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Preface

Although I have never been actively engaged in research on thermodynam-
ics, per se, I have had to utilize it while attempting to develop theories
better able to deal with various kinds of nonlinear macroscopic phenom-
ena encountered in materials. In trying to help younger workers to start in
research of this kind, I have been impressed with how little most of them
know about common and elmentary applications of thermodynamics to
solids, although they have taken at least one elementary course in thermo-
dynamics at some university. Observation of a number of elementary books
on thermodynamics indicates that this is due more to lack of exposure to
such ideas than to some fault of the students.

When my department had a service course become obsolete, I accepted
responsibility for developing a replacement course dealing with such appli-
cations. The intended audience consisted of seniors and beginning graduate
students from various engineering and scientific departments. To make the
course accessible to the various groups meant keeping the prerequisites to
a minimum, so I settled on mastery of calculus as the basic requirement.

The first nine chapters of this book represent lecture notes developed for
this purpose. In the actual lectures some constituents of the tenth chap-
ter are mentioned, but this has not been an integral part of the course.
Additionally, a number of simple demonstration experiments are used to
illustrate, in a rather crude way, the real phenomena that are being ana-
lyzed, but these are not described here.

These notes have also been used for self-study by persons more adept
in mathematics and mechanics. For example, I advise graduate students in
these disciplines to save time by doing this instead of taking the course. In
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this way, the course has helped to fill in the gap in education mentioned
at the beginning. Chapter 10 is part of the package for such readers. This
covers some of the difficulties encountered in trying to apply thermody-
namics to obtain a better understanding of the phenomens encountered in
solids, partly to indicate the need to grasp the basic concepts of classical
thermodynamics.

Unfortunately, different experts in thermodynamics have discordant
ideas as to what these basic concepts are. In as elementary a manner as
possible, therefore, I discuss what they are as I understand them. How-
ever, this chapter is not so elementary as it deals with matters which are
unsettled and controversial. In this treatment, classical thermodynamics is
interpreted to exclude an important branch based on molecular theory, that
is, statistical thermodynamics, only because covering this in any reasonable
way would make the notes excessively long. The intent is to provide a small
bridge to newer work in thermodynamics.

I have tried to choose a few references which seem likely to be useful,
rather than attempting to include all that may be of interest. Since the
notes have been used by readers from quite varied backgrounds, references
cited range from the very elementary to rather sophisticated works. Readers
will need to pick a subselection.

I do not intend this to be a replacement for other elementary books
on thermodynamics and do assume that the reader has a little familiarity
with the subject. For those who feel a need for supplementary reading, I
note a few of the many possibilities. I do think it desirable for writers of
elementary books to better cover applications to solids.

Historically, the subject first emerged from studies of ancient heat en-
gines, with a corresponding emphasis on dynamic processes. In particular,
this produced early ideas about energy and entropy as they are related to
the old laws of thermodynamics. Much in this spirit, although more mod-
ern in style, is the book by Truesdell and Bharatha [1]. What has become a
more conventional view is that energy and entropy are related more to equi-
librium states although one may be dealing with nonequilibrium processes.
For a development of the subject from this point of view, the reader is
referred to the work by Kestin [2], for example. He is influenced by Gibbs’s
ideas concerning equilibrium theory, which will be discussed here.

One of the most ardent proponents of the notion that energy and entropy
must be related to equilibrium states is Tisza [3], although he is very critical
of Gibbs’s ideas. It is not clear how many really believe that this view is a
“law” of thermodynamics, but most writers of elementary books abide by
it. Included are some who exhibit independence of thought in considering
various other ideas about thermodynamics. In this category is Pippard,
whose book [4] is interesting for its comments and examples, including

some relating to solids.

Others, myself included, see no grounds for accepting the restriction and
some reason to consider alternatives. In the first nine chapters of this book,
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the theories treated do fit this mold fairly well, with some caveats mentior}ed
in Chapter 10. However, in Chapter 2, I introduce ideas whic}} are now being
used frequently by those willing to consider alternatives. Thl'S is one way of
gaining experience with the Clausius-Duhem inequality which is acs:epted
and used in studies of irreversible processes by some who, in practice, do
accept the conventional view mentioned above, Kestin in particular. Many
elementary books do not mention this old inequality. .

Rather obviously, it is probable that theories of equilibrium will fit the
conventional mold and it would have been easy to include many more
examples of this kind. For example, the basic ideas are made available
to take the three-dimensional linear theory of thermoelasticity and deduce
all the useful inequalities satisfied by moduli using the Clausiusf‘Duher'n
inequality and the thermodynamic theory of stability. My experience is
that this is not a matter of common knowledge among experts in this area,
but applications of this kind are fairly routine and useful.

It is also very easy to find theories of solids that are commonly }1sed,
some quite old, which do not fit the conventional mold, as was mentl_oned
earlier. It can then be very difficult to know how best to try to appl}.r 1dfaas
of thermodynamics. One who has wrestled hard with problem.s of this kmfl
is apt to see the subject in a somewhat different light. In this cat(.ag.ory is
Bridgman [5], who had a strong interest in applicatior_ls to pla§t1c1ty, in
particular, although he had no great success in mastering the dlﬂicultles
involved. Readers unfamiliar with elementary continuum mechanics may
find helpful the text by Bowen [6]. .

Particularly in discussions with chemists I have encounterefi another prej-
udice. Roughly, it is that if a material really attains equilibrium, any shear
stress must have relaxed to zero. Perhaps this is why so many authors of
works on thermodynamics consider only problems of solids subject solely
to a hydrostatic pressure, if at all. In this respect most of the examples
to be considered illustrate rather common practices of users which tend to
be ignored by authors of texts. Considering how the various structurejs we
make tend to deteriorate, I do concede that those chemists have a point.

If we grant it, equilibrium theory for solids should be similar to that for
fluids. Then the different theories of thermoelasticity which appear to be
equilibrium theories are not really of this kind, despite appea:r'fmces. IfI
accepted this and Tisza’s view, as I interpret it, thermoelast{c1ty theory
is based on improper usage of thermodynamics. I think that it may well
be that there is something deeper to be understood here, which could well
influence and improve our understanding of energy and entropy. In Chapter
10, I will say a little more about this. However, it often happens tl}at
theories which prove to be successful were arrived at by infirm reasoning
and this alone is no reason to reject them. I subscribe to the view that, if
we can understand more fully why such theories succeed, we will improve
our chances of constructing a still better theory.
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So, almost everything to be discussed is, to some degree, controversial. I
do not enjoy controversy. However, it seems hard to avoid it when, as here,
the various experts seem unable to come to agreement as to what should
be considered to be the basic concepts and laws of the subject.

In terms of basic content, this revised edition differs from the first edition
by including lists of exercises. I have added some comments that did not
come to mind when I prepared the first edition and a few references to
provide better coverage of some topics. Otherwise, there are some minor
corrections and numerous changes in wording.

Last, but not least, I wish to thank those who have assisted me in this en-
terprise. Some of these have helped me to clarify my own views in debates
over matters of principle, particularly Bernard Coleman, Joseph Kestin,
Ingo Miiller, Paul Naghdi, Ronald Rivlin, James Serrin and Clifford Trues-
dell. Alan Gent produced very helpful comments concerning my coverage of
elastomers and adhesion. A careful reading of early drafts by Millard Beatty
and Antonio DeSimone enabled me to eliminate numerous misprints and
other slips. As a person who dislikes writing, it is unlikely that I would
have brought this to completion without the encouragement of Gunhard
fE Oravas and Patarasp Sethna. Finally, I thank Kathryn Kosiak and Lee
Reynolds for much help in preparing the manuscript.

J.L. Ericksen
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1

Generalities

1.1 Energy, Heat, and Power

Thermodynamic systems are capable of occupying a variety of states linked
by time-dependent processes. Often we think of a process as leaving one
state and arriving at another or passing through a succession of states.
To induce a system to undergo the processes of which it is capable, we
generally need to bring it into contact with, or let it interact with, various
other kinds of systems.

The variables needed to describe states properly are different for different
systems and, for a given system, can depend on the range of situations to
be considered. For solids, some measures of strain and temperature are
likely to be included. Such things as loading devices of different kinds,
thermostats, and so on, will be used to induce changes of such states and
need to be described. If one is concerned with, say, liquid crystals, one
needs also to introduce appropriate variables describing orientation and
electromagnetic fields, as will be discussed in Chapter 9. Similar remarks
apply to the description of processes.

For a thermodynamic system, the first law asserts that, for any possible

process,

dE
2 _pto, 1.1.1
= +Q (1.1.1)

where E is the energy of the system, P is the power, that is, the rate
at which work is done on the system, and ¢ is the rate at which heat is
supplied to the system. Intuitively, other systems do supply the power and
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heat. However, there is some implication that, in a theory for a system, we
should have formats for calculating P, @, and E for any possible process.

Often, we consider a system to be in contact with another system that
interacts with it in a special way. In terms of how P may be affected, some
of the possibilities of interest include the following:

P =0 (mechanically isolated system). (1.1.2)

This can occur because no forces are applied or, often, because forces are
applied but motions are restricted by rigid walls, and so on so that the forces
do no work. For systems we think of as power sources, it is reasonable to
assume that

P <0 (mechanically passive system). (1.1.3)
Systems loaded by gravity, springs, and so on, often fit the description

P = —dx/dt (conservative loading devices). (1.1.4)

Here, it is usually understood that x can be calculated given the relevant
state variables. Various little sources of dissipation in a loading device, or
adding damping mechanisms, can shift (1.1.4) to

P < —dx/dt (dissipative loading device). (1.1.5)
In terms of @), we could have, with suitable insulation,
Q =0 (thermally isolated system). (1.1.6)
Systems designed to give off, but not accept, heat fit
Q <0 (thermally passive system). (1.1.7)
If a system is not in contact with any other system, we expect that
P=Q=0= E =const. (isolated system). (1.1.8)

If the environment is such that either (1.1.6) or (1.1.7) and one of (1.1.2)~
(1.1'.5) applies, the intuitive expectation is that the system should approach
equilibrium. However, at this stage, it is not easy to assign any reasonably
clear meaning to the statement.

A pattern of thought underlies measurements of energies for thermo-
dyn?,mlc systems. Consider any pair of states labelled 1 and 2, a process
leaving 1 at time ¢; and arriving at 2 at time ¢»; then, integrating (1.1.1)
gives
where

t2

§W=[ Pdt,

t1

6Q:/2th (1.1.10)

|
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represent the total work done on the system in the process and the total
heat supplied, respectively. There may be many processes connecting the
two states giving different values of W and 6Q but, as the first law is
commonly interpreted, the value of Ez — E; should be the same for all; it
depends only on the end states. For one of the possibilities, experimental
data is required enabling the estimation of W and 6Q. Calorimetry pro-
vides methods for measuring §Q, rather routine in some cases. Measuring
Q) for a solid held in a loading device is not so easy and it certainly helps
to be able to think of 1 and 2 as being static equilibrium states. To some
degree, estimating work from measurements of forces and displacements
is a familiar problem in mechanics. However, because of the complicated
methods commonly used to grip solids, in practice it can be very hard, per-
haps impossible, to make an accurate estimate of 6W. Consider 1 as a fixed
state and 2 as any other state. Then, assuming one can get the requisite ex-
perimental estimates, E can be determined, to within a constant, for each
of the possible states. Physically, only energy differences have significance,
so one can fix the constant in any convenient way.

We have discussed two rather different views of energy. In (1.1.1), it is
a function of ¢, somehow calculable for any possible process. Then, in the
later discussion, it becomes associated with states. To combine the two, one
needs to make an assumption about the relation between states and pro-
cesses—basically that, at each point in time, a process uniquely determines
a state. Then, for a process, E(t) is the value of E for the associated state.

1.2 Temperature and Entropy

Entropy and temperature play important roles in thermodynamics. The
reader is assumed to have some familiarity with the notion of absolute
temperature, which we denote by 6, with values satisfying 6 > 0. In terms
of this, we can describe another kind of thermal environment, that of an
ideal heat bath, whose temperature

0 = 0p(t) (1.2.1)

depends possibly on time ¢ but not on position. Consistent with this is the
idea that putting a system in contact with the heat bath does not change
fz(t), although the temperature in the system can differ considerably from
this value. Think, as Newton did, of a small hot poker cooling off in a large
room. It will be hot to the touch, but z, interpreted as room temperature
far from the rod, will not change much. In other systems, we employ cooling
devices, and so on, to keep the temperature of at least part of a system
near a definite value, identified as 5. Commonly, changes in entropy are
inferred from measurements in an environment of this kind, with 6p held
constant for quite a while, changed a little, then held at a new constant
value.
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Such determinations of entropy involve an assumption which is rather
restrictive for solids: every pair of states can be connected by at least one
reversible process, or at least by approximating this situation. Physically,
this tends to exclude inherently irreversible phenomena such as are encoun-
tered in sliding friction or plasticity; so we will ignore such exceptions. The
idea is that the entropy S of a system in contact with a heat bath should
satisfy what is often called the Clausius—Planck inequality

4, q

at = 0 (1.2.2)

in the processes that are possible. Here, there are no restrictions as to how
power can be supplied to the system: it is only the thermal environment
that is somewhat special. Involved is the idea that, in (1.2.2), equality holds
for reversible processes.

As in the discussion of energy, we think of processes starting at state 1 at
time ¢; and arriving at state 2 at time t5. Then, integrating (1.2.2) gives,
for the entropy difference,

S — 8 > /tz(Q/OB)dt. (1.2.3)

ty

Next, we try to find a reversible process, reducing (1.2.3) to

Sy — Sy = / ’ (Q/05)dt. (1.2.4)

Since @ is not easy to measure, the usual practive is to try to arrange that
0p is constant, so that we have

So — 81 = 6Q/05, (1.2.5)

where 6Q) is given by (1.1.10). Then, of course, §Q may be measured by
calorimetric techniques. With 65 also measured, we get experimental values
of the entropy difference between two states. We do this for as many states
as is feasible. In principle, this determines values for S for such states to
within an unimportant additive constant.

From what has been said here, it is unclear as to what properties entropy
may have or how it is to be defined or measured when the environment does
not fit the above “heat bath” prescription. Common practice involves, at
least tacitly, the assumption that from measurements in such environments
one can infer values of S for states occurring in more general kinds of
processes. One should appreciate that “common” has a different meaning
from “universal.” Said differently, an intelligent person does not accept
popular practices thoughtlessly.

In a famous paper on thermodynamic equilibrium, Gibbs [7] began with
a quotation from Clausius:

1.2 Temperature and Entropy 5

Die Energie der Welt ist constant.
Die Entropie der Welt strebt einem Mazimum zu.

It is hard to be sure exactly what Clausius meant by “der Welt,” but later
writers, including Gibbs, interpreted that as meaning an isolated system.
Then, a translation is:

The energy of an isolated system is constant.
The entropy of an isolated system tends to a mazimum.

Clearly, the first statement agrees with (1.1.8). Related to the second state-
ment is a widely accepted idea (concerning isolated sytems) that

P=Q=0= dS/dt>0. (1.2.6)

In fact, it is generally accepted that the restriction to mechanically isolated
systems is not necessary, although that to thermally isolated systems is.
That is, (1.2.6) can be replaced by

Q =0= dS/dt >0. (1.2.7)

It is hard to compare either of these statements with (1.2.2), since it is
not reasonable to think of a thermally insulated system as being in contact
with a heat bath.

As to what energy and entropy meant to Gibbs, we have his rather terse
statement:

As the difference of the values of the energy for any two states
represents the combined amount of work and heat received or
yielded by the system when it is brought from one state to the
other, and the difference of entropy is the limit of all of the
possible values of the integral [ d—tQ (dQ denoting the element
of heat received from external sources, and t the temperature
of the part of the system receiving it), the varying values of
the energy and entropy characterize, in all that is essential, the
effects producible by the system in passing from one state to
another.

There is a rather common view that no real process is quite reversible, so
reversible processes may be thought of as limits of processes which are not
themselves real processes. Perhaps Gibbs’s use of the phrase “the limit”
indicates that he held this view. Some tend to associate nearly reversible
processes with those taking place very slowly—the “quasi-static” processes.
This probably stems, at least in part, from experience with classical theories
of heat conduction, viscosity, and so on. However, a ball made of silly putty
behaves almost reversibly when bounced rapidly and various other high
polymers have similar predilections. So, it seems prudent to be open-minded
in considering what may be reversible processes for particular systems.
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It is a blunt fact that the general ideas of entropy and, to some extent,
power, heat, and energy remain somewhat nebulous. Despite this, they have
been used quite successfully in analyzing various kinds of physical systems.
In the first eight chapters of this book the aim is modest. It is to discuss
some of the kinds of thermodynamic ideas commonly used in analyzing the
behavior of solids, illustrating this by relatively simple examples. Chapter
9 serves to provide a broader perspective. After acquiring this experience,
we will reconsider the basic concepts in Chapter 10.

1.3 Thermodynamic Equilibrium

Of considerable importance are general ideas of equilibrium and the related
stability theory. Intuitively, systems can be expected to approach equilib-
rium only if they are kept in rather special environments. In particular, we
expect a trend to equilibrium in physically isolated systems. Gibbs took
this intuitive idea together with older thermodynamic ideas discussed in
Section 1.2 and used them to motivate definitions of thermodynamic equi-
librium, and criteria for the stability thereof, for isolated systems. In his
words,

1. For the equilibrium of any isolated system, it is necessary
and sufficient that in all possible variations of the state of
the system which do not alter its energy, the variation of
its entropy shall either vanish or be negative.

He also gave a plausible argument!® indicating that this statement is equiv-
alent to

IL. For the equilibrium of any isolated system, it is necessary
and sufficient that in all possible variations in the state of
the system which do not alter its entropy, the variation of
its energy shall either vanish or be positive.

Discussion following this indicates that one should exercise some good
physical judgement in deciding as to what are the “possible variations.”
This kind of difficulty occurs in all forms of stability theory for rather simple
reasons. Nothing, it seems, is indestructible, so it is too much to ask that a.
system remain stable with respect to every conceivable kind of disturbance.
Some quite unstable systems, such as a room filled with natural gas, can
tolerate some small vibrations but be set off by a small spark. Basically,

1t is hard to see how one could give a general proof of this since the statements
are not very precise, serving more as guidelines. When there is any doubt about
equivalence, workers take as basic the first statement.

|
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we want to know whether a particular system will be stable with respect
to those disturbances that are likely to be encountered but are beyond our
contrdl. So, inevitably, we must exercise some judgement in deciding what
these might be. As was mentioned before, when one encounters phenomena
such as sliding friction or plasticity, entropy is ill-defined so that statements
are not applicable. Curiously, Gibbs did not mention this difficulty but did
warn against trying to use the criteria in such cases. His is a long memoir,
discussing many types of physical problems fitting this mould and including
such topics as chemical reactions in fluids, absorption of fluids by solids,
dissolving solids in fluids, stability of fluids surrounded by solids and vice
versa, as in pressure vessels, and so on. It is not easy to read but the
density of ideas is high, and many are now commonly used by engineers
and scientists of various disciplines.

Often, the use of thermostats makes it more natural to think of a system
not as thermally insulated but as in contact with a heat bath at a con-
stant temperature #g. Then, from (1.1.1), with the system considered as
mechanically isolated, we have?

dE
= 1.3.1
T =0Q (13.1)
and, from (1.2.2),
ds
< -
Q = 03 dt )
) dE
B
—= <0. 1.3.2
dt — ( )
where
Ep=FE—-0gS8. (1.3.3)

Physically, one expects an approach to equilibrium in such systems, with
a caveat. There exists the phenomenon of Brownian motion which is rather
easy to observe in fluids. Statistical theory® leads us to expect such mo-
tion to occur in solids, little fluctuations preventing the system from quite
reaching equilibrium. Usually, the motion is so small that errors that result
from neglecting it is of little practical significance and we will ignore it.
Then, with Ep decreasing in any process, we expect that Eg will be some
kind of a minimum in stable equilbrium. The quantity Ep is called the
ballistic free energy. This suggests a third statement which we write, in the
style of Gibbs, as

II1. For the equilibrium of any mechanically isolated system,
in contact with a heat bath at constant temperature, it is

2In this discussion, we lean rather heavily on ideas of Duhem [8].
3Early work on this, performed by Einstein, is collected in reference [9].
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necessary and sufficient that in all possible variations of
the system the variation of its ballistic free energy shall
either vanish or be positive.

As will become clear, this gets us rather close to the “energy criteria”
commonly used by engineers to analyze stability of various structures.

In any of these situations, the systems could contain fluids of unknown
viscosity—various other kinds of dissipative mechanisms which we might
not know how to describe quantitatively. More often than not this is the
situation encountered in practice. From the statements it is clear that one
does need prescriptions for calculating energies and entropies. Given this,
one can use these ideas to find and test the stability of equilibria. It is
not a trivial matter to find good prescriptions. Later we will discuss some
rather common kinds of difficulties that do arise in practice. Also, we will
encounter cases where predictions obtained depend on the selection of the
“possible variations” among choices which seem rather likely.

Common to the three statements is the restriction that the system be
mechanically isolated. By lumping together solid specimens and devices
used to load them one can meet this requirement, in a reasonable way,
in various situations of physical interest. It is common to relax this re-
quirement somewhat by admitting loading devices that are conservative or
dissipative, in the sense indicated by (1.1.4) or (1.1.5), respectively, then
regarding the solid specimen as the thermodynamic system. For example,
we might load a specimen by attaching a bucket, to which we will add
fluid, in the earth’s gravitational field, identifying x with the gravitational
potential. In itself the gravitational force is conservative, but any motion of
the fluid could induce viscous dissipation and (1.1.5) can cover this. By an
obvious modification of the reasoning leading to (1.3.2), one now obtains

d
—FE, 1.34
S B <0, (13.4)
where
E,=E+x—-0gS, (1.3.5)

which we shall also call the ballistic free energy of such systems. This serves
to motivate a fourth statement:

IV. For the equilibrium of any system in a conservative or dis-
sipative loading device, in contact with a heat bath at con-
stant temperature, it is necessary and sufficient that in all
possible variations of the system the variation of its ballis-
tic free energy shall either vanish or be positive.

In practice, workers often use III or IV, simplified by the assumption that,
throughout the system, the temperature is 63, although the “possible vari-
ations” generally include other kinds of temperature distributions. Such
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criteria are slightly inferior in principle, but the differences tend to be com-
pensated for by other assumptions accepted by such workers, sometimes
tacitly. Later, we will elaborate on this for special cases.

The four statements summarize ideas that have been used with consider-
able success to analyze stability of equilibrium for a great variety of physical
systems. One could generalize to cover passive systems, but, for arbitrary
thermodynamic systems, thermodynamic criteria for stability do not ex-
ist and there are the aforementioned difficulties in covering such topics as
plasticity or Brownian motion. So, the thermodynamic theory of stability
has its limits. Other approaches to stability theory are covered, in a rather
elementary way, in Pippard [10], for example.
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Constitutive Theory of Heat
Transfer for Bars and Plates

2.1 Thermodynamics of Rigid Bars

In this section, we consider the one-dimensional theory of heat transfer in
rigid, stationary bars, illustrating how some of the general thermodynamic
ideas are interpreted in this context. Mathematically, the points on a bar
are represented by points in the interval

0<z<L. (2.1.1)

Quantities of interest, such as temperature, will then, in any process, be
functions of z and ¢t. We require a theory capable of describing the possible
temperature distributions. One rather general idea is that a part of a ther-
modynamic system can itself be considered as a thermodynamic system,
s0, in particular, any part of the bar qualifies. In Chapter 8, we will note
that it is not always feasible to use this idea. Forces may act on any such
part but these will do no work because motion is excluded. Thus, any such
part, or the whole bar, will be mechanically isolated,

P=0. (2.1.2)

Another general idea is that energy and entropy are additive.! Here, the
traditional way of covering this is to assume that they are representable by

! Generally, thermodynamicists call such quantities extensive variables, refer-
ring to quantities which are not, for example 6, as intensive variables.
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E:/Edm, S = /ndx (2.1.3)

where the integral can be over the interval (2.1.1), or a subset.

Physically, heat transfer can take place along the bar by conduction.
To describe this, we introduce a heat flux ¢. In terms of this @., the rate
at which heat is supplied by this mechanism to a subinterval (z;,z3) is
represented by

integrals

T2

Qc = q(z2,t) — g(z1,t) = ¢ (2.1.4)

zy
With one-dimensional theory, it is difficult to describe transfer through the
sides of the bar in a similar way, so we introduce another representation,

T2
Qv :/ rdx, (2.1.5)
1
sometimes considered as a measure of radiation, sometimes as a crude ap-
proximation to the effects of conduction or perhaps some combination of
both. Then, for the subinterval, (1.1.1) takes the form

dE d [*2
E = a . edr = Q
= Qc + Qb (216)

T2
= gq(za,t) — g(x1,1) -+-/ rdzx.

T

Assuming the functions are smooth enough, we can rewrite this as

*2 9e 0q
—= 2.1.
. Btd /I1 (8 +r)dx, (2.1.7)
and infer from the arbitrariness of z; and z, that
de 0Oq
—_ = . 2.1.
5t oz | (2.18)

In this context, the accepted view is that the entropy is involved in an
inequality, the so-called Clausius—Duhem inequality,
d [*?

e dz > (¢/9)
i), " (a/6)

/ (r/8)dz, (2.1.9)
reducing to the local form,

(2.1.10)

Qlé”

g(q/O) +7/6.

2.1 Thermodynamics of Rigid Bars 13

Additional equations are needed, and physically these should take into
account that the thermal response will be different for different materials.

Before considering this, let us consider some of the different ways of
describing the notion that the bar is in contact with a heat bath at tem-
perature fp(t), a given function of ¢t. One possibility, envisaging that the
side of the bar is coated with an insulator, is

r =0, 6(0,t) = O(L,t) = 0p(t). (2.1.11)
Then, applying (2.1.9) to the whole bar, we get
as d [*
—_— = — > [q(L,t) —¢(0,t)]/6 1.
&l ndz > [¢(L,t) — q(0,1)]/0s, (2.1.12)

agreeing with the Clausius—Planck inequality (1.2.2). Or, we might replace
these temperature boundary conditions by boundary conditions of the ra-
diation type. With Newton’s law of cooling, this would give

q(L7t) = a[oB - O(L’t)]y

q(0,t) = —alfs — 6(0, 1)) (2.1.13)

with a a positive constant. That a should be positive reflects the idea that
heat should flow into the bar if it is cooler than the heat bath, out if it is
hotter. Then, it is easy to verify that

q(L,t)/0(L,t) = o[fp — 8(L,t)]/0 > q(L,t)/0s

Putting this together with (2.1.4) and (2.1.9), again assuming r = 0, we
get

(2.1.14)

ds
o 2 >Q/0s,

also agreeing with (1.2.2). Another commonly used radiation condition is
the Stefan—-Boltzmann law, which would give

Q(Lat) = 5[048 - 04(Lat)]v

(2.1.15)

(2.1.16)

with § a positive constant, again leading to (2.1.15) when r = 0.
One can consider heat transfer from the sides of the bar while insulating
the ends. Using, for example, Newton’s law of cooling, this gives

q(0,t) = q(L,t) = 0, r=alfp — 0(z,t)]. (2.1.17)
Again, o should be positive, to have heat flow into the bar when it is cooler
and out of the bar when it is hotter. Also, it follows that

r(z,t)/8(z,t) > r(z,t)/05(t), (2.1.18)
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and that (2.1.15) again holds, now with @ = @Q,. One can replace the in-
sulated end conditions by radiation boundary conditions, again confirming
(2.1.15). So, under various assumptions of this kind, the Clausius-Duhem
inequality implies the Clausius—Planck inequality. Unlike the latter, it also
applies to cases where #g might be considered to depend on z, or to cases
where 0 might be assigned different values at the ends, in a bar with insu-
lated sides.

For classical studies of equilibrium, one needs a constitutive equation
depending on the material, and one of the form

e =¢€(n) (2.1.19)

would fit Gibbs’s preference. Let us consider this bar in contact with a heat
bath at temperature 5 = const. and explore the consequences of definition
III, in Section 1.3. We have

L
Ep = /0 le(n) — Om] dz, (2.1.20)

defined for some functions n(z). At least one of these should occur as a
thermodynamic equilibrium state; call it 7. As possible variations of it, we
consider a one-parameter family of functions, as is commonly done in the
calculus of variations,?

n="n+ pén,

where p is the parameter and 7 an arbitrary smooth function of z. A
common idea is that any variation of this kind is possible, if it is small
enough, and, given 67, we can make it small by making g small. For the
moment, consider é7 as fixed, and consider

L
Ba(w) = [ 07+ nbn) - Oa(n+ pom)lde.  (2121)
0
For p small, we have, as a first approximation,

Eg(p) = Ep(0) + péEs,

where
, Lrde _
6Ep = E(0) = Eﬁ(") —0p| dndx (2.1.22)
0

is called the first variation. We interpret the criterion for equilibrium as
meaning that we should have

IU‘(SEB 2 07

20ne of the better elementary treatments of this subject is reference [11].
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and, since p can be chosen to be positive or negative, this requires that
6Eg =0,

for arbitrary 7. By a fundamental lemma in the calculus of variations, this

holds if and only if

%g,-) — 0. (2.1.23)
n

Briefly, if this were not true, the bracketed quantity in (2.1.22) would be
positive or negative in some interval. Choosing én positive in a subinterval
of this and zero elsewhere produces a contradiction. So, (2.1.23) gives an
equation for determing (stable or unstable) equilibrium values of . With
other theories, similar reasoning is used in interpreting the criteria for equi-
librium. In equilibrium, one expects #, the temperature of the bar, to match
that of the heat bath. This fits the common assumption that § and 7 are
always related by
_ de
= a

As a general proposition, it is certainly not safe to assume that an equa-
tion that holds in equilibrium also holds more generally. Here, there is a
consensus of opinion that the assumption has a range of validity which is
not restricted to equilibria but might well not include processes involving
large departures from equilibrium.

Now, we can proceed to obtain stability conditions. As a test for a local
minimum, many would use the second derivative test,

0 (2.1.24)

8°Ep = E%(0) >0 (2.1.25)
or Lo
de _ 9
W(’I)(&?) dz >0
which, by (2.1.24), leads to
do d’c
=@ =—(@m) >0. 2.1.26
7 = G2 (2.1.26)

Briefly, if the second derivative were negative, it would be negative in some
interval by continuity and one could again find 67 for which the integral
inequality is violated.

Conditions very similar to (2.1.23) and (2.1.26) emerge, by similar rea-
soning, in a great variety of theories. They represent what may be viewed
as minimal requirements for stable or metastable equilibrium. If (2.1.24)
gives § as a monotonically increasing function of 5, taking on all positive
values, then (2.1.23) holds for exactly one value of 7 and (2.1.26) will be
satisfied. Some workers are happy to consider only constitutive equations
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having these properties. This excludes some instabilities that might occur
in principle, but I know of no clear evidence that they occur in practice.

According to the criterion, the most stable equilibria correspond to ab-
solute minima. Clearly, the integral will be smallest if the integrand every-
where takes on its minimum value,? so the criterion for this is

e(n) — 0sn 2 e(n) — 07,
or with (2.1.23),

e(n) — (7) > Z—;(ﬁ)(n —m) o, (2.1.27)

where D is to be read as “for all.” The aforementioned common assumption
implies that this holds for every choice of n and 7. Mathematically, € is then
a convex function of . Were it not, (2.1.27) would require that (7, (7)) be
a point of convexity of the graph of € = £(n); the graph must be above the
tangent line at this point.

For simplicity, make the assumption alluded to above, so we can solve
(2.1.24) to obtain 7 as a function of 8, either quantity serving as a label for
states. The derivatives will satisfy

dn df 1
g dn
Note that, if equality holds in (2.1.26), dn/df will not be finite. Actually,
this can happen at particular values of # at which phase transitions take
place, although some more general theory is needed to describe what then
occurs.* We will exclude this possibility.
Now consider starting with a bar in equilibrium at some temperature 8 5.
Change this a little, to g + Afg, and allow it to reach equilibrium. This
will give a change in energy; by (2.1.23) and (2.1.24)

L
AE=A / e(7) dz
° (2.1.28)
& &

~ [ >~ L0 —Afp.

Lo = L0 3005
Here, the overbar denotes evaluation at the state corresponding to 7. Since
no work is done on the bar, this should also be the total amount of heat
supplied to the bar, which can be measured using a calorimeter. Clearly

L, 0 and Afp can also be measured, so one can infer values of de/df
and dn/df. By doing this for a range of temperatures, one can get ¢ and

3This excludes some commonly ignored mathematical possibilities, like the
function not being bounded below, or not attaining a minimum.
“See, for example, the discussion of lambda transitions by Pippard [4].
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n as functions of #, at least for some range of temperatures, and from
this, calculate e(n). A careful worker will at least increase and decrease
temperature to see if the results thus obtained are consistent.

2.2 Constitutive Theory for Rigid Bars

In the previous discussion, we said rather little about some items, ¢ in
particular, but they play a more important role in the consideration of
heat transfer. The aim is to somehow relate these to temperature. The
classical theory of heat conduction uses Fourier’s law

q =k 00/0z, (2.2.1)

where « is a constant, or more realistically, a function of temperature. This
suggests that items of interest should depend on € and 80/0x. Equilibrium
studies suggest that £ and n depend only on 6, but they deal with cases
where 90/9x could well be small enough to make a negligible contribution.
Thus, a likely assumption may be that we have constitutive equations of
the form

e =e(0,00/0z), n=rn(0,00/9z), q=q(0,00/0z), (2.2.2)

depending on the material from which the bar is made. The usual idea is
that these do not change when we put the bar in different environments.

In a slightly different category is r, which is not as independent of the en-
vironment from the examples of radiation laws. We do need some prescrip-
tion(s) for it, more or less like the examples discussed in Section 2.1. The
basic idea is to convert the energy equation (2.1.8) to a differential equa-
tion for 6 and to arrange that any solutions satisfy the Clausius—Duhem
inequality (2.1.10). One way of proceeding is to eliminate r between the
two to obtain 5 8 5 8

n q
T 0 -a;(q,O) > % 5z (2.2.3)
and to restrict the constitutive equations (2.2.2), so this holds for essen-
tially arbitrary smooth functions 6(z, t); one can respect obvious conditions
such as 6 > 0. This procedure is not as arbitrary as it may seem. For ex-
ample, suppose that we accept Newton’s law of cooling together with the
prescription for r given in (2.1.17) with the idea that fp is an assignable
constant. Choose the bar temperature function 6(x,t) and think of using
(2.2.2) to calculate e(z,t), and so on. Then calculate

O 0Oq
f(.’l,‘,t)-— 5? - %

0

Now choose particular values of (x,t) = (0,%), say, and solve

f(Z0,t0) = r(z0,t0) = a[fp — O(x0, to)]
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for 05, to satisfy (2.1.8) at (Zo,tp). Clearly, (2.2.3) must then hold at
(o, to). Actually, it is not too unrealistic to assume that 6 is an assignable
function of z, t. Accept this and avoid evaluation at particular values of =
and t. A weakness in the argument is that the calculated values of 6 could
be negative, and this is not physically acceptable. Hence, we may sacrifice
some generality in accepting the indicated assumption.

We now rearrange (2.2.3) by introducing

00
¢=5—0n—¢(0,5;) , (2.2.4)
the Helmholtz free energy per unit length. By simple calculation,
o9 _0p00 0 0%
ot~ 00 ot  0(00/ox) Oxdt
(2.2.5)
00 oo
<qg-o—/0—n—.
S5/ %

We want to ensure this will hold for any choice of the function 6(z,1),
assuming (2.2.2) is used to calculate ¢. Consider (z,t) = (o, to), any par-
ticular point and time. It is easy to construct temperature functions such
that

O(SEo,to) = 3,
09
%(ﬂfo,to) = b,
50 (2.2.6)
E(xo,tﬂ) =c,
826
gx—az(xo,to) =d,

where a, b, ¢ and d are arbitrary constants, with a > 0; simple polynomial
functions will suffice.
Now, use these values in (2.2.5) evaluated at (zo,to), to obtain an in-
equality of the form
A+ Bc+(Cd <0,

where A, B and C are functions of a and b only. Fix a, b, and c¢. If C > 0,
we could take d negative and large enough to violate this inequality and,
if C' < 0, we could similarly violate it. A similar argument applies to B, so

we must have
B=C=0, A<O,

for all values of a and b, that is, for all values of  and 00/0z. This gives

___‘9; =0= ¢ = ¢(0), (2.2.7)

a(a:c
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and dé
This leaves us with the inequality
ol oo
— | =q— >0.
g (0, (%) 15, 20 (2.2.9)

Now, for ¢ fixed, g clearly vanishes when 06/0x = 0, and, being nonnega-
tive, it has a minimum there, so

8
aé—)w,o) = q(6,0) = 0.

Ox

(2.2.10)

Physically, @ is constant in equilibrium and the heat flux then vanishes.
Fourier’s law (2.2.1) then emerges in a natural way as a first approximation
for 90/0x suitably small. Equation (2.2.9) reduces to the condition x > 0,
which is always assumed in such theory. With a more nonlinear theory, ¢
must be chosen to satisfy (2.2.9).

As was mentioned in our considerations of equilibrium theory, it is com-
monly assumed that 7 is a monotonically increasing function of 6, so, by
(2.2.8)

dn d’¢

g  do?

and (2.2.8) can be inverted, to obtain é as a function of 7.
Also, from (2.2.4) and (2.2.8),

>0, (2.2.11)

de d _d¢ dn

WPt =g tntig
dn
_0@’

involved earlier in (2.1.28), there deduced from equilibrium theory. With
this, the energy equation (2.1.8) becomes

Be _de 09 _ 5 dn 0
ot~ do ot do ot

5 5 (2.2.12)
_gN_ 9%
=0 ot 0Oz tr
With, say, Fourier’s law and Newton’s law of cooling, this gives
de 00 0 00
@ a = % (E(O)%) + CV(OB - 0), (2213)

as the temperature equation, our discussion in Section 2.1 covering some
possible boundary conditions. Linearizing this about § = 85 = const., gives
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a linear equation, likely to be used in problem solving in cases where the
change in temperature is expected to be small compared to some constant
value. The linearized equation is of the form

o0 %0
Co a = Ko %5 + CV(OB — 0), (2214)
with
de
CO (03), Ko = E(OB). (2.2.15)

T de
Equation (2.2.14), with o = 0, is known as the diffusion equation or the

heat equation.
If (2.2.12) holds, we can calculate that

s d [* gl [L(r 00 /,
With this and the earlier discussion of heat baths, it is fairly easy to con-
vince yourself that the assumptions of reversibility made in calorimetry
cannot be quite correct according to this kind of nonequilibrium theory.
Generally, the nonequilibrium theory is considered to be sounder. This and
similar experiences with other nonequilibrium theories serve to motivate the
rather common opinion that reversible processes are not really physically

attainable. There is one case in which a simple analysis gives an estimate
of the errors involved. Suppose we start with the bar in equilibrium, with

(2.2.16)

0=0%=6, fort<O0. (2.2.17)
Suppose that we insulate the ends, so that
q(L,t) =¢(0,t) =0, t. (2.2.18)
Then, at t = 0, we change the heat bath temperature to
0 = (1+0)by, (2.2.19)

where ¢ is a small number. Then, reasonably, we can use the linearized
equation (2.2.14), with boundary conditions

No%=0 atx=0,L,

and we can satisfy this by taking € independent of z. This would also be
true if we used nonlinear theory. However, with linear theory, we get a
simple equation,

00 o
-8‘525(93—9), 5—€0>0-
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Integrating this, and using the initial condition (2.2.17), we get

05 — 0 = (0 — bo) exp(—pt)

ot exp(—5), (2.2.20)

so 6 approaches #p exponentially, as ¢t — oo. The total heat supplied to

the bar is .
6Q:/ / rdtda:::aL/ (0 — 0)dt
o Jo 0

aocly

(2.2.21)
=L

= LO()O'G().

