
Chapter 12 

THERMODYNAMIC PROPERTY 

RELATIONS 

 

Partial Differentials 

 

 

Equation 12–3 is the fundamental relation for the total differential of a 

dependent variable in terms of its partial derivatives with respect to the 

independent variables. This relation can easily be extended to include 

more independent variables. 

Partial Differential Relations 

 



 

The order of differentiation is immaterial for properties since they are 

continuous point functions and have exact differentials. Therefore, the 

two relations above are identical: 

 

 

 

The variables y and z are independent of each other and thus can be 

varied independently. For example, y can be held constant (dy _ 0), 

and z can be varied over a range of values (dz _ 0). Therefore, for this 

equation to be valid at all times, the terms in the brackets must equal 

zero, regardless of the values of y and z. Setting the terms in each 

bracket equal to zero gives 



 

The first relation is called the reciprocity relation, and it shows that 

the inverse of a partial derivative is equal to its reciprocal (Fig. 12–6). 

The second relation is called the cyclic relation, and it is frequently 

used in thermodynamics (Fig. 12–7). 

 



 

These are called the Maxwell relations (Fig. 12–8). They are 

extremely valuable in thermodynamics because they provide a means 

of determining the change in entropy, which cannot be measured 

directly, by simply measuring the changes in properties P, v, and T. 

Note that the Maxwell relations given above are limited to simple 

compressible systems. However, other similar relations can be written 

just as easily for nonsimple systems such as those involving electrical, 

magnetic, and other effects. 

 

12–3 ■ THE CLAPEYRON EQUATION 

 

This is an important thermodynamic relation since it enables us to 

determine the enthalpy of vaporization hfg at a given temperature by 

simply measuring the slope of the saturation curve on a P-T diagram 



and the specific volume of saturated liquid and saturated vapor at the 

given temperature. 

The Clapeyron equation is applicable to any phase-change process 

that occurs at constant temperature and pressure. It can be expressed 

in a general form as

where the subscripts 1 and 2 indicate the two phases. 

 

 

12–4 ■ GENERAL RELATIONS FOR du, dh, ds, cv, AND cp 
 

Internal Energy Changes 



 

 

Enthalpy Changes 

 

 

In reality, one needs only to determine either u2 -u1 from Eq. 12–30 or 

h2 - h1 from Eq. 12–36, depending on which is more suitable to the 

data at hand. The other can easily be determined by using the 

definition of enthalpy h = u + Pv: 

 

Entropy Changes 

 

 



 

At low pressures gases behave as ideal gases, and their specific heats essentially 

depend on temperature only. These specific heats are called zero pressure, or 

ideal-gas, specific heats (denoted cv0 and cp0), and they are relatively easier to 

determine. Thus it is desirable to have some general relations that enable us to 

calculate the specific heats at higher pressures (or lower specific volumes) from a 

knowledge of cv0 or cp0 and the P-v-T behavior of the substance. Such relations are 

obtained by applying the test of exactness (Eq. 12–5) on Eqs. 12–38 and 12–40, 

which yields 

 

The deviation of cp from cp0 with increasing pressure, for example, is determined 

by integrating Eq. 12–43 from zero pressure to any pressure P along an isothermal 

path: 

 

 



 

This relation can be expressed in terms of two other thermodynamic properties 

called the volume expansivity β b and the isothermal compressibility α, which 

are defined as (Fig. 12–10) 

 

 

 

 

 

1. The isothermal compressibility α is a positive quantity for all substances in all 

phases. The volume expansivity could be negative for some substances (such as 

liquid water below 4°C), but its square is always positive or zero. The temperature 

T in this relation is thermodynamic temperature, which is also positive. Therefore 

we conclude that the constant-pressure specific heat is always greater than or 

equal to the constant-volume specific heat: 

   (12–50) 

2. The difference between cp and cv approaches zero as the absolute temperature 

approaches zero. 

3. The two specific heats are identical for truly incompressible substances since v 

= constant. The difference between the two specific heats is very small and is 



usually disregarded for substances that are nearly incompressible, such as liquids 

and solids. 

The van der Waals equation of state is 

 

12–5 ■ THE JOULE-THOMSON COEFFICIENT 

The temperature of the fluid may remain unchanged, or it may even increase 

during a throttling process (Fig. 12–12). The temperature behavior of a fluid 

during a throttling (h = 

constant) process is 

described by the Joule-

Thomson coefficient, 

defined as

 

 

 

 

 

 

 

 

 

 



It is clear from this diagram that a cooling effect cannot be achieved by throttling 

unless the fluid is below its maximum inversion temperature. This presents a 

problem for substances whose maximum inversion temperature is well below 

room temperature. 

For hydrogen, for example, the maximum inversion temperature is -68°C. Thus 

hydrogen must be cooled below this temperature if any further cooling is to be 

achieved by throttling. 

 

For an h = constant process we have dh = 0. Then this equation can be rearranged 

to give 

 

 

12–6 ■ THE Δh, Δu, AND Δs OF REAL GASES 

 

 



 

The difference between h and h* is called the enthalpy departure, and it 

represents the variation of the enthalpy of a gas with pressure at a fixed 

temperature. 

 

where Zh is called the enthalpy departure factor. 

 

Internal Energy Changes of Real Gases 

 

Entropy Changes of Real Gases 

 

 



States 1 and 1* are identical (T1  T1* and P1 P1*) and 

so are states 2 and 2*. The gas is assumed to behave 

as an ideal gas at the imaginary states 1* and 2* as 

well as at the states between the two. Therefore, the 

entropy change during process 1*-2* can be 

determined from the entropy-change relations for 

ideal gases. The calculation of entropy change 

between an actual state and the corresponding 

imaginary ideal-gas state is more involved, however, 

and requires the use of generalized entropy 

departure charts, as explained below. 

Consider a gas at a pressure P and temperature T. To determine how much 

different the entropy of this gas would be if it were an ideal gas at the same 

temperature and pressure, we consider an isothermal process from the actual 

state P, T to zero (or close to zero) pressure and back to the imaginary ideal gas 

state P*, T* (denoted by superscript *), as shown in Fig. 12–17. The entropy 

change during this isothermal process can be expressed as 

 



The difference (𝑠̅*– 𝑠̅)T,P is called the entropy departure and Zs is called the 

entropy departure factor. The integral in the above equation can be performed by 

using data from the compressibility charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


