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If it were easy ... it cannot be educational.
In education, as elsewhere, the broad
primrose path leads to a nasty place.

Alfred North Whitehead

“The Aims of Education,” in

Alfred North Whitehead, An Anthology,
E.S. C. Northrop and M. W. Gross, eds.,
Macmillan, New York, 1953, p. 90.

remarkable things

occur in accordance with Nature,
the cause of which is unknown;
others occur contrary to Nature,
which are produced by skill

for the benefit of mankind.

Mechanica, Aristotle (384-322 BCE)

Many scholars doubt that the Mechanica,

the oldest known textbook on engineering,

was written by Aristotle. Perhaps it was written
by Straton of Lampsacus (a.k.a. Strato Physicus,
died c. 270 BCE), who was a graduate student
under Aristotle and who eventually succeeded
Theophrastus as head of the Peripatetic school.
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0

INTRODUCTION

You are a member of a group assigned to experimentally determine the behavior of
certain mixtures that are to be used in a new process. Your first task is to make a
1000-ml mixture that is roughly equimolar in isopropanol and water; then you will
determine the exact composition to within £0.002 mole fraction. Your equipment con-
sists of a 1000-ml volumetric flask, assorted pipettes and graduated cylinders, a ther-
mometer, a barometer, a library, and a brain. You measure 300 ml of water and stir it
into 700 ml of alcohol—Oops!—the meniscus falls below the 1000-ml line. Must have
been careless. You repeat the procedure: same result. Something doesn’t seem right.

At the daily meeting it quickly becomes clear that other members of the group are
also perplexed. For example, Leia reports that she’s getting peculiar results with the
isopropanol-methyl(ethyl)ketone mixtures: her volumes are greater than the sum of
the pure component volumes. Meanwhile, Luke has been measuring the freezing
points of water in ethylene glycol and he claims that the freezing point of the 50%
mixture is well below the freezing points of both pure water and pure glycol. Then
Han interrupts to say that 50:50 mixtures of benzene and hexafluorobenzene freeze at
temperatures higher than either pure component.

These conflicting results are puzzling; can they all be true? To keep the work going
efficiently, the group needs to deal with the phenomena in an orderly way. Further-
more, you want to understand what’s happening in these mixtures so that next time
you won't be surprised.

0.1 NATURAL PHENOMENA

These kinds of phenomena affect the course of chemical engineering practice. As
chemical engineers we create new processes for new products and refurbish old pro-
cesses to meet new specifications. Those processes may involve mixing, separation,
chemical reaction, heat transfer, and mass transfer. To make homemade ice cream we
mix fluids, promote heat transfer, and induce a phase change, without worrying much
about efficiency or reproducibility. But to design an economical process that makes ice



2 INTRODUCTION

cream in a consistent and efficient manner, we must have quantitative knowledge of
the properties and phase behavior of pure substances and their mixtures.

The acquisition of that knowledge appears to be an overwhelming task. An essen-
tially infinite number of mixtures can be formed from the more than 22,000,000 pure
substances now identified by the Chemical Abstracts Registry, a large number of proper-
ties must be studied, and an extensive range of operating variables must be explored.
We will never be able to measure the properties needed for all possible mixtures over
all required conditions. Theory is of limited help: our inability to create a detailed
quantum mechanical description of matter, coupled with our ignorance of intermolec-
ular forces, prevents our computing from first principles all the property values we
may need. Is there anything we can do?

The most successful approach combines classical thermodynamics with modeling.
Classical thermodynamics provides a grand scheme for organizing our knowledge of
chemical systems, including reaction and phase equilibria. Thermodynamics provides
rigorous relations among quantities, thereby reducing the amount of experiment that
must be done and providing tests for consistency. Thermodynamics establishes neces-
sary and sufficient conditions for the occurrence of vapor-liquid, liquid-liquid, and
solid-fluid equilibria; further, thermodynamics identifies directions for mass transfer
and chemical reactions. Thermodynamics allows us to determine how a situation will
respond to changes in temperature, pressure, and composition. Thermodynamics
identifies bounds: What is the least amount of heat and work that must be expended
on a given process? What is the best yield we can obtain from a chemical reaction?

Thermodynamics carries us a long way toward the solution of a problem, but it
doesn’t carry us to the end because thermodynamics itself involves no numbers. To
get numbers we must either do experiments or do some more fundamental theory,
such as statistical mechanics or molecular simulation. With the demand for property
values far exceeding both the predictive power of theory and the range of experiment,
we use modeling to interpolate and extrapolate the limited available data.

This book is intended to help you master the concepts and tools of modern thermo-
dynamic analysis. To achieve that goal, we will review fundamentals, especially those
that pertain to mixtures, reaction equilibria, and phase equilibria: the objective is to
solidify your grounding in the essentials. In most undertakings the first step is the
most difficult, and yet, without the essentials, we haven’t a clue as to how to start. A
virtue of thermodynamics is that it always gives us a starting point for an analysis. But
to pursue the rest of an analysis intelligently, you must choose models that are appro-
priate for your problem, taking into account the advantages and limitations that they
offer. Finally, to complete an analysis efficiently and effectively, you must have experi-
ence. This book tries to instruct you in how to perform thermodynamic analyses and
provides opportunities for you to practice that procedure. The program begins in
Chapter 1, but before embarking we use the rest of this introduction to clarify some
misconceptions you may have obtained from previous exposures to the subject.

0.2 THERMODYNAMICS, SCIENCE, AND ENGINEERING

Chemical engineering thermodynamics balances science and engineering. But when
the subject is studied, that balance can be easily upset either in favor of a “practical”
study that ignores scientifically-based generality, consistency, and constraint, or in
favor of a “scientific” study that ignores practical motivation and utility. Beyond the
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introductory level, such unbalanced approaches rarely promote facility with the mate-
rial. To clarify this issue, we use this section to distinguish the development of science
from the practice of engineering.

Legend has it that a falling apple inspired Newton’s theory of gravitation. More
likely the theory was the culmination of much thinking and several observations, of
which the last perhaps involved an apple. Once his theory was tested in various situa-
tions and found satisfactory, it became known as a universal law. Newton’s encounter
with an apple may or may not have happened, but nevertheless the story conveys the
most common method of discovery. This method, in which a few particular observa-
tions are extended to a single broad generality, is called induction. The method is sum-
marized schematically on the left side of Figure 0.1. (For more on the role of induction
in scientific discovery, see Polya [1].)

The law of gravitation illustrates the principal goal of science: to identify, organize,
codify, and compress a large amount of information into a concise statement. Another
example is Maxwell’s proposal that electricity and magnetism can be described by the
same set of differential equations. Still another example occurs in linear transport the-

Accept 1st & 2nd laws of thermodynamics
Theory
molecular theory of matter
Test
Theory
o)
O% i::lﬂcséoﬁzld Particular %
~ T i
Cf/ equilibria Relations e
Q / \‘ <
) Propose energy conservation, \)\;‘
Theory entropy generation o

Py &

S A
cubic Engineerin,
equations gimeering

Secondary Znezgy, it of state Relations
eat capacities,
Concepts equations of state
Primitive system, state, reactions, Industrial
Concepts process, surroundings Z?;?ZL;Z%}SE”, Processes

Figure 0.1 Schematic of the principal ways in which science and engineering are practiced. Sci-
ence proceeds mainly by induction from primitive concepts to general theories. From those gen-
eralities engineering proceeds by deduction to create new processes and products.
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ory in which Newton’s law of viscosity, Fourier’s law of heat conduction, Fick’s law of
mass transfer, and Ohm'’s law of electrical conduction all collapse into a single form

flux = - coefficient x gradient (0.2.1)

Such generalizations can also be found in thermodynamics; for example, Gibbs
described phase equilibrium using the thermodynamics originally developed to ana-
lyze heat engines and other thermal processes. These examples illustrate that the
more highly developed a scientific discipline, the fewer, broader and more powerful
its laws, so that one general goal of science is to make efficient use of brain power [2],

science < the economy of thought 0.2.2)

The practice of engineering is an activity distinct from the development of science.
A well-engineered product or process accomplishes its allotted task through simple
design, easy operation, moderate cost, infrequent maintenance, and long life: one
well-engineered product was the original Volkswagen Beetle. These attributes of
design, operation, and maintenance all contribute to an efficient use of resources; i.e.,

engineering < the economy of resources 0.2.3)

Engineering practice is not science, but economic insights from science contribute to
the economical use of resources: the general theories and laws produced by the minds
of scientists become tools in the hands of engineers. But because those theories and
laws are so general (to achieve economy of thought), we must first reduce them to
forms appropriate to our situation. This method, in which a generality is reduced to
apply to a particular case, is called deduction; it is the primary way by which engineers
use science. This use is illustrated on the right side of Figure 0.1.

