5.5(b). Assume that
the displacements y1 and y2 of the lumped masses m1 and m2 are measured from the
static equilibrium position of the system. It is required to determine the system
equations in the form

Suppose that 1 = 0 = 2 and also y2 = 0. What are the forces f1 and f2 that are needed
to maintain a unit displacement y1 = 1 at mass m1?
Similarly, suppose that 1 = 0 = 2 and also y1 = 0. What are the forces f1 and f2 that
are needed to maintain a unit displacement y2 = 1 at mass m2?   

FIGURE P5.4 (a) A centrifugal pump driven by an induction motor, and (b) a simplified model for rotatory
vibration.
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By proceeding in this manner, obtain the mass matrix and the stiffness matrix of the
system.

c. List some properties of M and K of the given system that can be extended to similar,
higher-order systems.

d. Consider the special case of the system in Figure P5.5, with k1 = k2 = k, k3 = 3k,
m1 = m, and m2 = 2m. Determine the natural frequencies and mode shapes of the
system. Normalize the mode shapes with respect to:
i. the mass matrix;
ii. the stiffness matrix.
What are the modal masses and modal stiffnesses for each of these two normalized
cases of mode shapes?
Sketch the mode shapes of the systems and describe the system behavior in each of
these modes.

e. Sketch two rotational system that are analogous to the translational system that is
shown in Figure P5.5(b).

5.6 A simplified (planar) model of a cart rolling down hill is shown in Figure P5.6. The
wheels are approximated by rigid disks of radius r. The mass of the front wheels is m1

FIGURE P5.5 (a) A two-story building, and (b) a simplified model of lateral planar dynamics.

FIGURE P5.6 A cart rolling down a hill.
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and that of the rear wheels is m2. There is a longitudinal flexibility in the cart that is
represented by a spring of stiffness k. The inclination of the hill is θ. Neglect friction at
the wheel axles and assume that there is no slip between the wheels and the ground
surface.

Using Lagrange’s equations, derive the equations of motion of the system. What is
the mass matrix and what is the stiffness matrix?

5.7 A simplified planar model that can be used to study heave and pitch vibrations of a
vehicle is shown in Figure P5.7. The vehicle body is modeled as a uniform rod of length
L and mass m. The stiffness of the rear suspensions is k1 and that of the front suspensions
is k2. Energy dissipation is neglected. Using Lagrange’s equations, determine the heave
(y) and pitch (θ) equations of free motion. Identify the mass matrix and the stiffness
matrix.

5.8 An indicator mechanism of a centrifuge consists of a spring with one of its ends attached
to the center of spin and the other end carrying the indicator mass. The spring-mass
unit slides inside a smooth glass tube. A schematic diagram of the system is given in
Figure P5.8. Neglect energy dissipation due to friction. The indicator is given a spin of
angular velocity ω and then the power is turned off.
a. Using Lagrange’s equations, develop the equations of motion assuming constant ω.
b. What are the steady-state equilibrium states of the device?
c. Investigate the oscillations and stability of motion in the neighborhood of each equi-

librium state.
d. What are the modes of oscillation of the system?

5.9 A flexible shaft-rotor system is shown in Figure P5.9. The rotors are identical and have
the same mass m and the same polar radius of gyration r. The shaft segments have the
same torsional stiffness k.
a. Formulate the modal vibration problem for this system and express it in terms of a

mass matrix M and a stiffness matrix K.
b. Determine the natural frequencies and mode shapes of the system.
c. Construct the modal matrix Ψ and verify that both ΨTMΨ and ΨTKΨ are diagonal.
d. Sketch the mode shapes of the system.

5.10 A simplified model of a three-car train is shown in Figure P5.10. Assume that the cars
have the same mass m and the couplers have the same longitudinal stiffness k.
a. Formulate the free vibration problem in the form .
b. Determine the natural frequencies and modes of vibration.
c. Suppose that a sinusoidal force F sinωt is applied to Car 1. Determine and sketch the

resulting frequency response at Car 1 (in a steady state).
5.11 Consider an identical pair of simple pendulums of length l and point mass m. They are

mounted at the same horizontal level, and the two masses are linked using a spring of
stiffness k. The pendulums rest in a vertical position (with the spring in its relaxed
position), as shown in Figure P5.11. Applying Lagrange’s equations, obtain the equations
of motion of this connected system of two pendulums. Formulate the modal problem for
this system assuming that the angles of swing θ1 and θ2 of the pendulums, from their
static equilibrium configuration, are small. Solve the modal problem and determine the
natural frequencies and the mode shapes. Discuss the nature of these two modes.

5.12 Consider an overhead gantry truck carrying a pendulous load, as found in a factory
(manufacturing plant). We wish to study the vibrations when the truck is braking against
a flexible coupler. A simplified model of this system is shown in Figure P5.12.
The following parameters are given:

m = mass of the gantry truck
k = stiffness of the flexible coupler

Kx Mx+ =˙̇ 0
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FIGURE P5.7 A simplified vehicle model.

FIGURE P5.8 An indicator device of a centrifuge.

FIGURE P5.9 A flexible shaft-rotor system.

FIGURE P5.10 A three-car train.
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M = mass of the pendulous load
l = length of the pendulous arm.

Also, let x be the displacement of the truck from the relaxed position of the flexible
coupler, and θ be the angle of swing of the pendulous load from the vertical static
configuration.
a. Neglecting energy dissipation and any external excitation forces, obtain the equations

of motion of the system using Lagrange’s equations.
b. For small x and θ, formulate the modal problem. Obtain the characteristic equation

for natural frequencies of vibration of the system.
c. If k = 0 (i.e., in the absence of a flexible coupler), what are the natural frequencies

and mode shapes of the system?   
5.13 A simplified model that can be used for studying the pitch (or roll) and heave motions

of a vehicle is shown in Figure P5.13. Let y be the vertical displacement (heave) of the
vehicle body and θ be the associated angle of rotation of the body, as measured from

FIGURE P5.11 A pair of simple pendulums linked by a spring.

FIGURE P5.12 A gantry truck with a pendulous load and braking against a flexible coupler.
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the static equilibrium configuration. Suspensions of stiffness ka and kb are located at
horizontal distances a and b, respectively, from the centroid. The mass of the vehicle is
m and the moment of inertia about the centroid is J.
Obtain equations of motion for this system using:
a. direct application of Newton’s second law;
b. Lagrange’s equations.
Next, using the vertical displacements ya and yb at the suspensions ka and kb, with respect
to the static equilibrium position as the motion variables, obtain a new set of equations
of motion.

In each of the two generalized coordinate systems, outline the procedure of modal
analysis. Comment on the expected results (natural frequencies and mode shapes) in
each case. Neglect damping and external excitation forces throughout the problem.

5.14 Consider the double pendulum (or a two-link robot with revolute joints) having arm
lengths l1 and l2, and the end masses m1 and m2, as shown in Figure P5.14.

FIGURE P5.13 A simplified vehicle model for pitch/roll and heave motions.

FIGURE P5.14 A double pendulum or a two-link robot arm with revolute joints.
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a. Use Lagrange’s equations to obtain the equations of motion for the system in terms
of the absolute angles of swing θ1 and θ2 about the vertical equilibrium configuration.
Linearize the equations for small motions θ1, 1, θ2, and 2.

b. For the special case of m1 = m2 = m and l1 = l2 = l, solve the modal problem of this
system. Normalize the mode shape vectors so that the first element (corresponding
to θ1) of each vector is unity. What are the corresponding modal masses and modal
stiffnesses? Verify that the natural frequencies can be obtained from these modal
parameters. Using the modal solution, express the free response of the system to an
initial condition excitation of θ(0) and .

c. Express the free response as obtained in part (b) for the case l = 9.81 m with

 and = 0. Sketch this response for a time period of 20

seconds.
5.15 Consider a rack-and-pinion system driven by a DC motor and pushing against a purely

elastic load. A representation of this system is shown in Figure P5.15. The following
parameters are defined:

J = moment of inertia of the motor rotor about its axis of rotation
B = equivalent damping constant at the motor rotor
K = torsional stiffness of the drive shaft of the motor
r = radius of the pinion at the end of drive shaft
m = mass of the rack
b = equivalent damping constant at the rack
k = stiffness of the elastic load.

Neglect the inertia of the pinion. Motor torque (magnetic torque) is τ(t). Angle of rotation
of the motor rotor is θ, and the corresponding displacement of the rack is x, as measured
from the relaxed configuration of the load spring.

FIGURE P5.15 Motor-driven rack-and-pinion mechanism with a flexible load.
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a. Derive the equations of motion of the system in terms of the motion variables θ and x.
Express these in the vector-matrix form. What is the characteristic equation of the
system?

b. Derive a purely rotational system that is equivalent.
c. Derive a purely translatory system that is equivalent.
d. If k = 0, what are the natural frequencies of motion of the system?

5.16 a. Define the following terms:
i. Modal matrix
ii. Degrees of freedom
iii.Rigid body modes
iv. Static modes
v. Proportional damping.

b. Explain the significance of these terms in modal analysis of a vibrating system.
c. Suppose that a mechanical system has two identical natural frequencies ω1 = ω2. If

and ψ1 are ψ2 mode shapes corresponding to these natural frequencies, show that

for any arbitrary α and β, will also serve as a mode shape for either of these repeated
frequencies.

d. Do damped systems possess real modes? Explain your answer, clearly justifying the
arguments. Sketch a system by adding viscous damping elements to the undamped
system shown in Figure P5.5(b) so that it has proportional damping.

e. In modal analysis, what common assumptions are made with regard to the system?
Are these assumptions justified in practice? Explain.

5.17 a. Sketch a two-degree-of-freedom mechanical system that has two identical natural
frequencies. What are its mode shapes? Comment about the modal motions of a system
of this type.

b. Consider a mechanical system given by the equations of motion

Obtain the natural frequencies and mode shapes of the system. Express the modal
matrix of the system, using M-normal mode shapes.
Suppose that f1(t) = 2 sin3t and f2(t) = 0. The system starts from rest (i.e., zero
velocities) with initial conditions y1(0) = 1.0 and y2(0) = 1.0. Using the solution for
the response of a second-order undamped system subjected to a harmonic excitation,
obtain the complete response (y1 and y2) of the system.

c. Obtain the mode shapes of the damped system

5.18 a. Explain the terms:
i. Mode shapes
ii. Natural frequencies
iii.Modal analysis
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iv. Modal testing
v. Experimental modal analysis.

b. Briefly describe the process of experimental modal analysis of a mechanical system.
c. Consider the mechanical system expressed in the vector-matrix form

Its frequency transfer function matrix G(jω) is given by Y(jω) = G(jω)F(jω) where Y
and F are the frequency-response (Fourier spectra) vectors of y and f, respectively.
Express G in terms of M, B, and K.

5.19 The reverse problem of modal analysis (which is useful in experimental modeling of
vibratory systems) is to determine the mass matrix M and the stiffness matrix K (and
perhaps the damping matrix C) with the knowledge of the modal information such as
mode shapes and natural frequencies.
Consider a two-degree-of-freedom system. The following information is given. The
M-normal mode shape vectors are:

The modal stiffness parameters are:

where g is the acceleration due to gravity and l is some length parameter.
a. What are the natural frequencies of the system? From this information, comment

about the nature of this system.
b. What is the modal matrix Ψ? Determine its inverse Ψ–1.
c. What is the modal mass matrix M and what is the modal stiffness matrix K corre-

sponding to the given mode shape vectors?
d. Determine the mass matrix M and the stiffness matrix K of the system.
e. If the system has proportional damping and the damping ratios of the two modes are

ζ1 = 0 and ζ2 = 0.1, what is the modal damping matrix C and what is the damping
matrix C?

f. Sketch a mechanical system that has the M, C, and K matrices as obtained in this
problem.

5.20 Suppose the viscous damping matrix of a vibrating system is given by

in which M and K are the mass matrix and the stiffness matrix respectively, and r and
m are positive integers. Show that the resulting damped system possesses real modes of
vibration, which are identical to those of the undamped system.

5.21 Show that the mode shapes and natural frequencies of the system
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are given by the solutions for ψ and ω in the equation

Give a matrix whose eigenvalues are ω2 and the eigenvectors are ψ. Is this matrix
symmetric? Are the mode shapes orthogonal in general?
Suppose Ψ denotes the modal matrix (the matrix formed by using modal vectors ψ as
columns) of the system. Show that it diagonalizes M and K by the congruence transfor-
mations

and that it diagonalizes the matrix by the similarity transformation

at least in the case of distinct (unequal) natural frequencies. Note, however, that this
result is true in general, even with repeated (equal) natural frequencies.
Consider the system shown in Figure P5.21. Determine the mass matrix M and the
stiffness matrix K. Show that M and K do not commute in general. What does this tell us?

5.22 Consider the two-degree-of-freedom system shown in Figure P5.22. Using one-degree-
of-freedom results and possibly using the concepts of “node” and “symmetry,” determine
the natural frequencies and the corresponding mode shapes of the system. Then, verify
your results using a complete two-degree-of-freedom analysis.
Sketch how viscous dampers should be connected to the system in Figure P5.22 so that
proportional damping of the type

a. Momentum
b. Strain rate

is introduced into the system. Give the corresponding damping matrices.
5.23 Consider the simplified model of a vehicle shown in Figure P5.23 that can be used to

study the heave (verticals up and down) and pitch (front-back rotation) motions due to
the road profile. For our purposes, assume that the road profiles that excite the front and
back suspensions are independent. They are the displacement inputs u1(t) and u2(t). The

FIGURE P5.21 A two-degree-of-freedom vibrating system.

FIGURE P5.22 A two-degree-of-freedom model.

ω2 M K−( ) =ψψψ 0

ΨΨΨ ΨΨΨ ΨΨΨ ΨΨΨT TM Kand

ΨΨΨ ΨΨΨ− −1 1M K
©2000 CRC Press

http://www.semeng.ir


www.20file.org
mass and the pitch moment of inertia of the vehicle body are denoted by m and J,
respectively. The suspension inertia is neglected and the stiffness and the damping
constant of the suspension systems are denoted by k and b, respectively, with appropriate
subscripts, as shown.
a. Write the differential equations for the pitch angle θ and the vertical (heave) displace-

ment y of the centroid of the vehicle body using u1(t) and u2(t) as the inputs. Assume
small motions so that linear approximations hold.

b. What is the order of the system?
c. Determine the transfer function relation for this system.
d. Identify a mass matrix M, a stiffness matrix K, and a damping matrix C for the system.

5.24 A manufacturer of rubber parts uses a conventional process of steam-cured moulding of
natural latex. The moulded rubber parts are first cooled and buffed (polished), and then
sent for inspection and packing.
A simple version of a rubber buffing machine is shown in Figure P5.24(a). It consists
of a large hexagonal drum whose inside surfaces are all coated with a layer of bonded
emery. The shaft of the drum is supported horizontally on two heavy-duty, self-aligning
bearings at the two ends, and is rotated using a three-phase induction motor. The drive
shaft of the drum is connected to the motor shaft through a flexible coupling.
The buffing process consists of filling the drum with rubber parts, steadily rotating the
drum for a specified period of time, and finally vacuum cleaning the drum and its contents.
Dynamics of the machine affect the loading on various components such as the motor,
coupling, bearings, shafts, and the support structure. In order to study the dynamics and
vibration behavior, particularly at the startup stage and under disturbances during steady-
state operation, an engineer develops a simplified model of the buffing machine. This
model is shown in Figure P5.24(b).

The motor is modeled as a torque source Tm that is applied on the rotor that has
moment of inertia Jm, and resisted by a viscous damping torque of damping constant bm.
The connecting shafts and the coupling unit are represented by an equivalent torsional
spring of stiffness kL. The drum and its contents are represented by an equivalent constant
moment of inertia JL. There is a resisting torque on the drum even at steady operating
speed, due to misalignments and the eccentricity of the contents of the drum. This load
is represented by a constant torque Tr. Furthermore, energy dissipation due to the buffing
action (between the rubber parts and the emery surfaces of the drum) is represented by
a nonlinear damping torque TNL, which is approximated as:

FIGURE P5.23 A simplified model of a vehicle.
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Note that θm and θL are the angles of rotation of the motor rotor and the drum, respectively,
and these are measured from inertial reference lines that correspond to a relaxed config-
uration of spring kL.
a. Comment on the assumptions made in the modeling process of this problem, and

briefly discuss the validity (or accuracy) of the model.
b. Show that the model equations are:

FIGURE P5.24(a) A rubber buffing machine.

FIGURE P5.24(b) A dynamic model of the buffing machine.
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What are the excitation inputs of this system?
c. If the buffing dissipation is represented by the linear viscous damping term bL L,

obtain the mass, damping, and stiffness matrices of the system.
d. Using the speeds m and L, and the spring torque Tk as the state variables, and the

twist of the spring as the output, obtain a complete state model for the nonlinear
system.
What is the order of the state model?

5.25 The robotic spray-painting system of an automobile assembly plant employs an induction
motor and pump combination to supply paint at an overall peak rate of 15 gal/min to
clusters of spray-paint heads in several painting booths. The painting booths are an
integral part of the assembly lines in the plant. The pumping and filtering stations are
on the ground level of the building and the painting booths are on an upper level. Not
all booths or painting heads operate at a given time. The pressure in the paint supply
lines is maintained at a desired level (approximately 275 psi) by controlling the speed
of the pump, which is achieved through a combination of voltage control and frequency
control of the induction motor.
An approximate model for the paint pumping system is shown in Figure P5.25.
The induction motor is linked to the pump through a gear transmission of efficiency η,
speed ratio l:r, and a flexible shaft of torsional stiffness kp. The moments of inertia of
the motor rotor and the pump impeller are denoted by Jm and Jp, respectively. The gear
inertia is neglected (or lumped with Jm). The mechanical dissipation in the motor and its
bearings is modeled as linear viscous damping of damping constant bm. The load on the
pump (the paint load plus any mechanical dissipation) is also modeled as viscous
damping, and the equivalent damping constant is bp. The magnetic torque Tm generated
by the induction motor is given by

in which ωm is the motor speed. The parameter T0 depends directly (quadratically) on
the phase voltage supplied to the motor. The second parameter ω0 is directly proportional

FIGURE P5.25 A model for a paint pumping system in an automobile assembly plant.
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to the line frequency of the AC supply. The third parameter q is positive and greater than
unity, and this parameter is assumed constant in the control system.
a. Comment about the accuracy of the model shown in Figure P5.25.
b. For vibration analysis of the system, develop its equations and identify the mass (M),

stiffness (K), and damping (C) matrices. Comment on the nature of K.
5.26 A robotic sewing system consists of a conventional sewing head. During operation, a

panel of garment is fed by a robotic hand into the sewing head. The sensing and control
system of the robotic hand ensures that the seam is accurate and the cloth tension is
correct in order to guarantee the quality of the stitch. The sewing head has a frictional
feed mechanism that pulls the fabric in an intermittent cyclic manner, away from the
robotic hand, using a toothed feeding element.
When there is slip between the feeding element and the garmet, the feeder functions as
a  force source. The applied force is assumed cyclic with a constant amplitude. When
there is no slip, however, the feeder functions as a velocity source, which is the case during
normal operation. The robot hand has inertia. There is some flexibility at the mounting
location of the hand on the robot. The links of the robot are assumed rigid, and some of
its joints can be locked to reduce the number of degrees of freedom when desired.
Consider the simplified case of a single-degree-of-freedom robot. The corresponding
robotic sewing system is modeled as in Figure P5.26. Note that the robot is modeled as
a single moment of inertia Jr that is linked to the hand with a light rack-and-pinion device
of speed transmission given by:

Assume that this transmission is 100% efficient (no loss).
The drive torque of the robot is Tr and the associated rotatory speed is ωr. Under

conditions of slip, the feeder input to the cloth panel is force ff , and with no slip the
input is the velocity vf . Various energy dissipation mechanisms are modeled as linear
viscous damping of damping constant b (with appropriate subscripts). The flexibility of
various system elements is modeled by linear springs with stiffness k. The inertia effects
of the cloth panel and the robotic hand are denoted by the lumped masses mc and mh,
respectively, having velocities vc and vh as shown in Figure P5.26. Note that the cloth
panel is normally in tension, with tensile force fc, and in order to push the panel, the
robotic wrist is normally in compression, with compressive force fr .

FIGURE P5.26 A robotic sewing system.
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a. First consider the case of the feeding element with slip. How many degrees of freedom
does the system have? Formulate the system equations and identify the M, K, and C
matrices.

b. Now consider the case where there is no slip at the feeder element. How many degrees
of freedom does the system have now? Formulate the system equations and identify
the M, K, and C matrices for this case.

5.27 a. Linearized models of nonlinear systems are commonly used in the vibration analysis
and control of dynamic systems. What is the main assumption that is made in using
a linearized model to represent a nonlinear system?

b. A three-phase induction motor is used to drive a centrifugal pump for incompressible
fluids. To reduce misalignment and associated problems such as vibration, noise, and
wear, a flexible coupling is used for connecting the motor shaft to the pump shaft. A
schematic representation of the system is shown in Figure P5.27.
Assume that the motor is a “torque source” of torque Tm that is being applied to the
motor rotor of inertia Jm. Also, the following variables and parameters are defined:

Jp = moment of inertia of the pump impeller assembly
Ωm = angular speed of the motor rotor/shaft
Ωp = angular speed of the pump impeller/shaft
k = torsional stiffness (linear) of the flexible coupling
Tf = torque transmitted through the flexible coupling
Q = volume flow rate of the pump
bm = equivalent viscous damping constant at the motor rotor including bearings.

Also, assume that the net torque required at the pump shaft, to pump fluid steadily
at a volume flow rate of Q is given by bpΩp, where

FIGURE P5.27 A centrifugal pump driven by an induction motor.
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and Vp = volumetric parameter of the pump (assumed constant).
How many degrees of freedom does the system have? Using angular displacements
θm and θp as the motion variables, where m = Ωm and p = Ωp, develop a linear
analytical model for the dynamic system in terms of an inertia matrix (M), a damping
matrix (B), and a stiffness matrix (K). What is the order of the system? Comment on
the modes of motion of the system.

c. Using Tm as the input, Q as the output of the system, and Ωm, Ωp, and the torque Tf of
the flexible coupler as the state variables, develop a complete state-space model for
the system. Identify the matrices A, B, and C in the usual notation in this model. What
is the order of the system? Compare/contrast this result with the answer to part (b).

d. Suppose that the motor torque is given by

where motor slip S is defined as

Note that a and Sb are constant parameters of the motor.
Also,

Ωs = no-load (i.e., synchronous) speed of the motor
Vf = amplitude of voltage applied to each phase winding (field) of the motor

In voltage control, Vf is used as the input and, in frequency control, Ωs is used as the
input. For combined voltage and frequency control, derive a linearized state-space
model using the incremental variables f and s about operating values Vf and Ωs,
as the inputs to the system and the incremental flow  as the output.

5.28 Consider an automobile traveling at a constant speed on a rough road, as shown in Figure
P5.28(a). The disturbance input due to road irregularities can be considered either as a
displacement source u(t) or as a velocity (t) at the tires, in the vertical direction. An
approximate, one-dimensional model is shown in Figure P5.28(b), and this can be used
to study the “heave” (up and down) motion of the automobile. Note that v1 and v2 are
the velocities of the lumped masses m1 and m2, respectively, and x1 and x2 are the
corresponding displacements.
a. Briefly state what physical components of the automobile are represented by the model

parameters k1, m1, k2, m2, and b2. Also, discuss the validity of the assumptions that
are made in arriving at this model.

b. Using x1 and x2 as the response variables, obtain an analytical model for the dynamic
system in terms of a mass matrix (M), stiffness matrix (K), and a damping matrix
(B). Does this system possess rigid-body modes?  

c. Using v1, v2, f1, and f2 as the state variables, (t) as the input variable, and v1 and v2 as
the output variables, obtain a state-space model for the system. The compressive forces
in springs k1 and k2 are denoted by f1 and f2, respectively. What is the order of the model?

d. If, instead of a motion source u(t), a force source f(t) that is applied at the same
location, is considered as the system input, determine an analytical model similar to

θ̇ θ̇

T
aSV

S S
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f

b

=
+ ( )[ ]

2

2
1

S m
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= −1
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that in part (b), for the resulting system. Does this system possess rigid-body modes?
Does this damped system possess real modes of vibration? Explain your answer.    

e. For the case of a force source f(t), derive a state-space model similar to that obtained
in part (c). What is the order of this model? Explain your answer.

Note: In this problem, you may assume that gravitational effects are completely balanced
by the initial compression of the springs with reference to which all motions are
defined.

FIGURE P5.28(a) An automobile traveling at constant speed.

FIGURE P5.28(b) A crude model of an automobile for the heave-motion analysis.

FIGURE P5.29 A model of a motor-compressor unit.
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5.29 An approximate model for a motor-compressor combination that is used in a process
application is shown in Figure P5.29.
Note that T, J, k, b, and ω denote torque, moment of inertia, torsional stiffness, angular
viscous damping constant, and angular speed, respectively, and the subscripts m and c
denote the motor rotor and the compressor impeller, respectively.
a. Sketch a translatory mechanical model that is analogous to this rotatory mechanical

model.
b. Formulate an analytical model for the systems in terms of a mass matrix (M), a

stiffness matrix (K), and a damping matrix (B), with θm and θc as the response
variables, and the motor magnetic torque Tm and the compressor load torque Tc as the
input variables.
Comment on the modes of motion of the system.

c. Obtain a state-space representation of the given model. The outputs of the system are
compressor speed ωc and the torque T transmitted through the drive shaft. What is
the order of this model? Comment.

5.30 A model for a single joint of a robotic manipulator is shown in Figure P5.30.
The usual notation is used. The gear inertia is neglected and the gear reduction ratio is
taken as 1:r.
a. Obtain an analytical model in terms of a mass matrix, a stiffness matrix, and a damping

matrix, assuming that no external (load) torque is present at the robot arm. Use the
motor rotation θm and the robot arm rotation θr as the response variables.

b. Derive a state model for this system. The input is the motor magnetic torque Tm, and
the output is the angular speed ωr of the robot arm. What is the order of the system?
Comment.

c. Discuss the validity of various assumptions that were made in arriving at this simplified
model for a commercial robotic manipulator.

FIGURE P5.30 A model of a single-degree-of-freedom robot.
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6 Distributed-Parameter Systems
Most of the vibration analysis examples encountered in the previous chapters assumed that the
inertial (mass), flexibility (spring), and dissipative (damping) characteristics could be “lumped” as
a finite number of “discrete” elements. Such models are termed lumped-parameter or discrete-
parameter systems. If all the mass elements move in the same direction, one has a one-dimensional
system (i.e., “rectilinear” motion), with each mass having a single degree of freedom. If the masses
can move independently of each other, the number of degrees of freedom of such a one-dimensional
system will be equal to the number of lumped masses, and will be finite. In a “planar” system,
each lumped mass will be able to move in two orthogonal directions and hence, will have two
degrees of freedom; and similarly in a “spatial” system, each mass will have three degrees of
freedom. As long as the number of lumped inertia elements is finite, then one has a lumped-
parameter (or, discrete) system with a finite degree of freedom. Note that time is a system variable
and not a system parameter. Discrete-time models are used in computer analysis and simulation,
regardless of whether the system is a discrete-parameter or continuous-parameter one.

Generally, in practical vibrating systems, inertial, elastic, and dissipative effects are found
continuously distributed in one, two, or three dimensions. Correspondingly, there are line structures,
surface/planar structures, or spatial structures. They will possess an infinite number of mass
elements, continuously distributed in the structure, and integrated with some connecting flexibility
(elasticity) and energy dissipation. In view of the connecting flexibility, each small element of mass
will be able to move out of phase (or somewhat independently) with the remaining mass elements.
It follows that a continuous system (or a distributed-parameter system) will have an infinite number
of degrees of freedom and will require an infinite number of coordinates to represent its motion.
In other words, when extending the concept of a finite-degree-of-freedom system as analyzed
previously, an infinite-dimensional vector is needed to represent the general motion of a continuous
system. Equivalently, a one-dimensional continuous system (a line structure) will need one inde-
pendent spatial variable, in addition to time, to represent its response. In view of the need for two
independent variables in this case — one for time and the other for space — the representation of
system dynamics will require partial differential equations (PDEs) rather than ordinary differential
equations (ODEs). Furthermore, the system will depend on the boundary conditions as well as the
initial conditions.

The present chapter concerns vibration analysis of continuous systems. Strings, cables, rods,
shafts, beams, membranes, plates, and shells are example of continuous members. In special cases,
closed-form analytical solutions can be obtained for the vibration of these members. A general
structure may consist of more than one such member and, furthermore, boundary conditions may
be various, individual members may be nonuniform, and the material characteristics may be
inhomogeneous and anistropic. Closed-form analytical solutions would not be generally possible
in such cases. Nevertheless, the insight gained by analyzing the vibration of standard members will
be quite beneficial in studying the vibration behavior of more complex structures. The vibration
analysis of a few representative continuous members is discussed in this chapter.

The concepts of modal analysis can be extended from lumped-parameter systems to continuous
systems. In particular, because the number of principal modes is equal to the number of degrees
of freedom of the system, a distributed-parameter system will have an infinite number of natural
modes of vibration. A particular mode can be excited by deflecting the member so that its elastic
curve assumes the shape of the particular mode, and then releasing from this initial condition.
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When damping is significant and nonproportional, however, there is no guarantee that such an
initial condition could accurately excite the required mode. A general excitation consisting of a
force or an initial condition will excite more than one mode of motion. But, as in the case of
discrete-parameter systems, the general motion can be analyzed and expressed in terms of modal
motions, through modal analysis. As discussed in Chapter 5, in a modal motion, the mass elements
will move at a specific frequency (the natural frequency), and bearing a constant proportion in
displacement (i.e., maintaining the mode shape), and passing the static equilibrium of the system
simultaneously. In view of this behavior, it is possible to separate the time response and spatial
response of a vibrating system in a modal motion. This separability is fundamental to modal analysis
of a continuous system. Furthermore, in practice, all infinite number of natural frequencies and
mode shapes are not significant and typically the very high modes can be neglected. Such a modal-
truncation procedure, although carried out by continuous-system analysis, is equivalent to approx-
imating the original infinite-degree-of-freedom system by a finite-degree-of-freedom system. Vibra-
tion analysis of continuous systems can be applied in modeling, analysis, design, and evaluation
of such practical systems as cables; musical instruments; transmission belts and chains; containers
of fluid; animals; structures including buildings, bridges, guideways, and space stations; and transit
vehicles, including automobiles, ships, aircraft, and spacecraft.

6.1 TRANSVERSE VIBRATION OF CABLES

The first continuous member to be studied in this chapter is a string or cable in tension. This is a
line structure for which its geometric configuration can be completely defined by the position of
its axial line, with reference to a fixed coordinate line. We will study the transverse (lateral) vibration
problem; that is, the vibration in a direction perpendicular to its axis and in a single plane.
Applications will include stringed musical instruments, overhead transmission lines (of electric
power or telephone signals), drive systems (belt drives, chain drives, pulley ropes, etc.), suspension
bridges, and structural cables carrying cars (e.g., ski lifts, elevators, overhead sightseeing systems,
and cable cars).

As usual, some simplifying assumptions will be made for analytical convenience; but the results
and insight obtained in this manner will be useful in understanding the behavior of more complex
systems containing cable-like structures. The main assumptions are:

1. The system is a line structure. The lateral dimensions are much smaller compared to the
longitudinal dimension (normally in the x direction).

2. The structure stays in a single plane, and the motion of every element of the structure
will be in a fixed transverse direction (y).

3. The cable tension (T) remains constant during motion. In other words, the initial tension
is sufficiently large that the variations during motion are negligible.

4. Variations in slope (θ) along the structure are small. Hence, for example,

A general configuration of a cable (or string) is shown in Figure 6.1(a). Consider a small
element of length dx of the cable at location x, as shown in Figure 6.1(b). The equation (Newton’s
second law) of motion (transverse) of this element is given by

(6.1)

θ θ θ≅ ≅ = ∂
∂
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where

v(x,t) = transverse displacement of the cable
f(x,t) = lateral force per unit length of the cable
m(x) = mass per unit length of the cable
T = cable tension
θ = cable slope at location x.

Note that the dynamic loading f(x,t) may arise due to such causes as aerodynamic forces, fluid
drag, and electromagnetic forces, depending on the specific application.

Using the small slope assumption, one obtains sinθ ≅  θ and sin(θ + dθ) ≅  θ + dθ with

On substitution of these approximations into equation (6.1) and canceling out dx, one obtains

(6.2)

Now consider the case of free vibration, where f(x,t) = 0. Then,

(6.3)

FIGURE 6.1 (a) Transverse vibration of a cable in tension, and (b) motion of a general element.
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with

(6.4)

Also assume that the cable is uniform so that m is constant.

6.1.1 WAVE EQUATION

The solution to any equation of the form (6.3) will appear as a wave, traveling either in the forward
(+ve x) or in the backward (–ve x) direction at speed c. Hence, (6.3) is called the wave equation
and c is the wave speed. To prove this fact, first show that a solution to equation (6.3) can take the
form

(6.5)

To this end, let x – ct = z. Hence, v1(x – ct) = v1(z)
Then,

with

It follows that

where

Clearly then v1 satisfies equation (6.3).
Now examine the nature of the solution v1(x – ct). It is clear that v1 will be constant when

x – ct = constant. But, the equation x – ct = constant corresponds to a point moving along the
x-axis in the positive direction at speed c. What this means is that the shape of the cable at t = 0
will “appear” to travel along the cable at speed c. This is analogous to the waves one observes in
a pond when excited by dropping a stone. Note that the particles of the cable do not travel along x,
and it is the deformation “shape” (the wave) that travels.

Similarly, it can be shown that

(6.6)
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is also a solution to equation (6.3), and this corresponds to a wave that travels backward (–ve x
direction) at speed c. The general solution, of course, will be of the form

(6.7)

which represents two waves, one traveling forward and the other backward.

6.1.2 GENERAL (MODAL) SOLUTION

As usual in modal analysis, one looks for a separable solution of the form

(6.8)

for the cable/string vibration problem given by the wave equation (6.3). If a solution of the form of
equation (6.8) is obtained, it will be essentially a modal solution. This should be clear from the
separability of the solution. Specifically, at any given time t, the time function q(t) will be fixed, and
the structure will have a shape give by Y(x). Hence, at all times, the structure will maintain a particular
“shape” Y(x) and this will be a mode shape. Also, at a given point x of the structure, the value of
the space function Y(x) will be fixed, and the structure will vibrate according to the time response
q(t). It will be shown that q(t) will obey the simple harmonic motion of a specific frequency. This
is the natural frequency of vibration corresponding to that particular mode. Note that, for a continuous
system, there will be an infinite number of solutions of the form (6.8), with different natural
frequencies. The corresponding functions Y(x) will be “orthogonal” in some sense. Hence, they are
called normal modes (normal meaning “perpendicular”). The systems will be able to move indepen-
dently in each mode, and this collection of solutions of the form (6.8) will be a complete set. With
this qualitative understanding, one can now seek a solution of the form of equation (6.8) for the
system equation (6.3).

Substitute equation (6.8) in (6.3) to obtain

or

(6.9)

In equation (6.9), because the left-hand terms are a function of x only and the right-hand terms are
a function of t only, for the two sides to be equal in general, each function should be a constant
(that is, independent of both x and t). This constant is denoted by –λ2, which is called the separation
constant and is designated to be negative. There are two good reasons for that. If this common
constant were positive, the function q(t) would be nonoscillatory and transient, which is contrary
to the nature of undamped vibration. Furthermore, it can be shown that a nontrivial solution for
Y(x) would not be possible if the common constant were positive.

The unknown constant λ is determined by solving the space equation (mode shape equation)
of (6.9); specifically,
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(6.10)

and then applying the boundary conditions of the problem. There will be an infinite number of
solutions for λ, with corresponding natural frequencies ω and mode shapes Y(x).

The characteristic equation of (6.10) is

(6.11)

which has the characteristic roots (or eigenvalues)

(6.12)

The general solution is

(6.13)

Note that, since Y(x) is a real function representing a geometric shape, the constants A1 and A2 have
to be complex conjugates and C1 and C2 have to be real. Specifically, in view of the fact that

 and , one can show that

For analytical convenience, use the real-parameter form of equation (6.13).
Note that one cannot determine both constants C1 and C2 using boundary conditions. Only their

ratio is determined, and the constant multiplier is absorbed into q(t) in equation (6.8) and then
determined using the appropriate initial conditions (at t = 0). It follows that the ratio of C1 and C2

and the value of λ are determined using the boundary conditions. Two boundary conditions will
be needed. Some useful situations and appropriate relations are given in Table 6.1.

6.1.3 CABLE WITH FIXED ENDS

One can obtain the complete solution for free vibration of a taut cable that is fixed at both ends.
The applicable boundary conditions are

(6.14)

where l is the length of the cable. Substitution into equation (6.13) gives
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C1 = 0 and

(6.15)

A possible solution for equation (6.15) is C2 = 0. But this is the trivial solution, which corresponds
to Y(x) = 0; that is, a stationary cable with no vibration. It follows that the applicable, nontrivial
solution is

TABLE 6.1
Some Useful Boundary Conditions for the Cable Vibration Problem
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which produces an infinite number of solutions for λ given by

(6.16)

As mentioned earlier, the corresponding infinite number of mode shapes is given by

(6.17)

for i = 1, 2, ..., ∞.

Note: If one had used a positive constant λ2 instead of –λ2 in equation (6.9), only a trivial solution
(with C1 = 0 and C2 = 0) would be possible for Y(x). This further justifies the decision to use –λ2.
Substitute equation (6.16) into (6.9) to determine the corresponding time response (generalized
coordinates) qi(t); thus,

(6.18)

in which

(6.19)

Equation (6.18) represents a simple harmonic motion with the modal natural frequencies ωi given
by equation (6.19). It follows that there are an infinite number of natural frequencies, as mentioned
earlier. The general solution of equation (6.18) is given by

(6.20)

where the amplitude parameter ci and the phase parameter φi are determined using two initial
conditions of the system. It should be clear that it is redundant to use a separate constant Ci for
Yi(x) in equation (6.17) as it can be absorbed into the amplitude constant in equation (6.20), to
express the general free response of the cable as

(6.21)

In this manner, the complete solution has been expressed as a summation of the modal solutions.
This is known as the modal series expansion. Such a solution is quite justified because of the fact
that the mode shapes are orthogonal in some sense, and what was obtained above is a complete
set of normal modes (normal in the sense of perpendicular or orthogonal). The system is able to
move independently in each mode, with a unique spatial shape, at the corresponding natural
frequency, because each modal solution is separable into a space function Yi(x) and a time function
(generalized coordinate) qi(t). Of course, the system will be able to simultaneously move in a linear
combination of two modes (say, C1Y1(x)q1(t) + C2Y2(x)q2(t)) because this combination satisfies the
original system equation (6.3), in view of its linearity, and because each modal component satisfies
the equation. But, clearly, this solution (with two modes) is not separable into a product of a space
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function and a time function. Hence, it is not a modal solution. In this manner, it can be argued

that the infinite sum of modal solutions  is the most general solution to system (6.3).

Orthogonality of mode shapes plays a key role in this argument and, furthermore, it is useful in
the analysis of the system. In particular, in equation (6.21), the unknown constants ci and φi are
determined using the system initial conditions, and the orthogonality property of modes is useful
in that procedure. This will be addressed next.

6.1.4 ORTHOGONALITY OF NATURAL MODES

A cable can vibrate at frequency ωi called natural frequency while maintaining a unique natural
shape Yi(x) called mode shape of the cable. It has been shown that for the fixed-ended cable, the

natural mode shapes are given by , with the corresponding natural frequencies ωi given by

equation (6.19). It can be easily verified that

(6.22)

In other words, the natural modes are orthogonal. Equation (6.22) represents the principle of
orthogonality of natural modes in this case.

Orthogonality makes the modal solutions independent and the corresponding mode shapes
“normal.” It also makes the infinite set of modal solutions a complete set or a basis so that any
arbitrary response can be formed as a linear combination of these normal mode solutions.

The orthogonality holds for other types of boundary conditions as well. To show this, one sees
from equation (6.9) that

(6.23)

(6.24)

Multiply equation (6.23) by Yj(x), equation (6.24) by Yi(x), subtract that second result from the first
and integrate with respect to x along the cable length from x = 0 to l. One obtains

(6.25)
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Hence, the first term of equation (6.25) becomes

which will vanish for typical boundary conditions. Then, since λi ≠ λj for i ≠ j, one has

One can pick the value of the multiplication constant in the general solution for Y(x), given by
equation (6.13), so as to normalize the mode shapes such that

which is consistent with the result (6.22). Hence, the general condition of orthogonality of natural
modes, may be expressed as

(6.26)

Nodes: When vibrating in a particular mode, one or more points of the system (cable) that are not
physically fixed, can remain stationary at all times. These points are called nodes of that mode.
For example, in the second mode of a cable with its ends fixed, there will be a node at the mid-
span. This should be clear from the fact that the mode shape of the second mode is sin2πx/l, which
becomes zero at x = l/2. Similarly, in the third mode, with mode shape sin3πx/l, there will be nodes
at x = l/3 and 2l/3.

EXAMPLE 6.1

If the cable tension varies along the length x, what is the corresponding equation of free lateral
vibration?

A hoist mechanism has a rope of freely hanging length l in a particular equilibrium configuration
and carrying a load of mass M, as shown in Figure 6.2(a). Determine the equation of lateral vibration
and the applicable boundary conditions for the rope segment.

SOLUTION

With reference to Figure 6.1(b), equation (6.1) can be modified for the case of variable T as
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(6.27)

where f(x,t) = 0 for free vibration. Now, with the assumption of small θ and by neglecting the
second-order product term dT dθ, one obtains  

Next, using

 and canceling dx, one gets the equation of lateral vibration of 

a cable as

(6.28)

FIGURE 6.2 (a) Free segment of a stationary hoist, and (b) a small element of the rope.
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Longitudinal (axial) dynamics of the rope are negligible for the case of a stationary hoist. Then,
longitudinal equilibrium (in the x direction) of the small element of rope shown in Figure 6.2(b)
gives

For small θ, cosθ ≅  1 and cos(θ + dθ) ≅  1 up to the first-order term in the Taylor series expansion.
Hence,

(6.29)

Integration gives

(6.30)

with the end condition

Hence,

(6.31)

Note from equation (6.29) that  for this problem. Substitute in (6.28) this fact and

equation (6.31) to obtain

or

(6.32)

The boundary condition at x = 0 is obtained by applying Newton’s second law to the end mass in
the lateral (y) direction. This gives

Now, using the fact that To = Mg, one has the boundary condition:
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For mode i

and

which holds for all t, and where ωi is the ith natural frequency of vibration. Hence, the modal
boundary condition at x = 0 is

(6.33)

The boundary condition at x = l is

(6.34)

which hold for all t. Hence, the corresponding modal boundary condition is

(6.35)

�

6.1.5 APPLICATION OF INITIAL CONDITIONS

The general solution to the cable vibration problem is given by

(6.36)

where Yi(x) are the normalized mode shapes that satisfy the orthogonality property (6.26). The
unknown constants ci and φi are determined using the initial conditions

(6.37)

(6.38)

By substituting equation (6.36) into (6.37) and (6.38), one obtains

(6.39)

(6.40)
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Multiply equations (6.39) and (6.40) by Yj(x) and integrate with respect to x from 0 to l, making
use of the orthogonality condition (6.26). Thus,

Solving these two equations, one obtains

(6.41)

Once φj is determined in this manner, one can obtain cj using

(6.42)

EXAMPLE 6.2

Consider a taut horizontal cable of length l and mass m per unit length, as shown in Figure 6.3,
excited by a transverse point force f0sinωt at location x = a, where ω is the frequency of (harmonic)
excitation and f0 is the forcing amplitude. Determine the resulting response of the cable under
general end conditions and initial conditions. For the special case of fixed ends, what is the steady-
state response of the cable?

SOLUTION

It has been shown that the forced transverse response of a cable is given by equation (6.2):

(6.2)

where v(x,t) is the transverse displacement and f(x,t) is the external force per unit length of the cable.

FIGURE 6.3 A cable excited by a point harmonic force.
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For the point force F at x = a, the analytical representation of the equivalent distributed force
per unit length is

(6.43)

where the Dirac delta function (unit impulse function) δ(x) is such that

(i)

for an arbitrary function g(x), provided that the point a is within the interval of integration [a1,a2].
Seek a “modal superposition” solution of the form

(6.44)

where qi(t) are the generalized coordinates of the forced response solution (which are generally
different from those for the free solution, i.e., qi(t)).

Substitute the solution (6.44) into the system equation (6.2) and make use of the governing
equation of the mode shapes (see equation (6.10)).

(6.45)

we get

(ii)

Multiply equation (ii) by Yj(x), and integrate from x = 0 to l using the orthogonality property (6.26) 
and also (i). One obtains

Because  (see equation (6.19)), one obtains

(6.46)

This has the familiar form of a simple oscillator excited by a harmonic force and its solution is
well known. The initial conditions qj(0) and j(0) are needed. Suppose that the initial transverse
displacement and the speed of the cable are

Then, in view of equation (6.44), one can write
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(6.47)

(6.48)

Multiply equations (6.47) and (6.48) by Yj(x) and integrate from x = 0 to l using the orthogonality
property (6.26). The necessary initial conditions are obtained:

(6.49)

(6.50)

which will provide the complete solution for equation (6.46) and, hence, will completely determine
(6.44).

For a fixed ended cable,

(iii)

and at steady state, the time response qj(t) will be harmonic at the same frequency as the excitation
frequency ω. Hence,

(6.51)

For equation (6.51) to satisfy (6.46) in this undamped problem, one must have φj = 0. Direct
substitution gives

which determines q0j. Hence, from equation (6.45), the complete solution for the fixed-ended
problem, at steady state, is

(6.52)

�

Some important results for transverse vibration of strings and cables are summarized in Box 6.1.
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BOX 6.1 Transverse Vibration of Strings and Cables

Equation of motion:

Separable (modal) solution for free vibration:

with

(Needs two boundary conditions)

and

(Needs two initial conditions)

Natural frequency: 

Wave speed: 

Traveling-wave solution (long cable, independent of end conditions):

Orthogonality:

Initial conditions:
(for initial displacement d(x) and speed s(x))

Variable-tension problem:
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6.2 LONGITUDINAL VIBRATION OF RODS

It can be shown that the governing equation of longitudinal vibration of line structures such as rods
and bars is identical to that of the transverse vibration of cables and strings. Hence, it is not
necessary to repeat the complete analysis here. This section first develops the equation of motion,
then considers boundary conditions, next identifies the similarity with the cable vibration problem,
and concludes with an illustrative example.

6.2.1 EQUATION OF MOTION

Consider a rod that is mounted horizontally (so that the gravitational effects can be neglected) as
shown in Figure 6.4(a). A small element of length dx (the limiting case of δx) at position x is shown
in Figure 6.4(b). The longitudinal strain at x is given by

(6.53)

where

u(x,t) = longitudinal displacement of the rod at distance x from a fixed reference.

Note that the fixed reference can be chosen arbitrarily. However, if the assumption of small u is
needed, the reference may be chosen as the relaxed (unstrained) position of the element. The
longitudinal stress at the cross section at x is σ = Eε and, hence, the longitudinal force is

FIGURE 6.4 (a) A rod with distributed loading and in longitudinal vibration; and (b) a small element of the rod.
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(6.54)

where

E = Young’s modulus of the rod
A = area of cross section.

It is not necessary at this point to assume a uniform rod. Hence, A may depend on x.
The equation of motion for the small element shown in Figure 6.4(b) is

or

(6.55)

From equation (6.54), one has

(6.56)

which when substituted into (6.55) gives

(6.57)

For the case of a uniform rod (constant A) in free vibration (f(x,t) = 0),

(6.58)

which is identical to the cable vibration equation (6.3), but with the wave speed parameter given by

(6.59)

which should be compared with equation (6.4). The analysis of the present problem may be done
exactly as for the cable vibration. In particular, the traveling wave solution will hold. Mode shape
orthogonality will hold as well. Even the boundary conditions are similar to that for the cable
vibration problem.

6.2.2 BOUNDARY CONDITIONS

As for the cable vibration problem, two boundary conditions will be needed, along with two initial
conditions, in order to obtain the complete solution to the longitudinal vibration of a rod. Both free
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and forced vibration can be analyzed as before. For a fixed end at x = x0, there will be no deflection.
Hence,

(6.60)

with the corresponding modal end condition

(6.61)

For a free end at x = x0, there will not be an end force. Hence, in view of equation (6.54), the
applicable boundary condition will be

(6.62)

with the corresponding modal boundary condition

(6.63)

The mode shapes Xi(x) will satisfy the orthogonality property

(6.64)

as before. It can be easily verified, for example, that for a rod with both ends fixed,

(6.65)

EXAMPLE 6.3

A uniform structural column of length l, mass M, and area of cross section A hangs from a rigid
platform and is supported on a flexible base of stiffness k. A model is shown in Figure 6.5. Initially,
the system remains stationary, in static equilibrium. Suddenly, an axial (vertical) speed of u0 is
imparted uniformly on the entire column, due to a seismic jolt. Determine the subsequent vibration
motion of the column from its initial equilibrium configuration.

SOLUTION

The gravitational force corresponds to a force per unit length
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and equation (6.57) becomes

But M = ρAl. Hence,

(6.66)

Boundary conditions are

(6.67)

(6.68)

Initial conditions are 

(6.69)

(6.70)

We seek the modal summation solution

(6.71)

where the mode shapes Xi(x) satisfy

(6.72)

whose solution is

(6.73)

According to equations (6.67) and (6.68), the modal boundary conditions are
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(6.75)

Substitute equation (6.74) into (6.73). We have C2 = 0. Next, use equation (6.75) and obtain

Since C1 ≠ 0 for a nontrivial solution, the required condition is

which can be expressed as

(6.76)

This transcendental equation has an infinite number of solutions λi that correspond to the modes
of vibration. The solution can be made computationally and the corresponding natural frequencies
are obtained using

(6.77)

Substitute equation (6.71) in (6.66) and use (6.72) to get

(6.78)

Multiply equation (6.78) by Xj(x) and integrate from x = 0 to l, using the orthogonality property
(6.64), to get

FIGURE 6.5 A column suspended from a fixed platform and supported on a flexible base.
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(6.79)

One can normalize the mode shapes as

(6.80)

where the constant multiplier (C1) has been absorbed into qi(t) in equation (6.71).
Then,

(6.81)

and

Accordingly, equation (6.79) becomes

(6.82)

where the RHS is a constant and is completely known from equations (6.81) and (6.76), and ωj is
given by equation (6.77). Now equation (6.82), which corresponds to a simple oscillator with a
constant force input, can be solved using any convenient approach. For example, the particular
solution is (see Chapter 2)

(6.83)

and the overall solution is

(6.84)

The constants Aj and Bj are determined using the initial conditions qj(0) and j(0). These are obtained
by substituting equation (6.71) into (6.69) and (6.70), multiplying by Xj(x), and integrating from
x = 0 to l, making use of the orthogonality property (6.64). Specifically, one obtains
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(6.85)

and

(6.86)

�

6.3 TORSIONAL VIBRATION OF SHAFTS

Torsional vibrations are oscillating angular motions of a device about some axis of rotation.
Examples are vibration in shafts, rotors, vanes, and propellers. The governing partial differential
equation of torsional vibration of a shaft is quite similar to that encountered previously for transverse
vibration of a cable in tension and longitudinal vibration of a rod. But, in the present case, the
vibrations are rotating (angular) motions with resulting shear strains, shear stresses, and torques in
the torsional member. Furthermore, the parameters of the equation of motion will take different
meanings. When bending and torsional motions occur simultaneously, there can be some interaction,
thereby making the analysis more difficult. Here, one neglects such interactions by assuming that
only the torsional effects are present or the motions are quite small. 

Because the form of the torsional vibration equation is similar to what was studied before, the
same procedures of analysis can be employed and, in particular, the concepts of modal analysis
will be similar. But, the torsional parameters will be rather complex for members with noncircular
cross sections. For this reason, and also because a vast majority of torsional devices have circular
cross sections, this case will be considered first.

6.3.1 SHAFT WITH CIRCULAR CROSS SECTION

Here, one can formulate the problem of torsional vibration of a shaft having circular cross section.
The general case of non-uniform cross section, along the shaft, is considered. However, the usual
assumptions such as homogeneous, isotropic, and elastic material are made.

First, obtain a relationship between torque (T) and angular deformation or twist (θ) for a circular
shaft. Consider a small element of length dx along the shaft axis and observe the cylindrical surface
at a general radius r (in the interior of the shaft segment), as shown in Figure 6.6(a). During
vibration, this element will deform (twist) through a small angle dθ.

FIGURE 6.6 (a) Small element of a circular shaft in torsion, and (b) shear stresses in a small annular cross
section carrying torque.
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A point on the circumference will deform through rdθ as a result, and a longitudinal line on
the cylindrical surface will deform through angle γ as shown in Figure 6.6(a). From solid mechanics
(strength of materials or theory of elasticity), one knows that γ is the shear strain. Hence,

But, allowing for the fact that the angular shift θ is a function of t as well as x in the general case
of dynamics, one uses partial derivatives, and writes

(6.87)

The corresponding shear stress at the deformed point at radius r is

(6.88)

where

G = shear modulus.

This shear stress acts tangentially. Consider a small annular cross section of width dr at radius r
of the shaft, as shown in Figure 6.6(b). By symmetry, the shear stress will be the same throughout
this region, and will form a torque of r × τ × 2πrdr = 2πr2τdr. Hence, the overall torque at the
shaft cross section is

which, in view of equation (6.88), is written as

(6.89)

It is clear that the integral term is the polar moment of area of the shaft cross section:

(6.90)

In particular, for a solid shaft of radius r,

(6.91)

and for a hollow shaft of inner radius r1 and the outer radius r2,
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(6.92)

Thus, one can write equation (6.89) as

(6.93)

The combined parameter GJ is termed the torsional rigidity of the shaft. It has been emphasized
that the shaft can be non-uniform and, hence, J is a function of x. Consider a uniform shaft segment
of length l, with associated overall angular deformation θ. Equation (6.93) can be written as

(6.94)

Note: For a shaft with noncircular cross section, replace J by Jt in this equation. It follows that the
larger the torsional rigidity GJ, the higher the torsional stiffness K, as expected. Furthermore, longer
members have a lower torsional stiffness (and smaller natural frequencies).

Now apply Newton’s second law for rotatory motion of the small element dx shown in Figure

6.6(a). The polar moment of inertia of the element is ,

where J is the polar moment of area, as discussed before. Also, suppose that a distributed external
torque of τ(x,t) per unit length is applied along the shaft. Hence, the equation of motion is

Substitute equation (6.93) and cancel dx to get the equation of torsional vibration of a circular shaft
as

(6.95)

For the case of a uniform shaft (constant J) in free vibration (τ(x,t) = 0),

(6.96)

with

(6.97)

Note that equation (6.96) is quite similar to that for transverse vibration of a cable in tension and
longitudinal vibration of a rod. Hence, the same concepts and procedures of analysis can be used.
In particular, two boundary conditions will be needed in the solution; for example,

(6.98)
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(6.99)

Orthogonality property of mode shapes Θi(x):

(6.100)

6.3.2 TORSIONAL VIBRATION OF NONCIRCULAR SHAFTS

Unlike for longitudinal and transverse vibrations of rods and beams, in the case of torsional vibration
of shafts, the same equation of motion for circular shafts (equations (6.95) and (6.96)) cannot be
used for shafts with noncircular cross sections. The reason is that the shear stress distributions in
the two cases can be quite different, and equation (6.88) does not hold for noncircular sections.
Hence, the parameter J in the torque-deflection relations (e.g., equations (6.93) and (6.94)) is not
the polar moment of area in the case of noncircular sections. In this case, one writes

(6.101)

where

Jt = torsional parameter.

The Saint Venant theory of torsion and related membrane analogy, developed by Prandtl, have
provided equations for Jt in special cases. For example, for a thin hollow section,

(6.102)

where

As = enclosed (contained) area of the hollow section
p = perimeter of the section
t = wall thickness of the section.

For a thin, solid section, one has

(6.103)

where

a = length of the narrow section
t = thickness of the narrow section.

Torsional parameters for some useful sections are given in Table 6.2.
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EXAMPLE 6.4 

Consider a thin rectangular hollow section of thickness t, height a, and width a/2, as shown in
Figure 6.7(a). Suppose that the section is opened by making a small slit as in Figure 6.7(b). Study
the effect on the torsional parameter Jt and torsional stiffness K of the member due to the opening.

TABLE 6.2
Torsional Parameters for Several Sections

Section Shape Torsional Parameter Jt

Solid circular

Hollow circular

Thin closed

Thin open

Solid square

Hollow square

0.1406 a4

π
2

4r

π
2 2

4
1
4r r−( )

4 2tA

p
s

t a3

3

0 1406 2
4

1
4. a a−( )
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SOLUTION

a. Closed section:

The contained area of the section 

The perimeter of the section p = 3a
Using equation (6.102), the torsional parameter

b. Open section:
Solid length of the section = 3a
Using equation (6.103), the torsional parameter   

Ratio of the torsional parameters

FIGURE 6.7 (a) A thin closed section, and (b) a thin open section.

FIGURE 6.8 A torsional guideway transit system.

A
a
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For members of equal length, their torsional stiffness satisfy the same ratio as given by this
expression. Since t is small compared to a, there will be a significant drop in torsional stiffness
due to the opening (cutout).

�

EXAMPLE 6.5

An innovative automated transit system uses an elevated guideway with cars whose suspensions
are attached to (and slide on) the side of the guideway. Due to this eccentric loading on the guideway,
there is a significant component of torsional dynamics in addition to bending. Assume that the
torque Tj acting on the guideway due to the jth suspension of the vehicle is constant, acting at a
point xj as measured from one support pier and moving at speed vj. A schematic representation is
given in Figure 6.8. The guideway span shown has a length l and a cross section that is a thin-
walled rectangular box of height a, width b, and thickness t. The ends of the guideway span are
restrained for angular motion (i.e., fixed).

a. Formulate and analyze the torsional (angular) motion of the guideway.
b. For a single point vehicle entering a guideway that is at rest, what is the resulting dynamic

response of the guideway? What is the critical speed that should be avoided?
c. Given the parameter values:

and vehicle speed

v = 60 mph (26.8 m s–1)

compute the crossing frequency ratio given by

and discuss its implications.

SOLUTION

a. For a uniform guideway with distributed torque load τ(x,t), and noncircular cross section
having torsional parameter Jt, the governing equation is

J

J

t

a
to

tC

= 3 2

2

l

a b t

G

=

× × = × × × ×

= ×
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(6.104)

As usual, the mode shapes are obtained by solving

(6.105)

and the corresponding natural frequencies are given by

(6.106)

The general solution of equation (6.105) is

where Ai(i = 1, 2) are the constants of integration. The torsional boundary conditions
corresponding to the fixed ends (no twist) are

where l = guideway span length. For a nontrivial solution, one needs

and

(6.107)

The solution corresponds to an infinite set of eigenfunctions Θi(x) satisfying equation
(6.105). Each of these represents a natural mode in which the beam can undergo free
torsional vibrations. The actual motion consists of a linear combination of the normal
modes, depending on the beam initial conditions and the forcing term τ(x,t). The inte-
gration constant A1 can be incorporated (partially) into the generalized coordinate q,
which is still unknown and is determined through initial conditions. Here, the normalized
eigenfunctions are used:

(6.108)

The orthogonality condition given by
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(6.109)

is satisfied. In view of the relations (6.106) and (6.107), the natural frequencies corre-
sponding to different eigenfunctions (natural mode shapes) are

(6.110)

For n number of vehicle suspensions located on the analyzed span,

(6.111)

where Tj = torque exerted on guideway by the jth suspension
vj = speed of the jth suspension
x0j = initial position of the jth suspension (at t = 0) along the guideway 
δ(·) = Dirac delta function.

The forced motion can be represented in terms of the normalized eigenfunctions as

(6.112)

where qi(t) = generalized coordinate for forced motion in the ith mode. On substituting
relations (6.111) and (6.112) into (6.104) and integrating the result over the span length,
after multiplying by a general eigenfunction while making use of the orthogonality
relation (6.109), one obtains

(6.113)

b. For a single suspension entering the guideway at t = 0, with the guideway initially at

rest , one has n =1 and x01 = 0. Then the complete solution of equation
(6.113) is

(6.114)

where the crossing frequency ratio vc is given by
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(6.115)

Note from equation (6.114) that the critical speed corresponds to vC = 1 and should be
avoided. In typical transit systems, vC is considerably less than 1.

c. For the given numerical values, by straightforward computation, it can be shown that:

Note: The expression for thin hollow section given in Table 6.2 was used to compute Jt. Finally,
the crossing frequency ratio is computed to be vC = 0.017, which is much less than 1.0, as expected.

�

6.4 FLEXURAL VIBRATION OF BEAMS

This section will discuss yet another continuous member in vibration. Specifically, a beam (or rod
or shaft) in flexural vibration is considered. The vibration is in the “transverse” or “lateral” direction,
which is accompanied by bending (or flexure) of the member. Hence, the vibrations are perpen-
dicular to the main axis of the member, as in the case of the cable or string that was studied in
Section 6.1. But a beam — unlike a string — can support shear forces and bending moments at
its cross section. In the initial analysis of bending vibration, assume that there is no axial force at
the ends of the beam. Further simplifying assumptions will be made, which will be clear in the
development of the governing equation of motion. The analysis procedure will be quite similar to
that followed in the previous sections for other continuous members.

The study of bending vibration (or lateral or transverse vibration) of beams is very important
in a variety of practical situations. Noteworthy, here, are the vibration analysis of structures like
bridges, vehicle guideways, tall buildings, and space stations; ride quality and structural integrity
analysis of buses, trains, ships, aircraft and spacecraft; dynamics and control of rockets, missiles,
machine tools, and robots; and vibration testing, evaluation, and qualification of products with
continuous members.

6.4.1 GOVERNING EQUATION FOR THIN BEAMS

To develop the Bernoulli-Euler equation, which governs transverse vibration of thin beams, consider
a beam in bending, in the x-y plane, with x as the longitudinal axis and y as the transverse axis of
bending deflection, as shown in Figure 6.9. The required equation is developed by considering the
bending moment-deflection relation, rotational equilibrium, and transverse dynamics of a beam
element.

Moment-Deflection Relation

A small beam element of length δx subjected to bending moment M is shown in Figure 6.9. Neglect
any transverse deflections due to shear stresses. Consider a strip-like area element δA in the cross

v
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section A of the beam element, at a distance w (measure parallel to y) from the neutral axis of
bending.

Note that the neutral axis joins the points along the beam where the normal strain and stress are
zero. Hence,

(6.116)

where R = radius of curvature of the bent element. Normal stress in the axial direction is

(6.117)

where E = Young’s modulus (of elasticity). Then, the bending moment is

where I = second moment of area of the beam cross section, about the neutral axis. Thus,

(6.118)

FIGURE 6.9 A thin beam in bending.
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, where, v = lateral deflection of the beam at

element δx. Hence, change in slope = , where δθ is the arc angle of bending for the

beam element δx, as shown in Figure 6.9.

Also, δx = Rδθ. Hence, . Cancel δθ, and obtain

(6.119)

Substitute equation (6.119) in (6.118) and obtain

(6.120)

Rotatory Dynamics (Equilibrium)

Again consider the beam element δx, as shown in Figure 6.10, where forces and moments acting
on the element are indicated. Here, f(x,t) = excitation force per unit length acting on the beam, in
the transverse direction, at location x. Neglect rotatory inertia of the beam element.

The equation of angular motion is given by the equilibrium condition of moments:

(6.121)

where the previously obtained result (6.120) for M has been substituted. Note that a uniform beam
is not assumed and, hence, I = I(x) will be variable along the beam length.

Transverse Dynamics

The equation of transverse motion (Newton’s second law) for element δx is

FIGURE 6.10 Dynamics of a beam element in bending.
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Here, ρ = mass density of the beam material. Thus,

or, in view of equation (6.121), one obtains the governing equation of forced transverse motion of
the beam as

(6.122)

This is the well-known Bernoulli-Euler beam equation.

6.4.2 MODAL ANALYSIS

The solution to the flexural vibration problem given by equation (6.122) can be obtained exactly
as followed previously for other continuous members. Specifically, first obtain the natural frequen-
cies and mode shapes, and express the general solution as a summation of the modal responses.
The approach is similar for both free and forced problems, but the associated generalized coordinates
will be different. This approach is followed here.

For modal (natural) vibration, consider the free motion described by

(6.123)

For a uniform beam, EI will be constant and equation (6.123) can be expressed as

(6.124)

where

(6.125)

FIGURE 6.11 Modal motions of a lumped-parameter system.
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Observe from equation (6.124) that it is fourth order in x and second order in t, whereas the
governing equations for transverse vibration of a cable, longitudinal vibration of a road, and
torsional vibration of a shaft are all identical in form and second order in x. So, the behavior of
transverse vibration of beams will not be exactly identical to that of the other three types of
continuous system. In particular, the traveling wave solution (6.7) will not be satisfied. However,
there are many similarities.

In each mode, the system will vibrate in a fixed shape ratio. Hence, the time and space functions
will be separable for a modal motion; seek a solution of the form

(6.126)

This separable solution for a modal response is justified as usual. Note that even in the lumped
parameter case (Chapter 5), the same assumption was made — except in that case, one had a modal
vector:

instead of a mode shape function Y(x). For a given mode of a lumped parameter system, Yi values
denote the “relative” displacements of various inertia elements mi, as shown in Figure 6.11. Hence,
the vector Y corresponds to the mode shape. Note that Yi can be either positive or negative. Also,
q(t) is the harmonic function corresponding to the natural frequency.

It should be clear that Y and q(t) are separable in this lumped-parameter case of modal motion.
Then, in the limit, Y(x) and q(t) also should be separable for the distributed-parameter case.

Substitute equation (6.126) in (6.123), and bring terms containing x to the LHS and terms
containing t to the RHS. Then,

(6.127)

Because a function of x cannot be equal to a function of t in general (unless each function is equal
to the same constant), ω2 is defined as a constant.

It has not been shown that this separation constant (ω2) should be positive. This requirement
can be verified due to the nature of the particular vibration problem; that is, q(t) should have an
oscillatory solution in general. It is also clear that the physical interpretation of ω is a natural
frequency of the system. Equation (6.127) corresponds to the two ordinary differential equations
— one in t and the other in x — as

(6.128)

(6.129)

The solution of these two equations will provide the natural frequencies ω and the corresponding
mode shapes Y(x) of the beam.
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For further analysis of the modal behavior, assume a uniform beam. Then, EI will be constant
and equation (6.129) can be expressed as

(6.130)

where

(6.131)

The positive parameter λ is yet to be determined, and will come from the mode shape analysis.
The characteristic equation corresponding to equation (6.130) is

(6.132)

The roots are

(6.133)

Hence, the general solution for a mode shape (eigenfunction) is given by

(6.134)

There are five unknowns (C1, C2, C3, C4, and λ) here. The mode shapes can be normalized and one
of the first four unknowns can be incorporated into q(t) as usual. The remaining four unknowns
are determined by the end conditions of the beam. Thus, four boundary conditions will be needed.
Note:

6.4.3 BOUNDARY CONDITIONS

The four modal boundary conditions that are needed can be derived in the usual manner, depending
on the conditions at the two ends of the beam. The procedure is to apply the separable (modal)
solution (6.126) to the end relation with the understanding that this relation has to be true for all
possible values of q(t). The relation (6.128) can be substituted as well, if needed.

For example, consider an end x = x0 that is completely free. Then, both bending moment and
shear force have to be zero at this end. From equations (6.120) and (6.121), one obtains
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(6.135)

(6.136)

Substitute equation (6.126) into (6.135) and (6.136)

which are true for all q(t). Hence, the following modal boundary conditions result for a free end:

(6.137)

(6.138)

For a uniform beam, equation (6.138) becomes

(6.138b)

Some common conditions and the corresponding modal boundary condition equations for bending
vibration of a beam are listed in Box 6.2.

6.4.4 FREE VIBRATION OF A SIMPLY SUPPORTED BEAM

To illustrate the approach, consider a uniform beam of length l that is pinned (simply supported)
at both ends. In this case, both displacement and the bending moment will be zero at each end.
Accordingly, one has the following modal boundary conditions (BCs):

(6.139)

(6.140)

where, l = length of the beam. Substitute equation (6.134) in (6.139).
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(6.142)

To apply the bending moment BCs, first differentiate equation (6.134) to get

and then substitute these in the bending moment BCs (6.140). One obtains

(6.143)

(6.144)

as λ ≠ 0 in general, due to the oscillatory nature of most modes.
Equations (6.141) and (6.143) give C1 = 0 = C3. Then,

Equation (6.142):

Equation (6.144):

BOX 6.2 Boundary Conditions for Transverse Vibration of Beams

1. Simply supported:
(pinned)

2. Clamped:
(fixed)

3. Free:

4. Sliding:

5. Dynamic: Transverse equation of motion (or Force balance).
(flexible, inertial, etc.) Substitute equation (6.128), if needed.

Rotatory equation of motion (or Moment balance).
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Add:

But sinhλl = 0 if and only if λ = 0. This corresponds to zero-frequency conditions (no oscillations),
and is rejected as it is not true in general. Hence, C2 = 0. Accordingly, one is left with the remaining
equation:

(6.145)

However, if C4 = 0, then Y(x) = 0, which corresponds to a stationary beam with no oscillations,
and is rejected as the trivial solution. Hence, the valid solution is given by sinλl = 0, which gives
the infinite set of solutions:

(6.146)

Note that one must have i > 0 because λ has to be non-zero, thereby giving non-zero natural
frequencies according to equation (6.131) as required for the given problem.

Normalization of Mode Shape Functions

For absorbing the yet unknown constant C4 into q(t), one can normalize the mode shape functions.
The commonly used normalization condition is

(6.147)

Hence,

Note that cos2θ = 1 – 2sin2θ was used prior to integration. Then, for normalized mode shape
functions, C4 = 1. Hence, the normalized eigenfunctions (mode shape functions) for various modes
are given by

(6.148)

Using the result (6.146) in (6.131), the natural frequencies of the ith mode are

(6.149)

In this manner, one obtains an infinite set of mode shape functions Yi(x) for a simply supported
beam. Hence, according to the solution (6.126), there is a corresponding infinite set of generalized
coordinates, qi(t), i = 1, 2, 3, …, that satisfy equation (6.128). It follows that the overall response
of the beam is
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(6.150)

Initial Conditions

One has yet to solve equation (6.128) for determining qi(t). For this, one needs to know the initial
conditions qi(0) and i(0). These are determined from the beam initial conditions of displacement
and speed, which must be known:

(6.151)

(6.152)

Substitute equation (6.150) in (6.151) and (6.152) to get

(6.153)

(6.154)

Multiply by Yj(x) and integrate from x = 0 to l, using the orthogonality property of ;
namely,

(6.155)

One obtains the necessary initial conditions

(6.156)

(6.157)

In this manner, qi(t) is completely determined for each ωi by solving equation (6.128) using the
initial conditions (6.156) and (6.157). Hence, the complete solution (6.150) is determined for the
free bending vibration of a simply supported beam.
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6.4.5 ORTHOGONALITY OF MODE SHAPES

It has been seen that the mode shapes of a simply supported beam in bending vibration are orthogonal
[see equation (6.155)]. This property is not limited to simply supported beams, but holds for all
typical boundary conditions, as will now be shown. First, from integration by parts, twice, one has

(6.158)

Now consider two separate modes i and j, which have the modal equations

Multiply (a) by Yj; (b) by Yi; integrate both with respect to x from 0 to l; make use of equation
(6.158) and subtract the second result from the first to obtain

(6.159)

Clearly, the two right-hand-side terms are zero for typical boundary conditions, such as pinned,
fixed, free, and sliding. Now, because λi ≠ λj for i ≠ j (unequal modes), one has

(6.160)

Note that normalized mode shape functions can be used here to make the constant .

Case of Variable Cross Section

Orthogonality of mode shapes holds for non-uniform beams as well. Here, EI is not constant. Then
one must use integration by parts in the following form:

(6.161)
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Again, the first two terms on the RHS are zero for typical BCs. Then, as before, use the modal
equations (6.129) for two different modes i and j:

Multiply the first equation by Yj , and the second equation by Yi ; subtract the second result from
the first, integrate the result form x = 0 to l, and finally use equation (6.161) to cancel the equal
terms. One then obtains

(6.162)

Now, as before, for common boundary conditions, the second and the third boundary terms in
equation (6.162) will vanish. Hence, after canceling the term , which is ≠ 0 for i ≠ j, the
orthogonality condition for non-uniform beams is given by

(6.163)

The general steps for the modal analysis of a distributed-parameter vibrating system are summarized
in Box 6.3.

6.4.6 FORCED BENDING VIBRATION

The equation of motion is

(6.164)

Assume a separable, forced response:

(6.165)

where qi(t) are the generalized coordinates in the forced case. Substitute equation (6.165) into the
beam equation (6.164):
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The first term on the LHS, on using the mode-shape equation (6.129), becomes .
Multiply the result by Yj(x) and integrate with respect to x[0, l] to obtain

Each of the two integrals on the LHS evaluates to α j according to equation (6.163). Hence,

(6.166)

BOX 6.3 Modal Analysis of Continuous Systems

Equation of free (unforced) motion:

(i)

where v(x,t) = system response
L(x,t) = partial differential operator in space (x) and time (t).

Modal Solution:
Assume a separable solution

(ii)

because a modal response is separable in time and space.

Note 1: Y(x) = mode shape
q(t) = generalized coordinate for free response.

Note 2: For two- and three-dimensional space systems, time and space will still be separable
for a modal response; but the space function itself may not be separable along various coordinate
directions.

Steps:
1. Substitute (ii) in (i) and separate the space function (of x) and the time function (of t),

each of which should be equal to the same constant.
2. Solve the resulting ordinary differential equation (ODE) for Y(x) using system boundary

conditions. One obtains an infinite set of mode shapes Yi(x) up to one unknown (removed
by normalization) and natural frequencies ωi.

3. Solve the ODE for q(t) using system initial conditions to determine qi(t) for mode i.
(Orthogonality of Yi(x) will be needed to establish the initial conditions for qi(t).)

4. Overall response
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One can then solve this equation to determine the generalized coordinates qj(t) using the knowledge

of the forcing function fj(t) and the initial conditions qj(0) and . Specifically, if the initial

displacement and speed of the beam are given by equations (6.151) and (6.152), respectively, then by
following the procedure that was adopted to obtain the results (6.156) and (6.157), one determines that

(6.167)

(6.168)

Finally, one obtains the overall response of the forced system as

(6.169)

The main steps in the forced response analysis are summarized in Box 6.4.

BOX 6.4 Forced Response of Continuous Systems

Equation of forced motion:

(i)

where v(x,t) = forced response of the system
f(x,t) = distributed force per unit length (space)
L, L1 = partial differential operators in space and time.

Steps:
1. Substitute the modal expansion

(ii)

in (i), where Yi(x)  = mode shapes
qi(t)  = generalized coordinates for forced motion.

2. Multiply by Yj(x) and integrate with respect to space (x) using orthogonality

(iii)

Note: Additional boundary terms enter into (iii) when there are lumped elements at the system
boundary.

3. Determine initial conditions for qi(t). One will need (iii) for this.
4. Solve the ordinary differential equation for qi(t) using initial conditions.
5. Substitute the results in (ii).
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EXAMPLE 6.6

A pump is mounted at the mid-span of a simply supported thin beam of uniform cross section and
length l. The pump rotation generates a transverse force f0cosωt as schematically shown in Figure
6.12. Initially, the system starts from rest, from the static equilibrium position of the beam, such that

It is required to obtain the transverse response v(x, t) of the beam in the form of a modal summation
during operation of the pump.

First determine qj(t) in terms of f0, ω, ωj and the beam parameters ρ, A, and l, assuming that
the beam is completely undamped. Are all modes of the beam excited by the pump? If the beam
is lightly damped, what would be its steady-state response?

In particular, what is the steady-state response of the beam at the pump location? Sketch its
amplitude as a function of the excitation frequency ω.

SOLUTION

Using the Dirac delta function δ(x), one can express the equation of forced motion of the beam as

(6.170)

Substitute  where normalized mode shapes for the simply supported beam

are Yi(x) = siniπx/l; multiply by Yj(x); integrate over x = [0, l] and use the orthogonality of mode
shapes to obtain

Note:

FIGURE 6.12 A pump mounted on a simply supported beam.
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for some function p(x).
Hence, from equation (6.149), one obtains

(6.171)

where

The given initial conditions are satisfied if and only if qj(0) = 0 and j(0) = 0 for all j.
Hence, the complete solution is

(6.172)

It follows that the total response is

(6.173)

Clearly,  for even values of j. One notes that even modes of the beam are not excited by

the pump; this is to be expected because, for even modes, the mid-span is a node point and has no
motion.

If the beam is lightly damped, its natural response terms (cosωjt) will decay to zero with time.
Hence, the steady-state response will be

(6.174)

At the pump location (x = l/2), the steady state response is

Note again that only the odd modes contribute to the response. Furthermore, for a simply supported
beam,
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where

Non-dimensionalize the mid-span response at steady state as

where the nondimensional excitation frequency . The amplitude is

FIGURE 6.13 Amplitude of the steady response at the pump as a function of excitation frequency.
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The characteristic of the amplitude as a function of the nondimensional excitation frequency is
sketched in Figure 6.13. 

�

EXAMPLE 6.7

Perform a modal analysis to determine natural frequencies and mode shapes of transverse vibration
of a thin cantilever (i.e., a beam with “fixed-free” or “clamped-free” end conditions). The coordinate
system and the beam parameters are as shown in Figure 6.14.

SOLUTION

As usual, the mode shapes are given by

(6.134)

Its first three derivatives are

(6.175)

(6.176)

(6.177)

The boundary conditions of the beam are:

The corresponding modal boundary conditions are:

FIGURE 6.14 A cantilever in bending vibration.
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(6.178)

Substitute equations (6.134), (6.175)–(6.177) into (6.178) to obtain

(i)

(ii)

(iii)

(iv)

Eliminate C1 and C2 in equations (iii) and (iv) by substituting (i) and (ii). We get

(v)

(vi)

or, in the vector-matrix form,

(6.179)

The trivial solution of equation (6.179) is C3 = 0 = C4. Then, from equations (i) and (ii), C1 = 0 = C2.
This solution corresponds to Y(x) = 0 and is not acceptable in general for a vibrating system. Hence,
one must have the matrix in equation (6.179) non-invertible (i.e, singular). For this, the determinant
of the matrix must vanish (see Appendix C); thus,

or

But, it is well known that

Hence,

(6.180)

This transcendental equation has an infinite number of solutions λi for i = 1, 2, 3, …, correspondingly
giving an infinite number of natural frequencies
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(6.181)

The corresponding mode shapes are given by equation (6.134) subject to (i), (ii), and (v) or (iv).
This gives Yi(x) = C3(cosλix – coshλix) + C4(sinλix – sinhλix) with

It follows that

The unknown multiplier C4 simply scales the mode shape and is absorbed into the generalized
coordinate qi(t) as usual. In fact, this is a process of normalization of mode shapes, where C4 = 1
is used. So, one has the normalized mode shapes:

(6.182)

with

(6.183)

The first three roots of equation (6.180) are

The corresponding three mode shapes are sketched in Figure 6.15. Note, in particular, the node 
points, which are not physically fixed but remain stationary during a modal motion. This completes 
the solution.

�

The modal information corresponds to the infinite set of natural frequencies obtained by solving
equation (6.180) subject to (6.181); together with the mode shapes given by (6.182) subject to
(6.183). Modal information corresponding to other common boundary conditions can also be put
in this form. Table 6.3 summarizes such data.

Table 6.4 provides numerical values corresponding to this modal information for the first three
modes.

6.4.7 BENDING VIBRATION OF BEAMS WITH AXIAL LOADS

Previous sections have considered the problems of longitudinal vibration of beams with axial loads
and also transverse vibration of cables in tension. In practice, beam-type members that undergo
flexural (transverse) vibrations also can carry axial forces. Examples are structural members such
as columns, struts, and towers. Generally, a tension will increase the natural frequencies of bending,
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and compression will decrease them. Hence, one way to avoid the excitation of a particular natural
frequency (and mode) of bending vibration is to use a suitable tension or compression in the axial
direction.

The equation of motion for transverse motion of a thin beam subjected to an axial tension P
can be easily derived by following the same procedure that led to equation (6.122), but now including
P. For simplicity, assume a thin beam subjected to a constant tensile force P. A small element δx
of the beam is shown in Figure 6.16. The vertical component (in the +ve y direction) of the axial
force is

because the slope  is small. Also, the change in slope is

It is clear that the previous equation of transverse dynamics of element δx must be modified

simply by adding the term  to the f(x,t)δx side of the equation. Then, the resulting equation

of transverse vibration will be

(6.184)

FIGURE 6.15 First three modes of a cantilever (fixed-free beam) in transverse vibration.
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For modal analysis of a uniform beam, then, use the equation of free motion

(6.185)

With a separable (modal) solution of the form

(6.186)

one has

(6.187)

which gives, as before, the time response equation of the generalized coordinates:

(6.188)

and the mode shape equation

TABLE 6.3
Modal Information for Bending Vibration of Beams

End
Conditions

Natural Frequencies

Where li are Roots of:

Mode Shapes

a b c d ai

Pinned-pinned
1 0 0 0 0

Fixed-fixed
1 –1 –1 1

Free-free
1 1 –1 –1 Same

Fixed-pinned
1 –1 –1 1 Same

Fixed-free 1 –1 –1 1

Fixed-sliding 1 –1 –1 1

Pinned-free 1 α i 0 0

ωωω λλλ ρρρi i EI A= 2 Y x a x b x c x d xi i i i i i( ) = + + +[ ]sin sinh cos coshλλλ λλλ ααα λλλ λλλ

sin

, , ,

λ il

i

=

=

0

1 2 3   K

cosh cos

, , ,

λ λi il l

i

=

=

1

1 2 3   K

sinh sin

cosh cos

λ λ
λ λ

i i

i i

l l

l l

−
−

cosh cos

, , ,

λ λi il l

i

=

=

1

0 1 2   K

tanh tan

, , ,

λ λi il l

i

=

= 1 2 3   K

cosh cosλ λi il l = −1
sinh sin

cosh cos

λ λ
λ λ

i i

i i

l l

l l

+
+

tanh tanλ λi il l= −
cosh cos

sinh sin

λ λ
λ λ

i i

i i

l l

l l

+
−

tanh tanλ λi il l=
sin

sinh

λ
λ

i

i

l

l

ρA
v

t
EI

v

x
P

v

x

∂
∂

+ ∂
∂

− ∂
∂

=
2

2

4

4

2

2 0

v x t Y x q t,( ) = ( ) ( )

˙̇q t

q t

EI d Y dx P d Y dx

AY

( )
( )

= − − = −
4 4 2 2

2

ρ
ω

˙̇q t q t( ) + ( ) =ω2 0
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(6.189)

Note that the mode shape equation is still fourth order, but is different. The analysis, however, can
be done as before, by using four boundary conditions at the two ends of the beam, to determine
the natural frequencies (an infinite set) and the corresponding normalized mode shapes.

TABLE 6.4
Roots of the Frequency Equation for
Bending Vibration of Beams

End Conditions

First Three Roots

Pinned-pinned π
2π
3π

Fixed-fixed 4.730041
7.853205
10.995608

Free-free 0
4.730041
7.853205
10.995608

Fixed-pinned 3.926602
7.068583
10.210176

Free-free 1.875104
4.694091
7.854757

Fixed-sliding 2.365020
5.497804
8.639380

Pinned-free 0
3.926602
7.068583
10.210176

FIGURE 6.16 Beam element in transverse vibration and subjected to axial tension.
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6.4.8 BENDING VIBRATION OF THICK BEAMS

In the derivation of the governing equation for lateral vibration of thin beams (known as the
Bernoulli-Euler beam equation), the following effects, in particular, were neglected:

1. Deformation and associated lateral motion due to shear stresses
2. Moment of inertia of beam elements in rotatory motion.

Note, however, that use was made of the fact that shear forces (Q) are present in a beam cross-
section, although the resulting deformations were not taken into account. Also, in writing the
equation for rotational motion of a beam element δx, the moments were simply summed to zero,
without including the inertial moment. These assumptions are valid for a beam whose cross-
sectional dimensions are small compared to its length. But, for a thick beam, the effects of shear
deformation and rotatory inertia have to be included in deriving the governing equation. The
resulting equation is known as the Timoshenko beam equation. Important steps in the derivation
of the equation of motion for forced transverse vibration of beams, including the effects of shear
deformation and rotatory inertia, are given below.

Consider a small element δx of a beam. Figure 6.17(a) illustrates the contribution of the bending
of an element and the deformation due to transverse shear stresses toward the total slope of the
beam neutral axis. Let

θ = angle of rotation of the beam element due to bending
φ = increase in slope of the element due to shear deformation in transverse shear (this

is equal to shear strain).

Then, the total slope of the beam element is

(6.190)

Here, v and x take the usual meanings — as for a thin beam.
Figure 6.17(b) shows an element δx of the beam with the forces, moments, and the linear and

angular accelerations marked. With the sign convention shown in Figure 6.17(b), the linear shear-
stress-shear-strain relation can be stated as

(6.191)

where the Timoshenko shear coefficient

and

The equation for translatory motion is

∂
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Hence,

(6.192)

The equation for rotatory motion of the element, taking into account the rotatory inertia, is

which becomes

(6.193)

From the elementary theory of bending, as before,

(6.194)

The relationship between the shear modulus and the modulus of elasticity is known to be

(6.195)

where υ  = Poisson’s ratio. This relation can be substituted if desired.
Manipulation of these equations yields

FIGURE 6.17 A Timoshenko beam element: (a) combined effect of bending and shear; and (b) dynamic
effect, including rotatory inertia.
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(6.196)

This is the Timoshenko beam equation for forced transverse motion. Note that this equation is
fourth order in time, whereas the thin beam equation is second order in time. The modal analysis
may proceed as before, by using the free (f = 0) equation and a separable solution. However, the
resulting differential equation for the generalized coordinates will be fourth order in time and, as
a result, additional natural frequency bands will be created. The reason is the independent presence
of shear and bending motions. The differential equation of mode shapes will be fourth order in x,
and the solution procedure will be the same as before, through the use of four boundary conditions
at the two ends of the beam.

6.4.9 USE OF THE ENERGY APPROACH

Thus far, only the direct, Newtonian approach has been used in deriving the governing equations
for continuous members in vibration. Of course, the same results can be obtained using the
Lagrangian (energy) approach (see Appendix B). The general approach here is to first express the
Lagrangian L of the system as

(6.197)

where

T *= total kinetic co-energy (equal to kinetic energy T for typical systems)
V = total potential energy.

Then, for a virtual increment (variation) of the system through incrementing the system response
variable, the following condition will hold:

(6.198)

where δL is the increment in the Lagrangian and δW is the work done by the external forces on
the system due to the increment (virtual work). Finally, using the arbitrariness of the variation, the
equation of motion, along with the boundary conditions, can be obtained. This approach is illustrated
now.

First consider the free motion. One can easily extend the result to the case of forced motion.
The kinetic energy is given by

(6.199)

The potential energy due to bending results from the work needed to bend the beam (angle denoted

by  as usual) under bending moment M; thus
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(6.200)

Before proceeding further, note the following steps of variation, and integration by parts with
respect to t:

(6.201)

Note the interchange of the operations δ and  prior to integrating by parts. Also, by convention,

assume that no variations are performed at the starting and ending times (t1 and t2) of integration.
Hence,

(6.202)

Similarly, variation, and integration by parts with respect to x, are done as follows:

(6.201)*

Now, for the case of free vibration (δW = 0), substitute equations (6.201) and (6.201)* in δT and
δV from equations (6.199) and (6.200) to obtain

(6.203)

Because equation (6.203) holds for all arbitrary variations δv(t), its coefficient should vanish. Hence,
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(6.204)

which is the same Bernoulli-Euler beam equation for free motion as previously derived.
The second integral term on the RHS of equation (6.203) has no consequence. One can

conventionally pick δv(t1) = 0 and δv(t2) = 0 at the time points t1 and t2 as given by equation (6.202).
The third integral term on the RHS of (6.203) gives some boundary conditions. Specifically,

if the slope boundary condition  is zero (i.e., fixed end), then the corresponding bending moment

at the end is arbitrary, as expected. But if the slope at the boundary is arbitrary, then the bending

moment  at the end should be zero (i.e., pinned or free end).

The last integral term on the RHS of (6.203) gives some other boundary conditions. Specifically,
if the displacement boundary condition v is zero (i.e., pinned or fixed end), then the corresponding
shear force at the end is arbitrary. But if the displacement at the boundary is arbitrary, then the

shear force  at that end should be zero (i.e., free or sliding end).

Next consider a forced beam with force per unit length given by f(x,t). Then, the work done
by the f(x,t)dx in a small element dx of the beam, when moved through a displacement of δv, is

(6.205)

Then, by combining equation (6.205) with (6.203), for arbitrary variation δv, one obtains the forced
vibration equation:

(6.206)

Note that external forces and moments applied at the ends of the beam can be incorporated into
the boundary conditions in the same manner.

6.4.10 ORTHOGONALITY WITH INERTIAL BOUNDARY CONDITIONS

It can be verified that the conventional orthogonality condition (6.163) holds for beams in transverse
vibration under common non-inertial boundary conditions. When an inertia element (rectilinear or
rotatory) is present at an end of the beam, this condition is violated. A modified and more general
orthogonality condition can be derived for application to beams with inertial boundary conditions.

To illustrate the procedure, consider a beam with a mass m attached at the end x = l, as shown
in Figure 6.18(a). A free-body diagram giving the sign convention for shear force Q acting on m
is shown in Figure 6.18(b).
The boundary conditions at x = l are:

1. Bending moment vanishes, because there is no rotatory inertia at the end that is free.
Hence,

(6.207)

2. Equation of rectilinear motion of the end mass:
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(6.208)

In the usual manner, by substituting v(x,t) = Yi(x)qi(t) for mode i, along with , into
equations (6.207) and (6.208) with the understanding that the result should hold for any qi(t), one
obtains the corresponding modal boundary conditions:

(6.209)

(6.210)

Now return to equation (6.162):

(6.162)

The second and the third terms of equation (6.162) will vanish at x = 0 for non-inertial boundary
conditions, as usual. At x = l, the third term will vanish in view of equation (6.209). So, one is left
with the second term at x = l. Substitute equation (6.210):

FIGURE 6.18 (a) A beam with an end mass in transverse vibration, and (b) free-body diagram showing the
shear force acting on the end mass.
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(6.211)

Now substitute equation (6.211) into (6.162) and cancel  for i ≠ j; one obtains

(6.212)

This is the modified and more general orthogonality property. If the mass is at x = 0, the direction
of Q that acts on m will reverse and, hence, the second term in equation (6.212) will become
–mYi(0)Yj(0).

Rotatory Inertia

If there is a free rotatory inertia at x = l, without an associated rectilinear inertia, then the shear
force will vanish, giving

(6.213)

The equation of rotational motion of J will give

(6.214)

Here, the second term in equation (6.162) will vanish in view of (6.213). Then, by substituting
equation (6.214) into the third term of (6.162), one gets the modified orthogonality relation

(6.215)

6.5 DAMPED CONTINUOUS SYSTEMS

All practical mechanical systems have some form of energy dissipation (damping). When the level
of dissipation is small, damping is neglected, as has been done thus far in this chapter. Yet, some
effects of damping — for example, the fact that at steady state, the natural (modal) vibration
components decay to zero leaving only the steady forcing component — are tacitly assumed even
in undamped analysis. The subject of damping is treated in Chapter 7.

The natural behavior of a system is expected to change due to the presence of damping. In
particular, the system natural frequencies will decrease (and be called damped natural frequencies)
as a result of damping. Furthermore, it is quite possible that a damped system would not possess
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“real” modes in which it could independently vibrate. Mathematically, in that case, the modes will
become complex (as opposed to real), and physically, all points of the system will not move,
maintaining a constant phase at a given damped natural frequency. In other words, a real solution
that is separable in space (x) and time (t) may not be possible for the free vibration problem of a
damped system. Also, node points of an undamped system can vary with time as a result of damping.
With light damping, of course, such effects of damping will be negligible.

Because there are damped systems that do not possess real natural modes of vibration, care
should be exercised when extending the results of modal analysis from an undamped system to a
damped one. But, in some cases, the mode shapes will remain the same after including damping
(although the natural frequencies will change). This is analogous to the case of proportional
damping, which was discussed under lumped-parameter (multi-dof) vibrating systems. The modal
analysis of a damped system will become significantly easier if one assumes that the mode shapes
will remain the same as those for the undamped system. Even when the actual type of damping in
the system results in complex modes, for analytical convenience, an equivalent damping model
that gives real modes is used in simplified analysis. This is analogous to the use of linear viscous
damping in lumped-parameter systems.

6.5.1 MODAL ANALYSIS OF DAMPED BEAMS

Consider the problem of free damped transverse vibration of a thin beam, given by

(6.216)

where L is a spatial differential operator (in x). Consider the following two possible models of
damping:

1. (6.217)

2. (6.218)

Model 1 corresponds to the Kelvin-Voigt model of material (internal) damping given by the stress-
strain relation

(6.219)

where E* is the damping parameter of the beam material. Hence, one obtains the damped beam

equation simply by replacing E in the undamped beam equation by . Also, E* is inde-

pendent of the frequency of vibration for the viscoelastic damping model, but will be frequency
dependent for the hysteretic damping model. Modal analysis is done regardless of any frequency
dependence of E* and, in the final modal result for a particular modal frequency ωi, the appropriate
frequency function for E*(ω) is used with ω = ωi, if the damping is of the hysteretic type. It can
be easily verified that the mode shapes of the damped system with model (6.217) are identical to
those of the undamped system, regardless of whether the beam cross section is uniform or not.

In model 2 [equation (6.218)], the operator is a constant c. This corresponds to external damping
of the linear viscous type, distributed along the beam length. For example, imagine a beam resting
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on a foundation of viscous damping material. For model 2, it can be shown that the damped mode
shapes are identical to the undamped ones — assuming that the beam cross section is uniform. If
the beam is non-uniform, the damped and the undamped mode shapes are identical if one assumes
that the damping constant c varies along the beam in proportion to the area of cross section A(x)
of the beam. This is shown in Example 6.8.

EXAMPLE 6.8

Perform the modal analysis for transverse vibration of a thin non-uniform beam with linear viscous
damping distributed along its length and satisfying the beam equation

(6.220)

Determine damped natural frequencies, modal damping ratios, and the response v(x,t) as a modal
series expansion, given v(x,0) = d(x) and (x,0) = s(x).

SOLUTION

Substitute the separable solution

(6.221)

in equation (6.220) to obtain

Group the functions of x and t separately, and equate to the same constant ω2, as usual:

(6.222)

Thus,

(6.223)

and

(6.224)

Note that equation (6.223) is identical to that for the undamped beam. Hence, with known boundary
conditions, one will obtain the same mode shapes Yi(x) and the same undamped natural frequencies
ωi in the usual manner. But, the equation of modal generalized coordinates q(t) given by
equation (6.224) is different from that for the undamped case (b = 0). For mode i,
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(6.225)

where

 = modal damping ratio for mode i. (6.226a)

Damped natural frequencies are

(6.226b)

Equation (6.225) can be solved in the usual manner, with initial conditions qi(0) and i(0) determined
a priori, using known v(x,0) and (x,0).
The modal series solution is

(6.227)

The initial conditions are

(6.228)

(6.229)

Multiply equations (6.228) and (6.229) by ρA(x)Yj(x) and integrate form x = 0 to l using the
orthogonality condition

(6.230)

Thus,

(6.231)

(6.232)

This completes the solution for the free damped beam. The forced damped case can be analyzed
in the same manner as for the forced undamped case because the mode shapes are the same.
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6.6 VIBRATION OF MEMBRANES AND PLATES

The cables, rods, shafts, and beams for which the vibration has been studied thus far in this chapter,
are one-dimensional members or line structures. These continuous members need one spatial
variable (x), in addition to the time variable (t), as an independent variable to represent their
governing equation of motion. Membranes and plates are two-dimensional members or planar
structures. They need two independent spatial variables (x and y) in addition to time (t), to represent
their dynamics.

A membrane can be interpreted as a two-dimensional extension of a string or cable. In particular,
it has to be in tension and cannot support any bending moment. A plate is a two-dimensional
extension of a beam. It can support a bending moment. The governing equations of these two-
dimensional members, hence, will resemble two-dimensional versions of their respective one-
dimensional counterparts. Modal analysis will also follow the familiar steps, after accounting for
the extra dimension. This section provides an introduction to the modal analysis of membranes and
plates. For simplicity, only special cases of rectangular members with relatively simple boundary
conditions will be considered. Analysis of more complicated boundary geometries and conditions
will follow analogous procedures, although requiring greater effort and producing more complicated
results.

6.6.1 TRANSVERSE VIBRATION OF MEMBRANES

Consider a stretched membrane (in tension) that lies on the x–y plane, as shown in Figure 6.19.
Transverse vibration v(x,y,t) in the z-direction is of interest. By following a procedure that is somewhat
analogous to the derivation of the cable equation, one can obtain the governing equation as

(6.233)

with

(6.234)

where

T ′  = tension per unit length of membrane section (assumed constant)
m′  = mass per unit surface area of membrane.

FIGURE 6.19 A membrane or a plate in Cartesian coordinates.
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For modal analysis, seek a separable solution of the form

(6.235)

and substitute equation (6.235) into (6.233) and divide throughout by Y(x)Z(y)q(t) to get

(6.236)

Because equation (6.236) is true for all possible values of t, x, and y, which are independent, the
three function groups should separately equal to constants; thus,

(6.237)

(6.238)

(6.239)

with

(6.240)

The argument for using positive constants α2, β2, and ω2 is similar to that given for the one-
dimensional case. Next, equations (6.237) and (6.238) must be solved using two end conditions
for each direction, as usual. This will provide an infinite number of solutions α i and βj and the
corresponding natural frequencies:

(6.241)

along with the mode shape components Yi(x) and Zj(y) for the two dimensions.

6.6.2 RECTANGULAR MEMBRANE WITH FIXED EDGES

Consider a rectangular membrane of length a and width b as shown in Figure 6.19 and with the
four edges fixed. The boundary conditions are

Using these in solving equations (6.237) and (6.238) as usual, one obtains

(6.242)
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(6.243)

(6.244)

Note that the spatial mode shapes are given by

(6.245)

6.6.3 TRANSVERSE VIBRATION OF THIN PLATES

Consider a thin plate of thickness h in a Cartesian coordinate system as shown in Figure 6.19. The
usual assumptions as for the derivation of the Bernoulli-Euler beam equation are used. In particular,
h is assumed small compared to the surface dimensions (a and b for a rectangular plate). Then,
shear deformation and rotatory inertia can be neglected, and normal stresses in the transverse
direction (z) can also be neglected. Furthermore, any end forces in the planar directions (x and y)
are neglected. The governing equation is

(6.246)

with

(6.247)

where

E′ = (6.248)

I′ =  = second moment of area per unit length of section (6.249)

A′ = area per unit length of section
ρ = mass density of material
E = Young’s modulus of elasticity of the plate material
υ = Poisson’s ratio of the plate material.

If one attempts modal analysis by assuming a completely separable solution of the form v(x,y,t) =
Y(x)Z(y)q(t) in equation (6.246), a separable grouping of functions of x and y will not be achieved
in general. But, the space and the time will be separable in modal motions. Hence, seek a solution
of the form

(6.250)
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One will get

(6.251)

and

(6.252)

with the natural frequencies ω given by

(6.253)

and ∇ 2 is the Laplace operator given by

(6.254)

and, hence, ∇ 2∇ 2 is the biharmonic operator ∇ 4 given by

(6.255)

Solution of equation (6.252) will require two sets of boundary conditions for each edge of the plate
(as for a beam), but will be mathematically involved. Instead of a direct solution, a logical trial
solution that satisfies equation (6.252) and the boundary conditions is employed next for a simply
supported rectangular plate. The solution tried is in fact the correct solution for the particular
problem.

6.6.4 RECTANGULAR PLATE WITH SIMPLY SUPPORTED EDGES

As a special case, now consider a thin rectangular plate of length a, width b, and thickness h, as
shown in Figure 6.19, whose edges are simply supported. For each edge, the boundary conditions
are that the displacement is zero and the bending moment about the edge is zero. Specifically,

(6.256)

where E′ and I′ are given by equations (6.248) and (6.249), respectively. In this case, the mode
shapes are found to be

(6.257)

which clearly satisfy the boundary conditions (6.256) and the governing model equation (6.252).
There exists an infinite set of solutions for λ given by
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(6.258)

and, hence, from equation (6.253), the natural frequencies are

(6.259)

where c is given by equation (6.247). The overall response, then, is given by

(6.260)

The unknown constants Aij and Bij are determined by the system initial conditions v(x,y,0) and
(x,y,0). The first six mode shapes of transverse vibration of a rectangular plate are sketched in

Figure 6.20.

FIGURE 6.20 Mode shapes of transverse vibration of a simply supported rectangular plate.
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PROBLEMS

6.1 Consider the traveling wave solution given by

to the problem of free transverse vibration of a taut cable (wave equation):

Suppose that the system is excited by an initial displacement d(x) and an initial speed
s(x). Show that the functions v1(x – ct) and v2(x + ct) can be completely determined by
these two initial conditions. This also means that the traveling wave solution does not
depend on the boundary conditions of the system. Under what conditions would this
assumption be satisfied and, hence, the solution be valid? Provide some justification for
the solution.

6.2 a. List several differences between lumped-parameter (discrete) and distributed-parameter
(continuous) vibratory systems.

b. Consider a cable of length l that is stretched across a flexible pole and a rigid pole,
modeled as shown in Figure P6.2. The flexible pole is represented by a spring of
stiffness k. The cable is assumed to have a uniform cross section, with a mass of m
per unit length. The cable tension T is assumed constant. Analyze the problem of free
transverse vibration of the cable, giving appropriate boundary actions.

6.3 Show that the orthogonality property is satisfied by the mode shapes of transverse
vibration of a taut cable under a flexibly supported end with stiffness k.

6.4 The cord of a musical instrument is mounted horizontally with fixed ends and maintained
in tension T. The length of the cord is l and mass per unit length is m. An impulsive

speed of  is applied to the stationary cord in the transverse direction; for

FIGURE P6.2 Cable with flexible and rigid supports.
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example, by gently hitting the mid-span with a hammer. Determine the resulting vibration
of the cord.
Note: δ(x – x0) is the Dirac delta function such that

where x0 is within the integration interval [a,b] and f(x) is an arbitrary function.
6.5 a. Discuss why boundary conditions have to be known explicitly in solving a continuous

vibrating system, but not for solving a discrete vibrating system.
b. Determine the modal boundary condition at x = l for a rod carrying a mass M and

restrained by a fixture of stiffness k, as shown in Figure P6.5. The area of cross section
of the rod is A, and the Young’s modulus is E. Show that the orthogonality property,
in the conventional form, is not satisfied by the mode shapes of the rod, and that the
following modified orthogonality condition is satisfied:

FIGURE P6.5 A rod with a dynamic restraint.

FIGURE P6.6 Longitudinal vibration of a rod with an end mass.

FIGURE P6.7 A helical spring with dominant axial deformation in the coil wire.
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How would the result change if I = I(x) and if M is located at x = 0?
6.6 a. What factors govern the use of the discrete-parameter assumption for a continuous-

parameter vibrating system?
b. A uniform rod of length l, cross-sectional area A, mass density ρ, and Young’s modulus

E is fixed horizontally to a rigid wall at one end and carries a mass M at the other
end, as shown in Figure P6.6. Analyze the system to determine the natural frequencies
of longitudinal vibration.

6.7 When a helical (coil) spring is stretched, the coil wire will be subjected to bending and
torsion at each cross section, as well as tension along the axis of the wire. The former
effects can dominate unless the spring is almost stretched or loosely wound so that the
coil pitch (distance between adjacent coils turns) is large compared to the coil diameter
and that the coil diameter is not large compared to the wire diameter.

Assume that for a (somewhat unusual) helical spring, the bending and torsion effects
are negligible compared to the longitudinal deflection of the wire. For such a spring with
one end fixed and the other end free, as shown in Figure P6.7, determine the stiffness k
and the natural frequencies of vibration. The following parameters are given:

M = mass of the spring
l = nominal, relaxed length of the coil wire
A = area of cross section of the coil wire
E = Young’s modulus of the coil material.

6.8 Consider a uniform structural column of height l, mass density ρ, and Young’s modulus
E, and mounted on a rigid base, as schematically shown in Figure P6.8. Two types of
initial conditions are considered:
a. An impulsive impact is made at the top end of the column so as to impart an

instantaneous velocity of v0δ(x – l) at that point.
b. The column is pressed down at the top through a displacement u0 and released

suddenly from rest.
In each case, determine the subsequent longitudinal vibration of the column.

6.9 A uniform metal post of height l, mass density ρ, and Young’s modulus E is fixed
vertically on a rigid floor as schematically shown in Figure P6.9. The top end of the post
is harmonically excited using a shaker device in the following two ways:

FIGURE P6.8 A structural column in longitudinal vibration: (a) initial impulsive impact at the top end, and
(b) releasing from rest with initial elastic displacement.
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a. The shaker head is displacement-feedback controlled so that a sinusoidal displacement
of u0sinωt is generated.

b. The shaker head is force-feedback controlled so that a sinusoidal force of f0sinωt is
generated.

In each case, determine the longitudinal vibratory displacement of the post, under steady-
state conditions.

6.10 Consider a uniform shaft, not necessarily of circular cross section, in torsional vibration.
The following shaft parameters are known:

J = polar moment of area of the shaft cross section (about the axis of rotation)
Jt = Saint Venant torsional parameter (equal to J for a circular cross section)
ρ = mass density
G = shear modulus.

Six sets of boundary conditions, as shown in Figure P6.10, are studied. In cases (e) and
(f), there is an element of moment of inertia Ie, about the common axis of rotation,
attached to one end of the shaft.
For each case of boundary conditions, determine the natural frequencies and mode shapes
of torsional vibration. In cases (e) and (f), show that the orthogonality property, in the
conventional form, is not satisfied, but the following modified orthogonality condition
governs:

6.11 A mounted drill can slide along its guidepost so as to engage the drill bit with a workpiece.
A schematic diagram is given in Figure P6.11(a). Suppose that the drill bit rotates at a
constant angular speed ω0 prior to engagement. At the instant of engagement, the power

FIGURE P6.9 A post mounted on a rigid floor and excited at the top by a shaker.
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is lost and the motor drive torque become zero. Assuming a large workpiece, the drill
bit can be assumed fixed at the engagement end, under these conditions, as represented
in Figure P6.11(b). Analyze the resulting torsional vibrations in the drill bit. The follow-
ing parameters are known:

Length of the drill bit = l
Moment of inertia of the drive rotor = Ir

The usual parameters G, ρ, J, and Jt of the drill bit.

6.12 A vibration engineer proceeds to estimate the shear modulus G of an unknown material.
She prepares a uniform shaft of circular cross section and length 50.0 cm of the material,
rigidly mounts one end on a heavy fixture, and leaves the other end free. She excites the
shaft and measures the fundamental natural frequency of torsion. It is found to be 1.6 kHz.
Also, the density of the material is measured to be 7.8 × 103 kg m–3.
a. Indicate a possible method of exciting the shaft and measuring the frequency in this

experiment.
b. Estimate the value of G.
c. Guess the material type.

6.13 A grinding tool is modeled as in Figure P6.13. The drive torque that is applied at one
end of the tool, through electromagnetic means, is given by T0 + Ta sinωt, where T0 is
a constant denoting the steady torque. There is a torque ripple of amplitude Ta and
frequency ω. The grinding process is represented by an energy dissipation as in a
viscous torsional damper with damping constant b. The tool cross section is circular
and has a polar moment of area J about its axis of rotation. The tool length is l, the
mass density is ρ, and the shear modulus is G. Determine the rotational motion θ(x,t)

FIGURE P6.10 Some boundary conditions for torsional vibration of shafts.
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of the tool at steady state, where x is measured from the driven end, along the tool
axis, as shown.

6.14 Consider the torsional guideway transit problem shown in Figure 6.8 and analyzed in
Example 6.5.
a. If the crossing frequency ratio vc is small compared to 1, give an expression for the

angle of twist θ(t) of the guideway at the kth vehicle suspension, when there are Nv

vehicle suspensions moving along the particular guideway span. Use only the first Nt

modes in the modal summation.
b. Neglecting the dynamics of the guideway, what is the angle of twist at a vehicle

suspension, when only that suspension is on the guideway span? What is its maximum
value θmax?

c. For a single suspension, determine an expression for , where θ is

the angle of twist obtained in (a), with Nt modes, when there is only one suspension

on the guideway span. Plot e versus the fractional vehicle location  for the five

cases of Nt = 1, 2, 3, 4, and 5. How many modes would be adequate for a “good”
approximation in the present application?

FIGURE P6.11 The problem of a failed drill.

FIGURE P6.13 Torsional vibration of a grinding tool.
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6.15 An AC induction motor drives a pump through a shaft. The free torsional vibration of
the system is to be analyzed. A schematic representation of this free system (i.e., with
zero motor torque) is shown in Figure P6.15. It is not necessary to assume a circular
cross section for the shaft. The usual parameters G, Jt, ρ, J, and l are known for the shaft.
Also, given are:

Im = moment of inertia of the motor rotor
Ip = moment of inertia of the pump impeller.

a. Neglecting bearing friction, formulate the problem and identify the boundary condi-
tions.

b. What are the modal boundary conditions?
c. Giving all the steps and the necessary equations, describe how the natural frequencies

and mode shapes of torsional vibration can be determined for this system.
d. If the shaft is massless, what are the natural frequencies of the system? Show how

these frequencies could be derived from the general solution given in (c), as the shaft
inertia approaches zero.

6.16 a. A beam in transverse vibration is represented by the equation

i. Define the parameters E, I, ρ, A, and the variables t, x, f, and v in this equation.
ii. What are the assumptions made in deriving this equation?

b. Prove that the mode shape functions Yi(x) of the beam in part (a) are orthogonal.
c. For a simply supported beam with uniform cross section, it can be shown that the

mode shape functions are given by:

Express the natural frequencies ωi corresponding to these modes, in terms of E, I, ρ,
A, l, and the mode number i.

6.17 a. Compare and contrast linear, lumped-parameter systems and distributed-parameter
systems, considering for example the nature of their
i.  equations of motion
ii.  natural frequencies
iii.  mode shapes.

FIGURE P6.15 A pump driven by an induction motor.
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What are possible practical problems that might arise when a distributed-parameter
system is approximated by a lumped-parameter system?

b. Consider the Bernoulli-Euler beam equation given by

i. Define all the parameters and variables in this equation.
ii. What are the assumptions made in deriving this equation?
iii.What are the analytical steps involved in solving for natural frequencies and mode

shapes of this system?
iv. What analytical steps could be followed in obtaining the response of the beam to

a specified forcing function f(x,t)?
v. Suppose that the beam is simply supported and a constant force F0 moves along

the beam at constant speed u0 from one end to the other. What is f(x,t) in this case?
6.18 What are the modal boundary conditions of a thin beam in transverse vibration, with the

end x = 0 fixed (clamped) and the other end x = l sliding?
Giving all the necessary steps, derive an equation for which the solutions provide the
natural frequencies of transverse vibration of this cantilever. What are the corresponding
mode shape functions? Give three different forms of these eigenfunctions.

6.19 For mode shapes of a thin and non-uniform beam in bending vibration, show that the
orthogonality condition

holds under common boundary conditions. The parameter EI represents flexural stiffness
of the beam.

6.20 One way of normalizing the mode shapes Yi(x) of a beam in transverse vibration is
according to

Note that the right-hand-side integral is equal to the beam mass. Determine the normal-
ized mode shape functions according to this approach for a simply supported beam of
uniform cross section.

6.21 A non-uniform beam is excited in the transverse direction by a distributed harmonic
force of

as sketched in Figure P6.21.
Determine the resulting transverse response v(x,t) of the beam for initial conditions
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What is the steady-state response, assuming very light damping?
Specialize your results to the case of a uniform simply supported beam.
Assume that the usual parameters E, I, ρ, A, and l of the beam are known.

6.22 Beams on elastic foundations are useful in many applications such as railroad tracks,
engine baseblocks and mounts, and seismic motions of structures. For a beam resting
on an elastic foundation, the following parameters are defined:

kf = foundation elastic modulus
= force per unit length of the beam that causes a unit deflection in the foundation

bf = foundation damping modulus
= force per unit length of the beam that causes a unit velocity in the foundation.

Indicate how the transverse vibration of a beam can be modified to include kf and bf.
A schematic diagram of the system is shown in Figure P6.22. For the undamped case
(bf = 0), explain how modal analysis could be performed for this system. In particular,
solve the case of a uniform, simply supported beam.

6.23 Consider a thin beam with a constant axial force P. Perform a modal analysis for
transverse vibration. For the special case of a uniform, simply supported beam (with the
usual parameters EI, ρ, A, l), obtain the complete solution giving all the natural frequen-
cies and mode shapes. Show that the natural frequencies increase due to the tensile force.

FIGURE P6.21 A beam excited by a transverse, distributed, harmonic force.

FIGURE P6.22 A beam on an elastic and dissipative foundation.
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a. Show that each natural frequency has two contributions: one for a beam without an
axial force and the other for a cable that cannot support a bending moment. In
particular, show that when P = 0, one gets the former component; and when the beam
cannot support a bending moment (i.e., EI = 0), one gets the latter component.

b. Show that the compressive force Pcr at which the fundamental natural frequency of
transverse vibration becomes zero is the first Euler buckling load for the beam.

6.24 Consider a non-uniform and thin beam in bending vibration. The left end of the beam
has a translatory-dynamic boundary condition consisting of a mass m, a spring of stiffness
k, and a linear viscous damper of damping constant b. The right end of the beam has a
rotatory-dynamic boundary condition consisting of a moment of inertia J, a spring of
torsional stiffness K, and a linear viscous damper with rotatory damping constant B.
A schematic representation of the system is given in Figure P6.24.
Assume that there are no translatory-dynamic effects (mass, translatory stiffness, trans-
latory damping) due to the rotatory dynamic element at the right-hand end (which is not
usually the case).
a. Express the boundary conditions of the beam.
b. For the undamped case (b = 0, B = 0), determine the modal boundary conditions.

6.25 Consider a circular shaft of length l, mass density ρ, shear modulus G, and polar moment
of area J(x) carrying a circular disk of moment of inertia I at the far end. Using the
energy variational approach, determine the equation of torsional vibration of the system,
including the boundary conditions for the case where the near end of the shaft is
a. fixed
b. free.
Now consider the modal analysis of a uniform circular shaft with its near end fixed and
the far end carrying a disk. The analysis was done in Problem 6.10(e). For the special
case of I = lρJ, determine the fundamental natural frequency (ω1) and the corresponding
normalized mode shape (Θ1(x)).

6.26 Using the energy variational approach, derive the terms that should be added to the
governing equation and boundary conditions of a circular shaft with an end disk, in
torsional vibration, as in Problem 6.25, for the following situations:
a. A distributed torque τ(x,t) per unit length along the shaft length
b. A point torque Te at x = l.
Consider a uniform circular shaft (ρ, l, G, J) with one end (x = 0) fixed and the other end
(x = l) carrying a circular disk of moment of inertia I. A harmonic point torque T0 sinωt
is applied to the disk at x = l. Determine the torsional response of the shaft at steady state.
A schematic diagram of the system is shown in Figure P6.26.
i. What are the critical excitation frequencies at which the steady-state response of the

system would become very high?
ii. What is the amplitude of the angular response of the end disk at steady state? 

FIGURE P6.24 A beam with translatory-dynamic and rotatory-dynamic boundary conditions.
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6.27 In thin beam theory of transverse vibration (Bernoulli-Euler beam), does the rotation of
a beam element vary in phase with the displacement?
In thick beam theory (Timoshenko beam), show that if one assumes that displacement
and rotation of a beam element are in phase, it will lead to erroneous results.

6.28 Perform a modal analysis for transverse vibration of a thin damped beam given by

for the two damping models  given by: 

a.

b.

In (a), determine the damped natural frequencies and modal damping ratios if the energy
dissipation in the beam material is represented by the hysteretic damping model:

6.29 Consider a single vehicle moving at constant speed p along a span of an elevated
guideway. Assume that the guideway is uniform with parameters EI and ρA; the span is
simply supported at the support piers; and the vehicle is a point suspension with constant
load W, inclusive of the vehicle weight. A schematic diagram is given in Figure P6.29.

FIGURE P6.26 A shaft with an end disk excited by a harmonic torque.

FIGURE P6.29 A vehicle on an elevated guideway.
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a. Determine the transverse motion of the guideway as the vehicle travels along the span.
b. What are the critical speeds that should be avoided by the vehicle?  
c. If initially the span is at rest, what is the deflection of the guideway just underneath

the vehicle, measured from the equilibrium configuration of the guideway?
6.30 An elevated guideway of a transit system consists of two-span single beam segments on

three support piers, as shown in Figure P6.30. The span lengths are equal at l, and the
ends of each two-span beam are simply supported. In order to determine the guideway
response to vehicles moving on it, first the natural frequencies and mode shapes of each
guideway beam must be determined. Clearly state the steps that need to be carried out
in accomplishing this, giving the equations that need to be solved, along with appropriate
boundary conditions. Assume that the piers do not receive bending moments from the
guideway and that the guideway is always attached to the piers.  

FIGURE P6.30 A single-beam, two-span elevated guideway segment.
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7 Damping
Damping is the phenomenon by which mechanical energy is dissipated (usually converted into
internal thermal energy) in dynamic systems. A knowledge of the level of damping in a dynamic
system is important in utilization, analysis, and testing of the system. For example, a device having
natural frequencies within the seismic range (i.e., less than 33 Hz) and having relatively low
damping, could produce damaging motions under resonant conditions when subjected to a seismic
disturbance. Also, the device motions could be further magnified by low-frequency support struc-
tures and panels having low damping. This illustrates that a knowledge of damping in constituent
devices, components, and support structures is particularly useful in the design and operation of a
complex mechanical system. The nature and the level of component damping should be known in
order to develop a dynamic model of the system and its peripherals. A knowledge of damping in
a system is also important in imposing dynamic environmental limitations on the system (i.e., the
maximum dynamic excitation the system could withstand) under in-service conditions. Further-
more, a knowledge of its damping could be useful in order to make design modifications in a
system that has failed the acceptance test. The significance of knowledge of damping level in a
test object, for the development of test excitation (input), is often overemphasized, however.
Specifically, if the response-spectrum method is used to represent the required excitation in a
vibration test, it is not necessary that the damping value used in the development of the required
response spectrum specification be equal to actual damping in the test object. It is only necessary
that the damping used in the specified response spectrum be equal to that used in the test-response
spectrum (see Chapter 10). The degree of dynamic interaction between test object and shaker table,
however, will depend on the actual level of damping in these systems. Furthermore, when testing
near the resonant frequency of a test object, it is desirable to have a knowledge of damping in the
test object, because it is in this neighborhood that the object response is most sensitive to damping.

In characterizing damping in a dynamic system, it is important, first, to understand the major
mechanisms associated with mechanical-energy dissipation in the system. Then, a suitable damping
model should be chosen to represent the associated energy dissipation. Finally, damping values
(model parameters) are determined, for example, by testing the system or a representative physical
model, by monitoring system response under transient conditions during normal operation, or by
employing already available data.

7.1 TYPES OF DAMPING

There is some form of mechanical-energy dissipation in any dynamic system. In the modeling of
systems, damping can be neglected if the mechanical energy that is dissipated during the time
duration of interest is small in comparison to the initial total mechanical energy of excitation in
the system. Even for highly damped systems, it is useful to perform an analysis with the damping
terms neglected, in order to study several crucial dynamic characteristics; for example, modal
characteristics (undamped natural frequencies and mode shapes).

Several types of damping are inherently present in a mechanical system. If the level of damping
that is available in this manner is not adequate for proper functioning of the system, external
damping devices can be added either during the original design or in a subsequent stage of design
modification of the system. Three primary mechanisms of damping are important in the study of
mechanical systems. They are:
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1. Internal damping (of material)
2. Structural damping (at joints and interfaces)
3. Fluid damping (through fluid-structure interactions).

Internal (material) damping results from mechanical-energy dissipation within the material due to
various microscopic and macroscopic processes. Structural damping is caused by mechanical-
energy dissipation resulting from relative motions between components in a mechanical structure
that has common points of contact, joints, or supports. Fluid damping arises from the mechanical-
energy dissipation resulting from drag forces and associated dynamic interactions when a mechan-
ical system or its components move in a fluid.

Two general types of external dampers can be added to a mechanical system in order to improve
its energy dissipation characteristics. They are

1. passive dampers
2. active dampers.

A passive damper is a device that dissipates energy through some motion, without needing an
external power source or actuator. Active dampers have actuators that need external sources of
power. They operate by actively controlling the motion of the system that needs damping. Dampers
may be considered as vibration controllers (see Chapter 12). The present chapter emphasizes
damping that is inherently present in a mechanical system.

7.1.1 MATERIAL (INTERNAL) DAMPING

Internal damping of materials originates from the energy dissipation associated with microstructure
defects, such as grain boundaries and impurities; thermoelastic effects caused by local temperature
gradients resulting from non-uniform stresses, as in vibrating beams; eddy-current effects in fer-
romagnetic materials; dislocation motion in metals; and chain motion in polymers. Several models
have been employed to represent energy dissipation caused by internal damping. This variability
is primarily a result of the vast range of engineering materials; no single model can satisfactorily
represent the internal damping characteristics of all materials. Nevertheless, two general types of
internal damping can be identified: viscoelastic damping and hysteretic damping. The latter term
is actually a misnomer, because all types of internal damping are associated with hysteresis-loop
effects. The stress (σ) and strain (ε) relations at a point in a vibrating continuum possess a hysteresis
loop, such as the one shown in Figure 7.1. The area of the hysteresis loop gives the energy dissipation
per unit volume of the material, per stress cycle. This is termed per-unit-volume damping capacity,
and is denoted by d. It is clear that d is given by the cyclic integral

(7.1)

In fact, for any damped device, there is a corresponding hysteresis loop in the displacement-force
plane as well. In this case, the cyclic integral of force with respect to the displacement, which is
the area of the hysteresis loop, is equal to the work done against the damping force. It follows that
this integral (loop area) is the energy dissipated per cycle of motion. This is the damping capacity,
which, when divided by the material volume, gives the per-unit-volume damping capacity as before.

It should be clear that, unlike a pure elastic force (e.g., spring force), a damping force cannot
be a function of displacement (q) alone. The reason is straightforward. Consider a force f(q) that
depends on q alone. Then, for a particular displacement point q of the component, the force will
be the same regardless of the magnitude and direction of motion (i.e., the value and sign of ).

d d= ∫ σ ε

q̇
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It follows that, in a loading and unloading cycle, the same path will be followed in both directions
of motion. Hence, a hysteresis loop will not be formed. In other words, the net work done in a
complete cycle of motion will be zero. Next consider a force f(q, ) that depends on both q and

. Then, at a given displacement point q, the force will depend on , as well. Hence, even at low
speeds, force in one direction of motion can be significantly different from that in the opposite
direction. As a result, a hysteresis loop will be formed, which corresponds to work done against
the damping force (i.e., energy dissipation). One can conclude then that damping force has to
depend on a relative velocity  in some manner. In particular, Coulomb friction, which does not
depend on the magnitude of , does depend on the sign (direction) of .

Viscoelastic Damping

For a linear viscoelastic material, the stress-strain relationship is given by a linear differential
equation with respect to time, having constant coefficients. A commonly employed relationship is

(7.2)

which is known as the Kelvin-Voigt model. In equation (7.2), E is Young’s modulus and E* is a
viscoelastic parameter that is assumed to be time independent. The elastic term Eε does not
contribute to damping, and, as noted before, mathematically, its cyclic integral vanishes. Conse-
quently, for the Kelvin-Voigt model, damping capacity per unit volume is

(7.3)

For a material that is subjected to a harmonic (sinusoidal) excitation, at steady state, one obtains

(7.4)

FIGURE 7.1 A typical hysteresis loop for mechanical damping.
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When equation (7.4) is substituted in equation (7.3), one obtains

(7.5)

Now, ε = εmax when t = 0 in equation (7.4), or when . The corresponding stress, according

to equation (7.2), is σmax = Eεmax. It follows that

(7.6)

These expressions for dv depend on the frequency of excitation, ω.
Apart from the Kelvin-Voigt model, two other models of viscoelastic damping are also com-

monly used. They are, the Maxwell model given by

(7.7)

and the standard linear solid model given by

(7.8)

It is clear that the standard linear solid model represents a combination of the Kelvin-Voigt model
and the Maxwell model, and is the most accurate of the three. But, for most practical purposes,
the Kelvin-Voigt model is adequate.

Hysteretic Damping

It was noted that the stress, and hence the internal damping force, of a viscoelastic damping material
depend on the frequency of variation of the strain (and consequently on the frequency of motion).
For some types of material, it has been observed that the damping force does not significantly
depend on the frequency of oscillation of strain (or frequency of harmonic motion). This type of
internal damping is known as hysteretic damping.

Damping capacity per unit volume (dh) for hysteretic damping is also independent of the
frequency of motion and can be represented by

(7.9)

As clear from equation (7.6), a simple model that satisfies equation (7.9), for the case of n = 2, is
given by

(7.10)

which is equivalent to using a viscoelastic parameter E* that depends on the frequency of motion
in equation (7.2) according to E* = /ω. Consider the case of harmonic motion at frequency ω,
with the material strain given by

d Ev = πω ε*
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d

dt
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(7.11)

Then, equation (7.10) becomes

(7.12)

Note that the material stress consists of two components, as given by the right-hand side of equation
(7.12). The first component corresponds to the linear elastic behavior of a material and is in phase
with the strain. The second component of stress, which corresponds to hysteretic damping, is 90°
out of phase (this stress component leads the strain by 90°). A convenient mathematical represen-
tation would be possible, by using the usual complex form of the response according to

(7.13)

Then, equation (7.10) becomes

(7.14)

It follows that this form of simplified hysteretic damping can be represented using a complex
modulus of elasticity, consisting of a real part that corresponds to the usual linear elastic (energy
storage) modulus (or Young’s modulus) and an imaginary part that corresponds to the hysteretic
loss (energy dissipation) modulus.

By combining equations (7.2) and (7.10), a simple model for combined viscoelastic and
hysteretic damping can be given by

(7.15)

in which the parameters  are independent of the frequency ω.
The equation of motion for a system for which the damping is represented by equation (7.15)

can be deduced from the pure elastic equation of motion by simply substituting E with the operator

in the time domain.

Example 7.1

Determine the equation of flexural motion of a non-uniform slender beam whose material has both
viscoelastic and hysteretic damping.

Solution

The Bernoulli-Euler equation of bending motion of an undamped beam subjected to a dynamic
load of f(x,t) per unit length is given by (see Chapter 6):
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(7.16)

Here, q is the transverse motion at a distance x along the beam. Then, for a beam with material
damping (both viscoelastic and hysteretic), one can write,

(7.17)

in which ω is the frequency of the external excitation f(x,t) in the case of steady forced vibrations.
In the case of free vibration, however, ω represents the frequency of free-vibration decay. Conse-
quently, when analyzing the modal decay of free vibrations, ω in equation (7.17) should be replaced
by the appropriate frequency (ωi) of modal vibration in each modal equation. Here, the resulting
damped vibratory system possesses the same normal mode shapes as the undamped system. The
analysis of the damped case is very similar to that for the undamped system, as noted in Chapter 6.

�

7.1.2 STRUCTURAL DAMPING

Structural damping is a result of the mechanical-energy dissipation caused by rubbing friction
resulting from relative motion between components and by impacting or intermittent contact at the
joints in a mechanical system or structure. Energy-dissipation behavior depends on the details of
the particular mechanical system in this case. Consequently, it is extremely difficult to develop a
generalized analytical model that would satisfactorily describe structural damping. Energy dissi-
pation caused by rubbing is usually represented by a Coulomb-friction model. Energy dissipation
caused by impacting, however, should be determined from the coefficient of restitution of the two
members that are in contact.

The common method of estimating structural damping is by measurement. The measured values,
however, represent the overall damping in the mechanical system. The structural damping compo-
nent is obtained by subtracting the values corresponding to other types of damping, such as material
damping present in the system (estimated by environment-controlled experiments, previous data,
etc.), from the overall damping value.

Usually, internal damping is negligible compared to structural damping. A large portion of
mechanical-energy dissipation in tall buildings, bridges, vehicle guideways, and many other civil
engineering structures, and in machinery such as robots and vehicles takes place through the
structural-damping mechanism. A major form of structural damping is the slip damping that results
from the energy dissipation by interface shear at a structural joint. The degree of slip damping that
is directly caused by Coulomb (dry) friction depends on such factors as joint forces (e.g., bolt
tensions), surface properties, and the nature of the materials of the mating surfaces. This is associated
with wear, corrosion, and general deterioration of the structural joint. In this sense, slip damping
is time dependent. It is common practice to place damping layers at joints, to reduce undesirable
deterioration of the joints. Sliding will cause shear distortions in the damping layers, causing energy
dissipation by material damping and also through Coulomb friction. In this way, a high level of
equivalent structural damping can be maintained without causing excessive joint deterioration.
These damping layers should have a high stiffness (as well as a high specific-damping capacity)
in order to take the structural loads at the joint.