With (2.2.16) the total change in entropy, according to nonlinear theory, is

L 00 o0 =
AS=/ / fdtdm:aL/ -9 4
0 0 0 0 0

As estimated by linear theory, we calculate that

(2.2.22)

g -0 o exp(—pt)
0  1+0[1-exp(-pt)]
= g exp(—ft)

with an error of the order O(¢?). In this approximation, we then obtain

_Laa_@_
B fo’

or the approximate reversibility needed to correlate with equilibrium stud-
ies such as are involved in calorimetry. So, one needs §t to be large to get
near thermodynamic equilibrium and the heat bath temperature changes
to be small, as measured by o, to approximate results obtained from equi-
librium theory.

This exemplifies a remark made in Chapter 1. The desired reversible
processes do not always exist. Often, we can approximate reversibility as
closely as we like, here by making o small enough. In the limit o = 0, we do
get a reversible process, but it requires the bar to remain in equilibrium, at
0 = 0, and, for calorimetry, we need the temperature to change slightly.

2.3 Constitutive Theory for Thermoelastic Bars

Here we generalize the previous theory, allowing the bar to stretch. This
involves picking a reference configuration of the bar. The usual practice is
to identify this as a rather stable equilibrium configuration, subject to no
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forces, at a particular (constant) reference temperature 6r. Here, z will
describe positions in this reference configuration, a fixed interval

0<z <L, (2.3.1)

as before. Such points can move to other points of the line containing this
interval. Motion will then be described by an equation of the form

y = y(z,t), (2.3.2)

where y denotes the coordinate of a material “point,” really an average
position of a cross section which was at x in the reference configuration.
Two quantities of interest are the velocity

.0
j= 8—1; (2.3.3)
and the stretch®
Oy
A=3L>0, (2.3.4)

a dimensionless measure of changes of length. Generally, we will use a
superposed dot to denote partial differentiation with respect to t, holding
z fixed. Often, workers use instead the strain,

e=A-1, (2.3.5)

interpretable as the change of length divided by the reference length of
an infinitesimal part of the bar. As before, we assume that the physical
properties of one cross section are like those of any other. Physically, the
bar should be made of an homogeneous material and be of cylindrical form.
Then Ap, the area of a cross section in the reference configuration, is a
constant, unaffected by motions of the bar. If one is dealing with bars of the
same material and geometrically similar in shape, it is commonly assumed
that they can be described by essentially the same equations and this is
in reasonably good agreement with experience. Certainly, a fatter bar has
a greater mass, for example. To compensate for such obvious differences,
we consider additive quantities, such as energy, entropy and momentum,
as divided by Ag. Thus, in applying the first law to parts of a bar, we use

E=P+Q, E=E/Ar, P=P[Ar, Q=Q/Ag. (2.3.6)

Since it becomes clumsy to introduce too many notations we will drop the
bars, understanding that E is to be thought of as energy per unit reference
area, and so on.

5The value A > 0 reflects the physical idea that the length of a segment cannot
be reduced to zero.
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Equations of motion are based on the idea that the rate of change of
momentum equals the force. With one-dimensional theory, we can only
account for forces directed along the line representing the bar. Detailing
this, we introduce the format

d T2 T2
a/ pydm=/ fdz+o

1 r1

x2

, (2.3.7)

z1

with z; and z2 representing any two points in the interval (2.1.1). Here p
is the (constant) mass per unit reference volume, so

T2
/ py dx

represents momentum per unit reference area. Similarly, f represents force
per unit reference volume, distributed along the length of the bar. With
o we denote what is commonly called the engineering, or Piola—Kirchhoff
stress. It covers the force exerted on the material on one side of a cross
section by the nearby material on the other side. Adopting arguments very
similar to those used to deduce (2.1.8), we obtain from (2.3.7) the partial
differential equation )
. 0%y do
Pi=pg5 = f+ Ere (2.3.8)
With the motion, the energy will consist in part of kinetic energy and it
is convenient to recognize this explicitly. So we write, for the energy (per
unit reference area), for a part of the bar

T 1
E = / (s + 5/)1'/2) dz. (2.3.9)

Here ¢ is called the internal energy (per unit reference volume). Similarly,
we need to consider the power represented by

To T2 T o
P= / fyde+ oy = / [fy + a—x(ay)] dz. (2.3.10)
For @, we use the same kind of format adopted for rigid bars,
To xTo T aq
Q=/ rdz +q =/ (r+——) dc. (2.3.11)
1 2 xl or

Bear in mind that this represents the rate at which heat is supplied, per
unit reference area, so this ¢ has different physical dimensions. Then, by
arguments which should now seem familiar, we use the first law,

dE

E=P+Q’
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to obtain the differential equation

" — E- + . e
£+ py? Y
.. 0, . dq
=fy+ —a;(ay)+r+ Bz
Using (2.3.8), we can cancel some terms giving
oy oq
= =0 — - 2.3.12
é oay+r+ax, (2.3.12)

the idea being to use this as an equation for 8(z,t).
Again, we use the Clausius-Duhem inequality (2.1.9),

ds d ™ T2 p q
> _ 2 > L 4
@t dt ), "dx~/x sty

2

, (2.3.13)

Ty

1

merely reinterpreting S to be entropy per unit reference area. As before,

we then have ) 5 50
. q 2
> — — | — g — . 3.
17_0(7'+6x) qam/O (2.3.14)

The usual idea is that, for a given bar, f and r may be specified in
different ways, depending on the systems with which it is to be in contact.
So, we require a theory enabling rather arbitrary specifications of these and
we will not formulate constitutive equations for them. In (2.3.12), f has
already been eliminated and, as before, we can eliminate r between (2.3.12)
and (2.3.14), to obtain the inequality

ay 00

p o 00 09
5 0n_06w+(q/0)8x

Also, as before, it is convenient to introduce
¢ =¢c—0On, (2.3.15)

the Helmholtz free energy per unit reference volume, satisfying

.8y . 0
¢§aa—z — b+ (a/6) 5_- (2.3.16)

Then, we seek constitutive relations, relating ¢, o, n, and ¢ to motion
and temperature, allowing for the fact that different bars can respond dif-
ferently. Here, we aim at theories which are, in a sense, very local. Consider
any fixed values of z, t, designated by x¢ and to. For small enough values
of x — g and t — o, we have, approximately

(@,0) 2 (@0, 10) + 5 (@0, 0)(@ — 20) + (@0, 10) ¢ — to)
(2.3.17)

0(z,t) = 0(zo, to) + %(ﬂfo, to)(z — o) + O(zo, to) (t — to).
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Then, roughly, the assumption is that the behavior of a material point is
influenced by the general motion and temperature. This influence is small
except when it occurs very close to the point in position and time. Using
(2.3.17) to estimate this, we are led to the assumption that ¢, o, 7, and ¢
are functions of the following quantities:

dy . oo
%7 Y, 07 %7

Two arguments are used to restrict these functions. One is the notion
that these should be objective functions, as it is sometimes put, meaning
that their values are unaffected by superposing rigid motions. Suppose, for
example, that we have two motions y(z,t) and y(z,t), with

y, A= 6. (2.3.18)

Y(z,t) = y(z,t) + a + bt,

with a and b constant. Here, it would be acceptable to replace a + bt by an
arbitrary smooth function of ¢, but one gets the same restrictions, either
way. Suppose also that the temperature functions are the same,

0(z,t) = 0(z, t).

It is true that a given particle takes on different positions and the velocity
differs by a constant; but, physically, we do not expect this to affect heat
fluxes, entropies, and so on. Thus, for example, we should have

Oz ox’
B oy . 00 .
- ¢ (ya %7 Y, 0, 5;, 0) )

for any given motion y(z,t) and any choice of constants a and b. It then
follows that this will be true only if ¢ does not depend on y or y. By this
kind of argument, we reduce (2.3.18) to

dy 00

oz’ ox’

Assuming ¢, 7, o, and ¢ depend on these variables, we put this into
(2.3.16) to get

8¢ 8y (0¢ . B¢ .
ol "} FE (55 * ”) %"

0 .
¢<y+a+bt, @, y+b, 0, 9 9)

6. (2.3.19)

' (2.3.20)
o6 0 06
+ 560/07) 3z = V5

As before, we want to restrict the constitutive functions so that the in-
equality is satisfied for all motions and temperature distributions. We use
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the fact that, with the variables (2.3.19) fixed, at £ = =z, t = 1o, we can
still regard as independent variables higher derivatives such as 6. This gives
the restrictions

—_o(9Y o) =
s=o(ge0) = o000)

(2.3.21)
__0¢ _09¢
7= B(oy/or) ~ oA
with the remaining restriction that
00 0¢ .
— | = > ..
(¢/0) e (80 +n)9_0. (2.3.22)

Since this expression vanishes when § = 90 /O0z = 0, it then takes on its
minimum value. Applying the first derivative test for a minimum to this
function then gives

0=00/0z=0=>q=0, n=—0¢/08. (2.3.23)
Usually, workers assume that g is independent of 6 and that 7 is indepep-
dent of § and 96/9x, and we will follow suit. With the indicated assumption
we have, always,

Ay ao> 0

- _ ht:4 — > 0. 3.
n = —0¢/09, q(ax’ % 32 0 (2.3.24)

a_

Often this is specialized more, with the assumption that

q:k(ay 0) 00

— — k>0
oz’ oz’ =

(2.3.25)

which seems to be adequate practically. Underlying (2.3.24) is the classical
view that entropy is defined using processes which are, at least approx-
imately, reversible. It would not hurt for you to think hard about this
yourself, but it does at least seem difficult to reconcile this with the idea
that 7 can depend on § and/or 80/0z.% The effect of this is to assume that,
at each particle, the entropy is given by the constitutive equation applying
to equilibria.

For various other theories which are, in a similar sense, local, thermo-
dynamicists often use this assumption with some success. It is called the
principle of local states or the hypothesis of local thermodynamic equilibrium
and other similar names. Often workers interested in viscoelastic effects em-
ploy theories which are not local, in the temporal sense. For example, the

6If you wish to explore this more deeply, you might find it helpful first to
study Chapter 10.
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stress at any particular time depends on values of the stretch experienced
at all previous times. Here, such assumptions are commonly rejected. For
example, one expert, Rivlin [12] offers physical arguments to help explain
why he considers them to be unsound for use in connection with such the-
ories. Various other experts have made clear that they came to a similar
conclusion. This will be discussed in more detail in Chapter 10. It is not
reasonable to infer from this that the reasons that convinced one would be
the same as those that convince another. Obviously, onc needs some alter-
native, and, concerning this, there are some differences of opinion. There
are still different ideas about entropy, stemming from statistical molecular
theories, for example, which do not require the association with reversible
processes. Such theory also suggests a need for generalizing the Clausius-
Duhem inequality. It would take a very lengthy discussion to elaborate
these remarks so we will not pursue it. With the specialization indicated,
we have what is generally regarded as thermoelasticity theory or, more
properly, the one-dimensional version of such theory. Such theory has been
used, successfully, to describe numerous phenomena.
With o given by (2.3.21), the equations of motion (2.3.8) become

. 0 (0¢
V= 5e (a,\) 7
it being understood that some appropriate prescription for f is to be given.
In most situations, it is reasonable to take f = 0. When exceptions are en-
countered, they are likely to involve forces exerted by gravitational or elec-
tromagnetic fields and, in the latter case, it is probable that more general
kinds of constitutive equations are needed.

To obtain the temperature equation, we use (2.3.12) and note that with
our constitutive equations,

(2.3.26)

e (06 N 09
E—¢+07)—(5—0'+7))0+077+8)\)\
_ 5. 04

—a)\+am+r

d¢ . Oq

S ta Tt

from which

(2.3.27)

Superficially, this is the same as the equation (2.2.12) derived for rigid
bars. However, here 1 depends not only on 8, but also on A, so (2.3.26) and
(2.3.27) are a coupled set of equations for motion and temperature. Again,
T needs to be specified and the possibilities for this are well-covered by our
discussion of rigid bars.
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Sometimes (2.3.21) is replaced by an alternative. Suppose we can invert
(2.3.23) to get

Then, express ¢ as a function of A and 7, as indicated by
= ¢(A,0) + (A, 0)

Mathematically, ¢ is a Legendre transform of ¢ and such transforms are
used in various places in thermodynamics. Then, by the chain rule,

and
o=\ _0s|  000f, of
X |, OXx|, 06 0A Tox
-2 =0
So, instead of (2.3.21), we can use
e =¢e(Am),
a=%, (2.3.28)
0:2—;.

Various kinds of wave propagation are considered to take place almost
isentropically (n nearly constant), and, for such processes, (2.3.28) is a
convenient choice. Processes more nearly isothermal are encountered in
slow, quasi-static tests done at constant temperature and, for these, (2.3.21)
is more convenient.

It is worth noting that, while ¢()\,8) and (A, n) are, in the sense indi-
cated, equivalent constitutive equations, an equation of the form

e =¢(A0)

gives a less complete description. Suppose, for example, that this function
is independent of A:
e = ¢e().

This statement does in fact apply rather well to various kinds of rubber
as long as A is not extremely large. When (2.3.29) holds, we have, using

(2.3.29)
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(2.3.24),
de(6) 8
w0 — o0 ®tom
0¢ on _ ,0On
=5 T1105 = 0%

This implies that 7 is of the form

n=f(0)+90\),f =¢€(0)/6. (2.3.30)
Also,
Oe d
ax 0= (¢ +0m)
- on
=0+ 0 5}
=0+ 0g()\)
or 6
—__p%1 _ g
=051 =—04()) (2.3.31)
Also,
¢ = h(0) — 0g(N), (2.3.32)
where

h(0) = £(0) — 0.£(6).

Given any function ¢ of the form (2.3.32), we have
7]
e=p+0n=0p-0% ¢ b —h-ow,

which is a function only of 6. Clearly, we can also obtain ¢ and n from
(2.3.32). However, from (2.3.29), there is no way to determine g(\). Re-
sponse of this kind is sometimes called “entropy elasticity” since, from
(2.3.31), o is associated primarily with changes in 7 and this indicates a
characteristic feature: at fixed ), o is proportional to 6.

2.4 Constitutive Theory for Shearing of Plates

By what is essentially a reinterpretation of the foregoing theory, we can
obtain the one-dimensional theory of shearing of plates. Here, we think
similarly of a reference configuration, associated with an interval on a line,

0<z<L, (2.4.1)
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the line now being normal to the plate in its reference configuration. Motion
involves a displacement u, in a perpendicular direction, described by an
equation of the form

u = u(z,t), (2.4.2)
the analogue of the previous y. With it is associated the velocity,
. Ou
and the analogue of the stretch A, the shear strain
ou
= —, 24.4
7= 5 (2.4.4)

with 47 = 0 in the reference configuration. There is a difference in that,
physically, A should be positive, while v can be positive or negative. As-
sociated with the shearing motion is a shear stress 7 analogous to . The
equations of motion are of the form

a0
p T oz

f acting in the direction of the displacement « or its opposite. Then, as
analogues of (2.3.21), (2.3.24), and (2.3.28), we have relations of the form

+ /. (2.4.5)

¢ =¢(v,0),
o9
T= 5;’ (2.4.6)
o¢
n= —%7
or
e=¢e(v,m),
_oe
oy (2.4.7)
Oc
0= 5;
For a temperature equation, we have the copy of (2.3.27),
. Oq

One difference is that here a notion of material symmetry is of some
importance. For plates made of isotropic and some anisotropic materials,
it is reasonable to assume that ¢ is an even function of ~,

¢(7’ 9) = ¢(_’Ya 9) (249)
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Reversing the sign of v amounts to reversing the shear displacement. For,
say, isotropic plates, one expects that this will be associated with forces
of the same magnitude but opposite directions (1 — —7 and f — —f),
keeping 0(z,t) the same. So, (2.4.9) summarizes common experience of this
kind. One can encounter cases where it is unreasonable to assume (2.4.9),
in dealing with some kinds of crystal plates, for example. Later, (2.4.9)
will play an important role in discussions of Martensitic transformations,
phenomena which are rather common in crystalline solids.

As is rather obvious, various ideas and results used in analysing bars can
be borrowed to analyze plates and vice versa, and we will not belabor the
obvious.

2.5 Thermodynamic Experiments

Clearly, it is important to know the form of the function ¢ for particular
bars or plates and there is a rather common strategy for using experi-
ments to try to accomplish this. The same kinds of ideas are used in deal-
ing with three-dimensional thermoelasticity theory. Later, we will consider
some two- and three-dimensional theories. To be definite, we will discuss
the bars. We would like to induce the bar to be in various configurations
in which A and 6 take on a variety of values, independent of position.
Physically, we would like to know that each of the pairs of values can be
connected to the reference values (A = 1, § = ) by a process which is, at
least to a good approximation, reversible. Theoretically, entropy changes
are involved in a rather important way and we need some assurance that
it is physically well-defined.
Commonly, workers try three types of experiments:

1. measurements of thermal expansion;

2. measurements of specific heat Co(f) in unstressed specimens at vari-
ous temperatures;

3. static mechanical experiments performed at constant temperature, at
a variety of temperatures.

If all goes smoothly, this combination can, in principle, suffice and for a
first look we will assume that it does.

Thermal expansion refers to the deformation caused by a change of tem-
perature in an unloaded body. Theoretically, we would derive it by solving
for A,

o= %‘g(x, 9) =0, (2.5.1)

to get
A= A0). (2.5.2)
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By assumption, we have chosen our reference configuration so that
A(Or) = 1. (2.5.3)

At this stage the function ¢ is unknown, but we can observe the stretch
A(0); it should be a uniform stretch, varying continuously with 6, for things
to go smoothly. Also, as a check on reversibility, we should check that we
get the same A(0) if we increase or decrease . Often, thermal expansion is a
small effect, so one finds some workers omitting this experiment. However,
it is sensible to understand the scheme before considering such shortcuts.

Turning to the measurement of Cy(0), we are concerned with changes in
1 occurring when we keep o = 0 and change 6, hence with

(0) = n(A\(0),0). (2.5.4)

Conceptually, this is the same as measuring the specific heat for a rigid
bar, with 7j(#) as its entropy function. By calorimetry, we can find

_ @ _p(0n, Ondr
CO(G)“’E'O(@@”L@A ) (2.5.5)

It is customary for workers making isothermal mechanical measurements
normally to take as a reference configuration an unstressed configuration
at the temperature 05 at which the experiment is performed. Relative to
our fixed reference configuration, the material point at z has moved to the
position

YE = )\(95)1‘ (2.5.6)

Adding loads then takes yg to
Y= ApYE = )\E:\-(GE)I = Az, (2.5.7)

Ar being what the experimentalist would term stretch. What he means by
stress is force divided by area in some unstressed configuration. Suppose
that this configuration is ours, that in the fixed reference configuration. If
not, we need to know the relation between the areas in order to compare
results which can involve another aspect of thermal expansion. Then, with
standard simple tension and compression tests, the experimentalist seeks
to determine relations of the form

o= f(Ag,0E),

for some range of Ag and 6. For all to go smoothly, o should vary smoothly
with Ag and the same relation should hold whether we are increasing or
decreasing o. From this, we obtain the so-called isothermal strain energy
function, given by

f(1,0g) =0, (2.5.8)

AE
W(Ag,0p) = \ f(€,05) dg, (2.5.9)
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with the properties that

oW
= — 2.5.10
7= e ( )
and that is vanishes when Ag = 1, that is, when ¢ =0
W(1,0g) =0. (2.5.11)

Given this, we can calculate the function representing energy per unit ref-
erence length,

— A -
W) =W ==, 0] A0), 2.5.12
0,0 =W (575 0) %0 (25,12
where we have used (2.5.7). Then, by the chain rule,
oW W [ 1 \+ ow
—— === MO)=5—=0. 2.5.13
Also, from (2.5.11) and (2.5.12), we have
W(X,0)=0. (2.5.14)
Now, from (2.3.21) and (2.5.13), we should have
_ oW _0¢
77N T v
) L
¢ =W(A0) + f(0). (2.5.15)

To determine f(f) we note that, if we set A = A() and vary 0, W stays
zero and, of course, ¢ = 0. Thus, bearing in mind (2.5.4), we have
do = f'(0)do = —7(0)d0 when o =0. (2.5.16)

So, given Cy(0), from measurements of the specific heat at zero stress, we
integrate (2.5.5) giving

_ 7 Co®)
77—/9}2———é d€ +a

with a an arbitrary constant. Then, using (2.5.16), we integrate once more,

to get
0 v
f:__/ / Go®) 4t dv — at + b,
6r JOr

(2.5.17)

(2.5.18)

3
where b is another integration constant. Physically, it is unimportant what
values we assign to a and b; it is only differences in entropy and energy
which are physically significant.
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Intuitively, it is clear that the program can fail for various reasons. Spec-
imens may break, buckle, or melt, for example. One can encounter phase
transitions where quantities of interest change in a discontinuous manner,
thus causing difficulties. Later, we will discuss some ideas for coping with
them.

It is worth bearing in mind that while the conventional program discussed
involves relatively simple experiments, when they work, the program is not
infallible. Particularly when some mysterious difficulty is encountered, it is
worth considering what other kinds of experiments may be performed to
help illumine the situation.

Clearly, similar ideas can be used for the plates. For these, if the mate-
rial symmetry is such that (2.4.9) applies, it is somewhat likely that the
analogue of thermal expansion will not occur because 7 = 0 forces 7 to be
zero. As will later become clear, this is not always the case. When (2.4.9)
does not apply, the analogue of thermal expansion will most likely occur,
changes in temperature producing shear when 7 = 0. In either case, one
may well get changes in volume not describable by our one-dimensional
theory.

Ideas similar to those used in this chapter have been adopted to construct
a great variety of three-dimensional theories of materials too complicated to
be discussed here. Often, experimentalists and others interested in materials
science do use one-dimensional theories; we have simply looked at a few
of these to illustrate common types of thermodynamic reasoning used in
formulating them.

2.6 Exercises

For rough analyses of rubber bars, workers often use the so-called Neo-
Hookean theory, for which ¢ is of the form

¢ =ab(A\2 +2/A—3) — blfIn(0/c) — 0+,

where a, b, and ¢ are positive constants. For Exercises 2.1-2.5, use this
form.

2.1. What does this form predict for thermal expansion?

2.2. What constitutive equation for o is appropriate for isothermal pro-
cesses (6 = const)?

2.3. What constitutive equation for o is appropriate for isentropic pro-
cesses (1 = const)?

2.4. For isentropic processes, what is the strain energy function?
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2.5. From thermodynamic experiments on a material, we find that the
constitutive equation fits fairly well for a choice of the adjustable con-
stants, but needs some correction. The fit for specific heat is satisfac-
tory. The strain energy function fits, if we replace A by Ag, and curve-
fitting measurements of thermal expansion gives A(8) = 1+ k(0 — 0r)
for the temperatures occurring in the experiments, k being a constant.
Work out the corrected constitutive equation for ¢, and determine
how this affects 7.

2.6. For bar theories, the quantity

_On_9/f)
=% o

is commonly considered to be a measure of dissipation. For our theory
of rigid bars, with

q:k(o)g%lg/c—o), r=alfs(t)—9], k>0, a>0,

what can you say about the possibility of solutions of the temperature
equation (2.2.13) that involve no dissipation (6 = 0)?

2.7. Consider the graph of a smooth function ¥ = y(z) and the tangent
line to it at a point (Z,y = y(Z)). Show that points in the z-y plane lie
above this line whenever their coordinates (z, y) satisfy the inequality

y-7-y(@)(z—-2) >0,

and below it when the opposite inequality holds.
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3
Equilibrium Theory of Bars

3.1 Equilibrium of Bars Subjected to Dead Loads

In commonly used jargon, a dead loading device is one that applies a con-
stant force to some part of a specimen while leaving the part free to move.
For example, one might load a bar by hanging it, clamping the upper end
so it cannot move, and attaching weights to the lower end. Static experi-
ments of this general kind have been done for centuries on a great variety
of solid materials as is discussed in a lengthy article by Bell [13]. Typi-
cally, the apparatus is designed so one can add a small weight, allow it to
come to equilibrium, then add a little more weight, to determine exper-
imentally how stress is related to deformation. This is a rather standard
way of approximating the condition of dead loading on the lower end with
tensile loadings. By incorporating levers, for example, one can also apply
compressive loads. So, for bars, this is one way of attempting to perform
isothermal mechanical measurements needed to determine ¢(, ) experi-
mentally. Naturally, one must exercise some judgment in deciding whether
the observations are compatible with the theory considered, in this case
our one-dimensional bar theory. Actually, such theory can handle some
phenomena which may seem to be outside its range. Thus, it is worthwhile
to try to obtain a better understanding as to what it can do, with an open
mind.

We now return to the theory of thermodynamic stability discussed in
Chapter 1. Roughly, our thermodynamic system consists of the bar and the
loading device in contact with a heat bath at a constant temperature 05.
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For a static analysis we are not concerned with motions but deformations
y = y(z). However, we can allow any which could occur instantaneously in
a motion. A similar remark applies to temperature functions 6(z) or n(z).
The condition that the upper end is clamped limits the possibilities. We
represent this as the condition that

y(0) = 0. (3.1.1)

This in turn means that no work will be done on this end. From a dynam-
ical point of view, power is supplied to the other end by the fixed force,
expressible in the form

P =ky(L,t) = —dy/dt (3.1.2)

where
x = —ky(L,t) + const., (3.1.3)

k being a constant measuring the size of the force. It is convenient to
take this as the weight divided by the reference cross-sectional area of the
bar since we divided the bar energy by this area. From (1.1.4), we have
here our first example of a conservative loading device. For static analysis,
the dependence on ¢t is irrelevant. In principle, the bar’s own weight will
cause it to stretch a little; very little for the small bars used in laboratory
experiments. So, as is customary, we neglect such effects, assuming that
the body force f = 0. Of course, it is understood that forces are applied
to the ends of the bar and not to its sides. Then, from the discussion in
Chapter 1, we expect the system to approach equilibrium, our situation
being covered by statement IV, with E here interpreted as the energy of
the bar. The relevant thermodynamic potential is then given by (1.3.5) or

EX:E—GBS—+—X

L (3.1.4)
- / (e — 05m) dz — ky(L)

and we are concerned with its variations. We interpret this in much the
same way as we did in the consideration of rigid bars.

For bar theory, we should have some constitutive equation, it being con-
venient to use one of the form

_ %
- oz’
This has the features noted in (2.3.28). First, we want to know what condi-
tions y = y(z) and n = 7j(z) must satisfy in order to qualify as equilibrium

configurations. All deformations must satisfy (3.1.1). So, we consider func-
tions of the form

e=¢e(\n), (3.1.5)

y(z) =7 + pby

n(e) =7+ 19
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where g is a small parameter and the pair (6y, 6n) are any smooth functions
of z such that

Sy(0) = 0. (3.1.7)
This describes variations in the system. As before, we calculate the variation
in E, by regarding éy and én to be fixed, so Ey reduces to a function of p
only, and taking

6E, = E.(0). (3.1.8)

Then, statement IV is interpreted as meaning that we should have

ubEy >0, (3.1.9)

for any admissible choice of 6y and 7. Assuming that all functions involved
are smooth, we can differentiate under the integral sign to get

L
s = [ |25 1 (5 - 00 ) en) de - i),
0

0€ 0%y (3.1.10)
o\ Oz on

with overbars denoting evaluation at the putative _equilibrium state. From
the general theory, the stress & and temperature 6 in this state are given

b
Y & . OF
E:——- 0:—'.

ox’ on
We then perform an integration by parts to replace 8(6y)dz by éy

L asy L /L%
/(; Uaz =00y 0 Oz y

0
a standard procedure in such variational problems. So, using (3.1.7), we
have

(3.1.11)

. o _
6E, = /0 [(a —0p)6n — 5;514] dz + (@ |,_, —k)éy(L) (3.1.12)
and interpret the criterion for equilibrium as the condition péE, > 0.
Note that, if uéE, were positive for some choice of (67, 6y), it would be
negative for én = —én, by = —6y, another allowable choice, so we must in
fact have §E, = 0 for all variations: equivalently, we could take p positive
or negative. By arguments similar to those used for rigid bars, we deduce
that the equilibrium conditions are that

0 =0p,
i = (0 = 7 = const,., (3.1.13)
Oz

=k
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That is, the definition of thermodynamic equilibrium implies that the tem-
perature of the bar must reduce to that of the heat bath, plus the condi-
tions which could also be obtained from standard reasoning in mechanics
as conditions for static equilibrium. We have here one of many examples
reinforcing the view that, physically, the general theoretical ideas of ther-
modynamic equilibrium are sensible.

Also involved is the idea that such equilibria may or may not be stable.
For them to be stable (metastable), they should correspond to absolute
(relative) minimizers of E, . Most workers are happy to make an assumption
that makes such analyses easier and is not in obvious disagreement with
experience; namely that, for any value of A, ¢ is a strictly convex function
of n. That is, for any A, 17, and 72,

Oe

e(Am) —e(Am) — o=(Am2)(m —m2) > 0.

= (3.1.14)

The equality holds only if 1, = ;. Assuming this, suppose that we choose
12 depending on A, so that

Oe

—()\,le) =0p.

3 (3.1.15)

Then, the inequality gives

e(Am) —0pm > (A, m2) — Opme = ¢(X,0p). (3.1.16)

Now, suppose that we were to find y = §(z) minimizing the potential

F= /L ®(\05)dz — ky(L), (3.1.17)
0

so that

L
F>F= / o(\, 05)dz —kj(L), (3.1.18)
0
perhaps with the proviso that A be close to . Then, using (3.1.16), we will
have for the same y(x)

E,>F>F=E,. (3.1.19)

The last equality follows from the fact that any minimizer will have SE, =
0, implying that its temperature must be 83. So, many workers will use the
Helmholtz free energy in place of the ballistic free energy in applying the
stability criterion and it does make the analysis easier. As is rather obvious
and easily verified, (3.1.13) also gives the conditions obtaining from § F = 0.

One test for a relative minimum is the second derivative test, often used
in such contexts. Represent y(z) as in (3.1.6) to get F as a function of p,

and calculate [ 5
2
82°F = F"(0) =/ o°¢ (@) dz,
0

o (5 (3.1.20)
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FIGURE 3.1. A simple nonmonotone stress-stretch curve, with horizontal tan-
gents at Ay and Ar,.

where, as before, the overbar denotes evaluation at the equilibrium state.
For a relative minimum this should be nonnegative for any choice of 6y
such that §y(0) = 0. From this, it follows that we must have throughout
the bar,

8¢ do

—(\,08) = —<(A,0B) > 0.

a)\2( ? B) d)\( 3 B)
Now, there are two possibilities. One is that the equation of state satisfies
8%¢/OX? > 0 for all A at this temperature, so o is a monotonically increas-
ing function of A. Then, there is at most one value of A = X satisfying
o(X,08) = k, a given constant. Assuming there is one, then for this value,

one gets the homogeneous deformation

(3.1.21)

y = Az,

satisfying (3.1.1). Also, one can show that it is the one and only minimizer
of F. Physically, the theory is bound to fail for one reason or another if k
gets too large. This calls for some judgment.

The other possibility is that the function o(A,0p) is not everywhere
a monotonically increasing function of A, a possibility which is seriously
considered. A relatively simple possibility is to have a graph of the kind
shown in Fig. 3.1.

With o = 8¢/8), it is easy to see that the graph of ¢ at 6 = 0p has the
form shown in Fig. 3.2.

It has points of inflection at A, and Aps and fails to be convex. Another
possibility is a graph of o(), 6p) like that shown in Fig. 3.3, for which ¢
has a graph at 6p diagrammed in Fig. 3.4, exhibiting a second minimum,
which could be an absolute or relative minimum.
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Ly

FIGURE 3.2. The graph of ¢ corresponding to Fig. 3.1, with points of inflection
at Ay and A,,..

AN

1 Am Ao Am M

A

FIGURE 3.3. A stress-stretch curve similar to that in Fig. 3.1, but intersecting
the o-axis at three places, A = 1, o, and ;.

\
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1 Ao M
FIGURE 3.4. The graph ¢ corresponding to Fig. 3.3.

A

For either of these situations, one can find the absolute minimizers of F,
the most stable configurations. With (3.1.1), we have

Lay L
y(L)--/0 &dz_/() Adz,

L
F- /0 [6(), 05) — kA] dz.

(3.1.22)

S0 we can write

(3.1.23)

Clearly, the integral will be smallest if the integrand is everywhere smallest
which will occur at A = X such that

(X, 08) —kA > ¢(X,05) — kA (3.1.24)
for all X. Of course, the first derivative test gives
< 9¢
= —_— = k +1.
a(A08) = 5y =k (3.1.25)

where the overbar is interpreted as before. So, on the graph of ¢ we locate
the points with slope k. Then, the inequality means that the graph of ¢
must be everywhere above the tangent line drawn through this point; we
went through a mathematically identical consideration before in the con-
siderations of rigid bars. Choose a constant A satisfying these conditions,
and y = Az will be an admissible deformation minimizing F. Theoretically,
this is the best that can be done in terms of stability. Somewhat stable
(metastable) configurations are not ruled out by these considerations. In
terms of a particular theory, the distinction between stable and metastable



44 3. Equilibrium Theory of Bars
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FIGURE 3.5. The common tangent line added to the graph in Fig. 3.4, kum
denoting its slope, A} and A}’ denoting values of X at the points of tangency.

A

is as clear as the distinction between absolute and relative minima. How-
ever, physically the distinction is more artificial. For example, it is intu-
itively clear that compressive loads can cause a bar to buckle and some of
the configurations we here call stable are, no doubt, physically unstable for
this reason. To explore this, we would need a more general theory, capable
of describing the buckled configurations and this is not the only possibility
omitted from our considerations. More accurately, “stable” means the most
stable of the possibilities we choose to consider and one needs to exercise
good judgment in deciding which to consider.

Now, for graphs of ¢ of the kind indicated, there is a particular value of
k for which two values of A qualify in that they have a common tangent
line below the graph, say at k = kjy.

Then,

6%, 05) — (%', 08) — k(3 —%3') =0. (3.1.26)

Now, for any value of k we know what it means for (3.1.24) and (3.1.25)
to be satisfied by some value A = X: the graph of ¢(\,0p) must lie in the
region above the tangent line, at A = X. Geometrically, it is clear from the
graph that this will occur for some A such that

<2 when k < ky, (3.1.27)

and o
A> A, when k > ky. (3.1.28)

Thus except when k = kjas, the most stable configuration is obtained by
setting _
Yy = Az, (3.1.29)
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FIGURE 3.6. The stress-stretch curve in Fig. 3.1, hatchings indicating two areas
associated with a load line ¢ = k.

where X is the (unique) value of A determined by these considerations.
Clearly, this changes in a discontinuous manner as k passes through the
value k]v[.

There is another way of picturing the situation in terms of the graph
of o(\,0p). We are concerned with values of k such that the line o = k
intersects this graph in three places, as indicated by Fig. 3.6.

Let A; denote the hatched area indicated between A; and As. It is given
by

X3 _ _ -
A = A o) — k(% — Xs) = 6(%s, 05) — 6(h1,08) — k(A1 — Ra).

Similarly, the other hatched area, As, is given by
—Ag = ¢(X2,05) — ¢(X3,08) — k(X2 — A3).
Thus,
Ay — Az = ¢(A2,08) — ¢(A1,08) — k(A2 — A1). (3.1.30)
Comparing this with (3.1.26), we see that
A1 = A; when k =k (3.1.31)

This is the so-called equal area rule, first introduced by Maxwell in a math-
ematically similar analysis of van der Waals’s fluids. It turns up in various
physical problems. For k < kps, one has A = A, and A; > As. For k > ky,
X = :\-2 and A > Al

We have presented reasoning that is very commonly accepted by workers
interested in such phenomena. What is not widely appreciated is that it
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FIGURE 3.7. Loci of stable configurations, for the graph in Fig. 3.1, in a
dead-loading device.

involves a rather subtle tacit assumption, pointed out by Kahl [14]. By
modifying this one can come to different conclusions. We will ignore this
complication, our aim being more to illustrate common practices.

Now, for the moment, suppose that the bar always chooses its most
stable configuration as one increases k by small increments, starting from
k = 0. It is then highly unlikely that one will hit the value k = kj; exactly.
However, one will reach a point where adding a small load moves k through
the critical value ks, producing a sudden increase in the stretch, something
many would regard as a phase transition. So, one will obtain data points
like those shown in Fig. 3.7 and one should obtain essentially the same
points when one similarly takes off weights for the thermoelastic model to
apply, as we here interpret it. So, we simply do not get any equilibrium data
points for an interval of values of A. However, granted the reversibility, we
can use (3.1.26) to estimate the change in ¢ associated with the transition
which is helpful in the effort to determine this function experimentally.
When the assumptions apply, the sudden jump provides an example of a
process that is reversible but not reasonably considered to be quasi-static.

As a matter of experience, solids are rather prone to remain in metastable
configurations, so the assumption just made may well fail to apply. Then,
motivated to some degree by dynamical considerations discussed in Chapter
1, we accept one limitation on what can happen in time:

RULE: With k and 0p fired, E, may change to a lower value
but it cannot change to a higher value.

From the second derivative test, we have a minimal requirement for sta-
bility: configurations involving values of A such that do/d\ < 0 are too

iH JL
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FIGURE 3.8. Loci of metastable configurations, for the graph in Fig. 3.1, in a
dead-loading device.

unstable to be observed in the experiments considered. Indicating these by
a broken curve, we have the effect shown in Fig. 3.8.

Following Gibbs, many refer to unstable regimes such as that occurring
here when do /d\ < 0 as spinoidal regimes. Physically, stretches passing the
second derivative test may or may not be stable enough to be observed.
However, in loading up from k = 0, one is likely to stay on the left full
curve in Fig. 3.9 until k becomes somewhat larger than kys. Then there is
a transition to the right curve, following this up as k increases, obtaining
data points similar to those discussed before. If one then decreases k, as
suggested in Fig. 3.9, the deformation cannot retrace its path, as this would
violate the above rule. One must stay on the right branch at least until k
reaches the value kj;. It may well stay here until k reaches a lower value,
then shift to the more stable left branch. This gives rise to the phenomenon
of hysteresis, with loading and unloading curves forming a loop like that
shown in Fig. 3.9.

Rather commonly, one sees effects of this kind accompanying phase tran-
sition in solids. The values of ¢ at which transitions occur may or may not
be very reproducible; they may be different for seemingly identical speci-
mens loaded in the same device, for example. One sees a little more of the
graph of o()\, 0) than previously. On the other hand, there is no good way
to connect values of ¢ on the two branches from such data alone, since the
change of ¢ accompanying a transition only satisfies an inequality, not an
equation. By assumption, the left branch contains a point where ¢ = 0. It
is possible that the right branch does also. If so, we might start on the left,
load up enough to induce a transition, then unload, obtaining what seems
to be permanent deformation. This particular process is not reversible. To
justify the notion that our theory applies, one should try to find some other
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FIGURE 3.9. Hysteresis loop encountered when loads are increased, then de-
creased, involving metastable configurations. The arrows indicate where the load
is being increased or decreased.

process connecting these two stretches, at 6 = 6, which is, at least to a
good approximation, reversible. In this,  may well change as long as it
begins and ends at the value 65.

In so-called semicrystalline polymers, one can sometimes obtain such
processes by taking the polymer to a higher temperature, stretching it,
and cooling it, holding the stretch fixed, removing the loads, then reversing
this process. For these, heating the more stretched state when unloaded
causes a sudden shift back to the reference configuration. The phenomenon
is exploited in “heat-shrink” insulating material and in sealing up poultry
in polymer coverings, for example. At least qualitatively, one can model
such phenomena in the following way. Assume that, at a sufficiently high
temperature, ¢ is a convex function of A, but at lower temperatures it
is more like that pictured in Fig. 3.4, having two minima, providing two
unstressed configurations which are at least metastable. Behavior roughly
like that predicted by such models is observed in various high polymers and
is exploited in various applications. It seems to have first been exploited
in making nylon fibers: inducing nylon to be in a more stretched state
makes the fiber stronger. Some other kinds of models for describing such
phenomena are discussed by different authors in reference [15], for example.

In this discussion we have assumed, rather tacitly, that at each value of
k, A is independent of x. Actually, there are possibilities for having X\ take
on different values in different parts of the bar. Shortly, we will be forced
to consider this possibility.