The broad generalities of science are of such overwhelming importance that they
deserve a handy and memorable name: we call them the things that are always true.
An example is the statement of conservation of mass. Conservation of mass represents
economy of thought because it applies to any situation that does not involve nuclear
reactions. But to actually use it, we must deduce the precise form that pertains to our
problem: What substances are involved? What are the input and output streams? Is
the situation a transient or steady state?

Besides the generalities of natural phenomena, science produces another set of
things that are always true: definitions. Definitions promote clear thinking as science
pushes along its path toward new generalities. By construction, definitions are always
true and therefore they are important to engineering analysis. Ignoring definitions
leads to fuzzy analysis and ambiguous communications. While there is much science
in thermodynamics, engineers rarely study thermodynamics for the sake of its sci-
ence. Instead, we must confront the science because articulating an always true serves
as a crucial step in every thermodynamic analysis.

As you use this book to restudy thermodynamics, you may realize that your earlier
experience with the subject was more like the left-hand side (uphill) of Figure 0.1. It
may not have been clear that your goal was to reach the top, so that everything you
did afterwards could be downhill (right-hand side). You may even have tried to “tun-
nel through” to applications, meaning you may have memorized particular formulae
and used them without serious regard for their origins or limitations. It is true that
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formulae must be used, but we should apply their most general and reliable forms,
being sensitive to what they can and cannot say about a particular situation.

In this text our goal is to enable you to deduce those methods and relations that
pertain to particular applications. We develop fundamentals in an uphill approach,
and we apply those fundamentals in a downbhill fashion, taking advantage of any
knowledge you may already have and attempting to include all the essentials in an
accessible way. Throughout, we include sample applications appropriate to the level
of learning you should have achieved, and we exhort you to develop facility with the
material through repetition, practice, and extension.

To become proficient with thermodynamics and reach deep levels of understand-
ing, you must have not only ability. In addition, you must adapt to alternative ways of
thinking, make a commitment to learning, and exercise your new skills through per-
sonal reflection, interactive conversation, and problem solving. In this way you, your
classmates, and your instructor can all benefit from your efforts.

0.3 WHY THERMODYNAMICS IS CHALLENGING

In this section we cite two stumbling blocks that often hinder a study of thermody-
namics: its scope and its abstract nature. Both can lead to frustration, but in this book
we try to offer strategies that help you minimize your frustrations with the material.

0.3.1 Large Number of Relations

In studying thermodynamics, it is easy to be overwhelmed by the large number of
mathematical relations. Those relations may be algebraic, such as equations of state,
or they may be differential, such as the Maxwell relations. The number is large
because many variables are needed to describe natural phenomena and because addi-
tional variables have been created by humans to achieve economy of thought. To keep
the material under control, it must be organized in ways that are sensible rather than
arbitrary. Numerous relations may arise in the search for economy of thought, but in
studying a subject we should economize resources, such as brain power, by appealing
to orderliness and relative importance.

As an example, consider these four properties: temperature T, pressure P, volume
V, and entropy S. For a system of constant mass we can use these four properties to
form twelve common first derivatives:

(57, Grlo- (5 )e- Gr)s- G- (55,
(5)v- G o) G- o) (50):

How shall we organize these derivatives? We choose an engineering approach in
which we group them according to relative importance; that is, we declare as most
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important those derivatives that convey the most useful information. If we do this, we
obtain a hierarchy of derivatives ranked from most useful to least useful.

The hierarchy can be constructed from the simple rules presented in Chapter 3, but
for now we merely note that such rankings can easily be found. So, of the twelve
derivatives involving T, P, V, and S, three are very useful, six are moderately useful,
and three are rarely used by engineers. Consequently, in an engineering study of
those twelve derivatives, you should devote your effort to the most important nine—
a savings of 25%. Moreover, by developing such patterns and using them repetitively,
we hope to help you grapple with the material in systematic and successful ways.

0.3.2 Abstraction in Thermodynamic Properties

Thermodynamic abstraction takes two forms. One occurs in conceptuals—quantities
such as entropy, chemical potential, and fugacity—which are often presented as arbi-
trarily defined concepts having only tenuous contacts to reality. Abstraction, it is true,
is a prevalent feature of engineering thermodynamics; but it cannot be otherwise, for
abstraction serves vital functions. Through the mechanism of conceptual properties,
abstraction achieves economy of thought by providing simple expressions for the con-
straints that Nature imposes on phenomena. Moreover, through simplification,
abstraction achieves economy of resources by providing means for identifying and
separating important quantities from unimportant details.

Non-measurable concepts repel engineers—people who like to get their hands on
things. But to use conceptuals effectively, we must appreciate why they have been
invented and understand how they connect to reality. So in presenting abstract quan-
tities, we will not only provide formal definitions, but we will also rationalize their
forms relative to alternatives and offer interpretations that provide physical meaning.

In addition to physical interpretations, we will also try to reduce the level of
abstraction by appealing to molecular theory. It is true that thermodynamics can be
developed in a logical and self-contained way without introducing molecules, and in
fact the subject is often taught in that way. But such a presentation may be a disservice
to today’s students who are familiar and comfortable with molecules. Whenever we
can, we use molecular theory to provide physical interpretations, to simplify explana-
tions, to generalize results, and to stimulate insight into macroscopic phenomena.

0.3.3 Abstraction in Thermodynamic Modeling

The second abstraction occurs in modeling. In science and engineering, progress often
involves isolating the dominant elements from a complex situation—a cutting away
of undergrowth to reveal more clearly both forest and trees. Although abstract models
are not real, without them we would be overwhelmed by the complexities of reality.
Moreover, even when an abstraction—call it an idealization—does not precisely rep-
resent part of a real situation, the idealization might serve as a basis for systematic
learning and later analysis.

One such strategy separates reality into ideal and correction terms. For thermody-
namic properties this separation often takes an additive form

real = ideal + correction (0.3.1)
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This pattern appears in the virial equation of state, in correlations of gas properties
based on residual properties, and in correlations of liquid mixture properties based on
excess properties. Another separation of reality takes a multiplicative form,

real = ideal X correction (0.3.2)

This pattern is used to correlate gas volumes in terms of the compressibility factor, to
correlate gas phase fugacities in terms of fugacity coefficients, and to correlate liquid
mixture fugacities in terms of activity coefficients.

According to a traditional engineering view, much of the abstraction in thermody-
namics can be eliminated if we avoid its scientific foundations and discuss only its
practical applications. Alternatively, according to a traditional scientific view, when
we combine modeling with thermodynamics to enhance its usefulness, we spoil its
beauty and logical consistency. In this text we intend to strike a middle ground
between these conflicting views. We seek to preserve and exploit the subject’s logic,
but we will also combine the scientific formalism with engineering modeling because
we intend to actually apply the science to realistic situations.

0.4 THE ROLE OF THERMODYNAMIC MODELING

In § 0.1 we noted that pure thermodynamics is not generally sufficient to solve engi-
neering problems. Thermodynamics provides numerous relations among such quan-
tities as temperature, pressure, heat capacities, and chemical potentials, but to obtain
numerical values for those quantities, we must rely on experimental data—thermody-
namics itself provides no numbers.

But reliable experiments are expensive and time-consuming to perform, and conse-
quently we rarely have enough data to satisfy engineering needs. So we contrive
models to extend the range of validity of data. At the present time, successful models
usually have some basis in molecular theory. As suggested by Figure 0.2, modern
model building involves an interplay among thermodynamics, molecular theory,
molecular simulation, and experiment: thermodynamics identifies quantities that are
important in a particular application, molecular theory provides mathematical forms
for representing those quantities, while molecular simulation and experiment provide
data for obtaining values of parameters in the mathematical forms.

The resulting models may be used in various applications, including chemical reac-
tion equilibria, which is important to chemical reactor design, and phase equilibria,
which arises in distillation, solvent extraction, and crystallization. But in addition to
such traditional applications, thermodynamic models may also be used to help solve
many other engineering problems, such as those involving surface and interfacial
phenomena, supercritical extraction, hazardous waste removal, polymer and compos-
ite material development, and biological processing.