For structural damping at a joint, the damping force varies as slip occurs at the joint. This is
primarily caused by local deformations at the joint, which occur with slipping. A typical hysteresis
loop for this case is shown in Figure 7.2(a). The arrows on the hysteresis loop indicate the direction
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of relative velocity. For idealized Coulomb friction, the frictional force (F) remains constant in
each direction of relative motion. An idealized hysteresis loop for structural Coulomb damping is
shown in Figure 7.2(b). The corresponding constitutive relation is

(7.18)

in which f is the damping force, q is the relative displacement at the joint, and c is a friction
parameter. A simplified model for structural damping caused by local deformation can be given by

(7.19)

FIGURE 7.2 Some representative hysteresis loops: (a) typical structural damping; (b) Coulomb friction
model; and (c) simplified structural damping model.

f c q= ( )sgn ˙

f c q q= ( )sgn ˙
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The corresponding hysteresis loop is shown in Figure 7.2(c). Note that the signum function is
defined by

(7.20)

7.1.3 FLUID DAMPING

Consider a mechanical component moving in a fluid medium. The direction of relative motion is
shown parallel to the y-axis in Figure 7.3. Local displacement of the element relative to the
surrounding fluid is denoted by q(x,z,t). The resulting drag force per unit area of projection on the
x-z plane is denoted by fd. This resistance is the cause of mechanical-energy dissipation in fluid
damping. It is usually expressed as

(7.21)

in which  = ∂q(x,z,t)/∂t is the relative velocity. The drag coefficient cd is a function of the Reynold’s
number and the geometry of the structural cross section. Net damping effect is generated by viscous
drag produced by the boundary-layer effects at the fluid–structure interface, and by pressure drag
produced by the turbulent effects resulting from flow separation at the wake. The two effects are
illustrated in Figure 7.4. Fluid density is ρ. For fluid damping, the damping capacity per unit volume
associated with the configuration shown in Figure 7.3 is given by

FIGURE 7.3 A body moving in a fluid medium.

FIGURE 7.4 Mechanics of fluid damping.
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(7.22)

in which, Lx and Lz are cross-sectional dimensions of the element in the x and y directions,
respectively, and q0 is a normalizing amplitude parameter for relative displacement.

Example 7.2

Consider a beam of length L and uniform rectangular cross section, that is undergoing transverse
vibration in a stationary fluid. Determine an expression for the damping capacity per unit volume
for this fluid–structure interaction.

Solution

Suppose that the beam axis is along the x-direction and the transverse motion is in the y-direction.
There is no variation in the z-direction, and hence, the length parameters in this direction cancel
out. Thus,

or

(7.23)

in which T is the period of the oscillations. Assuming constant cd, substitute equation (7.21) into
equation (7.23):

(7.24)

For steady-excited harmonic vibration of the beam at frequency ω and shape function Q(x) (or for
free-modal vibration at natural frequency ω and mode shape Q(x)), one has

(7.25)

In this case, with the change of variable θ = ωt, equation (7.24) becomes
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or

Note: The integration interval of t = 0 to T becomes θ = 0 to 2π or four times that from θ = 0 to π/2.
If the normalizing parameter is defined as

then one obtains

(7.26)

�

A useful classification of damping is given in Box 7.1.

 BOX 7.1 Damping Classification

Type of Damping Origin Typical Constitutive Relation

Internal damping Material properties Viscoelastic:

Hysteretic:

Structural damping Structural joints and interfaces Structural deformation:

Coulomb:

General interface:

Fluid damping Fluid-structure interactions
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7.2 REPRESENTATION OF DAMPING IN VIBRATION ANALYSIS

It is not practical to incorporate detailed microscopic representations of damping in the dynamic
analysis of systems. Instead, simplified models of damping that are representative of various types
of energy dissipation are typically used. Consider a general n-degree-of-freedom mechanical sys-
tem. Its motion can be represented by the vector x of n generalized coordinates xi, representing the
independent motions of the inertia elements. For small displacements, linear spring elements can
be assumed. As seen in Chapter 5, the corresponding equations of motion can be expressed in the
vector-matrix form:

(7.27)

in which M is the mass (inertia) matrix and K is the stiffness matrix. The forcing-function vector
is f(t). The damping-force vector d(x, ) is generally a nonlinear function of x and . The type of
damping used in the system model can be represented by the nature of d that is employed in the
system equations. Several possibilities of damping models that can be used, as discussed in the
previous section, are listed in Table 7.1. Only the linear viscous damping term given in Table 7.1
is amenable to simplified mathematical analysis. In simplified dynamic models, other types of
damping terms are usually replaced by an equivalent viscous damping term. Equivalent viscous
damping is chosen so that its energy dissipation per cycle of oscillation is equal to that for the
original damping. The resulting equations of motion are expressed by

(7.28)

It was seen in Chapter 5 that in modal analysis of vibratory systems it is the proportional damping
model, where the damping matrix satisfies

(7.29)

TABLE 7.1
Some Common Damping Models Used 
in Dynamic System Equations

Damping Type Simplified Model di

Viscous

Hysteretic

Structural

Structural Coulomb

Fluid
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that is commonly used. The first term on the right-hand side of equation (7.29) is known as the
inertial damping matrix. The corresponding damping force on each concentrated mass is propor-
tional to its momentum. It represents the energy loss associated with change in momentum (e.g.,
during an impact). The second term is known as the stiffness damping matrix. The corresponding
damping force is proportional to the rate of change of the local deformation forces at joints near
the concentrated mass elements. Consequently, it represents a simplified form of linear structural
damping. If damping is of the proportional type, it follows that the damped motion can be uncoupled
into individual modes. This means that, if the damping model is of the proportional type, the
damped system (as well as the undamped system) will possess real modes.

7.2.1 EQUIVALENT VISCOUS DAMPING

Consider a linear, single-degree-of-freedom system with viscous damping, subjected to an external
excitation. The equation of motion, for a unit mass, is given by

(7.30)

If the excitation force is harmonic, with frequency ω, one has

(7.31)

Then, as discussed in Chapter 3, the response of the system at steady state is given by

(7.32)

in which the response amplitude is

(7.33)

and the response phase lead is

(7.34)

The energy dissipation (i.e., damping capacity) ∆U per unit mass, in one cycle, is given by the net
work done by the damping force fd ; thus,

(7.35)

Since the viscous damping force, normalized with respect to mass (see equation (7.30)), is given by

(7.36)
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the damping capacity ∆Uv, for viscous damping, can be obtained as

(7.37)

Finally, by using equation (7.32) in (7.37), one obtains

(7.38)

For any general type of damping (see Table 7.1), the equation of motion becomes 

(7.39)

The energy dissipation per unit mass in one cycle [equation (7.35)] is given by

(7.40)

Various damping force expressions d(x, ), normalized with respect to mass, are given in Table 7.2.
For fluid damping, for example, the damping capacity is

(7.41)

By substituting equation (7.32) in equation (7.41), for steady, harmonic motion, one obtains

TABLE 7.2
Equivalent Damping-Ratio Expressions for Some Common Types 
of Damping

Damping Type
Damping Force d(x, )

per Unit Mass Equivalent Damping Ratio ζeq

Viscous ζ

Hysteretic

Structural

Structural Coulomb

Fluid
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(7.42)

By comparing equation (7.42) with equation (7.38), the equivalent damping ratio for fluid damping
is obtained as

(7.43)

in which x0 is the amplitude of steady-state vibrations, as given by equation (7.33). For other types
of damping that are listed in Table 7.1, expressions for the equivalent damping ratio can be obtained
in a similar manner. The corresponding equivalent damping-ratio expressions are give in Table 7.2.
It should be noted that, for non-viscous damping types, ζ is generally a function of the frequency
of oscillation ω and the amplitude of excitation u0. Also note that the expressions given in Table
7.2 are derived assuming harmonic excitation. Engineering judgment should be exercised when
employing these expressions for non-harmonic excitations.

For multi-degree-of-freedom systems that incorporate proportional damping, the equations of
motion can be transformed into a set of one-degree-of-freedom equations (modal equations) of the
type given by equation (7.30). In this case, damping ratio and natural frequency correspond to the
respective modal values, and in particular, ω = ωn.

7.2.2 COMPLEX STIFFNESS

Consider a linear spring of stiffness k connected in parallel with a linear viscous damper of damping
constant c, as shown in Figure 7.5(a). Suppose that a force f is applied to the system, moving it
through distance x from the relaxed position of the spring. Then,

(7.44)

Also suppose that the motion is harmonic, given by

(7.45)

It is clear that the spring force kx is in phase with the displacement, but the damping force c  has
a 90° phase lead with respect to the displacement. This is because the velocity  = –x0ωsinωt =

 has a 90° phase lead with respect to x. Specifically,

(7.46)

This same fact can be represented using complex numbers where the in-phase component is
considered as the real part and the 90° phase-lead component is considered as the imaginary part,
each component oscillating at the same frequency ω. Then, one can write equation (7.46) in the
equivalent form

(7.47)

This is exactly what is obtained by starting with the complex representation of the displacement
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(7.48)

and substituting it in equation (7.44). Note that equation (7.47) can be written as

(7.49)

where k* is a “complex” stiffness, given by 

(7.50)

Clearly, the system itself and its two components (spring and damper) are real. Their individual
forces are also real. The complex stiffness is simply a mathematical representation of the two force
components (spring force and damping force), which are 90° out of phase, when subjected to
harmonic motion. It follows that a linear damping element can be “mathematically” represented
by an “imaginary” stiffness. In the case of viscous damping, this imaginary stiffness (and, hence,
the damping force magnitude) increases linearly with the frequency ω of the harmonic motion.
The concept of complex stiffness that is used when dealing with discrete dampers is analogous to
the use of complex elastic modulus in material damping, as discussed earlier in this chapter.

It has been noted that, for hysteretic damping, the damping force (or damping stress) is
independent of the frequency in harmonic motion. It follows that a hysteretic damper can be
represented by an equivalent damping constant of

(7.51)

which is valid for a harmonic motion (e.g., modal motion or forced motion) of frequency ω. This
situation is shown in Figure 7.5(b). It is seen that the corresponding complex stiffness is

(7.52)

FIGURE 7.5 Spring element in parallel with: (a) viscous damper, and (b) hysteretic damper.
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Example 7.3

A flexible system consists of a mass m attached to the hysteretic-damper-and-spring combination
shown in Figure 7.5(b). What is the frequency response function of the system, relating an excitation
force f applied to the mass and the resulting displacement response x? Obtain the resonant frequency
of the system. Compare the results with the case of viscous damping.

Solution

For a harmonic motion of frequency ω, the equation of motion of the system is

(7.53)

with a forcing excitation of f = f0ejωt and the resulting steady-state response x = x0ejωt, where x0 has
a phase difference (i.e., it is a complex function) with respect to f0. Then, in the frequency domain,
substituting the harmonic response x = x0ejωt into equation (7.53), one obtains

resulting in the frequency transfer function

(7.54)

Note that, as usual, this result is obtained simply by substituting jω for . The magnitude of

transfer function is maximum at resonance. This corresponds to the minimum value of

Set . One then obtains

Hence, the resonant frequency corresponds to the root of

This gives the resonant frequency

(7.55)

Note that, in the case of hysteretic damping, the resonant frequency is equal to the undamped
natural frequency ωn and, unlike in the case of viscous damping (see Chapter 3), does not depend
on the level of damping itself.

For convenience, consider the system response as the spring force
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(7.56)

rather than the displacement (x) itself. Then, a normalized transfer function is obtained, as given by  

(7.57)

or

(7.58)

where

(7.59)

FIGURE 7.6 Frequency transfer function of a simple oscillator with hysteretic damping.
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which are the normalized frequency and the normalized hysteretic damping coefficient, respectively.
The magnitude of the transfer function is

(7.60)

and the phase angle (phase lead) is

(7.61)

These results are sketched in Figure 7.6.

�

7.2.3 LOSS FACTOR

We define damping capacity of a device (damper) as the energy dissipated in a complete cycle of
motion; specifically,

(7.62)

This is given by the area of the hysteresis loop in the displacement-force plane. If the initial (total)
energy of the system is denoted by Umax, the specific damping capacity D is given by the ratio

(7.63)

The loss factor η is the specific damping capacity per radian of the damping cycle. Hence,

(7.64)

Note that Umax is approximately equal to the maximum kinetic energy and also to the maximum
potential energy of the device, when the damping is low.

Equation (7.38) gives the damping capacity per unit mass of a device with viscous damping as

(7.65)

Here, x0 is the amplitude and ω is the frequency of harmonic motion of the device, ωn is the
undamped natural frequency and ζ is the damping ratio. Also, the maximum potential energy per
unit mass of the system is

(7.66)

f

f r

s =
−( ) +2

1

1 2α

∠ = −
−( )

−f f
rs tan 1

21

α

∆U f dxd= ∫

D
U

U
= ∆

max

η
π

= ∆U

U2 max

∆U x n= 2 0
2π ω ωζ

U
k

m
x xnmax = =1

2
1
20

2 2
0
2ω
©2000 CRC Press

http://www.semeng.ir


www.20file.org
Hence, from equation (7.64), the loss factor for a viscous-damped simple oscillator is given by

(7.67)

For free decay of the system, ω = ωd ≅  ωn, where the latter approximation holds for low damping.
For forced oscillation, the worst response conditions occur when ω = ωr ≅  ωn, which is what one
must consider with regard to energy dissipation. In either case, the loss factor is approximately
given by

(7.68)

For other types of damping, equation (7.68) will still hold when the equivalent damping ratio ζeq

(see Table 7.2) is used in place of ζ.
The loss factors of some common materials are given in Table 7.3. Definitions of useful damping

parameters, as defined here, are summarized in Table 7.4.  

TABLE 7.3
Loss Factors of Some Useful Materials

Material Loss Factor η ≅  2ζ

Aluminum 2 × 10–5 to 2 × 10–3

Concrete 0.02 to 0.06
Glass 0.001 to 0.002
Rubber 0.1 to 1.0
Steel 0.002 to 0.01
Wood 0.005 to 0.01

TABLE 7.4
Definitions of Damping Parameters

Parameter Definition
Mathematical

Formula

Damping capacity (∆U) Energy dissipated per cycle of motion
(area of displacement-force hysteresis loop)

Damping capacity per volume (d) Energy dissipated per cycle per unit material volume
(area of strain-stress hysteresis loop)

Specific damping capacity (D) Ratio of energy dissipated per cycle (∆U)
to the initial maximum energy (Umax)

Note: For low damping, Umax = max. potential
energy = max. kinetic energy

Loss factor (η) Specific damping capacity per unit angle of cycle.
Note: For low damping, η = 2× damping ratio.
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7.3 MEASUREMENT OF DAMPING

Damping can be represented by various parameters (such as specific damping capacity, loss factor,
Q-factor, and damping ratio) and models (such as viscous, hysteretic, structural, and fluid). Before
attempting to measure damping in a system, one should decide on a representation (model) that
will adequately characterize the nature of mechanical-energy dissipation in the system. Next, one
should decide on the parameter (or parameters) of the model that need to be measured.

It is extremely difficult to develop a realistic yet tractable model for damping in a complex
piece of equipment operating under various conditions of mechanical interaction. Even if a satis-
factory damping model is developed, experimental determination of its parameters could be tedious.
A major difficulty arises because it usually is not possible to isolate various types of damping (e.g.,
material, structural, and fluid) from an overall measurement. Furthermore, damping measurements
must be conducted under actual operating conditions for them to be realistic.  

If one type of damping (e.g., fluid damping) is eliminated during the actual measurement, it
would not represent true operating conditions. This would also eliminate possible interacting effects
of the eliminated damping type with the other types. In particular, overall damping in a system is
not generally equal to the sum of individual damping values when they are acting independently.
Another limitation of computing equivalent damping values using experimental data arises because
it is assumed, for analytical simplicity, that the dynamic system behavior is linear. If the system is
highly nonlinear, a significant error could be introduced into the damping estimate. Nevertheless,
it is customary to assume linear viscous behavior when estimating damping parameters using
experimental data.

There are two general ways by which damping measurements can be made: time-response
methods and frequency-response methods. The basic difference between the two types of measure-
ments is that the first type uses a time-response record of the system to estimate damping, whereas
the second type uses a frequency-response record (see Chapters 2 and 3).

7.3.1 LOGARITHMIC DECREMENT METHOD

This is perhaps the most popular time-response method used to measure damping. When a single-
degree-of-freedom oscillatory system with viscous damping [see equation (7.30)] is excited by an
impulse input (or an initial condition excitation), its response takes the form of a time decay (see
Figure 7.7), given by

(7.69)

FIGURE 7.7 Impulse response of a simple oscillator.
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in which the damped natural frequency is given by

(7.70)

If the response at t = ti is denoted by yi, and the response at  is denoted by yi+r, then,
from equation (7.69):

(7.71a)

In particular, suppose that yi corresponds to a peak point in the time decay, having magnitude Ai,
and yi+r corresponds to the peak-point r cycles later in the time history, and its magnitude is denoted
by Ai+r (see Figure 7.7). Although the above equation holds for any pair of points that are r periods
apart in the time history, the peak points seem to be the appropriate choice for measurement in the
present procedure, as these values would be more prominent than any arbitrary points in a response
time history. Then,

(7.71b)

where equation (7.70) has been used. Then, the logarithmic decrement δ (per unit cycle) is given by

(7.71)

or, the damping ratio can be expressed as

(7.72)

For low damping (typically, ζ < 0.1), ωd ≅  ωn, and equation (7.71b) becomes

(7.73)

or

(7.74)

This is, in fact, the “per-radian” logarithmic decrement.
The damping ratio can be estimated from a free-decay record using equation (7.74). Specifically,

the ratio of the extreme amplitudes in prominent r cycles of decay is determined and substituted
into equation (7.74) to get the equivalent damping ratio. Alternatively, if n cycles of damped
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oscillation are needed for the amplitude to decay by a factor of two, for example, then, from
equation (7.74), one obtains

(7.75)

For slow decays (low damping) the logarithmic decay in one cycle may be approximated by:

(7.76)

Then, from equation (7.74), one obtains

(7.77)

Any one of the equations (7.72), (7.74), (7.75), and (7.77) can be employed in computing ζ from
test data. It should be cautioned that the results assume single-degree-of-freedom system behavior.
For multi-degree-of-freedom systems, the modal damping ratio for each mode can be determined
using this method if the initial excitation is such that the decay takes place primarily in one mode
of vibration. In other words, substantial modal separation and the presence of “real” modes (not
“complex” modes with non-proportional damping) are assumed.

7.3.2 STEP-RESPONSE METHOD

This is also a time-response method. If a unit-step excitation is applied to the single-degree-of-
freedom oscillatory system given by equation (7.30), its time response is given by

FIGURE 7.8 A typical step response of a simple oscillator.
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(7.78)

in which φ = cosζ. A typical step-response curve is shown in Figure 7.8. The time at the first peak
(peak time), Tp, is given by

(7.79)

The response at peak time (peak value), Mp, is given by

(7.80)

The percentage overshoot, PO, is given by,

(7.81)

It follows that, if any one parameter of Tp, Mp, or PO is known from a step-response record,
the corresponding damping ratio ζ can be computed using the appropriate relationship from the
following:

(7.82)

(7.83)

(7.84)

It should be noted that, when determining Mp, the response curve should be normalized to unit
steady-state value. Furthermore, the results are valid only for single-degree-of freedom systems
and modal excitations in multi-degree-of-freedom systems.

7.3.3 HYSTERESIS LOOP METHOD

For a damped system, the force versus displacement cycle produces a hysteresis loop. Depending
on the inertial and elastic characteristics and other conservative loading conditions (e.g., gravity)
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in the system, the shape of the hysteresis loop will change; but the work done by conservative
forces (e.g., intertial, elastic, and gravitational) in a complete cycle of motion will be zero. Con-
sequently, the net work done will be equal to the energy dissipated due to damping only. Accord-
ingly, the area of the displacement-force hysteresis loop will give the damping capacity ∆U (see
equation (7.62)). Also, the maximum energy in the system can be determined from the displacement-
force curve. Then, the loss factor η can be computed using equation (7.64), and the damping ratio
from equation (7.68). This approach of damping measurement can also be considered basically as
a time domain method.

Note that equation (7.65) is the work done against (i.e., energy dissipation in) a single
loading–unloading cycle, per unit mass. It should be recalled that 2ζωn = c/m, where, c = viscous
damping constant, and m = mass. Accordingly, from equation (7.65), the energy dissipation per
unit mass, and per hystereris loop, is . Hence, without normalizing with respect to
mass, the energy dissipation per hysteresis loop of viscous damping is

(7.85)

Equation (7.85) can be derived directly by performing the cyclic integration indicated in equation
(7.62), with the damping force , harmonic motion x = x0ejωt, and the integration interval t
= 0 to 2π.

Similarly, in view of equation (7.51), the energy dissipation per hysteresis loop of hysteretic
damping is

(7.86)

Now, since the initial maximum energy can be represented by the initial maximum potential energy,
one obtains

(7.87)

Note that the stiffness k can be measured as the average slope of the displacement-force hysteresis
loop measured at low speed. Hence, in view of equation (7.64), the loss factor for hysteretic damping
is given by

(7.88)

Then, from equation (7.68), the equivalent damping ratio for hysteretic damping is

(7.89)

Example 7.4

A damping material was tested by applying a low-speed loading cycle of –900 N to +900 N and
back to –900 N, on a thin bar made of the material, and measuring the corresponding deflection.
The smoothed load vs. deflection curve that was obtained in this experiment is shown in Figure
7.9. Assuming that the damping is predominantly of the hysteretic type, estimate

a. the hysteretic damping constant
b. the equivalent damping ratio.
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Solution

Approximating the top and the bottom segments of the hysteresis loop by triangles, one can estimate
the area of the loop as

Alternatively, one can obtain this result by counting the squares within the hysteresis loop. The
deflection amplitude is ,

Hence, from equation (7.86),

The stiffness of the damping element is estimated as the average slope of the hysteresis loop; thus,

FIGURE 7.9 An experimental hysteresis loop of a damping material.

∆Uh = × × × ⋅2
1
2

2 5 900.  N mm

x0 9 0= .  mm

h =
× × ×

×
=− −

2
1
2

2 5 900

9 0
8 82

1 1
.

.
.

π
 N mm  N mm

k =
600
4.5

 N mm  N mm− −=1 1133 3.
©2000 CRC Press

http://www.semeng.ir


www.20file.org
Hence, from equation (7.89), the equivalent damping ratio is

�

7.3.4 MAGNIFICATION-FACTOR METHOD

This is a frequency-response method. Consider the single-degree-of-freedom oscillatory system
with viscous damping. The magnitude of its frequency-response function is

(7.90)

A plot of this expression with respect to ω, the frequency of excitation, is given in Figure 7.10.
The peak value of magnitude occurs when the denominator of the expression is minimum. This
corresponds to 

(7.91)

The resulting solution for ω is termed the resonant frequency ωr (see Chapter 3):

(7.92)

FIGURE 7.10 The magnification factor method of damping measurement applied to a single-degree-of-
freedom system.
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It is noted that ωr < ωd (see equation (7.70)), but for low damping (ζ < 0.1), the values of ωn, ωd,
and ωr, are nearly equal. The amplification factor Q, which is the magnitude of the frequency-
response function at resonant frequency, is obtained by substituting equation (7.92) in equation
(7.90):

(7.93)

For low damping (ζ < 0.1),

(7.94)

In fact, equation (7.94) corresponds to the magnitude of the frequency-response function at ω = ωn.
It follows that, if the magnitude curve of the frequency-response function (or a Bode plot) is

available, then the system damping ratio ζ can be estimated using equation (7.94). In using this
method, it should be remembered to normalize the frequency-response curve so that its magnitude
at zero frequency (termed static gain) is unity.

For a multi-degree-of-freedom system, modal damping values can be estimated from the
magnitude Bode plot of its frequency-response function, provided that the modal frequencies are
not too closely spaced and the system is lightly damped. Consider the logarithmic (base 10)
magnitude plot shown in Figure 7.11. The magnitude is expressed in decibels (dB), which is done
by multiplying the log10 (magnitude) by the factor 20. At the ith resonant frequency ωi, the
amplification factor qi (in dB) is obtained by drawing an asymptote to the preceding segment of
the curve and measuring the peak value from the asymptote. Then,

(7.95)

and the modal damping ratio

(7.96)

FIGURE 7.11 Magnification factor method applied to a multi-degree-of-freedom system.
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If the significant resonances are closely spaced, curve-fitting to a suitable function might be
necessary in order to determine the corresponding modal damping values. The Nyquist plot can
also be used in computing damping using frequency domain data. This will be discussed under
experimental modal analysis in Chapter 11.

7.3.5 BANDWIDTH METHOD

The bandwidth method of damping measurement is also based on frequency response. Consider
the frequency-response-function magnitude given by equation (7.90) for a single-degree-of-freedom
oscillatory system with viscous damping. The peak magnitude is given by equation (7.94) for low
damping. Bandwidth (half-power) is defined as the width of the frequency-response magnitude

curve when the magnitude is  times the peak value. This is denoted by ∆ω (see Figure 7.12).

An expression for ∆ω = ω2 – ω1 is obtained below using equation (7.90). By definition, ω1 and ω2

are the roots of the equation:

(7.97)

for ω. Equation (7.97) can be expressed in the form

(7.98)

This is a quadratic equation in ω2, having roots , which satisfy

FIGURE 7.12 Bandwidth method of damping measurement in a single-degree-of-freedom system.
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Consequently,

(7.99)

and

(7.100)

It follows that

For small ζ (in comparison to 1):

Hence,

or; for low damping,

(7.101)

From equation (7.101), it follows that the damping ratio can be estimated from bandwidth using
the relation

(7.102)

For a multi-degree-of-freedom system having widely spaced resonances, the foregoing method can
be extended to estimate modal damping. Consider the frequency-response magnitude plot (in dB)

shown in Figure 7.13. Since a factor of  corresponds to 3 dB, the bandwidth corresponding to
a resonance is given by the width of the magnitude plot at 3 dB below that resonant peak. For the
ith mode, the damping ratio is given by

(7.103)

The bandwidth method of damping measurement indicates that the bandwidth at a resonance is a
measure of the energy dissipation in the system in the neighborhood of that resonance. The
simplified relationship given by equation (7.103) is valid for low damping, however, and is based
on linear system analysis. Several methods of damping measurement are summarized in Box 7.2.
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7.3.6 GENERAL REMARKS

There are limitations to the use of damping values that are experimentally determined. For example,
consider time-response methods of determining the modal damping of a device for higher modes.
The customary procedure is to first excite the system at the desired resonant frequency, using a
harmonic exciter, and then to release the excitation mechanism. In the resulting transient vibration,
however, there invariably will be modal interactions, except in the case of proportional damping.
In this type of test, it is tacitly assumed that the device can be excited in the particular mode. In
essence, proportional damping is assumed in modal damping measurements. This introduces a
certain amount of error into the measured damping values.

Expressions used in computing damping parameters from test measurements are usually based
on linear system theory. All practical devices exhibit some nonlinear behavior, however. If the
degree of nonlinearity is high, the measured damping values will not be representative of the actual
system behavior. Furthermore, testing to determine damping is usually done at low amplitudes of
vibration. The corresponding responses could be an order of magnitude lower than, for instance,
the amplitudes exhibited under extreme operating conditions. Damping in practical devices

FIGURE 7.13 Bandwidth method of damping measurement in a multi-degree-of- freedom system.

FIGURE 7.14 Effect of vibration amplitude on damping in structures.
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increases with the amplitude of motion, except for relatively low amplitudes. A typical nonlinear
behavior is illustrated in Figure 7.14. Consequently, the damping values determined from experi-
ments should be extrapolated when they are used to study the system behavior under various
operating conditions. Alternatively, damping could be associated with a stress level in the device.
Different components in a device are subjected to varying levels of stress, however, and it might
be difficult to obtain a representative stress value for the entire device. A recommended method
for estimating damping in structures under seismic disturbances, for example, is by analyzing
earthquake-response records for structures that are similar to the one being considered. Some typical

 BOX 7.2 Damping Measurement Methods

Method Measurements Formulas

Logarithmic decrement method Ai = first significant amplitude
Ai+r = amplitude after r cycles.

Logarithmic decrement

Step-response method Mp = first peak value normalized w.r.t.
steady-state value

PO = percentage overshoot (over steady-state 
value).

Hysteresis loop method ∆U = area of displacement-force hysteresis loop
x0 = maximum displacement of the hysteresis loop
k = average slope of the hysteresis loop.

Hysteretic damping constant:

Loss factor:

Equivalent damping ratio:

Magnification-factor method Q = amplification at resonance w.r.t.
zero-frequency value.

For low damping:

Bandwidth method ∆ω = bandwidth at  of resonant peak
(i.e., half-power bandwidth)

ωr = resonant frequency.
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damping ratios that are applicable under operating basis earthquake (OBE) and safe-shutdown
earthquake (SSE) conditions for a range of items are given in Table 7.5.

When damping values are estimated using frequency-response magnitude curves, accuracy
becomes poor at very low damping ratios (<1%). The main reason for this is the difficulty in
obtaining a sufficient number of points in the magnitude curve near a poorly damped resonance
when the frequency-response function is determined experimentally. As a result, the magnitude
curve is poorly defined in the neighborhood of a weakly damped resonance. For low damping
(<2%) time-response methods are particularly useful. At high damping values, the decay could be
so fast that the measurements would contain large errors. Modal interference in closely spaced
modes could also affect measured damping results.

7.4 INTERFACE DAMPING

In many practical applications, damping is generated at the interface of two sliding surfaces. This
is the case, for example, in bearings, gears, screws, and guideways. Although this type is commonly
treated under structural damping, due to its significance it will be considered here again in more
detail, as the category of interface damping.

Interface damping was formally considered by DaVinci in the early 1500s and again by
Coulomb in the 1700s. The simplified model used is the well-known Coulomb friction model as
given by

(7.104)

where

f = frictional force that opposes the motion
R = normal reaction force between the sliding surfaces
v = relative velocity between the sliding surfaces
µ = coefficient of friction.

Note that the signum function “sgn” is used to emphasize that f is in the opposite direction of v.
This simple model is not expected to provide accurate results in all situations of interface damping.

TABLE 7.5
Typical Damping Values for Seismic Applications

System

Damping Ratio
(ζ%)

OBE SSE

Equipment and large-diameter piping systemsa (>12 in. diameter) 2 3
Small-diameter piping systems (≤ 12 in. diameter) 1 2
Welded-steel structures 2 4
Bolted-steel structures 4 7
Prestressed-concrete structures 2 5
Reinforced-concrete structures 4 7

a Includes both material and structural damping. If the piping system consists of only one
or two spans, with little structural damping, use values for small-diameter piping.

Reprinted from ASME BPVC, Section III-Division 1, Appendices, by permission of The
American Society of Mechanical Engineers. All rights reserved.

f R v= ( )µ sgn
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It is known that, apart from the loading conditions, interface damping depends on a variety of
factors such as material properties, surface characteristics, nature of lubrication, geometry of the
moving parts, and the magnitude of the relative velocity.

A somewhat more complete model for interface damping, which incorporates the following
characteristics, is shown in Figure 7.15:

1. Static and dynamic friction, with stiction and stick-slip behavior
2. Conventional Coulomb friction (Region 1)
3. Drop in dynamic friction, with a negative slope, before increasing again (this is known

as the “Stribeck effect” (Region 2))
4. Conventional viscous damping (Region 3).

These characteristics agree with the behavior of interface damping that is commonly observed in
practice. In particular, suppose that a force is exerted to generate a relative motion between two
surfaces. For small values of the force, there will not be a relative motion, in view of friction. The
minimum force fs needed for the motion to start is the static frictional force. The force needed to
maintain the motion will drop instantaneously to fd as the motion begins. It is as though initially
the two surfaces were “stuck,” and fs is the necessary breakaway force. Hence, this characteristic
is known as stiction. The minimum force fd needed to maintain the relative motion between the
two surfaces is called dynamic friction. In fact, under dynamic conditions, it is possible for “stick-
slip” to occur where repeated sticking and breaking away cycles of intermittent motion take place.
Clearly, such “chattering” motion corresponds to instability (e.g., in machine tools). It is an
undesirable effect and should be avoided.

After the relative motion begins, conventional Coulomb type damping behavior may dominate
for small relative velocities, as represented in Region 1. For lubricated surfaces at low relative
velocities, there will be some solid-to-solid contact that generates a Coulomb-type damping force.
As the relative speed increases, the degree of this solid-to-solid contact will decrease and the
damping force will drop, as in Region 2 of Figure 7.15. This characteristic is known as the Stribeck
effect. Because the slope of the friction curve is negative in Regions 1 and 2, this corresponds to
the unstable region. As the relative velocity is further increased, in fully lubricated surfaces, viscous-

FIGURE 7.15 Main characteristics of interface damping.
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type damping will dominate as shown in Region 3 of Figure 7.15. This is the stable region. It
follows that a combined model of interface damping can be expressed as

(7.105)

Note that fsb(v) is a nonlinear function of velocity that will represent both dynamic friction (for v > 0)
and the Stribeck effect. Models that have been used to represent this effect include the following:

(7.106)

(7.107)

and  

(7.108)

Here, fd represents dynamic Coulomb friction and vc and α are modal parameters.

EXAMPLE 7.5

An object of mass m rests on a horizontal surface and is attached to a spring of stiffness k, as
shown in Figure 7.16. the mass is pulled so that the extension of the spring is x0, and is released
from rest from that position. Determine the subsequent sliding motion of the object. The coefficient
of friction between the object and the horizontal surface is µ.

SOLUTION

Note that when the object moves to the left, the frictional force µ mg acts to the right, and vice
versa. Consider the first cycle of motion, stating from rest with x = x0, moving to the left, coming
to rest with the spring compressed, and then moving to the right.

First Half Cycle (Moving to Left)

The equation of motion is:

(i)

or

(ii)

with  is the undamped material frequency. Equation (ii) has a homogeneous solution of

(iii)

f f v

f v v bv v

s

sb

= =

= ( ) ( ) + ≠

for

sgn for

0

0

f
f

v v
sb

d

c

=
+ ( )1

2

f f esb d

v vc= −( )2

f f v vsb d= +( ) ( )α 1 2 sgn

mx kx mg˙̇ = − + µ

˙̇x x gn+ =ω µ2

ωn k m=

x A t A th n n= ( ) + ( )1 2sin cosω ω
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and a particular solution of

(iv)

Hence, the total solution is

(v)

Use the initial conditions x = x0 and  = 0 at t = 0; then, A1 = 0 and .

Hence, equation (v) becomes

(vi)

At the end of this half cycle,  = 0, or sinωnt = 0. Hence, the corresponding time is t = π/ωn.
Substituting in equation (vi), the corresponding position of the object is (note: cosπ = –1)

(vii)

Second Half Cycle (Moving to Right)

The equation of motion is

(viii)

or

(ix)

The corresponding response is given by

(x)

FIGURE 7.16 An object sliding against Coulomb friction
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Use the initial conditions  and  = 0 at t = π/ωn; then, B1 = 0 and .

Hence, equation (x) becomes

(xi)

The object will come to rest (  = 0) next at t = 2π/ωn. Hence, the position of the object at the end
of the present half cycle would be

(xii)

The response for the next cycle is determined by substituting xr1, as given by equation (xii) which 
is the initial condition, into equation (v) for the left motion; determining the subsequent end point 
xl2, and using it as the initial condition for equation (x) for the right motion; and soon. Then, one 
can express the general response as:

(xiii)

(xiv)

where

(xv)

Note that the amplitude of the harmonic part of the response should be positive for that half cycle
of motion to be possible. Hence, one must have

FIGURE 7.17 A typical cyclic response under Coulomb friction.
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Also note from equations (xiii) and (xiv) that the equilibrium (central) position for the left motion
is +∆, and for the right motion it is –∆. A typical response curve is sketched in Figure 7.17.

�

7.4.1 FRICTION IN ROTATIONAL INTERFACES

Friction in gear transmissions, rotary bearings, and other rotary joints has somewhat similar
behavior. Of course, the friction characteristics will depend on the nature of the device and also
the loading conditions. However, experiments have shown that the frictional behavior of these
devices can be represented by the interface damping model given here. Typically, experimental
results are presented as curves of coefficient of friction (frictional force/normal force) versus relative
velocity of the two sliding surfaces. While in the case of rotary bearings the rotational speed of

FIGURE 7.18 Frictional characteristics of a pair of spur gears.

FIGURE 7.19 A friction model for rotatory devices.
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the shaft is used as the relative velocity, it is the pitch line velocity that is used for gears. An
experimental result for a pair of spur gears is shown in Figure 7.18.

What is interesting to notice from the result is the fact that, for this type of rotational device,
the damping behavior can be approximated by two straight-line segments in the velocity-friction
plane — the first segment having a sharp negative slope and the second segment having a moderate
positive slope, which represents the equivalent viscous damping constant, as shown in Figure 7.19.

7.4.2 INSTABILITY

Unstable behavior or self-excited vibrations such as stick-slip and chatter that is exhibited by
interacting devices such as metal removing tools (e.g., lathes, drills, and milling machines) can be
easily explained using the interface damping model. In particular, it is noted that the model has a
region of negative slope (or negative damping constant) that corresponds to low relative velocities,
and a region of positive slope that corresponds to high relative velocities. Consider the single-
degree-of-freedom model.

(7.109)

without an external excitation force. Initially, the velocity is  = 0. But, in this region, the damping
constant b will be negative and hence the system will be unstable. Thus, a slight disturbance will
result in a steadily increasing response. Subsequently,  will increase above the critical velocity
where b will be positive and the system will be stable. As a result, the response will steadily
decrease. This growing and decaying cycle will be repeated at a frequency that primarily depends
on the inertia and stiffness parameters (m and k) of the system. Chatter is caused in this manner
in interfaced devices.

PROBLEMS

7.1 a. Give three desirable effects and three undesirable effects of damping.
b. The moment of inertia of a door about its hinges is J kg·m2. An automatic door closer

of torsional stiffness K N·m·rad–1 is attached to it. What is the damping constant C
needed for critical damping with this door closer? Give the units of C.

7.2 a. Compare and contrast viscoelastic (material) damping and hysteretic (material) damp-
ing.

b. The stress-strain relations for the Kelvin-Voigt, Maxwell, and standard linear solid
models of material damping are:

Sketch spring and dashpot lumped-parameter systems that represent these three damp-
ing models.

7.3 a. The Kelvin-Voigt model of material damping is represented by the stress-strain model
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ẋ

σ ε ε

σ σ ε

σ σ ε ε

= +

+ =

+ = +

E E
d

dt

c
d

dt
E

d

dt

c
d

dt
E E

d

dt

s

s

*

*

*

©2000 CRC Press

http://www.semeng.ir


www.20file.org
and the standard linear solid model of material damping is represented by

Under what condition could the latter model be approximated by the former?
b. Damping capacity per unit volume of a material is given by

Also, the maximum elastic potential energy per unit volume is given by
umax = 1/2 σmaxεmax, or, in view of the relation σmax = Eεmax for an elastic material, by
umax = 1/2 Eεmax

2, where εmax is the maximum strain in a load cycle. Show that the loss
factor for a Kelvin-Voigt viscoelastic material is given by

7.4 Verify that the loss factors for the material damping models given in Table P7.4 are as
given in the last column of the table. What would be the corresponding damping ratio
expressions?  

7.5 a. A damping material is represented by the frequency-dependent standard linear solid model:

Obtain an approximate expression for the damping ratio of this material.

TABLE P7.4
Loss Factors for Several Material Damping Models

Material Damping Model
Stress-Strain Constitutive 

Relation Loss Factor (η)

Viscoelastic Kelvin-Voigt

Hysteretic Kelvin-Voigt
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b. A thin cantilever beam that is made of this material has a mode of transverse vibration
with natural frequency 15.0 Hz. Also, the following parameter values are known:
E = 1.9 × 1011 Pa, g1 = 6.2 × 109 Pa, g2 = 8.6 × 107 Pa·s, and cs = 1.6 × 10–4 s. Estimate
the modal damping ratio for this mode of vibration. (Note: 1 Pa = 1 N·m–2)

7.6 Consider the single-degree-of-freedom damped system given by the dynamic equation

where

x = response of the lumped mass
u(t) = normalized excitation
ωn = undamped natural frequency
d = damping force per unit mass.

Three possible cases of damping are given in Table P7.6.
Determine an expression for the equivalent damping ratio in each of these three cases
of lumped-parameter models.

7.7 a. A load cycle is applied at low speed during axial testing of a test specimen. The
applied force and the corresponding deflection are measured and the area Af of the
resulting hysteresis loop is determined. The longitudinal stiffness of the specimen is
k and the amplitude of the deflection during the loading cycle is x0. Obtain an
expression for the loss factor η of the material. Comment on the accuracy of this
expression.
A hysteresis loop that was obtained from a cyclic tensile test on a specimen is shown
in Figure P7.7. Estimate the damping ratio of the material.

7.8 a. A torque cycle is applied during torsional testing of a shaft. The applied torque and
the corresponding angle of twist are measured and the area At of the resulting hysteresis
loop is determined. The torsional stiffness of the shaft is K and the amplitude of the
angle of twist is θ0. Show that the loss factor η of the shaft material is given by

b. A hysteresis loop obtained from a low-speed, cyclic torsional test on a shaft is shown
in Figure P7.8. Estimate the damping ratio of the material.   

7.9 a. A cyclic tensile test was carried out at low speed on a specimen of metal and the
stress versus strain hysteresis loop was obtained. The area of the hysteresis loop was
found to be As. The Young’s modulus of the specimen was E and the amplitude of
the axial strain was ε0. Show that the loss factor η of the material can be expressed as

TABLE P7.6
Lumped-Parameter Models of Damping

Damping Type Damping Force d(x, ) per Unit Mass

Hysteretic

Structural

Structural Coulomb

ẋ
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FIGURE P7.7 A force vs. deflection hysteresis loop obtained from a cyclic tensile test.

FIGURE P7.8 A torque versus angle of twist hysteresis loop obtained from a cyclic torsional test.
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b. A hysteresis loop that was obtained from a low-speed, cyclic stress-strain test is shown
in Figure P7.9. Estimate the damping ratio of the material.

7.10 a. Consider a single-degree-of-freedom system with the displacement coordinate x. If
the damping in the system is of hysteretic type, the damping force can be given by

where h is the hysteretic damping constant and ω is the frequency of motion. Now,
for a harmonic motion given by x = x0sin(ωt), show that the energy dissipation per
cycle is

Also, if the stiffness of the system is k, show that the loss factor is given by

b. Consider a uniform cylindrical rod of length l, area of cross section A, and Young’s
modulus E that is used as a specimen of tensile testing. What is its longitudinal
stiffness k? Suppose that for a single cycle of loading, the area of the stress-strain

FIGURE P7.9 A stress-strain hysteresis loop obtained from a cyclic tensile test.
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hysteresis loop is As and the amplitude of the corresponding strain is ε0. Show that,
for this rod,

What is the damping ratio of the rod in axial motion?
7.11 What is proportional damping? What is its main advantage?

A two-degree-of-freedom lumped-parameter system is shown in Figure P7.11. Using the
influence coefficient approach, determine the damping matrix of this system.

7.12  An automated wood-cutting system contains a cutting unit that consists of a DC motor
and a cutting blade, which are linked by a flexible shaft and coupling. The purpose of
the flexible shaft is to locate the blade unit at any desirable configuration, away from
the motor itself. A simple, lumped-parameter dynamic model of the cutting unit is shown
in Figure P7.12.
The following parameters and variables are shown in the figure:

Jm = axial moment of inertia of the motor rotor
bm = equivalent viscous damping constant of the motor bearings
k = torsional stiffness of the flexible shaft
Jc = axial moment of inertia of the cutter blade
bc = equivalent viscous damping constant of the cutter bearings
Tm = magnetic torque of the motor
θm = motor angle of rotation
ωm = motor speed
Tk = torque transmitted through the flexible shaft
θc = cutter angle of rotation 
ωc = cutter speed
TL = load torque on the cutter from the workpiece (wood).

In comparison with the flexible shaft, the coupling unit is assumed rigid, and is also
assumed light. The cutting load is given by

The parameter c, which depends on factors such as the depth of cut and the material
properties of the workpiece, is assumed to be constant in the present problem.
a. Comment on the suitability of the damping models used in this problem.

FIGURE P7.11 A damped lumped-parameter system.
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b. Using Tm as the input, TL as the output, and [ωm Tk ωc]T as the state vector, develop
a complete (nonlinear) state model for the system shown in Figure P7.12. What is
the order of the system?

c. Using the state model derived in part (a), obtain a single input-output differential
equation for the system, with Tm as the input and ωc as the output.

d. Consider the steady operating conditions, where Tm = Tm, ωm = ωm, Tk = Tk, ωc = ωc,
and TL = TL are all constants. Express the operating point values ωm, Tk, ωc, and TL

in terms of Tm and model parameters only. You must consider both cases, Tm > 0 and
Tm < 0.

e. Now consider an incremental change m in the motor torque and the corresponding

changes m, k, c, and L in the system variables. Determine a linear state model
(A, B, C, D) for the incremental dynamics of the system in this case, using x =

[ m, k, c]T as the state vector, u = [ m]T as the input and y = [ L]T as the output.
f. In the nonlinear model (see part (b)), if the twist angle of the flexible shaft (i.e.,

θm – θc) is used as the output, what would be a suitable state model? What is the
system order then?

g. In the nonlinear model, if the angular position θc of the cutter blade is used as the
output variable, explain how the state model obtained in part (b) should be modified.
What is the system order in this case?

h. For vibration analysis of the wood-cutting machine, the damped natural frequencies
and the associated damping ratios are required. How many natural frequencies and
damping ratios would you expect for this problem? How would you determine them?

Hint for Part (e):

FIGURE P7.12 A wood-cutting machine.
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7.13 A machine with an active suspension system is schematically shown in Figure P7.13(a).
The mass of the machine is m. The active suspension system provides a variable stiffness
k(t) by means of a hydraulic actuator. The vertical displacement of the machine is denoted
by y. Under steady conditions, it was found that the suspension stiffness fluctuates about
an average value k0 according to the relation

It is suspected that this is due to an error in the current amplifier that provides the drive
signal to the actuator. The frequency of the fluctuation is in fact the line frequency (of

FIGURE P7.13(a) A machine with an active suspension.

FIGURE P7.13(b) The stability region for Mathieu equation.

k t k k t( ) = −0 1 cos .ω
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the AC supply) and is 60 Hz. Also, k1 = 2.84 × 107 N·m–1 and m = 1000 kg. Determine
the range of k0 for which the system will be stable.
Hint: For a system given by the Mathieu equation:

the stability depends on the values of a and b, as given by the stability curves of
Figure P7.13(b).

7.14 a. Prepare a table to compare and contrast the following methods of damping measure-
ment:
1. Logarithmic decrement method
2. Step-response method
3. Hysteresis loop method
4. Magnification-factor method
5. Bandwidth method
with regard to the following considerations:
1. Domain of analysis (time or frequency?)
2. Whether it can measure several modes simultaneously
3. Accuracy restrictions
4. Cost
5. Speed
6. Model limitations.

b. A machine with its suspension system weighs 500 kg. The logarithmic decrement of
its free decay under an initial-condition excitation was measured to be 0.63, and the
corresponding frequency was 8.0 Hz.
i. Compute the undamped natural frequency and the damping ratio of the system.
ii. Suppose that the machine, under normal operating conditions, generates an unbal-

ance force f = f0cosωt with the force amplitude f0 = 4.8 × 104 N and the frequency
ω = 15.0 × 2π rad·s–1. What is the amplitude of the steady-state vibration of the
machine under this excitation force?

iii.Estimate the resonant frequency and the half-power bandwidth of the system.
7.15 A commercial fish processing machine (known as the “Iron Butcher”) has a conveyor belt

with holding pockets. The fish are placed in the holding pockets and are held from the
top using a stationary belt, as schematically shown in Figure P7.15(a). It was found that,
under some conditions, the fish undergo stick-slip type vibratory motion during conveying.
A model that can be used to analyze this unstable behavior is shown in Figure P7.15(b).
The model parameters are:

m = mass of a fish
k = stiffness of a fish
b = equivalent damping constant of dissipation between the stationary holding belt

and a fish
v = velocity of the conveyor
x = absolute displacement of a fish.

Using this model, explain the stick-slip motion of a fish.
7.16 a. Compare the free decay response of a system under linear viscous damping, with that

under Coulomb friction.
b. An object of mass m is restrained by a spring of stiffness k and slides on a surface

against a constant Coulomb frictional force F. Obtain expressions for the peak motion

d y

dt
a b t y

2

2 2 2 0+ −( ) =cos
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in the i+rth cycle in terms of that of the ith cycle, separately, for the two directions
of motion.

7.17 a. Consider an object in cross flow of fluid with velocity v as shown in Figure P7.17.
Suppose that the object vibrates in the direction transverse to the fluid flow, at cyclic
frequency f. The representative transverse dimension of the object is d. A nondimen-

sional velocity  is known to determine the nature of vibration of the object. In

particular,

i. For small  (in the range of 1.0 to 10.0), vortex shedding predominates (e.g., for

large d and f or for stationary fluid)

ii. For intermediate  (in the range of 10 to 100), galloping predominates (e.g., for

cylindrical objects at reasonably high v, as in transmission lines).

iii.For large  (in the range of 100 to 1000), flutter predominates (e.g., thin objects

such as aerofoils at high fluid flow speeds).
What are other factors that determine the nature of vibration of the object?

b. Suppose that the object is stationary in a fluid flowing at speed v. Then there will be
a drag force fd acting on the body in the direction of v, and a lift force fl acting on the
body in the transverse direction. Thus,

where

cd = drag coefficient
cl = lift coefficient

are nonlinear parameters and will vary with the direction of the flow.

FIGURE P7.15 (a) Conveying of fish in a fish processing machine, and (b) dynamic model for analyzing
the stick-slip response of a fish.

v

df

v

df

v

df

v

df

f c v

f c v

d d

l l

=

=

1
2

1
2

2

2

©2000 CRC Press

http://www.semeng.ir


www.20file.org
Now consider the system shown in Figure P7.17 where the object has a transverse
speed , and the fluid flows at a steady speed v. Show that the equivalent linear viscous
damping constant for the fluid-structure interaction is given by

where θ = angle of attack = tan–1 /v and cd(0), cl(0), and  are the values of

cd, cl, and  when the object is stationary (i.e.,  = 0 or θ = 0).

7.18 The Bernoulli-Euler beam equation is given by

where

v(x,t) = beam response
f(x,t) = applied force per unit length of the beam
E = Young’s modulus
I = second moment of area of beam cross-section, about the neutral axis bending
ρ = mass density
A = area of cross section.

Derive the corresponding beam equation with material damping represented by the
i. Kelvin-Voigt model

ii. Standard linear solid model

where

FIGURE P7.17 A vibrating object in a cross flow of fluid.
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ẏ
∂ ( )

∂
cl 0

θ
∂
∂
cl

θ
ẏ
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E* = viscoelastic damping parameter
cs = standard linear solid model parameter.

7.19 Consider a nonuniform rod of length l, area of cross section A, mass density ρ, and
Young’s modulus E. Assume that the ends are free and the rod executes longitudinal
vibrations of displacement u(x,t) at location x (see Figure P7.19). The equation of free
motion is known to be

with boundary conditions

The corresponding modal motions are, for the ith mode,

with the mode shapes

and the natural frequencies 

Consider the following two cases of damping:
i. External damping of linear viscous type given by a damping force per unit length

along the beam:

ii. Material damping of the Kelvin-Voigt type, given by the stress-strain equation

For each case, determine the modal loss factor and modal damping ratio. Compare/con-
trast these results for the two cases of damping.

7.20 Consider a vibrating system with damping, given by the normalized equation
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where

u(t) = forcing function
y = response
ωn = undamped natural frequency
ζ = damping ratio.

Suppose that the system is excited by a harmonic force so that at steady state, the response
is given by

a. Derive the shape of the u vs. y curve for this motion.
b. What is the energy dissipation per cycle of motion?

FIGURE P7.19 Damped longitudinal vibration of a rod.

y y t= 0 sin ω
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8 Vibration Instrumentation
Measurement and associated experimental techniques play a significant role in the practice of
vibration. The objective of this chapter is to introduce instrumentation that is important in vibration
applications. Chapter 9 will provide complementary material on signal conditioning associated with
vibration instrumentation.

Academic exposure to vibration instrumentation usually arises in relation to learning, training,
and research. In vibration practice, perhaps the most important task of instrumentation is the
measurement or sensing of vibration. Vibration sensing is useful in the following applications:

1. Design and development of a product
2. Testing (screening) of a finished product for quality assurance
3. Qualification of a good-quality product to determine its suitability for a specific application
4. Mechanical aging of a product prior to carrying out a test program
5. Exploratory testing of a product to determine its dynamic characteristic such as resonances,

mode shapes, and even a complete dynamic model
6. Vibration monitoring for performance evaluation
7. Control and suppression of vibration.

Figure 8.1 indicates a typical procedure of experimental vibration, highlighting the essential
instrumentation. Vibrations are generated in a device (test object) in response to some excitation.
In some experimental procedures (primarily in vibration testing, see Figure 8.1), the excitation
signal must be generated in a signal generator, in accordance with some requirement (specification),
and applied to the object through an exciter after amplification and conditioning. In some other
situations (primarily in performance monitoring and vibration control), the excitations are generated
as an integral part of the operating environment of the vibrating object and can originate either
within the object (e.g., engine excitations in an automobile) or in the environment with which the
object interacts during operation (e.g., road disturbances on an automobile). Sensors are needed to
measure vibrations in the test object. In particular, a control sensor is used to check whether the
specified excitation is applied to the object, and one or more response sensors can be used to
measure the resulting vibrations at key locations of the object.

The sensor signals must be properly conditioned (e.g., by filtering and amplification) and
modified (e.g., through modulation, demodulation, and analog-to-digital conversion) prior to record-
ing, analyzing, and display. These considerations will be discussed in Chapter 9. The purpose of
the controller is to guarantee that the excitation is correctly applied to the test object. If the signal
from the control sensor deviates from the required excitation, the controller modifies the signal to
the exciter so as to reduce this deviation. Furthermore, the controller will stabilize or limit (com-
press) the vibrations in the object. It follows that instrumentation in experimental vibration can be
generally classified into the following categories:

1. Signal-generating devices
2. Vibration exciters
3. Sensors and transducers
4. Signal conditioning/modifying devices
5. Signal analysis devices
6. Control devices
7. Vibration recording and display devices.
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Note that one instrument can perform the tasks of more than one category listed above. Also, more
than one instrument may be needed to carry out tasks in a single category. The following sections
will give some representative types of vibration instrumentation, along with characteristics, oper-
ating principles, and important practical considerations. Signal conditioning and modification
techniques are described in Chapter 9.

An experimental vibration system generally consists of four main subsystems:

1. Test object
2. Excitation system
3. Control system
4. Signal acquisition and modification system

as schematically shown in Figure 8.2. Note that various components shown in Figure 8.1 can be
incorporated into one of these subsystems. In particular, component matching hardware and object
mounting fixtures can be considered interfacing devices that are introduced through the interaction
between the main subsystems shown in Figure 8.2. Some important issues of vibration testing and
instrumentation are summarized in Box 8.1.

8.1 VIBRATION EXCITERS

Vibration experimentation may require an external exciter to generate the necessary vibration. This
is the case in controlled experiments such as product testing where a specified level of vibration
is applied to the test object and the resulting response is monitored. A variety of vibration exciters
are available, with different capabilities and principles of operation.

Three basic types of vibration exciters (shakers) are widely used: hydraulic shakers, inertial
shakers, and electromagnetic shakers. The operation-capability ranges of typical exciters in these
three categories are summarized in Table 8.1. Stroke, or maximum displacement, is the largest
displacement the exciter is capable of imparting onto a test object whose weight is assumed to be
within its design load limit. Maximum velocity and acceleration are similarly defined. Maximum
force is the largest force that could be applied by the shaker to a test object of acceptable weight
(within the design load). The values given in Table 8.1 should be interpreted with caution. Maximum
displacement is achieved only at very low frequencies. Maximum velocity corresponds to interme-

FIGURE 8.1 Typical instrumentation in experimental vibration.
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FIGURE 8.2 Interactions between major subsystems of an experimental vibration system.

BOX 8.1 Vibration Instrumentation

Vibration Testing Applications for Products:
• Design and development
• Production screening and quality assessment
• Utilization and qualification for special applications.

Testing Instrumentation:
• Exciter (excites the test object)
• Controller (controls the exciter for accurate excitation)
• Sensors and transducers (measure excitations and responses and provide excitation

error signals to controller)
• Signal conditioning (converts signals to appropriate form)
• Recording and display (for processing, storage, and documentation).

Exciters:
• Shakers

– Electrodynamic (high bandwidth, moderate power, complex and multifrequency
excitations)

– Hydraulic (moderate to high bandwidth, high power, complex and multifrequency
excitations)

– Inertial (low bandwidth, low power, single-frequency harmonic excitations).
• Transient/initial-condition

– Hammers (impulsive, bump tests)
– Cable release (step excitations)
– Drop (impulsive).

Signal Conditioning:
• Filters • Amplifiers
• Modulators/demodulators • ADC/DAC.

Sensors:
• Motion (displacement, velocity, acceleration)
• Force (strain, torque).
©2000 CRC Press

http://www.semeng.ir


                              

www.20file.org
diate frequencies in the operating-frequency range of the shaker. Maximum acceleration and force
ratings are usually achieved at high frequencies. It is not feasible, for example, to operate a vibration
exciter at its maximum displacement and its maximum acceleration simultaneously.

Consider a loaded exciter that is executing harmonic motion. Its displacement is given by

(8.1)

in which s is the displacement amplitude (or stroke). The corresponding velocity and acceleration are

(8.2)

(8.3)

If the velocity amplitude is denoted by v and the acceleration amplitude by a, it follows from
equations (8.2) and (8.3) that

(8.4)

and

(8.5)

An idealized performance curve of a shaker has a constant displacement-amplitude region, a
constant velocity-amplitude region, and a constant acceleration-amplitude region for low, interme-
diate, and high frequencies, respectively, in the operating frequency range. Such an ideal perfor-
mance curve is shown in Figure 8.3(a) on a frequency–velocity plane. Logarithmic axes are used.
In practice, typical shaker-performance curves would be rather smooth yet nonlinear curves, similar
to those shown in Figure 8.3(b). As the mass increases, the performance curve compresses. Note
that the acceleration limit of a shaker depends on the mass of the test object (load). Full load
corresponds to the heaviest object that could be tested. No load condition corresponds to a shaker
without a test object. To standardize the performance curves, they usually are defined at the rated
load of the shaker. A performance curve in the frequency–velocity plane can be converted to a

TABLE 8.1
Typical Operation-Capability Ranges for Various Shaker Types

Shaker Type

Typical Operational Capabilities

Frequency

Maximum
Displacement

(Stroke)
Maximum
Velocity

Maximum
Acceleration

Maximum
Force

Excitation
Waveform

Hydraulic
(electrohydraulic)

Intermediate
0.1–500 Hz

High
20 in.
50 cm

Intermediate
50 in·s–1

125 cm·s–1

Intermediate
20 g

High
100,000 lbf
450,000 N

Average flexibility 
(simple to complex 
and random)

Inertial
(counter-rotating mass)

Low
2–50 Hz

Low
1 in.
2.5 cm

Intermediate
50 in·s–1

125 cm·s–1

Intermediate
20 g

Intermediate
1000 lbf
4500 N

Sinusoidal only

Electromagnetic
(electrodynamic)

High
2–10,000 Hz

Low
1 in.
2.5 cm

Intermediate
50 in·s–1

125 cm·s–1

High
100 g

Low to
intermediate

450 lbf
2000 N

High flexibility and 
accuracy (simple 
to complex and 
random)

x s t= sin ω

˙ cosx s t= ω ω

˙̇ sinx s t= − ω ω2

v s= ω

a v= ω
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curve in the frequency–acceleration plane simply by increasing the slope of the curve by a unit
magnitude (i.e., 20 dB·decade–1).

Several general observations can be made from equations (8.4) and (8.5). In the constant-peak
displacement region of the performance curve, the peak velocity increases proportionally with the
excitation frequency, and the peak acceleration increases with the square of the excitation frequency.
In the constant-peak velocity region, the peak displacement varies inversely with the excitation
frequency, and the peak acceleration increases proportionately. In the constant-peak acceleration
region, the peak displacement varies inversely with the square of the excitation frequency, and the
peak velocity varies inversely with the excitation frequency. This further explains why rated stroke,
maximum velocity, and maximum acceleration values are not simultaneously realized in general.

8.1.1 SHAKER SELECTION

Vibration testing is accomplished by applying a specified excitation to a test package, using a
shaker apparatus, and monitoring the response of the test object. Test excitation can be represented
by its response spectrum (see Chapter 10). The test requires that the response spectrum of the actual

FIGURE 8.3 Performance curve of a vibration exciter in the frequency–velocity plane (log): (a) ideal and
(b) typical.
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excitation, known as the test response spectrum (TRS), envelop the response spectrum specified
for the particular test, known as the required response spectrum (RRS).

A major step in the planning of any vibration testing program is the selection of a proper shaker
(exciter) system for a given test package. The three specifications that are of primary importance
in selecting a shaker are the force rating, the power rating, and the stroke (maximum displacement)
rating. Force and power ratings are particularly useful in moderate to high frequency excitations
and the stroke rating is the determining factor for low frequency excitations. In this section, a
procedure is given to determine conservative estimates for these parameters in a specified test for
a given test package. Frequency domain considerations (see Chapters 3 and 4) are used here.

Force Rating

In the frequency domain, the (complex) force at the exciter (shaker) head is given by

(8.6)

in which ω is the excitation frequency variable, m is the total mass of the test package including
mounting fixture and attachments, as(ω) is the Fourier spectrum of the support-location (exciter
head) acceleration, and H(ω) is the frequency-response function that takes into account flexibility
and damping effects (dynamics) of the test package, per unit mass. In the simplified case where
the test package can be represented by a simple oscillator of natural frequency ωn and damping
ratio ζ t, this function becomes

(8.7)

in which . This approximation is adequate for most practical purposes. The static weight
of the test object is not included in equation (8.6). Most heavy-duty shakers, which are typically
hydraulic, have static load support systems such as pneumatic cushion arrangements that can exactly
balance the deadload. The exciter provides only the dynamic force. In cases where the shaker
directly supports the gravity load, in the vertical test configuration, equation (8.6) should be modified
by adding a term to represent this weight.

A common practice in vibration test applications is to specify the excitation signal by its
response spectrum (see Chapter 10). This is simply the peak response of a simple oscillator,
expressed as a function of its natural frequency when its support location is excited by the specified
signal. Clearly, damping of the simple oscillator is an added parameter in a response spectrum
specification. Typical damping ratios (ζr) used in response spectra specifications are less than 0.1
(or 10%). It follows that an approximate relationship between the Fourier spectrum of the support
acceleration and its response spectrum is

(8.8)

Here we have used the fact that for low damping ζr the transfer function of a simple oscillator may
be approximated by 1/(2jζr) near its peak response. The magnitude �ar(ω)� is the response spectrum
as discussed in Chapter 10.

Equation (8.8) substituted into equation (8.6) gives

(8.9)

F mH as= ( ) ( )ω ω

H j jt n n t nω ζ ω ω ω ω ζ ω ω( ) = +{ } − ( ) +{ }1 2 1 2
2

j = −1

a j as r r= ( )2 ζ ω

F mH j ar r= ( ) ( )ω ζ ω2
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In view of equation (8.7), for test packages having low damping, the peak value of H(ω) is
approximately 1/(2jζ t), which should be used in computing the force rating if the test package has
a resonance within the frequency range of testing. On the other hand, if the test package is assumed
rigid, H(ω) ≅  1. A conservative estimate for the force rating is

(8.10)

It should be noted that �ar(ω)�max is the peak value of the specified (required) response spectrum
(RRS) for acceleration (see Chapter 10). It follows from equation (8.10) that the peak value of the
acceleration RRS curve will correspond to the force rating.

Power Rating

The exciter head does not develop its maximum force when driven at maximum velocity. Output
power is determined using

(8.11)

in which vs(ω) is the Fourier spectrum of the exciter velocity, and Re [ ] denotes the real part of a
complex function. Note that as = jωvs. Substituting equations (8.8) and (8.9) into equation (8.11)
yields

(8.12)

It follows that a conservative estimate for the power rating is

(8.13)

Representative segments of typical acceleration RRS curves have slope n, as given by

(8.14)

It should be clear from equation (8.13) that the maximum output power is given by

(8.15)

This is an increasing function of ω for n >  and a decreasing function of ω for n < . It follows

that the power rating corresponds to the highest point of contact between the acceleration RRS

curve and a line of slope equal to . A similar relationship can be derived if velocity RRS curves

(having slopes n – 1) are used.

Stroke Rating

From equation (8.8), it should be clear that the Fourier spectrum xs of the exciter displacement 

F m ar t rmax max
= ( ) ( )ζ ζ ω

p Fvs= ( )[ ]Re ω

p m jH ar r= ( ) ( ) ( )[ ]4 2 2ζ ω ω ωRe

p m ar t rmax
max

= ( ) ( )[ ]2 2 2
ζ ζ ω ω

a k n= 1ω

p k n
max = −

2
2 1ω

1
2

1
2

1
2

©2000 CRC Press

http://www.semeng.ir


                 

www.20file.org
time history can be expressed as

(8.16)

An estimate for stroke rating is

(8.17)

This is of the form

(8.18)

It follows that the stroke rating corresponds to the highest point of contact between the acceleration
RRS curve and a line of slope equal to 2.

EXAMPLE 8.1

A test package of overall mass 100 kg is to be subjected to dynamic excitation represented by the
acceleration RRS (at 5% damping) shown in Figure 8.4. The estimated damping of the test package
is 7%. The test package is known to have a resonance within the frequency range of the specified
test. Determine the exciter specifications for the test.

SOLUTION

From the development presented in the previous section, it is clear that point F (or P) in Figure 8.4
corresponds to the force and output power ratings, and point S corresponds to the stroke rating. The
coordinates of these critical points are F, P = (4.2 Hz, 4.0 g), and S = (0.8 Hz, 0.75 g). Equation (8.10)

FIGURE 8.4 Test excitation specified by an acceleration RRS (5% damping).

x a js r r= ( )2 2ζ ω ω

x ar rmax max
= ( )[ ]2 2ζ ω ω

x k n
max = −ω 2
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gives the force rating as Fmax = 100 × (0.05/0.07) × 4.0 × 9.81 N = 2803 N. Equation (8.13) gives
the power rating as

Equation (8.17) gives the stroke rating as

Hydraulic Shakers

A typical hydraulic shaker consists of a piston-cylinder arrangement (also called a ram), a servo-
valve, a fluid pump, and a driving electric motor. Hydraulic fluid (oil) is pressurized (typical operating
pressure, 4000 psi) and pumped into the cylinder through a servo-valve by means of a pump that is
driven by an electric motor (typical power, 150 hp). The flow (typical rate, 100 gal·min–1) that enters
the cylinder is controlled (modulated) by the servo-valve, which, in effect, controls the resulting
piston (ram) motion. A typical servo-valve consists of a two-stage spool valve that provides a
pressure difference and a controlled (modulated) flow to the piston, which sets it in motion.

The servo-valve itself is moved by means of a linear torque motor, which is driven by the
excitation-input signal (electrical). A primary function of the servo-valve is to provide stabilizing
feedback to the ram. In this respect, the servo-valve complements the main control system of the test
setup. The ram is coupled to the shaker table by means of a link with some flexibility. The cylinder
frame is mounted on the support foundation with swivel joints. This allows for some angular and
lateral misalignment, which might primarily be caused by test-object dynamics as the table moves.

Two-degree-of-freedom testing requires two independent sets of actuators, and three-degree-
of-freedom testing requires three independent actuator sets (see Chapter 10). Each independent
actuator set can consist of several actuators operating in parallel, using the same pump and the
same excitation-input signal to the torque motors.

If the test table is directly supported on the vertical actuators, they must withstand the total
dead weight (i.e., the weight of the test table, the test object, the mounting fixtures, and the
instrumentation). This is usually prevented by providing a pressurized air cushion in the gap between
the test table and the foundation walls. Air should be pressurized so as to balance the total dead
weight exactly (typical required gage pressure, 3 psi).

Figure 8.5(a) shows the basic components of a typical hydraulic shaker. The corresponding
operational block diagram is shown in Figure 8.5(b). It is desirable to locate the actuators in a pit in
the test laboratory so that the test tabletop is flush with the test laboratory floor under no-load
conditions. This minimizes the effort required to place the test object on the test table. Otherwise, the
test object will have to be lifted onto the test table with a forklift. Also, installation of an air cushion
to support the system dead weight would be difficult under these circumstances of elevated mounting.

Hydraulic actuators are most suitable for heavy load testing and are widely used in industrial
and civil engineering applications. They can be operated at very low frequencies (almost DC), as
well as at intermediate frequencies (see Table 8.1). Large displacements (strokes) are possible at
low frequencies.

Hydraulic shakers have the advantage of providing high flexibility of operation during the test,
including the capabilities of variable-force and constant-force testing and wide-band random-input
testing. Velocity and acceleration capabilities of hydraulic shakers are intermediate. Although any
general excitation-input motion (e.g., sine wave, sine beat, wide-band random) can be used in
hydraulic shakers, faithful reproduction of these signals is virtually impossible at high frequencies
because of distortion and higher-order harmonics introduced by the high noise levels that are

pmax watts  W= × × ( ) ×( ) ×( )[ ] =2 100 0 05 0 07 4 0 9 81 4 2 2 4172 2. . . . . π

xmax m  cm= × × ×( ) ×( )[ ] =2 0 05 0 75 9 8 0 8 2 32. . . . π
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common in hydraulic systems. This is only a minor drawback in heavy-duty, intermediate-frequency
applications. Dynamic interactions are reduced through feedback control.

Inertial Shakers

In inertial shakers or “mechanical exciters,” the force that causes the shaker-table motion is
generated by inertia forces (accelerating masses). Counterrotating-mass inertial shakers are typical
in this category. To explain their principle of operation, consider two equal masses rotating in
opposite directions at the same angular speed ω and in the same circle of radius r (see Figure 8.6).
This produces a resultant force equal to 2mω2rcosωt in a fixed direction (the direction of symmetry
of the two rotating arms). Consequently, a sinusoidal force with a frequency of ω and an amplitude
proportional to ω2 are generated. This reaction force is applied to the shaker table.  

Figure 8.7 shows a sketch of a typical counterrotating-mass inertial shaker. It consists of two
identical rods rotating at the same speed in opposite directions. Each rod has a series of slots to
place weights. In this manner, the magnitude of the eccentric mass can be varied to achieve various
force capabilities. The rods are driven by a variable-speed electric motor through a gear mechanism
that usually provides several speed ratios. A speed ratio is selected, depending on the required test-
frequency range. The whole system is symmetrically supported on a carriage that is directly
connected to the test table. The test object is mounted on the test table. The preferred mounting

FIGURE 8.5 A typical hydraulic shaker arrangement: (a) schematic diagram, and (b) operational block
diagram.
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configuration is horizontal so that the excitation force is applied to the test object in a horizontal
direction. In this configuration, there are no variable gravity moments (weight × distance to center
of gravity) acting on the drive mechanism. Figure 8.7 shows the vertical configuration. In dynamic
testing of large structures, the carriage can be mounted directly on the structure at a location where
the excitation force should be applied. By incorporating two pairs of counterrotating masses, it is
possible to generate test moments as well as test forces.

Inertially driven reaction-type shakers are widely used for prototype testing of civil engineering
structures. Their first application dates back to 1935. Inertial shakers are capable of producing
intermediate excitation forces. The force generated is limited by the strength of the carriage frame.

FIGURE 8.6 Principle of operation of a counter-rotating-mass inertial shaker.

FIGURE 8.7 Sketch of a counterrotating-mass inertial shaker.
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The frequency range of operation and the maximum velocity and acceleration capabilities are low
to intermediate for inertial shakers, whereas the maximum displacement capability is typically low.
A major limitation of inertial shakers is that their excitation force is exclusively sinusoidal and the
force amplitude is directly proportional to the square of the excitation frequency. As a result,
complex and random excitation testing, constant-force testing (e.g., transmissibility tests and con-
stant-force sine-sweep tests), and flexibility to vary the force amplitude or the displacement ampli-
tude during a test are not generally possible with this type of shaker. Excitation frequency and
amplitude can be varied during testing, however, by incorporating a variable-speed drive for the
motor. The sinusoidal excitation generated by inertial shakers is virtually undistorted, which is an
advantage over the other types of shakers when used in sine-dwell and sine-sweep tests. Small
portable shakers with low-force capability are available for use in on-site testing.

Electromagnetic Shakers

In electromagnetic shakers or “electrodynamic exciters,” the motion is generated using the principle
of operation of an electric motor. Specifically, the excitation force is produced when a variable
excitation signal (electrical) is passed through a moving coil placed in a magnetic field.

The components of a commercial electromagnetic shaker are shown in Figure 8.8. A steady
magnetic field is generated by a stationary electromagnet that consists of field coils wound on a
ferromagnetic base that is rigidly attached to a protective shell structure. The shaker head has a

FIGURE 8.8 Schematic sectional view of a typical electromagnetic shaker. (Courtesy of Bruel and Kjaer.
With permission.)
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coil wound on it. When the excitation electrical signal is passed through this drive coil, the
shaker head, which is supported on flexure mounts, will be set in motion. The shaker head
consists of the test table on which the test object is mounted. Shakers with interchangeable heads
are available. The choice of appropriate shaker head is based on the geometry and mounting
features of the test object. The shaker head can be turned to different angles by means of a swivel
joint. In this manner, different directions of excitation (in biaxial and triaxial testing) can be
obtained.

8.1.2 DYNAMICS OF ELECTROMAGNETIC SHAKERS

Consider a single-axis electromagnetic shaker (Figure 8.8) with a test object having a single
natural frequency of importance within the test frequency range. The dynamic interactions
between the shaker and the test object give rise to two significant natural frequencies (and,
correspondingly, two significant resonances). These appear as peaks in the frequency-response
curve of the test setup. Furthermore, the natural frequency (resonance) of the test package alone
causes a “trough” or depression (anti-resonance) in the frequency-response curve of the overall
test setup. To explain this characteristic, consider the dynamic model shown in Figure 8.9. The
following mechanical parameters are defined in Figure 8.9(a): m, k, and b are the mass, stiffness,
and equivalent viscous damping constant, respectively, of the test package, and me, ke, and be are
the corresponding parameters of the exciter (shaker). Also, in the equivalent electrical circuit of
the shaker head, as shown in Figure 8.9(b), the following electrical parameters are defined: Re

and Le are the resistance and (leakage) inductance, and kb is the back electromotive force (back
emf) of the linear motor. Assuming that the gravitational forces are supported by the static
deflection of the flexible elements, and that the displacements are measured from the static
equilibrium position, one obtains the system equations:

(8.19)

(8.20)

(8.21)

The electromagnetic force fe generated in the shaker head is a result of the interaction of the
magnetic field generated by the current ie with coil of the moving shaker head and the constant
magnetic field (stator) in which the head coil is located. Thus,

(8.22)

Note that v(t) is the voltage signal applied by the amplifier to the shaker coil, ye is the displacement
of the shaker head, and y is the displacement response of the test package. It is assumed that kb

has consistent electrical and mechanical units (V·m–1·s–1 and N·A–1). Usually, the electrical time
constant of the shaker is quite small compared to the primarily mechanical time constants (of the

shaker and the test package). Then,  term in equation (8.21) can be neglected. Consequently,
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equations (8.19) through (8.22) can be expressed in the Laplace (frequency) domain, with the

Laplace variable s taking the place of the derivative , as 

(8.23)

(8.24)

It follows that the transfer function of the shaker head motion with respect to the excitation voltage
is given by

(8.25)

FIGURE 8.9 Dynamic model of an electromagnetic shaker and a flexible test package: (a) mechanical model
and (b) electrical model.
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where ∆(s) = characteristic function of the primary dynamics of the test object

(8.26)

∆d(s) = characteristic function of the primary dynamic interactions between the shaker
and the test object.

(8.27)

where

(8.28)

It is clear that under low damping conditions, ∆d(s) will produce two resonances as it is fourth order
in s and, similarly, ∆(s) will produce one antiresonance (trough) corresponding to the resonance of
the test object. Note that in the frequency domain, s = jω and, hence, the frequency-response
function given by equation (8.25) is in fact

(8.29)

The magnitude of this frequency response function, for a typical test system, is sketched in Figure
8.10. Note that this curve is for the “open-loop” case where there is no feedback from the shaker

FIGURE 8.10 Frequency-response curve of a typical electromagnetic shaker with a test object.
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controller. In practice, the shaker controller will be able to compensate for the resonances and
antiresonances to some degree, depending on its effectiveness.

The main advantages of electromagnetic shakers are their high frequency range of operation,
their high degree of operating flexibility, and the high level of accuracy of the generated shaker
motion. Faithful reproduction of complex excitations is possible because of the advanced electronics
and control systems used in this type of shaker. Electromagnetic shakers are not suitable for heavy-
duty applications (large test objects), however. High test-input accelerations are possible at high
frequencies, when electromagnetic shakers are used, but displacement and velocity capabilities are
limited to low or intermediate values (see Table 8.1).

Transient Exciters

Other varieties of exciters are commonly used in transient-type vibration testing. In these tests,
either an impulsive force or an initial excitation is applied to the test object and the resulting
response is monitored (see Chapter 10). The excitations and the responses are “transient” in this
case. Hammer test, drop tests, and pluck tests, which are described in Chapter 10, fall into this
category. For example, a hammer test can be conducted by hitting the object with an instrumented
hammer and then measuring the response of the object. The hammer has a force sensor at its tip,
as sketched in Figure 8.11. A piezoelectric or strain-gage type force sensor can be used. More
sophisticated hammers have impedance heads in place of force sensors. An impedance head
measures force and acceleration simultaneously. The results of a hammer test will depend on many
factors; for example, dynamics of the hammer body, how firmly the hammer is held during the
impact, how quickly the impact was applied, and whether there were multiple impacts.

FIGURE 8.11 An instrumented hammer used in bump tests or hammer tests.
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8.2 CONTROL SYSTEM 

The two primary functions of the shaker control system in vibration testing are to (1) guarantee
that the specified excitation is applied to the test object, and (2) ensure that the dynamic stability
(motion constraints) of the test setup is preserved. An operational block diagram illustrating these
control functions is given in Figure 8.12. The reference input to the control system represents the
desired excitation force that should be applied to the test object. In the absence of any control,
however, the force reaching the test object will be distorted, primarily because of (1) dynamic
interactions and nonlinearities of the shaker, the test table, the mounting fixtures, the auxiliary
instruments, and the test object itself; (2) noise and errors in the signal generator, amplifiers, filters,
and other equipment; and (3) external loads and disturbances (e.g., external restraints, aerodynamic
forces, friction) acting on the test object and other components. To compensate for these distorting
factors, response measurements (displacements, velocities, acceleration, etc.) are made at various
locations in the test setup and are used to control the system dynamics. In particular, responses of
the shaker, the test table, and the test object are measured. These responses are used to compare
the actual excitation felt by the test object at the shaker interface, with the desired (specified) input.
The drive signal to the shaker is modified, depending on the error present.

Two types of control are commonly employed in shaker apparatus: simple manual control and
complex automatic control. Manual control normally consists of simple, open-loop, trial-and-error
methods of manual adjustments (or calibration) of the control equipment to obtain a desired dynamic
response. The actual response is usually monitored (on an oscilloscope or frequency analyzer screen,
for example) during manual-control operations. The pretest adjustments in manual control can be
very time-consuming; as a result, the test object might be subjected to overtesting (which could
produce cumulative damage), which is undesirable and could defeat the test purpose. Furthermore,
the calibration procedure for the experimental setup must be repeated for each new test object.

The disadvantages of manual control suggest that automatic control is desirable in complex
test schemes in which high accuracy of testing is desired. The first step of automatic control involves
automatic measurement of the system response, using control sensors and transducers. The mea-
surement is then fed back into the control system, which instantaneously determines the best drive
signal to actuate the shaker in order to get the desired excitation. This can be done by either analog
means or digital methods.

Some control systems require an accurate mathematical description of the test object. This
dependency of the control system on the knowledge of test-object dynamics is clearly a disadvan-
tage. Performance of a good control system should not be considerably affected by the dynamic
interactions and nonlinearities of the test object or by the nature of the excitation. Proper selection
of feedback signals and control-system components can reduce such effects and will make the
system robust.

FIGURE 8.12 Operational block diagram illustrating a general shaker control system.
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In the response-spectrum method of vibration testing, it is customary to use displacement
control at low frequencies, velocity control at intermediate frequencies, and acceleration control at
high frequencies. This necessitates feedback of displacement, velocity, and acceleration responses.
Generally, however, the most important feedback is the velocity feedback. In sine-sweep tests, the
shaker velocity must change steadily over the frequency band of interest. In particular, the velocity
control must be precise near the resonances of the test object. Velocity (speed) feedback has a
stabilizing effect on the dynamics, which is desirable. This effect is particularly useful in ensuring
stability in motion when testing is done near resonances of lightly damped test objects. On the
contrary, displacement (position) feedback can have a destabilizing effect on some systems, par-
ticularly when high feedback gains are used.

The controller usually consists of various instruments, equipment, and computation hardware
and software. Often, the functions of the data-acquisition and processing system overlap with those
of the controller to some extent. An example might be the digital controller of vibration testing
apparatus. First, the responses are measured through sensors (and transducers), filtered, and ampli-
fied (conditioned). These data channels can be passed through a multiplexer, the purpose of which
is to select one data channel at a time for processing. Most modern data-acquisition hardware do
not need a separate multiplexer to handle multiple signals. The analog data are converted into
digital data using analog-to-digital converters (ADCs), as described in Chapter 9. The resulting
sampled data are stored on a disk or as block data in the computer memory. The reference input
signal (typically a signal recorded on an FM tape) is also sampled (if it is not already in the digital
form), using an ADC, and fed into the computer. Digital processing is done on the reference signal
and the response data, with the objective of computing the command signal to drive the shaker.
The digital command signal is converted into an analog signal, using a digital-to-analog converter
(DAC), and amplified (conditioned) before it is used to drive the exciter.

The nature of the control components depends to a large extent on the nature and objectives
of the particular test to be conducted. Some of the basic components in a shaker controller are
described in the following subsections.

8.2.1 COMPONENTS OF A SHAKER CONTROLLER

Compressor

A compressor circuit is incorporated in automatic excitation control devices to control the excitation-
input level automatically. The level of control depends on the feedback signal from a control sensor
and the specified (reference) excitation signal. Usually, the compressor circuit is included in the
excitation-signal generator (e.g., a sine generator). The control by this means can be done on the
basis of a single-frequency component (e.g., the fundamental frequency).

Equalizer (Spectrum Shaper)

Random-signal equalizers are used to shape the spectrum of a random signal in a desired manner.
In essence, and equalizer consists of a bank of narrow-band filters (e.g., 80 filters) in parallel over
the operating frequency range. By passing the signal through each filter, the spectral density (or
the mean square value) of the signal in that narrow frequency band (e.g., each one-third-octave
band) is determined. This is compared with the desired spectral level, and automatic adjustment is
made in that filter in case there is an error. In some systems, response-spectrum analysis is made
in place of power spectral density analysis (see Chapters 4 and 10). In that case, the equalizer
consists of a bank of simple oscillators, in which the resonant frequencies are distributed over the
operating frequency range of the equalizer. The feedback signal is passed through each oscillator,
and the peak value of its output is determined. This value is compared with the desired response
spectrum value at that frequency. If there is an error, automatic gain adjustment is made in the
appropriate excitation signal components.
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Random-noise equalizers are used in conjunction with random signal generators. They receive
feedback signals from the control sensors. In some digital control systems, there are algorithms
(software) that are used to iteratively converge the spectrum of the excitation signal felt by the test
object into the desired spectrum.

Tracking filter

Many vibration tests are based on single-frequency excitations. In such cases, the control functions
should be performed on the basis of amplitudes of the fundamental-frequency component of the
signal. A tracking filter is simply a frequency-tuned bandpass filter. It automatically tunes the center
frequency of its very narrow bandpass filter to the frequency of a carrier signal. Then, when a noisy
signal is passed through the tuned filter, the output of the filter will be the required fundamental
frequency component in the signal. Tracking filters are also useful in obtaining amplitude–frequency
plots using an X-Y plotter. In such cases, the frequency value comes from the signal generator
(sweep oscillator), which produces the carrier signal to the tracking filter. The tracking filter then
determines the corresponding amplitude of a signal that is fed into it. Most tracking filters have
dual channels so that two signals can be handled (tracked) simultaneously.

Excitation Controller (Amplitude Servo-Monitor)

An excitation controller is typically an integral part of the signal generator. It can be set so that
automatic sweep between two frequency limits can be performed at a selected sweep rate (linear
or logarithmic). More advanced excitation controllers have the capability of automatic switch-over
between constant-displacement, constant-velocity, and constant-acceleration excitation-input con-
trol at specified frequencies over the sweep frequency interval. Consequently, integrator circuits,
to determine velocities and displacements from acceleration signals, should be present within the
excitation controller unit. Sometimes, integration is performed by a separate unit called a vibration
meter. This unit also offers the operator the capability of selecting the desired level of each signal
(acceleration, velocity, or displacement). There is an automatic cutoff level for large displacement
values that could result from noise in acceleration signals. A compressor is also a subcomponent
of the excitation controller. The complete unit is sometimes known as an amplitude servo-monitor.

8.2.2 SIGNAL-GENERATING EQUIPMENT

Shakers are force-generating devices that are operated using drive (excitation) signals generated
from a source. The excitation-signal source is known as the signal generator. Three major types of
signal generators are used in vibration testing applications: (1) oscillators or sine-signal generators,
(2) random-signal generators, and (3) storage devices. In some units, oscillators and random-signal
generators are combined (sine-random generators). These two generators are discussed separately,
however, because of their difference in functions. It should also be noted that almost any digital
signal (deterministic or random) can be generated by a digital computer using a suitable computer
program; it eventually can be passed through a DAC to obtain the corresponding analog signal.
These “digital” signal generators, along with analog sources such as magnetic tape players (FM),
are classified into the category of storage devices.

The dynamic range of any equipment is the ratio of the maximum and minimum output levels
(expressed in decibels) within which it is capable of operating without significant error. This is an
important specification for many types of equipment, and particularly signal-generating devices.
The output level of the signal generator should be set to a value within its dynamic range.
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Oscillators

Oscillators are essentially single-frequency generators. Typically, sine signals are generated, but
other waveforms (such as rectangular and triangular pulses) are also available in many oscillators.
Normally, an oscillator has two modes of operation: (1) up-and-down sweep between two frequency
limits, and (2) dwell at a specified frequency. In the sweep operation, the sweep rate should be
specified. This can be done either on a linear scale (Hz·min–1) or on a logarithmic scale
(octaves·min–1). In the dwell operation, the frequency points (or intervals) should be specified. In
either case, a desired signal level can be chosen using the gain-control knob. An oscillator that is
operated exclusively in the sweep mode is called a sweep oscillator.

The early generation of oscillators employed variable inductor-capacitor types of electronic
circuits to generate signals oscillating at a desired frequency. The oscillator is tuned to the required
frequency by varying the capacitance or inductance parameters. A DC voltage is applied to energize
the capacitor and to obtain the desired oscillating voltage signal, which is subsequently amplified
and conditioned. Modern oscillators use operational amplifier circuits along with resistor, capacitor,
and semiconductor elements. Also commonly used are crystal (quartz) parallel-resonance oscillators
to generate voltage signals accurately at a fixed frequency. The circuit is activated using a DC voltage
source. Other frequencies of interest are obtained by passing this high-frequency signal through
a frequency converter. The signal is then conditioned (amplified and filtered). Required shaping
(e.g., rectangular pulse) is obtained using a shape circuit. Finally, the required signal level is
obtained by passing the resulting signal through a variable-gain amplifier. A block diagram of an
oscillator, illustrating various stages in the generation of a periodic signal, is given in Figure 8.13.

A typical oscillator offers a choice of several (typically six) linear and logarithmic frequency
ranges and a sizable level of control capability (e.g., 80 dB). Upper and lower frequency limits in
a sweep can be preset on the front panel to any of the available frequency ranges. Sweep-rate
settings are continuously variable (typically, 0 to 10 octaves·min–1 in the logarithmic range, and
0 to 60 kHz·min–1 in the linear range), but one value must be selected for a given test or part of a
test. Most oscillators have a repetitive-sweep capability, which allows the execution of more than
one sweep continuously (e.g., for mechanical aging and in product-qualification single-frequency
tests). Some oscillators have the capability of also varying the signal level (amplitude) during each
test cycle (sweep or dwell). This is known as level programming. Also, automatic switching between
acceleration, velocity, and displacement excitations at specified frequency points in each test cycle
can be implemented with some oscillators. A frequency counter, which is capable of recording the
fundamental frequency of the output signal, is usually an integral component of the oscillator. 

FIGURE 8.13 Block diagram of an oscillator-type signal generator.
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Random Signal Generators

In modern random signal generators, semiconductor devices (e.g., Zener diodes) are used to generate
a random signal that has a required (e.g., Gaussian) distribution. This is accomplished by applying
a suitable DC voltage to a semiconductor circuit. The resulting signal is then amplified and passed
through a bank of conditioning filters, which effectively acts as a spectrum shaper. In this manner,
the bandwidth of the signal can be adjusted in a desired manner. Extremely wide-band signals
(white noise), for example, can be generated for random excitation vibration testing in this manner.
The block diagram in Figure 8.14 shows the essential steps in a random signal generation process.
A typical random signal generator has several (typically eight) bandwidth selections over a wide
frequency range (e.g., 1 Hz to 100 kHz). A level-control capability (typically 80 dB) is also available.

Tape Players

Vibration testing for product qualification can be performed using a tape player as the signal source.
A tape player is essentially a signal reproducer. The test input signal that has a certain specified
response spectrum is obtained by playing a magnetic tape and mixing the contents in the several
tracks of the tape in a desirable ratio. Typically, each track contains a sine-beat signal (with a
particular beat frequency, amplitude, and number of cycles per beat) or a random signal component
(with a desired spectral characteristic).

In frequency modulation (FM) tapes, the signal amplitude is proportional to the frequency of a
carrier signal. The carrier signal is the one that is recorded on the tape. When played back, the actual
signal is reproduced, based on detecting the frequency content of the carrier signal in different time
points. The FM method is usually satisfactory, particularly for low-frequency testing (below 100 Hz).

Performance of a tape player is determined by several factors, including tape type and quality,
signal reproduction (and recording) circuitry, characteristics of the magnetic heads, and the tape-
transport mechanism. Some important specifications for tape players are (1) the number of tracks
per tape (e.g., 14 or 28); (2) the available tape speeds (e.g., 3.75, 7.5, 15, or 30 in·s–1);
(3) reproduction filter-amplifier capabilities (e.g., 0.5% third-harmonic distortion in a 1-kHz signal
recorded at 15 in·s–1 tape speed, peak-to-peak output voltage of 5 V at 100-ohm load, signal-to-
noise ratio of 45 dB, output impedance of 50 ohms); and (4) the available control options and their
capabilities (e.g., stop, play, reverse, fast-forward, record, speed selection, channel selection). Tape
player specifications for vibration testing are governed by an appropriate regulatory agency, accord-
ing to a specified standard (e.g., the Communication and Telemetry Standard of the Intermediate
Range Instrumentation Group (IRIG Standard 106-66).

A common practice in vibration testing is to generate the test input signal by repetitively playing
a closed tape loop. In this manner, the input signal becomes periodic but has the desired frequency
content. Frequency modulation players can be fitted with special loop adaptors for playing tape
loops. In spectral (Fourier) analysis of such signals, the analyzing filter bandwidth should be an
order of magnitude higher than the repetition frequency (tape speed per loop length). Extraneous

FIGURE 8.14 Block diagram of a random signal generator.
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noise is caused by discontinuities at the tape joint. This can be suppressed using suitable filters or
gating circuits.

A technique that can be employed to generate low-frequency signals with high accuracy is to
record the signal first at a very low tape speed and then play it back at a high tape speed (e.g.,
r times higher). This has the effect of multiplying all frequency components in the signal by the
speed ratio (r). Consequently, the filter circuits in the tape player will allow some low-frequency
components in the signal that would normally be cut off, and will cut off some high-frequency
components that would normally be allowed. Hence, this process is a way of emphasizing the low-
frequency components in a signal.

Data Processing

A controller generally has some data processing functions as well. A data-acquisition and processing
system usually consists of response sensors (and transducers), signal conditioners, an input-output
(I/O) board including a multiplexer, ADCs, etc., and a digital computer with associated software.
The functions of a digital data-acquisition and processing system can be quite general, as listed
below.

1. Measuring, conditioning, sampling, and storing the response signals and operational data
of test object (using input commands through a user interface, as necessary)

2. Digital processing of the measured data according to the test objectives (and using input
commands, as necessary)

3. Generation of drive signals for the control system
4. Generation and recording of test results (responses) in the required format.

The capacity and the capabilities of a data acquisition and processing system are determined by
such factors as:

1. The number of response data channels that can be handled simultaneously
2. The data-sampling rate (samples per second) for each data channel
3. Computer memory size
4. Computer processing speed
5. External storage capability (hard disks, floppy disks, etc.)
6. The nature of the input and output devices
7. Software capabilities and features.

Commercial data-acquisition and processing systems with a wide range of processing capabilities
are available for use in vibration testing. Some of the standard processing capabilities are the
following (also see Chapters 4 and 10):

1. Response-spectrum analysis
2. FFT analysis (spectral densities, correlations, coherence, Fourier spectra, etc.)
3. Frequency-response function, transmissibility, and mechanical-impedance analysis
4. Natural frequency and mode-shape analysis
5. System parameter identification (e.g., damping parameters).

Most processing is done in realtime, which means that the signals are analyzed as they are being
measured. The advantage of this is that outputs and command signals are available simultaneously
as the monitoring is done, so that any changes can be detected as they occur (e.g., degradation in
the test object or deviations in the excitation signal from the desired form) and automatic feedback
control can be effected. For realtime processing to be feasible, the data acquisition rate (sampling
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rate) and the processing speed of the computer should be sufficiently fast. In realtime frequency
analysis, the entire frequency range (not narrow bands separately) is analyzed at a given instant.
Results are presented as Fourier spectra, power spectral densities, cross-spectral densities, coherence
functions, correlation functions, and response spectra curves. Averaging of frequency plots can be
done over small frequency bands (e.g., one-third-octave analysis), or the running average of each
instantaneous plot can be determined.

8.3 PERFORMANCE SPECIFICATION

Proper selection and integration of sensors and transducers are crucial in instrumenting a vibrating
system. The response variable that is being measured (e.g., acceleration) is termed the measurand.
A measuring device passes through two stages in making a measurement. First, the measurand is
sensed; then, the measured signal is transduced (converted) into a form that is particularly suitable
for signal conditioning, processing, or recording. Often, the output from the transducer stage is an
electrical signal. It is common practice to identify the combined sensor-transducer unit as either a
sensor or a transducer.

The measuring device itself might contain some of the signal-conditioning circuitry and record-
ing (or display) devices or meters. These are components of an overall measuring system. For the
purposes here, these components are considered separately.

In most applications, the following four variables are particularly useful in determining the
response and structural integrity of a vibrating system:

1. Displacement (potentiometer or LVDT)
2. Velocity (tachometer)
3. Acceleration (accelerometer)
4. Stress and strain (strain gage).

In each case, the usual measuring devices are indicated in parentheses. It is somewhat common
in vibration practice to measure acceleration first and then determine velocity and displacement
by direct integration. Any noise and DC components in the measurement, however, could give
rise to erroneous results in such cases. Consequently, it is good practice to measure displacement,
velocity, and acceleration using separate sensors, particularly when the measurements are
employed in feedback control of the vibratory system. It is not recommended to differentiate a
displacement (or velocity) signal to obtain velocity (or acceleration) because this process would
amplify any noise present in the measured signal. Consider, for example, a sinusoidal signal
given by Asinωt. Since d/dt(Asinωt) = Aωcosωt, it follows that any high-frequency noise would
be amplified by a factor proportional to its frequency. Also, any discontinuities in noise compo-
nents would produce large deviations in the results. Using the same argument, it can be concluded
that acceleration measurements are desirable for high-frequency signals and displacement mea-
surements are desirable for low-frequency signals. It follows that the selection of a particular
measurement transducer should depend on the frequency content of the useful portion of the
measured signal.

Transducers are divided into two broad categories: active transducers and passive transducers.
Passive transducers do not require an external electric source for activation. Some examples are
electromagnetic, piezoelectric, and photovoltaic transducers. Active transducers do not possess self-
contained energy sources and thus need external activation. A good example is a resistive transducer,
such as potentiometer.

In selecting a particular transducer (measuring device) for a specific vibration application,
special attention should be given to its ratings, which are usually provided by the manufacturer,
and the required performance specifications as provided by the customer (or developed by the
system designer).
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8.3.1 PARAMETERS FOR PERFORMANCE SPECIFICATION

A perfect measuring device can be defined as one that possesses the following characteristics:

1. Output instantly reaches the measured value (fast response).
2. Transducer output is sufficiently large (high gain, low output impedance, high sensitivity).
3. Output remains at the measured value (without drifting or being affected by environ-

mental effects and other undesirable disturbances and noise) unless the measurand itself
changes (stability and robustness).

4. The output signal level of the transducer varies in proportion to the signal level of the
measurand (static linearity).

5. Connection of a measuring device does not distort the measurand itself (loading effects
are absent and impedances are matched).

6. Power consumption is small (high input impedance).

All of these properties are based on dynamic characteristics and therefore can be explained
in terms of dynamic behavior of the measuring device. In particular, items 1 through 4 can be
specified in terms of the device (response), either in the time domain or in the frequency domain.
Items 2, 5, and 6 can be specified using the impedance characteristics of a device. First, response
characteristics that are important in performance specification of a sensor/transducer unit are
discussed.

Time-Domain Specifications

Several parameters that are useful for the time-domain performance specification of a device are
as follows:

1. Rise time (Tr): This is the time taken to pass the steady-state value of the response for
the first time. In overdamped systems, the response is nonoscillatory; consequently, there
is no overshoot. So that the definition would be valid for all systems, rise time is often
defined as the time taken to pass 90% of the steady-state value for the first time. Rise
time is often measured from 10% of the steady-state value in order to leave out start-up
irregularities and time lags that might be present in a system. Rise time represents the
speed of response of a device — a small rise time indicates a fast response.

2. Delay time (Td): This is usually defined as the time taken to reach 50% of the steady-
state value for the first time. This parameter is also a measure of the speed of response.

3. Peak time (Tp): This is the time at the first peak. This parameter also represents the speed
of response of the device.

4. Settling time (Ts): This is the time taken for the device response to settle down within a
certain percentage (e.g., ±2%) of the steady-state value. This parameter is related to the
degree of damping present in the device as well as the degree of stability.

5. Percentage overshoot (P.O.): This is defined as

(8.30)

using the normalized-to-unity step response curve, where Mp is the peak value. Percentage
overshoot is a measure of damping or relative stability in the device.

6. Steady-state error: This is the deviation of the actual steady-state value from the desired
value. Steady-state error can be expressed as a percentage with respect to the (desired)
steady-state value. In a measuring device, steady-state error manifests itself as an offset.

P.O. = −( )100 1Mp %
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This is a systematic (deterministic) error that normally can be corrected by recalibration.
In servo-controlled devices, steady-state error can be reduced by increasing the loop gain
or by introducing a lag compensation. Steady-state error can be completely eliminated
using the integral control (reset) action.

For the best performance of a measuring device, it is desirable to have the values of all the
foregoing parameters as small as possible. In actual practice, however, it might be difficult to meet
all specifications, particularly under conflicting requirements. For example, Tr can be decreased by
increasing the dominant natural frequency ωn of the device. This, however, increases the P.O. and
sometimes the Ts. On the other hand, the P.O. and Ts can be decreased by increasing device damping,
but it has the undesirable effect of increasing Tr.

Frequency-Domain Specifications

Because any time signal can be decomposed into sinusoidal components through Fourier transform,
it is clear that the response of a system to an arbitrary input excitation can also be determined using
transfer-function (frequency response-function) information for that system. For this reason, one
could argue that it is redundant to use both time-domain specifications and frequency-domain
specifications, as they carry the same information. Often, however, both specifications are used
simultaneously because this can provide a better picture of the system performance. Frequency-
domain parameters are more suitable in representing some characteristics of a system under some
types of excitation.

Consider a device with the frequency-response function (transfer function) G(jω) Some useful
parameters for performance specification of the device, in the frequency domain, are:

1. Useful frequency range (operating interval): This is given by the flat region of the
frequency response magnitude �G(jω)� of the device.

2. Bandwidth (speed of response): This can be represented by the primary natural frequency
(or resonant frequency) of the device.

3. Static gain (steady-state performance): Because static conditions correspond to zero
frequencies, this is given by G(0).

4. Resonant frequency (speed and critical frequency region) ωr: This corresponds to the
lowest frequency at which �G(jω)� peaks.

5. Magnitude at resonance (stability): This is given by �G(jωr)�.
6. Input impedance (loading, efficiency, interconnectability): This represents the dynamic

resistance as felt at the input terminals of the device. This parameter will be discussed
in more detail under component interconnection and matching (Section 8.6).

7. Output impedance (loading, efficiency, interconnectability): This represents the dynamic
resistance as felt at the output terminals of the device.

8. Gain margin (stability): This is the amount by which the device gain could be increased
before the system becomes unstable.

9. Phase margin (stability): This is the amount by which the device phase lead could be
decreased (i.e., phase lag increased) before the system becomes unstable.

8.3.2 LINEARITY

A device is considered linear if it can be modeled by linear differential equations, with time t as
the independent variable. Nonlinear devices are often analyzed using linear techniques by consid-
ering small excursions about an operating point. This linearization is accomplished by introducing
incremental variables for the excitations (inputs) and responses (outputs). If one increment can
cover the entire operating range of a device with sufficient accuracy, it is an indication that the
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device is linear. If the input/output relations are nonlinear algebraic equations, that represents a
static nonlinearity. Such a situation can be handled simply by using nonlinear calibration curves,
which linearize the device without introducing nonlinearity errors. If, on the other hand, the
input/output relations are nonlinear differential equations, analysis usually becomes quite complex.
This situation represents a dynamic nonlinearity.

Transfer-function representation is a “linear” model of an instrument. Hence, it implicitly
assumes linearity. According to industrial terminology, a linear measuring instrument provides a
measured value that varies linearly with the value of the measurand. This is consistent with the
definition of static linearity. All physical devices are nonlinear to some degree. This stems from
any deviation from the ideal behavior, due to causes such as saturation, deviation from Hooke’s
law in elastic elements, Coulomb friction, creep at joints, aerodynamic damping, backlash in gears
and other loose components, and component wearout. Nonlinearities in devices are often manifested
as some peculiar characteristics. In particular, the following properties are important in detecting
nonlinear behavior in dynamic systems:

1. Saturation: The response does not increase when the excitation is increased beyond some
level. This may result from such causes as magnetic saturation, which is common in
transformer devices such as differential transformers, plasticity in mechanical compo-
nents, or nonlinear deformation in springs.

2. Hysteresis: In this case, the input/output curve changes, depending on the direction of
motion, resulting in a hysteresis loop. This is common in loose components such as
gears, which have backlash; in components with nonlinear damping, such as Coulomb
friction; and in magnetic devices with ferromagnetic media and various dissipative
mechanisms (e.g., eddy current dissipation).

3. The jump phenomenon: Some nonlinear devices exhibit an instability known as the jump
phenomenon (or fold catastrophe). Here, the frequency-response (transfer) function curve
suddenly jumps in magnitude at a particular frequency, while the excitation frequency
is increased or decreased. A device with this nonlinearity will exhibit a characteristic
“tilt” of its resonant peak either to the left (softening nonlinearity) or to the right
(hardening nonlinearity). Furthermore, the transfer function itself may change with the
level of input excitation in the case of nonlinear devices.

4. Limit cycles: A limit cycle is a closed trajectory in the state space that corresponds to
sustained oscillations without decay or growth. The amplitude of these oscillations is inde-
pendent of the initial location from which the response started. In the case of a stable limit
cycle, the response will return to the limit cycle irrespective of the location in the neighbor-
hood of the limit cycle from which the response was initiated. In the case of an unstable
limit cycle, the response will steadily move away from it with the slightest disturbance.

5. Frequency creation: At steady state, nonlinear devices can create frequencies that are
not present in the excitation signals. These frequencies might be harmonics (integer
multiples of the excitation frequency), subharmonics (integer fractions of the excitation
frequency), or nonharmonics (usually rational fractions of the excitation frequency).

Several methods are available to reduce or eliminate nonlinear behavior in vibrating systems.
They include calibration (in the static case), the use of linearizing elements such as resistors and
amplifiers to neutralize the nonlinear effects, and the use of nonlinear feedback. It is also a good
practice to take the following precautions.

1. Avoid operating the device over a wide range of signal levels.
2. Avoid operation over a wide frequency band.
3. Use devices that do not generate large mechanical motions.
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4. Minimize Coulomb friction.
5. Avoid loose joints and gear coupling (i.e., use direct-drive mechanisms).

8.3.3 INSTRUMENT RATINGS

Instrument manufacturers do not usually provide complete dynamic information for their products.
In most cases, it is unrealistic to expect complete dynamic models (in the time domain or the frequency
domain) and associated parameter values for complex instruments. Performance characteristics pro-
vided by manufacturers and vendors are primarily static parameters. Known as instrument ratings,
these are available as parameter values, tables, charts, calibration curves, and empirical equations.
Dynamic characteristics such as transfer functions (e.g., transmissibility curves expressed with respect
to excitation frequency) might also be provided for more sophisticated instruments, but the available
dynamic information is never complete. Furthermore, definitions of rating parameters used by man-
ufacturers and vendors of instruments are in some cases not the same as analytical definitions used
in textbooks. This is particularly true in relation to the term linearity. Nevertheless, instrument ratings
provided by manufacturers and vendors are very useful in the selection, installation, operation, and
maintenance of instruments. Some of these performance parameters are indicated below.

Rating Parameters

Typical rating parameters supplied by instrument manufacturers are:

1. Sensitivity
2. Dynamic range
3. Resolution
4. Linearity
5. Zero drift and full-scale drift
6. Useful frequency range
7. Bandwidth
8. Input and output impedances.

The conventional definitions given by instrument manufacturers and vendors are summarized below.
Sensitivity of a transducer is measured by the magnitude (peak, rms value, etc.) of the output

signal corresponding to a unit input of the measurand. This can be expressed as the ratio of
(incremental output)/(incremental input) or, analytically, as the corresponding partial derivative. In
the case of vectorial or tensorial signals (e.g., displacement, velocity, acceleration, strain, force),
the direction of sensitivity should be specified.

Cross-sensitivity is the sensitivity along directions that are orthogonal to the direction of primary
sensitivity; it is expressed as a percentage of the direct sensitivity. High sensitivity and low cross-
sensitivity are desirable for measuring instruments. Sensitivity to parameter changes, disturbances,
and noise must be small in any device, however, and this is an indication of its robustness. Often,
sensitivity and robustness are conflicting requirements.

Dynamic range of an instrument is determined by the allowed lower and upper limits of its
input or output (response) so as to maintain a required level of measurement accuracy. This range
is usually expressed as a ratio, in decibels. In many situations, the lower limit of the dynamic range
is equal to the resolution of the device. Hence, the dynamic range is usually expressed as the ratio
(range of operation)/(resolution), in decibels.

Resolution is the smallest change in a signal that can be detected and accurately indicated by
a transducer, a display unit, or any pertinent instrument. It is usually expressed as a percentage of
the maximum range of the instrument, or as the inverse of the dynamic range ratio, as defined
above. It follows that dynamic range and resolution are closely related.
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Linearity is determined by the calibration curve of an instrument. The curve of output amplitude
(peak or rms value) versus input amplitude under static conditions within the dynamic range of an
instrument is known as the static calibration curve. Its closeness to a straight line measures the
degree of linearity. Manufacturers provide this information either as the maximum deviation of the
calibration curve from the least-squares straight-line fit of the calibration curve or from some other
reference straight line. If the least-squares fit is used as the reference straight line, the maximum
deviation is called independent linearity (more correctly, independent nonlinearity, because the
larger the deviation, the greater the nonlinearity). Nonlinearity can be expressed as a percentage
of either the actual reading at an operating point or the full-scale reading.

Zero drift is defined as the drift from the null reading of the instrument when the measurand is
maintained steady for a long period. Note that in this case, the measurand is kept at zero or any other
level that corresponds to null reading of the instrument. Similarly, full-scale drift is defined with
respect to the full-scale reading (the measurand is maintained at the full-scale value). Usual causes
of drift include instrument instability (e.g., instability in amplifiers), ambient changes (e.g., changes
in temperature, pressure, humidity, and vibration level), changes in power supply (e.g., changes in
reference DC voltage or AC line voltage), and parameter changes in an instrument (due to aging,
wearout, nonlinearities, etc.). Drift due to parameter changes that are caused by instrument nonlin-
earities is known as parametric drift, sensitivity drift, or scale-factor drift. For example, a change
in spring stiffness or electrical resistance due to changes in ambient temperature results in a para-
metric drift. Note that the parametric drift depends on the measurand level. Zero drift, however, is
assumed to be the same at any measurand level if the other conditions are kept constant. For example,
a change in reading caused by thermal expansion of the readout mechanism due to changes in the
ambient temperature is considered a zero drift. In electronic devices, drift can be reduced using
alternating current (AC) circuitry rather than direct current (DC) circuitry. For example, AC-coupled
amplifiers have fewer drift problems than DC amplifiers. Intermittent checking for the instrument
response level for zero input is a popular way to calibrate for zero drift. In digital devices, for
example, this can be done automatically from time to time between sample points, when the input
signal can be bypassed without affecting the system operation.

Useful frequency range corresponds to the interval of both flat gain and zero phase in the
frequency-response characteristics of an instrument. The maximum frequency in this band is
typically less than half (say, one fifth of) the dominant resonant frequency of the instrument. This
is a measure of instrument bandwidth.

Bandwidth of an instrument determines the maximum speed or frequency at which the instru-
ment is capable of operating. High bandwidth implies faster speed of response. Bandwidth is
determined by the dominant natural frequency ωn or the dominant resonant frequency ωr of the
transducer. (Note: For low damping, ωr is approximately equal to ωn). It is inversely proportional
to the rise time and the dominant time constant. Half-power bandwidth is also a useful parameter.
Instrument bandwidth must be sufficiently greater than the maximum frequency of interest in the
measured signal. The bandwidth of a measuring device is important, particularly when measuring
transient signals. Note that the bandwidth is directly related to the useful frequency range.

8.3.4 ACCURACY AND PRECISION

The instrument ratings mentioned above affect the overall accuracy of an instrument. Accuracy
can be assigned either to a particular reading or to an instrument. Note that instrument accuracy
depends not only on the physical hardware of the instrument, but also on the operating conditions
(e.g., design conditions that are the normal, steady operating conditions or extreme transient
conditions, such as emergency start-up and shutdown). Measurement accuracy determines the
closeness of the measured value to the true value. Instrument accuracy is related to the worst
accuracy obtainable within the dynamic range of the instrument in a specific operating environment.
Measurement error is defined as
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(8.31)

Correction, which is the negative of error, is defined as

(8.32)

Each of these can also be expressed as a percentage of the true value. The accuracy of an instrument
can be determined by measuring a parameter whose true value is known, near the extremes of the
dynamic range of the instrument, under certain operating conditions. For this purpose, standard
parameters or signals that can be generated at very high levels of accuracy would be needed. The
National Institute for Standards and Testing (NIST) is usually responsible for the generation of
these standards. Nevertheless, accuracy and error values cannot be determined to 100% exactness
in typical applications because the true value is not known to begin with. In a given situation, one
can only make estimates for accuracy by using ratings provided by the instrument manufacturer
or by analyzing data from previous measurements and models.

Causes of error include instrument instability, external noise (disturbances), poor calibration,
inaccurate information (e.g., poor analytical models, inaccurate control), parameter changes (e.g., due
to environmental changes, aging, and wearout), unknown nonlinearities, and improper use of the
instrument.

Errors can be classified as deterministic (or systematic) and random (or stochastic). Determin-
istic errors are those caused by well-defined factors, including nonlinearities and offsets in readings.
These usually can be accounted for by proper calibration and analytical practices. Error ratings
and calibration charts are used to remove systematic errors from instrument readings. Random
errors are caused by uncertain factors entering into the instrument response. These include device
noise, line noise, and effects of unknown random variations in the operating environment. A
statistical analysis using sufficiently large amounts of data is necessary to estimate random errors.
The results are usually expressed as a mean error, which is the systematic part of random error,
and a standard deviation or confidence interval for instrument response.

Precision is not synonymous with accuracy. Reproducibility (or repeatability) of an instrument
reading determines the precision of an instrument. Two or more identical instruments that have the
same high offset error might be able to generate responses at high precision, although these readings
are clearly inaccurate. For example, consider a timing device (clock) that very accurately indicates
time increments (say, up to the nearest microsecond). If the reference time (starting time) is set
incorrectly, the time readings will be in error, although the clock has a very high precision.

Instrument error can be represented by a random variable that has a mean value µe and a
standard deviation σe. If the standard deviation is zero, the variable is considered deterministic. In
that case, the error is said to be deterministic or repeatable. Otherwise, the error is said to be
random. The precision of an instrument is determined by the standard deviation of error in the
instrument response. Readings of an instrument may have a large mean value of error (e.g., large
offset); but if the standard deviation is small, the instrument has a high precision. Hence, a
quantitative definition for precision would be

(8.33)

Lack of precision originates from random causes and poor construction practices. It cannot be
compensated for by recalibration, just as the precision of a clock cannot be improved by resetting
the time. On the other hand, accuracy can be improved by recalibration. Repeatable (deterministic)
accuracy is inversely proportional to the magnitude of the mean error µe.

Error Measured value True value= ( ) − ( )

Correction True value Measured value= ( ) − ( )

Precision Measured range= ( ) σe
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In selecting instruments for a particular application, in addition to matching instrument ratings
with specifications, several additional considerations should be looked into. These include geometric
limitations (size, shape, etc.), environmental conditions (e.g., chemical reactions including corrosion,
extreme temperatures, light, dirt accumulation, electromagnetic fields, radioactive environments,
shock, and vibration), power requirements, operational simplicity, availability, past record and rep-
utation of the manufacturer and of the particular instrument, and cost-related economic aspects
(initial cost, maintenance cost, cost of supplementary components such as signal-conditioning and
processing devices, design life and associated frequency of replacement, and cost of disposal and
replacement). Often, these considerations become the ultimate deciding factors in the selection
process.

8.4 MOTION SENSORS AND TRANSDUCERS

Motion sensing is considered the most important measurement in vibration applications. Other
variables such as force, torque, stress, strain, and material properties are also important, either
directly or indirectly, in the practice of vibration. This section will describe some useful measuring
devices for motion in the field of mechanical vibration.

8.4.1 POTENTIOMETER 

The potentiometer, or pot, is a displacement transducer. This active transducer consists of a uniform
coil of wire or a film of high-resistive material — such as carbon, platinum, or conductive plastic
— whose resistance is proportional to its length. A fixed voltage vref is applied across the coil
(or film) using an external, constant DC voltage supply. The transducer output signal vo is the
DC voltage between the movable contact (wiper arm) sliding on the coil and one terminal of the
coil, as shown schematically in Figure 8.15(a). Slider displacement x is proportional to the output
voltage:

(8.34)

This relationship assumes that the output terminals are open-circuit; that is, infinite-impedance load
(or resistance in the present DC case) is present at the output terminal, so that the output current
is zero. In actual practice, however, the load (the circuitry into which the pot signal is fed;
e.g., conditioning or processing circuitry) has a finite impedance. Consequently, the output current
(the current through the load) is non-zero, as shown in Figure 8.15(b). The output voltage thus
drops to vo, even if the reference voltage vref is assumed to remain constant under load variations
(i.e., the voltage source has zero output impedance); this consequence is known as the loading
effect of the transducer. Under these conditions, the linear relationship given by equation (8.34)
would no longer be valid. This causes an error in the displacement reading. Loading can affect the
transducer reading in two ways: by changing the reference voltage (i.e., loading the voltage source)
and by loading the transducer. To reduce these effects, a voltage source that is not seriously affected
by load variations (e.g., a regulated or stabilized power supply that has low output impedance) and
data acquisition circuitry (including signal-conditioning circuitry) that has high input impedance
should be used.

The resistance of a potentiometer should be chosen with care. On the one hand, an element
with high resistance is preferred because this results in reduced power dissipation for a given
voltage, which has the added benefit of reduced thermal effects. On the other hand, increased
resistance increases the output impedance of the potentiometer and results in loading nonlinearity
error unless the load resistance is also increased proportionately. Low-resistance pots have resis-
tances less than 10 Ω . High-resistance pots can have resistances on the order of 100 kΩ . Conductive

v kxo =
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plastics can provide high resistances — typically about 100 Ω·m/m — and are increasingly used
in potentiometers. Reduced friction (low mechanical loading), reduced wear, reduced weight, and
increased resolution are advantages of using conductive plastics in potentiometers.

Potentiometer Resolution

The force required to move the slider arm comes from the motion source, and the resulting energy
is dissipated through friction. This energy conversion, unlike pure mechanical-to-electrical conver-
sions, involves relatively high forces, and the energy is wasted rather than being converted into the
output signal of the transducer. Furthermore, the electrical energy from the reference source is also
dissipated through the resistor coil (or film), resulting in an undesirable temperature rise. These
are two obvious disadvantages of this resistively coupled transducer. Another disadvantage is the
finite resolution in coil-type pots.

Coils, instead of straight wire, are used to increase the resistance per unit travel of the slider
arm. But the slider contact jumps from one turn to the next in this case. Accordingly, the resolution
of a coil-type potentiometer is determined by the number of turns in the coil. For a coil that has
N turns, the resolution r, expressed as a percentage of the output range, is given by

(8.35)

Resolutions better (smaller) than 0.1% (i.e., 1000 turns) are available with coil potentiometers.
Infinitesimal (incorrectly termed infinite) resolutions are now possible with high-quality resistive
film potentiometers that use conductive plastics, for example. In this case, the resolution is limited
by other factors, such as mechanical limitations and signal-to-noise ratio. Nevertheless, resolutions
on the order of 0.01 mm are possible with good rectilinear potentiometers.

Some limitations and disadvantages of potentiometers as displacement measuring devices are
as follows:

1. The force needed to move the slider (against friction and arm inertia) is provided by the
vibration source. This mechanical loading distorts the measured signal itself.

2. High-frequency (or highly transient) measurements are not feasible because of such
factors as slider bounce, friction and inertia resistance, and induced voltages in the wiper
arm and primary coil.

3. Variations in the supply voltage cause error.
4. Electrical loading error can be significant when the load resistance is low.
5. Resolution is limited by the number of turns in the coil and by the coil uniformity. This

will limit small-displacement measurements such as fine vibrations.
6. Wearout and heating up (with associated oxidation) in the coil (film) and slider contact

cause accelerated degradation.

FIGURE 8.15 (a) Schematic diagram of a potentiometer, and (b) potentiometer loading.

r
N

= 100
%
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There are several advantages associated with potentiometer devices, however, including the
following:

1. They are relatively less costly.
2. Potentiometers provide high-voltage (low-impedance) output signals, requiring no ampli-

fication in most applications. Transducer impedance can be varied simply by changing
the coil resistance and supply voltage.

Optical Potentiometer

The optical potentiometer, shown schematically in Figure 8.16(a), is a displacement sensor. A layer
of photoresistive material is sandwiched between a layer of regular resistive material and a layer
of conductive material. The layer of resistive material has a total resistance of Rc, and it is uniform
(i.e., it has a constant resistance per unit length). The photoresistive layer is practically an electrical
insulator when no light is projected on it. The displacement of the moving object (whose displace-
ment is being measured) causes a moving light beam to be projected onto a rectangular area of the
photoresistive layer. This light-projected area attains a resistance of Rp, which links the resistive
layer that is above the photoresistive layer and the conductive layer that is below it. The supply
voltage to the potentiometer is vref , and the length of the resistive layer is L. The light spot is
projected at a distance x from one end of the resistive element, as shown in the figure.

FIGURE 8.16 (a) An optical potentiometer, and (b) equivalent circuit (α = x/L).
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An equivalent circuit for the optical potentiometer is shown in Figure 8.16(b). Here it is assumed
that a load of resistance RL is present at the output of the potentiometer, voltage across which being
vo. Current through the load is vo/RL. Hence, the voltage drop across (1 – α)Rc + RL, which is also
the voltage across Rp, is given by [(1 – α)Rc + RL]vo /RL. Note that α = x/L, is the fractional position
of the light spot. The current balance at the junction of the three resistors in Figure 8.16(b) is

which can be written as

(8.36)

When the load resistance RL is quite large in comparison to the element resistance Rc, then Rc /RL � 0.
Hence, equation (8.36) becomes

(8.37)

This relationship is still nonlinear in vo /vref vs. x/L. The nonlinearity decreases, however, with
decreasing Rc /Rp.

8.4.2 VARIABLE-INDUCTANCE TRANSDUCERS

Motion transducers that employ the principle of electromagnetic induction are termed variable-
inductance transducers. When the flux linkage (defined as magnetic flux density times the number
of turns in the conductor) through an electrical conductor changes, a voltage is induced in the
conductor. This, in turn, generates a magnetic field that opposes the primary field. Hence, a
mechanical force is necessary to sustain the change of flux linkage. If the change in flux linkage
is brought about by a relative motion, the mechanical energy is directly converted (induced) into
electrical energy. This is the basis of electromagnetic induction, and it is the principle of operation
of electrical generators and variable-inductance transducers. Note that in these devices, the change
of flux linkage is caused by a mechanical motion, and mechanical-to-electrical energy transfer takes
place under near-ideal conditions. The induced voltage or change in inductance can be used as a
measure of the motion. Variable-inductance transducers are generally electromechanical devices
coupled by a magnetic field.

There are many different types of variable-inductance transducers. Three primary types can be
identified:

1. Mutual-induction transducers
2. Self-induction transducers
3. Permanent-magnet transducers.

Variable-inductance transducers that use a nonmagnetized ferromagnetic medium to alter the reluc-
tance (magnetic resistance) of the flux path are known as variable-reluctance transducers. Some
of the mutual-induction transducers and most of the self-induction transducers are of this type.
Permanent-magnet transducers do not fall into the category of variable-reluctance transducers.
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Mutual-Induction Transducers

The basic arrangement of a mutual-induction transducer constitutes two coils: the primary windings
and the secondary windings. One of the coils (primary windings) carries an AC excitation that
induces a steady AC voltage in the other coil (secondary windings). The level (amplitude, rms value,
etc.) of the induced voltage depends on the flux linkage between the coils. In mutual-induction
transducers, a change in the flux linkage is effected by one of two common techniques. One technique
is to move an object made of ferromagnetic material within the flux path. This changes the reluctance
of the flux path, with an associated change of the flux linkage in the secondary coil. This is the
operating principle of the linear-variable differential transformer (LVDT), the rotatory-variable
differential transformer (RVDT), and the mutual-induction proximity probe. All of these are, in fact,
variable-reluctance transducers. The other common way to change the flux linkage is to move one
coil with respect to the other. This is the operating principle of the resolver, the synchro-transformer,
and some types of AC tachometers. These are not variable-reluctance transducers, however.

The motion can be measured using the secondary signal in several ways. For example, the AC
signal in the secondary windings can be demodulated by rejecting the carrier frequency (primary-
winding excitation frequency) and directly measuring the resulting signal, which represents the
motion. This method is particularly suitable for measuring transient motions. Alternatively, the
amplitude or the rms (root-mean-square) value of the secondary (induced) voltage can be measured.
Yet another method is to measure the change of inductance in the secondary circuit directly, using
a device such as an inductance bridge circuit.

Linear-Variable Differential Transformer (LVDT)

The LVDT is a displacement (vibration) measuring device that can overcome most of the shortcom-
ings of the potentiometer. It is considered a passive transducer because the measured displacement
provides energy for “changing” the induced voltage, although an external power supply is used to
energize the primary coil, which in turn induces a steady carrier voltage in the secondary coil. The
LVDT is a variable-reluctance transducer of the mutual-induction type. In its simplest form, the
LVDT consists of a cylindrical, insulating, nonmagnetic form that has a primary coil in the midseg-
ment and a secondary coil symmetrically wound in the two end segments, as depicted schematically
in Figure 8.17(a). The primary coil is energized by an AC supply voltage vref. This will generate, by
mutual induction, an AC of the same frequency in the secondary winding. A core made of ferro-
magnetic material is inserted coaxially into the cylindrical form without actually touching it, as
shown. As the core moves, the reluctance of the flux path changes.

Hence, the degree of flux linkage depends on the axial position of the core. Because the two
secondary coils are connected in series opposition, so that the potentials induced in these two coil
segments oppose each other, the net induced voltage is zero when the core is centered between the
two secondary winding segments. This is known as the null position. When the core is displaced
from this position, a non-zero induced voltage will be generated. At steady state, the amplitude vo

of this induced voltage is proportional, in the linear (operating) region, to the core displacement x.
Consequently, vo can be used as a measure of the displacement.

Note: Because of opposed secondary windings, the LVDT provides the direction as well as the
magnitude of displacement. If the output signal is not demodulated, the direction is determined by
the phase angle between the primary (reference) voltage and the secondary (output) voltage, which
include the carrier signal as well.

For an LVDT to measure transient motions accurately, the frequency of the reference voltage
(the carrier frequency) must be about ten times larger than the largest significant frequency com-
ponent in the measured motion. For quasi-dynamic displacements and slow transients on the order
of a few hertz, a standard AC supply (at 60-Hz line frequency) is adequate. The performance
(particularly sensitivity and accuracy) is known to improve with the excitation frequency, however.
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Because the amplitude of the output signal is proportional to the amplitude of the primary signal,
the reference voltage should be regulated to get accurate results. In particular, the power source
should have a low output impedance.

The output signal from a differential transformer is normally not in phase with the reference
voltage. Inductance in the primary windings and the leakage inductance in the secondary windings
are mainly responsible for this phase shift. Because demodulation involves extraction of the
modulating signal by rejecting the carrier frequency component from the secondary signal (see
Chapter 9), it is important to understand the size of this phase shift. An error known as null voltage
is present in some differential transformers. This manifests itself as a non-zero reading at the null
position (i.e., at zero displacement). This is usually 90° out of phase from the main output signal
and, hence, is known as quadrature error. Nonuniformities in the windings (unequal impedances
in the two segments of the secondary windings) are a major reason for this error. The null voltage
can also result from harmonic noise components in the primary signal and nonlinearities in the
device. Null voltage is usually negligible (typically about 0.1% of full scale). This error can be
eliminated from the measurements by employing appropriate signal-conditioning and calibration
practices.

FIGURE 8.17 (a) Schematic diagram of an LVDT, and (b) a typical operating curve.
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Signal Conditioning

Signal conditioning associated with differential transformers includes filtering and amplification.
Filtering is needed to improve the signal-to-noise ratio of the output signal. Amplification is
necessary to increase the signal strength for data acquisition and processing. Because the reference
frequency (carrier frequency) is embedded in the output signal, it is also necessary to interpret the
output signal properly, particularly for transient motions. Two methods are commonly used to
interpret the amplitude-modulated output signal from a differential transformer: (1) rectification
and (2) demodulation.

In the first method (rectification), the AC output from the differential transformer is rectified
to obtain a DC signal. This signal is amplified and then low-pass filtered to eliminate any high-
frequency noise components. The amplitude of the resulting signal provides the transducer reading.
In this method, the phase shift in the LVDT output must be checked separately to determine the
direction of motion. In the second method (demodulation), the carrier frequency component is
rejected from the output signal by comparing it with a phase-shifted and amplitude-adjusted version
of the primary (reference) signal. Note that phase shifting is necessary because the output signal
is not in phase with the reference signal. The modulating signal that is extracted in this manner is
subsequently amplified and filtered. As a result of advances in miniature integrated circuit (LSI and
VLSI) technology, differential transformers with built-in microelectronics for signal conditioning
are commonly available today. DC differential transformers have built-in oscillator circuits to
generate the carrier signal powered by a DC supply. The supply voltage is usually on the order of
25 V, and the output voltage is about 5 V. The demodulation approach of signal conditioning for
an LVDT is now illustrated, using an example.

EXAMPLE 8.2

Figure 8.18 shows a schematic diagram of a simplified signal conditioning system for an LVDT.
The system variables and parameters are as indicated in Figure 8.18. In particular,

FIGURE 8.18 Signal conditioning system for an LVDT.
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The resistances R1, R2, and R, and the capacitance C are as marked. In addition, one can introduce
a transformer parameter r for the LVDT, as required.

1. Explain the functions of the various components of the system shown in Figure 8.18.
2. Write equations for the amplifier and filter circuits and, using them, give expressions for

the voltage signals v1, v2, v3, and vo marked in Figure 8.18. Note that the excitation in
the primary coil is vpsinωct.

3. Suppose that the carrier frequency is ωc = 500 rad·s–1 and the filter resistance R = 100 kΩ .
If no more than 5% of the carrier component should pass through the filter, estimate the
required value of the filter capacitance C. Also, what is the useful frequency range
(measurement bandwidth) of the system, in radians per second, with these parameter
values?

SOLUTION

1. The LVDT has a primary coil that is excited by an AC voltage of vpsinωct. The ferro-
magnetic core is attached to the moving object whose displacement x(t) is to be measured.
The two secondary coils are connected in series opposition so that the LVDT output is
zero at the null position, and that the direction of motion can be detected as well. The
amplifier is a non-inverting type (see Chapter 9). It amplifies the output of the LVDT,
which is an AC (carrier) signal of frequency ωc that is modulated by the core displacement
x(t).

The multiplier circuit determines the product of the primary (carrier) signal and the
secondary (LVDT output) signal. This is an important step in demodulating the LVDT output.

The product signal from the multiplier has a high-frequency (2ωc) carrier component,
added to the modulating component (x(t)). The low-pass filter removes this unnecessary
high-frequency component, to obtain the demodulated signal, which is proportional to
the core displacement x(t).