Here, we have examples of the kinds of difficulties that can arise in trying
to use experiments to determine ¢(\, #), associated with the occurrence of
phase transitions. It is worth bearing in mind that it is not necessary to use

|

|

E
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only the standard kinds of experiments discussed earlier. An ingenious per-
son knowing something about the difficulties encountered may find another
way to obtain some valuable information.

Now, let us return to (3.1.25) and consider what happens when we change
the ambient temperature 0z a little, assuming that the bar continues to be
in the stable configuration. Generally, the graph of ¢ versus A will change
a little since ¢ depends on 6. Physically, one will still get a transition, but

kar, Xiw and Xéw will become functions of 0, changing as 65 does. Bearing
this in mind, we can differentiate (3.1.26) with respect to 85, giving

_M M
dX\, ~M _ dX,
oy~ 90 ,08) —kn] -

dkr

£ < M —M
—n(%",08) + (%', 08) - G 81 =X,

0= {G(:\—f/[,gs) - kM]

However, from the way things are defined, the two values of o are both
equal to kps, so this simplifies to

— —M
dkM _ _71()\;4,03) - 7](/\1 aoB)
s i

. (3.1.32)

Now, write y y
An=n(x;,08) —n(X ,08) = QL/05- (3.1.33)
Here Qp, called the latent heat, is the heat supplied to the bar when the

stretch changes from A;  to Xy in a reversible process. It is not easy to
measure with the loading device in the picture. However, if the bar always
remains in the most stable configuration the transition should be close to
reversible, if we load in order that it occurs for k very close to kas. Then, by
doing experiments at different temperatures, we can estimate the functions
kr(0B), Xiw(OB) and —)‘-2/1(03) and calculate Qr and An. When there is
some hysteresis but fairly reproducible transition conditions, one can get
two curves in the o — 6 plane, one indicating where A\, transforms to Az, the
other where Ay transforms to A;. One finds workers using these to make
educated guesses as to the quantities needed here. Of course, we can rewrite
(3.1.32) and (3.1.33) in the form

do _ Q L

49~ AN’
where we have written ¢ in place of kys and so on, to conform better to
convention. This is sometimes called the Clausius—Clapeyron equation, the
analogue of an equation with the same name which has long been used
in connection with phase transitions in fluids. It is useful in connecting
the values of 7 in the two phases. Clearly, one can do essentially the same
analysis for the theory of plates mentioned earlier. We will discuss this
later.

(3.1.34)
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3.2 Equilibrium Theory of Bars in Hard Devices

In commonly used jargon, a hard device is a device sturdy enough to hold
parts of a specimen in fixed positions. Various testing machines are designed
to do this, at least to a good approximation. For our bars, the aim is to fix
the end positions so we have, say,

y(L)=a>0 (3.2.1)
where a is a parameter we can now control. As before, we assume no body
forces act, (f = 0) so, as long as a is fixed, no work is done on the bar.
Therefore, it can be considered as a mechanically isolated system. As before,
we consider it to be in contact with a heat bath at a constant temperature
0p. From the discussion in Chapter 1, the situation is covered by statement
IIT and we should use as thermodynamic potential the ballistic free energy
indicated by (1.3.3), with E and S the energy and entropy of the bar,
respectively. However, we follow the common practice of using instead the
Helmholtz free energy,

L

F = / o(\, 05) dz. (3.2.2)
0

This and the previous F' are defined differently, but this should cause no

confusion. Also, we will simplify notation by writing € in place of #5. Of

course, it is to be understood that all deformations allowed must satisfy

(3.2.1), so A must satisfy

L
a=y(L)= / Adz. (3.2.3)
0
To determine the possible equilibria, we proceed as before to get
L A% L
O¢ [ Oby / _ [ 06y
F= — | == )dz = —-—
s /06A<az)”” A e
L L
=— / 9 by dx + Tby (3.24)
o Oz 0

L /=
oo
—/0 % bydr =0,

the overbar denoting evaluation at y = 7(z), the putative equilibrium state.
The calculation presumes some smoothness of the functions involved, and

we will need to reconsider this later. By reasoning now familiar, we can

then conclude that
Jo _
— =0 =7 = k = const.,

o (3.2.5)

3.2 Equilibrium Theory of Bars in Hard Devices 51

but this constant is now not given. Similarly, one can, as before, use the
second derivative test to get the condition

24

P45

oNz —
as a minimal requirement for stability.

Now, if at the temperature considered ¢ is a convex function of A, (3.2.6)

will hold for any choice of A. Then, with ¢ a monotonically increasing
function of A, (3.2.5) cannot hold for two different values of A, so A must
be constant throughout the bar. Then, from (3.2.1), we must have

(3.2.6)

A=a/L, y=az/L. (3.2.7)
Putting this value into the constitutive equation for o, we can determine
the value of the constant k. Or, if we measure X and k, or the equivalent,
we can use the information on such isothermal mechanical experiments to
help determine the function ¢(A,#), as discussed before.

As is clear from our study relating to dead-load devices, (3.2.5) can be
satisfied for more than one value of A when ¢ is not a convex function of
A, at least for some values of k. Consider the possibility that just one value
of A occurs in the bar. Then (3.2.7) must hold and, for some values of a/L,
(3.2.6) will fail to hold. Such configurations cannot even be metastable.
So we must consider the possibility that X is not constant throughout the
bar. It is rather obvious that, for constitutive equations anything like those
considered before, X cannot vary smoothly with z and satisfy (3.2.5). For
7(z) to be discontinuous would mean that the bar moves through itself,
which is unreasonable, or that it breaks, a possibility which we will try to
exclude, if we can. It will be considered later, in Chapter 7. Let us reconsider
§F, allowing for the possibility that A(z) and 86y/dz are continuous except
at x = L < L, with §y remaining continuous at = L. Then, we calculate
that

d Y (- 96y
r= [ (5 n 2 0) o
il e o
d | v /<~ 08y Lo oy
= == X—p—=.0
dqu ¢(A+u6m,0)dz+/f ¢( uaz,)dz;

YA L
3 o o st — 5 V6u(L) =
“/0 ézéydw—/f 2 byde — (" —o)8y(T) =,

#=0

where 7 is the limit approached by @ as ¢ — L, with £ > L, and 7 is the
limit approached from the other side. As before, we can argue that (3.2.5)
must hold in each of the two intervals by considering éy vanishing at the
end points, so @ = k* in one interval, & = k™ in the other. Putting this back
in 6F, we see that we must have kt = k™, so (3.2.5) must hold throughout
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FIGURE 3.10. With the graph in Fig. 3.1, indicating quantities of interest when
the overall stretch A = a/L falls in an unstable range.

the bar. Similar arguments apply if such discontinuities occur at more than
one place. Also, by rather similar arguments, (3.2.6) must hold where X
is continuous. It is rather obvious that these conditions should hold for
the forces to remain balanced. From this viewpoint, we are checking that
the definitions of thermodynamic equilibrium are consistent with ideas of
mechanical equilibrium. Consider a graph of (A, 8) as we considered before
and a value a/L in the range of concern, as shown in Fig. 3.10.

Although we do not know the value of k, we cannot succeed unless the
line o = k gives us two values of X, X\, and A; in the sketch, both satisfying
(3.2.6). If it does, we can put the stretch equal to A; in some part, Ay in
the other, arranging that ¥ is continuous. For example, for some L = bL,
0<b< 11, set

y=Mz, 0<z<bL,
= - (3.2.8)
T=X(z —bL)+ \bL, bL<z<L.
Then, (3.2.3) gives B B
a = [Mb+ Aa(l - b)]L, (3.2.9)
from which _
Ay —a/L
po Qeza/l) (3.2.10)
(A2 — A1)

We want to ascertain that b lies between 0 and 1, which will be true if
A <a/L <X (3.2.11)

From the figure, this is clearly true if A = a/L lies in the interval where
02%¢/0X? < 0. However, such configurations are possible when it does not.

|
!
|
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In the graph of ¢ they are possible as long as

XS <a/L < A, (3.2.12)
with A§ and \§ denoting places where the horizontal tangents to the graph
again intersect the graph, so this whole range is worth considering. For
those configurations, it is easy to use (3.2.2) to calculate that

F = Lig(M, 0)b + ¢(Ra, 0)(1 — b)]. (3.2.13)

Of course, the most stable of these will be those for which F' has the
smallest value, for 6 and a/L fixed. Here, we have our first example of the
possibility of an end-point minimum. Physically, b and 1 —b cannot take on
negative values. Possibly, a configuration with b = 1 minimizes F’, and we
then cannot allow variations increasing b. Similarly, variations in b cannot
decrease b, when b = 0. When the inequalities in (3.2.12) are strict, it is
easy to see that we can get configurations of the kind considered for values
of k in an interval, so we can vary this, producing variations in Ay, Az, and
b. From (3.2.13), we have, for the differential of F’

iF =122 d\1 + ¢(A1,0) db + (1 — b) 9 dhg — ¢(X2,0) db}. (3.2.14)
(9)\1 6)\2

We already know that, for some value of k, we must have

o9 _ s _,
O OX
and, from (3.2.9), we must have

bdX, + (1 — b)drz = (h2 — A1) db.

Using these, we can simplify (3.2.14), to get the condition for a minimum
as

dF = Lig(X1,0) — ¢(%a,0) — k(X — Re)] db > 0.

There are then three possibilities. For b = 0 to qualify, we can only have
db > 0, so we might have

(3.2.15)

b=0,  ¢(x1,0) — d(A2,0) — k(A1 — Az) > 0. (3.2.16)
Similarly, we might have
b=1,  ¢(,0) — ¢, 0) — k(A1 — A2) < 0. (3.2.17)

Finally, for other values of b, db can be positive or negative, giving

0<b<1, o(201,0) — (X2, 0) — k(A1 —X2) =0 (3.2.18)
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and, from (3.1.24), this puts us on the Maxwell line, with

—M —

XI = Al 3 o

k = kp, A2 = Ay,
this being determined by the equal area rule. In these terms, (3.2.16) trans-
lates to

b=0,

Al < A2, (3219)

and (3.2.17) becomes

b= 1, A1 > A2, (3220)

with A; and A; the areas discussed in Section 3.1. With these results, it is
easy to determine that the most stable configurations are given by

b=0 when % > X;",
. (3.2.21)
b=1 when 7 <Ay,

b is given by (3.2.10) with A; = :\-iw, X = :\-;VI when Xiw <#< :\-;VI. So,
again, the Maxwell line plays an important role. The most stable config-
urations are thus as indicated by Fig. 3.5. If the bar always chooses its
most stable configurations, it should follow this path whether a is being
increased or decreased, the stretch becoming discontinuous, to attain the
desired overall stretch when necessary.

Again, solids are rather prone to “hang up” in metastable configurations
and we may well get one to take on a variety of different metastable con-
figurations depending on what we have done to it. Changing b slightly only
changes F slightly. However, it causes some little part of the material to
change its state quite significantly. If the two states are separated by a high
energy barrier, such interfaces may well not move, leaving us with configu-
rations that are really rather stable, although the energy would decrease if
the interface would move. For example, we might attain a stable configu-
ration of the kind in (3.2.21) involving a phase mixture. If we hold a fixed
and change 6 a little, one can see that b should change to adjust to the
new Maxwell line, but experience indicates that it might not. Any criterion
stronger than (3.2.6) is likely to exclude such possibilities. Again, there is
an accepted rule, governing what can happen, similar to that discussed in
Section 3.1.

RULE: With  and a fized, it is possible that the bar’s configu-
ration will change to another if, and only if, the newer config-
uration has a smaller value of F.

For example, as we start increasing a from an initially unstressed, ho-
mogeneous configuration, it is not unlikely to continue to deform homoge-

neously until a/L becomes somewhat larger than Xiw. The corresponding

|
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FIGURE 3.11. As the bar shifts from a metastable configuration, in a hard device,
stress generally jumps, to the Maxwell line, with o = kas.

stress will then get larger than kjs. A reasonable possibility is that, at
some point, it will change to the most stable configuration. When it does,
the stress will drop to the value kp; and, from the rule, this process is not
reversible. What we then see is a path of the kind shown in Fig. 3.11.
Often, one does see a drop in stress more or less like this as the “phase
mixture” first forms. To try to decide whether our theory may continue to
apply, we would like to know whether there is another way of moving from
the initial state to this end state by a reversible process. This could involve
intermediate changes of temperature, and so on. This kind of problem is
not routine, so an experimentalist probing it needs to exercise some inge-
nuity. As one increases a from this point, one might stay on the Maxwell

line until a/L reaches the value :\-;VI . However, the rule does not exclude
the possibility that a change of a again puts the bar in another metastable
configuration, perhaps followed by another drop back to the Maxwell line.
Said differently, equilibrium theory does not supply very definite predic-
tions about metastable configurations. Other kinds of theory, for example,
dynamical theory, sometimes do better, but our ability to make reliable pre-
dictions about such phenomena is very limited. In any event, it is clear that,
theoretically, the behavior of bars in hard and soft devices can be rather
different, and this is consistent with experience. Also, we have learned that
there are rather subtle differences between the function o(\, #) and the re-
lations between o and A which may be observed in experiment. Phenomena
of this kind do complicate the experimental program discussed in Section
2.5 but, to some degree, we can cope with them.
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3.3 Exercises

3.1. Consider the constitutive equation for rubber used in Exercise 2.1-
2.5. Suppose that we start with the bar in equilibrium, with A = 1,
0 = 0o, then cause it to deform in an isentropic process, to get o to
be a constant tensile stress. Derive a formula for the corresponding
change in temperature and determine whether the bar becomes hotter
or colder. Roughly, this describes what should happen if the bar is
stretched quite rapidly. Quickly stretch a rubber band and touch it
to your lip and see if you experience what you predicted.

3.2. For the same material, we now clamp one end and hang a weight
on the other, to dead load it, at room temperature, and let it come
to equilibrium. Then we increase the ambient temperature and let it
come to equilibrium at this temperature, without changing the load.
Theoretically, should this heating produce an increase or decrease in
the length of the bar? Try to design and carry out a simple experiment
on a rubber band to check your prediction.

3.3. For a smooth function y(z), defined for all z, show that the following
two conditions are equivalent:

(a) Forallz, y'(z) > 0.
(b) For all choices of z, and x2, y(z1) —y(z2) — v/ (z2)(z1 —23) > 0.

For Exercises 3.4-3.7, suppose that, at a temperature taken as the reference
for some bars, the strain energy functions for this all have the form

a(A—1)2 + b(A-1)3  c(A—1)*

W) =— 3 PR

where a, b, and c are constants. To simplify considerations, you can assume
that this applies for —0o < A < oo, although this is physically unrealistic.

3.4. For what values of the constants is W(A) a convex function?

3.5. For what values of the constants does W(\) fail to be convex, but
have the property that ¢ = 0 only when X\ = 1?

3.6. For what values of the constants are there two values of A for which
o =0, both passing the second derivative test for stability in a deal-
loading device at zero load?

3.7. For what values of the constants are there two values of \ for which
o = 0, both being stable equilibria, when the bar is considered to be
dead-loaded?

k.

| k

4
Equilibrium Theory of Plates

4.1 Martensitic Transformations

The previous theory can be adapted, in an obvious way, to the one-
dimensional theory of shear in plates. However, the latter does better than
the former in illustrating some phenomena which are rather common in
crystals, called Martensitic transformations. Here special kinds of material
symmetry are important. With our plates, we can have this described by

¢(7’0) = ¢(_7,0)a (411)

as was discussed before. In this context, two pictures serve as representative.
For the first, the graph of ¢ versus « changes with 0 as indicated in Fig. 4.1.

That is, it is convex at higher temperatures, with a minimum at v = 0,
this being replaced by minima at v = £v, when 6 < 0., the value of
7o depending on 6, and approaching zero as 6 — 0.. Of course, it is the
material symmetry that forces ¢ to have a minimum at —q if it has one
at . For 6 > 0., the minimum at y = 0 is associated with a phase called
Austenite. The minima at v = +vy # 0 for 6 < 0. are associated with
“twin” phases, called Martensite. In real crystals, Austenite is, typically, a
crystal configuration with greater symmetry than the Martensite phases.
The Martensite phases have comparable symmetry. For example, one might
be a mirror image of the other. Here, the minimizing values of 4 depend
continuously on . If measurements indicate this and there is no latent heat
associated with the transition at § = 6., these are what workers are likely
to call second-order phase transitions. The other picture has the graphs
changing as indicated in Fig. 4.2.
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Yo Yo

FIGURE 4.1. Sketch showing the shape of the graph of ¢ vs. v for a typical sec-
ond-order transition, at temperatures near the transition temperature 6., where
%’} = 0 at v = 0. The line indicates where v = 0. The curves have been displaced
from each other vertically, to make the picture clearer.

Again v = 0 is associated with Austenite, +7¢ with Martensite. For 0
near 6., we have minima corresponding to Austenite and Martensite, one
or the other being a relative minimum depending on the value of 0. Here,
0. denotes the critical value of # at which ¢ has three absolute minima. As
before, 79 depends on 6, representing the analogue of thermal expansion in
bars. However, unlike the previous case, we never have g = 0. As we reduce
6 through the value 6, the absolute minimum changes in a discontinuous
manner, from v = 0 to v = +vp and, typically, there will be some latent
heat associated with this. Here, thermal expansion occurs in a dramatic
way. This is a rather typical picture of what workers would call a first-order
Martensitic transformation. These are more common than those of second-
order. Martensitic transformations can involve various kinds of changes in
crystal symmetry. Workers often use the theory of Landau [16] to estimate
whether a particular kind of symmetry change is likely to occur as a second-
order transition.

Originally, such transitions were discovered in steels, associated with
changes of composition. One old way of making steel involves putting some
carbon into iron, a cubic crystal. If the carbon content is low enough,
one still gets cubic crystals, but when the content is sufficiently high, one
gets tetragonal crystals. To analyze this, one needs to introduce additional
variables to describe the amounts of the different ingredients. After such
revision, one again uses the general ideas of Gibbs to formulate criteria for
stability of equilibrium, as will be discussed later.

Now, for the problem at hand, stability of the plate under dead loading
can be formulated by copying the anlysis for bars. Consider one face to be

|
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FIGURE 4.2. Sketch analogous to Fig. 4.1, for a typical first-order transition.
Here, 0. is the value of § at which ¢ takes on its minimum value at three places.
Upon cooling from higher temperatures, the graph first acquires points of inflec-
tion at @ = 62, then gets relative minima at v = o, which become absolute
minima for § < .. At § = 6, the relative minimum at v = 0 disappears, to

become a relative maximum at lower temperatures. Bear in mind that o has
different values at different temperatures, as suggested by the sketch.

held fixed, giving the boundary condition

u(0) = 0. (4.1.2)
The other face is to be subjected to a constant shear force per unit area,
k denoting its magnitude. As before, we have the arrangement in contact
with a heat bath and, taking the usual short-cut, we consider this to be
the temperature of the plate. Then, from the analogue of (3.1.17), we have

F= / ¥ 5(.0) dz — ku(L) (4.1.3)
0

as the thermodynamic potential, whose absolute or relative minima corre-
spond to stable or metastable equilibria. Recall that the shear stress 7 and
entropy density 7 are given by

T= n=—m. (4.1.4)

We might reconsider one point learned from our study of bars in hard
devices. It may be reasonable to allow for the possibility that v = du/0x
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could be discontinuous but, for the same reasons as before, we want u(x)
to be continuous.

As before, we get, as a condition for equilibrium, that

0
T = 9 _ k. (4.1.5)

oy
Here, we have not added overbars to denote evaluation at the equilibrium
state: it should be sufficiently familiar to make this unnecessary. Similarly,
at least where v is continuous, the second derivative test for a minimum
applies, giving

o’¢  or

2 " oy > 0. (4.1.6)

Also, we can borrow the previous geometrical considerations of stability
relating to the graph of ¢ versus v. That is, on this graph, we find the
tangent line(s) with slope k. If, at such a point, the entire graph lies in the
half-plane above the line, the corresponding value(s) of v generate stable
configurations. For metastable configurations, only points on the graph
near the point in question need lie in this half-plane. At high temperatures,
where ¢ is a convex function of +, the equilibria are unique and stable.

In terms of the graphs of ¢, the geometrical picture of stability is similar
to that for the bars. Given k, locate the point(s) where the tangent line(s)
have this slope. For the corresponding values of «, we can divide them
into three sets. Unstable equilibria are of no interest. This includes values
of v for which 82¢/dv% < 0, or some with 9%¢/3y? = 0. What is really
relevant is whether any nearby points on the graph lie below the tangent
line. If there are such points arbitrarily close, they correspond to unstable
cquilibria. If the whole graph lies above the tangent line, the corresponding
value of y can occur in a stable configuration. When there is more than one
stable configuration, one can have either the homogeneous configurations
with v equal to one of these, or a phase mixture when v takes on the
different values in different parts of the plate. For metastable equilibria, it
is still important that points on the graph lie above the tangent line, but
only that part of it which is associated with values of v sufficiently close to
the value considered. Observations indicate that phase mixtures involving
such metastable values of v do occur.

For example, for ¢ behaving as indicated in Fig. 4.1, the unloaded con-
figuration has v = 0 as the only equilbrium configuration for 8 > 6. and
it is stable. For 6 < 6. this is unstable but +7 both qualify as stable.
One can then construct an infinite number of stable phase mixtures with
7 = 7o in some subintervals, ¥ = —vg in the remainder. For rather obvious
reasons the two phases are sometimes called twins, the mixture forming
twinned Martensite. This can and should be done in such a way that u(z)

|
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is continuous. For example, we could take

—7YZz, 0 S z S Ll,
u(z) = { Y0(z — L1) — yoLs, Ly <z < Ly, (4.1.7)
—’)’0(1} — L2) + ’yO(LQ — 2L1), Loy<z<L.

where L; and L, are any numbers satisfying
O<Li<Ly;<L.

Such configurations often occur spontaneously as one cools Austenite to
obtain Martensite. The second sequence of pictures, in Fig. 4.2, becomes
more complicated for @ near §. where both Austenite and Martensite are
at least metastable and, at § = 0., both are stable. Theoretically, one can
then construct phase mixtures involving Austenite and twinned Martensite,
which are metastable near § = 0, and stable at 8 = 0. In real crystals, one
does see Austenite and twinned Martensite occurring in the same speci-
men, as suggested by this. Often, one sees regions where the twins occur as
parallel planes, as suggested by one-dimensional theory. However, the in-
terfaces between Austenite and Martensite generally have quite a different
direction, so it is necessary to use three-dimensional theory to do realistic
analyses of these.

There is another matter which is one of some interest. Suppose that
one has twinned Martensite and a shear stress is applied to it as a small
dead load, with k > 0, say. On the graph of ¢, this will give tangent lines
with this slope at values of «y, one near v, the other near —y,. It is easy
to see that, for the one near —~g, the graph of ¢ lies partly below the
tangent line, so this is now only metastable. Similarly, one sees that the
one near <y, remains stable. If one increases k sufficiently, that closer to
—~~o becomes unstable, so, for some intermediate value of k, the twinned
configuration must shift to the more stable homogeneous configuration. Me-
chanical treatments like this are sometimes used to eliminate twins which
can be undesirable for some applications. This trick was discovered during
World War II. The Allies, needing quartz for piezoelectric crystals, were
forced to use what occurred naturally in France. This contained so-called
Dauphiné twins which affected the performance of the crystals. This is not
really quite what experts mean by twinned Martensite, but the basic idea
is similar. With some rather elementary theory, eventually published by
L.A. Thomas and W.A. Wooster [17] they worked out schemes for loading
to maximize the energy differences which were used successfully to obtain
better crystals. Later, similar treatments were, and still are, used on vari-
ous other kinds of twinned crystals. The experience is that it does not work
if the loads are too small, again indicating some tendency for such phase
mixtures to “hang up” in metastable configurations. So, one makes the
loads exceed a critical value, determined empirically. There is no reliable
theory for determining this, as far as I know.
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Later, various workers became interested in alloys exhibiting shape mem-
ory effects. These contain phase mixtures of Austenite and Martensite, with
a morphology easily changed in a rather reversible way by the application
of loads or temperature changes. Wrap a wire around your finger and it
will seem to deform permanently, as would a soft copper wire. However,
unlike the latter, one can get it to spring back to its original form by rais-
ing the temperature sufficiently. Solid-state engines have been made which
involve alternating the temperature between values above and below the
transition temperature and various other kinds of devices are being devel-
oped by entrepreneurs. The transformations do bear some resemblance to
what occurs in steels, for example, but in the latter, processes changing
the morphology tend to be far from reversible. With the structural metals,
the metallurgist tries to “lock in” morphologies, to attain desired features
of strength. A great deal of information concerning such materials is avail-
able in conference proceedings, [18-19]. Much information on Martensitic
transformations in other materials is presented by Nishiyama [20]. Related
three-dimensional mathematical theory is discussed by James and Kinder-
lehrer [21], for example. Such theory is becoming more sophisticated, a
trend that is likely to continue.

4.2 Bifurcation Diagrams

In considering transition phenomena, workers find useful another kind of
picture, sometimes called a bifurcation diagram. Essentially, it is a picture
of equilibria of interest, indicating how they vary and branch as the vari-
ables of interest change. For our Martensitic transformations, one point of
interest is the behavior of unloaded configurations as we change 6. The
possible equilibria are then described by

7(0,7) =0, (4.2.1)

which we can picture as curves in the 86—y plane. One of these is the trivial
solution, giving us the straight line v = 0.

For our typical second-order transition, there are no other points where
7 = 0 when 6 > 6., but we get two more when 6 < 6., corresponding
to 42 = 42(0), and ¢ is small when 6 is close to .. For small v, we
can approximate ¢ by the first few terms in a Taylor expansion, if it is
smooth enough,!

! Actually, experiments on “critical exponents” indicate thermodynamic po-
tentials are likely to have rather mild singularities at values of their arguments at
which second-order transitions occur, these being analogous to “critical points”
in fluids. Some discussion of these matters is given by Sengers et al. [22].
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FIGURE 4.3. Graph of the curves 7 = 0, for a typical second-order Martensitic
transformation, with 6. as indicated in Fig. 4.1. The dotted line is to remind us
that the line v = 0 is included.

b c(0
=~ a(0) + (017" + “ 51
T2 ~(b+ cy?) (4.2.2)
3 = b+ 3cy2.

At v = 0, we should have b = 82¢/8v* changing from positive to negative
as 0 decreases and passes through 0.. At ¢ = 0., ¢ has a minimum at v = 0,
indicating that ¢(f.) > 0 and, as a general rule, c(6.) > 0, so we assume
this. Then, by continuity, ¢(f.) > 0, for 6 sufficiently close to 6.. Setting
T = 0, we then get for § < 6, and (0. — 0) small

72 ~ —b(0)/c(0) > 0. (4.2.3)
Also, in first approximation,
78 & —(0)(0 - 0.)/e(6e), (4.2.4)

indicating that this curve resembles a parabola near § = 6., crossing the
line v = 0 with infinite slope. The curves 7 = 0 look rather like a pitchfork,
as illustrated in Fig. 4.3.

“Pitch-fork bifurcations” giving pictures like this occur in a variety of
physical situations. Later, we will encounter another associated with biaxial
stretching of rubber sheets. Physically, for § < 0., the line v = 0 is too
unstable to be observed, but it is a good idea to record such points in
a bifurcation diagram. This can help to provide a better picture of the
connection between branches.

With the typical first-order transition, we get, at some temperatures, five
points where 7 = 0, three at the lowest temperatures. At lower tempera-
tures there is a temperature 6 at which the local minimum at v = 0 changes
to a local maximum, with §7 /3y = 0 at § < 03, v = 0. Very near this the
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1

FIGURE 4.4. Graph of the curves 7 = 0, including the dotted line indicating
inclusion of v = 0, for a typical first-order Martensitic transformation, §; and 6,
being values indicated in Fig. 4.2.

picture looks like that above, with 8, replaced by 8, except that the double
well occurs at higher, instead of lower, temperatures as one can check by
essentially the same analysis. At higher temperatures, 7 = 0 = v = 0 for
0 > 0, some value of #, and we begin to get five points for § < 6. On
the right side of the graph are two close together, for (62 — 6) positive and
small. As § — 0 they come together to give a single point (6s,72), with

0
T = 6—; =0 at (02,72), (4.2.5)

as one can see from considerations of continuity. Now differentiating

7(vy,0) = 0, we get the differential equation
dd _ Or/dy
dy  01/00’

(4.2.6)

giving a differential equation for a curve. Generally, 87/86 will not vanish
at (02,72), so the right side will be a smooth function of # and ~. Solving
this with the initial condition & = 65 when v = 7, then gives 0 as a function
of v, with df/dy = 0 initially. This indicates that our two points at fixed
0, v > 0 really lie on the same curve. To make a long story short, one gets
the picture sketched in Fig. 4.4.

Pictures like this are also quite commonly encountered in physical prob-
lems and are sometimes said to involve subcritical bifurcations. Here, if we
considered lowering the temperatures from high values and relied on sec-
ond derivative tests for stability, we would see no indication of instability
as long as 6 > 6;. Yet for any 0 < 6., 6 > 01, the system is only metastable
and can be expected to transform before € reaches 6,. Bifurcation theory
includes techniques for finding crossing branches but it is hard to locate
isolated branches. Here, the branch crossing v = 0 seems at first to be
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irrelevant. However, follow it and you will be led to the outer parts, which
are, in fact, stable.

In dealing with near-transition phenomena, it is rather common to as-
sume ¢ is a polynomial and use available experimental data to estimate
the coeflicients. For our second-order transitions, most would assume the
quartic used above, with ¢ a positive constant, b proportional to (8 — 6.),
with a(6) fit to available data on specific heats. For first-order phase tran-
sitions, 72 can be fairly small. Particularly in such cases, workers are likely
to try assuming

¢=A+§72+974+276, (4.2.7)
2 4 6
where the coefficients are simple functions of 8, again using available data
to estimate these.

With suitable choices of these functions, one can obtain graphs of ¢ which
change with @ in the manner indicated by the typical pictures. One needs a
polynomial of degree six, at least, to provide five values of v at which 7 = 0.
Basically, it is for this reason that workers use a sextic, the polynomial of
lowest degree which can describe the phenomena, at least qualitatively.

Roughly, a bifurcation diagram is a picture of the response of a system
when a control variable is changed. Commonly, it is marked to distinguish
the unstable from more stable parts. Here, we consider controlling 6, keep-
ing 7 = 0. As another example, an isothermal stress-strain graph, suitably
marked, could be viewed as a bifurcation diagram if we were controlling T,
keeping 6 fixed.

4.3 Exercises

4.1. Suppose that, for a plate, ¢ is given by a constitutive equation of the

form (a9 — b P
ad —b)y* eyt | dy
=_— 0),
o= L L LT o)
where a, b, ¢, and d are constants, f(6) being some smooth function.
Show that this is the polynomial of lowest degree in vy which can

describe a first-order Martensitic transformation.

4.2. For this form of constitutive equation, decide what are reasonable
assumptions concerning algebraic signs of the constants to describe
a first-order Martensitic transformation. Then derive formulae, ex-
pressing the following quantities in terms of these constants:

0, The temperature at which Austenite changes from meta-
stable to unstable.

0, The upper bound of temperatures for which Martensite is
metastable.
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4.3.

4.4.

4.5.

4.6.
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0. The temperature at which Martensite and Austenite are
both stable.

Y0(#) The shear strain in unstressed Martensite.

For this example, decide what should be meant by the strain energy

for the Martensite and give a formula for it.

For the special cases of the above constitutive equation with d = 0,
which can describe second-order Martensitic transformations, calcu-
late the corresponding ~o(8).

For the same special cases, at some temperature below ., consider an
unstressed sample containing a pair of twins with the discontinuity in
the middle of the specimen. Then consider dead-loading the specimen
a bit, with 7 > 0. Suppose that the discontinuity does not disappear
or move. Find a formula for the difference in strain energies for the
two parts as a function of 7. If necessary, you may use approximations
appropriate for small 7.

Consider the analog for shear of the Clausius—Clapeyron equation
(3.1.34).
dr __Qu
9 0Ay’
Using results obtained in Exercise 4.2, calculate
lim ﬂ
626 df
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Balloon Problems

5.1 Equilibrium of Spherical Balloons at Fixed
Pressure

Here, we will be concerned with rubber balloons subjected to inflating
pressures. For simplicity, we assume they are spherical and remain so un-
der such loads. It is known that rubber is, to a very good approximation,
incompressible. Also, it can reasonably be considered to be homogeneous
and isotropic.

As before, we introduce a reference configuration, an unloaded, spherical
shape, at a reference temperature which we consider as room temperature.
Material points will then lie on spheres of radius R, with

Ry < R< Ry, (5.1.1)

where R; and R; are, respectively, the inner and outer radii of the balloon
in the reference configuration. A deformation then changes R to r = r(R),
with

r1=r(R1) < r(R) < r(Rg) =r. (5.1.2)
The incompressibility assumption means that the volume of that part be-
tween R; and R must be the same as that between r; and r(R) or

r(R)® —r} = R® - R3. (5.1.3)

For a given balloon, r(R) is thus determined by r; = r(R;). Also, for typical
balloons,
(R2 - Rl)/Rl << 1,
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]

FIGURE 5.1. One device for controlling the pressure in a spherical balloon.

they being so thin that we may well think of them as infinitely thin in
considering measurements of radius, which we shall do. Such thinking mo-
tivates us to assume that one number will suffice to describe the configura-
tions considered. A dimensionless measure of stretch, similar to that used
for bars, is

A=r/R. (5.1.4)

However, calculations become easier if we use instead a measure based on
the volume V enclosed by the balloon

V/Vr =13R% = \3. (5.1.5)

Then, a likely assumption is that, for the balloon, the Helmholtz free energy
function is of the form
F=F(V/Vg,6). (5.1.6)

Then, we consider the possibility of using experiments to help determine
the form of this function, in particular the isothermal mechanical experi-
ments involved in a typical program of this kind. For simplicity, we think
of working at a single temperature, room temperature, ignoring the depen-
dence on 6.

We have in mind that no force will be applied to the exterior of the
balloon, so this part will be mechanically isolated. The volume V will be
filled with a gas to supply an inflating pressure p.

Let us first consider a device designed to try to control p. It involves a
cylinder and a piston atop which we can add weights, connected by a small
opening to the balloon, as indicated in Fig. 5.1.

Into this, we have put a measured mass M of gas. If A is the area of the
piston, the total volume Vi occupied by the gas is given by

Vo =Ah+V, (5.1.7)

P
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neglecting the small amount in the connecting tube. For this, we do need
some information, namely, an equation of state. For a gas, the likely models
are of the form

Vo
Fg=M¢ <TVI—,0> , (5.1.8)
the gas pressure being given by
OFg
D= —m, (519)
with 3 2F
14 G
— =—-——— <0. 1.1
Ve oVE (5.1.10)
A likely possibility is to use the ideal gas model with
D % = @ X const. = const. (5.1.11)

at room temperature. With (5.1.9), this determines Fiz to within a function
of 8, which is good enough for our purposes. Except in consideration of the
weight W on top, we ignore the effects of gravity. With it is associated the
potential energy which can be taken as Wh. Then, adding up the three
contributions, we get the thermodynamic potential

E=Wh+Fg+F. (5.1.12)

Again, we have taken the usual shortcut, assuming that the temperature
throughout is the ambient temperature. Here, the idea is that h and V can
be varied independently, with the proviso that neither can become negative.
Physically, there is a real possibility of having equilibria with the piston
sitting on the bottom of the cylinder with h = 0. Physically, the possibility
of having V = 0 is unreasonable. Then, possible variations in h cannot
decrease it, this being like the end point minima discussed before. For the
moment, let us exclude this possibility. Then, we obtain, as one equilibrium
equation

E F,
aa_h =0=W+ g—VE(A)
¢ (5.1.13)
=W - pA,
or
p=WJ/A, (5.1.14)

the rather obvious balancing of the weight with the gas pressure. It is in
this sense that we control p and, clearly, it need not hold when h = 0. As
the other equilibrium equation, we have, using (5.1.6),

9B __09Fc  _OF 1
vV~ " T aVg T a(V/VR) Vr’'

(5.1.15)
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or

__OF 1
P=3vive) Vi

Now, given (5.1.11) or another such equation satisfying (5.1.10), p is a
monotonically decreasing function of Vi with M fixed, as it is here. Then
we can solve (5.1.14) for Vi; as a function of W/A. Note that this also gives
F¢ as a function of W/A. Here, experienced workers would be likely to take
another shortcut. Take it as obvious from the start that (5.1.14) will hold.
Then, for fixed p, we have

(5.1.16)

Wh =pAh = p(Vg — V) = —pV + const.,
and Fg also becomes a constant, so we can replace (5.1.12) by the potential
E=-pV +F, (5.1.17)

(5.1.16) being the condition that 8E/8V = 0, —pV being a kind of potential
energy associated with work done on the balloon by the gas. If we use
(5.1.16), the second derivative test for a minimum becomes simply

#E  °F 1
= — > 1.
ave = v v2 =0 (5.1.18)

a test for metastability, p being now regarded as fixed.

Had we not taken the shortcut, we would be concerned with the second
derivative test as it applies to E(h,V), a function of two variables. For
this, one calculates the second differential, and requires that this be non-
negative,

»PE , ,
_ >
dhdV + oo dV? > 0,

0’E
Ohov

_O°E

2 r—
E= P

(dh)* + 2 (5.1.19)

for all dh and dV. Conditions necessary and sufficient for this are that

Oh2 — 7

2
6E>0’

573 (5.1.20)

32E \> 0°E 8’E
< b
ohdV | — 9k 8V2

the second derivative test being inconclusive if any of the equalities hold.
Using (5.1.10), one can show that this does, in fact, give the same condition
as (5.1.18).
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I

|

5.1 Equilibrium of Spherical Balloons at Fixed Pressure 71

It remains to consider the possibility of equilibria with A = 0. Then, the
differential E should be non-negative for possible dh and dV/,

oFE oF
= — —dV > 0. 1.
dE 6hdh+6V V>0 (5.1.21)
Here, dh can be positive, but not negative, so we get
oF
22 —w-pA>0,
on =W TPAZ
or
p < W/A. (5.1.22)

Also, since dV is not restricted, (5.1.16) still holds. Further, if equality holds
in (5.1.22), dE = 0 and one can still use (5.1.19) as a second derivative test.
It is not hard to see that if d?E > 0 for all dV and all positive dh, it must
also be nonnegative for negative dh so, again, (5.1.20) must hold.

If we use the simpler potential, a simple and now familiar picture gives
the most stable configuration with h > 0. Rewrite (5.1.16) and (5.1.17) as

— F
E:F(L>—k-v—, 9

Vr Vr oV/Vr)’

k being a load parameter that is being controlled. On the graph of F
versus V/Vpg, locate the tangent lines with slope k, such that the entire
graph lies above them. Any such configuration corresponds to a most stable
configuration with h > 0.

For the configurations with A = 0, (5.1.7) implies that Vi = V. The
most stable of these are then those that minimize

Vv 14
E|,_,=Fc (H) +F (V;)’

with M fixed. We will discuss this more later. Such minimizers may be un-
stable to variations increasing h, for example, because (5.1.22) is violated,
or because the second derivative test indicates this. In the end, it may be
necessary to do a numerical calculation to determine whether the actual
minimizer of E occurs with h = 0 or h > 0, even when the constitutive
equations are known.

Observations of balloons indicate! that, at some values of pressure, we
can have more than one value of V occurring in equilibrium configurations.
If F always satisfies (5.1.18), it would be impossible for (5.1.15) to be
satisfied by two values of V at a given value of p. Thus, it is rather clear
that F is not a convex function of V/Vg. Suppose that we have a situation
such as that previously considered for bars, involving a graph like that in
Fig. 5.2.

k=pVi= (5.1.23)

(5.1.24)

!Simple experiments demonstrating this are discussed by Beatty [23] and
Kitsche et al. [24].
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FIGURE 5.2. Graph indicating a reasonable kind of material response for a bal-
loon.