No single book could provide a complete description of all the topics—fundamen-
tals, experiments, modeling, and applications—implied by Figure 0.2. In this book we
choose to emphasize fundamental thermodynamics (Parts I, II, and III) and calcula-
tions for systems having multiple phases and reactions (Part IV); these topics arise in
many common applications. Since we cannot possibly cover everything, we will con-
centrate on the fundamentals and illustrate their use in enough applications so you
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Molecular Thermo- Molecular
Theory dynamics Experiment Simulation
relate molecular establish get numbers get numbers
quantities to relations among for quantities by via calculations
macroscopic macroscopic measurement on molecular
quantities quantities models
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PoTx and Phase
Energy Equilibria
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hydrocarbons and petroleum, specialty chemicals, aqueous mixtures, polymers,

electrolytes, biological systems, near-critical and supercritical systems, many more

Figure 0.2 By combining molecular theory, thermodynamics, experimental data, and molecular
simulation, thermodynamic modeling simplifies and extends descriptions of physical and
chemical properties. This contributes to the reliable and accurate design, optimization, and
operation of engineering processes and equipment. Note the distinction between molecular
models used in molecular simulation and macroscopic models used in thermodynamics.

can learn how they are applied. As a result, you should be able to take advantage of
thermodynamics in situations that are not covered explicitly here. Truly fundamental
concepts are permanent and universal, it is only the applications that go in and out of
style.
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1

PRIMITIVES

In this chapter we review elementary concepts that are used to describe Nature.
These concepts are so basic that we call them primitives, for everything in later
chapters builds on these ideas. You have probably encountered this material before,
but our presentation may be new to you. The chapter is divided into primitive things
(§ 1.1), primitive quantities (§ 1.2), primitive changes (§ 1.3), and primitive analyses

(§ 1.4).

1.1 PRIMITIVE THINGS

Every thermodynamic analysis focuses on a system—what you're talking about. The
system occupies a definite region in space: it may be composed of one homogeneous
phase or many disparate parts. When we start an analysis, we must properly and
explicitly identify the system; otherwise, our analysis will be vague and perhaps mis-
leading. In some situations there is only one correct identification of the system; in
other situations, several correct choices are possible, but some may simplify an analy-
sis more than others.

A system can be described at either of two levels: a macroscopic description pertains
to a system sufficiently large to be perceived by human senses; a microscopic descrip-
tion pertains to individual molecules and how those molecules interact with one
another. Thermodynamics applies to macroscopic entities; nevertheless, we will occa-
sionally appeal to microscopic descriptions to interpret macroscopic phenomena.
Both levels contain primitive things.

1.1.1 Macroscopic Things

Beyond the system lies the rest of the universe, which we call the surroundings. Actu-
ally, the surroundings include only that part of the universe close enough to affect the
system in some way. For example, in studying how air in a balloon responds to being
moved from a cool room to a warm one, we might choose the air in the balloon to be
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the system and choose the air in the warmer room to be the surroundings. If the uni-
verse beyond the room does not affect the balloon, then objects and events outside the
room can be ignored.

An interaction is a means by which we can cause a change in the system while we
remain in the surroundings; that is, an action in the surroundings will cause a
response in the system only if the proper interaction exists. Interactions are of two
types: thermal and nonthermal. A nonthermal interaction connects some variable x in
the system to a variable y in the surroundings. This means that x and y are not inde-
pendent; instead, they are coupled by a relation of the form

F(x,y) = 0 (1.1.1)

Each nonthermal interaction involves a force that tends to change something about
the system. Of most concern to us will be the nonthermal interaction in which a
mechanical force deforms the system volume. In this case, the system volume is x in
(1.1.1) and the surroundings have volume y. When the system volume increases, the
volume of the surroundings necessarily decreases, and vice versa. One of these vari-
ables, typically the system variable x, is chosen to measure the extent of the interac-
tion; this variable is called the interaction coordinate.

When two or more nonthermal interactions are established, the choice of interac-
tion coordinates must be done carefully, to ensure that the coordinates are mutually
independent. That is, each interaction coordinate must be capable of being manipu-
lated while all others are held fixed. Such coordinates are called generalized coordinates,
the interaction corresponding to a generalized coordinate is said to be conjugate to its
coordinate, and each conjugate interaction is said to be orthogonal to every other inter-
action [1-3]. As suggested by Figure 1.1, many orthogonal interactions are possible;
examples (with their conjugate coordinates) are mechanical interactions (volume),
chemical interactions (composition), gravitational interactions (position relative to a
mass), and electrical interactions (position relative to a charge).

chemical interaction . .
for species A thermal interaction

e

Boundary ——»

\ chemical
interaction
for species B

mechanical interaction .
Surroundings

Figure 1.1 A system may engage in several kinds of orthogonal interactions with its surround-
ings. Examples include mechanical interactions, by which a force acts to change some coordi-
nate of the system; chemical interactions, by which amounts of species change either by
chemical reaction or by diffusion across boundaries; and thermal interactions, by which the sys-
tem responds to a temperature difference across the boundary.
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Table 1.1 Examples of boundaries between systems and surroundings

Boundary Constraints on interactions

Open Any interaction is possible

Closed Impenetrable by matter, but other kinds of
interactions can occur

Semipermeable Penetrable by some chemical species, but not
by others; all other interactions are possible

Insulated Thermal interactions are not possible, but
nonthermal interactions can occur

Rigid Boundary cannot be mechanically deformed

Isolated No interactions can occur

Besides nonthermal interactions, the system and surroundings may be connected
through a thermal interaction. The thermal interaction causes a change in the system
by means of a difference in hotness and coldness, which is measured by a temperature
difference between system and surroundings. The thermal interaction distinguishes
thermodynamics from other branches of science: when the thermal interaction is
unimportant or irrelevant, some other branch of knowledge can be applied. For exam-
ple, in predicting the motions of bodies in the solar system, the interactions are gravi-
tational and classical mechanics describes the motion. For the behavior of electrons in
molecules, the interactions are electromagnetic and quantum mechanics applies.

Boundaries separate a system from its surroundings, and the nature of the boundary
may limit how the system interacts with its surroundings. Therefore the location and
nature of the boundary must be carefully and completely articulated to successfully
analyze a system. Boundaries are usually physical entities, such as walls, but they can
be chosen to be imaginary. Common boundaries are listed in Table 1.1.

1.1.2 Microscopic Things

Molecular theory asserts that all matter is composed of molecules, with molecules
made up of one or more atoms. What evidence do we have for the existence of mole-
cules? That is, why do we believe that matter is ultimately composed of lumps, rather
than being continuous on all scales? (For a review of the nineteenth-century debate on
the discrete vs. continuous universe, see Nye [4].) One piece of evidence is the law of
definite proportions: the elements of the periodic table combine in discrete amounts to
form compounds. Another piece of evidence is obtained by shining X rays on a crys-
talline solid: the resulting diffraction pattern is an array of discrete points, not a con-
tinuous spectrum. More evidence is provided by Brownian motion; see Figure 1.2.
Molecules themselves exhibit certain primitive characteristics: (a) they have size
and shape, (b) they exert forces on one another, and (c) they are in constant motion at
high velocities. Molecules vary in size according to the number and kind of constitu-
ent atoms: an argon atom has a “diameter” of about 3.4(10_10) m; a fully extended
octane chain (CgHyg) is about 10(1071% m long; the double helix of human DNA (a
polymer) is about 20(10719) m thick and, when extended, is about 0.04 m long [5].
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These microscopic sizes imply that huge numbers of molecules make up a macro-
scopic chunk of matter: there are about as many molecules in one living cell as there
are cells in one common domestic cat [6].

The size and shape of a molecule constitute its molecular structure, which is a pri-
mary aspect of molecular identity. But identity may not be conserved: in the absence
of chemical reactions, identity is preserved at the molecular level, but when reactions
do occur, identity is preserved only at the atomic level. Molecular structure results
from forces acting among constituent atoms. These forces are of two types: (a) chemi-
cal forces, which are caused by sharing of electrons and are the primary determinants
of structure, and (b) physical forces, which are mainly electrostatic. Molecular struc-
ture is dynamic, not static, because the atoms in a molecule are continually moving
about stable positions: the structure ascribed to a molecule is really a time-average
over a distribution. In large molecules the structure may be an average over several
different “sub-structures” that are formed when groups of atoms rearrange them-
selves relative to other parts of the molecule. Such rearrangements occur, for example,
as internal rotations in alkanes and folding motions in proteins. Molecular structure
and its distribution can be distorted by changes in temperature and pressure.

Figure 1.2 One piece of evidence for the existence of molecules is Brownian motion: a small
macroscopic particle suspended in a medium will exhibit irregular trajectories caused by the
particle colliding with molecules of the medium. The trajectories shown here are from Perrin
[7], in which a mastic grain of 1.06(10°°) m diameter was suspended in a liquid. The dots repre-
sent positions of the grain observed at intervals of 30 seconds, with the positions projected onto
a horizontal plane (orthogonal to the force of gravity). The straight lines indicate the order of
observations; but otherwise, they have no physical significance. (Units on the axes are arbi-
trary.) Note that this image is incomplete because it is a two-dimensional projection from a
three-dimensional phenomenon.
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Besides forces acting among atoms on one molecule (intramolecular forces), there are
also intermolecular forces acting between molecules. Such forces depend on distances
between molecular centers and, in nonspherical molecules, on the relative orienta-
tions of the molecules. When molecules are widely separated, as in a gas, intermolec-
ular forces are small; see Figure 1.3. If we squeeze the gas, it may condense to form a
liquid; evidently, when molecules are pushed moderately close together they attract
one another. But if we squeeze on the condensate, the liquid resists strongly: when
molecules are close together they repel one another. This behavior is typical.