2. Non-Inverting Amplifier: Note that the potentials at the + and – terminals of the op-amp
are nearly equal. Also, currents through these leads are nearly zero. (These are the two
common assumptions used for an op-amp, as discussed in Chapter 9). Then, the current
balance at node A gives

or

Then,
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Low-Pass Filter: Since the + lead of the op-amp has approximately a zero potential
(ground), the voltage at point B is also approximately zero. The current balance for node
B gives

Hence,

(ii)

where τ = RC = filter time constant. The transfer function of the filter is

(iii)

with the filter gain ko = R/R1. In the frequency domain,

(8.38)

Finally, neglecting the phase shift in the LVDT, one obtains

or

(iv)

Due to the low-pass filter, with an appropriate cutoff frequency, the carrier signal will
be filtered out. Then,

(8.39)

3. Filter magnitude . For no more than 5% of the carrier (2ωc) component to
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(v)

or ; or ; or τωc ≥ 10 (approximately). Pick τωc = 10. With

R = 100 kΩ and ωc = 500 rad·s–1, then C × 100 × 103 × 500 = 10; hence, C = 0.2 µF.
According to the carrier frequency (500 rad·s–1), one should be able to measure displacements

u(t) up to about 50 rad·s–1. But the flat region of the filter is up to about ωτ = 0.1, which with the
present value of τ = 0.02 s, gives a bandwidth of only 5 rad·s–1.

�

Advantages of the LVDT include the following:

1. It is essentially a noncontacting device with no frictional resistance. Near-ideal
electromechanical energy conversion and lightweight core will result in very small
resistive mechanical forces. Hysteresis (both magnetic hysteresis and mechanical
backlash) is negligible.

2. It has low output impedance, typically on the order of 100 Ω . (Signal amplification
is usually not needed.)

3. Directional measurements (positive/negative) are obtained.
4. It is available in small sizes (e.g., 1 cm long with maximum travel of 2 mm).
5. It has a simple and robust construction (less expensive and durable).
6. Fine resolutions are possible (theoretically, infinitesimal resolution; practically,

much better than that of a coil potentiometer).

The rotatory-variable differential transformer (RVDT) operates using the same prin-
ciple as the LVDT, except that in an RVDT, a rotating ferromagnetic core is used. The
RVDT is used for measuring angular displacements. The rotating core is shaped such
that a reasonably wide linear operating region is obtained. Advantages of the RVDT are
essentially the same as those cited for the LVDT. The linear range is typically ±40° with
a nonlinearity error less than 1%.

In variable-inductance devices, the induced voltage is generated through the rate of
change of the magnetic flux linkage. Therefore, displacement readings are distorted by
velocity and, similarly, velocity readings are affected by acceleration. For the same
displacement value, the transducer reading will depend on the velocity at that displace-
ment. This error is known to increase with the ratio: (cyclic velocity of the core)/(carrier
frequency). Hence, these rate errors can be reduced by increasing the carrier frequency.
The reason for this follows.

At high carrier frequencies, the induced voltage due to the transformer effect (fre-
quencies of the primary signal) is greater than the induced voltage due to the rate
(velocity) effect of the moving member. Hence, the error will be small. To estimate a
lower limit for the carrier frequency in order to reduce rate effects, one can proceed as
follows:

1.

Then the excitation frequency of the primary coil should be chosen as at least 5ωo.
2. For RVDT: for ωo, use the maximum angular frequency of operation (of the rotor).

5
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8.4.3 MUTUAL-INDUCTION PROXIMITY SENSOR

This displacement transducer operates on the mutual-induction principle. A simplified schematic
diagram of such a device is shown in Figure 8.19(a). The insulated “E core” carries the primary
windings in its middle limb. The two end limbs carry secondary windings that are connected in
series. Unlike the LVDT and the RVDT, the two voltages induced in the secondary winding segments
are additive in this case. The region of the moving surface (target object) that faces the coils must
be made of ferromagnetic material so that as it moves, the magnetic reluctance and the flux linkage
will change. This, in turn, changes the induced voltage in the secondary windings, and this change
is a measure of the displacement. Note that, unlike the LVDT, which has an “axial” displacement
configuration, the proximity probe has a “transverse” displacement configuration. Hence, it is
particularly suitable for measuring transverse displacements or proximities of moving objects (e.g.,
transverse vibrations of a beam or whirling of a rotating shaft). One can see from the operating
curve shown in Figure 8.19(b) that the displacement–voltage relation of a proximity probe is
nonlinear. Hence, these proximity sensors should be used only for measuring small displacements,
such as linear vibrations (e.g., a linear range of 5.0 mm or 0.2 in.), unless accurate nonlinear
calibration curves are available. Because the proximity sensor is a noncontacting device, mechanical
loading is small and the product life is high. Because a ferromagnetic object is used to alter the
reluctance of the flux path, the mutual-induction proximity sensor is a variable-reluctance device.
The operating frequency limit is about one tenth the excitation frequency of the primary coil (carrier
frequency). As for an LVDT, demodulation of the induced voltage (secondary) would be required
to obtain direct (DC) output readings.

8.4.4 SELF-INDUCTION TRANSDUCERS

These transducers are based on the principle of self-induction. Unlike mutual-induction transducers,
only a single coil is employed. This coil is activated by an AC supply voltage vref . The current
produces a magnetic flux, which is linked with the coil. The level of flux linkage (or self-inductance)
can be varied by moving a ferromagnetic object within the magnetic field.

This changes the reluctance of the flux path and the inductance in the coil. This change is a
measure of the displacement of the ferromagnetic object. The change in inductance is measured
using an inductance measuring circuit (e.g., an inductance bridge). Note that self-induction trans-
ducers are usually variable-reluctance devices.

A typical self-induction transducer is a self-induction proximity sensor. A schematic diagram
of this device is shown in Figure 8.20. This device can be used as a displacement or vibration
sensor for transverse displacements. For example, the distance between the sensor tip and ferro-
magnetic surface of a moving object, such as a beam or shaft, can be measured. Applications are
essentially the same as those for mutual-induction proximity sensors. High-speed displacement
(vibration) measurements can result in velocity error (rate error) when variable-inductance dis-
placement sensors (including self-induction transducers) are used. This effect can be reduced, as
in other AC-powered variable-inductance sensors, by increasing the carrier frequency.

8.4.5 PERMANENT-MAGNET TRANSDUCERS

In discussing this third type of variable-inductance transducer, first consider the permanent-magnet
DC velocity sensors (DC tachometers). A distinctive feature of permanent-magnet transducers is
that they have a permanent magnet to generate a uniform and steady magnetic field. A relative
motion between the magnetic field and an electrical conductor induces a voltage that is proportional
to the speed at which the conductor crosses the magnetic field. In some designs, a unidirectional
magnetic field generated by a DC supply (i.e., an electromagnet) is used in place of a permanent
magnet. Nevertheless, this is generally termed a permanent-magnet transducer.
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FIGURE 8.19 (a) Schematic diagram of the mutual-induction proximity sensor, and (b) operating curve.

FIGURE 8.20 Schematic diagram of a self-induction proximity sensor.
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The principle of electromagnetic induction between a permanent magnet and a conducting coil
is used in speed measurement by permanent-magnet transducers. Depending on the configuration,
either rectilinear speeds or angular speeds can be measured. Schematic diagrams of the two
configurations are shown in Figure 8.21. Note that these are passive transducers because the energy
for the output signal vo is derived from the motion (measured signal) itself. The entire device is
usually enclosed in a steel casing to isolate it from ambient magnetic fields.

In the rectilinear velocity transducer [Figure 8.21(a)], the conductor coil is wrapped on a core
and placed centrally between two magnetic poles that produce a cross-magnetic field. The core is
attached to the moving object whose velocity must be measured. The velocity v is proportional to
the induced voltage vo. An alternative design — a moving-magnet and fixed-coil arrangement —
can be used as well, thus eliminating the need for any sliding contacts (slip rings and brushes) for
the output leads, and thereby reducing mechanical loading error, wearout, and related problems.
The tachogenerator (or tachometer) is a very common permanent-magnet device. The principle of
operation of a DC tachogenerator is shown in Figure 8.21(b). The rotor is directly connected to
the rotating object. The output signal that is induced in the rotating coil is picked up as DC voltage
vo using a suitable commutator device — typically consisting of a pair of low-resistance carbon
brushes — that is stationary but makes contact with the rotating coil through split slip rings so as
to maintain the positive direction of induced voltage throughout each revolution. The induced
voltage is given by

(8.40)

for a coil of height h and width 2r that has n turns, moving at an angular speed ωc in a uniform
magnetic field of flux density β. This proportionality between vo and ωc is used to measure the
angular speed ωc.

When tachometers are used to measure transient velocities, some error will result from the rate
(acceleration) effect. This error generally increases with the maximum significant frequency that
must be retained in the transient velocity signal. Output distortion can also result because of reactive
(inductive and capacitive) loading of the tachometer. Both types of error can be reduced by
increasing the load impedance.

For illustration, consider the equivalent circuit of a tachometer with an impedance load, as
shown in Figure 8.22. The induced voltage kωc is represented by a voltage source. Note that the
constant k depends on the coil geometry, the number of turns, and the magnetic flux density [see
equation (8.40)]. Coil resistance is denoted by R, and leakage inductance is denoted by L�. The
load impedance is ZL. From straightforward circuit analysis in the frequency domain, the output
voltage at the load is given by

(8.41)

It can be seen that because of the leakage inductance, the output signal attenuates more at higher
frequencies ω of the velocity transient. In addition, loading error is present. If ZL is much larger
than the coil impedance, however, the ideal proportionality, as given by

(8.42)

is achieved.
Some tachometers operate in a different manner. For example, digital tachometers generate

voltage pulses at a frequency proportional to the angular speed. These are considered as digital
transducers.
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8.4.6 AC PERMANENT-MAGNET TACHOMETER

This device has a permanent magnet rotor and two separate sets of stator windings, as schematically
shown in Figure 8.23(a). One set of windings is energized using an AC reference voltage. Induced
voltage in the other set of windings is the tachometer output. When the rotor is stationary or moving
in a quasi-static manner, the output voltage is a constant-amplitude signal much like the reference
voltage. As the rotor moves at a finite speed, an additional induced voltage that is proportional to
the rotor speed is generated in the secondary windings. This is due to the rate of change of flux
linkage from the magnet in the secondary coil. The net output is an amplitude-modulated signal
whose amplitude is proportional to the rotor speed. For transient velocities, it will be necessary to
demodulate this signal in order to extract the transient velocity signal (i.e., the modulating signal)

FIGURE 8.21 Permanent-magnet transducers: (a) rectilinear velocity transducer, and (b) DC tachometer
generator.

FIGURE 8.22 Equivalent circuit for a tachometer with an impedance load.
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from the modulated output, as described in Chapter 9. The direction of velocity is determined from
the phase angle of the modulated signal with respect to the carrier signal. Note that in an LVDT,
the amplitude of the AC magnetic flux is altered by the position of the ferromagnetic core; but in
an AC permanent-magnet tachometer, the DC magnetic flux generated by the magnetic rotor is
linked with the stator windings, and the associated induced voltage is caused by the speed of
rotation of the rotor.

For low-frequency applications (5 Hz or less), a standard AC supply (60 Hz) can be used to
power an AC tachometer. For moderate-frequency applications, a 400-Hz supply is widely used.
Typical sensitivity of an AC permanent-magnet tachometer is on the order of 50 to 100 mV·rad–1·s–1.

8.4.7 AC INDUCTION TACHOMETER

These tachometers are similar in construction to the two-phase induction motors. The stator arrange-
ment is identical to that of the AC permanent-magnet tachometer. The rotor, however, has windings
that are shorted and not energized by an external source, as shown in Figure 8.23(b). One set of
stator windings is energized with an AC supply. This induces a voltage in the rotor windings, and
it has two components. One component is due to the direct transformer action of the supply AC.
The other component is induced by the speed of rotation of the rotor, and its magnitude is
proportional to the speed of rotation. The nonenergized stator windings provide the output of the
tachometer. Voltage induced in the output stator windings is due to both the primary stator windings
and the rotor windings. As a result, the tachometer output has a carrier AC component and a
modulating component that is proportional to the speed of rotation. Demodulation would be needed
to extract the output component that is proportional to the angular speed of the rotor.

The main advantage of AC tachometers over their DC counterparts is the absence of slip-ring
and brush devices. In particular, the signal from a DC tachometer usually has a voltage ripple,

FIGURE 8.23 (a) AC Permanent-magnet tachometer, and (b) AC induction tachometer.
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known as commutator ripple, which is generated as the split segments of the slip ring pass over
the brushes. The frequency of the commutator ripple depends on the speed of operation; conse-
quently, filtering it out using a notch filter is difficult (a tunable notch filter would be necessary).
Also, there are problems with frictional loading and contact bounce in DC tachometers, and these
problems are absent in AC tachometers. It is known, however, that the output from an AC tachometer
is somewhat nonlinear (saturation effect) at high speeds. Furthermore, for measuring transient
speeds, signal demodulation would be necessary. Another disadvantage of AC tachometers is that
the output signal level depends on the supply voltage; hence, a stabilized voltage source that has
a very small output impedance is necessary for accurate measurements.

8.4.8 EDDY CURRENT TRANSDUCERS

If a conducting (i.e., low-resistivity) medium is subjected to a fluctuating magnetic field, eddy
currents are generated in the medium. The strength of eddy currents increases with the strength of
the magnetic field and the frequency of the magnetic flux. This principle is used in eddy current
proximity sensors. Eddy current sensors can be used as either dimensional gaging devices or high-
frequency vibration sensors.

FIGURE 8.24 Eddy current proximity sensor: (a) schematic diagram, and (b) impedance bridge.
©2000 CRC Press

http://www.semeng.ir


www.20file.org
A schematic diagram of an eddy current proximity sensor is shown in Figure 8.24(a). Unlike
variable-inductance proximity sensors, the target object of the eddy current sensor does not have
to be made of ferromagnetic material. A conducting target object is needed, but a thin film
conducting material — such as household aluminum foil glued onto a nonconducting target object
— would be adequate. The probe head has two identical coils, which will form two arms of an
impedance bridge. The coil closer to the probe face is the active coil. The other coil is the
compensating coil. It compensates for ambient changes, particularly thermal effects. The other two
arms of the bridge will consist of purely resistive elements [see Figure 8.24(b)]. The bridge is
excited by a radiofrequency voltage supply. The frequency can range from 1 MHz to 100 MHz.
This signal is generated from a radiofrequency converter (an oscillator) that is typically powered
by a 20-VDC supply. In the absence of the target object, the output of the impedance bridge is
zero, which corresponds to the balanced condition. When the target object is moved close to the
sensor, eddy currents are generated in the conducting medium because of the radiofrequency
magnetic flux from the active coil. The magnetic field of the eddy currents opposes the primary
field that generates these currents. Hence, the inductance of the active coil increases, creating an
imbalance in the bridge. The resulting output from the bridge is an amplitude-modulated signal
containing the radiofrequency carrier. This signal is demodulated by removing the carrier. The
resulting signal (modulating signal) measures the transient displacement (vibration) of the target
object. Low-pass filtering is used to remove the high-frequency leftover noise in the output signal
once the carrier is removed. For large displacements, the output is not linearly related to the
displacement. Furthermore, the sensitivity of the eddy current probe depends nonlinearly on the
nature of the conducting medium, particularly the resistivity. For example, for low resistivities,
sensitivity increases with resistivity; for high resistivities, sensitivity decreases with resistivity. A
calibrating unit is usually available with commercial eddy current sensors to accommodate various
target objects and nonlinearities. The gage factor is usually expressed in volts per millimeter. Note
that eddy current probes can also be used to measure resistivity and surface hardness (which affects
resistivity) in metals.

The facial area of the conducting medium on the target object has to be slightly larger than the
frontal area of the eddy current probe head. If the target object has a curved surface, its radius of
curvature has to be at least four times the diameter of the probe. These are not serious restrictions
because the typical diameter of the probe head is about 2 mm. Eddy current sensors are medium-
impedance devices; 1000 Ω output impedance is typical. Sensitivity is on the order of 5 V·m/m. Since
the carrier frequency is very high, eddy current devices are suitable for highly transient vibration
measurements — for example, bandwidths up to 100 kHz. Another advantage of an eddy current
sensor is that it is a noncontacting device; there is no mechanical loading on the moving (target) object.

8.4.9 VARIABLE-CAPACITANCE TRANSDUCERS

Capacitive or reactive transducers are commonly used to measure small transverse displacements
such as vibrations, large rotations, and fluid level oscillations. They can also be employed to measure
angular velocities. In addition to analog capacitive sensors, digital (pulse-generating) capacitive
tachometers are also available.

Capacitance C of a two-plate capacitor is given by

(8.43)

where A is the common (overlapping) area of the two plates, x is the gap width between the two
plates, and k is the dielectric constant, which depends on dielectric properties of the medium
between the two plates. A change in any one of these three parameters can be used in the sensing
process. Schematic diagrams for measuring devices that use this feature are shown in Figure 8.25.

C
kA

x
=

©2000 CRC Press

http://www.semeng.ir


www.20file.org
In Figure 8.25(a), angular displacement of one of the plates causes a change in A. In Figure 8.25(b),
a transverse displacement of one of the plates changes x. Finally, in Figure 8.25(c), a change in k
is produced as the fluid level between the capacitor plates changes. Liquid oscillations can be
sensed in this manner. In all three cases, the associated change in capacitance is measured directly
or indirectly, and is used to estimate the measurand. A popular method is to use a capacitance
bridge circuit to measure the change in capacitance, in a manner similar to how an inductance
bridge is used to measure changes in inductance. Other methods include measuring a change in
such quantities as charge (using a charge amplifier), voltage (using a high input-impedance device
in parallel), and current (using a very low impedance device in series) that will result from the
change in capacitance in a suitable circuit. An alternative method is to make the capacitor a part

of an inductance-capacitance (L-C) oscillator circuit; the natural frequency of the oscillator 
measures the capacitance. (Incidentally, this method can also be used to measure inductance.)

Capacitive Displacement Sensors

For the arrangement shown in Figure 8.25(a), since the common area A is proportional to the angle
of rotation θ, equation (8.43) can be written as

(8.44)

where K is a sensor constant. This is a linear relationship between C and θ. The capacitance can
be measured by any convenient method. The sensor is linearly calibrated to give the angle of rotation.

For the arrangement shown in Figure 8.25(b), the sensor relationship is

(8.45)

The constant K has a different meaning here. Note that equation (8.45) is a nonlinear relationship.
A simple way to linearize this transverse displacement sensor is to use an inverting amplifier, as
shown in Figure 8.26. Note that Cref is a fixed reference capacitance. Because the gain of the
operational amplifier is very high, the voltage at the negative lead (point A) is zero for most practical
purposes (because the positive lead is grounded). Furthermore, because the input impedance of the
op-amp is also very high, the current through the input leads is negligible. These are the two
common assumptions used in op-amp analysis. Accordingly, the charge balance equation for node
point A is

Now, in view of equation (8.45), one obtains the following linear relationship for the output voltage
vo in terms of the displacement x:

(8.46)

Hence, measurement of vo gives the displacement through linear calibration. The sensitivity of the
device can be increased by increasing vref and Cref. The reference voltage could be DC as well as
AC. With an AC reference voltage, the output voltage is a modulated signal that has to be
demodulated to measure transient displacements.

1 LC( )

C K= θ

C
K

x
=
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Capacitive Angular Velocity Sensor

The schematic diagram for an angular velocity sensor that uses a rotating-plate capacitor is shown
in Figure 8.27. Because the current sensor has negligible resistance, the voltage across the capacitor
is almost equal to the supply voltage vref, which is constant. It follows that the current in the circuit
is given by

FIGURE 8.25 Schematic diagrams of capacitive sensors: (a) capacitive rotation sensor; (b) capacitive
displacement sensor; and (c) capacitive liquid oscillation sensor.
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which, in view of equation (8.44), can be expressed as

(8.47)

This is a linear relationship for the angular velocity in terms of the measured current i. Care must
be exercised to guarantee that the current-measuring device does not interfere with the basic circuit.

An advantage of capacitance transducers is that because they are noncontacting devices, mechan-
ical loading effects are negligible. There is some loading due to inertial and frictional resistance in
the moving plate. This can be eliminated by using the moving object itself to function as the moving
plate. Variations in the dielectric properties due to humidity, temperature, pressure, and impurities
introduce errors. A capacitance bridge circuit can compensate for these effects. Extraneous capac-
itances, such as cable capacitance, can produce erroneous readings in capacitive sensors. This
problem can be reduced using a charge amplifier to condition the sensor signal. Another drawback
of capacitance displacement sensors is low sensitivity. For a transverse displacement transducer,
the sensitivity is typically less than one picofarad (pF) per millimeter (1 pF = 10–12 F). This problem
is not serious because high supply voltages and amplifier circuitry can be used to increase the sensor
sensitivity.

Capacitance Bridge Circuit

Sensors that are based on the change in capacitance (reactance) will require some means of
measuring that change. Furthermore, changes in capacitance that are not caused by a change in the
measurand — for example, due to change in humidity, temperature, etc. — will cause errors and
should be compensated for. Both these goals are accomplished using a capacitance bridge circuit.
An example is shown in Figure 8.28. In this circuit,

Z2 = reactance (i.e., capacitive impedance) of the capacitive sensor (of capacitance C2)

FIGURE 8.26 Inverting amplifier circuit used to linearize the capacitive transverse displacement sensor.

FIGURE 8.27 Rotating-plate capacitive angular velocity sensor.
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=

Z1 = reactance of the compensating capacitor C1 

=

Z4, Z3 = bridge completing impedances (typically reactances)
vref = excitation AC voltage

=
vo = bridge output

=
φ = phase lag of the output with respect to the excitation.

Using the two assumptions for the op-amp (potentials at the negative and positive leads are equal
and the current through these leads is zero), as discussed in Chapter 9, one can write the current
balance equations:

(i)

(ii)

where v is the common voltage at the op-amp leads. Next, eliminate v in equations (i) and (ii) to
obtain

(8.48)

It is noted that when 

FIGURE 8.28 A bridge circuit for capacitive sensors.
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(8.49)

the bridge output vo = 0, and the bridge is said to be balanced. Because all capacitors in the bridge
are similarly affected by ambient changes, a balanced bridge will maintain that condition even
under ambient changes, unless the sensor reactance Z2 is changed due to the measurand itself. It
follows that the ambient effects are compensated for (at least up to the first order) by a bridge
circuit. From equation (8.48), it is clear that the bridge output due to a sensor change of δZ, starting
from a balanced state, is given by

(8.50)

The amplitude and phase angle of δvo with respect to vref will determine δZ, assuming that Z1 and
Z4/Z3 are known.

8.4.10 PIEZOELECTRIC TRANSDUCERS

Some substances, such as barium titanate and single-crystal quartz, can generate an electrical charge
and an associated potential difference when subjected to mechanical stress or strain. This piezo-
electric effect is used in piezoelectric transducers. Direct application of the piezoelectric effect is
found in pressure and strain measuring devices, and many indirect applications also exist. They
include piezoelectric accelerometers and velocity sensors and piezoelectric torque sensors and force
sensors. It is also interesting to note that piezoelectric materials deform when subjected to a potential
difference (or charge). Some delicate test equipment (e.g., in vibration testing) use piezoelectric
actuating elements (reverse piezoelectric action) to create fine motions. Also, piezoelectric valves
(e.g., flapper valves), directly actuated using voltage signals, are used in pneumatic and hydraulic
control applications and in ink-jet printers. Miniature stepper motors based on the reverse piezo-
electric action are available.

Consider a piezoelectric crystal in the form of a disc with two electrodes plated on the two
opposite faces. Because the crystal is a dielectric medium, this device is essentially a capacitor that
can be modeled by a capacitance C, as in equation (8.43). Accordingly, a piezoelectric sensor can
be represented as a charge source with a series capacitive impedance (Figure 8.29) in an equivalent
circuit. The impedance from the capacitor is given by

(8.51)

FIGURE 8.29 Equivalent circuit representation of a piezoelectric sensor.
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As is clear from equation (8.51), the output impedance of piezoelectric sensors is very high,
particularly at low frequencies. For example, a quartz crystal may present an impedance of several
megohms at 100 Hz, increasing hyperbolically with decreasing frequencies. This is one reason why
piezoelectric sensors have a limitation on the useful lower frequency. The other reason is the charge
leakage.

Sensitivity

The sensitivity of a piezoelectric crystal can be represented either by its charge sensitivity or by
its voltage sensitivity. Charge sensitivity is defined as

(8.52)

where q denotes the generated charge and F denotes the applied force. For a crystal with surface
area A, equation (8.52) can be expressed as

(8.53)

where p is the stress (normal or shear) or pressure applied to the crystal surface. Voltage sensitivity
Sv is given by the change in voltage due to a unit increment in pressure (or stress) per unit thickness
of the crystal. Thus, in the limit, one obtains

(8.54)

where d denotes the crystal thickness. Now, because 

(8.55)

by using equation (8.43) for a capacitor element, the following relationship between charge sensi-
tivity and voltage sensitivity is obtained:

(8.56)

Note that k is the dielectric constant of the crystal capacitor, as defined by equation (8.43).

EXAMPLE 8.3

A barium titanate crystal has a charge sensitivity of 150.0 picocoulombs per newton (pC·N–1).
(Note: 1 pC = 1 × 10–12 coulombs; coulombs = farads × volts). The dielectric constant for the crystal
is 1.25 × 10–8 farads per meter (F·m–1). What is the voltage sensitivity of the crystal?

SOLUTION

The voltage sensitivity of the crystal is given by

S
q

Fq = ∂
∂

S
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or

�

The sensitivity of a piezolectric element is dependent on the direction of loading. This is because
the sensitivity depends on the crystal axis. Sensitivities of several piezoelectric materials along
their most sensitive crystal axis are listed in Table 8.2.

Piezoelectric Accelerometer

A more detailed discussion of a piezoelectric motion transducer or vibration sensor — the piezo-
electric accelerometer — in more detail is now provided. A piezoelectric velocity transducer is
simply a piezoelectric accelerometer with a built-in integrating amplifier in the form of a miniature
integrated circuit.  

Accelerometers are acceleration-measuring devices. It is known from Newton’s second law
that a force (f) is necessary to accelerate a mass (or inertia element), and its magnitude is given
by the product of mass (m) and acceleration (a). This product (ma) is commonly termed inertia
force. The rationale for this terminology is that if a force of magnitude ma were applied to the
accelerating mass in the direction opposing the acceleration, then the system could be analyzed
using static equilibrium considerations. This is known as D’Alembert’s principle. The force that
causes acceleration is itself a measure of the acceleration (mass is kept constant). Accordingly,
mass can serve as a front-end element to convert acceleration into a force. This is the principle of
operation of common accelerometers. There are many different types of accelerometers, ranging
from strain gage devices to those that use electromagnetic induction. For example, force that causes
acceleration can be converted into a proportional displacement using a spring element, and this
displacement can be measured using a convenient displacement sensor. Examples of this type are
differential-transformer accelerometers, potentiometer accelerometers, and variable-capacitance
accelerometers. Alternatively, the strain, at a suitable location of a member that was deflected due
to inertia force, can be determined using a strain-gage. This method is used in strain gage accel-
erometers. Vibrating-wire accelerometers use the accelerating force to tension a wire. The force is
measured by detecting the natural frequency of vibration of the wire (which is proportional to the
square root of tension). In servo force-balance (or null-balance) accelerometers, the inertia element
is restrained from accelerating by detecting its motion and feeding back a force (or torque) to
exactly cancel out the accelerating force (torque). This feedback force is determined, for example,
by knowing the motor current, and it is a measure of the acceleration.

TABLE 8.2
Sensitivities of Several Piezoelectric Materials

Material
Charge Sensitivity

Sq (pC·N–1)
Voltage Sensitivity

Sv (mV·m·N–1)

Lead zirconate titanate (PZT) 110 10
Barium titanate 140 6
Quartz 2.5 50
Rochelle salt 275 90

Sv = ⋅
× ⋅

= × ⋅
× ⋅

−

− −

− −

− −
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The advantages of piezoelectric accelerometers (also known as crystal accelerometers) over
other types of accelerometers are their light weight and high-frequency response (up to about
1 MHz). However, piezoelectric transducers are inherently high-output impedance devices that
generate small voltages (on the order of 1 mV). For this reason, special impedance-transforming
amplifiers (e.g., charge amplifiers) must be employed to condition the output signal and to reduce
loading error.

A schematic diagram for a compression-type piezoelectric accelerometer is shown in Figure 8.30.
The crystal and the inertia mass are restrained by a spring of very high stiffness. Consequently,
the fundamental natural frequency or resonant frequency of the device becomes high (typically
20 kHz). This gives a reasonably wide, useful range (typically up to 5 kHz). The lower limit of the
useful range (typically 1 Hz) is set by factors such as the limitations of the signal-conditioning
systems, the mounting methods, the charge leakage in the piezoelectric element, the time constant
of the charge-generating dynamics, and the signal-to-noise ratio. A typical frequency response curve
for a piezoelectric accelerometer is shown in Figure 8.31.

In compression-type crystal accelerometers, the inertia force is sensed as a compressive normal
stress in the piezoelectric element. There are also piezoelectric accelerometers that sense the inertia
force as a shear strain or tensile strain. For an accelerometer, acceleration is the signal that is being
measured (the measurand). Hence, accelerometer sensitivity is commonly expressed in terms of
electrical charge per unit acceleration or voltage per unit acceleration (compare this with equations
(8.53) and (8.54)). Acceleration is measured in units of acceleration due to gravity (g), and charge
is measured in picocoulombs (pC), which are units of 10–12 coulombs (C). Typical accelerometer
sensitivities are 10 pC·g–1 and 5 mV·g–1. Sensitivity depends on the piezoelectric properties and on
the mass of the inertia element. If a large mass is used, the reaction inertia force on the crystal will
be large for a given acceleration, thus generating a relatively large output signal. A large acceler-
ometer mass results in several disadvantages, however. In particular:

1. The accelerometer mass distorts the measured motion variable (mechanical loading
effect).

2. A heavier accelerometer has a lower resonant frequency and, hence, a lower useful
frequency range (Figure 8.31).

For a given accelerometer size, improved sensitivity can be obtained by using the shear-strain
configuration. In this configuration, several shear layers can be used (e.g., in a delta arrangement)
within the accelerometer housing, thereby increasing the effective shear area and, hence, the
sensitivity in proportion to the shear area. Another factor that should be considered in selecting an
accelerometer is its cross-sensitivity or transverse sensitivity. Cross-sensitivity primarily results
from manufacturing irregularities of the piezoelectric element, such as material unevenness and
incorrect orientation of the sensing element. Cross-sensitivity should be less than the maximum
error (percentage) that is allowed for the device (typically 1%).  

The technique employed to mount the accelerometer to an object can significantly affect the
useful frequency range of the accelerometer. Some common mounting techniques include:

1. Screw-in base
2. Glue, cement, or wax
3. Magnetic base
4. Spring-base mount
5. Hand-held probe.

Drilling holes in the object can be avoided by using the second through fifth methods, but the
useful range can decrease significantly when spring-base mounts or hand-held probes are used
(typical upper limit of 500 Hz). The first two methods usually maintain the full useful range,
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whereas the magnetic attachment method reduces the upper frequency limit to some extent (typically
1.5 kHz).

Piezoelectric signals cannot be read using low-impedance devices. The two primary reasons
for this are:

1. High output impedance in the sensor results in small output signal levels and large loading
errors.

2. The charge can quickly leak out through the load.

Charge Amplifier

The charge amplifier, which has a very high input impedance and a very low output impedance,
is the commonly used signal-conditioning device for piezoelectric sensors. Clearly, the impedance
at the charge amplifier output is much smaller than the output impedance of the piezoelectric sensor.
These impedance characteristics of a charge amplifier virtually eliminate loading error. Also, by
using a charge amplifier circuit with a large time constant, charge leakage speed can be decreased.
For example, consider a piezoelectric sensor and charge amplifier combination, as represented by
the circuit in Figure 8.32. One can examine how the charge leakage rate is slowed down by using
this arrangement. Sensor capacitance, feedback capacitance of the charge amplifier, and feedback

FIGURE 8.30 A compression-type piezoelectric accelerometer.

FIGURE 8.31 A typical frequency-response curve for a piezoelectric accelerometer.
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resistance of the charge amplifier are denoted by C, Cf , and Rf , respectively. The capacitance of
the cable that connects the sensor to the charge amplifier is denoted by Cc.
For an op-amp of gain K, the voltage at its negative (inverting) input is –vo /K, where vo is the
voltage at the amplifier output. Note that the positive input of the op-amp is grounded (zero
potential). Current balance at point A gives

(8.57)

Since gain K is very large (typically 105 to 109) compared to unity, this differential equation can
be approximated to

(8.58)

Alternatively, instead of using equation (8.57), it is possible to directly obtain equation (8.58) from
the two common assumptions (equal inverting and noninverting lead potentials and zero lead
currents) for an op-amp. Then the potential at the negative (inverting) lead would be zero, as the
positive lead is grounded. Also, as a result, the voltage across Cc would be zero. Hence, the current
balance at point A gives

This is identical to equation (8.58). The corresponding transfer function is

(8.59)

where s is the Laplace variable. Now, in the frequency domain (s = jω),

FIGURE 8.32 A peizoelectric sensor and charge amplifier combination.
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(8.60)

Note that the output is zero at zero frequency (ω = 0). Hence, a piezoelectric sensor cannot be
used for measuring constant (DC) signals. At very high frequencies, on the other hand, the transfer
function approaches the constant value –1/Cf , which is the calibration constant for the device.

From equation (8.58) or (8.60), which represent a first-order system, it is clear that the time
constant τc of the sensor-amplifier unit is

(8.61)

Suppose that the charge amplifier is properly calibrated (by the factor –1/Cf) so that the frequency
transfer function (equation 8.60) can be written as

(8.62)

Magnitude M of this transfer function is given by

(8.63)

As ω → ∞, note that M → 1. Hence, at infinite frequency, there is no error. Measurement accuracy
depends on the closeness of M to 1. Suppose that one wants the accuracy to be better than a
specified value Mo. Accordingly, one must have

(8.64)

or

(8.65)

If the required lower frequency limit is ωmin, the time constant requirement is

(8.66)

or

(8.67)
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It follows that a specified lower limit on frequency of operation, for a specified level of accuracy,
can be achieved by increasing the charge-amplifier time constant (i.e., by increasing Rf , Cf , or
both). For example, an accuracy better than 99% is obtained if

, or τcω > 7.0. The minimum frequency of a transient signal

that can tolerate this level of accuracy is . Now, ωmin can be set by adjusting the time
constant.

8.5 TORQUE, FORCE, AND OTHER SENSORS

The forced vibrations in a mechanical system depend on the forces and torques (excitations)
applied to the system. Also, the performance of the system can be specified in terms of forces
and torques that are generated, as in machine-tool operations such as grinding, cutting, forging,
extrusion, and rolling. Performance monitoring and evaluation, failure detection and diagnosis,
and vibration testing may depend considerably on accurate measurement of associated forces
and torques. In mechanical applications such as parts assembly, slight errors in motion can
generate large forces and torques. These observations highlight the importance of measuring
forces and torques. The strain gage is a sensor that is commonly used in this context. There are
numerous other types of sensors and transducers that are useful in the practice of mechanical
vibration. This section outlines several of these sensors.

8.5.1 STRAIN-GAGE SENSORS

Many types of force and torque sensors and also motion sensors such as accelerometers are
based on strain-gage measurements. Hence, strain gages are very useful in vibration instrumen-
tation. Although strain gages measure strain, the measurements can be directly related to stress
and force. Note, however, that strain gages can be used in a somewhat indirect manner (using
auxiliary front-end elements) to measure other types of variables, including displacement and
acceleration.

Equations for Strain-Gage Measurements

The change of electrical resistance in material when mechanically deformed is the property used
in resistance-type strain gages. The resistance R of a conductor that has length � and area of
cross section A is given by

(8.68)

where ρ denotes the resistivity of the material. Taking the logarithm of equation (8.68), then
logR = logρ + log(�/A). Now, taking the differential, one obtains

(8.69)
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The first term on the right-hand side of equation (8.69) depends on the change in resistivity,
and the second term represents deformation. It follows that the change in resistance comes from
the change in shape as well as from the change in resistivity of the material. For linear
deformations, the two terms on the right-hand side of equation (8.69) are linear functions of strain
ε; the proportionality constant of the second term, in particular, depends on Poisson’s ratio of the
material. Hence, the following relationship can be written for a strain-gage element:

(8.70)

The constant Ss is known as the sensitivity or gage factor of the strain-gage element. The numerical
value of this constant ranges from 2 to 6 for most metallic strain-gage elements and from 40 to
200 for semiconductor strain gages. These two types of strain gages are discussed later. The change
in resistance of a strain-gage element, which determines the associated strain [equation (8.70)], is
measured using a suitable electrical circuit.

Resistance strain gages are based on resistance change due to strain, or the piezoresistive
property of materials. Early strain gages were fine metal filaments. Modern strain gages are
manufactured primarily as metallic foil (e.g., using the copper-nickel alloy known as constantan)
or semiconductor elements (e.g., silicon with trace impurity boron). They are manufactured by first
forming a thin film (foil) of metal or a single crystal of semiconductor material and then cutting
it into a suitable grid pattern, either mechanically or by using photoetching (chemical) techniques.
This process is much more economical and is more precise than making strain gages with metal
filaments. The strain-gage element is formed on a backing film of electrically insulated material
(e.g., plastic). This element is cemented onto the member whose strain is to be measured. Alter-
natively, a thin film of insulating ceramic substrate is melted onto the measurement surface, on
which the strain gage is mounted directly. The direction of sensitivity is the major direction of
elongation of the strain-gage element [Figure 8.33(a)]. To measure strains in more than one
direction, multiple strain gages (e.g., various rosette configurations) are available as single units.
These units have more than one direction of sensitivity. Principal strains in a given plane (the
surface of the object on which the strain gage is mounted) can be determined using these multiple
strain-gage units. Typical foil-type strain gages have relatively large output signals.

A direct way to obtain strain-gage measurement is to apply a constant DC voltage across a
series-connected strain-gage element and a suitable resistor and to measure the output voltage vo

across the strain gage under open-circuit conditions (using a voltmeter with high-input impedance).
It is known as a potentiometer circuit or ballast circuit (see Figure 8.34(a)). This arrangement has
several weaknesses. Any ambient temperature variation will directly introduce some error because
of associated change in the strain-gage resistance and the resistance of the connecting circuitry.
Also, measurement accuracy will be affected by possible variations in the supply voltage vref .
Furthermore, the electrical loading error will be significant unless the load impedance is very high.
Perhaps the most serious disadvantage of this circuit is that the change in signal due to strain is
usually a very small percentage of the total signal level in the circuit output.

A more favorable circuit for use in strain-gage measurements is the Wheatstone bridge, shown
in Figure 8.34(b). One or more of the four resistors R1, R2, R3, and R4 in the circuit can represent
strain gages. To obtain the output relationship for the Wheatstone bridge circuit, assume that the
load impedance RL is very high. Hence, the load current i is negligibly small. Then, the potentials
at nodes A and B are
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and the output voltage vo = vA – vB is given by

(8.71)

Now, by using straightforward algebra, one obtains

FIGURE 8.33 (a) Strain-gage nomenclature; (b) typical foil-type strain gages; and (c) a semiconductor
strain gage.
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(8.72)

When this output voltage is zero, the bridge is said to be “balanced.” It follows from equation
(8.72) that for a balanced bridge,

(8.73)

Note that equation (8.73) is valid for any value of RL, not just for large RL, because when the
bridge is balanced, current i will be zero, even for small RL.

Bridge Sensitivity

Strain-gage measurements are calibrated with respect to a balanced bridge. When the strain gages
in the bridge deform, the balance is upset. If one of the arms of the bridge has a variable resistor,
it can be changed to restore the balance. The amount of this change measures the amount by which
the resistance of the strain gages changed, thereby measuring the applied strain. This is known as
the null-balance method of strain measurement. This method is inherently slow because of the time
required to balance the bridge each time a reading is taken. Hence, the null-balance method is

FIGURE 8.34 (a) A potentiometer circuit (ballast circuit) for strain-gage measurements, and (b) a Wheatstone
bridge circuit for strain-gage measurements.
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generally not suitable for dynamic (time-varying) measurements. This approach to strain measure-
ment can be speeded up using servo balancing, whereby the output error signal is fed back into an
actuator that automatically adjusts the variable resistance so as to restore the balance.

A more common method, which is particularly suitable for making dynamic readings from a
strain-gage bridge, is to measure the output voltage resulting from the imbalance caused by the
deformation of active strain gages in the bridge. To determine the calibration constant of a strain-
gage bridge, the sensitivity of the bridge output to changes in the four resistors in the bridge should
be known. For small changes in resistance, this can be determined using the differential relation
(or, equivalently, the first-order approximation for the Taylor series expansion):

(8.74)

The partial derivatives are obtained directly from equation (8.71). Specifically,

(8.75)

(8.76)

(8.77)

(8.78)

The required relationship is obtained by substituting equations (8.75) through (8.78) into (8.74);
thus,

(8.79)

This result is subject to equation (8.73) because changes are measured from the balanced condition.
Note from equation (8.79) that if all four resistors are identical (in value and material), resistance
changes due to ambient effects cancel out among the first-order terms (δR1, δR2, δR3, δR4), producing
no net effect on the output voltage from the bridge. Closer examination of equation (8.79) will
reveal that only the adjacent pairs of resistors (e.g., R1 with R2 and R3 with R4) must be identical
in order to achieve this environmental compensation. Even this requirement can be relaxed. As a
matter of fact, compensation is achieved if R1 and R2 have the same temperature coefficient and if
R3 and R4 have the same temperature coefficient.

The Bridge Constant

Numerous activation combinations of strain gages are possible in a bridge circuit; for example,
tension in R1 and compression in R2, as in the case of two strain gages mounted symmetrically at
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45° about the axis of a shaft in torsion. In this manner, the overall sensitivity of a strain-gage bridge
can be increased. It is clear from equation (8.79) that if all four resistors in the bridge are active,
the best sensitivity is obtained if, for example, R1 and R4 are in tension and R2 and R3 are in
compression, so that all four differential terms have the same sign. If more than one strain gage is
active, the bridge output can be expressed as

(8.80)

where

This constant is known as the bridge constant. The larger the bridge constant, the better the
sensitivity of the bridge.

EXAMPLE 8.4

A strain-gage load cell (force sensor) consists of four identical strain gages, forming a Wheatstone
bridge, which are mounted on a rod that has square cross section. One opposite pair of strain gages
is mounted axially, and the other pair is mounted in the transverse direction, as shown in Figure 8.35(a).
To maximize the bridge sensitivity, the strain gages are connected to the bridge as shown in Figure
8.35(b). Determine the bridge constant k in terms of Poisson’s ratio υ of the rod material.

SOLUTION

Suppose that δR1 = δR. Then, for the given configuration,

Note that from the definition of Poisson’s ratio, the transverse strain = (–υ) × longitudinal strain.
Now, it follows from equation (8.79) that

(8.81)

according to which the bridge constant is given by

�

The Calibration Constant

The calibration constant C of a strain-gage bridge relates the strain that is measured to the output
of the bridge. Specifically,

δ δv

v
k

R

R
o

ref

=
4

k = Bridge output in the general case
Bridge output if only one strain gage is active

δ υδ

δ υδ

δ δ

R R

R R

R R

2

3

4

= −

= −

=

δ
υ δv

v

R

R
o

ref

= +( )2 1
4

k = +( )2 1 υ
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(8.82)

Now, in view of equations (8.70) and (8.80), the calibration constant can be expressed as

(8.83)

where k is the bridge constant and Ss is the sensitivity or gage factor of the strain gage. Ideally,
the calibration constant should remain constant over the measurement range of the bridge
(i.e., independent of strain ε and time t) and should be stable with respect to ambient conditions.
In particular, there should not be any creep, nonlinearities such as hysteresis, or thermal effects.

EXAMPLE 8.5

A schematic diagram of a strain-gage accelerometer is shown in Figure 8.36(a). A point mass of
weight W is used as the acceleration-sensing element, and a light cantilever with rectangular cross
section, mounted inside the accelerometer casing, converts the inertia force of the mass into a strain.
The maximum bending strain at the root of the cantilever is measured using four identical active
semiconductor strain gages. Two of the strain gages (A and B) are mounted axially on the top

FIGURE 8.35 A strain-gage force sensor: (a) mounting configuration, and (b) bridge circuit.
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surface of the cantilever, and the remaining two gages (C and D) are mounted on the bottom surface,
as shown in Figure 8.36(b). In order to maximize the sensitivity of the accelerometer, indicate the
manner in which the four strain gages — A, B, C, and D — should be connected to a Wheatstone
bridge circuit. What is the bridge constant of the resulting circuit?

Obtain an expression relating the applied acceleration a (in units of g, which denotes acceler-
ation due to gravity) to the bridge output δvo (measured using a bridge balanced at zero acceleration)
in terms of the following parameters:

W = weight of the seismic mass at the free end of the cantilever element
E = Young’s modulus of the cantilever
� = length of the cantilever

FIGURE 8.36 A strain-gage accelerometer: (a) schematic diagram; (b) strain-gage mounting configuration;
and (c) bridge connections.
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b = cross-section width of the cantilever
h = cross-section height of the cantilever
Ss = sensitivity (gage factor) of each strain gage
vref = supply voltage to the bridge.

If W = 0.02 lb, E = 10 × 106 lbf·in–2, � = 1 in, b = 0.1 in, h = 0.05 in, Ss = 200, and vref = 20 V,
determine the sensitivity of the accelerometer in mV·g–1.

If the yield strength of the cantilever element is 10 × l03 lbf·in–2, what is the maximum
acceleration that could be measured using the accelerometer?

Is the cross-sensitivity [i.e., the sensitivity in the two directions orthogonal to the direction of
sensitivity shown in Figure 8.36(a)] small with your arrangement of the strain-gage bridge? Explain.
Note: For a cantilever subjected to force F at the free end, the maximum stress at the root is given by

(8.84)

with the present notation.

SOLUTION

Clearly, the bridge sensitivity is maximized by connecting the strain gages A, B, C, and D to the
bridge as shown in Figure 8.36(c). This follows from equation (8.79), noting that the contributions
from all four strain gages are positive when δR1 and δR4 are positive, and δR2 and δR3 are negative.
The bridge constant for the resulting arrangement is k = 4. Hence, from equation (8.80), one obtains

or, from equations (8.82) and (8.83),

Also,

where F denotes the inertia force:

Note that  is the acceleration in the direction of sensitivity, and /g = a is the acceleration in
units of g. Thus,

(8.85)
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or

(8.86)

Now, with the given values,

Hence,

Cross-sensitivity comes from accelerations in the two directions (y and z) orthogonal to the direction
of sensitivity (x). In the lateral (y) direction, the inertia force causes lateral bending. This will
produce equal tensile (or compressive) strains in B and D, and equal compressive (or tensile) strains
in A and C. According to the bridge circuit, one sees that these contributions cancel each other. In
the axial (z) direction, the inertia force causes equal tensile (or compressive) stresses in all four
strain gages. These also will cancel out, as is clear from the following relationship for the bridge:

(8.87)

with

which gives

(8.88)

It follows that this arrangement is good with respect to cross-sensitivity problems.
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Data Acquisition

As noted earlier, the two common methods of measuring strains using a Wheatstone bridge circuit
are the (1) null-balance method and (2) imbalance output method. One possible scheme for using
the first method is shown in Figure 8.37(a). In this particular arrangement, two bridge circuits are
used. The active bridge contains the active strain gages, dummy gages, and bridge-completion
resistors. The reference bridge has four resistors, one of which is micro-adjustable, either manually
or automatically. The outputs from the two bridges are fed into a difference amplifier, which provides
an amplified difference of the two signals. This error signal is indicated on a null detector, such as
a galvanometer. Initially, both bridges are balanced. When the measurement system is in use, the
active gages are subjected to the strain that is being measured. This upsets the balance, giving a
net output, which is indicated on the null detector. In manual operation of the null-balance mech-
anism, the resistance knob in the reference bridge is adjusted carefully until the galvanometer
indicates a null reading. The knob can be calibrated to indicate the measured strain directly. In
servo operation, which is much faster than the manual method, the error signal is fed into an
actuator that automatically adjusts the variable resistor in the reference bridge until the null balance
is achieved. Actuator movement measures the strain.

For measuring dynamic strains in vibrating systems, either the servo null-balance method or
the imbalance output method should be employed. A schematic diagram for the imbalance output
method is shown in Figure 8.37(b). In this method, the output from the active bridge is directly
measured as a voltage signal and calibrated to provide the measured strain. An AC bridge can be

FIGURE 8.37 Strain-gage bridge measurement: (a) null-balance method, and (b) imbalance output method.
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used, where the bridge is powered by an AC voltage. The supply frequency should be about ten
times the maximum frequency of interest in the dynamic strain signal (bandwidth). A supply
frequency on the order of 1 kHz is typical. This signal is generated by an oscillator and then fed
into the bridge. The transient component of the output from the bridge is very small (typically less
than 1 mV and possibly a few microvolts). This signal must be amplified, demodulated (especially
if the signals are transient), and filtered to provide the strain reading. The calibration constant of
the bridge should be known in order to convert the output voltage to strain.

Strain-gage bridges powered by DC voltages are very common. They have the advantages of
simplicity with regard to necessary circuitry and portability. The advantages of AC bridges include
improved stability (reduced drift) and accuracy, and reduced power consumption.

Accuracy Considerations

Foil gages are available with resistances as low as 50 Ω and as high as several kilohms. The power
consumption of the bridge decreases with increased resistance. This has the added advantage of
decreased heat generation. Bridges with a high range of measurement (e.g., a maximum strain of
0.01 m·m–1) are available. The accuracy depends on the linearity of the bridge, environmental
(particularly temperature) effects, and mounting techniques. For example, zero shift, due to the
strains produced when the cement that is used to mount the strain gage dries, will result in calibration
error. Creep will introduce errors during static and low-frequency measurements. Flexibility and
hysteresis of the bonding cement will bring about errors during high-frequency strain measurements.
Resolutions on the order of 1 µm·m–1 (i.e., 1 microstrain) are common. The cross-sensitivity should
be small (say, less than 1% of the direct sensitivity). Manufacturers usually provide the values of
the cross-sensitivity factors for their strain gages. This factor, when multiplied by the cross strain
present in a given application, gives the error in the strain reading due to cross-sensitivity.

Often, measurements of strains in moving members are needed, for example, in real-time
monitoring and failure detection in machine tools. If the motion is small or the device has a limited
stroke, strain gages mounted on the moving member can be connected to the signal-conditioning
circuitry and the power source using coiled flexible cables. For large motions, particularly in rotating
shafts, some form of commutating arrangement must be used. Slip rings and brushes are commonly
used for this purpose. When AC bridges are used, a mutual-induction device (rotary transformer)
can be used, with one coil located on the moving member and the other coil stationary. To
accommodate and compensate for errors (e.g., losses and glitches in the output signal) caused by
commutation, it is desirable to place all four arms of the bridge, rather than just the active arms,
on the moving member.

Semiconductor Strain Gages

In some low-strain applications (e.g., dynamic torque measurement), the sensitivity of foil gages is
not adequate to produce an acceptable strain gage signal. Semiconductor (SC) strain gages are
particularly useful in such situations. The strain element of an SC strain gage is made of a single
crystal of piezoresistive material such as silicon, doped with a trace impurity such as boron. A typical
construction is shown in Figure 8.38. The sensitivity (gage factor) of an SC strain gage is about two
orders of magnitude higher than that of a metallic foil gage (typically, 40 to 200). The resistivity is
also higher, providing reduced power consumption and heat generation. Another advantage of SC
strain gages is that they deform elastically to fracture. In particular, mechanical hysteresis is
negligible. Furthermore, they are smaller and lighter, providing less cross-sensitivity, reduced
distribution error (i.e., improved spatial resolution), and negligible error due to mechanical loading.
The maximum strain that is measurable using a semiconductor strain gage is typically 0.003 m/m
(i.e., 3000 µε). Strain-gage resistance can be several hundred ohms (typically, 120 Ω or 350 Ω).
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There are several disadvantages associated with semiconductor strain gages, however, that can
be interpreted as advantages of foil gages. Undesirable characteristics of SC gages include:

1. The strain-resistance relationship is more nonlinear.
2. They are brittle and difficult to mount on curved surfaces.
3. The maximum strain that can be measured is an order of magnitude smaller (typically,

less than 0.01 m·m–1).
4. They are more costly.
5. They have a much higher temperature sensitivity.

The first disadvantage is illustrated in Figure 8.39. There are two types of semiconductor strain
gages: the P-type and the N-type. In P-type strain gages, the direction of sensitivity is along the
(1, 1, 1) crystal axis, and the element produces a “positive” (P) change in resistance in response
to a positive strain. In N-type strain gages, the direction of sensitivity is along the (1, 0, 0) crystal
axis, and the element responds with a “negative” (N) change in resistance to a positive strain. In
both types, the response is nonlinear and can be approximated by the quadratic relationship

(8.89)

The parameter S1 represents the linear sensitivity, which is positive for P-type gages and negative
for N-type gages. Its magnitude is usually somewhat larger for P-type gages, thereby providing
better sensitivity. The parameter S2 represents the degree of nonlinearity, which is usually positive
for both types of gages. Its magnitude, however, is typically a little smaller for P-type gages. It
follows that P-type gages are less nonlinear and have higher strain sensitivities. The nonlinear
relationship given by equation (8.89) or the nonlinear characteristic curve (Figure 8.39) should be
used when measuring moderate to large strains with semiconductor strain gages. Otherwise, the
nonlinearity error would be excessive.

Force and Torque Sensors

Torque and force sensing is useful in vibration applications, including the following:

FIGURE 8.38 Details of a semiconductor strain gage.
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1. In vibration control of machinery where a small motion error can cause large damaging
forces or performance degradation

2. In high-speed vibration control when motion feedback alone is not fast enough; here,
force feedback and feedforward force control can be used to improve the accuracy and
bandwidth

3. In vibration testing, monitoring, and diagnostic applications, where torque and force sensing
can detect, predict, and identify abnormal operation, malfunction, component failure, or
excessive wear (e.g., in monitoring of machine tools such as milling machines and drills)

4. In experimental modal analysis where both excitation forces and response motioning
may be needed to experimentally determine the system model.

In most applications, torque (or force) is sensed by detecting either an effect or the cause of torque
(or force). There are also methods for measuring torque (or force) directly. Common methods of
torque sensing include:

FIGURE 8.39 Nonlinear behavior of a semiconductor (silicon-boron) strain gage: (a) a P-type gage, and
(b) an N-type gage.
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1. measuring the strain in a sensing member between the drive element and the driven load,
using a strain-gage bridge

2. measuring the displacement in a sensing member (as in the first method) — either directly,
using a displacement sensor, or indirectly, by measuring a variable, such as magnetic
inductance or capacitance, that varies with displacement

3. measuring the reaction in the support structure or housing (by measuring a force) and
the associated lever arm length

4. in electric motors, measuring the field or armature current that produces motor torque;
in hydraulic or pneumatic actuators, measuring the actuator pressure

5. measuring the torque directly, using piezoelectric sensors, for example
6. employing the servo method to balance the unknown torque with a feedback torque

generated by an active device (say, a servomotor) whose torque characteristics are known
precisely

7. measuring the angular acceleration in a known inertia element when the unknown torque
is applied.

Note that force sensing can be accomplished by essentially the same techniques. Some types of
force sensors (e.g., strain-gage force sensor) have been introduced before. The discussion here is
primarily limited to torque sensing. The extension of torque-sensing techniques to force sensing is
somewhat straightforward.

Strain–Gage Torque Sensors

The most straightforward method of torque sensing is to connect a torsion member between the
drive unit and the load in series, and then to measure the torque in the torsion member. If a circular
shaft (solid or hollow) is used as the torsion member, the torque–strain relationship becomes
relatively simple. A complete development of the relationship is found in standard textbooks on
elasticity, solid mechanics, or strength of materials (also, see Chapter 6). With reference to Figure
8.40, it can be shown that the torque T can be expressed in terms of the direct strain ε on the shaft
surface along a principal stress direction (i.e., at 45° to the shaft axis) as

(8.90)

where G = shear modulus of the shaft material; J = polar moment of area of the shaft; and r = shaft
radius (outer). This is the basis of torque sensing using strain measurements. Using the general
bridge equation (8.82) along with (8.83) in equation (8.90), one can obtain torque T from bridge
output δvo:

(8.91)

where Ss is the gage factor (or sensitivity) of the strain gages. The bridge constant k depends on
the number of active strain gages used. Strain gages are assumed to be mounted along a principal
direction. Three possible configurations are shown in Figure 8.41. In configurations (a) and (b),
only two strain gages are used, and the bridge constant k = 2. Note that both axial loads and bending
are compensated with the given configurations because resistance in both gages will be changed
by the same amount (same sign and same magnitude) that cancels out up to first order, for the
bridge circuit connection shown in Figure 8.41. Configuration (c) has two pairs of gages, mounted
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on the two opposite surfaces of the shaft. The bridge constant is doubled in this configuration and,
here again, the sensor clearly self-compensates for axial and bending loads up to first order [O(δR)].

For a circular-shaft torque sensor that uses semiconductor strain gages, design criteria for
obtaining a suitable value for the polar moment of area (J) are listed in Table 8.3. Note that φ is a
safety factor.

Although the manner in which strain gages are configured on a torque sensor can be exploited
to compensate for cross-sensitivity effects arising from factors such as tensile and bending loads,
it is advisable to use a torque-sensing element that inherently possesses low sensitivity to those
factors that cause error in a torque measurement. A tubular torsion element is convenient for
analytical purposes because of the simplicity of the associated expressions for design parameters.
Unfortunately, such an element is not very rigid to bending and tensile loading. Alternative shapes
and structural arrangements must be considered if inherent rigidity (insensitivity) to cross-loads is
needed. Furthermore, a tubular element has the same strain at all locations on the element surface.

FIGURE 8.40 (a) Linear distribution of shear stress in a circular shaft under pure torsion; (b) pure shear
state of stress and principal directions x and y; and (c) Mohr’s circle.
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This does not give us a choice with respect to mounting locations of strain gages in order to
maximize the torque sensor sensitivity. Another disadvantage of the basic tubular element is that
the surface is curved; therefore, much care is needed in mounting fragile semiconductor gages,
which could be easily damaged even with slight bending. Hence, a sensor element that has flat
surfaces to mount the strain gages would be desirable. A torque-sensing element having the
foregoing desirable characteristics (i.e., good strength, inherent insensitivity to cross-loading, non-
uniform strain distribution on the surface, and availability of flat surfaces to mount strain gages)
is shown in Figure 8.42. Note that two sensing elements are connected radially between the drive
unit and the driven member. The sensing elements undergo bending while transmitting a torque
between the driver and the driven member. Bending strains are measured at locations of high
sensitivity and are taken to be proportional to the transmitted torque. Analytical determination of

FIGURE 8.41 Strain-gage configurations for a circular shaft torque sensor.

TABLE 8.3
Design Criteria for a Strain-Gage Torque-Sensing Element
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the calibration constant is not easy for such complex sensing elements, but experimental determi-
nation is straightforward. Note that the strain-gage torque sensors measure the direction as well as
the magnitude of the torque transmitted through it.

Deflection Torque Sensors

Instead of measuring strain in the sensor element, the actual deflection (twisting or bending) can
be measured and used to determine torque, through a suitable calibration constant. For a circular-
shaft (solid or hollow) torsion element, the governing relationship is given by:

(8.92)

The calibration constant GJ/L must be small in order to achieve high sensitivity. This means that
the element stiffness should be low. This will limit the bandwidth (which measures speed of
response) and gain (which determines steady-state error) of the overall system. The twist angle θ

FIGURE 8.42 Use of a bending element in torque sensing: (a) sensing element, and (b) element connection.
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is very small (e.g., a fraction of a degree) in systems with high bandwidth. This requires very
accurate measurement of θ in order to determine the torque T. A type of displacement sensor that
can be used is as follows: two ferromagnetic gear wheels are splined at two axial locations of the
torsion element. Two stationary proximity probes of the magnetic induction type (self-induction or
mutual induction) are placed radially, facing the gear teeth, at the two locations. As the shaft rotates,
the gear teeth change the flux linkage of the proximity sensor coils. The resulting output signals
of the two probes are pulse sequences, shaped somewhat like sine waves. The phase shift of one
signal with respect to the other determines the relative angular deflection of one gear wheel with
respect to the other, assuming that the two probes are synchronized under no-torque conditions.
Both the magnitude and the direction of the transmitted torque are determined using this method.
A 360° phase shift corresponds to a relative deflection by an integer multiple of the gear pitch. It
follows that deflections less than half the pitch can be measured without ambiguity. Assuming that
the output signals of the two probes are sine waves (narrow-band filtering can be used to achieve
this), the phase shift will be proportional to the angle of twist θ.

Variable–Reluctance Torque Sensor

A torque sensor that is based on the sensor element deformation and does not require a contacting
commutator is a variable-reluctance device that operates like a differential transformer (RVDT or
LVDT). The torque-sensing element is a ferromagnetic tube that has two sets of slits, typically
oriented along the two principal stress directions of the tube (45°) under torsion. When a torque
is applied to the torsion element, one set of gaps closes and the other set opens as a result of the
principal stresses normal to the slit axes. Primary and secondary coils are placed around the slitted
tube, and they remain stationary. One segment of the secondary coil is placed around one set of
slits, and the second segment is placed around the other (perpendicular) set. The primary coil is
excited by an AC supply, and the induced voltage vo in the secondary coil is measured. As the tube
deforms, it changes the magnetic reluctance in the flux linkage path, thus changing the induced
voltage. The two segments of the secondary coil should be connected so that the induced voltages
are absolutely additive (algebraically subtractive) — because one voltage increases and the other
decreases — to obtain the best sensitivity. The output signal should be demodulated (by removing
the carrier frequency component) to measure transient torques effectively. Note that the direction
of torque is given by the sign of the demodulated signal.

Reaction Torque Sensors

The foregoing methods of torque sensing use a sensing element that is connected between the drive
member and the driven member. A major drawback of such an arrangement is that the sensing
element modifies the original system in an undesirable manner, particularly by decreasing the
system stiffness and adding inertia. Not only will the overall bandwidth of the system decrease,
but the original torque will also be changed (mechanical loading) because of the inclusion of an
auxiliary sensing element. Furthermore, under dynamic conditions, the sensing element will be in
motion, thereby making the torque measurement more difficult. The reaction method of torque
sensing eliminates these problems to a large degree. This method can be used to measure torque
in a rotating machine. The supporting structure (or housing) of the rotating machine (e.g., motor,
pump, compressor, turbine, generator) is cradled by releasing its fixtures, and the effort necessary
to keep the structure from moving is measured. A schematic representation of the method is shown
in Figure 8.43(a). Ideally, a lever arm is mounted on the cradled housing, and the force required
to fix the housing is measured using a force sensor (load cell). The reaction torque on the housing
is given by

(8.93)T F LR R= ⋅
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where FR = reation force measured using load cell and L = lever arm length.
Alternatively, strain gages or other types of force sensors can be mounted directly at the fixture

locations (e.g., at the mounting bolts) of the housing to measure the reaction forces without cradling
the housing. Then, the reaction torque is determined with a knowledge of the distance of the fixture
locations from the shaft axis.

The reaction torque method of torque sensing is widely used in dynamometers (reaction
dynamometers) that determine the transmitted power in rotating machinery through torque and
shaft speed measurements. A drawback of reaction-type torque sensors can be explained using
Figure 8.43(b). A motor with rotor inertia J, which rotates at angular acceleration , is shown. By
Newton’s third law (action = reaction), the electromagnetic torque generated at the rotor of the
motor Tm and the frictional torques Tf1 and Tf2 will be reacted back onto the stator and housing. By
applying Newton’s second law to the motor rotor and the housing combination, one obtains

FIGURE 8.43 (a) Schematic representation of a reaction torque sensor setup (reaction dynamometer), and
(b) various torque components.

˙̇θ
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(8.94)

Note that TL is what must be measured. Under accelerating or decelerating conditions, the
reaction torque TR is not equal to the actual torque TL that is transmitted. One method of
compensating for this error is to measure the shaft acceleration, compute the inertia torque, and
adjust the measured reaction torque using this inertia torque. Note that the frictional torque in
the bearings does not enter the final equation (8.94). This is an advantage of this method.

8.5.2 MISCELLANEOUS SENSORS

Motion and force/torque sensors of the types described thus far are widely used in vibration
instrumentation. Several other types of sensors are also useful. A few of them are indicated now.

Stroboscope

Consider an object that executes periodic motions, such as vibrations or rotations, in a rather
dark environment. Suppose that a light is flashed at the object at the same frequency as the
moving object. Because the object completes a full cycle of motion during the time period
between two adjacent flashes, the object will appear to be stationary. This is the principle of
operation of a stroboscope. The main components of a stroboscope are a high-intensity “strobe”
lamp and circuitry to vary the frequency of the electrical pulse signal that energizes the lamp.
The flashing frequency can be varied either manually using a knob or according to the frequency
of an external periodic signal (trigger signal) that is applied to the stroboscope.

It is clear that by synchronizing the stroboscope with a moving (vibrating, rotating) object
so that the object appears stationary, and then noting the flashing (strobe) frequency, the
frequency of vibration or speed of rotation of the object can be measured. In this sense,
stroboscope is a non-contacting vibration frequency sensor or a tachometer (rotating speed
sensor). Note that the object appears stationary for any integer multiple of the synchronous
flashing frequency. Hence, once the strobe is synchronized with the moving object, it is a good
practice to check whether the strobe synchronizes also at an integer fraction of that flashing
frequency (typically, trying 1/2, 1/3, 1/4, and 1/5 the original synchronous frequency would be
adequate). The lowest synchronous frequency thus obtained is the correct speed (frequency) of
the object. Because the frequency of visual persistence of a human is about 15 Hz, the stationary
appearance will not be possible using a stroboscope below this frequency. Hence, the low-
frequency limit for a stroboscope is about 15 Hz.

In addition to serving as a sensor for vibration frequency and rotating speed, a stroboscope
has many other applications. For example, by maintaining the strobe (flashing) frequency close
(but not equal) to the object frequency, the object will appear to move very slowly. In this
manner, visual inspection of objects that execute periodic motions at high speed are possible.
Also, stroboscopes are widely used in dynamic balancing of rotating machinery (see Chapter
12). In this case, it is important to measure the phase angle of the resultant imbalance force
with respect to a coordinate axis (direction) that is fixed to the rotor. Suppose that a radial line
is marked on the rotor. If a stroboscope is synchronized with the rotor such that the marked
line appears not only stationary but also oriented in a fixed direction (e.g., horizontal or vertical),
then, in effect, the strobe signal is in phase with the rotation of the rotor. Then, by comparing
the imbalance force signal of the rotor (obtained, for example, by an accelerometer or a force
sensor at the bearings of the rotor) with the synchronized strobe signal (with a fixed reference),
by means of an oscilloscope or a phase meter, it is possible to determine the orientation of the
imbalance force with respect to a fixed body reference of the rotating machine.

T T JL R= − ˙̇θ
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Fiber-Optic Sensors and Lasers

The characteristic component in a fiber-optic sensor is a bundle of glass fibers (typically a few
hundred) that can carry light. Each optical fiber may have a diameter on the order of 0.01 mm.
There are two basic types of fiber-optic sensors. In one type — the “indirect” or the extrinsic type
— the optical fiber acts only as the medium in which the sensed light is transmitted. In this type,
the sensing element itself does not consist of optical fibers. In the second type — the “direct” or
the intrinsic type — the optical fiber bundle itself acts as the sensing element. Then, when the
conditions of the sensed medium change, the light-propagation properties of the optical fibers
change, providing a measurement of the change in the conditions. Examples of the first (extrinsic)
type of sensor include fiber-optic position sensors and tactile (distributed touch) sensors. The second
(intrinsic) type of sensor is found, for example, in fiber-optic gyroscopes, fiber-optic hydrophones,
and some types of micro-displacement or force sensors.

A schematic representation of a fiber-optic position sensor (or proximity sensor or displacement
sensor) is shown in Figure 8.44(a). The optical fiber bundle is divided into two groups: transmitting
fibers and receiving fibers. Light from the light source is transmitted along the first bundle of fibers
to the target object whose position is being measured. Light reflected onto the receiving fibers by the
surface of the target object is carried to a photodetector. The intensity of the light received by the
photodetector will depend on the position x of the target object. In particular, if x = 0, the transmitting
bundle will be completely blocked off, and the light intensity at the receiver will be zero. As x is
increased, the received light intensity will increase because more and more light will be reflected onto
the receiving bundle tip. This will reach a peak at some value of x. When x is increased beyond that
value, more and more light will be reflected outside the receiving bundle; thus, the intensity of the
received light will decrease. Hence, in general, the proximity–intensity curve for an optical proximity
sensor will be nonlinear and will have the shape shown in Figure 8.44(b). Using this (calibration)

FIGURE 8.44 (a) A fiber-optic proximity sensor, and (b) a nonlinear characteristic curve.
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curve, one can determine the position (x) once the intensity of the light received at the photosensor
is known. The light source could be a laser (light amplification by stimulated emission of radiation,
structured light), an infrared light source, or some other type, such as a light-emitting diode (LED).
The light sensor (photodetector) could be some light-sensitive discrete semiconductor element such
as a photodiode or a photo field effect transistor (photo FET). Very fine resolutions better than
1 × 10–6 cm can be obtained using a fiber-optic position sensor. An optical encoder is a digital
(or pulse-generating) motion transducer. Here, a light beam is intercepted by a moving disk that
has a pattern of transparent windows. The light that passes through, as detected by a photosensor,
provides the transducer output. These sensors can also be considered in the extrinsic category.

The advantages of fiber optics include insensitivity to electrical and magnetic noise (due to
optical coupling), safe operation in explosive, high temperature, and hazardous environments, and
high sensitivity. Furthermore, mechanical loading and wear problems do not exist because fiber-
optic position sensors are non-contacting devices with stationary sensor heads. The disadvantages
include direct sensitivity to variations in the intensity of the light source and dependence on ambient
conditions (ambient light, dirt, moisture, smoke, etc.).

As an intrinsic application of fiber optics in sensing, consider a straight optical fiber element
that is supported at the two ends. In this configuration, almost 100% of the light at the source end
will transmit through the optical fiber and will reach the detector (receiver) end. Then, suppose
that a slight load is applied to the optical fiber segment at its mid-span. The fiber will deflect slightly
due to the load and, as a result, the amount of light received at the detector can significantly drop.
For example, a deflection of just 50 µm can result in a drop in intensity at the detector by a factor
of 25. Such an arrangement can be used in deflection, force, and tactile sensing. Another intrinsic
application is the fiber-optic gyroscope, as described below.

Fiber-Optic Gyroscope

This is an angular speed sensor that uses fiber optics. Contrary to the implication of its name,
however, it is not a gyroscope in the conventional sense. Two loops of optical fibers wrapped around
a cylinder are used in this sensor. One loop carries a monochromatic light (or laser) beam in the
clockwise direction, and the other loop carries a beam from the same light (laser) source in the
counterclockwise direction. Because the laser beam traveling in the direction of rotation of the
cylinder has a higher frequency than that of the other beam, the difference in frequencies of the
two laser beams received at a common location will measure the angular speed of the cylinder.
This can be accomplished through interferometry, as the light and dark patterns of the detected
light will measure the frequency difference. Note that the length of the optical fiber in each loop
can exceed 100 m. Angular displacements can be measured with the same sensor, simply by counting
the number of cycles and clocking the fractions of cycles. Acceleration can be determined by
digitally determining the rate of change of speed.

Laser Doppler Interferometer

The laser (light amplification by stimulated emission of radiation) produces electromagnetic radi-
ation in the ultraviolet, visible, or infrared bands of the spectrum. A laser can provide a single-
frequency (monochromatic) light source. Furthermore, the electromagnetic radiation in a laser is
coherent in the sense that all waves generated have constant phase angles. The laser uses oscillations
of atoms or molecules of various elements. The helium–neon (HeNe) laser and the semiconductor
laser are commonly used in industrial applications.

As noted earlier, the laser is useful in fiber optics; but it can also be used directly in sensing
and gaging applications. The laser Doppler interferometer is one such sensor. It is useful in the
accurate measurement of small displacements; for example, in strain measurements. To understand
the operation of this device, two phenomena should be explained: the Doppler effect and light wave
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interference. Consider a wave source (e.g., a light source or sound source) that is moving with
respect to a receiver (observer). If the source moves toward the receiver, the frequency of the
received wave appears to have increased; if the source moves away from the receiver, the frequency
of the received wave appears to have decreased. The change in frequency is proportional to the
velocity of the source relative to the receiver. This phenomenon is known as the Doppler effect.
Now consider a monochromatic (single-frequency) light wave of frequency f (say, 5 × 1014 Hz)
emitted by a laser source. If this ray is reflected by a target object and received by a light detector,
the frequency of the received wave would be

(8.95)

The frequency increase ∆f will be proportional to the velocity v of the target object, which is
assumed positive when moving toward the light source. Hence,

(8.96)

Now, by comparing the frequency f2 of the reflected wave with the frequency

(8.97)

of the original wave, one can determine ∆f and, hence, the velocity v of the target object.
The change in frequency ∆f due to the Doppler effect can be determined by observing the

fringe pattern due to light wave interference. To understand this, consider the two waves

(8.98)

and

(8.99)

If one adds these two waves, the resulting wave would be

which can be expressed as

(8.100)

It follows that the combined signal will beat at the beat frequency ∆f/2. When f2 is very close to f1

(i.e., when ∆f is small compared to f), these beats will appear as dark and light lines (fringes) in
the resulting light wave. This is known as wave interference. Note that ∆f can be determined by
two methods:

1. by measuring the spacing of the fringes
2. by counting the beats in a given time interval, or by timing successive beats using a

high-frequency clock signal.

The velocity of the target object is determined in this manner. Displacement can be obtained simply
by digital integration (or by accumulating the count). A schematic diagram for the laser Doppler

f f f2 = + ∆

∆f cv=

f f1 =

v a f t1 12= sin π

v a f t2 22= sin π

v v v a f t f t= + = +( )1 2 1 22 2sin sinπ π

v a f f t f f t= +( ) −( )2 2 1 2 1sin cosπ π
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interferometer is shown in Figure 8.45. Industrial interferometers usually employ a helium–neon
laser that has waves of two frequencies close together. In that case, the arrangement shown in
Figure 8.45 must be modified to take into account the two frequency components.

Note that there are laser interferometers that directly measure displacement rather than speed.
They are based on measuring phase difference between the direct and the returning laser, not the
Doppler effect (frequency difference). In this case, integration is not needed to obtain displacement
from a measured velocity.

Ultrasonic Sensors

Audible sound waves have frequencies in the range of 20 Hz to 20 kHz. Ultrasound waves are
pressure waves, just like sound waves, but their frequencies are higher than audible frequencies.
Ultrasonic sensors are used in many applications, including displacement and vibration sensing,
medical imaging, ranging systems for cameras with autofocusing capabilities, level sensing,
machine monitoring, and speed sensing. For example, in medical applications, ultrasound probes
with frequencies of 40 kHz, 75 kHz, 7.5 MHz, and 10 MHz are commonly used. Ultrasound can
be generated according to several principles. For example, high-frequency (gigahertz) oscillations
in piezoelectric crystals subjected to electrical potentials are used to generate very high-frequency
ultrasound. Another method is to use the magnetostrictive property of ferromagnetic materials.
Ferromagnetic materials deform when subjected to magnetic fields. Resonant oscillations generated
by this principle can produce ultrasonic waves. Another method of generating ultrasound is to apply
a high-frequency voltage to a metal-film capacitor. A microphone can serve as an ultrasound detector
(receiver).

Analogous to fiber-optic sensing, there are two common ways of employing ultrasound in a
sensor. In one approach — the intrinsic method — the ultrasound signal undergoes changes as it
passes through an object, due to acoustic impedance and absorption characteristics of the object.
The resulting signal (image) can be interpreted to determine properties of the object, such as texture,
firmness, and deformation. This approach can be utilized, for example, in machine monitoring and

FIGURE 8.45 A laser Doppler interferometer for measuring velocity and displacement.
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object firmness sensing. In the other approach — the extrinsic method — the time of flight of an
ultrasound burst from its source to an object and then back to a receiver is measured. This approach
is used in distance, position, and vibration measurement and in dimensional gaging.

In distance (vibration, proximity, displacement) measurement using ultrasound, a burst of
ultrasound is projected at the target object, and the time taken for the echo to be received is clocked.
A signal processor computes the position of the target object, possibly compensating for environ-
mental conditions. This configuration is shown in Figure 8.46. Alternatively, the velocity of the
target object can be measured, using the Doppler effect, by measuring (clocking) the change in
frequency between the transmitted wave and the received wave. The “beat” phenomenon can be
employed here. Position measurements with fine resolution (e.g., a fraction of a millimeter) can
be achieved using the ultrasonic method. Because the speed of ultrasonic wave propagation depends
on the temperature of the medium (typically air), errors will enter into the ultrasonic readings unless
the sensor is compensated for temperature variations.

Gyroscopic Sensors

Consider a rigid body spinning about an axis at angular speed ω. If the moment of inertia of the
body about that axis is J, the angular momentum H about the same axis is given by:

(8.101)

Newton’s second law (torque = rate of change of angular momentum) implies that to rotate (precess)
the spinning axis slightly, a torque must be applied, because precession causes a change in the
spinning angular momentum vector (the magnitude remains constant but the direction changes),
as shown in Figure 8.47(a). This is the principle of the operation of a gyroscope. Gyroscopic sensors
are commonly used in control systems for stabilizing vehicle systems.

Consider the gyroscope shown in Figure 8.47(b). The disk is spun about frictionless bearings
using a torque motor. Because the gimbal (the framework on which the disk is supported) is free
to turn about frictionless bearings on the vertical axis, it will remain fixed with respect to an inertial
frame, even if the bearing housing (the main structure in which the gyroscope is located) rotates.
Hence, the relative angle between the gimbal and the bearing housing (angle θ in the figure) can
be measured, and this gives the angle of rotation of the main structure. In this manner, angular
displacements in systems such as aircraft, space vehicles, ships, and land vehicles can be measured
and stabilized with respect to an inertial frame. Note that bearing friction introduces an error that
must be compensated for, perhaps, by recalibration before a reading is taken.

The rate gyro — which has the same arrangement as shown in Figure 8.47(b), with a slight
modification — can be used to measure angular speeds. In this case, the gimbal is not free; it is

FIGURE 8.46 An ultrasonic position sensor.

H J= ω
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restrained by a torsional spring. A viscous damper is provided to suppress any oscillations. By
analyzing this gyro as a mechanical tachometer, note that the relative angle of rotation θ gives the
angular speed of the structure about the gimbal axis.

Several areas can be identified where new developments and innovations are being made in
sensor technology, including:

1. Microminiature sensors (IC-based, with built-in signal processing)
2. Intelligent sensors (built-in reasoning or information preprocessing to provide high-level

knowledge)
3. Integrated and distributed sensors (sensors are integral with the components and agents

of the overall multi-agent system that communicate with each other) 
4. Hierarchical sensory architectures (low-level sensory information is preprocessed to

match higher-level requirements).
These four areas of activity are also representative of future trends in sensor technology

development. To summarize, rating parameters of a selected set of sensors/transducers are listed
in Table 8.4.

8.6 COMPONENT INTERCONNECTION

When two or more components are interconnected, the behavior of the individual components in
the overall system can deviate significantly from their behavior when each component operates
independently. Matching of components in a multicomponent system, particularly with respect to
their impedance characteristics, should be done carefully in order to improve system performance
and accuracy. This is particularly true in vibration instrumentation.

8.6.1 IMPEDANCE CHARACTERISTICS

When components such as measuring instruments, digital processing boards, process (plant) hard-
ware, and signal-conditioning equipment are interconnected, it is necessary to match impedances

FIGURE 8.47 (a) Illustration of the gyroscopic torque needed to change the direction of an angular momen-
tum vector, and (b) a simple single-axis gyroscope for sensing angular displacements.
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properly at each interface in order to realize their rated performance level. One adverse effect of
improper impedance matching is the loading effect. For example, in a measuring system, the
measuring instrument can distort the signal that is being measured. The resulting error can far
exceed other types of measurement error. Loading errors will result from connecting a measuring
device with low input impedance to a signal source.

Impedance can be interpreted either in the traditional electrical sense or in the mechanical
sense, depending on the signal that is being measured. For example, a heavy accelerometer can
introduce an additional dynamic load that will modify the actual acceleration at the monitoring
location. Similarly, a voltmeter can modify the currents (and voltages) in a circuit. In mechanical
and electrical systems, loading errors can appear as phase distortions as well. Digital hardware can
also produce loading errors. For example, an analog-to-digital conversion (ADC) board can load
the amplifier output from a strain-gage bridge circuit, thereby significantly affecting digitized data.

Another adverse effect of improper impedance consideration is inadequate output signal
levels, which can make signal processing and transmission very difficult. Many types of trans-
ducers (e.g., piezoelectric accelerometers, impedance heads, and microphones) have high output
impedances on the order of a thousand megohms. These devices generate low output signals, and
they require conditioning to step up the signal level. Impedance-matching amplifiers, which have
high input impedances (megohms) and low output impedances (a few ohms), are used for this
purpose (e.g., charge amplifiers are used in conjunction with piezoelectric sensors). A device with
a high input impedance has the further advantage in that it usually consumes less power (v2/R is
low) for a given input voltage. The fact that a low input impedance device extracts a high level of
power from the preceding output device can be interpreted as the reason for loading error.

TABLE 8.4
Rating Parameters of Several Sensors and Transducers

Transducer Measurand

Measurand
Frequency
Max/Min

Output
Impedance

Typical
Resolution Accuracy Sensitivity

Potentiometer Displacement 10 Hz/DC Low 0.1 mm 0.1% 200 mV·m/m
LVDT Displacement 2500 Hz/DC Moderate 0.001 mm or less 0.3% 50 mV·m/m
Resolver Angular displacement 500 Hz/DC

(limited by
excitation
frequency)

Low 2 min. 0.2% 10 mV·deg–1

Tachometer Velocity 700 Hz/DC Moderate
(50 Ω)

0.2 mm·s–1 0.5% 5 mV·m/m·s–1

75 mV·rad–1·s–1

Eddy current 
proximity 
sensor

Displacement 100 kHz/DC Moderate 0.001 mm
0.05% full scale

0.5% 5 V·m/m

Piezoelectric
accelerometer

Acceleration (and
velocity, etc.)

25 kHz/1Hz High 1 mm·s–2 1% 0.5 mV·m–1·s–2

Semiconductor
 strain gage

Strain (displacement, 
acceleration, etc.)

1 kHz/DC
(limited
by fatigue)

200 Ω 1 to 10µε

(1µε = 10–6

unity strain)

1% 1 V/ε,
2000 µε max

Load cell Force (10–1000 N) 500 Hz/DC Moderate 0.01 N 0.05% 1 mV·N–1

Laser Displacement/shape 1 kHz/DC 100 Ω 1.0 µm 0.5% 1 V·m/m
Optical 
encoder

Motion 100 kHz/DC 500 Ω 10 bit ±1/2 bit 104/rev
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Cascade Connection of Devices

Consider a standard two-port electrical device. The output impedance Zo of such a device is defined
as the ratio of the open-circuit (i.e., no-load) voltage at the output port to the short-circuit current
at the output port.

Open-circuit voltage at the output is the output voltage present when there is no current flowing
at the output port. This is the case if the output port is not connected to a load (impedance). As
soon as a load is connected at the output of the device, a current will flow through it, and the output
voltage will drop to a value less than that of the open-circuit voltage. To measure open-circuit
voltage, the rated input voltage is applied at the input port and maintained constant, and the output
voltage is measured using a voltmeter that has a very high (input) impedance. To measure short-
circuit current, a very low-impedance ammeter is connected at the output port.

The input impedance Zi is defined as the ratio of the rated input voltage to the corresponding
current through the input terminals, while the output terminals are maintained as an open circuit.

Note that these definitions are associated with electrical devices. A generalization is possible
to include both electrical and mechanical devices, by interpreting voltage and velocity as across
variables, and current and force as through variables. Then, mechanical mobility should be used
in place of electrical impedance in the associated analysis.

Using these definitions, input impedance Zi and output impedance Zo can be represented sche-
matically as in Figure 8.48(a). Note that vo is the open-circuit output voltage. When a load is connected
at the output port, the voltage across the load will be different from vo. This is caused by the presence
of a current through Zo. In the frequency domain, vi and vo are represented by their respective Fourier
spectra (see Chapters 3 and 4). The corresponding transfer relation can be expressed in terms of the
complex frequency response (transfer) function G(jω) under open-circuit (no-load) conditions:

(8.102)

FIGURE 8.48 (a) Schematic representation of input impedance and output impedance, and (b) the influence
of cascade connection of devices on the overall impedance characteristics.

v Gvo i=
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Now consider two devices connected in cascade, as shown in Figure 8.48(b). It can be easily verified
that the following relations apply.

(8.103)

(8.104)

(8.105)

These relations can be combined to give the overall input/output relation:

(8.106)

From equation (8.106), one sees that the overall frequency transfer function differs from the ideally
expected product (G2G1) by the factor

(8.107)

Note that cascading has “distorted” the frequency-response characteristics of the two devices. If
Zo1/Zi2 << 1, this deviation becomes insignificant. From this observation, it can be concluded that
when frequency response characteristics (i.e., dynamic characteristics) are important in a cascaded
device, cascading should be done such that the output impedance of the first device is much smaller
than the input impedance of the second device.

Impedance-Matching Amplifiers

From the analysis given in the preceding subsection, it is clear that the signal-conditioning circuitry
should have a considerably large input impedance in comparison to the output impedance of the
sensor-transducer unit in order to reduce loading errors. The problem is quite serious in measuring
devices such as piezoelectric sensors, which have very high output impedances. In such cases, the
input impedance of the signal-conditioning unit might be inadequate to reduce loading effects; also,
the output signal level of these high-impedance sensors can be quite low for signal transmission,
processing, and recording. The solution for this problem is to introduce several stages of amplifier
circuitry between the sensor output and the data acquisition unit input. The first stage is typically
an impedance-matching amplifier that has very high input impedance, very low output impedance,
and almost unity gain. The last stage is typically a stable high-gain amplifier stage to step up the
signal level. Impedance-matching amplifiers are, in fact, operational amplifiers with feedback.

Operational Amplifiers

Operational amplifiers (op-amps) are voltage amplifiers with very high gain K (typically l05 to 109),
high input impedance Zi (typically greater than 1M Ω), and low output impedance Zo (typically smaller
than 100 Ω). Thanks to the advances in integrated circuit technology, op-amps — originally made
with discrete elements such as conventional transistors, diodes, and resistors — are now available as
miniature units with monolithic integrated circuit elements. Because of their small size, the recent
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trend has been to make signal-conditioning hardware an integral part of the sensor transducer unit.
The name “operational amplifier” originated due to the fact that, historically, op-amps were used in
analog computers for carrying out mathematical “operations” such as addition and integration.

A schematic diagram for an op-amp is shown in Figure 8.49(a). Supply voltage vs is essential
to power the op-amp. Actually, both a positive voltage vc (collector supply) and a negative voltage
ve (emitter supply) are provided to an op-amp, with respect to ground. The associated terminals
(leads) can be omitted, however, in schematic diagrams and equivalent circuits within the scope of
present considerations. In the standard design of op-amps, there are two input leads (terminals),
denoted by 1 and 2 in Figure 8.49(a). The lead denoted by a plus (+) sign corresponds to the non-
inverting input and that denoted by a minus (–) sign corresponds to the inverting input of the op-
amp. If one of the two input leads is grounded, it is a single-ended amplifier. If neither lead is
grounded, it is a differential amplifier that requires two input signals. The latter arrangement rejects
noise common to the two inputs (e.g., line noise, thermal noise, magnetic noise) because signal 2

FIGURE 8.49 Operational amplifier: (a) schematic representation, and (b) symbolic representation in circuits.
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(at the negative terminal of the op-amp) is subtracted from signal 1 (at the positive terminal) and
amplified to give the output signal. Specifically,

(8.108)

where K is the open-loop gain of the op-amp. The conventional circuit symbol of an op-amp is
shown in Figure 8.49(b). Note that all voltages are given with respect to ground (zero). The power
supply terminals +vc and –ve are often not shown in the symbolic representation.

In view of the very large values of K and Zi, one can make the following approximations, with
a high degree of accuracy, for an op-amp:

1. The voltage at the inverting input (v2) is equal to the voltage at the non-inverting input v1.
This is clear from equation (8.108) because the output voltage vo is a typical circuit
voltage that is not large, and K is very large.

2. The current through the input terminals, both inverting and non-inverting, (its DC com-
ponent is called input-bias current) is zero; this follows from the fact that Zi is very large.

Note that, according to equation (8.108), when v1 = v2 (this is called the common-mode voltage),
the output should be zero. But, in practice, there will be a very small signal, called common-mode
output, under these conditions. Some compensation can be made to reject this unwanted noise.
This is known as common-mode rejection (CMR).

Strictly speaking, K is a transfer function, and it depends on the frequency variable ω of the
input signal. Typically, however, the bandwidth of an op-amp is on the order of 10 kHz; conse-
quently, K can be assumed frequency independent in the operating frequency range. This assumption
is satisfactory for most practical applications. Nevertheless, an operational amplifier in its basic
open-loop form has poor stability characteristics; hence, the amplifier output can drift while the
input is maintained steady. Furthermore, its gain is too high and also not very steady for direct
voltage amplification of practical signals. For these reasons, additional passive elements, such as
feedback resistors, are used in conjunction with op-amps in practical applications. The open-loop
gain K can be eliminated in the circuit equations, retaining only the accurately known parameter
values of the externally connected circuit elements. The topic of operational amplifiers is revisited
in Chapter 9.

Voltage Followers

Voltage followers are impedance-matching amplifiers (or impedance transformers) with very high
input impedance, very low output impedance, and almost-unity gain. For these reasons, they are
suitable for use with high output impedance sensors such as piezoelectric devices. A schematic
diagram for a voltage follower is shown in Figure 8.50(a). It consists of a standard (differential)
op-amp with a feedback resistor Rf connected between the output lead and the negative (inverting)
input lead. The sensor output, which is the amplifier input vi, is connected to the positive (non-
inverting) input lead of the op-amp with a series resistor Rs. The amplifier output is vo, as shown.
An equivalent circuit for a voltage follower can be drawn by combining Figures 8.49(a) and 8.50(a).
Because the input impedance Zi of the op-amp is much larger than the other impedances (Zo, Rs,
and Rf) in the circuit, the simplified equivalent circuit shown in Figure 8.50(b) is obtained. Note
that  is the voltage drop across Zi. It can be shown that gain  of the voltage follower is given by

(8.109)

v K v vo = −( )1 2

′vi K̃

K̃
K

K
=

+1
©2000 CRC Press

http://www.semeng.ir


www.20file.org
which is almost unity for large K. The input impedance  of the voltage follower is given by

(8.110)

Because both Zi and K are very large, it follows that a voltage follower clearly provides a high
input impedance. Accordingly, it is able to reduce loading effects of sensors that have high output
impedances. The output impedance  of a voltage follower is given by

(8.111)

˜

FIGURE 8.50 Voltage follower: (a) schematic representation; (b) simplified equivalent circuit; and (c) circuit
symbol.
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Because Zo is small to begin with and K is very large, it is clear that the output impedance of a
voltage follower is very small, as desired. It follows that the voltage follower has a practically
unity gain, a very high input impedance, and a very low output impedance; it can be used as an
impedance transformer. This fact is emphasized in the practical circuit symbol of a voltage
follower, as shown in Figure 8.50(c). The fact that vo = vi for this circuit directly follows from a
property of an op-amp, as stated before; the voltage at the inverting lead is equal to that at the
non-inverting lead. Note also that in Figure 8.50(c), the feedback resistance Rf is not present (or, it
is assumed that Rf = 1). Again, this assumption is valid due to another property of an op-amp:
namely, the current through the input leads (terminals) is zero, so that the voltage at the inverting
(–) terminal becomes equal to vi, regardless of the size of the feedback resistance. By connecting
a voltage follower to a high-impedance measuring device (sensor-transducer), a low-impedance
output signal is obtained. Signal amplification might be necessary before this signal is transmitted
or processed, however.

In many data acquisition systems, output impedance of the output amplifier is made equal to
the transmission line impedance. When maximum power amplification is desired, conjugate match-
ing is recommended. In this case, input impedance and output impedance of the matching amplifier
are made equal to the complex conjugates of the source impedance and the load impedance,
respectively.

Charge Amplifiers

The principle of capacitance feedback is utilized in charge amplifiers. These amplifiers are com-
monly used for conditioning the output signals from piezoelectric transducers. A schematic diagram
for this device is shown in Figure 8.51. The feedback capacitance is denoted by Cf and the connecting
cable capacitance by Cc. The charge amplifier views the sensor as a charge source (q), although
there is an associated voltage. Using the fact that Charge = Voltage × Capacitance, a charge balance
equation can be written:

FIGURE 8.51 Charge amplifier.
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From this, one obtains

(8.112)

If the feedback capacitance is large in comparison with the cable capacitance, the latter can be
neglected. This is desirable in practice. In any event, for large values of gain K, one obtains the
approximate relationship

(8.113)

Note that the output voltage is proportional to the charge generated at the sensor and depends only
on the feedback parameter Cf. This parameter can be appropriately chosen in order to obtain the
required output impedance characteristics. Practical charge amplifiers also have a feedback resistor
Rf in parallel with the feedback capacitor Cf. Then the relationship corresponding to equation (8.112)
becomes a first-order ordinary differential equation, which in turn determines the time constant of
the charge amplifier. This time constant should be high. If it is low, the charge generated by the
piezoelectric sensor will leak out quickly, giving erroneous results at low frequencies.

Common op-amp circuits can be modeled and analyzed without having to deal with their
parameters such as the open-loop gain K and input impedance Zi. Basically, one uses the two
assumptions that were mentioned before: specifically, the voltages at the two input leads are equal
and the currents through the input leads are zero. For example, consider the non-inverting amplifier
shown in Figure 8.52(a). This is similar to a voltage follower, but with resistors R1 and R2 connected

FIGURE 8.52 (a) Non-inverting amplifier, and (b) inverting amplifier.
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in a specific manner. From the assumption of equal voltages at the input leads, it is seen that the
input voltage vi is directly transmitted to the junction of the two resistors. Also, from the assumption
of zero current through the input leads, it follows that there is no current in the feedback path from
the junction of the two resistors. Accordingly, straightforward application of Ohms’ law to the two-
resistor circuit element gives (because one end is grounded):

Hence,

or

(8.114)

This is a simple voltage amplifier of gain  and the sign of the output voltage is the same as

that of the input voltage (hence, non-inverting). Note that the op-amp gain does not enter into the
picture, and the amplifier gain is determined by the values of R1 and R2, which are accurately known.

Similarly, consider the inverting amplifier shown in Figure 8.52(b). Here, using the two assump-
tions for an op-amp as given before, the current summation at the common junction of the resistors
R1 and R2 gives

Note that because the non-inverting terminal of the op-amp is grounded (zero voltage), the inverting
terminal, and hence the junction of the two resistors, is also at zero voltage. Rearranging the
equation, one obtains

(8.115)

This is a voltage amplifier of gain  that is accurately defined in terms of R1 and R2 only. Also,

the sign of the output voltage is opposite to that of the input voltage (hence, inverting).

8.6.2 INSTRUMENTATION AMPLIFIER

In instrumentation practice, it is often required to obtain the difference between two signals (e.g.,
between the input and the output, giving the error signal) and then amplify this difference by a
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gain parameter. A difference amplifier (or differential amplifier) can be used for this purpose.
A simple op-amp circuit for a difference amplifier is shown in Figure 8.53(a). To obtain its governing
equation, use the two well-known assumptions for an op-amp. It is easily seen that the voltage at
the non-inverting terminal B is

(i)

Similarly, voltage vA at the inverting terminal A is determined by the current summation

(ii)

Now, using the fact that vA = vB, from the op-amp assumption, one obtains

(8.116)

FIGURE 8.53 (a) A difference amplifier, and (b) an instrumentation amplifier.
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If one sets , one obtains

(8.117)

Thus, one has a difference amplifier with an accurately definable gain of R2/R1. One disadvantage of
this arrangement is the requirement of R4/R3 = R2/R1. It is not convenient to maintain this relation
because, in order to change the amplifier gain (while maintaining the relation), at least two parameters
must be changed. For example, if one changes R2, then one must change R4 in proportion in order to
maintain the governing equation. This problem has been overcome using the arrangement known as
the instrumentation amplifier as shown in Figure 8.53(b). In this circuit, only the resistor Rg is varied
to obtain a desired gain. It can be shown that the governing equation of the instrumentation amplifier is

(8.118)

where R is a fixed resistor. The topic of instrumentation amplifier is further explored in Chapter 9.

FIGURE 8.54 (a) Illustration of a ground loop, and (b) device isolation to eliminate ground loops (an example
of internal isolation).
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Ground Loop Noise

In devices that handle low-level signals (e.g., accelerometers and strain-gage bridge circuitry),
electrical noise can create excessive error. One form of noise is caused by fluctuating magnetic
fields due to nearby AC lines. This can be avoided either by taking precautions not to have strong
magnetic fields and fluctuating currents near delicate instruments or by using fiber-optic (optically
coupled) signal transmission. Furthermore, if the two signal leads (positive and negative) are twisted
or if shielded cables are used, the induced noise voltages become equal in the two leads, which
cancel each other.

Another cause of electrical noise is ground loops. If two interconnected devices are grounded
at two separate locations, ground loop noise can enter the signal leads because of the possible
potential difference between the two ground points. The reason is that the ground itself is not
generally a uniform-potential medium, and a non-zero (and finite) impedance may exist from point
to point within the ground medium. This is, in fact, the case with typical ground media, such as
instrument housings and common ground wire. An example is shown schematically in Figure
8.54(a). In this example, the two leads of a sensor are directly connected to a signal-conditioning
device such as an amplifier. Because of nonuniform ground potentials, the two ground points A
and B are subjected to a potential difference vg . This will create a ground loop with the common
negative lead of the two interconnected devices. The solution to this problem is to isolate (i.e.,
provide an infinite impedance to) either one of the two devices. Figure 8.54(a) shows internal
isolation of the sensor. External isolation, by insulating the casing, is also acceptable. Floating off
the power supply ground will also help eliminate ground loops.

PROBLEMS

8.1 What do you consider a perfect measuring device? Suppose that you are asked to develop
an analog device for measuring angular position in an application related to a kinematic
linkage system (a robotic manipulator, for example). What instrument ratings (or spec-
ifications) would you consider crucial in this application? Discuss their significance.

8.2 Discuss and then contrast the following terms:
a. Measurement accuracy
b. Instrument accuracy
c. Measurement error
d. Precision.
Also, for an analog sensor-transducer unit of your choice, identify and discuss various
sources of error and ways to minimize or account for their influence.

8.3 Four sets of measurements were taken on the same response variable of a machine using
four different sensors. The true value of the response was known to be constant. Suppose
that the four sets of data are as shown in Figure P8.3(a)–(d). Classify these data sets,
and hence the corresponding sensors, with respect to precision and deterministic (repeat-
able) accuracy.

8.4 a. Explain why mechanical loading error due to tachometer inertia can be significantly
higher when measuring transient speeds than when measuring constant speeds.

b. A DC tachometer has an equivalent resistance Ra = 20 Ω in its rotor windings. In a
position plus velocity servo system of a mechanical positioning device, the tachom-
eter signal is connected to a feedback control circuit with equivalent resistance 2 kΩ.
Estimate the percentage error due to electrical loading of the tachometer at steady
state.

c. If the conditions were not steady, how would the electrical loading be affected in this
application?
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8.5 Active vibration isolators known as electronic mounts have been proposed for automobile
engines. Their purpose is to actively filter out the cyclic excitation forces generated by
the internal-combustion engines before they would adversely vibrate components such
as seats, floor, and steering column that come into contact with the vehicle occupants
(see Chapter 12). Consider a four-stroke, four-cylinder engine. It is known that the
excitation frequency on the engine mounts is twice the crankshaft speed, as a result of
the firing cycles of the cylinders. A schematic representation of an active engine mount
is shown in Figure P8.5(a). The crankshaft speed is measured and supplied to the
controller of a valve actuator. The servo–valve of a hydraulic cylinder is operated on the
basis of this measurement. The hydraulic cylinder functions as an active suspension with
a variable (active) spring and a damper. A simplified model of the mechanical interactions
is shown in Figure P8.5(b).
a. Neglecting gravity forces (which cancel out due to the static spring force), show that

a linear model for system dynamics can be expressed as

FIGURE P8.3 Four sets of measurements on the same response variable using different sensors.
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where

fi = excitation force from the engine
fo = force transmitted to the passenger compartment (car body)
y = displacement of the engine mount with respect to a frame fixed to the passen-

ger compartment
m = mass of the engine unit
k = equivalent stiffness of the active mount
b = equivalent viscous damping constant of the active mount.

FIGURE P8.5 An active engine mount for an automobile: (a) schematic diagram, and (b) approximate model.
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b. Determine the transfer function (with the Laplace variable s) fo /fi for the system.
c. Sketch the magnitude versus frequency curve of the transfer function obtained in

part (b), and show a suitable operating range for the active mount.
d. For a damping ratio ζ = 0.2, what is the magnitude of the transfer function when the

excitation frequency ω is 5 times the natural frequency ωn of the suspension (engine
mount) system?

e. Suppose that the magnitude estimated in part (d) is satisfactory for the purpose of
vibration isolation. If the engine speed varies from 600 rpm to 1200 rpm, what is the
range in which the spring stiffness k (N·m–1) should be varied by the control system
in order to maintain this level of vibration isolation? Assume that the engine mass
m = 100 kg, and the damping ratio is approximately constant at ζ = 0.2.

8.6 Giving examples, discuss situations in which measurement of more than one type of
kinematic variable using the same measuring device is:
a. An advantage
b. A disadvantage.

8.7 Giving examples for suitable auxiliary front-end elements, discuss the use of a force
sensor to measure:
a. Displacement
b. Velocity
c. Acceleration.

8.8 Write the expression for loading nonlinearity error (percentage) in a rotatory potentiom-
eter in terms of the angular displacement, maximum displacement (stroke), potentiometer
element resistance, and load resistance. Plot the percentage error as a function of the
fractional displacement for the three cases RL /Rc = 0.1, 1.0, and 10.0.

8.9 A vibrating system has an effective mass M, an effective stiffness K, and an effective
damping constant B in its primary mode of vibration at point A with respect to
coordinate y. Write expressions for the undamped natural frequency, the damped natural
frequency, and the damping ratio for this first mode of vibration of the system.
A displacement trandsducer is used to measure the fundamental undamped natural fre-
quency and the damping ratio of the system by subjecting the system to an initial
excitation and recording the displacement trace at a suitable location (point A along y in
the Figure P8.9) in the system. This trace will provide the period of damped oscillations
and the logarithmic decrement of the exponential decay from which the required param-
eters can be computed using well-known relations (see Chapter 7). It was found, however,
that the mass m of the moving part of the displacement sensor and the associated
equivalent viscous damping constant b are not negligible. Using the model shown in
Figure P8.9, derive expressions for the measured undamped natural frequency and damp-
ing ratio. Suppose that M = 10 kg, K = 10 N·m–1, and B = 2 N·m–1·s. Consider an LVDT
whose core weighs 5 g and has negligible damping, and a potentionmeter whose slider
arm weighs 5 g and has an equivalent viscous damping constant of 0.05 N·m–1·s. Estimate
the percentage error of the results for the undamped natural frequency and damping ratio
measured using each of these two displacement sensors.

8.10 It is known that some of the factors that should be considered in selecting an LVDT for
a particular application are linearity, sensitivity, response time, size and mass of core,
size of the housing, primary excitation frequency, output impedance, phase change
between primary and secondary voltages, null voltage, stroke, and environmental effects
(temperature compensation, magnetic shielding, etc.). Explain why and how each of
these factors is an important consideration.

8.11 A high-performance LVDT has a linearity rating of 0.01% in its output range of 0.1 to
1.0 V AC. The response time of the LVDT is known to be 10 ms. What should be the
frequency of the primary excitation?
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8.12 For directional sensing using an LVDT, it is necessary to determine the phase angle of
the induced signal. In other words, phase-sensitive demodulation is needed.
a. First, consider a linear core displacement starting from a positive value, moving to

zero, and then returning to the same position in an equal time period. Sketch the
output of the LVDT for this “triangular” core displacement.

b. Next, sketch the output if the core continued to move to the negative side at the same
speed.

By comparing the two outputs, show that phase-sensitive demodulation would be needed
to distinguish between the two cases of displacement.

8.13 Compare and contrast the principles of operation of a DC tachometer and an AC tachom-
eter (both permanent-magnet and induction types). What are the advantages and disad-
vantages of these two types of tachometers?

8.14 Discuss the relationships among displacement or vibration sensing, distance sensing,
position sensing, and proximity sensing. Explain why the following characteristics are
important in using some types of motion sensors:
a. Material of the moving (or target) object
b. Shape of the moving object
c. Size (including mass) of the moving object
d. Distance (large or small) of the target object
e. Nature of motion (transient or not, what speed, etc.) of the moving object
f. Environmental conditions (humidity, temperature, magnetic fields, dirt, lighting con-

ditions, shock and vibration, etc.).
8.15 Compression molding is used in making parts of complex shapes and varying sizes.

Typically, the mold consists of two platens, the bottom platen fixtured to the press table
and the top platen operated by a hydraulic press. Metal or plastic sheets — for example,
for the automotive industry — can be compression-molded in this manner. The main
requirement in controlling the press is to accurately position the top platen with respect
to the bottom platen (e.g., with a 0.001 in or 0.025 mm tolerance), and it has to be done
quickly (e.g., in a few seconds) without residual vibrations. How many degrees of
freedom have to be sensed (how many position sensors are needed) in controlling the
mold? Suggest typical displacement measurements that would be made in this application
and the types of sensors that could be employed. Indicate sources of error that cannot
be perfectly compensated for in this application.

FIGURE P8.9 The use of a displacement sensor to measure the natural frequency and damping ratio of a
structure.
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8.16 Discuss factors that limit the lower and upper frequency limits of the output from the
following measuring devices:
a. Potentiometer d. DC tachometer
b. LVDT e. Piezoelectric transducer.
c. Eddy current proximity sensor

8.17 An active suspension system is proposed for a high-speed ground transit vehicle in order
to achieve improved ride quality. The system senses jerk (rate of change of acceleration)
due to road disturbances and adjusts system parameters accordingly.
a. Draw a suitable schematic diagram for the proposed control system and describe

appropriate measuring devices.
b. Suggest a way to specify the “desired” ride quality for a given type of vehicle. (Would

you specify one value of jerk, a jerk range, or a curve with respect to time or
frequency?)

c. Discuss the drawbacks and limitations of the proposed control system with respect
to such facts as reliability, cost, feasibility, and accuracy.

8.18 A design objective in most control system applications is to achieve small time constants.
An exception is the time constant requirement for a piezoelectric sensor. Explain why a
large time constant, on the order of 10 s, is desirable for a piezoelectric sensor in
combination with its signal conditioning system. An equivalent circuit for a piezoelectric
accelerometer that uses a quartz crystal as the sensing element is shown in Figure P8.18.
The charge generated is denoted by q, and the voltage output at the end of the acceler-
ometer cable is vo. The sensor capacitance is modeled by C, and the overall capacitance
experienced at the sensor output, whose primary contribution is due to cable capacitance,
is denoted by Cc. The resistance of the electric insulation in the accelerometer is denoted
by R. Write a differential equation relating vo to q. What is the corresponding transfer
function? Using this result, show that the accuracy of the accelerometer improves when
the sensor time constant is large and when the frequency of the measured acceleration
is high. For a quartz crystal sensor with R = 1 × 1011 Ω and Cc = 1000 pF, compute the
time constant.

8.19 Applications of accelerometers are found in the following areas:
a. Transit vehicles (automobiles, aircraft, ships, etc.)
b. Power cable monitoring
c. Robotic manipulator control
d. Building structures
e. Shock and vibration testing
f. Position and velocity sensing.
Describe one direct use of acceleration measurement in each application area.

8.20 a. A standard accelerometer that weighs 100 g is mounted on a test object that has an
equivalent mass of 3 kg. Estimate the accuracy in the first natural frequency of the

FIGURE P8.18 Equivalent circuit for a quartz crystal (piezoelectric) accelerometer.
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object measured using this arrangement, considering mechanical loading due to the
accelerometer mass alone. If a miniature accelerometer that weighs 0.5 g is used
instead, what is the resulting accuracy?

b. A strain-gage accelerometer uses a semiconductor strain gage mounted at the root of
a cantilever element, with the seismic mass mounted at the free end of the cantilever.
Suppose that the cantilever element has a square cross section with dimensions
1.5 × 1.5 mm2. The equivalent length of the cantilever element is 25 mm, and the
equivalent seismic mass is 0.2 g. If the cantilever is made of an aluminum alloy with
Young’s modulus E = 69 × 109 N·m-2, estimate the useful frequency range of the
accelerometer in hertz. Hint: When a force F is applied to the free end of a cantilever,
the deflection y at that location can be approximated by the formula

where � = cantilever length
I = second moment area of the cantilever cross section about the bending neu-

tral axis = bh3/12
b = cross-section width
h = cross-section height.

8.21 A model for a machining operation is shown in Figure P8.21. The cutting force is denoted
by f, and the cutting tool with its fixtures is modeled by a spring (stiffness k), a viscous
damper (damping constant b), and a mass m. The actuator (hydraulic) with its controller
is represented by an active stiffness g. Obtain a transfer relation between the actuator
input u and the cutting force f. Discuss a control strategy for counteracting effects due
to random variations in the cutting force. Note that this is important for controlling the
product quality.

FIGURE P8.21 A model of a machining operation.
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8.22 The use of strain-gage sensors to measure the torque Tm generated by a motor is shown
schematically in Figure P8.22. The motor is floated on frictionless bearings. A uniform
rectangular lever arm is rigidly attached to the motor housing, and its projected end is
restrained by a pin joint. Four identical strain gages are mounted on the lever arm, as
shown. Three of the strain gages are at point A, which is located at a distance a from
the motor shaft; and the fourth strain gage is at point B, which is located at a distance 3a
from the motor shaft. The pin joint is at a distance � from the motor shaft. Strain gages
2, 3, and 4 are on the top surface of the lever arm, and gage 1 is on the bottom surface.
Obtain an expression for Tm in terms of the bridge output δvo and the following additional
parameters:

Ss = gage factor (strain-gage sensitivity)
vref = supply voltage to the bridge
b = width of the lever arm cross section
h = height of the lever arm cross section
E = Young’s modulus of the lever arm.

Verify that the bridge sensitivity does not depend on �. Describe means to improve the
bridge sensitivity. Explain why the sensor reading is only an approximation to the torque
transmitted to the load. Give a relation to determine the net normal reaction force at the
bearings, using the bridge output.

8.23 A bridge with two active strain gages is being used to measure bending moment M
[Figure P8.23(a)] and torque T [Figure P8.23(b)] in a machine part. Using sketches,
suggest the orientations of the two gages mounted on the machine part and the corre-
sponding bridge connections in each case in order to obtain the best sensitivity from the
bridge. What is the value of the bridge constant in each case?

FIGURE P8.22 Use of a strain-gage sensor for measuring motor torque.
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8.24 Compare the potentiometer (ballast) circuit with the Wheatstone bridge circuit for strain-
gage measurements with respect to the following considerations:
a. Sensitivity to the measured strain
b. Error due to ambient effects (e.g., temperature change)
c. Signal-to-noise ratio of the output voltage
d. Circuit complexity and cost
e. Linearity.

8.25 Discuss the advantages and disadvantages of the following techniques in the context of
measuring transient signals:
a. DC bridge circuits versus AC bridge circuits
b. Slip ring and brush commutators versus AC transformer commutators
c. Strain-gage torque sensors versus variable-inductance torque sensors
d. Piezoelectric accelerometers versus strain-gage accelerometers
e. Tachometer velocity transducers versus piezoelectric velocity transducers

8.26 For a semiconductor strain gage characterized by the quadratic strain-resistance relationship

obtain an expression for the equivalent gage factor (sensitivity) Ss using the least-squares
error linear approximation. Assume that only positive strains up to εmax are measured
with the gage. Derive an expression for the percentage nonlinearity. Taking S1 = 117,
S2 = 3600, and εmax = 0.01 strain, compute Ss and the percentage nonlinearity.

8.27 Briefly describe how strain gages can be used to measure:
a. Force
b. Displacement
c. Acceleration.
Show that if a compensating resistance Rc is connected in series with the supply voltage
vref to a strain-gage bridge that has four identical members, each with resistance R, the
output equation is given by

in the usual rotation.

FIGURE P8.23 Sensing elements: (a) bending member, and (b) torsion member.
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A foil-gage load cell uses a simple (one-dimensional) tensile member to measure
force. Suppose that k and Ss are insensitive to temperature change. If the temperature
coefficient of R is α1, that of the series compensating resistance Rc is α2, and that of the
Young’s modulus of the tensile member is (–β), determine an expression for Rc that
would result in automatic (self-) compensation for temperature effects. Under what
conditions is this arrangement realizable?

8.28 Figure P8.28 shows a schematic diagram of a measuring device.
a. Identify the various components in this device.
b. Describe the operation of the device, explaining the function of each component and

identifying the nature of the measurand and the output of the device.
c. List the advantages and disadvantages of the device.
d. Describe a possible application of this device.

8.29 Discuss factors that limit the lower and upper frequency limits of measurements obtained
from the following devices:
a. Strain gage
b. Rotating shaft torque sensor
c. Reaction torque sensor.

8.30 Briefly describe a situation in which tension in a moving belt or cable has to be measured
under transient conditions. What are some of the difficulties associated with measuring
tension in a moving member? A strain-gage tension sensor for a belt-drive system is
shown in Figure P8.30. Two identical active strain gages, G1 and G2, are mounted at the
root of a cantilever element with rectangular cross section, as shown. A light, frictionless
pulley is mounted at the free end of the cantilever element. The belt makes a 90° turn
when passing over this idler pulley.
a. Using a circuit diagram, show the Wheatstone bridge connections necessary for the

strain gages G1 and G2 so that the strains due to the axial forces in the cantilever
member have no effect on the bridge output (i.e., effects of axial loads are compen-
sated) and the sensitivity to the bending loads is maximized.

b. Obtain an equation relating the belt tension T and the bridge output δvo in terms of
the following additional parameters:

Ss = gage factor (sensitivity) of each strain gage
E = Young’s modulus of the cantilever element

FIGURE P8.28 An analog sensor.
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L = length of the Cantilever element
b = width of the cantilever cross section
h = height of the cantilever cross section.

Note that the radius of the pulley does not enter into this equation.
8.31 Show that in a Wheatstone bridge circuit if the resistance elements R1 and R2 have the

same temperature coefficient of resistance and if R3 and R4 have the same temperature
coefficient of resistance, the temperature effects are compensated up to first order.
A strain-gage accelerometer uses two semiconductor strain gages, one integral with the
cantilever element near the fixed end (root) and the other mounted at an unstrained
location in the accelerometer housing. Describe the operation of the accelerometer. What
is the purpose of the second strain gage?

8.32 Consider the following types of sensors, and briefly explain whether they can be used
in measuring liquid oscillations. Also, what are the limitations of each type?
a. Capacitive sensors
b. Inductive sensors
c. Ultrasonic sensors.

8.33 Consider the following types of vibration sensors: inductive, capacitive, eddy current,
fiber optic, and ultrasonic. For the following conditions, indicate which of these types
are not suitable and explain why.
a. Environment with variable humidity
b. Target object made of aluminum
c. Target object made of steel
d. Target object made of plastic
e. Target object several feet away from the sensor location
f. Environment with significant temperature fluctuations
g. Smoke-filled environment.    

8.34 Discuss advantages and disadvantages of fiber-optic sensors. Consider a fiber-optic
vibration sensor. In which region of the light intensity curve would you prefer to operate
the sensor, and what are the corresponding limitations?

8.35 Analyze a single-axis rate gyro. Obtain a relationship between the gimbal angle θ and
the angular velocity Ω of the mounting structure (e.g., a missile) about the gimbal axis.
Use the following parameters:

J = moment of inertia of the gyroscopic disk about the spinning axis
ω = angular speed of spin

FIGURE P8.30 A strain-gage tension sensor.
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k = torsional stiffness of the gimbal restraint.

Assume that Ω is constant and the conditions are steady. How would you improve the
sensitivity of this device? Discuss any problems associated with the suggested methods
of sensitivity improvement and ways to reduce them.

8.36 Define electrical impedance and mechanical impedance. Identify a defect in these defi-
nitions in relation to the force–current analogy. What improvements would you suggest?
What roles do input impedance and output impedance play in relation to the accuracy
of a measuring device?

8.37 A schematic diagram for a charge amplifier (with resistive feedback) is shown in Figure
P8.37. Obtain the differential equation governing the response of the charge amplifier.
Identify the time constant of the device and discuss its significance. Would you prefer a
charge amplifier to a voltage follower for conditioning signals from a piezoelectric
accelerometer? Explain.

8.38 What is meant by “loading error” in a signal measurement? Also, suppose that a piezo-
electric sensor of output impedance Zs is connected to a voltage-follower amplifier of
input impedance Zi. The sensor signal is vi volts and the amplifier output is vo volts. The
amplifier output is connected to a device with very high input impedance. Plot to scale
the signal ratio vo/vi against the impedance ratio Zi/Zs for values of the impedance ratio
in the range 0.1 to 10.

8.39 Thevenin’s theorem states that with respect to the characteristics at an output port, an
unknown subsystem consisting of linear passive elements and ideal source elements can
be represented by a single across-variable (voltage) source veq connected in series with
a single impedance Zeq. This is illustrated in Figure P8.39(a) and P8.39(b). Note that veq

is equal to the open-circuit across variable voc at the output port because the current
through Zeq is zero. Consider the network shown in Figure P8.39(c). Determine the
equivalent voltage source veq and the equivalent series impedance Zeq, in the frequency
domain, for this circuit.

8.40 Using suitable impedance circuits, explain why a voltmeter should have a high resistance
and an ammeter should have a very low resistance. What are some of the design
implications of these general requirements for the two types of measuring instruments,
particularly with respect to instrument sensitivity, speed of response, and robustness?
Use a classical moving-coil meter as the model for your discussion.

8.41 Define the following terms:
a. Mechanical loading
b. Electrical loading
in the context of motion sensing, and explain how these loading effects can be reduced.

FIGURE P8.37 Schematic diagram for a charge amplifier.
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The following table gives ideal values for some parameters of an operational amplifier.
Give typical, practical values for these parameters (e.g., output impedance of 50 Ω).

Also, ideally, inverting-lead voltage is equal to the noninverting-lead voltage (i.e., offset
voltage is zero).

8.42 A light-emitting diode (LED) and a photodetector (phototransistor or photodiode) in a
single package can be used to measure tip vibrations of a cantilever beam, as schemat-
ically shown in Figure P8.42. Alternatively, a strain gage mounted at the root of the
cantilever can be used. Identify several advantages and disadvantages of each of these
two approaches to vibration sensing. Indicate a practical application to which these
concepts of vibration sensing can be extended.

FIGURE P8.39 Illustration of  Thevenin’s theorem: (a) unknown linear subsystem; (b) equivalent representa-
tion; and (c) example.

Parameter Ideal Value Typical Value

Input impedance Infinity ?
Output impedance Zero 50 Ω
Gain Infinity ?
Bandwidth Infinity ?
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FIGURE P8.42 Optical and strain gage methods of vibration sensing.
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9 Signal Conditioning and 
Modification

Signal modification is an important function in many applications of vibration. The tasks of signal
modification can include signal conditioning (e.g., amplification, and analog and digital filtering),
signal conversion (e.g., analog-to-digital conversion, digital-to-analog conversion, voltage-to-fre-
quency conversion, and frequency-to-voltage conversion), modulation (e.g., amplitude modulation,
frequency modulation, phase modulation, pulse-width modulation, pulse-frequency modulation,
and pulse-code modulation), and demodulation (the reverse process of modulation). In addition,
many other types of useful signal modification operations can be identified. For example, sample-
and-hold circuits are used in digital data acquisition systems. Devices such as analog and digital
multiplexers and comparators are needed in many applications of data acquisition and processing.
Phase shifting, curve shaping, offsetting, and linearization can also be classified as signal modifi-
cation. This chapter describes signal conditioning and modification operations that are useful in
vibration applications. Signal modification plays a crucial role in component interfacing. When
two devices are interfaced, it is essential to guarantee that a signal leaving one device and entering
the other will do so at proper signal levels (voltage, current, power), in the proper form (analog,
digital), and without distortion (loading and impedance considerations). For transmission, a signal
should be properly modified (by amplification, modulation, digitizing, etc.) so that the signal-to-
noise ratio of the transmitted signal is sufficiently large at the receiver. The significance of signal
modification is clear from these observations. The material covered in this chapter is intimately
related to what has been discussed in chapters on signal analysis and instrumentation (see Chapters 4
and 8).

9.1 AMPLIFIERS

The level of an electrical signal can be represented by variables such as voltage, current, and
power. Across variables, through variables, and power variables that are analogous can be defined
for other types of signals (e.g., mechanical) as well. Signal levels at various interface locations
of components in a vibratory system must be properly adjusted for correct performance of these
components and the overall system. For example, input to an actuator should possess adequate
power to drive the actuator. A signal should maintain its signal level above some threshold during
transmission so that errors due to signal weakening are not excessive. Signals applied to digital
devices must remain within the specified logic levels. Many types of sensors produce weak signals
that must be upgraded before they can be fed into a monitoring system, data processor, controller,
or data logger.

Signal amplification concerns proper adjustment of the signal level for performing a specific
task. Amplifiers are used to accomplish signal amplification. An amplifier is an active device that
needs an external power source to operate. Although active circuits — amplifiers in particular —
can be developed in the monolithic form using an original integrated-circuit (IC) layout so as to
accomplish a particular amplification task, it is convenient to study their performance using the
operational amplifier (op-amp) as the basic building block. Of course, operational amplifiers are
widely used not only for modeling and analyzing other types of amplifiers, but also as basic
building blocks in building these various kinds of amplifiers. For these reasons, the present
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discussion on amplifiers will focus on the operational amplifier. An introduction to this topic was
presented in Chapter 8.

9.1.1 OPERATIONAL AMPLIFIER

The origin of the operational amplifier dates back to the 1940s when the vacuum tube operational
amplifier was introduced. Operational amplifier or op-amp got its name due to the fact that it was
originally used almost exclusively to perform mathematical operations; for example, in analog
computers. Subsequently, in the 1950s, the transistorized op-amp was developed. It used discrete
elements such as bipolar junction transistors and resistors. Still, it was too large in size, consumed
too much power, and was too expensive for widespread use in general applications. This situation
changed in the late 1960s when the integrated-circuit (IC) op-amp was developed in the monolithic
form, as a single IC chip. Today, the IC op-amp, which consists of a large number of circuit elements
on a substrate of typically a single silicon crystal (the monolithic form), is a valuable component
in almost any signal modification device.

An op-amp can be manufactured in the discrete-element form using, say, ten bipolar junction
transistors and as many discrete resistors or alternatively (and preferably) in the modern monolithic
form as an IC chip that may be equivalent to over 100 discrete elements. In any form, the device
has an input impedance Zi, an output impedance Zo, and a gain K. Hence, a schematic model for
an op-amp can be given as in Figure 9.1(a). The conventional symbol of an op-amp is shown in
Figure 9.1(b). Typically, there are about six terminals (lead connections) to an op-amp. For example,
there are two input leads (a positive lead with voltage vip and a negative load with voltage vin), an
output lead (voltage vo), two bipolar power supply leads (+vs and –vs), and a ground lead.

Note from Figure 9.1(a) that under open-loop (no feedback) conditions,

(9.1)

in which the input voltage vi is the differential input voltage defined as the algebraic difference
between the voltages at the positive and negative lead; thus,

(9.2)

The open-loop voltage gain K is very high (105 to 109) for a typical op-amp. Furthermore, the input
impedance Zi could be as high as 1 MΩ and the output impedance is low, on the order of 10 Ω.
Because vo is typically 1 to 10 V, from equation (9.1), it follows that vi ≅  0 since K is very large.
Hence, from equation (9.2), vip ≅  vin. In other words, the voltages at the two input leads are nearly
equal. Now, if one applies a large voltage differential vi (say, 1 V) at the input, then according to
equation (9.1), the output voltage should be extremely high. This never happens in practice, however,
because the device saturates quickly beyond moderate output voltages (of the order of 15 V).

From equations (9.1) and (9.2), it is clear that if the negative input lead is grounded (i.e.,
vin = 0), then

(9.3)

and if the positive input lead is grounded (i.e., vip = 0), then

(9.4)

Accordingly, vip is termed noninverting input and vin is termed inverting input.

v Kvo i=

v v vi ip in= −

v Kvo ip=

v Kvo in= −
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EXAMPLE 9.1

Consider an op-amp having an open loop gain of 1 × 105. If the saturation voltage is 15 V, determine
the output voltage in the following cases:

(a) 5 µV at the positive lead and 2 µV at the negative lead
(b) –5 µV at the positive lead and 2 µV at the negative lead
(c) 5 µV at the positive lead and –2 µV at the negative lead
(d) –5 µV at the positive lead and –2 µV at the negative lead
(e) 1 V at the positive lead and negative lead grounded
(f) 1 V at the negative lead and positive lead grounded.

SOLUTION

This problem can be solved using equations (9.1) and (9.2). The results are given in Table 9.1.
Note that in the last two cases, the output will saturate and equation (9.1) will no longer hold.

FIGURE 9.1 Operational amplifier: (a) a schematic model, and (b) conventional symbol.
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Field effect transistors (FETs) — for example, metal oxide semiconductor field effect transistors
(MOSFETs) — could be used in the IC form of an op-amp. The MOSFET type has advantages
over many other types; for example, higher input impedance and more stable output (almost equal
to the power supply voltage) at saturation, making the MOSFET op-amps preferable over bipolar
junction transistor op-amps in many applications.

In analyzing operational amplifier circuits under unsaturated conditions, one can use the fol-
lowing two characteristics of an op-amp:

1. Voltages of the two input leads should be (almost) equal.
2. Currents through each of the two input leads should be (almost) zero.

As explained earlier, the first property is credited to high open-loop gain, and the second property
to high input impedance in an operational amplifier. These two properties are repeatedly used to
obtain input-output equations for amplifier circuits and systems.

9.1.2 USE OF FEEDBACK IN OP-AMPS

An operational amplifier is a very versatile device, primarily due to its very high input impedance,
low output impedance, and very high gain. However, it cannot be used without modification as an
amplifier because it is not very stable in the form shown in Figure 9.1. Two factors that contribute
to this problem are:

1. Frequency response
2. Drift.

Stated another way, op-amp gain K does not remain constant; it can vary with the frequency of the
input signal (i.e., frequency response function is not flat in the operating range); and also, it can
vary with time (i.e., drift). Frequency response problems arise due to circuit dynamics of an
operational amplifier. This problem is usually not severe unless the device is operated at very high
frequencies. Drift problems arise due to the sensitivity of gain K to environmental factors such as
temperature, light, humidity, and vibration, and as a result of the variation of K due to aging. Drift
in an op-amp can be significant, and steps should be taken to remove this problem.

It is virtually impossible to avoid gain drift and frequency-response error in an operational
amplifier. But an ingenious way has been found to remove the effect of these two problems at the
amplifier output. Because gain K is very large, by using feedback, one can virtually eliminate its
effect at the amplifier output. This closed-loop form of an op-amp is preferred in almost every
application. In particular, voltage followers and charge amplifiers are devices that use the properties

TABLE 9.1
Solution to Example 9.1

vip vin vi vo

5 µV 2 µV 3 µV 0.3 V
–5 µV 2 µV –7 µV –0.7 V
5 µV –2 µV 7 µV 0.7 V

–5 µV –2 µV –3 µV –0.3 V
1 V 0 1 V 15 V
0 1 V –1 V –15 V
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of high Zi, low Zo, and high K of the op-amp, along with feedback through a precision resistor, to
eliminate errors due to non-constant K. In summary, an operational amplifier is not very useful in
its open-loop form, particularly because gain K is not steady. But because K is very large, the
problem can be removed using feedback. It is this closed-loop form that is commonly used in
practical applications of an op-amp.

In addition to the nonsteady nature of gain, there are other sources of error that contribute to
the less-than-ideal performance of an operational amplifier circuit. Noteworthy are:

1. The offset current present at the input leads due to bias currents that are needed to operate
the solid-state circuitry

2. The offset voltage that might be present at the output even when the input leads are open
3. The unequal gains corresponding to the two input leads (i.e., the inverting gain not equal

to the noninverting gain).

Such problems can produce nonlinear behavior in op-amp circuits, and they can be reduced by
proper circuit design and through the use of compensating circuit elements.

9.1.3 VOLTAGE, CURRENT, AND POWER AMPLIFIERS

Any type of amplifier can be constructed from scratch in the monolithic form as an IC chip, or in
the discrete form as a circuit containing several discrete elements such as discrete bipolar junction
transistors or discrete field effect transistors, discrete diodes, and discrete resistors. However, almost
all types of amplifiers can also be built using operational amplifier as the basic building block.
Because one is already familiar with op-amps, and because op-amps are extensively used in general
amplifier circuitry, the latter approach — which uses discrete op-amps for the modeling of general
amplifiers — is preferred.

If an electronic amplifier performs a voltage amplification function, it is termed a voltage
amplifier. These amplifiers are so common that the term amplifier is often used to denote a voltage
amplifier. A voltage amplifier can be modeled as

(9.5)

where

vo = output voltage
vi = input voltage
Kv = voltage gain.

Voltage amplifiers are used to achieve voltage compatibility (or level shifting) in circuits.
Current amplifiers are used to achieve current compatibility in electronic circuits. A current

amplifier can be modeled by

(9.6)

where

io = output current
ii = input current
Ki = current gain.

v K vo v i=

i K io i i=
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Note that the voltage follower has Kv = 1 and, hence, it can be considered as a current amplifier. Also,
it provides impedance compatibility and acts as a buffer between a low-current (high-impedance)
output device (the device that provides the signal) and a high-current (low-impedance) input device
(device that receives the signal) that are interconnected. Hence, the name buffer amplifier or impedance
transformer is sometimes used for a current amplifier with unity voltage gain.

If the objective of signal amplification is to upgrade the associated power level, then a power
amplifier should be used for that purpose. A simple model for a power amplifier is

(9.7)

where

po = output power
pi = input power
Kp = power gain.