For equilibria with h > 0, we can use (5.1.23), clearly analogous to that
used for bars in soft loading devices. The equal area rule then gives us the
Maxwell line. The downward sloping part of the graph corresponds to un-
stable equilibria. If we start increasing pressure in our device by increasing
W, we know what we should see. That is, V should increase smoothly with
pressure until we get to the Maxwell line, or a little higher if it tolerates
being in a metastable configuration. Then, at some pressure, we should see
values of V attained in equilbrium change in a discontinuous manner to
find a more stable location on the part of the curve to the right. What
is observed is that the transition occurs smoothly, but most rapidly, in-
dicating that nonequilibrium theory would be needed to describe this. It
occurs at a value of V/Vy close to v/7, a value not much affected by the
quality of the rubber, nor by modest departures from spherical shape, such
as one gets in toy balloons which usually are not quite spherical. Of course,
the possibility that we may attain equilibrium with h = 0 complicates the
picture. If we ignore this, experiments of this kind involving measurements
of p and V can give us only part of the curve. Observation of the jump in
V would provide some support for the notion that the graph has a shape
more or less similar to that illustrated.

5.2 Equilibrium of Balloons Containing a Fixed
Mass of Gas

When we blow up a balloon, we insert some fixed mass M of gas into the
balloon, then close off the opening. It is interesting to find out what we need
for stability under these circumstances and it will help us to understand

I
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the previous situations better when h = 0. Here, only the balloon and gas
are involved, and we will always have

Va=V. (5.2.1)
The relevant potential now is given by (5.1.12), which we write as
1% 1%
E= LR Y ) LA 22
ro(37) (%) (22)

and we are interested in the absolute and relative minima of this, corre-
sponding to stable or metastable equilibria. The first derivative test gives

OF 0F¢ oF 1

—=0= =+ =5 5.2.3
av == v Y awive) Va (5.2.3)
or, as before,
oF 1
=— 5.2.4
P=8(V/Vr) Vr (5:24)
However, the second derivative test now gives
PE 0°F,; PF 1
= — > 0. 2.5
vz~ ave T avvar Vi< (5.2.5)

From (5.1.10), the first term is positive; so, unlike before, we can have
configurations which are at least metastable, when the second term is neg-
ative, but small enough to be dominated by the first term. Roughly, the
pressure is now free to adjust and it works to help stabilize such configura-
tions. Clearly (5.2.5) may hold for all or only part of the range where the
second term is negative, depending on the detailed form of the equations.
Experiments on balloons indicate that one can cover all, or at least a good
part of the apparently unstable range with this kind of experiment. So, for
determining the function F', this type of experiment is better than that
considered before.

Qualitatively, the graph of F/3(V/Vg) sketched in Fig. 5.2 is like that
found in such experiments. As is discussed by Beatty [23], it is a good idea to
break in a balloon before performing measurements. Blow it up and deflate
it once or twice. If one does not, the graph is likely to be quite a bit higher
on the first run than on subsequent runs. After break-in, the experimental
curves come closer to being reproducible and reversible, features one would
like to have. In such respects, cheap toy balloons will not perform very well
as a rule and a careful experimentalist will want better materials. However,
the general phenomena indicated are quite robust, occurring in balloons
from various sources which may or may not be very close to spherical. It
is related to a common experience. As one starts blowing up a balloon, at
first one must blow quite hard to increase the size a little. Then, rather
suddenly, it becomes easier as one goes over the hill in the p-V diagram.
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Then, it gets harder again until the balloon decides to burst. It is hardly
reasonable to use the same analysis for long tubular balloons, although
one observes somewhat similar phenomena, along with aneurisms which
develop and grow in length as air is added.

To simplify analyses, we assume that the balloons stay spherical. Insta-
bilities could occur, inducing the balloon to take on some less symmetrical
shape. Later, we will discuss some evidence suggesting that the possibility
is real. However, it is a more difficult problem to analyze this, and, for the
experimentalist, it is hard to get balloons that are very good spheres of
uniform thickness, and so on. It is a matter of experience that, near condi-
tions at which instabilities occur, small differences of this kind can have a
significant effect. Such quirks are discussed by Thompson and Hunt [25].

To get an idea of the number and character of equilibria, it helps to
consider another picture. First consider the graph of 0F/0V, regarded as
a function of V. This differs from that given in Fig. 5.2 only by a simple
change of scale. For simplicity, assume that we use the ideal gas model,
described by (5.1.11) with Vi = V. With V as abscissa and p as ordinate
add in the p-V curves, in this case hyperbolae, for various values of M.
From (5.2.4), the possible equilibria are given by the points where one of
these intersect the graph for the balloon. From such a sketch, one can see
that there is at least a theoretical possibility that by adjusting M, one
might get one, two or three equilibria.?2 Consider the picture in Fig. 5.3
when there are three, giving V) < Vo < V3 as equilibrium volumes.

Now, as we did before in considering the equal area rule, we can picture
energy differences as area differences. Obviously

w)-r () [
A =F(Z2)\-F(Z2)- av
! <VR Vi v P
) -F () - [
—A,=F(B)-F(2)- av
2 <VR Vn v T

with the latter integrals referring to the gas. However, with (5.1.9) we can
replace these by differences in Fg, for example

V2 Ve Wi
v =ro (i) o (32)

*By adjusting the shape of the rubber curve, as indicated in Fig. 5.3, you
can get a rather similar sketch where the two curves never intersect more than
once. This is a way of constructing cases where (5.2.5) always holds. According
to Alexander [26], this type of behavior is encountered in some neoprene balloons
used for high-altitude measurements.

(5.2.6)

(5.2.7)
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oF
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FIGURE 5.3. Sketch of the balloon and gas response curves, for a value of M
giving three points of intersection. Here A; and Az denote the areas of the
cross-hatched regions. The dashed curve indicates another possible graph for
the balloon giving only one point of intersection with the graphs for the gas.

Then, with (5.2.2) we have

E(Vo,M)—EWV1,M)=A; >0 (5.2.8)
E(VQ,M)—E(V:;,M):A2>O. o

Thus, the equilibrium at V = Vj is less stable than those at V; or V3. It is
in fact unstable, as can be seen by doing similar area comparisons, for V
near V. The stability enhancement indicated by (5.2.5) is associated with
the possibility of V; taking values where 82F/8V? < 0, as it can. Again,
area comparisons indicate that, as long as we have the three equilibria, V;
and Vs are both at least relative minima. From (5.2.8) one can read off
which is stable:

A > A > V1, stable,

(5.2.9)
A; < Ay = V3 stable.

So, we do have an “equal area” rule somewhat similar to those discussed
earlier, although the areas are not defined by intersecting the basic graph
with a straight line (p = const.). With a single spherical balloon, we do not
have a physically reasonable analogue of the phase mixtures encountered
in bars and plates. One begins to obtain something similar if one considers
several balloons, interconnected so gas is free to move from one to another.

Here, since pV is proportional to M for an ideal gas, increasing M moves
the p—V curve outward, in an obvious sense. If M is small enough, it will
intersect the graph just once, to the left. As M increases, it will attain a
value where the p—V curve touches the graph: here V> and V5 just appear,
with Vo = V5. As M increases further, these split, V> becoming unstable,
Vs metastable. Further increasing M brings us to the equal area configu-
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ration, where V) gives way to V3, becoming the metastable configuration.
Increasing M then moves Vi and V; together: V; stays metastable until
they coincide. For greater values of M there is again just one possible equi-
librium configuration. Clearly, the stability picture here is quite different
from what it is when pressure is controlled, although it is not hard to see
that we will be left with some values of V' too unstable to be observed,
when Fig. 5.3 applies.

Of course, this picture also applies to possible equilibria with A = 0 in
the balloon problem first considered. It is somewhat complicated by the
need to account for (5.1.22), a limitation on pressure which depends on the
weight, along with the possibility that the most stable configurations may
occur when h > 0. We will not pursue analysis of this: the ideas needed to
do so have been covered.

5.3 Exercises

5.1. To check the mathematical result used in (5.1.20), consider
f(z,y) = az® + 2bzy + cr?,

where a, b, and c are constants. Show that, to have f(z,y) > 0 for
all z and y, it is necessary and sufficient that

a>0, ¢>0, b’<ac

5.2. Show that (5.1.18) and (5.1.20) give the same results when A > 0. Do
they when h = 07

5.3. For a spherical balloon at fixed temperature, the Neo-Hookean theory

of rubber yields a total strain energy function of the form

r
R)

with a a positive constant. Make a sketch of the corresponding graph
of the pressure-volume function. For cases where it is subject to con-
stant pressure, calculate the value of V/V; representing a limit of
metastability and say what you can about the possibility of stable
equilibria.

F=a(2X2+X%-3), A=

5.4. Another commonly used theory of rubber is the Mooney—Rivlin the-

ory. For a spherical balloon,
F=a2X2 + X" -3+ (2272 + \* - 3)/K],

where a and K are positive constants. Fitting data on various kinds
of rubber generally gives values of K in the range 4 < K < 8. Make

|
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a sketch of the graph of the pressure-volume function for a realistic
value of K. Is there any important difference between this and the
previous graph, and, if so, what is it?

In terms of three-dimensional theory, the above estimates of F are
made using an approximation which is reasonable when

Ry, - R,

1.
B, <<

More accurately, for the neo-Hookean theory,

Ry
F=Adrn WR?dR,

R

where W, the strain energy per unit volume, is the function
W =C(@2)\ + 7% -3).

Here, C is a positive constant, depending only on the type of rubber.
For a very thin balloon, relate the constant a in Exercise (5.3) to C
and quantities relating to the geometry of the balloon. Here, volume
refers to that of the unstressed material.
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Biaxial Stretch of Rubber Sheets

6.1 The Idealized Problem

We now consider biaxial stretch experiments performed on rubber, one of
the isothermal mechanical experiments done to obtain information about
the relevant strain energy functions.

Again, we choose as a reference a stable unloaded configuration, say
at room temperature. For simplicity, we will only consider experiments at
this temperature. In the reference configuration, the sheet occupies a region
described by

—-a<z <a, —a < z9 < a, —b<x3<b, (6.1.1)

where (z1,z2,z3) are coordinates in a suitable selected rectangular Carte-
sian coordinate system. Generally, b/a is quite small; thin sheets are com-
monly used. The aim is to produce simple kinds of deformations by apply-
ing suitable loads to the edges of the sheet. Briefly, the material point at
(z1,Z2,73) goes to (y1,Y2, ys) with

Y1 = A1, Yo = ATz, Y3 = AsZs, (6.1.2)
where the stretches \; are positive constants. That is, we will only consider
deformations of this kind. Here, the assumption is that the strain energy

function W is a function of )\;, satisfying

W (A1, A2, As) = W(ha, A1, As) = W(AL, As, Az) (6.1.3)
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and
w(,1,1) =0, (6.1.4)

this being interpreted as energy per unit reference volume. To within an
additive constant this is also the Helmholtz free energy function at the same
temperature, the analogue of the relation between such quantities we had in
our earlier discussion of thermodynamic experiments on bars, in Section 2.5.
That (6.1.3) should hold is inferred from the fact that rubber is an isotropic
material. Here, as in our considerations of Martensitic transformations,
considerations relating to material symmetry will play an important role.
As noted in our discussion of balloons, it is reasonable to consider rubbers
as incompressible materials, which means that the \; should always satisfy
the equation
A1A2A3 = 1. (6.1.5)

Using this, we can replace W by a function of two variables, setting

1
U=U ) =W A, do, — ). (6.1.6)
ArAg
Then (6.1.3) implies that
1
UA, ) =Ug, M) =U [ ——, X2 }. (6.1.7)
AtAg

Ideally, we would like to apply forces on the edges which are normal
to the edges and uniformly distributed, with equal and opposite forces on
opposite edges, leaving the faces 3 = *b free. On the faces z; = +a, we
can then represent the resultant forces by

F" = 4Ty ab, (6.1.8)

and

F[ = —4Tyab, (6.1.9)

where T} is a number representing force per unit reference area, a stress.
The forces on £ = +a are similarly represented by a number T5,.

We consider an ideal dead-load device, able to control these forces to
keep T1 and T3 at fixed values. Consider changing y; to y; + Ay;. On the
face 1 = a, this will produce the displacement

Ayl = (A/\l)a'a
so the work done here by F;' is
F1+Ay1 = 4(12bT1A)\1.

Adding the similar contributions from the other three faces, we get as the
total

8a’b(T1 AN + ToA);y) = 8a%bA(T1 A, + To)z),

J

i
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since T and T, are here held fixed. This means that the loading device can
be considered to be conservative with the potential energy

x = —8a%b(T1 A1 + Tadz).

Of course, we have in mind that this system is in contact with a heat bath at
room temperature, so we have a situation fitting statement IV in Chapter
1. However, we will take the usual shortcut, assuming that the sheet, etc.,
is at room temperature, using the Helmholtz free energy in place of the
ballistic free energy. For the sheet itself, we can use the total strain energy

U(2a)(2a)(2b) = 8a*bU.

After cancelling the numerical factor 8a2b, this gives the relevant thermo-
dynamic potential as

E =U(, ) — Tid — Todo. (6.1.10)

As usual, stable or metastable equilibria correspond to absolute or relative
minima of this function of A; and A, for fixed values of T} and T3 and,
here, physically possible variations include arbitrary small changes in these
variables. Again, there is a possibility that we will miss some instabilities
because we only allow for some very simple kinds of deformation. Physically,
some kinds of loads can easily make a thin sheet undergo more complicated
buckling deformations beyond the scope of our theory.
With (6.1.10), the first derivative test gives the equilibrium equations

oU . 0U
o’ 27 9’

the idea being to try to solve this for A; and A, for given values of T} and
T, and to discard those corresponding to unstable equilibria. As before, we
are concerned with a function of two variables and the second derivative
test gives us the conditions analogous to (5.1.20), which are

T, = (6.1.11)

o*U
—— >0,
a2~
0*U
— > 112
DV 0, (6 )
PU_\* _ 90U U
OO ) — 8N 9X%S
For stable equilibrium, we find values X\; and X, satisfying (6.1.11) such

that, for any possible value of A; and Az,

U(A1, A2) — Tidp — Todg > U(AL, A2) — Tid; — Tode. (6.1.13)
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FIGURE 6.1. Sketch of specimen used in biaxial stretch experiments.

Associated with this is a geometrical picture similar to that associated
with the one-dimensional theory of bars, etc., under dead loads. Consider
(A1, A2,U) as rectangular Cartesian coordinates in three-dimensional space.
Then U = U(y, A) is the equation of a surface. On this is the point (A1, Az,
U = U(\, A2)). Here, the tangent plane to the surface has the equation

U-U-Ti(A = X1) —Te(ha—A2) =0, (6.1.14)
when X; and X, satisfy (6.1.11). Points lying above this plane have coordi-
nates satisfying the inequality

U-—U—Tl()q —Xl) —Tz(x\z -'-_Xz) >0,

and those lying below it have coordinates satisfying the reverse inequality.
Thus, (6.1.13) means that every point on the surface must lie in the half-
space above the tangent plane. For U(\;, A2) to be a convex function means
that it does lie in this half-space for the tangent planes at all points on the
surface.

With the same assumptions concerning the allowed deformations, the
theory of hard devices is trivial. That is, if we fix the values of y; on
the edges, we will have either an impossible situation or only one possible
deformation. For example, on z1 = a, y1 = Aa, so fixing y; fixes Ap,
etc. So, we are left with no possible variations, implying that any possible
configuration is stable.

Although our formulation is very simplistic, it is good enough to provide
a basis for beginning to understand some interesting phenomena occurring
in rubber.

Experimentally, one cannot come very close to matching the ideal con-
ditions assumed above. Earlier devices were designed to approximate dead
loading. The test specimens had fillets on the edges, a square grid marked
on the interior, as indicated in Fig. 6.1.

l
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To the lugs are attached fairly long strings or wires, the other ends being
connected to a square frame in such a way that one can adjust them to vary
the force exerted by them on the specimen. One makes adjustments to get
the grid lines straight and perpendicular as they should be for the kinds
of deformations we have assumed. This is a tedious matter but, with some
experience, one can get what appears to be the correct kind of deformation
in a sizeable part of the sheet and hence estimate values of A; and A,. From
measurements of the forces supplied through the strings, one then estimates
the resultant forces applied to edges of this part, obtaining an estimate of
T, and T5. These are always tensile forces (T; > 0). At least to some degree,
this helps to avoid the buckling which is more associated with compressive
loads. Various modifications in design were tried, the trend being to make
the devices harder to come closer to controlling the edge displacements.
Our crude theory suggests that this may help to extend the range of values
of A1 and \; which can be observed by suppressing instabilities which may
occur in softer devices, producing deformations of a more complicated kind.
I do not know of clear experimental evidence supporting this view. Possibly
related to this is a curious matter discussed in the next section.

6.2 The Treloar Instability

In 1948, Treloar [27] published some data on rubbers obtained using a
biaxial stretch device of the old kind.! Although he did not say much about
it, some of the measurements were, in one respect, curious. Intuitively, one
expects that when T = T3, we will have A; = Ay. In some cases, his data
for situations where Ty = T, indicated that A; # Xy and the difference
seems too large to be attributed to the inevitable experimental errors. This
appears to have been overlooked or forgotten by rubber workers until 1986,
when Kearsley [28] discussed it and some theoretical reasons for believing
that this phenomenon is real. Let us consider a slightly different analysis
of it, indicating that it is, in some respects, similar to the Martensitic
transformations discussed before.
For this purpose, it is convenient to make a change of variables. Set

A=d+7 6=()\1+)\2)/2
= =46 > |y, 6.2.1
Ae=8—7 7 v=(\—A)/2 h (6:2.1)
and set
U(A1, A2) = V(6,7). (6.2.2)
Then, from (6.1.7) we have, in particular,
V(8,7)=V(6—)- (6.2.3)

!Included in Treloar’s paper is a photograph of a loaded sample.
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You may explore for yourself the other implications. Also, (6.1.10) now
becomes

E=V —-76-1v, (6.2.4)
where
m =T+ Ts, T=T1 — T, (6.2.5)
and the equilibrium equations now become
ov ov
= — = —. 2.
=g T o (6.2.6)

With V' an even function of v and 7 related to it as the derivative with
respect to 7y, 7 and v become analogous to the shear stress and shear strain
considered in the theory of Martensitic transformations. That another vari-
able 6 is involved does complicate matters somewhat. However, its varia-
tions may be considered to be similar to the variations in @ considered
before.

In these terms, Treloar’s data indicate that, for some values of §, 7 =
0 but v # 0, giving us an analogue of Martensite. It is not likely that
this is true for all §. For example, indications are that there is only one
unloaded state, som =7 =0= § =1 and v = 0, giving us an analogue of
Austenite. Indications are that something more or less like a Martensitic
transformation should be encountered in some loading programmes. One
might expect to see something similar to twinning but experimentalists
seem not to have reported this. Theoretically, one can understand this.
If one tries to construct deformations involving jump discontinuities in -y,
even allowing them in 8, one finds that it is impossible to have all three
components of displacement continuous. Thus, in this respect, the analogy
with the theory of Martensitic transformations breaks down. Conversations
with some rubber experts indicated they were unaware of the possibility of
such an instability, until Kearsley revived the issue and his work is not yet
widely known.

Occasionally, something small can produce a surprising error in an ex-
periment, so it is important to try to make an assessment of this situation
theoretically. One approach is to take a form of W which can be analyzed
and fits some relevant data, at least roughly. For rough calculations, work-
ers often use the Mooney—Rivlin form,

1 1 1

_3),
3

W= G+ 33+ -9+ Ca (55 + 55+ 37
1 2

with C, and C; constants, determined by curve fitting. What is important

for our purposes is their ratio, so we will use the simpler form

1 1 1

W=K()\§+/\§+A§—3)+3\7+3\5+3\5—3. (6.2.7)
1 2 3
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This gives
V=K 2(52+72)+——1— —3]
(62 — 42)?
TN S —
+m?*  (6-7)?

(6.2.8)

+ (62 - 72)2 -3.

Then a calculation gives

ov 4~
T=— =

oy ~ @ =g K (82 =% +1]+7°+387 (6 ~*)*}. (6.2.9)

One of the conditions for metastability is that 82V/8v% > 0. Let us explore
this at v = 0, using

<32_V) _
092 y=0

=5[(

m 12
y—07y Oy

4(66+1 [K 6,

where o 52(55 — 3)
@) = M+1 7

is rather easy to visualize, from its graph. o
For a positive value of K, such as that indicated in Fig. 6.2, there is just
one value of § = § for which f = K, and we have

(6.2.11)

K > f(6) for 6 < 6, K < f(6) for 6 > 6,

so we have instability at v = 0, when § > &, and when § < & the one
stability inequality is satisfied. Curve fitting produces various values of K
depending on the particular rubber and the range of deformation which
one selects to fit best. Kearsley mentions that likely values range from 4 to
8, although one can find estimates outside this range. Roughly, this puts
6 somewhere between 2 and 3, not unreasonably large for rubber. Also,
this means that for any fixed § < 6 and v close enough to zero, V is a
convex function of v and this is not true for § > 6. Thus, for fixed § < §,
7 is a monotonically increasing function of vy, suggesting that we have an
analogy with the second-order Martensitic transformations. To consider
other possible solutions of 7 = 0, we note that they will occur when

(62 -+t =0.

K[(6® —v*3 +1] +~* +36” -
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FIGURE 6.2. Graph of the function given in equation (6.2.11).
Set

§=V& -2 <5,
and the last equation can be rewritten in the form

442

66 +1
Bearing in mind that § > 2, the first term is positive, so the sum of the

other two terms must be negative. From above, this means that we must
have

+ K — f(8) = 0.

(6.2.12)

§>6>6.

Thus, for any fixed § < 6, 7 = 0 implies 7 = 0. Consider a fixed § > 8.
It is easily checked that the first term in (6.2.12) is an increasing function
of ¥2. As 4?2 increases, é decreases, as does f (5) Thus the entire expres-
sion increases with 42, At v = 0, it is negative and it is positive when
V62 — 42 = 4. So, it must vanish for one value of 72 between these values
and for no other values of ¥2. By a similar argument, the values of § satis-
fying (6.2.12) must increase as 42 increases. This also makes the behaviour
with é increasing rather like that which we saw with decreasing 6 in the
Martensitic transformations, when the latter are of second-order. For § > s,
drawing a graph of 7 versus v with a negative slope at v = 0, with 7 = 0
at one other value of v2 gives a graph at least roughly like that suggested
by the analogy, as shown in Fig. 6.3.

By a rather similar argument, one can show that for fixed § < 6, Tis a
monotonically increasing function of . Of course, it is possible that, for a
more realistic form of the strain energy function, one may get a picture more
like that suggested by the first-order Martensitic transformations or some-
thing else. Other arguments given by Kearsley make it seem very unlikely

j
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1¢

?

FIGURE 6.3. Graph of 7 vs =, for fixed § > 8.

that one will not have some such instability. It is curious that experimen-
talists working more recently than Treloar have not noticgq, or at lt?ast not
reported, something unusual associated with this in?,tablhw. .Possnbly., by
employing harder devices, they have eliminated such instabilities. P0§51bly,
some would have spotted something if they knew what to look for. It is also
possible that some dealt with limited ranges of stretch which happened not
to include these instabilities. .

For the model we are exploring we have not completed checking the
inequalities governing stability or metastability. We do know that the non-
trivial solutions of 7 = 0 give values of v? which decrease as we decrease
6 until they become zero at § = §. This means that the plot of .the curves
7 = 0 in the 6 plane then looks much like the pitchfork discussed in
Section 4.2.

For stability, it is also important that we have

2
PV _om_ (6.2.13)
0% 06
A simple calculation shows that the strict inequality holds for all Possible
values of § and . This means that, for fixed 7y, V is a convex fu.mctu.)n (:.)f é,
with 7 a monotonically increasing function of 6. Thus we can, in principle,
solve

_ov
T
giving
& = g(m, ), (6.2.14)
although it is not easy to do this explicitly.
To check the remaining inequality
2 2
0%V 8*v 0 V) (6.2.15)
0vy2 862 — \ 060y
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is not so easy. It is simple to check this when ~ = i i i
: 7 = 0 since the right side
vanishes. Thus (6.2.15) holds, strictly when é§ < 8, and it fails when § > §.

By (l:;)ntinuity, it will also fail for § > 6, when ~ is nonzero, but sufficiently
small.

Now, a straightforward calculation gives, for v # 0,

T T _ofs2 2 K
6 v 2<6 T p)

which incrc?ases wi'th (62—~2). Consider the outer tine of the pitchfork with
v>0. Or'l it, as v 1ngreases so does v? and, as already noted after (6.2.12),
s0 also will § and (62 — 42). On it, § will be a function of v, with

(6.2.16)

dr_or drds _
dy = oy + % E =0. (6.2.17)
From Fig. 6.3, it is clear that here
or _ v

one of the inequalities needed for stability. Another is 9%V/86% > 0, which

we have noted, is always satisfied. Since § increas i
, . es with
only be satisfied if Vi 7 (0.2:47) can

Q _ 0%V _Om
86 8795 ~ Oy
We also know that, on this curve,

<0. (6.2.19)

@ _ 6_7:' or 06
dy 0y 96 0y
6.2.2
_ 0%V 0%V dé ( )
9796 " 982 4y -

Look at (6.2.16), bearing in mind that 6§ and (62 — »2) i i
‘ ); — 7*) increase with v on
this curve. Solving for dé/d, and substituting this in (6.2.20) gives k
PV Vo / eV
5v96  B6Z 972 / 3796 ~

0.

Multiplying this by the negative ity 62 i
Liplyi quantity 0“V/9v06 then i
stability inequality listed in (6.1.12) /o gives the third

?

< v \? 8 o2y

9705) ~ 882 By2 <
So, on this branch, we have equilibria which are at least metastable. Actu-
ally, they are stable. A similar argument gives the same conclusion for the

0. (6.2.21)

E
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other outer tine, on which v < 0. In between them, somewhere near v = 0,
is a region of instability. Qualitatively, the picture is then clear, and we can-
not trust the constitutive equation to give quantitatively correct estimates
of the situation.

Assuming the estimate is qualitatively correct, it suggests a strategy
for designing experiments to learn more about the instabilities. Roughly,
we would like to devise loading programs to aim at the boundary of the
unstable region and find out what really happens. It may be profitable to
use a soft device, one of the older designs being better than the newer. If we
start with the unloaded configuration, keep 7 = 0 and increase 7, § should
increase with v staying zero for a while; but, if § becomes large enough, we
should hit the instability at § = 8, v = 0. The simplest possibility is that we
continue to have the simple kind of deformation assumed, but move along
the curve path 7 = 0, v becoming nonzero. Treloar seems to have hit points
on 7 =0, v # 0, accidentally, with deformations fitting our assumptions, so
this could well happen. “Pitchfork bifurcations” more or less like this are
encountered in various physical systems. Now, by making 7 # 0, we can
try to head back towards v = 0 and should encounter other points on the
boundary of the unstable region and see something unusual happen. Here,
by thinking hard about a somewhat shaky theory, we have been led to the
design of an experiment which is likely to produce useful information.

There is a loosely related matter. In considering the balloon problems, we
assumed that they remain spherical. Intuitively, this is associated with the
notion that at any point on the balloon, the material should be stretched
equally in all tangent directions, the amount of stretch being the same at
all points. Roughly, this is similar to assuming homogeneous deformation
in the sheets, with ¥ = 0 when 7 = 0. We now have some reason to question
such assumptions, although the conditions for stability are somewhat dif-
ferent in the two cases. If one blows up toy balloons of a symmetrical shape,
more or less, sphere-like, one does see the development of curious asymme-
tries. One can argue that such effects stem from variations in thickness, etc.
However, one rubber expert, who had made a strong effort to obtain the
best possible spherical balloons, told me that he is convinced that this is a
real effect. Also, Alexander [26] presents a combination of theoretical and
experimental evidence that the effect is real in some neoprene balloons.
The analysis of Haughton and Ogden [29] suggests that it might not be
true for thicker balloons in the case where the pressure is controlled. Bear
in mind that rather thick balloons are what we often call balls and ask
yourself what your experience suggests about the difference between balls
and balloons.

The behavior of some biological materials is rather like rubber. Esti-
mates of strain energy functions I have seen for some lung tissue suggest
that a similar instability may occur in these, although this does involve
extrapolating the function to larger stretches than were observed.
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For the experiment at hand, allowing for more complicated deformations
does change the conditions required for stability to some degree. The best
available analyses of this are by Chen [30, 31); the latter deals with hard
devices and does indicate that the stability conditions for these are different.

One of the best general references on the physics of rubber is the book
by Treloar [32].

6.3 Exercises

6.1. Determine whether a strain energy function of the Neo-Hookean form
W=CX+XM+M-3, C>0
is capable of describing the Treloar instability.

6.2. In practice, our sheet might be called a bar, if two of its dimensions
are small compared to the third; replace (6.1) by
“aS-'L'lSa, —szZSb, _CSI3_<_Cy
with

b/a << 1, c/a << 1.

With this, bar theory would identify the stretch \ as A1 and assume
that forces are applied only in the direction, so take T, = 0. For
the Mooney-Rivlin form of W, determine the corresponding form of
the strain energy function for bar theory.

6.3. For the bar theory just deduced, is the strain energy function a convex
function for positive values of A and realistic values of K? From your
experience with bars, what would infer about possible instabilities
that might be predicted by such theory?

6.4. In Section 6.1, it was asserted that points lie above or below the
tangent plane given by (5.1.14), depending on whether

U-U—-Ti(M — i) - Ta(hz - Xy)
is positive or negative. Prove or disprove this.

6.5. In Section 6.1, after (6.2.12), it was asserted that “the value of &
satisfying (6.2.12) must increase as v2 increases.” Prove or disprove
this.

6.6. Take a toy balloon of spherical shape. What do you think would
happen to a great circle drawn on it, when it is inflated just enough to
do this with a marking pen, then inflated more? Try this experiment,

I |
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and you might see why some workers have concluded that the actual
deformation is more complicated than was assumed in our balloon
studies, even when the balloon appears to stay close to beiqg a sphere.
Developing better theory is not an elementary exercise, as is often the
case in stability studies.
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Moving Discontinuities

7.1 Shock Waves in Bars

We have encountered examples of static discontinuities, for example the
twins in Martensite or the “phase mixtures” in bars. Physically, such dis-
continuities are often better regarded as thin regions through which the
quantities of interest vary smoothly, but rapidly. However, simpler kinds of
equations sometimes permit us to model them better if we treat them as
discontinuities. Such phenomena, are likely to occur dynamically, when one
suddenly imposes a load on a solid, by an impact, or sometimes, by set-
ting off an explosive on its surface. Often, experiments of this kind along
with one-dimensional theory are used to provide information concerning
constitutive equations for solids. It is common to use thermodynamic con-
siderations. Here, we will discuss commonly used ideas, in the context of
bar theory.
In this context a “surface” of discontinuity becomes a point

z = (), (7.1.1)
moving through the material with velocity
v =1(t), (7.1.2)

which we assume is positive. This is called the material or referential wave
speed, or, more briefly, the wave speed. Some functions of interest are
assumed to have jump discontinuities at this point. If g = g(z,t) is such a
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function, we can fix ¢ and consider the limit as we approach the point from
the front, the region into which the wave is moving, to define

gt(t) = lim g(z,t).

(1)

(7.1.3)

Similarly, we have the limit from the opposite side and the abbreviated
notation for the jump indicated by
(7.1.4)

g (&)= lim gl =97 -9

z,t),
z—1P—(t) g( )

As in the static case, we assume that y(z,t) is continuous, excluding pos-
sibilities of breaking, etc., so
[y] = 0. (7.1.5)

Consider the possibility that the stretch A and velocity 3 have finite discon-
tinuities. Evaluating y(z,t) on the front and back sides and differentiating
with respect to t, we then obtain

dyt/dt = Atv+ gt

7.1.6
dy /dt=A"v+y. ( )

Differentiating (7.1.5) with respect to ¢ then gives
dlyl/dt =[ANv+ [ =0 (7.1.7)

as a kinematic condition, restricting these jumps.

With the discontinuities, it is not sufficient to satisfy the differential
equations of motion, etc., where things are smooth enough to do so, al-
though this should be done. Consider the integral forms. One is the usual

mechanical equation
d 2 2
— pydx = / fdz+o
il i

z1

z2

(7.1.8)

z1

with z; and z3 chosen so that, at a particular time, z; < P(t) < z3. Recall
that p is a constant. We assume that, if z; and z, are close enough to (),
the functions are smooth, except at z = (¢). Then, on the left, we have

d (v . " " . .
%(/ pydw+/ pydw> =/ pidz + py~v — pytu
1 P 1
d [** | T2 .
5 | Pvdz= [ pjdz—pvfg).

Putting this back in (7.1.8) and taking the limit as z; — ¥~, 2o — o™,
we obtain

(7.1.9)

or
(7.1.10)

—pwlg] = [o], (7.1.11)

j

l
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as another restriction on jumps. By a similar analysis, the energy equation

T2 1 T2 . . z2
% <6+§py2) dz =/ (fy+r)dz+ (cy+q) (7.1.12)
z Ty T1
gives rise to
1 .
—v |:E + Epyg] = [oy + q]- (7.1.13)

These conditions are, in principle, applicable to plastic wave propagation
although in practice, many such waves are not well-idealized as sharp dis-
continuities. Finally, in a similar way, the Clausius-Duhem inequality can
be applied to cases where entropy is well-defined, which does exclude plas-
ticity:

d T2 z2 r q z2
— ndz > / ] dr + 9
at J,, o

It yields the inequality

(7.1.14)

Ty

o] = [%] . (7.1.15)

From hereon, we assume that our thermoelastic theory of bars applies.!
Commonly, this is used as one criterion for deciding whether mathemat-
ically possible singular solutions are physically acceptable. As is easily
checked, if all the equations are satisfied and if we interchange the val-
ues (AT, %) and (A\~,n7), the equations are again satisfied with the same
v. If the first choice satisfies (7.1.15), the second will not, unless the equality
holds in (7.1.15).
Now, using (7.1.7), we can reduce (7.1.11) to the form

2_ o]
(A’
from which it is clear that, for a given material, the wave speed depends
on the values of A and 7 (or 6) on the two sides. Also, (o] and [)] cannot
have opposite signs.
Now, using (7.1.7) and (7.1.11), we have

(7.1.16)

eyl =otyt -7y
ot 4o~

_otto” “2“"_ (@ —97) + G i)
= T Bt~ )+ i)

ot +o” vply?]
= -—-—2——'0[)\] -

! Formally, this is analogous to the older one-dimensional theory of shock waves
in gases, both being discussed in more detail by Courant and Friedrichs [33]. An
exposition by Dunn and Fosdick [34] clears up some old misconceptions about
thermoelastic theory of shock waves.
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FIGURE 7.1. Sketch indicating the possibility of slowly moving shock waves, in
bars with nonmonotone stress—stretch curves.

With this, (7.1.13) reduces to

ot +ao” 1
gl - ————— A =—-[q].
- TN =]
Very slowly moving waves can occur as interfaces between different
phases or twin planes. As we have seen from static studies, they can even

come to rest. In considering cases of this kind, one finds some workers?
assuming that

(7.1.17)

6] = 0. (7.1.18)
Then, it is convenient to introduce the Helmholtz free energy at this com-
mon temperature, and put € = ¢ + 07 in (7.1.17) to get

01~ T = 0l - Ly

- £ {-vol- 2]

<0,

(7.1.19)

where we have used (7.1.15) and 6 = 6* = 6~. Then, (7.1.16) and (7.1.18)

have nice interpretations in terms of the graph of o(),#), the isothermal

stress—stretch curve at this temperature. It may look like Fig. 7.1.
From (7.1.16), the angle x in the diagram satisfies

[o] — 2

tany = —

o = (7.1.20)

2Qur treatment is oversimplified. In dealing with moving phase boundaries, it
is of some importance to account for surface, as well as bulk, energies associated
with the interface between phases and workers consider possibilities other than
(7.1.18). Three-dimensional theory of this kind is covered by Gurtin [35).
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so we are considering x to be a rather small angle. in (7.1.19), [¢] is the
(signed) area under the stress-strain curve between A* and A~, being nega-
tive in the illustration. Also, the (signed) area between At and A~, bounded
above by the chord joining (o, A*) to (67,A7) is (6+ +07)[A]/2, which is
also negative in the illustration. So, it is a matter of comparing these areas
in deciding as to whether (7.1.19) is satisfied. In the situation pictured, it
will be if A* is close enough to the local maximum for the graph.

Impacts, etc., are likely to generate waves which travel much faster, being
more like shock waves in air. Here, workers often assume that the effects
of heat conduction can be neglected, using

in place of (7.1.18). Then (7.1.17) reduces to what is often called the
Rankine-Hugoniot equation

+ p—
] = T (7.0.22)
With an equation of the form £ = &()\,7n), this relates the two states
(A*,7%) in a manner depending only on the material. Also, (7.1.15) re-

duces to
(7.1.23)

If this constitutive equation is known, one can select (A*,7*) and, from
(7.1.22) and (7.1.23), find all the thermodynamically admissible states
(A~,n~) which generally lie on a curve in the A-7 plane, the Rankine-
Hugoniot curve. In a similar way, (7.1.16) generates a set of curves, one for
each value of v, called Rayleigh curves. For a given value of v, the possi-
ble states behind correspond to points where this Rayleigh curve intersects
the Rankine-Hugoniot curve when they satisfied (7.1.23). In this context,
it is of interest to consider weak shocks, where [A], [n], etc., are suitably
small. Think of fixing (A*,n*) and solving (7.1.22) for [n] in terms of [}],
assuming [n] approaches zero as [\] does. A first approximation to v can
be obtained from (7.1.16) by letting [\] — 0, n~ — 5+ which gives

>t

oo

oo} = S (), (7.1.24)

vo being called the acoustic wave speed, measured by the slope of the isen-
tropic stretch-strain curve at the values (A*,n™1) of interest. To estimate
what (7.1.22) gives in this limit, use the linear approximation

e” =¢e(A7,n7)
et Ot
~ + .+ - _\t = (p~ —nt

=&t —ot\] - 6*n],
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SO

(Al A2

Letting [\] = 0 and 0~ — o, we get [1]/[A\] — 0. So, an expansion of [r]
in powers of [\] gives zero for the linear term, suggesting it looks like

A ) A (7.1.25)

[ = a\?+B\2 +..., (7.1.26)

Then, to second order in [A],

o 1 /0%
e et —ot [\ - 6ta\? + 3 <W) A2,

and, on the right side of (7.1.22), we can use a first-order approximation

_ Oe(g=, A~ a2\t
o :—(7](9)\—)%‘0++(W> (A~ — %),

Putting these approximations into (7.1.22), we get a = 0. Further calcula-
tion indicates that, in general, b # 0 so, in first approximation

[n] o< (AP, (7.1.27)
for [A] small. It then follows that, to first order in [}],
o] = pug[Al, (7.1.28)

where vy is the acoustic speed, given by (7.1.24). One is then in the realm
of linear theory and the pulses accurately described by this are often called
acoustic waves or stress waves. To a good approximation equality then
holds in (7.1.15). Accepting this, workers then do not worry about the
implications of the possible inequality.

Bear in mind that here we only explored conditions relating to a discon-
tinuity. Complete analysis of a problem also involves satisfying equations
of the kind discussed in Chapter 2, where solutions are smooth. Also, we
have emphasized how thermodynamic reasoning is used and other kinds
of reasoning are employed. In practice, one encounters situations in which
more than one solution satisfy all the conditions discussed. One of the kinds
of reasoning used to try to decide which is best then involves considering
the possibility that the shock can generate pulses of smaller amplitude.
Consider the front side and suppose that these weaker waves have speeds
faster than that of the shock. They will then tend to move out ahead of
it. The notion is that this will tend to make the shock smooth out, almost
instantaneously. So, the shock is more likely to persist if these weaker waves
travel more slowly. Similarly, it is better if weaker waves on the back side
travel more quickly than the shock. One can use (7.1.24) as a first estimate
of the weak wave speed ahead, using the analogous estimate behind, to be

I

l
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compared with the shock speed, given by (7.1.16). Notice that this uses
the slope of the isentropic stress—stretch curve. If one uses the slopes of
the isothermal stress—stretch curve in Fig. 7.1 to estimate the weak wave
speeds, the situation looks favourable at A~, unfavorable at A*. One could
make it appear more favorable by increasing A* sufficiently to make the
shock chord tangent at A*. It is not difficult to calculate the difference
between the isentropic and isothermal slopes at corresponding values of
and 7, so you can try this to see if you come to a different conclusion.