Even a superficial knowledge of molecular structure and intermolecular forces may
help us explain why some substances behave as they do. For example, at ambient con-
ditions the chain molecule n-decane CyyHy, is a liquid, while the double-ring mole-
cule naphthalene C;yHg is solid. This difference is not caused by the small difference
in molecular masses—these substances have similar boiling points and critical points.
Rather, it is caused by the difference in molecular structure. Differences in structure
cause differences in molecular flexibility and in the ability of molecules to pack. Such
differences lead to different temperatures at which molecular kinetic energies over-
come intermolecular potential energies thereby allowing molecular centers to move
enough to produce phase changes; for example, solids melt and liquids vaporize.
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Figure 1.3 Schematic of the potential energy and force acting between two spherical molecules,
such as those of argon. When two molecules are far apart, they do not interact, so both the force
and the potential energy are zero. When the molecules are close together, their electron clouds
are distorted, causing a strong repulsive force. At intermediate separations, the molecules
attract one another. Here the scales on ordinate and abscissa are dimensionless. On the abscissa,
distances have been divided by o, which is related to the atomic diameter. On the ordinate,
energies were divided by the magnitude of the minimum energy u,,;,,, while dimensionless
forces were computed as Fo/u,,;,.
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According to kinetic theory, molecules in liquids and gases are continually moving.
We see this in Brownian motion, and in some cases, we can sense molecular diffusion:
when a bottle is opened, we can soon decide whether it contained ammonia or per-
fume. Further, molecular motion serves as the mechanism for the thermal interaction.

1.2 PRIMITIVE QUANTITIES

Once we have identified the system, its boundaries, and its interactions with the sur-
roundings, we must describe the condition of the system. This description involves
certain quantities, called properties, whose values depend only on the current condi-
tion. We take properties to be macroscopic concepts; microscopically, there are addi-
tional quantities, such as bond lengths, force constants, and multipole moments, that
describe molecular structure and define intermolecular forces. These microscopic
quantities are not properties, but they contribute to the values taken by properties.

In thermodynamics, we assume properties are continuous and differentiable. These
assumptions cannot be rigorously confirmed because sufficient experiments cannot be
done to verify them; nevertheless, they allow us to invoke the mathematical limit for
transforming discretely distributed data into continuous functions. They seem to fail
only in special cases, such as at critical points. These mathematical assumptions are so
significant that they could be considered fundamental laws.

1.2.1 Generalized Forces

Recall from § 1.1.1 that we impose changes on a system via thermal and nonthermal
interactions. In the case of nonthermal interactions, changes are caused by forces.
Common forces and their conjugate nonthermal interactions are listed in Table 1.2. A
force has the following characteristics:

(a) It causes or can cause a change in the condition of a system; the change results
in a modification of the value of a generalized coordinate.

(b) It can be measured by a balancing procedure; that is, an unknown force is
measurable by finding a calibrated standard that stops the action of the
unknown force.

Table 1.2 Common macroscopic interactions

Interaction Generalized coordinate Conjugate force
Mechanical System volume Pressure
Gravitational Position of a mass Gravitational field
Interfacial Area of boundary Interfacial tension
Chemical Species mole number Chemical potential

Electrical Position of electric charge Electric field
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In classical mechanics forces are said to be conservative if they can be written as the
negative gradient of some potential energy function. An example is the force F,
exerted on an object in a gravitational field of potential energy E,,

dEy  d(mgz)
F, = L T g ™ (1.2.1)

Here m is the mass of the object, g is the gravitational acceleration, and z is the dis-
tance the object’s center lies from the center of the field. The negative sign indicates an
attractive force and we recognize the result as Newton's second law.

We can extend this idea to thermodynamics by defining any force to be conserva-
tive if it is proportional to some thermodynamic potential function differentiated with
respect to a generalized coordinate. Under this definition, the forces cited in Table 1.2
are all conservative. A particular example is the pressure involved in the mechanical
interaction; in Chapter 2 we will find that

p- _(%)Ns (1.2.2)

where S is the entropy. Here the internal energy U serves as the thermodynamic
potential function that connects the generalized coordinate V to its conjugate force P.
One of our goals is to identify thermodynamic potential functions for computation-
ally convenient choices of generalized coordinates and their conjugate forces.

Besides conservative forces, there are other forces that are not conjugate to a gener-
alized coordinate through a derivative of some potential function. All such forces are
said to be dissipative, because they add to the amount of energy needed to change a
state; ultimately, that extra energy is dissipated as heat. Common examples are fric-
tional forces that must be overcome whenever one part of a system moves relative to
other parts. All real macroscopic forces have dissipative components, and one of the
goals of thermodynamics is to account for any energy dissipated as heat.

For the thermal interaction, the force is sometimes identified as the temperature
with its generalized coordinate being the entropy [8]. Such an identification provides
an obvious and appealing symmetry because it makes thermal interactions appear to
be structurally analogous to nonthermal interactions; however, we prefer not to make
such an identification because for all known nonthermal interactions the generalized
coordinate can be measured, whereas entropy cannot. In this book we will consider
only mechanical, gravitational, interfacial, and chemical forces plus the thermal inter-
actions; others will not be used.

1.2.2 Equilibrium and State

The condition of a system is said to be an equilibrium one when all forces are in balance
and the thermal interaction is not acting, either because it is blocked or because tem-
peratures are the same on both sides of the boundary. These restrictions apply not
only to interactions across system boundaries, but also to interactions between system
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parts. At equilibrium, macroscopic properties do not change with time nor with mac-
roscopic position within a uniform portion of the system. Equilibrium conditions dif-
fer from steady state conditions. During steady states, net interactions are constant
with time, while at equilibrium net interactions are not merely constant, but zero.
Moreover, when equilibrium conditions are disturbed by a small interaction, the sys-
tem tends to resist the interaction; that is, a small disturbance from equilibrium causes
only a small bounded change in the system’s condition. This is called Le Chatelier’s
principle.

Equilibrium is an idealized concept because everything in the universe is appar-
ently changing on some time-scale (the scales range from femtoseconds to eons). The
concept is useful when changes occur on time-scales that are unimportant to the
observer. For example, a system may have corroding boundaries or its contents may
be decomposing because of electromagnetic radiation (visible or ultraviolet light, for
example); it may be expanding via chemical explosion or collapsing under glacial
weight. In any situation, we must identify those interactions that occur over the time-
scale of our application. “Equilibrium” is said to exist when those interactions are
brought into balance. If other interactions are long-lived compared to the time-scale of
interest and if, during that time-scale, those interactions have little effect on the sys-
tem’s condition, then those interactions can be ignored.

By stipulating values for a certain number of properties, we establish the condition
of the system: the thermodynamic state. The number of properties needed depends on
such things as the number of parts of the system and the number of chemical species
in each part. This issue will be addressed in Chapter 3. When only a few properties are
sufficient to identify the state, it may be useful to construct a state diagram by plotting
independent properties on mutually orthogonal coordinate axes. The dimensionality
of this diagram equals the number of properties needed to identify the state.

We say a state is well-defined when sufficient property values are specified to locate
a system on its state diagram. If, in a well-defined state, the system is at equilibrium,
then the condition is said to be an equilibrium state. Consequently, all equilibrium
states are well-defined, but well-defined states need not be equilibrium states. In fact,
a well-defined state may not be physically realizable—it may be thermodynamically
unstable or hypothetical or an idealization. For example, many well-defined states of
an ideal gas cannot be realized in a laboratory; nevertheless, thermodynamic analyses
can be performed on such hypothetical systems.

Since by definition properties depend only on the state, properties are called state
functions. State functions have convenient mathematical attributes. For example, in
the calculus they form exact differentials (see Appendix A); this means that if a system
is changed from state 1 to state 2, then the change in any state function F is computed
merely by forming the difference

AF = Fy—F, (1.2.3)

For specified initial (1) and final (2) states, the value of the change AF is always the
same, regardless of how state 2 is produced from state 1. Examples of measurable
state functions include temperature, pressure, volume, heat capacity, and number of
moles. Properties constitute an important set of primitives, for without state func-
tions, there would be no thermodynamics.
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1.2.3 Extensive and Intensive Properties

Thermodynamic properties can be classified in various ways. One classification
divides properties into two kinds: extensive and intensive. Extensive properties are
those whose experimental values must be obtained by a measurement that encom-
passes the entire system, either directly or indirectly. An indirect measurement would
apply to systems of disparate parts; measurements would be performed on all the
parts and the results added to obtain the total property for the system. Examples
include the total volume, the total amount of material, and the total internal energy.