It is easy to see from equations (9.5) through (9.7) that

(9.8)

Note that all three types of amplification can be achieved simultaneously from the same amplifier.
Furthermore, a current amplifier with unity voltage gain (e.g., a voltage follower) is a power
amplifier as well. Usually, voltage amplifiers and current amplifiers are used in the first stages of
a signal path (e.g., sensing, data acquisition, and signal generation) where signal levels and power
levels are relatively low. Power amplifiers are typically used in the final stages (e.g., actuation,
recording, display) where high signal levels and power levels are usually required.

Figure 9.2(a) shows an op-amp-based voltage amplifier. Note the feedback resistor Rf that serves
the purposes of stabilizing the op-amp and providing an accurate voltage gain. The negative lead
is grounded through an accurately known resistor R. To determine the voltage gain, recall that the
voltages at the two input leads of an op-amp should be virtually equal. The input voltage vi is
applied to the positive lead of the op-amp. Then the voltage at point A should also be equal to vi.
Next, recall that the current through the input lead of an op-amp is virtually 0. Hence, by writing
the current balance equation for the node point A, one obtains

This gives the amplifier equation

(9.9)

Hence, the voltage gain is given by

(9.10)

Note the Kv depends on R and Rf, and not on the op-amp gain. Hence, the voltage gain can be
accurately determined by selecting the two resistors R and Rf precisely. Also note that the output

p K po p i=

K K Kp v i=

v v

R
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o i
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voltage has the same sign as the input voltage. Hence, this is a noninverting amplifier. If the voltages
are of the opposite sign, it will be an inverting amplifier.

A current amplifier is shown in Figure 9.2(b). The input current ii is applied to the negative
lead of the op-amp as shown, and the positive lead is grounded. There is a feedback resistor Rf

connected to the negative lead through the load RL. The resistor Rf provides a path for the input
current because the op-amp takes in virtually zero current. There is a second resistor R through
which the output is grounded. This resistor is needed for current amplification. To analyze the
amplifier, note that the voltage at point A (i.e., at the negative lead) should be 0 because the positive
lead of the op-amp is grounded (zero voltage). Furthermore, the entire input current ii passes through
resistor Rf as shown. Hence, the voltage at point B is Rf ii. Consequently, current through resistor
R is Rf ii /R, which is positive in the direction shown. It follows that the output current io is given by

or

FIGURE 9.2 (a) A voltage amplifier, and (b) a current amplifier.
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(9.11)

The current gain of the amplifier is

(9.12)

This gain can be accurately set using high-precision resistors R and Rf .

9.1.4 INSTRUMENTATION AMPLIFIERS

An instrumentation amplifier is typically a special-purpose voltage amplifier dedicated to a partic-
ular instrumentation application. Examples include amplifiers used for producing the output from
a bridge circuit (bridge amplifier) and amplifiers used with various sensors and transducers. An
important characteristic of an instrumentation amplifier is the adjustable-gain capability. The gain
value can be adjusted manually in most instrumentation amplifiers. In more sophisticated instru-
mentation amplifiers, gain is programmable and can be set by means of digital logic. Instrumentation
amplifiers are normally used with low-voltage signals.

Differential Amplifier

Usually, an instrumentation amplifier is also a differential amplifier (sometimes termed a difference
amplifier). Note that in a differential amplifier, both input leads are used for signal input, whereas
in a single-ended amplifier, one of the leads is grounded and only one lead is used for signal input.
Ground-loop noise can be a serious problem in single-ended amplifiers. Ground-loop noise can be
effectively eliminated using a differential amplifier because noise loops are formed with both inputs
of the amplifier and, hence, these noise signals are subtracted at the amplifier output. Because the
noise level is almost the same for both inputs, it is canceled. Note that any other noise (e.g., 60-Hz
line noise) that might enter both inputs with the same intensity will also be canceled out at the
output of a differential amplifier.

A basic differential amplifier that uses a single op-amp is shown in Figure 9.3(a). The input-
output equation for this amplifier can be obtained in the usual manner. For example, because current
through the op-amp is negligible, current balance at point B gives

(i)

in which vB is the voltage at B. Similarly, current balance at point A gives

(ii)

Now we use the property

(iii)

for an operational amplifier, to eliminate vA and vB from equations (i) and (ii). This gives
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or

(9.13)

Two things are clear from equation (9.13). First, the amplifier output is proportional to the “difference”
and not the absolute value of the two inputs vi1 and vi2. Second, the voltage gain of the amplifier
is Rf /R. This is known as the differential gain. Note that the differential gain can be accurately set
using high-precision resistors R and Rf.

The basic differential amplifier, shown in Figure 9.3(a) and discussed above, is an important
component of an instrumentation amplifier. In addition, an instrumentation amplifier should possess
the adjustable gain capability. Furthermore, it is desirable to have a very high input impedance and
very low output impedance at each input lead. An instrumentation amplifier that possesses these

FIGURE 9.3 (a) A basic differential amplifier, and (b) a basic instrumentation amplifier.
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basic requirements is shown in Figure 9.3(b). The amplifier gain can be adjusted using the precisely
variable resistor R2. Impedance requirements are provided by two voltage-follower type amplifiers,
one for each input, as shown. The variable resistance δR4 is necessary to compensate for errors
due to unequal common-mode gain. First consider this last aspect, and then obtain an equation for
the instrumentation amplifier.

Common Mode

The voltage that is “common” to both input leads of a differential amplifier is known as the common-
mode voltage. This is equal to the smaller of the two input voltages. If the two inputs are equal,
then the common-mode voltage is obviously equal to each one of the two inputs. When vi1 = vi2,
ideally, the output voltage vo should be 0. In other words, ideally, common-mode signals are rejected
by a differential amplifier. But because operational amplifiers are not ideal and because they usually
do not have exactly identical gains with respect to the two input leads, the output voltage vo will
not be 0 when the two inputs are identical. This common-mode error can be compensated for by
providing a variable resistor with fine resolution at one of the two input leads of the differential
amplifier. Hence, in Figure 9.3(b), to compensate for the common-mode error (i.e., to achieve a
satisfactory level of common-mode rejection), first the two inputs are made equal and then δR4 is
carefully varied until the output voltage level is sufficiently small (minimum). Usually, δR4 that is
required to achieve this compensation is small compared to the nominal feedback resistance R4.

Since ideally δR4 = 0, one can neglect δR4 in the derivation of the instrumentation amplifier
equation. Now, note from the basic characteristics of an op-amp with no saturation (voltages at
the two input leads have to be almost identical), that in Figure 9.3(b), the voltage at point 2 should
be vi2 and the voltage at point 1 should be vi1. Furthermore, current through each input lead of an
op-amp is negligible. Hence, current through the circuit path B → 2 → 1 → A must be the same.
This gives the current continuity equations

in which VA and VB are the voltages at points A and B, respectively. Hence, one obtains

Now, by subtracting the second equation from the first, one obtains the equation for the first stage
of the amplifier; thus,

(i)

Next, from the previous result [see equation (9.13)] for a differential amplifier, one obtains (with
δR4 = 0)
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(ii)

Note that only the resistor R2 is varied to adjust the gain (differential gain) of the amplifier. In
Figure 9.3(b), the two input op-amps (the voltage-follower op-amps) do not have to be exactly
identical as long as the resistors R1 and R2 are chosen to be accurate. This is so because the op-
amp parameters such as open-loop gain and input impedance do not enter the amplifier equations,
provided their values are sufficiently high, as noted earlier.

9.1.5 AMPLIFIER PERFORMANCE RATINGS

The main factors that affect the performance of an amplifier are:

1. Stability
2. Speed of response (bandwidth, slew rate)
3. Unmodeled signals.

The significance of some of these factors has already been discussed.
The level of stability of an amplifier, in the conventional sense, is governed by the dynamics

of the amplifier circuitry, and can be represented by a time constant. But more important consid-
eration for an amplifier is the “parameter variation” due to aging, temperature, and other environ-
mental factors. Parameter variation is also classified as a stability issue, in the context of devices
such as amplifiers, because it pertains to the steadiness of the response when the input is maintained
steady. Of particular importance is the temperature drift. This can be specified as a drift in the
output signal per unity change in temperature (e.g., mV·°C–1).

The speed of response of an amplifier dictates the ability of the amplifier to faithfully respond
to transient inputs. Conventional time-domain parameters such as rise time can be used to represent
this. Alternatively, in the frequency domain, speed of response can be represented by a bandwidth
parameter. For example, the frequency range over which the frequency response function is consid-
ered constant (flat) can be taken as a measure of bandwidth. Because there is some nonlinearity in
any amplifier, bandwidth can depend on the signal level itself. Specifically, small-signal bandwidth
refers to the bandwidth that is determined using small input signal amplitudes.

Another measure of the speed of response is the slew rate. Slew rate is defined as the largest
possible rate of change of the amplifier output for a particular frequency of operation. Since for a
given input amplitude, the output amplitude depends on the amplifier gain, slew rate is usually
defined for unity gain.

Ideally, for a linear device, the frequency response function (transfer function) does not depend
on the output amplitude (i.e., the product of the DC gain and the input amplitude). But for a device
that has a limited slew rate, the bandwidth (or the maximum operating frequency at which output
distortions can be neglected) will depend on the output amplitude. The larger the output amplitude,
the smaller the bandwidth for a given slew rate limit.

EXAMPLE 9.2

Obtain a relationship between the slew rate and the bandwidth for a slew rate-limited device. An
amplifier has a slew rate of 1 V·µs–1. Determine the bandwidth of this amplifier when operating at
an output amplitude of 5 V.

v
R

R
v vo = −( )4

3
B A
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SOLUTION

Clearly, the amplitude of the rate of change of output signal, divided by the amplitude of the output
signal, yields an estimate of output frequency. Consider a sinusoidal output voltage given by

(9.14)

The rate of change of output is

Hence, the maximum rate of change of output is 2πfa. Since this corresponds to the slew rate when
f is the maximum allowable frequency, one obtains

(9.15)

where

s = slew rate
fb = bandwidth
a = output amplitude.

Now, with s = 1 V·µs–1 and a = 5 V, one obtains

�

It has been noted that stability problems and frequency response errors are prevalent in the open-loop
form of an operational amplifier. These problems can be eliminated using feedback because the
effect of the open-loop transfer function on the closed-loop transfer function is negligible if the
open-loop gain is very large — which is the case for an operational amplifier.

Unmodeled signals can be a major source of amplifier error. Unmodeled signals include:

1. Bias currents
2. Offset signals
3. Common-mode output voltage
4. Internal noise.

In analyzing operational amplifiers, it is assumed that the current through the input leads is 0. This
is not strictly true because bias currents for the transistors within the amplifier circuit have to flow
through these leads. As a result, the output signal of the amplifier will deviate slightly from the
ideal value.

Another assumption made in analyzing op-amps is that the voltage is equal at the two input
leads. But, in practice, offset currents and offset voltages are present at the input leads, due to
minute discrepancies inherent to the internal circuits within an op-amp.

v a fto = sin 2π

dv

dt
fa fto = 2 2π πcos

s f ab= 2π

fb = ×
×

×−
1

2
1

1 10
1
58π

 Hz

= 31.8 kHz
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Common-Mode Rejection Ratio (CMRR)

Common-mode error in a differential amplifier was discussed earlier. Note that, ideally, the common
mode input voltage (the voltage common to both input leads) should have no effect on the output
voltage of a differential amplifier. But because a practical amplifier has unbalances in the internal
circuitry (e.g., gain with respect to one input lead is not equal to the gain with respect to the other
input lead and, furthermore, bias signals are needed for operation of the internal circuitry), there
will be an error voltage at the output that depends on the common-mode input. The common-mode
rejection ratio (CMRR) of a differential amplifier is defined as

(9.16)

where

K = gain of the differential amplifier (i.e., differential gain)
vcm = common-mode input voltage (i.e., voltage common to both input leads)
vocm = common-mode output voltage (i.e., output voltage due to common-mode input

voltage).

Note that, ideally, vocm = 0 and CMRR should be infinity. It follows that the larger the CMRR, the
better the differential amplifier performance.

The three types of unmodeled signals mentioned above can be considered as noise. In addition,
there are other types of noise signals that degrade the performance of an amplifier. For example,
ground-loop noise can enter the output signal. Furthermore, stray capacitances and other types of
unmodeled circuit effects can generate internal noise. Usually in amplifier analysis, unmodeled
signals (including noise) can be represented by a noise voltage source at one of the input leads.
Effects of unmodeled signals can be reduced using suitably connected compensating circuitry,
including variable resistors that can be adjusted to eliminate the effect of unmodeled signals at the
amplifier output [e.g., see δR4 in Figure 9.3(b)]. Some useful information about operational ampli-
fiers is summarized in Box 9.1.

AC-Coupled Amplifiers

The DC component of a signal can be blocked off by connecting the signal through a capacitor. 
(Note that the impedance of a capacitor is 1/(jωC) and hence, at zero frequency, there will be an 
infinite impedance.) If the input lead of a device has a series capacitor, the input is AC-coupled; 
and if the output lead has a series capacitor, then the output is AC-coupled. Typically, an AC-
coupled amplifier has a series capacitor both at the input lead and the output lead. Hence, its 
frequency response function will have a high-pass characteristic; in particular, the DC components 
will be filtered out. Errors due to bias currents and offset signals are negligible for an AC-coupled 
amplifier. Furthermore, in an AC-coupled amplifier, stability problems are not very serious.

9.2 ANALOG FILTERS

Unwanted signals can seriously degrade the performance of a vibration monitoring and analysis
system. External disturbances, error components in excitations, and noise generated internally
within system components and instrumentation are such spurious signals. A filter is a device that
allows through only the desirable part of a signal, rejecting the unwanted part.

CMRR =
Kv

v
cm

ocm
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In typical applications of acquisition and processing of a vibration signal, the filtering task
would require allowing through certain frequency components and filtering out certain other
frequency components in the signal. In this context, one can identify four broad categories of filters:

1. Low-pass filters
2. High-pass filters
3. Bandpass filters
4. Band-reject (or notch) filter.

The ideal frequency-response characteristic of each of these four types of filters is shown in Figure 9.4.
Note that only the magnitude of the frequency response function is shown. It is understood, however,
that the phase distortion of the input signal should also be small within the pass band (the allowed
frequency range). Practical filters are less than ideal. Their frequency-response functions do not
exhibit sharp cutoffs as in Figure 9.4 and, furthermore, some phase distortion will be unavoidable.

A special type of bandpass filter widely used in acquisition and monitoring of vibration signals
(e.g., in vibration testing) is the tracking filter. This is simply a bandpass filter with a narrow pass

BOX 9.1 Operational Amplifiers

Ideal op-amp properties:
• Infinite open-loop differential gain
• Infinite input impedance
• Zero output impedance
• Infinite bandwidth
• Zero output for zero differential input.

Ideal analysis assumptions:
• Voltages at the two input leads are equal
• Current through either input lead is zero.

Definitions:

• Open-loop gain = 

• Input impedance = 

• Output impedance = 

• Bandwidth = Frequency range in which the frequency response is flat (gain is constant)
• Input bias current = Average (DC) current through one input lead
• Input offset current = Difference in the two input bias currents
• Differential input voltage = Voltage at one input lead with the other grounded when the

output voltage is zero

• Common-mode gain = 

• Common-mode rejection ratio (CMRR) = 

• Slew rate = Speed at which steady output is reached for a step input.

Output voltage
Voltage difference at input leads

with no feedback

Voltage between an input lead and ground
Current through that lead 

(with the other input lead grounded and the output in open circuit)

Voltage between output lead and ground in open circuit
Current through that lead with normal input conditions

Output voltage when input leads are at the same voltage
Common input voltage

Open - loop differential gain
Common - mode gain
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band that is frequency-tunable. The center frequency (mid-value) of the pass band is variable,
usually by coupling it to the frequency of a carrier signal. In this manner, signals whose frequency
varies with some basic variable in the system (e.g., rotor speed, frequency of a harmonic excitation
signal, frequency of a sweep oscillator) can be accurately tracked in the presence of noise. The
inputs to a tracking filter are the signal that is being tracked and the variable tracking frequency

FIGURE 9.4 Ideal filter characteristics: (a) low-pass filter; (b) high-pass filter; (c) bandpass filter; and
(d) band-reject (notch) filter.
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(carrier input). A typical tracking filter that can simultaneously track two signals is schematically
shown in Figure 9.5.

Filtering can be achieved using digital filters as well as analog filters. Before digital signal
processing became efficient and economical, analog filters were used exclusively for signal filtering,
and are still widely used. In an analog filter, the signal is passed through an analog circuit. Dynamics
of the circuit will be such that the desired signal components will be passed through, and the
unwanted signal components will be rejected. Earlier versions of analog filters employed discrete
circuit elements such as discrete transistors, capacitors, resistors, and even discrete inductors.
Because inductors have several shortcomings, such as susceptibility to electromagnetic noise,
unknown resistance effects, and large size, they are rarely used today in filter circuits. Furthermore,
due to well-known advantages of integrated-circuit (IC) devices, analog filters in the form of
monolithic IC chips are extensively used today in modem applications and are preferred over
discrete-element filters. Digital filters that employ digital signal processing to achieve filtering are
also widely used today.

9.2.1 PASSIVE FILTERS AND ACTIVE FILTERS

Passive analog filters employ analog circuits containing passive elements such as resistors and
capacitors (and sometimes inductors) only. An external power supply is not needed in a passive
filter. Active analog filters employ active elements and components such as transistors and opera-
tional amplifiers in addition to passive elements. Because external power is needed for the operation
of the active elements and components, an active filter is characterized by the need for an external
power supply. Active filters are widely available in monolithic integrated-circuit (IC) form and are
usually preferred over passive filters.

Advantages of active filters include:

1. Loading effects are negligible because active filters can provide a very high input
impedance and very low output impedance.

2. They can be used with low-level signals because signal amplification and filtering can
be provided by the same active circuit.

3. They are widely available in a low-cost and compact integrated-circuit form.
4. They can be easily integrated with digital devices.
5. They are less susceptible to noise from electromagnetic interference.

Commonly mentioned disadvantages of active filters include:

FIGURE 9.5 Schematic representation of a two-channel tracking filter.
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1. They need an external power supply.
2. They are susceptible to “saturation”-type nonlinearity at high signal levels.
3. They can introduce many types of internal noise and unmodeled signal errors (offset,

bias signals, etc.).

Note that the advantages and disadvantages of passive filters can be directly inferred from the
disadvantages and advantages of active filters, as given above.

Number of Poles

Analog filters are dynamic systems and can be represented by transfer functions, assuming linear
dynamics. The number of poles of a filter is the number of poles in the associated transfer function.
This is also equal to the order of the characteristic polynomial of the filter transfer function
(i.e., order of the filter). Note that poles (or eigenvalues) are the roots of the characteristic equation.

The following discussion will show simplified versions of filters, typically consisting of a single
filter stage. The performance of such a basic filter can be improved at the expense of circuit
complexity (and increased pole count). Only simple discrete-element circuits are shown for passive
filters. Simple operational-amplifier circuits are given for active filters. Even here, much more
complex devices are commercially available, but the purpose is to illustrate underlying principles
rather than to provide descriptions and data sheets for commercial filters.

9.2.2 LOW-PASS FILTERS

The purpose of a low-pass filter is to allow through all signal components below a certain (cutoff)
frequency and block off all signal components above that cutoff. Analog low-pass fitters are widely
used as anti-aliasing filters in digital signal processing (see Chapter 4). An error known as aliasing
will enter the digitally processed results of a signal if the original signal has frequency components
above half the sampling frequency (half the sampling frequency is called the Nyquist frequency).
Hence, aliasing distortion can be eliminated if the signal is filtered using a low-pass filter with its
cutoff set at the Nyquist frequency, prior to sampling and digital processing. This is one of numerous
applications of analog low-pass filters. Another typical application would be to eliminate high-
frequency noise in a measured vibration response.

A single-pole, passive low-pass filter circuit is shown in Figure 9.6(a). An active filter corre-
sponding to the same low-pass filter is shown in Figure 9.6(b). It can be shown that the two circuits
have identical transfer functions. Hence, it might seem that the op-amp in Figure 9.6(b) is redundant.
This is not true, however. If two passive filter stages, each similar to Figure 9.6(a), are connected
together, then the overall transfer function is not equal to the product of the transfer functions of
the individual stages. The reason for this apparent ambiguity is the circuit loading that arises due
to the fact that the input impedance of the second stage is not sufficiently larger than the output
impedance of the first stage. But, if two active filter stages similar to Figure 9.6(b) are connected
together, such loading errors will be negligible because the op-amp with feedback (i.e., a voltage
follower) introduces a very high input impedance and very low output impedance, while maintaining
the voltage gain at unity.

To obtain the filter equation for Figure 9.6(a), note that since the output is open circuit (zero
load current), the current through capacitor C is equal to the current through resistor R. Hence,

or

C
dvo

dt

v v

R
i o=
−
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(9.17)

where the filter time constant is

(9.18)

Now, from equation (9.17), it follows that the filter transfer function is

(9.19)

From this transfer function, it is clear that an analog low-pass filter is essentially a lag circuit (i.e.,
it provides a phase lag).

FIGURE 9.6 A single-pole low-pass filter: (a) a passive filter stage; (b) an active filter stage; and (c) the
frequency response characteristic.
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It can be shown that the active filter stage in Figure 9.6(b) has the same input/output equation.
First, because the current through an op-amp lead is almost 0, one obtains from the previous analysis
of the passive circuit stage

(i)

in which vA is the voltage at the node point A. Now, because the op-amp with feedback resistor is
in fact a voltage follower, one has

(ii)

Next, by combining equations (i) and (ii), one obtains equation (9.19), as required. Repeating, a
major advantage of the active filter version is that the resulting loading error is negligible.

The frequency-response function corresponding to equation (9.19) is obtained by setting s = jω;
thus,

(9.20)

This gives the response of the filter when a sinusoidal signal of frequency ω is applied. The
magnitude �G(jω)� of the frequency transfer function gives the signal amplification, and the phase
angle ∠ G(jω) gives the phase lead of the output signal with respect to the input. The magnitude
curve (Bode magnitude curve) is shown in Figure 9.6(c). Note from equation (9.20) that for small
frequencies (i.e., ω << 1/τ), the magnitude is approximately unity. Hence, 1/τ can be considered
the cutoff frequency ωc:

(9.21)

EXAMPLE 9.3

Show that the cutoff frequency given by equation (9.21) is also the half-power bandwidth for the
low-pass filter. Show that for frequencies much larger than this, the filter transfer function on the
Bode magnitude plane (i.e., log magnitude vs. log frequency) can be approximated by a straight
line with slope –20 dB per decade. This slope is known as the roll-off rate.

SOLUTION

The frequency corresponding to half power (or magnitude) is given by

or

v

v si

A =
+( )
1

1τ

v

v
o

A

= 1

G j
j

ω
τ ω

( ) =
+( )

1
1

ω
τc = 1

1 2/

1
1

1

2τ ωj +
=
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or

or

Hence, the half-power bandwidth is

(9.22)

This is identical to the cutoff frequency given by equation (9.11).
Now, for ω >> 1/τ (i.e., τω >> 1), equation (9.20) can be approximated by

This has the magnitude

On the log scale,

It follows that the log10 (magnitude) vs. log10 (frequency) curve is a straight line with a slope of –1. 
In other words, when frequency increases by a factor of ten (i.e., a decade), the log10 (magnitude) 
decreases by unity (i.e., by 20 dB). Hence, the roll-off rate is –20 dB per decade. These observations 

are shown in Figure 9.6(c). Note that an amplitude change by a factor of  (or power by a factor 
of 2) corresponds to 3 dB. Hence, when the DC (zero-frequency) magnitude is unity (0 dB), the 
half-power magnitude is –3dB.

�

The cutoff frequency and the roll-off rate are the two main design specifications for a low-pass
filter. Ideally, one would like a low-pass filter magnitude curve to be flat up to the required pass-
band limit (cutoff frequency) and then roll off very rapidly. The low-pass filter shown in Figure
9.6 only approximately meets these requirements. In particular, the roll-off rate is not large enough.
One would like a roll-off rate of at least –40 dB per decade and, preferably, –60 dB per decade in
practical filters. This can be realized using a higher-order filter (i.e., a filter having many poles).
The low-pass Butterworth filter is a widely used filter of this type.

1
1

1
22 2τ ω +

=

τ ω2 2 1 2+ =

τ ω2 2 1=

ω
τb = 1

G j
j

ω
τ ω

( ) = 1

G jω
τω

( ) = 1

log log log10 10 10G jω ω τ( ) = − −

2
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Low-Pass Butterworth Filter

A low-pass Butterworth filter having two poles can provide a roll-off rate of –40 dB per decade,
and one having three poles can provide a roll-off rate of –60 dB per decade. Furthermore, the
steeper the roll-off slope, the flatter the filter magnitude curve within the pass band. A two-pole,
low-pass Butterworth filter is shown in Figure 9.7. One can construct a two-pole filter simply by
connecting together two single-pole stages of the type shown in Figure 9.6(b). One would then
require two op-amps; whereas the circuit shown in Figure 9.7 achieves the same objective using
only one op-amp (i.e., at a lower cost).

EXAMPLE 9.4

Show that the opamp circuit in Figure 9.7 is a low-pass filter having two poles. What is the transfer
function of the filter? Estimate the cutoff frequency under suitable conditions. Show that the roll-off
rate is –40 dB per decade.

SOLUTION

To obtain the filter equation, one writes the current balance equations. Specifically, the sum of
currents through R1 and C1 passes through R2. The same current passes through C2 because current
through the op-amp lead must be 0. Hence,

(i)

Also, because the op-amp with a feedback resistor Rf is a voltage follower (with unity gain), one
obtains

(ii)

From equations (i) and (ii),

(iii)

FIGURE 9.7 A two-pole, low-pass Butterworth filter.
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(iv)

Now, defining the constants

(9.23)

(9.24)

(9.25)

and introducing the Laplace variable s, one can eliminate vA by substituting equation (iv) into (iii);
thus,

(9.26)

This second-order transfer function becomes oscillatory if (τ2 + τ3)2 < 4τ1τ2. Ideally, one would

like to have a zero resonant frequency, which corresponds to a damping ratio value . Since
the undamped natural frequency is

(9.27)

the damping ratio is

(9.28)

and the resonant frequency is

(9.29)

then, under ideal conditions (i.e., for ωr = 0), one obtains

(9.30)

The frequency response function of the filter is (see equation (9.26))

(9.31)

Now, for ω << ωn, the filter frequency response is flat with a unity gain. For ω >> ωn, the filter
frequency response can be approximated by

v v
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On a log (magnitude) vs. log (frequency) scale, this function is a straight line with slope = –2.
Hence, when the frequency increases by a factor of 10 (i.e., one decade), the log10 (magnitude)
drops by 2 units (i.e., 40 dB). In other words, the roll-off rate is –40 dB per decade. Also, ωn can
be taken as the filter cutoff frequency. Hence,

(9.32)

It can be easily verified that when ζ = , this frequency is identical to the half-power bandwidth 

(i.e., the frequency at which the transfer function magnitude becomes ). 
�

Note that if two single-pole stages (of the type shown in Figure 9.6(b)) are cascaded, the
resulting two-pole filter has an overdamped (nonoscillatory) transfer function, and it is not possible
to achieve ζ =  as in the present case. Also, note that a three-pole, low-pass Butterworth filter
can be obtained by cascading a two-pole unit as shown in Figure 9.7 with a single-pole unit shown
in Figure 9.6(b). Higher order low-pass Butterworth filters can be obtained in a similar manner by
cascading an appropriate selection of basic units.

9.2.3 HIGH-PASS FILTERS

Ideally, a high-pass filter allows through it all signal components above a certain (cutoff) frequency,
and blocks off all signal components below that frequency. A single-pole, high-pass filter is shown
in Figure 9.8. As for the low-pass filter discussed earlier, the passive filter stage [Figure 9.8(a)]
and the active filter stage [Figure 9.8(b)] have identical transfer functions. The active filter is desired,
however, because of its many advantages, including negligible loading error due to high input
impedance and low output impedance of the op-amp voltage follower that is present in this circuit.

The filter equation is obtained by considering the current balance in Figure 9.8(a), noting that
the output is in open circuit (zero load current). Accordingly,

or

(9.33)

in which the filter time constant

(9.34)

Introducing the Laplace variable s, the filter transfer function is obtained as

(9.35)
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Note that this corresponds to a lead circuit (i.e., an overall phase lead is provided by this transfer
function). The frequency response function is

(9.36)

Since its magnitude is 0 for ω << 1/τ and it is unity for ω >> 1/τ, the cutoff frequency becomes

(9.37)

Signals above this cutoff frequency should be allowed undistorted by an ideal high-pass filter,
and signals below the cutoff should be completely blocked. The actual behavior of the basic high-
pass filter discussed above is not that perfect, as observed from the frequency-response characteristic
shown in Figure 9.8(c). It can be easily verified that the half-power bandwidth of the basic high-

FIGURE 9.8 A single-pole, high-pass filter: (a) a passive filter stage; (b) an active filter stage; and the
(c) frequency response characteristic.
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pass filter is equal to the cutoff frequency given by equation (9.37), as in the case of the basic low-
pass filter. The roll-up slope of the single-pole, high-pass filter is 20 dB per decade. Steeper slopes
are desirable. Multiple-pole, high-pass Butterworth filters can be constructed to give steeper roll-
up slopes and reasonably flat pass-band magnitude characteristics.

9.2.4 BANDPASS FILTERS

An ideal bandpass filter passes all signal components within a finite frequency band and blocks
off all signal components outside that band. The lower frequency limit of the pass band is called
the lower cutoff frequency (ωc1), and the upper frequency limit of the band is called the upper cutoff
frequency (ωc2).

The most straightforward way to form a bandpass filter is to cascade a high-pass filter of cutoff
frequency ωc1 with a low-pass filter of cutoff frequency ωc2. Such an arrangement is shown in
Figure 9.9. The passive circuit shown in Figure 9.9(a) is obtained by connecting together the circuits
shown in Figures 9.6(a) and 9.8(a). The passive circuit shown in Figure 9.9(b) is obtained by
connecting a voltage follower op-amp circuit to the original passive circuit. Passive and active
filters have the same transfer function, assuming that loading problems are not present in the passive
filter. Because loading errors can be serious in practice, however, the active version is preferred.

To obtain the filter equation, first consider the high-pass portion of the circuit shown in
Figure 9.9(a). Since the output is open-circuit (zero current), from equation (9.35), one obtains

(i)

where

(9.38)

Next, on writing the current balance at node A of the circuit, one has

(ii)

Introducing the Laplace variable s, one obtains

(iii)

in which

(9.39)

and

(9.40)

Now, on eliminating vA by substituting equation (i) into (iii), one obtains the bandpass filter transfer
function:
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(9.41)

One can show that the roots of the characteristic equation

(9.42)

are real and negatives. The two roots are denoted by –ωc1 and –ωc2, and they provide the two cutoff
frequencies shown in Figure 9.9(c). It can be verified that, for this basic bandpass filter, the roll-up
slope is +20 dB per decade, and the roll-down slope is –20 dB per decade. These slopes are not
sufficient in many applications. Furthermore, the flatness of the frequency response within the pass
band of the basic filter is also not adequate. More complex (higher-order) bandpass filters with
sharper cutoffs and flatter pass bands are commercially available.

FIGURE 9.9 Bandpass filter: (a) a basic passive filter stage; (b) a basic active filter stage; and the (c) frequency
response characteristic.
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Resonance-Type Bandpass Filters

There are many applications where a filter with a very narrow pass band is required. The tracking
filter mentioned in the beginning of this section on analog filters is one such application. A filter
circuit with a sharp resonance can serve as a narrow-band filter. Note that the cascaded RC circuit
shown in Figure 9.9 does not provide an oscillatory response (filter poles are all real) and, hence,
it does not form a resonance-type filter. A slight modification to this circuit using an additional
resistor R1 as shown in Figure 9.10(a) will produce the desired effect.

To obtain the filter equation, note that for the voltage follower unit,

(i)

Next, since the current through an op-amp lead is 0, for the high-pass circuit unit [see equation (9.35)],
one has

(ii)

FIGURE 9.10 A resonance-type narrow bandpass filter: (a) an active filter stage, and the (b) frequency
response characteristic.
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where

Finally, current balance at node B gives

or, using the Laplace variable, one obtains

(iii)

Now, by eliminating vA and vB in equations (i) through (iii), the filter transfer function is obtained as

(9.43)

It can be shown that, unlike equation (9.41), the present characteristic equation

(9.44)

can possess complex roots.

EXAMPLE 9.5

Verify that the bandpass filter shown in Figure 9.10(a) can have a frequency response with a resonant
peak as shown in Figure 9.10(b). Verify that the half-power bandwidth ∆ω of the filter is given by
2ζωr at low damping values. (Note: ζ = damping ratio and ωr = resonant frequency.)

SOLUTION

One can verify that the transfer function given by equation (9.43) can have a resonant peak by
showing that the characteristic equation (9.44) can have complex roots. For example, for parameter
values C1 = 2, C2 = 1, R1 = 1, and R2 = 2, one has τ1 = 2, τ2 = 2, and τ3 = 1. The corresponding
characteristic equation is

which has the roots

which are obviously complex.
To obtain an expression for the half-power bandwidth of the filter, note that the filter transfer

function can be written as
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(9.45)

where

ωn = undamped natural frequency
ζ = damping ratio
k = a gain parameter.

The frequency response function is given by

(9.46)

For low damping, resonant frequency ωr ≅  ωn. The corresponding peak magnitude M is obtained
by substituting ω = ωn in equation (9.46) and taking the transfer function magnitude; thus,

(9.47)

At half-power frequencies,

or

This gives

(9.48)

the positive roots of which provide the pass-band frequencies ωc1 and ωc2. Note that the roots are
given by

Hence, the two roots ωc1 and ωc2 satisfy the following two equations:
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Accordingly, by solving these two quadratic equations and selecting the appropriate sign, one obtains

(9.49)

(9.50)

The half-power bandwidth is

(9.51)

Now, since ωn ≅  ωr for low ζ, one has

(9.52)
�

A notable shortcoming of a resonance-type filter is that the frequency response within the bandwidth
(pass band) is not flat. Hence, quite nonuniform signal attenuation takes place inside the pass band.

9.2.5 BAND-REJECT FILTERS

Band-reject filters, or notch filters, are commonly used to filter out a narrow band of noise
components from a signal. For example, 60-Hz line noise in signals can be eliminated by using a
notch filter with a notch frequency of 60 Hz.

An active circuit that could serve as a notch filter is shown in Figure 9.11(a). This is known
as the Twin T circuit because its geometric configuration resembles two T-shaped circuits connected
together. To obtain the filter equation, note that the voltage at point P is vo because of unity gain
of the voltage follower. Now, one can write the current balance at nodes A and B; thus,

Next, since the current through the + lead of the op-amp (voltage follower) is 0, the current
continuity through point P is given by

These three equations are written in the Laplace form as

(i)

(ii)
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(iii)

where

(9.53)

Finally, eliminating vA and vB in equations (i) through (iii), one obtains

(9.54)

The frequency response function of the filter (with s = jω) is

(9.55)

Note that the magnitude of this function becomes 0 at frequency

(9.56)

This is known as the notch frequency. The magnitude of the frequency-response function of the
notch filter is sketched in Figure 9.11(b). One notices that any signal component at frequency ωo

will be completely eliminated by the notch filter. Sharp roll-down and roll-up are needed to allow
the other (desirable) signal components through without too much attenuation.

Whereas the previous three types of filters achieve their frequency-response characteristics
through the poles of the filter transfer function, a notch filter achieves its frequency-response
characteristic through its zeros (roots of the numerator polynomial equation). Some useful infor-
mation about filters is summarized in Box 9.2.

9.3 MODULATORS AND DEMODULATORS

Sometimes, signals are deliberately modified to maintain the accuracy during signal transmission,
conditioning, and processing. In signal modulation, the data signal, known as the modulating signal,
is used to vary a property (such as amplitude or frequency) of a carrier signal. Then, one can say
that the carrier signal is modulated by the data signal. After transmitting or conditioning the
modulated signal, the data signal is usually recovered by removing the carrier signal. This is known
as demodulation or discrimination.

Many modulation techniques exist, and several other types of signal modification (e.g., digitizing)
can be classified as signal modulation although they might not be commonly termed as such. Four
types of modulation are illustrated in Figure 9.12. In amplitude modulation (AM), the amplitude of
a periodic carrier signal is varied according to the amplitude of the data signal (modulating signal),
the frequency of the carrier signal (carrier frequency) being kept constant. Suppose that the transient
signal shown in Figure 9.12(a) is used as the modulating signal. A high-frequency sinusoidal signal
is used as the carrier signal. The resulting amplitude-modulated signal is shown in Figure 9.12(b).
Amplitude modulation is used in telecommunications, radio and TV signal transmission, instrumen-
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tation, and signal conditioning. The underlying principle is useful in other applications such as fault
detection and diagnosis in rotating machinery.

In frequency modulation (FM), the frequency of the carrier signal is varied in proportion to
the amplitude of the data signal (modulating signal), while keeping the amplitude of the carrier
signal constant. If the data signal shown in Figure 9.12(a) is used to frequency-modulate a sinusoidal
carrier signal, then the result will appear as in Figure 9.12(c). Because information is carried as
frequency rather than amplitude, any noise that might alter the signal amplitude will have virtually
no effect on the transmitted data. Hence, FM is less susceptible to noise than AM. Furthermore,
since in FM the carrier amplitude is kept constant, signal weakening and noise effects that are
unavoidable in long-distance data communication will have less effect than in the case of AM,
particularly if the data signal level is low in the beginning. But more sophisticated techniques and
hardware are needed for signal recovery (demodulation) in FM transmission because FM demod-
ulation involves frequency discrimination rather than amplitude detection. Frequency modulation
is also widely used in radio transmission and in data recording and replay.

In pulse-width modulation (PWM), the carrier signal is a pulse sequence. The pulse width is
changed in proportion to the amplitude of the data signal, while keeping the pulse spacing constant.
This is illustrated in Figure 9.12(d). Pulse-width-modulated signals are extensively used in controlling
electric motors and other mechanical devices such as valves (hydraulic, pneumatic) and machine

FIGURE 9.11 A notch filter: (a) an active twin T filter circuit, and the (b) frequency response characteristic.
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tools. Note that in a given (short) time interval, the average value of the pulse-width-modulated
signal is an estimate of the average value of the data signal in that period. Hence, PWM signals can
be used directly in controlling a process, without having to demodulate it. Advantages of pulse-
width modulation include better energy efficiency (less dissipation) and better performance with
nonlinear devices. For example, a device may stick at low speeds due to Coulomb friction. This can
be avoided by using a PWM signal that provides the signal amplitude necessary to overcome friction,
while maintaining the required average control signal, which might be very small.

In pulse-frequency modulation (PFM) as well, the carrier signal is a pulse sequence. In this
method, the frequency of the pulses is changed in proportion to the data signal level, while keeping
the pulse width constant. Pulse-frequency modulation has the advantages of ordinary frequency
modulation. Additional advantages result due to the fact that electronic circuits (digital circuits in
particular) can handle pulses very efficiently. Furthermore, pulse detection is not susceptible to
noise because it involves distinguishing between presence and absence of a pulse rather than
accurate determination of the pulse amplitude (or width). Pulse-frequency modulation can be used
in place of pulse-width modulation in most applications, with better results.

Another type of modulation is phase modulation (PM). In this method, the phase angle of the
carrier signal is varied in proportion to the amplitude of the data signal.

Conversion of discrete (sampled) data into the digital (binary code) form is also considered
modulation. In fact, this is termed pulse-code modulation (PCM). In this case, each discrete data
sample is represented by a binary number containing a fixed number of binary digits (bits). Since

BOX 9.2 Filters

Active Filters (Need External Power)
Advantages:

• Smaller loading errors (have high input impedance and low output impedance, and hence
do not affect the input circuit conditions and output signals)

• Lower cost
• Better accuracy.

Passive Filters (No External Power, Use Passive Elements)
Advantages:

• Usable at very high frequencies (e.g., radio frequency)
• No need for a power supply.

Filter Types
• Low pass: Allows frequency components up to the cutoff and rejects the higher-frequency

components.
• High pass: Rejects frequency components up to the cutoff and allows the higher-fre-

quency components.
• Bandpass: Allows frequency components within an interval and rejects the rest.
• Notch (or band reject): Rejects frequency components within an interval (usually, narrow)

and allows the rest.

Definitions
• Filter order: Number of poles in the filter circuit transfer function.
• Anti-aliasing filter: Low-pass filter with cutoff at less than half the sampling rate

(i.e., Nyquist frequency), for digital processing.
• Butterworth filter: A high-order filter with a very flat pass band.
• Chebyshev filter: An optimal filter with uniform ripples in the pass band.
• Sallen-Key filter: An active filter whose output is in phase with input.
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each digit in the binary number can take only two values, 0 or 1, it can be represented by the
absence or presence of a voltage pulse. Hence, each data sample can be transmitted using a set of
pulses. This is known as encoding. At the receiver, the pulses have to be interpreted (or decoded)
in order to determine the data value. As with any other pulse technique, PCM is quite immune to
noise because decoding involves detection of the presence or absence of a pulse rather than
determination of the exact magnitude of the pulse signal level. Also, because pulse amplitude is
constant, long-distance signal transmission (of this digital data) can be accomplished without the
danger of signal weakening and associated distortion. Of course, there will be some error introduced
by the digitization process itself, which is governed by the finite word size (or dynamic range) of

FIGURE 9.12 (a) Modulating signal (data signal); (b) amplitude-modulated (AM) signal; (c) frequency-
modulated (FM) signal; (d) pulse-width-modulated (PWM) signal; and (e) pulse-frequency-modulated (PFM)
signal.
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the binary data element. This is known as quantization error and is unavoidable in signal digitiza-
tion.

In any type of signal modulation, it is essential to preserve the algebraic sign of the modulating
signal (data). Different types of modulators handle this in different ways. For example, in pulse-
code modulation (PCM), an extra sign bit is added to represent the sign of the transmitted data
sample. In amplitude modulation and frequency modulation, a phase-sensitive demodulator is
used to extract the original (modulating) signal with the correct algebraic sign. Note that in these
two modulation techniques, a sign change in the modulating signal can be represented by a 180°
phase change in the modulated signal. This is not quite noticeable in Figures 9.12(b) and (c). In
pulse-width modulation and pulse-frequency modulation, a sign change in the modulating signal
can be represented by changing the sign of the pulses, as shown in figures 9.12(d) and (e). In phase
modulation, a positive range of phase angles (say 0 to π) could be assigned for the positive values
of the data signal, and a negative range of phase angles (say –π to 0) could be assigned for the
negative values of the signal.

9.3.1 AMPLITUDE MODULATION

Amplitude modulation can naturally enter into many physical phenomena. More important, perhaps,
is the deliberate (artificial) use of amplitude modulation to facilitate data transmission and signal
conditioning. First, examine the related mathematics.

Amplitude modulation is achieved by multiplying the data signal (modulating signal) x(t) by
a high-frequency (periodic) carrier signal xc(t). Hence, the amplitude-modulated signal xa(t) is given
by

(9.57)

Note that the carrier can be any periodic signal, such as harmonic (sinusoidal), square wave, or
triangular. The main requirement is that the fundamental frequency of the carrier signal (carrier
frequency) fc be significantly larger (say, by a factor of 5 or 10) than the highest frequency of
interest (bandwidth) of the data signal. Analysis can be simplified by assuming a sinusoidal carrier
frequency; thus,

(9.58)

Modulation Theorem

This is also known as the frequency-shifting theorem and relates the fact that if a signal is multiplied
by a sinusoidal signal, the Fourier spectrum of the product signal is simply the Fourier spectrum
of the original signal shifted through the frequency of the sinusoidal signal. In other words, the
Fourier spectrum Xa(f) of the amplitude-modulated signal xa(t) can be obtained from the Fourier
spectrum X(f) of the data signal x(t) simply by shifting through the carrier frequency fc.

To mathematically explain the modulation theorem, one can use the definition of the Fourier
integral transform (see Chapter 4) to obtain

But, since

x t x t x ta c( ) = ( ) ( )

x t a f tc c c( ) = cos 2π

X f a x t f t j ft dta c c( ) = ( ) −( )
−∞

∞

∫ cos exp2 2π π
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one has

(9.59)

Equation (9.59) is the mathematical statement of the modulation theorem. It is illustrated by an
example in Figure 9.13. Consider a transient signal x(t) with a (continuous) Fourier spectrum X(f)
whose magnitude �X(f)� is as shown in Figure 9.13(a). If this signal is used to amplitude-modulate
a high-frequency sinusoidal signal, the resulting modulated signal xa(t) and the magnitude of its
Fourier spectrum are as shown in Figure 9.13(b). It should be kept in mind that the magnitude has
been multiplied by ac/2. Note that the data signal is assumed to be band limited, with bandwidth fb.
Of course, the theorem is not limited to band-limited signals; but for practical reasons, there needs
to be some upper limit on the useful frequency of the data signal. Also, for practical reasons (not
for the theorem itself), the carrier frequency fc should be several times larger than fb so that there
is a reasonably wide frequency band from 0 to (fc – fb) within which the magnitude of the modulated
signal is virtually zero. The significance of this should be clear when the applications of amplitude
modulation are discussed.

Figure 9.13 shows only the magnitude of the frequency spectra. It should be remembered,
however, that every Fourier spectrum has a phase-angle spectrum as well. This is not shown for
conciseness; but, clearly the phase-angle spectrum is also similarly affected (frequency shifted) by
amplitude modulation.

Side Frequencies and Side Bands

The modulation theorem, as described above, assumed transient data signals with associated
continuous Fourier spectra. The same ideas are applicable to periodic signals (with discrete spectra)
as well. The case of periodic signals is merely a special case of what was discussed above. This
case can be analyzed using Fourier integral transform itself, from the start. In that case, however,
one must cope with impulsive spectral lines. Alternatively, Fourier series expansion could be
employed to avoid the introduction of impulsive discrete spectra into the analysis. But, as shown
in Figure 9.13(c) and (d), no analysis is actually needed for the periodic signal case because the
final answer can be deduced from the transient signal results. Specifically, each frequency compo-
nent fo with amplitude a/2 in the Fourier series expansion of the data signal will be shifted by ±fc

to the two new frequency locations fc + fo and –fc + fo with an associated amplitude aac/4. The
negative frequency component –fo should also be considered in the same way, as illustrated in
Figure 9.13(d). Note that the modulated signal does not have a spectral component at carrier
frequency fc but, rather, on each side of it, at fc ± fo. Hence, these spectral components are termed
side frequencies. When a band of side frequencies is present, one has a side band. Side frequencies
are very useful in fault detection and diagnosis of rotating machinery.
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9.3.2 APPLICATION OF AMPLITUDE MODULATION

The main hardware component of an amplitude modulator is an analog multiplier. It is commercially
available in the monolithic IC form, or one can be assembled using integrated-circuit op-amps and
other discrete circuit elements. A schematic representation of an amplitude modulator is shown in

FIGURE 9.13 Illustration of the modulation theorem: (a) a transient data signal and its Fourier spectrum
magnitude; (b) amplitude-modulated signal and its Fourier spectrum magnitude; (c) a sinusoidal data signal;
and (d) amplitude modulation by a sinusoidal signal.
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Figure 9.14. Note that, in practice, to achieve satisfactory modulation, other components such as
signal preamplifiers and filters will be needed.

There are many applications of amplitude modulation. In some applications, modulation is
performed intentionally. In others, modulation occurs naturally as a consequence of the physical
process, and the resulting signal is used to meet a practical objective. Typical applications of
amplitude modulation include the following:

1. Conditioning of general signals (including DC, transient, and low-frequency) by exploit-
ing the advantages of AC signal conditioning hardware

2. Improvement of the immunity of low-frequency signals to low-frequency noise
3. Transmission of general signals (DC, low-frequency, etc.) by exploiting the advantages

of AC signals
4. Transmission of low-level signals under noisy conditions
5. Transmission of several signals simultaneously through the same medium (e.g., same

telephone line, same transmission antenna, etc.)
6. Fault detection and diagnosis of rotating machinery.

The role of amplitude modulation in many of these applications should be obvious if one under-
stands the frequency-shifting property of amplitude modulation. Several other types of applications
are also feasible due to the fact that the power of the carrier signal can be increased somewhat
arbitrarily, irrespective of the power level of the data (modulating) signal. The six categories of
applications mentioned above will be discussed — one by one.

AC signal-conditioning devices such as AC amplifiers are known to be more “stable” than their
DC counterparts. In particular, drift problems are not as severe and nonlinearity effects are lower
in AC signal-conditioning devices. Hence, instead of conditioning a DC signal using DC hardware,
one can first use the signal to modulate a high-frequency carrier signal. Then, the resulting high-
frequency modulated signal can be conditioned more effectively using AC hardware.

The frequency-shifting property of amplitude modulation can be exploited in making low-
frequency signals immune to low-frequency noise. Note from Figure 9.13 that by amplitude
modulation, the low-frequency spectrum of the modulating signal can be shifted out into a very
high-frequency region by choosing the carrier frequency fc sufficiently large. Then, any low-
frequency noise (within the band 0 to fc – fb) would not distort the spectrum of the modulated
signal. Hence, this noise can be removed by a high-pass filter (with cutoff at fc – fb) without affecting
the data. Finally, the original data signal can be recovered by demodulation. Note that the frequency
of a noise component can very well be within the bandwidth fb of the data signal and, hence, if
amplitude modulation is not employed, noise can directly distort the data signal.

Transmission of AC signals is more efficient than that of DC signals. Advantages of AC
transmission include lower energy dissipation problems. Hence, a modulated signal can be trans-
mitted over long distances more effectively than can the original data signal alone. Furthermore,
transmission of low-frequency (large wavelength) signals require large antennas. Hence, when

FIGURE 9.14 Representation of an amplitude modulator.
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amplitude modulation is employed (with an associated reduction in signal wavelength), the size of
broadcast antenna can be effectively reduced.

Transmission of weak signals over long distances is not desirable because further signal
weakening and corruption by noise could produce disastrous results. By increasing the power of
the carrier signal to a sufficiently high level, the strength of the modulated signal can be elevated
to an adequate level for long-distance transmission.

It is impossible to simultaneously transmit two or more signals in the same frequency range
using a single telephone line. This problem can be resolved using carrier signals with significantly
different carrier frequencies to amplitude-modulate the data signals. By picking the carrier frequen-
cies sufficiently farther apart, the spectra of the modulated signals can be made non-overlapping,
thereby making simultaneous transmission possible. Similarly, with amplitude modulation, simul-
taneous broadcasting by several radio (AM) broadcast stations in the same broadcast area has
become possible.

Fault Detection and Diagnosis

One use of the amplitude modulation principle that is particularly important in the practice of
mechanical vibration is in the fault detection and diagnosis of rotating machinery. In this method,
modulation is not deliberately introduced, but rather it results from the dynamics of the machine.
Flaws and faults in a rotating machine are known to produce periodic forcing signals at frequencies
higher than, and typically at an integer multiple of, the rotating speed of the machine. For example,
backlash in a gear pair will generate forces at the tooth-meshing frequency (equal to the product:
number of teeth × gear rotating speed). Flaws in roller bearings can generate forcing signals at
frequencies proportional to the rotating speed times the number of rollers in the bearing race.
Similarly, blade passing in turbines and compressors, and eccentricity and unbalance in a rotor,
can produce forcing components at frequencies that are integer multiples of the rotating speed.
Now, the resulting vibration response will be an amplitude modulated signal, where the rotating
response of the machine modulates the high frequency forcing response. This can be confirmed
experimentally by Fourier analysis (fast Fourier transform or FFT) of the resulting vibration signals.
For a gear box, for example, it will be noticed that, instead of getting a spectral peak at the gear
tooth-meshing frequency, two side bands are produced around that frequency. Faults can be detected
by monitoring the evolution of these side bands. Furthermore, because side bands are the result of
modulation of a specific forcing phenomenon (e.g., gear-tooth meshing, bearing-roller hammer,
turbine-blade passing, unbalance, eccentricity, misalignment, etc.), one can trace the source of a
particular fault (i.e., diagnose the fault) by studying the Fourier spectrum of the measured vibrations.

Amplitude modulation is an integral part of many types of sensors. In these sensors a high-
frequency carrier signal (typically the AC excitation in a primary winding) is modulated by the
motion. Actual motion can be detected by demodulation of the output. Examples of sensors that
generate modulated outputs are differential transformers (LVDT, RVDT), magnetic-induction prox-
imity sensors, eddy current proximity sensors, AC tachometers, and strain-gage devices that use
AC bridge circuits. Signal conditioning and transmission will be facilitated by amplitude modulation
in these cases. However, the signal has to be demodulated at the end, for most practical purposes
such as analysis and recording.

9.3.3 DEMODULATION

Demodulation (or discrimination or detection) is the process of extracting the original data signal
from a modulated signal. In general, demodulation must be phase sensitive in the sense that the
algebraic sign of the data signal should be preserved and determined by the demodulation process.
In full-wave demodulation, an output is generated continuously. In half-wave demodulation, no
output is generated for every alternate half-period of the carrier signal.
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A simple and straightforward method of demodulation is by detection of the envelope of the
modulated signal. For this method to be feasible, the carrier signal must be quite powerful (i.e., the
signal level must be high) and the carrier frequency should also be very high. An alternative method
of demodulation that generally provides more reliable results involves a further step of modulation
performed on the already-modulated signal, followed by low-pass filtering. This method can be
explained by referring to Figure 9.13.

Consider the amplitude-modulated signal xa(t) shown in Figure 9.13(b). If this signal is mul-
tiplied by the sinusoidal carrier signal 2/accos2πfct, one obtains

(9.60)

Now, by applying the modulation theorem [equation (9.59)] to equation (9.60), one obtains the
Fourier spectrum of (t) as

or

(9.61)

The magnitude of this spectrum is shown in Figure 9.15(a). Note that the spectrum X(f) of the
original data signal has been recovered, except for the two side bands that are present at locations
far removed (centered at ±2fc) from the bandwidth of the original signal. Hence, one can easily
low-pass filter this signal (t) using a filter with cutoff at fb to recover the original data signal.
A schematic representation of this method of amplitude demodulation is shown in Figure 9.15(b).

9.4 ANALOG–DIGITAL CONVERSION

Data acquisition systems in machine condition monitoring, fault detection and diagnosis, and
vibration testing employ digital computers for various tasks, including signal processing, data
analysis and reduction, parameter identification, and decision-making. Typically, the measured
response (output) of a dynamic system is available in the analog form as a continuous signal
(function of continuous time). Furthermore, typically, the excitation signals (inputs) for a dynamic
system must be provided in the analog form.

Inputs to a digital device (e.g., a digital computer) and outputs from a digital device are
necessarily present in the digital form. Hence, when a digital device is interfaced with an analog
device, the interface hardware and associated driver software have to perform several important
functions. Two of the most important interface functions are digital-to-analog conversion (DAC)
and analog-to-digital conversion (ADC). The digital output from a digital device must be converted
into the analog form for feeding into an analog device such as an actuator or analog recording or
display unit. Also, an analog signal must be converted into the digital form, according to an
appropriate code, before being read by a digital processor or computer. DACs are simpler and lower
in cost than ADCs. Furthermore, some types of ADCs employ a DAC to perform their function.
For these reasons, the DAC will be discussed first.
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9.4.1 DIGITAL-TO-ANALOG CONVERSION (DAC)

The function of a digital-to-analog converter (DAC) is to convert a sequence of digital words stored
in a data register (called DAC register), typically in straight binary form, into an analog signal. The
data in the DAC register may be arriving from a data bus of a computer. Each binary digit (bit) of
information in the register can be present as a state of a bistable (two-stage) logic device that can
generate a voltage pulse or a voltage level to represent that bit. For example, the off state of a bistable
logic element, or absence of a voltage pulse, or low level of a voltage signal, or no change in a
voltage level can represent binary 0. Then, the on state of a bistable device, or presence of a voltage
pulse, or high level of a voltage signal, or change in a voltage level will represent binary 1. The
combination of these bits forming the digital word in the DAC register will correspond to some
numerical value for the output signal. Then, the purpose of DAC is to generate an output voltage
(signal level) that has this numerical value, and maintain the value until the next digital word is
converted. Because a voltage output cannot be arbitrarily large or small for practical reasons, some
form of scaling will have to be employed in the DAC process. This scale will depend on the
reference voltage vref used in the particular DAC circuit.

A typical DAC unit is an active circuit in the integrated-circuit form and may consist of a data
register (digital circuits), solid-state switching circuits, resistors, and operational amplifiers powered
by an external power supply that can provide a reference voltage. The reference voltage will
determine the maximum value of the output (full-scale voltage). An integrated-circuit (IC) chip
that represents the DAC is usually one of many components mounted on a printed circuit (PC)
board. This PC board can be identified by several names, including input/output (I/O) board, I/O
card, interface board, or data acquisition and control board. Typically, the same board will provide
both DAC and ADC capabilities for many output and input channels.

FIGURE 9.15 Amplitude demodulation: (a) spectrum of the signal after the second modulation, and
(b) demodulation schematic diagram (modulation + filtering).
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There are many types and forms of DAC circuits. The form will depend mainly on the manufac-
turer, and requirements of the user or of the particular application. Most types of DAC are variations
of two basic types: the weighted type (or summer type or adder type) and the ladder type. The latter
type of DAC is more desirable although the former type could be somewhat simpler and less expensive.

Weighted-Resistor DAC

A schematic representation of a weighted-resistor DAC (or summer DAC or adder DAC) is shown
in Figure 9.16. Note that this is a general n-bit DAC, where n is the number of bits in the output
register. The binary word in the register is

(9.62)

in which bi is the bit in the ith position, and it can take the value 0 or 1, depending on the value
of the digital output. The decimal value (D) of this binary word is given by

(9.63)

Note that the least significant bit (LSB) is b0, and the most significant bit (MSB) is bn–1. The analog
output voltage v of the DAC must be proportional to D.

Each bit bi in the digital word w will activate a solid-state microswitch in the switching circuit,
typically by sending a switching voltage pulse. If bi = 1, the circuit lead will be connected to the
–vref supply, providing an input voltage vi = –vref to the corresponding weighting resistor 2n–i–1R. If,
on the other hand, bi = 0, then the circuit lead will be connected to ground, thereby providing an
input voltage vi = 0 to the same resistor. Note that the MSB is connected to the smallest resistor
(R), and the LSB is connected to the largest resistor 2n–1R. By writing the current summation at
node A of the output op-amp, one obtains 

In writing this equation, we have used the two principal facts for an op-amp: the voltage is the
same at both input leads, and the current through each lead is 0. Note that the + lead is grounded
and, hence, node A should have zero voltage. Now, since

where bi = 0 or 1, depending on the bit value (state of the corresponding switch), one has

(9.64)

Clearly, the output voltage v is proportional to the value D of the digital word w, as required.
The full-scale value (FSV) of the analog output occurs when all bi are equal to 1. Hence,
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Using the commonly known formula for the sum of a geometric series

(9.65)

one obtains

(9.66)

Note that this value is slightly smaller than the reference voltage vref .
A major drawback of the weighted-resistor DAC is that the range of the resistance value in the

weighting circuit is very wide. This presents a practical difficulty, particularly when the size (number
of bits n) of the DAC is large. Use of resistors having widely different magnitudes in the same
circuit can create accuracy problems. For example, because the MSB corresponds to the smallest
weighting resistor, it follows that the resistors must have a very high precision.

Ladder DAC

A DAC that uses an R – 2R ladder circuit is known as a ladder DAC. This circuit uses only two
types of resistors — one having resistance R and the other having 2R. Hence, the tight tolerance
requirements in resistance accuracy for the weighted-resistor DAC can be relieved using a ladder
DAC. Schematic representation of an R – 2R ladder DAC is shown in Figure 9.17. Microswitching
in the switching circuit in this case can operate just like in the previous case of a weighted-resistor

FIGURE 9.16 Weighted-resistor (adder) DAC.
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DAC. To obtain the input-output equation for the ladder DAC, suppose that, as before, the voltage
output from the solid-state switch associated with bi of the digital word is vi. Furthermore, suppose
that i is the voltage at node i of the ladder circuit, as shown in Figure 9.17. Now, writing the
current summation at node i, one obtains

or

(i)

Note that equation (i) is valid for all nodes except node 0 and node n – 1. It is seen that the current
summation for node 0 gives

FIGURE 9.17 Ladder DAC.
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or

(ii)

and the current summation for node n – 1 gives

But, since the + lead of the op-amp is grounded, then n–1 = 0. Hence,

(iii)

Next, using equations (i) through (iii) and remembering that n–1 = 0, one can write the following
series of equations:

(iv)

If one sums these n equations, first denoting that

then one obtains

Finally, since vi = –bivref , the analog output is given as

(9.67)
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which is identical to equation (9.64) obtained for the weighted-resistor DAC. Hence, as before, the
analog output is proportional to the value D of the digital word; furthermore, the full-scale value
of the ladder DAC is also given by the previous equation (9.66).

DAC Error Sources

For a given digital word, the analog output voltage from a DAC will not be exactly equal to what
is given by the analytical formulas (e.g., equation (9.64)) derived earlier. The difference between
the actual output and the ideal output is the error. The DAC error can be normalized with respect
to the full-scale value.

There are many causes of DAC error. Typical error sources include parametric uncertainties
and variations, circuit time constants, switching errors, and variations and noise in the reference
voltage. Several types of error sources and representations are discussed below.

1. Code ambiguity: In many digital codes (e.g., in the straight binary code), incrementing
a number by an LSB will involve more than one bit switching. If the speed of switching
from 0 to 1 is different from that for 1 to 0, and if switching pulses are not applied to
the switching circuit simultaneously, the bit switchings will not take place simultaneously.
For example, in a 4-bit DAC, incrementing from decimal 2 to decimal 4 will involve
changing the digital word from 0011 to 0100. This requires two bit switchings from
1 to 0 and one bit switching from 0 to 1. If 1 to 0 switching is faster than the 0 to 1
switching, then an intermediate value given by 0000 (decimal zero) will be generated,
with a corresponding analog output. Hence, there will be a momentary code ambiguity
and associated error in the DAC signal. This problem can be reduced (and eliminated in
single-bit increments) if a gray code is used to represent the digital data. Improved
switching circuitry will also help reduce this error.

2. Settling time: The circuit hardware in a DAC unit will have some dynamics, with associated
time constants and perhaps oscillations (underdamped response). Hence, the output volt-
age cannot instantaneously settle to its ideal value upon switching. The time required for

the analog output to settle within a certain band (say, ±2% of the final value or ±

resolution), following the application of the digital data, is termed the settling time.
Naturally, settling time should be smaller for better (faster and more accurate) perfor-
mance. As a rule of thumb, the settling time should be approximately half the data arrival
time. Note that the data arrival time is the time interval between the arrival of two
successive data values, and is given by the inverse of the data arrival rate.

3. Glitches: Switching of a circuit will involve sudden changes in magnetic flux due to
current changes. This will induce voltages that produce unwanted signal components. In
a DAC circuit, these induced voltages due to rapid switching can cause signal spikes
that will appear at the output. The error due to these noise signals is not significant at
low conversion rates.

4. Parametric errors: As discussed before, resistor elements in a DAC might not be precise,
particularly when resistors within a wide range of magnitudes are employed, as in the
case of a weighted-resistor DAC. These errors appear at the analog output. Furthermore,
aging and environmental changes (primarily changes in temperature) will change the
values of circuit parameters — resistance in particular. This also will result in DAC error.
These types of errors due to imprecision of circuit parameters and variations of parameter
values are termed parametric errors. Effects of such errors can be reduced in several
ways, including the use of compensation hardware (and perhaps software) and directly
by using precise and robust circuit components and employing good manufacturing
practices.

1
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5. Reference voltage variations: Because the analog output of a DAC is proportional to the
reference voltage vref, any variations in the voltage supply will directly appear as an error.
This problem can be overcome using stabilized voltage sources with sufficiently low
output impedance.

6. Monotonicity: Clearly, the output of a DAC should change by its resolution (δy = vref /2n)
for each step of one LSB (least-significant bit) increment in the digital value. This ideal
behavior might not exist in some practical DACs due to errors such as those mentioned
above. At least the analog output should not decrease as the value of the digital input
increases. This is known as the monotonicity requirement that should be met by a practical
digital-to-analog converter.

7. Nonlinearity: Suppose that the digital input to a DAC is varied from [0 0 … 0] to [1 1 … 1]
in steps of one LSB. As mentioned above, ideally the analog output should increase in
constant jumps of δy = vref /2n, giving a staircase-shaped analog output. If one draws the
best linear fit for this ideally montonic staircase response, it will have a slope equal to
the resolution/step. This slope is known as the ideal scale factor. Nonlinearity of a DAC
is measured by the largest deviation of the DAC output from this best linear fit. Note

that, in the ideal case, the nonlinearity is limited to half the resolution .

One cause of nonlinearity is clearly the faulty bit transitions. Another cause is circuit
nonlinearity in the conventional sense. Specifically, due to nonlinearities in circuit ele-
ments such as op-amps and resistors, the analog output will not be proportional to the
value of the digital word dictated by the bit switchings (faulty or not). This latter type
of nonlinearity can be accounted for using calibration.

9.4.2 ANALOG-TO-DIGITAL CONVERSION (ADC)

Analog signals, which are continuously defined with respect to time, must be sampled at discrete
time points, and the sample values must be represented in the digital form (according to a suitable
code) to be read into a digital system such as a microcomputer. An analog-to-digital converter
(ADC) is used to accomplish this. For example, because response measurements of dynamic systems
are usually available as analog signals, these signals must be converted into the digital form before
passing on to a signal analysis computer. Hence, the computer interface for the measurement
channels should contain one or more ADCs.

DACs and ADCs are usually situated on the same digital interface board. But, the analog to
digital conversion process is more complex and time consuming than the digital to analog con-
version process. Furthermore, many types of ADCs use DACs to accomplish the analog to digital
conversation. Hence, ADCs are usually more costly and their conversion rate is usually slower in
comparison to DACs.

Several types of analog to digital converters are commercially available. The principle of
operation may vary depending on the type. A few commonly-known types are discussed here.

Successive-Approximation ADC

This type of analog-to-digital converter is very fast, and is suitable for high-speed applications.
The speed of conversion depends on the number of bits in the output register of the ADC, but is
virtually independent of the nature of the analog input signal. A schematic diagram for a successive-
approximation ADC is shown in Figure 9.18. Note that a DAC is an integral component of this
ADC. The sampled analog signal (from a sample and hold circuit) is applied to a comparator
(typically a differential amplifier). Simultaneously, a “start conversion” (SC) control pulse is sent
into the control logic unit by the external device (perhaps a microcomputer) that controls the
operation of the ADC. Then, until the “conversion complete” (CC) pulse is sent out by the control
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logic unit, no new data will be accepted by the ADC. Initially, the registers are cleared so that they
contain all zero bits. Now, the ADC is ready for its first conversion approximation.

The first approximation begins with a clock pulse. Then, the control logic unit will set the most
significant bit (MSB) of the temporary register (DAC control register) to 1, all the other bits in that
register being 0. This digital word in the temporary register is supplied to the DAC. Note that the
analog output of the DAC is now half the full-scale value. This analog signal is subtracted from
the analog input by the comparator. If the output of the comparator is positive, the control logic
unit will leave the MSB of the temporary register at binary 1 and proceed to the next approximation.
If the comparator output is negative, the control logic unit will change the MSB to binary 0 and
proceed to the next approximation.

The second approximation will start with another clock pulse. This approximation will consider
the second most significant bit of the temporary register. As before, this bit is set to 1 and the
comparison is made. If the comparator output is positive, this bit is left at value 1 and the third
most significant bit is considered. If the comparator output is negative, the bit value will be changed
to 0 before proceeding to the third most significant bit.

In this manner, all bits in the temporary register are set successively, starting from the MSB
and ending with the LSB. The contents of the temporary register are then transferred to the output
register and the data valid signal is set by the control logic unit, signaling the interfaced device
(e.g., a microcomputer) to read the contents of the output register. The interfaced device will not
read the register if the data valid signal is not present. Next, a “conversion complete” (CC) pulse
is sent out by the control logic unit and the temporary register is cleared. The ADC is now ready
to accept another data sample for digital conversion.

Note that the conversion process is essentially the same for every bit in the temporary register.
Hence, the total conversion time is approximately n times the conversion time for one bit. Typically,
one bit conversion can be completed within one clock period.

It should be clear that if the maximum value of the analog input signal exceeds the full-scale
value of the DAC, then the excess signal amount cannot be converted by the ADC. The excess
amount will directly contribute to error in the digital output of the ADC. Hence, this situation
should be avoided by properly scaling the analog input, or by properly selecting the reference
voltage for the internal DAC unit.

In the foregoing discussion, it was assumed that the analog input signal is positive. Otherwise,
the sign of the signal should be accounted for by some means. For example, the sign of the signal

FIGURE 9.18 Successive-approximation ADC.
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can be detected from the sign of the comparator output initially, when all bits are 0. Then, the same
conversion process can be used after switching the polarity of the comparator. Finally, the sign
must be represented in the digital output (e.g., by the two’s complement representation for negative
quantities). Another approach to account for signed (bipolar) input signals is to offset the signal
by a sufficiently large constant voltage such that the analog input is always positive. After the
conversion, the digital number corresponding to this offset must be subtracted from the converted
data in the output register in order to obtain the correct digital output. In what follows, it will be
assumed that the analog input signal is positive.

Dual-Slope ADC

This analog-to-digital converter uses an RC integrating circuit. Hence, it is also known as an
integrating ADC. This ADC is simple and inexpensive. In particular, an internal DAC is not utilized
and, hence, DAC errors mentioned previously will not enter the ADC output. Furthermore, the
parameters R and C in the integrating circuit do not enter the ADC output. Hence, the device is self-
compensating in terms of circuit-parameter variations due to temperature, aging, etc. A shortcoming
of this ADC is its slow conversion rate because, for accurate results, the signal integration must
proceed for a longer time in comparison to the conversion time for a successive-approximation ADC.

Analog-to-digital conversion in a dual-slope ADC is based on timing (i.e., counting the number
of clock pulses during) a capacitor-charging process. The principle of operation can be explained
with reference to the integrating circuit shown in Figure 9.19(a). Note that vi is a constant input
voltage to the circuit, and v is the output voltage. Since the + lead of the op-amp is grounded, the
– lead (and node A) will also have zero voltage. Also, the current through the op-amp leads is
negligible. Hence, the current balance at node A gives

Integrating this equation for constant vi one obtains

(9.68)

Equation (9.68) will be utilized in obtaining a principal result for the dual-slope ADC.
A schematic diagram for a dual-slope ADC is shown in Figure 9.19(b). Initially, the capacitor C

in the integrating circuit is discharged (zero voltage). Then, the analog signal vs is supplied to the
switching element and held constant by the sample and hold circuit (S/H). Simultaneously, a
“conversion start” (CS) control signal is sent to the control logic unit. This will clear the timer and
the output register (i.e., all bits are set to 0) and will send a pulse to the switching element to
connect the input vs to the integrating circuit. Also, a signal is sent to the timer to initiate timing
(counting). The capacitor C will begin to charge. Equation (9.68) is now applicable with input
vi = vs and the initial state v(0) = 0. Suppose that the integrator output v becomes –vc at time t = t1.
Hence, from equation (9.68), one has

(i)

The timer will keep track of the capacitor charging time (as a clock pulse count n) and will inform
the control logic unit when the elapsed time is t1 (i.e., when the count is n1). Note that t1 and n1

are fixed (and known), but voltage vc depends on the value of vs and is unknown.
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At this point, the control logic unit will send a signal to the switching unit that will connect
the input lead of the integrator to a negative supply voltage –vref . Simultaneously, a signal is sent
to the timer to clear its contents and start timing (counting) again. The capacitor begins to discharge
now. The output of the integrating circuit is monitored by the zero-detect unit. When this output
becomes zero, the zero-detect unit sends a signal to the timer to stop counting. The zero-detect
unit could be a comparator (differential amplifier) having one of the two input leads set at zero
potential. Now suppose that the elapsed time is t2 (with a corresponding count of n2).

One can use equation (9.68) for the capacitor discharging process as well. Note that vi = –vref

and v(0) = –vc in this case. Also, v(t) = 0 at t = t2. Hence, from equation (9.68), one obtains

FIGURE 9.19 (a) RC integrating circuit; (b) dual-slope ADC; and (c) dual-slope charging-discharging curve.
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or

(ii)

On dividing equation (i) by (ii), one obtains

However, the timer pulse count is proportional to the elapsed time; hence,

Then,

(9.69)

Since vref and n1 are fixed quantities, vref /n1 can be interpreted as a scaling factor for the analog
input. It follows from equation (9.69) then that the second count n2 is proportional to the analog
signal sample vs . Note that the timer output is available in the digital form. Accordingly, the count
n2 is used as the digital output of the ADC.

At the end of the capacitor discharge period, the count n2 in the timer is transferred to the
output register of the ADC and the “data valid” signal is set. The contents of the output register
are now ready to be read by the interfaced digital system, and the ADC is ready to convert a new
sample.

The charging-discharging curve for the capacitor during the conversion process is shown in

Figure 9.19(c). The slope of the curve during charging is , and the slope during discharging

is . The reason for the use of the term “dual-slope” to denote this ADC is therefore clear.

As mentioned before, any variations in R and C do not affect the accuracy of the output, but
it is clear from the above discussion that the conversion time depends on the capacitor discharging
time t2 (note that t1 is fixed) and this depends on vc and, hence, on the input signal value vs (see
equation (i)). It follows that, unlike the successive-approximation ADC, the dual-slope ADC has a
conversion time that directly depends on the magnitude of the input data sample. This is a
disadvantage in a way because, in many applications, one prefers to have a constant conversion rate.

The above discussion assumed that the input signal is positive. For a negative signal, the polarity
of the supply voltage vref must be changed. Furthermore, the sign must be properly represented in
the contents of the output register — as for the case of successive-approximation ADC, for example.

Counter ADC

The counter-type ADC has several aspects in common with the successive-approximation ADC.
Both are comparison-type (or closed-loop) ADCs. Both use a DAC unit internally to compare the
input signal with the converted signal. The difference is that, in a counter ADC, the comparison
starts with the LSB and proceeds down. It follows that, in the counter ADC, the conversion time
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depends on the signal level, because counting (comparison) stops when a match is made, giving
shorter conversion times for smaller signal values.

A schematic diagram of a counter ADC is shown in Figure 9.20. Note that this is quite similar
to Figure 9.18. Initially, all registers are cleared (all bits and counts are set to 0). As an analog data
signal (from the sample and hold circuit) arrives at the comparator, a “start conversion” (SC) pulse
is sent to the control logic unit. When the ADC is ready for conversion (i.e., when the data valid
signal is on), the control logic unit initiates the counter. Now, the counter sets its count to 1 and
the LSB of the DAC register is set to 1 as well. The resulting DAC output is subtracted from the
analog input by the comparator. If the comparator output is positive, the count is incremented by
one, and this causes the binary number in the DAC register to be incremented by one LSB. The
new (increased) output of the DAC is now compared with the input signal. This count incrementing
and comparison cycle is carried out until the comparator output becomes zero or negative. At that
point, the control logic unit will send out a “conversion complete” (CC) signal and will transfer
the contents of the counter to the output register. Then, the data valid signal is also turned on,
indicating that the ADC is ready for a new conversion cycle, and the contents of the output register
(the digital output) are available to be read by the interfaced digital system.

The count of the counter is available in the binary form, which is compatible with the output
register as well as the DAC register. Hence, the count can be transferred directly to these registers.
The count when the analog signal is equal to (or slightly less than) the output of the DAC is
proportional to the analog signal value. Hence, this count represents the digital output. Again, the
sign of the input signal must be properly accounted for in the bipolar operation.

9.4.3 ADC PERFORMANCE CHARACTERISTICS

For ADCs that internally use a DAC, the same error sources discussed previously for DACs will
apply. Code ambiguity at the output register will not be a problem because the converted digital
quantity is transferred instantaneously to the output register. Code ambiguity in the DAC register
can still cause error in an ADC that uses a DAC. Conversion time is a major factor, this being much
larger for an ADC. In addition to resolution and dynamic range, quantization error will be applicable
to an ADC. These considerations that govern the performance of an ADC are discussed below.

Resolution and Quantization Error

The number of bits n in an ADC register determines the resolution and dynamic range of the ADC.
For an n-bit ADC, the output register size is n bits. Hence, the smallest possible increment of the

FIGURE 9.20 Counter ADC.
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digital output is one LSB. The change in the analog input that results in a change of one LSB at
the output is the resolution of the ADC. The range of digital outputs is from 0 to 2n – 1 for the
unipolar (unsigned) case. This represents the dynamic range. Hence, as for a DAC, the dynamic
range of an n-bit ADC is given by the ratio:

(9.70)

or, in decibels,

(9.71)

The full-scale value of an ADC is the value of the analog input that corresponds to the maximum
digital output.

Suppose that an analog signal within the dynamic range of the ADC is converted. Since the
analog input (sample value) has infinitesimal resolution and the digital representation has a finite
resolution (one LSB), an error is introduced into the analog-to-digital conversion process. This is
known as the quantization error. A digital number will increment in constant steps of 1 LSB. If
an analog value falls at an intermediate point within a single-LSB step, then there is a quantization
error. Rounding off of the digital output can be accomplished as follows. The magnitude of the
error, when quantized up, is compared with that when quantized down, say, using two hold elements
and a differential amplifier. Then, one retains the digital value corresponding to the lower error
magnitude. If the analog value is below the 1/2-LSB mark, then the corresponding digital value is
represented by the value in the beginning of the step. If the analog value is above the 1/2-LSB mark,
then the corresponding digital value is the value at the end of the step. It follows that with this
type of rounding off, the quantization error does not exceed 1/2 LSB.

Monotonicity, Nonlinearity, and Offset Error

Considerations of monotonicity and nonlinearity are important for an ADC as well as for a DAC.
The input is an analog signal and the output is digital in the case of ADC. Disregarding quantization
error, the digital output of an ADC will increase in constant steps in the shape of an ideal staircase
when the analog input is increased from 0 in steps of the device resolution (δy). This is the ideally
monotonic case. The best straight-line fit to this curve has a slope equal to 1/δy (LSB per volt).
This is the ideal gain or ideal scale factor. But still there will be an offset error of 1/2 LSB because
the best linear fit will not pass through the origin. Adjustments can be made for this offset error.

Incorrect bit transitions can take place in an ADC, due to various errors that might be present
and possibly due to circuit malfunctions. The best linear fit under such faulty conditions will have
a slope different from the ideal gain. The difference is the gain error. Nonlinearity is the maximum
deviation of the output from the best linear fit. It is clear that with perfect bit transitions, in the ideal
case, a nonlinearity of 1/2 LSB would be present. Nonlinearities larger than this would result due
to incorrect bit transitions. As in the case of DAC, another source of nonlinearity in ADC is circuit
nonlinearities that would deform the analog input signal before being converted into the digital form.

ADC Conversion Rate

It is clear that analog to digital conversion is much more time consuming than digital to analog
conversion. The conversion time is a very important factor because the rate at which conversion
can take place governs many aspects of data acquisition, particularly in real-time applications. For
example, the data sampling rate must synchronize with the ADC conversion rate. This, in turn, will
determine the Nyquist frequency (half the sampling rate), which is the maximum value of useful

DR n= −2 1

DR n= −( )20 2 110log  dB
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frequency present in the sampled signal (see Chapter 4). Furthermore, the sampling rate will dictate
storage and memory requirements. Another important consideration related to the ADC conversion
rate is the fact that a signal sample must be maintained at that value during the entire process of
conversion into the digital form. This would require a hold circuit, and this circuit should be able
to perform accurately at the largest possible conversion time for the particular ADC unit.

The time needed for a sampled analog input to be converted into the digital form will depend
on the type of ADC. Usually in a comparison-type ADC (which uses an internal DAC), each bit-
transition will take place in one clock period ∆t. Also, in an integrating (dual-slope) ADC, each
clock count will need a time of ∆t. On this basis, the following figures can be given for conversion
times of the three types of ADC that have been discussed:

1. Successive-approximation ADC: For an n-bit ADC, n comparisons are needed in this
case. Hence, the conversion time is given by

(9.72)

in which ∆t is the clock period. Note that tc does not depend on the signal level (analog
input) in this case.

2. Dual-slope (integrating) ADC: In this case, conversion time is the time needed for the
two counts n1 and n2 (see Figure 9.19(c)). Hence, 

(9.73)

Note that n1 is a fixed count; but n2 is a variable count that represents the digital output,
and is proportional to the analog input (signal level). Hence, in this type of ADC,
conversion time depends on the analog input level. The largest output for an n-bit
converter is 2n – 1. Hence, the largest conversion time can be given by

(9.74)

3. Counter ADC: For a counter ADC, the conversion time is proportional to the number of
bit transitions (1 LSB per step) from zero to the digital output no. Hence, the conversion
time is given by

(9.75)

in which no is the digital output value (in decimal).
Note that, in this case also, tc depends on the magnitude of the input data sample. Since
the maximum value of no is 2n – 1 for an n-bit ADC, the maximum conversion time becomes

(9.76)

By comparing equations (9.72), (9.74), and (9.76), it can be concluded that the successive-
approximation ADC is the fastest of the three types discussed.

The total time taken to convert an analog signal will depend on other factors besides the time
taken for conversion from sampled data to digital data. For example, in multiple-channel data
acquisition, the time taken to select the channel must be counted. Furthermore, the time needed to

t n tc = ∆

t n n tc = +( )1 2 ∆

t n tc
n

max = + −( )1 2 1 ∆

t n tc o= ∆

t tc
n

max = −( )2 1 ∆
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sample the data and the time needed to transfer the converted digital data into the output register
must also be included. The conversion rate for an ADC is actually the inverse of this overall time
needed for a conversion cycle. Typically, however, the conversion rate depends primarily on the
bit conversion time in the case of a comparison-type ADC, and on the integration time in the case
of an integration-type ADC. A typical time period for a comparison step or counting step in an
ADC is ∆t = 5µs. Hence, for an 8-bit successive-approximation ADC, the conversion time is 40
µs. The corresponding sampling rate would be of the order of (less than) 1/40 × 10–6 = 25 × 103

samples per second (or 25 kHz). The maximum conversion rate for an 8-bit counter ADC would
be about 5 × (28 – 1) = 1275 µs. The corresponding sampling rate would be of the order of 780
samples per second. Note that this is considerably slow. The maximum conversion time for a dual-
slope ADC might be still larger (slower).

9.4.4 SAMPLE-AND-HOLD (S/H) CIRCUITRY

In typical applications of data acquisition that use analog-to-digital conversion, the analog input to
an ADC can be very transient. Furthermore, analog-to-digital conversion is not instantaneous
(the conversion time is much larger than the digital-to-analog conversion time). Specifically, the
incoming analog signal might be changing at a rate higher than the ADC conversion rate. Then, the
input signal value will vary during the conversion period and there will be an ambiguity as to the
input value corresponding to a digital output value. Hence, it is necessary to sample the analog input
signal and maintain the input to the ADC at this value until the analog-to-digital conversion is
complete. In other words, because one is typically dealing with analog signals that can vary at a
high speed, it will be necessary to sample and hold (S/H) the input signal for each analog-to-digital
conversion cycle. Each data sample must be generated and captured by the S/H circuit on the issue
of the “start conversion” (SC) control signal, and the captured voltage level must be maintained
constant until the “conversion complete” (CC) control signal is issued by the ADC unit.

The main element in an S/H circuit is the holding capacitor. A schematic diagram of a sample-
and-hold circuit is shown in Figure 9.21. The analog input signal is supplied through a voltage
follower to a solid-state switch. The switch typically uses a field-effect transistor (FET), such as
the metal-oxide semiconductor field effect transistor (MOSFET).

The switch is closed in response to a “sample pulse” and is opened in response to a “hold
pulse.” Both control pulses would be generated by the control logic unit of the ADC. During the
time interval between these two pulses, the holding capacitor is charged to the voltage of the
sampled input. This capacitor voltage is then supplied to the ADC through a second voltage follower.

The functions of the two voltage followers are now explained. When the FET switch is closed
in response to a sample command (pulse), the capacitor must be charged as quickly as possible.
The associated time constant (charging time constant) τc is given by

(9.77)

where

Rs = source resistance
C = capacitance of the holding capacitor.

Since τc must be very small for fast charging, and because C is fixed by the holding requirements
(typically, C is of the order of 100 pF where 1 pF = 1 × 10–12 F), a very small source resistance is
needed. This requirement is met by the input voltage follower (which is known to have a very low
output impedance), thereby providing a very small Rs. Furthermore, because a voltage follower has
a unity gain, the voltage at the output of this input voltage follower would be equal to the voltage
of the analog input signal, as required.

τ c sR C=
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Next, once the FET switch is opened in response to a hold command (pulse), the capacitor
should not discharge. This requirement is met due to the presence of the output voltage follower.
Since the input impedance of a voltage follower is very high, the current through its leads would
be almost 0. Because of this, the holding capacitor will have a virtually 0 discharge rate under hold
conditions. Furthermore, one would like the output of this second voltage follower to be equal to
the voltage of the capacitor. This condition is also satisfied due to the fact that a voltage follower
has a unity gain. Hence, the sampling would be almost instantaneous and the output of the S/H
circuit would be maintained (almost) constant during the holding period, due to the presence of the
two voltage followers. Note that the practical S/H circuits are zero-order-hold devices by definition.

9.4.5 MULTIPLEXERS (MUX)

A multiplexer (also known as a scanner) is used to select one channel at a time from a bank of
signal channels and connect it to a common hardware unit. In this manner, a costly and complex
hardware unit can be time-shared among several signal channels. Typically, channel selection is
done in a sequential manner at a fixed channel-select rate.

There are two types of multiplexers: analog multiplexers and digital multiplexers. To scan a
group of analog channels, an analog multiplexer is used. Alternatively, a digital multiplexer can be
used to sequentially read one data word at a time from a set of digital data words.

The process of distributing a single channel of data among several output channels is known
as demultiplexing. A demultiplexer (or data distributor) performs the reverse function of a multi-
plexer (or scanner). A demultiplexer can be used, for example, when the same (processed) signal
from a digital computer is needed for several purposes (e.g., digital display, analog reading, and
digital plotting).

Multiplexing used in short-distance signal transmission applications (e.g., control and data
logging) is usually time-division multiplexing. In this method, channel selection is made with respect
to time. Hence, only one input channel is connected to the output channel of the multiplexer. This
is the method described here. Another method of multiplexing, used particularly in long-distance
transmission of several data signals, is known as frequency-division multiplexing. In this method,
the input signals are modulated (e.g., by amplitude modulation as discussed previously) using
carrier signals having different frequencies and are transmitted simultaneously through the same
data channel. The signals are separated by demodulation at the receiving end.

Analog Multiplexers

Dynamic system monitoring often requires the measurement of several process responses. These
signals must be conditioned (e.g., amplification and filtering) and modified in some manner (e.g.,

FIGURE 9.21 A sample-and-hold circuit.
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analog-to-digital conversion) before being supplied to a common-purpose system such as a digital
computer or data logger. Usually, data-modification devices are costly. In particular, it has been
noted that ADCs are more expensive than DACs. An expensive option for interfacing several analog
signals with a common-purpose system such as a digital computer would be to provide separate
data-modification hardware for each signal channel. This method has the advantage of high speed.
An alternative, low-cost method is to use an analog multiplexer (analog scanner) to select one
signal channel at a time, sequentially, and connect it to a common signal-modification hardware
unit (consisting of amplifiers, filters, S/H, ADC, etc.). In this way, by time-sharing expensive
hardware among many data channels, the data acquisition speed is traded off to some extent for
significant cost savings. Because very high channel-selection speeds are possible with solid-state
switching (e.g., solid-state speeds of the order of 10 MHz), the reduced speed is not a significant
drawback in most applications. But, because the cost of hardware components such as an ADC is
declining due to advances in solid-state technologies, cost reductions attainable through the use of
multiplexing might not be substantial in some applications. Hence, some economic evaluation and
engineering judgment is needed in deciding on the use of signal multiplexing for a particular data
acquisition and control application.

A schematic diagram of an analog multiplexer is shown in Figure 9.22. The figure represents
the general case of N input channels and one output channel. This is called an N × 1 analog
multiplexer. Each input channel is connected to the output through a solid-state switch, typically
a field-effect transistor (FET) switch. One switch is closed (turned on) at a time. A switch is selected
by a digital word that contains the corresponding channel address. Note that an n-bit address can
assume 2n digital values in the range of 0 to 2n – 1. Hence, a MUX with an n-bit address can handle
N = 2n channels. Channel selection can be done by an external microprocessor that places the
address of the channel on the address bus and simultaneously sends a control signal to the MUX
to enable the MUX. The address decoder decodes the address and activates the corresponding FET
switch. In this manner, channel selection could be done in an arbitrary order and with arbitrary
timing, controlled by the microprocessor. In simple versions of multiplexers, the channel selection
is made in a fixed order at a fixed speed, however.

Typically, the output of an analog MUX is connected to an S/H circuit and an ADC. Voltage
followers can be provided both at the input and the output in order to reduce loading problems. A
differential amplifier (or instrumentation amplifier) can be used at the output to reduce noise
problems, particularly to reject common-mode interference, as discussed earlier in this chapter.
Note that the channel-select speed must be synchronized with sampling and ADC speeds for each
signal channel. The multiplexer speed is not a major limitation because very high speeds (solid-
state speeds of 10 MHz or more) are available with solid-state switching.

Digital Multiplexers

Sometimes it is required to select one data word at a time from a set of digital data words, to be
fed into a common device. For example, the set of data may be the outputs from a bank of digital
transducers (e.g., shaft encoders which measure angular motions) or outputs from a set of ADCs
that are connected to a set of analog signal channels. Then the selection of the particular digital
output (data word) can be made using addressing and data-bus transfer techniques that are com-
monly used in digital systems.

A digital multiplexing (or logic multiplexing) configuration is shown in Figure 9.23. The
N registers of the multiplexer hold a set of N data words. The contents of each register might
correspond to a response measurement and, hence, will change regularly. The registers can represent
separate hardware devices (e.g., output registers of a bank of ADCs) or locations in a computer
memory to which data are being transferred (read in) regularly. Each register has a unique binary
address. As in the case of an analog MUX, an n-bit address can select (address) 2n registers. Hence,
the number of registers is N = 2n, as before. When the address of the register to be selected is
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placed on the address bus, it enables the particular register. This causes the contents of that register
to be placed on the data bus. Now the data bus is read by the device (e.g., computer) that is time-
shared among the N data registers. Another address on the address bus will result in selecting
another register and reading the contents of that register as before.

Digital multiplexing is usually faster than analog multiplexing, and has the usual advantages
of digital devices: high accuracy, better noise immunity, robustness (no drift and errors due to
parameter variations), long-distance data transmission capability without associated errors due to
signal weakening, capability to handle very large numbers of data channels, etc. Furthermore, a
digital multiplexer can be modified using software, usually without the need for hardware changes.
If, however, instead of using an analog multiplexer followed by a single ADC, a separate ADC is
used for each analog signal channel and then digital multiplexing is used, it is quite possible for
the digital multiplexing approach to be more costly. If, on the other hand, the measurements are
already available in the digital form (e.g., as encoder outputs), then digital multiplexing would be
very cost effective and most desirable.

The transfer of a digital word from a single data source (e.g., a data bus) into several data
registers, to be accessed independently, can be interpreted as digital demultiplexing. This is also a
straightforward process of digital data transfer and reading.

FIGURE 9.22 An N-channel analog multiplexer (analog scanner).
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9.4.6 DIGITAL FILTERS

A filter is a device that eliminates undesirable frequency components in a signal and passes only
the desirable frequency components through it. In analog filtering, the filter is a physical dynamic
system — typically an electric circuit. The signal to be filtered is applied (input) to this dynamic
system. The output of the dynamic system is the filtered signal. It follows that any physical dynamic
system can be interpreted as an analog filter.

An analog filter can be represented by a differential equation with respect to time. It takes an
analog input signal u(t), that is defined continuously in time t, and generates an analog output y(t).
A digital filter is a device that accepts a sequence of discrete input values (say, sampled from an
analog signal at sampling period ∆t):

(9.78)

and generates a sequence of discrete output values;

(9.79)

Hence, a digital filter is a discrete-time system and it can be represented by a difference equation.
An nth order linear difference equation can be written in the form

FIGURE 9.23 An N × 1 digital multiplexer.
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(9.80)

This is a recursive algorithm in the sense that it generates one value of the output sequence using
previous values of the output sequence and all values of the input sequence up to the present time
point. Digital filters represented in this manner are termed recursive digital filters. There are filters
that employ digital processing where a block (a collection of samples) of the input sequence is
converted in a one-shot computation into a block of the output sequence. Such filters are not recursive
filters. Nonrecursive filters usually employ digital Fourier analysis, the fast Fourier transform (FFT)
algorithm, in particular (see Chapter 4 and Appendix D). We restrict our discussion below to recursive
digital filters. This section provides a brief (and nonexhaustive) introduction to the subject of digital
filtering.

Software Implementation and Hardware Implementation

In digital filters, signal filtering is accomplished through digital processing of the input signal. The
sequence of input data (usually obtained by sampling and digitizing the corresponding analog signal)
is processed according to the recursive algorithm of the particular digital filter. This generates the
output sequence. This digital output can be converted into an analog signal using a DAC if so desired.

A recursive digital filter is an implementation of a recursive algorithm that governs the particular
filtering (e.g., low-pass, high-pass, bandpass, and band-reject). The filter algorithm can be imple-
mented either by software or hardware. In software implementation, the filter algorithm is pro-
grammed into a digital computer. The processor (e.g., microprocessor) of the computer can process
an input data sequence according to the run-time filter program stored in the memory (in machine
code), to generate the filtered output sequence.

Digital processing of data is accomplished by means of logic circuitry that can perform basic
arithmetic operations such as addition. In the software approach, the processor of a digital computer
makes use of these basic logic circuits to perform digital processing according to the instructions
of a software program stored in the computer memory. Alternatively, a hardware digital processor
can be put together to perform a somewhat complex, yet fixed, processing operation. In this
approach, the program of computation is said to be in hardware. The hardware processor is then
available as an IC chip whose processing operation is fixed and cannot be modified. The logic
circuitry in the IC chip is designed to accomplish the required processing function. Digital filters
implemented by this hardware approach are termed hardware digital filters.

The software implementation of digital filters has the advantage of flexibility; the filter algorithm
can be easily modified by changing the software program that is stored in the computer. If, on the
other hand, a large number of filters of a particular (fixed) structure is commercially needed, then
it is economical to design the filter as an IC chip and replicate the chip in mass production. In this
manner, very low-cost digital filters can be produced. A hardware filter can operate at a much faster
speed in comparison to a software filter because, in the former case, processing takes place
automatically through logic circuitry in the filter chip without having to access the processor, a
software program, and various data items stored in the memory. The main disadvantage of a
hardware filter is that its algorithm and parameter values cannot be modified, and the filter is
dedicated to a fixed function.

9.5 BRIDGE CIRCUITS

A full bridge is a circuit having four arms connected in a lattice form. Four nodes are formed in
this manner. Two opposite nodes are used for excitation (voltage or current supply) of the bridge,
and the remaining two opposite nodes provide the bridge output. Further details on bridge circuits
and applications are found in Chapter 8.

a y a y a y b u b u b uk k n k n k k m k m0 1 1 0 1 1+ + + = + + +− − − −K K
©2000 CRC Press

http://www.semeng.ir


www.20file.org
A bridge circuit is used to make some form of measurement. Typical measurements include
change in resistance, change in inductance, change in capacitance, oscillating frequency, or some
variable (stimulus) that causes these. There are two basic methods of making the measurement:

1. Bridge balance method
2. Imbalance output method.

A bridge is said to be balanced when the output voltage is 0. In the bridge-balance method, one starts
with a balanced bridge. Then, in making a measurement, since the balance of the bridge will be upset
due to the associated variation, it will result in a non-zero output voltage. The bridge can be balanced
again by varying one of the arms of the bridge (assuming, of course, that some means is provided
for fine adjustments that may be required). The change that is required to restore the balance provides
the measurement. In this method, the bridge can be balanced precisely using a servo device.

In the imbalance output method, one usually starts with a balanced bridge, but the bridge is
not balanced again after undergoing the change due to the variable that is being measured. Instead,
the output voltage of the bridge due to the resulting imbalance is measured and used as an indication
of the measurement.

There are many types of bridge circuits. If the supply to the bridge is DC, then one has a
DC bridge. Similarly, an AC bridge has an AC excitation. A resistance bridge has only resistance
elements in its four arms. An impedance bridge has impedance elements consisting of resistors,
capacitors, and inductors in one or more of its arms. If the bridge excitation is a constant-voltage
supply, it is a constant-voltage bridge. If the bridge supply is a constant-current source, one has a
constant-current bridge.

9.5.1 WHEATSTONE BRIDGE

This is a resistance bridge with a constant DC voltage supply (i.e., a constant-voltage resistance
bridge). A Wheatstone bridge is used in strain-gage measurements, and also in force, torque, and
tactile sensors that employ strain-gage techniques. Because a Wheatstone bridge is used primarily
in the measurement of small changes in resistance, it could be used in other types of sensing
applications as well (e.g., in resistance temperature detectors or RTD).

Consider the Wheatstone bridge circuit shown in Figure 9.24(a). The bridge output vo can be
expressed as (see Chapter 8)

(9.81)

Note that the bridge-balance requirement is

(9.82)

Suppose that R1 = R2 = R3 = R4 = R in the beginning (the bridge is balanced according to equation
(9.82)) and then R1 is increased by δR. For example, R1 may represent the only active strain gage
and the remaining three elements in the bridge are identical dummy elements. Then, in view of
equation (9.81), the change in output due to the change δR is given by
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or

(9.83)

Note that the output is nonlinear in δR/R. If, however, δR/R is assumed small in comparison to 2, 
one obtains the linearized relationship:

FIGURE 9.24 (a) Wheatstone bridge (the constant-voltage resistance bridge), and (b) the constant-current bridge.
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(9.84)

as obtained in Chapter 8. 
The error due to linearization, which is a measure of nonlinearity, can be given as the percentage

(9.85)

Hence, from equations (9.83) and (9.84), one obtains

(9.86)

9.5.2 CONSTANT-CURRENT BRIDGE

When large resistance variations δR are required for a measurement, the Wheatstone bridge may
not be satisfactory due to its nonlinearity, as indicated by equation (9.83). The constant-current
bridge has less nonlinearity and is preferred in such applications. However, it needs a current-
regulated power supply, which is typically more costly than a voltage-regulated power supply.

As shown in Figure 9.24(b), the constant-current bridge uses a constant-current excitation iref

instead of a constant-voltage supply. Note that the output equation for the constant-current bridge
can be determined from equation (9.81) simply by knowing the voltage at the current source.
Suppose that this is voltage vref with the polarity as shown in Figure 9.24(a). Now, since the load
current is assumed small (high-impedance load), the current through R2 is equal to the current
through R1 and is given by

Similarly, current through R4 and R3 is given by

Accordingly,

or

(9.87)
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Substituting equation (9.87) in (9.81), one obtains the output equation for the constant-current
bridge; thus,

(9.88)

Note that the bridge-balance requirement is again given by equation (9.82).
To estimate the nonlinearity of a constant-current bridge, suppose that R1 = R2 = R3 = R4 = R

in the beginning and R1 is changed by δR while the other resistors remain inactive. Again, R1 will
represent the active element (sensing element) and may correspond to an active strain gage. The
change in output δvo is given by

or

(9.89)

By comparing the denominator on the RHS of this equation with equation (9.83), one observes
that the constant-current bridge is more linear. Specifically, using the definition given by equation
(9.85), the percentage nonlinearity can be expressed as

(9.90)

It is noted that the nonlinearity is halved by using a constant-current excitation instead of a constant-
voltage excitation.

9.5.3 BRIDGE AMPLIFIERS

The output from a resistance bridge is usually very small in comparison to the reference, and it
must be amplified in order to increase the voltage level to a useful value (e.g., in system monitoring
or data logging). A bridge amplifier is used for this purpose. This is typically an instrumentation
amplifier or a differential amplifier. The bridge amplifier is modeled as a simple gain Ka that
multiplies the bridge output.

Half-Bridge Circuits

A half-bridge can be used in some applications that require a bridge circuit. A half-bridge has only
two arms, and the output is tapped from the mid-point of the two arms. The ends of the two arms
are excited by a positive voltage and a negative voltage. Initially, the two arms have equal resistances
so that, nominally, the bridge output is 0. One of the arms has the active element. Its change in
resistance results in a non-zero output voltage. It is noted that the half-bridge circuit is somewhat
similar to a potentiometer circuit.

A half-bridge amplifier consisting of a resistance half-bridge and an output amplifier is shown
in Figure 9.25. The two bridge arms have resistances R1 and R2, and the amplifier uses a feedback
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resistance Rf . To get the output equation, one can use the two basic facts for an unsaturated op-amp:
the voltages at the two leads are equal (due to high gain) and the current in both leads is 0 (due
to high input impedance). Hence, voltage at node A is 0 and the current balance equation at node A is

This gives

(9.91)

Now, suppose that initially R1 = R2 = R, and the active element R1 changes by δR. The corresponding
change in output is

or

(9.92)

Note that Rf /R is the amplifier gain. Now, in view of equation (9.85), the percentage nonlinearity
of the half-bridge circuit is

(9.93)

FIGURE 9.25 A half-bridge with an output amplifier.
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It follows that the nonlinearity of a half-bridge circuit is worse than for the Wheatstone bridge.

9.5.4 IMPEDANCE BRIDGES

An impedance bridge contains general impedance elements Z1, Z2, Z3, and Z4 in its four arms, as
shown in Figure 9.26(a). The bridge is excited by an AC supply vref. Note that vref would represent
a carrier signal, and the output vo has to be demodulated if a transient signal representative of the

FIGURE 9.26 (a) General impedance bridge; (b) Owen bridge; and (c) Wien-bridge oscillator.
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variation in one of the bridge elements is needed. Impedance bridges can be used, for example, to
measure capacitances in capacitive sensors and changes of inductance in variable-inductance
sensors and eddy current sensors. Also, impedance bridges can be used as oscillator circuits. An
oscillator circuit could serve as a constant-frequency source of a signal generator (in vibration
testing) or it could be used to determine an unknown circuit parameter by measuring the oscillating
frequency.

By analyzing using frequency-domain concepts it is seen that the frequency spectrum of the
impedance-bridge output is given by

(9.94)

This reduces to equation (9.81) in the DC case of a Wheatstone bridge. The balanced condition is
given by

(9.95)

The bridge balance equation may be used to measure an unknown circuit parameter in the bridge.
Consider now two examples.

Owen Bridge

The Owen bridge shown in Figure 9.26(b) can be used to measure inductance L4 or capacitance C3,
by the bridge-balance method. To derive the necessary equation, note that the voltage-current
relation for an inductor is

(9.96)

and for a capacitor it is

(9.97)

It follows that the voltage/current transfer function (in the Laplace domain) for an inductor is

(9.98)

and, that for a capacitor is

(9.99)

Accordingly, the impedance of an inductor element at frequency ω is
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(9.100)

and the impedance of a capacitor element at frequency ω is

(9.101)

Applying these results for the Owen bridge, one obtains

in which ω is the excitation frequency. Now, from equation (9.95),

By equating the real parts and the imaginary parts of this equation, one obtains the two equations

and

Hence,

(9.102)

and

(9.103)

It follows that L4 and C3 can be determined with the knowledge of C1, R2, R3, and R4 under balanced
conditions. For example, with fixed C1 and R2, an adjustable R3 could be used to measure the
variable L4, and an adjustable R4 could be used to measure the variable C3.
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Wien-Bridge Oscillator

Now consider the Wien-bridge oscillator shown in Figure 9.26(c). For this circuit,

Hence, from equation (9.95), the bridge-balance requirement is

Equating the real parts yields

(9.104)

and equating the imaginary parts yields

Hence,

(9.105)

Equation (9.105) implies that the circuit is an oscillator whose natural frequency is given by this
equation, under balanced conditions. If the frequency of the supply is equal to the natural frequency
of the circuit, large-amplitude oscillators will take place. The circuit can be used to measure an
unknown resistance (e.g., in strain-gage devices) by first measuring the frequency of the bridge
signals at resonance (natural frequency). Alternatively, an oscillator that is excited at its natural
frequency can be used as an accurate source of periodic signals (signal generator).

9.6 LINEARIZIING DEVICES

Nonlinearity is present in any physical device, to varying levels. If the level of nonlinearity in a
system (component, device, or equipment) can be neglected without exceeding the error tolerance,
then the system can be assumed linear.

In general, a linear system is one that can be expressed as one or more linear differential
equations. Note that the principle of superposition holds for linear systems. Specifically, if the
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system response to an input ul is y1 and the response to another input u2 is y2, then the response to
a1u1 + a2u2 would be a1y1 + a2y2.

Nonlinearities in a system can appear in two forms:

1. Dynamic manifestation of nonlinearities
2. Static manifestation of nonlinearities.

The useful operating region of many systems can exceed the frequency range where the frequency
response function is flat. The operating response of such a system is said to be dynamic. Examples
include a typical dynamic system or plant (e.g., automobile, aircraft, chemical process plant, robot),
actuator (e.g., hydraulic motor), and controller (e.g., PID control circuitry). Nonlinearities of such
systems can manifest themselves in a dynamic form such as the jump phenomenon (also known
as the fold catastrophe), limit cycles, and frequency creation. Design changes, extensive adjustments,
or reduction of the operating signal levels and bandwidths would be necessary, in general, to reduce
or eliminate these dynamic manifestations of nonlinearity. In many instances, such changes would
not be practical, and one must somehow cope with the presence of these nonlinearities under
dynamic conditions. Design changes might involve replacing conventional gear drives with devices
such as harmonic drives in order to reduce backlash; replacing nonlinear actuators by linear
actuators; and using components that have negligible Coulomb friction and that make small motion
excursions.

A wide variety of sensors, transducers, and signal modification devices are expected to operate
in the flat region of the frequency-response function. The input/output relation of these types of
devices, in the operating range, is expressed (modeled) as a static curve rather than a differential
equation. Nonlinearities in these devices will manifest themselves in the static operating curve in
many forms. These manifestations include saturation, hysteresis, and offset.

In the first category of systems (plants, actuators, and compensators), if nonlinearity is exhibited
in the dynamic form, proper modeling and control practices should be employed in order to avoid
unsatisfactory degradation of the system performance. In the second category of systems (sensors,
transducers, and signal modification devices), if nonlinearities are exhibited in the “static” operating
curve, again the overall performance of the system will be degraded. Hence, it is important to
“linearize” the output of such devices. Note that in dynamic manifestations, it is not realistic to
“linearize” the output because the response is in the dynamic form. The solution in that case is
either to minimize nonlinearities by design modifications and adjustments, so that a linear approx-
imation would be valid, or to take the nonlinearities into account in system modeling and control.
In the present section, one is not concerned with this aspect; instead, one is interested in the
“linearization” of devices in the second category whose operating characteristics can be expressed
by static input-output curves.

Linearization of a static device can be attempted by making design changes and adjustments
as well, as in the case of dynamic devices. But, because the response is “static,” and because one
normally deals with an available (fixed) device whose internal hardware cannot be modified, one
should consider ways of linearizing the input-output characteristic by modifying the output itself.

Static linearization of a device can be made in three ways:

1. Linearization using digital software
2. Linearization using digital (logic) hardware
3. Linearization using analog circuitry.

In the software approach to linearization, the output of the device is read into a processor with
software-programmable memory, and the output is modified according to the program instructions.
In the hardware approach, the device output is read by a device having fixed logic circuitry that
would process (modify) the data. In the analog approach, a linearizing circuit is directly connected
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at the output of the device so that the output of the linearizing circuit is proportional to the input
of the device. These three approaches are discussed in the remainder of this section, heavily
emphasizing the analog-circuit approach.

Hysteresis-type static nonlinearity characteristics have the property that the input-output curve
is not one-to-one. In other words, one input value may correspond to more than one (static) output
value, and one output value may correspond to more than one input value. In the present discussion,
disregard these types of nonlinearities. Then, the main concern is with the linearization of a device
having a single-valued static response curve that is not a straight line. An example of a typical
nonlinear input-output characteristic is shown in Figure 9.27(a). Strictly speaking, a straight-line
characteristic with a simple offset, as shown in Figure 9.27(b), is also a nonlinearity. In particular,
note that superposition does not hold for an input-output characteristic of this type, given by

(9.106)

It is very easy, however, to linearize such a device because a simple addition of a DC component
will convert the characteristic into the linear form given by

(9.107)

FIGURE 9.27 (a) A general static nonlinear characteristic, and (b) an offset nonlinearity.
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This method of linearization is known as offsetting. Linearization is more difficult in the general
case where the characteristic curve could be much more complex.

9.6.1 LINEARIZATION BY SOFTWARE

If the nonlinear relationship between the input and output of a nonlinear device is known, the input
can be “computed” for a known value of the output. In the software approach of linearization, a
processor and memory that can be programmed using software (i.e., a digital computer) is used to
compute the input using output data. Two approaches can be used; they are:

1. Equation inversion
2. Table lookup.

In the first method, the nonlinear characteristic of the device is known in the analytic (equation)
form:

(9.108)

where

u = device input
y = device output.

Assuming that this is a one-to-one relationship, a unique inverse given by the equation

(9.109)

can be determined. This equation is programmed into the read-and-write memory (RAM) of the
computer as a computation algorithm. When the output values y are supplied to the computer, the
processor will compute the corresponding input values u using the instructions (excitable program)
stored in the RAM.

In the table lookup method, a sufficiently large number of pairs of values (y,u) are stored in
the memory of the computer in the form of a table of ordered pairs. These values should cover the
entire operating range of the device. Then, when a value for y is entered into the computer, the
processor scans the stored data to check whether that value is present. If so, the corresponding
value of u is read and this is the linearized output. If the value of y is not present in the data table,
then the processor will interpolate the data in the vicinity of the value and will compute the
corresponding output. In the linear interpolation method, the neighborhood of the data table where
the y value falls is fitted with a straight line, and the corresponding u value is computed using this
straight line. Higher-order interpolations use nonlinear interpolation curves such as quadratic and
cubic polynomial equations (splines).

Note that the equation inversion method is usually more accurate than the table lookup method
and it does not need excessive memory for data storage; but it is relatively slow because data are
transferred and processed within the computer using program instructions that are stored in the
memory and that typically have to be accessed in a sequential manner. The table lookup method
is fast. Because the accuracy depends on the amount of stored data values, this is a memory-
intensive method. For better accuracy, more data should be stored. But, because the entire data
table has to be scanned to check for a given data value, this increase in accuracy is derived at the
expanse of speed as well as memory requirements.

y f u= ( )

u f y= ( )−1
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9.6.2 LINEARIZATION BY HARDWARE LOGIC

The software approach of linearization is flexible in the sense that the linearization algorithm can
be modified (e.g., improved, changed) simply by modifying the program stored in the RAM.
Furthermore, highly complex nonlinearities can be handled by the software method. As mentioned
before, the method is relatively slow, however.

In the hardware logic method of linearization, the linearization algorithm is permanently
implemented in the integrated-circuit (IC) form using appropriate digital logic circuitry for data
processing, and memory elements (e.g., flip-flops). Note that the algorithm and numerical values
of parameters (except input values) cannot be modified without redesigning the IC chip, because
a hardware device typically does not have programmable memory. Furthermore, it will be difficult
to implement very complex linearization algorithms by this method; and unless the chips are mass
produced for an extensive commercial market, the initial chip development cost will make the
production of linearizing chips economically infeasible. In bulk production, however, the per-unit
cost will be very small. Furthermore, since the access of stored program instructions and extensive
data manipulation are not involved, the hardware method of linearization can be substantially faster
than the software method.

A digital linearizing unit having a processor and a read-only memory (ROM) whose program
cannot be modified, also lacks the flexibility of a programmable software device. Hence, such a
ROM-based device also falls into the category of hardware logic devices.

9.6.3 ANALOG LINEARIZING CIRCUITRY

Three types of analog linearizing circuitry can be identified:

1. Offsetting circuitry
2. Circuitry that provides a proportional output
3. Curve shapers.

Each of these categories is described below.
An offset is a nonlinearity that can be easily removed using an analog device. This is accom-

plished simply by adding a DC offset of equal value to the response, in the opposite direction.
Deliberate addition of an offset in this manner is known as offsetting. The associated removal of
original offset is known as offset compensation. There are many applications of offsetting. Unwanted
offsets such as those present in the results of ADCs and DACs can be removed by analog offsetting.
Constant (DC) error components such as steady-state errors in dynamic systems due to load changes,
gain changes, and other disturbances can be eliminated by offsetting. Common-mode error signals
in amplifiers and other analog devices can also be removed by offsetting. In measurement circuitry,
such as potentiometer (ballast) circuits, where the actual measurement signal is a “change” δvo in
a steady output signal vo, the measurement can be completely wiped out due to noise. To reduce
this problem, first the output should be offset by –vo so that the net output is δvo and not vo + δvo.
This output is subsequently conditioned by filtering and amplification. Another application of
offsetting is the additive change of scale of a measurement — for example, from a relative scale
(e.g., velocity) to an absolute scale. In summary, some of the applications of offsetting include:

1. Removal of unwanted offsets and DC components in signals (e.g., in ADC, DAC, signal
integration)

2. Removal of steady-state error components in dynamic system responses (e.g., due to
load changes and gain changes in Type 0 systems) (Note: Type 0 systems are open-loop
systems having no free integrators)

3. Rejection of common-mode levels (e.g., in amplifiers and filters)
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4. Error reduction when a measurement is an increment of a large steady output level (e.g.,
in ballast circuits for strain-gage and RTD sensors)

5. Scale changes in an additive manner (e.g., conversion from relative to absolute units or
from absolute to relative units).

One can remove unwanted offsets in the simple manner as discussed above. Now consider
more complex nonlinear responses that are nonlinear in the sense that the input-output curve is not
a straight line. Analog circuitry can be used to linearize these type of responses as well. The
linearizing circuit used will generally depend on the particular device and the nature of its nonlin-
earity. Hence, linearizing circuits of this type often must be discussed with respect to a particular
application. For example, such linearization circuits are useful in transverse-displacement capac-
itative sensors. Several useful circuits are described below.

Consider the type of linearization known as curve shaping. A curve shaper is a linear device
whose gain (output/input) can be adjusted so that response curves with different slopes can be
obtained. Suppose that a nonlinear device having an irregular (nonlinear) input characteristic is
to be linearized. First, one applies the operating input simultaneously to the device and the curve
shaper, and the gain of the curve shaper is adjusted such that it closely matches that of the device
in a small range of operation. Now, the output of the curve shaper can be utilized for any task
that requires the device output. The advantage here is that linear assumptions are valid with the
curve shaper, which is not the case for the actual device. When the operating range changes, the
curve shaper must be adjusted to the new range. Comparison (calibration) of the curve shaper
and the nonlinear device can be done off line and, once a set of gain values corresponding to a
set of operating ranges is determined in this manner for the curve shaper, it is possible to
completely replace the nonlinear device by the curve shaper. Then the gain of the curve shaper
can be adjusted, depending on the actual operating range during system operation. This is known
as gain scheduling. Note that one can replace a nonlinear device with a linear device (curve shaper)
within a multi-component system in this manner without greatly sacrificing the accuracy of the
overall system.

9.6.4 OFFSETTING CIRCUITRY

Common-mode outputs and offsets in amplifiers and other analog devices can be minimized by
including a compensating resistor that can provide fine adjustments at one of the input leads.
Furthermore, the larger the feedback signal level in a feedback system, the smaller the steady-state
error. Hence, steady-state offsets can be reduced by reducing the feedback resistance (thereby
increasing the feedback signal). Furthermore, since a ballast (potentiometer) circuit provides an
output of vo + δvo and a bridge circuit provides an output of δvo, the use of a bridge circuit can be
interpreted as an offset compensation method.

The most straightforward way of offsetting is by using a differential amplifier (or a summing
amplifier) to subtract (or add) a DC voltage to the output of the nonlinear device. The DC level
must be variable so that various levels of offset can be provided with the same circuit. This is
accomplished using an adjustable resistance at the DC input lead of the amplifier.

An operational-amplifier circuit for offsetting is shown in Figure 9.28. Since the input vi is
connected to the – lead of the op-amp, one obtains an inverting amplifier, and the input signal will
appear in the output vo with its sign reversed. This is also a summing amplifier because two signals
can be added together by this circuit. If the input vi is connected to the + lead of the op-amp, one
has a noninverting amplifier.

The DC voltage vref provides the offsetting voltage. The resistor Rc (compensating resistor) is
variable so that different values of offset can be compensated using the same circuit. To obtain the
circuit equation, one can write the current balance equation for node A, using the usual assumption
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that the current through an input lead is 0 for an op-amp (because of very high input impedance);
thus,

or

(i)

Similarly, the current balance at node B gives

or

(ii)

Since vA = vB for the op-amp (because of very high open-loop gain), one can substitute equation
(i) in (ii). Then,

(9.110)

Note the sign reversal of vi at the output (because this is an inverting amplifier). This is not a
problem because polarity can be reversed at input or output in connecting this circuit to other
circuitry, thereby recovering the original sign. The important result here is the presence of a constant
offset term on the RHS of equation (9.110). This term can be adjusted by picking the proper value
for Rc so as to compensate for a given offset in vi.

FIGURE 9.28 An inverting amplifier circuit for offset compensation.
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9.6.5 PROPORTIONAL-OUTPUT CIRCUITRY

An operational-amplifier circuit can be employed to linearize the output of a capacitive transverse-
displacement sensor. In constant-voltage and constant-current resistance bridges and in a constant-
voltage half-bridge, the relation between the bridge output δvo and the measurand (change in
resistance in the active element) is nonlinear. The nonlinearity is least for the constant-current
bridge and it is highest for the half-bridge. Since δR is small compared to R, however, the nonlinear
relations can be linearized without introducing large errors. But the linear relations are inexact,
and are not suitable if δR cannot be neglected in comparison to R. Under these circumstances, the
use of a linearizing circuit would be appropriate.

One way to obtain a proportional output from a Wheatstone bridge is to feedback a suitable
factor of the bridge output into the bridge supply vref. Another way is to use the op-amp circuit
shown in Figure 9.29. This should be compared with the Wheatstone bridge shown in Figure 9.24(a).
Note that R represents the only active element (e.g., an active strain gage).

First, one can show that the output equation for the circuit in Figure 9.29 is quite similar to
equation (9.81). Using the fact that the current through an input lead of an unsaturated op-amp can
be neglected, one has the following current balance equations for nodes A and B:

Hence,

FIGURE 9.29 A proportional-output circuit for an active resistance element (strain gage).
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and

Now using the fact vA = vB for an op-amp, one obtains

Accordingly, the circuit output equation is

(9.111)

Note that this relation is quite similar to the Wheatstone bridge equation (9.81). The balance
condition (i.e., vo = 0) is again given by equation (9.82).

Suppose that R1 = R2 = R3 = R4 = R in the beginning (the circuit is balanced), so the vo = 0.
Then suppose that the active resistance R1 is changed by δR (say, due to a change in strain in the
strain gage R1). Then, using equation (9.111), one can write an expression for the change in circuit
output as

or

(9.112)

By comparing this result with equation (9.83) one observes that the circuit output δvo is proportional
to the measurand δR. Furthermore, note that the sensitivity (1/2) of the circuit in Figure 9.29 is
double that of a Wheatstone bridge (1/4) that has one active element, which is a further advantage
of the proportional-output circuit. The sign reversal is not a drawback because it can be accounted
for by reversing the load polarity.

Curve-Shaping Circuitry

A curve shaper can be interpreted as an amplifier whose gain is adjustable. A typical arrangement
for a curve-shaping circuit is shown in Figure 9.30. The feedback resistance Rf is adjustable by
some means. For example, a switching circuit with a bank of resistors (say, connected in parallel
through solid-state switches as in the case of weighted-resistor DAC) can be used to switch the
feedback resistance to the required value. Automatic switching can be realized using Zener diodes
that will start conducting at certain voltage levels. In both cases (external switching by switching
pulses or automatic switching using Zener diodes), amplifier gain is variable in discrete steps.
Alternatively, a potentiometer can be used as Rf so that the gain can be continuously adjusted
(manually or automatically).
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The output equation for the curve-shaping circuit shown in Figure 9.30 is obtained by writing
the current balance at node A, noting that vA = 0; thus,

or

(9.113)

It follows that the gain (Rf /R) of the amplifier can be adjusted by changing Rf .

9.7 MISCELLANEOUS SIGNAL-MODIFICATION CIRCUITRY

In addition to the signal modification devices discussed thus far in this chapter, there are many other
types of circuitry that are used for signal modification and related tasks. Examples are phase shifters,
voltage-to-frequency converters, frequency-to-voltage converters, voltage-to-current converters, and
peak-hold circuits. The objective of the present section is to briefly discuss several such miscellaneous
circuits and components that are useful in the instrumentation of dynamic systems.

9.7.1 PHASE SHIFTERS

A sinusoidal signal given by

(9.114)

has the following three representative parameters:

va = amplitude
ω = frequency
φ = phase angle.

FIGURE 9.30 A curve-shaping circuit.
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Note that the phase angle represents the time reference (starting point) of the signal. The phase
angle is an important consideration only when two or more signal components are compared. The
Fourier spectrum of a signal is presented as its amplitude (magnitude) and the phase angle with
respect to the frequency (also see Chapter 4).

Phase-shifting circuits have many applications. When a signal passes through a system, its
phase angle changes due to dynamic characteristics of the system. Consequently, the phase change
provides very useful information about the dynamic characteristics of the system. Specifically, for
a linear constant-coefficient system, this phase shift is equal to the phase angle of the frequency-
response function (frequency-transfer function) of the system at that particular frequency. This
phase-shifting behavior is, of course, not limited to electrical systems and is equally exhibited by
other types of systems, including mechanical vibrating systems. The phase shift between two signals
can be determined by converting the signals into the electrical form (using suitable transducers),
and shifting the phase angle of one signal through known amounts using a phase-shifting circuit
until the two signals are in phase.

Another application of phase shifters is in signal demodulation. For example, one method of
amplitude demodulation involves processing the modulated signal together with the carrier signal.
This, however, requires the modulated signal and the carrier signal to be in phase. But, usually,
since the modulated signal has already transmitted through electrical circuitry having impedance
characteristics, its phase angle will have changed. Then, it is necessary to shift the phase angle of
the carrier until the two signals are in phase, so that demodulation can be performed accurately.
Hence, phase shifters are used in demodulating (e.g., LVDT displacement-sensor outputs).

A phase-shifter circuit, ideally, should not change the signal amplitude while changing the
phase angle by a required amount. Practical phase shifters could introduce some degree of amplitude
distortion (with respect to frequency) as well. A simple phase-shifter circuit can be constructed
using resistance (R) and capacitance (C) elements. A resistance or a capacitor of such an RC circuit
is made fine-adjustable so as to obtain a variable phase shifter.

An op-amp-based phase-shifter circuit is shown in Figure 9.31. One can show that this circuit
provides a phase shift without distorting the signal amplitude. The circuit equation is obtained by
writing the current balance equations at nodes A and B, as usual, noting that the current through
the op-amp leads can be neglected due to high input impedance; thus,

On simplifying and introducing the Laplace variable, one obtains

(i)

and

(ii)

in which the circuit time constant τ is given by
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Since vA = vB, as a result of very high gain in the op-amp, by substituting equation (ii) in (i), one
obtains

It follows that the transfer function G(s) of the circuit is given by

(9.115)

It is seen that the magnitude of the frequency-response function G(jω) is

or

(9.116)

and the phase angle of G(jω) is

or

(9.117)

FIGURE 9.31 A phase-shifter circuit.
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As needed, the transfer function magnitude is unity, indicating that the circuit does not distort the
signal amplitude over the entire bandwidth. Equation (9.117) gives the phase lead of the output vo

with respect to the input vi. Note that this angle is negative, indicating that actually a phase lag is
introduced. The phase shift can be adjusted by varying the resistance Rc.

9.7.2 VOLTAGE-TO-FREQUENCY CONVERTER (VFC)

A voltage-to-frequency converter generates a periodic output signal whose frequency is proportional
to the level of an input voltage. Because such an oscillator generates a periodic output according
to the voltage excitation, it is also called a voltage-controlled oscillator (VCO).

A common type of VFC uses a capacitor. The time needed for the capacitor to be charged to
a fixed voltage level will depend on the charging voltage (inversely proportional). Suppose that
this voltage is governed by the input voltage. Then, if the capacitor is made to periodically charge
and discharge, one obtains an output whose frequency (inverse of the charge-discharge period) is
proportional to the charging voltage. The output amplitude will be given by the fixed voltage level
to which the capacitor is charged in each cycle. Consequently, one gets a signal with a fixed
amplitude, and a frequency that depends on the charging voltage (input).

A voltage-to-frequency converter (or voltage-controlled oscillator) circuit is shown in
Figure 9.32(a). The voltage-sensitive switch closes when the voltage across it exceeds a reference
level vs , and it will open again when the voltage across it falls below a lower limit vo(0). The
programmable unijunction transistor (PUT) is such a switching device.

Note that the polarity of the input voltage vi is reversed. Suppose that the switch is open. Then,
current balance at node A of the op-amp circuit gives

As usual vA = voltage at + lead = 0 because the op-amp has a very high gain; and current through
the op-amp leads = 0 because the op-amp has a very high input impedance. The capacitor charging
equation can be integrated for a given value of vi. This gives

The switch will be closed when the voltage across the capacitor vo(t) equals the reference level vs.
Then the capacitor will be immediately discharged through the closed switch. Hence, the capacitor
charging time T is given by

Accordingly,

(9.118)

The switch will be open again when the voltage across the capacitor drops to vo(0), and the capacitor
will again begin to charge from vo(0) up to vs. This charging and instantaneous discharge cycle will
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repeat periodically. The corresponding output signal will be as shown in Figure 9.32(b). This is a
periodic (saw-tooth) wave with period T. The frequency of oscillation of the output (1/T) is given by

(9.119)

It is seen that the oscillator frequency is proportional to the input voltage vi . The oscillator amplitude
is vs , which is fixed.

Voltage-controlled oscillators have many applications. One application is in analog-to-digital
conversion. In the VCO-type analog-to-digital converters, the analog signal is converted into an
oscillating signal using a VCO. Then, the oscillator frequency is measured using a digital counter.
This count, which is available in the digital form, is representative of the input analog signal level.
Another application is in digital voltmeters. Here, the same method as for ADC is used. Specifically,

FIGURE 9.32 A voltage-to-frequency converter (voltage-controlled oscillator): (a) circuit, and (b) output signal.
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the voltage is converted into an oscillator signal and its frequency is measured using a digital
counter. The count can be scaled and displayed to provide the voltage measurement. A direct
application of VCO is apparent from the fact that VCO is actually a frequency modulator (FM),
providing a signal whose frequency is proportional to the input (modulating) signal. Hence, VCO
is useful in applications that require frequency modulation. Also, VCO can be used as a signal
(wave) generator for variable-frequency applications; for example, excitation inputs for shakers in
vibration testing (see Chapters 8 and 10), excitations for frequency-controlled DC motors, and
pulse signals for translator circuits of stepping motors.

9.7.3 FREQUENCY-TO-VOLTAGE CONVERTER (FVC)

A frequency-to-voltage converter generates an output voltage whose level is proportional to the
frequency of its input signal. One way to obtain an FVC is to use a digital counter to count the
signal frequency and then use a digital-to-analog converter (DAC) to obtain a voltage proportional
to the frequency. A schematic representation of this type of FVC is shown in Figure 9.33(a).

An alternative FVC circuit is schematically shown in Figure 9.33(b). In this method, the
frequency signal is supplied to a comparator along with a threshold voltage level. The sign of the
comparator output will depend on whether the input signal level is larger or smaller than the
threshold level. The first sign change (–ve to +ve) in the comparator output is used to trigger a
switching circuit that will respond by connecting a capacitor to a fixed charging voltage. This will
charge the capacitor. The next sign change (+ve to –ve) of the comparator output will cause the
switching circuit to short the capacitor, thereby instantaneously discharging it. This charging-
discharging process will be repeated in response to the oscillator input. Note that the voltage level
to which the capacitor is charged each time will depend on the switching period (charging voltage
is fixed), which is in turn governed by the frequency of the input signal. Hence, the output voltage
of the capacitor circuit will be representative of the frequency of the input signal. Because the

FIGURE 9.33 Frequency-to-voltage converters: (a) digital counter method, and (b) capacitor charging method.
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output is not steady due to the ramp-like charging curve and instantaneous discharge, a smoothing
circuit is provided at the output to remove the noise ripples.

Applications of FVC include demodulation of frequency-modulated signals, frequency mea-
surement in mechanical vibration applications, and conversion of pulse outputs in some types of
sensors and transducers into analog voltage signals.

9.7.4 VOLTAGE-TO-CURRENT CONVERTER (VCC)

Measurement and feedback signals are usually transmitted as current levels in the range of 4 mA
to 20 mA rather than as voltage levels. This is particularly useful when the measurement site is
not close to the monitoring room. Because the measurement itself is usually available as a voltage,
it must be converted into current using a voltage-to-current converter. For example, pressure
transmitters and temperature transmitters in operability testing systems provide current outputs that
are proportional to the measured values of pressure and temperature.

There are many advantages to transmitting current rather than voltage. In particular, the voltage
level will drop due to resistance in the transmitting path, but the current through a conductor will
remain unchanged unless the conductor is branched. Hence, current signals are less likely to acquire
errors due to signal weakening. Another advantage of using current instead of voltage as the
measurement signal is that the same signal can be used to operate several devices in series (e.g.,
a display, plotter, and signal processor simultaneously), again without causing errors due to signal
weakening by the power lost at each device, because the same current is applied to all devices. A
voltage-to-current converter (VCC) should provide a current proportional to an input voltage,
without being affected by the load resistance to which the current is supplied.

An operational-amplifier-based voltage-to-current converter circuit is shown in Figure 9.34.
Using the fact that the currents through the input leads of an unsaturated op-amp can be neglected
(due to very high input impedance), one can write the current summation equations for the two
nodes A and B; thus,

and

FIGURE 9.34 A voltage-to-current converter.
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Accordingly,

(i)

and

(ii)

Now, using the fact that vA = vB for the op-amp (due to very high gain), one can substitute equation
(i) in (ii); this gives

(9.120)

where

io = output current
vi = input voltage.