7.2 Breaking Bars

As was mentioned in the preceding section, it is sometimes relevant to
consider surface energies associated with discontinuities. Let us consider
a different possibility of this kind. We return to the equilibrium problems
involving bars in hard loading devices, discussed in Section 3.2. Generally,
this loading makes the relevant energy higher than it would be if the bar
were unloaded. There is a way for this energy to be reduced. Let the bar
break and this will certainly cause it to be unstressed, making y(z) itself
discontinuous. This is a possibility we have avoided considering, although
we all know that it can happen. However, the reasoning seems to indicate
that the slightest stress should suffice to break it, which does seem contrary
to experience. Here, the reasoning commonly accepted is that the process
of breaking creates new surfaces and with these is associated an energy
proportional to their area. Usually, this is considered as the area occurring
when the sample again becomes unstressed. So, if our bar breaks cleanly on
a plane whose normal is parallel to the long direction, represented mathe-
matically by our z-interval, this produces an energy

€ = 2GAR

with AR our reference area, G being the energy per unit reference area.
The factor of 2 arises because the break obviously creates two surfaces.
Solutions of this kind discussed in Section 3.2 then apply as long as F,
given in (3.2.2), is smaller than e and, when F' > e, the bar should break.
There is an intermediate possibility that a crack will be produced, go part
of the way through the specimen and stop. One then needs two- or three-
dimensional theory to analyse the associated adjustment in the Helmholtz
free energy. In some cases it diminishes enough to make it energetically
disadvantageous for the crack surface area to increase. This provides some
basis for understanding whether an expensive structure containing such
flaws can be considered safe, among other things.
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7.3 A Peeling Problem

Somewhat similar to the previously mentioned crack propagation problems
are peeling problems. Suppose that a very thin and flexible adhesive tape
has adhered to a flat surface of a stationary rigid body. We consider the
possibility of peeling it off, by applying a tensile force as a dead load at
one end. As usual, we assume that the ambient temperature is fixed. Think
of our tape as a rectangular bar, with width a, thickness b, b/a << 1 and
assume that it has been applied so that it is unstressed, although peeling it
will change this. Then, for the bar, it is convenient to use the strain energy
per unit volume W (X), at the prevailing temperature, giving

L
Fg = ab / W) ds, W(l)=0, (7.3.1)
0

as the relevant energetic contribution for it. If the force peels off part of
the tape we will have a configuration like that pictured in Fig. 7.2.

In principle, there is some energy associated with bending the tape, which
we neglect. Where the tape still adheres, we assume that the bar stays
unstretched (A = 1). In the remainder, there will be some other stretch A,
the distance d in the figure being given by

L
d-——/ Adz.

There is the usual potential involved with the dead loading device. For it,
we need the scalar product of the vector force with the vector displacement
or, what is the same, f, multiplied by the component of displacement which
is parallel to the force. Using simple geometry, this gives the potential

(7.3.2)

—f[d — (L — zo) cos ] (7.3.3)
Also, we introduce the idea that there is a surface energy to be added,
proportional to the area occupied by the part of the tape which has come
off, before it was removed. So, it will be of the form

e = Go(L — zo)a,

where G, is a positive constant depending on the tape and the material
from which the rigid body is made. It is a matter of experience that a given
tape will adhere better to some materials than to others and it is here that
we account for this. Adding the contributions we get the thermodynamic
potential

F= ab/L W(A) dz — f[d — (L — 7o) cos @] + Ga(L — zo)a, (7.3.4)

7.3 A Peeling Problem 101

f

FIGURE 7.2. A fixed force of magnitude f, acting at the angle ¢, peels part of
the tape off the rigid body. The nearly vertical arrow indicates the displacement
at the end.

with d given by (7.3.2). We will disregard the possibility that the tape
breaks or that the rigid body gets damaged. We do need to bear in mind
that the configuration pictured can hardly apply if the tape is all peeled
off, or if none of it is. However, for the time being, we will not worry
about this. For other values of zg, we can vary zo and the bar deformation
independently. Varying the latter gives, as an equilibrium equation, the
force balance

abW'()\) = abo = f. (7.3.5)

For simplicity, we assume that W (\) is convex, so this determines just one
value of A. Putting this back in (7.3.4) gives

F = (L — z9){ab[W(A) — (A — cosp)o]| + aG.}. (7.3.6)

Clearly, this has a minimum at
2o =0 when ab[W(X) — (A —cosp)o] +aG, <0 (7.3.7a)
o =L when ab[W()\) — (A —cosp)o] +aG, >0 (7.3.7b)

and is independent of 2y when
B(W(A) — (A — cos p)o] + Gq = 0. (7.3.8)

Now, if no tape is peeled off, the obvious value of F' is F' = 0 and (7.3.6)
reduces to this when zo = L. Then, (7.3.7b) gives a reasonable estimate of
what is needed for such configurations to be stable. Similarly, (7.3.8) gives
a critical condition for the tape to begin to peel off. Once the inequality in
(7.3.7a) holds, it is better for z¢ to decrease, that is, more of the tape to
peel off. Physically, (7.3.7a) cannot be trusted, implying that the tape can
still support a stress when the area with which it contacts the rigid body
reduces to zero. Instead, it will in fact lose its ability to be in equilibrium
supporting the force applied at one end. To analyze what then happens,
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one would need to say more about the mechanism for applying the force
and we will not pursue this. Otherwise, the model is reasonably consistent
with experience. Let us try to obtain a better understanding of what it
predicts. If, as was assumed, W()\) is a convex function of A, o(}) is a
monotonically increasing function of A, with (1) = 0. Thus the values of
X satisfying (7.3.5) will, for positive f, increase with f and be greater than
one. Consider, for any fixed value of ¢,

g(A) = ab[W () — (A — cosp)o] + aG,, (7.3.9)
we have
g(1) = aG, > 0, (7.3.10)
nd
) g'(\) = ab[W'()\) — o — (A — cos p)a’] (73.11)

= —ab(A — cosp)o’ < 0.

For A > 1 and (A — 1) sufficiently small, g(\) will be positive by continuity
and this will correspond to having f small enough. Then, (7.3.7b) implies
that the whole tape should remain in contact with the other body. As
f increases, (7.3.5) implies that g(\) decreases. Mathematically, it could
approach a positive constant as A becomes large. Physically, something
must happen if the force gets sufficiently large but there is some possibility
that this may occur, by breaking out chunks of the other body, for example.
Assuming g does continue to decrease, it will vanish at some critical value
f- of the force. Here, in principle, any part of the tape could peel off with
the rest staying in contact. For f > f. we will have g < 0, the somewhat
shaky (7.3.7a) seeming to imply that the whole tape should come loose.
With the inevitable experimental errors, it is unlikely that we will attain
the value of f. exactly. Granted this, one should see the tape either staying
in complete contact, or coming completely free, depending on the size of
the force, in this kind of experiment. This is consistent with experience on
relatively long tapes, for which L/a is relatively large. Generally, applying
a force in the manner indicated either leaves the whole tape in contact
with the other material, or the whole tape comes off. If a force induces it to
come off, a larger force simply makes it peel off more quickly, assuming that
there are no other complications such as having the tape break. Also, from
our considerations, the critical force f. occurs when (7.3.8) holds and this
clearly depends on the angle ¢, which should be in the range 0 < ¢ < 7,
physically. In this range and with o > 0, as it must be, it is easy to see that
for any fixed value of A > 1, g increases with ¢. Combine this with (7.3.11)
and consider the critical values of A, say A.(¢), obtained by solving

g(Ac, ) =0, (7.3.12)

and you can conclude that A, must decrease as ¢ increases. From this,
it follows that f. is a monotonically decreasing function of . At least
qualitatively, this is also in accord with experience.

i
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Another picture can be useful. Rewrite (7.3.8) as

(Ae —cosp)a(Ae) — W(A:) = Ga/b. (7.3.13)
Then, consider the graph of o(A) in the A-o plane. The first term can be
interpreted as the area of a rectangle with height o().), base (A — cos ),
the length of a line segment on the A axis, running from A = cosp <1
to A = A, > 1. From this, we subtract W(A.;) which we know is the area
under the stress-stretch curve between A = 1 and A = A.. Thus, the left
side of (7.3.13) represents the area of the rectangle which remains after
removing the latter part. When this area matches the number on the right,
the equation is satisfied. From our previous considerations, there cannot be
two values of ). satisfying it if W()) is convex. If it is not, then one can
get into complications such as are discussed in Chapter 3.

7.4 Another Peeling Problem

Here, we consider a procedure permitting us to peel off only part of the tape,
also indicating how we might apply the tape so that, after it is placed, it
will be unstressed. Again, we gloss over some physical difficulties occurring
when only a small part near one end is in contact.

Here, the end z = L is to be moved perpendicular to the rigid body to a
height h, then held at this fixed position. Otherwise, the assumptions are
similar to those made before. Figure 7.3 indicates the configuration to be
considered.

Here, the angle ¢ is not given. As before, W() is assumed to be a convex
function for simplicity and we again ignore complications associated with
damage to the materials. It is then rather clear from our past experience
that, in the part pulled off, the stretch A will be constant, so we will assume
this although it is something that could be proven. Here, with the end held
fixed, no work will be done on it so, in place of (7.3.4), we now have

L
F:ab/ W(A)dz + Go(L — z0)a
Zo

(7.4.1)
=a[bW(A) + Go]
where
=L — zo, (7.4.2)
and note, from Fig. 7.3, that
o - l;lt,hg (7.4.3)
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FIGURE 7.3. Raising the end of the tape vertically, to a height h, partially peels
off the tape.

and

tanyp = h/l. (7.4.4)

Thus, two of the three variables (A, 1, ¢) can be expressed in terms of the
third. We could take any one as the basic independent variable, it being a
matter of judgment which is best. First, let us try using

p=1/h=>0<pu<L/h (7.4.5)
Then, (7.4.3) gives
A=V1+p2>1, (7.4.6)
and (7.4.1) reduces to the form
Flah = U() + G, (7.4.7)
where
Ulp) = buW (\/1 n u—ﬂ) : (7.4.8)

If p is very small, A is very large, approaching infinity as y — 0. Physically,
it is then unlikely that we will have an end point minimum at g = 0. Also,
having p at the other limit really means that all the tape has peeled off. If
we continue to hold one end fixed the remainder will be subject to no force,
so no work will be done on the tape. It should then come to equilibrium,
unstressed, giving

F=alG, (7.4.9)

as a reasonable estimate of the energy it will then have. The remaining
possibility is to have equilibrium with u not at either limit. Then, math-
ematically, analysis of (7.4.7) is essentially the same as that of analyzing
bars under dead loads discussed in Section 3.1, or of the balloons under
fixed pressure discussed in Section 5.1. The equilibrium equation is

U'(p) = —Ga, (7.4.10)

i

i
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the second derivative test for stability giving

U” (1) > 0. (7.4.11)

Conditions for stable equilibria can be pictured, as before, in terms of the
graph of U(u) or of U’(p). Some points are worth noting. Suppose (7.4.10)
is satisfied by some value of u = . This is acceptable only if it satisfies
7L < L/h, which will be true if we make h small enough, but not if A is too
large. For the range of h for which it is acceptable, (7.4.4) will give a value
of ¢ = P which is independent of h. Ignoring the question of stability, the
implication is that if we increase h a little, more of the tape will come loose,
enough to get @ back to its original value with no change in the value of A.
Clearly, it can so adjust only as long as there remains enough tape to be
peeled off, that is for

h < Ltang. (7.4.12)

For such configurations to be more stable than they would be if the tape
pulled off completely, using (7.4.7) and (7.4.9) gives the condition

hlU(m) + £G.] < LG,.
Now consider (7.4.8). With (7.4.6), straightforward calculations give

(7.4.13)

r

0/ = [WO) + 1 o]

r -1
=b W) - (;ﬂ\/l + u—?) a()\)] (7.4.14)
[ 1
=b|WO) - <,\ - X) a()\)] = —Gl,.
Note first that, from Fig. 7.3,
L- Zo l 1
=20 C o2 7.4.1
cos 7 7= ( 5)
With this, we see that (7.4.14) agrees with (7.3.8), which is not surprising.
Also
y_dAdU"  dA

- () (- )

dr [ 1 1\
dpb[)\za()\)+ ()\ /\)a( )]
Now, from (7.4.6), d\/du < 0 and A > 1. From our assumption that W ()

is convex with o(1) = 0, it follows that a(A) > 0 for A > 1 and o(X) >0,
from which

Tdp dX dp

U”(u) > 0. (7.4.17)
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There then can be no more than one equilibrium value % of the kind dis-
cussed above. Also there can be at most one value of the angle @, in the
range 0 < < m. Assume there is one. Then, for h satisfying (7.4.11), we
have equilibrium configurations satisfying all the requirements for stability
except perhaps (7.4.12). With i a fixed number, this will also hold if A is
sufficiently small. For the largest possible value of h, given by the equality
in (7.4.11), it is easy to see that (7.4.12) fails to hold. Thus the two energies
become equal at some value h., given by

Ga

h.=1L [U(ﬁ) +ﬁGa] . (7.4.18)
So for h < h,, the more stable configuration has the tape partially adhering,
enough to conform to the angle @. For h > h,, the more stable configuration
changes, to have the tape completely removed. From the analysis, the pos-
sibility of the tape adhering when h > h. giving a metastable configuration
does not seem unreasonable in cases where we are increasing h, to peel off
more of the tape. In laying a tape down, we commonly hold the part near
an end in place to get the process started. Clearly, our analysis does not
cover this. Essentially, the theory is designed to apply to situations such
that one can lay down and peel off the tape without damaging the tape or
the other material.

To determine W () for A > 1, most would try a simple tension experi-
ment. Either of the two peeling experiments could be used to try to estimate
G,. Here, one could measure the stretch in the stretched part. Similarly,
h. might be measured. Think a little more about the measurables in the
two experiments and you have a design for an experimental programme to
provide a test of the theory in order to see if its predictions agree with the
experimental findings.

This is a sample of ideas used in tackling problems relating to the ad-
hesion of one material to another. Works dealing with this general topic
include the books by Cheng [36] and Wu [37].

7.5 Exercises

For Exercises 7.1-7.3, adapt the theory of fast shock waves in bars to the
theory of shearing of plates, using the constitutive equation

_a(l—bb)y? 6
¢—-—'———2 —c[@ln(E)—-O-{-d],

where a, b, ¢, and d are positive constants. For various metals, empirical
estimates of b give it the value 1/(265), where 85 is the melting temper-
ature, so the theory does not apply if 2b6 > 1. If some prediction violates
this, note it. For the exercises indicated, assume that, on one side of a
shock, v =0, 8 = d, and on the other, y =4 > 0.

|
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. Derive the Rayleigh equation.
. Derive the Rankine-Hugoniot equation.
. What can you say about the admissibility of such a wave?

. Consider the kind of peeling problem discussed in Section 7.2 for a

linear elastic tape with the strain energy function W = E(\ — 1)?/2,
E being Young’s modulus, a positive constant. Let f(1/) denote the
lower bound of the force required to peel off the tape, when it is
applied at the angle 1. Derive formulae for the ratios

1(5)/4(5) = 1(5)/1CG)

. Derive an equation relating isothermal and isentropic acoustic wave

speeds for bars, in terms of things either measured or easily calculated
from things measured in the common thermodynamic experiments.
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8
Mixture Theory

8.1 General Remarks

From a macroscopic point of view, the composition of matter can change in
various ways. It is a familiar fact that changes in the humidity occur in the
air we breathe, causing wood to shrink or swell. This makes it reasonable
to think that the wood absorbs different amounts of the vapour depending
on its environment, producing an effect somewhat like thermal expansion.
Materials like glass are clearly more reluctant to absorb the water, making
it clear that the water vapour is not uniformly distributed in a room con-
taining various kinds of materials, although it may be uniformly distributed
within a particular substance.

Again, it is a matter of experience that different amounts of a solid can
be dissolved in a given amount of a suitable fluid and that, if we change
the temperature, say, some of the dissolved solid can come out of solution.
Sometimes we use this to grow larger crystals from small ones. Not so
different are the procedures used by a metallurgist to make alloys; that
is, melt and mix together different kinds of solids, then cool the mix to
solidify it. With the same ingredients mixed in different proportions he can
obtain different alloys. For example, he might produce o or 3 brass by
using different proportions of copper and zinc.

In many situations like this, it is reasonable to think that the ingredi-
ents retain their identity so the total mass of one remains fixed. We are
then concerned with mixtures which are, in a sense, nonreacting. Chemical
reactions can change the mass of particular ingredients with, for example,
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hydrogen and oxygen gases reacting to produce some water. Stoichiome-
try provides rules, restricting how the different masses can change in such
reactions.

Gibbs’ general ideas of thermodynamic equilibrium and stability can be
applied to such phenomena. Indeed, Gibbs was a pioneer in developing such
theory. Here, we will discuss the most elementary format for nonreacting
mixtures, in situations where effects of shear stresses in the solids can be
ignored.

To deal with such questions one needs to think of equations describing
parts of a system and this involves some judgment. In the first example
mentioned, most would think of the air and water vapour as one mate-
rial, described by one constitutive equation. A different equation would be
used for the wood and its water vapour. Generally, one idea is to try to ar-
range that each constitutive equation can reasonably be considered smooth
enough to let us use common tools of analysis in each part. As we have
seen before, smooth constitutive equations can produce equilibria with dis-
continuities and we tend to judge things on the basis of observations of
equilibria. Given this, it is inevitable that we exercise some judgment. In
the simplest situations, one can reasonably decide how to further subdivide
so equilibria are also smooth in each part.

8.2 Elementary Theory

We consider a hypothetical example to introduce some of the ideas. Pic-
ture a mixture filling some volume V. Consider it to be composed of ho-
mogeneous parts. That is, within a part, relevant state variables, such as
temperature, etc., can be considered to be independent of position. So the
presumption is that we know how to subdivide so that the equilibria are
smooth in each part. The parts will occupy volumes

with
(8.2.1)

An identifiable ingredient, such as our water vapour, may be present in all
of these parts and we allow that this can happen, initially, and that the
amount in one part can be considered to change. Suppose that we have n
ingredients, with masses M,, a = 1,...,n. Then, if Mc(f) is the mass of the
ath ingredient in the volume V;, we must have

m

(8.2.2)

i
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it being possible that some of the S) vanish. This is a static theory, so
we are not concerned with motion. With the ith part we associate a total
energy F; and entropy S; and a constitutive equation. That for i = 1 is
assumed to be a smooth function of the form

B =BV, S, MY, ..., MD), (8.2.3)
with similar assumptions for Es, etc. It is possible that one constitutive
equation applies to two more parts. The assumptions are fairly reasonable
if we have solid parts separated by fluid parts, so the solids can adjust
their shape fairly freely to avoid shear stresses. The idea is that the partial
volumes and masses can vary, subject to the requirement that (8.2.1) and
(8.2.2) be satisfied; we do not want overlapping volumes, for example. We
set

OFE;
T 8.24
Pi= Gy (8:2.4)
interpreted as the pressure in the ith part,
0FE;
i = o 8.2.5
0 = (8.2:5)
the temperature in this part and
OF;
Hia = ——773» (8.2.6)
oMy

these being called chemical potentials. Now look at the differential of F;.
One term, —p; dV; can reasonably be interpreted as the work done by
the pressure as the volume V; undergoes an incremental change. An-
other, 6;dS,, similarly can be identified with heat supplied reversibly. If
we stopped here, things would make reasonable sense in terms of the first
law. However, there is a problem in dealing with the changes in E; pro-
duced by changing the masses in V; which does not really fit the first law.
One could try to generalize the first law to cover this. What is more often
done, sometimes, tacitly, is to consider that any thermodynamic system
deals with a fixed set of matter. From this viewpoint the energy F; is then
an energy associated with part of a thermodynamic system, which is not
itself a thermodynamic system. The usual idea that energies and entropies
are additive then gives for the energy E and entropy S of the system,

E= i E;,

= (8.2.7)
S = Z S;.

i=1
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Physically, we can reasonably think of this as a mechanically isolated sys-
tem if we think of V' as the volume of a fixed region so that forces acting
on its boundary do no work. Further, it should prevent any matter from
leaving or entering, so that M, become fixed constants. Thermally, a likely
assumption is that the system is in contact with a heat bath at the con-
stant temperature 6. Then, the appropriate thermodynamic potential is
the ballistic free energy,

Eg =FE-0385. (8.2.8)

In considering possible variations, one needs to consider the possibility
that some of the masses M(Ef) or some of the volumes may vanish.! This
reflects the experience that, in the first case, some materials are very re-
luctant to absorb others. In the second case, we know that a solid lump is
sometimes completely dissolved in a fluid. The fluid might well be capable
of dissolving more if it were supplied. Clearly, we cannot allow variations
making masses or volumes negative. One can modify the scheme a little.
For example, if one is convinced that it is quite impossible for one sub-
stance to penetrate another, one can impose the constraint that one of the
Mc(f) always vanishes. Materials like this are certainly of some importance,
as containers for other materials, the thin films which serve as barriers to
water but not air, etc. However, we will not consider this kind of possibility.
It is assumed that

As usual, we proceed to use the first derivative test, to obtain equations
of equilibrium. That is, we want the differential condition

dEp = dE — 6pdS = (dE; — 05 dS;) > 0, (8.2.9)

i=1

for all possible variations in the independent variables involved. There are
the constraints,

dM,, = ind(j) =0
=1

(8.2.10)
dv =Y dV; =0,

=1

'In the case where the volume occupied by an ingredient approaches zero, it
can be tricky to try to take limits of this kind. Usually, one can explore equilibria
with or without complete dissolving, then determine which is most stable by an
energy comparison. Think back to what we did for the balloon with pressure
controlled.

|
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at least. First consider varying only the entropies S;. With (8.2.5), this
gives, assuming no V; = 0,

m

> (6: — 68)dS; = 0.

i=1

With the usual assumption that entropies can be varied arbitrarily, this
gives

_OE;
=35
If some V; = 0, one simply does not get the corresponding equation. Phys-
ically, in equilibrium the temperature throughout the system must reduce
to that of the heat bath. As in other cases discussed before, most workers
are willing to assume this and that (8.2.5) can be solved for S; as a function
of 8, and the other variables. Then, one can replace E; by the Helmholtz
energy

6; 05. (8.2.11)

F, = F;(V;, 08, M{)) = E; — 058S.. (8.2.12)
By an exercise in calculus, one can then show that
; OF; OF;
D = '—?'{71, S’L = - ) Hia = 0N (8213)
aV; 00s oM,
Similarly, (8.2.9) can be replaced by
dF =) dF; > 0. (8.2.14)

=1

So, let us use this formulation. First, consider possible equilibria for which
none of the masses or volumes vanish, assuming that all the differentials
satisfying (8.2.10) are permissible. With our assumption it is easy to see
that, in (8.2.14), it is not possible for the inequality to hold. In part, we
then get the conditions N
OF, dv; =0
i=1 oV;

or, with (8.2.13)

> pidvi =0, (8.2.15)
=1

for all dV; satisfying (8.2.10). Clearly, we can assign arbitrary values to
dVa,...,dVy, and solve (8.2.10) for dV;. If we multiply the sum in (8.2.10)
by p1 and subtract this from (8.2.15), we get

Z(pi —p1)dv; =0,

=2
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where the dV; occurring here are arbitrary, so we must have

PL=Da = =pp, (8.2.16)

the equality of pressures which we might also infer, mechanically, as a
balance of forces. Similar consideration of variations of masses gives, with
(8.2.13), the equality of chemical potentials given by

Bla = Moo = *** = fhma, a=1,... n (8.2.17)

So, (8.2.16) and (8.2.17) give the equations of equilibrium. Of course, we
also must satisfy (8.2.1) and (8.2.2). With M, and V here considered as
given, the number of equations is then the same as the number of unknowns
(V; and M),

While we shall not discuss in detail the equilibrium conditions which
apply when some of the volumes and/or masses vanish, there is another
assumption concerning constitutive equations which deserves to be men-
tioned. Briefly, it is that, if we multiply all masses and volumes by a com-
mon factor, we can get the new energy by multiplying the old value by the
same factor. Roughly, it is the proportions which matter, not the absolute
amounts. For example, for the function F;, we assume that for any positive

number &, and any possible values of the arguments, we have
Fy(kV3,0,kM®) = kFy(V1,0, M(Y). (8.2.18)

as a restriction on the form of this function. If we differentiate this relation
with respect to k, then set k = 1, we obtain the identity

n
Vi + Y maMP = Fy.

a=1

(8.2.19)

There are various ways of taking care of this restriction. For example, taking
k=1/Vy in (8.2.18) and setting

Fi(1,6,00) = ¢1(0,0),  p® =MD /v;,

we have
Fi =Vi$:1(6,p), (8.2.20)
where p((ll) are interpretable as mass densities, ¢ as the Helmholtz free

energy per unit volume. As is easy to check, if we take any function ¢;
of the indicated arguments and use (8.2.20) to define F, it will satisfy
(8.2.18) and (8.2.19). This opens the door for dealing with problems in
which the mass densities p,(,l) might vary with position, as they will in a
gravitational field. This can be important for estimating water content in
soil near a deep lake, for example. Then, the total Helmholtz free energy
Fy in a region occupied by this component could be taken as

Fi= [ 010,00V, (8.2.21)

i
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giving (8.2.20) when the integrand is constant and the volume of the region
is V1. Clearly, much the same considerations apply to the other F; and to t}'le
E;, with the understanding that entropies are to be replaced by entropies
per unit volume. With (8.2.20), one can verify that (8.2.19) reduces to

—p+ Y tapl) = 1. (8.2.22)
a=1
A slightly different formulation can be obtained by introducing
n
m® =" MY, (8.2.23)
a=1
the total mass in V; and the concentrations (mass fractions)
e = MY ym®), (8.2.24)
numbers lying between zero and one, satisfying
n
> =1 (8.2.25)
a=1
Then, one can introduce the specific volume
1
vy =V /mY = o (8.2.26)
1

where p; is the total mass density in V;. Then, taking k = 1/m(!), we see
that we can also write F} in the form

Fy = mMp(vy,0,¢)) = Viprip(v, 6, c), (8.2.27)

and we can, if we like, use (8.2.25) to eliminate one of the . '

Originally, Gibbs introduced this kind of theory as a theory of ﬂlll.d
mixtures but later workers, like those interested in alloys, have applied it
to cases where some of the parts are solid. Confining solids to a fixed region
can easily induce shear stresses, so it is a little more natural to think of V'
as the volume of a region partly occupied by solids which are surrouncvled
by a fluid at a fixed pressure p, where the shape and volume V of th.e region
can change, to help avoid such complications. Then, the surrounding fluid
serves as a loading device which can do work on the solids. This changes
the relevant thermodynamic potential from F' to

sometimes called the Gibbs’ function. Involved, tacitly, is the ass.umptif)n
that the solids will stay in V, and not diffuse into the surrounding fluid,



116 8. Mixture Theory

an assumption which can be quite good, or very bad, depending on the
materials involved. It is a poor assumption for dry ice in air at room tem-
perature, for example. Here, the subvolumes are still considered to add up
to V, as indicated by (8.2.1), but V can vary. Also, (8.2.2) should hold
with M, fixed. Again assuming non-zero volumes and masses, we get, as
equilibrium equations,

pL=""=Dpm =0, (8.2.29)

as a replacement for (8.2.16) and, as before, (8.2.17), the equality of chem-
ical potentials. Here, V' is not known but p is regarded as a given constant.

Often, workers w1ll go a step further. Suppose p; is a monotonically de-
creasing function of V; when the other variables are held fixed (9p;/0V; =
—8?F1/0V < 0). Then, we can solve p; = p for V; = f(p,8, M{"), and
express

Gi=F +pV; (8.2.30)

as a function of these variables. Then, an exercise in calculus gives

3G, _ G, oG,

90 =51, a5 = V1 6—]\4&3:“1&

o (8.2.31)

With similar assumptions, we can do the same for the other ingredients
and get

G=3 Gi=) (Fi+pVi)=F+pV,
i=1 i=1 (8.2.32)
=G(8,p, ME).

Breakdowns in the assumed invertibility associated with phase transitions
sometimes occur. Attempts to perform the inversion can then lead to Gibbs’
functions which are multivalued and/or exhibit singularities when the cor-
responding Helmholtz free energy function is well-behaved. This is not to
say that the latter cannot be ill-behaved, but the situation described is
rather common. Commonly, phase diagrams are drawn to indicate under
what conditions phase transformations take place. Typical diagrams for
alloys are discussed by Ricci [38].

After taking care of satisfying the equilibrium equations one would like
to test for stability and a common procedure is to try to use the second
derivative test. If, say, one is using (8.2.9) and is not concerned with the
possibility of zero masses or volumes, one would calculate the second dif-
ferential of Eg, a quadratic in the differentials of Méf), V; and S;. Some
of the differentials can be eliminated, expressed as linear combinations of
others, to get a quadratic form involving differentials which can be varied
arbitrarily. For metastability one would like this to be positive or maybe
zero, for all choices of the differentials. Schematically, one has a quadratic
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condition like

n
Q= > ayziz; >0 (8.2.33)

(3,5=1)

for all choices of z;, and we can assume that
Aij = Qjj-

If this is not true, we can replace the coefficients a;; by (ai;; + a;:)/2,
which does not affect Q. One way of proceeding is to determine all of the
eigenvalues of the matrix | a;; ||; they must be nonnegative. In most cases
it is easier to use another test. Suppose first that the inequality is to be
satisfied in the strict sense, Q = 0 only when all z; = 0. Then, in the matrix
| ai; ||, go down the main diagonal, blocking out 1 x 1,2 x 2,..., matrices
as indicated by the diagram

’ a1 | a2 | a2 | ampm!
a2 aze | az2 | a2 i‘
| 013 asz a33 aszn
|
la A
a1n Anp

Then, we will have @ > 0 if, and only if, the determinants of all these
matrices are positive.? This gives a string of inequalities such as

a1 > 0, 11022 — 04%2 >0,..., (8234)
not so difficult to check.
If (8.2.33) does not hold in the strict sense, there will be some nonzero

z; for which Q = 0 and, with Q > 0, these will satisfy the first derivative

test for a minimum,
n
E a;; X5 = 0,
j=1

linear equations which are fairly easy to solve. One can then make a change
of variables to get a quadratic form in fewer variables, which is strictly
positive, then use the above criterion for it.

This covers some of the basic ideas used in formulating elementary prob-
lems involving mixtures, enough to indicate that they are similar to ideas
we have used before. As might be expected from our discussion, analysis of
physical problems of this kind tends to be rather complicated but involves
ideas much like those used before.

(8.2.35)

2A proof is given in Frazer et al. [39)].
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In part, we introduced this to cover stability problems which can involve
a large number of variables. One can encounter these in various other sit-
uations. Even with our simple balloon problems, one encounters the need
to take several variables into account if one considers many balloons, con-
nected by pipes so air can move from one to the others. In part, we have
also introduced this to indicate that, while deformations and temperatures
generally have some relevance to the description of the states of solids,
other quite different variables may also be needed. Amongst other things,
this indicates that the “typical” thermodynamic experiments discussed in
Section 2.5 need to be revised to provide relevant information concern-
ing the other variables. Finally, mixture theory is being used, increasingly,
to help us understand a variety of phenomena, so it seems worthwhile to
discuss it a little.

8.3 A Solid in an Ideal Gas

Here, we will consider one of the simplest situations employing two vol-
umes, involving a solid surrounded by an ideal gas. The assumptions are
as before, except that we assume that the solid remains intact, no part of
it entering the surrounding gas. However, gas can move into the solid. The
problem is to design the analogue of the thermodynamic experiments for
bars discussed in Section 2.5, to determine Fj. If the index 1 refers to the
solid, so it occupies the volume V; etc., our assumption is that

M®P =0= MY = My, (8.3.1)

a fixed constant for a given sample of the solid. For the solid, the Helmholtz
free energy function is an unknown function of the form

Fi(Vi, My, M{V,6), (8.3.2)

and we are concerned with this at a fixed values of 8, in considering isother-

mal mechanical experiments. This leaves V; and Mz(l) as two variables
which we want to vary independently. For the surrounding gas, (8.3.1) per-
mits us to continue to model this as an ideal gas, so we will have

_ ROMP
==
Also, the usual assumption is that C,, the specific heat at constant volume,

is constant. With this, the corresponding Helmholtz free energy function is
of the form

P2 (8.3.3)

F=M? | -Rfn % —C,0In0 +af +b]|, (8.3.4)
2
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where a and b are constants. This fits the format indicated by (5.1.7) in
our discussion of balloons. In such cases, where the mass of gas is held
fixed, the values we assign to a and b are unimportant. Here, their values
will affect values of chemical potentials, so it seems safer to avoid assigning
values to them to see what happens. To simplify notation, we write
My=M, MP=m=M>=M-m. (8.3.5)
It is a reasonable guess that, to vary V; and m independently, we will need
to use two control parameters. For one of these, let us try using the total

volume V, with
V=V+Ve (8.3.6)

Physically, this could be done using a sturdy pressure chamber involving a
movable piston as a wall. As the other, we consider using the amount of gas
put into it, as measured by M. Physically, one wants to keep the walls from
enough contact with the solid to induce shear stress, etc., so cases where
V5 = 0 are not of all interest. Said differently, we can vary V> sufficiently
to get equality of pressures

OF;
—py = — 8.3.7
P2 =P1= 5y (8.3.7)

Otherwise, equilibria of the endpoint type could occur, with m = M or
m = 0 but, for the moment, we will exclude these cases. Then, we should
have the equality of chemical potentials indicated by (8.2.13) and (8.2.17).
With (8.3.4) and (8.3.5), we thus get

_.aﬂzRe[l—ln(V_Va)}—CU91n9+a0+b. (8.3.8)
om M-m
Similarly, (8.3.3) and (8.3.5) give
6F1 M - m)
—— = —R# . 8.3.9
Vi (V 7 (8.3.9)

So, for various values of 8, we should vary M and V' as much as is feasible,
performing the measurements required to obtain corresponding values of
m and V7. If all goes well, we then get empirical relations of the form

m=m(M,V,0), Vi = Vi(M, V,6),
invertible to give relations of the form
M = M(m,W1,6), V =V(m,V,86). (8.3.10)

Realistically, one might encounter complications more or less like those we
have encountered in other situations, but we will ignore this.
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Now consider what happens if we let M approach zero, which will also
force m to approach zero. Since we are dealing with a solid, V] is not likely
to approach V' if we make V' large enough, so the pressure should approach
zero. Under these conditions, if we vary 6, the pressure will remain zero
and the volume V; can be expected to change. This is the analogue of the
thermal expansion discussed in Section 2.5. This gives a function which can
be measured

Vi =v(f), when M =m =0, (8.3.11)

such that the derivative in (8.3.8) vanishes. With this, and (8.2.13), we
then have ,

dFy = -5, df, (8.3.12)
where
E:&Mmﬂ=mw (8.3.13)
Vi=v(0)

is the entropy function for the special processes considered. To determine
it, one needs measurements of the specific heat at zero stress, the analogue
of the Cy(6) mentioned in Section 2.5. This will determine S; to within an
unimportant additive constant.

. Now, we can introduce a kind of analogue of the strain energy func-
tion introduced in Section 2.5. Bear in mind that M; is considered as a
fixed constant, so the empirical functions could depend on M; were we to
consider other values. Here, we introduce a function

W =W(Vi,m,8), (8.3.14)
such that

W(v(6),0,6) =0, (8.3.15)
ow _or
om  om’

8.3.1

ow _on o
ovi  owy’

wl.lere the right sides of (8.3.16) are expressed as functions of V;, m and 6
using (8.3.7), (8.3.8) and (8.3.9). The idea is to integrate these equations,
subject f‘,o'(8.3.15), to obtain W. Given suitable isothermal mechanical
data, this is enough to determine W uniquely. By arguments similar to
those used in Section 2.5, it then follows from above that

m:W—/E@w. (8.3.17)
We will not elaborate on these matters. However, some things are worth

not%ng. There are the constants a and b which must be regarded as rather
arbitrary, physically. As is clear from (8.3.7), they do affect the values of

|
|

}%

J

|
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chemical potentials, so these are not really so uniquely defined for a given
pair of materials. In turn, this affects F} and, through it, the dependence
of the entropy S; on m. For common kinds of stability analyses, such ambi-
guities seem not to matter. In other kinds of thermodynamic systems, am-
biguities of this kind become, in some sense, greater. As a second point, we
note that, given sufficiently smooth data, we could calculate 0%F, /0mdV,
in two different ways, either by differentiating (8.3.8) with respect to V1,
or by differentiating (8.3.9) with respect to m. Equating the two gives

0 ) Vv-vi\y_ 0 (M—m)

am“(M—m>'am Vv )
Sometimes, relations of this kind are used as a crutch, to try to get the
best estimates of the empirical functions from data which might be too
sparse or inaccurate to make a very reliable direct determination. Of course,
one cannot exclude the possibility that any theory may be overturned by
contradictory experimental results, but with rather old, generally accepted
theories such as we are considering, I think workers would be more likely
to believe that it is the experiment which is in error.

Some interesting observations are reported by Gent and Tompkins [40].
Briefly, a piece of rubber is placed in a pressure chamber which is then
filled with a gas. One then waits for some time to let the system come to
equilibrium, or at least very close to this. Then the chamber is vented to
permit quick escape of the gas. If the pressure was high enough, the whole
block explodes, becoming a collection of small fragments. The explanation
they propose is as follows. Inevitably, a piece of rubber contains tiny holes.
In the first phase, the gas moves rather slowly into the rubber, hence into
the holes. Generally, diffusive motions like this are not very fast. As sug-
gested by the above analysis, the holes then fill with gas, at a pressure
comparable to that in the gas external to the sample. When the exterior
gas is vented, that in the holes cannot move out so quickly, so one still
has the high pressure there. Relatively, this is like imposing a high ten-
sion on the solid and, intuitively, this could pull it apart. Using this idea,
combined with some rough calculations involving rubber elasticity theory,
they get an order of magnitude estimate of the value of the pressure which
must be exceeded to produce this kind of failure and it is compatible with
the observed values. As far as I know, no one else has proposed a better
analysis of the phenomenon. Phenomena somewhat like this are sometimes
explained in a very different way. If one ignores the possibility that the gas
enters the solid, one could argue that the sudden release of the exterior
pressure initiates something similar to a tensile shock or stress wave mov-
ing into the solid. Generally, such analyses use linear theory, with some
ad hoc estimate of how large the tension must be to produce breakage,
and, usually, this kind of argument predicts breakage at particular places,
producing spalling of plates, etc. It is not inconceivable that one could use
some analysis of this general kind to explain the phenomenon. Generally,

(8.3.18)
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one can encounter cases where two quite different theories seem to explain
the same phenomenon. Then, one tries to decide which is best. Decisions
of this kind are made, occasionally, but no simple rule book describes how
they are made. However, arguments about such matters can result in the
design of interesting experiments in order to test the merits of different
proposals.

8.4 Exercises

8.1. For the thermodynamic experiments discussed in Section 8.3, one
assumption is inappropriate for a solid like dry ice, which readily
transfers some of its mass to air. Revise the analysis to apply such
solids. To simplify considerations, assume that air does not transfer
any of its mass to the solid. You may introduce one other simplifying
assumption which seems physically reasonable to you, based on your
experience with such solids, after clearly stating what it is. Discuss
how the kinds of measurements needed differ from those discussed
before.

8.2. In the three-dimensional theory of linear elasticity, W, the strain en-
ergy (per unit volume) function, is assumed to be an homogeneous
quadratic function of six measures of strain, and that it is positive
definite. For a transversely isotropic material, symmetry considera-
tions reduce this to the form

W = Ci(z1 + 22)? + C223 + C3(x1 + z2)23 + Cy(a? + z2)
+ C5(z§ — Z1Z2),
where the C’s are material constants and the z’s label the strains.

What inequalities must the constants satisfy, for the quadratic to be
positive, in the strict sense?