Intensive properties are those whose experimental values can be obtained either by
inserting a probe at discrete points into the system or (equivalently) by extracting a
sample from the system. If the system is composed of disparate parts, values for
intensive properties may differ in different parts. Examples of intensive properties are
the temperature, pressure, density, and internal energy per mole.

Redlich [2] suggests a simple thought-experiment that allows us to distinguish
extensive properties from intensive ones. Let our system be in an equilibrium state,
for which values of properties can be assigned, and imagine replicating the system
(fancifully, run it through a duplicating machine), while keeping the original state
undisturbed. Our new system is now a composite of the original plus the replica.
Extensive properties are those whose values in the composite differ from those in the
original system, while intensive properties are those whose values are the same in both
the composite and the original.

These operational distinctions between extensive and intensive avoid ambiguities
that can occur in other definitions. Some of those definitions merely say that extensive
properties are proportional to the amount of material N in the system, while intensive
properties are independent of N. Other definitions are more specific by identifying
extensive properties to be those that are homogeneous of degree one in N, while
intensive properties are of degree zero (see Appendix A).

But these definitions can lead to ambiguities, especially when we must interpret
certain partial derivatives that often arise in thermodynamics. For example, is the sys-
tem pressure P extensive? Some definitions suggest that P does not change with N,
and for a pure substance it is true that

(giN)TU _0 (1.2.4)

where v = V/N is the molar volume. That is, here P = P(T, v) does not change when
material is added to the system because the container volume V must increase to keep
the molar volume v constant. However, it is also true that

(giN)TV £ 0 (1.2.5)

where the quantity held fixed is the container volume V. In fact, for a pure ideal gas,

oP RT
9 = = 0 1.2.6
(BN)TV %4 * ( )



1.2 PRIMITIVE QUANTITIES 19

because for an ideal gas P = NRT/V. That is, P increases when we increase the amount
of an ideal gas while T and container volume V remain fixed. The lesson here is that
an intensive property (such as P) may or may not respond to a change in N, depend-
ing on which quantities are held fixed when N is changed.

Any extensive property can be made intensive by dividing it by the total amount of
material in the system; however, not all extensive properties are proportional to the
amount of material. For example, the interfacial area between the system and its
boundary satisfies our definition of an extensive property, but this area changes not
only when we change the amount of material but also when we merely change the
shape of the system. Further, although some intensive properties can be made exten-
sive by multiplying by the amount of material, temperature and pressure cannot be
made extensive.

In this book we restrict ourselves to extensive properties that are homogeneous of
degree one in the amount of material. Specifically, for a multicomponent system con-
taining component mole numbers Ny, N, ..., we will use only those extensive prop-
erties F that are related to their intensive analogs f by

F(p1, P9 Nis Ny, ...) = Nf(p1, Pos X1, Xg, -.0) (1.2.7)

Here p; and p, are any two independent intensive properties, the x; = N;/N are mole
fractions, and N = XN;. Therefore, if we fix values for p; and p, while doubling all
mole numbers, then values for all extensive properties F double. However, we do not
expect that (1.2.7) is either necessary or sufficient for identifying extensive properties.

One motivation for distinguishing extensive from intensive is that the intensive
thermodynamic state does not depend on the amount of material. The same intensive
state can be attained in a hot toddy the size of a tea cup or the size of a swimming
pool. This means we can perform a single analysis using intensive variables, but then
apply the results to various systems of different sizes.

1.2.4 Measurables and Conceptuals

Thermodynamic analyses are also helped by another classification of properties: one
that distinguishes measurables from conceptuals. Measurables are properties whose
values can be determined directly from an experiment; these are the properties of ulti-
mate interest because they can be monitored and controlled in an industrial setting.
Examples are temperature, pressure, total volume, mole fraction, surface area, and
electric charge. Conceptuals are properties whose values cannot be obtained directly
from experiment; their values must be obtained by some mathematical procedure
applied to measurables. (In some cases we can contrive special experimental situa-
tions so that a change in a conceptual can be measured.) Conceptuals simplify thermo-
dynamic analyses; for example, conceptuals often simplify those basic equations that
describe Nature’s constraints on a system or process. The common conceptuals are
energy, entropy, the Gibbs energy, chemical potential, fugacity, and activity coefficient.

Conceptuals play an intermediate role in engineering practice; they are a means to
an end. For example, assume we are to diagnose and correct a process (perhaps a dis-
tillation column) that is behaving abnormally (improper product concentration in the
overhead). To document the abnormality, we collect data on certain measurables (say
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temperature, pressure, and composition). We translate these measurements into val-
ues for conceptuals (such as energies and fugacities) and perform an analysis that
reveals the source of the abnormality (perhaps insufficient heat supplied). Then using
relations between conceptuals and measurables, we formulate a strategy for correct-
ing the problem; the strategy is implemented via measurables and interactions.

1.3 PRIMITIVE CHANGES

The engineer’s task is not merely to describe the current thermodynamic state of a
system; an engineer must also anticipate how that state will respond when conditions
in the surroundings change. A related problem is also important; that is, an engineer
may need to decide how to manipulate conditions in the surroundings to produce a
desired change in the system. For example, consider a vapor in equilibrium with an
equimolar mixture of ethanol and water initially at 1 bar. Say we want to increase the
pressure to 10 bar, while preserving the two phases and the equimolar composition in
the liquid. The thermodynamic problem is to identify the new temperature and new
vapor composition, but the engineering problem is to identify the valve settings
needed to achieve the desired final state. Any time a system moves from one equilib-
rium state to another, the change is called a process. Processes include all kinds of
physical changes, which are typically monitored by changes in temperature, pressure,
composition, and phase; moreover, processes can also include chemical changes—
changes in molecular identities—which occur during chemical reactions.

Possible processes are limited by the nature of system boundaries and by condi-
tions in the surroundings. The kinds of processes allowed by particular boundaries
are listed in Table 1.3. Often we cause a particular process to occur by bringing the
system into contact with a reservoir that forces a particular system property to remain
constant. Common reservoirs include the thermal (or heat) reservoir, which maintains
the system at a constant temperature (an isothermal process), and the mechanical res-
ervoir, which imposes its pressure on the system (isobaric process).

We will find it useful to identify certain limiting cases of processes. To facilitate the
discussion, we introduce the following notation. Let A represent the net total of all

Table 1.3 Typical boundaries and reservoirs with their corresponding

processes
Boundary or reservoir Process
Closed Constant mass
Thermally insulated Adjiabatic
Rigid Constant volume (isometric)
Closed and rigid Constant density (isochoric)
Closed, rigid, insulated Constant energy
Heat reservoir Constant temperature (isothermal)

Mechanical reservoir Constant pressure (isobaric)
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driving forces acting on a system, and let 3 be the differential analog of A. In general,
the driving forces can be divided into two types: external forces A,,; that act across sys-
tem boundaries and internal forces A;,; that act within the system but between differ-
ent parts of it. As a result, we can write

A=A+ Ay (1.3.1)

Moreover, any driving force may be composed of both conservative and dissipative
components; we let Frepresent all dissipative components of the driving forces.

We first define the static limit of any process as that produced when all net driving
forces are removed,

. _ . _ (equilibrium
Ahimo(process) = htrrl) 0(process) = ( state ) (1.3.2)
ex
Aintﬁo

This means that in the static limit, we expect any process to degenerate to an equilib-
rium state: a physically realizable point on a state diagram. But note that to achieve
equilibrium, all external and internal driving forces must be zero. In general, an equi-
librium state is not obtained by taking only the external driving forces to zero; for
example, an isolated system need not be at equilibrium, nor need its state even be
well-defined.

In some (troublesome) situations, taking all external driving forces to zero does
result in a well-defined state, but the presence of internal driving forces precludes
equilibrium. These states can often be identified by administering a small disturbance.
For example, by careful addition, we may create a supersaturated solution of sugar in
water. When all net external driving forces are brought to zero, the state is well-
defined: the solution is a single liquid phase at a definite temperature, pressure, and
composition. However, this well-defined state is not at equilibrium; in supersaturated
solutions there exist internal driving forces tending to produce a new phase, although
this tendency is kinetically limited. But if we disturb the solution, perhaps by adding
a small crystal of sugar, those internal driving forces are relieved by rapid formation
of solid sugar.