It follows that the output current is proportional to the input voltage, irrespective of the value of
the load resistance RL, as required for a VCC.

9.7.5 PEAK-HOLD CIRCUIT

Unlike a sample-and-hold circuit that holds every sampled value of the signal, a peak-hold circuit
holds only the largest value reached by the signal during the monitored period. Peak holding is
useful in a variety of applications. In signal processing for shock and vibration studies, what is
known as response spectra (e.g., shock response spectrum) are determined using a response
spectrum analyzer that exploits a peak-holding scheme (see Chapter 10). Suppose that a signal is
applied to a simple oscillator (a single-degree-of-freedom second-order system with no zeros) and
the peak value of the response (output) is determined. A plot of the peak output as a function of
the natural frequency of the oscillator, for a specified damping ratio, is known as the response
spectrum of the signal for that damping ratio. Peak detection is also useful in machine monitoring
and alarm systems. In short, when just one representative value of a signal is needed in a particular
application, the peak value would be a leading contender.

Peak detection of a signal can be conveniently done using digital processing. For example, the
signal is sampled and the previous sample value is replaced by the present sample value if and
only if the latter is larger than the former. By sampling, and then holding one value in this manner,
the peak value of the signal is retained. Note that, usually, the time instant at which the peak occurs
is not retained.

Peak detection can be done using analog circuitry as well. This is, in fact, the basis of analog
spectrum analyzers. A peak-holding circuit is shown in Figure 9.35. The circuit consists of two
voltage followers. The first voltage follower has a diode at its output that is forward-biased by the
positive output of the voltage follower and reverse-biased by a low-leakage capacitor, as shown.
The second voltage follower presents the peak voltage that is held by the capacitor to the circuit
output at a low output impedance, without loading the previous circuit stage (capacitor and first
voltage follower). To explain the operation of the circuit, suppose that the input voltage vi is larger
than the voltage to which capacitor is charged (v). Since the voltage at the + lead of the op-amp
is vi and the voltage at the – lead is v, the first op-amp will be saturated. Since the differential input

2v vPA =
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to the op-amp is positive under these conditions, the op-amp output will be positive. The output
will charge the capacitor until the capacitor voltage v equals the input voltage vi. This voltage (call
it vo) is in turn supplied to the second voltage follower, which presents the same value to its output
(gain = 1 for a voltage follower), but at a very low impedance level. Note that the op-amp output
remains at the saturated value for only a very short time (the time taken by the capacitor to charge).
Now suppose that vi is smaller than v. Then, the differential input of the op-amp will be negative,
and the op-amp output will be saturated at the negative saturation level. This will reverse-bias the
diode. Hence, the output of the first op-amp will be in open-circuit and, as a result, the voltage
supplied to the output voltage follower will still be the capacitor voltage and not the output of the
first op-amp. It follows that the voltage level of the capacitor (and hence the output of the second
voltage follower) will always be the peak value of the input signal. The circuit can be reset by
discharging the capacitor through a solid-state switch that is activated by an external pulse.

9.8 SIGNAL ANALYZERS AND DISPLAY DEVICES

Vibration signal analysis can employ both analog and digital procedures. (Chapter 4 is devoted
entirely to this topic.) Since signal analysis results in extracting various useful information from
the signal, it is appropriate to consider the topic within the present context of signal modification
as well. This section introduces digital signal analyzers that essentially make use of the same
techniques that were described previously (in Chapter 4 and Appendix D).

Signal display devices also make use of at least some signal processing. This may involve
filtering and change of signal level and format. More sophisticated signal display devices, partic-
ularly digital oscilloscopes, can carry out more complex signal analysis functions such as those
normally available with digital signal analyzers. Oscilloscopes as well are introduced in the present
section, although they can also be treated under vibration instrumentation (Chapter 8).

Signal-recording equipment commonly employed in vibration practice includes digital storage
devices such as hard drives, floppy disks, and CD-ROMs, analog devices like tape recorders, strip-
chart recorders, and X-Y plotters, and digital printers. Tape recorders are used to record vibration
data (transducer outputs) that are subsequently reproduced for processing or examination. Often,
tape-recorded waveforms are also used to generate (by replay) signals that drive vibration test
exciters (shakers). Tape recorders use tapes made of a plastic material that has a thin coating of a
specially treated ferromagnetic substance. During the recording process, magnetic flux proportional
to the recorded signal is produced by the recording head (essentially an electromagnet), which

FIGURE 9.35 A peak-holding circuit.
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magnetizes the tape surface in proportion to the signal variation. Reproduction is the reverse process,
whereby an electrical signal is generated at the reproduction head by electromagnetic induction in
accordance with the magnetic flux of the magnetized (recorded) tape. Several signal-conditioning
circuitries are involved in the recording and reproducing stages. Recording by FM is very common
in vibration testing.

Strip-chart recorders are usually employed to plot time histories (i.e., quantities that vary with
time), although they can also be used to plot such data as frequency-response functions and response
spectra. In these recorders, a paper roll unwinds at a constant linear speed, and the writing head
moves across the paper (perpendicular to the paper motion) proportionally to the signal level. There
are many kinds of strip-chart recorders, which are grouped according to the type of writing head
employed. Graphic-level recorders, which use ordinary paper, employ such heads as ink pens or
brushes, fiber pens, and sapphire styli. Visicoders are simple oscilloscopes capable of producing
permanent records; they employ light-sensitive paper for this. Several channels of input data can
be incorporated with a visicoder. Obviously, graphic-level recorders are generally limited by the
number of writing heads available (typically, one or two), but visicoders can have many more input
channels (typically 24). Performance specifications of these devices include paper speed, frequency
range of operation, dynamic range, and power requirements.

In vibration experimentation, X-Y plotters are generally employed to plot frequency data (e.g., psd,
frequency-response functions, response spectra, and transmissibility curves, as defined in Chapters 3
and 4), although they can also be used to plot time-history data. Many types of X-Y plotters are
available, most of them using ink pens on ordinary paper. There are also hard-copy units that use
laser printing or heat-sensitive paper in conjunction with a heating element as the writing head.
The writing head in an X-Y plotter is moved in the X and Y directions on the paper by two input
signals that form the coordinates for the plot. In this manner, a trace is made on stationary plotting
paper. Performance specifications of X-Y plotters are governed by such factors as paper size; writing
speed (inches per second, centimeters per second); deadband (expressed as a percentage of the full
scale), which measures the resolution of the plotter head; linearity (expressed as a percentage of
full scale), which measures the accuracy of the plot; minimum trace separation (inches, centimeters)
for multiple plots on the same axes; dynamic range; input impedance; and maximum input (milli-
volts per inch, millivolts per centimeter).

Today, the most widespread signal recording device is in fact the digital computer (memory,
storage) and printer combination. This, and also the other (analog) devices used in signal recording
and display, make use of some signal modification to accomplish their functions. These devices
will not be discussed in the present section, however.

9.8.1 SIGNAL ANALYZERS

Modern signal analyzers employ digital techniques of signal analysis, as described in Chapter 4,
to extract useful information that is carried by the signal. Digital Fourier analysis using fast Fourier
transform (FFT) is perhaps the single common procedure used in the vast majority of signal
analyzers (see Appendix D). As noted before, Fourier analysis will produce the frequency spectrum
of a time signal. It should be clear, therefore, why the terms digital signal analyzer, FFT analyzer,
frequency analyzer, spectrum analyzer, and digital Fourier analyzer are synonymous to some extent,
as used in commercial instrumentation literature.

A signal analyzer typically has two (dual) or more (multiple) input signal channels. To generate
results such as frequency response (transfer) functions, cross-spectra, coherence functions, and
cross-correlation functions, one needs at least two data signals and, hence, a dual-channel analyzer.

In hardware analyzers, digital circuitry rather than software is used to carry out the mathematical
operations. Clearly, they are very fast but less flexible (in terms of programmability and functional
capability) for this reason. Digital signal analyzers, regardless of whether they use the hardware
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or the software approach, employ some basic operations. These operations, carried out in sequence,
are:

1. Anti-alias filtering (analog)
2. Analog-to-digital conversion (i.e., signal sampling)
3. Truncation of a block of data and multiplication by a window function
4. FFT analysis of the block of data.

These operations were explained in Chapter 4. Also noted are the following facts: If the sampling
period of the analog-to-digital convertor (ADC) is ∆T (i.e., the sampling frequency is 1/∆T), then

the Nyquist frequency . This Nyquist frequency is the upper limit of the useful frequency

content of the sampled signal. The cutoff frequency of the anti-aliasing filter should be set at fc or
less. If there are N data samples in the block of data used in the FFT analysis, the corresponding
record length is T = N∆T. Then, the spectral lines in the FFT results are separated at a frequency
spacing of ∆F = 1/ T. In view of the Nyquist frequency limit, there will be only N/2 useful spectral
lines in the FFT result.

Strictly speaking, a real-time signal analyzer should analyze a signal instantaneously and
continuously as the signal is received by the analyzer. This is usually the case with an analog signal
analyzer. But, in digital signal analyzers, which are usually based on digital Fourier analysis, a
block of data (i.e., N samples of record length T) is analyzed together to produce N/2 useful spectral
lines (at frequency spacing 1/T). This is, then, not a truly real-time analysis. But for practical
purposes, if the speed of analysis is sufficiently fast, the analyzer can be considered real-time,
which is usually the case with hardware analyzers and also modern, high-speed, software analyzers.

The bandwidth B of a digital signal analyzer is a measure of its speed of signal processing.
Specifically, for an analyzer that uses N data samples in each block of signal analysis, the associated
processing time can be given by

(9.121)

Note that the larger the B, the smaller the Tc. Then, the analyzer is considered a real-time one if
the analysis time (Tc) of the data record is less than the generation time (T = N∆T) of the data
record. Hence, one requires that

or

or

or

(9.122)

In other words, a real-time analyzer has a bandwidth greater than its sampling rate.
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A multi-channel digital signal analyzer can analyze one or more signals simultaneously and
generate (and display) results such as Fourier spectra, power spectral densities, cross-spectral
densities, frequency-response functions, coherence functions, autocorrelations, and cross-correla-
tions. They are able to perform high-resolution analysis on a small segment of the frequency
spectrum of a signal. This is termed zoom analysis. Essentially, in this case, the spectral line spacing
∆F is decreased while keeping the number of lines (N) and hence the number of time data samples
the same. That means the record length (T = 1/∆F) must be increased in proportion for zoom
analysis. A photo of a modern signal analyzer is give in Figure 9.36.

9.8.2 OSCILLOSCOPES

An oscilloscope is used to observe one or two signals separately or simultaneously. Amplitude,
frequency, and phase information of the signals can be obtained using an oscilloscope. In this sense,
it is a signal modification as well as a measurement (monitoring) and display device. Both analog
and digital oscilloscopes are available. A typical application of ocilloscopes is to observe (monitor)
experimental data such as vibration signals of machinery as obtained from transducers. They are
also useful in observing and examining vibration test results, such as frequency-response plots, psd
curves, and response spectra. Typically, only temporary records are available on an analog oscil-
loscope screen. The main component of an analog oscilloscope is the cathode-ray tube (CRT),
which consists of an electron gun (cathode) that deflects an electron ray according to the input-
signal level. The oscilloscope screen has a coating of electron-sensitive material, so that the electron
ray that impinges on the screen leaves a temporary trace on it. The electron ray sweeps across the
screen horizontally, so that waveform traces can be recorded and observed. Usually, two input
channels are available. Each input can be observed separately, or the variation in an input can be
observed against those of the other. In this manner, signal phasing can be examined. Several
sensitivity settings for the input-signal amplitude scale (in the vertical direction) and sweep-speed
selections are available on the panel.

FIGURE 9.36 A digital spectrum analyzer. (Copyright 1999, Tektronix, Inc. All Rights Reserved. With
permission)
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Triggering

The voltage level of the input signal deflects the electron gun in proportion to the vertical (y-axis)
direction on the CRT screen. This alone will not show the time evolution of the signal. The true
time variation of the signal is achieved by means of a saw-tooth signal that is generated internally
in the oscilloscope and used to move the electron gun in the horizontal (x-axis) direction. As the
name implies, the saw-tooth signal increases linearly in amplitude up to a threshold value, and then
suddenly drops to 0, and repeats this cycle again. In this manner, the observed signal is repetitively
swept across the screen and a trace of it can be observed as a result of the temporary retention of
the illumination of the electron gun on the fluorescent screen. The saw-tooth signal can be controlled
(triggered) in several ways. For example, the external trigger mode uses an external signal from
another channel (not the observed channel) to generate and synchronize the saw-tooth signal. In
the line trigger mode, the saw-tooth signal is synchronized with the AC line supply (60 Hz or 50
Hz). In the internal trigger mode, the observed signal (which is used to deflect the electron beam
in the y direction) itself is used to generate (synchronize) the saw-tooth signal. Because the
frequency and the phase of the observed signal and the trigger signal are perfectly synchronized
in this case, the trace on the oscilloscope screen will appear stationary. Careful observation of a
signal can be made in this manner.

Lissajous Patterns

Suppose that two signals x and y are provided to the two channels of an oscilloscope. If they are
used to deflect the electron beam in the horizontal and vertical directions, respectively, a pattern
known as Lissajous pattern will be observed on the oscilloscope screen. Useful information about
the amplitude and phasing of the two signals can be observed by means of these patterns. Consider
sine waves x and y. Several special cases of Lissajous patterns are given below:

1. Same frequency, same phase: 
Here,

Then,

which gives a straight-line trace with a positive slope, as shown in Figure 9.37(a).
2. Same frequency, 90° out-of-phase: 
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which gives an ellipse, as shown in Figure 9.37(b).
3. Same frequency, 180° out-of-phase: 

Here,

FIGURE 9.37 Some Lissajous patterns: (a) equal frequency and in-phase; (b) equal frequency and 90° out-
of-phase; (c) equal frequency and 180° out-of-phase; and (d) equal frequency and θ out-of-phase.
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Hence,

which corresponds to a straight line with a negative slope, as shown in Figure 9.37(c).
4. Same frequency, θ out-of-phase:

When ωt + φ = 0, y = yintercept = yosinθ
Hence,

In this case, one obtains a tilted ellipse as shown in Figure 9.37(d). The phase difference
θ is obtained from the Lissajous pattern.

5. Integral Frequency Ratio:

Three examples are shown in Figure 9.37(e).

Note: The above observations are true for narrow-band signals as well. Broad-band
random signals produce scattered (irregular) Lissajous patterns.

Digital Oscilloscopes

The basic uses of a digital oscilloscope are quite similar to those of a traditional analog oscilloscope.
The main differences stem from the manner in which information is represented and processed
“internally” within the oscilloscope. Specifically, a digital oscilloscope first samples a signal that
arrives at one of its input channels and stores the resulting digital data within a memory segment.
This is essentially a typical analog-to-digital conversion (ADC) operation. This digital data can be
processed to extract and display the necessary information. The sampled data and the processed
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information can be stored on a floppy disk, if needed, for further processing using a digital computer.
Also, some digital oscilloscopes have the communication capability so that the information can be
displayed on a video monitor or printed to provide a hard copy.

A typical digital oscilloscope has four channels so that four different signals can be acquired
(sampled) into the oscilloscope and displayed. Also, it has various triggering options so that the
acquisition of a signal can be initiated and synchronized by means of either an internal or an
external trigger. Apart from the typical capabilities that are possible with an analog oscilloscope,
a digital oscilloscope can automatically provide other useful features, including the following:

1. Automatic scaling of the acquired signal
2. Computation of signal features such as frequency, period, amplitude, mean, root-mean-

square (rms) value, and rise time
3. Zooming into regions of interest of a signal record
4. Averaging of multiple signal records
5. Enveloping of multiple signal records
6. Fast Fourier transform (FFT) capability, with various window options and anti-aliasing.

These various functions are menu selectable. Typically, a channel of the incoming data (signal) is
selected first, and then an appropriate operation on the data is chosen from the menu (through menu
buttons). A modern digital oscilloscope is shown in Figure 9.38.

PROBLEMS

9.1 A linear variable differential transformer (LVDT) is a displacement sensor commonly
used in machine monitoring. Consider a digital vibration monitoring loop that uses an
LVDT measurement. Typically, the LVDT is energized by a DC power supply. An
oscillator provides an excitation signal in the kilohertz range to the primary windings of
the LVDT. The secondary winding segments are connected in series opposition. An AC
amplifier, demodulator, low-pass filter, amplifier, and ADC are used in the monitoring
path. Using a schematic diagram, show the various hardware components in the moni-
toring loop and indicate their functions.

FIGURE 9.38 A digital oscilloscope. (Copyright 1999, Tektronix, Inc. All Rights Reserved. With permission.)
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At the null position of the LVDT stroke, there was a residual voltage. A compensating
resistor was used to eliminate this voltage. Indicate the connections for this compensating
resistor.

9.2 Today, machine vision is used in many industrial tasks, including process monitoring.
In an industrial system based on machine vision, an imaging device such as a charge-
coupled-device (CCD) camera is used as the sensing element. The camera provides an
image (picture) of a scene related to the industrial process (the measurement), to an
image processor. The computed results from the image processor are used to determine
the necessary information about the process (plant).

A CCD camera has an image plate consisting of a matrix of metal-oxide-semicon-
ductor field-effect-transistor (MOSFET) elements. The electrical charge held by each
MOSFET element is proportional to the intensity of light falling on the element. The
output circuit of the camera has a charge-amplifier-like device (capacitor-coupled) that
is supplied by each MOSFET element. The MOSFET element to be connected to the
output circuit at a given instant is determined by the control logic that systematically
scans the matrix of MOSFET elements. The capacitor circuit provides a voltage that is
proportional to the charge in each MOSFET element.
a. Draw a schematic diagram for a process monitoring system based on machine vision,

that uses a CCD camera. Indicate the necessary signal modification operations at
various stages in the monitoring loop, showing whether analog filters, amplifiers,
ADC, and DAC are needed and, if so, at which locations.

An image can be divided into pixels (or picture elements) for representation and
subsequent processing. A pixel has a well-defined coordinate location in the picture
frame, relative to some reference coordinate frame. In a CCD camera, the number of
pixels per image frame is equal to the number of CCD elements in the image plate.
The information carried by a pixel (in addition to its location) is the photointensity
(or gray level) at the image location. This number must be expressed in the digital
form (using a certain number of bits) for digital image processing. The need for very
large data-handling rates is a serious limitation on a real-time controller that uses
machine vision.

b. Consider a CCD image frame of the size 488 × 380 pixels. The refresh rate of the
picture frame is 30 frames per second. If 8 bits are needed to represent the gray level
of each pixel, what is the associated data (baud) rate?

c. Discuss whether you prefer hardware processing or programmable-software-based
processing in a process monitoring system based on machine vision.

9.3 Usually, an operational amplifier circuit is analyzed making use of the following two
assumptions:
i. The potential at the + input lead is equal to the potential at the – input lead.

ii. The current through each of the two input leads is zero.
Explain why these assumptions are valid under unsaturated conditions of an op-amp.

An amateur electronics enthusiast connects an op-amp without a feedback element
to a circuit. Even when there is no signal applied to the op-amp, the output was found
to oscillate between +12 V and –12 V once the power supply is turned on. Give a reason
for this behavior.

An operational amplifier has an open-loop gain of 5 × 105 and a saturated output of
±14 V. If the noninverting input is –1 µV, and the inverting input is +0.5 µV, what is the
output? If the inverting input is 5 µV and the noninverting input is grounded, what is
the output?

9.4 Define the following terms in connection with an operational amplifier:
a. Offset current
b. Offset voltage (at input and output)
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c. Unequal gains
d. Slew rate.
Give typical values for these parameters. The open-loop gain and the input impedance
of an op-amp are known to vary with frequency and are known to drift (with time). Still,
the op-amp circuits are known to behave very accurately. What is the main reason for this?

9.5 What is a voltage follower? Discuss the validity of the following statements:
a. A voltage follower is a current amplifier.
b. A voltage follower is a power amplifier.
c. A voltage follower is an impedance transformer.

Consider the amplifier circuit shown in Figure P9.5. Determine an expression for the
voltage gain Kv of the amplifier in terms of the resistances R and Rf. Is this an inverting
amplifier or a noninverting amplifier?

9.6 The speed of response of an amplifier can be represented using three parameters: band-
width, rise time, and slew rate. For an idealized linear model (transfer function), it can
be verified that the rise time and the bandwidth are independent of the size of the input
and the DC gain of the system. Since the size of the output (under steady conditions)
can be expressed as the product of the input size and the DC gain, it is seen that rise
time and bandwidth are independent of the amplitude of the output for a linear model.

Discuss how slew rate is related to bandwidth and rise time of a practical amplifier.
Usually, amplifiers have a limiting slew rate value. Show that bandwidth decreases with
the output amplitude in this case.

A voltage follower has a slew rate of 0.5 V·µs–1. If a sinusoidal voltage of amplitude
2.5 V is applied to this amplifier, estimate the operating bandwidth. If, instead, a step
input of magnitude 5 V is applied, estimate the time required for the output to reach 5 V.

9.7 Define the following terms:
a. Common-mode voltage
b. Common-mode gain
c. Common-mode rejection ratio (CMRR).
What is a typical value for the CMRR of an op-amp? Figure P9.7 shows a differential
amplifier circuit with a flying capacitor. The switch pairs A and B are turned on and off
alternately during operation. For example, first the switches denoted by A are turned on
(closed) with the switches B off (open). Next, the switches A are open and the switches B

FIGURE P9.5 An amplifier circuit.
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are closed. Explain why this arrangement provides good common-mode rejection char-
acteristics.

9.8 Compare the conventional (textbook) meaning of system stability and the practical
interpretation of instrument stability.

An amplifier is known to have a temperature drift of 1 mV·°C–1 and a long-term drift
of 25 µV per month. Define the terms temperature drift and long-term drift. Suggest
ways to reduce drift in an instrument.

9.9 Electrical isolation of a device (or circuit) from another device (or circuit) is very useful
in instrumentation practice. An isolation amplifier can be used to achieve this. This
provides a transmission link that is almost “one way,” and avoids loading problems. In
this manner, damage in one component due to an increase in signal levels in the other
components — perhaps due to shorts, malfunctions, noise, high common-mode signals,
etc. — can be reduced. An isolation amplifier can be constructed from a transformer and
a demodulator with other auxiliary components such as filters and amplifiers. Draw a
schematic diagram for an isolation amplifier and explain the operation.

9.10 What are passive filters? List several advantages and disadvantages of passive (analog)
filters in comparison to active filters.

A simple way to construct an active filter is to start with a passive filter of the same
type and add a voltage follower to the output. What is the purpose of such a voltage
follower?

9.11 Give one application each for the following types of analog filters:
a. Low-pass filter
b. High-pass filter
c. Bandpass filter
d. Notch filter.
Suppose that several single-pole active filter stages are cascaded. Is it possible for the
overall (cascaded) filter to possess a resonant peak? Explain.

9.12 The Butterworth filter is said to have a “maximally flat magnitude.” Explain what is
meant by this. Give another characteristic that is desired from a practical filter.

9.13 An active filter circuit is given in Figure P9.13.
a. Obtain the input-output differential equation for the circuit.
b. What is the filter-transfer function?
c. What is the order of the filter?
d. Sketch the magnitude of the frequency-transfer function, and state what type of filter

it represents.
e. Estimate the cutoff frequency and the roll-off slope.

FIGURE P9.7 A differential amplifier with a flying capacitor for common-mode rejection.
©2000 CRC Press

http://www.semeng.ir


www.20file.org
9.14 What is meant by modulation, modulating signal, carrier signal, modulated signal, and
demodulation? Explain the following types of signal modulation, giving an application
for each case:
a. Amplitude modulation
b. Frequency modulation
c. Phase modulation
d. Pulse-width modulation
e. Pulse-frequency modulation
f. Pulse-code modulation.
How could the sign of the modulating signal be accounted for during demodulation in
each of these types of modulation?

9.15 Give two situations where amplitude modulation is intentionally introduced; and in each
situation, explain how amplitude modulation would be beneficial. Also, describe two
devices where amplitude modulation might be naturally present. Could the fact that
amplitude modulation is present be exploited to one’s advantage in these two natural
situations? Explain.

9.16 A vibration monitoring system for a ball bearing of a rotating machine is schematically
shown in Figure P9.16(a). It consists of an accelerometer to measure the bearing
vibration, and an FFT analyzer to compute the Fourier spectrum of the vibration signal.
This spectrum is examined over a period of 1 month after installation of the rotating
machine in order to detect any degradation in the bearing performance. An interested
segment of the Fourier spectrum can be examined with high resolution using the “zoom
analysis” capability of the FFT analyzer. The magnitude of the original spectrum and
that of the spectrum determined 1 month later, in the same zoom region, are shown in
Figure P9.16(b).
a. Estimate the operating speed of the rotating machine and the number of balls in the

bearing.
b. Do you suspect any bearing problems?

9.17 Explain the following terms:
a. Phase-sensitive demodulation
b. Half-wave demodulation
c. Full-wave demodulation.

FIGURE P9.13 An active filter circuit.
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When vibrations in rotating machinery such as gear boxes, bearings, turbines, and
compressors are monitored, it is observed that a peak of the spectral magnitude curve
does not usually occur at the frequency corresponding to the forcing function (e.g., tooth
meshing, ball or roller hammer, blade passing). But, instead, two peaks occur on the two
sides of this frequency. Explain the reason for this observation.

9.18 Define the following terms in relation to an analog-to-digital converter:
a. Resolution
b. Dynamic range
c. Full-scale value
d. Quantization error.

9.19 Single-chip amplifiers with built-in compensation and filtering circuits are becoming
popular for signal-conditioning tasks associated with data acquisition and machine mon-
itoring. Signal processing such as integration that would be needed to convert, say, an
accelerometer into a velocity sensor, can also be accomplished in the analog form using
an IC chip. What are advantages of such signal-modification chips in comparison to the
conventional analog signal-conditioning hardware that employ discrete circuit elements
and separate components to accomplish various signal-conditioning tasks?

9.20 Compare the three types of bridge circuits: constant-voltage bridge; constant-current
bridge; and half-bridge, in terms of nonlinearity, effect of change in temperature, and cost.

Obtain an expression for the percentage error in a half-bridge circuit output due to
an error δvref in the voltage supply vref. Compute the percentage error in the output if the
voltage supply has a 1% error.

9.21 The Maxwell bridge circuit is shown in Figure P9.21. Obtain the conditions for a balanced
Maxwell bridge in terms of the circuit parameters R1, R2, R3, R4, C1, and L4. Explain how
this circuit can be used to measure a variation in C1 or L4.

FIGURE P9.16. (a) A vibration monitoring system for a ball bearing, and (b) a zoomed Fourier spectrum.
©2000 CRC Press

http://www.semeng.ir


www.20file.org
9.22 The standard LVDT (linear variable differential transducer or transformer) arrangement
has a primary coil and two secondary coil segments connected in series opposition.
Alternatively, some LVDTs use a bridge circuit to produce their output. An example of
a half-bridge circuit for an LVDT is shown in Figure P9.22. Explain the operation of
this arrangement. Extend this idea to a full-impedance bridge for LVDT measurement.

9.23 The output of a Wheatstone bridge is nonlinear with respect to the variations in the
bridge resistance. This nonlinearity is negligible for small changes in resistance. For
large variations in resistance, however, some method of calibration or linearization should
be employed. One way to linearize the bridge output is to positive feedback the output

FIGURE P9.21 The Maxwell bridge.

FIGURE P9.22 A half-bridge circuit for an LVDT.
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voltage signal into the bridge supply using a feedback operational amplifier. Consider
the Wheatstone bridge circuit shown in Figure 9.24(a). Initially, the bridge is balanced
with R1 = R2 = R3 = R4 = R. Then, the resistor R1 is varied to R + δR. Suppose that the
bridge output δvo is fed back (positive) with a gain of 2 into the bridge supply vref . Show
that this will linearize the bridge equation.

9.24 The noise in an electrical circuit can depend on the nature of the coupling mechanism.
In particular, the following types of coupling can be identified:
a. Conductive coupling
b. Inductive coupling
c. Capacitive coupling
d. Optical coupling.
Compare these four types of coupling in terms of the nature and level of noise that is
fed through or eliminated in each case. Discuss ways to reduce noise that is fed through
in each type of coupling.

The noise due to variation in ambient light can be a major problem in optically coupled
systems. Briefly discuss a method that could be used in an optically coupled device in
order to make the device immune to variation in the ambient light level.
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10 Vibration Testing
Vibration testing is usually performed by applying a vibratory excitation to a test object and
monitoring the structural integrity and performance of the intended function of the object. The
technique can be useful in several stages of (1) design development, (2) production, and
(3) utilization of a product. In the initial design stage, the design weaknesses and possible improve-
ments can be determined through vibration testing of a preliminary design prototype or a partial
product. In the production stage, the quality of workmanship of the final product can be evaluated
using both destructive and non-destructive vibration testing. A third application, termed product
qualification, is intended to determine the adequacy of a product of good quality for a specific
application (e.g., the seismic qualification of a nuclear power plant) or a range of applications.

The technology of vibration testing has rapidly evolved since World War II, and the technique
has been successfully applied to a wide spectrum of products — ranging from small printed circuit
boards and microprocessor chips to large missiles and structural systems. Until recently, however,
much of the signal processing required in vibration testing was performed through analog methods.
In these methods, the measured signal is usually converted into an electric signal, which in turn is
passed through a series of electrical or electronic circuits to achieve the required processing.
Alternatively, motion or pressure signals could be used in conjunction with mechanical or hydraulic
(e.g., fluidic) circuits to perform analog processing. Today’s complex test programs require the
capability of fast and accurate processing of large numbers of measurements. The performance of
analog signal analyzers is limited by hardware costs, size, data handling capacity, and computational
accuracy. Digital processing, for the synthesis and analysis of vibration test signals and for the
interpretation and evaluation of test results, began to replace the classical analog methods in the
late 1960s. Today, special-purpose digital analyzers with real-time digital Fourier analysis capability
(see Chapters 4 and 9, and Appendix D) are commonly used in vibration testing applications. The
advantages of incorporating digital processing in vibration testing include the flexibility and con-
venience with respect to the type of the signal that can be analyzed and the complexity of the
nature of processing that can be handled, increased speed of processing, accuracy and reliability,
reduction in operational costs, practically unlimited repeatability of processing, and reduction in
overall size and weight of the analyzer.

Vibration testing is usually accomplished using a shaker apparatus as shown by the schematic
diagram in Figure 10.1. Theest object is secured to the shaker table in a manner representative of
its installation during actual use (service). In-service operating conditions are simulated while the
shaker table is actuated by applying a suitable input signal. Shakers of different types, with
electromagnetic, electromechanical, or hydraulic actuators are available, as discussed in Chapter 8.
The shaker device may depend on the test requirement, availability, and cost. More than one signal
may be required to simulate three-dimensional characteristics of the vibration environment. The
test input signal is either stored on an analog magnetic tape or generated in real-time by a signal
generator. The capability of the test object or a similar unit to withstand a “predefined” vibration
environment is evaluated by monitoring the dynamic response (accelerations, velocities, displace-
ments, strains, etc.) and functional operability variables (e.g., temperatures, pressures, flow rates,
voltages, currents). Analysis of the response signals will aid in detecting existing defects or
impending failures in various components of the test equipment. The control sensor output is useful
in several ways — particularly in feedback control of the shaker, frequency band equalization in
real-time of the excitation signal, and synthesizing of future test signals.
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The excitation signal is applied to the shaker through a shaker controller, which usually has a
built-in power amplifier. The shaker controller compares the “control sensor” signal, from the
shaker-test-object interface, with the reference excitation signal from the signal generator. The
associated error is used to control the shaker motion so as to push this error to 0. This is termed
“equalization.” Hence, a shaker controller serves as an equalizer as well.

The signals monitored from the test object include test response signals and operability signals.
The former category of signals provides the dynamic response of the test object, and can include
velocities, accelerations, and strains. The latter category of signals is used to check whether the
test object performs in-service functions (i.e., it operates properly) during the test excitation, and
can include flow rates, temperatures, pressures, currents, voltages, and displacements. The signals
can be recorded in a computer or a digital oscilloscope for subsequent analysis. Also, by using an
oscilloscope or a spectrum analyzer, some analysis can be done online, and the results are displayed
immediately.

The most uncertain part of a vibration test program is the simulation of the test input. For
example, the operating environment of a product such as an automobile is not deterministic and
will depend on many random factors. Consequently, it is not possible to generate a single test signal
that can completely represent various operating conditions. As another example, in seismic quali-
fication of an equipment, the primary difficulty stems from the fact that the probability of accurately
predicting the recurrence of an earthquake at a given site during the design life of the equipment
is very small, and that of predicting the nature of the ground motions if an earthquake were to
occur is even smaller. In this case, the best that one could do would be to make a conservative
estimate of the nature of the ground motions due to the strongest earthquake that is reasonably
expected. The test input should have (1) amplitude, (2) phasing, (3) frequency content, and
(4) damping characteristics comparable to the expected vibration environment, if satisfactory rep-
resentation is to be achieved. A frequency domain representation (see Chapters 3 and 4) of the test
inputs and responses, in general, can provide better insight regarding their characteristics in com-
parison to a time domain representation (namely, a time history). Fortunately, frequency domain
information can be derived from time domain data using Fourier transform techniques.

In vibration testing, Fourier analysis is used in three principal ways: (1) to determine the
frequency response of the test object by means of prescreening tests; (2) to represent the vibration

FIGURE 10.1 A typical vibration testing arrangement.
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environment by its Fourier spectrum or its power spectral density so that a test input signal can be
generated to represent it; and (3) to monitor the Fourier spectrum of the response at key locations
in the test object and at control locations of the test table and use the information diagnostically
or in controlling the exciter.

The two primary steps of a vibration testing scheme are:

Step 1: Specify the test requirements.
Step 2: Generate a vibration test signal that conservatively satisfies the specifications of step 1.

10.1 REPRESENTATION OF A VIBRATION ENVIRONMENT

A complete knowledge of the vibration environment in which a device is operating is not available
to the test engineer or the test program planner. The primary reason for this is that the operating
environment is a random process. When performing a vibration test, however, either a deterministic
or a random excitation can be employed to meet the test requirements. This is known as the test
environment.

Based on the vibration-testing specifications or product qualification requirements, the test
environment should be developed to have the required characteristics of (1) intensity (amplitude);
(2) frequency content (effect on the test-object resonances and the like); (3) decay rate (damping);
and (4) phasing (dynamic interactions). Usually, these parameters are chosen to conservatively
represent the worst possible vibration environment that is reasonably expected during the design
life of the test object. So long as this requirement is satisfied, it is not necessary for the test
environment to be identical to the operating vibration environment.

In vibration testing, the excitation input (test environment) can be represented in several ways.
The common representations are by (1) time signal, (2) response spectrum, (3) Fourier spectrum,
and (4) power spectral density function. Once the required environment is specified by one of these
forms, the test should be conducted either by directly employing them to drive the exciter or by
using a more conservative excitation when the required environment cannot be exactly reproduced.

10.1.1 TEST SIGNALS

Vibration testing can employ both random and deterministic signals as test excitations. Regardless
of its nature, the test input should conservatively meet the specified requirements for that test.

Stochastic versus Deterministic Signals

Consider a seismic time-history record. Such a ground-motion record is not stochastic. It is true
that earthquakes are random phenomena and the mechanism by which the time history was produced
is a random process. Once a time history is recorded, however, it is known completely as a curve
of response value versus time (a deterministic function of time). Therefore, it is a deterministic set
of information. However, it is also a “sample function” of the original stochastic process
(the earthquake) by which it was generated. Hence, very valuable information about the original
stochastic process itself can be determined by analyzing this sample function on the basis of the
ergodic hypothesis (see Section 10.1.3 on stochastic representation). Some might think that an
irregular time-history record corresponds to a random signal. It should be remembered that some
random processes produce very smooth signals. As an example, consider the sine wave given by
asin(ωt + φ). Assume that the amplitude a and the frequency ω are deterministic quantities, and
the phase angle φ is a random variable. This is a random process. Every time this particular random
process is activated, a sine wave is generated that has the same amplitude and frequency, but
generally a different phase angle. Nevertheless, the sine wave will always appear as smooth as a
deterministic sine wave.
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In a vibration testing program, if one uses a recorded time history to derive the exciter, it would
be a deterministic signal, even if it was originally produced by a random phenomenon such as an
earthquake. Also, if one uses a mathematical expression for the signal in terms of completely known
(deterministic) parameters, it is again a deterministic signal. If the signal is generated by some
random mechanism (computer simulation or physical) in real-time, however, and if that signal is
used as the excitation in the vibration test simultaneously as it is being generated, then one has a
truly random excitation. Also, if one uses a mathematical expression (with respect to time) for the
excitation signal and some of its parameters are not known numerically, and the values are assigned
to them during the test in a random manner, one has a truly random test signal.

10.1.2 DETERMINISTIC SIGNAL REPRESENTATION

In vibration testing, time signals that are completely predefined can be used as test excitations.
They should be capable, however, of subjecting the test object to the specified levels of intensity,
frequency, decay rate (and phasing in the case of simultaneous multiple test excitations).

Deterministic excitation signals (time histories) used in vibration testing are divided into two
broad categories: single-frequency signals and multifrequency signals.

Single-Frequency Signals

Single-frequency signals have only one predominant frequency component at a given time. For the
entire duration, however, the frequency range covered is representative of the frequency content of
the vibration environment. For seismic-qualification purposes, for example, this range should be
at least 1 Hz to 33 Hz. Some typical single-frequency signals used as excitation inputs in vibration
testing of equipment are shown in Figure 10.2. The signals shown in the figure can be expressed
by simple mathematical expressions. This is not a requirement, however. It is quite acceptable to
store a very complex signal in a storage device and subsequently use it in the procedure. In picking
a particular time history, one should give proper consideration to its ease of reproduction and the
accuracy with which it satisfies the test specifications. Next, the acceleration signals shown in
Figure 10.2 are described mathematically.

Sine Sweep

One obtains a sine sweep by continuously varying the frequency of a sine wave. Mathematically,

(10.1)

The amplitude a and the phase angle φ are usually constants, and the frequency ω(t) is a function of
time. Both linear and exponential variations of frequency over the duration of the test are in common
usage, but exponential variations are more common. For the linear variation (see Figure 10.3):

(10.2)

where

ωmin = lowest frequency in the sweep
ωmax = highest frequency in the sweep
Td = duration of the sweep.

u t a t t( ) = ( ) +[ ]sin ω φ

ω ω ω ωt
t

Td

( ) = + −( )min max min
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For the exponential variation (see Figure 10.3):

(10.3)

or

(10.4)

FIGURE 10.2 Typical single-frequency test signals: (a) sine sweep, (b) sine dwell, (c) sine decay, (d) sine beat,
and (e) sine beat with pause.
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This variation is sometimes incorrectly called logarithmic variation. This confusion arises because
of its definition using equation (10.3) instead of equation (10.4). It is actually an inverse logarithmic
(i.e., exponential) variation. Note that the logarithm in equation (10.3) can be taken to any arbitrary
base. If base 10 is used, the frequency increments are measured in decades (multiples of 10); if
base 2 is used, the frequency increments are measured in octaves (multiples of 2). Thus, the number
of decades in the frequency range from ω1 to ω2 is given by log10(ω2 /ω1); for example, with
ω1 = 1 rad·s–1 and ω2 = 100 rad·s–1, log10(ω2 /ω1) = 2, which corresponds to two decades. Similarly,
the number of octaves in the range ω1 to ω2 is given by log2(ω2 /ω1). Then, with ω1 = 2 rad·s–1 and
ω2 = 32 rad·s–1 we have log2(ω2/ω1) = 4, a range of four octaves. Note that these quantities are
ratios and have no physical units. The foregoing definitions can be extended to smaller units; for
example one-third octave represents increments of 21/3. Thus, if one starts with 1 rad·s–1, and
increments the frequency successively by one-third octave, one obtains 1, 21/3, 22/3, 2, 24/3, 25/3, 22,
etc. It is clear, for example, that there are four one-third octaves in the frequency range from 22/3

to 22. Note that ω is known as the angular frequency (or radian frequency) and is usually measured
in the units of radians per second (rad·s–1). The more commonly used frequency is the cyclic
frequency, which is denoted by f. This is measured in hertz (Hz), which is identical to cycles per
second (cps). It is clear that

(10.5)

because there are 2π radians in one cycle.
So that all important vibration frequencies of the test object (or its model) are properly excited,

the sine sweep rate should be as slow as is feasible. Typically, one octave per minute or slower
rates are employed.

Sine Dwell

Sine-dwell signal is the discrete version of a sine sweep. The frequency is not varied continuously,
but is incremented by discrete amounts at discrete time points. This is shown graphically in
Figure 10.3. Mathematically, for the rth time interval, the dwell signal is

FIGURE 10.3 Frequency variation in some single-frequency vibration test signals.

f = ω
π2
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(10.6)

in which ωr, a, and φ, are kept constant during the time interval (Tr–1, Tr). The frequency can be
increased by a constant increment, or the frequency increments can be made bigger with time
(exponential-type increment). The latter procedure is more common. Also, the dwelling-time inter-
val is usually made smaller as the frequency is increased. This is logical because, as the frequency
increases, the number of cycles that occur during a given time also increases. Consequently, steady-
state conditions can be achieved in a shorter time.

Sine-dwell signals can be specified using either a graphical form (see Figure 10.3) or tabular
form, giving the dwell frequencies and corresponding dwelling-time intervals. The amplitude is
usually kept constant for the entire duration (0, Td), but the phase angle φ, might have to be changed
with each frequency increment in order to maintain the continuity of the signal.

Decaying Sine

Actual transient vibration environments (e.g., seismic ground motions) decay with time as the vibration
energy is dissipated by some means. This decay characteristic is not present, however, in sine-sweep
and sine-dwell signals. Sine-decay representation is a sine dwell with decay (see Figure 10.2). For
an exponential decay, the counterpart of equation (10.6) can be written as

(10.7)

The damping parameter (inverse of the time constant) λ is typically increased with each frequency
increment in order to represent the increased decay rates of a dynamic environment (or increased
modal damping) at higher frequencies.

Sine Beat

When two sine waves having the same amplitude but different frequencies (that are closer together)
are mixed (added or subtracted) together, a sine beat is obtained. This signal is considered a sine
wave having the average frequency of the two original waves, which is amplitude-modulated by a
sine wave of frequency equal to half the difference of the frequencies of the two original waves.
The amplitude modulation produces a transient effect that is similar to that caused by the damping
term in the sine-decay equation (10.7). The sharpness of the peaks becomes more prominent when
the frequency difference of the two frequencies is made smaller.

Consider two cosine waves having frequencies (ωr + ∆ωr) and (ωr – ∆ωr) and the same amplitude
a/2. If the first signal is subtracted from the second (i.e., added with a 180° phase shift from the
first wave), one obtains

(10.8)

By straightforward use of trigonometric identities, one obtains

(10.9)

This is a sine wave of amplitude a and frequency ω, modulated by a sine wave of frequency
∆ωr. Sine-beat signals are commonly used as test excitation inputs in vibration testing. Usually,

u t a t T t T

r n

r r r r( ) = +( ) ≤ ≤

=

−sin

                              , , ,

ω φ    for     1

1 2 K

u t a t t T t Tr r r r r( ) = −( ) +( ) ≤ ≤−exp sinλ ω φ 1

u t
a

t tr r r r( ) = −( ) − +( )[ ]2
cos cosω ω ω ω∆ ∆
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the ratio ωr /∆ωr is kept constant. A typical value used is 20, in which case one gets 10 cycles
per beat. Here, the cycles refer to the cycles at the higher frequency ωr, and a beat occurs at
each half cycle of the smaller frequency ∆ωr. Thus, a beat is identified by a peak of amplitude
a in the modulated wave, and the beat frequency is 2∆ωr .

As in the case of a sine dwell, the frequency ωr of a sine-beat excitation signal is incremented
at discrete time points Tr so as to cover the entire frequency interval of interest (ωmin, ωmax). It
is common practice to increase the size of the frequency increment and decrease the time
duration at a particular frequency, for each frequency increment, just as is done for the sine
dwell. The reasoning for this is identical to that given for sine dwell. The number of beats for
each duration is usually kept constant (typically at a value over 7). A sine-beat signal is shown
in Figure 10.2(d).

Sine Beat with Pauses

If one includes pauses between sine-beat durations, one obtains a sine-beat signal with pauses.
Mathematically,

(10.10)

This situation is shown in Figure 10.2(e). When a sine-beat signal with pauses is specified as
a test excitation, one must give the frequencies, corresponding time intervals, and corresponding
pause times. Typically, the pause time is also reduced with each frequency increment.

The single-frequency signal relations described in this section are summarized in Table 10.1.

Multifrequency Signals

In contrast to single-frequency signals, multifrequency signals usually appear irregular and will
have more than one predominant frequency component at a given time. Some common examples
of multifrequency signals include aerodynamic disturbances, actual earthquake records, and sim-
ulated road disturbance signals used in automotive dynamic tests.

Actual Excitation Records

Typically, actual excitation records such as overhead guideway vibrations are sample functions of
random processes. By analyzing these deterministic records, however, characteristics of the original
stochastic processes can be established, provided that the records are sufficiently long. This is
possible because of the ergodic hypothesis. Results thus obtained are not quite accurate because
the actual excitation signals are usually nonstationary random processes and hence are not quite
ergodic. Nevertheless, the information obtained by Fourier analysis is useful in estimating the
amplitude, phase, and frequency-content characteristics of the original excitation. In this manner,
one can pick a past excitation record that can conservatively represent the design-basis excitation
for the object that needs to be tested.

Excitation time histories can be modified to make them acceptably close to a design-basis
excitation by using spectral-raising and spectral-suppressing methods. In spectral-raising proce-
dures, a sine wave of required frequency is added to the original time history to improve its capability
of excitation at that frequency. The sine wave should be properly phased such that the time of
maximum vibratory motion in the original time history is unchanged by the modification. Spectral
suppressing is achieved essentially by using a narrow band-reject filter for the frequency band that
needs to be removed. Physically, this is realized by passing the time-history signal through a linearly
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damped oscillator that is tuned to the frequency to be rejected and connected in series with a second
damper. Damping of this damper is chosen to obtain the required attenuation at the rejected
frequency.

Simulated Excitation Signals

Random-signal-generating algorithms can be easily incorporated into digital computers. Also,
physical experiments can be developed that have a random mechanism as an integral part. A time
history from any such random simulation, once generated, is a sample function. If the random
phenomenon is accurately programmed or physically developed so as to conservatively represent
a design-basis excitation, a signal from such a simulation can be employed in vibration testing.
Such test signals are usually available either as analog records on magnetic tapes or as digital
records on a computer disk. Spectral-raising and spectral-suppressing techniques, mentioned earlier,
can also be considered as methods of simulating vibration test excitations.

Before concluding this section, it is worthwhile to point out that all test excitation signals
considered in this section are oscillatory. Although the single-frequency signals considered may
possess little resemblance to actual excitations on a device during operation, they can be chosen
to possess the required decay, magnitude, phase, and frequency-content characteristics. During
vibration testing, these signals, if used as excitations, will impose reversible stresses and strains to
the test object, whose magnitudes, decay rates, and frequencies are representative of those that
would be experienced during actual operation during the design life of the test object.

10.1.3 STOCHASTIC SIGNAL REPRESENTATION

To generate a truly stochastic signal, a random phenomenon must be incorporated into the signal-
generating process. The signal must be generated in real-time, and its numerical value at a given time

TABLE 10.1
Typical Single-Frequency Signals Used in Vibration Testing

Single-Frequency
Acceleration Signal Mathematical Expression

Sine sweep
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Decaying sine
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Sine beat with pauses
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is unknown until that time instant is reached. A stochastic signal cannot be completely specified in
advance, but its statistical properties can be prespecified. There are many ways of obtaining random
processes, including physical experimentation (e.g., by tossing a coin at equal time steps and assigning
a value to the magnitude over a given time step depending on the outcome of the toss), observation
of processes in nature (such as outdoor temperature), and digital-computer simulation. The last
procedure is the one commonly used in signal generation associated with vibration testing.

Ergodic Random Signals

A random process is a signal that is generated by some random (stochastic) mechanism. Each time
the mechanism is operated, a different signal (sample function) is usually generated. The likelihood
of any two sample functions becoming identical is governed by some probabilistic law. The random
process is denoted by X(t), and any sample function by x(t). It should be remembered that no
numerical computations can be made on X(t) because it is not known for certain. Its Fourier transform,
for example, can be written as an analytical expression but cannot be computed. Once a sample
function x(t) is generated, however, any numerical computation can be performed on it, because it
is a completely known function of time. This important difference might be somewhat confusing.

At any given time t1, X(t1) is a random variable that has a certain probability distribution.
Consider a well-behaved function f{X(t1)} of this random variable (which is also a random variable).
Its expected value (statistical mean) is denoted E[f{X(t1)}]. This is also known as the ensemble
average, because it is equivalent to the average value at t1 of a collection (ensemble) of a large
number of sample functions of X(t).

Now consider the function f{x(t)} of one sample function x(t) of the random process. Its
temporal (time) mean is expressed by

Now, if

(10.11)

then the random signal is said to be ergodic. Note that the right-hand side of equation (10.11) does
not depend on time. Hence, the left-hand side should also be independent of the time point t1.

As a result of this relation (known as the ergodic hypothesis), one can obtain the properties of
a random process merely by performing computations using one of its sample functions. Ergodic
hypothesis is the bridge linking the stochastic domain of expectations and uncertainties and the
deterministic domain of real records and actual numerical computations. Digital Fourier computa-
tions, such as correlation functions and spectral densities, would not be possible for random signals
if not for this hypothesis.

Stationary Random Signals

If the statistical properties of a random signal X(t) are independent of the time point considered,
it is stationary. In particular, X(t1) will have a probability density that is independent of t1, and the
joint probability of X(t1) and X(t2) will depend only on the time difference t2 – t1. Consequently,
the mean value E[X(t)] of a stationary random signal is independent of t, and the autocorrelation
function defined by
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(10.12)

depends on τ and not on t. Note that ergodic signals are always stationary, but the converse is not
always true.

Consider Parseval’s theorem:

(10.13)

where X(f) is the Fourier integral transform of x(t).
This can be interpreted as an energy integral and its value is usually infinite for random signals.

An appropriate measure for a random signal is its power. This is given by its root-mean-square
(rms) value E[X(t)2]. Power spectral density (psd) Φ(f) is the Fourier transform of the autocorrelation
function φ(τ); and similarly, the latter is the inverse Fourier transform of the former. Hence,

(10.14)

Now, from equations (10.12) and (10.14), one obtains

(10.15)

It follows that the rms value of a stationary random signal is equal to the area under its psd curve.

Independent and Uncorrelated Signals

Two random signals X(t) and Y(t) are independent if their joint probability distribution is given by
the product of the individual distributions. A special case is the uncorrelated signals, which satisfy

(10.16)

Consider the stationary case with mean values

(10.17)

(10.18)

The autocovariance functions are given by

(10.19)

(10.20)
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and the cross-covariance function is given by

(10.21)

For uncorrelated signals [equation (10.16)],

(10.22)

and, from equation (10.21), it follows that,

(10.23)

The correlation-function coefficient is defined by

(10.24)

which satisfies

(10.25)

For uncorrelated signals, ρxy(τ) = 0. This function measures the degree of correlation of the two signals.
The correlation of two random signals X(t) and Y(t) is measured in the frequency domain by

its ordinary coherence function:

(10.26)

which satisfies the condition

(10.27)

Transmission of Random Excitations

When the excitation input to a system is a random signal, the corresponding system response will
also be random. Consider the system shown by the block diagram in Figure 10.4(a). The response
of the system is given by the convolution integral:

(10.28)

in which the response psd is given by the Fourier transform:

(10.29)
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Now, using equation (10.28) in equation (10.29), in conjunction with the definition of Fourier
transform (see Chapter 4), one can write:

which can be expressed as

FIGURE 10.4 Combined response of a system to various random excitations: (a) system excited by a single
input, (b) response to several random excitations, and (c) response to a delayed excitation.
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Now, by letting τ′ = τ + t1 – t2, one can write

Note that U(t) is assumed to be stationary.
Next, since the frequency-response function is given by the Fourier transform of the impulse

response function (see Chapters 2 and 3), one obtains

(10.30)

in which H*(f) is the complex conjugate of H(f). Alternatively, if �H(f)� denotes the magnitude of
the complex quantity, one can write

(10.31)

Using equation (10.30) or equation (10.31), one can determine the psd of the system response from
the psd of the excitation if the system-frequency response function is known.

In a similar manner, it can be shown that the cross-spectral density function can be expressed as

(10.32)

Now consider r stationary, independent, random excitations U1, U2, …, Ur (which are assumed to
have zero-mean values, without loss of generality) applied to r subsystems, having transfer functions

1(s), 2(s), …, r(s) as shown in Figure 10.4(b). The total response Y consists of the sum of
individual responses Y1, Y2, …, Yr. It can be shown that Y1, Y2, …, Yr are also stationary, independent,
zero-mean, random processes. By definition, then

(10.33)

Now, for independent, zero-mean Yi, equation (10.33) becomes

(10.34)

Since Yi are stationary, one has

(10.35)

On Fourier transformation, one obtains

(10.36)
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(10.37)

from which the response psd can be determined if the input psd values are known.
If all inputs Ui(t) have identical probability distributions (e.g., when they are generated by the

same mechanism), the corresponding psd’s will be identical. (Note that this does not imply that
the inputs are equal. They could be dependent, independent, correlated, or uncorrelated.) In this
case, equation (10.37) becomes

(10.38)

in which Φuu(f) is the common input psd.
Finally, consider the linear combination of two excitations Uf(t) and Ur(t), with the latter

excitation delayed in time by τ but otherwise identical to the former. This situation is shown in
Figure 10.4(c). From Laplace transform tables, it is seen that the Laplace transforms of the two
signals are related by

(10.39)

From equation (10.39), it follows that [see Figure 10.4(c)]

(10.40)

Consequently,

(10.41)

From this result, the net response can be determined when the phasing between the two excitations
is known. This has applications, for example, in determining the response of a vehicle to road
disturbances at the front and rear wheels.

10.1.4 FREQUENCY-DOMAIN REPRESENTATIONS

In this section, the Fourier spectrum method and the power spectral density method of representing
a test excitation are discussed. These are frequency-domain representations. It is advisable to review
Chapters 3 and 4 first in order to learn the necessary fundamentals.

Fourier Spectrum Method

Since the time domain and the frequency domain are related through Fourier transformation, a time
signal can be represented by its Fourier spectrum. In vibration testing, a required Fourier spectrum
can be given as the test specification. Then, the actual input signal used to excite the test object
should have a Fourier spectrum that envelops the required Fourier spectrum. Generation of a signal
to satisfy this requirement might be difficult. Usually, digital Fourier analysis (see Appendix D) of
the control sensor signal is necessary to compare the actual (test) Fourier spectrum with the required
Fourier spectrum. If the two spectra do not match in a certain frequency band, the error (i.e., the
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difference in the two spectra) is fed back to correct the situation. This process is known as frequency-
band equalization. Also, the sample step of the time signal in the digital Fourier analysis should
be adequately small to cover the required frequency range of interest in that particular vibration
testing application. Advantages of using digital Fourier analysis in vibration testing include flexi-
bility and convenience with respect to the type of the signal that can be analyzed, availability of
complex processing capabilities, increased speed of processing, accuracy and reliability, reduction
in the test cost, practically unlimited repeatability of processing, and reduction in overall size and
weight of the analyzer.

Power Spectral Density Method

The operational vibration environment of equipment is usually random. Consequently, a stochastic
representation of the test excitation appears to be suitable for a majority of vibration testing
situations. One way of representing a stationary random signal is by its power spectral density
(psd). As noted before, the numerical computation of psd is not possible, however, unless the
ergodicity is assumed for the signal. Using the ergodic hypothesis, one can compute the psd of a
random signal simply by using one sample function (one record) of the signal.

Three methods of determining the psd of a random signal are shown in Figure 10.5. From Parseval’s
theorem [equation (10.13)], one sees that the mean square value of a random signal can be obtained
from the area under the psd curve. This suggests the method shown in Figure 10.5(a) for estimating
the psd of a signal. The mean square value of a sample of the signal in the frequency band ∆f having
a certain center frequency is obtained by first extracting the signal components in the band and then
squaring them. This is done for several samples and averaged to get a high accuracy. It is then divided
by ∆f. By repeating this for a range of center frequencies, an estimate for the psd is obtained.

In the second scheme, shown in Figure 10.5(b), correlation function is first computed digitally.
Its Fourier transform (by fast Fourier transform, or FFT as outlined in Appendix D) gives an estimate
of the psd.

In the third scheme, shown in Figure 10.5(c), the psd is computed directly using FFT. Here,
the Fourier spectrum of the sample record is computed and the psd is estimated directly, without
first computing the autocorrelation function.

In these numerical techniques of computing psd, a single sample function would not give the
required accuracy, and averaging of results for a number of sample records is usually needed. In
real-time digital analysis, the running average and the current estimate are normally computed. In
the running average, it is desirable to give a higher weighting to the more recent estimates. The

FIGURE 10.5 Some methods of psd determination: (a) filtering, squaring, and averaging method; (b) using
autocorrelation function; and (c) using direct FFT.
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fluctuations in the psd estimate about the local average could be reduced by selecting a larger filter
bandwidth ∆f (see Figure 10.6) and a large record length T. A measure of this fluctuation is given by

(10.42)

It should be noted that increasing ∆f results in reduction of the precision of the estimates while
improving the appearance. To offset this, T should be increased further, or averaging should be
done for several sample records.

Generating a test input signal with a psd that satisfactorily compares with the required psd
could be a tedious task if manually attempted by mixing various signal components. A convenient
method is to use an automatic multiband equalizer. By this means, the mean amplitude of the signal
in each small frequency band of interest can be made to approach the spectrum of the specified
vibration environment (see Figure 10.7). Unfortunately, this type of random-signal vibration testing
may be more costly than testing with deterministic signals.

10.1.5 RESPONSE SPECTRUM

Response spectra are commonly used to represent signals associated with vibration testing. A given
signal has a certain fixed response spectrum, but many different signals can have the same response
spectrum. For this reason, as will be clear shortly, the original signal cannot be reconstructed from
its response spectrum (unlike in the case of a Fourier spectrum). This is a disadvantage; but the
physical significance of a response spectrum makes it a good representation for a test signal.

If a given signal is applied to a single-degree-of-freedom oscillator (of a specific natural
frequency), and the response of the oscillator (mass) is recorded, one can determine the maximum
(peak) value of that response. Suppose that the process is repeated for a number of different

FIGURE 10.6 Effect of filter bandwidth on psd results.
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oscillators (having different natural frequencies) and then the peak response values thus obtained
are plotted against the corresponding oscillator natural frequencies. This procedure is shown
schematically in Figure 10.8. For an infinite number of oscillators (or for the same oscillator with
continuously variable natural frequency), one obtains a continuous curve that is called the response
spectrum of the given signal. It is obvious, however, that the original signal cannot be completely

FIGURE 10.7 Generation of a specified random vibration environment.

FIGURE 10.8 Definition of the response spectrum of a signal.
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determined from the knowledge of its response spectrum alone. In Figure 10.8, for example, another
signal, when passed through a given oscillator, might produce the same peak response.

Note that it is assumed the oscillators to be undamped; that is, the response spectrum obtained
using undamped oscillators corresponds to the damping value ζ = 0. If all the oscillators are damped,
however, and have the same damping ratio ζ, the resulting response spectrum will correspond to
that particular value of  ζ. It is therefore clear that ζ is also a parameter in the response-spectrum
representation. One should specify the damping value as well when representing a signal by its
response spectrum.

Displacement, Velocity, and Acceleration Spectra

It is clear that a motion signal can be represented by the corresponding displacement, velocity, or
acceleration. First consider a displacement signal u(t). The corresponding velocity signal is ,
and the acceleration is .

Now consider an undamped simple oscillator, subjected to a support displacement u(t), as
shown in Figure 10.9. As usual, assuming that the displacements are measured with respect to a
static equilibrium configuration, the gravity effect (which is balanced by the static deflection of the
spring) can be ignored. Then, the equation of motion is given by

(10.43)

or

(10.44)

where the (undamped) natural frequency is given by

(10.45)

Suppose that the support (displacement) excitation u(t) is a unit impulse δ(t). Then, the correspond-
ing (displacement) response y is called the impulse-response function, as discussed in Chapter 2,
and is denoted by h(t). It is known that h(t) is the inverse Laplace transform (with zero initial
conditions) of the transfer function of the system (10.44), as given by (see Chapter 3)

FIGURE 10.9 Undamped simple oscillator subjected to a support motion excitation.
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(10.46)

The impulse-response function (to an impulsive support excitation) for an undamped, single-
degree-of-freedom oscillator having natural frequency ωn is given by

(10.47)

The displacement response yd(t) of this oscillator, when excited by the displacement signal u(t), is
given by the convolution integral

(10.48)

The “velocity” response of the same oscillator, when excited by the velocity signal , is
given by

(10.49)

and the “acceleration” response, when excited by the acceleration signal , is

(10.50)

These results immediately follow from equation (10.44). Specifically, differentiate equation (10.44)
once to get
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If the peak value of yd(t) is plotted against ωn, one obtains the displacement-spectrum curve
of the displacement signal u(t). If the peak value of yv(t) is plotted against ωn, one gets the velocity-
spectrum curve of the displacement signal u(t). If the peak value of ya(t) is plotted against ωn, one
obtains the acceleration-spectrum curve of the displacement signal u(t). Now consider equation
(10.49). Integration by parts gives

(10.55)

The initial and final conditions for u(t) are assumed to be 0. It follows that the first term in equation

(10.55) vanishes. The second term is , which is clear by noting that

 is equal to ; thus,

(10.56)

If one integrates equation (10.50) by parts twice, and applies the end conditions as before, one obtains

(10.57)

By taking the peak values of response time histories, it is seen from equations (10.56) and (10.57) that

(10.58)

(10.59)

in which d(ωn), v(ωn), and a(ωn) represent the displacement spectrum, the velocity spectrum, and
the acceleration spectrum, respectively, of the displacement time history u(t). It follows from
equations (10.58) and (10.59) that

(10.60)

Response-Spectra Plotting Paper

Response spectra are usually plotted on a frequency–velocity coordinate plane or on a frequency–accel-
eration coordinate plane. Values are normally plotted in logarithmic scale, as shown in Figure 10.10.
First, consider the axes shown in Figure 10.10(a). Obviously, constant velocity lines are horizontal
for this coordinate system. From equation (10.58), constant-displacement lines correspond to 

By taking logarithms of both sides, one obtains
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It follows that the constant-displacement lines have a +1 slope on the logarithmic frequency–velocity
plane. Similarly, from equation (10.60), constant-acceleration lines correspond to 

Hence,

FIGURE 10.10 Response-spectra plotting formats: (a) frequency–velocity plane, and (b) frequency–acceleration
plane.

log log logv cn nω ω( ) = +

ω ωn nv c( ) =

log log logv cn nω ω( ) = − +
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It follows that the constant-acceleration lines have a –1 slope on the logarithmic frequency–velocity
plane. Similarly, it can be shown from equations (10.59) and (10.60) that, on the logarithmic
frequency–acceleration plane [Figure 10.10(b)], constant-displacement lines have a +2 slope, and
constant-velocity lines have a +1 slope.

On the frequency–velocity plane, a point corresponds to a specific frequency and a specific
velocity. The corresponding displacement at the point is obtained [equation (10.58)] by dividing
the velocity value by the frequency value at that point. The corresponding acceleration at that point
is obtained [equation (10.60)] by multiplying the particular velocity value by the frequency value.
Any types of units can be used for displacement, velocity, and acceleration quantities. A typical
logarithmic frequency–velocity plotting sheet is shown in Figure 10.11. Note that the sheet is
already graduated on constant deplacement, velocity, and acceleration lines. Also, a period axis
(period = 1/cyclic frequency) is given for convenience in plotting. A plot of this type is called a
nomograph.

Zero–Period Acceleration

Frequently, response spectra are specified in terms of accelerations rather than velocities. This is
particularly true in vibration testing associated with product qualification, because typical opera-
tional disturbance records are usually available as acceleration time histories. Of course, no
information is lost because the logarithmic frequency–acceleration plotting paper can be graduated
for velocities and displacements as well. It is therefore clear that an acceleration quantity (peak)
on a response spectrum has a corresponding velocity quantity (peak) and a displacement quantity
(peak). In vibration testing, however, the motion variable that is in common usage is acceleration.
Zero-period acceleration (ZPA) is an important parameter that characterizes a response spectrum.
It should be remembered, however, that zero-period velocity or zero-period displacement can be
similarly defined.

FIGURE 10.11 Response-spectra plotting sheet or nomograph (frequency–velocity plane).
©2000 CRC Press

http://www.semeng.ir


www.20file.org
Zero-period acceleration is defined as the acceleration value (peak) at zero period (or infinite
frequency) on a response spectrum. Specifically,

(10.61)

Consider the damped simple oscillator equation (for support motion excitation):

(10.62)

By differentiating equation (10.62) throughout, once or twice, it is seen, as in equations (10.51)
and (10.52), that if u and y initially refer to displacements, then the same equation is valid when
both of them refer to either velocities or accelerations. Consider the case in which u and y refer to
input acceleration and response acceleration, respectively. For a sinusoidal signal u(t) given by

(10.63)

the response y(t), neglecting the transient components (i.e., the steady-state value), is given by

(10.64)

Hence, the acceleration response spectrum, given by a(ωn) = [y(t)]max, for a sinusoidal signal of
frequency ω and amplitude A is

(10.65)

A plot of this response is shown in Figure 10.12. Note that a(0) = 0. Also,

(10.66)

It is worth observing that at the point ωn = ω (i.e., when the excitation frequency ω is equal to the
natural frequencies ωn of the simple oscillator), one has a(ωn) = A/(2ζ), which corresponds to an
amplification by a factor of 1/(2ζ) over the ZPA value.

Uses of Response Spectra

In vibration testing, response-spectra curves are employed to specify the dynamic environment to
which the test object is required to be subjected. This specified response spectrum is known as the
required response spectrum (RRS). In order to conservatively satisfy the test specification, the
response spectrum of the actual test input excitation, known as the test response spectrum (TRS),
should envelop the RRS. Note that when response spectra are used to represent excitation input
signals in vibration testing, the damping value of the hypothetical oscillators used in computing
the response spectrum has no bearing on the actual damping that is present in the test object. In
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this application, the response spectrum is merely a representation of the shaker input signal, and
therefore does not depend on system damping.

Another use of response spectra is in estimating the peak value of the response of a multi-
degree-of-freedom or distributed-parameter system when it is excited by a signal whose response
spectrum is known. To understand this concept, one should recall the fact that, for a multi-degree-
of-freedom or truncated (approximated) distributed-parameter system having distinct natural
frequencies, the total responses can be expressed as a linear combination of the individual modal
responses (see Chapters 5 and 6). Specifically, the response y(t) can be written

(10.67)

in which a(ωi) are the amplitude contributions from each mode (simple oscillator equation), with
“damped” natural frequency ωi. Hence, a(ωi) corresponds to the value of the response spectrum at
frequency ωi. The linear combination parameters α i depend on the modal-participation factors and
can be determined from system parameters. Since the peak values of all terms in the summation
on the right-hand side of equation (10.67) do not occur at the same time, one observes that

(10.68)

It follows that the right-hand side of the inequality (10.68) is a conservative upperbound estimate
(i.e., the absolute sum) for the peak response of the multi-degree-of-freedom system. Some prefer
to make the estimate less conservative by taking the square root of sum of the squares (SRSS):

(10.69)

FIGURE 10.12 Response spectrum and ZPA of a sine signal.
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The latter method, however, has the risk of giving an estimate that is less than the true value. Note
that, in this application, the damping value associated with the response spectrum is directly related
to modal damping of the system. Hence, the response spectrum a(ωi) should correspond to the
same damping ratio as that of the mode considered within the summation of the inequality (10.68).
If all modal damping ratios ζ i are identical or nearly so, the same response spectrum can be used
to compute all terms in the inequality (10.68). Otherwise, different response-spectra curves should
be used to determine each quantity a(ωi), depending on the applicable modal damping ratio ζ i.

10.1.6 COMPARISON OF VARIOUS REPRESENTATIONS

This section states some major advantages and disadvantages of the four representations of the
vibration environment that have been discussed.

Time-signal representation has several advantages. It can be employed to represent either
deterministic or random vibration environments. It is an exact representation of a single excitation
event. Also, when performing multi-excitation (multiple shaker) vibration testing, phasing between
the various inputs can be conveniently incorporated by simply delaying each excitation with respect
to the others. There are also disadvantages to time-signal representation. Because each time history
represents just one sample function (single event) of a random environment, it may not be truly
representative of the actual vibration excitation. This can be overcome by using longer signals,
which, however, will increase the duration of the test, which is limited by test specifications. If the
random vibration is truly ergodic (or at least stationary), this problem will not be as serious.
Furthermore, the problem does not arise when testing with deterministic signals. An extensive
knowledge of the true vibration environment for which the test object is subjected is necessary,
however, in order to conclude that it is stationary or that it can be represented by a deterministic
signal. In this sense, time-signal representation is difficult to implement.

The response-spectrum method of representing a vibration environment has several advantages.
It is relatively easier to implement. Because the peak response of a simple oscillator is used in its
definition, it is representative of the peak response or structural stress of simple dynamic systems;
hence, there is a direct relation to the behavior of the physical object. An upper bound for the peak
response of a multi-degree-of-freedom system can be conveniently obtained by the method outlined
in the earlier section on uses of response spectra. Also, by considering the envelope of a set of
response spectra at the same damping value, it is possible to use a single response spectrum to
conservatively represent more than one excitation event. The method also has disadvantages. It
employs deterministic signals in its definition. Sample functions (single events) of random vibrations
can be used, however. It is not possible to determine the original vibration signal from the knowledge
of its response spectrum because it uses the peak value of response of a simple oscillator (more than
one signal can have the same response spectrum). Thus, a response spectrum cannot be considered
a complete representation of a vibration environment. Also, characteristics such as the transient
nature and the duration of the excitation event cannot be deduced from the response spectrum. For
the same reason, it is not possible to incorporate information on excitation-signal phasing into the
response-spectrum representation. This is a disadvantage in multiple excitation testing.     

Fourier spectrum representation has advantages. Because the signal corresponding to the actual
dynamic environment can be obtained by inverse transformation, it has the same advantages as for
the time-signal representation. In particular, since a Fourier spectrum is generally complex, phasing
information of the test excitation can be incorporated into the Fourier spectra in multiple excitation
testing. Furthermore, by considering an envelope Fourier spectrum (like an envelope response
spectrum), it can be employed to conservatively represent more than one vibration environment.
Also, it gives frequency-domain information (such as resonances), which is very useful in vibration
testing situations. The disadvantages of the Fourier spectrum representation include the following.
It is a deterministic representation, but, as in the response-spectrum method, a sample function
(single event) of a random vibration can be represented by its Fourier spectrum. Transient effects
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and event duration are hidden in this representation. Also, it is somewhat difficult to implement
because complex procedures of multiband equalization may be necessary in the signal synthesis
associated with this representation.

Power spectral density representation has the following advantages. It takes into account
the random nature of a vibration environment. As in response-spectrum and Fourier spectrum
representations, by taking an envelope psd, it can be used to conservatively represent more than
one environment. It can display important frequency-domain characteristics, such as resonances.
Its disadvantages include the following. It is an exact representation only for truly stationary or
ergodic random environments. In nonstationary situations, as in seismic ground motions, sig-
nificant error can result. Also, it is not possible to obtain the original sample function (dynamic
event) from its psd. Hence, transient characteristics and duration of the event are not known
from its psd. Because mean square values, not peak values, are considered, psd representation
is not structural-stress related. Furthermore, because psd functions are real (not complex), one
cannot incorporate phasing information into them. This is a disadvantage in multiple excitation
testing situations, but this problem can be overcome by considering either the cross-spectrum
(which is complex) or the cross-correlation in each pair of test excitations. Random vibration
testing is compared with sine testing (single-frequency, deterministic excitations) in Box 10.1.
A comparison of various representations of test excitations is given in Box 10.2. 

In practice, generation of an excitation signal for vibration testing may not follow any one of
the analytical procedures exclusively and may incorporate a combination of them. For example,
combination of sine-beat signals of different frequencies, with random phasing is one practical
approach to the generation of multi-frequency, pseudo-random excitation signal. This approach is
summarized in Box 10.3.  

BOX 10.1 Random Testing Versus Sine Testing

Advantages of random testing:
1. more realistic representation of the true environment
2. many frequencies are applied simultaneously
3. all resonances, natural frequencies, and mode shapes are excited simultaneously.

Disadvantages of random testing:
1. needs more power for testing
2. control is more difficult
3. more costly.

Advantages of sine testing:
Appropriate for — 
1. fatigue testing of products that operate primarily at a known speed (frequency) under in-

service conditions
2. detecting sensitivity of a device to a particular excitation frequency
3. detecting resonances, natural frequencies, modal damping, and mode shapes
4. calibration of vibration sensors and control systems.

Disadvantages of sine testing:
1. usually not a good representation of the true dynamic environment
2. because vibration energy is concentrated at one frequency, it can cause failures that would

not occur in service (particularly single-resonance failures)
3. since only one mode is excited at a time, it can hide multiple-resonance failures that

might occur in service.
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10.2 PRETEST PROCEDURES

The selection of a test procedure for vibration testing of an object should be based on technical
information regarding the test object and its intended use. Vendors usually prefer to use more
established, conventional testing methods and generally are reluctant to incorporate modifications
and improvements. This is primarily due to economic reasons, convenience, testing-time limitation,
availability of the equipment and facilities (test-lab limitations), and similar factors. Regulatory
agencies, however, usually modify their guidelines from time to time, and some of these require-
ments are mandatory.

Before conducting a vibration test on a test object, it is necessary to follow several pretest
procedures. Such procedures are necessary in order to conduct a meaningful test. Some important
pretest procedures include:

1. Understanding the purpose of the test
2. Studying the service functions of the test object
3. Information acquisition on the test object
4. Test-program planning
5. Pretest inspection of the test object
6. Resonance search to gather dynamic information about the test object
7. Mechanical aging of the test object.

BOX 10.2 Comparison of Test Excitation Representations

Property
Time Signal

Response
Spectrum

Fourier
Spectrum

Power
Spectral
Density

True representation of a deterministic environment? Yes Yes Yes No

True representation of a random environment? One sample
function

One sample
function

One sample
function

Yes

Frequency-time reversible? Yes No Yes No

Signal phasing possible for multi-axis testing? Yes No Yes No

Good representation of peak amplitude/stress events? Yes Yes No No

Explicit accounting for modal responses? No Yes Yes Yes

BOX 10.3 Test Signal Generation

Steps:
1. Generate a set of sine beats at discrete frequencies of interest for the vibration test, and

having specified amplitudes.
2. Phase shift (time shift) the signal components from step 1 according to a random number

generator.
3. Sum the signal components from step 2.
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In the following sections, each of the first five items of these procedures are discussed to emphasize
how they can contribute to a meaningful test. The last two items will be considered separately in
Section 10.3 on testing procedures.

10.2.1 PURPOSE OF TESTING

As noted previously, vibration testing is useful in various stages of (1) design and development,
(2) production and quality assurance, and (3) qualification and utilization of a product. Depending
on the outcome of a vibration test, design modifications or corrective actions can be recommended
for a preliminary design or a partial product. To determine the most desirable location (in terms
of minimal noise and vibration) for the compressor in a refrigerator unit, for example, a resonance-
search test can be employed. As another example, vibration testing can be employed to determine
vibration-isolation material requirements in structures for providing adequate damping. Such tests
fall into the first category of system development tests. They are beneficial for the designer and
the manufacturer in improving the quality of performance of the product. Government regulatory
agencies do not usually stipulate the requirements for this category of tests, but they might stipulate
minimal requirements for safety and performance levels of the final product, which could indirectly
affect the development-test requirements. Custom-made items are exceptions, for which the cus-
tomers could stipulate the design-test requirements.

For special-purpose products, it might also be necessary to conduct a vibration test on the final
product before its installation for service operation. For mass-produced items, it is customary to
select representative samples from each batch of the product for these tests. The purpose of such
testing is to detect any inferiorities in the workmanship or in the materials used. These tests fall
into the second category — quality assurance tests. These usually consist of a standard series of
routine tests that are well established for a given product.

Distribution qualification and seismic qualification of devices and components are good exam-
ples of the use of the third category — qualification tests. A high-quality product such as a valve
actuator, for example, which is thoroughly tested in the design-development stage and at the final
production stage, will need further dynamic tests or analysis if it is to be installed in a nuclear
power plant. The purpose in this instance is to determine whether the product (valve actuator)
would be crucial for system safety-related functions. Government regulatory agencies usually
stipulate basic requirements for qualification tests. These tests are necessarily application oriented.
The vendor or the customer might employ more elaborate test programs than those stipulated by
the regulatory agency, but at least the minimum requirements set by the agency should be met
before commissioning the plant.

The purpose of any vibration test should be clearly understood before incorporating it into a
test program. A particular test might be meaningless under some circumstances. If it is known, for
example, that no resonances below 35 Hz exist in a particular equipment piece that requires seismic
qualification, then it is not necessary to conduct a resonance search because the predominant
frequency content in seismic excitations occurs below 35 Hz. If, however, the test serves a dual
purpose, such as mechanical aging in addition to resonance detection, then it may still be conducted
even if there are no resonances in the predominant frequency range of excitation.

If testing is performed on one test item selected from a batch of products to ensure the quality
of the entire batch or to qualify the entire batch, it is necessary to establish that all items in the
batch are of identical design. Otherwise, testing of all items in the batch might be necessary unless
some form of design similarity can be identified. “Qualification by similarity” is done in this manner.

The nature of the vibration testing that is employed will usually be governed by the test purpose.
Single-frequency tests, using deterministic test excitations, for example, are well suited for design-
development and quality-assurance applications. The main reason for this choice is that the test
input excitations can be completely defined; consequently, a complete analysis can be performed
with relative ease, based on existing theories and dynamic models. Random or multifrequency tests
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are more realistic in qualification tests, however, because under typical service conditions, the
dynamic environments to which an object is subjected are random and multifrequency in nature
(e.g., seismic disturbances, ground-transit road disturbances, aerodynamic disturbances). Because
random-excitation tests are relatively more expensive and complex in terms of signal generation
and data processing, single-frequency tests might also be employed in qualification tests. Under
some circumstances, single-frequency testing could add excessive conservatism to the test excita-
tion. It is known, for example, that single-frequency tests are justified in the qualification of line-
mounted equipment (i.e., equipment mounted on pipelines, cables, and similar “line” structures),
which can encounter in-service disturbances that are amplified because of resonances in the mount-
ing structure.

10.2.2 SERVICE FUNCTIONS

For product qualification by testing, it is required that the test object remain functional and maintain
its structural integrity when subjected to a certain prespecified dynamic environment. In seismic
qualification of equipment, for example, the dynamic environment is an excitation that adequately
represents the amplitude, phasing, frequency content, and transient characteristics (decay rate and
signal duration) of the motions at the equipment-support locations, caused by the most severe
seismic disturbance that is expected, with a reasonable probability, during the design life of the
equipment. Monitoring the proper performance of in-service functions (functional operability
monitoring) of a test object during vibration testing could be crucial in the qualification decision.

The intended service functions of the test object should be clearly defined prior to testing. For
active equipment, functional operability is necessary during vibration testing. For passive equip-
ment, however, only the structural integrity needs to be maintained during testing.

Active Equipment

Equipment that should perform a mechanical motion (e.g., valve closure, relay contact) or that
produces a measurable signal (e.g., electrical signal, pressure, temperature, flow) during the course
of performing its intended functions is termed active equipment. Some examples of active equipment
are valve actuators, relays, motors, pumps, transducers, control switches, and data recorders.

Passive Equipment

Passive equipment typically performs containment functions and consequently should maintain a
certain minimum structural strength or pressure boundary. Such equipment usually does not
perform mechanical motions or produce measurable response signals, but it may have to maintain
displacement tolerances. Some examples of passive equipment are piping, tanks, cables, supporting
structures, and heat exchangers.

Functional Testing

When defining intended functions of an object for test purposes, the following information should
be gathered for each active component of the object that will be tested:

1. The maximum number of times a given function should be performed during the design
life of the equipment

2. The best achievable precision (or monitoring tolerance) for each functional-operability
parameter and the time duration for which a given precision is required

3. Mechanisms and states of malfunction or failure
4. Limits of the functional-operability parameters (electrical signals, pressures, tempera-

tures, flow rates, mechanical displacements and tolerances, relay chatter, etc.) that cor-
respond to a state of malfunction or failure.
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It should be noted that, under a state of malfunction, the object would not perform the intended
function properly. Under a failure state, however, the object would not perform its intended function
at all.

For objects consisting of an assembly of several crucial components, it should be determined
how a malfunction or failure of one component could result in malfunction or failure of the entire
unit. In such cases, any hardware redundancy (i.e., when component failure does not necessarily
cause unit failure) and possible interactive and chain effects (such as failure in one component
overloading another, which could result in subsequent failure of the second component, and so on)
should be identified. In considering functional precision, it should be noted that high precision
usually means increased complexity of the test procedure. This is further complicated if a particular
level of precision is required at a prescribed instant.

It is common practice for the test object supplier (customer) to define the functional test,
including acceptance criteria and tolerances for each function, for the benefit of the test engineer.
This information eventually is used in determining acceptance criteria for the tests of active
equipment. Complexity of the required tests also depends on the precision requirements for the
intended functions of the test object.

Examples of functional failure are sensor and transducer (measuring instrumentation) failure,
actuator (motors, valves, etc.) failure, chatter in relays, gyroscopic and electronic-circuit drift, and
discontinuity of electrical signals because of short-circuiting. It should be noted that functional
failures caused by mechanical excitation are often linked with the structural integrity of the test
object. Such functional failures are primarily caused in two ways: (1) when displacement amplitude
exceeds a certain critical value once or several times, or (2) when vibrations of moderate amplitudes
occur for an extended period of time. Functional failures in the first category include, for example,
short-circuiting, contact errors, instabilities, and nonlinearities (in relays, amplifier outputs, etc.).
Such failures are usually reversible, so that when the excitation intensity drops, the system would
function normally. In the second category, slow degradation of components would occur because
of aging, wear, and fatigue, which could cause drift, offset, etc. and subsequent malfunction or
failure. This kind of failure is usually irreversible. It must be emphasized that the first category of
functional failure can be better simulated using high-intensity single-frequency testing and shock
testing, and the second category by multifrequency or broadband random testing and low-intensity
single-frequency testing.

For passive devices, a damage criterion should be specified. This can be expressed in terms of
parameters such as cumulative fatigue, deflection tolerances, wearout limits, pressure drops, and
leakage rates. Often, damage or failure in passive devices can be determined by visual inspection
and other nondestructive means.

10.2.3 INFORMATION ACQUISITION

In addition to information concerning service functions, as discussed in the previous section, and
dynamic characteristics determined from a resonance search, as will be discussed later in this
chapter, there are other characteristics of the test object that need to be studied in the development
of a vibration testing program. In particular, there are characteristics that cannot be described in
exact quantitative terms. In determining the value of equipment, for example, the monetary value
(or cost) might be relatively easy to estimate, whereas it may be very difficult to assign a dollar
value to its significance under service conditions. One reason for this could be that the particular
piece of equipment alone might not determine the proper operation of a complex system. Interaction
of a particular unit with other subsystems in a complex operation would determine the importance
attached to it and, hence, its value. In this sense, the true value of a test object is a relatively
complex consideration. The service function of the test object is also an important consideration
in determining its value. The value of a test object is important in planning a test program because
the cost of a test program and the effort expended therein are governed mainly by this factor.
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Many features of a test object that are significant in planning a test program can be deduced
from the manufacturer’s data for the particular object. The following information is representative:

1. Drawings (schematic or to scale when appropriate) of principal components and the
whole assembly, with the manufacturer’s name, identification numbers, and dimensions
clearly indicated

2. Materials used, design strengths, fatigue life, etc. of various components, and factors
determining the structural integrity of the unit

3. Component weight and total weight of the unit
4. Design ratings, capacities, and tolerances for in-service operation of each crucial component
5. Description of intended functions of each component and of the entire unit, clearly

indicating the parameters that determine functional operability of the unit
6. Interface details (intercomponent as well as for the entire assembly), including in-service

mounting configurations and mounting details
7. Details of the probable operating site or operating environment (particularly with respect

to the excitation events if product qualification is intended)
8. Details of any previous testing or analysis performed on that unit or a similar one.

Scale drawings and component-weight information describe the size and geometry of the test object.
This information is useful in determining the following:

1. The locations of sensors (accelerometers, strain gages, strobocopes, and the like) for
monitoring dynamic response of the test object during tests

2. The necessary ratings for vibration test (shaker) apparatus (power, force, stroke, band-
width, etc.)

3. The degree of dynamic interaction between the test object and the test apparatus
4. The level of coupling between various degrees of freedom and modal interactions in the

test object
5. The assembly level of the test object (e.g., whether it can be treated as a single component,

as a subsystem consisting of several components, or as an independent, stand-alone
system).

In general, as the size and the assembly level increase, the tests becomes increasingly complex and
difficult to perform. To test heavy, complex test objects, we would need a large test apparatus with
high power ratings and the capability of multiple excitation locations. In this case, the number of
operability parameters that are monitored and the number of observation (sensor) locations will
also increase.

Interface Details

The dynamics of a piece of equipment depend on the way the equipment is attached to its support
structure. In addition to the mounting details, equipment dynamic response is also affected by other
interfacing linkages, such as wires, cables, conduits, pipes, and auxiliary instrumentation. In vibra-
tion testing of equipment, such interface characteristics should be simulated appropriately. Dynam-
ics of the test fixture and the details of the test object–fixture interface are very important consid-
erations that affect the overall dynamics of the test object. If interface characteristics are not properly
represented during testing, a non-uniform test could result, in which case some parts of the test
object would be overtested and other parts undertested. This situation can bring about failures that
are not representative of the failures that could take place in actual service. In effect, the testing
could become meaningless if interface details are not simulated properly.
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The test fixture is a structure attached to the shaker table and used to mount the test object (see
Figure 10.13). Test fixture dynamics can significantly modify the shaker-table motion before
reaching the test object. Such modifications include filtering of the shaker motion and introduction
of auxiliary (cross-axis) motions. In the test setup shown in Figure 10.13, for example, the direct
motion will be modified to some extent by fixture dynamics. In addition, some transverse and
rotational motion components will be transmitted to the test object by the test fixture because of
its overhang. 

FIGURE 10.13 Influence of test fixture on the test excitation signal.

FIGURE 10.14 A simplified model to study the effect of interface dynamics: (a) with interface dynamics,
and (b) without interface dynamics.
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To minimize interface dynamic effects in vibration testing situations, an attempt should be
made to (1) make the test fixture as light and as rigid as is feasible; (2) simulate in-service mounting
conditions at the test object–fixture interface; and (3) simulate other interface linkages, such as
cables, conduits, and instrumentation, to represent in-service conditions. Very often, the design of
a proper test fixture can be a costly and time-consuming process. A tradeoff is possible by locating
the control sensors (accelerometers) at the mounting locations of the test object and, then, using
the error between the actual and the desired excitations through feedback to control the mounting-
location excitations during testing.

Effect of Neglecting Interface Dynamics

Consider a simplified model in order to study some important effects of neglecting interface
dynamics. In the model shown in Figure 10.14, the equipment and the mounting interface are
modeled separately as single-degree-of-freedom systems. Capital letters are used to denote the
equipment parameters (mass M, stiffness K, and damping coefficient C). When mounting interface
dynamics are included, the model appears as is in Figure 10.14(a). When the mounting interface
dynamics are neglected, one obtains the single-degree-of-freedom model shown in Figure 10.14(b).
Note that, in the latter case, the shaker motion u(t) is directly applied to the equipment mounts;
whereas, in the former case, it is applied through the interface. If the equipment response in the
two cases is denoted by y and , respectively, it can be shown by considering the system-frequency

transfer functions Y(ω)/U(ω) and (ω)/U(ω) that

(10.70)

with s = jω. The following nondimensional parameters are defined:

(10.71)

(10.72)
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(10.75)

Then, equation (10.70) can be written

(10.76)

in which ζ and Z denote the damping ratios of the interface and the equipment, respectively.
The ratio (ω)/Y(ω) is representative of the equipment-response amplification when interface

dynamic effects are neglected (removed) for a harmonic excitation.
Figure 10.15 shows eight curves, corresponding to equation (10.76), for the parameter com-

binations given in Table 10.2. Interpretation of the results becomes easier when peak values of
the response ratios are compared for various parameter combinations. Sample results are given
Table 10.2.

Effects of Damping

By comparing cases 1, 2, 3, and 4 in Table 10.2 with cases 5, 6, 7 and 8, respectively, one sees
that increasing the interface damping has reduced the peak response (a favorable effect), irrespective
of the values of the interface mass and natural frequency (α and β values).

Effects of Inertia

By comparing cases 2, 3, 6, and 7 with cases 4, 1, 8, and 5, respectively, one sees that the interface
inertia has the effect of decreasing dynamic interaction by making the response of the sytem with
an interface closer to that of the system without an interface, irrespective of the interface damping
and natural frequency.

Effect of Natural Frequency

By comparing cases 2, 4, 6, and 8 with cases 3, 1, 7, and 5, respectively, one sees that increasing
the interface natural frequency has a favorable effect in decreasing dynamic interactions, irrespective
of the interface damping and inertia. 

TABLE 10.2
Response Amplification Caused by Neglecting Interface Dynamics

Case
(Curve No.)

Parameter Combination Peak Value of
Response Ratioζ α β Z

1 0.1 2.0 2.0 0.1 1.11
2 0.1 0.5 0.5 0.1 38.80
3 0.1 0.5 2.0 0.1 2.77
4 0.1 2.0 0.5 0.1 10.80
5 0.2 2.0 2.0 0.2 0.89
6 0.2 0.5 0.5 0.2 18.40
7 0.2 0.5 2.0 0.2 1.71
8 0.2 2.0 0.5 0.2 5.98
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Effect of Excitation Frequency 

All the response plots (see Figure 10.15) diverge to ∞ as ω increases. This indicates that, at very
high excitation frequencies, dynamic testing results could become meaningless because of the
interactions with interface dynamics.

It can be concluded that, to reduce dynamic interactions caused by a mechanical interface, one
should (1) increase interface damping as much as is feasible; (2) increase interface mass as much as
is feasible; (3) increase interface natural frequency as much as is feasible; and (4) avoid testing at
relatively high frequencies of excitation. It should be noted that, in the foregoing analysis and
discussion, the mechanical interface was considered to include test fixtures and the shaker table as well.

FIGURE 10.15 Response amplification when interface dynamic interactions are neglected.
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Other Effects of Interface

The type of vibration test used sometimes depends on the mechanical interface characteristics. An
example is the testing of line-mounted equipment. Single-frequency testing is preferred for such
equipment so as to add a certain degree of conservatism, because, as a result of interface resonances,
line-mounted equipment could be subjected to higher levels of narrow-band excitation through the
support structure.

In vibration testing of multicomponent equipment cabinets, it is customary to test the empty
cabinet first, with the components replaced by dummy weights, and then to test the individual
components separately, using different test excitations depending on the component locations and
their mounting characteristics. Mechanical interface details of individual components are important
in such situations. As a result, interface information is an important constituent of the pretest
information that is collected for a test object.

Most of the interface data, particularly information related to size and geometry (e.g., mass,
dimensions, configurations, and locations), can be gathered simply by observing the test object and
using scale drawings supplied by the manufacturer. Size and number of anchor bolts used or weld
thickness, for example, can be obtained in this manner. When analysis is also used to augment testing,
however, it is often necessary to know the loads transmitted (forces, moments, etc.), relative displace-
ments, and stiffness values at the mechanical interface under in-service conditions. These must be
determined by tests, by analysis (static or dynamic) of a suitable model, or from manufacturer’s data.

10.2.4 TEST-PROGRAM PLANNING

The test program to which a test object is subjected depends on several factors, including:

1. The objectives and specific requirements of the test
2. In-service conditions, including equipment-mounting features, vibration environment,

and specifications of the test environment
3. The nature of the test object, including complexity, assembly level, and functional-

operability parameters to be monitored
4. Test-laboratory capabilities, available testing apparatus, past experience, conventions,

and established practices of testing.

Some of these factors are based on solid technical reasons, whereas others depend on economics,
convenience, and personal likes and dislikes.

Initially, it is not necessary to develop a detailed test procedure; this is required only at the
stage of actual testing. In the initial stage, it is only necessary to select the appropriate test method,
based on factors such as those listed at the beginning of this section. Before conducting the tests,
however, a test procedure should be prepared in sufficient detail. In essence, this is a pretest
requirement.

Objectives and specific requirements of a test depend on such considerations as whether the
test is conducted at the design stage, the quality-control stage, or the utilization stage. The objective
of a particular test could be to verify the outcome of a previously conducted test. In that case, it
is necessary to assess the adequacy of one or a series of tests conducted at an earlier time (e.g.,
when the specifications and government regulations were less stringent). Often, this can be done
by analysis alone. Some testing might be necessary at times, but it usually is not necessary to repeat
the entire test program. If the previous tests were conducted for the frequency range 1 Hz to 25 Hz,
for example, and the present specifications require a wider range of 1 Hz to 35 Hz, it might be
adequate merely to demonstrate (by analysis or testing) that there are no significant resonances in
the test object in the 25- to 35-Hz range.
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If it is necessary to qualify the test object for several different dynamic environments, a generic
test that represents (conservatively, but without the risk of overtesting) all these environments can
be used. For this purpose, special test-excitation inputs must be generated, taking into account the
variability of the excitation characteristics under the given set of environments. Alternatively, several
tests might be conducted if the dynamic environments for which the test object is to be qualified
are significantly different. Operating-basis earthquake (OBE) tests and safe-shutdown earthquake
(SSE) tests in seismic qualification of nuclear power plant equipment, for example, represent two
significantly different test conditions. Consequently, they cannot be represented by a single test.
When qualifying an equipment piece for several geographic regions or locations, however, one
might be able to combine all OBE tests into a single test and all SSE tests into another single test.

Another important consideration in planning a test program is the required accuracy for the
test, including the accuracy for the excitation inputs, response and operability measurements, and
analysis. This is related to the “value” of the test object and the objectives of the test.

When it is required to evaluate or qualify a group of equipment by testing a sample, it is first
necessary to establish that the selected sample unit is truly representative of the entire group. When
the items in the batch are not identical in all respects, some conservatism can be added to the tests
to minimize the possibility of incorrect qualification decision. It might be necessary to test more
than one sample unit in such situations.

When planning a test procedure, one should clearly identify the standards, government regu-
lations, and specifications that are applicable to a particular test. The pertinent sections of the
applicable documents should be noted, and proper justification should be given if the tests deviate
from regulatory agency requirements.

Excitation input that is employed in a vibration test depends on the in-service vibration
environment of the test object. The number of tests needed will also depend on this to some extent.
Test orientation depends mainly on the mounting features and the mechanical interface details of
the test object under in-service conditions. Mounting features might govern the nature of the test
excitations used for a particular test.

Two distinct mounting types can be identified for most equipment: (1) Line-mounted equipment
and (2) floor-mounted equipment. Line-mounted equipment is equipment that is mounted upright
or hanging from pipelines, cables, or similar line structures that are not rigid. Generally, devices
such as valves, nozzles, valve actuators, and transducers are considered line-mounted equipment.
Any equipment that is not line-mounted is considered floor-mounted. The supporting structure is
considered relatively rigid in this case. Examples of such mounting structures are floors, walls, and
rigid frames. Typical examples of floor-mounted equipment include motors, compressors, and
cabinets of relays and switchgear.

Wide-band floor disturbances are filtered by line structures. Consequently, the environmental
disturbances to which line-mounted equipment is subjected will generally be narrow-band distur-
bances. Accordingly, vibration testing of line-mounted equipment is best performed using narrow-
band random test excitations or single-frequency deterministic test excitations. Relatively higher
test intensities might be necessary for line-mounted equipment because any low-frequency reso-
nances that might be present in the mounting structure (which is relatively flexible in this case)
could amplify the excitations before reaching the equipment.

Floor-mounted equipment often requires relatively wide-band random test excitations. As an
example, consider a pressure transducer mounted on (1) a rigid wall, (2) a rigid I-section frame,
(3) a pressurized gasline, or (4) a cabinet. In cases (1) and (2), wide-band random excitations with
response spectra approximately equal to the floor-response spectra could be employed for vibration
testing of the pressure transducer. For cases (3) and (4), however, flexibility of the support structure
should be taken into consideration in developing the required response spectra (RRS) specifications
for vibration testing. In case (3), a single-frequency deterministic test, such as a sine-beat test or
a sine-dwell test, can be employed, giving sufficient attention to testing at the equipment-resonant
frequencies. In case (4), single-frequency tests can also be employed if the cabinet is considerably
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flexible and not rigidly attached to a rigid structure (a floor or a wall). Alternatively, a wide-band
test on the cabinet itself, with the pressure transducer mounted on it, can be used.

Size, complexity, assembly level, and related features of a test object can significantly compli-
cate and extend the test procedure. In such cases, testing the entire assembly might not be practical
and testing of individual components or subassemblies might not be adequate because, in the in-
service dynamic environment, the motion of a particular component could be significantly affected
by the dynamics of other components in the assembly, the mounting structure, and other interface
subsystems.

Functional operability parameters to be monitored during testing should be predetermined.
They depend on the purpose of the test, the nature of the test object, and the availability and
characteristics of the sensors that are required to monitor these parameters. Malfunction or failure
criteria should be related in some way to the monitored operability parameters; that is, each
operability parameter should be associated with one or several components in the test object that
are crucial to its operation.

The decision of whether to perform an active test (e.g., whether a valve should be cycled during
the test) and determination of the actuation time requirements (e.g., the number of times the valve
is cycled and at what instants during the test) should be made at this stage. The loading conditions
for the test (i.e., in-service loading simulation) should also be defined.

An important nontechnical factor that determines the nature of a vibration test is the availability
of hardware (test apparatus) in the test laboratory. This is especially true when nonconventional
vibration tests are required. Some specifications require three-degree-of-freedom test inputs, for
example, but most test laboratories have only one-degree-of-freedom or two-degree-of-freedom
test machines. When two-degree-of-freedom or one-degree-of-freedom tests are used in place of
three-degree-of-freedom tests, it is first required to determine what additional orientations of the
test object should be tested in order to add the required conservatism. Also, it should be verified
by analysis or testing that the modified series of tests does not cause significant undertesting or
overtesting of certain parts of the test object. Otherwise, some other form of justification should
be provided for replacing the test.

Test plans prepared in the pretest stage should include an adequate description of the following
important items:

1. Test purpose
2. Test-object details
3. Test environment, specifications, and standards
4. Functional operability parameters and failure or malfunction criteria
5. Pretest inspection
6. Aging requirements
7. Test outline
8. Instrumentation requirements
9. Data-processing requirements

10. Methods of evaluation of the test results.

Testing of Cabinet-Mounted Equipment

In vibration testing of cabinet- or panel-mounted equipment, the following is standard procedure.

Step 1: Test the cabinet or panel with equipment replaced by a dummy weight.
Step 2: Obtain the cabinet response at equipment-mounting locations and, based on these

observations, develop the required vibration environment for testing (the RRS) the
equipment.

Step 3: Test the equipment separately, using the excitations developed in step 2.
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This procedure may not be satisfactory if there is a considerable degree of dynamic interaction
between the equipment and the mounting cabinet. This could be illustrated using a simplified model
to represent cabinet-mounted equipment. The cabinet and the equipment are represented separately
by single-degree-of-freedom systems, as shown in Figure 10.16. Cabinet parameters are represented
by capital letters and equipment parameters by lower-case letters. The cabinet response when the
equipment is replaced by a dummy weight of equal mass, is denoted by (t). The test excitation
applied to the cabinet base is denoted by u(t). It can be shown that the frequency-response ratio in
the two cases is given by 

(10.77)

with s = jω. Using the nondimensional parameters defined by equations (10.71) through (10.75),
one obtains

(10.78)

in which ζ denotes the equipment damping ratio and Z denotes the cabinet damping ratio.
The ratio (ω)/Y(ω) represents the amplification in the cabinet response when the equipment

is replaced by a dummy weight for a harmonic excitation. Figure 10.17 shows eight curves obtained
for the ζ, α, β, and Z combinations, as given in Table 10.2. Notice that the most suitable response
condition is obtained in curve 6, where the response of the actual system is the closest to the system
with dummy weight. It can be concluded that a dummy test procedure for cabinet-mounted
equipment is satisfactory when the equipment inertia and natural frequency are small in comparison
to the values for the cabinet. Also, increasing the damping level has a favorable effect on test results.

FIGURE 10.16 A simplified model for (a) an equipment cabinet test system, and (b) a dummy-weight
cabinet test system.
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10.2.5 PRETEST INSPECTION

Pretest inspection of a test object is important for at least two major reasons. First, if the equipment
supplied for testing is different from the piece of equipment or the group of equipment that is
required to be qualified, then these differences must be carefully observed and recorded in sufficient
detail. In particular, deviations in the model number, mounting features, and other mechanical
interface details, geometry, size, and significant dynamic features should be recorded. Second,
before testing, the test object should be inspected for any damage, deficiencies, or malfunctions.
Structural integrity usually can be determined by visual inspection alone. To determine malfunctions

FIGURE 10.17 Cabinet response amplification in dummy-weight tests.
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by operability monitoring, however, the test object must be actuated and the operating environment
should be simulated.

If the equipment supplied for testing is not identical to that required to be tested, adequate
justification must be provided for the differences to guarantee that the objectives of the test can be
achieved by testing the equipment that is supplied. Otherwise, the test should be abandoned pending
the arrival of the correct test object.

If any structural failure or operation malfunction is noted during pretest inspection, no corrective
action should be taken by the test laboratory personnel unless those actions are notified to and fully
authorized by the supplier of the test object. Otherwise, the test should be abandoned and the
customer should be promptly notified of the anomalies.

It is important that the functional operability pretest inspection be performed in the same
functional environment as that experienced under normal in-service conditions. When monitoring
functional operability parameters, it is necessary to guarantee that the monitoring instrumentation
meets the required accuracy. Instrumentation data should be provided to the customer for review.
This ensures that the observed malfunction is real and not a false alarm caused by a malfunction
in the monitoring instrumentation and channels. The monitoring-equipment accuracy should be
higher than that required for the operability parameter itself.

Justification is needed if some components in the test object were not actuated and monitored
during pretest inspection. Also, the warm-up period and the total time of actuation should be
justified. In particular, if the proper operation of the equipment is governed by the continuity of a
parameter (such as an electrical signal), the time duration of monitoring should be noted. If, however,
the proper function is governed by a change of state (such as opening or closing a valve, switch,
or relay), the number of cycles of actuation is important.

10.3 TESTING PROCEDURES

Vibration testing may involve pretesting prior to the main tests. The objectives of pretesting can
be (1) exploratory, in order to obtain dynamic information such as natural frequencies, mode
shapes, and damping about the test object; or (2) preconditioning, in order to age or pass the
infant mortality stage (see Appendix E) so that the main test would be realistic and correspond
to normal operating conditions. This section describes both pretesting and main testing in an
integrated manner.

10.3.1 RESONANCE SEARCH

Vibration test programs usually require a resonance-search pretest. This is typically carried out at
a lower excitation intensity than that used for the main test in order to minimize the damage potential
(overtesting). The primary objective of a resonance-search test is to determine resonant frequencies
of the test object. More elaborate tests are employed, however, to determine mode shapes and
modal damping ratios (see Chapter 11) in addition to resonant frequencies. Such frequency-response
data on the test object are useful in planning and conducting the main test.

Frequency-response data are usually available as a set of complex frequency-response func-
tions. There are tests that determine the frequency-response functions of a test object, and simpler
tests are available to determine resonant frequencies alone. Some of the uses of frequency-response
data include:

1. A knowledge of the resonant frequencies of the test object is important in conducting
the main test. More attention should be given, for example, when performing a main test
in the vicinity of resonant frequencies. In the resonance neighborhoods, lower sweep
rates should be used if a sine sweep is used in the main test, and larger dwell periods
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should be used if a sine dwell is part of the main test. Frequency-response data give the
most desirable frequency range for conducting main tests.

2. From frequency-response data, it is possible to determine the most desirable test exci-
tation directions and the corresponding input intensities.

3. The degree of nonlinearity and the time variance in system parameters of the test object
can be estimated by conducting more than one frequency-response test at different
excitation levels. If the deviation in the frequency-response functions thus obtained is
sufficiently small, then a linear, time-invariant dynamic model is considered satisfactory
in the analysis of the test object.

4. If no resonances are observed in the test object over the frequency range of interest, as
determined by the operating environment for a given application, then a static analysis
will be adequate to qualify the test object.

5. A set of frequency-response functions can be considered a dynamic model for the test
specimen (see Chapter 11). This model can be employed in further studies of the test
specimen by analytical means.

10.3.2 METHODS OF DETERMINING FREQUENCY-RESPONSE FUNCTIONS

Three methods of determining frequency-response functions are outlined here.

Fourier Transform Method

If y(t) is the response at location B of the test object, when a transient input u(t) is applied at
location A, then the frequency-response function H(f) between locations A and B is given by the
ratio of the Fourier integral transforms of the output y(t) and the input u(t):

(10.79)

In particular, if u(t) is a unit impulse, then U(f) = 1, and hence, H(f) = Y(f).

Spectral Density Method

If the input excitation is a random signal, the frequency-response function between the input point
and the output point can be determined as the ratio of the cross-spectral density Φuy(f) of the input
u(t) and the output y(t), and the power spectral density Φuu(f) of the input:

(10.80)

Harmonic Excitation Method

If the input signal is sinusoidal (harmonic) with frequency f, the output will also be sinusoidal with
frequency f at steady state, but with a change in the phase angle. Then, the frequency-response
function is obtained as a magnitude function and a phase-angle function. The magnitude �H(f)� =
steady-state amplification of the output signal, and the phase angle ∠ H(f) = steady-state phase lead
of the output signal. This pair of curves — the magnitude plot and the phase angle plot — is called
a Bode plot or Bode diagram.

H f
Y f

U f
( ) = ( )

( )

H f
f

f
uy

uu

( ) =
( )
( )

Φ
Φ

©2000 CRC Press

http://www.semeng.ir


www.20file.org
10.3.3 RESONANCE-SEARCH TEST METHODS

There are three basic types of resonance-search test methods. They are categorized according to the
nature of the excitation used in the test: specifically, (1) impulsive excitation, (2) initial displacement,
or (3) forced vibration. The first two categories are free-vibration tests; that is, response measurements
are made on free decay of the test object following a momentary (initial) excitation. Typical tests
belonging to each of these categories are described in the following subsections.

Hammer (Bump) Test and Drop Test

In resonance search by the impulsive-excitation method, an impulsive force (a large magnitude of
force acting over a very short duration) is applied at a suitable location of the test object, and the
resulting transient response of the object is observed, preferably at several locations. This is
equivalent to applying an initial velocity to the test object and letting it vibrate freely. By Fourier
analysis of the response data, it is possible to obtain the resonant frequencies, corresponding mode
shapes, and modal damping. 

Hammer tests and drop tests belong to the impulsive-excitation category. A schematic diagram
of the hammer test arrangement is shown in Figure 10.18. A schematic diagram of the drop test
arrangement is shown in Figure 10.19. The angle of swing of the hammer or the drop height of
the object determines the intensity of the applied impulse. Alternatively, the impulse can be
generated by explosive cartridges (for relatively large structures) located suitably in the test object,
or by firing small projectiles at the test object. The response is monitored at several locations of
the test object. The response at the point of application of the impulse is always monitored. Response
analysis can be done in real-time, or the response can be recorded for subsequent analysis. A major
concern in these tests is making sure that all significant resonances in the required frequency range
are excited under the given excitation. Several tests for different configurations of the test object
might be necessary to achieve this.

FIGURE 10.18 Schematic diagram of a hammer test arrangement.
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Proper selection of the response-monitoring locations is also important in obtaining meaningful
test results. By changing the impulsive-force intensity and repeating the test, any significant
nonlinear (or time-variant-parameter) behavior of the test object can be determined. A common
practice is to monitor the impulsive force signal during impact. In this way, poor impacts (e.g.,
low-intensity impacts, multiple impacts caused by bouncing back of the hammer) can be detected,
and the corresponding test results can be rejected. The impacting surface as well, may be instru-
mented to measure the test signal.

Pluck Test

Resonance search on a test object can be performed by applying a displacement initial condition
(rather than a velocity initial condition, as in impulsive tests) to a suitably mounted test object and
measuring its subsequent response at various locations as it executes free vibrations. By properly
selecting the locations and the magnitudes of the initial displacements, it is sometimes possible to
excite various modes of vibration, provided that these modes are reasonably uncoupled.

The pluck test is the most common test that uses the initial-displacement method. A schematic
diagram of the test setup is shown in Figure 10.20. The test object is initially deflected by pulling
it with a cable. When the cable is suddenly released, the test object will undergo free vibrations
about its static-equilibrium position. The response is observed for several locations of the test object
and analyzed to obtain the required parameters.

In Figures 10.18 through 10.20, the frequency-response function between two locations (A and
B, for example) is obtained by analyzing the corresponding two signals, using either the Fourier
transform method [equation (10.79)] or the spectral-density method, [equation (10.80)]. These
frequency-domain techniques will automatically provide the natural-frequency and modal-damping
information. Alternatively, modal damping can be determined using time-domain methods — for
example, by evaluating the logarithmic decrement of the response after passing it through a filter
having a center frequency adjusted to the predetermined natural frequency of the test object for
that mode. Accuracy of the estimated modal-damping value can be improved significantly by such
filtering methods.

FIGURE 10.19 Schematic diagram of a drop test arrangement.
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Often, the most difficult task in a natural-frequency search is the excitation of a single mode.
If two natural frequencies are close together, modal interactions of the two will be present inevitably
in the response measurements. Because of the closeness of the frequencies, the response curve will
display a beat phenomenon, as shown in Figure 10.21, which makes it difficult to determine damping
by the logarithmic-decrement method. It is difficult to distinguish between decay caused by damping
and rapid drop-off caused by beating. In this case, one of the frequency components must be filtered
out, using a very narrow bandpass filter, before computing damping.

The required testing time for the impulsive-excitation and initial-displacement test methods
is relatively small in comparison to forced-vibration test durations. For this reason, these former
(free-vibration) tests are often preferred in preliminary (exploratory) testing before conducting the
main tests. Directions and locations of impact or initial displacements should be properly chosen,
however, so that as many significant modes as possible are excited in the desired frequency range.
If the impact is applied at a node point (see Chapters 5 and 6) of a particular mode, for example,
it will be virtually impossible to detect that mode from the response data. Sometimes, a large
number of monitoring locations will be necessary to accurately determine mode shapes of the test
object. This depends primarily on the size and dynamic complexity of the test object and the
particular mode number. This, in turn, necessitates the use of more sensors (accelerometers and
the like) and recorder channels. If a sufficient number of monitoring channels is not available, the
test will have to be repeated each time, using a different set of monitoring locations. Under such
circumstances, it is advisable to keep one channel (monitoring location) unchanged and to use it
as the reference channel. In this manner, any deviations in the test-excitation input can be detected
for different tests and properly adjusted or taken into account in subsequent analysis (e.g., by
normalizing the response data).

Shaker Tests

A convenient method of resonance search is through the use of continuous excitation. A forced
excitation, which typically is a sinusoidal signal or a random signal, is applied to the test object
by means of a shaker, and the response is continuously monitored. The test setup is shown
schematically in Figure 10.22. For sinusoidal excitations, signal amplification and phase shift over
a range of excitations will determine the frequency-response function. For random excitations,
equation (10.80) can be used to determine the frequency-response function.

FIGURE 10.20 Diagram of a pluck test arrangement.
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One or several portable exciters (shakers), or a large shaker table similar to that used in the
main vibration test, can be employed to excite the test object. The number and the orientations of
the shakers, and the mounting configurations and monitoring locations of the test object, should
be chosen depending on the size and complexity of the test object, the required accuracy of the
resonance-search results, and the modes of vibration that need to be excited. The shaker test method
has the advantage of being able to control the nature of the test-excitation input (e.g., frequency
content, intensity, sweep rate), although it might be more complex and costly. The results from
shaker tests are relatively more accurate and more complete.

Test objects usually display a change in resonant frequencies when the shaker amplitude is
increased. This is caused by inherent nonlinearities in complex structural systems. Usually, the
change appears as a spring-softening effect, which results in lower resonant frequencies at higher
shaker amplitudes. If this nonlinear effect is significant, resonant frequencies for the main test level
cannot be accurately determined using a resonance search at low intensity. Some form of extrap-

FIGURE 10.21 Beat phenomenon resulting from interaction of closely spaced modes.

FIGURE 10.22 Schematic diagram of a shaker test for resonance search.
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olation of the test results, or analysis using an appropriate dynamic model, may be necessary in
this case to determine the resonant-frequency information that is required to perform the main test.

10.3.4 MECHANICAL AGING

Before performing a qualification test, it is usually necessary to age the test object to put it into a
condition that represents the state following its operation for a predetermined period under in-
service conditions. In this manner, it is possible to reduce the probability of burn-in failure (infant
mortality) during testing. Some tests, such as design development tests and quality assurance tests,
do not require prior aging.

The nature and degree of aging that is required depends on such factors as the intended function
of the test object, the operating environment, and the purpose of the dynamic test. In qualification
tests, it might be necessary to demonstrate that the test object still has adequate capability to withstand
an extreme dynamic environment toward the end of its design life (i.e., the period in which it can
be safely operated without requiring corrective action). In such situations, it is required to age the
test object to an extreme deterioration state, representing the end of the design life of the test object.

Test objects are aged by subjecting them to various environmental conditions (e.g., high
temperatures, radiation, humidity, vibrations). Usually, it is not practical to age the equipment at
the same rate as it would age under a normal service environment. Consequently, accelerated aging
procedures are used to reduce the test duration and cost. Furthermore, the operating environment
may not be fully known at the testing stage. This makes the simulation of the true operating
environment virtually impossible. Usually, accelerated aging is done in sequence by subjecting the
test equipment to the various environmental conditions one at a time. Under in-service conditions,
however, these effects occur simultaneously, with the possibility of interactions between different
effects. Therefore, when sequential aging is employed, some conservatism should be added. The
type of aging used should be consistent with the environmental conditions and operating procedures
of the specific application of the test object. Often, these conditions are not known in advance. In
that case, standardized aging procedures should be used.

The main concern in this subsection is mechanical aging, although other environmental con-
ditions can significantly affect the dynamic characteristics of a test object. The two primary
mechanisms of mechanical aging are material fatigue and mechanical wearout. The former mech-
anism plays a primary role if in-service operation consists of cyclic loading over relatively long
periods of time. Wearout, however, is a long-term effect caused by any type of relative motion
between components of the test object. It is very difficult to analyze component wearout, even if
only the mechanical aspects are considered (i.e., neglecting the effects of corrosion, radiation, and
the like). Some mechanical wearout processes resemble fatigue aging, however, depending simul-
taneously on the number of cycles of load applications and the intensity of the applied load.
Consequently, only the cumulative damage phenomenon, which is related to material fatigue, is
usually treated in the literature.

Although mechanical aging is often considered a pretest procedure (e.g., a resonance-search
test), it actually is part of the main test. If, in a dynamic qualification program, the test object
malfunctions during mechanical aging, this amounts to failure in the qualification test. Furthermore,
exploratory tests, such as resonance-search tests, are sometimes conducted at higher intensities than
what is required to introduce mechanical aging into the test object. Some analytical concepts that
are useful are given in Appendix E.

Equivalence for Mechanical Aging

It is usually not practical to age a test object under its normal operating environment, primarily
because of time limitations and the difficulty in simulating the actual operating environment.
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Therefore, it may be necessary to subject the test object to an accelerated aging process in a dynamic
environment of higher intensity than that present under normal operating conditions.

Two aging processes are said to be equivalent if the final aged condition attained by the two
processes is identical. This is virtually impossible to realize in practice, particularly when the object
and the environment are complex and the interactions of many dynamic causes have to be consid-
ered. In this case, a single most severe aging effect is used as the standard for comparison to
establish the equivalence. The equivalence should be analyzed in terms of both the intensity and
the nature of the dynamic excitations used for aging.

Excitation-Intensity Equivalence

A simplified relationship between the dynamic-excitation intensity U and the duration of aging T
that is required to attain a certain level of aging, keeping the other environmental factors constant,
can be given as

(10.81)

in which c is a proportionality constant and r is an exponent. These parameters depend on such
factors as the nature and sequence of loading and characteristics of the test object. It follows from
equation (10.81) that, by increasing the excitation intensity by a factor n, the aging duration can
be reduced by a factor of nr. In practice, however, the intensity–time relationship is much more
complex, and caution should be exercised when using equation (10.81). This is particularly so if
the aging is caused by multiple dynamic factors of varying characteristics that are acting simulta-
neously. Furthermore, there is usually an acceptable upper limit to n. It is unacceptable, for example,
to use a value that would produce local yielding or any such irreversible damage to the equipment
that is not present under normal operating conditions.

It is not necessary to monitor functional operability during mechanical aging. Furthermore, it
might happen that, during accelerated aging, the equipment malfunctions but, when the excitation is
removed, it operates properly. This type of reversible malfunction is acceptable in accelerated aging.

The time to attain a given level of aging is usually related to the stress level at a critical location
of the test object. Because this critical stress can be related, in turn, to the excitation intensity, the
relationship given by equation (10.81) is justified.

Dynamic-Excitation Equivalence

Equivalence of two dynamic excitations that have different time histories can be expressed by using
methods employed to represent dynamic excitations (e.g., response spectrum, Fourier spectrum,
and power spectral density). If the maximum (peak) excitation is the factor that primarily determines
aging in a given system under a particular dynamic environment, then response-spectrum repre-
sentation is well suited for establishing the equivalence of two excitations. If, however, the frequency
characteristics of the excitation are the major determining factor for mechanical aging, then Fourier
spectrum representation is favored for establishing the equivalence of two deterministic excitations,
and power spectral density representation is suited for random excitations. When two excitation
environments are represented by their respective psd functions Φ1(ω) and Φ2(ω), and if the signif-
icant frequency range for the two excitations is (ω1, ω2), then the degree of aging under the two
excitations can be compared using the ratio

T
c

U r=
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(10.82)

where A denotes a measure of aging. If the two excitations have different frequency ranges of
interest, a range consisting of both ranges can be selected for the integrations in equation (10.82).

Cumulative Damage Theory

Miner’s linear cumulative damage theory can be used to estimate the combined level of aging
resulting from a set of excitation conditions. Consider m excitations acting separately on a system.
Suppose that each of these excitations produces a unit level of aging in N1, N2, …, Nm loading
cycles, respectively, when acting separately. If, in a given dynamic environment, n1, n2, …, nm

loading cycles, respectively, from the m excitations have actually been applied to the system
(possibly all excitations were acting simultaneously), the level of aging attained can be given by

(10.83)

The unit level of aging is achieved, theoretically, when A = 1. Equation (10.83) corresponds to
Miner’s linear cumulative damage theory.

Because of various interactive effects produced by different loading conditions, when some or
all of the m excitations act simultaneously, it is usually not necessary to have A = 1 under the
combined excitation to attain the unit level of aging. Furthermore, it is extremely difficult to estimate
Ni, i = 1, …, m. For such reasons, the practical value of A in equation (10.83) to attain a unit level
of aging can vary widely (typically, from 0.3 to 3.0).

10.3.5 TRS GENERATION

A vibration test can be specified by a required response spectrum (RRS). Then, the response
spectrum of the actual excitation signal — that is, the test response spectrum (TRS) — should
envelop the RRS during testing. It is customary for the purchaser (owner of the test object) to
provide the test laboratory with a multichannel FM tape or some form of stored signal containing
the components of the excitation signal that should be used in the test. Alternatively, the purchaser
can request that the test laboratory generate the required signal components under the purchaser’s
supervision. If sine beats are combined to generate the test excitations, each FM tape should be
supplemented by tabulated data, giving the channel number, the beat frequencies (hertz) in that
channel, and the amplitude (g) of each sine-beat component. The RRS curve that is enveloped by
the particular input should also be specified.

The excitation signal applied to the shaker-table actuator is generated by combining the contents
of each channel in an appropriate ratio so that the response spectrum of the excitation that is actually
felt at the mounting locations of the test object (the TRS) satisfactorily matches the RRS supplied
to the test laboratory. Matching is performed by passing the contents of each channel through a
variable-gain amplifier and mixing the resulting components according to variable proportions.
This is known as equalization. These operations are performed by a waveform mixer. The adjustment
of the amplifier gains is done by trial and error. The phase of the individual signal components
should be maintained during the mixing process.

A

A

d

d

1

2

1

2

1

2

1

2
=

( )

( )

∫

∫

Φ

Φ

ω ω

ω ω

ω

ω

ω

ω

A
n

N
i

ii

m

=
=
∑

1

©2000 CRC Press

http://www.semeng.ir


www.20file.org
Each channel can contain a single-frequency component (such as sine beat) or a multifrequency
signal of fixed duration (e.g., 20 s). If the RRS is complex, each channel may have to carry a
multifrequency signal to achieve close matching of the TRS with the RRS. Also, a large number
of channels might be necessary. The test excitation signal is generated continuously by repetitively
playing the FM tape loop of fixed duration.

In product qualification, response spectra are usually specified in units of acceleration due to
gravity (g). Consequently, the contents in each channel of the test-input FM tape represent accel-
eration motions. For this reason, the signal from the waveform mixer must be integrated twice
before using it to drive the shaker table. The actuator of the exciter is driven by this displacement
signal, and its control may be done by feedback from a displacement sensor. But, if the control
sensor is an accelerometer, as typical, double intergration of that signal will be needed as well. In
typical test facilities, a double integration unit is built into the shaker system. It is then possible to
use any type of signal (displacement, velocity, acceleration) as the excitation input and to decide
simultaneously on the number of integrations necessary. If the input signal is a velocity time history,
for example, one integration should be chosen, etc.

The tape speed should be specified (e.g., 7.5 in·s–1, 15 in·s–1) when signals recorded on tapes
are provided to generate input signals for vibration testing. This is important, so that the frequency
content of the signal is not distorted. Speeding up of the tape has the effect of scaling up each
frequency component in the signal. It also has the effect, however, of filtering out very high
frequency components in the signal. If the excitation signals are available as digital records, then
a digital-to-analog converter (DAC) is needed to convert them into analog signals.

10.3.6 INSTRUMENT CALIBRATION

The test procedure normally stipulates accuracy requirements and tolerances for various critical
instruments that are used in testing. It is desirable that these instruments have current calibration
records that are agreeable to an accepted standard. Instrument manufacturers usually provide these
calibration records. Accelerometers, for example, may have calibration records for several tem-
peratures (e.g., –65°F, 75°F, 350°F) and for a range of frequencies (e.g., 1 Hz to 1000 Hz).
Calibration records for accelerometers are given in both voltage sensitivity (mV·g–1) and charge
sensitivity (pC·g–1), along with percentage deviation values. These tolerances and peak deviations
for various test instruments should be provided for the purchaser’s review before they are used
in the test apparatus.

From the tolerance data for each sensor or transducer, it is possible to estimate peak error
percentages in various monitoring channels in the test setup, particularly in the channels used for
functional operability monitoring. The accuracy associated with each channel should be adequate
to measure expected deviations in the monitored operability parameter.

It is good practice to calibrate sensor or transducer units, such as accelerometers and associated
auxiliary devices, daily or after each test. These calibration data should be recorded using various
scales when a particular instrument has multiple scales, and for various instrument settings.

10.3.7 TEST-OBJECT MOUNTING

When a test object is being mounted on a shaker table, care should be taken to simulate all critical
interface features under normal installed conditions for the intended operation. This should be done
as accurately as is feasible. Critical interface requirements are those that could significantly affect
the dynamics of the test object. If the mounting conditions in the test setup significantly deviate
from those under installed conditions for normal operation, adequate justification should be provided
to show that the test is conservative (i.e., the motions produced under the test mounting conditions
are more severe). In particular, local mounting that would not be present under normal installation
conditions should be avoided in the test setup.
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In simulating in-service interface features, the following details should be considered as a
minimum:

1. Test orientation of the test object should be its in-service orientation, particularly with
respect to the direction of gravity (vertical), available degrees of freedom, and mounting
locations.

2. Mounting details at the interface of the test object and the mounting fixture should
represent in-service conditions with respect to the number, size, and strength of welds,
bolts and nuts, and other hold-down hardware.

3. Additional interface linkages, such as wires, cables, conduits, pipes, instrumentation
(dials, meters, gauges, sensors, transducers, etc.), and their supporting brackets should
be simulated at least in terms of mass and stiffness, and preferably in terms of size as well.

4. Any dynamic effects of adjacent equipment cabinets, and supporting structures under
in-service conditions, should be simulated or taken into account in analysis.

5. Operating loads, such as those resulting from fluid flow, pressure forces, and thermal effects,
should be simulated if they appear to significantly affect test object dynamics. In particular,
the nozzle loads (fluid) should be simulated in magnitude, direction, and location.

The required mechanical interface details of the test object are obtained by the test laboratory at
the information-acquisition stage. Any critical interface details that are simulated during testing
should be included in the test report.

At least three control accelerometers should be attached to the shaker table in the neighborhood
of the mounting location of the test object. One control accelerometer measures the excitation-
acceleration component applied to the test object in the vertical direction. The other two measure
the excitation-acceleration components in two horizontal directions at right angles. The two hori-
zontal (control) directions are chosen to be along the two major freedom-of-motion directions (or
dynamic principal axes) of the test object. Engineering judgment should be used in deciding these
principal directions of high response in the test object. Often, geometric principal axes are used.
The control accelerometer signals are passed through a response-spectrum analyzer (or a suitably
programmed digital computer) to compute the TRS in the vertical and two horizontal directions
that are perpendicular.

Vibration tests generally require monitoring of the dynamic response at several critical locations
of the test object. In addition, the tests may call for determining the mode shapes and natural
frequencies of the test object. For this purpose, a sufficient number of accelerometers should be
attached to various key locations in the test object. The test procedure (document) should carry a
sketch of the test object, indicating the accelerometer locations. Also, the type of accelerometers
employed, their magnitudes and directions of sensitivity, and the tolerances should be included in
the final test report.

10.3.8 TEST-INPUT CONSIDERATIONS

In vibration testing, a significant effort goes into the development of test excitation inputs. Not
only the nature, but also the number and directions of the excitations can have a significant effect
on the outcomes of a test. This is so because the excitation characteristics determine the nature of
a test.

Test Nomenclature

A common practice in vibration testing is to apply synthesized vibration excitations to a test object
that is appropriately mounted on a shaker table. Customarily, only translatory excitations, as
generated by linear actuators, are employed. Nevertheless, the resulting motion of the test object
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usually consists of rotational components as well. A typical vibration environment might consist
of three-dimensional motions, however. The specification of a three-dimensional test environment
is a complex task, even after omitting the rotational motions at the mounting locations of the test
object. Furthermore, practical vibration environments are random and their representation with
sufficient accuracy can be done only in a probabilistic sense.

Very often, the type of testing used is governed mainly by the capabilities of the test laboratory
to which the contract is granted. Test laboratories conduct tests using their previous experience and
engineering judgment. Making extensive improvements to existing tests can be very costly and
time-consuming, and this is not warranted from the point of view of the customer or the vendor.
Regulatory agencies usually allow simpler tests if sufficient justification can be provided that
indicates that a particular test is conservative with respect to regulatory requirements.

Complexity of a shaker table apparatus is governed primarily by the number of actuators
employed and the number of independent directions of simultaneous excitation it is capable of
producing. Terminology for various tests is based on the number of independent directions of
excitation used in the test. It is advantageous to standardize this terminology to be able to compare
different test procedures. Unfortunately, the terminology used to denote different types of tests
usually depends on the particular test laboratory and the specific application. Attempts to standardize
various test methods have become tedious, partly because of the lack of a universal nomenclature
for dynamic testing. A justifiable grouping of test configurations is presented in this section.
Figure 10.23 illustrates the various test types.

In test nomenclature, the degree of freedom refers to the number of directions of independent
motions that can be generated simultaneously by means of independent actuators in the shaker
table. According to this concept, three basic types of tests can be identified:

1. Single-degree-of-freedom (or rectilinear) testing, in which the shaker table employs only
one exciter (actuator), producing test-table motions along the axis of that actuator. The
actuator may not necessarily be in the vertical direction.

2. Two-degree-of-freedom testing, in which two independent actuators oriented at right
angles to each other are employed. The most common configuration consists of a vertical
actuator and a horizontal actuator. Theoretically, the motion of each actuator can be
specified independently.

3. Three-degree-of-freedom testing, in which three actuators, oriented at mutually right
angles, are employed. A desirable configuration consists of a vertical actuator and two
horizontal actuators. At least theoretically, the motion of each actuator can be specified
independently.

It is common practice to specify the directions of excitation with respect to the geometric
principal axes of the test object. This practice is somewhat questionable, primarily because it does
not take into account the flexibility and inertia distributions of the object. Flexibility and inertia
elements in the test object have a significant influence on the level of dynamic coupling present in
a given pair of directions. In this respect, it is more appropriate to consider dynamic principal axes
rather than geometric principal axes of the test object. One useful definition is in terms of eigen-
vectors of an appropriate three-dimensional frequency-response function matrix that takes into
account the response at every critical location in the test object. The only difficulty in this method
is that prior frequency-response testing or analysis is needed to determine the test input direction.
For practical purposes, the vertical axis (direction of gravity) is taken as one principal axis.

The single-degree-of-freedom (rectilinear) test configuration has three subdivisions, based on
the orientation of the vibration exciter (actuator) with respect to the principal axes of the test object.
It is assumed that one principal axis of the test object is the vertical axis and that the three principal
axes are mutually perpendicular. The three subdivisions are as follows:
©2000 CRC Press

http://www.semeng.ir


www.20file.org
1. Rectilinear uniaxial testing, in which the single actuator is oriented along one of the
principal axes of the test object.

