
Chapter 17 COMPRESSIBLE FLOW 

 

17–1 ■ STAGNATION PROPERTIES 

Stagnation (or total) enthalpy h0: 

 

When the potential energy of the fluid is negligible, the stagnation enthalpy 

represents the total energy of a flowing fluid stream per unit mass. Thus it 

simplifies the thermodynamic analysis of high-speed flows.  

Throughout this chapter the ordinary enthalpy h is referred to as the static 

enthalpy, whenever necessary, to distinguish it from the stagnation enthalpy. 

Notice that the stagnation enthalpy is a combination property of a fluid, just like 

the static enthalpy, and these two enthalpies become identical when the kinetic 

energy of the fluid is negligible. 

For flows through nozzles and diffusers any increase in fluid velocity in these 

devices creates an equivalent decrease in the static enthalpy of the fluid.

 

The stagnation enthalpy represents the enthalpy of a fluid when it is brought to 

rest adiabatically. 

The properties of a fluid at the stagnation state are called stagnation properties 

(stagnation temperature, stagnation pressure, stagnation density, etc.) 

The stagnation state is called the isentropic stagnation state when the stagnation 

process is reversible as well as adiabatic (i.e., isentropic). 



The stagnation processes are often approximated to be isentropic, and the 

isentropic stagnation properties are simply referred to as stagnation  properties. 

When the fluid is approximated as an ideal gas with constant specific heats, its 

enthalpy can be replaced by cpT and Eq. 17–1 can be expressed as

 

 

Here T0 is called the stagnation (or total) temperature, 

and it represents the temperature an ideal gas attains 

when it is brought to rest adiabatically. 

The term V2/2cp corresponds to the temperature rise 

during such a process and is called the dynamic 

temperature. 

The pressure a fluid attains when brought to rest isentropically is called the 

stagnation pressure P0. For ideal gases with constant specific heats, P0 is related 

to the static pressure of the fluid by 

 

For 𝜌 = 1/𝑣   



 

 
where h01 and h02 are the stagnation enthalpies at states 1 and 2, respectively. 

When the fluid is an ideal gas with constant specific heats, Eq. 17–7 becomes 

 

 

17–2 ■ SPEED OF SOUND AND MACH NUMBER 

The speed of sound (or the sonic speed), is the speed at which an infinitesimally 

small pressure wave travels through a medium. 

The pressure wave may be caused by a small disturbance, which creates a slight 

rise in local pressure. 

The amplitude of the ordinary sonic wave is very small and does not cause any 

appreciable change in the pressure and temperature of the fluid. Therefore, the 

propagation of a sonic wave is not only adiabatic but also very nearly isentropic. 

 

 

Note that the speed of sound in a fluid is a function of the thermodynamic 

properties of that fluid. 

When the fluid is an ideal gas (P = 𝜌RT), the differentiation in Eq. 17–10 can easily 

be performed to yield  



A second important parameter in the analysis 

of compressible fluid flow is the Mach 

number Ma and it is the ratio of the actual 

velocity of the fluid (or an object in still air) to 

the speed of sound in the same fluid at the 

same state: 

 Fluid flow regimes are often described in 

terms of the flow Mach number. The flow is 

called sonic when Ma = 1, subsonic when 

Ma< 1, supersonic when Ma > 1, hypersonic when Ma >> 1, and transonic when 

Ma≅1.  

 

17–3 ■ ONE-DIMENSIONAL ISENTROPIC FLOW 

The Mach number is unity at 

the location of smallest flow 

area, called the throat. 

 

 

 

 

 

 

Variation of Fluid Velocity with Flow Area 



 

For subsonic flow (Ma < 1), the term 1 - Ma2 is positive; and thus dA and dP must 

have the same sign. That is, the pressure of the fluid must increase as the flow 

area of the duct increases and must decrease as the flow area of the duct 

decreases. Thus, at subsonic velocities, the pressure decreases in converging 

ducts (subsonic nozzles) and increases in diverging ducts (subsonic diffusers).  

 

 

 

 

 

 

 



  

 

Property Relations for Isentropic Flow of Ideal Gases 
 

 

The properties of a fluid at a location where the Mach number is unity (the 

throat) are called critical properties, and the ratios in Eqs. (17–18) through (17–

20) are called critical ratios (Fig. 17–18). 



 

 

 

 

 

17–4 ■ ISENTROPIC FLOW THROUGH NOZZLES 

In this section we consider the effects of back 

pressure (i.e., the pressure applied at the nozzle 

discharge region) on the exit velocity, the mass 

flow rate, and the pressure distribution along the 

nozzle. 

Converging Nozzles 

When the back pressure is reduced to P3 (= P*, 

which is the pressure required to increase the 

fluid velocity to the speed of sound at the exit 

plane or throat), the mass flow reaches a 

maximum value and the flow is said to be 

choked. 

 



 

  

For all back pressures lower than the critical 

pressure P*, the pressure at the exit plane of the 

converging nozzle Pe is equal to P*, the Mach 

number at the exit plane is unity, and the mass 

flow rate is the maximum (or choked) flow rate. 

Because the velocity of the flow is sonic at the 

throat for the maximum flow rate, a back 

pressure lower than the critical pressure cannot 

be sensed in the nozzle upstream flow and does 

not affect the flow rate. 