If, instead of taking all driving forces to zero, we make them differential, then we
say the process is quasi-static,

. _ (quasi-static
Allirls(process) —( process ) (1.3.3)

Differential driving forces produce a differential process; however, we can contrive a
finite process by stringing together a sequence of quasi-static steps. From an equilib-
rium state (a point on a state diagram) we use differential driving forces to take a step,
then we let the system relax back to equilibrium. This new equilibrium condition
locates a new point on a state diagram. Repeating the sequence (differential step +
relaxation to equilibrium) many times, we generate a series of points that represent a
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Figure 1.4 Comparison of changes of state as represented on a state (PV') diagram for a pure,
one-phase substance. During an (a) irreversible process, intermediate states are unknown and
unknowable; during a (b) quasi-static process, the system moves in small discrete steps
between identifiable equilibrium states; during a (c) reversible change, every intermediate state
is a well-defined equilibrium state.

process path on a state diagram. Such a quasi-static process is illustrated schemati-
cally in the middle panel of Figure 1.4.

Even though a quasi-static process is driven differentially, the driving forces may
still contain dissipative components. These components may arise because some
properties have finite differences across boundaries or they may arise from differen-
tial effects accumulated over a finite process. If we could remove all dissipative com-
ponents ¥, so the process would be driven only by conservative forces, then the
change of state would be reversible. This reversible limit can be expressed as

Jim (process) = (rec‘}’fargéile) (1.3.4)

Formally, this limit is sufficient to define a reversible change, but in practice the dissi-
pative components ¥ can be made to vanish only by simultaneously making the total
driving force A vanish. To remind ourselves of this, we rewrite (1.3.4) in the form

?ligo(process) = (reC\fl(;rﬁggle) (1.3.5)

A—0

To the degree that a reversible change is viewed as a process, analogous to a quasi-
static process, the following distinction occurs: if the dissipative forces can be made to
vanish, F— 0, then the driving forces must also vanish, A — 0; however, the converse
is not necessarily true. That is, if A — 0, then we may or may not also have #— 0. In
other words, a reversible change has quasi-static characteristics, but a quasi-static pro-
cess need not be reversible [9]. Since, in the reversible limit, all driving forces are taken
to zero, every state visited during a reversible change is an equilibrium state; hence, a
reversible change can be represented by a continuous line on a state diagram.

Now we address the apparent contradiction between the limit in (1.3.5) and that in
(1.3.2): both have A — 0, but with different results. The resolution is that the static
limit in (1.3.2) can describe a real process, while the reversible limit in (1.3.5) is an ide-
alization. That is, a reversible “process” is not really a process at all [10], it is only a
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continuous sequence of equilibrium states on a state diagram. We emphasize this dis-
tinction by calling the reversible limit a reversible change, not a reversible “process.”

In a reversible change, no energy is used to overcome dissipative forces, so a
reversible path from initial state 1 to final state 2 can also be traversed in the opposite
direction, returning both system and surroundings to their initial conditions. The
equilibrium states visited during the process 2-1 are identical to those visited during
1-2, just in reverse order. Although the reversible change is an unrealizable idealiza-
tion, it is useful because (i) it allows calculations to be done using only system proper-
ties and (ii) it provides bounds on energy requirements for a process.

All real processes are in fact irreversible: they proceed in a finite time and are not a
continuous string of equilibrium states. Typically, an irreversible process involves a
stage during which the state of the system cannot be identified, as in the top part of
Figure 1.5. Irreversible processes are driven by macroscopic property gradients across
system boundaries, so that in practice no real change can be reversed without causing
some change in the surroundings. That is, irreversible processes involve dissipative
forces, such as friction and turbulence, which must be overcome to return the system
to any previous state. The magnitudes of dissipative forces depend on system state
and on the magnitudes of property gradients; these determine the degree of irrevers-
ibility. Strongly irreversible processes are less efficient than weakly irreversible ones.
Often, highly irreversible processes are driven by large gradients, which make the
process proceed quickly: fast processes are usually more irreversible than slow ones.
But process speed may not correlate with gradient size; for example, if a boundary
poses a large resistance, then even a slow process may require a large driving force.

finite interactions
with surroundings

0
Ti Ti +dT Ti +dT’ Tf
Pi — Pi+dP — Pi-i-dP' —»//—» Pf
Ni Ni + dN Ni+dN, Nf
initial state differential final state
interactions with
surroundings

Figure 1.5 Schematic of a quasi-static process compared with a finite irreversible process. The
system initially in a state having properties T}, P;, and N; is to be changed to a final state having
T;, Pf, and Ny. In the finite irreversible process (top) the system passes through intermediate
states that are undefined. During the quasi-static process (bottom) the change occurs in differen-
tial stages; at the end of each stage the system is allowed to relax to an intermediate state that is
well-defined. In both processes, overall changes in state functions, such as AT = Tf —T;and AP =
P - P;, are the same.
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1.4 PRIMITIVE ANALYSES

In later chapters, much of our attention will focus on analyzing how a system
responds to a process. The primitive stages of an analysis lead to a sketch or diagram
that helps us visualize the system and the processes acting on it. We divide such
sketches into two general classes: one for closed systems (§ 1.4.1), the other for open
systems (§ 1.4.2). For closed systems, no further primitive concepts apply, and a ther-
modynamic analysis proceeds as described in Chapter 2. But for open systems, the
sketch can be enhanced by invoking one additional primitive concept: equations that
represent system inventories. These equations are discussed in § 1.4.2.

1.4.1 Closed-System Analyses: Two-Picture Problems

When processes are applied to closed systems, we can usually identify the system
state at two or more different times. The diagrams in Figure 1.4 and schematics in Fig-
ure 1.5 are of this type; in those examples, we know the initial and final states of the
system. Intermediate states may be knowable (reversible) or unknowable (irrevers-
ible); nevertheless, the identities of two states may be sufficient to allow us to analyze
the change. We call these situations “two-picture” problems because the primitive
analysis leads us to sketches representing two (or more) system states.

1.4.2 Open-System Analyses: One-Picture Problems

When streams are flowing through an open system, a primitive analysis leads us to
represent the situation by a single sketch, perhaps like that in Figure 1.6. We call this a
“one-picture” problem. In these situations we can extend the primitive analysis to
include equations that represent inventories on selected quantities. We develop those
equations here.

Boundary open to stuff

|
! stuff stuff

\
= generated consumed i,
o S
stuff in — S stuff out
- — =

stuff accumulated

Figure 1.6 Schematic representation of terms appearing in the stuff equation (1.4.1). The
amount of stuff accumulated in a system may change because of stuff added to the system, stuff
removed from the system, stuff generated in the system, or stuff consumed in the system.
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For the system in Figure 1.6, the boundary allows transfer of some quantity which,
for generality, we call stuff. By identifying all ways by which the amount of stuff may
change, we obtain a general balance equation, which we call the stuff equation [11],

Rate of Rate of Rate of Rate of Rate of
stuffinto | | stuff out N generation | | consumption _ accumulation (1.4.1)
system by of system by of stuff of stuff of stuff
interactions interactions in system in system in system

In general the stuff equation is a differential equation and its accumulation term can
be positive, negative, or zero; that is, the amount of stuff in the system may increase,
decrease, or remain constant with time. In a particular situation several kinds of stuff
may need to be inventoried; examples include molecules, energy, and entropy.

The stuff equation applies to both conserved and non-conserved quantities. Con-
served quantities can be neither created nor destroyed; so, for such quantities the stuff
equation reduces to a general conservation principle

Rate of conserved Rate of conserved Rate of
stuff into _ stuff out _ accumulation of (1.42)
system by of system by conserved stuff
interactions interactions in system

One important conservation principle is provided by molecular theory: atoms are
conserved parcels of matter. (We ignore subatomic processes such as fission or fusion
and consider only changes that do not modify the identities of atoms.) At the macro-
scopic level this conservation principle is the mass or material balance

Rate of Rate of Rate of
material into _ | material out _ accumulation (1.4.3)
system by of system by of material
interactions interactions in system

If, instead of total material, the inventory is to be conducted on chemical species
(moles), then (1.4.3) continues to apply, so long as chemical reactions are not occur-
ring. If reactions occur, then mole numbers may change and (1.4.1) would apply
rather than (1.4.3). So, in the absence of nuclear processes, mass is always conserved,
but moles are generally conserved only in the absence of chemical reactions.