2. Rectilinear biaxial testing, in which the single actuator is oriented on the principal plane
containing the vertical and one of the two horizontal principal axes. The actuator is
inclined to both principal axes in the principal plane.

3. Rectilinear triaxial testing, in which the single actuator is inclined to all three orthogonal
principal axes of the test object.

The two-degree-of-freedom test configuration has two subdivisions, based on the orientation
of the two actuators with respect to the principal axes of the test object, as follows:

1. Two-degree-of-freedom biaxial testing, in which one actuator is directed along the
vertical principal axis and the other along one of the two horizontal principal axes of
the test object.

2. Two-degree-of-freedom triaxial testing, in which one actuator is positioned along the
vertical principal axis and the other actuator is horizontal but inclined to both horizontal
principal axes of the test object.

Testing with Uncorrelated Excitations

Simultaneous excitations in three orthogonal directions often produce responses (accelerations,
stresses, etc.) that are very different from what is obtained by vectorially summing the responses
to separate excitations acting one at a time. This is primarily because of the nonlinear, time-variant
nature of test specimens and test apparatus, their dynamic coupling, and the randomness of exci-

FIGURE 10.23 Vibration test configurations.
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tation signals. If these effects are significant, it is theoretically not possible to replace a three-
degree-of-freedom test, for example, by a sequence of three single-degree-of-freedom tests. In
practice, however, some conservatism can be incorporated into two-degree-of-freedom and single-
degree-of-freedom tests to account for these effects. These tests with added conservatism can be
employed when three-degree-of-freedom testing is not feasible. It should be clear by now that
rectilinear triaxial testing is generally not equivalent to three-degree-freedom testing, because the
former merely applies an identical excitation in all three orthogonal directions, with scaling factors
(direction cosines). One obvious drawback of rectilinear triaxial testing is that the input excitation
in a direction at right angles to the actuator is theoretically 0, and the excitation is maximum along
the actuator. In three-degree-of-freedom testing using uncorrelated random excitations, however,
no single direction has a zero excitation at all times, and also the probability is 0 that the maximum
excitation occurs along a fixed direction at all times.

Three-degree-of-freedom testing is mentioned infrequently in the literature on vibration testing.
A major reason for this lack of three-degree-of-freedom testing might be the practical difficulty in
building test tables that can generate truly uncorrelated input motions in three orthogonal directions.
The actuator interactions caused by dynamic coupling through the test table and mechanical
constraints at the table supports are primarily responsible for this. Another difficulty arises because
it is virtually impossible to synthesize perfectly uncorrelated random signal to drive the actuators.
Two-degree-of-freedom testing is more common. In this case, the test must be repeated for a
different orientation of the test object (e.g., with a 90° rotation about the vertical axis) unless some
form of dynamic-axial symmetry is present in the test object.

Test programs frequently specify uncorrelated excitations in two-degree-of-freedom testing for
the two actuators. This requirement lacks solid justification because two uncorrelated excitations
applied at right angles do not necessarily produce uncorrelated components in a different pair of
orthogonal directions, unless the mean square values of the two excitations are equal. To demonstrate
this, consider the two uncorrelated excitations u and v shown Figure 10.24. The components u′ and
v′ in a different pair of orthogonal directions, obtained by rotating the original coordinates through
and angle θ in the counterclockwise direction, is given by:

(10.84)

(10.85)

FIGURE 10.24 Effect of coordinate transformation on correlation.

′ = +u u vcos sinθ θ

′ = − +v u vsin cosθ θ
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Without loss of generality, one can assume that u and v have zero means. Then, u′ and v′ will also
have zero means. Furthermore, since u and v are uncorrelated, one has

(10.86)

From equations (10.84) and (10.85), one obtains

which, when expanded and substituted with equation (10.86), becomes

(10.87)

Since θ is any general angle, the excitation components u′ and v′ become uncorrelated if and only if

(10.88)

This is the required result. Nevertheless, a considerable effort of digital Fourier analysis is expended
by vibration testing laboratories to determine the degree of correlation in test signals employed in
two-degree-of-freedom testing.

Symmetrical Rectilinear Testing

Single-degree-of-freedom (rectilinear) testing, which is performed with the test excitation applied
along the line of symmetry with respect to an orthogonal system of three principal axes of the test
object mainframe, is termed symmetrical rectilinear testing. In product qualification literature, this
test is often referred to as the 45° test. The direction cosines of the input orientation are

 for this test configuration. The single-actuator input intensity is amplified by

a factor of  in order to obtain the required excitation intensity in the three principal directions.
Note that symmetrical rectilinear testing falls into the category of rectilinear triaxial testing, as
defined earlier. This is one of the widely used testing configurations in seismic qualification, for
example.

Geometry versus Dynamics

In vibration testing, the emphasis is on the dynamic behavior rather than the geometry of the
equipment. For a simple three-dimensional body that has homogeneous and isotropic characteristics,
it is not difficult to correlate the geometry to its dynamics. A symmetrical rectilinear test makes
sense for such systems. The equipment one comes across is often much more complex, however.
Furthermore, one’s interest is not merely in determining the dynamics of the mainframe of the
equipment; one is more interested in the dynamic reliability of various critical components located
within the mainframe. Unless one has some previous knowledge of the dynamic characteristics in
various directions of the system components, it is not possible to draw a direct correlation between
the geometry and the dynamics of the tested equipment.

E uv E u E v( ) = ( ) ( ) = 0

E u v E u v u v′ ′( ) = +( ) − +( )[ ]cos sin sin cosθ θ θ θ

E u v E v E u′ ′( ) = ( ) − ( )[ ]sin cosθ θ 2 2

E v E u2 2( ) = ( )

1 3 , , 1 3  1 3( )
3
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Some Limitations

In a typical symmetrical rectilinear test, one is dealing with black-box equipment whose dynamics
are completely unknown. The excitation is applied along the line of symmetry of the principal axes
of the mainframe. A single test of this type does not guarantee excitation of all critical components
located inside the equipment. Figure 10.25 illustrates this further. Consider the plane perpendicular
to the direction of excitation. The dynamic effect caused by the excitation is minimal along any
line on this plane. (Any dynamic effect on this plane is caused by dynamic coupling among different
body axes.) Accordingly, if there is a component (or several components) inside the equipment
whose direction of sensitivity lies on this perpendicular plane, the single excitation might not
adequately excite that component. Since one is dealing with a black box, one does not know the
equipment dynamics beforehand. Hence, there is no way of identifying the existence of such
unexcited components. When the equipment is put into service, a vibration of sufficient intensity
can easily overstress this component along its direction of sensitivity and may bring about com-
ponent failure. It is apparent that at least three tests, performed in three orthogonal directions, are
necessary to guarantee excitation of all components, regardless of their direction of sensitivity.

A second example is given in Figure 10.26. Consider a dual-arm component with one arm
sensitive in the O-O direction and the second arm sensitive in the P-P direction. If component
failure occurs when the two arms are in contact, a single excitation in either the O-O direction or
the P-P direction will not bring about component failure. If the component is located inside a black
box, such that either the O-O direction or the P-P direction is very close to the line of symmetry
of the principal axes of the mainframe, a single symmetrical rectilinear test will not result in system
malfunction. This may very well be true, because one does not have a knowledge of component
dynamics in such cases. Again, under service conditions, a vibration of sufficient intensity can
produce an excitation along the A-A direction, subsequently causing system malfunction.

A further consideration in using rectilinear testing is dynamic coupling between the directions
of excitation. In the presence of dynamic coupling, the sum of individual responses of the test object
resulting from four symmetrical rectilinear tests is not equal to the response obtained when the
excitations are applied simultaneously in the four directions. Some conservatism should be introduced
when employing rectilinear testing for objects having a high level of dynamic coupling between the
test directions. If the test-object dynamics are restrained to only one direction under normal operating

FIGURE 10.25 Illustration of the limitation of a single rectilinear test.
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conditions, however, then rectilinear testing becomes more realistic and can be used without applying
any conservatism.

Testing of Black Boxes

When the equipment dynamics are unknown, a single rectilinear test does not guarantee proper
testing of the equipment. To ensure excitation of every component within the test object that has
directional sensitivities, three tests should be carried out along three independent directions. The
first test is carried out with a single horizontal excitation, for example. The second test is performed
with the equipment rotated through 90° about its vertical axis, and using the same horizontal
excitation. The last test is performed with a vertical excitation.

Alternatively, if symmetrical rectilinear tests are preferred, four such tests should be performed
for four equipment orientations (e.g., an original test, a 90° rotation, a 180° rotation, and a 270°
rotation about the vertical axis). These tests also ensure excitation of all components that have
directional sensitivities. This procedure might not be very efficient, however. The shortcoming of
this series of four tests is that some of the components would be overtested. It is clear from
Figure 10.27, for example, that the vertical direction is excited by all four tests. The method has
the advantage, however, of simplicity of performance.

Phasing of Excitations  

The main purpose of rotating the test orientation in rectilinear testing is to ensure that all components
within the equipment are excited. Phasing of different excitations also plays an important role,
however, when several excitations are used simultaneously. To explore this concept further, it should
be noted that a random input applied in the A-B direction or in the B-A direction has the same
frequency and amplitude (spectral) characteristics. This is clear because the psd of u = psd of (–u)
and the autocorrelation of u = autocorrelation of (–u). Hence, it is seen that, if the test is performed

FIGURE 10.26 Illustrative example of the limitation of several rectilinear tests.
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along the A-B direction, it is of no use to repeat the test in the B-A direction. It should be understood,
however, that the situation is different when several excitations are applied simultaneously.

The simultaneous action of u and v is not the same as the simultaneous action of –u and v
(see Figure 10.28). The simultaneous action of u and v is the same, however, as the simultaneous
action of –u and –v. Obviously, this type of situation does not arise when there are no simultaneous
excitations, as in rectilinear testing.

Testing a Gray or White Box

When some information regarding the true dynamics of the test object is available, it is possible
to reduce the number of necessary tests. In particular, if the equipment dynamics are completely
known, then a single test will be adequate. The best direction for excitation of the system in Figure
10.26, for example, is A-A. (Note that A-A can be lined up in any arbitrary direction inside the
equipment housing. In such a situation, a knowledge of the equipment dynamics is crucial.) This
also indicates that it is very important to accumulate and use any past experience and data on the
dynamic behavior of similar equipment. Any test that does not use some previously known infor-
mation regarding the equipment is a blind test, and it cannot be optimal. As more and more
information becomes available, better and better tests can be conducted.

Overtesting in Multitest Sequences

It is well known that increasing the test duration increases aging of the test object, because of
prolonged stressing and load cycling of various components. This is the case when a test is repeated
one or more times at the same intensity as that prescribed for a single test. The symmetrical
rectilinear test requires four separate tests at the same excitation intensity as that prescribed for a
single test. As a result, the equipment becomes subjected to overtesting, at least in certain directions.
The degree of overtesting is small if the tests are performed in only three orthogonal directions.
In any event, a certain amount of dynamic coupling is present in the test-object structure; and, to
minimize overtesting in these sequential tests, a smaller intensity than that prescribed for a single
test should be employed. The value of the intensity-reduction factor clearly depends on the char-
acteristics of the test object, the degree of reliability expected, and the intensity value itself. More
research is necessary to develop expressions for intensity-reduction factors for various test objects.

FIGURE 10.27 Directions of excitation in a sequence of four rectilinear tests.
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10.4 PRODUCT QUALIFICATION TESTING

Vibration testing is used in product qualification. Here, the objective is to test the adequacy of a
product of good quality for a specific use, in a typical operating environment. Clearly, the nature
of the testing and the test requirements, including test specifications, will depend on the type of
application and the class of product. This section considers just two types of product qualification:
distribution qualification and seismic qualification. Procedures of vibration testing for other types
of qualification will be similar.

10.4.1 DISTRIBUTION QUALIFICATION

The term “distribution qualification” is used to denote the process by which the ability of a product
to withstand a clearly defined distribution environment is established. Dynamic effects on the
product due to handling loads, characteristics of packaging, and excitations under various modes
of transportation (truck, rail, air, and ocean) must be properly represented in the test specifications
used for distribution qualification. If a product fails a qualification test, corrective measures and
subsequent requalification are necessary prior to commercial distribution. Product redesign, pack-
aging redesign, and modification of existing shipping procedures might be required to meet qual-
ification requirements.

Often, the necessary improvements can be determined by analyzing data from prior tests. Proper
distribution qualification will result in improved product quality (and associated reliability and
performance), reduced wastage and inventory problems, cost-effective packaging, reduced shipping
and handling costs, and reduced warranty and service costs.

Random testing can more accurately represent vibrations in distribution environments; some
inherent characteristics make it superior to sine testing. A sine test is a single-frequency test; thus,
only one frequency is applied to a test object at a given instant. As a result, failure modes caused
by the simultaneous excitation of two or more modes of vibration cannot be realized by sine testing,
at least under steady excitations. In random testing, on the other hand, many frequencies are
simultaneously applied to the test object. Conditions are thus more conducive to multiple-mode
excitations and associated complex failures. A comparison of testing with four types of excitation
signals is given in Table 10.3.

FIGURE 10.28 Significance of excitation phasing in two-degree-of-freedom testing.
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Drive-Signal Generation

The first step in drive-signal synthesis is to assign independent and identically distributed, random
phase angles to the digitized spectral magnitude (spectral lines) of the drive spectrum. The number
of lines chosen is consistent with the fast Fourier transform algorithm that is employed (see
Appendix D) and the desired numerical accuracy. The inverse Fourier transform is obtained from
the resulting discrete, complex Fourier spectrum. In general, the signal so obtained would be neither
ergodic nor Gaussian.

Stationarity can be attained by randomly shifting the signal with respect to time and summing
the results. The resulting signal would be weakly ergodic as well. Ergodicity is improved by
increasing the duration of the signal. To obtain Gaussianity, sufficiently large numbers of time-shifted
signals must be summed as dictated by the central limit theorem. Furthermore, because the magnitude
of a Gaussian signal almost always remains within three times its standard deviation (99.7% of the
time), Gaussianity can be imposed simply by windowing the time-shifted signal. The amplitude of
the window function is governed by the required standard deviation of the drive signal. Unwanted
frequency components introduced as a result of sharp end transitions in each time-shifted signal
component can be suppressed by properly shaping the window. This process introduces a certain
degree of non-stationarity into the synthesized signal, particularly if the windowed signal segments
are joined end to end to generate the drive signal. A satisfactory way to overcome this problem is
to introduce a high overlap from one segment to the next. Because the processing time increases in
proportion to the degree of overlap, however, a compromise must be reached.

In summary, for a given drive spectral magnitude, the drive signal can be synthesized as follows:

1. Assign independent, identically distributed, random phase values to the drive-spectral
lines.

2. Perform an inverse Fourier transform of the resulting spectrum using FFT.
3. Generate a set of independent and identically distributed time-shift values.
4. Perform a time-shift of the signal obtained in step 2 using the values from step 3.
5. Window the time-shifted signals.
6. Join the windowed signals with a fixed overlap.

The resulting digital drive signal is converted into an analog signal using a digital-to-analog
converter (DAC) and passed through a low-pass filter to remove any unwanted frequency components
(see Chapter 9) before it is used to drive the shaker. This procedure is illustrated in Figure 10.29.

TABLE 10.3
Comparison of Test Types

Sine Testing Random Testing
Narrow-Band

Random Sweep

Sweep on
Wide-Band

Random

Simultaneous multimodal (multiresonant) 
excitation possible?

No Yes No Yes

Test duration Long Short Long Moderate
Power requirements Low High Low High
Represents a random environment? No Yes Yes Yes
Test system cost Low High Moderate to high High
Overtesting possibility High Low High Low
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Distribution Spectra

The distribution environment to which a product is subjected depends on several factors. In
particular, one must consider (1) the nature and severity of handling prior to and during shipment,
(2) the mode of transportation (truck, rail, air cargo, ship), (3) geographic factors, (4) environmental
conditions, (5) characteristics of the protective packaging used, and (6) dynamic characteristics of
the product itself. These factors are complex and essentially random in nature. Laboratory simulation
of such an environment is difficult even if a combination of several types of tests — for example,
vibration, shock, drop, and thermal cycling — is employed. A primary difficulty arises from the
requirement that test specifications should be simple yet accurately represent the true environment.
The test must also be repeatable to allow standardization of the test procedure and to facilitate
evaluation and comparison of test data. Finally, testing must be cost-effective.

During transportation, a package is subjected to multi-degree-of-freedom excitations that can
include rectilinear and rotational excitations at more than one location simultaneously. However, test
machines are predominantly single-axis devices that generate excitations along a single direction. Thus,
any attempt to duplicate a realistic distribution environment in a laboratory setting can prove futile.

An alternative might be to use trial shipments. But, because of the random nature of the
distribution environment, many such trials would be necessary before the data would be meaningful.
Trial shipments are thus not appealing from a cost-benefit point of view and also because test control
and data acquisition would be difficult. Data from trial shipments are extremely useful, however, in
developing qualification-test specifications and in improving existing laboratory test procedures.

A more realistic goal of testing would be to duplicate possible failure and malfunction modes
without actually reproducing the distribution environment. This, in fact, is the underlying principle
of testing for distribution qualification. For example, sine tests can reproduce some types of failure
caused during shipment although the test signal does not resemble the actual dynamic environment;
however, a random test is generally superior.

FIGURE 10.29 The synthesis of a random drive signal.
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Test specifications are expressed in terms of distribution spectra in distribution qualification
where random testing is used. Specification development begins with a sufficient collection of
realistic data. Sources of data include field measurements during trial shipments, computer simu-
lations (e.g., Monte Carlo simulations), and previous specifications for similar products and envi-
ronments. For best results, all possible modes of transportation, excitation levels, and handling
severities should be included. The data, expressed as psd, must be reduced to a common scale —
particularly with respect to the duration of excitation — for comparison purposes. Scaling can be
accomplished by applying a similarity law based on a realistic damage criterion. For example, a
similarity law might relate the excitation duration and the psd level such that the value of a suitable
damage function would remain constant. Time-dependent damage criteria are developed primarily
on the basis of fatigue-strength characteristics of a test product.

Due to nonlinearities of the environment, spectral characteristics (frequency content) will
change with the excitation level. If such changes are significant, one should properly account for
them. The influence of environmental conditions (temperature and humidity, for example) must be
considered as well. The psd curves conditioned in this manner are plotted on a log–log plane to
establish an envelope curve. This curve represents the worst composite environment that is typically
expected. The envelope is then fitted with a small number of straight-line segments.

At this point, the psd curve should be scaled so that the root-mean-square (rms) value is equal
to that before the straight-line segments were fitted. The resulting psd curve can be used as the test
specification. Test duration can be established from the time-scaling criterion. If the corresponding
test duration is excessively long, thereby making the test impractical, the test duration should be
shortened by increasing the test level according to a realistic similarity criterion.

Product overtesting can be significant only if one reference spectrum is used to represent all
possible distribution environments. Shipping procedures should thus be classified into several
groups, depending on the dynamic characteristics of the shipping environment; and a representative
reference spectrum should be determined for each group. In addition, reference spectra should be
modified and classified according to product type if a range of products with significantly diverse
dynamic characteristics is being qualified. At the testing stage, a reference spectrum must be chosen
from a spectral data base, depending on the product type and the applicable shipping procedures.
Alternatively, a general composite spectrum can be developed by assigning weights to a chosen
set of reference spectra and computing the weighted sum.

Vibration levels in land vehicles and aircraft can range up to several kilohertz (kHz). Ships are
known to have lower levels of excitation. In general, the energy content in vibrations experienced
during the distribution of computer products is known to remain within 20 Hz. Consequently, the
test specification spectra (reference spectra) used in distribution qualification are usually limited
to this bandwidth. The typical specification curve shown in Figure 10.30 can be specified simply
from the coordinates of the break points of the psd curve. Intermediate values can be determined
easily because the break points are joined by straight-line segments on a log–log plane.

The area beneath the psd curve gives the required mean-square value of the test excitation. The
square root of this value is the rms value; it is specified along with the psd curve, although it can
be determined directly from the psd curve. An acceptable tolerance band for the control spectrum
— usually ±3 dB — is also specified. Test duration should be supplied with the test specification.

Test Procedures

Dynamic test systems, with digital control, are easy to operate. In menu-driven systems, a routine
or mode is activated by picking the appropriate item from a menu that is displayed on the CRT
screen. The system then asks for necessary data, and then necessary parameter values are entered
into the system. Lower and upper rms limits for test abort levels, breakpoint coordinates of the
reference spectrum, and test duration are typically supplied by the user. The tolerance bands for
©2000 CRC Press

http://www.semeng.ir


www.20file.org
test spectrum equalization and the accelerometer sensitivities are also entered. More than one test
setup can be stored; then a number is assigned to denote each test.

Preprogrammed tests can be modified, in the edit mode, using a similar procedure. Any
preprogrammed test can be carried out simply by entering the corresponding test number. Computed
results such as psd curves and transmissibility functions are stored for future evaluation. If desired,
these results can be displayed, printed, or plotted with proper annotations and scales while the test
is in progress.

The main steps of a typical test procedure are as follows:

1. Carefully examine the test object and record obvious structural defects, abnormalities,
and hazardous or unsafe conditions.

2. Perform a functional test (i.e., operate the product) according to specifications, and record
any malfunctions and safety hazards.
Note: The test can be abandoned at this stage if the test object is defective.

3. Mount the test object rigidly on the shaker table, so that the loading points and the excitation
axis are consistent with standard shipping conditions and the specified test sequence.

4. Perform an exploratory test at half the specified rms level (one fourth the specified psd
level); monitor the response of the test package at critical locations including the control
sensor location.

5. Perform the full-level test for the specified duration. Record the response data.
6. Change the orientation in accordance with the specified test sequence and repeat the test.

FIGURE 10.30 A reference spectrum for the distribution qualification of personal computers.
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7. After the test sequence is completed, carefully inspect the test object and record any
structural defects, abnormalities, and safety hazards.

8. Conduct a functional test and record any malfunctions, failures, and safety problems.

An exploratory test at a fraction of the specified test level is required for new product models
that are being tested for the first time, or for older models that have been subjected to major design
modifications. Three mutually perpendicular axes are usually tested, including the primary orien-
tation (vertical axis) that is used for shipping. If product handling during distribution is automated,
it is adequate to test only the primary axis.

When multiple tests are required, the test sequence is normally stipulated. If the test sequence
is not specified, it can be chosen such that the least-severe orientation (orientation least likely to
fail) is tested first. The test is repeated successively for the remaining orientations, ending with the
most severe one. The rationale is that with this choice of test sequence, the aging of the most severe
direction will be maximized, thereby making the test more reliable.

The test report should contain the following:

1. Description of the test object: Serial number, size (dimensions and weight), product
function (e.g., system unit, hard drive, power supply, printer, keyboard, mouse, monitor,
and floppy disk drive of a personal computer), and packaging particulars. Descriptive
photos are useful.

2. Test plan: Usually standard and attached to the report as an appendix.
3. Test setup: Test orientations, sensor (accelerometer) locations, details of mounting fix-

tures, and a brief description of the test apparatus. Photos can be included.
4. Test procedure: A standard attachment that is usually given according to corporate

specifications.
5. Test results: Ambient conditions in the laboratory (e.g., temperature, humidity), pretest

observations (e.g., defects, abnormalities, malfunctions), test data (e.g., reference spec-
trum, equalized control spectrum, drive spectrum, response time histories and corre-
sponding spectra, transmissibility plots, coherence plots), and post-test observations.

6. Comments and recommendations: General comments regarding the test procedure and
test item and recommendations for improving the test, product, or packaging.

Names and titles of the personnel who conducted the test would be given in the test report, with
appropriate signatures, dates, and location of the test facility.

Tests for distribution qualification can be conducted on both packaged products and those
without any protective packaging, although it is the packaged product that is shipped. The reference
spectra used in the two cases are usually not the same, however. The spectrum used for testing a
product without protective packaging is generally less severe. Response spectra used for testing an
unpackaged product should reflect the excitations experienced by the product during packaging.

10.4.2 SEISMIC QUALIFICATION

It is often necessary to determine whether a given piece of equipment is capable of withstanding
a preestablished seismic environment in a specific application. This process is known as seismic
qualification. Electric utility companies, for example, should qualify their equipment for seismic
capability before installing it in earthquake-prone geographic localities. Also, safety-related equip-
ment in nuclear power plants requires seismic qualification. Regulatory agencies usually specify
the general procedures to follow in seismic qualification.

Seismic qualification by testing is appropriate for complex equipment, but, in such cases, the
equipment size is a limiting factor. For large systems that are relatively simple to model, qualification
by analysis is suitable. Often, however, both testing and analysis are needed in the qualification of
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a given piece of equipment. Seismic qualification of equipment by testing is accomplished by
applying a dynamic excitation, by means of a shaker, to the equipment (which is suitably mounted
on a test table), and then monitoring structural integrity and functional operability of the equipment.
Special attention should be given to the development of the dynamic-test environment, mounting
features, the operability variables that should be monitored, the method of monitoring functional
operability and structural integrity, and the acceptance criteria used to decide qualification.

In monitoring functional operability, the test facility would normally require auxiliary systems
to load (i.e., to apply loading conditions on) the test object or to simulate in-service operating
conditions. Such systems include actuators, dynamometers, electrical-load and control-signal cir-
cuitry, fluid flow and pressure loads, and thermal loads. In seismic qualification by analysis, a
suitable model is first developed for the equipment, and static or dynamic analysis (or computer
analysis) is performed under an analytically defined dynamic environment. The analytical dynamic
environment is developed on the basis of the specified dynamic environment for seismic qualifica-
tion. By analytically and/or computationally determining system response at various locations, and
by checking for such crucial parameters as relative deflections, stresses, and strains, qualification
can be established.

Stages of Seismic Qualification

Consider the construction of a nuclear power plant. In this context, the plant owner is the customer.
Actual construction of the plant is done by the plant builder, who is directly responsible to the
customer concerning all equipment purchased from the equipment supplier or vendor. The vendor
is often the equipment manufacturer as well. The equipment can be purchased by the customer and
handed over to the plant builder or directly purchased by the plant builder. Accordingly, the
purchaser can be the plant builder or the plant owner. A regulatory agency might stipulate seismic-
excitation capability requirements for the equipment used in the plant, or the regulatory agency
might specify the qualification requirements for various categories of equipment. The customer is
directly responsible to the regulatory agency for adherence to these stipulations. The vendor,
however, is responsible to the plant builder and the customer for the seismic capability of the
equipment. The vendor can perform seismic qualification on the equipment according to required
specifications. More often, however, the vendor hires the services of a test laboratory, which is the
contractor, for seismic qualification of equipment in the plant. The qualification procedure and the
report, which are usually developed by the test laboratory by adhering to the qualification require-
ments, can be reviewed by a reviewer, who is hired by the plant builder or the customer. A flowchart
for test-object movement and for associated information interactions between various groups in a
qualification program, is illustrated in Figure 10.31.

FIGURE 10.31 Test-object movement and information interactions in seismic qualification.
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A basic step in any qualification program is the preparation of a qualification procedure. This
is a document that describes in sufficient detail such particulars as the tests that will be conducted
on the test object, pretest procedures, the nature of test-input excitations and the method of
generating these signals, inspection and response-monitoring procedures during testing, definitions
of equipment malfunction, and qualification criteria. If analysis is also used in the qualification,
the analytical methods and computer programs that will be used should be described adequately
in the qualification procedure. The qualification procedure is prepared by the test laboratory
(contractor); equipment particulars are obtained from the vendor or the purchaser; and the test
environment for which the equipment will be qualified is usually supplied by the purchaser.

Before the qualification tests are conducted, the test procedure is submitted to the purchaser
for approval. The purchaser normally hires a reviewer to determine whether the qualification
procedure satisfies the requirements of both the regulatory agency and the purchaser. There can be
several stages of revision of the test procedure until it is finally accepted by the purchaser on the
recommendation of the reviewer.

The approved qualification procedure is sent to the test laboratory, and qualification is performed
according to it. The test laboratory prepares a qualification report, which also includes the details
of static or dynamic analysis when incorporated. The qualification report is sent to the purchaser
for evaluation. The purchaser might obtain the services of an authority to review the qualification
report. The report might have to be revised, and even analysis and tests might have to be repeated
before the final decision is made on the qualification of the equipment. Information flow in a typical
qualification program is shown in Figure 10.32.

10.4.3 TEST PRELIMINARIES

Seismic qualification tests are usually conducted by one of two methods, depending on whether
single-frequency or multifrequency excitation inputs are employed in the main tests. The two test
categories are (1) single-frequency tests and (2) multifrequency tests. The second test method is
more common in seismic qualification by testing, although the first method is used under some
conditions, depending on the nature of the test object and its mounting features (e.g., line-mounted
versus floor-mounted equipment). Typically, multifrequency excitations are preferred in qualification
tests, and single-frequency excitations are favored in design-development and quality-assurance tests.

FIGURE 10.32 Information flow in a seismic qualification program.
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In single-frequency testing, the amplitude of the excitation input is specified by a required input
motion (RIM) curve, similar to that shown in Figure 10.33. If single-frequency dwells (e.g., sine
dwell, sine beat) are employed, the excitation input is applied to the test object at a series of selected
frequency values in the frequency range of interest for that particular test environment. In such
cases, dwell times (and number of beats per cycle, when sine beats are employed) at each frequency
point should be specified.

If a single-frequency sweep (such as a sine sweep) is employed as the excitation signal, the
sweep rate should be specified. When the single-frequency test-excitation is specified in this manner,
the tests are conducted very much like multifrequency tests.

Multifrequency tests are normally conducted employing the response spectra method to represent
the test-input environment. Basically, the test object is excited using a signal whose response spectrum,
known as the test response spectrum (TRS), envelops a specified response spectrum, known as the
required response spectrum (RRS). Ideally, the TRS should equal the RRS, but it is practically
impossible to achieve this condition. Hence, multifrequency tests are conducted using a TRS that
envelops the RRS so that, in significant frequency ranges, the two response spectra are nearly equal
(see Figure 10.34). Excessive conservatism, however, which would result in overtesting, should be
avoided. It is usually acceptable to have TRS values below the RRS at a few frequency points.

The RRS is part of the data supplied to the test laboratory prior to the qualification tests being
conducted. Two types of RRS are provided, representing (1) the operating-basis earthquake (OBE)
and (2) the safe-shutdown earthquake (SSE). The response spectrum of the OBE represents the
most severe motions produced by an earthquake under which the equipment being tested would
remain functional without undue risk of malfunction or safety hazard. If the equipment is allowed
to operate at a disturbance level higher than the OBE level for a prolonged period, however, there
will be a significant risk of malfunction.

The response spectrum of the SSE represents the most severe motions produced by an earth-
quake that the equipment being tested could safely withstand while the entire nuclear power plant
is being shut down. Prolonged operation (i.e., more than the duration of one earthquake), however,
could result in equipment malfunction; in other words, equipment is designed to withstand only
one SSE in addition to several OBEs.

A typical seismic qualification test would first subject the equipment to several OBE-level
excitations, primarily for aging the equipment mechanically to its end-of-design-life condition, and
then would subject it to one SSE-level excitation. When providing RRS test specifications, it is
customary to supply only the SSE requirement. The OBE requirement is then taken as a fraction
(typically, 0.5 or 0.7) of the SSE requirement.

FIGURE 10.33 A typical required input motion (RIM) curve.
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Test response spectra corresponding to the excitation signals are generated by the test laboratory
during testing. The purchaser usually supplies the test laboratory with an FM tape containing
frequency components that should be combined in some ratio to generate the test-input signal.

Qualification tests are conducted according to the test procedure approved and accepted by the
purchaser. The main steps of seismic qualification testing are outlined in the following subsections.

Single-Frequency Testing

Seismic ground motions usually pass through various support structures before they are eventually
transmitted to equipment. In seismic qualification of that equipment by testing, one should in theory
apply to it the actual excitations felt by it — and not the seismic ground motions. In an ideal case,
the shaker-table motion should be equivalent to the seismic response of the supporting structure at
the point of attachment of the equipment.

The supporting structure would have a particular frequency-response function between the
ground location and the equipment-support location (see Figure 10.35). Consequently, it can be
considered a filter that modifies seismic ground motions before they reach the equipment mounts.
In particular, the components of the ground motion that have frequencies close to a resonant
frequency of the supporting structure will be felt by the equipment at a relatively higher intensity.
Furthermore, the ground motion components at very high frequencies will be almost entirely filtered
out by the structure. If the frequency response of the supporting structure is approximated by a
lightly damped simple oscillator, then the response felt by the equipment will be almost sinusoidal,
with a frequency equal to the resonant frequency of the structure.

When the supporting structure has a very sharp resonance in the significant frequency range
of the dynamic environment (e.g., 1 Hz to 35 Hz for seismic ground motions), it follows from the
previous discussion that it is desirable to use a short-duration single-frequency test in seismic
qualification of the equipment. Equipment that is supported on pipelines (valves, valve actuators,
gauges, etc.) falls into this category. Such equipment is termed line-mounted equipment.

The resonant frequency of the supporting structure is usually not known at the time of the
seismic qualification test. Consequently, single-frequency testing must be performed over the entire
frequency range of interest for that particular dynamic environment.

Another situation in which single-frequency testing is appropriate arises when the test object
(equipment) itself does not have more than one sharp resonance in the frequency range of interest.
In this case, the most prominent response of the test object occurs at its resonant frequency, even
when the dynamic environment is an arbitrary excitation. Consequently, a single-frequency exci-

FIGURE 10.34 The TRS enveloping the RRS in a multifrequency test.
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tation would yield conservative test results. Equipment that has more than one predominant reso-
nance can employ single-frequency testing, provided that each resonance corresponds to a dynamic
degree of freedom (e.g., one resonance along each dynamic principal axis) and that cross-coupling
between these degrees of freedom is negligible.

In summary, single-frequency testing can be used if one or more of the following conditions
are satisfied:

1. The supporting structure has one sharp resonance in the frequency range of interest (line-
mounted equipment is included).

2. The test object does not have more than one sharp resonance in the frequency range of
interest.

3. The test object has a resonance in each degree of freedom, but the degrees of freedom
are uncoupled (for which adequate verification should be provided in the test procedure).

4. The test object can be modeled as a simple dynamic system (such as a simple oscillator),
for which adequate justification or verification should be provided.

Usually, the required SSE excitation level for a single-frequency test over a frequency range is
specified by a curve such as the one shown in Figure 10.33. This curve is known as the required
input motion (RIM) magnitude curve. The OBE excitation level is usually taken as a fraction
(typically, 0.5 or 0.7) of the RIM values given for the SSE. For a sine-sweep test, the sweep rate
and the number of sweeps in the test should also be specified. Typically, the sweep rate for seismic
qualification tests is less than one octave per minute. One sweep, from the state of rest to the
maximum frequency in the range and back to the state of rest, is normally carried out in an SSE
test (e.g., 1 Hz to 35 Hz to 1 Hz). Several sweeps (typically five) are performed in an OBE test.

In an SSE sine-dwell test, the dwell time for each dwell frequency should be specified. The
dwell-frequency intervals should not be high (typically, a half octave or less). For an OBE test, the
dwell times are longer (typically five times longer) than those specified for an SSE test.

For an SSE test using sine beats, the minimum number of beats and the minimum duration of
excitation (with or without pauses) at each test frequency should be specified. In addition, the pause
time for each test frequency should be specified when sine beats with pauses are employed. For
an OBE test, the duration of excitation should be increased (as in a sine-dwell test).

The dwell time at each test frequency should be adequate to perform at least one functional-
operability test. Furthermore, a dwell should be carried out at each resonant frequency of the test

FIGURE 10.35 Schematic representation of the filtering of seismic ground motions by a supporting structure.
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object as well as at those frequencies that are specified. Total duration of an SSE test should be
representative of the duration of the strong-motion part of a standard safe-shutdown earthquake.

Sometimes, narrow-band random excitations may be used in situations where single-frequency
testing is recommended. Narrow-band random signals are those that have their power concentrated
over a narrow frequency band. Such a signal can be generated for test-excitation purposes by
passing a random signal through a narrow bandpass filter. By tuning the filter to different center
frequencies in narrow bands, the test-excitation frequency can be varied during testing. This center
frequency of the filter should be swept up and down over the desired frequency range at a reasonably
slow rate (e.g., 1.0 octave per minute) during the test. Thus, a multifrequency test with a sharp
frequency-response spectrum (RRS), as typified in Figure 10.36, is adequate in cases where single-
frequency testing is recommended. A requirement that must be satisfied by the test-excitation signal
in this case is that its amplitude should be equal to or greater than the zero-period acceleration of
the RRS for the test.

Multifrequency Testing

When equipment is mounted very close to the ground under its normal operating conditions, or if
its supporting structure and mounting can be considered rigid, then seismic ground motions will
not be filtered significantly before they reach the equipment mounts. In this case, the seismic
excitations felt by the equipment will retain broadband characteristics. Multifrequency testing is
recommended for seismic qualification of such equipment.

Whereas single-frequency tests are specified by means of an RIM curve along with the test
duration at each frequency (or sweep rates), multifrequency tests are specified by means of an RRS
curve. The test requirement in multifrequency testing is that the response spectrum of the test
excitation (the TRS), which is felt by the equipment mounts, should envelop the RRS. Note that
all frequency components of the test excitation are applied simultaneously to the test object, in
contrast to single-frequency testing, in which, at a given instant, only one significant frequency
component is applied.

When random excitations are employed in multifrequency testing, enveloping of the RRS by
the TRS can be achieved by passing the random signal produced by a signal generator through a
spectrum shaper. As the analyzing frequency bandwidth (e.g., one-third octave bands, one-sixth
octave bands) decreases, the flexibility of shaping the TRS improves. A real-time spectrum analyzer
(or a personal computer) can be used to compute and display the TRS curve corresponding to the

FIGURE 10.36 A typical RRS for a narrow-band excitation test.
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control accelerometer signal (see Figure 10.37). By monitoring the displayed TRS, it is possible
to adjust the gains of the spectrum-shaper filter so as to obtain the desired TRS that will envelop
the RRS.

Most test laboratories generate their multifrequency excitation signals by combining a series
of sine beats that have different peak amplitudes and frequencies. Using the same method, many
other signal types, such as decaying sinusoids, can be superimposed to generate the required
multifrequency excitation signal. A combination of signals of different types can also be employed
to produce a desired test input. A commonly used combination is a broadband random signal and
a series of sine beats. In this combination, the random signal is adjusted to have a response spectrum
that will envelop the broadband portion of the RRS without much conservatism. The narrow-band
peaks of the RRS that generally will not be enveloped by such a broad-band response spectrum
will be covered by a suitable combination of sine beats.

By employing such mixed composite signals, it is possible to envelop the entire RRS without
having to increase the amplitude of the test excitation to a value that is substantially higher than
the ZPA of the RRS. One important requirement in multifrequency testing is that the amplitudes
of the test excitation be equal to or greater than the ZPA of the RRS.

10.4.4 GENERATION OF RRS SPECIFICATIONS

Seismic qualification of an object is usually specified in terms of a required response spectrum
(RRS). The excitation input that is used in seismic-qualification analysis and testing should con-
servatively satisfy the RRS; that is, the response spectrum of the actual excitation input should
envelop the RRS (without excessive conservatism, of course).

For equipment that is intended to be installed in a building or on some other supporting structure,
the RRS generally cannot be obtained as the response spectrum of a modified seismic ground-
motion time history. The supporting structure usually introduces an amplification effect and a
filtering effect on seismic ground motions. This amplification factor alone can be as high as 3.
Some of the major factors that determine the RRS for a particular seismic qualification test are:

1. the nature of the building that will be qualified
2. the dynamic characteristics of the building or structure and the location (elevation and

the like) where the object is expected to be installed
3. the in-service mounting orientation and support characteristics of the object

FIGURE 10.37 Matching of the TRS with the RRS in multifrequency testing.
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4. the nature of the seismic ground motions in the geographic region where the object is
to be installed

5. the test severity and conservatism required by the purchaser or the regulatory agency.

The basic steps in developing the RRS for a specific seismic qualification application include:

1. the development of representative safe-shutdown earthquake (SSE) ground-motion time
histories for the building (or support structure) location

2. the development of a suitable building (or support structure) model
3. the response analysis of the building model, using the time histories obtained in step 1
4. the development of response spectra for various critical locations in the building (or

support structure), using the response time histories obtained in step 3
5. the normalization of the response spectra obtained in step 4 to unity ZPA (i.e., dividing

by their individual ZPA values)
6. the identification of the similarities in the set of normalized response spectra obtained

in step 5 and grouping them into a small number of groups
7. the representation of each similar group by a response spectrum consisting of straight-line

segments that envelop all members in the group, giving a normalized RRS for each group
8. the determination of scale factors for various locations in the building for use in con-

junction with the corresponding normalized RRS curves.

Representative strong-motion earthquake time histories (SSEs) are developed by suitably modifying
actual seismic ground-motion time histories that have been observed in that geographic location
(or a similar one), or by using a random-signal-generation (simulation) technique or any other
appropriate method. These time histories are available as either digital or analog records, depending
on the way in which they are generated. If computer simulation is used in their development, a
statistical representation of the expected seismic disturbances in the particular geographic region
(using geological features in the region, seismic activity data, and the like) should be incorporated
in the algorithm. The intensity of the time histories can be adjusted, depending on the required test
severity and conservatism.

The normalized response spectra are grouped so that those spectra that have roughly the same
shape are put in the same group. In this manner, relatively few groups of normal response spectra
(normalized) are obtained. Then, the response spectra that belong to each group are plotted on the
same graph paper. Next, straight-line segments are drawn to envelop each group of response spectra.
This procedure results in a normalized RRS for each group of analytical response spectra.

The RRS used for a particular seismic qualification scheme is obtained as follows. First, the
normalized RRS — corresponding to the location in the building where the object would be installed
— is selected. The normalized RRS curve is then multiplied by the appropriate scaling factor. The
scaling factor normally consists of the product of the actual ZPA value under SSE conditions at
that location (as obtained from the analytical response spectrum at that location, for example) and
a factor of safety that depends on the required test severity and conservatism.

Actually, three RRS curves corresponding to the vertical, east-west, and north-south directions
might be needed, even for single-degree-of-freedom seismic qualification tests, because, by mount-
ing three control accelerometers in these three directions, triaxial monitoring can be accomplished.
If only one control accelerometer is used in the test, then only one RRS curve is used. In this case,
the resultant of the three orthogonal RRS curves should be used. One way to obtain the resultant
RRS curve is to apply the square-root of the sum of squares (SRSS) method to the three orthogonal
components. Alternatively, the envelope of the three orthogonal RRS curves is obtained and
multiplied by a safety factor (greater than unity).

Note that more than one building or even many different geographic locations can be included
in the described procedure for developing RRS curves. The resulting RRS curves are then valid
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for the collection of buildings or geographic locations considered. When the generality of an RRS
curve is extended in this manner, the test conservatism increases. This also will result in an RRS
curve with a much broader band.

In a particular seismic qualification project, in practice, only a few normalized RRS curves are
employed. In conjunction with these RRS curves, a table of data is provided that identifies the
proper RRS curves and the scaling factors that should be used for different physical locations (e.g.,
elevations) in various buildings that are situated at several geographic locations.

PROBLEMS

10.1 For electric capacitors, suppose that the test voltage intensity k is related to the duration
of the test T through the relationship

where p is a parameter that depends on such factors as the particular capacitor used and
the environmental conditions. If the intensity for a single test procedure has been pre-
scribed as ks, determine the intensity for a test sequence involving four tests.

10.2 Consider a test object that has symmetry (dynamic as well as geometric) about vertical
planes through the two horizontal principal axes (the x-axis and y-axis in Figure P10.2).
In this case, symmetrical rectilinear testing in what directions will produce identical results?

10.3 Consider a test object that has dynamic and geometric symmetry about the vertical plane
through one horizontal principal axis (the y-axis in Figure P10.3). What are the directions
of symmetry? What sets of rectilinear vibration testing would you suggest for this object?

10.4 Rectilinear testing is the most widespread method employed in seismic qualification.
Two-degree-of-freedom testing is employed in some situations, however; but this depends
on the availability of appropriate shaker tables. In this type of testing, if the two excita-
tions are random and statistically independent (or at least uncorrelated), suggest a
sequence of tests.   

FIGURE P10.2 An object that has two orthogonal planes of symmetry.

T
k p∝ 1
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10.5 Compare sine testing and random testing, giving advantages and disadvantages. Sketch
a typical excitation signal for each case, giving the probability density function of the
random signal.

10.6 Consider the device shown in Figure P10.6. Two components with fundamental natural
frequencies at 10 Hz and 20 Hz are mounted such that their axes of sensitivity coincide.
Suppose that a functional failure occurs when the two components come in contact.
Discuss failure possibility under (a) sine testing, and (b) random testing.

FIGURE P10.3 An object that has one plane of symmetry.

FIGURE P10.6 A device that can malfunction under random excitations but not under sine excitations.
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10.7 Who provides the specifications for a vibration test of a piece of equipment?
10.8 Give typical frequency ranges for vibration testing of dynamic equipment in the following

applications:
a. Military avionics (fighter airplanes, etc.)
b. Human comfort equipment (mainly household applications)
c. Vehicle ride quality
d. Distribution qualification of computers and hardware
e. Precision machine tools
f. Seismic qualification of nuclear power plant equipment.

10.9 Table P10.9 lists several random vibration tests in the frequency range of 0 Hz to 500
Hz, in an application related to product development. Compare important characteristics
of these tests.     

10.10 a. Define the following terms:
1. Reference spectrum
2. Drive spectrum
3. Control spectrum
in relation to vibration testing.

b. What do you mean by spectrum equalization?
c. Give a simple algorithm that can be used in shaker control for spectrum equalization.

10.11 Define the following terms:
a. Octave
b. Decade.

i. What is a one-third octave?
ii. How many decades are there in 100 Hz?
iii. How many decades correspond to a frequency change from 0.1 rad·s–1 to 10.0 rad·s–1?
iv. How many octaves correspond to a frequency change from 1 Hz to  Hz?
v. What are the dimensions of decades?

Hint: Some of the questions are posed incorrectly.
10.12 What is a decibel? What are the advantages of using this unit in vibration data presentation?
10.13 Give several advantages of using logarithmic axes in plotting (presenting) vibration test data.
10.14 Discuss how vibration monitoring can be used in the prediction of failure in gear

mechanisms. Would you use an acceleration signal or a velocity signal for this task?
10.15 An electromagnetic shaker has the following testing capabilities:

Maximum displacement amplitude (stroke) = 5.0 cm
Maximum velocity amplitude = 150.0 cm·s–1

Maximum acceleration amplitude = 100.0 g

TABLE P10.9
Random Vibration Tests for a Product Development Application

Vibration
Test

RMS Value of
Excitation (g)

Peak Value of
the Excitation
psd (g2·Hz–1)

Minimum Times
the Random
Vibration is

Applied

Minimum
Duration of
Vibration

(min) Vibration Axes

A 2.7 0.01 1 60 Major horizontal axis
B 6.0 0.05 2 30 Major horizontal axis
C 3.2 0.01 1 15 All three
D 5.8 0.02 1 15 All three
E 4.9 0.01 1 15 All three
F 6.3 0.04 2 5 All three

2
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a. Would it be possible to obtain all three of these peak performance capabilities simul-
taneously for this shaker? Explain.

b. On log–log paper that is used for plotting response spectra, having frequency-velocity
axes, mark the capabilities of the shaker and the feasible test region. (This is called
a nomograph.)

c. If the shaker operates at a displacement amplitude of 5.0 cm and a velocity amplitude
of 150.0 cm·s–1, simultaneously, what is the corresponding maximum acceleration
amplitude that would be possible? Also, what is the corresponding test frequency?

d. If the shaker operates at a velocity amplitude of 150.0 cm·s–1 and an acceleration
amplitude of 100.0 g, simultaneously, what is the corresponding stroke that would be
possible? What is the corresponding test frequency?

10.16 Draw a typical schematic diagram for a vibration test arrangement, showing the main
components and instrumentation. Describe the function of the following components:
a. Piezoelectric accelerometer h. Low-pass filter
b. Charge amplifier i. High-pass filter
c. Vibration meter j. Bandpass filter
d. Phase meter k. Tunable filter
e. Power amplifier l. Tracking filter
f. Shaker m. Spectrum analyzer
g. Sine-random generator n. Oscilloscope.

10.17 a. Vibration testing of a device primarily involves application of a test excitation to the
device and measuring the resulting response at one or more key locations of the device.
Identify four general areas (not specific applications) where vibration testing is used
in practice.

b. A piezoelectric accelerometer is a motion sensor that is widely used in vibration
measurement. Describe its principle of operation. Why is it that the signal generated
by a piezoelectric accelerometer cannot be directly used without proper signal con-
ditioning, for the purposes of recording, analysis, and control? What type of signal
conditioning device is commonly used with a piezoelectric accelerometer?

c. The operating capability (ratings) of an electrodynamic (electromagnetic) shaker
(exciter) is shown in Figure P10.17, on the frequency–velocity plane, to a log–log
scale. Given this information, one engineering student comments that it is practically
useless because it is the acceleration versus frequency capability that matters for an
exciter, and not the velocity versus frequency capability. A brilliant student who has
recently taken an undergraduate course in mechanical vibrations objects to this state-
ment, saying that the given information can be easily converted to a rating curve on
the frequency–acceleration plane, to a log–log scale using the units Hz and m·s–2. You
are that student.
i. Compute the coordinates at the two break points between the straight-line segments

of this acceleration rating curve. Sketch this (acceleration versus frequency) curve.
ii. What is the displacement limit (in units of cm), and the acceleration limit when

testing a 4-kg object (in units of g, the acceleration due to gravity), for this shaker?
iii.Suppose that a 4-kg object is tested at 15 Hz. What are the limits of shaker head

displacement (cm), velocity (m·s–1), and acceleration (g) for this test? If a 5-kg
object is tested at 15 Hz, how would these limiting values change (an approximate
estimate will be adequate)?  

10.18 a. Electrodynamic shakers are commonly used in the dynamic testing of products. One
possible configuration of a shaker/test-object system is shown in Figure P10.18(a).
A simple, linear, lumped-parameter model of the mechanical system is shown in
Figure P10.18 (b). Note that the driving motor is represented by a torque source Tm.
Also, the following parameters are indicated:
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Jm = equivalent moment of inertia of motor rotor, shaft, coupling, gears, and shaker
platform

r1 = pitch circle radius of the gear wheel attached to the motor shaft
r2 = pitch circle radius of the gear wheel rocking the shaker platform
� = lever arm from the rocking gear center to the support location of the test object
mL = equivalent mass of the test object and support fixture
kL = stiffness of the support fixture
bL = equivalent viscous damping constant of the support fixture
ks = stiffness of the suspension system of the shaker table
bs = equivalent viscous damping constant of the suspension system.

Note that, since the inertia effects are lumped into equivalent elements, it can be assumed
that the shafts, gearing, platform, and support fixtures are light. The following variables
are of interest:

FIGURE P10.17 The rating curve of an electrodynamic exciter.

FIGURE P10.18(a) A dynamic-testing system.
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ωm = angular speed of the drive motor
vL = vertical speed of motion of the test object
fL = equivalent dynamic force (in spring kL) of the support fixture
fs = equivalent dynamic force (in spring ks) of the suspension system.

a. Obtain an expression for the motion ratio

FIGURE P10.18(b) A model of the dynamic testing system.

TABLE P10.20(a)
Capabilities of Five Commercial Control Systems for Vibration Test Shakers

System A B C D E

Random test Yes Yes Yes Yes Yes
Sine test Yes Yes Optional No Yes
Transient and shock tests Yes Yes Optional No Yes
Hydraulic shaker O.K. O.K. O.K. O.K. ?O.K.
Preprogrammed test setups Max. 63 Max. 25 Max. 99 10 per disk ?
Amplitude scheduling 32 levels

and duration
Min. start: –25 dB;
Min. step: 0.25 dB;
Can pick step durations

10 Levels
over 60 dB

0.5 dB steps;
Can pick
no. of steps
and rate

No

On-line reference modification Yes No Yes No No
Use of measured spectra as reference Yes Yes (measurement

— pass feature)
Yes No No

Transmissibility Yes Measurement option Yes No Yes
Coherence Yes Measurement option No No Yes
Correlation Yes No No No Yes
Shock response spectrum Yes Yes Optional No Yes
Sine on random Yes Sine bursts Optional No No
Random on random Yes No Optional No No
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b. Using x = [ωm, fs, fL, vL]T as the state vector, u = [Tm] as the input, and y = [vL, fL]T

as the output vector, obtain a complete state-space model for the system.
10.19 What is meant by the term “distribution qualification” of a product? What type of test

excitations would be appropriate in distribution qualification procedures? Give possible
difficulties in generating such test excitations.

10.20 a. Table P10.20(a) lists the capabilities of five commercial control systems that can be
used for shaker control in random vibration testing of products. Compare the five
systems. In your discussion, describe the meanings of the terms (capabilities) when
necessary.

b. Table P10.20(b) summarizes important hardware characteristics of the five control
systems. By defining the terms when necessary, comparatively discuss the various
characteristics of the five systems.

c. Table 10.20(c) gives some important specifications of the five control systems. Defin-
ing the terms where necessary, discuss the significance of these specifications.

ABLE P10.20(b)
mportant Hardware Characteristics of Five Systems for Shaker Control

System A B C D E

eference 
spectrum break 
points

40 32 50 ? 10 45

pectrum 
resolution 
(number of 
spectral lines)

Can pick 100, 
200, 400, 600, 
800 lines

Can pick 64, 128,
256, 512 lines
(optional 1024 lines)

Can pick 100, 200, 
400, 800 lines

200 lines; 10 Hz 
spacing

Pick any number: 
10–1000 lines 
(optional 2048 lines

ature or random 
drive signal

? Gaussian, periodic 
pseudo-random

Gaussian Gaussian Pseudo-random

easured signal 
averaging

RMS, peak-hold Arithmetic peak-hold True power Peak pick No

perator interface Keyboard,
menu-driven
RS 232

Keyboard, push button, 
dialog, set-up

Keyboard, push 
button, dialog, 
menu-driven

Keyboard 10 soft 
keys, dialog

Keyboard

utput devices CRT screen, 
hard copy, 
video print, 
digital plot

Standard or graphics 
terminal, X-Y record 
printer, digital plotter

Graphics terminal,
video hard copier,
digital plotter,
X-Y recorder

Like IBM PC, 
monochrome-9" 
Epson printer

Graphics terminal, 
printer, hard copy, 
X-Y plotter

emory 128K 64K 128K 64K 32K Std; 64K Option
ass storage Floppy drive

0.5 MB; hard 
drive 10 MB

One floppy drive, 256K Hard + floppy 8M, 
20M, 30M

Two floppy drives 
360K each

Two floppy drives 
256K each

umber of 
measurements 
(control input) 
channels

2 Standard;
16 optional

2 Standard; 4 optional;
multiplexer optional

1 Standard;
16, 31 optional

1 Standard;
4 optional

?

umber of 
controller output 
channels

One One One One One

r = Vertical movement of the shaker table at the test object support location
Angular movement of the drive motor shaft
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Which of these five shaker control systems would be suitable for use in distribution
qualification of products?

10.21 A conventional electrodynamic exciter (shaker) that is used in vibration testing has a
shaker head that is suspended on a rigid housing through a flexible diaphragm. The
shaker head is excited by the electromagnetic force (as in the case of a DC motor)
generated in the drive coil, which is wound around the core of the head.

Consider a shaker of this type, with a test object mounted on it. An accelerometer is
mounted on the shaker head. The coil is excited by a known transient current from the
drive amplifier. This current is proportional to the electromagnetic force that is generated.
The acceleration of the shaker head is measured. The frequency-response function
between the drive force and the head acceleration is computed using a spectrum analyzer.
Its magnitude is found to have two prominent resonances that are separated by a flat
region. Explain this characteristic shape of the frequency response of the shaker, indi-
cating the sources of the two resonances.

10.22 Although shaker tables capable of very high payloads have been reported (e.g., a test
object capacity of 1000 tons, table size 15 m × 15 m, three translational and three

BLE P10.20(c)
ecifications of Five Shaker Control Systems

System A B C D E

celerometer signal
controller input)

±125 mV to ±8 V 
full scale

10 mV rms to 
±8 V max.;
typically > 500 mV 
rms

Max. 10 V peak,
3.5 V, rms 

1 to 1000 mV/g
user picked

Not given

ntroller output 
ignal

2.4 V rms (random);
20 V peak to peak 
(sine and random)

20 V P-P max.;
50 mA max.

20 V P-P max. 10 V peak,
3V rms

Not given

put frequency 
anges

Random: DC to 
200 Hz, 500 Hz, 
1 kHz, 2 kHz, 
3 kHz, 4 kHz, 
8 kHz;

Sine: 1 Hz-8 Hz;
Shock: 
10 Hz–125 Hz, 
312 Hz–5 kHz

Seven ranges 
Max. freq.: 
500 Hz–5 kHz,  

   min. freq. = 1 line

100 Hz, 500 Hz,
1 kHz, 2 kHz,
4 kHz, 5 kHz,
10 kHz

10–2000 Hz 10–5000 Hz

ntrol loop time 2.1 s (2 kHz, 
200 lines)

0.3 s, 64 lines;
0.9 s, 256 lines;
3 s, 1024 lines 
(2 kHz)

4 s, 100 lines;
8 s, 200 lines
(2 kHz)

2 s 2.5 s for 256 line
at 2 kHz

ualization time for 
0-dB range

Within ±3 dB in two 
loops

2 or 3 loops Within ±1 dB
in one loop

Within ±1 dB
in 6 s

Not given.

solution 12 Bits 12 Bits 12 Bits
namic range 65 dB 65 dB 72 dB 60 dB
ntrol accuracy ±1 dB at Q=30, 

±2dB at Q=50 (100 
Hz Resonance at 
1 octave/min.)

±1 dB (at 90% 
Confidence)

±1 dB Over 72 dB ±1 dB ±1 dB (at 95% 
confidence)

ne sweep rate OK 0.1–100 oct/min (log) 
1 Hz–100 kHz/min 
(linear)

0.1–100 oct/min max.;
0.1 Hz–6 kHz/min–1

N/A 0.001–10 oct/min
1–6000 Hz/ min
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rotational degrees of freedom, testing frequency range 0 to 30 Hz, stroke 0.2 m, velocity
0.75 m·s–1 for the shaker table in Tadotsu Island, Japan), it is quite difficult to carry out
shaker-table tests on large civil engineering structures (buildings, bridges, etc.). Several
other testing procedures are also employed in testing large test objects. One approach is
to make use of natural excitations (e.g., aerodynamic forces) and monitor the response
of the structure at several locations. Another is to excite the structure using several
portable exciters (shakers) at strategic locations and directions (degrees of freedom),
assuming that each exciter has its own controller in generating the excitation. If this
second approach could be carried out quite accurately, there would not be a need for
large-scale table testing. Clearly, there are difficulties that limit the use of multiple shakers
in large-scale testing. Discuss some of these potential problems.

10.23 The size and geometry of a test object, and the mounting characteristics of the test object
and its fixtures, have direct implications in vibration testing using shakers. Indicate
several effects of these on a test routine.
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11  Experimental Modal Analysis
Experimental modal analysis, basically, is a procedure of “experimental modeling.” The primary
purpose is to develop a dynamic model for a mechanical system using experimental data. In this
sense, experimental modal analysis is similar to “model identification” in control system practice,
and can utilize somewhat related techniques of “parameter estimation.” It is the nature of the
developed model that can distinguish experimental modal analysis (EMA) from other conventional
procedures of model identification. Specifically, EMA produces a modal model that consists of

1. Natural frequencies
2. Modal damping ratios
3. Mode shape vectors

as the primary result. Once a modal model is known, standard results of modal analysis can be
used to extract an inertia (mass) matrix, a damping matrix, and a stiffness matrix, which constitute
a complete dynamic model for the experimental system, in the time domain. The modal analysis
of lumped-parameter systems is covered in Chapter 5, and that of distributed-parameter systems
in Chapter 6. Vibration testing and signal analysis are studied in Chapters, 4, 8, 9, and 10. These
chapters should be reviewed for the necessary background prior to reading the present chapter.

Since experimental modal analysis produces a modal model (and in some cases, a complete
time-domain dynamic model) for a mechanical system form test data of the system, its uses can
be extensive. In particular, EMA is useful in

1. Design
2. Diagnosis
3. Control

of mechanical systems, primarily with regard to vibration. In the area of design, the following three
approaches that utilize EMA should be mentioned:

1. Component modification
2. Modal response specification
3. Substructuring.

In component modification, one can modify (i.e., add, remove, or vary) inertia (mass), stiffness,
and damping parameters in a mechanical system and determine the resulting effect on the modal
response (natural frequencies, damping ratios, and mode shapes) of the system. In modal response
specification, one can establish the best changes, from the design point of view, in system parameters
(inertia, stiffness, and damping values and their degrees of freedom), in order to give a “specified”
(prescribed) change in the modal response. In substructuring, two or more subsystem models are
combined using dynamic interfacing components, and the overall model is determined. Some of
the subsystem models used in this manner can be of analytical origin (e.g., finite element models).

Diagnosis of problems (faults, performance degradation, component deterioration, impending
failure, etc.) of a mechanical system requires condition monitoring of the system, and analysis and
evaluation of the monitored information. Often, analysis involves extraction of modal parameters
using monitored data. Diagnosis may involve the establishment of changes (both gradual and
sudden), patterns, and trends in these system parameters.
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Control of a mechanical system may be based on modal analysis. Standard and well-developed
techniques of modal control are widely used in mechanical system practice. In particular, vibration
control, both active and passive, may use modal control (see Chapter 12). In this approach, the
system is first expressed as a modal model. Then, control excitations, parameter adaptations, etc.
are established that would result in a specified (derived) behavior in various modes of the system.
Of course, techniques of experimental modal analysis are commonly used here, both in obtaining
a modal model from test data, and in establishing modal excitations and parameter changes that
are needed to realize a prescribed behavior in the system.

The standard steps of experimental modal analysis are:

1. Obtain a suitable (admissible) set of test data, consisting of forcing excitations and motion
responses, for various pairs of degrees of freedom of the test object.

2. Compute the frequency transfer functions (frequency response functions) of the pairs of
test data using Fourier analysis. Digital Fourier analysis using fast Fourier transform
(FFT) is the standard way of accomplishing this. Either software-based (computer)
equipment or hardware-based instrumentation can be used.

3. Curve fit analytical transfer functions to the computed transfer functions. Determine
natural frequencies, damping ratios, and residues for various modes in each transfer
function.

4. Compute mode shape vectors.
5. Compute inertia (mass) matrix M, stiffness matrix K, and damping matrix C.

Some variations of these steps may be possible in practice, and step 5 is omitted in many
situations. The present chapter focuses on some of the standard techniques and procedures associ-
ated with the process of experimental modal analysis. The first step in generating test data is not
discussed here, as it is extensively covered elsewhere (see Chapters 8 and 10).

11.1 FREQUENCY-DOMAIN FORMULATION

Frequency-domain analysis of vibrating systems is very useful in a wide variety of applications. The
analytical convenience of frequency domain methods results from the fact that differential equations
in the time domain become algebraic equations in the frequency domain. Once the necessary analysis
is performed in the frequency domain, it is often possible to interpret the results without having to
transform them back to the time domain through inverse Fourier transformation. In the context of
the present chapter, frequency-domain representation is particularly important because it is the
frequency-transfer functions that are used for extracting the necessary modal parameters.

For the convenience of notation, the frequency-domain results are developed using the Laplace
variable s. As usual, the straightforward substitution of s = jω, or s = j2πf, gives the corresponding
frequency–domain results.

11.1.1 TRANSFER FUNCTION MATRIX

Consider a linear mechanical system that is represented by

(11.1)

where

f(t) = forcing excitation vector (nth order column)
y = displacement response vector (nth order column)
m = mass (inertia) matrix (n×n)

My Cy Ky f˙̇ ˙+ + = ( )t
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C = damping (linear viscous) matrix (n×n)
K = stiffness matrix (n×n).

If the assumption of proportional damping is made, it is seen in Chapter 5 that the coordinate
transformation

(11.2)

decouples equations (11.1) into the canonical form of modal equations

(11.3)

where

Ψ = modal matrix (n×n) of n independent modal vector vectors [ψ1, ψ2, …, ψn]
M = diagonal matrix of modal masses Mi

C = diagonal matrix of modal damping constants Ci

K = diagonal matrix of modal stiffnesses Ki

Specifically,

(11.4)

(11.5)

(11.6)

If the modal vectors are assumed to be M-normal, then

and, furthermore, one can express Ci in the convenient form

where

ωi = undamped natural frequency
ζ i = modal damping ratio.

By Laplace transformation of the response canonical equations of modal motion (11.3), assum-
ing zero initial conditions, one obtains

(11.7)

y q= ΨΨΨ

Mq Cq Kq f˙̇ ˙+ + = ( )ΨΨΨT t

M M= ΨΨΨ ΨΨΨT
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Laplace transforms of the modal response (or generalized coordinate) vector q(t) and the forcing
excitation vector f(t) are denoted by the column vectors Q(s) and F(s), respectively. The square
matrix on the left-hand side of equation (11.7) is a diagonal matrix. Its inverse is obtained by
inverting the diagonal elements. Consequently, the following modal transfer relation results:

(11.8)

in which, the diagonal elements are the damped simple-oscillator transfer functions:

(11.9)

Note that ωi, the ith undamped natural frequency (in the time domain), is only approximately equal
to the frequency of the ith resonance of the transfer function (in the frequency domain) as given by

(11.10)

As discussed before, and clear from equation (11.10), the approximation improves for decreasing
modal damping. Consequently, in most applications of experimental modal analysis, the resonant
frequency is taken equal (approximately) to the natural frequency for a given mode.

From the time-domain coordinate transformation (11.2), the Laplace-domain coordinate trans-
formation relation is obtained as:

(11.11)

Substitute equation (11.8) into (11.11); thus,

(11.12)

Equation (11.12) is the excitation-response (input-output) transfer relation. It is clear that the n×n
transfer function matrix G for the n-degree-of-freedom system is given by

(11.13)

Notice in particular that G(s) is a symmetric matrix; specifically,

(11.14)

which should be clear from the matrix transposition property (ABC)T = CTBTAT.
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An alternative version of equation (11.13) that is extensively used in experimental modal
analysis can be obtained using the partitioned form (or assembled form) of the modal matrix in
equation (11.13). Specifically,

(11.15)

On multiplying out the last two matrices on the RHS of equation (11.15), term by term, the following
intermediate result is obtained:

Note that Gi are scalars, while ψi are column vectors. The two matrices in this product can now
be multiplied out to obtain the matrix sum:

(11.16)

in which ψr is the rth modal vector that is normalized with respect to the mass matrix. Notice that each
term ψrψr

T in the summation (11.16) is an n×n matrix with the element corresponding to its ith row
and kth column being (ψiψk)r. The ikth element of the transfer matrix G(s) is the transfer function Gik(s),
which determines the transfer characteristics between the response location i and the excitation location
k. From equation (11.16), this is given by

(11.17)

where s = jω = j2πf in the frequency domain. Note that (ψi)r is the ith element of the rth modal vector,
and is a scaler quantity. Similarly, (ψiψk)r is the product of the ith element and the kth element of the
rth modal vector, and is also a scalar quantity. This is the numerator of each modal transfer function
within the RHS summation of equation (11.17), and is the “residue” of the pole (eignevalue) of that mode.

Equation (11.17) is useful in experimental modal analysis. Essentially, one starts by determining
the residues (ψiψk)r of the poles in an admissible set of measured transfer functions. One can
determine the modal vectors in this manner. In addition, by analyzing the measured transfer
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functions, modal damping ratios ζi and the natural frequencies ωi can be estimated. From these results,
an estimate for the time-domain model (i.e., the matrices M, K, and C) can be determined.

11.1.2 PRINCIPLE OF RECIPROCITY

By the symmetry of transfer matrix, as given by equation (11.14) it follows that

(11.18)

This fact is further supported by equation (11.17). This symmetry can be interpreted as Maxwell’s
principle of reciprocity. To understand this further, consider the complete set of transfer relations
given by equations (11.12) and (11.13):

(11.19)

Note that the diagonal elements G11, G22, …, Gnn are driving-point transfer functions (or auto-
transfer functions), and the rest are cross-transfer functions. Suppose that a single excitation Fk(s)
is applied at the kth degree of freedom with all the other excitations set to 0. The resulting response
at the ith degree of freedom is given by

(11.20)

Similarly, when a single excitation Fi(s) is applied at the ith degree of freedom, the resulting
response at the kth degree of freedom is given by

(11.21)

In view of the symmetry that is indicated by equation (11.18), it follows from (11.20) and (11.21)
that if the two separate excitations Fk(s) and Fi(s) are identical, then the corresponding responses
Yi(s) and Yk(s) also become identical. In other words, the response at the ith degree of freedom due
to a single force at the kth degree of freedom is equal to the response at the kth degree of freedom
when the same single force is applied at the ith degree of freedom. This is the frequency-domain
version of the principle of reciprocity.

EXAMPLE 11.1

Consider the two-degree-of-freedom system shown in Figure 11.1. Assume that the excitation forces
f1(t) and f2(t) act at the y1 and y2 degrees of freedom, respectively. The equations of motion are
given by
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It has been noted in Chapter 5 that this system has proportional damping (specifically, it is clear
that C is proportional to M) and, hence, possesses the same real modal vectors as for the undamped
system. First obtain the transfer matrix in the direct manner. By taking the Laplace transform (with
zero initial conditions) of the equations of motion (i), one obtains

(ii)

Hence, in the relation Y(s) = G(s)F(s), the transfer matrix G is given by

(iii)

The characteristic polynomial ∆(s) of the system is

(iv)

and is common to the denominator of all four transfer functions in the matrix.
Specifically,

(v)

(vi)

What this result implies is that the characteristic equation characterizes the entire system (partic-
ularly the natural frequencies and damping ratios), and no matter what transfer function is measured
(or analyzed), the same natural frequencies and modal damping are obtained.

FIGURE 11.1 A vibrating system with proportional damping.
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One can put these transfer functions into the partial fraction form. For example,

(vii)

By comparing the numerator coefficients, one finds that A1 = A3 = 0 (this is the case when the
modes are real; with complex modes, A1 ≠ 0 and A3 ≠ 0 in general) and A2 = A4 = 1/2. These results
are summarized below.

(viii)

(ix)

where

By comparing the residues (numerators) of these expressions with relation (11.17), one can deter-
mine the M-normal modal vectors. Specifically,

by examining G11: 

by examining G12: 

One needs consider only two admissible transfer functions (e.g., G11 and G12, or G11 and G21, or G12

and G22, or G21 and G22) in order to completely determine the modal vectors. Specifically, one obtains

Note that the modal masses are unity for these modal vectors. Also, there is an arbitrariness in the 
sign. As usual, this problem is overcome by making the first element of each modal vector positive. 
These modal vectors agree with the results obtained in a previous example for the same system 
(see Example 5.8 in Chapter 5).

�

11.2 EXPERIMENTAL MODEL DEVELOPMENT

It has been noted that the process of extracting modal data (natural frequencies, modal damping,
and mode shapes) from measured excitation-response data is termed “experimental modal analysis.”
Modal testing and the analysis of test data are the two main steps of experimental modal analysis.
Information obtained through experimental modal analysis is useful in many applications, including
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validation of analytical models for dynamic systems, fault diagnosis in machinery and equipment,
on-site testing for requalification to revised regulatory specifications, and design development of
mechanical systems.

In the present development, it is assumed that the test data are available in the frequency domain
as a set of transfer functions. In particular, suppose that an admissible set of transfer functions is
available. The actual process of constructing or computing these frequency-transfer functions from
measured excitation-response (input-output) test data (in the time domain) is known as model
identification in the frequency domain. This step should precede the actual modal analysis in
practice. Numerical analysis (or curve-fitting) is the basic tool used for this purpose, and it will be
discussed in a later section.

The basic result used in experimental modal analysis is equation (11.17) with s = jω or s = j2πf
for the frequency-transfer functions. For convenience, however, the following notation is used:

(11.22)

or, equivalently,

(11.23)

where ω and f are used in place of jω and j2πf in the function notation G( ). As already observed
in Example 11.1, it is not necessary to measure all n2 transfer functions in the n×n transfer function
matrix G in order to determine the complete modal information. Due to the symmetry of G, it
follows that, at most, only 1/2n(n + 1) transfer functions are needed. In fact, it can be “shown by
construction” (i.e., in the process of developing the method itself) that only n transfer functions
are needed. These n transfer functions cannot be chosen arbitrarily, however, although there is a
wide choice for the admissible set of n transfer functions. A convenient choice would be to measure
any one row or any one column of the transfer-function matrix. It should be clear from the following
development that any set of transfer functions that spans all n degrees of freedom of the system
would be an admissible set, provided that only one auto-transfer function is included in the minimal
set. Hence, for example, all the transfer functions on the main diagonals, or on the main cross-
diagonal of G, do not form an admissible set.

Suppose that the kth column (Gik, i = 1, 2, …, n) of the transfer-function matrix is measured
by applying a single forcing excitation at the kth degree of freedom and measuring the corresponding
responses at all n degrees of freedom in the system. The main steps in extracting the modal
information from this data are given below.

Step 1: Curve-fit the (measured) n transfer functions to expressions of the form given by
equation (11.22). In this manner, determine the natural frequencies ωr, the damping
ratios ζr, and the residues (ψiψk)r for the set of modes r = 1, 2, …

Step 2: The residues of a diagonal transfer function (i.e., point transfer functions or auto-transfer

function) Gkk are . From these, determine the kth row of the

modal matrix . Note that M-normality is assumed. Still, the
modal vectors are arbitrary up to a multiplier of –1. Hence, one can choose this row
to have all positive elements.

Step 3: The residues of a nondiagonal transfer function (i.e., cross-transfer function) Gk+i,k are
(ψk+iψk)1, (ψk+iψk)2, …, (ψk+iψk)n. By substituting the values obtained in step 2 into
these values, determine the k+ith row of the modal matrix (ψk+i)1, (ψk+i)2, …, (ψk+i)n.
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The complete modal matrix Ψ is obtained by repeating this step for i = 1, 2, …, n – k
and i = –1, –2, …, –k + 1. Note that the associated modal vectors are M-normal.

The procedure just outlined for determining the modal matrix verifies, by construction, that
only n transfer functions are needed to extract the complete modal information. It further reveals
that it is not essential to perform the transfer function measurements in a row fashion or column
fashion. A diagonal element (i.e., a point transfer function, or an auto-transfer function) should
always be measured. The remaining n – 1 transfer functions have to be off diagonal, but otherwise
can be chosen arbitrarily, provided that all n degrees of freedom are spanned either as an excitation
point or measurement location (or both). This guarantees that no symmetric transfer function
elements are included. This defines a minimal set of transfer function measurements. An admissible
set of more than n transfer functions can be measured in practice so that redundant measurements
would be available in addition to the minimal set that is required. Such redundant data are useful
for checking the accuracy of the modal estimates. Examples for an admissible (nonminimal) set,
a minimal set, and an inadmissible set of transfer function matrix elements are shown schematically
in Figure 11.2. Note that the inadmissible set in this example contains 8 transfer function measure-
ments, but the 6th degree of freedom is not covered by this set. On the other hand, a minimal set
requires only six transfer functions.

11.2.1 EXTRACTION OF THE TIME-DOMAIN MODEL

Once the complete modal information is extracted by modal analysis, it is possible — at least in
theory — to determine a time-domain model (M, K, and C matrices) for the system. To obtain the
necessary equations, first premultiply by (ΨT)–1 and postmultiply by Ψ−1 the equations (11.4), (11.5),
and (11.6) to get

(11.24)

where M = I = identity matrix

(11.25)

FIGURE 11.2 A non-minimal admissible set, a minimal set, and an inadmissible set of possible transfer
function measurements.

M M= ( )− −ΨΨΨ ΨΨΨT 1 1

K K= ( )− −ΨΨΨ ΨΨΨT 1 1
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(11.26)

Since the modal matrix Ψ is nonsingular, because M is assumed nonsingular in the dynamic models
that are used here (i.e., each degree of freedom has an associated mass, or the system does not
possess static modes), the inverse transformations given by equations (11.24) to (11.26) are feasible.
It appears, however, that two matrix inversions are needed for each result. Since matri-
ces are diagonal, their inverse is given by inverting the diagonal elements. This fact can be used
to obtain each result through just one matrix inversion.

Equations (11.24) to (11.26) are written as

(11.27)

(11.28)

(11.29)

Note that for the present M-normal case

(11.30)

(11.31)

(11.32)

By substituting equations (11.30) to (11.32) into equations (11.27) to (11.29), one obtains the
relations that can be used in computing the time-domain model:

(11.33)

(11.34)

(11.35)

Alternatively, only one matrix inversion (that of Ψ) is needed for all three matrices if one uses
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Then,

(11.36)

(11.37)

(11.38)

The main steps of experimental modal analysis are summarized in Box 11.1. In practice,
frequency-response data are relatively less accurate at higher resonances. Some of the main sources
of error include:

1. Aliasing distortion in the frequency domain due to finite sampling rate of data will distort
high-frequency results during digital computation (see Chapter 4).

2. Inadequate spectral-line resolution (or frequency resolution) and frequency coverage
(bandwidth) can introduce errors at high-frequency resonances. The frequency resolution
is fixed both by the signal record length (T) and the type of time window used in digital
Fourier analysis, but the resonant peaks are sharper for higher frequencies. Frequency
coverage depends on the data sampling rate.

3. Low signal-to-noise ratio (SNR) at high frequencies, in part due to noise and poor
dynamic range of equipment, and in part due to low signal levels, will result in data
measurement errors. Signal levels are usually low at high frequencies because inertia in

a mechanical system acts as a low-pass filter .

4. Computations involving high-order matrices (multiplication, inversion, etc.) in complex
systems with many degrees of freedom, will lead to numerical errors.

It is customary, therefore, to extract modal information only for the first several modes. In that
case, it is not possible to accurately recover the mass, stiffness, and damping matrices. Even if
these matrices were computed, their accuracy would be questionable due to their sensitivity to the
factors listed above.

11.3 CURVE-FITTING OF TRANSFER FUNCTIONS

Parameter estimation in vibrating systems can be interpreted as a technique of experimental
modeling. This process requires experimental data in a suitable form — preferably excitation-
response data and often represented as a set of transfer functions in the frequency domain. Parameter
estimation using measured response data is termed model identification, or simply identification,
in the literature on systems and control. A parameter estimation procedure that involves frequency-
transfer functions, and which is particularly useful in experimental modal analysis, is presented.

ΨΨΨ ΨΨΨT T( ) = ( )− −1 1

M M= ( )− −ΨΨΨ ΨΨΨ1 1T
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11.3.1 PROBLEM IDENTIFICATION

Transfer functions that are computed from measured time histories using digital Fourier analysis
(e.g., fast Fourier transform, or FFT) cannot be directly used in modal analysis computations. The
data must be available as analytical transfer functions. Therefore, it is important to represent the
computed transfer functions by suitable analytical expressions. This is done, in practice, either by
curve-fitting a suitable transfer function model into the computed data or by simplified methods
such as “peak picking.” Accordingly, this convention of data is an experimental modeling technique.

Identification of transfer function models from measured data is an essential step in experimental
modal analysis. Apart from that, it has other important advantages. In particular, analytical transfer
function plots clearly identify system resonances and generate numerical values for the correspond-

BOX 11.1 Main Steps of Experimental Modal Analysis

1. Measure an admissible set of excitation (u) and response (y) signals. (Cover all dof;
one response measurement should be for the excitation location.)

2. Group the signals, assign windows, and filter the signals.
3. Compute transfer functions using FFT and the spectral-density method:

4. Compute ordinary coherence functions:

and choose the accurate transfer functions on this basis (γuy close to 1 ⇒  accept; γuy close
to 0 ⇒  reject).

5. Curve-fit n admissible transfer functions to expressions:

Hence, extract:
Residues (ψiψk)r ⇒  mode shapes vectors ψr, which are M-normal
Natural frequencies (undamped) ωr

Modal damping ratios (viscous) ζr

6. Form the modal matrix Ψ = [ψ1, ψ2, …, ψn].
Compute Ψ–1.

7. Modal mass matrix M = I

Modal stiffness matrix 

Modal damping matrix 

8. Compute the system model:
Mass matrix M = (Ψ–1)Ψ–1

Stiffness matrix K = (Ψ–1)TKΨ–1

Damping matrix C = (Ψ–1)CΨ–1
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ing parameters (resonant frequencies, damping, phase angles, and magnitudes) in a convenient
manner. This form represents a significant improvement over the crude transfer function plots that
are normally far less presentable and rather difficult to interpret.

11.3.2 SINGLE-DEGREE-OF-FREEDOM AND MULTI-DEGREE-OF-FREEDOM 
TECHNIQUES

Several single degree-of-freedom (dof) techniques exist for extracting analytical parameters from
experimental transfer functions. In particular, the methods of curve fitting (circle fitting) and peak
picking are considered here. In a single-dof method, only one resonance is considered at a time.

Single-degree-of-freedom curve fitting or, more correctly, single-resonance curve fitting is the
term used to denote any curve-fitting procedure that fits a quadratic (second-order) transfer function
into each resonance in the measured transfer function, one at a time. In the case of closely spaced
modes (or closely spaced resonances), the associated error can be very large. The accuracy is
improved if expressions of higher order than quadratic are used for this purpose, but unacceptable
errors can still exist. In peak picking, each resonance of experimental transfer function data is
examined individually, and resonant frequency, and the damping constant corresponding to that
resonance, are determined by comparing with an analytical single-dof transfer function.

In multi-degree-of-freedom curve fitting or, more appropriately, multiresonance curve-fitting,
all resonances (or modes) of importance are considered simultaneously and fitted into an analytical
transfer function of suitable order. This method is generally more accurate but computationally
more demanding than the single-resonance method. In choosing between the single-resonance and
multiresonance methods, the required accuracy should be weighed against the cost and speed of
computation.

11.3.3 SINGLE-DEGREE-OF-FREEDOM PARAMETER EXTRACTION IN THE

FREQUENCY DOMAIN

The theory of curve-fitting by a circle (i.e., circle fitting) for each resonance of an experimentally
determined transfer function is presented first. Next, the peak picking method will be described.

Circle-Fit Method

It can be shown that the mobility transfer function (velocity/force) of a single-degree-of-freedom
(dof) system with linear viscous damping, when plotted on the Nyquist plane of real axis and
imaginary axis for the frequency transfer function, is a circle. Similarly, it can be shown that the
receptance or dynamic flexibility or compliance transfer function (displacement/force) of a single-
dof system with hysteretic damping, when plotted on the Nyquist plane, is also a circle. Note that
for hysteretic damping, the damping constant (in the time domain) is not actually a constant but
is inversely proportional to the frequency of motion (see Chapter 7). But, in the frequency domain,
the damping term will be independent of frequency, in this case. The fact that such circle repre-
sentations are possible for transfer functions of a single-dof system, can be used in fitting a circle
to a transfer function that is computed from experimental data. This will lead to determining the
analytical parameters for the transfer function. This approach is illustrated now, through analytical
development.

Case of Viscous Damping
Consider a single-dof system with linear, viscous damping, as given by

(11.39)my cy ky f t˙̇ ˙+ + = ( )
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where m, k, and c are the mass, stiffness, and the damping constant of the system, respectively;
f(t) is the excitation force; and y is the displacement response. Equation (11.39) can be expressed
in the standard form:

(11.40)

(11.41)

(11.42)

Consider the mobility (velocity/force) transfer function given by

(11.43)

where the constant parameter m in equation (11.42) has been omitted, without loss of generality.
In the frequency domain (s = jω), then

(11.44)

Multiply the numerator and the denominator of G(jω) in equation (11.44) by the complex conjugate

of the denominator (i.e., ). Then, the denominator is converted to the square of

its original magnitude, as given by

(11.45)

and the frequency-transfer function (11.44) is converted into the form

(11.46)

(11.47)
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Hence, in view of equation (11.47), one obtains

It follows that the transfer function G(jω) represents a circle in the real-imaginary plane, with the
following properties:

(11.48)

(11.49)

Now, one can reintroduce the constant parameter m back into the transfer function, as in equation
(11.42). Then,

(11.50)

A sketch of this circle is shown in Figure 11.3(a). As mentioned before, the plane formed by
the real and imaginary parts of G(jω) as the Cartesian x and y axes, respectively, is the Nyquist
plane. The plot of G(jω) on this plane is the Nyquist diagram. It follows that the Nyquist diagram
of the mobility function (11.42) [or (11.44)] is a circle.

Case of Hysteretic Damping
Consider a single-dof system with hysteretic damping. The equation motion is given by
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(11.51)

Note the frequency-dependent damping constant, with the hysteretic damping parameter h, in the
time domain. The receptance function G(jω) is given by

FIGURE 11.3 (a) Circle fit of a mobility function with viscous damping, and (b) circle fit of a receptance
function with hysteretic damping.

my
h

y ky f t f t f t˙̇ ˙ sin+ + = ( ) ( ) =
ω
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Note that the damping term jh is independent of frequency in the frequency domain, for this case.
As for the case of viscous damping, one can easily show that the Nyquist plot of this transfer
function is a circle with

(11.52)

A sketch of the resulting circle is shown in Figure 11.3(b).
In general, for a multi-dof viscous-damped system, one has the “mobility” function

(11.53)

If the resonances are not closely spaced, one can assume that near each resonance (r)

(11.54)

One can curve-fit each resonance r to a circle this way and thereby extract the (ψiψk)r value (the
residue) from the radius of the circle fit.
Note: This method will lead to larger errors if the resonances are closely spaced and, consequently,
if significant modal interactions are present.

Peak Picking Method

This is also a single-dof method in view of the fact that each resonance of an experimentally
determined transfer function is considered separately. The approach is to compare the resonance
region with an analytical transfer function of a damped single-dof system. One of three types of
transfer functions — receptance, mobility, or accelerance — as listed in Table 11.1, can be used
for this purpose. Note that when the level of damping is small, it can be assumed (approximately)

that the resonance is at the undamped natural frequency . Substituting this value for ω
in each of the frequency transfer functions, one can determine the transfer function value at
resonance, denoted by Gpeak(jω). It is noted from Table 11.1 that, in general, this function value
depends on the damping constant and the natural frequency. Because ωn is known directly from
the peak location of the transfer function, it is possible to compute the damping constant c (or
damping ratio ζ) by first determining the corresponding peak magnitude.

Specifically, from Table 11.1, it is clear that one should pick the imaginary part of the frequency-
transfer function for receptance or accelerance data, and the real part of the transfer function for
mobility data. Then, one picks the peak value of the chosen part of the transfer function, and the
frequency at the peak.

Peak picking is good for cases where modes are well separated and lightly damped. It does
not work when the system is highly damped (or overdamped), or when the damping is 0 (infinite
peak). It is a quick approach that is appropriate for preliminary evaluations and troubleshooting.
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11.3.4 MULTI-DEGREE-OF-FREEDOM CURVE FITTING 

A general multi-resonance curve-fitting method is now presented; the corresponding single-reso-
nance method should also be clear from this general procedure. Note that many different versions
of problem formulation and algorithm development are possible for least-squares curve fitting, but
the results should be essentially the same. The method presented here is a frequency-domain method,
as one is dealing in this chapter with experimentally determined frequency-transfer functions. In a
comparable time-domain method, a suitable analytical expression of the complex exponential form
is fitted into the experimental impulse response function obtained by the inverse Fourier transfor-
mation of a measured transfer function. That method inherits additional error due to truncation
(leakage) and finite sampling rate (aliasing) during the inverse FFT (see Chapter 4 and Appendix D).

Formulation of the Method

The objective of the present multi-resonance (multi-dof) curve-fitting procedure is to fit the com-
puted (measured) transfer function data into an analytical expression of the form:

(11.55)

The data for curve fitting would be the N complex transfer function values [G1, G2, …, GN] computed
at discrete frequencies [ω1, ω2, …, ωN]. Typically, if 1024 samples of time history were used in
the FFT computations to determine the transfer function, one would have 512 valid spectral lines
of transfer function data. But, near the high-frequency end, these data values become excessively
distorted due to the aliasing error; only a part of the 512 spectral lines is usable, typically the first
400 lines. In that case, one has N = 400. This value can be doubled by doubling the FFT block
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Some Frequency Transfer Functions Used in Peak Picking
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size (to 2048 words in the buffer), thereby doubling the record length or the sampling rate. It is
acceptable to leave out part of the computed transfer function, not for poor accuracy but because
that part falls outside the frequency band of interest in that particular modal analysis problem. A
less wasteful practice would be to pick the sampling rate of the measured time history data to
reflect the highest frequency of interest in the modal analysis.

The (complex) error in the estimated value at each frequency point (spectral line) ωi is given by

(11.56)

The characteristic equation of the dynamic model is given by

(11.57)

Its roots are the eigenvalues of the system. For damped oscillatory systems, they occur in complex
conjugates with negative real parts (Note: p = 2 × number of degrees of freedom, in typical cases).
For systems with rigid body modes (see Chapter 5), 0 eigenvalues will also be present. But because
there is some damping in the system and because the lowest frequency that is tested and analyzed
is normally greater than 0 even for systems with rigid body modes, one obtains

(11.58)

in the frequency range of interest. Hence, the estimation error given by equation (11.56) can be
expressed as

(11.59)

The quadratic error function is given by the sum of the squares of magnitude error for all discrete
frequency points used in modal analysis; thus,

(11.60)

Note that [ ]* denotes the complex conjugate. Complex conjugation is achieved by simply replacing
(jω) by (–jω) in equation (11.59). It follows that equation (11.60) can be written as

(11.61)
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The basis of the least-squares curve-fitting method of parameter estimation is to pick the transfer
function parameters bi (i = 0, 1, …, m) and ai (i = 0, …, p – 1) such that the quadratic error function
J is a minimum. Analytically, this requires that 

(11.62)

(11.63)

Note that equations (11.62) and (11.63) correspond to m + p + 1 linear equations in the m + p + 1
unknowns bi (i = 0, 1, …, m) and ai (i = 0, …, p – 1). A well-defined solution exists to this set of
nonhomogeneous equations, provided that the equations are linearly independent, which is 
guaranteed if the determinant of the coefficients of the unknown parameters does not vanish. It 
is a good practice to check for linear independence of the set of m + p + 1 equations using 
this determinant condition prior to performing further computations to solve the equations. The 
solution approach itself is primarily computational in nature and is not presented here. Figure 
11.4 shows a result of multi-dof curve fitting on an experimental frequency-transfer function, as 
collected from a civil engineering structure. Note the close match of the magnitude but not the 
phase angle. This analysis resulted in the resonant frequency and damping ratio values that are 
given in Table 11.2. Also note how the damping ratio decreases with the mode number.

11.3.5 A COMMENT ON STATIC MODES AND RIGID BODY MODES  

Some test systems may possess static modes, and rigid body modes (see Chapter 5) under rare
circumstances. Static modes arise in analytical models if one fails to assign an inertia (mass) element
for every degree of freedom. Rigid body modes arise in analytical models if proper restraints are
not provided for the inertia elements. In practice, however, static modes arise if a coordinate is
assigned to a dof that actually does not exist, or if some parts of the physical system are relatively
very light with stiff restraints (i.e., very high natural frequencies); and rigid body modes arise in
the presence of relatively very heavy components restrained by very flexible elements (i.e., very
low natural frequencies). Note that the assumed transfer function (11.55) allows for both these
extremes. Specifically, if static modes are present, it is necessary that the transfer function can be
expressed as a sum of a constant term (static mode) and an ordinary transfer function (without a
static mode). Hence, it will approach a non-zero constant value as the frequency ω increases. This
requires that m = p. If rigid body modes are present, the characteristic polynomial ∆(s) of the model
should have a factor s2. This corresponds to a0 = a1 = 0.  

11.3.6 RESIDUE EXTRACTION 

The estimated transfer function as given by equation (11.55) is in the form of the ratio of two
polynomials; the rational fraction form. This has to be converted into the partial fraction form
given by equation (11.17) in order to extract the residues (ψiψk)r that are needed for determining
the mode shapes. For this, the natural frequencies ωr and the modal damping ratios ζr should be
computed first. These are given by the roots of the characteristic equation (11.57) as

(11.64)
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Once these eigenvalues are known, by solving equation (11.57) using the estimated values for a0,
a1, …, ap–1, it is a straightforward task to compute the quadratic factors

(11.65)

Note from equation (11.17) that  

(11.66)

assuming distinct eigenvalues. This is true because when the partial fraction form is multiplied by
∆r(s), it will cancel out with the denominator of the partial fraction corresponding to the rth mode,
leaving its residue. Then, when s is set equal to λr , all the remaining partial fraction terms will
vanish due to the fact that ∆r(λr) = 0, provided that the eigenvalues are distinct. Since Gik(s) are
known from the estimated transfer functions, the residues can be computed using equation (11.66).

FIGURE 11.4 An example of multi-dof curve fitting on experimental data.

TABLE 11.2
Extracted Parameters in an Example of Experimental Modal Analysis

Mode No. Resonant Frequency (Hz) Damping Ratio (viscous)

1 1.773 × 102 1.170 × 10–2

2 3.829 × 102 8.149 × 10–3

3 6.145 × 102 6.033 × 10–3

4 7.018 × 102 5.931 × 10–3

5 9.839 × 102 4.580 × 10–3

6 1.190 × 103 3.676 × 10–3
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Finally, the mode shapes are determined using the procedure outlined earlier. Some curve-fitting
approaches are summarized in Box 11.2.

11.4 LABORATORY EXPERIMENTS

Testing and analysis are important in the practice of mechanical vibration and are integral in
experimental modal analysis. This section describes two experiments in the category of modal
testing. One experiment deals with a lumped-parameter system and the other with a distributed-
parameter (or continuous) system. Both experiments have direct practical implications and have
been used in an established undergraduate course in mechanical vibrations.

11.4.1 LUMPED-PARAMETER SYSTEM

A schematic representation of a prototype unit used in a laboratory for modal testing is shown in
Figure 11.5. A view of the experimental system is shown in Figure 11.6. The system is a crude
representation of an engine unit that is supported on flexible mounts and subjected to unbalance
forces and moments.

The test object is assumed to consist of lumped elements of inertia, stiffness, and damping.
The rectangular metal box, which represents the engine housing, is mounted on four springs and
damping elements at the four corners. Inside the box are two pairs of identical and meshed gears
that are driven by a single DC motor. Each gear has two slots at diametrically opposite locations
in order to place the eccentric masses. Various types of unbalance excitations can be generated by
placing the four eccentric masses at different combinations of locations on the gear wheels.

The drive motor is operated by a DC power supply with a speed control knob. The motor speed
(and hence the gear speed) is measured using an optical encoder that is mounted on the drive shaft.
It generates pulses as the encoder disk rotates with the shaft, in proportion to the angle of rotation.
The pulse frequency of the encoder determines the shaft speed. A pair of accelerometers with
magnetic bases are mounted on the top of the engine box. The locations that are used for this
purpose are indicated in Figure 11.5. Figure 11.6 shows, from left to right, the following components
of the experimental system:

BOX 11.2 Curve Fitting of Transfer Function Data

Single-Resonance Curve Fitting:
A. Viscous Damping:

1. Compute the mobility (velocity/force) function near resonance
2. Scale the data
3. Curve-fit to a circle in the Nyquist plane (Argand diagram).

B. Hysteretic Damping:
1. Compute receptance (displacement/force) function near resonance
2. Scale the data
3. Curve-fit to a circle in the Nyquist plane (Argand diagram).

Multi-Resonance Curve Fitting:
1. Compute a transfer function over the entire frequency range
2. Scale the data
3. Curve-fit to a general polynomial ratio with static and rigid body modes.
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1. Digital spectrum analyzer (The equipment in the background of this unit is not related
to the equpiment.)

2. A combined instrument panel consisting of a vibration meter, a tunable bandpass filter,
and a unit consisting of a conditioning amplifier and a phase meter

3. Power supply for the instrument panel, placed on top of the panel
4. Engine unit with two accelerometers mounted on top surface of the housing
5. Digital oscilloscope placed on a shelftop immediately above the engine unit
6. DC power supply and speed controller combination for the drive motor.

The phase meter measures the phase difference between two input signals. The tunable filter
is a bandpass filter, and it can be tuned by a fine-adjustment dial so that a signal in a very narrow
band (i.e., harmonic signal) can be filtered and measured. The vibration meter measures the
magnitude (peak or rms value) of a signal. The choice of a displacement value (i.e., double
integration), a velocity value (a single integration), or an acceleration value (no integration) is
available, and can be selected using a knob.

FIGURE 11.5 Schematic diagram of an experimental setup for modal testing in a laboratory.
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By placing the eccentric masses at various locations on the gear wheels, different modes can
be excited. For example, if all four eccentric masses are placed at the vertical radius location above
the rotating axis, that will generate a net harmonic force in the vertical direction as the motor is
driven. This will excite the heave (up and down) mode of the engine box. If the two masses on a
meshed pair are placed at the vertical radius location below the rotating axis while the masses on
the other meshed pair are placed vertically above the rotating axis, then it will result in a net
moment (pitch) about a central horizontal axis of the engine box. This will excite the pitch mode,
and so on. For a given arrangement of eccentric masses, two tests can be carried out: one in the
frequency domain and the other in the time domain.

Frequency-Domain Test

Choose the “displacement” setting of the vibration meter. Start the motor and maintain the speed
at a low value (e.g., 4 Hz). Tune the filter, using its dial, until the vibration meter reading becomes
the largest. The tuned frequency will be, in the ideal case, equal to the motor speed. Record the
motor speed (i.e., the excitation frequency) and the magnitude of the displacement response.
Increase the motor speed in 1-Hz steps and repeat the measurements, up to a reasonably high
frequency, covering at least one resonance (i.e., 25 Hz). Reduce the speed in steps of 1 Hz and
repeat the measurements. Take some more measurements in the neighborhood of each resonance
using smaller frequency steps. Plot the data, as a frequency spectrum, after compensating for the
fact that the amplitude of the excitation force increases with the square of the drive speed (hence,
divide the vibration magnitudes by square of the frequency). This experiment can be used, for
example, to measure mode shapes, resonant frequencies, and damping ratios (by the half-power
bandwidth method). The analytical details are found in Chapters 3 and 7.

FIGURE 11.6 A view of an experimental setup for modal testing. (Courtesy of the University of British
Columbia. With permission.)
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Time-Domain Tests

A test can be conducted, by using the logarithmic decrement method, to determine the damping
ratio corresponding to a particular mode. Here, first pick the eccentric mass arrangement so as to
excite the desired mode. Then increase the motor speed and then fine-tune the operation at the
desired resonance. Maintain a steady speed at this condition, and observe the accelerometer signal
using the oscilloscope, while making sure that at least ten complete cycles can be viewed on the
screen. Suddenly, turn off the motor and record the decay of the acceleration signal using the
oscilloscope. Analytical details are found in Chapters 2 and 7.

Another test that can be carried out is an impact (hammer) test. Here, use the spectrum analyzer
to record and analyze the vibration response of the engine box, through an accelerometer. Gently
tap the engine box in different critical directions (e.g., at points A, B, C, and D in the vertical
direction, in Figure 11.5; or in the horizontal direction on the side of the engine box in the
neighborhood of these points) and acquire the vibration signal using the spectrum analyzer. Process
the signal using the spectrum analyzer, obtain the resonant frequencies, and compare them with
those obtained from sine testing.

11.4.2 DISTRIBUTED-PARAMETER SYSTEM

All real-life vibrating systems have continuous components. However, one often makes distributed-
parameter assumptions, depending on the properties and the operating frequency range of the
vibrating system. When a lumped-parameter approximation is not adequate, a distributed-parameter
analysis will be needed. Modal testing and comparison with analytic results can validate an
analytical model.

The response of a distributed-parameter system will depend on the boundary conditions (sup-
porting conditions) as well as the initial conditions. For forced excitations, the response will depend
on the nature of the excitation as well. Natural frequencies and mode shapes are system character-
istics and will depend on the boundary conditions, but not on the initial conditions and forcing
excitations. This subject is discussed in Chapter 6.

Consider the experimental setup schematically represented in Figure 11.7. A view of the setup
is shown in Figure 11.8. The device that is tested is a ski. For analytical purposes, it can be
approximated as a thin beam (see Chapter 6 for the Bernoulli-Euler beam model). The objective
of the test is to determine the natural frequencies and mode shapes of the ski. Because the significant
frequency range of the excitation forces on a ski, during use, is below 15 Hz, it is advisable to
determine the modal information in the frequency range of about double the operating range (i.e.,
0 Hz to 30 Hz). In particular, in the design of a ski, natural frequencies below 15 Hz should be
avoided, while keeping the unit as light and strong as possible. These are conflicting design
requirements. It follows that modal testing can play an important role in the design development
of a ski.

Consider the experimental setup sketched in Figure 11.7. The ski is firmly supported at its
middle, on the electrodynamic shaker. Two accelerometers are mounted on either side of the support
and are movable along the ski. The accelerometer signals are acquired and conditioned using charge
amplifiers. The two signals are observed in the x-y mode of the digital oscilloscope so that both
the amplitudes and the phase difference can be measured. The sine-random signal generator is set
to the sine mode so that a harmonic excitation is generated at the shaker head. The shape of the
motion can be observed in slow motion by illuminating the ski with the hand-held stroboscope,
with the strobe frequency set to within about ±1 Hz of the excitation frequency.

In the experimental system shown in Figure 11.8, one observes, from left to right, the following
components:
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1. Electrodynamic shaker with the ski mounted on its exciter head; two accelerometers are
mounted on the ski

2. Hand-held stroboscope, placed beside the shaker
3. Power amplifier for driving the shaker, placed on top of the side table

FIGURE 11.7 Schematic diagram of a laboratory setup for modal testing of a ski.

FIGURE 11.8 A view of the experimental system for modal testing of a ski. (Courtesy of the University of
British Columbia. With permission.)
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4. Two charge amplifiers placed on top of the power amplifier and connected to the
accelerometers

5. Sine-random signal generator, placed on the tabletop, next to the amplifier
6. Digital oscilloscope
7. Static load-deflection measurement device for determining the modulus of rigidity (EI)

of the ski (placed on the floor below the intstrument table).

Prior to modal testing, the modulus of rigidity of the ski is determined by supporting it on the two
smooth end pegs of the loading structure, and loading at the mid-span using incremental steps of
500-g weights up to 4.0 kg, placed on a scale pan that is suspended at the mid-span of the ski. The
mid-span deflection of the ski is measured using a spring-loaded dial gage that is mounted on the
loading structure. If the mid-span stiffness (force/deflection) as measured in this manner is k, it is
known that the modulus of rigidity is

(11.67)

where l is the length between the support points of the ski. Note that this formula is for a simply
supported ski, which is the case in view of the smooth supporting pegs. Also, weigh the ski and
then compute m = mass per unit length. With this information, the natural frequencies and mode
shapes can be computed for various end conditions, as discussed in Chapter 6. In particular, compute
this modal information for the following supporting conditions:

1. Free-free
2. Clamped at the center

Next, perform modal testing using the experimental setup and compare the results with those
computed using the analytical formulation.

The natural frequencies (actually, resonant frequencies, which are almost equal to the natural
frequencies in the present case of light damping) can be determined by increasing the frequency
of excitation in small steps using the sine generator and noting the frequency values at which the
amplitudes of the accelerometer signals reach local maxima, as observed on the oscilloscope screen.
A mode shape is measured as follows: first detect the corresponding natural frequency as above;
while maintaining the shaker excitation at this frequency, place the accelerometer near the shaker
head, and then move the other accelerometer from one end of the ski to the other in small steps
of displacement and observe the amplitude ratio and the phase difference of the two accelerometer
signals, using the oscilloscope. Note that in-phase signals mean that the motions of the two points
are in the same direction, and the out-of-phase signals mean that the motions are in opposite
directions. The mode shapes can be verified by observing the modal vibrations in slow motion,
using the stroboscope, as indicated before. Node points are the vibration-free points. They can be
detected from the mode shapes. In particular, a tiny piece of paper will remain stationary at a node
while making large jumps on either side of the node. Also, the phase angle of the vibration signal,
as measured by an accelerometer, will jump by 180° if the accelerometer is carefully moved across
a node point.

11.5 COMMERCIAL EMA SYSTEMS

Commercially available experimental modal analysis (EMA) systems typically consist of an FFT
analyzer, a modal analysis processor, a graphics terminal, and a storage device. Digital plotters,
channel selectors, hard copy units, and other accessories can be interfaced, and the operation of

EI
kl=

3
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the overall system can be coordinated through a host computer to enhance its capability. The
selection of hardware for a particular application should address specific objectives as well as
hardware capabilities. Software selection is equally important. Proper selection of an EMA system
is difficult unless the underlying theory is understood — in particular, determination of transfer
functions via FFT analysis; extraction of natural frequencies, modal damping ratios, and mode
shapes from transfer function data; and the construction of mass, stiffness, and damping matrices
from modal data should be considered. The underlying theory has been presented in this chapter.
The present section describes the features of a typical experimental modal analysis system.

11.5.1 SYSTEM CONFIGURATION

The extraction of modal parameters from dynamic test data is essentially a two-step procedure
consisting of (1) FFT analysis and (2) modal analysis.

In the first step, appropriate frequency transfer functions are computed and stored. These raw
transfer functions form the input data for the subsequent modal analysis, yielding modal parameters
(natural frequencies, damping ratios, and mode shapes) and a linear differential equation model
for the dynamic system (test object).

FFT Analysis Options 

The basic hardware configuration of a commercial modal analysis system is shown in Figure 11.9.
Notice that the FFT analyzer forms the front end of the system. The excitation signal and the
response measurements can be transmitted on-line to the FFT analyzer (through charge amplifiers
for piezoelectric sensors); many signals can be transmitted simultaneously in the multiple-channel
case. Alternatively, all measurements can first be recorded on a multiple-track FM tape and
subsequently fed into the analyzer through a multiplexer. In the first case, it would be necessary
to take the FFT analyzer to the test site; an FM tape recorder is needed at the test site in the second
case.

Through advances in microelectronics and LSI technology, the FFT analyzer has rapidly
evolved into a powerful yet compact instrument that is often smaller in size than the conventional
tape recorder used in vibration data acquisition; either device can be used in the field with equal
convenience. On-site FFT analysis, however, allows one to identify and reject unacceptable
measurements (e.g., low signal levels and high noise components) during data acquisition, so that
alternative data that might be needed for a complete modal identification can be collected without
having to repeat the test at another time. The main advantage of the FM tape method is that data
are available in analog form, free of quantization error (digital word-size dependent), aliasing
distortion (data sampling-rate dependent), and signal truncation error (data block-size dependent).

FIGURE 11.9 The configuration of a commercial experimental modal analysis system.
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Sophisticated analog filtering is often necessary, however, to remove extraneous noise entering
from the recording process (e.g., line noise and tape noise), as well as from the measurement
process (e.g., sensor and amplifier noise).

The analog-to-digital converter (ADC) is normally an integral part of the analyzer (see Chapter 9).
The raw transfer functions, once computed, are stored on a floppy disk (or hard disk) as the “transfer
function file.” This constitutes the input data file for modal extraction. Some analyzers, instead,
compute power spectral densities with respect to the excitation signal, and store these in the data
file. From these data, it is possible to instantly compute coherence functions, transfer functions,
and other spectral information using keyboard commands. Another procedure has been to compute
Fourier spectra of all signals and store them as raw data, from which other spectral functions can
be conveniently computed. Most analyzers have small CRT screens to display spectral results. Low-
coherent transfer functions are detected by analytical or visual monitoring, and are automatically
discarded.

In principle, the same processor can be used for both FFT analysis and modal analysis. Some
commercial modal analysis systems use a plug-in programmable FFT card in a common processor
cage. Historically, however, the digital FFT analyzer was developed as a stand-alone hardware unit
to be used as a powerful measuring instrument, rather than just as a data processor, in a wide variety
of applications. Uses include measurement of resonant frequencies and damping in vibration
isolation applications, measurement of phase lag between two signals, estimation of signal noise
levels, identification of the sources of noise in measured signals, and measurement of correlation
in a pair of signals. Because of this versatility, most modal analysis systems do come with a standard
FFT analyzer unit as the front end, and a separate computer for modal analysis.

Modal Analysis Components 

In addition to the transfer function file, the modal analysis processor needs geometric information
about the test object; typically, coordinates of the mass points and directions of the degrees of
freedom. This information is stored in a “geometry file.” The results of modal analysis are usually
stored in two separate files: the “parameter file,” containing natural frequencies, modal damping
ratios, mass matrix, stiffness matrix, and damping matrix; and the “mode shape file,” containing
mode shape vectors that are used for graphics display and printout. Individual modes can be
displayed on the CRT screen of the graphics monitor, either as a static trace or in animated (dynamic)
form. The graphics monitor and printer are standard components of the system. The entire system
can be interfaced with other peripheral I/O devices using an IEEE-488 interface bus or the somewhat
slower serial RS-232 interface. For example, the overall operation can be coordinated, and further
processing done, using a host computer. A desktop (personal) computer can be substituted for the
modal analysis processor, graphics monitor, and storage devices in the standard system, resulting
in a reasonable reduction of the overall cost as well. An alternative configuration that is particularly
useful in data transfer and communication from remote test sites uses a voice-grade telephone line
and a modem coupler to link the FFT analyzer to the main processor.

PROBLEMS

11.1 Describe the equipment needed to obtain test data for use in experimental modal analysis.
Describe hardware and software components in a commercial modal analysis system.

11.2 List the main steps of experimental modal analysis, starting with the measurement of
force-response time histories and ending with the computation of the mass, stiffness, and
damping matrices.

Consider a six-degree-of-freedom system. The transfer-function matrix G(jω) is sche-
matically represented as in Figure P11.2. How many transfer function measurements are
needed in order to extract the M, K, and C matrices? Two possibilities are marked as
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1 and 2 in solid lines. Is there an z set here? Is there an acceptable set?
Explain your answers?

11.3 Explain under what conditions the circle fit method can be used to extract modal
parameters in multi-degree-of-freedom (multi-resonance) transfer functions.
Consider a single-degree-of-freedom vibrating system with mass m, stiffness k, and
hysteretic damping constant h. The system is supported on a rigid floor and a force f is
applied to the mass element. The response (output) is the displacement of the mass.
Write the time-domain (differential equation) model and the frequency-domain (transfer
function) model for the system.
Show that the Nyquist plot of this transfer function (receptance) is a circle.

11.4 In the frequency domain, receptance = displacement/force; mobility = velocity/force;
accelerance = acceleration/force. Table P11.4 gives normalized expressions for these
three frequency transfer functions in the standard case of a single-degree-of-freedom
mechanical system with  
a. Viscous damping
b. Hysteretic damping.
Note that r = ω/ωn, where ω is the excitation frequency and ωn is the undamped natural
frequency; ζ is the damping ratio in the case of viscous damping; and d = h/k, where
h = hysteretic damping parameter and k = system stiffness.

Generate the Nyquist plots (i.e., real part vs. imaginary part) of the frequency-transfer
functions as r varies from 0 to 50, for the two cases ζ = 0.1 and d = 0.2. Discuss the
nature of these plots.  

11.5 Consider a standard single-degree-of-freedom vibrating system that is given by

in which m, b, and k are the inertia, viscous damping constant, and the stiffness; y is the
displacement response; and f(t) is the forcing excitation.
a. What is the mobility function, in the frequency domain, as a function of frequency ω?
b. For small frequencies of excitation, what is the slope of the mobility magnitude plot

in a log–log scale (i.e., in dB per decade)?
c. For large frequencies of excitation, what is the slope of the mobility magnitude plot

in dB per decade?

FIGURE P11.2 Example sets of transfer function measurements.

my by ky f t˙̇ ˙+ + = ( )
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d. Suppose that a mobility plot of a vibrating system was made near a resonance, using
experimental data. If the points very close to the resonance do not have an adequate
resolution, how would you estimate the resonant frequency from this data? Assume
that the other possible modes of the system are located far away from the present
resonance.       

11.6 A two-link space robot with two identical links, each with length 10 m and mass 400 kg,
was tested for its natural frequencies using the arrangement illustrated in Figure P11.6(a).
First, the two joints were locked. A hammer impact was made in the lateral direction

TABLE P11.4
Normalized Frequency Response Functions for Single-dof Curve Fitting

Frequency Response
Function With Viscous Damping With Hysteretic Damping

Receptance

Mobility

Accelerance

FIGURE P11.6 (a) An instrumented two-link space robot, and (b) an equivalent approximate model.
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near the first joint, and the resulting response near the second joint, in the lateral direction,
was measured using an accelerometer. The response signal was processed using a spec-
trum analyzer. The resulting primary resonance was found to be at 0.35 Hz. This result
is verified analytically in the following manner. First, the robot system is approximated
as a cantilever of length 10 m and mass 400 kg, with a lumped end mass 400 kg, as
shown in Figure P11.6(b). Next, the fundamental natural frequency is computed using
the standard formula for a Bernoulli-Euler beam (see Table 6.3)

where

FIGURE P11.7 Three possible configurations of counter-rotating eccentric masses.

FIGURE P11.8 A free decay signal (approximately 11 Hz) of a mechanical system.

ω λ1 1
2= EI

m
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l = length of the cantilever = 10.0 m
m = mass per unit length = 40.0 kg·m–1

EI = modulus of rigidity of the cantilever
= 8.25 × 105 N·m2 (given)

λ1 = mode shape parameter for mode 1.

The following two approaches are used:
a. Assume a heavy uniform beam with a lumped end mass with end mass/beam mass

ratio = 1.0. In this case, it is known that the exact solution is λ1l = 1.2479.
b. Compute the fundamental natural frequency of a uniform cantilever of length 10 m

and mass 400 kg, without an end mass. In this case, λ1l = 1.8751. Also, the lateral
stiffness at the free end of a cantilever is known to be

From this, compute the equivalent end mass meq that will give the same natural frequency
as that obtained for the cantilever without an end mass. Finally, compute the natural
frequency for a light cantilever of stiffness k and a combined end mass ml + meq, where
ml = mass of 2nd link = 400 kg.

Compare the results from the two methods (a) and (b), with that obtained experimentally.
11.7 Consider the experimental system shown in Figure 11.5, consisting of an engine unit

with unbalance excitations. Three possible configurations for locating the eccentric
masses are shown in Figure P11.7. Give the directions of the resulting excitation forces
in each case, and discuss what modes of vibration of the engine unit would be excited
by these forces.  

11.8 A test object was excited in one of its modes of vibration using a shaker. Then, the shaker
was suddenly turned off and the decaying response of the test object was recorded. The
resulting time history is shown in Figure P11.8. Estimate the equivalent viscous damping
ratio of the object in this mode.   
A sine dwell test was conducted on the test object in a frequency band containing the
resonance, using sufficiently small frequency steps. The magnitude of the frequency-
response function (response/excitation) was plotted and the resonant peak was estab-
lished, which corresponds to the same mode of vibration as for the previous test. The
half-power frequencies were found from the response spectrum. They are f1 = 10.2 Hz
and f2 = 11.0 Hz. Estimate the viscous damping ratio using this information, and comment
on the accuracy of the result.

11.9 Three mode shapes of a beam, as determined analytically using the Bernoulli-Euler
model, are shown in Figure P11.9. Guess the boundary conditions of the beam. What
are the practical difficulties that one would encounter in experimental determination of
these mode shapes?

11.10 A modal test was performed on an aluminum I-beam. A mode shape that was deter-
mined is shown in Figure P11.10 (a). Next, a known mass (1 kg) was attached at one
corner of an end plate and the test was repeated. The resulting mode shape is shown
in Figure P11.10(b). The frequency-response function between the exciter location and
the response location, determined using a shaker test, is shown in Figure P11.10(c)
for the I-beam with an extra mass. Identify which curve corresponds to the beam with
the extra mass. Indicate an application where experimental procedures of this type are
useful.         

k
f
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11.11 A vibration test was carried out by exciting a mechanical system at the degree of
freedom 1 and then measuring the response at the degrees of freedom 1, 2, and 3. This
procedure is schematically shown in Figure P11.11. The frequency-response functions

FIGURE P11.9 Shapes of the first three vibrating modes of a beam.

FIGURE P11.10(a) A mode shape of an aluminum I-beam.
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G11, G21, and G31 are computed from the test results and the undamped natural frequen-
cies ωi , the modal damping ratios ζ i, and the residues Rij are determined, as given in
Table P11.11.
Determine:
a. the mode shape vectors of the first three modes
b. the modal matrix

FIGURE P11.10(b) The mode shape when an extra mass is attached.

FIGURE P11.10(c) The frequency response function between an excitation–response location pair.
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c. the modal mass, modal stiffness, and modal damping matrices.
Indicate how the mass, stiffness, and damping matrices of the system can be determined
from these results. What is a shortcoming of the resulting dynamic model?

11.12 The first step in selecting a modal analysis system for a particular application is to
understand the specific needs of that application. For industrial applications of modal
testing, the following requirements are typically adequate:  

FIGURE P11.11 Schematic representation of a modal testing procedure.

TABLE P11.11
Results from an Experimental Modal Analysis

Mode
Number

Undamped
Natural

Frequency
(rad·s–1)

Damping
Ratio

(viscous)

Residues of

G11 G21 G31

1 1.726 × 102 1.137 × 10–2 0.53 –0.44 0.73
2 3.730 × 102 7.910 × 10–3 0.38 0.62 –0.65
3 5.796 × 102 5.658 × 10–3 0.16 0.24 0.41

TABLE P11.12
Comparative Data for Four Modal Analysis Systems

Description System A System B System C System D

Number of weighting window options available 3 10 5 4
Analyzer data channels 2 2 2 2
Max. degrees of freedom per analysis 750 @ 20 modes 450 725 @ 5 modes 750
Max. number of modes analyzed 50 @ 250 dof 20 10 (typical) 64
Multi-degree-of-freedom curve fitting Yes Yes No Yes
FFT resolution (usable spectral lines/512) 400 400 400 400
Zoom analysis capability in FFT Yes Yes Yes Optional
Statistical error-band analysis No No No No
Static mode-shape extremes Yes Yes Yes Yes
Animated graphics capability Yes Yes Yes Yes
Color graphics capability No Yes No No
Hidden-line display No No No No
Color printing No No Yes No
Structural mass and stiffness matrices No No No Yes
Approximate cost $30,000 $20,000 $25,000 $50,000
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i. acceptance of a wide range of measured signals having a variety of transient and
frequency band characteristics

ii. capability of handling up to 300 degrees of freedom of measured data in a single analysis
iii. FFT with frequency resolution of at least 400 spectral lines per 512
iv. zoom analysis capability
v. capability of performing statistical error-band analysis

vi. static display and plot of mode-shape extremes
vii. animated (dynamic) display of mode shapes

viii. color graphics
ix. hidden-line display
x. color printing with high line resolution

xi. capability of generating an accurate time-domain model (mass, stiffness, and damping
matrices).

The capabilities of four representative modal analysis systems are summarized in
Table P11.12. Give a comparative evaluation of these systems.

11.13 Experimental modal analysis is capable of determining a complete dynamic model (i.e.,
the mass, stiffness, and damping matrices) of a system. What is the basic requirement
with respect to the number of responses that are measured from the test object, in realizing
this complete model?

FIGURE P11.15 A planar model of a vehicle.
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In addition to the extensive computational effort needed for a complete model identifi-
cation, list several reasons why such an exercise could become futile in practice.

11.14 Experimental modal analysis (EMA) is carried out on “real” systems that have some
energy dissipation (damping). However, a fundamental assumption that is made in EMA
is the existence of normal (real) modes. Consider the damped system represented by 

in the usual notation. Denote the modal matrix by , where the mode shapes are M-normal.
a. Show that M–1 = T

b. Show that the damped system and the undamped system have the same (real, normal)
modes if and only if the two matrices M–1C and M–1K commute, for a general K and
a non-singular M.

11.15 A five-degree-of-freedom planar model of an automobile with a passenger seat is shown
in Figure P11.15. Lumped masses m1 through m4, body moment of inertia I, lumped
stiffnesses k1 through k5, and the corresponding damping constants c1 through c5 are used
in the model as shown. Vertical displacements at various degrees of freedom are denoted
by y1 through y4. Vehicle pitch angle is denoted by θ. Displacement inputs at the front
and rear wheels are uf and ur, respectively.

The following parameter values are given:

a. Obtain the mass matrix, stiffness matrix, and damping matrix of the system.
b. Compute undamped natural frequencies and damped natural frequencies of the system.

Compare the values and discuss whether the model is realistic.
c. Determine all five mode shapes of the system, assuming that real modes exist. Is this

assumption true for the given damping matrix? Explain your answer.
11.16 A normalized transfer function obtained in an experimental procedure is given by

Discuss the nature of the physical system on the basis of this information. In particular,
comment on the nature of the modes. Determine the natural frequencies and damping
ratios of the oscillatory modes.

i = 1 2 3 4 5

mi (lb) 100 100 300 5000 —
ki (lb·in–1) 500 500 100 1500 1500
ci (lb·s·in–1) 25 25 15 5 5
li (in) 50 75 10 — —
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12 Vibration Design and Control
It has been pointed out that there are desirable and undesirable types and situations of mechanical
vibration. This chapter discusses ways of either eliminating or reducing the undesirable effects of
vibration. Undesirable vibrations are those that cause human discomfort and hazards, structural
degradation and failure, performance deterioration and malfunction of machinery and processes,
and various other problems. General approaches to vibration mitigation can be identified from the
dynamic systems point of view.

Consider the schematic diagram of a vibratory system shown in Figure 12.1. Forcing excitations
f(t) to the mechanical system S cause the vibration responses y. The objective here is to suppress
y to a level that is acceptable. Clearly, there are three general ways of doing this.

1. Isolation: Suppress the excitations of vibration. This method primarily deals with f.
2. Design modification: Modify or redesign the mechanical system so that, for the same

levels of excitation, the resulting vibrations are acceptable. This method deals with S.
3. Control: Absorb or dissipate the vibrations, using external devices, through implicit or

explicit sensing and control. This method primarily deals with y.
Within each of these three categories, several approaches can be used to achieve the objective

of vibration mitigation. Essentially, all these approaches involve designing (either complete redesign
or incremental design modification) of the system on the one hand, and controlling the vibration
through external means (passive or active devices) on the other. The analytical basis for many such
approaches was presented in previous chapters. Further analytical procedures will be given in the
present chapter. Note that removal of faults (e.g., misalignments and malfunctions by repair or parts
replacement) can also remove vibrations. This may fall into any of the three categories listed above,
but primarily into the second category of modifying S.

The category of vibration isolation involves “isolating” a mechanical system (S) from vibration
excitations (f) so that the excitation signals are “filtered” out or dissipated prior to reaching the
system. The use of properly designed suspension systems, mounts, and damping layers falls within
this category. The category of design modification involves making changes to the components and
the structure of a mechanical system according to a set of specifications and design guidelines.
Balancing of rotating machinery, and structural modification through modal analysis and design
techniques, fall into this category. The category of control involves either passive devices (which
do not use external power) such as dynamic absorbers and dampers, or active control devices (which
need external power for operation). In the passive case, the control device implicitly senses the
vibration response and dissipates it (as in the case of a damper), or absorbs and stores its energy
where it is slowly dissipated (as in the case of a dynamic absorber). In the active case, the vibrations
y are explicitly sensed through sensors and transducers; what forces should be acted on the system
to counteract and suppress vibrations are determined by a controller; and the corresponding forces
or torques are applied to the system through one or more actuators.

Note that there may be some overlap in the three general categories of vibration mitigation
mentioned above. For example, the addition of a mount (category 1) can also be interpreted as a
design modification (category 2) or as incorporating a passive damper (category 3). It should be
noted as well that the general approach commonly known as that source alteration may fall into
either category 1 or category 2. The purpose in this case is to alter or remove the source of vibration.
The source could be either external (e.g., road irregularities that result in vehicle vibrations), a
category 1 problem; or internal (imbalance or misalignment in rotating devices that results in periodic
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forces, moments, and vibrations), a category 2 problem. It can be more difficult for a system user
to alter external vibration sources (e.g., resurfacing the roadways) than to modify the internal sources
(e.g., balancing of rotating machinery). Furthermore, the external source of vibration can be quite
random and also may not be accessible at all for alteration (e.g., aerodynamic forces on an aircraft).
The present chapter will address some useful topics on the design for vibration suppression and the
control of vibration. Typically, a set of vibration specifications is given as simple threshold values
(bounds) or frequency spectra, and the goal is to either design or control the system so as to meet
these specifications.

SHOCK AND VIBRATION

Sometimes, response to shock loads are considered separately from response to vibration excitations
for the purpose of design and control of mechanical systems. For example, shock isolation and
vibration isolation are treated under different headings in some literature. This is actually not
necessary. Although vibration analysis predominantly involves periodic excitations and responses,
transient and random oscillations (vibrations) are also commonly found in practice. The frequency
band of the latter two types of signals is much broader than that of a simple periodic signal. A
shock signal is transient by definition, and has a very short duration (in comparison to the predom-
inant time constants of the mechanical system to which the shock load is applied). Hence, it will
possess a wide band of frequencies. Consequently, frequency-domain techniques are still applicable.
Time-domain techniques are particularly suited to dealing with transient signals in general, and
shock signals in particular. In that context, a shock excitation can be treated as an impulse whose
effect is to instantaneously change the velocity of an inertia element. Then, in the time domain, a
shock load can also be treated as an initial-velocity excitation of an otherwise free (unforced) system.

12.1 SPECIFICATION OF VIBRATION LIMITS

Design and control procedures of vibration have the primary objective of ensuring that, under
normal operating conditions, the system of interest does not encounter vibration levels that exceed
the specified values. In this context, then, the ways of specifying vibration limits become important.
This section will present some common ways of vibration specification.

FIGURE 12.1 A vibrating mechanical system.
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12.1.1 PEAK LEVEL SPECIFICATION

Vibration limits for a mechanical system can be specified either in the time domain or in the
frequency domain. In the time domain, the simplest specification is the peak level of vibration
(typically acceleration in units of g, the acceleration due to gravity). Then, the techniques of
isolation, design, or control should ensure that the peak vibration response of the system does not
exceed the specified level. In this case, the entire time interval of operation of the system is
monitored and the peak values are checked against the specifications. Note that in this case, it is
the instantaneous peak value at a particular time instant that is of interest, and what is used in
representing vibration is an instantaneous amplitude measure rather than an average amplitude or
an energy measure.

12.1.2 RMS VALUE SPECIFICATION

The root-mean-square (rms) value of a vibration signal y(t) is given by the square root of the
average (mean value) of the squared signal:

(12.1)

Note that by squaring the signal, its sign is eliminated and essentially the energy level of the signal
is used. The period T over which the squared signal is averaged will depend on the problem and
the nature of the signal. For a periodic signal, one period is adequate for averaging. For transient
signals, several time constants (typically four times the largest time constant) of the vibrating system
will be sufficient. For random signals, a value that is as large as feasible should be used.

In the method of rms value specification, the rms value of the acceleration response (typically,
acceleration in gs) is computed using equation (12.1) and is then compared with the specified value.
In this method, instantaneous bursts of vibration do not have a significant effect because they are
filtered out as a result of the integration. It is the average energy or power of the response signal
that is considered. The duration of exposure enters into the picture indirectly and in an undesirable
manner. For example, a highly transient vibration signal can have a damaging effect in the beginning;
but the larger the T that is used in equation (12.1), the smaller the computed rms value. Hence, the
use of a large value for T in this case would lead to diluting or masking the damage potential. In
practice, the longer the exposure to a vibration signal, the greater the harm caused by it. Hence,
when using specifications such as peak and rms values, they have to be adjusted according to the
period of exposure. Specifically, larger levels of specification should be used for longer periods of
exposure.

12.1.3 FREQUENCY-DOMAIN SPECIFICATION

It is not quite realistic to specify the limitation to vibration exposure of a complex dynamic system
by just a single threshold value. Usually, the effect of vibration on a system depends on at least
the following three parameters of vibration:

1. Level of vibration (peak, rms, power, etc.)
2. Frequency content (range) of excitation
3. Duration of exposure to vibration.

This is particularly true because the excitations that generate the vibration environment may not
necessarily be a single-frequency (sinusoidal) signal and may be broad-band and random; and
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furthermore, the response of the system to the vibration excitations will depend on its frequency-
transfer function, which determines its resonances and damping characteristics. Under these circum-
stances, it is desirable to provide specifications in a nomograph, where the horizontal axis gives
frequency (Hz) and the vertical axis could represent a motion variable such as displacement (m),
velocity (m·s–1), or acceleration (m·s–2 or g). It is not very important which of these motion variables
represents the vertical axis of the nomograph. This is true because, in the frequency domain,

and one form of motion can be easily converted into one of the remaining two motion representa-
tions. In each of the forms, assuming that the two axes of the nomograph are graduated in a
logarithmic scale, the constant displacement, constant velocity, and constant acceleration lines are
straight lines.

Consider a simple specification of machinery vibration limits as given by the following values:

This specification can be represented in a velocity vs. frequency nomograph (log–log) as in Figure 12.2.
Usually, such simple specifications in the frequency domain are not adequate. As noted before,

the system behavior will vary, depending on the excitation frequency range. For example, motion
sickness in humans might be predominant in low frequencies in the range of 0.1 Hz to 0.6 Hz, and
passenger discomfort in ground transit vehicles might be most serious in the frequency range of 4

FIGURE 12.2 Operating vibration specification (nomograph) for a machine.
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Hz to 8 Hz for vertical motion and 1 Hz to 2 Hz for lateral motion. Also, for any dynamic system,
particularly at low damping levels, the neighborhoods of resonant frequencies should be avoided
and, hence, should be specified by low vibration limits in the resonant regions. Furthermore, the
duration of vibration exposure should be explicitly accounted for in specifications. For example,
Figure 12.3 presents a ride comfort specification for a ground transit vehicle, where lower vibration
levels are specified for longer trips.

Before leaving this section, it should be noted that the specifications of concern in the present
context of design and control are upper bounds of vibration. The system should perform below
(within) these specifications under normal operating conditions. Test specifications, as discussed
in Chapter 10, are lower bounds. The test should be conducted at or above these vibration levels
so that the system will meet the test specifications. Some considerations of vibration engineering
are summarized in Box 12.1.