 

 

 

 

 

 

 



Also illustrated on this figure is the effect of back pressure on the nozzle exit 

pressure Pe. We observe that 

 

A relation for the variation of flow area A through the nozzle relative to throat 

area A* can be obtained by combining Eqs 17–24 and 17–25 for the same mass 

flow rate and stagnation properties of a particular fluid. This yields

 

Another parameter sometimes used in the analysis of one-dimensional isentropic 

flow of ideal gases is Ma*, which is the ratio of the local velocity to the speed of 

sound at the throat: 

 or 

 

Note that the parameter Ma* differs from the Mach number Ma in that Ma* is 

the local velocity nondimensionalized with respect to the sonic velocity at the 

throat, whereas Ma is the local velocity nondimensionalized with respect to the 

local sonic velocity. (Recall that the sonic velocity in a nozzle varies with 

temperature and thus with location.) 

 

Converging–Diverging Nozzles 



 

 

17–5 ■ SHOCK WAVES AND EXPANSION WAVES 

 

 



 

We can combine the conservation of mass and energy relations into a single 

equation and plot it on an h-s diagram, using property relations. The resultant 

curve is called the Fanno line, and it is the locus of states that have the same 

value of stagnation enthalpy and mass flux (mass flow per unit flow area). 

Likewise, combining the conservation of mass and momentum equations into a 

single equation and plotting it on the h-s diagram yield a curve called the Rayleigh 

line. 

The Fanno and Rayleigh lines intersect at two points (points 1 and 2), which 

represent the two states at which all three conservation equations are satisfied. 

The larger the Mach number before the shock, the stronger the shock will be. In 

the limiting case of Ma _ 1, the shock wave simply becomes a sound wave. 

 

The conservation of energy principle (Eq. 17–31) requires that the stagnation 

enthalpy remain constant across the shock. That is, the stagnation temperature of 

an ideal gas also remains constant across the shock. Note, however, that the 

stagnation pressure decreases across the shock because of the irreversibilities, 



while the thermodynamic temperature rises 

drastically because of the conversion of kinetic 

energy into enthalpy due to a large drop in fluid 

velocity (see Fig. 17–32).  
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For adiabatic flows, shock waves can exist only for supersonic flows, Ma1 > 1. 

 



Oblique Shocks 

Like normal shocks, the Mach number 

decreases across an oblique shock, and oblique 

shocks are possible only if the upstream flow is 

supersonic. However, unlike normal shocks, in 

which the downstream Mach number is always 

subsonic, Ma2 downstream of an oblique shock 

can be subsonic, sonic, or supersonic, 

depending on the upstream Mach number Ma1 

and the turning angle. 

 

 

Conservation of mass reduces to 

 

 

When we apply conservation of momentum in 

the direction normal to the oblique shock, the 

only forces are pressure forces, and we get 

 

 

 

All the equations, shock tables, etc., for normal shocks apply to 

oblique shocks as well, provided that we use only the normal 

components of the Mach number. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For any value 



of Mach number Ma1 greater than 1, the possible values of θ range from θ = 0° at 

some value of β between 0 and 90°, to a maximum value u  umax at an 

intermediate value of b, and then back to θ = 0° at  β= 90°. Straight oblique shocks 

for θ or β outside of this range cannot and do not exist. At Ma1 = 1.5, for example, 

straight oblique shocks cannot exist in air with shock angle β less than about 42°, 

nor with deflection angle θ greater than about 12°. If the wedge half-angle is 

greater than θmax, the shock becomes curved and detaches from the nose of the 

wedge, forming what is called a detached oblique shock or a bow wave (Fig. 17–

42). 

 

  

 

 

 

 

 

 



 

Prandtl–Meyer Expansion Waves 

 

 

 

Note that ϑ(Ma) is an angle, and can be calculated in either degrees or radians. 

Physically, ϑ (Ma) is the angle through which the flow must expand, starting with 

ϑ = 0 at Ma = 1, in order to reach a supersonic Mach number, Ma > 1. 

 

17–6 ■ DUCT FLOW WITH HEAT TRANSFER AND 
NEGLIGIBLE FRICTION (RAYLEIGH FLOW) 

Mass equation 

  

x-Momentum equation 

 

Noting that the flows are high speed 

and turbulent, the momentum flux correction factor is approximately 1 

(𝛽 ≅ 1) and thus can be neglected. Then 

 



Energy equation 

 

Entropy change 

 

Equation of state 

 

 

 

 

 

 

 

 

 



 

Property Relations for Rayleigh Flow 

 

 

 

 

 

 

 

 

Choked Rayleigh Flow 

If we keep heating the fluid, we will simply move the critical state further 

downstream and reduce the flow rate since fluid density at the critical state will 

now be lower. Therefore, for a given inlet state, the corresponding critical state 

fixes the maximum possible heat transfer for steady flow (Fig. 17–57). That is, 



 

Further heat transfer causes choking and thus the inlet state to change (e.g., inlet 

velocity will decrease), and the flow no longer follows the same Rayleigh line. 

It may seem like supersonic Rayleigh flow can be cooled indefinitely, but it turns 

out that there is a limit. Taking the limit of Eq. 17–65 as the Mach number 

approaches infinity gives 

 

which yields T0/T*0= 0.49 for k = 1.4. Therefore, if the critical stagnation 

temperature is 1000 K, air cannot be cooled below 490 K in Rayleigh flow. 

Physically this means that the flow velocity reaches infinity by the time the 

temperature reaches 490 K—a physical impossibility. When supersonic flow 

cannot be sustained, the flow undergoes a normal shock wave and becomes 

subsonic. 

 

 

 

 

 

 

 

 