If during a process the rates of accumulation, generation, and consumption are all
zero, then the process is said to be in steady state with respect to transfer of that partic-
ular stuff. In such cases the general differential balance (1.4.1) reduces to a simple
algebraic equation

Steady rate Steady rate
of stuff into | — | of stuff out | = 0 (1.4.4)

system of system
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Figure 1.7 Schematic of a one-picture situation in which an open system exchanges mass with
its surroundings via input and output streams. In addition, the system exchanges energy with
its surroundings via thermal and nonthermal interactions. T, is the temperature and P, is the
pressure on the external side of the boundary at the point where energy transfers occur.

If the process is not a steady state, then it is a transient, and the system either gains
(rate of accumulation > 0) or loses (rate of accumulation < 0) stuff over time. In the
analysis of any real process, the appropriate form (1.4.1)-(1.4.3) must be identified and
integrated. For some processes the integration can readily be done analytically, such
as for steady states (1.4.4), but others may require elaborate numerical treatments.

The one-picture approach generalizes to situations in which mass and energy enter
and leave the system simultaneously, as in Figure 1.7. Mass may enter the system
through any number of input streams and leave through additional output streams.
Each stream may have its own temperature, pressure, composition, and flow rate.
Further, energy may also be transferred to and from the system via thermal and non-
thermal interactions with the surroundings. In such situations, we can write a stuff
equation for each molecular species and a separate, independent stuff equation for
energy, as we shall see in Chapter 2.

1.5 SUMMARY

We have reviewed the primitive things, quantities, changes, and analyses that form
the basis for thermodynamics as it is developed in this book. Whenever possible we
have offered definitions of the primitives, but in every case we moved beyond simple
definitions: we tried to show why each primitive is important, and we tried to clarify
subtleties that often surround certain primitives.

At the macroscopic level, primitive things include the system and the boundary
that separates the system from its surroundings. Macroscopic things also include the
thermal and nonthermal interactions by which we stand in the surroundings and
either measure something in the system or cause a change in the system. Macroscopic
things are composed of microscopic things—molecules, atoms, and the forces that act
among them. Although classical thermodynamics is a purely macroscopic discipline,
we will, when it is economical to do so, use molecular arguments to help explain mac-
roscopically observed behavior. Moreover, molecular theory is now used as a basis for
developing many thermodynamic models; to use those models properly, we need
some appreciation of molecular theory.
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Primitive quantities include generalized forces, the concepts of equilibrium and
state, and ways to classify properties. The ideas surrounding force, equilibrium, and
state are absolutely crucial because they identify those situations which are amenable
to thermodynamic analysis. We will have much more to say about these concepts; for
example, we want to devise quantitative ways for identifying the state of a system
and for deciding whether the system is at equilibrium. Although classifications of
properties are not crucial, the classifications—extensive and intensive or measurable
and conceptual—facilitate our development and study of the subject.

Changes in a system state are caused by interactions, and we focused on the dis-
tinction between reversible changes and irreversible processes. The importance of this
distinction cannot be overemphasized because its implications seem to often be mis-
understood. The implications can contribute to engineering practice; for example, cal-
culations for reversible changes require values only for differences in system
properties, but calculations for irreversible processes require values for quantities of
both system and surroundings. Consequently, calculations for reversible changes are
nearly always easier than those for irreversible processes. We prefer easy calculations.

Although reversible changes are idealizations—real processes are always irrevers-
ible—they can be useful. In some situations the value of a quantity computed for a
reversible change is exactly the same as that for an irreversible process, so we calculate
the quantity using the reversible change. In other situations the values computed for a
reversible change bound the values for the irreversible process, and those bounds may
contribute to an engineering design or to the operation of a production facility. In still
other situations, an efficiency for a real irreversible process may be known relative to
that for a reversible change; then, we compute quantities for the reversible change and
apply the efficiency factor to obtain the value for the real process.

These uses are important to a proper application of thermodynamics in real situa-
tions. But in addition, the distinction between reversible and irreversible lies at the
core of the science of thermodynamics; for example, what happens to the energy that is
wasted in irreversible processes? This is a purely thermodynamic question.

Finally, we discussed the primitive steps in beginning an analysis that will deter-
mine how a system responds to processes. Those primitive steps culminate either in a
two-picture diagram for closed systems or in a one-picture diagram for open systems.
In addition, for open systems we identified forms of a general balance equation that
apply to any kind of stuff that may cross system boundaries. With all these primitive
concepts in place, we can begin the uphill development of thermodynamics.
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PROBLEMS

1.1 For each of the following situations, identify (i) the system, (ii) the boundaries,
(iii) the surroundings, and (iv) the kinds of interactions that can occur. Do not
attempt to solve the problem.

(a) Hot coffee is placed in a vacuum bottle and the top is sealed. Estimate the
temperature of the coffee after 4 hours.

(b) A can of your favorite beverage, initially at room temperature, is placed in a
freezer. How long must the can remain there to cool the liquid to 40°F?

(c) A bottle of soda is capped when the pressure of carbonation is 0.20 MPa.
How long before the pressure has dropped to 0.11 MPa?

(d) Each tire on a car is charged with air to 0.20 MPa. The car is then driven for
300 km at an average speed of 100 km/h. Estimate the tire pressure at the end
of the trip.

(e) If the price of electric power is $0.10 per kWh in Denver, what is the cost of
heating 500 cm? of water from 300 K to boiling on an electric stove in Denver?

(f) At the end of the trip in part (d), a pinhole leak develops in the car’s radiator
and coolant is being lost at the rate of 3 1/hr. Is the leaking coolant vapor or
liquid? Ten minutes later, has the engine temperature increased or decreased?

(g) Tabitha the Untutored put her birthday balloon near a sunny window and,
for the next few days, observed interesting behavior: each afternoon the bal-
loon was closer to the ceiling than it was in the morning, and each day its
maximum height was less than the day before. What was the maximum tem-
perature of the balloon each day, and how many days passed before the bal-
loon failed to rise from the floor?
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For each situation in Problem 1.1, discuss how you would use abstraction (i.e.,
simplifying assumptions) to make the system amenable to analysis. Do not
attempt to abstract the process. Estimate the order of magnitude of the error intro-
duced by each simplification.

For each situation in Problem 1.1, cite the process involved. What abstraction (i.e.,
simplifying assumptions) could you use to make each process amenable to anal-
ysis? Would your abstraction make the estimate for the desired quantity too large
or too small? What additional data would you need to solve each problem?

For each process in Problem 1.1, cite those aspects that are dissipative.

How would you determine whether the thermodynamic state of a system
depended on the shape of its boundary? If you found that it did, what would be
the consequences?

If energy is a conceptual and not measurable, then what is being measured in
kilowatt-hours by that circular device (with the rotating disc) on the exterior of
most American houses?

Using only what you know at this moment, and without referring to any
resource, estimate the diameter of one water molecule. Clearly state any assump-
tions made and estimate the uncertainty in your answer.

According to kinetic theory, the root-mean-square (rms) velocity of an atom in a
monatomic fluid is related to the absolute temperature by v, = GkT/m)'/2
where m is the mass of one atom, k is the Boltzmann constant, k = R/N4 =
1.381(1072%) J/(K molecule), and N 4 is Avogadro’s number. Compute the rms
velocity (in km/hr) for one argon atom at 300 K.

At atmospheric pressure aqueous mixtures of simple alcohols exhibit the follow-
ing kinds of phase behavior. Explain these using molecular forces and structure.

(a) Methanol and water mix in all proportions and do not exhibit an azeotrope.

(b) Ethanol and water mix in all proportions and form an azeotrope when the
mixture is nearly pure ethanol.

(c) Normal propanol mixes with water in all proportions, as does isopropanol,
and both mixtures form azeotropes near the equimolar composition. The n-
propanol azeotrope has a higher concentration of water than does the isopro-
panol azeotrope.

(d) Normal butanol and isobutanol are each only partially miscible in water;
however, at pressures above ambient, each butanol mixes with water in all
proportions and each exhibits an azeotrope.

(e) 2-methyl-2-propanol and trimethylmethanol each mix with water in all pro-
portions and form azeotropes at compositions near pure water. The 2-methyl-
2-propanol azeotrope has a higher concentration of alcohol than does the tri-
methylmethanol azeotrope.
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1.10 Following are the melting (T,,), boiling (T}), and critical (T,) temperatures for
benzene, cyclohexane, decane, and naphthalene. Explain the trends in terms of
molecular structure and forces. Data from [12].

Substance Mol. wt. 7,,°0) T,(°C) T.(°O)
Benzene 78.1 5.5 80.1 288.9
Cyclohexane 84.2 6.5 80.6 280.3
Naphthalene 128.2 78.2 128.0 475.2
Decane 142.3 -29.7 174.1 344.5

1.11 Following are the melting (T,,), boiling (T}), and critical (T,) temperatures of the
normal alkanes from C; to Cq. Explain the trends in terms of molecular structure
and forces. Data from [12].