1
i

i

9

Equilibrium of Liquid
Crystals and Rods

9.1 Liquid Crystal Energies

Although they are liquids, nematic liquid crystals commonly used in display
devices involve equilibrium problems which are more like some encountered
in solids. Thus, for example, one finds a chapter on them in a volume on
elasticity theory in the Landau-Lifshitz series on theoretical physics [41]. At
the same time, consideration of them will involve issues which are different
from those encountered before. Here, orientation replaces deformation as
an important quantity. For equilibrium situations, forces can be involved,
but they are generally not of sufficient interest to induce workers to try
to measure them and, more often than not, workers solve problems with-
out considering them explicitly. Also, for the first time, we will need to
consider effects associated with electromagnetic fields. Additionally, in the
design of devices and in measurement of material moduli, transitions play
an important role.

These are liquids which are optically anisotropic when they are at rest,
being of what is often called the uniaxial kind, as are some crystals like
Iceland Spar. Roughly, such materials have one preferred direction, any
direction perpendicular to this being physically indistinguishable from any
other. Suffice it to say that one can use optical observations to determine
the preferred direction. We represent it by a unit vector n,

(9.1.1)
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commonly called the director. Actually, the observations do not distinguish
between n and —n, so

n and —n are physically equivalent. (9.1.2)

Commonly, observations indicate that in a sample, n is not constant but
varies with position. Just how it varies is influenced by the nature and
sometimes, prior treatment of other materials brought into contact with
it, or by placing it in electric or magnetic fields, among other things. The
director vector field then defines a kind or orientation pattern and, in turn,
what it is affects light passing through the material. By learning how to
analyse and control such phenomena workers have been able to design and
improve the now familiar practical devices.

From a thermodynamic point of view, we need a constitutive equation
for, say, the Helmholtz energy per unit volume. For most fluids, we would
think of this as a function of #, and p the mass density. Here, we are
dealing with liquids and, as is usually the case for these, it is reasonable
to assume that they can be idealized as incompressible materials. Said
differently, we can neglect variations in p. For the moment, assume that
electromagnetic fields are absent. Then, observations indicate that one can
have various orientation patterns induced by contact with other materials,
etc. Reasonably, different energies are associated with these. As a first
guess, workers are likely to try a local theory, using ideas similar to those
discussed in Chapter 2 and theory of this kind has performed well. I will
sketch the ideas used but omit some derivations. If we introduce rectangular
Cartesian coordinates, n has three components. First partial derivatives of
these with respect to the three coordinates can then be represented by a 3
by 3 matrix, denoted by Vn. The basic assumption is that ¢, the Helmholtz
free energy per unit volume, is of the form

¢ =¢(n,Vn,0). (9.1.3)

Physical considerations impose some restrictions on the function. From
(9.1.2), we should have

¢(n,Vn,0) = ¢(~n,—Vn, d). (9.14)
Also, there is the notion of objectivity, used a little in Chapter 2. Here, the

idea is that merely rotating a liquid crystal should not change ¢. Any such
rotation can be described by a matrix R, satisfying

RTR=1, detR=1. (9.1.5)

The requirement is then that, for any such rotation, we should have

¢(n,Vn, ) = o(Rn,RVnRT,9). (9.1.6)

I
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Roughly, there are two kinds of liquid crystals coverc.ed by the Flescription
and some others which are not. Typical display devices used in watches,
personal computer screens, etc. employ nematic liquid crystals. For Fk}ese
o is also invariant under reflections. This gives rise to one more condition,

¢(n,Vn, ) = p(—n, Vn,H), (9.1.7)
obtained by using (9.1.6), with R describing a central i'nver‘sion R=-1).
The second kind, cholesteric liquid crystals, are used in dlffer.ent sorts of
devices, for example those serving as therrnom.eters3 by changing col(?r as
the temperature changes. For these, ¢ is not. lflvarlgnt unde.r ref‘iectlons.
Typically, liquid crystal molecules are rather rigid, w1-th one direction large
compared to others. In this sense they are rather like the bars we have
discussed. Depending on the material, these r.nolecules may or may nc?t
display some symmetry with respect to reflections and,husually, it is t'hls
which decides whether they are to be regarded as nematics or cholesterics.
Here, we will only consider nematics, so (9.1.7) applies.

Another kind of simplification is based on observations. They suggesjt
that, left to themselves, nematic liquid crystals would prefer to.have uni-
form orientation,! n = const. This suggests that such configurations mini-

mize @
¢(n,Vn,6) > ¢(n,0,0). (9.1.8)

Granted this, we have, as an analogue of the strain energy functions used

before,

W(n,Vn,8) = ¢(n,Vn,0) — ¢(n,0,0) >0, (9.1.9)

with the property that

W(n,0,8) = 0. (9.1.10)

For cases where n does not vary too rapidly with position, it is reasonaple
to assume that W can be approximated sufficiently well by its expansion
up to terms quadratic in Vn about Vn = 0. Imposing fﬂl the conditions
noted above, one can use rather elementary argt}mgnts, d1§cussed by Frank
[42], to determine the possible forms of W. This gives, with notation now
used by many workers,

W = Ky(V - n)? + Ky(n - curl n)? + Ksllnxcurl n|f?
+ (Ka + Kq)[tr(Vn)? = (V- m)?],
where the K’s are material moduli, functions of § depending on the ma-

terial. To have the inequality indicated in (9.1.9) satisfied, these should
satisfy

(9.1.11)

K, >0, K;>|Kd, K3>0,  2Ki>Kr+Ks (9112

1In this respect, the cholesterics are different, preferring a kind of twisted
configuration, like some to be described later.
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This is the so-called Oseen-Zocher-Frank theory, an old workhorse which
has satisfactorily described numerous observations and has been part of the
basis for designing experiments and devices, etc. It provides a description
of what is reasonably regarded as mechanical energy. Also needed is some
way of accounting for energies associated with electromagnetic fields and
crude estimates do well enough for our purposes. One way to think of it
is to consider the liquid crystal as a thermodynamic system, acted upon
by fields which are produced externally. The problem is then to estimate
the power they supply to the liquid crystal or, what is more pertinent for
equilibrium theory, the work they do on the liquid crystal. This is subtle,
s0 it seems worthwhile to consider a simple model to help motivate what
is done.

Suppose the liquid crystal is placed on a constant electric field. The force
exerted by it on any charge is then obtained by multiplying the (constant)
electric vector E by the charge. We are dealing with dielectrics, their electric
response being like the insulating coatings applied to conducting wires, for
example. This means that charges able to move very freely are absent. A
molecule will, of course, contain the charged electrons and protons, but they
remain bound to it, the net charge for the molecule being zero. Thus, the
resultant force on the molecule exerted by the constant field is zero. One
may conclude from this that the field does no work on the liquid crystal,
but this is wrong. Consider the simple case of a dipole, consisting of two
point charges, a positive charge ¢ with position vector r*, a charge —q at
r~. By convention, we associate with them a polarization vector p, given
by

p=gq(rt —r7). (9.1.13)
Generally, they will exert forces on each other and be subject to forces
exerted by their neighbors, but our concern is more with the influence of
E. If, in its presence, the position vectors change a little to r+ + Ar+ and
r~ + Ar~, and if AW denotes the work done by E, we then have

AW =gE-Ar* + (-~g)E-Ar~ = E - Ap, (9.1.14)

which is generally nonzero. Here, the force averages to zero but it still does

some work.

In, say, the biaxial stretch of rubber sheets, it is obvious, physically, that
the forces are not uniformly distributed along the edges. The work done by
them is not likely to be the same as it would be if they were uniformly dis-
tributed, when the resultant forces match. Similar remarks apply to loading
the bars, etc. Were there some accepted way of correcting for such errors,
we would have commented on it in discussing such problems. Here, we do
at least have an example of one correction of this kind which is in common
usage. Commonly, liquid crystal molecules do have a dipole moment, a po-
larization vector of which one can think as attached to them. If they were
all aligned the same way, we could simply multiply (9.1.14) by the num-
ber per unit volume to estimate the work done per unit volume. However,

‘MHHH F
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they are far from being so aligned. One can represent the net.efff:c.t macro-
scopically by a vector P, a kind of statistical average of the individuals in
a unit volume. In the absence of an external field, the molecules tenq to
be randomly aligned, which gives P = 0. Applying a field (_:ha_nges this a
little, causing some partial alignment, making P # 0. I.T‘or liquid crystals,
the effect is described sufficiently well by a linear equation of the form,

P =aE + b(E - n)n, (9.1.15)
where a and b are functions of 6, invertible to give
E=cP+d(P:n)n, (9.1.16)
with
c=1/a, d = —b/[(a + b)a]. (9.1.17)

For any fixed value of n, one can use the obvious analogue 0.f (9.1.13),
which can be integrated to get W, the electric field energy per unit volume.

1
Wg=1E.P= 5[cP-P+d(P-n)2]
2 (9.1.18)
oWg
B="%p

This is then a kind of potential energy, describing the work don(? on the
liquid crystal by the field in changing P from zero to the \./alue.of interest.
Physically, we expect this to be positive, conditions for this being that

c>0,c+d>0sa>0,a+b>0. (9.1.19)
What is neglected here is the induced field. Briefly, a dipole itself pro.duces
a field which depends on its polarization. When they are randomly ahgnefi,
these fields cancel each other, but there is some net effect when the.y begin
to be aligned by an external field, producing an addition to E, an induced
field. This is a relatively small effect, often, but not always-, neglected by
workers: we will ignore it. In our argument, we assumed E is consFant ‘for
simplicity. However, the end result also applies to cases wher'e it varies with
position. It should satisfy the equations for a static field, in vacuum, or,
more realistically, in air, which are

V-E=curl E=0. (9.1.20)

A very similar estimate covers the work done by magne-tic fields. In Place
of E we have the vector H describing the imposed magnetic field. It satisfies
(9.1.20), with E replaced by H. In liquid crystals it produce§ an analogue
to P, magnetization described by a vector M. The assumption is that M
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and H are linearly related, by equations entirely similar to (9.1.15) and
(9.1.16). The field energy is then the analogue of (9.1.18),

Wy =1/2M-H, (9.1.21)

and, again, this should be positive. Again, this neglects an induced field,
an effect so small that, as far as I know, no one tries to correct for it.
Often, workers replace Wg by a different expression

Wi= —D-E,
8
where
D= eE 4+ 47 P

is the so-called electric displacement vector, g being the dielectric constant
for vacuum. One then has

= 1
WE"WEZS_ﬂ_EOE'E-

This has some merit if one starts to correct for induced fields. Otherwise,
one generally considers E as a given field, W and Wg then giving the
same energy differences, so it does not matter which of these we use.

Bearing in mind that Wg and Wy represent work done on the liquid
crystal, we then subtract these from W to obtain

Wr =W —Wg— Wy, (9.1.22)

as the total of the mechanical and field energies per unit volume. For most
cases of interest, this covers the energies for which we need to account.

9.2 Orientation by Fields and Walls

First, let us think about what a liquid crystal would prefer to do if it were
under the influence of a constant electric field but otherwise were free to do
as it wished. Reasonably, it should try to minimize Wr, given by (9.1.22).
From our discussion of W, its smallest value is zero, obtained when n is
any constant vector. As to Wg, we can use (9.1.15) to express this in terms
of E and n, the rest of the energy being
1 1

~Wg = —5E-P= —§[aE -E+b(E-n)?.
The problem is then one of determining the unit vector(s) n for which
this has the smallest possible value, E being given. It makes a difference
whether b is positive or negative. The minimizing configurations are easily
determined to be of the form

(9.2.1)

b>0=n || E, (9.2.2)
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or

b<0=n L E. (9.2.3)

Liquid crystals fitting either case are available. With b > 0, one can use E
to induce n to take a definite direction. This is exploited in modern display
devices, for example. Some older devices used materials with b < 0, leaving
n free to take any direction in a plane. They did not perform as well and
exhibited complex behavior which is hard to analyze.

It is instructive to look at the other equilibria. Taking the differential of
(9.2.1), we get the condition

—b(E - n)(E - dn) > 0, (9.2.4)
for possible dn. These are restricted by the condition that n be a unit
vector,

dn-n)=2n-dn=0, (9.2.5)

being otherwise arbitrary. It is not very hard to show that, for (9.2.4) to
hold for all dn satisfying (9.2.5), n must be either parallel or perpendicular
to E. So, if b > 0, one has the stable equilibrium configuration with n || E
and unstable equilibrium with n L E. Other influences can stabilize the
latter and this is used in various ways to produce interesting and useful
phenomena. We will return to this later.

There is a different, more mechanical way of understanding these equi-
libria. By calculating the resultant moment on a dipole, one can motivate
the idea that E produces a couple Lg per unit volume, given by

LE=PxE=[aE+bE -n)n xE=5bE -n)n xE, (9.2.6)
so the above equilibrium conditions coincide with the condition that Lg =
0. As was suggested before, the constant field gives a zero body force so,
with Lz = 0, we have taken care of conditions which may be inferred from
ideas of mechanical equilibrium.

Again, the corresponding situation for magnetic fields copies this, replac-
ing E by H, etc., giving the body couple

Ly=MxH. (9.2.7)
In mechanical terms, the most important effect of the fields is to produce
these couples. Roughly, they serve as wrenches which we can use to adjust
the orientation, represented by n.

At an interface where a liquid crystal contacts another material, there is a
curious effect, long known, but still not very well understood from the view
of basic science. Often, the director assumes some definite direction, this
being called strong anchoring. If not, the experience is that it will make
a constant angle with the normal vector to the interface, being free to
swing around, subject to this condition, producing what are called conical
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boundary conditions. In detail, what happens depends on the two materials,
and, often, on the prior treatment of the other material. For at least some of
the more commonly used liquid crystals in contact with an untreated glass
plate, n is tangent to the plate, favoring no particular tangent direction.
One could easily induce it to choose one, by using a magnetic field acting
tangentially, for example. However, it would still remain tangent if one
applied the field in another direction, at least if the field is not excessively
strong. However, it will influence the direction assumed in the interior.
Now, consider the glass to be treated, by rubbing it in one direction a
number of times. Then n will align tangentially,? in the direction of rubbing.
So, this converts it from a conical case to strong anchoring. Instead of
rubbing, one can wash the plate with certain acids or detergents, or use
certain coatings, to get n to be normal to the plate, another kind of strong
anchoring. Other tricks are known for getting strong anchoring, with n
making other angles with the interface. Suffice it to say that there is a well-
developed art of making n satisfy one of a variety of boundary conditions at
such interfaces. This covers the general ideas commonly used in designing
devices and experiments.

9.3 Measurement of Moduli

That W has the form given by (9.1.11) was arrived at by using theoretical
ideas to mathematically formulated hunches based on rough observation
and not really by curve-fitting any quantitative measurement. Certain kinds
of experiments for measuring K, K, and K3 have long been used and are
not too difficult to analyze, at least roughly. They employ very similar
ideas with only slight differences in the set-ups, so we will consider only
one in detail, the measurement of K,. This, like the others, involves a
liquid crystal sandwiched between fixed parallel plates. In this case, these
samples are prepared to make n take up a fixed tangential direction, the
same on both plates; one could apply the rubbing technique for glass plates,
discussed before. The arrangement is such that the distance between the
plates is very small compared to the lateral dimensions of the sample,
so it should not matter much what goes on at the edges of the sample.
The aim is to get n = const., matching the boundary conditions on the
plates, and the experience is that one can get a good approximation to
this. We will consider only the liquid crystals for which (9.2.2) applies,
so an electric field will try to induce n to align parallel to it. Actually,
workers often use magnetic fields which do have such an aligning effect. As
should be clear from the previous discussion, the theory of these two cases

?One expert informs me that it is not quite tangential, but tilted off by a very
small angle.

|
H
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is essentially the same. To measure Kg, the idea is to apply a c'onstapt ﬁejld,
with E perpendicular to the constant n descr%bed above and in a dl}rectl(t))n
tangent to the plates. Then, in this configuration, 'the body coup?e given by
(9.2.6) is zero, so this is an equilibrium cogﬁguratlon. A.lthough it does ;19t
satisfy (9.2.2), the wall has some stabilizing effecF on it. To'a.nalyze t is,
we introduce rectangular Cartesian coordinates, with the pos1t1\./e. z-axis in
the direction of the constant vector n described above, tbe positive y-axis
in the direction of the applied field and the z-axis then being normal to the
pl%lgflsink of the region occupied by the liquid crystal as extendix?g to mﬁn‘lty
in the z and y directions and in the interval 0 < z < .L, in the third
direction. For the configurations considered, the assumption is th.at, tk.leg
vary only with z, n remaining parallel to the zY .plane. Bearing in min
that n must be a unit vector, we can represent it in terms of the angle ¥
it makes with the z-axis,

n = (cos ¥,sin ¥, 0), ¥ = ¥(z2). (9.3.1)

We assume ¥(z) is a smooth function which is consistent with the obser-

vations. The strong anchoring conditions at the plates give the boundary

conditions

w(0) = ¥(L) = 0. (9.3.2)

As usual, we assume 6 = const. With (9.1.11), a calculation gives, for the
mechanical energy,

oW = K,(¥')% (9.3.3)
With our choice of coordinates,
E = €(0,1,0), (9.3.4)
e being the magnitude of the field. Then, (9.2.1) gives
9Wg = e2[a + bsin® U] (0.35)

— be?sin? ¥ + const.

For the infinite sample, the total energy will be infinite, so we look at the
energy per unit plate area,

L
&= / (W — Wg)dz. (9.3.6)
0
Dropping the unimportant constant in (9.3.5), we get
L
28 = / F(¥,¥') dz, (9.3.7)
0
e F(0,0') = Ko(¥')? — be® sin® V. (9.3.8)
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Of course, any variations of ¥ considered should conform to (9.3.2), and
we will want to consider these in much that same way as we did in deriving
equilibrium equations for bars, etc. A trick is commonly used in variational
equations of this general kind so, for the moment, we ignore (9.3.8). To get
equilibrium equations, we proceed, as we have done before to calculate 6&,

getting
Lrof Of o
268—/0 (%6\11-{——6—\176\11)@
. , . (9.3.9)
_ of of of
—/0 30 (8\IJ’> 6\Isz+6\Iﬂ6\IJO

From arguments such as those used before, the equilibrium equations ob-
tained by setting 6& = 0 are then

- (%) -
ov v ) T

Here, the last term vanishes because 6% = 0 at the end points, but the
trick works for other kinds of problems. Now, by calculation,

, Of /__ of _, of . n Of ’ of '
(f ‘I’a\p')"?ﬁq’*a\p'q’ Yow YV \aw

TN ETAY
=¥ 5% (aw)

Thus, if (9.3.10) holds, we get a first integral

of
o’
Conversely, if (9.3.11) holds, (9.3.10) will be satisfied, except perhaps when
VU is constant. So, one checks (9.3.10) for the possible constant solutions

and uses (9.3.11) for the less trivial possibilities. Here, (9.3.10) gives, with
(9.3.8)

(9.3.10)

f-v = const.

(9.3.11)

KoV 4 be?sinWeos ¥ = 0 (9.3.12)

and there is the constant solution ¥ = 0, the only one satisfying the bound-
ary conditions. We anticipated it from the consideration involving Lg. For
possible nontrivial solutions, we can use (9.3.11) to replace (9.3.12) by

(9.3.13)

Before considering these, let us consider the stability of ¥ = 0. For this, it
is convenient to use Poincaré’s inequality, satisfied by any smooth function
¥ which vanishes at the ends of the interval,

L a2 L
/ U2y > —2/ V24,
0 L? [y

K02 4 be?sin? U = const.

(9.3.14)

9.3 Measurement of Moduli 133

The equality holds when ¥ is a constant times sin(nz/L).
To see where this comes from, one can proceed as follows. Consider the
ratio L
Jo ()2 dz
R="F—
T )
Jo ¥2dz
for smooth nonzero functions ¥, vanishing at the end points of the interval.
This is sometimes called a Rayleigh quotient. Now try to find the smooth
function(s) which minimize it.> As we have done before with such integrals,
we can find extremals by considering ¥ as one, writing ¥ = U+ 6%, where
1 is a small parameter, etc. This gives

L n2 L 12d L
6R:6fOL(\Il) dz _ f, (¥) wzé/ 2 dg,
Jo W2 dz (fOL \Il2da:) 0

which should vanish for ¥ = U. Let R be the value of R for ¥ and the
condition reduces to

6/0L[(\IJ’)2 - R dx =0,

from which it follows that ¥ should satisfy the equation
T’ +RT =0.

A general integral of this is a linear combination of cos(R)!/2z and
sin(R)/2z. Impose the condition that such a function vanishes at the end
points and you find that the coefficients of cos(R)!/?z must vanish and
that

R =n?n?/L1?, n=+1,+2, 43, ....

Clearly, the smallest such value occurs for n = 1, and this gives (9.3.14).
Also, it is easy to verify that

sin? ¥ < 02, (9.3.15)

Thus, from (9.3.7) and (9.3.8),

L
28 = / [K2(9")? — be? sin® U] dz
0

w2 L
> (Kgﬁ - be2>/0 U2 dz.

3For a complete and rigorous treatment, one needs to show that the minimum
is attained by some such function. A proof of this is given on p. 122 of Courant
and Hilbert [43]. One can use simple functions, for example, the trigonometric
functions mentioned below, to show that R can be arbitrarily large, so R does
not take on a maximum value for any smooth function.

(9.3.16)
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Obviously £ = 0 when ¥ = 0 so ¥ = 0 will minimize £ whenever the last
expression is nonnegative. That is

be?L? < Kyn? = ¥ =0 is stable. (9.3.17)

To explore this when the inequality fails, we can use the second derivative
test. For this, we proceed as usual. This amounts to taking ¥ = ué¥, where

¢ is a small parameter, and approximating £ to quadratic terms in yx. This
gives

L
26 = U262 — 1 / [K(69")? — be?(69)? dz
0

2 L
> 42 (Kg% —be2> /0 (60)2 dz,

with (9.3.14) being used again, now applied to 6%. Also, the equality will
hold for ¥ = sin(7z/L). If §2€ < 0 for any admissible choice of §¥, ¥ = 0
is unstable so

(9.3.18)

be’L? > Kon? = ¥ =0 is unstable (9.3.19)

and the liquid crystal must then adopt some other configuration to be in
stable or metastable equilibrium. The borderline defined by the change in
stability of ¥ = 0 gives a critical value e. of the field strength e, given by

be?L? = Kom?. (9.3.20)
The idea of the experiment is to determine e.. That is, one adjusts e to
find the value at which the uniformly oriented configuration ¥ = 0 shifts to
another kind. One can use optical methods to detect this, although workers
have found other methods to be more accurate. Of course, L can be mea-
sured. With (9.3.20) this gives an experimental estimate of K5/b. Another
kind of experiment is used to determine b, but we will not discuss it. With
the two, one also gets an estimate of K3 at the prevailing temperature.
This modulus has force as its physical dimension. Of course, it varies with
the material and, for a given material, with temperature. Typically, it is
of the order of 10¢ dynes, which is an exceedingly small force by normal
standards.

Roughly, it is this which lets the devices operate with a very small supply
of power. It is worth noting that, according to elementary electromagnetic
theory, V = eL has the physical dimensions of the electrostatic potential,
commonly meausured in volts, so (9.3.20) could be written in terms of a
critical “voltage” V,

bV2 = Kon?. (9.3.21)

In this arrangement V. has no very clear physical significance. Devices
and other experiments commonly employ fields directed normal to such
plates and involve similar bifurcations. Then the analogous critical voltage

ﬁ
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space is the voltage across the plates. Typically it is a 'few volts'. In this
form it is independent of L, a prediction which agrees with experience.

One can proceed to analyze the nontrivial equilibria. It turns out that as
one increases e, one passes through critical values, marking places where the
number of solutions of the equilibrium equations jumps to a higher value.
One can analyze these to determine which are the energy minimizers, b.ut
I will not try to discuss this. Actually, the minimizer has the properties
one might expect intuitively. As soon as e gets larger than e., one gets. a
compromise between the wall and field effects. At the wall, the wall has its
way, maintaining the boundary conditions. Away from the wall, the director
rotates a little, a small step towards becoming parallel to the .ﬁeld. As one
moves away from the walls it rotates more, reaching a maximum at the
mid-plane z = L/2. It is easy to see that if U(z)is a solut.lon, so is —.\Il(.z),
or, said differently, it could rotate either to the left or the nght:,, a prediction
not contradicted by experience. The behavior is somewhat similar to that
which we have encountered before, in the “pitchfork” bifurcations, and
some workers use the name for them.

For one of the two solutions we will have ¥ increasing with z, from zero
at z = 0, to some maximum value ¥y < n/2 at z = L/2. Since it is a
maximum, we will have

Wy = U(L/2), v'(L/2) =0 (9.3.22)
Then, (9.3.13) takes the form
Ka(W')? + be? sin? ¥ = be” sin® ¥y, (9.3.23)
from which it is clear that
sin? ¥ < sin’® ¥g. (9.3.24)
We now do some juggling. Let
k = e\/b/Ka. (9.3.25)

It is a number with the reciprocal of length as its physical dimension. With
(9.3.24), we can introduce an angle satisfying

sin ¥ = sin ¥/ sin ¥y, (9.3.26)

varying from zero to 7/2 as ¥ varies from zero to ¥y. In terms of these
quantities, a routine calculation gives, as a replacement of (9.3.23),

(x')? = K*[1 - sin? ¥gsin? x], (9.3.27)
the conditions on x being
L T
= = —]==. 9.3.28
x©-xv=0, x()-% (9.3.28)
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Consider the solution for 0 < z < L/2 where x’ > 0. Then (9.3.27) and
(9.3.28) become

kz =

/X dp 9.3.29
0 \/l—sin2\Ilgsin2<p (9.3.29)

and

= h(Ty). (9.3.30)

kL /"/2 dp

2 0 \/1 — sin® ¥g sin? 7
Given k& a'nd L, the idea is to solve (9.3.30) for ¥q. Substituting this in
(9.3.29) gives 2 as a function of y, the inverse of the function x(z) for
0 < z < L/2. To obtain the solution in the upper half, put

x(2) = x(L - z),

it being a simple matter to verify that this gives a solution of (9.3.27)
satisfying (9.3.28).

hConcerning h(¥y), given by (9.3.30) for 0 < ¥y < 7/2, one can show
that

L/2<z<L, (9.3.31)

(a) h(¥o) is a monotonically increasing, continuous function of ¥y;

(b) ‘I,Olirr;/2 h(¥g) = oc;
(c) h(0) = 3.

This means that kL determines a unique value of ¥y in the range of interest

provided
/b
kL =eL | — .
e %, >m

From (9.3.19), this means that these solutions occur whenever conditions
are such that ¥ = 0 is unstable. For these nontrivial solutions, it follows
from (a) and (c) that as kL approaches the critical condition indicated by
(9.3.20), ¥, approaches zero, so near this, it and hence sin? Py, will be
small. Then (9.3.13) implies that ¥ will be small, close to zero. So, the
distortion develops rather smoothly as one increases e, passing through
ec, again like the pitchfork bifurcations we studied before. Actually, this
makes it a little difficult to observe exactly when the transition occurs:
other methods can detect it, before it is optically discernible.
. As one increases e, or, if you like, the somewhat fictional voltage eL, kL
increases so, from (a), ¥ increases, n becoming more nearly parallel to E
near the mid-plane. The experience is that it only takes a few volts to get
n fairly close to the direction of E in a large fraction of the gap. In the
small parts near the walls, n then varies rapidly with position to adjust to
the wall orientation.

Transitions somewhat similar to this occur in various other situations of
physical interest. To recall what we did, we recognized that, with an electric

(9.3.32)
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(or magnetic) field, we could have unstable equilibria, with n perpendicular
to the field. We then introduced something else, the wall effects, to help
stabilize this. As we have seen, this can be successful if the field is not
too strong. If it is strong enough it gives a transition. Workers refer to
the transitions of this kind as Fréedericsz transitions in honor of a Russian
scientist who discovered them experimentally using magnetic fields.

The classical methods for measuring K; and K3 employ rather similar
set-ups and transitions. For K, we start with the sample oriented as be-
fore, but apply a field in the direction normal to the plates, one case where
the voltage across the plates is the product of the field strength and the gap
width. For K3, the plates are treated to make n align normal to them. The
field is then applied perpendicular to this direction. The corresponding cal-
culations are discussed by various writers. For example, they are included
in three of the best general reference works on liquid crystals, the books by
Chandrasekhar [44], de Gennes [45], and Virga [46]. Display devices exploit
Fréedericsz transitions, using fields strong enough to induce n to become
nearly parallel to the field except very near the walls. Chandrasekhar dis-
cusses the twisted nematic cell, which is used in many such devices. The
mathematical theory of nematic liquid crystals has undergone a period of
rapid development, as is discussed by Virga [46].

There is a point worth bearing in mind. We considered only some very
special types of configurations. Those regarded as stable may turn out to
be unstable with respect to more general variations. Cohen [47] explored
this theoretically for the set-up used to measure K;. He finds that, for
many values of the moduli, there is an instability which sets in at a field
strength lower than that given by one-dimensional theory, causing n to be
nonuniform in a periodic manner. Conversation with experimentalists indi-
cates that some had noticed a little undulation which could be associated
with this, not so small in recently discovered liquid crystals where K is
relatively large, so there is some reason to be concerned about this. So far
at least, it has not been feasible to analyze the sample of finite size which
must be used in the experiments. So, as is typical, one gets into more so-
phisticated problems as one tries to take care of the inevitable loose ends,
in order to understand nature a little better.

9.4 Elastica Theory

It is a matter of common experience that the straight long thin bodies
we call rods, bars, beams and wires tend to depart from their straight
shape, to buckle when we apply compressive loads of moderate size at
their ends. Obviously, the bar theory discussed earlier cannot cope with
this. One can use somewhat similar one-dimensional theory, but it must
let the line segments become curves. The simplest possibility is that the
curve is contained in some plane, and, for a number of physically interesting
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situations, this is the case. The simplest theory of this kind is Euler’s theory
of the Elastica, created by this famous scientist in the eighteenth century.
It has proved to be very good, so it is still used by those concerned with
designing safe structures. It may seem strange to group these rods with
liquid crystals. The reason is that, mathematically, the more elementary
analyses of Fréedericsz transitions are almost the same as the Euler buckling
problems. For this reason, functions like the (¥,) occurring in (9.3.30), one
of the so-called elliptic integrals is, much like the trigonometric functions,
long considered to be important enough to have their values listed in tables
of functions, now readily calculated by computer.

The notion of a reference configuration can be carried over unchanged
from bars: the stable unstressed configurations are considered as straight,
either way. However, we prefer to use different notation. Instead of T, we
will write S, with

0<8§5<? (94.1)

describing the reference. A deformation will take this to some plane curve,
so we introduce rectangular Cartesian coordinates (z, y) in the plane. The
plane curve can then be represented parametrically by equations of the
form

r=z(5), y=y(S). (9.4.2)

We can also introduce an analogue of the y(z) used in rod theory; it is the
arc length s, the distance measured along the curve, given by*

g
§= / V(@')? + (y')2dS = s(89). (9.4.3)
0
In terms of this, we can introduce the stretch
A=4, (9.4.4)

describing changes in length in the same way it did in bar theory. In buck-
ling phenomena, the bending deformations are generally large enough to
be perceived by the eye, but the changes of length tend to be relatively
small. The classical theory introduces an approximation associated with
this which does simplify the theory. It is that the rod is considered to be
inextensible, incapable of changing its length, so, always,

s=2S5,

A=1=2?+y% =1 (9.4.5)

This makes the vector (z’,3’), tangent to the curve, a unit vector, repre-
sentable in the form
z’ = cosv,

y =sinv, (9.4.6)

*Readers not familiar with this can find a discussion of it, curvature, etc., in
any elementary book on differential geometry.
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v being the angle it makes with the z-axis. To cover the fact that a rod
offers some resistance to bending, a bending energy per unit length W is
introduced, a kind of strain energy function. For the ancient theory, the
assumption is that it is of the form

W=wo,V) =3 KW'V, (9.4.7)
where K is a positive function of § called the flexural rigidity. From differen-
tial geometry ¢/ is the curvature of the curve. Different kinds of boundary
conditions, etc., are used to model different kinds of physical problems.
Often, but not always, they are such that the thermodynamic ideas of
equilibrium are applicable. We will consider one case where they are, as an
illustrative example. Suppose a rod is set into concrete, forming part of a
floor, with the rod normal to the floor. Choose axes so that the floor is tk}e
plane z = 0, the rod’s reference configuration being on the z-axis. We anll
regard one end of the rod as being at the origin, ignoring the piece buried
in the concrete except for estimating the boundary conditions. Physically,
setting it in will fix the end position and also fix the tangent vector at this
end, say S = 0, giving the boundary conditions

z(0) = y(0) = v(0) = 0. (9.4.8)
Physically, no work will be done on this end. The sides are to be left free
so no work will be done here. As the words suggest, we consider the system
to be in the earth’s gravitational field, giving a gravitational force acting
in the direction of the negative z-axis. We ignore the effect of this on the
rod itself. However, we will use it to dead-load the end S = ¢£. That is, we
will here firmly attach a rigid body with weight w. Associated with this is
a potential energy which can be taken as

W, (9.4.9)

where z. is the z-coordinate of the centre of mass of this body. For sim-
plicity, we assume it attached so that this point is also the end of the rod,
80

z. = z(¥f). (9.4.10)

So, overall, the loading is conservative and, as usual, we assume 6 = c?nst.,
one of the standard situations covered by equilibrium theory. The applicable
thermodynamic potential can be taken as

£ = %/Oe K(V')%dS + wz(¥). (9.4.11)

Here, there is a possibility of having end-point minima, with the weight an_d
perhaps part of the rod, coming into contact with the floor. Clearly, this
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depends on the size and shape of the weight. We will ignore this constraint
and, for this reason, our analysis will be incomplete.

In part, the boundary conditions (9.4.8) can be taken care of, by using
(9.4.6) to write

s s
z(S) = / cosv dS, y(S) = / sinv dS. (9.4.12)
0 0
With this, we can rewrite (9.4.11) in the form
R £
£ = / [iK(z/)z + wcos 1/] ds, (9.4.13)
0

with v still subject to the boundary condition v#(0) = 0. To determine
the conditions needed for equilibrium, we can, as usual, calculate 6 and
equate it to zero. In the interior of the interval, we get the equation which
one would expect from (9.3.10),

Kv"” +wsinv = 0,

and the first integral suggested by (9.3.11). In addition, the analogue of the
last term in (9.3.9) produces another boundary condition: we should have

v(0) =v'(¢) =0. (9.4.14)

Essentially, this is the liquid crystal problem we analysed earlier. To see
this, put
v =20,

£=1/2, (9.4.15)

so we have
U(0)=0, W(L/2)=0, (9.4.16)
fitting conditions listed in (9.3.2) and (9.3.22). Also, (9.4.13) becomes

R L/2
£ = / [2K(¥')? + w(1 — 2sin? ¥)] dS
0
Ve (9.4.17)
= 2/ [K(¥')? — wsin® U] dS + const.,
0

the integrand being of the same form as in (9.3.16) with the constants
labeled in a different way. The upper limits look different so, in effect, we
are looking at the liquid crystal energy for the lower half of the sample.
However, from symmetry, it is easy to see that the upper half has the same
energy, so one can replace the upper limit in (9.3.16) by L/2 and multiply
the new integral by 2. Thus, with some bookkeeping, one can use the whole
analysis for these two problems, which are physically quite different. The
critical condition corresponding to (9.3.20) works out to be

wl? = Kn2. (9.4.18)
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Thus, for w < w, the rod stays as is in its reference configuration. For w a
little larger than w., it will start to bend over a little. As the load increases,
v(£) will get closer to m, the rod bending nearly double. Realistically, some-
where along the line it will bend enough to let the weight contact the floor.
Consideration of this would, of course, make the two problems different.

In this case, it is not customary to try to use (9.4.18) to obtain an ex-
perimental value for K, partly because small misalignments etc. introduce
noticeable errors in such measurements. A classical estimate which seems
good gives K = FI, where E is Young’s modulus, obtainable from a simple
tension test and I is a geometrical factor, a certain moment of inertia. One
can get it directly using a simple bending experiment, for example. These
and some other aspects of classical rod theory are discussed in more detail
by Love [48], for example.

In previous studies we have concentrated more on issues relating to at-
tempts to find equations to describe response of materials. Here, this issue
is fairly well settled and we move into the province of the engineer who
needs to resolve stability questions in order to design safe structures. Such
workers use various ideas which have not been mentioned in our discus-
sions, as can be seen from the books of Leipholz [49] or Thompson and
Hunt [25], for example. Numerous other kinds of workers are interested in
aspects of stability, producing a literature so large as to be indigestible for
one person.

9.5 Exercises

9.1. An unusual stability problem arises in liquid crystals, associated with
what is called the “plage tordue.” The sample is prepared like that
discussed in Section 9.3 except that no field is applied. Instead, one
plate is simply rotated relative to the other, keeping them parallel,
so the orientation at the two plates becomes different. To analyze
this, use (9.3.3) to calculate the energy. Then determine the equilib-
rium equation and boundary conditions, and find the solutions. You
should get two solutions for each angle of rotation, if you read Section
9.1 carefully. Determine which of these is most stable and how this
changes as the angle of rotation increases.

9.2. An experiment long used to determine values of K; in (9.1.11) em-
ploys a sample of the kind described in Section 9.1, except that the
field is here normal to the plates. Instead of (9.3.3), assume that

n = (cos x, sinx), x = x(2).

Substituting this in (9.3.3) gives

2W = (K, cos? x + K3 sin? X)(X’)27 x = x(2),
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an assertion you should check. Calculate the function describing the
field energy, then derive the equilibrium equation and boundary con-
ditions. If you have trouble getting this equation, review Section 3.1.

For the situation just described, determine whether the equilibrium
equation has any trivial solutions satisfying the boundary conditions,
then find an integral of the equation. How does what it implies about
trivial solutions compare with your findings?

Can you find a physical problem for the Elastica which is essentially
the same, mathematically, as that discussed in Exercise 9.3, perhaps
for special values of the constants K; and K3?

d |£

10

Reconsideration of Generalities

10.1 Systems, Energy, and Temperature

Some general ideas about classical thermodynamics were mentioned briefly
in Chapter 1, later chapters providing some examples of how they are used
in practice. One needs to obtain a better grasp of them to avoid misuse
and to begin to understand some of the real difficulties involved in their
application to some phenomena encountered, particularly in solids.

Firstly, not every physical system can be properly regarded as a thermo-
dynamic system fitting the ideas of classical thermodynamics. It is generally
agreed that this is a macroscopic theory, not applicable to an electron, for
example. However, various kinds of macroscopic systems are also excluded.
In particular, the first law should be applicable and it involves two ideas.
One is the equation relating changes in energy to power and heating. The
other is a relation of energy to states. In this section, we will consider the
first. Our study of mixtures suggested one limitation based on consideration
of this, that a thermodynamic system should contain a fixed set of matter.
Occasionally, workers do consider systems which do not contain fixed sets
of matter, but it is somewhat tricky to deal with these in a physically sound
manner.

In our study of liquid crystals, we encountered those electric and mag-
netic fields which do not vanish in parts of space where there is no matter,
that is “vacuum fields.” More generally, this includes time-dependent elec-
tromagnetic fields describing radiation, for example. According to electro-
magnetic theory there is an energy associated with such fields. For, say, a
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fixed region of space, the time derivative of this energy is related to the flux
of energy through the boundary. However, in general, there is no reasonable
way to consider this flux as representing power or heating. If you recall,
in the liquid crystal study we did not try to treat the vacuum fields as
thermodynamic systems. They did interact with the important part of the
thermodynamic system there considered, the liquid crystal. There, we were
able to account for the interaction in a way which makes sense in terms
of the first law, as it applies to the liquid crystal. From this, we see that
sometimes, something which is not properly regarded as a thermodynamic
system can be considered to interact with a thermodynamic system. Now,
if one tries to construct a general, systematic theory of thermodynamics, it
makes life much easier to assume that a thermodynamic system can only
interact with other systems of this kind, so the first law, etc., can be applied
to one, or any combination of these. So we bent this rule to make possible
the analysis of a situation of interest. Appreciate that one is taking a risk
in bending or breaking this rule.