12.2 VIBRATION ISOLATION

The purpose of vibration isolation is to “isolate” the system of interest from vibration excitations
by introducing an isolator   in between them. Examples of isolators are machine mounts and vehicle
suspension systems. Two general types of isolation can be identified:

1. Force isolation (related to force transmissibility)
2. Motion isolation (related to motion transmissibility).

FIGURE 12.3 A severe-discomfort vibration specification for ground transit vehicles.
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In force isolation, vibration forces that would be ordinarily transmitted directly from a source
to a supporting structure (isolated system) are filtered out by an isolator through its flexibility
(spring) and dissipation (damping) so that part of the force is routed through an inertial path.
Clearly, the concepts of force transmissibility are applicable here. In motion isolation, vibration
motions that are applied at a moving platform of a mechanical system (isolated system) are absorbed
by an isolator through its flexibility and dissipation so that the motion transmitted to the system
of interest is weakened. The concepts of motion transmissibility are applicable in this case. The
design problem in both cases is to select applicable parameters for the isolator so that the vibrations
entering the system are below specified values within a frequency band of interest (the operating
frequency range).

Force transmissibility and motion transmissibility were studied in Chapter 3, but the main
concepts are revisited here. Figure 12.4(a) gives a schematic model of force transmissibility through
an isolator. Vibration force at the source is f(t). In view of the isolator, the source system (with
impedance Zm) is made to move at the same speed as the isolator (with impedance Zs). This is a
parallel connection of impedances, as noticed in Chapter 3. Hence, the force f(t) is split so that
part of it is taken up by the inertial path (broken line) of Zm, and only the remainder (fs) is transmitted
through Zs to the supporting structure, which is the isolated system. As derived in Chapter 3, force
transmissibility is

(12.2)

Figure 12.4(b) gives a schematic model of motion transmissibility through an isolator. Vibration
motion v(t) of the source is applied through an isolator (with impedance Zs and mobility Ms) to the
isolated system (with impedance Zm and mobility Mm). The resulting force is assumed to transmit

BOX 12.1 Vibration Engineering

Vibration Mitigation Approaches:
• Isolation (buffers system from excitation)
• Design modification (modifies the system)
• Control (senses vibration and applies a counteracting force: passive/active).

Vibration Specification:
• Peak and rms values
• Frequency-domain specs on a nomograph

—Vibration levels
—Frequency content
—Exposure duration.

Note:

Limiting Specifications:
• Operation (design) specs: Specify upper bounds
• Testing specs: Specify lower bounds.
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directly from the isolator to the isolated system and, hence, these two units are connected in series
(see Chapter 3). Consequently, one obtains the motion transmissibility:

(12.3)

It is noticed, according to these two models,

(12.4)

FIGURE 12.4 (a) Force isolation; (b) motion isolation; (c) force isolation example; and (d) motion isolation
example.
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As a result, the concepts of force transmissibility and motion transmissibility can usually be studied
using just one common transmissibility function T.

Simple examples of force isolation and motion isolation are shown in Figure 12.4(c) and (d).
As derived in Chapter 3, for both cases, the transmissibility function is given by

(12.5)

where ω is the frequency of vibration excitation. Note that the model (12.5) is not restricted to
sinusoidal vibrations. Any general vibration excitation can be represented by a Fourier spectrum,
which is a function of frequency ω. Then, the response vibration spectrum is obtained by multiplying
the excitation spectrum by the transmissibility function T. The associated design problem is to
select the isolator parameters k and b to meet the specifications of isolation.

Equation (12.5) can be expressed as

(12.6)

where 

 = undamped natural frequency of the system

 = damping ratio of the system.

Equation (12.6) can be written in the nondimensional form

(12.7)

where the nondimensional excitation frequency is defined as

The transmissibility function has a phase angle as well as magnitude. In practical applications, it
is the level of attenuation of the vibration excitation that is of primary importance, rather than the
phase difference between the vibration excitation and the response. Accordingly, the transmissibility
magnitude

(12.8)

is of interest. It can be shown that �T� < 1 for r > , which corresponds to the isolation region.

Hence, the isolator should be designed such that the operating frequencies ω are greater than ωn.
Furthermore, a threshold value for �T� would be specified, and the parameters k and b of the isolator
should be chosen so that �T� is less than the specified threshold in the operating frequency range
(which should be given). This procedure can be illustrated using an example.
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EXAMPLE 12.1

A machine tool and its supporting structure are modeled as the simple mass–spring–damper system
shown in Figure 12.5.

a. Draw a mechanical-impedance circuit for this system in terms of the impedances of the
three elements: mass (m), spring (k), and viscous damper (b).

b. Determine the exact value of the frequency ratio r in terms of the damping ratio ζ, at which
the force transmissibility magnitude will peak. Show that for small ζ, this value is r = 1.

c. Plot �Tf� versus r for the interval r = [0, 5], with one curve for each of the five ζ values
0.0, 0.3, 0.7, 1.0, and 2.0 on the same plane. Discuss the behavior of these transmissibility
curves.

d. From part (c), determine for each of the five ζ values, the excitation frequency range
with respect to ωn, for which the transmissibility magnitude is
i. Less than 1.05

ii. Less than 0.5.
e. Suppose that the device in Figure 12.5 has a primary, undamped natural frequency of

6 Hz and a damping ratio of 0.2. It is required that the system has a force transmissibility
magnitude of less than 0.5 for operating frequency values greater than 12 Hz. Does the
existing system meet this requirement? If not, explain how one should modify the system
to meet this requirement.

SOLUTION

a. Here, the elements m, b, and k are in parallel, with a common velocity v across them,

as shown in Figure 12.6. In the circuit, Zm = mjω, Zb = b, and 

The force transmissibility is

(i)

Substituting the element impedances, one obtains

FIGURE 12.5 A simplified model of a machine tool and its supporting structure.
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(ii)

The last expression is obtained by dividing the numerator and the denominator by m.
Now use the fact that

and divide (ii) throughout by  to obtain

(iii)

The transmissibility magnitude is

(iv)

where r = ω/ωn is the normalized frequency.
b. To determine the peak point of �Tf�, differentiate the expression within the square-root

sign in (iv) and equate to 0:

FIGURE 12.6 The mechanical impedance circuit of the force isolation problem.
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Hence,

which simplifies to

the roots are

The root r = 0 corresponds to the initial stationary point at zero frequency. That does
not represent a peak. Taking only the positive root for r2 and then its positive square-
root, the peak point of the transmissibility magnitude is given 

(v)

For small ζ, Taylor series expansion gives

With this approximation, equation (v) evaluates to 1. Hence, for small damping, the
transmissibility magnitude will have a peak at r = 1 and, from equation (iv), its value is

or

(12.9)

c. The five curves of �Tf� verses r for ζ = 0, 0.3, 0.7, 1.0, and 2.0 are shown in Figure 12.7.
Note that these curves use the exact expression (iv).
From the curves, one observes the following:

1. There is always a non-zero frequency value at which the transmissibility magnitude
will peak. This is the resonance.

2. For small ζ, the peak transmissibility magnitude is obtained at approximately r = 1.
As ζ increases, this peak point shifts to the left (i.e., a lower value for peak frequency).
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3. The peak magnitude decreases with increasing ζ.
4. All the transmissibility curves pass through the magnitude value 1.0 at the same

frequency r = .
5. The isolation (i.e., �Tf� < 1) is given by r > . In this region, �Tf� increases with ζ.
6. The transmissibility magnitude decreases as r increases, in the isolation region.

d. From the curves in Figure 12.7 or numerically, one obtains
• For �Tf� < 1.05; r >  for all ζ
• For �Tf� < 0.5; r > 1.73, 1.964, 2.871, 3.77, and 7.075 for ζ = 0.0, 0.3, 0.7, 1.0, and

2.0, respectively.by 
e. One needs

or

or

or

FIGURE 12.7 Transmissibility curves for a simple oscillator model.

2
2

2

1 4

1 4

1
2

2 2

2 2 2 2

+
−( ) +

<ζ
ζ

r

r r

1 4

1 4

1
4

2 2

2 2 2 2

+
−( ) +

<ζ
ζ

r

r r

4 16 1 42 2 2 2 2 2+ < −( ) +ζ ζr r r

r r r4 2 2 22 12 3 0− − − >ζ
©2000 CRC Press

http://www.semeng.ir


www.20file.org
For ζ = 0.2 and r = 12/6 = 2, the LHS expression computes to

Hence, the requirement is met. In fact, since, for r = 2,

it follows that the requirement would be met for

or

If the requirement was not met (e.g., if ζ = 0.4), the option would be to reduce damping.

�

12.2.1 DESIGN CONSIDERATIONS

The level of isolation is defined as 1 – T. It was noted that in the isolation region (r > ), the
transmissibility decreases (hence, the level of isolation increases) as the damping ratio ζ decreases.
Thus, the best conditions of isolation are given by ζ = 0. This is not feasible in practice, but one
should maintain ζ as small as possible. For small ζ in the isolation region, equation (12.8) can be
approximated by

(12.10)

Note that T is real in this case of ζ ≅  0; and is also positive because r > . But in the general
case, T can denote the magnitude of the transmissibility function. Substitute

One obtains

(12.11)

This equation can be used to determine the design stiffness of the isolator for a specified level of
isolation (1 – T) in the operating frequency range ω > ω0, for a system of known mass (including
the isolator mass). Often, the static deflection δs of the spring is used in design procedures and is
given by
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(12.12)

Substituting equation (12.12) in (12.11), one obtains 

(12.13)

Since the isolation region is ω > ωn, it is desirable to make ωn as small as possible so as
to obtain the widest frequency range of operation. This is achieved by making the isolator as soft
as possible (k as low as possible). However, there are limits to this from the points of view of
structural strength, stability, static deflection, and availability of springs. Then, m can be increased
by adding an inertia block as the base of the system, which is then mounted on the isolator spring
(with a damping layer) or an air-filled pneumatic mount. The inertia block will also lower the
centroid of the system, thereby providing added desirable effects of stability and a reduction of
rocking motions and noise transmission. For improved load distribution, instead of just one spring

BOX 12.2 Vibration Isolation

Transmissibility (force/force or motion/motion):

Properties:

1.

2.

3. All �T� curves coincide at r =  for all ζ

4. Isolation region: 
5. In isolation region:

�T� decreases with r (i.e., better isolation at higher frequencies)
�T� increases with ζ (i.e., better isolation at lower damping).

Design Formulas:
Level of isolation = 1 – T

Isolator stiffness 

where m = system mass
ω = operating frequency
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of design stiffness k, a set of n springs each with stiffness k/n and uniformly distributed under the
inertia block should be used.

Another requirement for good vibration isolation is low damping. Usually, metal springs have
very low damping (typically ζ less than 0.01). On the other hand, higher damping is needed to
reduce resonant vibrations that will be encountered during start-up and shut-down conditions when
the excitation frequency will vary and pass through the resonances. Also, vibration energy must
be effectively dissipated even under steady operating conditions. Isolation pads made of damping
material such as cork, natural rubber, and neoprene can be used for this purpose. They can provide
damping ratios of the order of 0.01.

The basic design steps for a vibration isolator, in force isolation, are as follows:

1. The required level of isolation (1 – T) and the lowest frequency of operation (ω0) are
specified. The mass of the vibration source (m) is known.

2. Use equation (12.11) with ω = ω0 to compute the required stiffness k of the isolator.
3. If the resulting component k is not satisfactory, increase m by introducing an inertia

block and recompute k.
4. Distribute k over several springs.
5. Introduce a mounting pad of known stiffness and damping. Modify k and b accordingly,

and compute T using equation (12.8). If the specified T is exceeded, modify the isolator
parameters as appropriate and repeat the design cycle.

Some relations that are useful in design for vibration isolation are giv en in Box 12.2 .

Example 12.2 

Consider a motor and fan unit of a building ventilation system, weighing 50 kg and operating in
the speed range of 600 to 3,600 rpm. Since offices are located directly underneath the motor room,
a 90% vibration isolation is desired. A set of mounting springs, each having a stiffness of
100 N·cm–1, is available. Design an isolation system to mount the motor fan unit on the room floor.

SOLUTION

For an isolation level of 90%, the required force transmissibility is T = 0.1. The lowest frequency

of operation is . First, try four mounting points. The overall spring stiffness

is k = 4 × 100 × 102 N·m–1. Substituting in equation (12.11).

gives m = 111.5 kg. Since the mass of the unit is 50 kg, one should use an inertia block of mass
61.5 kg or more.

�

12.2.2 VIBRATION ISOLATION OF FLEXIBLE SYSTEMS

The simple model shown in Figures 12.4(c) and (d) might not be adequate in the design of vibration
isolators for sufficiently flexible systems. A model that is more appropriate in this situation is shown
in Figure 12.8. Note that the vibration isolator has an inertia block of mass m in addition to damped
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flexible mounts of stiffness k and damping constant b. The vibrating system itself has a stiffness K
and damping constant B in addition to its mass M.

In the absence of K, B, and the inertia block (m) as in Figure 12.4(c), the vibrating system
becomes a simple inertia (M). Then, ya and y are the same, and the equation of motion is

(12.14)

with the force transmitted to the support structure, fs, given by

(12.15)

The force transmissibility in this case is

(12.16)

For the flexible system and isolator shown in Figure 12.8, the equations of motion are

(12.17)

(12.18)

FIGURE 12.8 A model for vibration isolation of a flexible system.
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Hence, in the frequency domain, one has

(12.19)

(12.20)

Substitute equation (12.20) into (12.19) for eliminating ya to obtain

which simplifies to

(12.21)

The force transmitted to the supporting structure is still given by equation (12.15). Hence, the
transmissibility with the flexible system is

(12.22)

From equations (12.16) and (12.22), the transmissibility magnitude ratio is

(12.23)

or

(12.24)

In the nondimensional form:

(12.25)
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Again, the design problem of vibration isolation is to select the parameters rm, rω, ζa, and ζb so that
the required level of vibration isolation is realized for an operating frequency range of r.

A plot of equation (12.25) for the undamped case with rm = 1.0 and rω = 10.0 is given in
Figure 12.9. Generally, the transmissibility ratio will be 0 at r = 1 (the resonance of the inertial
system), and there will be two values of r (the resonances of the flexible system) for which the
ratio will become infinity, in the undamped case. The latter two neighborhoods should be avoided
under steady operating conditions.

FIGURE 12.9 The effect of system flexibility on the transmissibility magnitude in the undamped case (mass
ratio = 1.0; natural frequency ratio = 10.0).
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12.3 BALANCING OF ROTATING MACHINERY

Many practical devices that move contain rotating components. Examples are wheels of vehicles,
shafts and gear transmissions of machinery, belt drives, motors, turbines, compressors, fans, and
rollers. An unbalance (imbalance) is created in a rotating part when its center of mass does not
coincide with the axis of rotation. The reasons for this eccentricity include the following:

1. Inaccurate production procedures (machining, casting, forging, assembly, etc.)
2. Wear and tear
3. Loading conditions (mechanical)
4. Environmental conditions (thermal loads and deformation)
5. Use of inhomogeneous and anisotropic material (that does not have a uniform density

distribution)
6. Component failure
7. Addition of new components to a rotating device.

For a component of mass m and eccentricity e, and rotating at angular speed ω, the centrifugal
force generated is meω2. Note the quadratic variation with ω. This rotating force can be resolved
into two orthogonal components that will be sinusoidal with frequency ω. It follows that harmonic
forcing excitations are generated due to the unbalance, which can generate undesirable vibrations
and associated problems.

Problems caused by unbalance include wear and tear, malfunction and failure of components,
poor quality of products, and undesirable noise. The problem becomes increasingly important due
to the present trend of developing high-speed machinery. It is estimated that the speed of operation
of machinery has doubled during the past 50 years. This means that the level of unbalance forces
may have quadrupled during the same period, causing more serious vibration problems.

An unbalanced rotating component can be balanced by adding or removing material to or from
the component. One needs to know both the magnitude and location of the balancing masses to be
added or removed. The present section will address the problem of component balancing for
vibration suppression.

Note that the goal is to remove the source of vibration — namely, the mass eccentricity —
typically by adding one or more balancing mass elements. Two methods are available:

1. Static (single-plane) balancing
2. Dynamic (two-plane) balancing.

The first method concerns balancing of planar objects (e.g., pancake motors, disks) whose longi-
tudinal dimension along the axis of rotation is not significant. The second method concerns
balancing of objects that have a significant longitudinal dimension. Both methods are discussed.

12.3.1 STATIC BALANCING

Consider a disk rotating at angular velocity ω about a fixed axis. Suppose that the mass center of
the disk has an eccentricity e from the axis of rotation, as shown in Figure 12.10(a). Place a fixed
coordinate frame x-y at the center of rotation. The position  of the mass center in this coordinate
frame can be represented as:

1. A position vector rotating at angular speed ω, or
2. A complex number, with x-coordinate denoting the real part and y-coordinate denoting

the imaginary part.

v
e
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The centrifugal force due to the mass eccentricity is also a vector in the direction of , but with a
magnitude fo = mω2e, as shown in Figure 12.10(b). It is seen that harmonic excitations result in
both x and y directions, given by focosωt and fosinωt, respectively, where θ = ωt = orientation of
the rotating vector with respect to the x-axis. To balance the disk, one should add a mass m at – .
But we don’t know the value of m and the location of .  

Balancing Approach

1. Measure the amplitude Vu and the phase angle φ1 (e.g., by the signal from an acceler-
ometer mounted on the bearing of the disk) of the unbalance centrifugal force, with
respect to some reference.

2. Mount a known mass (trial mass) Mt at a known location on the disk. Suppose that its
own centrifugal force is given by the rotating vector w, and the resultant centrifugal
force due to both the original unbalance and the trial mass is r.

3. Measure the amplitude Vr and the phase angle φ2 of the resultant centrifugal force, as in
step 1, with respect to the same phase reference.

A vector diagram showing the centrifugal forces u and w due to the original unbalance and
the trial-mass unbalance, respectively, is shown in Figure 12.11. The resultant unbalance is

r = u + w. Note that – u represents the centrifugal force due to the balancing mass that is
needed. So, if one determines the angle φb in Figure 12.11, it will give the orientation of the
balancing mass. Furthermore, suppose that the balancing mass is Mb and it is mounted at an
eccentricity equal to that of the trial mass Mt. Then,

One needs to determine the ratio Vu/Vw and the angle φb. These values can be derived as follows:

(12.26)

The cosine rule gives

FIGURE 12.10 (a) Unbalance in a rotating disk due to mass eccentricity, and (b) rotating vector (phasor)
of centrifugal force due to unbalance.
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(12.27)

This will provide Vw since Vu, Vr, and φ are known. Apply the cosine rule again:  

Hence,

(12.28)

Note: One might think that because φ1 is measured, that one exactly knows where u is. This is
not so, because one does not know the reference line with respect to which φ1 is measured. One
only knows that this reference is kept fixed (through strobe synchronization of the body rotation)
during measurements. Hence, one needs to know φb, which gives the location of – u with respect
to the known location of w on the disk.

12.3.2 COMPLEX NUMBER/VECTOR APPROACH

Again, suppose that the imbalance is equivalent to a mass of Mb that is located at the same
eccentricity (radius) r as the trial mass Mt . Define complex numbers (mass location vectors in a
body frame):

(12.29)

(12.30)

as shown in Figure 12.12.
Associated force vectors are:

FIGURE 12.11 A vector diagram of the single-plane (static) balancing problem.
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(12.31)

(12.32)

or

(12.33)

(12.34)

where  is the conversion factor or “influence coefficient” (complex) from the mass to the
resulting dynamic force (rotating). This factor is the same for both cases because r is the same. What
is needed is to determine b.

From equation (12.33),

(12.35)

Substitute equation (12.34):

(12.36)

But, since

(12.37)

one has

FIGURE 12.12 Rotating vectors of mass location.
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(12.38)

Since one knows t and one measures u and r to the same scaling factor, one can compute b

using equation (12.38). Locate the balancing mass at – b (with respect to the body frame).

EXAMPLE 12.3

Consider the following experimental steps:

Measured: Accelerometer amplitude (oscilloscope reading) of 6.0 with a phase lead (with
respect to a strobe signal reference that is synchronized with the rotating body frame) of
50°.

Added: Trial mass Mt = 20 gm at angle 180° (with respect to a body reference radius).
Measured: Accelerometer amplitude of 8.0 with a phase lead of 60° (with respect to the

synchronized strobe signal).

Determine the magnitude and location of the balancing mass.

SOLUTION

Method 1:
The data given:

Hence, from equation (12.27),

Balancing mass:

Equation (12.28) gives

Pick the result 0° ≤ φb ≤ 180°, as is clear from the vector diagram shown in Figure 12.11.
Hence,
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But,

It follows that

Method 2:
Given:

Then from equation (12.38), one obtains

First, compute:

Hence,

The balancing mass should be located at 

Note: This angle is measured from the same body reference as for the trial mass.

�
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12.3.3 DYNAMIC (TWO-PLANE) BALANCING 

Consider, instead of an unbalanced disk, an elongated rotating object, supported at two bearings,
as shown in Figure 12.13. In this case, in general, there may not be an equivalent single unbalanced
force at a single plane normal to the shaft axis. To show this, recall that a system of forces can be
represented by a single force at a specified location and a couple (two parallel forces that are equal
and opposite). If this single force (resultant force) is 0, one is left with only a couple. The couple
cannot be balanced by a single force.

All the unbalance forces at all the planes along the shaft axis can be represented by an equivalent
single unbalance force at a specified plane and a couple. If this equivalent force is 0, then to balance
the couple, one needs two equal and opposite forces at two different planes.

On the other hand, if the couple is 0, then a single force in the opposite direction at the same
plane of the resultant unbalance force will result in complete balancing. But this unbalance plane
may not be reachable, even if it is known, for the purpose of adding the balancing mass.

In the present (two-plane) balancing problem, the balancing masses are added at the two bearing
planes so that both the resultant unbalance force and couple are balanced.

It is clear from Figure 12.13 that even a sole unbalance mass b at a single unbalance plane
can be represented by two unbalance masses b1 and b2 at the bearing planes 1 and 2. In the
presence of an unbalance couple as well, one can simply add two equal and opposite forces at the
planes 1 and 2 so that its couple is equal to the unbalance couple. Hence, a general unbalance can
be represented by the two unbalance masses b1 and b2 at planes 1 and 2, as shown in
Figure 12.13. As for the single-plane balancing problem, the resultant unbalance forces at the two
bearings (that would be measured by the accelerometers at 1 and 2) are:

(12.39)

(12.40)

Suppose that a trial mass of t1 (at a known location with respect to a known body reference
line) was added at plane 1. The resulting unbalance forces at the two bearings would then be:

(12.41)

(12.42)

Next, suppose that a trial mass of t2 (at a known location with respect to a known body reference
line) was added at plane 2, after removing t1. The resulting unbalance forces at the two bearings
would be:

(12.43)

(12.44)

The following subtractions of equations are made now:
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(12.41) – (12.39):

(12.45)

(12.42) – (12.40):

(12.46)

(12.43) – (12.39):

(12.47)

(12.44) – (12.40):

(12.48)

Hence, generally,

(12.49)

FIGURE 12.13 A dynamic (two-plane) balancing problem.
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These parameters Aij are called influence coefficients, and are complex numbers.
Next, in equations (12.39) and (12.40), eliminate each equality b2 and b1 separately, to

determine the other; thus,

or

(12.50)

(12.51)

Substitute equations (12.45) through (12.48) in (12.50) and (12.51) to determine b1 and b2.
Balancing masses that should be added are – b1 and – b2 in planes 1 and 2, respectively, at the
same eccentricity as the corresponding trial masses.

The single-plane and two-plane balancing approaches are summarized in Box 12.3.

EXAMPLE 12.4

Suppose that the following measurements are obtained.

Without Trial Mass:
Accelerometer at 1: Amplitude = 10.0; Phase lead = 55°.
Accelerometer at 2: Amplitude = 7.0; Phase lead = 120°.

With Trial Mass 20 gm at Location 270° of Plane 1:
Accl. 1: Ampl. = 7.0; Phase lead = 120°.
Accl. 2: Ampl. = 5.0; Phase lead = 225°.

With Trial Mass 25 gm at Location 180° of Plane 2:
Accl. 1: Ampl. = 6.0; Phase lead = 120°.
Accl. 2: Ampl. = 12.0; Phase lead = 170°.

Determine the magnitude and orientation of the necessary balancing masses in planes 1 and 2 in
order to completely balance (dynamic) the system.

SOLUTION

In the phasor notation, we can represent the given data as follows:
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BOX 12.3 Balancing of Rotating Components

Static or Single-Plane Balancing
(Balances a single equivalent dynamic force)

Experimental Approach:
1. Measure magnitude (V) and phase (φ), with respect to a marked body reference line (that

is kept fixed by strobe light), of accelerometer signal at bearing,

a. without trial mass: 

b. with trial mass Mt: 

2. Compute balancing mass Mb and its location with respect to Mt

3. Remove Mt and add Mb at determined location.

Computation Approach 1:

Locate Mb at φb from Mt at the same eccentricity as Mt.

Computation Approach 2:

Unbalance mass phasor (Trial mass phasor)

Locate balancing mass at – b and at the same eccentricity as t.

Dynamic or Two-Plane Balancing
(Balances an equivalent dynamic force and a couple)

Experimental Approach:
1. Measure ui at bearings i = 1, 2, without a trial mass.
2. Measure rij at bearings i = 1, 2, with only one trial mass tj at j = 1, 2
3. Compute unbalance mass phasor bi in planes i = 1, 2
4. Remove trial mass and place balancing masses – bi in planes i = 1, 2.

Note: Measurements made while a body reference is kept fixed at the same location,
using strobe light.

Computations:

Influence coefficients: 

Unbalance mass phasors:
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From equations (12.45) through (12.48), one obtains

These phasors are computed as below.

Next, the denominators of the balancing mass phasors (in equations (12.50) and (12.51)) are
computed as:
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and hence,

Finally, the balancing mass phasors are computed using equations (12.50) and (12.51) as:

Finally, we have

�

12.3.4 EXPERIMENTAL PROCEDURE OF BALANCING 

The experimental procedure for determining the balancing masses and locations for a rotating
system should be clear from the analytical developments and examples given above. The basic
steps are: (1) determine the magnitude and the phase angle of accelerometer signals at the bearings
with and without trial masses at the bearing planes; (2) using this data, compute the necessary
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balancing masses (magnitude and location) at the bearing planes; (3) place the balancing masses;
and (4) check whether the system is balanced. If not, repeat the balancing cycle.

A laboratory experimental setup for two-plane balancing is schematically shown in Figure 12.14.
A view of the system is shown in Figure 12.15. The two disks rigidly mounted on the shaft, are
driven by a DC motor. The drive speed of the motor is adjusted by the manual speed controller.
The shaft bearings (two) are located very close to the disks, as shown in Figure 12.14. Two
accelerometers are mounted on the top of the bearing housing so that the resulting vertical accel-
erations can be measured. The accelerometer signals are conditioned using the two-channel charge
amplifier, and read and displayed through two channels of the digital oscilloscope. The output of
the stroboscope (tachometer) is used as the reference signal with respect to which the phase angles
of the accelerometer signals are measured.

In Figure 12.15, the items of equipment are seen, from left to right, as follows. The first item
is the two-channel digital oscilloscope. Next is the manual speed controller, with control knob, for
the DC motor. The pair of charge amplifiers for the accelerometers is situated next. The strobe-
light unit (strobe-tacho) is placed on top of the common housing of the charge-amplifier pair. The
two-disk rotor system with the drive motor is shown as the last item to the right. Also, note the
two accelerometers (seen as small vertical projections) mounted on the bearing frame of the shaft,
directly above the two bearings.

In determining an unbalance load, the accelerator readings must be taken with respect to a body
reference on the rotating object. Since this reference must always be fixed, prior to reading the
oscilloscope data, the strobe-tacho should be synchronized with the disk rotation with respect to both
frequency and phase. This is achieved as follows. Note that all the readings are taken with the same
rotating speed, which is adjusted by the manual speed controller. Make a physical mark (e.g., black
spot in a white background) on one of the disks. Aim the strobe flash at this disk. As the motor speed
is adjusted to the required fixed value, the strobe flash is synchronized such that the mark on the disk
“appears” stationary at the same location (e.g., at the uppermost location of the circle of rotation).
This ensures not only that the strobe frequency is equal to the rotating speed of the disk, but also that
the same phase angle reference is used for all readings of accelerometer signals.

The two disks have slots at locations for which the radius is known and for which the angular
positions with respect to a body reference line (a radius representing the 0° reference line) are

FIGURE 12.14 Schematic arrangement of a rotor balancing experiment.
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clearly marked. Known masses (typically bolts and nuts of known mass) can be securely mounted
in these slots. Readings obtained through the oscilloscope are:

1. Amplitude of each accelerometer signal
2. Phase lead of the accelerometer signal with respect to the synchronized and reference-

fixed strobe signal (Note: a phase lag should be represented by a negative sign in the data.)

The measurements taken and the computations made in the experimental procedure should be clear
from Example 12.4.

12.4 BALANCING OF RECIPROCATING MACHINES

A reciprocating mechanism has a slider that moves rectilinearly back and forth along some guide-
way. A piston-cylinder device is a good example. Often, reciprocating machines contain rotatory
components in addition to the reciprocating mechanisms. The purpose would be to either convert
a reciprocating motion to a rotary motion (as in the case of an automobile engine), or to convert
a rotary motion to a reciprocating motion (as in the opto-slider mechanism of a photocopier). No
matter what type of reciprocating machine is employed, it is important to remove the vibratory
excitations that arise, in order to realize the standard design goals of smooth operation, accuracy,
low noise, reliability, mechanical integrity, and extended service life. Naturally, reciprocating
mechanisms with rotary components are more prone to unbalance than purely rotary components,
in view of their rotational asymmetry. Removing the “source of vibration” by proper balancing of
the machine would be especially appropriate in this situation.

FIGURE 12.15 A view of the experimental setup for two-plane balancing. (Courtesy of the University of
British Colombia. With permission.)
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12.4.1 SiNGLE-CYLINDER ENGINE 

A common practical example of a reciprocating machine with integral rotary motion is the internal
combustion (IC) engine of an automobile. A single-cylinder engine is sketched in Figure 12.16.
Note the nomenclature of the components. The reciprocating motion of the piston is transmitted
through the connecting rod and crank, into a rotatory motion of the crank shaft. The crank, as
sketched in Figure 12.16, has a counterbalance mass, the purpose of which is to balance the rotary
force (centrifugal). In this analysis, this counterbalance mass will be ignored because the goal is
to determine the unbalance forces and ways to balance them.

Clearly, both the connecting rod and the crank have distributed mass and moment of inertia.
To simplify the analysis, the following approximations are made:

1. Represent the crank mass by an equivalent lumped mass at the crank pin (equivalence
can be based on either centrifugal force or kinetic energy).

2. Represent the mass of the connecting rod by two lumped masses: one at the crank pin
and the other at the crosshead (piston pin).

The piston itself has a significant mass, which is also lumped at the crosshead. Hence, the equivalent
system has a crank and a connecting rod, both of which are considered massless, with a lumped
mass mc at the crank pin and another lumped mass mp at the piston pin (crosshead).

Furthermore, under normal operation, the crankshaft rotates at a constant angular speed (ω).
Note that this steady speed is realized not by natural dynamics of the system, but by proper speed
control, which is a topic outside the scope of the present treatment.

It is a simple matter to balance the lumped mass mc at the crank pin. Simply place a countermass
mc at the same radius in the radially opposite location (or a mass in inverse proportion to the radial
distance from the crankshaft, still in the radially opposite direction). This explains the presence of
the countermass in the crank shown in Figure 12.16. Once complete balancing of the rotating inertia
(mc) is achieved in this manner, what remains to be done to realize complete elimination of the effect
of the vibration source on the crankshaft is the compensation for the forces and moments on the
crankshaft that result from (1) the reciprocating motion of the lumped mass mp, and (2) time-varying
combustion (gas) pressure in the cylinder. Both types of forces act on the piston in the direction of
its reciprocating (rectilinear) motion. Hence, their influence on the crankshaft can be analyzed in
the same way, except that the combustion pressure is much more difficult to determine.

The foregoing discussion justifies the use of the simplified model shown in Figure 12.17 for
analyzing the balancing of a reciprocating machine. The characteristics of this model are as follows:

1. A light crank OC of radius r rotates at constant angular speed ω about O, which is the
origin of the x-y coordinate frame.

2. A light connecting rod CP of length l is connected to the connecting rod at C and to the
piston at P with frictionless pins. Since the rod is light and the joints are frictionless,
the force fc supported by it will act along its length (assume that the force fc in the
connecting rod is compressive, for the purpose of sign convention). The connecting rod
makes an angle φ with OP (the negative x-axis).

3. A lumped mass mp is present at the piston. A force f acts at P in the negative x-direction.
This can be interpreted as either the force due to the gas pressure in the cylinder, or the
inertia force mpa, where a is the acceleration of mp in the positive x-direction (by
D’Alembert’s principle). These two cases of forcing will be considered separately.

4. A lateral reaction force fl acts on the piston by the cylinder wall, in the positive y-direction.
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Note again that the lumped mass mc at C is not included in the model of Figure 12.17 because it
is assumed to be completely balanced by a countermass in the crank. Furthermore, the lumped
mass mp includes not just the mass of the piston, but also part of the inertia of the connecting rod.

There are no external forces at C. Furthermore, the only external forces at P are f and fl, where
f is interpreted as either the inertia force in mp or the gas force on the piston. Hence, there should
be equal and opposite forces at the crank shaft O, as shown in Figure 12.17, to support the forces
acting at P. Now to determine fl, proceed as follows:
Equilibrium at P gives

Hence,

(12.52)

This lateral force fl acting at both O and P, albeit in the opposite directions, forms a couple τ = xfl,
or in view of equation (12.52),

(12.53)

This couple acts as a torque on the crankshaft. It follows that, once the rotating inertia mc at the
crank is completely balanced by a countermass, the load at the crankshaft is due only to the piston
load f, and it consists of (1) a force f in the direction of the piston motion (x), and (2) a torque
τ = xftanφ in the direction of rotation of the crank shaft (i.e., about z).

The means of removing f at the crankshaft, which is discussed below, will also remove τ in
many cases. Hence, only the approach of balancing f will be discussed here.

12.4.2 BALANCING THE INERTIA LOAD OF THE PISTON

Now, consider the inertia force f due to mp. Here,

(12.54)

where a is the acceleration , with the coordinate x locating the position P of the piston (in other
words, OP = x). Notice from Figure 12.17 that

FIGURE 12.16 A single-cylinder reciprocating engine.
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(12.55)

But,

(12.56)

Hence, from trigonometry,

(12.57)

which can be expanded up to the first term of Taylor series as

(12.58)

This approximation is valid because l is usually several time larger than r and, hence, (r/l)2 is much
smaller than unity. Next, in view of

(12.59)

one has

(12.60)

Substitute equation (12.60) in (12.55) to get, approximately,

(12.61)

Differentiate equation (12.61) twice with respect to t to obtain the acceleration

(12.62)

FIGURE 12.17 The model used to analyze balancing of a reciprocating engine.
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Hence, from equation (12.54), the inertia force at the piston (and its reaction at the crankshaft) is

(12.63)

It follows that the inertia load of the reciprocating piston exerts a vibratory force on the crankshaft,
which has a primary component of frequency ω and a smaller secondary component of frequency
2ω, where ω is the angular speed of the crank. The primary component has the same form as that
created by a rotating lumped mass at the crank pin. But, unlike the case of a rotating mass, this
vibrating force acts only in the x direction (there is no sinωt component in the y direction) and,
hence, cannot be balanced by a rotating countermass. Similarly, the secondary component cannot
be balanced by a countermass rotating at double the speed. The means employed to eliminate f are
to use multiple cylinders whose connecting rods and cranks being connected to the crankshaft with
their rotations properly phased (delayed) so as to cancel out the effects of f.

12.4.3 MULTICYLINDER ENGINES

A single-cylinder engine generates a primary component and a secondary component of vibration
load at the crankshaft, and they act in the direction of piston motion (x). Since there is no
complementary orthogonal component (y), it is inherently unbalanced and cannot be balanced using
a rotating mass. It can be balanced, however, using several piston-cylinder units, with their cranks
properly phased along the crankshaft. This method of balancing multicylinder reciprocating engines
is addressed now.

Consider a single cylinder whose piston inertia generates a force f at the crankshaft, in the x
direction, given according to equation (12.63) by

(12.64)

Note that the primary and secondary forcing amplitudes fp and fs, respectively, are as given by
equation (12.63). Suppose that there is a series of cylinders in parallel, arranged along the crankshaft,
and the crank of cylinder i makes an angle α i with the crank of cylinder 1, in the direction of
rotation, as schematically shown in Figure 12.18(a). Hence, force fi on the crankshaft (in the x
direction, shown as vertical in Figure 12.18) due to cylinder i is

(12.65)

Not only the cranks need to be properly phased, but the cylinders should be properly spaced along
the crankshaft as well, in order to obtain the necessary balance. Now consider two examples.

Two-Cylinder Engine

Consider the two-cylinder case, as schematically shown in Figure 12.18(b) where the two cranks
are in radially opposite orientations (i.e., 180° out of phase). In this case, α2 = π. Hence,

(12.66)

(12.67)
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It follows that the primary force components cancel out; however, they form a couple z0fpcosωt,
where z0 is the spacing of the cylinders. This causes a bending moment on the crankshaft, and it
will not vanish unless the two cylinders are located at the same point along the crankshaft.
Furthermore, the secondary components are equal and additive to 2fscos2ωt. This resultant com-
ponent acts at the mid-point of the crankshaft segment between the two cylinders. There is no
couple due to the secondary components, however.

FIGURE 12.18 (a) Crank arrangement of a multicylinder engine; (b) two-cylinder engine; and (c) six-cylinder
engine (balanced).
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Six-Cylinder Engine

Consider the six-cylinder arrangement schematically shown in Figure 12.18(c). Here, the cranks
are arranged such that α2 = α5 = 2π/3, α3 = α4 = 4π/3, and α1 = α6 = 0. Furthermore, the cylinders
are equally spaced, with spacing z0. In this case,

(i)

(ii)

(iii)

Now, use the fact that

(iv)

which can be proved either by straightforward trigonometric expansion, or using geometric inter-
pretation (i.e., three sides of an equilateral triangle, the sum of whose components in any direction
vanishes). The relation (iv) holds for any θ, including θ = ωt and θ = 2ωt. Furthermore,

. Then, from equations (i) through (iii), one concludes that

(12.68)

This means that the lateral forces on the crankshaft that are exerted by the six cylinders will
completely balance. Furthermore, by taking moments about the location of crank 1 of the crankshaft,
one obtains

(v)

which also vanishes in view of relation (iv). Hence, the set of six forces is in complete equilibrium;
and as a result, there will be neither a reaction force nor a bending moment on the bearings of the
crankshaft from these forces.

Also, it can be shown that the torques xifitanφi on the crankshaft due to this set of inertial forces
fi will also add to 0, where xi is the distance from the crankshaft to the piston of the ith cylinder
and φi is the angle φ of the connecting rod of the ith cylinder. Hence, this six-cylinder configuration
is in complete balance with respect to the inertial loads.
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EXAMPLE 12.5

An eight-cylinder in-line engine (with identical cylinders that are placed in parallel along a line) has
its cranks arranged according to the phasing angles 0°, 180°, 90°, 270°, 270°, 90°, 180°, and 0° on
the crankshaft. The cranks (cylinders) are equally spaced, with spacing z0. Show that this engine
is balanced with respect to primary and secondary components of reaction forces and bending
moments of inertial loading on the bearings of the crankshaft.

SOLUTION

The sum of the reaction forces on the crankshaft are:

Hence, both primary forces and secondary forces are balanced. The moment of the reaction forces
about the crank 1 location of the crankshaft:

Hence, both primary bending moments and secondary bending moments are balanced as well. 
Thus, the engine is completely balanced. 

�

The formulas applicable in balancing reciprocating machines are summarized in Box 12.4.
Before leaving the topic of balancing the inertial loading at the piston, it should be noted that

in the configuration considered above, the cylinders are placed in parallel along the crankshaft.
These are termed in-line engines. Their resulting forces fi act in parallel along the shaft. In other
configurations, such as V6 and V8, the cylinders are placed symmetrically around the shaft; in such
cases, the cylinders (and their inertial forces that act on the crankshaft) are not parallel. Then, a
complete force balance can be achieved without even having to phase the cranks and, furthermore,
the bending moments of the forces can be reduced by placing the cylinders nearly at the same
location along the crankshaft. Complete balancing of the combustion/pressure forces is possible as
well with such an arrangement.
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12.4.4 COMBUSTION/PRESSURE LOAD

In the balancing approach presented thus far, the force f on the piston represents the inertia force
due to the equivalent reciprocating mass. Its effect on the crankshaft is an equal reaction force f in
the lateral direction (x) and a torque τ = xftanφ about the shaft axis (z). The balancing approach
that is used employs a series of cylinders so that their reaction forces fi on the crankshaft from an
equilibrium set. Then no net reaction or bending moment is transmitted to the bearings of the shaft.
The torques τi can also be balanced by the same approach — which is the case, for example, in
the six-cylinder engine.

There is another important force that acts along the direction of piston reciprocation. It is the
drive force due to gas pressure in the cylinder (created, for example, by combustion of the fuel–air

BOX 12.4 Balancing of Reciprocating Machines

Single cylinder engine:
Inertia force at piston (and its reaction on crankshaft)

where

ω = rotating speed of crank
mp = equivalent lumped mass at piston
r = crank radius
l = length of connecting rod
fp = amplitude of the primary unbalance force (frequency ω)
fs = amplitude of the secondary unbalance force (frequency 2ω).

Multicylinder engine:

Net unbalance reaction force on the crankshaft = 

Net unbalance moment on the crankshaft = 

where

fi =

α i = angular position of the crank of ith cylinder, with respect to a body (rotating) ref-
erence (i.e., crank phasing angle)

zi = position of the ith crank along the crankshaft, measured from a reference point
on the shaft

n = Number of cylinders (assumed identical).

Note: For a completely balanced engine, both the net unbalance force and the net unbalance
moment should vanish.
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mixture of an internal combustion engine). This force can be analyzed as before, by denoting it
as f. However, several important observations should be made first.

1. The combustion force f is not sinusoidal of frequency ω. It is reasonably periodic, but
the shape of a force period is complex and depends on the firing/fuel-injection cycle and
the associated combustion process.

2. The reaction forces fi on the crankshaft, which are generated from cylinders i, should be
balanced to avoid the transmission of reaction forces and bending moments to the shaft
bearings (and hence, to the supporting frame — the vehicle). But the torques τi in this
case are in fact the drive torques. Obviously, they are the desired output of the engine
and should not be balanced unlike the inertia torques.

In view of these observations, the analysis that was done for balancing the inertia forces cannot be
directly used here. But, approaches similar to the use of multiple cylinders can be employed for
reducing the gas-force reactions. This is a rather difficult problem, mainly in view of the complexity
of the combustion process itself. In practice, much of the left-over effects of the ignition cycle are
suppressed by properly designed engine mounts. Experimental investigations have indicated that
in a properly balanced engine unit, much of the vibration that is transmitted through the engine
mounts is caused by the engine firing cycle (internal combustion) rather than the reciprocating
inertia (sinusoidal components of frequency ω and 2ω). Hence, active mounts, where stiffness can
be varied according to the frequency of excitation, are being considered to reduce engine vibrations
in the entire range of operating speeds (say, 500 to 2500 rpm).

12.5 WHIRLING OF SHAFTS

The previous two sections focused on the vibration excitations caused on rotating shafts and their
bearings due to some form of mass eccentricity. Methods of balancing these systems so as to
eliminate the undesirable effects were presented as well. One limitation of the given analysis is the
assumption that the rotating shaft is rigid and hence does not deflect from its axis of rotation due
to the unbalance excitations. In practice, however, rotating shafts are made lighter than the com-
ponents they carry (rotors, disks, gears, etc.) and will undergo some deflection due to the unbalance
loading. As a result, the shaft will bow out, and this will further increase the mass eccentricity and
associated unbalance excitations and gyroscopic forces of the rotating elements (disks, rotors, etc.).
The nature of damping of rotating machinery, which is rather complex and incorporates effects of
rotation at bearings, structural deflections, and lateral speeds, will further affect the dynamic
behavior of the shaft under these conditions. In this context, the topic of whirling of rotating shafts
becomes quite relevant.

Consider a shaft that is driven at a constant angular speed ω (e.g., using a motor or some other
actuator). The central axis of the shaft (passing through its bearings) will bow out. This deflected
axis itself will rotate, and this rotation is termed whirling or whipping. The whirling speed is not
necessarily equal to the drive speed ω (at which the shaft rotates about its axis with respect to a
fixed frame). But, when the whirling speed is equal to ω, the condition is called synchronous whirl,
and the associated deflection of the shaft can be quite excessive and damaging.

To develop an analytical basis for whirling, consider a light shaft supported on two bearings
and carrying a disk of mass m in between the bearings, as shown in Figure 12.19(a). Note that C
is the point on the disk at which it is mounted on the shaft. Originally, in the neutral configuration
when the shaft is not driven (ω = 0), the point C coincides with point O on the axis joining the
two bearings. If the shaft were rigid, the points C and O would continue to coincide during motion.
The mass center (centroid, or center of gravity for constant g) of the disk is denoted as G in
Figure 12.19. During motion, C will move away from O due to the shaft deflection. The whirling
speed (speed of rotation of the shaft axis) is the speed of rotation of the radial line OC with respect
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to a fixed reference. Denoting the angle of OC with respect to a fixed reference as θ, the whirling
speed is . This is explained in Figure 12.19(b) where an end view of the disk is given under
deflected conditions. The constant drive speed ω of the shaft is the speed of the shaft spin with
respect to a fixed reference and is the speed of rotation of the radial line CG with respect to the
fixed horizontal line shown in Figure 12.19(b). Hence, the angle of shaft spin is ωt, as measured
with respect to this line. The angle of whirl, θ, is also measured from the direction of this fixed
line, as shown.

12.5.1 EQUATIONS OF MOTION

Under practical conditions, the disk moves entirely in a single plane. Hence, its complete set of
equations of motion consists of two equations for translatory (planar) motion of the centroid (with
lumped mass m) and one equation for rotational motion about the fixed bearing axis. The latter
equation depends on the motor torque that derives the shaft at constant speed ω, and is not of
interest in the present context. So, one can limit the development to the two translatory equations
of motion. The equations can be written either in a Cartesian coordinate system (x,y) or a polar
coordinate system (r,θ). The polar coordinate system is used here.

Consider a coordinate frame (i, j) that is fixed to the disk with its i axis lying along OC as
shown in Figure 12.19(b). Note that the angular speed of this frame is  (about k axis that is
orthogonal to i and j). Hence, as is well known, one has

 (12.69)

The position vector of the mass point G from O is

(12.70)

The velocity vector vG of the mass point G can be obtained simply by differentiating equation
(12.70), with the use of (12.69). But, this can be simplified because ω is constant. Here, line CG
has a velocity eω perpendicular to it, about C. This can be resolved along the axes i and j. Hence,
the velocity of G relative to C is

FIGURE 12.19 (a) A whirling shaft carrying a disk with mass eccentricity, and (b) end view of the disk and
whirling shaft.
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The velocity of point C is

Hence, the velocity of G, which is given by vG = vC + vG/C, can be expressed as

(12.71)

Similarly, the acceleration of C is

Also, since line CG rotates at constant angular speed ω about C, the point G has only a radial
(centrifugal) acceleration eω2 along GC, about C. This can be resolved along i and j as before.
Hence, the acceleration of G relative to C is

It follows that the acceleration of point G, given by aG = aC + aG/C, can be expressed as

(12.72)

The forces acting on the disk are as follows:

In addition, there is a frictional resistance at the bearing, which is proportional to the reaction and,
hence, the shaft deflection r, and also depends on the spin speed ω. The following approximate
model is used:

Here,

k = lateral deflection stiffness of the shaft at the location of the disk
b = viscous damping constant for lateral motion of the shaft
bf = bearing frictional coefficient.

The overall force acting on the disk is

v i jG C e t e t= − −( ) + −( )ω ω θ ω ω θsin cos

v i i
i

i jC

d

dt
r r r

d

dt
r r= = + = +˙ ˙ θ̇

v i j i jG r r e t e t= + − −( ) + −( )˙ ˙ sin cosθ ω ω θ ω ω θ

a v i j i j j j i i jC C

d

dt

d

dt
r r r r r r r r r r r= = +[ ] = + + + − = −( ) + +( )˙ ˙ ˙̇ ˙˙ ˙˙ ˙̇ ˙ ˙̇ ˙ ˙̇ ˙˙θ θ θ θ θ θ θ θ2 2 2

a i jG C e t e t= − −( ) − −( )ω ω θ ω ω θ2 2cos sin

a i j i jG r r r r e t e t= −( ) + +( ) − −( ) − −( )˙̇ ˙ ˙̇ ˙˙ cos sinθ θ θ ω ω θ ω ω θ2 2 22

Restraining elastic force due to lateral deflection of the shaft 

Viscous damping force (proportional to the velocity of ) 

= −

= − −

kr

C br br

i

i j˙ θ̇

Bearing friction force = −b rf ωj
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(12.73)

The equation of rectilinear motion

(12.74)

on using equations (12.72) and (12.73), reduces to the following pair in the i and j directions:

(12.75)

(12.76)

These equations can be expressed as

(12.77)

(12.78)

where the undamped natural frequency of lateral vibration is

(12.79)

and

ζv = viscous damping ratio of lateral motion
ζ f = frictional damping ratio of the bearings.

Equations (12.77) and (12.78), which govern the whirling motion of the shaft-disk system, are a
pair of coupled nonlinear equations, with excitations (depending on ω) that are coupled with a
motion variable (θ). Hence, a general solution would be rather complex. A relatively simple solution
is possible, however, under steady-state whirling.

12.5.2 STEADY-STATE WHIRLING

Under steady-state conditions, the whirling speed  is constant at  = ωw; hence,  = 0. Also, the
lateral deflection of the shaft is constant; hence, . Then, equations (12.77) and (12.78) become

(12.80)

(12.81)

In equations (12.80) and (12.81), the LHS is independent of t. Hence, the RHS also should be
independent of t. For this, one must have
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(12.82)

where φ is interpreted as the phase lag of whirl with respect to the shaft spin (ω), and should be
clear from Figure 12.19(b). It follows from equation (12.82) that, for steady-state whirl, the whirling
speed  = ωw is

(12.83)

This condition is called synchronous whirl because the whirl speed (ωw) is equal to the shaft spin
speed (ω). It follows that under steady state, one should have the state of synchronous whirl. The
equations governing steady-state whirl are

(12.84)

(12.85)

along with equation (12.82), and hence equation (12.83). Here, ζ = ζv + ζf is the overall damping
ratio of the system. Note that the phase angle φ and the shaft deflection r are determined from equations
(12.84) and (12.85). In particular, squaring these two equations and adding, to eliminate φ, one obtains

(12.86)

which is of the form of magnitude of the frequency-transfer function of a simple oscillator, with
an acceleration excitation. Divide equation (12.85) by equation (12.84) to get the phase angle:

(12.87)

By simple calculus (differentiate the square of equation (12.86) and equate to 0), one can show
that the maximum deflection occurs at the critical spin speed ωc given by

(12.88)

This critical speed corresponds to a resonance. For light damping, one has approximately, ωc = ωn.
Hence, the critical speed, for low damping, is equal to the undamped natural frequency of bending
vibration of the shaft-rotor unit. The corresponding shaft deflection is [see equation (12.86)]

(12.89)

which is also a good approximation of r at critical speed, with light damping. From equations
(12.84), (12.85), and (12.89) one sees that at critical speed (with low damping), sinφ = 1 and cosφ

= 0, which gives . Also, note from equation (12.86) that the steady-state shaft deflection is
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almost 0 at low speeds, and it approaches e at very high speeds. But, from equation (12.87) for
small ω, note that tanφ is positive and small, but from equation (12.85), sinφ is positive. This means
that φ itself is small for small ω. For large ω, from equation (12.86) it is seen that r approaches e.
Then from equation (12.87), tanφ is small and negative; while from equation (12.85), sinφ is positive.
Hence, φ approaches π for large ω.

It is seen from equation (12.89) that at critical speed, the shaft deflection increases with mass
eccentricity and decreases with damping. This observation, along with the given analysis, indicate
that the approaches for reducing the damaging effects of whirling are:

1. Eliminate or reduce the mass eccentricity through proper construction practices and
balancing

2. Increase damping
3. Increase shaft stiffness
4. Avoid operation near critical speed.

There will be limitations to the use of these approaches — particularly to making the shaft stiffer.
Note further that this analysis does not include the mass distribution of the shaft. A Bernoulli-Euler
type beam analysis (see Chapter 6) must be incorporated for a more accurate analysis of whirling,
for shafts whose mass cannot be accurately represented by a single parameter that is lumped at the
location of the rotor. Formulas related to whirling of shafts are summarized in Box 12.5.

EXAMPLE 12.6

The fan of a ventilation system has a normal operating speed of 3600 rpm. The blade set of the fan
weighs 20 kg and is mounted in mid-span of a relatively light shaft that is supported on lubricated
bearings at its two ends. The bending stiffness of the shaft at the location of the fan is 4.0 × 106 N·m–1.
The equivalent damping ratio that acts on the possible whirling motion of the shaft is 0.05. Due to
fabrication error, the centroid of the fan has an eccentricity of 1.0 cm from the neutral axis of rotation
of the shaft.

a. Determine the critical speed of the fan system and the corresponding shaft deflection at
the location of the fan, at steady state.

b. What is the steady-state shaft deflection at the fan during normal operation?

The fan was balanced subsequently using a mass of 5 kg. The centroid eccentricity was reduced
to 2 mm by this means. What is the shaft deflection at the fan during normal operation now?
Comment on the improvement that has been realized.

SOLUTION

a. The system is lightly damped. Hence, the critical speed is given by the undamped natural
frequency; thus,

The corresponding shaft deflection is
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BOX 12.5 Whirling of Shafts

Whirling: A shaft spinning at speed ω about its axis can bend due to flexure. The bent
(bowed out) axis will rotate at speed ωw. This is called whirling.

Equations of motion:

where (r,θ) = polar coordinates of shaft deflection at the mounting point of lumped mass

e = eccentricity of the lumped mass from the spin axis of shaft

= ωw = whirling speed
ω = spin speed of shaft

ωn =  = natural frequency of bending vibration of shaft
k = bending stiffness of shaft at lumped mass
m = lumped mass
ζv = damping ratio of bending motion of shaft
ζ f = damping ratio of shaft bearings.

Steady-state whirling (synchronous whirl):

Here, whirling speed (  or ωw) is constant and equals the shaft spin speed ω (i.e., ωw = ω
for steady-state whirling).

Shaft deflection at lumped mass 

Phase angle between shaft deflection (r) and mass eccentricity (e)

where ζ = ζv + ζ f

Note: For small spin speeds ω, r and φ are small. For large ω, r ≅  e and φ ≅  π.
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b. Operating speed . Using equation (12.86), the correspond-

ing shaft deflection, at steady state, is

After balancing, the new eccentricity e = 0.2 cm.
The new natural frequency (undamped) is

The corresponding shaft deflection during steady-state operation, is

Note that although the eccentricity has been reduced by a factor of 5, by balancing, the operating
deflection of the shaft has been reduced only by a factor of less than 2. The main reason for this is
the fact that the operating speed is close to the critical speed. Methods of improving the performance
include: changing the operating speed; using a smaller mass to balance the fan; using more damping;
and making the shaft stiffer. Some of these methods may not be feasible. Operating speed is
determined by the task requirements. A location may not be available that is sufficiently distant to
place a balancing mass that is appropriately small. Increased damping will increase heat generation,
cause bearing problems, and will also reduce the operating speed. Replacement or stiffening of the
shaft may require too much modification to the system and added cost. A more preferable alternative
would be to balance the fan by removing some mass. This will move the critical frequency (natural
frequency) away from the operating speed rather than closer to it, while reducing the mass eccentricity
at the same time. For example, suppose that a mass of 3 kg is removed from the fan, which results
in an eccentricity of 2.0 mm. The new natural/critical frequency is

The corresponding shaft deflection during steady operation is

In this case, the deflection has been reduced by a factor of 8.
�
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12.5.3 SELF-EXCITED VIBRATIONS

It has been pointed out that equations (12.77) and (12.78), which represent the general whirling
motion of a shaft, are nonlinear and coupled. A further characteristic of these equations is the fact
that the motion variables (r and θ) occur as (nonlinear) products of the excitation (ω). Such systems
are termed self-excited. Note that, in general (before reaching the steady state), the response
variables r and θ will exhibit vibratory characteristics in view of the presence of the excitation
functions cos(ωt – θ) and sin(ωt – θ). Hence, a whirling shaft can exhibit self-excited vibrations.
Because the excitation forces directly depend on the motion itself, it is possible that a continuous
energy flow into the system could occur. That will result in a steady growth of the motion amplitudes
and represents an unstable behavior.

A simple example of self-excited vibration is provided by a simple pendulum whose length is
time variable. Although the system is stable when the length is fixed, it can become unstable under
conditions of variable length. Practical examples of self-excited vibrations with possible exhibition
of instability are: flutter of aircraft wings due to coupled aerodynamic forces, wind-induced vibrations
of bridges and tall structures, galloping of ice-covered transmission lines due to air flow-induced
vibrations, and chattering of machine tools due to friction-related excitation forces. Proper design
and control methods, as discussed in this chapter, are important in suppressing self-excited vibrations.

12.6 DESIGN THROUGH MODAL TESTING

Modal analysis, modal testing, and experimental modal analysis (EMA) are topics that have been
covered in Chapters 5, 6, 10, and 11. In particular, EMA involves extracting modal parameters
(natural frequencies, modal damping ratios, mode shapes) of a mechanical system through testing
(notably through excitation-response data) and then developing a dynamic model of the system
(mass, stiffness, and damping matrices) on that basis. The techniques of EMA are directly useful in
modeling, as mentioned, and model validation (i.e., verification of the accuracy of an existing model
that was obtained, for example, through analytical modeling). Apart from these uses, EMA is also
a versatile tool for design development. In the present context of “design for vibration,” EMA can
be employed in the design and design modification of mechanical systems with the goal of achieving
desired performance under vibrating conditions. The present section will introduce this approach.

In applying experimental modal analysis for design development of a mechanical system, three
general approaches are employed:

1. Component modification
2. Modal response specification
3. Substructuring.

The method of component modification allows one to modify (i.e., add, remove, or vary)
physical parameters (inertia, stiffness, damping) in a mechanical system and to determine the
resulting effect on the modal response (natural frequencies, damping ratios, and mode shapes) of
the system. The method of modal response specification provides the capability to establish the
best changes, from the design viewpoint, in system parameters (inertia, stiffness, damping values,
and associated directions) in order to realize a specified change in the modal response. In the
technique of substructuring, two or more subsystem models are combined using proper components
of interfacing (interconnection), and the overall model of the integrated system is determined. Some
of the subsystems used in this approach could be of analytical or computational origin (e.g., finite
element models). It should be clear how these methods can be used in the design development of
a mechanical system for proper vibration performance. The first method is essentially a trial-and-
error technique of incremental design. Here, some appropriate parameters are changed and the
resulting modal behavior is determined. If the resulting performance is not satisfactory, further
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changes are made in discrete steps until an acceptable performance (with regard to natural frequen-
cies, response magnification factors, etc.) is achieved. The second method is clearly a direct design
approach, where first the design specifications are developed in terms of modal characteristics, and
then the design procedure will generate the size and type of the physical parameters that would
enable the system to meet the specifications. In the third method, first a suitable set of subsystems
is designed, so as to meet performance characteristics of each subsystem. Then, these subsystems
are linked through suitable mechanical interfacing components, and the performance of the overall
system is determined to verify acceptance. In this manner, a complex system can be designed
through the systematic design of its subsystems.

12.6.1 COMPONENT MODIFICATION

The method of component modification involves changing a mass, stiffness, or damping element
in the system and determining the corresponding dynamic response — particularly the natural
frequencies, modal damping ratios, and mode shapes. This is relatively straightforward because
a single modal analysis or modal test (EMA) will give the required information. Since what is
achieved in a single step of component modification might not be acceptable as an appropriate
design (e.g., a natural frequency might be too close to a significant frequency component of a
vibration excitation), a number of modifications may be necessary before reaching a suitable
design. For such incremental procedures, modal analysis would be more convenient and cost
effective than EMA because in the latter case, physical modification and retesting would be
needed, while the former involves the same computational steps as before, but with a new set
of parameter values.

As an illustration, consider an aluminum I-beam which has a number of important modes of
vibration including bending and torsional modes. Figure 12.20(a) shows the 4th mode shape of
vibration at natural frequency 678.4 Hz. The dotted line in Figure 12.20(b) shows the transfer
function magnitude when the beam is excited at some location in the vertical direction and the
response is measured in the vertical direction, at some other location, with neither of the locations
being node points. The curve shows the first six natural frequencies.

Next, a lumped mass is added to the top flange at the shown location. The corresponding
transfer function magnitude is shown by the solid curve in Figure 12.20(b). Note that all the natural
frequencies have decreased due to the added mass, but the effect is larger for higher modes.
Similarly, mode shapes will also change. If the new modes are not satisfactory (e.g., a particular
natural frequency has not shifted enough), further modification and evaluation will be required.

Consider a mechanical vibrating system whose free response y is described by

(12.90)

Damping has been ignored for simplicity, but the following discussion can be extended to a damped
system as well (quite directly, for the case of proportional damping). If the mass matrix M and the
stiffness matrix K are modified by δM and δK, respectively, the corresponding response, and also
the natural frequencies and mode shapes, will be different from those of the original system in
general. To illustrate this, let the modal matrix (the matrix whose columns are the independent
mode shape vectors, as discussed in Chapters 5 and 11) of the original system be Ψ. Then, using
the modal transformation

(12.91)

equation (12.90) can be expressed in the canonical form, with modal generalized coordinates q, as

My Ky˙̇ + = 0

y q= Ψ
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FIGURE 12.20 An example of component modification: (a) the shape of mode 4 prior to modification, and
(b) transfer function magnitude and phase before and after modification.
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(12.92)

where

(12.93)

(12.94)

If the same transformation (12.91) is used for the modified system

(12.95)

one obtains

(12.96)

Since both ΨTδMΨ and ΨTδKΨ are not diagonal matrices in general, Ψ would not remain the

modal matrix for the modified system. Furthermore, the original natural frequencies 

will change due to the component modification. For the special case of proportional modifications
(δM proportional to M and δK proportional to K), the mode shapes will not change. But, the natural
frequencies will change in general.

The reverse problem is the modal response specification. Here, a required set of modal
parameters (ωir and ψir) is specified and the necessary changes δM and δK to meet the specifi-
cations must be determined. Note that the solution is not unique in general, and is more difficult
than the direct problem. In this case, initially a sensitivity analysis can be performed to determine
the directions and magnitudes of the modal shift for a particular physical parameter shift. Then,
the necessary magnitudes of physical shift, to achieve the specified modal shift, are estimated
on that basis. The corresponding modifications are made and the modified system is ana-
lyzed/tested to check whether it is within specification. If not, further cycles of modification
should be performed.

EXAMPLE 12.7

As an illustrative example of component modification, consider the familiar problem of a two-
degree-of-freedom system as shown in Figure 12.21. It was shown in Chapter 5 that the squared

nondimensional natural frequencies  of the systems are given by 

where . Also, it was shown that the mode shapes, as given by the ratio of the displace-
ment of mass 2 to that of mass 1 at a natural frequency, are:
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Consider a system with α = 0.5 and β = 0.5. By direct computation, one can show that r1 = 0.71
and r2 = 1.41 for this case. Estimate the modification of β (the relative stiffness of the second
spring) that would be necessary to shift the system natural frequencies to approximately r1 = 0.8
and r2 = 2.0. Check the corresponding shift in mode shapes.

SOLUTION

For α = 0.5 and β = 0.5, direct substitution yields r1 = 0.71 and r2 = 1.41 with (ψ2/ψ1)1 = 2.0 and
(ψ2/ψ1)2 = –1.0. Now consider an incremental change in β of 0.1. Then, β = 0.6. The corresponding
natural frequencies are computed as

Hence,

This step can be interpreted as a way of establishing the sensitivity of the system to the particular
component modification. Clearly, the problem of modification is not linear in general. But, as a
first approximation, assume a linear variation of  with β, and make modifications according to

(12.97)

where, the subscript 0 refers to the initial trial variation (δβ0 = 0.1). Equation (12.97) is intuitively
satisfying in view of the nature of the physical problem and the fact that for a single-dof problem,
squared frequency varies with k0. Then, one has

For Mode 1:

or

FIGURE 12.21 A two-degree-of-freedom example.
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For Mode 2:

or

So, one should use δβ = 0.71, which is the larger of the two. This corresponds to

The natural frequencies are computed as usual:

or

In view of the nonlinearity of the problem, this shift in frequencies is satisfactory. The corresponding
mode shapes are

It follows that as the stiffness of the second spring is increased, the motions of the two masses 
become closer in Mode 1. Furthermore, in Mode 2, the node point becomes closer to Mass 1. Note 
a limitation of this particular component modification. As β → ∞, the two masses become rigidly 

linked, giving a frequency ratio of , with 

r2 → ∞. Hence, it is unreasonable to expect a frequency ratio that is closer to this value of r1 by a 
change in β alone.

�

12.6.2 SUBSTRUCTURING 

For large and complex mechanical systems with many components, the approach of substructuring
can make the process of “design for vibration” more convenient and systematic. In this approach,
the system is first divided into a convenient set of subsystems that are more amenable to testing
and/or analysis. The subsystems are then separately modeled and designed through the approaches
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of modal analysis and testing, along with any other convenient approaches (e.g., finite element
technique). Note that the performance of the overall system depends on the interface conditions
that link the subsystems, as well as the characteristics of the individual subsystems. Hence, it is
not possible to translate the design specifications for the overall system into those for the subsystems,
without taking the interface conditions into account. The overall system is assembled from the
designed subsystems, using compatibility requirements at the assembly locations together with
dynamic equations of the interconnecting components such as spring-mass-damper units or rigid
linkages. If the assembled system does not meet the design specifications, then modifications should
be made to one or more of the subsystems and interfacing (assembly) linkages, and the procedure
should be repeated. Hence, the main steps of using the approach of substructuring for vibration
design of a complex system are as follows:

1. Divide the mechanical system into convenient subsystems (substructuring) and represent
the interconnection points of subsystems by forces/moments.

2. Develop models for the subsystems through analysis, modal testing, and other standard
procedures.

3. Design the subsystems so that their performance is well within the performance speci-
fications provided for the overall system.

4. Establish the interconnecting (assembling) linkages for the subsystems, and obtain
dynamic equations for them in terms of the linking forces/moments and motions (dis-
placements/rotations).

5. Establish continuity (force balance) and compatibility (motion consistency) conditions
at the assembly locations (see Appendix A on modeling).

6. Through matrix methods, eliminate the unknown variables and assemble the overall system.
7. Analyze (or test) the overall system to determine its vibration performance. If satisfactory,

stop. If not, make modifications to the systems and/or assembly conditions and repeat
steps 4 through 7.

As a simple example, consider two single-degree-of-freedom systems that are interconnected by a
spring linkage, as shown in Figure 12.22. The two subsystems can be represented by

and the corresponding natural frequencies are

FIGURE 12.22 An example of substructuring.
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The overall interconnected system is given by

Its natural frequencies are obtained by solving the characteristic equation 

or

which simplifies to

The sum of the roots is

The product of the roots is

This does not mean that both frequencies will increase due to the interconnection. Note that the
limit on the lower frequency, as kc → ∞, is given by that of a single-dof system with mass m1 + m2

and stiffness k1 + k2, which is . This value can be larger or smaller than the

natural frequency of a subsystem, depending on the relative values of the parameters. Hence, even
for this system, exact satisfaction of a set of design natural frequencies would be somewhat
challenging, as these frequencies depend on the interconnection as well as the subsystems.

It is noted that substructuring is a design development technique where complex designs can
be accomplished through a parallel and separate development of several subsystems and intercon-
nections. Furthermore, through this procedure, dynamic interactions among subsystems can be
estimated and potential problems can be detected that will allow redesigning of the subsystems
and/or interface linkages prior to building the prototype. Design approaches using experimental
modal analysis that can be used in vibration problems are summarized in Box 12.6.
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12.7 PASSIVE CONTROL OF VIBRATION

Techniques presented thus far in this chapter, for the reduction of effects of mechanical vibration,
primarily fall into the categories of vibration isolation and design for vibration. The third category
— vibration control — is addressed now. What is characteristic of vibration control is the use of
a sensing device to detect the level of vibration in a system, and an actuation (forcing) device to
apply a forcing function to the system so as to counteract the effects of vibration. In some such
devices, the sensing and forcing functions are implicit and integrated together.

Vibration control can be subdivided into the following two broad categories:

1. Passive control
2. Active control.

Passive control of vibration employs passive controllers. Passive devices, by definition, do not
require external power for their operation. The two passive controllers of vibration studied in the
present section are vibration absorbers (or dynamic absorbers or Frahm absorbers, named after H.
Frahm who first employed the technique for controlling ship oscillations) and dampers. In both
types of devices, sensing is implicit and control is done through a force that is generated by the
device as a result of its response to the vibration excitation. A dynamic absorber is a mass-spring
type mechanism with very little or no damping, which can “absorb” vibration excitations through
energy transfer into it, thereby reducing the vibrations of the primary system. The energy received
by the absorber will be slowly dissipated due to its own damping. A damper is a purely dissipative
device which, unlike a dynamic absorber, directly dissipates the energy received from the system,
rather than storing it. Hence, it is a more wasteful device that can also exhibit problems related to
wear and thermal effects. However, it has advantages as well over an absorber; for example, a
wider frequency of operation.

BOX 12.6 Test-Based Design Approaches for Vibration

1. Component modification:
Modify a component (mass, spring, damper) and determine modal parameters (natural
frequencies, damping ratios, mode shapes).
• Can determine sensitivity to component changes
• Can check whether a particular change is desirable

2. Modal Response Specification:
Specify a desired modal response (natural frequencies, damping ratios, mode shapes)
and determine the “best” component changes (mass, spring, damper) that will realize
the modal specs.
• Can be accomplished by first performing a sensitivity study (as in Item 1)

3. Substructuring:
a. Design subsystems to meet specs (analytically, experimentally, or by a mixed

approach).
b. Establish interconnections between subsystems, and obtain continuity (force balance)

and compatibility (motion consistency) at assembly locations.
c. Assemble the overall system by eliminating unknown variables at interconnections.
d. Analyze or test the overall system. If satisfactory, stop. Otherwise, make changes to

the subsystems and/or interconnections, and repeat the above steps.
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12.7.1 UNDAMPED VIBRATION ABSORBER

A dynamic vibration absorber (or dynamic absorber, vibration absorber, or Frahm absorber) is a
simple mass-spring oscillator with very low damping. An absorber that is tuned to a frequency of
vibration of a mechanical system is able to receive a significant portion of the vibration energy
from the primary system at that frequency. The resulting vibration of the absorber in effect applies
an oscillatory force opposing the vibration excitation of the primary system, and thereby virtually
canceling the effect. In theory, then, the vibration of the system can be completely removed, while
the absorber itself undergoes vibratory motion. Since damping is quite low in practical vibration
absorbers, consider first the case of an undamped absorber.

A vibration absorber can be used for vibration control in two common types of situations, as
shown in Figure 12.23. Here, the primary system for which the vibration needs to be controlled is
modeled as an undamped, single-degree-of-freedom mass-spring system (denoted by the subscript p).
An undamped vibration absorber is also a single-degree-of-freedom mass-spring system (denoted
by the subscript a). In the application shown in Figure 12.23(a), the objective of the absorber is to
reduce the vibratory response yp of the primary system as a result of a vibration excitation f(t). But,
because the force fs transmitted to the support structure, due to the vibratory response of the system,
is given by

(12.98)

the objective of reducing yp can also be interpreted as one of reducing this transmitted vibratory
force (a goal of vibration isolation). In the second type of application, as represented in Figure
12.23(b), the primary system is excited by a vibratory support motion and the objective of the
absorber is again to reduce the resulting vibratory motions yp of the primary system. Note that in
both classes of application, the purpose is to reduce the vibratory responses. Hence, static loads
(e.g., gravity) are not considered in the analysis.

Development of the equations of motion for the two systems shown in Figure 12.23 is sum-
marized in Table 12.1. Since one is primarily interested in the control of oscillatory responses to
oscillatory excitations, the frequency-domain model is particularly useful. Note from Table 12.1
that the transfer function fs /f of system (a) is simply k times the transfer function yp /f, and is in
fact identical to the transfer function yp/u of system (b). Hence, the two problems are essentially
identical and it suffices to address only one of them.

Before investigating the common transfer function for the two types of problems, one should
look closely at the frequency-domain equations for the system shown in Figure 12.23(a):

(12.99)

(12.100)

along with equation (12.98). Here, mp and kp are the mass and the stiffness of the primary system,
ma and ka are the mass and the stiffness of the absorber, f is the excitation amplitude, ω is the
excitation frequency, yp is the primary-mass response, and ya is the absorber response. Now note

from equation (12.100) that if , then yp = 0. This means that if the absorber is tuned

so that its natural frequency is equal to the excitation frequency (drive frequency), the primary
system (ideally) will not undergo any vibratory motion, and hence is perfectly controlled. The
reason for this should be clear from equation (12.99) which, when yp = 0 is substituted, gives
kaya = –f. In other words, a tuned absorber applies to the primary system a spring force that is

f k ys p p=

k k m y k y fp a p p a a+ −( ) − =ω2

k m y k ya a a a p−( ) =ω2

ω = k ma a
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exactly equal and opposite to the excitation force, thereby neutralizing the effect. Note that the
absorber mass itself moves, albeit at 180° out of phase with the excitation. The frequency of these
motions will be ω (same as that of the excitation), and the amplitude is proportional to that of the
excitation (f) and inversely proportional to the stiffness of the absorber spring. It follows that a
vibration absorber “absorbs” vibration energy from the primary system. Furthermore, note from
equation (12.98) that, with a tuned absorber, the vibration force transmitted to the support structure
is (ideally) 0 as well. All this information is observed without any mathematical manipulation of
the equations of motion.

Keep in mind that one is dealing with vibratory excitations and responses; hence, static loading
(such as gravity and spring pre-loads) is not considered (or one investigates responses with respect
to the static equilibrium configuration of the system). In summary, one is now able to state the
following characteristics of a vibration absorber (undamped):

1. It is effective only for a single excitation frequency (i.e., a sinusoidal excitation).
2. For the best effect, it should be “tuned” such that its natural frequency  is equal

to the excitation frequency.
3. In the case of forcing vibration excitation, a tuned absorber can (ideally) make both the

vibratory response of the primary system and the vibratory force transmitted to the
support structure 0.

4. In the case of a vibratory support motion, a tuned absorber can make the resulting
response of the primary system 0.

5. A dynamic absorber functions by acquiring vibration energy from the primary system
and storing it (as kinetic energy of the mass and/or potential energy of the spring) rather
than by directly dissipating the energy.

FIGURE 12.23 Two types of applications of a vibration absorber: (a) reduction of the response to forcing
excitation (or to reduce the force transmitted to support structure), and (b) reduction of the response to support
motion.
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©2000 CRC Press

http://www.semeng.ir


www.20file.org
6. A dynamic absorber functions by applying a vibration force to the primary system, which
is equal and opposite to the excitation force, thereby neutralizing the excitation.

7. The amplitude of motion of the vibration absorber is proportional to the excitation
amplitude and is inversely proportional to the absorber stiffness. The frequency of the
absorber motion is the same as the excitation frequency.

Now for some formal analysis, consider the transfer function (fs /f or yp /u) of an undamped
vibration absorber, as given in Table 12.1. Then,

(12.101)

As usual, it is convenient to use a nondimensional form in analyzing this frequency-transfer function.
To that end, one can define the following nondimensional parameters and frequency variable:

Fractional mass of the absorber 

Nondimensional natural frequency of the absorber 

Nondimensional excitation (drive) frequency 

TABLE 12.1
Equations for the Two Types of Absorber Applications

Absorber Application for the Reduction of Response to a:
Forcing Excitation Support Motion
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where

Then, it is straightforward to divide the numerator and the denominator by kpka and carry out simple
algebraic manipulations to express the transfer function of equation (12.101) in the nondimensional
form as 

(12.102)

For this undamped system, there is no difference between the resonant frequencies (where the
magnitude of the transfer function peaks) and the natural frequencies (roots of the characteristic
equation), which correspond to the “natural” or free time-response oscillations. These are obtained
by solving the characteristic equation

(12.103)

FIGURE 12.24 The effect of an undamped vibration absorber on the vibration response of a primary system.
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which gives 

(12.104)

These are squared frequencies, both of which are positive, as clear from equation (12.104).
The actual nondimensional natural frequencies are their square roots. The magnitude of the transfer
function becomes infinite at either of these two natural/resonant frequencies. Furthermore, it is
clear from equation (12.102) that the transfer function magnitude becomes 0 at r = α, where the
excitation frequency (ω) is equal to the natural frequency of the absorber (ωa). This fact has been
pointed out already. Note further that, in the present undamped case, the transfer function G(r) is
real; but it can be either positive or negative. The magnitude referred to is, then, the absolute value
of G(r), which is positive. The magnitude plot given in Figure 12.24 shows the resonant and control
characteristics of a system with an undamped vibration absorber, as discussed here. Originally, the
primary system had a resonance at r =1 (i.e., ω = ωp). When the absorber (which also has a resonance
at r = 1) is added, the original resonance becomes an antiresonance with a 0 response. But two
new resonances are created: one at r = 0.854 and the other at r = 1.171, which are on either side
of the tuned frequency (r = 1) of the absorber.

In view of these two resonances, the effective region of the absorber is limited to a narrow
frequency band centering its tuned frequency. Specifically, the absorber is not effective unless �G� < 1.
The effective frequency band of a vibration absorber can be determined using this condition.

EXAMPLE 12.8

A high-precision, yet high-power, positioning system uses a hydraulic actuator and a valve. The
pressurized oil to this hydraulic servo system is provided by a gear-type rotary pump. The pump

FIGURE 12.25 A hydraulic positioning system with a gear pump.
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and the positioning system are mounted on the same workbench. The mass of the pump is 25 kg.
The normal operating speed of the pump is 3600 rpm. During operation, it was observed that the
pump exhibits a vertical resonance at this speed and it affects the accuracy of the position servo
system. To control the vibrations of the pump at its operating speed, a vibration absorber of mass
1.25 kg, and tuned to the normal operating speed of the pump, is attached as schematically shown
in Figure 12.25. Since the speed of the pump normally fluctuates during operation, determine the
speed range within which the vibration absorber is effective. What are the new resonant frequencies
of the system? Neglect damping.

SOLUTION

For this problem, the fractional mass µ = 1.25/25.0 = 0.05, and since the absorber is tuned to the
resonant frequency of the pump, α = 1.0. Hence, from equation (12.103), the characteristic equation
of the modified system becomes

which has roots r1 = 0.854 and r2 = 1.171. It follows that the new resonances are at 0.854 × 3600 rpm
and 1.171 × 3600 rpm. These are 3074.4 rpm and 4215.6 rpm, which should be avoided. From
equation (12.102), the system transfer function is

The effective frequency band of the absorber corresponds to �G(r)� < 1.0. Since a sign reversal of
G(r) occurs at r = 1, one needs to solve both

The first equation give the roots r = 0 and 1.025. The second equation gives the roots r = 0.977 
and 1.45. Hence, the effective frequency band corresponds to ∆r = [0.977, 1.025]. In terms of the 
operating speed of the pump, then, one has an effective band of 3517.2 rpm to 3690 rpm. So, a 
speed fluctuation of about ±80 rpm is acceptable.

�

Before leaving the topic of an undamped vibration absorber, recall that the presence of the absorber 
generates two new resonances on either side of the resonance of the original system (to which the 
absorber is normally tuned). It is also clear from equation (12.104) that these two resonances 
become farther and farther apart as the fractional mass µ of the vibration absorber is increased.

12.7.2 DAMPED VIBRATION ABSORBER

Damping is not the primary means by which vibration control is achieved in a vibration absorber.
As noted before, the absorber acquires vibration energy from the primary system (and, in return,
exerts a force on the system that is equal and opposite to the vibration excitation), thereby
suppressing the vibratory motion. The energy received by the absorber must be dissipated gradually
and, hence, some damping should be present in the absorber. Furthermore, as one will notice in
the following development, the two resonances created by adding the absorber have an infinite
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magnitude in the absence of damping. Hence, damping has the added benefit of lowering these
resonant peaks as well.

The analysis of a vibratory system with a damped absorber is as straightforward as, but
somewhat more complex than, that involving an undamped absorber. Furthermore, an extra design
parameter — the damping ratio of the absorber — enters into the scene. Consider the model shown
in Figure 12.26. Another version of application of a damped absorber, which corresponds to
Figure 12.23(b), can be presented as well. But because the two types of application have the same
transfer function, it is sufficient to consider Figure 12.26 alone. Again, the transfer function of
vibration control can be taken as either ya /f or fs /f, the latter being simply kp times the former.
Hence, one can consider the dimensionless case of fs /f, but the results are equally valid for yp/f,
except that the responses must be converted from force to displacement by dividing by kp.

There is no need to derive the transfer function anew for the damped system. Simply replace
ka in equation (12.101) by the complex stiffness ka + jωba , which incorporates the viscous damping
constant ba and the excitation frequency ω. Hence, the transfer function of the damped system is

(12.105)

With the parameters defined as before, the nondimensional form of this transfer function is obtained
by dividing throughout by kpka and then substituting the appropriate parameters. In particular, use
the fact that

(12.106)

where the damping ratio ζa of the absorber is given by

(12.107)

FIGURE 12.26 Primary system with a damped vibration absorber.
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as usual. Then, follow the same procedure used to derive equation (12.102) from (12.101) to get

(12.108)

Note that this final result is equivalent to simply replacing α2 by α2 + 2jζaαr in equation (12.102).
At this juncture, the usual cautionary statement should be made about natural frequencies and

resonant frequencies. The undamped natural frequencies are obtained by solving the characteristics
equation, with ζa = 0. These are the same as before, and given by the square roots of equation
(12.104). The damped natural frequencies are obtained by first setting jr = λ (hence, r2 = –λ2 and
r4 = λ4), and solving the resulting characteristics equation [see the denominator of equation (12.108)]

(12.109)

and then taking the imaginary parts of the roots of λ. These depend on ζa and are different from
those obtained from equation (12.104). The resonant frequencies correspond to the r values where
the magnitude of G(r) will peak. These are, generally, not the same as the undamped or damped
natural frequencies; but for low damping (small ζa compared to 1), these three types of system
characteristics frequencies are almost identical.

The magnitude of the transfer function (12.108) is plotted in Figure 12.27 for the case µ = 1.0
and α = 1.0, as in Figure 12.24, but for damping ratios ζa = 0.01, 0.1, and 0.5. Note that the curve
for ζa = 0.01 is very close to that in Figure 12.24 for the undamped case. When ζa is large, as
shown in the case of ζa = 0.5, the two masses mp and ma tend to become locked together and appear
to behave like a single mass. Then the system tends to act like a single-degree-of-freedom one,
and the primary system is modified only in its mass (which increases). Consequently, there is only
one resonant frequency that is smaller than that of the original primary system. Furthermore, the
effect of a vibration absorber is no longer present, as expected, in this high-damping case.

All three curves in Figure 12.27 pass through the two common points A and B, as shown. This
is, in fact, true for all curves corresponding to all values of ζa, and particularly for the extreme
cases of ζa = 0 and ζa → ∞. Hence, these points can be determined as the points of intersection
of the transfer function magnitude curves for the limiting cases ζa = 0 and ζa → ∞.

Equation (12.102) gives G(r) for ζa = 0. Next, from equation (12.108), note that as ζa → ∞,
all the terms not containing ζa can be neglected. Hence,

Cancel the common term, and obtain (for r ≠ 0)

(12.110)

Note that this is the normalized transfer function of a single-degree-of-freedom system of nondi-

mensional natural frequency . This result confirms the fact that as ζa → ∞, the two masses
mp and ma become locked together and act as a single mass (mp + ma) supported on a spring of
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stiffness kp. Its natural frequency is , which when normalized with respect to

 becomes .

In determining the points of intersection between the functions (12.102) and (12.110), note
first that at the first point of intersection (A), the function (12.102) is negative and (12.110) is
positive, while the reverse is true for the second point of intersection (B). That means that for either
point, the sign of one of the functions should be reversed before equating them; thus,

which gives,

(12.111)

This is the equation whose roots (e.g., r1 and r2) give the points A and B. Then one has the sum
of the squared roots equal to the negative coefficient of r2 in the quadratic (in r2) equation (12.111);
thus,

FIGURE 12.27 Vibration amplification (transfer function magnitude) curves for damped vibration absorbers
(absorber mass µ = 0.1, absorber resonant frequency α = 1.0.
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(12.112)

Also, the product of the squared roots is equal to the constant term in the quadratic (in r2) equation
(12.111). Hence,

(12.113)

Optimal Absorber Design

It has been pointed out, primarily by J.P. Den Hartog, that an optimal absorber design should not
only have equal response magnitudes at the common points of intersection (i.e., have the ordinates
of points A and B equal in Figure 12.27), but also the resonances should occur at these points so
that some balance and uniformity is achieved in the response amplification in the region surrounding
the tuned frequency of the absorber. It is expected that these (intuitive) design conditions would
give relations between the parameters α, µ, and ζa corresponding to an optimal absorber.

Consider the first requirement of equal transfer function magnitudes at A and B. Since, as noted
earlier, these two points do not depend on ζa, one can use equation (12.110) to satisfy the require-
ment. Thus, again keeping in mind the sign reversal of the transfer function between A and B (i.e.,
as the transfer function passes through the resonance), one obtains

which gives

(12.114)

Substituting this result (for equal ordinates) in the intersection-point condition (12.112), one obtains

On simplification, one obtains the simple result

(12.115)

Next, turn to achieving peak magnitudes of the transfer function at the points of intersection
(A and B). Unfortunately, when one point peaks, the other does not, in general. As reported by Den
Hartog, with straightforward but lengthy analysis, one obtains the following two results:

(12.116)
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for peak at the first intersection point, and

(12.117)

for peak at the second intersection point. So, for design purposes, a balance is obtained by taking
the average value of the results (12.116) and (12.117), as

(12.118)

Then, equations (12.115) and (12.118) correspond to an optimal vibration absorber. In addition,
note that practical requirements and limitations need to be addressed in any design procedure. In
particular, since µ is considerably less than unity (i.e., absorber mass is a small fraction of the
primary mass), in order to receive the energy of the primary system, the absorber mass should
undergo relatively large amplitudes at the operating frequency. The absorber spring needs to be
designed accordingly, while meeting the tuning frequency conditions that determine the ratio ma /ka.

EXAMPLE 12.9

The air compressor of a wind tunnel weighs 48 kg and normally operates at 2400 rpm. The first
major resonance of the compressor unit occurs at 2640 rpm, with severe vibration amplitudes that
are quite dangerous. Design a vibration absorber (damped) for installation on the mounting base
of the compressor. What are the vibration amplifications of the compressor unit at the new
resonances of the modified system? Compare these with the vibration amplitude of the original
system in normal operation.

SOLUTION

As usual, one tunes the absorber to the normal operating speed (2400 rpm). Then, the nondimen-
sional resonant frequency of the absorber is given by

Now, for an optimal absorber, from equation (12.115),

Hence, the absorber mass ma = 48 ×  kg = 4.0 kg. Then, from equation (12.118), the damping
ratio of the absorber is

Now,
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Hence,

Also,

Then,

Hence, the damped absorber is designed. Now check its performance. One knows that, in theory,
the vibration amplitude at the operating speed should be almost 0 now; but two resonances are
created around the operating point. Since damping is small, one can use the undamped characteristic
equation (12.103) to compute these resonances:

which gives

The roots of r2 are 0.692 and 1.231. The (positive) roots of r are: 0.832 and 1.109. These correspond
to compressor speeds of (multiply r by 2640 rpm) 2196 rpm and 2929 rpm. Although they are
approximately at –10% and +20% of the operating speed, the first resonance will be encountered
during start-up and shut-down conditions. To determine the corresponding vibration amplifications
(force/force), use equation (12.108) which, when the undamped characteristic equation is substituted
into the denominator, becomes

(12.119)

Substitute the resonant frequencies r1 = 0.832 and r2 = 1.109 to obtain �G(r1)� = 4.223 and �G(r2)� = 4.634.
Without the absorber, one can approximate the system by a simple undamped oscillator with transfer
function

The corresponding vibration amplification at the operating speed is:

ω π πa
a

a

ak

m

k
= = = × = ⋅ −

4 0
2400
60

2 80 1

.
 rad s

ka = ( ) × = × ⋅ −80 4 0 2 527 102 5 1π . .  N m

ζ a
a

a a

b

m k
= 1

2

ba = × × × = ⋅ ⋅ −2 0 157 4 0 2 527 10 315 75 1. . . .  N s m

r r4
2

2
2

2

2

12
13

1
1

12
1

12
13

0− +



 +









 + =

r r4 2
2

2

25
13

12
13

0− + =

G r
r j r

j r r j r

j r r

r
a

a a

a( ) =
− +

− +( ) +[ ] =
− −( ) ( )

− +( )
α ζ α

ζ α µ ζ α

α ζ α
µ

2 2

2

2 2

2

2

2 1 2

1 2

1 1

G r
rp ( ) =

−
1

1 2
©2000 CRC Press

http://www.semeng.ir


www.20file.org
It is observed that the resonant vibrations, after adding the absorber, are smaller than even the operating
vibrations of the original system. Hence, the design is satisfactory. Note that the force/force transfer
functions were used. To get the displacement/force transfer functions, divide by kp. However,

Hence,

So, the amplitude of operating vibrations of the original system is equal to

The amplitudes of the resonant vibrations of the modified system are 

�

Vibration absorbers are simple and passive devices commonly used in the control of narrow-band
vibrations (limited to a very small interval of frequencies). Applications are found in vibration
suppression of transmission wires (e.g., a stockbridge damper, which simply consists of a piece of
cable carrying two masses at its ends), consumer appliances, automobile engines, and industrial
machinery. Before leaving the topic, it should be stated that the concepts presented for a rectilinear
vibration absorber can be directly extended to a rotary vibration absorber. A schematic represen-
tation of a rotary vibration absorber is shown in Figure 12.28. This model corresponds to vibration 

FIGURE 12.28 The application of a rotary vibration absorber.
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force excitations [compare with Figure 12.23(a)]. The case of rotational support-motion excitations
[see Figure 12.23(b)] can be addressed as well, which has essentially the same transfer function.
Approaches of vibration control are summarized in Box 12.7.

12.7.3 VIBRATION DAMPERS 

As discussed above, vibration absorbers are simple and effective passive devices that are used in
vibration control. They have the added advantage of being primarily non-dissipative. The main
disadvantage of a vibration absorber is the fact that it is effective only over a very narrow band of

BOX 12.7 Vibration Control

Passive control (no external power):
1. Dampers

a. A dissipative approach (thermal problems, mechanical degradation)
b. Useful over a wide frequency band.

2. Vibration absorbers (dynamic absorbers, Frahm absorbers)
a. Absorbs energy from vibrating system and applies a counteracting force
b. Useful over a very narrow frequency band (near the tuned frequency)
c. Absorber executes large motions.

Undamped absorber design:

where

µ = absorber mass/primary system mass
α = absorber natural frequency/primary system natural frequency
r = excitation frequency/primary system natural frequency.

The most effective operating frequency rop = α.
Avoid the two resonances.

Optimal damped absorber design:
To get the transfer fucntion, replace α2 by α2 + 2jζaαr in the undamped case.

Active control (needs external power):
1. Measure vibration response using sensors/transducers.
2. Apply control forces to vibrating system through actuators, according to a suitable control

algorithm.

Transfer function of system with absorber = −
− +( ) +[ ] +

α
α µ α

2 2

4 2 2 21 1

r

r r

Mass ratio  µ
α

= −1
1

Damping ratio  ζ µ
µa =

+( )
3

8 1
3
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frequencies enclosing its resonant frequency (tuned frequency). When passive vibration control
over a wide band of frequencies is required, a damper would be a good choice.

Vibration dampers are dissipative devices. They accomplish the function of vibration control
through direct dissipation of the vibration energy of the primary (vibrating) system. As a result,
however, there will be substantial heat generation, as well as associated thermal problems and
component wear. Consequently, methods of cooling (e.g., use of a fan, coolant circulation, and
thermal conduction blocks) may be required in some special situations. 

Consider a vibrating system that is modeled as an undamped single-degree-of-freedom mass-
spring system (simple oscillator). The magnitude of the excitation-response transfer function will
have a resonance with a theoretically infinite magnitude in this case. Operation in the immediate
neighborhood of such a resonance would be destructive. Adding a simple viscous damper, as shown
in Figure 12.29(a), will correct the situation. The equation of motion (about the static equilibrium
position) is

(12.120)

with the dynamic force that is transmitted through the support base (fs) given by

(12.121)

Hence, the transfer function between the forcing excitation f and the vibration response y is

(12.122)

and that between the forcing excitation and the force transmitted to the support structure is 

FIGURE 12.29 (a) A system with a linear viscous damper, and (b) a rotary system with a Houdaille damper.

my by ky f t˙̇ ˙+ + = ( )

f ky bys = + ˙

y

f k m j b
=

− +
1

2ω ω
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(12.123)

Using the nondimensional frequency variable r = ω/ωn, where ωn =  is the undamped natural

frequency of the system, and the damping ratio ζ = , one can express equations (12.122)

and (12.123) in the form:

(12.124)

(12.125)

When vibration control of the primary system is desired, one can use the transfer function
(12.124); and when force transmissibility is the primary consideration, one can use (12.125).
Furthermore, it is convenient to use the transfer function (12.124) in the nondimensional form:

(12.126)

The magnitude of this transfer function is plotted in Figure 12.30 for several values of damping
ratio. Note how the addition of significant levels of damping can considerably lower the resonant
peak, and furthermore flatten the overall response. This example illustrates the broad-band nature
of the effect of a damper; but, unlike a vibration absorber, it is not possible with a simple damper
to bring the vibration levels to a theoretical 0. However, a damper is able to bring the response
uniformly close to the static value (unity in Figure 12.30).

Another common application of a damper is found where it is connected through a free inertia
element. Such an arrangement, for a rotational system, is known as the Houdaille damper, and is
modeled as in Figure 12.30(b). The equations of motion are

(12.127)

(12.128)

In this case, the transfer function between the vibratory excitation torque τ and the response angle
θ is given by

(12.129)

Again, use the normalized form of Kθ/τ to obtain

(12.130)
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where

r = ω/ωn

ζ =
µ = Jd /J

ωn =

Note the two extreme cases: (1) when ζ = 0, the system becomes the original undamped system,
as expected; and (2) when ζ → ∞, again, the system becomes an undamped simple oscillator, but

with a lower natural frequency of r = , instead of r = 1 that was present in the original

system. This is to be expected because as ζ → ∞, the two inertia elements become locked together
and act as a single combined inertia J + Jd. Clearly, in these two extreme systems, the effect of
damping is not present. Optimal damping occurs somewhere in between, as is clear from the curves
of response magnitude shown in Figure 12.31 for the case of µ = 0.2.

Proper selection of the nature and values of damping is crucial to the use of a damper in
vibration control. Damping in physical systems is known to be nonlinear and frequency dependent,
as well as time-variant and dependent on the environment (e.g., temperature). Models are available
for different types of damping, but these are only models or approximate representations. In
practice, depending on such considerations as the type of damper used, nature of the system,
specific application, and the speed of operation, a particular model (linear viscous, hysteric,
Coulomb, Stribeck, quadratic aerodynamic, etc.) may be valid. In addition to the simple linear theory

FIGURE 12.30 Frequency response of a system containing a linear damper.
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of viscous damping, as used in the present section, specific properties of physical damping should
be taken into consideration in practical designs. The topic of damping has been addressed in more
detail in Chapter 7.

12.8 ACTIVE CONTROL OF VIBRATION

Passive control of vibration is relatively simple and straightforward. It is also known to be robust,
reliable, and economical, but it has limitations. Note that the control force generated in a passive
device depends entirely on the natural dynamics. Once the device is designed (i.e., after the parameter
values for mass, damping constant, stiffness, location, etc. are chosen), it is not possible to adjust
the control forces that are naturally generated by it in real-time. Furthermore, in a passive device,
there is no supply of power from an external source. Hence, even the magnitudes of the control
forces cannot be changed from their natural values. Because a passive device senses the response
of the system implicitly as an integral process of the overall dynamics of the system, it is not always
possible to directly target the control action at particular responses (e.g., particular modes). This can
result in incomplete control, particularly in complex and high-order (e.g., distributed-parameter)
systems. These shortcomings of passive control can be overcome using active control, where the
system responses are directly sensed using sensor-transducer devices; and on that basis, control
actions of specific desired values are applied to desired locations/modes of the system.

12.8.1 ACTIVE CONTROL SYSTEM

A schematic diagram of an active control system is shown in Figure 12.32. The mechanical dynamic
system for which vibrations need to be controlled is the plant or process. The device that generates

FIGURE 12.31 Response curves for a rotary system with Houdaille damper of inertia ratio µ = 0.2.
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the signal (or command) according to some scheme (or control law) and controls vibrations of the
plant is called the controller. The plant and the controller are the two essential components of a
control system. Usually, the plant must be monitored and its response must be measured using
sensors, for feedback into the controller. Then, the controller compares the sensed signal with a
desired response as specified externally, and uses the error to generate a proper control signal. In
this manner, one has a feedback control system. In the absence of a sensor and feedback, what one
has is an open-loop control system. In feed-forward control, the excitation (i.e., input signal) —
not the response (i.e., output signal) — is measured and used (i.e., fed forward into the controller)
for generating the control signal. Both feedback and feed-forward schemes can be used together
in the same control system.

The actuator that receives a control signal and drives the plant can be an integral part of the
plant (e.g., the motor that drives the blade of a saw), or it can be specifically added as an external
component for the control actuation (e.g., a piezoelectric or electromagnetic actuator for controlling
blade vibrations of a saw). In the former case, in particular, proper signal conditioning is needed
to convert the control signal to a form that is compatible with the existing actuator. In the latter
case, both the controller and the actuator must be developed in parallel for integration into the
plant. In digital control, the controller is a digital processor. The control signal is in the digital
form in this case and typically must be converted into the analog form prior to use in the actuator.
Hence, digital-to-analog conversion (DAC) is a form of signal conditioning that is useful here.
Furthermore, the analog signal that is generated might have to be filtered and amplified to an
appropriate level for use in the actuator. It follows that filters and amplifiers are signal-conditioning
devices that are useful in vibration control (see Chapters 8 and 9). In software control, the control
signal is generated by a computer that functions as the digital controller. In hardware control, the
control signal is generated very rapidly by digital hardware, without using software programs.
Alternatively, analog control can be used, where the control signal is generated directly using
analog circuitry. In this case as well, the controller is quite fast and, furthermore, it does not require
DAC. Note that the actuator may need high levels of power. Also, the controller and associated
signal conditioning will require some power.

FIGURE 12.32 A system for active control of vibration.
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This need for an external power source for control particularly distinguishes active control from
passive control. Some important aspects of control instrumentation and signal conditioning were
presented in Chapters 8 and 9.

In a feedback control system, sensors are used to measure the plant response that enables the
controller to determine whether the plant operates properly. A sensor unit that “senses” the response
can automatically convert (transduce) this “measurement” into a suitable form. In examples
discussed in Chapter 8, a piezoelectric accelerometer senses acceleration and converts it into an
electric charge; an electromagnetic tachometer senses velocity and converts it into a voltage; and
a shaft encoder senses a rotation and converts it into a sequence of voltage pulses. Hence, the
terms sensor and transducer are used interchangeably to denote a sensor-transducer unit. The
signal generated in this manner might need conditioning before feeding into the controller. For
example, the charge signal from a piezoelectric accelerometer must be converted to a voltage
signal of appropriate level using a charge amplifier, and then it must be digitized using an analog-
to-digital converter (ADC) for use in a digital controller. Furthermore, filtering may be needed to
remove measurement noise. Hence, signal conditioning is usually required between the sensor
and the controller, as well as the controller and the actuator. External power will be required to
operate active sensors (e.g., potentiometer), whereas passive sensors (e.g., electromagnetic tachom-
eter) employ self-generation and do not need an external power source. As before, external power
might be needed for conditioning the sensor signals. See Chapters 8 and 9 for details. Finally, as
indicated in Figure 12.32, a vibrating system may have unknown disturbance excitations that can
make the control problem particularly difficult. Removing such excitations at the source level is
desirable, through proper design or vibration isolation, as previously discussed in this chapter.
But in the context of control, if these disturbances can be measured or, some information about
them is available, they can be compensated for within the controller itself. This is, in fact, the
approach of feed-forward control.

12.8.2 CONTROL TECHNIQUES

The purpose of a vibration controller is to excite (activate) a vibrating system so as to control its
vibration response in a desired manner. In the present context of active feedback control, the
controller uses measured response signals and compares them with their desired values in its task
of determining an appropriate action. The relationship that generates the control action from a
measured response (and also using a desired value for the response) is called a control law.
Sometimes, a compensator (analog or digital; hardware or software) is employed to improve the
system performance or to enhance the controller so that the task of control becomes easier. But,
for purposes herein, one can consider a compensator as an integral part of the controller and, hence,
a distinction between the two is not made.

Various control laws, both linear and nonlinear, have been developed for practical applications.
Many of them are suitable in vibration control. A comprehensive presentation of all such control
laws is outside the scope of this book. Several linear control laws that are common and representative
of what is available, are presented here. These techniques are based on a linear representation
(linear model) of the vibrating system (plant). Even when the overall operating range of a plant
(e.g., robotic manipulator) is nonlinear, it is often possible to linearize the vibration response (e.g.,
link vibrations and joint vibrations of a robot) about a reference configuration (e.g., robot trajectory).
Then, these linear control techniques will still be suitable, although the overall dynamics of the
system is nonlinear.

State-Space Models

In applying many types of control techniques, it is convenient to represent the vibrating system
(plant) by a state-space model. This is simply a set of first-order ordinary differential equations
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that can be coupled, nonlinear, and have time-varying parameters (time-variant models). The
concept of state has been discussed in Chapters 2 and 5 and Appendix A. The discussion here is
limited to linear and time-invariant state-space models. Such a model is expressed as

(12.131)

(12.132)

where

x = [x1, x2, …, xn]T = state vector (nth order column)
u = [u1, u2, …, ur]t = input vector (rth order column)
y = [y1, y2, …, ym]t = output vector (mth order column)
A = system matrix (n × n square)
B = input gain matrix (n × r)
C = measurement gain matrix (m × n)
D = feed-forward gain matrix (m × r).

Usually, for vibrating systems, it is possible to make D = 0, and hence one can drop this matrix
in the sequel. Furthermore, a state variable xi need not have a direct physical meaning, but an output
variable yj should have some physical meaning and, in typical situations, should be measurable as
well. The input variables are the “control variables” and are the ones used for controlling the system
(plant). The output variables are the “controlled variables;” they correspond to the system response
and are measured for feedback control.

It can be verified that the eigenvalues of the system matrix A occur in complex conjugates of

the form –ζ iωi ±  in the damped oscillatory case, or as ± jωi in the undamped case,
where ωi is the ith undamped natural frequency of the system and ζ i is the corresponding damping
ratio (of the ith mode). The mathematical verification requires some linear algebra. An intuitive
verification can be made since equation (12.131) is an equivalent model for a system having the
traditional mass-spring-damper model

(12.133)

where

M = mass matrix
C = damping matrix
K = stiffness matrix
f(t) = forcing input vector
y = displacement response vector.

Both models (12.131) and (12.133), being equivalent, should have the same characteristic equation,
which by its roots determines the natural frequencies and modal damping ratios. This must be the
case because one is looking at just two different mathematical representations of the same system.
Hence, the parameters of its dynamics, such as ωi and ζ i should remain unchanged. In fact, the
state-space model (12.131) is not unique, and different versions of state vectors and corresponding
models are possible. Of course, all of them should have the same characteristic polynomial (and
hence, the same ωi and ζ i). One such state-space model can be derived from equation (12.133) as
follows.

ẋ Ax Bu= +

y Cx Du= +

j i i1 2− ζ ω

My Cy Ky f˙̇ ˙+ + = ( )t
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Define the state vector as

(12.134)

Then, since (for nonsingular M, as required) equation (12.133) can be written as

(12.135)

One obtains

(12.136)

This is a state-space model that is equivalent to the conventional model (12.133), and can be shown
to have the same characteristic equation. The development of a state-space model for a vibrating
system can be illustrated using an example.

EXAMPLE 12.10

Consider a machine mounted on a support structure, modeled as in Figure 12.33. Using the
excitation forces f1(t) and f2(t) as the inputs and the displacements y1 and y2 of the masses m1 and
m2 as the outputs, develop a state-space model for this system.

SOLUTION

Assume that the displacements are measured from the static equilibrium positions of the masses.
Hence, the gravity forces do not enter into the formulation. Newton’s second law is applied to the
two masses; thus,

FIGURE 12.33 A model of a machine mounted on a support structure.
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The following state variables are defined:

 Also, the input vector is u = [f1 f2]T and the output vector

is y = [y1 y2]T. Then,

Accordingly, the state-space model is given by equations (12.131) and (12.132), with

and

Also, note that the system can be expressed as

Its characteristic equation can be expressed as the determinant equation

It can be verified through direct expansion of the determinants that this equation is equivalent to
the characteristic equation of the matrix A, as given by det(λI – A) = 0, or
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Note that in the present context, x and y represent the vibration response of the plant, and the
control objective is to reduce these to 0. Some common control techniques that can achieve this
goal are given below.

Position and Velocity Feedback

In this technique, the position and velocity of each degree of freedom are measured and fed into
the system with sign reversal (negative feedback) and amplification by a constant gain. Since
velocity is the derivative of position and the gains are constant (i.e., proportional), this method falls
into the general category of proportional-plus-derivative (PD or PPD) control. In this approach, it
is tacitly assumed that the degrees of freedom are uncoupled. Then, control gains are chosen so
that the degrees of freedom in the controlled system are nearly uncoupled, thereby justifying the
original assumption. To explain this control method, suppose that a degree-of-freedom of a vibrating
system is represented by

(12.137)

where y is the displacement (position) of the degree-of-freedom and u is the excitation input applied.
Now suppose that u is generated according to the (active) control law

(12.138)

where kc is the position feedback gain and bc is the velocity feedback gain. The implication here
is that the position y and the velocity  are measured and fed into the controller, which in turn
generates u according to equation (12.138). Also, ur is some reference input that is provided
externally to the controller. Then, substituting equation (12.138) into (12.137), one obtains

(12.139)

The closed-loop system (the controlled system) now behaves according to equation (12.139). The
control gains bc and kc can be chosen somewhat arbitrarily (subject to the limitations of the physical
controller, signal conditioning circuitry, the actuator, etc.) and might even be negative. In particular,
by increasing bc, the damping of the system can be increased; and similarly, by increasing kc, the
stiffness (and the natural frequency) of the system can be increased. Although a passive spring and
damper with stiffness kc and damping constant bc can accomplish the same task, once the devices
are chosen, it will not be possible to conveniently change their parameters. Furthermore, it will not
be possible to make kc or bc negative in this case of passive physical devices. The method of PPD
control is simple and straightforward, but the assumption of linear uncoupled degrees of freedom
places a limitation on its general use.

Linear Quadratic Regulator (LQR) Control

This is an optimal control technique. Consider a vibrating system that is represented by the linear
state-space model
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(12.131)

Assume that all the states x are measurable and all the system modes are controllable. Then, use
the constant-gain feedback control law:

(12.140)

The choice of parameter values for the feedback gain matrix K is infinite. Thus, one can use this
freedom to minimize the cost function:

(12.141)

This is the time integral of a quadratic function in both state and input variables, and the optimization
goal can be interpreted as bringing x down to 0 (regulating x to 0), but without spending a rather
high control effort; hence, the name linear quadratic regulator (LQR). Also, Q and R are weighting
matrices, with the former being at least positive semi-definite and the latter positive definite.
Typically, Q and R are chosen as diagonal matrices with positive diagonal elements whose mag-
nitudes are decided based on the degree of relative emphasis that should be made on various
elements of x and u. It is well-known that K, which minimizes the cost function (12.141), is given by

(12.142)

where Kr is the positive-definite solution of the matrix Riccati algebraic equation

(12.143)

It is also known that the resulting closed-loop control system is stable. Furthermore, the minimum
(optimal) value of the cost function (12.141) is given by

(12.144)

where x is the present value of the state vector. A major computational burden of the LQR method
lies in the solution equation (12.143). Other limitations of the technique arise due to the need for
measuring all the state variables (which may be relaxed to some extent). Furthermore, although
the stability of the controlled system is guaranteed, the level of stability that is achieved (i.e., stability
margin or the level of modal damping) cannot be directly specified. Also, robustness of the control
system, in the presence of model errors, unknown disturbances, etc., may be questionable. Besides,
the cost function incorporates an integral over an infinite time duration, which does not typically
reflect the practical requirement of rapid vibration control.

Modal Control

The LQR control technique has the serious limitation of not being able to directly achieve specified
levels of modal damping, which can be an important goal in vibration control. The method of
modal control accomplishes this objective through pole placement, where poles (eignevalues) of
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the controlled system are placed at specified values. Specifically, consider the plant (12.131) and
the feedback control law (12.140). Then, the closed-loop system is given by

(12.145)

It is well known that if the plant (A, B) is controllable, then a control gain matrix K can be chosen 
that will arbitrarily place the eigenvalues of the closed-loop system matrix A + BK. That means, 
under the given assumptions, the modal control technique can not only assign the modal damping, 
but also the damped natural frequencies at specified values. The assumptions given above are quite 
stringent, but they can be relaxed to some degree. A shortcoming, however, of this method is the 
fact that it does not place a restriction on the control effort, as, for example, the LQR technique 
does, in achieving a specified level of modal control.

12.8.3 ACTIVE CONTROL OF SAW BLADE VIBRATION

Saw blades are thin-plate-like distributed (continuous) mechanical systems. They exhibit vibrations,
with theoretically an infinite number of modes. The mode shapes of the first four modes of vibration
of a circular blade, as obtained from a finite element analysis, are shown in Figures 12.34(a) through (d).
Also, as the speed of rotation increases, the tension effect due to the associate centrifugal forces also
increases. Hence, just like in the case of a beam in tension and undergoing flexural vibrations
(as analyzed in Chapter 6), the natural frequencies will increase with speed. Table 12.2 gives the
natural frequencies of the first five modes of vibration of a circular saw, at different rotation speeds
in the range of 0 to 4200 rpm.

Circular saws are widely used in the wood machining industry. Operating speeds of these saws
can range from 600 to 4000 rpm. The blade diameter can be in the range of 35.0 to 150.0 cm, and
the blade thickness can be from 2.5 to 5.5 mm. Vibrations in saw blades can have several detrimental
effects. First, the quality of the cut (sawing accuracy and finish) will degrade with vibration. Second,
the wood recovery will decrease due to inaccurate cuts; a wastage level of 7% is typical due to
blade vibration. Third, because approximately 12% of the processed wood ends up as sawdust, the
related problems will be exacerbated due to inaccurate cuts caused by blade vibrations. Deterioration
of the saw-blade life and damaging effects on the saw, due to vibration, can be significant as well.

Finer cuts of high quality require thinner blades. Also, increased product quality and produc-
tivity will call for higher blade speeds, and will make the speed become closer to the fundamental
natural frequency of the blade. Both these requirements of modern wood processing will potentially
increase the likelihood of vibration problems. It follows that vibration control of saw blades can
be quite beneficial in wood processing. A project has been undertaken by George Wang and
associates at the National Research Council of Canada, in active control of saw blade vibration.
In the present example, their experimental setup is outlined. A schematic diagram of the experi-
mental setup is given in Figure 12.35(a), and a view of the laboratory system is shown in Figure
12.35(b).

Since the blade rotates during normal operation, both the sensors and actuators for the blade
itself should preferably be of the non-contact type. Of course, it is possible to monitor speeds,
forces, and movements at the shaft and bearings of the blade using sensors and transducers such
as optical encoders, tachometers, accelerometers, and strain-gages (see Chapter 8); but for the direct
measurement of blade vibration, proximity sensors are preferred, as used in the system of
Figure 12.35. Magnetic-induction type or eddy-current type proximity sensors and optical sensors
(e.g., lasers) can be employed for this purpose, as indicated in Chapter 8, with their particular
advantages and disadvantages. Notably, eddy-current proximity sensors can be used at high fre-
quencies and can also be easily compensated for environmental effects, using a bridge circuit. They
require a relatively small sensing area and, hence, the sensor signal will not be affected by the
motion of other parts of the blade system. This is not the case for a magnetic-induction proximity

ẋ A BK x= +( )
©2000 CRC Press

http://www.semeng.ir


www.20file.org
(a)

(b)
FIGURE 12.34 Mode shapes of vibration of a circular saw blade: (a) Mode 1, and (b) Mode 2. (Courtesy of Dr.
George Wang; taken from Wang, G. et al., National Research Council, Integrated Manufacturing Technologies
Institute, Vancouver, Canada, pp. 5, 8, 25–28, May 1998. With permission.)
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(c)

(d)

FIGURE 12.34 (continued) (c) Mode 3, and (d) Mode 4.
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sensor. Optical sensors are convenient, but their measurements will be affected by environmental
lighting, surface material and texture of the object, dust, etc. Electrodynamic type actuators, which
operate on the same principle as an electric motor or a shaker used in vibration testing, are used
in the system of Figure 12.35. These do not have to be in contact with the blade and can be
accurately controlled through a digital controller and a drive amplifier.

In Figure 12.35, a signal generator is used to apply to the blade a vibration excitation of known
magnitude and frequency characteristics, through an electrodynamic actuator. But, in the practical
situation, it is the blade rotation that excites various modes of vibration of the blade, and the
actuators are used only for the purpose of active control. A spectrum analyzer is used for off-line
frequency analysis, of the sensor signals. Again, in a practical active control system, typically, the
sensor signals are not analyzed off-line, but rather conditioned and directly used in the controller.

The task of active control involves sensing a vibration component and then, using an actuator,
applying an excitation force to counteract the measured vibrations. This seemingly simple task can
become quite difficult in complex, continuous-parameter systems such as rotating saw blades, which
have an infinite number of modes. For example, both the value of the control excitation and the
location of the actuator can be varied to realize the most desirable vibration performance. The
mode shapes and natural frequencies of the system should be taken into account. For example, if
a sensor or an actuator is located at a node of a particular mode, it will not be possible to accurately
control that mode. Control techniques such as those mentioned previously can be employed in
generating the control signal from the sensor signals. The issues involved are quite similar to those
that arise in the vibration control of a beam. This topic will be addressed in the next section.

12.9 CONTROL OF BEAM VIBRATIONS

A beam is a distributed-parameter system that has, in theory, an infinite number of modes of
vibration, with associated mode shapes and natural frequencies. In this sense, it is an “infinite
order” system, with infinite degrees of freedom. Hence, the computation of modal quantities and
associated control inputs can be quite complex. Fortunately, however, only a few modes need be
retained in a dynamic model without sacrificing a great deal of accuracy, and thereby, facilitating
simpler control. Some concepts of controlling vibrations in a beam are considered in this section.
The present treatment is intended as an illustration of the relevant techniques and is not meant to
be exhaustive. These techniques can be extended to other types of continuous systems, such as
beams with different boundary conditions and plates. Since the control techniques that were outlined

TABLE 12.2
Natural Frequencies of Vibration of a Circular Saw Blade 
(Diameter = 45.7 cm, Thickness = 2.5 mm)

Blade Speed
(rpm)

Natural Frequency (Hz) for Mode No.

1 2 3 4 5 6

0 96.06 96.91 110.03 154.91 235.97 347.52
600 96.92 97.86 111.13 155.99 236.95 348.41
1500 101.32 102.71 116.73 161.59 242.06 353.04
2400 108.99 111.14 126.48 171.51 251.28 361.49
3300 119.29 122.39 139.48 185.04 264.17 373.48
4200 131.55 135.74 154.93 201.45 280.22 388.69

(Courtesy of Dr. George Wang; taken from Wang, G. et al., National Research
Council, Integrated Manufacturing Technologies Institute, Vancouver, Canada,
pp. 5, 8, 25–28, May 1998. With permission.)
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previously depend on a model, the procedure of obtaining a state-space model for a beam is
illustrated first.

12.9.1 STATE-SPACE MODEL OF BEAM DYNAMICS

Consider a Bernoulli-Euler type beam with Kelvin-Voigt type internal (material) damping, as
discussed in Chapters 6 and 7. The beam equation can be expressed as

(a)

(b)

FIGURE 12.35 An active control system for saw blade vibration: (a) schematic diagram, and (b) experimental
setup. (Courtesy of Dr. George Wang; taken from Wang, G. et al., National Research Council, Integrated Manufac-
turing Technologies Institute, Vancouver, Canada, pp. 5, 8, 25–28, May 1998. With permission.)
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(12.146)

in which L is the partial differential operator given by

(12.147)

and

f(x,t) = distributed force excitation per unit length of beam
v(x,t) = displacement response at location x along the beam at time t
I(x) = second moment of area of the beam cross section about the neutral axis
E = Young’s modulus of the beam material
E* = Kelvin-Voigt material damping parameter.

Note that a general beam with non-uniform characteristics is assumed and, hence, the variations
of I(x) and ρA(x) with x are retained in the formulation.

Using the approach of modal expansion, the response of the beam can be expressed by

(12.148)

where Yi(x) is the ith mode shape of the beam, which satisfies

(12.149)

and ωi is the ith undamped natural frequency. The orthogonality condition for this general case of
a non-uniform beam is

(12.150)

Suppose that the forcing excitation on the beam is a set of r point forces uk(t) located at x = lk,
k = 1, 2, …, r. Then,

(12.151)

where δ(x – li) is the Dirac delta function. Now substitute equations (12.148) and (12.151) into
(12.146); use (12.149); multiply throughout by Yj(x); and integrate over x[0,l] using (12.150). This
gives
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(12.152)

where

(12.153)

Now, define the state variables xj according to

(12.154)

Then, assuming that only the first m modes are retained in the expansion, the state equations are:

(12.155)

This can be put in the matrix-vector form of a state-space model:

(12.131)

where

(12.156)

and

(12.157)

with n = 2m, where m is the number of modes retained in the modal expansion. Note that as the
number of modes used in this model increases, the accuracy increases and, simultaneously, the
computational effort needed for the control problem increases as well, because of the proportional
increase of the system order. At some point, the potential improvement in accuracy, by further
increasing the model size, will be insignificant in comparison with added computational burden.
Hence, a balance must be struck in this tradeoff of modal truncation.
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12.9.2 CONTROL PROBLEM

The state-space model (12.131) for the beam dynamics, with matrices (12.156) and (12.157), is
known to be controllable. Hence, it is possible to determine a constant-gain feedback controller
u = Kx that minimizes a quadratic-integral cost function of the form (12.141). Also, a similar
controller can be determined that places the eigenvalues of the system at specified locations,
thereby achieving not only specified levels of modal damping but also a specified set of natural
frequencies. However, there is a practical obstacle to achieving such an active controller. Note
that in the model (12.156) and (12.157), the state variables are proportional to the modal variables
qi and their time derivatives i. They are not directly measurable. What can be measured, normally,
are the displacements and velocities at a set of discrete locations along the beam. Let these locations
(s) be denoted by p1, p2, …, ps. Then, in view of the modal expansion (12.148), the measurements
can be expressed as

(12.158)

Now, define the output (measurement) vector y according to

(12.159)

Then, in view of equations (12.158) and the definitions (12.154) of the state variable, one can write

(12.160)

with

(12.161)

Hence, what is possible is an active controller of the form 

(12.162)

which is an output feedback controller. Then, in view of equation (12.160), one has

(12.163)
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This is not the same as complete-state feedback u = Kx, where K can take any real value, and
hence, the LQR solution (12.142) or the complete pole placement solution cannot be applied
directly. In equation (12.163), only H can be arbitrarily chosen, and C is completely determined
according to equation (12.161). The resulting product HC will not usually correspond to either the
LQR solution or the complete pole assignment solution. Still, the output feedback controller
(12.162) can provide satisfactory performance. However, a sufficient number of displacement and
velocity sensors (s) must be used in conjunction with a sufficient number of actuators (r) for active
control. This will increase the system complexity and cost. Furthermore, due to added components
and their active nature, the reliability of fault-free operation may degrade somewhat. A satisfactory
alternative would be to use passive control devices such as dampers and dynamic absorbers. The
use of dampers is discussed in Section 12.9.3. The approach using dynamic absorbers follows from
this (except for the need of additional state variables to represent the dynamics of the absorbers)
and is left as an exercise. Before leaving the present discussion, however, note that in the matrices
B and C given by equations (12.157) and (12.161), both the actuator locations li and the sensor
locations pj are variable. Hence, there exists an additional design freedom (or optimization param-
eters) in selecting the sensor and actuator locations for achieving satisfactory control.

12.9.3 USE OF LINEAR DAMPERS

Now consider the use of a discrete set of linear dampers for controlling beam vibration. Suppose
that r linear dampers with damping constants bj are placed at locations lj, j = 1, 2, …, r along the
beam, as schematically shown in Figure 12.36. The damping forces are given by

(12.164)

By substituting the truncated modal expansion (m modes)

(12.165)

one obtains, in view of equation (12.154), the passive feedback control action

(12.166)

with

FIGURE 12.36 Use of linear dampers in beam vibration control.
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(12.167)

By substituting equation (12.166) into (12.131), one obtains the closed-loop system equation

(12.168)

where F = BK and is given by

(12.169)

with

(12.170)

The controller design in this case involves the selection of the damping constants bi and the damper
locations lj so as to achieve the required performance. This can be achieved, for example, by seeking
to make the eigenvalues of the closed-loop system matrix Ac reach a set of desired values, hence
giving the desired modal damping and natural frequency characteristics. But in view of the fact
that the structure of the F matrix is fixed as given in equation (12.169), this is not equivalent to
complete state feedback (and not even complete output feedback). Hence, it will not be possible,
in general, to place the poles of the system exactly at the desired locations; i.e., exact pole assignment
may fail.

Design Example

In realizing a desirable modal response of a beam using a set of linear dampers, one can seek to
minimize a cost function of the form

(12.171)

where λ are the actual eigenvalues of the closed-loop system matrix (Ac) and λd are the desired
eigenvalues that will give the required modal performance (damping ratios and natural frequencies).
Re denotes the real part and Im denotes the imaginary part. Weighting matrices Q and R which
are real and diagonal with positive diagonal elements, should be chosen to relatively weight various
eigenvalues. This allows one to emphasize some eigenvalues over others, with real parts and
imaginary parts weighting separately.by

Various computational algorithms are available for minimizing the cost function (12.171). The
details are beyond the scope of this book; only an example result is presented here. Consider a
uniform, simply supported 12×5 American Standard beam with the following pertinent specifica-
tions: E = 2 × 108 kPa (29 × 106 psi), ρA = 47 kg·m–1 (2.6 lb·in–1), length l = 15.2 m (600 in.),
I = 9 × 10–5 m4 (215.8 in.4). The internal damping parameter for the jth mode of vibration is given by
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(12.172)

in which ωj is the jth undamped natural frequency given 

(12.173)

The numerical values used for the damping parameters are g1 = 88 × 104 kPa (12.5 × 104 psi) and
g2 = 3.4 × 104 kPa·s (5 × 103 psi·s). For the present problem, Yi(x) = sin(jπx/l) and α j = ρAl for all j.

First, ωj and γj are computed using equations (12.173) and (12.153), respectively, along with
(12.172). Next, the open-loop system matrix A is formed according to equation (12.156) and its
eigenvalues are computed. These are listed in Table 12.3, scaled to the first undamped natural
frequency (ω1). Note that in view of the very low levels of internal material damping of the beam,
the actual natural frequencies, as given by the imaginary parts of the eigenvalues, are almost identical
to the undamped natural frequencies.

Next, attempt to place the real parts of all the (scaled) eigenvalues at –0.20, while exercising
no constraint on the imaginary parts (i.e., damped natural frequencies) by using (1) single damper,
and (2) two dampers. In the cost function (12.171), the first three modes are more heavily weighted
than the remaining three. Initial values of the damper parameters are b1 = b2 = 0.1 lbf·s·in–1 (17.6
N⋅s⋅m−1 ) and the initial locations l1/l = 0.0 and l2/l = 0.5. At the end of the numerical optimization,
using a modified gradient algorithm, the following optimized values are obtained:

(1) Single-damper control:

The corresponding normalized eigenvalues (of the closed-loop system) are given in
Table 12.4.

(b) Two-damper control:

The corresponding normalized eigenvalues are given in Table 12.5.

TABLE 12.3
Eigenvalues of the Open-Loop (Uncontrolled) Beam

Mode
Eigenvalue (rad·s–1)
(Multiply by 26.27)

1 –0.000126 ± j 1.0
2 –0.000776 ± j 4.0
3 –0.002765 ± j 9.0
4 –0.007453 ± j 16.0
5 –0.016741 ± j 25.0
6 –0.033.75 ± j 36.0
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It would be highly optimistic to expect perfect assignment of all real parts at –0.2. However,
note that good levels of damping have been achieved for all modes except for Mode 3 in the single-
damper control and for Mode 4 in the two-damper control. In any event, since the contribution of
the higher modes toward the overall response is relatively smaller, it is found that the total response
(say, at point x = l/12) is well damped in both cases of control.

PROBLEMS

12.1 In general terms, outline the procedures of:
a. System design for vibration
b. Vibration control in a system.
What are the differences and similarities of the two procedures?

12.2 On a velocity versus frequency nomograph, to log–log scale, mark suitable operating
(design) vibration regions for the following applications:
a. Ground transportation (30-minute trips)
b. Ground transportation (8-hour trips)
c. Tool-workpiece region of milling machines
d. Automobile transmissions
e. Lateral vibration of a building tower
f. Pile drivers in civil engineering constructions (bridges)
g. Forging machines
h. Concrete drilling machines
i. Delicate robotic experimentation in a space station
j. Compact-disk players.

TABLE 12.4
Eigenvalues of the Beam with an Optimal Single Damper

Mode
Eigenvalue (rad·s–1)
(Multiply by 26.27)

1 –0.225 ± j 0.985
2 –0.307 ± j 3.955
3 –0.037 ± j 8.996
4 –0.119 ± j 15.995
5 –0.355 ± j 24.980
6 –0.158 ± j 35.990

TABLE 12.5
Eigenvalues of the Beam with Optimized Two Dampers

Mode
Eigenvalue (rad·s–1)
(Multiply by 26.27)

1 –0.216 ± j 0.982
2 –0.233 ± j 3.974
3 –0.174 ± j 8.997
4 –0.079 ± j 15.998
5 –0.145 ± j 24.999
6 –0.354 ± j 35.989
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12.3 Indicate similarities and differences in the specifications of vibration environment for:
a. Product operation
b. Product testing.

12.4 The following are procedures for achieving a desired vibration performance from a
mechanical system. Categorize them into vibration isolation, vibration design modifica-
tion, and vibration control.
a. Shock absorbers in an automobile
b. Stiffening crossbars added to a structure
c. Rotary damper placed on the shaft of a rotating machine
d. Dynamic absorber mounted on the casing of a delicate instrument
e. Elastomeric mounts of an exhaust fan
f. Spring mounts of a heavy engine
g. Inertia block at a machine base
h. Stabilizer suspensions of power transmission lines
i. Helical spoilers of tall incinerators and chimneys
j. Vibration sensor-actuator combinations for distributed systems
k. Active suspension systems of transit vehicles
l. Balancing of rotating machines through the addition and removal of mass.

12.5 Consider the transmissibility function magnitude of a simple-oscillator mechanical system,
as given by:

Using straightforward differentiation of this function, it can be shown that the peak
transmissibility occurs at

In particular, for ζ = 0, rpeak = 1. By computing rpeak for a range of ζ values from 0.001 to 1.9,
show that rpeak decreases with ζ.

12.6 A landlord rents a room in his basement to two university students. The room is just
beneath the kitchen. Two weeks later, the students complain about the shaking of their
ceiling when the dishwasher is operating. The landlord decides to install the dishwasher
on four spring mounts in order to achieve a vibration isolation level of 80%. The following
data are known:

Mass of the dishwasher = 50 kg
Normal operating speed = 300 rpm

Determine the required stiffness for each of the four spring mounts. What will be the
static deflection of the springs?

12.7 Under normal conditions, a washing machine operates at a steady speed in the range of
1200 to 1800 rpm. The weight of the washing machine is 75 kg. It is required to achieve
a vibration isolation level of at least 80%, and preferably about 90%. Also, during starting
and stopping conditions of the washing machine, the peak (resonant) transmissibility
should be about 2.5, but not exceed 3. Design a damped spring mount to achieve these
operating requirements. Specifically, determine the stiffness k and damping constant b
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of each of the four identical mounts to be incorporated at the base of the washing machine.
What is the (undamped) natural frequency of the system?
Hint: Use the approximate design relation (assuming small or 0 damping ratio) and

then check adherence to the specifications by using more accurate relations (for
a sufficiently large damping ratio).

12.8 A milling machine weighing 500 kg is rigidly mounted on a concrete floor. Loadcells
were placed on the base and measurements were made to determine the vertical forces
generated by the machine that are transmitted to the floor during operation, in the
frequency range of 10 Hz to 60 Hz.

The worst-case amplitude of the transmitted force was found to be 2000 N and the
vibrations were nearly sinusoidal. Also, large-amplitude vibratory motion was noticed
during start-up and shut-down procedures. To reduce floor vibrations that affect adjoining
operations and offices, vibration isolation was found to be required. Furthermore, in
order to maintain the machining accuracy during normal operation, the vibratory motion
during these steady operating conditions needed to be reduced. The following specifica-
tions are given:

Amplitude of vibratory motion at resonace = 1.0 cm or less
Level of vibration isolation under normal operation = 80% (approx.)
Amplitude of vibratory motion under normal operation = 2.0 mm or less.