The rule has been broken in a different way with good results in the
application of thermodynamics to black-body radiation. This involves ra-
diation in a cavity with rigid walls, maintained at constant temperature and
also opaque to radiation. This means that, at the walls, the flux of electro-
magnetic energy is to vanish. In his discussion of this, Pippard writes (in
Chapter 6 of [4]) that,

It is not at all obvious that we are justified in applying thermo-
dynamics to such a problem, since the formulation of the laws
of thermodynamics was based on experience of material bodies,
and we need feel no a priori confidence that they are of suffi-
ciently wide validity to embrace mechanical processes in which
radiation provides the motive force.

Read what else he said and you will see that he is not expressing doubts
about the end results. As I see it, there is here the implication that some-
thing is wrong with the old laws. If the first law really applied, why should
it be necessary to make the walls opaque? Actually, with our liquid crystal
studies, we would have encountered more serious difficulties had we tried
to introduce corrections for induced fields. In various crystals, application
of stress induces electric fields. Classical thermodynamics cannot deal sat-
isfactorily with such phenomena and, in particular, one needs to consider
modifications of the first law. Relevant theory of this kind is discussed by
Grindlay [50] and Brown [51], for example.

There is some consensus of opinion that the energy equation for bars con-
sidered in Chapter 2 remains applicable when the phenomena of plasticity
and/or viscoelasticity occur. However, other difficulties arise in trying to
apply ideas of classical thermodynamics to such situations. Later, we will
elaborate on this and discuss some of the ideas which remain applicable.
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In dealing with behavior near phase transitions, workers rather frequently
introduce a modification of theory which goes under various names, be-
ing called Cahn—-Hilliard theory, Landau—Ginzberg theory, Korteweg theory,
or Van der Waal’s theory. About a century ago, van der Waals [52] first
considered theory like this for fluids, deduced from consideration of molec-
ular theory. Roughly, it involves taking the commonly used formula for
the Helmholtz free energy density and adding quadratic terms in higher
derivatives. The intuitive idea is that these will be small terms, not af-
fecting predictions much, except when the usual form suffers the loss of
convexity associated with spinoidal regimes. Then, the experience is that it
does produce some significant and interesting modifications in predictions.
For our thermoelastic theory of bars, the usual function (A, 8) would be
replaced by

2
E:zp()\,ﬂ)+a(%> , (10.1.1)
where a is a positive constant. Internally consistent three-dimensional the-
ory of this kind is discussed by Dunn and Serrin [53]. To obtain this con-
sistency, one needs to modify the format used before. The usual equation
of motion (2.3.8) still applies but the constitutive equation for the stress o
changes. The effect is to replace an equation which was of second order in
y(z,t) by an equation of fourth order. Mathematically, one then expects to
need an additional boundary condition. It is not entirely clear how best to
select boundary conditions to model particular physical situations. Some
try to avoid dealing with this by considering bars of infinite length. Others
make some definite choice which seems reasonable to them, but there is a
lack of hard evidence bearing on the correctness of such choices. So, in this
respect, this kind of theory is somewhat shaky, although it is an old theory
which has generated a sizeable literature. In terms of thermodynamics, a
difficulty arises in considering the energy equations discussed in Section
2.3; one finds that it needs to be modified. If one tries to match this to the
first law, the expression for power should now take the form

o\ |- L

P (ay+a—y> + [ rias,

dz /|, 0

where @ is given by a certain constitutive equation. In terms of intuitive
ideas about power, it is at least difficult to motivate inclusion of the addi-
tional term. If we accept it, we have other complications. For example, if
we set f = 0 and clamp the ends so that (0,t) = y(L,t) = 0, this is not
sufficient to attain mechanical isolation (P = (). Mathematically, it would
be quite acceptable to obtain P = 0 by adding boundary conditions making
0y/0x = 0 at the ends. However, physically it is not clear as to what we
should do to realize this. So, for example, it is at least tricky to analyse
possible equilibria using theories of this kind and the difficulties are associ-
ated, in part, with trying to make good sense of the first law. Actually, one

(10.1.2)




146 10. Reconsideration of Generalities

needs a modification similar to (10.1.2) for a reasonable thermodynamic
treatment of the older theory of the Elastica, mentioned in Chapter 9, but
for it, the problem of realizing analogous conditions at the ends are better
understood. Somewhat similar quirks occur in other theories of rods, plates
and shells.

In liquid crystal theory, power is considered to include the possibility
that one can do work by causing the director to change, as well as by
causing samples to move, as is discussed in references cited in Chapter 9.
One needs to bear this in mind in interpreting what it means for such a
system to be mechanically isolated, for example. In later discussion of the
laws of classical thermodynamics, remember that workers can and do use
such reinterpretations to try to extend their range of applicability. It does
seem difficult to justify such practices on an a priori basis, but some good
theory would not exist if such practices had not been used.

As a general rule, writers of elementary texts on thermodynamics focus
on theories fitting a certain pattern, to be discussed more later. In previous
chapters, we used theories which do fit this mould fairly comfortable. As
is suggested by the remarks made above, in various situations which are
commonly encountered, one meets theories which do not fit the mould so
well. The better one understands the general ideas, the better are one’s
chances of adapting these to apply classical thermodynamics to theories
which are, in one way or another, awkward.

As a matter of common experience, you know that if you take a mercury
thermometer from a warm room and plunge it into cold water, it takes
some time before the thermometer reads what you can believe to be the
temperature of the water. If, for some reason, the water temperature were
changing rapidly with time, such a thermometer could be put into it and
read, but the readings would be rather meaningless, physically. A differ-
ent kind of thermometer may adjust more quickly and provide meaningful
measurements of temperature. A situation of this kind does occur in turbu-
lent flows. In air, workers have used hot-wire anemometers to get what are
regarded as meaningful measurements of temperature, for example. Said
differently, we want the thermometer to adjust quickly enough to be in
equilibrium, or very close to it, at each time, although the system may
be quite far from equilibrium. Similarly, if the temperature in the system
varies rapidly with a position, a large thermometer can at best provide
some average of the temperature in the system. So if a smaller thermome-
ter is used, one would expect to get a different reading. If it can be made
small enough to provide a reading which we can believe, the thermometer is
acceptable, as a practical matter. Again, the demand is that the thermome-
ter be in equilibrium, or at least very close to this, although the system
is not. Essentially, classical thermodynamics presumes that it is possible
to find thermometers able to provide meaningful measurements: the clas-
sical theory of thermometers is an equilibrium theory. One implication is
that absolute temperature is here considered to be a meaningful concept
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in a system undergoing nonequilibrium processes. At least, this is my view
of classical thermodynamics. If you converse with thermodynamicists, you
may well find some contradictory opinions and for a more basic treatment,
one really should start with a more primitive idea of empirical temperature.
Certainly, I concede that this classical idea has its limits. My view is that,
when one exceeds these, one may well need to think about temperature
in quite a different way, if at all.! In molecular theory, one encounters a
different notion of temperature, related to kinetic energy of molecular mo-
tions. It then becomes a tenable notion that different species in a mixture
can have different temperatures, at what is, from a macroscopic view, the
same point, for example. Classical thermodynamics does have its faults and
virtues, but one cannot make one’s own judgment about these, if one does
not understand the subject. Suffice it to say that there are other, rather
different kinds of thermodynamics beyond the scope of this work. Briefly,
we will, as before, use absolute temperature freely.

Bear in mind that different workers can have somewhat different views
of exactly what should be meant by classical thermodynamics. For this
reason, I am trying to make my own view reasonably clear.

10.2 General Processes

For various reasons, one needs some picture of all of the processes which
can occur in a thermodynamic system. Ideally, we would like to know every-
thing to be known about them. If we attain this goal for a system, we have
mastered the problems which may be involved in trying to apply thermody-
namics. Thus, in practice, we will start with a picture which is incomplete
and possibly incorrect, to be rectified as our understanding improves.
Realistically, we impose some limits on what can be done to the system
to develop manageable theory. For, say, a wooden beam of good quality,
we could use our theory of thermoelastic bars for some purposes. Or, if we
were concerned with buckling we could try Euler’s theory of the Elastica.
With the theory of mixtures, we open the door to exploring effects in the
beam produced by changes in humidity. Obviously, it would take a much
more complicated theory to deal with all these effects and we would still
exclude some possibilities such as setting the beam on fire. So, what is to
be considered as the set of possible processes in the beam depends on the
judgment and concerns of the worker who may be interested in it and these
may change as the worker learns more from studies based on the picture
adopted at the start. We saw this in the equilibrium theory, when some
considerations induced us to abandon the notion that equilibria be free of

1 Obviously, there are conceptual difficulties involved in trying to associate a
temperature with those vacuum fields, for example.
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discontinuities. In this, we did not explore as to whether our nonequilib-
rium theory is capable of describing such topics as the evolution of our
“phase mixtures” from initially smooth configurations by time-dependent
processes and, if so, whether this involves initiation of shock waves, for ex-
ample. If it cannot cope with such phenomena, this theory is in difficulty.
In pondering such possibilities, it is a good idea to bear in mind that a
variety of different nonequilibrium theories can become indistinguishable
for typical equilibrium analyses. For the case at hand, various versions of
viscoelasticity theory would, in this sense, agree with our thermoelasticity
theory. So, if a worker encounters some obstacle of the kind indicated, he
may well try some other nonequilibrium theory in order to find a way of
eliminating the difficulty.

We have just introduced a notion which, in effect, says that we can change
the set of possible processes by making some change in the constitutive
equations. If you accept this, you may have some qualms about arguments
made in Chapter 2 in deducing restrictions on constitutive equations. When
we considered those processes, we assumed that those “sources” f and r
could be prescribed arbitrarily. One finds some workers proceeding in a way
which I interpret as meaning that they tacitly accept assumptions of this
kind. Some, for example Coleman and Noll [54], do make such assumptions
explicit. This has the effect of eliminating, or at least diminishing, the
influence of the form of the constitutive equations on the set of possible
processes. There is another school of thought, illustrated by the work of
Miiller [55], for example, which I do find attractive. According to this,
such ‘source terms’ are to be assigned only in ways which are physically
realistic. Of course, this involves some exercise of judgment. For the bar
theory, one person might decide that it is only reasonable to have f = 0 and
either 7 = 0, or that r be given by Newton’s law of cooling, for example.
This has the effect of making the set of possible processes smaller in what
is essentially the same theory. With the latter approach, one has to work
harder to get the implied restrictions on constitutive equations and one may
or may not obtain the same restrictions for a given kind of theory. What
we should do is to rederive the restrictions, using the different assumptions,
to see if we do arrive at the same or different conclusions. I will leave it to
the interested reader to try this for himself. It may be helpful to examine
how Miiller does this, using a “Lagrange multiplier” theorem due to Liu
[56]. I will not belabor this. However, it is my view that the general scheme
should be sufficiently flexible to leave the decision of how best to define the
set of possible processes to the individual. Different workers could come
to contradictory conclusions about the same system. Then is the time to
examine the differences carefully and objectively in an attempt to decide
which view is better.
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10.3 Static and Reversible Processes

Of course, a process can be independent of time, being then what I will call
a static process. These are the only processes which we considered in our
various equilibrium studies and, at least partly because of this, some ther-
modynamicists like to call these “equilibrium states.” I dislike the name
for two reasons. Consider a spacecraft not using its mean of propulsion in
outer space, so it can be regarded as being subject to no forces. From com-
monly used ideas in mechanics, its total linear momentum and moment of
momentum should be constant, so it cannot come to rest if these do not
vanish. Consider it to be thermally insulated, making it an isolated system.
Then, it is perfectly reasonable to think that it will come to equilibrium
according to the definition we have used for this, mentioned in Chapter 1.
One has to take into account the aforementioned conditions in deciding
what are the “possible variations,” but one always needs to worry about
this. There are also good precedents in the old theories of planets. Some
discussion of how examples of this kind fit into the thermodynamic scheme
is given by C. S. Man [57]. Older literature on this includes a massive and
famous work by Poincaré [58] which he clearly labels as a study of the
equilibrium of rotating fluid masses, following still older practice. It is then
misleading and somewhat blinding to think that only static processes can
qualify as equilibria. As a second point, in my opinion some static processes
should not be regarded as equilibria. At least the studies we have made all
suggest that, in equilibrium, the temperature should be independent of po-
sition. With our rigid bars, we may obtain steady state heat conduction
by insulating the sides and keeping the ends at different constant temper-
ature. To me, this is not equilibrium although it is a static process. Rather
commonly, thermodynamicists seem to prefer to regard “equilibrium” as a
primitive concept, providing some verbal description of what they mean by
this. Those I have examined conform to my understanding of a static pro-
cess, I think. There seems to be a common prejudice that time-dependent
reversible processes are not really attainable, but “equilibrium states” are.
I do accept, as mentioned in Chapter 1, that fluctuations can also prevent
equilibrium states from being realized, physically, so I disagree with this
notion.

My own view is that, in most cases, equilibria are special kinds of re-
versible processes? and that static processes are not all reversible, which is

2 A curious situation occurs in considerations of equilibrium theory used to
describe observations of piezo-electric and piezo-magnetic effects, as is noted by
Ericksen [59]. There is agreement that these are nondissipative processes. How-
ever, there are in the literature two contradictory rules for transforming electro-
magnetic variables. Depending on which one accepts, one of these kinds of effects
is not reversible, but the other one is. So, either way, we have an exception to
the usual idea that nondissipative processes are the same as reversible processes,
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subtle. From Chapter 1, reversible processes are of some importance in the
determination of entropy changes, so it is important to know about sub-
tleties pertaining to them. Even if one thinks that they represent limits of
processes which cannot be realized, it cannot hurt to know something about
what is being approximated. Also, there are theories which treat all possi-
ble processes as reversible. Ideas involved are also useful for understanding
some other parts of thermodynamics so this deserves some discussion. How-
ever, before turning to this, I will make some comments about equilibria
which are a little unconventional but are, I think, sound.

In the nineteenth century, it was the view that, in a mechanically isolated
system, which may be thermally isolated or in contact with a heat bath at
a fixed temperature, equilibrium would be eventually attained and main-
tained. Expressed one way, some equilibrium configuration would serve as
an attractor, other processes approaching it as time increased. Equilibrium
theory evolved as a technique for locating such attractors and has proved
to be rather successful for this purpose. With the development of the the-
ory of Brownian motion, now called fluctuation theory, it became clear to
at least some that this old picture is in error. The fluctuations occur in a
somewhat random fashion, keeping the system from attaining equilibrium.
Statistically, there is no real limit to the size of the fluctuations possible
although, loosely speaking, the probability of occurrence decreases rapidly
with size. Still, the attractors determined by the old methods maintain
their status as attractors, at least for what seems to us to be long periods
in terms of human experience, and it is for this reason that we still take
them seriously. Now, experience also indicates that some nonequilibrium
processes, for example steady state oscillations, can play a similar role as
attractors. However, attempts to devise general thermodynamic techniques
for locating such attractors have not been very successful. For special kinds
of theories and problems, it may be provable that some measure of dissi-
pation is minimized or maximized by attractors. Understandably, workers
have tried to extrapolate such criteria to other kinds of systems with re-
sults which may be good or bad, depending on the system. So, I do not
feel comfortable in recommending any such criterion. As was mentioned
in Chapter 1, there are various other approaches to stability theory, tech-
niques for locating attractors which are not based on thermodynamics. As
I see it, if the thermodynamic theory of equilibrium seems to be notice-
ably different from nonequilibrium theory, it is at least partly because it
includes a rather successful stability theory. Otherwise, equilibrium theory
deals with a relatively simple subset of processes, and, certainly, it is easier
to find constitutive equations, etc., which are capable of dealing with this

as I interpret this. Obviously, it would be desirable for physicists to make better
sense of this, but as far as I know, no one has.

i
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subset. I think that it is clear from our studies that it is not always so easy
to deal with equilibria. ‘

Now, returning to reversible processes, the first step is to consider the
variables involved in describing the system of interest and to decide how
each of these should be transformed under time reversals. Although not
to be discussed here, the Onsager-Casimer relations do have a promir}ent
place in some of the literature on irreversible processes. As.is emphasized
by Meixner [60], the time reversal transformations play an important ro!e
in these. As we commonly understand time, there is no way to cause it
to run backwards. However, workers use various ideas to decide what is
best. Generally, it is a matter of deciding whether one should or shf)ulfi
not reverse the sign of the variable in question. For, say, mass, thlS.IS
something we always regard as positive, so it is natural to assume that its
sign should not be reversed. It is a common notion that' what we regard
as the more basic equations should transform to equations of the same
form. For our theory of bars, this would include the equation of motlo‘n
(2.3.8), in particular. Let overbars denote the transforms, and assume, as is
customary, that position coordinates are unchanged under transformation.
Then, for the bars, we obviously have

7= —1, 7 = ij, etc. (10.3.1)

T=2z, y=1,

In order that (2.3.8) should transform as an equation of the same form, it
is then clear that we should take

?:f,

Where forces are encountered in other contexts, they are to be transformed
in a similar way. Generally, the equation representing the first law ShOL.lld
retain its form. Power should transform as force multiplied by velocity, i.e.
have its sign reversed, from which it is clear that we should take

T =o0. (10.3.2)

E=E, P=-P, Q=-Q. (10.3.3)
For our bar theory, this implies that
F=-r, {=-¢, E=¢ (10.3.4)
and, by general consent,
0=0, T=n=>¢=c—0n=¢. (10.3.5)

For our theory of bars, this is enough to cover all variables of interest. For
another theory, involving different variables, you may need to consult a
more experienced worker to determine what are the accepted rules.

The next step is to define the reverse of a process, which may or may not
be in the set of possible processes. A process may be reversible for some
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periods of time and not for others, so it is convenient to define the reverse
for any interval of time for which the process is defined. Schematically, let
a(t) denote a process which is defined for to < t < #; at least, along with
all the responses such as energy, stress, heat flux, etc., which are involved
in the theory under consideration. I will call this collection a superprocess.
Define the reversed time variable by

t=to+t1 —t=>ty <t<t. (10.3.6)
Making this change of variable, we then obtain the quantity
a(t) = afto +t; — 1). (10.3.7)

Now, apply the time reversal transformations to the variables represented
by a, to give

ag(t) = a(to +t, — ). (10.3.8)
Now, consider  to be the usual time, running forward from t, to t1. With
this interpretation, it makes sense to ask whether ap(%) is in the set of
possible processes. When it is, we say that the process m(t) involved is a
reversible process during the time interval considered. Summarizing this,

we have

process 7(t) reversible < ap(%)

10.3.9
describes a possible superprocess, ( )

it being understood that this refers to a time interval of the kind described
above. As is perhaps obvious, a process which is not reversible for some
time interval is called irreversible for this interval. If no time interval is
mentioned, a “reversible process” is a process which is reversible for all
times for which it is defined.

For, say, the theory of rigid bars discussed in Chapter 3, a number of
variables were introduced. For present purposes, it is better to include

too many in a than not enough, to cover all relevant transformations. A
reasonable choice is

a=(0,4,n,q,r). (10.3.10)
It would do no harm to include ¢, but its transformations, etc., are implied
by variables already included. Similarly, one could add z. It is understood
that constitutive equations of the kind discussed in Chapter 2 apply so
that, given a function 6(z,t), suitably defined for 0 < z < L and a time
interval {o <t < ¢, we can calculate ¢, 5, and ¢ as functions of z and ¢.
As was mentioned in Section 10.2, there can be differences of opinion as
to what is to be assumed about the ‘source term’ r, in deciding the set of
possible processes. To be definite, we will allow it to be assigned arbitrarily,
and consider the processes to be smooth, taking the same view of processes
that we did in Chapter 2. Thus, the problem of satisfying (2.1.8) is made
trivial; we take r(z,t) to be the function given by

99 _q, Oa

5 =01 5, (10.3.11)
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Altogether, this gives the procedure for determining the processes w(t).
Now, using (10.3.8) and the transformation rules, we calculate the reverse
of a process 7(t), which gives

Or(z,?) = 0(z,to +t1 — 1),
¢R((L‘,—t—) = ¢(0R)7

o d¢
—_— — — 9 y
(@0 = =39 Or) (10.3.12)

00r

qr(z,t) = —k(Or) Bz

(g Onr _ O4r
T‘R\l‘,t) —GR—at—' az
For simplicity, we have used Fourier’s law for g, although it is not hard to

deal with the general case. Now, for the reverse to be a process, gr should
also be what we calculate using the accepted constitutive equation for heat

flux
00r
qr = k(0r) 5=
which disagrees with (10.3.12) unless either k = 0 or fg is independent of

T or, equivalently,
k=0 or 6=06(). (10.3.13)

If (10.3.13) holds, then rg, given by (10.3.12) also satisﬁe§ (10.3.11) and
such processes are reversible processes. You may be cqnvmced that you
can safely neglect the effects of heat conduction in particular cases of in-
terest, accepting k = 0 and the ideas concerning r, etc. Then, for you,
every possible process is reversible. On the whole, it seems more realistic
to regard such processes as irreversible if § depends on z. Static processes
then become irreversible unless @ is constant.

Of course, we can choose interesting subsets of processes by making re-
alistic assumptions about 7, (10.3.11) thus becoming a nontrivial equ:'mt‘ion.
Workers who prefer this view will then infer that rather different copdltlo.ns
are needed for processes to be considered reversible. For example, if we in-
sulate the sides to make r = 0 and assume k > 0, then it is easy to check
that these processes are reversible only when @ is constant. If, instead, you
assume 7 to be given by Newton’s law of cooling (2.1.17), then, of course,
6(z,t) must satisfy (10.3.11) for this choice of 7 and whatever you wish to
assume for the heat bath temperature 6p(t).

In this case, a calculation gives

rr(z,t) = —al@p(to + t1 — 1) — Or(z,1)]. (10.3.14)

From the most obvious way of looking at it, the sign reversal implies that
rg is not given by Newton’s law of cooling unless rr = 0, implying that
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Q(a:,t) = 0p(t) = ¢ = 0. Then, (10.3.11) will not be satisfied unless n is
?ndependent of t, which case will be true only if § = 65 = const. So except
in t:ht?se trivial cases, the processes considered are judged to be irre\’zersible.
This is a common view. However, one could modify this argument to allow
some such processes to be considered reversible. Suppose that depends
only on time. Take the view that, in defining the set of possible processes
0p (tl can be considered as any reasonable smooth, positive function of time,
Let 65(t) denote that associated with the particular process considered;

with bar temperature 6(t) independent of z. Suppose that, for the times
considered,

20(t) > 65(t) > 0. (10.3.15)
Then, another possible choice of a function 0p(t) is given by
05(F) = 20R(E) — Op(to + 1 — 1) (10.3.16)
and, with it, we have
rr(t) = alfp(f) — 057 (10.3.17)

This fits Newton’s law, enabling us to regard the reversal as a possible
process which is then reversible. In Section 2.2 we considered an example
of such a process, there taking a rather conventional view of how it relates
to some common thermodynamic experiments.

While these ideas of reversibility are not equivalent, they do have some-
thing in common which seems to me to be of some importance, concep-
tually. It is at least a common intuitive prejudice that irrevers:ibility is
gsgociated with dissipation. When the Clausius—-Duhem inequality applies
it is commonly accepted that the combination of terms involved provides’
a measure of dissipation: call it A. For our bar theory, this is given by

d [t Ly
A=2 [ ndz— / Tdz -1
at Jo " , 0 7
apd, as will be discussed later, a rather simple expression is used for three-
dimensional theories. The usual assumption is that A > 0 for all processes.

For any one-dimensional theory to which this assumption applies, one can
use the basic definition of reversible processes to show that

L
(10.3.18)
0

A =0 for all reversible processes. (10.3.19)

Then, the inequality reduces to an equation enabling us to relate changes
in entropy to the other terms involved. This provides a basis for exper-
imental determinations of entropy changes whenever we can obtain data
enabling us to estimate the other terms. Now reconsider the situation dis-
cussed in Section 2.2. If we are willing to assume that Newton’s law applies
and accept the notion of reversibility indicated by (10.3.15), (10.3.16) and

M“i
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(10.3.17), we have a reasonable basis for determining changes in entropy
from measurements of the bar temperature 6(t) and heat bath tempera-
ture Op(t). For this, it is not necessary that the difference between these
temperatures be very small, or that they vary extremely slowly with time.
From this view, in Section 2.2, we relied on an old idea mentioned in Sec-
tion 1.2, that the Clausius-Planck inequality should reduce to equality for
reversible processes. Actually, when it applies it defines a different measure
of dissipation,

ds Q
dt 05’
with A’ > A, typically. What we are discussing are cases where A’ > A =
0. Commonly, thermodyamicists interested in irreversible processes use A
as a good measure of dissipation. From this, I infer that what is faulty is
the notion that the Clausius-Planck inequality should reduce to equality
for reversible processes. It did evolve at a time when it was habitual to
assume that the temperature in a system matched that in the heat bath
and, of course, this is not true in the example considered.

When the Clausius—Duhem inequality applies, any processes for which
A = 0 may reasonably be considered in designing experiments to measure
entropy changes. There seems to be some prejudice that only reversible
processes have this property. I do not see how to make a compelling and
general argument for this and the footnote on page 149 seems to imply that
there are exceptions.

There is another matter. When we first studied some equilibria, we con-
sidered the possible static processes in calculating relevant thermodynamic
potentials. Later, we took shortcuts, assuming that the system tempera-
ture was a constant matching that of the heat bath. What we were then
doing was restricting our attention to reversible processes of a static kind.
Had we done this from the start, we would have missed something, namely
inequalities involving specific heats. However, the simplified theory is in
more common usage and performs fairly well. With it, the theory neatly
fits in as a chapter in the thermodynamics of reversible processes, which
also includes old theories of heat engines. Conceptually, this is a clearer
way of understanding the strategy, I think. That is, find a way to cal-
culate the relevant thermodynamic potential for reversible processes and
determine which of these qualify as equilibria. From this view, we really
should have added in any possible time dependent reversible processes in
the problems considered, and I have noted examples of problems where it
would be necessary to do so. I will leave it to the reader to consider the pos-
sibility that this may have some effect on any conclusions we have drawn
and what difference it would make if the word “reversible” were replaced
by “nondissipative.” Of course, there is no obvious reason to exclude irre-
versible processes, for which we can calculate the relevant potential, and
our experience indicates that we may then deduce some additional con-
ditions. From this view, what seems to me to be poorly motivated is the

Al = (10.3.20)
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practice of allowing static reversible processes and nothing else. In this, we
are following in the footsteps of Gibbs. I have great admiration for him and
his work but do not think it wise to follow anyone blindly.

10.4  Cyclic Processes and Cycles

Early ideas about thermodynamics developed from thinking about ancient
engines which operate in a cyclic fashion, so it is understandable that cyclic
processes do play an important role in the subject. What would seem to
me to be the most obvious definition of a cyclic process is one for which

the associated superprocess a(t) is defined for all time and is periodic with
some period T > 0 so that

a(t+T) = a(t). (10.4.1)
Assuming this, one could define a cycle as the part of a process occurring
during any time of duration equal to the period, say

a(t), t<t<tg+T = a(to + T) = a(to). (1042)

One can object to this on the grounds that no real process continues for all
time. At least according to some cosmological theories, even our universe
has not been in existence for all time. Otherwise, I see no objection to
regarding such as examples of cycles. However, in practice, this does not
often well describe what is meant by a cycle. Often, as above, a cycle C is
considered to be only part of a process (), defined over some time interval
[to, to + T). Roughly, the idea is that

m(t), to<t<ty+Tisacycles n(to) = w(to + T), (10.4.3)
where = is to be read “is physically equivalent to.” One might stretch
the notion of cyclic processes in a similar way, but it is the cycles which
are really used in most of the theory. For example, consider one of our
thermoelastic bars at rest under no loads, in equilibrium. This could be
viewed as a static process, satisfying (10.4.1) for any choice of T. With
usual ideas of Galilean invariance, it could instead be travelling with a
constant velocity, with the same stretch and temperature. Then, its position
y(z,t) would not satisfy (10.4.1). However, if we restrict the process to some
interval, we may well regard this as a cycle. In this, there is the implication
that, at the beginning and end of a cycle, the related superprocess should
have values consistent with the notion of equivalence.

In discussions relating to existence of energy and entropy, arguments em-
ploying cycles are used. Logically, one cannot include things not known to
exist in the associated superprocess. So, one considers the related super-
process as consisting of the remaining quantities and makes the judgment
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about equivalence based on ideas about these only. With this understood,
we describe the equivalence by saying that, at the end of a cycle, the system
has returned to its original state. When entropy and energy are w?ll—t?eﬁned,
it is understood that their values should be the same at the beginning and
end of a cycle. . -

Necessarily, I think, the notion of a cycle has no precise mathematica
meaning. For this, it would be neater to use something 51m11ar‘ to (10.4.2).
However, the experience is that it is better to have a more flexible concept
to deal with a variety of quite different physical .situam(?ns. .Ir.1 pa,rt,.ther—
modynamicists deal with this by trying to formalize the intuitive notion of
“state,” as is to be discussed shortly. . '

There is some interest in the design of solid state engines which employ
shape memory alloys, involving cycles during w%uch t'he solid oceurs at some
times as Austenite, at other times as Martensite. Since engines should do
some useful work, the interest is in cycles such that

to+T
W = Pdt <0,

to

(10.4.4)

wherein tg and T have the meaning indicated above. The efﬁciency. of such
engines, sometimes called the motive efficiency of such cycles, is of interest.
To define this, one introduces §Q+, the total heat absqrbed by the. syster'n
in a cycle. For this, one integrates @ over the set of times for which Q is
positive to get a quantity 6Q* or, equivalently,

to+T
5O+ = 1/ (10 + Q) dt. (10.4.5)
2 Ji,
Then, the traditional formula for the efficiency e is
em W (10.4.6)
6Q+

Some engines built employ wire loops which, d1.1ring a cycle, undergo
changes in bending, probably along with changes in stretch. Any mathe-
matical model capable of describing such phenomena and the relevant ph.ase
transformations is certainly more complicated than any we have studied.
Some possible engines are sufficiently simple to be modelled as thermoe-
lastic bars. Such an analysis is offered by Wollants et al. [60]: Ofsthose I
have inspected, this is one of the better treatments of this kind.” If one
considers cycles wherein heat is absorbed at just one temperature and is

3Bad notation and terminology used by these authors may be confusing. qu
example, the last term in their equation. [1] does not make sense becat%se lAV is
defined only on a curve: put the A outside the pareptheses. Bad termino {)gyf is
used in referring to adiabatic cycles, for example, which does not mean cycles for

which 6Q* = 6Q = 0.
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emitted at one other, it is generally believed that Carnot cycles are most
efficient.* They concur with this but consider other possibilities.

Concerning the basic definition of efficiency, engineers do sometimes
modify it. For example, if one is making some good use of what might
otherwise be waste heat, one is, by a reasonable interpretation of the word,
increasing efficiency. So, it is reasonable to modify the definition to take
some account of this. It is worth bearing in mind that, in the latent heats
associated with phase transitions, we have what might be regarded as heat
sources of this kind and the above authors do consider this.

10.5 States

As was mentioned before, there is general agreement that some notion of
states is important in considerations of cycles, energy and entropy, at least.
With this is associated the idea that a nonequilibrium process determines
states but various different processes can, occasionally, determine the same
states. To some degree, concepts of this kind are inherent in classical ideas of
causality. That is, to calculate anything physically relevant at one particular
time it should not be necessary to know anything about the nature of the
process at any later time.

More often than not, when workers speak of states they have in mind
what I have called static processes, or something very much like it. It is
a reasonable enough idea that one can evaluate a process at a particular
instant, to obtain some function which would fit such a description. So,
for our thermoelasticity theory of bars, we get the pair [y(z),8(z)] from a
process [y(z,t),0(z,t)], by taking instantaneous values of the latter. Since
adding a constant to y is commonly regarded as a trivial change, most
would instead use the pair (dy/dz,0) as a description of state. From what
we ended up with as constitutive equations, it is easy to check that, given a
state, we can calculate the entropy and associate it with a process, as we did
previously. According to the first law, we should also be able to calculate the
energy but this is more difficult. That is, given our state, we can calculate
the total internal energy but not the kinetic energy. As I see it, the best
way to fix this is to admit that the notion of state should be generalized
to include instantaneous values of the velocity, but I concede that this is
not such a popular idea. One trick I have encountered is to consider the
“energy” in the first law to mean “internal energy,” and to consider power

“Carnot cycles are discussed in some detail and carefully by Truesdell and
Bharatha [1]. From their treatment, it is clear that the ‘general belief’ tacitly
accepts some assumptions. Problems involving phase transitions involve various
quirks, so it is wise to think carefully about the possibility and nature of associ-
ated Carnot cycles before hastily accepting the belief. Also, these writers include
a collection of inequalities useful for analyses of efficiency.
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as including the negative time derivative of kinetic energy. This will give
an equivalent equation for the theory considered, but, physically, one then
needs to revise statements accepted about mechanically isolated systems,
for example. As one investigates more sophisticated theories, those of plates
for example, one also encounters rotational kinetic energies. If we a('ioptlthe
indicated viewpoint, these too should be shifted over to give contributions
to power. It is reasonable to think that some part of the energy (.:ould
always be calculated by a formula used for statics. Shift any remamfier
into power and you have taken care of the first law formally. I do not think
that many would be content with this way of interpreting the first law.
Other workers do acknowledge that the energy is to include kinetic energy,
put in explicitly, but insist that internal energy is to be determined b'y
those static states. As far as our thermoelastic theory is concerned, this is
the case. .

By playing with the theory of thermoelastic bars, regarding f and 7 as
functions which can be assigned arbitrarily, one can construct processes
which are, I think, worth bearing in mind. Consider an unloaded bar, mov-
ing with constant velocity in an equilibrium configuration for some constant
values of A and 6, with ¢ < 0. For ¢ > t; > 0, it again has these values of A
and @ but it is now at rest. I will not expend the ink to prove it, but it is
not hard to show that one can find various processes meeting these condi-
tions, adjusting from one to the other fairly smoothly in the interval [0, 2,].
As determined by the pair (8y/8z,6), the equilibrium state does return
to its original value at time ¢;. As I interpret what some writers say that
they mean by a cycle, this is one. However, although the interna} energy
returns to its original value, the energy does not because of the difference
in kinetic energy. By our interpretation this process violates the first law
which will be discussed later. According to this law the process should then
be considered to be impossible. If I thought this were what it really implies
I would reject this law. There are various ways of fixing the flaw. One is to
interpret energy as meaning internal energy. I have made clear thfm; Ido
not like this approach. Another is to insist that the “state” is to lnclud.e
velocity which is my wont. A third is to acknowledge that kinetic energy is
to be accounted for in an explicit way and as this is the only place where
velocity occurs, one need not account for it explicitly in a description of
“state.” If there is some real difference between this and acknowledging
that velocity is to be included in the description of state, it is not apparent
to me.

It is true that in the old theories of heat engines such questions did not
arise because in them no attempt was made to account for kinetic energy.
This is the case for various other theories including, of course, Gibbs’ theory
of static equilibrium which we have used. A pattern of thinking about states
developed from consideration of such examples and habits of thought tend
to persist.



160 10. Reconsideration of Generalities

Often, one finds writers discussing states with the presumption that they
can always be described by a finite list of parameters. There is no reason-
able possibility for describing a function, such as 6(z), by a finite number
of parameters. However, for theories which are very local, in a sense more
or less like that described in Section 2.2, one can introduce local versions of
processes or states. For states, it is a matter of considering what informa-
tion should be needed to calculate energy and entropy densities at a given
position and time. For example, for our bar theory, we need

%, y, 0 (10.5.1)
and we argued that ¢ and 7 cannot depend on y. What Gibbs 7] discussed
were various kinds of local theories, so you can look to see what he assumed
about constitutive equations for internal energy and entropy densities and
we have covered a few examples. If he covered the case of interest to you,
copy it. If not, estimate what it is that he would be likely to have done
had he considered it. I think it a fair statement that, from this view, one
may have in the local state some functions, and sometimes values of their
gradients but not higher derivatives, and temperature or entropy gradients
are not included. Assume that these same constitutive equations apply to
nonequilibrium processes and you have my interpretation of what is meant
by the “hypothesis of local equilibrium” or the ‘principle of local states’
in the literature on irreversible thermodynamics. Various theories of fluids
fit this mould, as does thermoelasticity theory. By this literature, I refer
to ideas such as are covered in texts by Kestin [2] or De Groot and Mazur
[62], for example. In this respect, theories such as are indicated by (10.1.1)
are not local enough, it seems.

From remarks made early in the paper by Gibbs [7], I think it clear that
he deliberately excluded the consideration of sliding friction and plasticity.
So do the aforementioned texts. Unfortunately, phenomena of this kind are
common and important in solids. With the concept of state used by Gibbs
and in the aforementioned tests it is at least tacitly understood that if a
state can be attained once, it can be attained again and again and that,
once it is attained, whatever happens thereafter does not depend on how
many times it has been attained in the past. Also understood is that one
can find many cyclic processes containing any given pair of states, which
can also be joined by processes which are reversible or at least processes
well approximating this. I appreciate that these are loose statements, but,
at least, hopefully, it is enough to provide some intuitive understanding.

Take a paper clip and bend part of it sufficiently to induce what seems to
be permanent deformation. Now try to unbend it, to return it to the original
“state.” You are likely to find that this is at least difficult but you may think
that you have succeeded. If so, try to repeat the process. If the wire breaks,
or you see some other discernible difference, you have not attained the goal.
It is hard to exclude the possibility that someone may succeed by making
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some clever use of heat treatments, for example. We might agree that we
could succeed by melting and re-forming the wire. This is acceptable, if you
are willing to construct a theory general enough to include such processes.
What seems clear is that, if we want “states” to have such conventional
properties, it can be difficult to find many cycles beginning and ending at
a particular state. Whether there are any which also pass through another
given state is not always so obvious. If anything, finding reversible processes
connecting a given pair of states, or good approximations of these, is harder.
I will not try to discuss in detail the numerous theories of plasticity which
try to deal with thermal effects. For bars, typical theories would use the
equation of motion (2.3.8) and energy equation (2.3.12) which we used
for thermoelasticity theory, together with a constitutive equation for €. As
before, the idea is to use the energy equation as an equation for 6.

Because of difficulties such as are mentioned above, it is not clear how
to make good sense of entropy or states and these concepts seem not to
have been very useful. Replacing one constitutive equation for stress is a
more complicated strategy for relating changes in stress, deformation, and
temperature. It involves two sets of equations with a criterion to deter-
mine which applies, which depends on the process. Given the situation,
it is not always clear what is to be meant by a cycle, but I do not think
that anyone working in this field would object to the notion that there are
numerous cycles. This is enough to make it possible to make use of laws of
thermodynamics to be discussed later. Perhaps there is some better way
to make use of thermodynamics in such situations and different workers do
explore different approaches. Not being expert in this, I do not feel com-
fortable in trying to say more. In any event, plasticity is a very common
phenomenon in metals, in particular, and it is at least awkward to fit it
into a general scheme of thermodynamics. Rather general theories of ther-
moplasticity are proposed by Green and Naghdi [63]. Somewhat similar
difficulties are encountered in theories of damage such as are covered in the
review by Chaboche [64], for example.

Rather different difficulties are encountered in other common kinds of
solid materials, for example, in the elastomers, the various kinds of rubber.
Here, equilibrium theory such as we used for balloons and sheets can be
combined and considered as different ways of using three-dimensional ther-
moelasticity theory. This does have a rather wide range of applicability
and it has been used quite successfully to master numerous phenomena.
However, for more time-dependent processes, viscoelastic effects are im-
portant and these do not fit comfortably into the pattern treated in texts
on irreversible thermodynamics. Actually, if you look into the literature on
observations of those equilibria, you will find some workers acknowledging
that what has been seen is not really static but is changing very slowly
with time. How slowly depends on the nature of the experiment and the
type of rubber. So, there are possibilities for minimizing such effects, per-
haps getting them sufficiently small to be hidden by experimental errors
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for the time scales involved in the observations. Still, it is hard to avoid the
impression that equilibrium theory is being misused but with some success.

Some workers like to think in terms of a “rubber plateau,” involving time
scales neither too short nor too long, over which relaxation processes slow
down enough to obtain something that looks much like equilibrium, in an
experiment designed to produce a static response. For example, one view
is that if one clamped the edges of a sheet to produce unequal stretches,
one could produce results similar to those discussed in Chapter 6, involving
some shear stresses, for a time which may seem very long. However, the
notion is that those shear stresses will eventually relax to zero. To see this,
one might need to observe them for times better measured in months or
years. Think of silly putty and you see behavior something like this but
speeded up considerably. I do not regard this as an unreasonable point of
view. It does suggest that true equilibrium theory might be that appropriate
for a fluid and we are using something quite different from this for the
nonequilibrium processes occurring on the plateau. Intuitively, we are then
not close to real equilibrium. Put one way, we seem able to use Gibbs’ ideas
to find some processes which, for a limited time only, serve as attractors.
Given this, there is some reason to believe that it should be feasible to use
more accurate viscoelasticity theory to account for the slow changes and to
associate with this a means of calculating energy and entropy. Reasonably,
this should not differ much from what we use for rubber elasticity on the
somewhat vaguely defined rubber plateau. There are others who prefer to
believe that, instead of reaching such a plateau, we are getting close to real
equilibrium, better described by theory more like the rubber elasticity we
have used. Also, there is a range of opinions about whether it is feasible
to make sense of entropy as it pertains to viscoelasticity theory and, if so,
how it should be done. The situation is not so clear that reasonable persons
cannot disagree about such matters, as I see it. What is involved is a kind
of theory too complicated to cover in an elementary way. However, I will
try to give some indication as to why such theories involve some unusual
difficulties.

More often than not, nonlinear theory is needed to describe phenomena
of interest. However, linear one-dimensional theory is much simpler and is
useful for describing some phenomena, for example, small vibrations. Even
here, the basic difficulty appears. Often, the interest is in behavior in shear,
so we will consider the interpretation in terms of the shearing of plates. The
difficulties are more associated with the mechanics and there is some ques-
tion concerning the thermodynamics, so I will consider purely mechanical
theory. When I first came into contact with such work, it was common for
workers to draw pictures of springs and dashpots linked together in some
fashion, using this to motivate considering equations of the form

M omr N an7
2 am g = Db

n=0

(10.5.2)
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as a substitute for a constitutive equation for 7. Here, as before, 7 and vy are,
respectively, the shear stress and strain. This is to be used in conjunction
with the equation of motion (2.4.5). The a’s and b’s are constant, related
to spring constants and dashpot viscosities in the picture, from which you
can infer their algebraic signs. Typically, M and N differ by one at most.
If one tries to match data on small vibrations, the experience is that, if
you try to get by with small values of M and N, you can only cover a
very small range of frequencies with resonable accuracy. As you try to
increase the range of frequencies covered, you need to increase M and N
and there seems to be no upper limit to this. In this respect, such models
are not very satisfactory. However, workers do still use them or nox}linear
generalizations of them, to analyze some kinds of phenomena. Setting all
derivatives equal to zero, one gets T proportional to . This gives for the
static elastic shear modulus, the value bg/ag. If you conceive the material to
be a fluid, set by = 0. Otherwise, any difference between fluids and solids is
more quantitative, more associated with values of the constants estimated
from experiment. In another respect, such models are at least awkwa.rd.
Typical relaxation experiments involve suddenly imposing a deformation
or force and holding it. So the time derivatives involved are, initially, very
large, perhaps infinite.

With such experiences, workers were encouraged to consider a differ-
ent model proposed in 1874 by Boltzmann [65]. It replaces (10.5.2) by an
equation of the form

t

h(t — o)y(z, t) — (=, U)] do, (10.5.3)

’T(.’L‘,t) = p’oo’)’(za t) +/

— o0

where po, is the equilibrium shear modulus and h(t — o) is a ft%nction
depending on the material. It is considered to decrease quite rapidly as
o — —oo. In the sense indicated, the material remembers all deformations
occurring in the past but not as well those that occurred a long time ago.
Philosophically, it is not so pleasant to think that one must know these
ancient deformations but many workers find ways to live with the idea.
Also, there are the obvious practical difficulties in knowing what to assume
about this. If you prefer, you can think of starting with having the plate
undeformed (7 = 0) up to a certain time, which alleviates the problem but
does not completely eliminate it. Some relevant experimentation is covered
by Ferry [66]. Three-dimensional linear theory is discussed by Leitman and
Fisher [67], for example.

A stress relaxation experiment involves starting with a sample which
seems to be in equilibrium, with v = 0 for t < 0, suddenly imposing a
constant shear strain 9 and holding it, then measuring 7 as a function of
time. The aim is to obtain an experimental determination of

u(t) = 7(t)/v- (10.5.4)
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FIGURE 10.1. Hypothetical form of response in stress-relaxation, for an elas-
tomer, with the idea that, eventually, the shear stress relaxes to Zero.

Usually, no attempt is made to measure the temperature of the sample or
the heat transferred. For such reasons, these have no clear status as thermo-
dynamic experiments. Because of inertial effects, the initial jolt produces
waves more or less like the shock or stress waves treated in Section 7.1,
so one cannot really attain the constant value of immediately. However,
these effects seem to disappear rather quickly so one can begin to get mean-
ingful measurements of p(t) after a short lapse of time. At long times, one
is limited more by the patience of the observer. By a simple calculation,
ignoring inertial effects, we should have

0
1(t) = proo + / h(t — o) do. (10.5.5)

-0

With the change of variables z = ¢ — o, this becomes

o
K(t) = poo +/ h(z) dz. (10.5.6)
t
Granted that h — 0 fast enough as z — 00, we will have
Hoo = tliglo /J'(t)v (1057)

and
B (t) = —h(t), (10.5.8)

which gives a simple physical interpretation of the function A and a way of
determining it for a range of values of the argument. A worker who likes to
think of elastomers as fluids would want to have Moo = 0 and may picture
u(t) as indicated in Fig. 10.1 for such “solids.”

It should have a long, almost flat part representing the rubber plateau,
with 4 — O ast — oco. A worker who watches only long enough to encounter
the plateau might reasonably extrapolate to obtain some nonzero value of
#o and dislike the notion that it is to be viewed as a fluid. It may be valuable
for someone to collect all the evidence bearing on this and perform a careful
critique of it but, as far as I know, this has not happened.
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So, this gives a crude picture of the theories of concern. The first version
is in a sense local, but hardly local enough to fit the pattern of very local
theories commonly treated in texts on irreversible thermodynamics. The
pictures of springs and dashpots cannot be taken too seriously. However, in
it, there is the suggestion that, at least temporarily, it is possible to store
some energy in the springs, even if we are dealing with a fluid and this
is at least intuitively consistent with the “elasticity” which they exhibit.
Certainly the second version is far from local, in the temporal sense.

Now, if we ignore the inertial effects, we can calculate the initial elastic
modulus as

1#(0) = poo + /0 ” h(z) de. (10.5.9)

In this quick stretch, the body is behaving like a linear elastic body and we
can use this idea to make an estimate of the work done per unit volume,
oW,

§W = pu(0)75 /2. (10.5.10)
In cases like this, it is rather commonly accepted that there is too little time
for appreciable heat transfer to take place, particularly in the elastomers
which are not good conductors of heat. So, by the first law, this also gives
an estimate of the energy density, really the internal energy density since
we are neglecting inertial effects. With elastomers and various other high
polymers, like silly putty, which are more obviously fluids, the initial jolt
should be close to a reversible process, intuitively. Thus, it makes some
sense to regard this as an isentropic process and assign to this initially
stretched configuration the value of the entropy occurring before stretching.
As a personal matter, I do not think that these ideas are far wrong, and,
as far as I am concerned, they make unreasonable the idea that you can
use the hypothesis of local equilibrium. To avoid some arguments, consider
something like silly putty which is obviously better regarded as a liquid.
Such liquids are reasonably considered as incompressible and besides, the
shearing motions do not produce volume changes according to linear theory.
For equilibrium, the internal energy should then not depend on anything
but entropy. If the entropy is fixed, so is the internal energy. There is then no
way to explain the change in internal energy inferred from (10.5.10) for such
liquids. If you accept the idea indicated in Fig. 10.1, the same argument
applies to elastomers. If you do not, then the problem is to explain why the
hypothesis should work for viscoelastic solids but not viscoelastic fluids. I
consider this to be hopeless, so I reject the hypothesis. Various workers have
come to this conclusion, quite possibly for different reasons. If you agree and
also accept the viewpoint of Tisza, among others, mentioned in the Preface,
then the problem of defining energy and entropy is easy. It is impossible,
so forget it. Of those I know in this business, no one seems completely
happy with this resolution. Some may well be prepared to believe that this
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is a possible conclusion but they would need to see some more compelling
argument to accept it.

For the elastomers, as we get well into the plateau or, by the other view,
close to equilibrium, the temperature is likely to be again at least close to
the ambient. Either way, we are in a regime where, by common consent,
thermoelasticity theory applies, at least to a fairly good approximation.
Said differently, the notion that energy and entropy have meaning in this
regime seems to be generally accepted. At least approximately, we can here
use thermoelasticity theory to calculate them. For the situation considered,
this leaves us without an obvious way of calculating these quantities in
the regimes where u(t) is changing more rapidly with time. This is one
example of a regime for which experts seem not to have come to a very good
agreement concerning how best to deal with these quantities. There are
several reasons for this. As was mentioned earlier, some might hold to the
view that one can only use those equilibrium states excluding the possibility
of defining entropy, etc. Also, as was mentioned, the basic ideas of such
theory do involve some philosophical and practical difficulties and workers
can have rather different ideas about how best to deal with them. For
example, we mentioned the possibility of considering just one standardized
initial history for a material, or allowing for more, and I have encountered
some differences of opinion about this. Also, nonlinear theory of this kind
is very complex, making it rather easy for workers to disagree about how
reasonable it is to make rather technical assumptions which seem to be
needed to perform mathematical analyses relating to general theories of
this kind. For such reasons, it is understandable that an argument which
seems convincing to one expert can be considered to be unconvincing to
another. As best as I can assess the situation, Coleman and Owen [68]
seem to have come closest to giving a satisfactory treatment of energy
and entropy for such theories. In this, the distinction between states and
processes gets blurred, with states becoming histories of deformation, etc.
The idea of cycles is modified by introduction of a concept of approximate
cycles. With this, the conclusion is that energy and entropy, like stress, do
depend on those histories. As might be expected from the fact that this is
a complex theory, their treatment is hardly in the elementary category.

For theory of this kind, one can find some things which do fit the descrip-
tion of cycles. For the purely mechanical theory given by (10.5.3), one can
use the idea represented by (10.4.1) and (10.4.2) to generate some cyclic
processes. That is, it is not hard to show that

uw(z,t+T) =u(z,t) Dt = 1(z,t + T) = 1(z,t). (10.5.11)

It is not immediately obvious that this is implied by the other version
(10.5.2) but, in practice, workers accept this. Also, the corresponding result
holds for at least most nonlinear theories of viscoelasticity of the “memory”
kind encountered in practice, including three-dimensional theories. For the
mechanical theory, this is enough to justify regarding such processes as
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cyclic, generating some cycles. Intuitively, I would not be happy .thh a
definition of cycles or cyclic processes which let the stress .have different
values at the beginning and end of a cycle. Here, it seems difficult to find
any very different kinds of cycles which have this property‘; one .co1{ld gen—f
eralize that used slightly, requiring only that y(z,t) be pe'rlodlc in tlme‘. (0]

course, the mechanical theory should be generaliz.ed to 1nch%de equatl(?ns
governing temperature variations if we are to sgfrlo.usly consider applyulllg
thermodynamic ideas to such theories. Thgse periodic processes are not t e
only processes of interest and one would like to have a much. greateli Va,;l—
ety of cycles to make better use of the laws of thermodynamlcs.'As int 3
plasticity case, the consensus of opinion seems to be that the.re is no ne;a

to modify conventional equations of motion or energy equations. Simply,
it is not a matter of routine to apply thermodyr.lamlcs when, as here, one
is dealing with theories not of the very local kll'ld. To some d.egrele;, this
explains why Coleman and Owen [67] were motivated t(? rI-IOdlfy t ((3) no-
tion of cycles, to obtain more things which could play a similar role: nce
one gets away from the equilibrium problems for elastomers, one is into
issues too complex to be covered in an elementary treatment of relevant

mics.

the’lflrll:;: }::‘2 not the only difficulties encountered in tryir}g t(? appl;t ther-
modynamics to improve our understanding of solid bel_1av1or, in particular.
What we have available to overcome them are th.e bf‘lSlC laws of tl?ermod'y—
namics. I thought that it may help to have some inkling of those? c.hfﬁcultxes
encountered in practice before proceeding, since thermodynamicists rarely
mention these.

10.6 Laws of Classical Thermodynamics

To some degree, it is a subjective decision as to what Should‘be consxq-
ered as classical thermodynamics. I and some ot'h‘ers prefer t9 1nterp1:et it
rather broadly, to at least leave open the poss?blhty (?f applying the ideas
to troublesome cases, such as were mentioned in Sectlo.n 10.5. Others pre-
fer to limit it to the cases which are much more routine, covered by the
is of local equilbrium, etc.
hyiolt':t?lizsr (Zon?mon célassica,l \:iew as I interpret it is that beat, power and
temperature are the most basic entities, in the sense of being most closely
related to ordinary experience. More abstract are concepts of energy and
entropy. If these are to be meaningful, they, and ‘whatever prf)pertxes tt);he.y
might have, should be inferred from ideas dealing more w1.th the basic
concepts. I believe that it helps to understand what is done if you accept
this view, at least for the sake of argument. Basically, the laws declare some
things to be physically impossible. At least to some .degree, they grew out
of experience with ancient engines, so it is not surprising that. cycles plal‘)}f art1
important role in them. Involved are verbal statements which are subjec



168 10. Reconsideration of Generalities

to interpretation, although there is not very much disagreement about this.
I will make some comments about this along the way.

The first has some implications for any thermodynamic system capable
of undergoing at least one cycle. It reads

For any cycle, beginning at time ty and ending at time t,,

t ty
Pdt=—6Q=— | Qdt.

to to

W = (10.6.1)

By general consent, one implication of the first law is that, for a loading
device to be considered to be conservative, §W should vanish for every
possible cycle. This does exclude some things which may be considered to
be dead loading devices. For example, if one maintains a constant torque
on a stir rod inserted in a viscous fluid, one could view this as dead loading
but, in likely cycles, §W is positive, so this is not a conservative device.
Numerous elementary texts discuss how one can use this law to infer the
existence of an energy depending on states for sufficiently simple theories
of systems. I will not expend the ink to give one more discussion of this
kind. However, I will note that, with our theory of thermoelastic bars, this
statement would fail if we regard as cycles those in the example mentioned
in Section 10.5, where the kinetic energy does not return to its original
value. Obviously, the discussion of the first law given in Chapter 1 makes a
presumption about existence of energy. Here, this is to be viewed as some-
thing to be proven starting from (10.6.1). With the troublesome theories
mentioned in Section 10.5, this is one of the nontrivial problems. Various
implications of impossibility can be read from (10.6.1). For example, if you
wish to obtain some useful work from a system (§W < 0), you cannot also
get the system to emit more heat than it absorbs, (i.e. having 6Q < 0).
It is easy to see that, for the efficiency e defined by (10.4.6), the first law
implies when 6Q* # 0,

0<e<l. (10.6.2)

With the second law, the situation is more complicated. Different state-
ments were made by older writers and one finds these restated in different
ways in different texts. Some are convinced that these are equivalent and
others are not. Serrin’s description [69] of the original statements is accu-
rate. His paper begins with a quotation of a statement by Bridgman, a
noted physicist:

It does seem obvious that not all formulations of the second law
can be exactly equivalent.

I think it pertinent to add that his experimental work® turned up numer-
ous interesting facts relating to phase transitions and plasticity phenomena

5This is covered in Bell’s review [13].

|
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in solids. Along with this, he was a serious student of thermodynamics with
a strong interest in trying to apply it to plasticity phenomena, in particular.
He did appreciate at least some of the difficulties which this involves.

Commonly mentioned in texts is a version of the second law attributed to
Clausius. As is discussed by Serrin [68], Clausius proposed two versions. To
this, I would add a third. As noted in Section 1.2, Gibbs took a statement
by Clausius as a basis, or at least a motivation for his work. Some take it
as a motivation for considering (1.2.7) as a statement of the second law,
one version not mentioned by Serrin. To take this as basic, it seems to be
necessary to believe that for any thermodynamic system covered by clas-
sical thermodynamics, entropy can somehow be defined. Presumably, the
later of the other two versions mentioned by Serrin is the best formulated.
It reads as follows:

(Clausius) A passage of heat from a colder to a hotter

. 10.6.3
body cannot take place without compensation. ( )

Clearly, this recognizes that the intuitive idea that heat flows from hotter
to colder bodies is not always true: if it were, it would not be possible to
make refrigerators. Some notion of temperature is involved to discern which
is hotter. As noted in Section 10.1, I have accepted the assumption that we
can always consider temperature to be absolute temperature. Nominally,
the first law contains no reference to temperature. However, for the first
law to make sense, one needs to be able to assign some numerical value to
heat in any particular situation, which means using some physical units of
heat. If one looks at the definition of such a unit, say a calorie, one finds
that it involves a definite unit of temperature, a degree on the centigrade
scale. The other point is, that to compare work with heat, we must use
the same units for both. Converting heat data to these is performed by
multiplying by a universal constant, which does of course depend on which
units are selected. So, in practice, we do accept a universal temperature
scale in interpreting the first law.

As at least some interpret (10.6.3), the colder and hotter bodies are to
be described as two heat baths at fixed temperatures ¢, and §2 > 0;. Some
thermodynamic system, allowed to undergo a cycle, is somehow to be in
contact with these at some times during the cycle. Any heat transfer is to
be between the system and the heat baths. Thus, for example, when the
system is in contact with one, any heat absorbed (emitted) by the system is
emitted (absorbed) by this heat bath. When the system is in contact with
neither, the process must be adiabatic (Q = 0), etc. The phrase “without
compensation” is taken by some to mean that the net work done on the
system during a cycle must vanish (§W = 0). Then, from (10.6.1), we
should also have §Q = 0. I think it reasonable to relax the restriction as
Serrin does [68], for example, using the interpretation that

“without compensation” means W < 0= 6Q >0, (10.6.4)
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where I have used the first law.

To decide for yourself whether such a statement makes sense, a first step
is to check whether it does hold for systems familiar to you. If so, you
can try to design and build a system which violates it. If you cannot, you
acquire some faith that the law is sound, but there is no way to prove this.
Let us try one check using the thermoelastic theory of bars discussed in
Chapter 2.

For a bar, consider a cycle beginning at t = 0, ending at t = 7', conform-
ing to (10.6.4), so that

T T
6Q:/ th:-/ Pdt = —AW > 0. (10.6.5)
0 0

To bring in the contact with the heat baths, we consider the ends to be
insulated, so

a(L,t) = q(0,t) =0 D ¢, (10.6.6)
and use Newton’s law of cooling, with the assumptions that, for 0 < z < L,
r=off - 0(z,t)], 0<t<t,
r =0, t <t <ty
' 2 (10.6.7)
T:a[gz_g(zat)L ta St<t37
r= 07 t3 S t < T,

with a some positive constant, #(z,t) being the temperature of the bar. It
is not immediately obvious that any such cycles exist, since some equations
must be satisfied, and I will not deal with this question. The question is
more to check whether any that may exist do conform to this version of
the second law. To be definite, by a cycle, we mean a process defined for
times in the interval [0, T], with

y(z,T) = y(z,0) = XNz, T) = Xz,0),6(z,T) = 6(z,0) (10.6.8)
satisfying the equation of motion (2.3.8) with f = 0 and the heat equation
(2.3.27) with r as prescribed in (10.6.7). One can allow for such things
as the shock waves discussed in Section 7.1 but I will leave it to you to
determine whether this affects the conclusions we will make. Now, with
(10.6.8) we will have, in particular

T

= 0. (10.6.9)
0

L
S(T) — S(0) = /0 n(\, 0) dz

Then, from the global form of the Clausius-Duhem inequality (2.3.13), with
T, =0, 2o = L, we obtain

/OT /OL(T/G) dzdt <0,

(10.6.10)

\”l

10.6 Laws of Classical Thermodynamics 171

where we have used (10.6.6). With (10.6.7), this gives

a/OL { 0“[(.9l —0)/0)dt + /t:[(o2 _ 0)/6] dt} dz<0.  (10.6.11)

From (10.6.4), we must also have

a/OL [/:(91—9)dt+/t:3(92—9)dt] dz > 0.

Here the factor o, being positive, can be canceled. Now, with our interpre-
tation of this version of the second law, it should be impossible for heat
to be transferred from the colder to the hotter bath under the conditions
assumed. That is, briefly,

(10.6.12)

L ts
Clausius = a/ / (02 — 0)dtdz > 0. (10.6.13)
0 ta

The question is whether this really does follow from (10.6.10) and (1Q.6.12),
perhaps by using something else deducible from the bar theory considered.
For this, it is helpful to note that, for any possible values of #; and 6,

0, —0)(0; —071) < 0= (6; —0)/6: < (6. —6)/6. (10.6.14)

Of course, one can here replace 6; by 6. Thus, using (10.6.11), we have

/OL {/0 0 —0y/6s)ae+ [ (6~ 000 dt} dz

t2

(10.6.15)
< /OL {foh[(al —0)/0) dt + /:[(92 —9)/6) dt} dz < 0.

Now, use (10.6.12) to eliminate the first term on the left to give

L t
(65! - 9;1)/ / *(60, — 6) dzdt <0, (10.6.16)
0 to

and, with @3 > 6, this does give the inequality alleged to hold in (10.6.13).
So, as interpreted here, we have verified that (10.6.3) does hold in the
cases considered. It is not hard to check that we would have encountered
a violation had we considered o to be negative. Said differently, we have
come close to proving that a > 0 follows from (10.6.3). To complete the
proof, one would need to show that there is at least one cycle of the kind
considered. If you are willing to assume this, you have another reason to
think that (10.6.3) makes sense as interpreted here. Suffice it to say that
this old law is still accepted because it has been tested in numerous ways
and found to be trustworthy.
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As is also commonly discussed in texts, one can use this version of the
second law to deduce a useful inequality, even if one insists on having
equality hold in (10.6.4). Consider any system in contact with a heat bath
with temperature 6p(t). Suppose that the system is capable of undergoing
a cycle beginning at time ¢y, and ending at time ¢;. For the cycle, we then
have

/ " Qs dt <o, (10.6.17)

to

this being called the Clausius inequality. In various simpler theories, it is
automatic that @p is also the temperature of the system and some writers
do not make a clear distinction between these two temperatures. Also com-
monly discussed in texts is the fact that, for relatively simple systems, one
can use (10.6.17) to deduce the existence of entropy, depending on suitably
defined states satisfying the Clausius-Planck inequality (1.2.2). Also for
such theories, it is generally easy to show that (1.2.2) implies (10.6.17).
In any event, (10.6.17) represents Clausius’ contribution to the Clausius—-
Duhem inequality which we will discuss a little more later. For our bars,
another possibility is to have the two heat baths in contact with the bar at
the same time. For example, we could insulate the sides so 7 = 0 and put
each end in contact with different heat baths, each at fixed temperature.
With a suitable control of mechanical conditions, one may attain a static
process which is, of course, cyclic. It is hard to see how (10.6.17) could
yield any information about this. From such reasoning, it seems clear that
the Clausius inequality should not be regarded as the same as the second
law, as interpreted above.

Another commonly mentioned version of the second law is Planck’s re-
statement of Kelvin’s idea:

(Kelvin-Planck) It is impossible to construct a machine

which operates cyclically and which does nothing but raise

a weight and cause a corresponding cooling of a heat reservoir.

(10.6.18)

Most regard this as equivalent to Clausius’ version. Serrin [68] does discuss
assumptions which, it seems, need to be accepted, at least tacitly, in estab-
lishing equivalence, at least as he interprets the statements. I have nothing
worthwhile to add to such discussions, so will leave it at this.

In these versions of the laws, the basis is a relatively simple intuitive idea,
structured by conventions which have been established from long experi-
ence in using them. In the basic statements, as interpreted here, there is no
explicit mention of states. By convention, notions of states have come to be
associated with the statements, at least largely because this is a convenient
way of describing the energies and entropies which can be deduced using
these laws, when we know how to do this. However, there is no implication
that such energies and entropies exist for all kinds of thermodynamic sys-
tems and I do not believe that they do. The laws have some implications
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for any system which can undergo at least one cycle. If, by any mode of
reasoning, one can decide what are cycles, one can explore this without
also having any preconveived notions about states. With various theories
of plasticity and viscoelasticity, it is rather clear that one has some variety
of cycles and the above versions do have some implications about these. In
such cases, the implications may well be less than what would be needed
to deduce well-defined entropies at least, but it is not a classical law that
this should always be possible. It would not necessarily violate the laws
if one assumed that they are well-defined and gave some prescription for
calculating them. If you try this, you may well have trouble in convincing
others that your ideas are sound.

Also commonly mentioned is a third version, quite different in character,
due to Carathéory. First, recall the statements made at the beginning of
our discussion of the second law, by Bridgman, and accept that he was
familiar with the three. Another good physicist, Pippard [4], takes a rather
contradictory view, so I think it worthwhile to explore this. He states what
he consideres to be this version,

(Carathéodory-Pippard) In the neighbourhood of any
equilibrium state of a system, there are states which are
inaccessible by an adiathermal process.

(10.6.19)

It is clear from his discussion that, where I have used the word “adiabatic,”
he means “adiathermal.” He notes that he likes this least, because

...it is neither intuitively obvious nor supported by a mass of
experimental evidence.

However, as he puts it,
...it leads to the same conclusions as the others. . ..

Clearly, this view is not easy to reconcile with that of Bridgman. Physi-
cists tend to skip little points of mathematical rigor, so one might rea-
sonably explore what mathematicians have to say about this version, one
possibility being the previously mentioned paper by Serrin [68]. Here, we
find a rather different statement, viz.

(Carathéorody) Consider a system S whose behaviour can be
described by a finite number of state variables whose domain

is an open set Q of R, k > 2 (with the usual topology). Let

oo be a state of the system (a point in ) and let N be any
neighbourhood of oo in 2. Then there must exist in N a point o
with the property that no adiabatic process open to S can start

at 0¢ and end at o, (i.e., o is inaccessible from og).
(10.6.20)



174 10. Reconsideration of Generalities

Read on, and you will see that Serrin regards this as a very different version,
not equivalent to the previous two.

Two things are worth noting. It is more than glossing over points of
rigor to fail to mention that those states should be describable by a finite
number of parameters, as Pippard does. Also, what is a state og in (10.6.20)
is, in Pippard’s version, an “equilibrium state.” So, accept that the world of
classical thermodynamics is limited to the cases which can be described in
terms of states which are, in turn, describable by a finite list of parameters.
Further, such states are to fit the description of equilibrium states discussed
earlier. From what else he does, this is what I infer to be Pippard’s view
of what is classical thermodynamics and, in this respect, he has lots of
company. Workers who accept this view generally accept the idea that
energy and entropy are well-defined as functions of such states. This view
is too limited for some, Bridgman for one, and I have declared myself to be
with him in this. I have said enough about the problems met in deciding
what should be meant by states to indicate that, sometimes, I do not see
how to use the third version in cases where the other two can be applied. If
I had some conjecture about this, I would return to the previous versions
to try to decide whether it made sense. In this respect, those versions are
certainly not replaceable by the third version for my purposes. The third
version has some merit in providing a basis for simple equilibrium studies
such as we have performed, when one does not want or know how to place
these in the context of some nonequilibrium theory. However, even here, it
is hard to see how one could use this to motivate or justify what we took to
be basic definitions of equilibrium. Neither does it seem to warn us against
trying to use them for problems involving sliding friction, for example. As I
see it, the view adds little to what Gibbs said about equilibrium. For such
reasons, I do not find the third version very useful, but you might.

Easier to use, when it applies, is the Clausius-Duhem inequality, which
really comes in two versions. We have already discussed this in relation
to one-dimensional theories. For three-dimensional continuum theories, the
more traditional version goes as follows. Some fixed set of material is con-
sidered to be the thermodynamic system. Here, entropy is introduced from
the start. Introduce a reference configuration, some possible configuration
as a three-dimensional analogue of what we have used for bars and plates.
Let © denote the region it occupies. With S denoting the entropy, 7 the
entropy per unit reference volume, we have, by assumption

Sz/ndv,
Q

dv being the voluime element. Here, to describe @, we introduce a heat flux

vector g and set
Q= [ gnda
aq

(10.6.21)

(10.6.22)
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where 89 denotes the boundary of §, da the element of area and gn the
projection of g on the outward normal to the surface. Then, the Clausius—

Duhem inequality is

ds/dt > / (¢/9) da, (10.6.23)
an

where, as usual, § is the temperature of the material which, in general,

varies with position and time. By using the divergence theorem, etc., one

can obtain a corresponding inequality which holds pointwise, but I will not

belabor this. If you return to Chapter 1 and read the quotation from Gibbs,

you will find that rather puzzling integral, in which ¢ denotes
...the temperature of the part of the system receiving it. . ..

It is not clear what he had in mind but it seems not to be quite the
integral occurring in the Clausius inequality (10.6.17); something more like
that occurring in (10.6.23) seems to be the case. With the assumption that
the quantity on the left vanishes when integrated over a cycle, one gets an
inequality somewhat like the Clausius inequality,

t1
/ (gn/6)dadt < 0. (10.6.24)
to N

In the above discussion of bars we mentioned the possibility of putting
different heat baths in contact with the ends of a bar. Kestin [70] uses a
similar idea to conclude that (10.6.23) is deducible from our (1.2.7) when
entropy is defined using the hypothesis of local equilibrium. Possibly, one
could use a similar argument to deduce that (10.6.24) follows more generally
from, say, Clausius’ version of the second law. This could be useful in trying
to justify the assumed existence of entropy for more general systems by this
route, but I am not sure of this.

The other version of this inequality has been frequently used since it was
suggested by Truesdell and Toupin (p. 258 of [71]). For bars the quantity
r may be thought of as being defined within the bar. The proposal is to
modify (10.6.22) in that analogous way, writing

Q= gn da + / r dv, (10.6.25)
an Q
replacing (10.6.23) by
ds/dt > / (gn/0) da + / (r/6) dv. (10.6.26)
an an
Then, (10.6.24) is modified in the obvious way to
ty
/ [ (gn/8)da + / (r/0) dv] dt <0. (10.6.27)
to N Q
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It seems less likely that one could produce a satisfactory derivation of this
from any of the other three versions of the second law. For such reasons, it is
at least awkward to tackle problems related to the existence of entropy with
suitable properties, for some systems of this kind, in particular theories of
viscoelasticity.

Motivated by such considerations, Serrin [69] proposed a different version
of the second law which does seem to deliver useful results more easily. In
spirit, it is not so different from the first two versions and, for simpler
kinds of theories, it leads to the same conclusions. Like them, it deals with
cycles. Consider any thermodynamic system, letting C denote any cycle
associated with it. Associate with this a function depending on a parameter
O, A(C, 0) called the accumulation function, with the interpretation that

A(C, ©) = heat received by the system during the

cycle, at temperatures § < ©. (10.6.28)
Thus, for 6Q interpreted as in (10.6.1), we have
6Q = A(C, ). (10.6.29)
In words, his version is
The accumulation function of a nonadiabatic cycle process (10.6.30)

cannot be nonnegative.

He explains how this relates to the Clausius and Kelvin-Planck versions, as
he interprets them and, for this, I refer the reader to his paper. He shows
that this statement implies that

/ ©72A(C,0)do < 0. (10.6.31)

0

Under assumptions which are not very restrictive, one can put this in a
form which looks more like the Clausius inequality. Suppose that, for C
fixed, A is a sufficiently smooth function of © to enable us to integrate by
parts. Suppose also that

li = lim A/© = 0. 10.6.32

e1_r>r;oA/(9 Jim / 0 (10.6.32)
From (10.6.29), the first condition will certainly be satisfied if 6Q < oo,
the second if no heat is received at temperatures near absolute zero and
even less restrictive assumptions would suffice. With these assumptions,
integration by parts gives, for any cycle,

/ e 'dA<o. (10.6.33)
0

Roughly, dA represents the heat received by the system between the tem-
peratures © and ©+dO, making this somewhat like the Clausius inequality.

i
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Unlike the latter, there is no stipulation on how heat baths, etc., are to be
used to effect heat transfer. This also resembles the rather mysterious inte-
gral mentioned by Gibbs, providing one interpretation which is meaningful.

Let us try evaluating (10.6.33) for a thermoelastic bar. For simplicity we
will ignore heat conduction, so that

Q=/0erx.

Consider a cycle beginning at ¢ = 0 and ending at ¢t = T' > 0, described
by functions y(z,t) and (z,t), which should, of course, be defined for the
whole bar, 0 < z < L. The relevant points (z,t) in the z-t plane then
form a rectangle R. For r, one can use Newton’s law of cooling, the Stefan—
Boltzmann law, or simply the function which satisfies (2.3.12) when some
inputs are used to calculate the remaining terms. For simplicity, we assume
that r(z,t) and 6(z,t) are continuous functions on the rectangle, which
implies that they are bounded. Also, we assume that 6(z,t) is bounded
away from zero, so, for some positive constants a and b, we have

(10.6.34)

0<a<0(z,t)<b<oo. (10.6.35)

For convenience, we have picked a to be smaller than the minimum value
of 6(x,t). Now divide up the temperature interval into N equal parts, n =
1,...,N, giving intervals as indicated by

In: 9n <f< (9n+1, 91 =a, 6N+1 = b,
Ony1 — O, = (b—a)/N.

Now, we define subsets o, of the rectangle R by the condition that
(10.6.37)

(10.6.36)

(z,t) € 0n & O(z,t) € Iy

No point has two temperatures associated with it, so one point cannot
belong to two such sets. Also, every point in R has a temperature associated
with it, so the union of these disjoint sets is R,

N
U o, = R.
n=1

Now, from (10.6.28) and (10.6.36), for the cycle C considered,
A(C,0)=0 if © <a,

(10.6.38)

T oL (10.6.39)
A(C,@):/ / rdzdt:/rdzdt, if ® >0,
o Jo R

which is consistent with (10.6.32). It is then clear that dA = 0, except when
© is in the interval a < © < b, so the left side of (10.6.33) takes the form

b
/ O~ 1dA.

(10.6.40)
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Now, from at least one definition of the integral we can approximate it as
closely as we like in the manner indicated by

b N
/ ©071dA =) "6, 1,[A(C,0n1) — A(C,0,). (10.6.41)

n=1

Now, the difference in the square brackets is, from the definition of A, the
heat supplied at temperature € in the range
0, <0< 0nh;, (10.6.42)

that supplied at § = ©,, being counted in both A’s. From the definition of

on, this is given by
/ rdz dt.

Thus, the above sum can be written as

N
> e / rde dt. (10.6.43)
n=1 In
Now, using (10.6.38), we also have
N
/ (r/0)dzdt=") / (r/0) dz dt, (10.6.44)
R n=1v%n

and, with this, we can add and subtract this term, to put (10.6.41) in the
form

b N
/ 9_1dA§/(r/9)dzdt+Z/ (6,1, — 07 ) drdt. (10.6.45)
a R n=1Yn

Note that, if IV is large, 6 is nearly equal to ©,,, in 0,,. By a more detailed
analysis, which I will omit, this sum can be made arbitrarily small by taking
N large enough. In the limit as N — oo, we obtain

oo b
/ 0 1dA :/ O 1dA = / (r/6)dzdt <0, (10.6.46)
0 a R
which is what we would get by applying the Clausius-Duhem inequality
to a cycle when heat conduction is neglected (¢ = 0). With a similar, but
more tedious analysis, one can account for heat conduction which modifies
(10.6.46) in the manner expected from analogous calculations based on the
Clausius-Duhem inequality. Ignored here is the possibility that the sets
o, may be so complicated that integrals over them are not well-defined.
For a rigorous treatment, one needs analysis too complex to be used here,
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involving the theory of Lebesgue integration, but it is possible. In the three-
dimensional case, when Q is given by (10.6.25), one can use similar argu-
ments to show that, formally, (10.6.27) is equivalent to (10.6.33). For var-
ious kinds of theories of solids and fluids, the Clausius-Duhem inequality
applies and gives sensible results. So this really provides numerous checks
on the soundness of this version of the second law. With, say, plasticity
theories, where one has doubts about the existence of entropy, it would be
unsafe to assume that the Clausius-Duhem inequality applies. However, if
you accept that (10.6.25) applies, you can use (10.6.27) as a mathematical
representation of the second law, if you also accept this version. At least
from my point of view, this version fits comfortably as part of the subject
of classical thermodynamics, although it is relatively new. I prefer it to any
of the three versions mentioned before.

There are also some different versions of the third law which deals with
the unattainability of absolute zero (§ = 0). As stated by Pippard [4], two
of these are

By no finite series of processes is the absolute zero attainable, (10.6.47)
and, what is perhaps better regarded as an addendum,

As the absolute temperature tends to zero, the magnitude of

the entropy change in any reversible process tends to zero. (10.6.48)

This provides support for the view that the second equality of (10.6.32)
is not a very restrictive assumption, among other things. Various writers
discuss this law and I will leave it to the interested reader to pursue this
on his own.

Finally, some slightly different versions of another law, the zeroth law,
are mentioned by various authors. As I interpret this, it is more concerned
with the theory of temperature which I have not tried to discuss. In their
treatment of this, Fosdick and Rajagopal [72] take as basic a version due
to Maxwell,

(Maxwell) Bodies whose temperatures are equal to that of

the same body have themselves equal temperatures. (10.6.49)

In statements used by some others, the notion of equality of temperature is
replaced by a statement that, pairwise, the bodies are in equilibrium with
each other, a notion that I find misleading and confusing.

Newer than the theory of the old engines but certainly old enough to
be regarded as classical, is another branch of thermodynamics, more re-
lated to statistical molecular theory. In this, Gibbs was also a pioneer. This
involves quite different ideas about concepts of temperature, energy and
entropy, more related to statistical averages. That these names are used
here reflects the fact that some situations can be analysed with this and
the older theory, with compatible results, if one agrees to use these names
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to make comparisons feasible. However, it does add confusion conceptu-
ally. It would take a very lengthy discussion to introduce these ideas and
to compare them with those discussed above and I will not attempt this.
Briefly, my experience is that each branch has its own virtues and faults.
Pragmatically, I have found that one can be more successful than the other
in dealing with a particular situation, so it helps to be familiar with both.
For dealing with solids, one weak spot in this branch involves guesses which
seem to need to be made to relate macroscopic deformation or motion to
atomic or molecular motion. For crystals, Zanzotto [73] collects evidence
that the commonly used hypothesis sometimes agrees and sometimes fails
to agree with experiment. When it fails, we seem not to have a viable alter-
native. Workers interested in elastomers often use one hypothesis, although
alternatives have been considered, to try to obtain some better agreement
between molecular theory and macroscopic observations. At best, this is an
indirect way of assessing the validity of the assumed relation. Suffice it to
say there seems to be no panacea for problems of this kind.

I have mentioned only some of the difficulties encountered in trying to
apply ideas of classical thermodynamics to solids. Of course, it is the diffi-
culties which encourage intelligent workers to try to modify the old ideas
in order to find better ways of treating the troublesome situations. I do
not feel comfortable about giving general advice about how best to begin
learning about such developments. Were I in this position, I would choose
some questions of particular interest to me and ask experts for the best
references relevant to these.

However, it is my experience that many workers are uneasy about some
important concepts, particularly that of entropy. While it is not a panacea,
-I believe that it helps to understand how such concepts evolved, historically.
Readers unfamiliar with this might find helpful the book by Truesdell [74],
particularly his Historical Introit. Readers with much more mathematical
ability than is required for my book might consult that by Silhavy [75],
which covers some topics touched upon here in greater depth, along with
some omitted here.
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