Design a mounting system to achieve these specifications. A schematic representation
of the system is shown in Figure P12.8.

12.9 Consider the flexible vibrating system with a vibration isolator as shown in Figure 12.8.
For the case of negligible damping (B and b are neglected) and a unity mass ratio
(m/M = 1), show that the transmissibility ratio Tflexible /Tinertial of the flexible system to the
inertial system (where B, k, and m are absent as in Figure 12.4(c)) is given by

FIGURE P12.8 A milling machine with damped flexible mounts.
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where the nondimensional frequency variable:

and the natural frequency ratio:

The excitation frequency is ω.
Plot this transmissibility ratio against r in the range r = 0 to 10, for a frequency ratio
value of rω = 10.0.
For the inertial system with an undamped isolator, what is the minimum operating
frequency ratio rop for achieving an isolation level of 90%? What is the isolation level
of the flexible system at the same operating frequency?

FIGURE P12.10 Static load-deflection characteristics of four spring mounts.
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12.10 A high-speed punch press operates at a steady speed in the range of 2400 to 3600 rpm
under normal conditions. In order to stop vibration effects of the punch press from
affecting other processes and environments, a 75% vibration isolation is sought. Four
flexible mounts are available for this purpose and their static characteristics are shown
in Figure P12.10. Which of these four mounts would you choose for this application?
Perform an analysis to justify your choice. Assume that the damping in the mounts is
very small.

12.11 The following data are obtained from an experiment carried out on a disk that is mounted
very close to a bearing, in a single-plane balancing problem. Magnitude and location of
the trial mass with respect to a body reference line:

Magnitude and phase angle (with respect to a body reference) of the accelerometer signal
at the bearing, in the absence of the trial mass:

Magnitude and phase angle (with respect to the same body reference) of the accelerometer
signal at the bearing, in the presence of the trial mass:

Determine the magnitude and orientation of the necessary balancing mass to be mounted
on the disk at the same radius as the trial mass in order to completely balance it, after
removing the trial mass.

12.12 a. List five causes of unbalance in rotating devices. What are detrimental effects of
unbalance? Give some of the ways of eliminating/reducing unbalance.

b. A pancake motor has a disk-like rotor. When rotating at a fixed speed, an accelerometer
mounted on the rotor bearing shows an excitation amplitude of 350 mV through a
charge amplifier. Also, this signal has a phase lead of 200° with respect to a body
reference of the rotor, as determined with respect to a synchronized stroboscope signal.
A trial mass of 15 gm was placed on the rotor at a known radius and an angular
location of 0° with respect to a body-reference radius that is marked on the rotor
surface. Then, the accelerometer signal was found to have an amplitude of 300 mV
and a phase lead of 70° with respect to the same synchronized (with respect to both
frequency and phase) strobe signal as before.
Determine the magnitude and location of the mass that must be placed at the same
radius as the trial mass in order to balance the rotor, after removing the trial mass.

12.13 a. When is two-plane balancing preferred over single-plane balancing? Comment on the
terms “static balancing” and “dynamic balancing.”

b. A turbine rotor is supported on two bearings at the two ends. Two accelerometers are
mounted on the housing of these bearings. The rotor is driven at a fixed speed and
the accelerometer signals obtained. Their amplitudes and phase leads, with respect to
a strobe signal that is synchronized to a fixed body reference, are found to be:

400 mV and 100° at bearing 1
700 mV and 120° at bearing 2

v
Mt = ∠ °13 5 0.  gm

v
Vu = ∠ °356 242 2.

v
Vr = ∠ °348 75 6.
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Next, a trial mass of 20 gm is placed at a known radius and an angular position of 90°
with respect to a known body reference, in the balancing plane 1 (close to bearing 1).
The new readings of the accelerometer signals are:

350 mV and 140° at bearing 1
600 mV and 130° at bearing 2

Subsequently, this trial mass is removed and a second trial mass of 25 gm is placed
at a known radius and an angular position of 30° with respect to a known body
reference, in the balancing plane 2 (close to bearing 2). The resulting readings of the
accelerometers are:

10 mV and 150° at bearing 1
750 mV and 170° at bearing 2

Determine the magnitudes and locations of the balancing masses that should be placed
on planes 1 and 2, at the same radii as the trial masses placed on these planes, after
removing the trial masses.

12.14 a. Give four causes of dynamic imbalance in rotating machinery.
b. What is static balancing and what is dynamic balancing? Assuming that any loca-

tion/plane of a rotating machine is available for placing a balancing mass, is it possible
to completely balance the machine using the static balancing (single-plane) method?
Fully justify your answer.

c. Consider a completely balanced rigid shaft that is supported horizontally on two
bearings at distance l apart. A point mass m1 is attached to the shaft at a distance l1

from the left bearing using a light, rigid radial arm of length r1 measured from the
rotating axis of the shaft. Similarly, a point mass m2 is attached to the shaft at a
distance l2 from the right bearing using a light, radial arm of length r2. The mass m2,
however, is placed in a radially opposite configuration with respect to m1, as shown
in Figure P12.14. The two masses securely rotate with the shaft as a single rigid body,
without any deformation. Note that when m1 is vertically above the shaft axis, m2 will
be vertically below the axis. The angular speed of rotation of the shaft is ω. Suppose
that at time t = 0, the mass m1 is vertically above the shaft axis.

FIGURE P12.14 A dynamic balancing problem.
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i. Giving all the necessary steps, derive expressions for the horizontal (x-axis) and
vertical (z-axis) components of the reactions on the shaft at the left bearing (1)
and the right bearing (2). Specifically, obtain Rx1, Rz1, Rx2, and Rz2 in terms of the
given parameters (m1, m2, r1, r2, l1, l2, and l) of the system, for a general time
instant t.

ii. Using the planes at the two bearings as the balancing planes, determine the mag-
nitude and orientation of the balancing masses mb1 and mb2 that should be placed
on these planes at a specified radius r, in order to dynamically balance the system.
Give the orientation of the balancing masses with respect to the orientation of the
mass m1.

iii. If m1 = 1 kg, m2 = 2 kg, l = 1.0 m, l1 = 0.2 m, l2 = 0.3 m, r1 = 0.1 m, r2 = 0.2 m, 
and r = 0.1 m, compute the balancing masses and their orientations.

d. Would it be possible to balance this problem by the single-plane (static) method?
Explain your answer. Also, consider the special case where m1 = m2 = m and r1 = r2 = r.

12.15 Consider the problem of single-plane balancing. It should be clear that the angular
position for locating the trial and balancing masses should be measured in the same
direction as the angular velocity of the rotating disk, in using the equation

where the phase angles of the accelerometer signals u and r are taken as phase leads
in the usual notation.  
a. In a laboratory-experimental setup, the disk was found to be graduated as shown in

Figure P12.15, while the angular speed ω was in the indicated direction (counter-
clockwise). What interpretations must be made on the experimental data in this case,
in using the above equation for computing the balancing mass?

b. With an experimental setup of the above type, the following data were obtained:
Without a trial mass, the amplitude and the phase lead (with respect to the strobe
signal) of the accelerometer signal were 36.1 mV and 209.3°.

FIGURE P12.15 Angular coordinates for locating the masses in a single-plane balancing problem.
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With a trial mass of 10.4 gm placed at the location of 130°, the amplitude and the
phase lead of the accelerometer signal were 38.7 mV and 247.5°. Determine the
magnitude and the location of the balancing mass, with the trial mass removed.

12.16 Although it is possible to accurately compute the magnitude and the location of the
necessary balancing mass for a rotating component, in practice it may not be possible
to achieve a perfect balance, particularly in a single trial. Give reasons for this situation.

12.17 Examine the statement “the most difficult part of balancing the inertial loading of a
reciprocating engine is the removal of effects due to the equivalent reciprocating mass.”

Consider a four-cylinder engine where the engines are placed in parallel (in-line) and
equally spaced (z0) with their cranks phased at the angles 0°, 90°, 270°, and 180°, in
sequence, with respect to a rotating reference. Show that, for this engine, the inertial loading
on the crankshaft, due to the reciprocating masses, has the following characteristics:
i. Primary components (frequency ω) of the forces are balanced.

ii. Primary components of the bending moments are not balanced.
iii. Secondary components (frequency 2ω) of the forces are balanced.
iv. Secondary components of the bending moments are balanced.
Here, ω is the angular speed of the crankshaft. The crank arrangement is shown in
Figure P12.17.

12.18 Clearly justify the assumption of massless crank and connecting rod in the balancing
analysis of a reciprocating engine. Also, justify the assumption that the resultant end
force at each end of a connecting rod acts along the length of the rod.

Suppose that a force f acts on the piston of a single-cylinder engine, as shown in
Figure P12.18. Note that f can represent either the inertia force of the equivalent recip-
rocating mass, or the force due to gas pressure in the cylinder. As a result, a torque τ is

FIGURE P12.17 A possible crank arrangement of a four-cylinder engine.

FIGURE P12.18 A single-cylinder model used in load analysis.
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applied on the crankshaft in the direction of its rotation, and an equal reaction torque τ
is applied by the crankshaft on the crank, in the opposite direction. Use the principle of
virtual work, with justification of its use, to show that τ = (rcosθ + lcosφ)f tanφ, where
r and l are the lengths of the crank and the connecting rod, respectively; θ is the inclination
of the crank; and φ is the inclination of the connecting rod, to the line connecting the
crankshaft and the piston, as shown.

12.19 In the analysis of inertial load balancing in reciprocating engines, the inertia of the
connecting rod is frequently represented by two lumped masses at its two ends, joined
by a massless rod. The end masses are chosen such that the vector sum of their inertia
forces is equal to the inertia force of the mass of the rod assumed to be concentrated at
the centroid. What are the limitations of this model?

A four-cylinder in-line engine where the cylinders are equally spaced and the cranks
placed at the angles 0°, 180°, 180°, and 0°, sequentially, is schematically shown in Figure
P12.19. Show that in this case the inertial loading on the crankshaft, due to the recipro-
cating masses, is such that
i. primary components (with frequency ω) of the forces and bending moments are

completely balanced.
ii. secondary components (with frequency 2ω) of the forces and bending moments are

not balanced.
Note that ω is the angular speed of the crankshaft.

12.20 In a multicylinder engine, the inertia force of each reciprocating mass causes on the
crankshaft a lateral reaction force in the direction of reciprocation and a torque in the
direction of rotation of the shaft. For proper operation of the engine, all these reaction
forces, bending moments, and torques should be balanced. Similarly, the piston force
due to gas pressure in the cylinder causes a reaction force, a bending moment, and a
torque in the crankshaft. It is desirable to balance the reaction forces and bending
moments, but not the torques, in this case.
Explain why:
i. Balancing of the gas-pressure load is much more difficult than that of the inertial load

ii. Torque on the crank shaft due to the gas-pressure load should not be balanced.
Consider a six-cylinder in-line engine with the crank orientations 0°, 120°, 240°, 240°,
120°, and 0°, in sequence. Check whether the torques generated on the crankshaft due
to the inertia forces of the reciprocating masses are balanced.

12.21 Consider a light shaft that is supported by bearings at its ends and carries a rotor in its
mid-span. The shaft is driven at an angular speed of ω. The magnitude of the shaft
deflection at the rotor, in whirling motion, at steady state is given by

FIGURE P12.19 An alternative crank configuration of a four-cylinder engine.
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where

e = eccentricity of the rotor centroid from the axis of rotation of the shaft
ωn = undamped natural frequency of bending vibration of the shaft-rotor system
ζ = equivalent damping ratio for whirling motion.

Show that the peak value of r occurs at a shaft speed of

12.22 A light shaft that is supported on two bearings carries a fly wheel at its mid-span. The
centroid of the flywheel has an eccentricity e with respect to the axis of rotation of the
shaft. The effective damping ratio in whirling motion of the shaft is ζ. The bending
stiffness of the shaft at its midspan is k. What is the reaction at each bearing when the
shaft system rotates at its critical speed?

12.23 An experimental procedure for determining the equivalent damping ratio that is provided
by a pair of bearings on a shaft in whirling motion is as follows. A radial arm with a
lumped mass of 1.0 kg is rigidly attached at the mid-span so that the eccentricity of the
mass from the axis of rotation of the shaft is 10.0 cm. The shaft is driven at the normal
operating speed of 2400 rpm, and the average reaction at the two bearings is measured
using load cells. It was found to be 4.56 × 103 N. Using strobe lighting with manually
adjustable frequency, directed axially from one end of the shaft, the mid-span deflection
of the shaft is measured approximately using a background scale, while the strobe
frequency is synchronized with the operating speed of the shaft. This reading was found
to be 4.7 cm. Also, using similar means, the angle between the radial arm and the direction
of bending (bowing) of the shaft was measured approximately. This was found to be
20°. The bending stiffness of the shaft at mid-span was measured while the system was
stationary, by applying a known load and measuring the deflection. It was determined
to be k = 2.0 × 105 N·m–1. Estimate the damping ratio.

12.24 A turbine rotor has a mass of 50 kg and is supported on a light shaft with end bearings.
The bending stiffness of the shaft at the rotor location is 3.0 × 106 N·m–1. The centroid
of the rotor has an eccentricity of 2.0 cm from the axis of rotation of the shaft. The
normal operating speed of the turbine is 3600 rpm. The equivalent damping ratio of the
system in whirling is 0.1.
a. What is the critical speed of rotation of the system?
b. What is the shaft deflection at the rotor during normal operation?
c. A mass of 1 kg is added to the rotor in order to achieve a better balance. By what

factor should the eccentricity be reduced by this means in order to reduce the shaft
deflection by a factor of 10 during normal operation?

12.25 A student proceeds to determine the growth of the deflection of a whirling shaft that
carries a rotor in its mid-span and is supported on bearings at its ends as follows:
1. Assume synchronous whirl (steady whirling rotation at the same speed as the shaft spin)

so that  = ω and θ = ωt – φ, where φ is the phase lag between the whirl and the spin.
2. The equations of motion [see equations (12.77) and (12.78)] become
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(i)

(ii)

Solve equation (ii) with r = 0 at t = 0 to get

(iii)

3. Substitute equation (iii) in (i). Set the overall coefficient of  to 0, as  ≠ 0
in general. Then set the rest of the terms to 0. In this manner, obtain φ and hence the
time variation of r.

Do you agree with this approach? If so, provide justification. If not, give reasons why
the approach might fail.

12.26 Explain how experimental modal analysis can be used in the design of a mechanical
system for proper performance under vibration. What are limitations of its use? In
substructuring, if the linkages of the subsystem have inertial elements that are not
negligible, what additional issues should be addressed in a vibration design procedure?

12.27 Consider two single-degree-of freedom subsystems (k1, m1) and (k2, m2) that are inter-

connected by a spring element of stiffness kc, as shown in Figure 12.22. Use 
in nondimensionalizing the frequencies according to ri = ωi /ω0. Suppose that k2/k1 = 7.0
and m2/m1 = 1.0. Design the interconnection element kc so that the two natural frequencies

satisfy the condition  for i = 1 and 2.
12.28 Determine an expression for the separation interval between the two dominant resonant

frequencies of a vibrating (primary) system once a vibration absorber is added. Show
that this expression, with respect to the original resonance of the primary system, can
be expressed as

where ri = ωi /ωp, α = ωa /ωp, and µ = ma /mp, and
ωi = a newly created resonant frequency
ωp = original resonant frequency of the primary system
ωa = resonant frequency of the vibration absorber
mp = mass of the primary system
ma = mass of the vibration absorber.

For a system with α = 1.0, µ = 0.1, and ωp = 120π rad·s–1, compute the frequency interval
of the two resonances.

12.29 An induction motor weighing 10 kg is mounted on a relatively light structure and is used
to drive a conveyor at a steady speed. A schematic diagram is given in Figure P12.29.
The normal operating speed of the motor is 2400 rpm, as required for driving the
conveyor. When the motor speed was slowly increased, a significant vertical resonance
was found at 3000 rpm. With the intention of mitigating this problem and further reducing
its spill-over effect at the normal operating speed, a technician installs a vibration absorber
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on the support frame of the motor. The absorber is tuned to 2700 rpm (a value in between
the operating speed and the original resonance). The absorber mass is 1.0 kg. Determine
whether the addition of the vibration absorber mitigates the problem. In particular, answer
the following questions:
a. What are the main resonant frequencies of the modified system when the vibration

absorber is added?
b. What is the effective speed range of operation of the modified system?
c. What was the magnitude of vibration amplification of the original system at the

operating speed, and what is it after the modification?
Neglect damping in this analysis.

12.30 An undamped vibration absorber generates two resonances for which separation is equal
to β times the tuned frequency (resonant frequency) of the absorber. Obtain an expression
for the fractional mass µ of the absorber in terms of β and the nondimensional resonant
frequency α of the absorber (with respect to the primary frequency).

A machine of mass 100 kg has a significant resonance at 2400 rpm. The normal
operating speed is 2200 rpm. Design an undamped vibration absorber, tuned to the
operating speed, such that the two generated resonances are at least 20% apart with
respect to the operating frequency.

12.31 The tubes of a steam generator in a nuclear power plant facility exhibited significant
wear and tear due to vibration. Vibration monitoring and signal analysis showed that
under normal operation, the tube vibration was narrow-band, and limited to a very small
interval near 30 Hz. Furthermore, vibration testing indicated that the primary significant
resonance of the steam generator occurs at 32 Hz. The mass of the steam generator is
50 kg. Design a damped vibration absorber for the system. Check the magnitude of the

FIGURE P12.29 A conveyor motor.
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operating vibration in the modified system and compare it with the performance before
modification.

12.32 Compare and contrast a simple linear damper and a dynamic absorber as vibration control
devices.

The exhaust fan of a pulp and paper mill operates at 450 rpm. At the time of installation
of the fan on its support structure, a static deflection of 1.0 cm was experienced by the
structure. During normal operation, the amplitude of vertical vibrations of the fan was
found to be 3.0 mm. During start-up and shut-down of the fan, it exhibited a vertical
resonance with vibration amplitude 2.0 cm. Estimate the damping ratio of the fan-support-
structure system.

12.33 Using the damped simple oscillator model of a system, justify that at low frequencies
of excitation, system dynamics are primarily determined by its stiffness characteristics;
and at high frequencies of excitation it is primarily determined by its inertia character-
istics. Furthermore, justify that near the resonance, it is the damping that primarily
determines the dynamic characteristics of the system.

It is also known that a dynamic absorber can be quite effective in vibration control
in the neighborhood of a system resonance. But, typically, a dynamic absorber is a low-
damping device that can function properly even without any damping — at least in
theory. Is this a contradiction in view of the previous observation about the dominance
of damping in determining dynamics near a resonance?

12.34 a. In comparison with lumped-parameter systems, what are some of the difficulties that
arise in the vibration control of a distributed-parameter (i.e., continuous) system?

Also, give several reasons for considering active control to be more difficult than
passive control in the vibration reduction of distributed-parameter systems.

b. A scragg saw commonly used in cutting relatively small diameter logs of wood is firmly
supported at the mid-span of a beam of length l = 2 m, as schematically shown in Figure
P12.34. The saw weighs 20 kg and normally operates at a steady speed of 600 rpm.
The beam is simply supported at its ends and has the following parameter values:

I (2nd moment of area of cross section about the neutral axis) = 1.0 × 10–7 m4

ρA (mass per unit length) = 5.0 kg⋅m-1

E (Young’s modulus) = 2.0 × 1011 N⋅m-2

FIGURE P12.34 A wood-cutting saw mounted on a beam.
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(Note: 1 N·m–2 = 1 Pa = 1 × 10–3 kPa)
Estimate the fundamental natural frequency of the overall system (the saw and the
supporting beam) by first determining the equivalent mass of the beam at the mid-
span in the first mode of vibration. Design an optimal (and damped) vibration absorber,
to be tuned to the normal operating speed of the saw and mounted at the mid-span
of the supporting beam.
Note: The equivalent stiffness (force/displacement) at the mid-span of a simply sup-

ported beam is given by .

12.35 The shock absorbers of an automobile are primarily damping devices, with springs
provided by the suspension system. Explain why conventional dynamic absorbers are
not suitable in this application.

Consider the use of dynamic absorbers to control vibration of a beam. Formulate a
state-space model for this problem, as shown in Figure P12.35. Specifically, determine
the model for the case of a single dynamic absorber. Note that x = lj is the location of
the jth absorber along the beam, and sj is the displacement of the mass of this absorber.
Also, mj, kj, and bj are the mass, stiffness, and damping constant, respectively, of the
jth absorber.

FIGURE P12.35 Use of dynamic absorbers for vibration control of a beam.
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Appendix A
Dynamic Models and Analogies
A system may consist of a set of interacted components or elements, each possessing an input-
output (or cause-effect, or causal) relationship. A dynamic system is one whose response variables
are functions of time, with non-negligible rates of changes. A more formal mathematical definition
can be given, but it is adequate here to understand that vibrating systems are dynamic systems.
A model is some form of representation of a practical system. An analytical model (or mathematical
model) comprises a set of equations, or an equivalent, that approximately represents the system.
Sometimes, a set of curves, digital data (table) stored in a computer, and other numerical data —
rather than a set of equations — can be termed an analytical model if such data represent the system
of interest. A model developed by applying a suitable excitation to a system and measuring the
resulting response of the system is called an experimental model. In general, then, models can be
grouped into the following categories:

1. Physical models (prototypes)
2. Analytical models
3. Computer (numerical) models
4. Experimental models (using input/output experimental data)

Mathematical definitions for a dynamic system are given with reference to an analytical model of
the system; for example, a state-space model. In that context, the system and its analytical model
are synonymous. In reality, however, an analytical model, or any model for that matter, is an
idealization of the actual system. Analytical properties that are established and results that are
derived would be associated with the model rather than the actual system, whereas the excitations
are applied to and the output responses are measured from the actual system. This distinction should
be clearly recognized.

Analytical models are very useful in predicting the dynamic behavior (response) of a system
when it is subjected to a certain excitation (input). Vibration is a dynamic phenomenon and its
analysis, practical utilization, and effective control require a good understanding of the vibrating
system. A recommended way to achieve this is through the use of a suitable model of the system.
A model can be employed for designing a mechanical system for proper vibration performance.
In the context of vibration testing, for example, analytical models are commonly used to develop
test specifications, and also the input signal applied to the shaker, and to study dynamic effects and
interactions in the test object, the shaker table, and their interfaces. In product qualification by
analysis, a suitable analytical model of the product replaces the test specimen. In vibration control,
a dynamic model of the vibrating system can be employed to develop the necessary control schemes
(e.g., model-based control).

Analytical models can be developed for mechanical, electrical, fluid, and thermal systems in a
rather analogous manner because some clear analogies are present among these four types of
systems. In practice, a dynamic system can exist as a combination of two or more of the these
various types, and is termed a mixed system. In view of the analogy, then, a unified approach can
be adopted in analysis, design, and control of these different types of systems and mixed systems.
In this context, understanding the analogies in different system types is quite useful in the devel-
opment and utilization of models. This appendix outlines some basic concepts of modeling. Also,
fundamental analogies that exist among different types of dynamic systems are identified.
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A.1 MODEL DEVELOPMENT

There are two broad categories of models for dynamic systems: lumped-parameter models and
continuous-parameter models. Lumped-parameter models are more commonly employed than
continuous-parameter models, but continuous-parameter elements sometimes are included in oth-
erwise lumped-parameter models in order to improve the model accuracy.

In lumped-parameter models, various characteristics in the system are lumped into represen-
tative elements located at a discrete set of points in a geometric space. A coil spring, for example,
has a mass, an elastic (spring) effect, and an energy-dissipation characteristic, each of which is
distributed over the entire coil. In an analytical model, however, these individual distributed char-
acteristics can be approximated by a separate mass element, a spring element, and a damper element,
which are interconnected in some parallel-series configuration, thereby producing a lumped-param-
eter model.

Development of a suitable analytical model for a large and complex system requires a systematic
approach. Tools are available to aid this process. Signals (excitations and response) can be repre-
sented either in the frequency domain or in the time domain. A time-domain model consists of a
set of differential equations. In the frequency domain, a model is represented by a set of transfer
functions (or frequency-response functions). Frequency-domain transfer function considerations
also lead to the concepts of mechanical impedance, mobility, and transmissibility.

The process of modeling can be made simple by following a systematic sequence of steps. The
main steps are summarized below:

1. Identify the system of interest by defining its purpose and system boundaries.
2. Identify or specify the variables of interest. These include inputs (forcing functions or

excitations) and outputs (responses).
3. Approximate (or model) various segments (or processes or phenomena) in the system

by ideal elements, suitably interconnected.
4. Draw a free-body diagram for the system with suitably isolated components.
5. a. Write constitutive equations (physical laws) for the elements.

b. Write continuity (or conservation) equations for through variables (equilibrium of
forces at joints; current balance at nodes, etc.).

c. Write compatibility equations for across (potential or path) variables. These are loop
equations for velocities (geometric connectivity), voltages (potential balance), etc.

d. Eliminate auxiliary (unwanted) variables that are redundant and not needed to define
the model.

6. Express system boundary conditions and response initial conditions using system vari-
ables.

These steps should be self-explanatory or integral with the particular modeling techniques.

A.2 ANALOGIES

Analogies exist among mechanical, electrical, hydraulic, and thermal systems. The basic system
elements can be divided into two groups: energy-storage elements and energy-dissipation elements.
Table A.1 shows the linear relationships that describe the behavior of translatory mechanical,
electrical, thermal, and fluid elements. These relationships are known as constitutive relations. In
particular, Newton’s second law is considered the constitutive relation for the mass element. The
analogy used in Table A.1 between mechanical and electrical elements is known as the force–current
analogy. This analogy appears more logical than a force–voltage analogy, as is clear from Table A.2.
This follows from the fact that both force and current are through variables, which are analogous
to fluid flow through a pipe; and both velocity and voltage are across variables, which vary across
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the flow direction, as in the case of pressure. The correspondence between the parameter pairs
given in Table A.2 follows from the relations in Table A.1. Note that the rotational mechanical
elements possess constitutive relations between torque and angular velocity, which can be treated
as a generalized force and a generalized velocity, respectively. In fluid systems as well, basic
elements corresponding to capacitance (capacity), inductance (fluid inertia), and resistance (fluid
friction) exist. Constitutive relations between pressure difference and mass flow rate can be written
for these elements. In thermal systems, generally only two elements — capacitance and resistance
— can be identified. Constitutive relations exist between temperature difference and heat transfer
rate in this case.

Proper selection of system variables is crucial in developing an analytical model for a dynamic
system. A general approach that can be adopted is to use across variables of the A-type (or across-
type) energy storage elements and the through variables of the T-type (or through-type) energy

TABLE A.1
Some Linear Constitutive Relations

System Type

Constitutive Relation for

Energy Storage Elements
Energy Dissipating

Elements

A-Type
(Across) Element

T-Type
(Through) Element

D-Type
(Dissipative) Element

Translatory
mechanical:
v = Velocity
f = Force

Mass:

(Newton’s second law)
m = Mass

Spring:

(Hooke’s law)
k = Stiffness

Viscous damper:
f = bv
b = Damping constant

Electrical:
v = Voltage
i = Current

Capacitor:

C = Capacitance

Inductor:

L = Inductance

Resistor:
Ri = v
R = Resistance

Thermal:
T = Temperature difference
Q = Heat transfer rate

Thermal capacitor:

Ct = Thermal capacitance

None Thermal Resistor:
RtQ = T

Rt = Thermal resistance

Fluid:
P = Pressure difference
Q = Volume flow rate

Fluid capacitor:

Cf = Fluid capacitance

Fluid inertor:

If = Inertance

Fluid resistor:
RfQ = P

Rf = Fluid resistance

TABLE A.2
Force–Current Analogy

System Type Mechanical Electrical

System-response variables:
Through variables Force f Current i
Across variables Velocity v Voltage v

System parameters m C
k 1/L
b 1/R

m
dv

dt
f= df

dt
kv=

C
dv

dt
i= L

di

dt
v=

dt
QC

dT
t =

dt
QC

dP
f =

dt
PI

dQ
f =
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storage elements as system variables (state variables). Note that if any two elements are not inde-
pendent (e.g., if two spring elements are directly connected in series or parallel), then only a single
state variable should be used to represent both elements. Independent variables are not needed for
D-type (dissipative) elements because their response can be represented in terms of the state variables
of the energy storage elements (A-type and T-type).

A.3 MECHANICAL ELEMENTS

Here, one uses velocity (across variable) of each independent mass (A-type element) and force
(through variable) of each independent spring (T-type element) as system variables (state variables).
The corresponding constitutive equations form the “shell” of an analytical model. These equations
will directly lead to a state-space model of the system.

A.3.1 MASS (INERTIA) ELEMENT

Constitutive equation (Newton’s second law):

(A.1)

Since power = fv, the energy of the element is given by

or

(A.2)

This is the well-known kinetic energy. Now, integrating equation (A.1),

(A.3)

By setting t = 0+, one sees that

(A.4)

unless an infinite force f is applied to m. Hence, one can state the following:

1. Velocity can represent the state of an inertia element. This is justified first because, from
equation (A.3), the velocity at any time t can be completely determined with the knowl-
edge of the initial velocity and the applied force, and because, from equation (A.2), the
energy of an inertia element can be represented in terms of v alone.

2. Velocity across an inertia element cannot change instantaneously unless an infinite
force/torque is applied to it.

3. A finite force cannot cause an infinite acceleration. A finite instantaneous change (step)
in velocity will need an infinite force. Hence, v is a natural output (or state) variable and
f is a natural input variable for an inertia element.

m
dv

dt
f=

E fvdt m
dv

dt
vdt mvdv= = =∫ ∫ ∫

Energy  E mv= 1
2

2

v t v
m

fdt

t

( ) = ( ) +−

−
∫0

1

0

v v0 0+ −( ) = ( )
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A.3.2 SPRING (STIFFNESS) ELEMENT

Constitutive equation (Hook’s law):

(A.5)

Note that the conventional force-deflection Hooke’s law has been differentiated in order to be
consistent with the variable (velocity) that is used with the inertia element.

As before, the energy is

or

(A.6)

This is the well-known (elastic) potential energy.
Also,

(A.7)

and hence,

(A.8)

unless an infinite velocity is applied to the spring element. In summary,

1. Force can represent the state of a stiffness (spring) element. This is justified because the
force of a spring at any general t can be completely determined with the knowledge of
the initial force and the applied velocity, and also because the energy of a spring element
can be represented in terms of f alone.

2. Force through a stiffness element cannot change instantaneously unless an infinite veloc-
ity is applied to it.

3. Force f is a natural output (state) variable and v is a natural input variable for a stiffness
element.

A.4 ELECTRICAL ELEMENTS

Here, one uses voltage (across variable) of each independent capacitor (A-type element) and current
(through variable) of each independent inductor (T-type element) as system (state) variables.

A.4.1 CAPACITOR ELEMENT

Constitutive equation:

(A.9)

df

dt
kv=

E fvdt f
k

df

dt
dt

k
fdf= = =∫ ∫ ∫1 1

Energy  E
f

k
= 1

2

2

f t f k vdt

t

( ) = ( ) +−

−
∫0

0

f f0 0+ −( ) = ( )

C
dv

dt
i=
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Since power is iv, the energy is

or

(A.10)

This is the electrostatic energy of a capacitor.
Also,

(A.11)

Hence, for a capacitor,

(A.12)

unless an infinite current is applied to a capacitor. In summary,

1. Voltage is an appropriate response variable (or state variable) for a capacitor element.
2. Voltage across a capacitor cannot change instantaneously unless an infinite current is

applied.
3. Voltage is a natural output variable and current is a natural input variable for a capacitor.

A.4.2 INDUCTOR ELEMENT

Constitutive equation:

(A.13)

(A.14)

This is the electromagnetic energy of an inductor.
Also,

(A.15)

Hence, for an inductor,

(A.16)

unless an infinite voltage is applied. In summary,

E ivdt C
dv

dt
vdt Cvdv= = =∫ ∫ ∫

Energy  E Cv= 1
2

2

v t v
C

idt

t

( ) = ( ) +−

−
∫0

1

0

v v0 0+ −( ) = ( )

L
di

dt
v=

Energy  E Li= 1
2

2

i t i
L

vdt

t

( ) = ( ) +−

−
∫0

1

0

i i0 0+ −( ) = ( )
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1. Current is an appropriate response variable (or state variable) for an inductor.
2. Current through an inductor cannot change instantaneously unless an infinite voltage is

applied.
3. Current is a natural output variable and voltage is a natural input variable for an inductor.

A.5 THERMAL ELEMENTS

Here, the across variable is temperature (T) and the through variable is the heat transfer rate (Q).
The thermal capacitor is the A-type element. There is no T-type element in a thermal system. The
reason is clear. There is only one type of energy (thermal energy) in a thermal system, whereas
there are two types of energy in mechanical and electrical systems.

A.5.1 THERMAL CAPACITOR

Consider a material control volume V, of density ρ, and specific heat c. Then, for a net heat transfer
rate Q into the control volume, one obtains

(A.17)

or

(A.18)

where Ct = ρvc is the thermal capacitance of the control volume.

A.5.2 THERMAL RESISTANCE

There are three basic processes of heat transfer:

1. Conduction
2. Convection
3. Radiation.

There is a thermal resistance associated with each process, given by their constitutive relations as
given below.

Conduction: (A.19)

where

k = conductivity
A = area of cross section of the heat conduction element
∆x = length of heat conduction with a temperature drop of T.

The conductive resistance is

(A.20)

Q vc
dT

dt
= ρ

dt
QC

dT
t =

Q
kA

x
T=

∆

R
x

kAk = ∆
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Convection: (A.21)

where

hc = convection heat transfer coefficient
A = area of heat convection surface with temperature drop of T.

The convective resistance is

(A.22)

Radiation: (A.23)

where

σ = Stefan-Boltzmann constant
FE = effective emmisivity of the radiation source (of temperature T1)
FA = shape factor of the radiation receiver (of temperature T2)
A = effective surface area of the receiver.

This corresponds to a nonlinear thermal resistor.

A.6 FLUID ELEMENTS

Here, one uses pressure (across variable) of each independent fluid capacitor (A-type element) and
volume flow rate (through variable) of each independent fluid inertor (T-type element) as system
(state) variables.

A.6.1 FLUID CAPACITOR

The heat transfer rate is

(A.24)

Note that a fluid capacitor stores potential energy (a “fluid spring”) unlike the mechanical A-type
element (inertia), which stores kinetic energy.

For a liquid control volume V of bulk modulus β, the fluid capacitance is given by

(A.25)

For an isothermal (constant temperature, slow-process) gas of volume V and pressure P, the fluid
capacitance is

(A.26)

Q h ATc=

R
h Ac

c

= 1

Q F F A T TE A= −( )σ 1
4

2
4

dt
QC

dP
f =

C
V

bulk =
β

C
V

Pcomp =
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For an adiabatic (zero heat transfer, fast process) gas, the capacitance is

(A.27)

where

(A.28)

which is the ratio of specific heats at constant pressure and constant volume.
For an incompressible fluid in a container of flexible area A and stiffness k, the capacitance is

(A.29)

Note: For a fluid with bulk modulus, the equivalent capacitance would be

For an incompressible fluid column with an area of cross section A and density ρ, the capacitance is

(A.30)

A.6.2 FLUID INERTOR

(A.31)

This represents a T-type element. However, it stores kinetic energy, unlike the mechanical T-type
element (spring), which stores potential energy. For a flow with uniform velocity distribution across
an area A and over a length segment ∆x, the fluid inertance is given by

(A.32)

For a non-uniform velocity distribution,

(A.33)

where a correction factor α has been introduced. For a flow of circular cross section with a parabolic
velocity distribution, use α = 2.0.

C
V

kPcomp =

k
c

c
p

v

=

C
A

kelastic =
2

C Cbulk elastic+

C
A

ggrav =
ρ

dt
PI

dQ
f =

I
x

Af = ρ ∆

I
x

Af = αρ ∆
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A.6.3 FLUID RESISTANCE

For the approximate, linear case:

(A.34)

The more general, nonlinear case is given by

(A.35)

where KR and n are parameters of the nonlinearity. For viscous flow through a uniform pipe, one
obtains

(A.36)

for a circular cross-section of diameter d, and

(A.37)

for a rectangular cross section of height b that is much smaller than its width w. Also, µ is the
absolute viscosity (or dynamic viscosity) of the fluid, and is related to the kinematic viscosity υ
through

(A.38)

A.6.4 NATURAL OSCILLATIONS

Mechanical systems can produce natural oscillatory responses (or free vibrations) because they can
possess two types of energy (kinetic and potential). When one type of stored energy is converted
to the other type repeatedly, back and forth, the resulting response is oscillatory. Of course, some
of the energy will dissipate (through the dissipative mechanism of damper) and the free natural
oscillations will decay as a result. Similarly, electrical circuits and fluid systems can exhibit natural
oscillatory responses due to the presence of two types of energy storage mechanism, where energy
can “flow” back and forth repeatedly between the two types of elements. However, thermal systems
have only one type of energy storage element (A-type) with only one type of energy (thermal
energy). Hence, purely thermal systems cannot naturally produce oscillatory responses unless forced
by external means, or integrated with other types of systems (e.g., fluid systems).

A.7 STATE-SPACE MODELS

More than one variable might be needed to represent the response of a dynamic system. There also
could be more than one input variable. A time-domain analytical model is a set of differential
equations relating the response variables to the input variables. This set of system equations is
generally coupled, so that more than one response variable appears in each differential equation.
A particularly useful time-domain representation for a dynamic system is a state-space model. In
this representation (state-space representation), an nth-order system is represented by n first-order
differential equations, which generally are coupled. This is of the general form:

P R Qf=

P K QR
n=

R
x

df = 128 4µ
π
∆

R
x

wbf = 12 3µ ∆

µ υρ=
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(A.39)

The n state variables can be expressed as the state vector

(A.40)

which is a column vector. Note that [ ]T denotes the transpose of a matrix or vector. The space
formed by all possible state vectors of a system is the state space. At this stage, one may wish to
review the concepts of linear algebra given in Appendix C.

The state vector of a dynamic system is a least set of variables that is required to completely
determine the state of the system at all instants of time. They may or may not have a physical
interpretation. The state vector is not unique; many choices are possible for a given system. Output
(response) variables of a system can be completely determined from any such choice of state
variables. Since the state vector is a least set, a given state variable cannot be expressed as a linear
combination of the remaining state variables in that state vector. One suitable choice of state
variables is the across variables of the independent A-type energy-storage elements and through
variables of the independent T-type energy-storage elements.

The m variables r1, r2, …, rm in equations (A.39) are input variables, and they can be expressed
as the input vector:

(A.41)

Now, equation (A.39) can be written in the vector notation

(A.42)

When t is not present explicitly in the function f, the system is said to be autonomous.

A.7.1 LINEARIZATION

Equilibrium states of the dynamic system given by equation (A.42), correspond to

(A.43)

Consequently, the equilibrium states q are obtained by solving the set of n algebraic equations

(A.44)

for a special steady input r. Usually, a system operates in the neighborhood of one of its equilibrium
states. This state is known as its operating point. The steady state of a dynamic system is also an
equilibrium state.

dq

dt
f q q q r r r t

dq

dt
f q q q r r r t

dq

dt
f q q q r r r t

n m

n m

n
n n m

1
1 1 2 1 2

2
2 1 2 1 2

1 2 1 2

= ( )

= ( )

= (

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

        

        

        

K K

K K

M

K K )))

q = [ ]q q qn

T

1 2, , ,   K

r = [ ]r r rm

T

1 2, , ,   K

˙ , ,q f q r= ( )t

q̇ = 0

f q r, , t( ) = 0
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Suppose that a slight excitation is given to a dynamic system that is operating at an equilibrium
state. If the system response builds up and deviates further from the equilibrium state, the equilib-
rium state is said to be unstable. If the system returns to the original operating point, the equilibrium
state is stable. If it remains at the new state without either returning to the equilibrium state or
building up the response, the equilibrium state is said to be neutral.

To study the stability of various equilibrium states of a nonlinear dynamic system, it is first
necessary to linearize the system model about these equilibrium states. Linear models are also
useful in analyzing nonlinear systems when it is known that the variations of the system response
about the system operating point are small in comparison to the maximum allowable variation
(dynamic range). Equation (A.42) can be linearized for small variations δq and δr about an
equilibrium point (q, r) by employing up to only the first derivative term in the Taylor series
expansion of the nonlinear function f. The higher-order terms are negligible for small δq and δr.
This method yields

(A.45)

The state vector and input vector for the linearized system are denoted by

(A.46)

(A.47)

The linear system matrix A(t) and the input gain matrix B(t) are defined as

(A.48)

(A.49)

Then, the linear state model can be expressed as

(A.50)

If the dynamic system is a constant-parameter system, or if it can be assumed as such for the time
period of interest, then A and B become constant matrices.

A.7.2 TIME RESPONSE

Time variation of the state vector of a linear, constant-parameter dynamic system can be obtained
using the Laplace transform method. The Laplace transform of equation (A.50) is given by

(A.51)

Consequently,

(A.52)

δ δ δ˙ , , , ,q
f
q

q r q
f
r

q r r= ∂
∂

( ) + ∂
∂

( )t t

δq x= = [ ]x x xn

T

1 2, , ,   K

δr u= = [ ]u u um

T

1 2, , ,   K

A
f
q

q rt t( ) = ∂
∂

( ), ,

B
f
r

q rt t( ) = ∂
∂

( ), ,

ẋ Ax Bu= +

s s s sX x AX BU( ) − ( ) = ( ) + ( )0

x sI A x I A BUt s s( ) = −( ) ( ) + −( ) ( )− − − −� �1 1 1 10
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in which I denotes the identity (unit) matrix. Note that �–1 denotes the inverse Laplace transform
operator. The square matrix (sI – A)–1 is known as the resolvent matrix. Its inverse Laplace transform
is the state-transition matrix:

(A.53)

It can be shown that Φ(t) is equal to the matrix exponential

(A.54)

The state-transition matrix can be analytically determined as a closed-form matrix function by the
direct use of inverse transformation on each term of the resolvent matrix, using equation (A.53),
or as a series solution using equation (A.54). One can reduce the infinite series given in equation
(A.54) into a finite matrix polynomial of order n – 1 using the Cayley-Hamilton theorem. This
theorem states that a matrix satisfies its own characteristic equation. The characteristic polynomial
of A can be expressed as

(A.55)

in which det( ) denotes determinant. The notation

(A.56)

is used. Then, by the Cayley-Hamilton equation, one obtains

(A.57)

To get a polynomial expansion for exp(At), one can write

(A.58)

in which S(A) is an appropriate infinite series. Since ∆(A) = 0 by the Cayley-Hamilton theorem,
however, one has

(A.59)

Now, it is just a matter of determining the coefficients α0, α1, …, αn–1, which are functions of time.
This is done as follows. From equation (A.58),

(A.60)

If λ1, λ2, …, λn are the eigenvalues of A, however, then, by definition,

(A.61)

ΦΦΦ t s( ) = −(− )−� 1 1I A
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Thus, from equation (A.60), one obtains

(A.62)

If the eigenvalues are all distinct, equation (A.62) represents a set of n independent algebraic
equations from which the n unknowns α0, α1, …, αn–1 can be determined. 

Because the product in the Laplace domain is a convolution integral in the time domain, and
vice versa, the second term on the right-hand side of equation (A.52) can be expressed as a matrix
convolution integral. This gives

(A.63)

The first part of this solution is the zero-input response; the second part is the zero-state response.
State variables are not necessarily measurable and generally are not system outputs. A linearized

relationship between state variables and system output (response) variables y(t) can be expressed as

(A.64)

in which the output vector is

(A.65)

and C denotes the output (measurement) gain matrix. When m > 1 and p > 1, the system is said
to be a multi-input–multi-output (MIMO) system. Note that, in this case, one has a transfer matrix
H(s) given by

(A.66)

which satisfies

(A.67)

Since

(A.68)

in which adj( ) denotes the adjoint (see Appendix C). It is seen that the poles, or eigenvalues, of
the system (matrix A) are given by the solution of its characteristic equation:

which should be compared with equation (A.61). If all eigenvalues of A have negative real parts,
then the state-transition matrix Φ(t) in equation (A.63) will be bounded as t → ∞, which means
that the linear system is stable.
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A.7.3 SOME FORMAL DEFINITIONS

A state vector x is a column vector that contains a minimum set of state variables x1, x2, …, xn

that completely determines the state of a dynamic system. The number of state variables, n, is the
order of the system. This is typically equal to the number of independent energy storage elements
in the system, and is twice the number of degrees of freedom (for a mechanical system).

Property 1: If the state vector x(t0) at the time t0 and the input (forcing excitation) u[t0, t1]
over the time interval [t0, t1] are known, where t1 is any future time, then x(t1) can be uniquely
determined. In other words, a transformation g can be defined such that

(A.69)

By this property it should be clear that the order of a dynamic system is equal to the number of
independent initial conditions needed to completely determine the system response.

Note that according to the causality of dynamic systems, future states cannot be determined
unless the inputs up to that future time are known. This means that the transformation g is
nonanticipative.

Each forcing function u[t0, t1] defines a state trajectory. The n-dimensional vector space formed
by all possible state trajectories is known as the state space.

Property 2: If the state x(t1) and the input u(t1) are known at any time t1, the system response
(output) vector y(t1) can be uniquely determined. This can be expressed as

(A.70)

Note that the transformation h has no memory in the sense that the response at a previous time cannot
be determined through the knowledge of the present state and input. Note also that, in general, system
outputs are not identical to the states although the former can be uniquely determined by the latter.

A.7.4 ILLUSTRATIVE EXAMPLE

A torsional dynamic model of a pipeline segment is shown in Figure A.1(a). Free-body diagrams
in Figure A.1(b) show internal torques acting at sectioned inertia junctions for free motion. A state
model is obtained using the generalized velocities (angular velocities Ωi) of the independent inertia
elements and the generalized forces (torques Ti) of the independent elastic (torsional spring)
elements as state variables. The minimum set of states that is required for a complete representation
determines the system order. There are two inertia elements and three spring elements — a total
of five energy-storage elements. The three springs are not independent, however. The motion of
two springs completely determines the motion of the third. This indicates that the system is a
fourth-order system. One obtains the model as follows.
Newton’s second law gives

Hooke’s law gives

x g x ut t t t t t1 0 1 0 0 1( ) = ( ) [ ]( ), , , ,

y h x ut t t t1 1 1 1( ) = ( ) ( )( ), ,

I T T

I T T

1 1 1 2

2 2 2 3

˙

˙

Ω

Ω

= − +
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Torque T3 is determined in terms of T1 and T2, using the displacement relation (compatibility) for
the inertia I2:

The state vector is chosen as

The corresponding system matrix is

The output-displacement vector is

FIGURE A.1 (a) Dynamic model of a pipeline segment, and (b) free-body diagrams.
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which corresponds to the following output-gain matrix:

For the special case given by I1 = I2 = I and k1 = k3 = k, the system eigenvalues are

and the corresponding eigenvectors are

The modal contributions to the displacement vector are

and

The mode shapes are given by the vectors S1 = [1, 1]T and S2 = [1, –1]T, which are sketched in
Figure A.2. In general, each modal contribution introduces two unknown parameters, α i and φi,
into the free response (homogeneous solution), where φi are the phase angles associated with the
sinusoidal terms. For an n-degree-of-freedom (order-2n) system, this results in 2n unknowns, which
require the 2n initial conditions x(0). Further developments of modal analysis for lumped-parameter
systems are found in Chapter 5.

A.7.5 CAUSALITY AND PHYSICAL REALIZABILITY

Consider a dynamic system represented by the single input-output differential equation:

(A.71)
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where y and u are the output and the input, respectively. The causality (cause-effect) of this system
should dictate that u is the input and y is the output. Its transfer function is given by

(A.72)

Note that n is the order, ∆(s) is the characteristic polynomial, and N(s) is the numerator polynomial
of the system.

Suppose that m > n. Then, if one integrates equation (A.71) n times, one obtains y and its
integrals on the LHS, but the RHS will contain at least one derivative of u. Since the derivative of
a step function is an impulse, this implies that a finite change in input will result in an infinite
change in the response. This is not physically realizable. It follows that a physically realizable
system cannot have a numerator order greater than the denominator order in its transfer function.
If, in fact, m > n, then what this means physically is that y should be the system input and u should
be the system output. In other words, the causality should be reversed in this case. Furthermore,
for a physically realizable system, a simulation block diagram can be established using integrals

 alone, without the need for derivatives (s). Note that pure derivatives are physically not

realizable. If m > n, the simulation block diagram will need at least one derivative for linking u to y.
That will not be physically realizable, again, because it would imply the possibility of producing
an infinite response by a finite input. In other words, feed-forward paths with pure derivatives will
not be needed in a simulation block diagram of a physically realizable system.

FIGURE A.2 Mode shapes of the pipeline segment.
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Appendix B
Newtonian and Lagrangian Mechanics
A vibrating system can be interpreted as a collection of mass particles. In the case of distributed
systems, the number of particles is infinite. The flexibility and damping effects can be introduced
as forces acting on these particles. It follows that Newton’s second law for a mass particle forms
the basis of describing vibratory motions.

System equations can be obtained directly by applying Newton’s second law to each particle.
It is convenient, however, to use Lagrange’s equations for this purpose, particularly when the system
is relatively complex. A variational principle known as Hamilton’s principle, which can be estab-
lished from Newton’s second law, is the starting point in the derivation of Lagrange’s equations.

This appendix outlines some useful results of dynamics, in both Newtonian and Lagrangian
approaches. The Newtonian approach uses forces, torques, and motions, which are vectors. Hence,
it is important to deal with vector mechanics in the Newtonian approach. The Lagrangian approach
is based on energy, which is a scalar quantity. Scalar energies can be expressed in terms of vectorial
positions and velocities.

The subject of dynamics deals with forces (torques) and motions. The study of motion alone
belongs to the subject of kinematics. This appendix starts with vectorial kinematics, and then
addresses Newtonian mechanics (dynamics) and finally Lagrangian dynamics.

B.1 VECTOR KINEMATICS

B.1.1 EULER’S THEOREM (SEE FIGURE B.1)

Every displacement of a rigid body can be represented by a single rotation θ about some axis (of
unit vector υ).

Important Corollary

Rotations cannot be represented by vectors unless they are infinitesimally small.

Proof

Give a small rotation δθ = δθυ about the υ-axis, the corresponding displacement (of point P) is
δr = δθ × r.

The new position (of P) is r1 = r + δθ × r.
Give another small rotation δφ = δφµ about the µ-axis; the new position (of P) is r2 = r1 + δφ × r1.
The combined displacement

∆r r r

r r r r r r r r

r r

= −

= + × − = + × + × + ×[ ] −

= +( ) × + × ×( )
( )

2

1 1

0 2

δ δ δ δ

δ δ δ δ
δ

φφφ θθθ φφφ θθθ

θθθ φφφ φφφ θθθ
1 244 344
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The second term can be neglected for small rotations.
Hence,

Q.E.D. (B.1)

B.1.2 ANGULAR VELOCITY AND VELOCITY AT A POINT OF A RIGID BODY

(SEE FIGURE B.2)

From Figure B.1, it is clear that

Angular velocity (B.2)

Note: Since this definition uses small rotations δθ, it follows that ω is always a vector.
The velocity of P relative to O (see Figure B.1) is given by

(B.3)

Theorem

For a rigid body, ω is unique (does not vary from point to point on the body).

Proof

Suppose that, on the contrary, angular velocities ω1 and ω2 are associated with points C1 and C2

(Figure B.2). Then,

Also,

Hence,

FIGURE B.1 Single rotation of a rigid body about an axis.
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It follows that

Since (ω1 – ω2) is not parallel to s in general, because P is an arbitrary point, one has

Q.E.D.

B.1.3 RATES OF UNIT VECTORS ALONG AXES OF ROTATING FRAMES

(SEE FIGURE B.3)

General Result

Suppose that i1, i2, i3 are unit vectors along the three orthogonal axes of a frame rotating at ω. The
rates are the velocities of these vectors about the origin of the frame. Hence, from equation (B.3),
one obtains

(B.4)

Some special cases (natural frames of reference) are considered below.

Cartesian Coordinates

Suppose that the frame is free to move independently in the x, y, and z directions only. This
corresponds to a translatory motion (no rotation). The rates of the unit vectors in this moving frame
are 0; that is, ω = 0

(B.5)

FIGURE B.2 Uniqueness of the angular velocity of a rigid body.
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Polar Coordinates (2-D)

Suppose that the frame is free to move independently in the r and θ directions, but an increment
in the r direction (i.e., δr) causes no rotation. Hence,

From equation (B.4),

FIGURE B.3 Some natural coordinate frames: (a) Cartesian coordinates; (b) polar coordinates (2-D);
(c) spherical polar coordinates; and (d) tangential-normal coordinates (2-D).

ωωω= θ̇iz
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(B.6)

Spherical Polar Coordinates

The coordinates are (r, θ, φ) as in Figure B.3. To find natural ω for the frame:

Hence,

But 
Hence, 

(B.7)

From equation (B.4),

(B.8)

Tangential-Normal (Intrinsive) Coordinates (2-D)

The coordinates are (s, ψ) as in Figure B.3. Note that s is the curvilinear distance along the path
of the particle (from a reference point Po), and ψ is the angle of slope of the path. To find ω of
the natural frame,

Hence,
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The derivatives of the tangential and normal unit vectors it and in are given by

(B.9)

Note: The vector cross-product of the two vectors

can be obtained by expanding the determinant

(B.10)

B.1.4 ACCELERATION EXPRESSED IN ROTATING FRAMES

Spherical Polar Coordinates

Substitute equation (B.8), and obtain

(B.11)

Acceleration . Hence, by differentiating equation (B.11) and using (B.8), one obtains

(B.12)

Tangential-Normal Coordinates (2-D) (See Figure B.4)

The velocity is always tangential to the path. Hence,
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(B.13)

By differentiating equation (B.13) and using (B.9), one obtains

(B.14)

See Figure B.4.

FIGURE B.4 Velocity representation in tangential-normal coordinates.
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B.2 NEWTONIAN (VECTOR) MECHANICS

B.2.1 FRAMES OF REFERENCE ROTATING AT ANGULAR VELOCITY ω
(SEE FIGURE B.5)

Newton’s second law holds with respect to (w.r.t.) an inertial frame of reference (normally a frame
fixed on the earth’s surface or moving at constant velocity). The rate of change of vector B w.r.t.
an inertial frame is related to the rate of change w.r.t. a frame rotating at ω by 

(B.15)

From equation (B.15), the following results can be obtained for velocity v and acceleration a of
point B (see Figure B.5).

(B.16)

(B.17)

Note: vfrm and afrm are velocity and acceleration, respectively, of a point just beneath P and fixed
to rotating frame.

FIGURE B.5 Representation of a vector with respect to a rotating frame.
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B.2.2 NEWTON’S SECOND LAW FOR A PARTICLE OF MASS m (SEE FIGURE B.6)

(B.18)

(Linear momentum principle)

Note: Linear momentum 

Cross multiply equation (B.18) by r. The torque about B is

Now,

Also,

This cross-product vanishes if either B is fixed (vB = 0) or B moves parallel to the velocity of m.
Hence, the angular momentum principle:

(B.19a)

FIGURE B.6 Vector motion of a particle in space.
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(B.19b)

B.2.3 SECOND LAW FOR A SYSTEM OF PARTICLES — RIGIDLY OR

FLEXIBLY CONNECTED (SEE FIGURE B.7)

(B.20)

(Linear momentum principle)

Now, using the procedure outlined before for a single particle, and summing the results, one obtains

But

FIGURE B.7 (a) Dynamics of a system of particles, and (b) dynamics with respect to the centroid.
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Hence, we have the angular momentum principle 

(B.21a)

(B.21b)

Note: (See Figure B.7(b))

Hence,

(B.22)

B.2.4 RIGID BODY DYNAMICS (SEE FIGURE B.8) — INERTIA MATRIX AND 
ANGULAR MOMENTUM

Note: Equation (B.20) for a system of particles is also the convenient form of the linear momentum
principle for rigid bodies. But a more convenient form of equation (B.21) is possible using ω —
the angular velocity of the rigid body.

Angular momentum about O is a given by 
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(B.23a)

where the inertia matrix is

(B.24)

Note: In Cartesian coordinates, 

Angular momentum about the centroid:

Now

FIGURE B.8 Motion of a rigid body with respect to a fixed frame.
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Hence,

(B.23b)

Equations (B.23a) and (B.23b) can be written

(B.23)

B.2.5 MANIPULATION OF INERTIA MATRIX (SEE FIGURE B.9)

Parallel Axis Theorem — Translational Transformation of [I]

If the axes of the two frames are parallel,

(B.25)

Rotational Transformation of [I]

If a nonsingular square matrix [C] satisfies

(B.26)

then it is an orthogonal matrix, and the transformation of coordinates from r to r′ through

(B.27)

is called an orthogonal transformation. It can be verified using equation (B.24) that

(B.28)

Principal Directions (Eigenvalue Problem)

Principal directions ≡ Directions in which angular momentum is parallel to the angular velocity.
Then,
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Substitute equation (B.23): 
If the corresponding direction vector is u (i.e., ω = ωu), then

(B.29)

Equation (B.29) represents an eigenvalue problem. The nontrivial solutions for u are eigenvectors
and represent principal directions. Since [I] is symmetric, three independent, real solutions
(u1, u2, u3) exist for u. The corresponding values of λ are I1, I2, and I3. These are termed principal
moments of inertia. The matrix of normalized eigenvectors

(B.30)

is an orthogonal matrix. The orthogonal transformation of coordinates

(B.31)

rotates the frame into the principal directions and hence diagonalizes the inertia matrix

(B.32)

FIGURE B.9 (a) Planar coordinate transformation (b) Mohr’s circle for moments of inertia.
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Mohr’s Circle

In the two-dimensional (2-D) case of rigid bodies, the principal directions and principal moments
of inertia can be determined conveniently using Mohr’s circle. In Figure B.9(b), the direct inertias
Ixx and Iyy are read on the horizontal axis, and the cross inertia Ixy on the vertical axis. If the inertia
matrix is given in the (x, y, z) frame, two diametrically opposite points of the circle are known.
These determine the Mohr’s circle. The inertia matrix in any other frame (x′, y′, z′), rotated by
angle θ about the common z-axis in the positive direction, is obtained by moving through 2θ counter
closewise on the circle. This procedure also determines the principal moments I1 and I2, and the
principal direction.

B.2.6 EULER’S EQUATIONS (FOR A RIGID BODY ROTATING AT ω)

First consider a general body (rigid or not) for which angular momentum about a point B is expressed
in terms of directions of a frame that rotates at ω. Then, from equation (B.15), one obtains

(B.33)

Now consider a rigid body rotating at ω. If the body frame is oriented in the principal directions,
then from equation (B.23), one obtains

From equation (B.19b), the Euler’s equations (B.34) are obtained:

(B.34)

Note:

B.2.7 EULER’S ANGLES

Consider two Cartesian frames F and F′ in different orientations. One can rotate F to coincide with
F′ in three steps, as follows:
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Step 1: Rotate by angle ψ about the z-axis. The orthogonal transformation matrix for this
rotation is

(B.35)

Step 2: Rotate by angle θ about the new y-axis. The orthogonal transformation matrix for
this rotation is

(B.36)

Step 3: Rotate by angle φ about the new x-axis. The orthogonal transformation matrix for
this rotation is:

(B.37)

The same point P can be expressed as vector r in F, or vector r′ in F′. It follows that the two are
related through

(B.38)

In the Euler angle representation, the angular velocity can be considered to consist of the following
components:

about the z-axis of the original frame

about the y-axis of the intermediate frame

about the x-axis of the final frame.

It follows that the angular velocity expressed in F′ is

(B.39a)
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Also, angular velocity expressed in F is

(B.40a)

The resulting expressions are:

(B.39b)

(B.40b)

Once ω is expressed in this manner, v and a can be expressed in terms of Euler’s angles (ψ, θ, φ)
and their time derivatives. This is the basis of using Euler angles to write equations of motion.
Note: The set of Euler angles described here is known as the (3, 2, 1) set or Type I Euler angles.
Other combinations are possible. For example, if the first rotation is about the x-axis, the second
rotation about the new y-axis, and the final rotation about the new x-axis, then one has the (1, 2, 1)
set.

B.3 LAGRANGIAN MECHANICS

B.3.1 KINETIC ENERGY AND KINETIC COENERGY

Consider a single particle.

Kinetic energy (B.41)

Kinetic coenergy (B.42)

Note: T + T* = v · p
In classical mechanics, the constitutive relation between velocity v and linear momentum p is linear:

(B.43)

Hence,
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(B.44)

Note: For this reason, it is not necessary to distinguish between T and T*. But in Lagrangian
mechanics, traditionally T* is retained.
For a system of particles,

(B.45)

For a rigid body rotating at ω (see Figure B.8),

Now, using 

See equation (B.23a). One can write,

(B.46)

In Figure B.7(b), suppose that B is fixed. Premultiply equation (B.22) by 1/2 ωT (or take the dot
product with 1/2 ω) and obtain

Hence, with vc denoting the magnitude �vc�,

(B.47)

B.3.2 WORK AND POTENTIAL ENERGY

When the points of application ri of a set of forces fi move by increments δri, the incremental work
done is given by
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(B.48)

Forces can be divided into conservative forces and nonconservative forces. The work done by
conservative forces can be given by the decrease in potential energy (this is one definition for
potential energy). Hence,

(B.49)

Note that conservative forces are nondissipative forces (e.g., spring force, gravity).

Examples

1. For masses mi located at elevations yi in gravity (acceleration g),

(B.50)

2. For springs of stiffness ki stretched through xi, the potential energy (elastic) is

(B.51)

B.3.3 HOLONOMIC SYSTEMS, GENERALIZED COORDINATES, AND DEGREES OF FREEDOM

Holonomic constraints can be represented entirely by algebraic relations of the motion variables.
Dynamic systems having holonomic constraints only are termed holonomic systems. For any system
(holonomic or non-holonomic), the number of degrees of freedom (n) equals the minimum number
of incremental (variational) generalized coordinates (δq1, δq2, …, δqn) required to completely describe
any general small motion (without violating the constraints). The number of (nonincremental)
generalized coordinates required to describe large motions may be greater than n in general. But, for
holonomic systems:

Number of dof = Number of independent generalized coordinates.

B.3.4 HAMILTON’S PRINCIPLE

For a holonomic system, the Lagrangian L is given by

(B.52)

Consider the variation integral

(B.53)

in which Qj are the nonconservative generalized forces corresponding to the generalized coordinates qj.
For a motion trajectory, t0 and tf are the initial and the final times, respectively. Hamilton’s principle

δ δW i i= ⋅∑ f r

δ δV W= −( )conserv.

V m gyi i= ∑

V k xi i= ∑1
2
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L T V= −*

δ δ δH L Q q dtj j
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t f
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=

∑∫
1

0
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states that this trajectory corresponds to a natural motion of the system if and only if δH = 0 for
arbitrary δqj about the trajectory.

B.3.5 LAGRANGE’S EQUATIONS

Note that L is a function of qj and  in general, because V is a function of qj and T* is a function
of qj and . Hence,

(B.54)

Then, it follows from Hamilton’s principle [equation (B.53) with δH = 0], that:

(B.55)

These are termed Lagrange’s equations, and represent a complete set of equations of motion.
Note: Newton’s equations of motion are equivalent to the Lagrange’s equations.

To determine Qj, give an incremental motion δqj to the system with the other coordinates fixed,
and determine the work done δWj. Then,

(B.56)

This gives Qj.

EXAMPLE 

Figure B.10 shows a simplified model that can be used to study the mechanical vibrations that are
excited by the control-loop disturbances in a single-link robot arm. The length of the arm is l, the
mass is M, and the moment of inertia about the joint is I. The gripper hand (end effector) is modeled
as a mass m connected to the arm through a spring of stiffness k. The joint has an effective viscous
damping constant c for rotary motions. The motor torque (applied at the joint) is τ(t).

Generalized Coordinates

This is a two-degree-of-freedom holonomic system. The angle of rotation θ of the arm and spring
deflection x from the unstretched position are chosen as the generalized coordinates.

Generalized Nonconservative Forces

Keeping x fixed, increment θ by δθ. The corresponding incremental work due to nonconservative

forces is .
Note that the damping torque c  acts opposite to the increment δθ. Thus, the generalized force is
given by

Keeping θ fixed, increment x by δx. The corresponding incremental work due to nonconservative
forces is δWx = 0.
Hence, Fx = 0.

q̇ j

q̇ j

L L q q q q q qn n= ( )1 2 1 2, , , ˙ , ˙ , ˙  ,     ,  K K

d
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q
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q
Q j n

j j
j

∂
∂









 − ∂

∂
= =
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1,  2,  ,  K

δ δW Q qj j j=

δ τ δθ θδθθW t c= ( ) − ˙
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F t cθ τ θ= ( ) − ˙
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Lagrangian

The total kinetic coenergy (= kinetic energy in these Newtonian systems) is

Note:  is not exact (there is a nonlinear term that is neglected).
The potential energy (due to gravity and spring) is given by:

Note that the centroid of the arm is assumed to be halfway along the link. It follows that the
Lagrangian is given by:

Lagrange’s Equations

From equation (B.55) one obtains

FIGURE B.10
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If the steady-state configuration of the link is assumed to be vertical, for small departures from
this position (e.g., due to control loop disturbances), the equations of motion are obtained by
linearizing for small θ (i.e., sinθ = θ, cosθ = 1). The corresponding equations are

Note: For equilibrium at θ = 0, one needs τ = mgx0. In other words, this term represents the static
torque needed at the motor joint in order to maintain equilibrium at the (θ = 0, x = 0) position. If
the system was symmetric, τstatic = 0.
Note also that this set of equations of motion is of the form

and the matrices M, C, and K are symmetric. The mass matrix M is not diagonal in the present
formulation. It is possible, however, to make it diagonal simply by eliminating the  term in the
first equation of motion and the  term in the second equation of motion through straightforward
algebraic manipulation. Natural frequencies and mode shapes of the undamped system can be
determined in the usual manner (see Chapter 5). If the feedback gain of the control loop is such
that at least a pair of eigenvalues is complex and has an imaginary part that is approximately equal
to a natural frequency of the structural system, then that mode can be excited in an undesirable
manner even by a slight disturbance in the control force. Such situations can be avoided by
modifying the control system (e.g., by changing the gains) or the structural system (for example,
by adding damping, and by changing stiffness and mass) so that the structural natural frequencies
would not be near the resonances of the feedback control system. Related issues of design and
control for vibration are addressed in Chapter 12.
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Appendix C
Review of Linear Algebra
Linear algebra, the algebra of sets, vectors, and matrices, is useful in the study of mechanical
vibration. In practical vibrating systems, interactions among various components are inevitable.
There are many response variables associated with many excitations. It is thus convenient to consider
all excitations (inputs) simultaneously as a single variable, and also all responses (outputs) as a
single variable. The use of linear algebra makes the analysis of such a system convenient. The
subject of linear algebra is complex and is based on a rigorous mathematical foundation. This
appendix reviews the basics of vectors and matrices, which form the foundation of linear algebra.

C.1 VECTORS AND MATRICES

In the analysis of vibrating systems, vectors and matrices will be useful in both time and frequency
domains. First, consider the time-domain formulation of a vibration problem. For a single-degree-
of-freedom system with a single forcing excitation f(t) and a corresponding single displacement
response y, the dynamic equation is

(C.1)

Note that, in this single-dof case, the quantities f, y, m, c, and k are scalars. If the system has
n degrees of freedom, with excitation forces f1(t), f2(t), …, fn(t) and associated displacement
responses y1, y2, …, yn, then the equations of motion can be expressed as

(C.2)

in which
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In this manner, vectors and matrices are introduced into the formulation of a multi-degree-of-
freedom vibration problem. Further, vector-matrix concepts will enter into the picture in subsequent
analysis; for example, in modal analysis, as discussed in Chapters 5 and 11.

Next consider the frequency-domain formulation. In the single-degree-of-freedom case, the
system equation can be given as

(C.3)

where

u = frequency spectrum (fourier spectrum) of the forcing excitation (input)
y = frequency spectrum (Fourier spectrum) of the response (output)
G = frequency-transfer function (frequency-response function) of the system.

The quantities u, y, and G are scalars because each one is a single quantity, and not a collection
of several quantities.

Next consider a two-degree-of-freedom system having two excitations u1 and u2, and two
responses y1 and y2; yi now depends on both u1 and u2. It follows that one needs four transfer
functions to represent all the excitation-response relationships that may exist in this system. One
can use the four transfer functions (G11, G12, G21, and G22). For example, the transfer function G12

relates the excitation u2 to the response y1. The associated two equations that govern the system are:

(C.4)

Instead of considering the two excitations (two inputs) as two separate quantities, one can
consider them as a single “vector” u having the two components u1 and u2. As before, one can
write this as a “column” vector:

Alternately, one can write a “row” vector as
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It is common to use the column-vector representation. Similarly, one can express the two outputs
y1 and y2 as a vector y. Consequently, the column vector is given by

and the row vector by

It should be kept in mind that the order in which the components (or elements) are given is
important because the vector [u1, u2] is not equal to the vector [u2, u1]. In other words, a vector is
an “ordered” collection of quantities.

Summarizing, one can express a collection of quantities, in an orderly manner, as a single
vector. Each quantity in the vector is known as a component or an element of the vector. What
each component means will depend on the particular situation. For example, in a dynamic system,
it can represent a quantity such as voltage, current, force, velocity, pressure, flow rate, temperature,
or heat transfer rate. The number of components (elements) in a vector is called the order, or
dimension, of the vector.

Next, the concept of a matrix is introduced, using the frequency-domain example given above.
Note that one needs four transfer functions to relate the two excitations to the two responses. Instead
of considering these four quantities separately, one can express them as a single matrix G having
four elements. Specifically, the transfer function matrix for the present example is

Note that the matrix has two rows and two columns. Hence, the size or order of the matrix is 2×2.
Since the number of rows is equal to the number of columns in this example, one has a square
matrix. If the number of rows is not equal to the number of columns, one has a rectangular matrix.
Actually, a matrix can be interpreted as a collection of vectors. Hence, in the previous example,
the matrix G is an assembly of the two column vectors

or, alternatively, an assembly of the two row vectors

C.2 VECTOR-MATRIX ALGEBRA

The advantage of representing the excitations and the responses of a vibrating system as the vectors
u and y, and the transfer functions as the matrix G, is clear from the fact that the excitation-response
(input-output) equations can be expressed as the single equation
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(C.5)

instead of the collection of scalar equations (C.4).
Hence, the response vector y is obtained by “premultiplying” the excitation vector u by the

transfer function matrix G. Of course, certain rules of vector-matrix multiplication have to be agreed
on in order that this single equation is consistent with the two scalar equations given by
equations (C.4). Also, one must agree on rules for the addition of vectors or matrices.

A vector is a special case of a matrix. Specifically, a third-order column vector is a matrix
having three rows and one column. Hence, it is a 3×1 matrix. Similarly, a third-order row vector
is a matrix having one row and three columns. Accordingly, it is a 1×3 matrix. It follows that one
only needs to know matrix algebra, and the vector algebra will follow from the results for matrices.

C.2.1 MATRIX ADDITION AND SUBTRACTION

Only matrices of the same size can be added. The result (sum) will also be a matrix of the same
size. In matrix addition, one adds the corresponding elements (i.e., the elements at the same position)
in the two matrices, and write the results at the corresponding places in the resulting matrix.

As an example, consider the 2×3 matrix

and a second matrix

The sum of these two matrices is given by

The order in which the addition is done is immaterial. Hence,

(C.6)

In other words, matrix addition is commutative.
Matrix subtraction is defined just like matrix addition, except the corresponding elements are

subtracted (or sign changed and added). An example is given below:

C.2.2 NULL MATRIX

The null matrix is a matrix for which the elements are all zeros. Hence, when one adds a null
matrix to an arbitrary matrix, the result is equal to the original matrix. One can define a null vector
in a similar manner. One can write
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(C.7)

As an example, the 2×2 null matrix is:

C.2.3 MATRIX MULTIPLICATION

Consider the product AB of two matrices A and B. One can write this as:

(C.8)

As such, B is premultiplied by A or, equivalently, A is post-multiplied by B. For this multiplication
to be possible, the number of columns in A must be equal to the number of rows in B. Then, the
number of rows of the product matrix C is equal to the number of rows in A, and the number of
columns in C is equal to the number of columns in B.

The actual multiplication is done by multiplying the elements in a given row (say, the ith row)
of A by the corresponding elements in a given column (say, jth column) of B and summing these
products. The result is the element cij of the product matrix C. Note that cij denotes the element
that is common to the ith row and the jth column of matrix C. Thus,

(C.9)

As an example, suppose:

Note that the number of columns in A is equal to 3, and the number of rows in B is also equal
to 3. Hence, one can perform the premultiplication of B by A. For example,
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0 0






C AB=

c a bij ik kj= ∑
k

A

B

=
−

−






=
−

−
−

















1 2 1

3 3 4

1 1 2 4

2 3 4 2

5 3 1 0

c

c

c

c

c

c

11

12

13

14

21

22

1 1 2 2 1 5 0

1 1 2 3 1 3 8

1 2 2 4 1 1 7

1 4 2 2 1 0 8

3 1 3 2 4 5 17

3 1 3

= × + × + −( ) × =

= × −( ) + × + −( ) × −( ) =

= × + × −( ) + −( ) × = −

= × + × + −( ) × =

= × + −( ) × + × =

= × −( ) + −((( ) × + × −( ) = −3 4 3 24

etc.
©2000 CRC Press

http://www.semeng.ir


www.20file.org
The product matrix is

It should be noted that both products AB and BA are not always defined; and even when they
are defined, the two results are not equal in general. Unless both A and B are square matrices of
the same order, the two product matrices will not be of the same order.

Summarizing, matrix multiplication is not commutative:

(C.10)

C.2.4 IDENTITY MATRIX

An identity matrix (or unity matrix) is a square matrix whose diagonal elements are all equal to 1
and all the remaining (off-diagonal) elements are zeros. This matrix is denoted by I.

For example, the third-order identity matrix is

It is easy to see that when any matrix is multiplied by an identity matrix (provided, of course,
that the multiplication is possible), the product is equal to the original matrix; thus,

(C.11)

C.3 MATRIX INVERSE

An operation similar to scalar division can be defined with regard to the inverse of a matrix. A
proper inverse is defined only for a square matrix and, even for a square matrix, an inverse might
not exist. The inverse of a matrix is defined as follows:
Suppose that a square matrix A has the inverse B. Then, these must satisfy the equation:

(C.12)

or, equivalently,

(C.13)

where I is the identity matrix, as previously defined.
The inverse of A is denoted by A–1. The inverse exists for a matrix if and only if the determinant

of the matrix is non-zero. Such matrices are termed nonsingular. The determinant is discussed in
section C.3.3; but, before explaining a method for determining the inverse of a matrix, one can
verify that
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is the inverse of

To show this, simply multiply the two matrices and show that the product is the second-order unity
matrix. Specifically,

or

C.3.1 MATRIX TRANSPOSE

The transpose of a matrix is obtained by simply interchanging the rows and the columns of the
matrix. The transpose of A is denoted by AT.

For example, the transpose of the 2×3 matrix

is the 3×2 matrix

Note that the first row of the original matrix has become the first column of the transposed matrix,
and the second row of the original matrix has become the second column of the transposed matrix.

If AT = A, then the matrix A is symmetric. Another useful result on the matrix transpose is
expressed by

(C.14)

It follows that the transpose of a matrix product is equal to the product of the transposed matrices,
taken in the reverse order.

C.3.2 TRACE OF A MATRIX

The trace of a square matrix is given by the sum of the diagonal elements. The trace of matrix A
is denoted by tr(A).

(C.15)
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For example, the trace of the matrix

is given by

C.3.3 DETERMINANT OF A MATRIX

The determinant is defined only for a square matrix. It is a scalar value computed from the elements
of the matrix. The determinant of a matrix A is denoted by det(A) or �A�.

Instead of giving a complex mathematical formula for the determinant of a general matrix in
terms of the elements of the matrix, one can compute the determinant as follows.
First consider the 2×2 matrix

Its determinant is given by

Next consider the 3×3 matrix

Its determinant can be expressed as
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Note that Mij is the determinant of the matrix obtained by deleting the ith row and the jth column
of the original matrix. The quantity Mij is known as the minor of the element aij of the matrix A.
If the proper sign is attached to the minor, then depending on the position of the corresponding
matrix element, one has a quantity known as the cofactor. Specifically, the cofactor Cij corresponding
to the minor Mij is given by

(C.16)

Hence, the determinant of the 3×3 matrix can be given by

Note that in the two formulas given above for computing the determinant of a 3×3 matrix, one
has expanded along the first row of the matrix. The same answer is obtained, however, if one
expands along any row or any column. Specifically, when expanded along the ith row, one obtains

Similarly, if one expands along the jth column, then

These ideas of computing a determinant can be easily extended to 4×4 and higher-order matrices
in a straightforward manner. Hence, one can write

(C.17)

C.3.4 ADJOINT OF A MATRIX

The adjoint of a matrix is the transponse of the matrix whose elements are the cofactors of the
corresponding elements of the original matrix. The adjoint of matrix A is denoted by adj(A).

As an example, in the 3×3 case, one has

C Mij
i j

ij= −( ) +1

det A( ) = + +a C a C a C11 11 12 12 13 13

det A( ) = + +a C a C a Ci i i i i i1 1 2 2 3 3

det A( ) = + +a C a C a Cj j j j j j1 1 2 2 3 3

det A( ) = =∑ ∑a C a Cij ij

j

ij ij

i

adj A( ) =
















=
















C C C

C C C

C C C

C C C

C C C

C C C

T

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13 23 33
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In particular, it is easily seen that the adjoint of the matrix

is given by

Accordingly,

Hence, in general,

(C.18)

C.3.5 INVERSE OF A MATRIX

At this point, one can define the inverse of a square matrix. Specifically,

(C.19)

Hence, in the 3×3 matrix example given before, since the adjoint has already been determined, it
remains only to compute the determinant in order to obtain the inverse. Now, expanding along the
first row of the matrix, the determinant is given by

Accordingly, the inverse is given by

For two square matrices A and B,

(C.20)

A =
−















1 2 1

0 3 2

1 1 1

adj A( ) =
−

−
−

















1 2 3

3 2 1

7 2 3

T

adj A( ) =
−

−
−

















1 3 7

2 2 2

3 1 3

adj A( ) = [ ]Cij

T

A
A
A

− = ( )
( )

1 adj

det

det A( ) = × + × + −( ) × −( ) =1 1 2 2 1 3 8

A− =
−

−
−

















1 1
8

1 3 7

2 2 2

3 1 3

A B AB( ) =− − −1 1 1
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As a final note, if the determinant of a matrix is 0, the matrix does not have an inverse. Then,
that matrix is singular. Some important matrix properties are summarized in Box C.1.

C.4 VECTOR SPACES

C.4.1 FIELD (�)

Consider a set of scalars. If for any α and β from the set, α + β and αβ are also elements in the set;
and if:

1. α + β = β + α and αβ = βα (Commutativity)
2. (α + β) + γ = α + (β + γ) and (αβ)γ = α(βγ) (Associativity)
3. α(β + γ) = αβ + αγ (Distributivity)

are satisfied,
and if:

1. Identity elements 0 and 1 exist in the set such that α + 0 = α and 1α = α
2. Inverse elements exist in the set such that α + (–α) = 0

and α·α–1 = 1

then, the set is a field. For example, the set � of real numbers is a field.

C.4.2 VECTOR SPACE (�)

Properties

1. Vector addition (x + y) and scalar multiplication (αx) are defined.

BOX C.1 Summary of Matrix Properties

Addition :  

Multiplication :  

Identity :  = =  is the identity matrix

:  or  in general

Transposition :  

Inverse :  = = = and

Community :  

A B C

A B C

AI IA A I

AB A B

C AB B A

AP I PA A P P A

AB B A

AB

m n m n m n

m n n r m r

T T T T

× × ×

× × ×

−

− − −

+ =

=

⇒

= /⇒ = =

= ( ) =

⇒ =

( ) =

−

Note 0 0 0

1 1

1 1 1

≠≠≠

( ) = ( )

( ) = +

( ) = +

BA

AB C A BC

C A B CA CB

A B D AD BD

 in general

Associativity :  

Distributivity :  +

Distributivity :  +
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2. Commutativity: x + y = y + x
Associativity: (x + y) + z = x + (y + z)
are satisfied.

3. Unique null vector 0 and negation (–x) exist such that: x + 0 = x
x + (–x) = 0.

4. Scalar multiplication satisfies:

Special Case

Vector space �n has vectors with n elements from the field �.
Consider

Then,

C.4.3 SUBSPACE � OF �

1. If x and y are in � then x + y is also in �.
2. If x is in � and α is in �, then αx is also in �.

C.4.4 LINEAR DEPENDENCE

Consider the set of vectors: x1, x2, …, xn. They are linearly independent if any one of these vectors
cannot be expressed as a linear combination of one more remaining vectors.
Necessary and sufficient condition for linear independence:

(C.21)

gives α = 0 (trivial solution) as the only solution. For example,

α β αβ

α α β

α β α β

x x

x y x y

x x x

x x x

( ) = ( )

( ) = +

+( ) = +







(Associativity)

+
(Distributivity)

1 = , 0 = 0

x y=
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2

1

2

M M
,

x y y x x+ =
+

+

















= + =
















x y

x y

x

xn n n

1 1 1

M Mand α
α

α

α α α1 1 2 2x x x+ + + =K n n 0

x1

1

2

3

=
















©2000 CRC Press

http://www.semeng.ir


www.20file.org
These vectors are not linearly independent because x1 + 2x2 = x3.

C.4.5 BASIS AND DIMENSION OF A VECTOR SPACE

1. If a set of vectors can be combined to form any vector in �, then that set of vectors is
said to span the vector space � (i.e., a generating system of vectors).

2. If the spanning vectors are all linearly independent, then this set of vectors is a basis for
that vector space.

3. The number of vectors in the basis = Dimension of the vector space.

Note: The dimension of a vector space is not necessarily the order of the vectors.
For example, consider two intersecting third-order vectors. They will form a basis for the plane

(two dimensional) that contains the two vectors. Hence, the dimension of the vector space = 2, but
the order of each vector in the basis = 3.
Note: �n is spanned by n linearly independent vectors ⇒  dim(�n) = n
For example,

C.4.6 INNER PRODUCT

(C.22)

where H denotes the hermitian transpose (i.e., complex conjugate and transpose). Hence yH = (y*)T

where ( )* denotes complex conjugation.
Note:

1. (x,x) ≥ 0 and (x,x) = 0 if and only if (iff) x = 0
2. (x,y) = (y,x)*

3. (λx,y) = λ(x,y)
(x,λy) = λ*(x,y)

4. (x,y + z) = (x,y) + (x,z)

x

x

2

3

2

1

1

5

0

5

= −
















=
















1

0

0

0

M M

K M



































































,  

0

1

0

0

,  ,

0

0

0

1

x y y x,( ) = H
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C.4.7 NORM

Properties

For example, the Euclidean norm: (C.23)

Unit vector: 

Normalization: 

Angle between vectors: (C.24)

where θ is the angle between x and y.

Orthogonal: (C.25)

Note: n orthogonal vectors in �n are linearly independent and span �n, and form a basis for �n

C.4.8 GRAM-SCHMIDT ORTHOGONALIZATION

Given a set of vectors x1, x2, …, xn that are linearly independent in �n, one can construct a set of
orthonormal (orthozonal and normalized) vectors 1, 2, …, n that are linear combinations of i.

Start: 

Then: 

C.4.9 MODIFIED GRAM-SCHMIDT PROCEDURE

In each step, compute new vectors that are orthogonal to the just-computed vector.

Step 1: 

Then:

and 

x x x

x x

x y x y

≥ =

=

+ ≤ +

0 0and iff =

for any scalar 

0

λ λ λ

x =










=
∑ xi

i

n
2

1

1
2

x = 1

x
x

x= ˆ

We have cos
,

ˆ, ˆθ = ( ) = ( )x y

x y
x y

iff ,x y( ) = 0

ŷ ŷ ŷ x̂

ˆ ˆy x
x

x1 1
1

1

= =

y x x y yi i i j j

j

i

i n= − ( ) =
=

−

∑ , ˆ ˆ
1

1

1for ,  2,  ,  K

ŷ
x

x1
1

1

= as before

x x y x y

y
x

x

i i i

i
i

i

i n

i n

1
1 1

1

1

2

2

( )

( )

( )

= − ( ) =

= =

ˆ , ˆ

ˆ

for ,  3,  ,  

for ,  3,  ,  

K

K

  
x x y x yi i i i n( ) ( ) ( )ˆ , ˆ ,   , , , ,   2 1

2
1

2 3 4= − ( ) = K and so on.
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C.5 DETERMINANTS

Now one can address several analytical issues of the determinant of a square matrix. Consider the
matrix

The minor of aij = Mij = the determinant of the matrix formed by deleting the ith row and the jth
column of the original matrix.
Cofactor of aij = Cij = (–1)i+jMij

cof(A) = Cofactor matrix of A
adj(A) = Adjoint A = (cof A)T

C.5.1 PROPERTIES OF DETERMINANT OF A MATRIX

1. Interchange two rows (columns) ⇒  Determinant sign changes
2. Multiply one row (column) by α ⇒  αdet( )
3. Add a [α × row (column)] to a second row (column) ⇒  Determinant unchanged
4. Identical rows (columns) ⇒  Zero determinant
5. For two square matrices A and B, det(AB) = det(A) det(B)

C.5.2 RANK OF A MATRIX

Rank A = Number of linearly independent columns
= Number of linearly independent rows
= dim(column space)
= dim(row space)

Here, “dim” denotes the “dimension of.”

C.6 SYSTEM OF LINEAR EQUATIONS

Consider the set of linear algebraic equations

One needs to solve for x1, x2, …, xn.
This problem can be expressed in the vector-matrix form:

Solution exists iff rank (A,c) = rank (A)

A =
















a a

a a

n

n nn

11 1

1

L

M M

L

a x a x a x c

a x a x a x c

a x a x a x c

n n

n n

m m mn n m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+ + + =

K

K

M

K

A x c B A cm n n m× = = ( ),
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Two cases can be considered:

Case 1: If m ≥ n and rank (A) = n ⇒  unique solution for x.
Case 2:   If m ≤ n and rank (A) = m ⇒  infinite number of solutions for x;

x = AH(AAH)–1C ⇐  minimum norm form
 Specifically, out of the infinite possibilities, this is the solution that minimizes the

norm xHx.
 Note that the superscript “H” denotes the “hermitian transpose,” which is the

transpose of the complex conjugate of the matrix. For example,

Then,

 If the matrix is real, its hermitian transpose is simply the ordinary transpose.

In general, if rank (A) ≤ n ⇒  infinite number of solutions.
The space formed by solutions Ax = 0 ⇒  is called the null space.
dim (null space) = n – k, where rank (A) = k.
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Appendix D
Digital Fourier Analysis and FFT
In the frequency domain, vibration analysis can be carried out using Fourier transform techniques.
Three versions of the Fourier transform are available. The frequency content of a periodic signal
is conveniently represented by its Fourier Series Expansion (FSE). For nonperiodic (or transient)
signals, Fourier-Integral-Transform (FIT) is used. For a discrete sequence of points in a signal
(i.e., a set of sampled data), a sequence of discrete data in the frequency domain is obtained using
Discrete Fourier Transform (DFT), or “digital” Fourier transform. This can be interpreted as a
discrete-data approximation to FIT. Similarly, FSE can be expressed as a special case of FIT. In
this sense, the three versions of Fourier transform — FSE, FIT, and DFT — are interrelated.

It should be clear that the DFT is the appropriate version for digital analysis of data, using a
computer. The direct use of DFT relations, however, is not computationally efficient because it
needs a very large number of operations and liberal use of computer memory. For this reason,
Fourier analysis using a digital computer was not considered feasible until 1965. That year, the
Fast Fourier Transform (FFT) algorithm was published by Cooley and Tukey. This revolutionized
the field of data Fourier analysis by reducing the number of arithmetic operations required for
the discrete Fourier transformation of an N-point data sequence by a factor of nearly 2N/ln2N.
Prior to this, the only economical way to perform Fourier analysis of complex time histories was
by analog means, where narrow-band analog filters (circuits) were used to extract the frequency
components in various frequency bands of interest. Early applications of FFT were limited to off-
line computations in a batch mode using software in a large mainframe computer. It was only
after the development of large-scale integration (LSI) and the associated microprocessor technol-
ogy that software-based and dedicated hardware FFT analyzers became cost effective for general
applications. The hardware FFT analyzers are particularly suitable in real-time applications.
Several stand-alone FFT analyzers were marketed in the late 1970s. Practically unlimited options
for frequency (spectral) analysis are available today, through these dedicated analyzers as well as
desktop computers.

D.1 UNIFICATION OF THE THREE FOURIER TRANSFORM TYPES

By discrete Fourier transformation of a set of sampled data from a signal, one cannot expect to
generate an exact set of points in the analytical Fourier spectrum of the signal. Because of sampling
of the signal, some information will be lost. Clearly, one should be able to reduce the error in the
computed Fourier spectrum by decreasing the size of the data sample step (∆T). Similarly, one
does not expect to get the exact Fourier series coefficients by discrete Fourier transformation of
sampled data from a periodic function. It is very important to study the nature of these errors,
which are commonly known as aliasing distortions.

D.1.1 RELATIONSHIP BETWEEN DFT AND FIT

A fundamental result relating DFT and FIT is established in this section. In view of the FIT relation,
the frequency-spectrum values Xm = X(m · ∆F), m = 0, ±1, ±2, …, sampled at the discrete frequency
points of sample step ∆F are given by
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(D.1)

where T = 1/∆F. On implementing the change of variable t → t + kT (i.e., let t′ = t – kT and then
drop the prime) and interchanging the summation and the integration operations, one obtains

(D.2)

where

(D.3)

The fact that exp(–j2πmk) = 1 for integers m, k was used in obtaining equation (D.2). Since (t)
is periodic, having the period T, it has an FSE given by

(D.4)

which follows from the FSE equation. The sampled values m = (m · ∆T), m = 0, ±1, ±2, …, at
sample steps of ∆T are given by

(D.5)

where ∆T = T/N = 1/(N · ∆F). In a manner analogous to the procedure for obtaining equation (D.2),
the change of variable n → n + kN (i.e., let n′ = n – kN and then drop the prime) is implemented,
and the summation operations are interchanged. This results in

(D.6)

where

(D.7)

X x t j m Ft dt

x t j mt T dt

m

kT

k T

k

= ( ) −( )

= ( ) −( )

−∞

∞

+( )

=−∞

∞

∫

∫∑

exp

exp

2

2

1

π

π

∆

X x t j mt T dtm

T
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Note that n = (n · ∆F), n = 0, ±1, ±2, …, are the sampled values of the periodic function (f),
having the period F. The frequency parameter F = N · ∆F = 1/∆T = N/T represents the number of
samples in a record of unity time duration. It is not possible to extract any information about the
frequency spectrum for frequencies f > F/2 = fc from time-response data sampled at steps of ∆T.
The parameter fc = 1/(2∆T) is known as Nyquist frequency.

It is evident that by comparing equation (D.6) with the inverse DFT relation that the sequence
{ n} = [ 0, 1, …, N–1] represents the DFT of the sequence { m} = [ 0, x1, …, xN–1]. The forward
transform is given by

(D.8)

In summary, if X(f) is the FIT of x(t), then the N-element sequence { n} is the DFT of the N-element
sequence { m}. The periodic functions (t) and (f) are related to x(t) and X(f), respectively,
through equations (D.3) and (D.7); { m} and { n} being their individual sampled data.

D.1.2 RELATIONSHIP BETWEEN DFT AND FSE

A fundamental result relating DFT and FSE will be established in this section. From the FSE
equation, it follows that, for a periodic signal x(t) of period T, the sampled values xm = x(m · ∆T),
m = 0, ±1, ±2, …, are given by

(D.9)

By definition, the sequence {xm} is periodic with N-element periodicity where N = T/∆T. The
procedure for obtaining equation (D.6) is now adopted to obtain

(D.10)

where

(D.11)

The sequence { n} is periodic, with N-element periodicity. By comparing equation (D.10) with
the inverse DFT equation, it becomes clear that the N-element sequence { n} = [ 0, 1, …, N–1]
is the DFT of the N-element sequence {xm} = [x0, x1, …, xN–1]. The forward transform is given by

(D.12)

X̃ X̃ X̃

X̃ X̃ X̃ X̃ x̃ x̃

˜ ˜ expX
F

x j mn Nn m

m

N

= −( )
=

−

∑1
2

0

1

π

X̃
x̃ x̃ X̃

x̃ X̃

x
T

A j nm T T

T
A j nm N

m n

n

n

n kN

k N

k

= ( )

= ( )

=−∞

∞

=

+( ) −

=−∞

∞

∑

∑∑

1
2

1
2

1 1

exp

exp

π

π

∆

x
T

A j nm Nm n

n

N

= ( )
=

−

∑1
2

0

1

˜ exp π
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Ã Ã Ã Ã
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In summary, if {An} are the coefficients of the FSE of a periodic signal x(t), then the N-element
sequence { n} is the DFT of the N-element sequence {xm}, where xm = x(m · ∆T) and { m} is
given by equation (D.11).

D.2 FAST FOURIER TRANSFORM (FFT)

The direct computation of the discrete Fourier transform (DFT) is not recommended, particularly
in real-time applications, because of the inefficiency of this procedure. For a sequence of N sampled
data points, N2 complex multiplications and N/(N – 1) complex additions are necessary in the direct
evaluation of the DFT, assuming that the complex exponential factors exp(–j2πmn/N) are already
computed. Many of these arithmetic operations are redundant, however. The Cooley and Tukey
algorithm, commonly known as the radix-two fast Fourier transform (FFT) algorithm, is an efficient
procedure for computing DFT. Efficiency of the algorithm is achieved by dividing the numerical
procedure into several stages so that redundant computations are avoided.

D.2.1 DEVELOPMENT OF THE RADIX-TWO FFT ALGORITHM

The multiplicative constant ∆T in the DFT equation is a parameter that was introduced to maintain
the consistency with the conventional FIT equation. This constant can be treated as a scaling factor
for the final results; or, equivalently, it could be combined with the input data sequence {xn}. In
any event, the primary computational effort in the DFT equation is directed toward computing the
sequence [A(0), A(1), …, A(N – 1)] from the data sequence [a(0), a(1), …, a(N – 1)], using the
relationship

(D.13)

where

(D.14)

The FFT algorithm requires that N be highly composite (i.e., factorizable into many non-unity
integers). In particular, for the radix-two algorithm, it is required that N = 2r, where r is a positive
integer. If the given data sequence does not satisfy this condition, it must be augmented by a
sufficient number of trailing zeros.

A systematic development of the radix-two FFT algorithm is presented now. The integers
m and n are expressed in the binary-number-system expansion. Recalling that 0 ≤ m ≤ N – 1 and
0 ≤ n ≤ N – 1, one can write

(D.15)

in which mi and nj take values 0 or 1. Equivalently,
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Next, the indices of the elements A(·) and a(·) in equation (D.13) are expressed by their binary
counterparts:

(D.17)

where

(D.18)

The fact that W2r = WN = 1 has been used in the foregoing expansion. By defining the intermediate
set of sequences {A1(·)}, {A2(·)}, {Ar(·)}, equation (D.17) can be expressed as the set of equations:

(D.19)

with

(D.20)

Consequently, the single set of computations given by equation (D.13) for the N-element sequence
{A(·)} has been replaced by r stages of computations. In each stage, an N-element sequence {Ai(·)}
must be computed from the immediately preceding N-element sequence {Ai–1(·)}. It soon will be
apparent that, as a result of this r-stage factorization, the number of arithmetic operations required
has been considerably reduced.

It should be noted that each relationship given in equation (D.19) corresponds to a set of
N separate relationships, because the index within the parenthesis of {Ai(·)} runs from 0 to N – 1.
In order to observe some important characteristics of the FFT algorithm, the ith relationship of
equation (D.19) is examined. Specifically,
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where A0(·) = a(·). The summation on the right-hand side of equation (D.21) is expanded as

(D.22)

which involves only one complex multiplication and one complex addition, assuming that the
complex exponential terms Wp are precomputed. It is noted that the variable mi–1, which is the
binary coefficient of 2r–i in the index of the left-hand-side term Ai(·), does not appear in the binary
index of the right-hand-side terms Ai–1(·). Consequently, the values of the Ai–1(·) terms on the right-
hand side remain unchanged as mi–1 switches from 0 to 1 in the left-hand-side index. This switch
corresponds to a jump in the index of A1(·) through a value of 2r–i. Accordingly, the computation
of, for example, the kth term Ai(k) and the (k + 2r–1)th term Ai(k + 2r–i) of the sequence {A1(·)} in
the ith stage involves the same two terms Ai–1(k) and Ai–1(k + 2r–i) of the previous (i – 1)th sequence
Ai–1(·). It follows that equation (D.22) takes the more familiar decimal format:

(D.23)

(D.24)

(D.25)

Equation (D.24) results when mi–1 = 0, and equation (D.25) results when mi–1 = 1. On closer
examination, it is evident that  = N/2 + p, which follows from 2r–i2i–1 = 2r–1 = 2r/2. Hence,

(D.26)

From the definition of W [equation (D.14)], however, WN/2 = –1. Consequently,

(D.27)

By substituting equation (D.27) in equation (D.23), one obtains

(D.28)

for i = 1, …, r and k = 0, 1, …, 2r–i – 1, 2r–i+1, …, where p is given by equation (D.24).
The in-place simultaneous computation of the so-called dual terms Ai(k) and Ai(k + 2r–i) in the

N-term sequence {A·(·)} involves just one complex multiplication and two complex additions. As
a result, the number of multiplications required has been further reduced by a factor of two. At
each stage, the computation of the N-term sequence requires N/2 complex multiplications and
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N complex additions. Because there are r stages, the radix-two FFT requires a total of rN/2 complex
multiplications and rN complex additions, in which r = ln2 N. In other words, the number of
multiplications required has been reduced by a factor of (2N/ln2 N), and the number of additions
has been reduced by a factor of (N/ln2 N). For large N, these ratios correspond to a sizable reduction
in the computer time required for a DFT. This is a significant breakthrough in real-time digital
Fourier analysis.

An insignificant shortcoming of the Cooley-Tukey FFT procedure is evident from equation (D.20).
The final sequence {Ar(·)} is a scrambled version of the desired transform {A(·)}. To unscramble
the result, it is merely required to interchange the term in the binary location (m0, …, mr–1) with
that in the binary location (mr–1, …, m0). It should be remembered not to duplicate any interchanges
while proceeding down the array during the unscrambling procedure. Because an in-place inter-
change of the elements is performed, there is no necessity for defining a new array. There is an
associated saving in computer memory requirements.

D.2.2 THE RADIX-TWO FFT PROCEDURE

The basic steps of the radix-two FFT algorithm are as follows: N = 2r elements of the data sequence
{A(·)} are available.

Step 1: Initialize variables. Stage number i = 1. Sequence element number k = 0.
Step 2: Determine p as follows: From equation (D.24), p = binary (mi–1, …, m0, 0, …, 0)Nbits.

From equation (D.21), k = binary (m0, m1, …, mi–1, nr–i–1, …, n0). Shift k register through
(r – i) bits to the right, and augment the vacancies by leading zeros. This gives binary
(0, …, 0, m0, …, mi–1)Nbits. Reverse the bits to obtain p.

Step 3: Compute in place, the dual terms Ai(k) and Ai(k + 2r–i), using equation (D.28). Note:
Since Ai–1(k) and Ai–1(k + 2r–i) are not needed in the subsequent computations, they are
destroyed by storing Ai(k) and Ai(k + 2r–i) in those locations. As a result, only one array
of N elements is needed in the computer memory.

Step 4: Increment k = k + 1. If an already-computed dual element is encountered, skip k through
2r–i (i.e., k = k + 2r–i). If k ≥ N, increment i = i + 1. If i > r, go to step 5. Otherwise,
go to step 2.

Step 5: Unscramble the sequence, using equation (D.20), and stop.

D.2.3 ILLUSTRATIVE EXAMPLE

Consider the data sequence [a(0), a(1), a(2), a(3)] of block size N = 4. Its DFT sequence
[A(0), A(1), A(2), A(3)] is obtained as follows. Note that r = 2, and the required complex exponents
Wp are available as tabulated data.

Stage 1 (i = 1): From equation (D.28), the matrix form of the equations with the indices expressed
as binary numbers is

Note that the dual jump 2r–i = 22–1 = 2 for this stage. Furthermore, for k = 0 = binary (0,0),
p = binary (0,0); and for k = 1 = binary (0,1), p = binary (0,0) = 0.

A

A

A

A

W

W

W

W

a

a

a

a

1

1

1

1

0

0

0

0

0 0

0 1

1 0

1 1

1 0 0

0 1 0

1 0 0

0 1 0

0 0

0 1

1 0

1 1

,

,

,

,

,

,

,

,

( )
( )
( )
( )





















=
−

−





















( )
( )
( )
( )



















©2000 CRC Press

http://www.semeng.ir


www.20file.org
Stage 2 (i = 2):

The dual jump for this stage is 2r–i = 22–2 = 1. Also, for k = 0, p = 0 as before. Now, one must shift
k through the dual jump. This gives k = 2 = binary (1,0). Shift this though r – i = 2 – 2 = 0 ⇒  no
shifts, and bit reverse to get p = binary (0,1) = 1.

Unscrambling: In binary index form, this amounts to a simple bit reversal

The corresponding decimal assignments are

When real x(t) sequence is used, note that half of the X(f) sequence (N/2 points) is wasted because

Hence, one can make some gains in computational effort by converting a real-time sequence to an
equivalent complex sequence prior to DFT.

D.3 DISCRETE CORRELATION AND CONVOLUTION

D.3.1 DISCRETE CORRELATION

The sampled data are formed according to

(D.29)
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Using the trapezoidal rule, the sequence {zn} that approximates the sampled values z(n · ∆T) of
the correlation function of x and y can be computed, using

(D.30)

in which N > max(M, K). It is noted that, in the summation, an upper limit greater than min(M – 1,
K – 1 – n) is redundant. Because the divisor is the constant value N rather than the actual number
of terms in the summation, equation (D.30) represents a biased estimate of the mean lagged product.
Nevertheless, it is convenient to use equation (D.30) in this analysis.

Discrete Correlation Theorem

A DFT result for discrete correlation is now established for discrete data. The inverse DFT equation
is used in equation (D.30) in conjunction with the fact that xm = [xm]* for real xm:

(D.31)

The orthogonality condition is used in the last summation term of equation (D.31). Consequently,

(D.32)

where T = N · ∆T. It follows that T{zn} is the inverse of DFT of {[Xm]*Ym}. Equation (D.32) is the
discrete correlation theorem.

Discrete Parseval’s theorem is given by

(D.33)

Discrete Convolution Theorem

The convolution theorem equation of two signals u(t) and h(t), defined over the finite durations (0,T1)
and (0,T2), respectively, can be computed, using a digital processor, to obtain y(t). First, the sample
step ∆T is chosen and the two sequences {um} and {hk} of sampled data are formed according to

(D.34)

in which M = integer (T1/∆T) and K = integer (T2/∆T). In order to eliminate the wraparound error,
it is required that the number of samples of y(t) be N = M + K – 1. The direct digital computation
of convolution can be performed using the trapezoidal rule:
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(D.35)

In view of the zero terms in the two sequences {um} and {hk} as given by equation (D.34), it
is equally correct to make the lower and the upper limits of the first summation be max(0, n – k + 1)
and min(n, M – 1), respectively. Similarly, the two limits in the second summation could be
max(0, n – M + 1) and min(n, K – 1). In any event, by direct counting through summation of series,
it can be shown that the computation of equation (D.35) needs KM real applications and KM – N
real additions. Alternatively, the discrete convolution result that is analogous to the continuous
counterpart in the frequency domain can be used to evaluate equation (D.35) indirectly.

By substituting the inverse DFT equation in equation (D.35), one obtains

(D.36)

The orthogonality condition is used in the last summation. Consequently,

(D.37)

D.4 DIGITAL FOURIER ANALYSIS PROCEDURES

Proper interpretation of the DFT results is extremely important in digital Fourier analysis. For
example, only the first N/2 + 1 points of the DFT array approximate the Fourier transform of the
data signal. The remaining N/2 – 1 points correspond to the negative frequency spectrum and should
be interpreted accordingly. The error caused by interpreting all N points in the DFT array as the
positive frequency spectrum corresponding to the data signal is so great that the analysis would
become worthless. In this section, some useful DFT procedures are outlined. Emphasis is placed
on correct interpretation of the results. Some ways to reduce computation time and memory
requirements in real-time applications are described.

D.4.1 FOURIER TRANSFORM USING DFT

Given an analog signal (continuous time) x(t), the major steps for obtaining a suitable approximation
to its Fourier transform X(f), using digital Fourier analysis, are as follows:

1. Pick the sample step ∆T. Theoretically, ∆T = 1/(2 × highest frequency of interest). This
value should be sufficiently small in order to reduce the aliasing distortion in the fre-
quency domain.

2. Sample the signal up to time T, where T = N·∆T and N = 2r. The duration [0, T] of the
sampled record must be sufficiently long in order to reduce the truncation error (leakage).

3. Obtain the DFT { n} of the sampled data sequence {xm} using FFT.
4. A discrete approximation to the Fourier transform X(f) is constructed from { n} according

to:
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where ∆F = 1/ T.

D.4.2 INVERSE DFT USING DFT

The inverse DFT can be written as

(D.38)

where [ ]* denotes the complex conjugation operation. It is observed that equation (D.38) is identical
to the forward DFT equation except for a scaling factor. Consequently, the forward DFT algorithm
can be used in the computation of the inverse DFT. The sampled data should be reorganized and
complex-conjugated, however, before using DFT. Finally, the scaling factor should be accounted
for so that the final results have the proper units.

Given the complex spectrum X(f), which is the FIT of a real signal x(t) with x(t) = 0 for t < 0,
the main steps of determining a good approximation to the original signal using digital Fourier
analysis are as follows:

1. Let F be the highest frequency of interest in X(f), and let [0, T] be the interval over which
real signal x(t) is required. The sample step ∆F = 1/T. It is required that ∆F be sufficiently
small (T sufficiently large) to reduce aliasing distortion in the time domain. Also, F
should be sufficiently large to reduce truncation error. Furthermore, the number of
samples F/∆F = N = 2r, if radix-two FFT is used.

2. Sample X(f) at intervals ∆F over the frequency interval [–F/2, F/2] according to
Xn = X(n · ∆F) for n = –N/2, …, 0, …, N/2 and properly scale the data.

3. Form the sequence { n} according to:

4. Form the complex conjugate sequence {[ n]*}.
5. Obtain the DFT of {[ n]*} using FFT. This results in {[ m]*}, which has complex

elements with negligible imaginary parts.
6. Construct:

D.4.3 SIMULTANEOUS DFT OF TWO REAL DATA RECORDS

Considerable computational advantages can be realized when the DFTs {Ym} and {Zm} of two real
sequences {yn} and {zn} are required simultaneously. The procedure given in this section achieves
this using only a single DFT rather than two separate DFTs.

It is recalled that {xn} is generally a complex sequence. When a real sequence is used, half the
storage requirement is wasted. Instead, the DFT of the complex sequence

(D.39)

X n F X n N X n F X n Nn N n⋅( ) ≅ = − ⋅( ) ≅ = −−∆ ∆, , ,for  1,  ,   and for 1,  ,  0 2 2 1K K

x
N T

X j mn Nn m

m

N

[ ] = [ ] −( )
=

−

∑* *
exp

1
2

0

1

∆
π

X̃

˜ ,

,

X X n N

X n N N

n n

n N

= =

= = +−

for  1,  ,  

for  ,  -1

0 2

2 1

K

K

X̃
X̃ x̃

x m T real x m Nm⋅( ) ≅ [ ] =∆ ˜ ,
*

for  1,  ,  -10 K

x y j zn n n{ } = { } + { }
©2000 CRC Press

http://www.semeng.ir


www.20file.org
is obtained using FFT. This results in {Xm}. It is evident from the DFT equation that

(D.40)

recalling that exp(–j2πn) = 1. Consequently,

(D.41)

Since [xn]* = yn – jzn, it is straightforward to observe from the equation and (D.41) that

(D.42)

and

(D.43)

From the complex sequence {Xm}, the required complex sequences {Ym} and {Zm} are constructed
according to equations (D.42) and (D.43).

D.4.4 REDUCTION OF COMPUTATION TIME FOR A REAL DATA RECORD

The DFT of a 2N-element real sequence [x0, x1, …, x2N–1] can be accomplished by means of a single
DFT of an N-element complex sequence, using the concept discussed in the preceding section.
From the DFT equation, one has

(D.44)

Consequently,

(D.45)

Two real sequences, each having N elements, are defined by separating the even and the odd terms
of the given sequence {xn} according to:
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(D.46)

The DFT sequences {Ym} and {Zm} of the two real sequences {yn} and {zn} are obtained using the
procedure given in the preceding section. Finally, the required DFT sequence is obtained using
equation (D.45):

(D.47)

It should be noted that only the first N terms of the transformed sequence are obtained by this
method. This is not a drawback, however, because it is clear that due to aliasing distortion in the
frequency domain, the remaining terms correspond to the negative frequencies of X(f).

D.4.5 CONVOLUTION OF FINITE DURATION SIGNALS USING DFT

Direct computation of the convolution is possible using the trapezoidal rule. Also, from
equation (D.37), it is clear that the required sequence {yn} is the inverse of DFT of {UrHr}, in which
{Ur} and {Hr} are the DFTs of the N-point sequences {ur} and {hr}, respectively. This gives rise
to the following procedure for evaluating the convolution:

1. Determine {Ur} and {Hr} by the DFT of the N-point sequences {ur} and {hr}, respectively.
2. Evaluate {yn} from the inverse DFT of {HrUr}.

If the slow DFT is used, the foregoing procedure requires 3N2 + N complex multiplications and
3N(N – 1) complex additions. If the FFT is employed, however, only 1.5Nln2N + N complex
multiplications and 3Nln2N complex additions are necessary. For large N, this can amount to a
considerable reduction in computer time. It can be shown that the trapezoidal rule is the most
economical method for N < 200 (approximately). For larger values of N, the FFT method is
recommended.

Wraparound Error

A direct consequence of the definition of the DFT equation is the N-term periodicity of the sequence
{Xm}:

(D.48)

Similarly, from the inverse DFT equation, it follows that the sequence {xn} has the N-term periodicity

(D.49)

Accordingly, whenever a particular problem allows variation of the indices of Xm or xn beyond their
fundamental period (0, N – 1), the periodicity of the sequences should be properly accounted for,
and the indiscriminate use of DFT should be avoided under such circumstances. An example for
such a situation is the evaluation of the discrete convolution equation (D.35) using DFT.

The direct evaluation of equation (D.35) using the trapezoidal rule does not cause any discrepancy
because the correct values as given by equation (D.34) are used in this case. When the DFT method
is used, however, the N-term periodicity is assumed for the sequences {um} and {hk}. Since this is
not true according to equation (D.34), the use of DFT can introduce a technical error into compu-
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tation. It can be shown that, unless N ≥ M + K – 1, the first M + K – 1 – N terms in the N-point
sequence {yn} do not represent the correct discrete convolution results.

In the first relation of equation (D.35), as m varies from 0 to N – 1, the highest value of m for
which um ≠ 0 is M – 1. The corresponding index of h is n – M + 1. Because of the N-term periodicity
assumed in DFT, the terms in the sequence {hk} with indices ranging from (–N) to (–N + K – 1) are
also non-zero; but if they are included in the discrete convolution, they lead to incorrect results because,
in the correct sequence [equation (D.34)], these terms are 0. This is known as the wraparound error.
It follows that, in order to avoid the discrepancy, one must require n – M + 1 > –N + K – 1. In other
words, the condition n > M + K – 2 – N must be satisfied to avoid the discrepancy. Since n ranges
from 0 to N, the condition is satisfied if and only if M + K – 2 – N ≤ –1. Consequently, it is required
that N ≥ M + K – 1 in order to avoid the wraparound error.

Data-Record Sectioning in Convolution

The result

(D.50)

is obtained using the change of variable τ′  = τ + t1. In view of the convolution equation, one obtains

(D.51)

From equation (D.51), it follows that, if the two convolving functions are shifted to the left
through t1 and t2, the convolution shifts to the left through t1 + t2.

Suppose that the time history u(t) is of short duration and that the nonnegligible portion of h(t)
represents a relatively long period. If proper sampling of h(t) can exceed the available memory of
the digital computer, the function h(t) is sectioned into several portions of equal length T2, and the
convolution integral is computed for each section. Finally, the total convolution integral is obtained
using these individual results. The concept behind this procedure is as follows:

(D.52)

On substituting in the convolution equation, one obtains

(D.53)

where

(D.54)

u t h t t d u h t t t dτ τ τ τ τ τ+( ) − +( ) = ′( ) + + − ′( )
−∞

∞

−∞

∞

∫ ∫1 2 1 2

u t h t t d y t t tτ τ τ+( ) − +( ) = + +( )
−∞

∞

∫ 1 2 1 2

h t h ti

i

( ) = ( )∑

y t y ti

i

( ) = ( )∑

y t u h t di i( ) = ( ) −( )
−∞

∞

∫ τ τ τ
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However, hi(t) = 0 over 0 ≤ t < iT2. Because of these trailing zeros, the use of the DFT method
becomes extremely inefficient for large i. To overcome this, each segment hi(t) is shifted to the left
through iT2, which results in a set of modified functions hi(t + iT2) that do not contain the trailing
zeros. The corresponding convolutions,

(D.55)

can be evaluated very efficiently using FFT in the usual manner. Subsequently, the functions
yi(t + iT2) are shifted to the right through iT2 to obtain yi(t). Finally, y(t) is constructed by super-
position [equation (D.53)]. It should be noted that evaluation of equation (D.55) using DFT or FFT
is performed as described earlier. The major steps of the procedure are as follows:

1. Choose the sample step ∆T in the usual manner. Choose T2 based on computer memory
limitations or computational speed requirements. Section h(t) at periods of T2. Move
each section to the origin and sample each section. A separate memory or storage segment
can be used to store the sectioned and sampled data sequences {hk}i.

2. Sample u(t) at ∆T. This results in the sequence {um}.

3. Using  as the period, obtain the discrete convolution {yn}i of each pair {um}

and {hk}.

4. Shift each sequence {yn}i to the right through  elements and superpose (add the

overlapping elements).

y t iT u h t iT di i+( ) = ( ) − +( )
−∞

∞

∫2 2τ τ τ

N
T T

T
=

+( )1 2

∆

iK
iT

T
= 2

∆
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Appendix E
Reliability Considerations for 
Multicomponent Units
In the practice of vibration (e.g., vibration monitoring, isolation, control, and testing), one depends
on the proper operation of complex and multicomponent equipment. Equipment that has several
components that are crucial to its operation, can have more than one mode of failure. Each failure
mode of the overall system will depend on some combination of failure of the components.
Component failure is governed by the laws of probability. Consider first some of the fundamentals
of probability theory that are useful in the reliability or failure analysis of multicomponent units.

E.1 FAILURE ANALYSIS

E.1.1 RELIABILITY

The probability that a component will perform satisfactorily over a specified time period t (com-
ponent age) under given operating conditions is called reliability. It is denoted by R. Hence,

(E.1)

where ℘  denotes “the probability of.”

E.1.2 UNRELIABILITY

The probability that the component will malfunction or fail during the time period t is called its
unreliability, or its probability of failure. It is denoted by F. Hence,

(E.2)

Because it is known as a certainty that the component will either survive or fail during the specified
time period t, one can write

(E.3)

The probability of survival of a component usually decreases with age. Consequently, the typical
R(t) is a monotonically decreasing function of t, as shown in Figure E.1. If it is known as a certainty
that the component is good in the beginning, then R(0) = 1. Because of manufacturing defects,
damage during shipping, etc., however, one usually has R(0) ≤ 1. For a satisfactory component,
R(t) should not drop appreciably during its design life Td. The drop is faster initially, however,
because of infant mortality (again due to manufacturing defects and the like), and later on, as the
component exceeds its design life because of old age (wear, fatigue, etc.).

It is clear from equation (E.3) that the unreliability curve is completely defined by the reliability
curve. As shown in Figure E.1, transforming one to the other is a simple matter of reversing the axis.

R t( ) = ℘ (Survival)

F t( ) = ℘ (Failure)

R t F t( ) + ( ) = 1
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E.1.3 INCLUSION–EXCLUSION FORMULA

Consider two events, A and B, that are schematically represented by areas (as in Figure E.2). Each
event consists of a set of outcomes. The total area covered by the two sets denoted by A and B is
given by adding the area of A to the area of B and subtracting the common area.
This procedure can be expressed as

(E.4)

Example

Consider the rolling of a fair die. The set of total outcomes consists of six elements forming the space

FIGURE E.1 A typical reliability (unreliability) curve.

FIGURE E.2 Venn diagram illustrating the inclusion–exclusion formula.

℘ ( ) = ℘ ( ) +℘ ( ) −℘ ( )A B A B A B or  and 

S = { }1 2 3 4 5 6, , , , ,     
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Each outcome has a probability of 1/6. Now consider the two events:

Then,

Consequently,

It follows that

These values satisfy equation (E.4)
If the events A and B do not have common outcomes, they are said to be mutually exclusive.

Then, the common area of intersection of sets A and B in Figure E.2 will be 0. Hence,

(E.5)

for mutually exclusive events.

E.2 BAYES’ THEOREM

A simplified version of Bayes’ theorem can be expressed as

(E.6)

in which ℘ (A/B) denotes the conditional probability that event A occurs, given the condition that
event B has occurred.

In the previous example of rolling a fair die, if it is known that event B has occurred, the
outcome must be either 3 or 6. Then, the probability that event A would occur is simply the
probability of picking 3 from the set {3, 6}. Hence, ℘ (A/B) = 1/2. Similarly, ℘ (B/A) = 1/3. It
should be noted that equation (E.6) holds for this example.

E.2.1 PRODUCT RULE FOR INDEPENDENT EVENTS

If two events A and B are independent of each other, then the occurrence of event B has no effect
whatsoever on determining whether event A occurs. Consequently,

A

B

= { }

= { }

Outcome is odd

Outcome is divisible by 3

A

B

= { }

= { }

1,  3,  5

3,  6

A B

A B

 or 1,  3,  5,  6

 and 3

= { }

= { }

℘ ( ) = ℘ ( ) = ℘ ( ) = ℘ ( ) =A B A B A B3 6 2 6 4 6 1 6; ; ; or  and 

℘ ( ) =A B and 0

℘ ( ) = ℘ ( )℘ ( )

= ℘ ( )℘ ( )

A B A B B

B A A

 and 
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(E.7)

for independent events. Then, it follows from equation (E.6) that

(E.8)

for independent events. Equation (E.8) is the product rule, which is applicable to independent events.
It should be emphasized that although independence implies that the product rule holds, the

converse is not necessarily true. In the example on rolling a fair die, ℘ (A/B) = ℘ (A) = 1/2. Suppose,
however, that it is not a fair die and that the probabilities of the outcomes {1, 2, 3, 4, 5, 6} are
{1/3, 1/6, 1/6, 0, 1/6, 1/6}. Then,

whereas,

This shows that A and B are not independent events in this sample.
Furthermore, ℘ (B) = 1/6 and ℘ (A and B) = 1/6. It is seen that Bayes’ theorem is satisfied by this
example.

E.2.2 FAILURE RATE

The function F(t) defined by equation (E.2) is the probability-distribution function of the random
variable T denoting the time to failure. The rate functions can be defined as:

(E.9)

(E.10)

where

R(t) = ℘ (T > t)
F(t) = ℘ (T ≤ t)

In equation (E.10), f(t) is the probability-density function corresponding to the time to failure. It
follows that:

(E.11)

Also,

(E.12)

℘ ( ) = ℘ ( )A B A

℘ ( ) = ℘ ( )℘ ( )A B A B and 

℘ ( ) = + + =A 1 3 1 6 1 6 2 3

℘ ( ) =
+

=A B
1 6

1 6 1 6
1 2

r t
dR t

dt
( ) = ( )

f t
dF t

dt
( ) = ( )

℘ =

℘ + = ( ) = ( )

(

( ,

Component survived up to ,  failed within next duration )

Failed within  )

t dt

t t dt dF t f t dt

℘ = ( )( )Component survived up to t R t
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Define the function β(t) such that:

(E.13)

By substituting equations (E.11) through (E.13) into equation (E.6), one obtains

or

(E.14)

Now suppose that there are N components. If they all have survived up to t, then, on the average,
Nβ(t)dt components will fail during the next dt. Consequently, Nβ(t) corresponds to the rate of
failure for the collection of components at time t. For a single component (N = 1), the rate of failure
is β(t). For obvious reasons, β(t) is sometimes termed conditional failure. Other names for this
function include intensity function and hazard function, but failure rate is the most common name.

In view of equation (E.10), one can write equation (E.14) as a first-order linear, ordinary
differential equation with variable parameters:

(E.15)

Assuming a good component initially, one has

(E.16)

The solution of equation (E.15) subject to equation (E.16) is

(E.17)

where τ is a dummy variable. Then, from equation (E.3),

(E.18)

It is observed from equation (E.18) that the reliability curve can be determined from the failure-
rate curve, and the reverse.

A typical failure-rate curve for an engineering component is shown in Figure (E.3). It has a
characteristic “bathtub” shape, which can be divided into three phases, as in the figure. These phases
might not be so distinct in a real situation. The initial burn-in period is characterized by a sharp drop
in the failure rate. Because of such reasons as poor workmanship, material defects, and poor handling
during transportation, a high degree of failure can occur during a short initial period of design life.
Following that, the failures typically will be due to random causes. The failure rate is approximately

℘ = ( )( )Failed within next duration Survived up to dt t t dtβ

f t dt t dtR t( ) = ( ) ( )β

β t
f t

R t

f t

F t
( ) = ( )

( )
= ( )

− ( )1

dF t

dt
t F t t

( ) + ( ) ( ) = ( )β β

F 0 0( ) =

F t d

t

( ) = − − ( )








∫1

0

exp β τ τ

R t d

t

( ) = − ( )








∫exp β τ τ

0
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constant in this region. Once the design life is exceeded (third phase), rapid failure can occur because
of wearout, fatigue, and other types of cumulative damage, and eventual collapse will result.

It is frequently assumed that the failure rate is constant during the design life of a component.
In this case, equation (E.18) gives the exponential reliability function:

(E.19)

This situation is represented in Figure E.4. This curve is not comparable to the general reliability
curve shown in Figure E.1. As a result, the constant failure rate should not be used for relatively
large durations of time (i.e., for a large segment of the design life) unless it has been verified by
tests. For short durations, however, this approximation is normally used and it results in considerable
analytical simplicity.

E.2.3 PRODUCT RULE FOR RELIABILITY

For multicomponent equipment, if it is assumed that the failure of one component is independent
of the failure of any other, the product rule given by equation (E.8) can be used to determine the
overall reliability of the equipment. The reliability of an N-component object with independently
failing components is given by:

(E.20)

where Ri(t) is the reliability of the ith component. If there is no component redundancy, which is
assumed in equation (E.20), none of the components should fail (i.e., Ri(t) ≠ 0 for i = 1, 2, …, N)
for the object to operate properly (i.e., R(t) ≠ 0). This follows from equation (E.20).

In vibration testing, a primary objective is to maximize the risk of component failure when
subjected to the test environment (so that the probability of failure is less in the actual in-service
environment). One way of achieving this is by maximizing the test-strength-measure function
given by

FIGURE E.3 A typical failure-rate curve.

R t t( ) = −( )exp β

R t R t R t R tN( ) = ( ) ( ) ( )1 2 K
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(E.21)

in which Fi(T) is the probability of failure (unreliability) of the ith component for the test duration T,
and Φi is a dynamic-response measure at the location of the ith component. The parameters of
optimization may be the input direction and the frequency of excitation for a given input intensity.

Regarding component redundancy, consider the simple situation of ri identical subcomponents
connected in parallel (ri th-order redundancy) to form the ith component. The component failure
requires the failure of all ri subcomponents. The failure of one subcomponent is assumed to be
independent of the failure state of other subcomponents. Then, the unreliability of the ith component
can be expressed as

(E.22)

in which F0i is the unreliability of each subcomponent in the ith component. This simple model
for redundancy might not be valid in some situations.

There are two basic types of redundancy: active redundancy and standby redundancy. In active
redundancy, all redundant elements are permanently connected and active during the operation of
the equipment. In standby redundancy, only one of the components in a redundant group is active
during equipment operation. If that component fails, an identical second component will be auto-
matically connected.

For standby redundancy, some form of switching mechanism is needed, which means that the
reliability of the switching mechanism itself must be accounted for. Component aging is relatively
less, however, and the failure of components within the redundant group is mutually independent.
In active redundancy, there is no need for a switching mechanism; but the failure of one component
in the redundant group can overload the rest, thereby increasing their probability of failure (unreli-
ability). Consequently, component failure within the redundant group is not mutually independent
in this case. Also, component aging is relatively high because the components are continuously active.

FIGURE E.4 Reliability curve under constant failure rate.

TS F Ti i

i

r
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=
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1
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Answers to Numerical Problems
CHAPTER 2

2.22 keq = 3EI/l3; meq = 33m/140
2.31 (d) 2.75 × 10–2 rad·s–1, 0.564. Yes, at 2.27 × 10–2 rad·s–1

CHAPTER 3

3.5 (c) 6.455 × 103 N·s·m–1

3.7 (d) (i) r > , (ii) r > 1.73, 1.964, 2.871, 3.77, 7.075; (e) Yes
3.12 (c) 1.0, , 
3.16 (c) 1.0, , 
3.18 (a) –0.55 ± j 1.6424

CHAPTER 4

4.1 b
4.2 c
4.3 1
4.6 0.31, –72°, 0.10, –0.29, –2.7 dB
4.14 (i) 10 samples/s; (ii) 102.4 s; (iii) 1024 complex values. First and last 512 give the same

values; (iv) 512; (v) 0.01 Hz; (vi) 5 Hz; (vii) 400; (viii) 4 Hz

4.15 ?

4.20 (ii) Meaningless; (iii) 2 decades; (iv) 1/2 octave; (v) No dimensions
4.21 1–80 Hz; 4–50 Hz; 1–200 Hz; 20 Hz–20 kHz; Problem dependent

CHAPTER 5

5.8 (b) (0,7/6), unstable; (π, 5/6), unstable; (π/3, 4/3), stable
5.14 (c) ω0 = 1.0 rad·s–1, ω1 = 0.765367 rad·s–1, ω2 = 1.847759 rad·s–1; θ1 = 0.25 cosω1t +

0.75 cosω2t; θ2 = cosω1t – cosω2t

CHAPTER 6

6.12 (a) 8.0 × 1010 N·m–2; (b) Steel

6.25 , sin 0.8603336x/l

CHAPTER 7

7.7 (a) 0.08
7.8 (b) 0.045
7.9 (b) 0.08
7.13  0 to 2.06 × 107 N·m–1

7.14 (b) (i) 50.6 rad·s–1, 0.1; (ii) 1.5 cm; (iii) 50.1 rad·s–1, 10.02 rad·s–1

2
2 1 2
2 1 2

1 0. , , , , , 1 0.875  3  1 0.3974  8 3( )

2 4 3 2 4

0 8603336. l G ρ( )
©2000 CRC Press

http://www.semeng.ir


                                                                                                                   

www.20file.org
CHAPTER 8

8.4 (b) 0.99%
8.5 (d) 0.09; (e) 6.25 × 104 N·m–1 to 25.0 × 104 N·m–1

8.11 1000 Hz
8.18 100.0 s
8.20 (a) 98.37% to 99.99%; (c) 170 Hz
8.26 144.0, 5.9%

CHAPTER 9

9.2 (b) 44.5 Mbits·s–1

9.3 –7.5 V, –14 V
9.6 31.8 kHz, 5 µs
9.16 (a) 3600 rpm, 15
9.20 1%

CHAPTER 10

10.2 Directions 1, 2, 3, or 4
10.8 (a) 2000 Hz; (b) 80 Hz; (c) 50 Hz; (d) 2000 Hz; (e) 500 Hz; (f) 40 Hz
10.11 (i) 21/3; (iii) Two; (iv) 1/2
10.15 (c) 4.6 g, 30.0 rad·s–1; (d) 0.23 cm·s–1; 653.3 rad·s–1

10.17 (c) (i) 25 Hz, 80 g; 50 Hz, 160 g; (ii) 3.2 cm, 160 g; (iii) 3.2 cm, 3.0 m·s–1; 29 g; 23 g

CHAPTER 11

11.5 (b) 20 dB/decade; (c) –20 dB/decade
11.6 (a) 0.356 Hz; (b) 0.355 Hz
11.8 0.023, 0.038
11.16 1.0 rad·s–1, 0.2

CHAPTER 12

12.6 82.0 N·cm–1, 6.1 cm
12.7 2.7 × 104 N·m–1; 286.0 N·m–1·s, 38.1 rad·s–1

12.8 3.3 × 105 N·m–1, 7.8 × 103 N·m–1·s
12.9 3.3, 0.45
12.10 Mount 1
12.11 6.9 gm at –6.6°
12.12 (b) 8.9 gm at –23°
12.13 (b) Plane 1: 42.3 gm at 107°; Plane 2: 18.8 gm at 121°
12.14 (c) (iii) 0.4 kg, 2.6 kg
12.15 15.3 gm at 53.4°
12.23 0.2
12.24 (a) 2338.6 rpm; (b) 3.376 cm; (c) 17
12.28 119.2 rad·s–1

12.29 (a) 2430 cycles·m–1, 3330 cycles·m–1; (b) 2616 to 2832 rpm; (c) 2.8 × 10–3 mm·N–1,
18.4 × 10–3 mm·N–1

12.30 3.2 kg and 1.7 × 105 N·m–1

12.31 3.33 kg, 1.184 × 105 N·m–1, 180.4 N·s·m–1, 8.26/0.074
12.32 0.1
12.34 (b) 156 rad·s–1, 2.75 kg, 1.085 × 104 N·m–1, 58.7 N·m–1·s
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