Substance Mol. wt. T,,(K) T((K) T.(K)
Methane 16. 40.7 111.7 190.6
Ethane 30.1 90.4 184.6 305.3
Propane 44.1 914 231.0 369.8
Butane 58.1 134.8 272.7 425.1
Pentane 72. 143.4 309.2 469.7
Hexane 86.2 177.8 341.9 507.6
Heptane 100.2 182.6 371.6 540.2
Octane 114.2 2164 389.8 568.7
Nonane 128.3 219.7 4240 594.6
Decane 142.3 243.5 447.3 617.7

1.12 Following are the melting (T,,) and boiling (T,) temperatures of selected
hydrides from Group VI of the periodic table. Explain the trends in terms of
molecular structure and forces. Data from [13].

Substance Formula Mol.wt. T,,(°0) Tp(°O)
Hydrogen telluride H,Te 130 -51 —4
Hydrogen selenide H,Se 81 -61 —42
Hydrogen sulfide H,S 34 -82 -61

Hydrogen oxide H,O 18 0 100
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1.13 The ideal-gas equation of state, PV = NRT, applies to certain pure gases and their
mixtures. Consider such a mixture confined in a closed, rigid vessel, and contain-
ing N; moles of each component i. Determine the expression that would allow
you to compute how the pressure would change when a small amount of pure
substance i is added to the mixture at fixed temperature; that is, find the expres-
sion for the following partial derivative,

(5%)
oN; VN,

1.14 Consider a binary gas mixture that obeys the virial equation of state,

2 2
Po =1+ [x7B11(T) + 2x1x,B15(T) + x5 B, (T)]

RT v

Here, v = V/N, each x; is a mole fraction for one component, x; = N;/(Ny + N),
and the B;; are called second virial coefficients; they are intensive properties that
depend only on temperature. Derive the expression for the partial derivative

dN; TVN,

which has a physical interpretation analogous to that given for the partial deriva-
tive in Problem 1.13.

1.15 Use the stuff equation for mass to obtain equations for the following situations.

(a) A mixing device is steadily fed material through streams 1 and 2, and it
steadily discharges material through stream 3. The flow rates N; and N; are
known; write an equation for the feed rate of stream 2.

(b) A mixing device is steadily fed by streams 1 and 2 for a duration t; this device
has no discharge. If the feed rates N; and N, are known, write an equation
for the total moles accumulated.

(c) A mixing device is fed by streams 1 and 2 for a duration t; however, the feed
rates are not steady, but are proportional to time, ¢,

Ny =a;t  and Ny = ayt

If the constants a; and a, are known, write an equation for the change in the
moles accumulated.

(d) A chemical reactor is steadily fed by two streams: one feeds pure reactant A
at rate N, the other feeds pure reactant B at rate Ny . In the reactor, A and B
combine to form product C (i.e,, A + B — C), and C is discharged at a steady
rate. Given the fractional conversion of A, oip = (N aj, = Nagut)/ N i, write an
equation for NC , the rate at which C is discharged.
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THE FIRST AND SECOND LAWS

M uch of thermodynamics concerns the causes and consequences of changing the
state of a system. For example, you may be confronted with a polymerization
process that converts esters to polyesters for the textile industry, or you may need a
process that removes heat from a chemical reactor to control the reaction temperature
and thereby control the rate of reaction. You may need a process that pressurizes a
petroleum feed to a flash distillation unit, or you may need a process that recycles
plastic bottles into garbage bags. In these and a multitude of other such situations, a
system is to be subjected to a process that converts an initial state into some final state.

Changes of state are achieved by processes that force the system and its surround-
ings to exchange material or energy or both. Energy may be exchanged directly as
heat and work; energy is also carried by any material that enters or leaves a system. A
change of state may involve not only changes in measurables, such as T and P, but it
may also involve phase changes and chemical reactions. To design and operate such
processes we must be able to predict and control material and energy transfers.

Thermodynamics helps us determine energy transfers that accompany a change of
state. To compute those energetic effects, we can choose from two basic strategies, as
illustrated in Figure 2.1. In the first strategy we directly compute the heat and work
that accompany a process. But to perform such calculations, we must know the pro-
cess path that the system follows from the initial to the final state. That is, heat and
work are process-dependent quantities. Unfortunately, the path can be properly char-
acterized only for reversible changes. All real processes are irreversible and rarely do
we know enough about the process to be able to directly compute heat and work.

In the second strategy we avoid direct computations of heat and work by reformu-
lating our problem in terms of thermodynamic state functions. State functions depend
on the condition of the system, not on the process; for example, changes in state func-
tions are determined only from the initial and final states of the system (see Figure
2.2). State functions simplify thermodynamic calculations because they allow us to
analyze ill-defined real processes in terms of well-defined changes of state. So long as
the initial and final system states are the same, then we can compute changes in state
functions along any computationally convenient path.
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Problem:

Determine energy needed for
changing the state of a system

Path known

Path unknown

Calculate heat and
work directly along the
known path

Calculate heat and work
indirectly by computing
changes in state functions
along a computationally
convenient process path

Figure 2.1 Thermodynamics provides two basic strategies for computing energy requirements
associated with changes of state in closed systems. When we know the process path then heat
and work effects can be computed directly. But more often the process path is not known, and
then we compute changes in state functions along a convenient path.
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Figure 2.2 A principal value of thermodynamics is that process diagrams, like this one, com-
mute: along any indirect, computationally convenient process-path, the change in any state
function F is the same as its change along the direct irreversible path: AFj, = AF{p + AFp, =

AFlB + AFBC +AFcz.
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In this chapter we develop expressions that relate heat and work to state functions:
those relations constitute the first and second laws of thermodynamics. We begin by
reviewing basic concepts about work (§ 2.1); that discussion leads us to the first law
(§ 2.2) for closed systems. Our development follows the ideas of Redlich [1]. Then we
rationalize the second law (§ 2.3) for closed systems, basing our arguments on those
originally devised by Carathéodory [2-4]. Finally, by straightforward applications of
the stuff equations introduced in § 1.4, we extend the first and second laws to open
systems (§ 2.4).

2.1 WORK

In this section we review those general features of work that lead to the first law of
thermodynamics. We start with fundamental ideas about mechanical work (§ 2.1.1),
then consider the work that causes a change of system volume (§ 2.1.2), and we offer
an example (§ 2.1.3). Finally, we discuss experimental observations about adiabatic
work that serve as the foundation for the first law (§ 2.1.4).

2.1.1 Work to Displace a System

As our system, consider a macroscopic object, say a table. To move the table a distance
x, we must apply a force F and thereby expend an amount of work W. When the force
is exerted in the direction of the motion (F is parallel to x), then the work is given by

W = J.F dx 2.1.1)

When F and x are not parallel, we replace the integrand in (2.1.1) with the component
of F that is parallel to x; this may be found by forming the vector dot product between
the force vector and a unit vector parallel to x. For a differential change in position dx,
we need only a small amount of work W,

OW = Fdx (2.1.2)

Before going further we choose a sign convention for W. In this book we consis-
tently make quantities positive when they are added to the system; therefore, we use

W > 0, when work is done on the system, and

W < 0, when the system does work on its surroundings.

This choice is arbitrary, so when studying thermodynamics you must take care to
identify the convention that applies to the material at hand.

Notions of work can be illustrated by considering mechanical situations in which
we want either to change the position of our system in the earth’s gravitational field
or to change the velocity of our system. For gravitational effects, the force is given by
Newton’s second law
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F =mg (2.1.3)

where m is the system mass and g is the gravitational acceleration. Over most eleva-
tions of interest g is a constant, independent of the system’s distance from the center
of the earth. Therefore, using (2.1.3) in (2.1.1) gives the work required to change the
system height from z; to z,,

z
W = mgj.zzdz = mg(z,-z1) = AE, (2.1.4)
1

where z is measured along a line from the center of the earth to the system’s center of
mass. This work is usually identified as a change in gravitational potential energy
AE, which depends on a variable Az that is external to the system. Our sign conven-
tion implies that when z, > z; we must do work to elevate the system, W > 0, and then
the external potential energy increases.

Now consider the work needed to change a system’s velocity. Our system has mass
m and is initially moving with velocity v. To change the velocity we must exert a force,
which is given by Newton’s second law written in the form

F=m% (2.1.5)

For a change in velocity from v; to v,, we substitute (2.1.5) into (2.1.1),

*2 dv b dv dx
W=m xladx—m tlﬁ Edt (2.1.6)
= [ Cvdv =02 — V) = AF 217
—mvvv—f(vz—v1)= k (2.1.7)
1

This work is usually identified as the change in kinetic energy, AE;, which depends on
a quantity Av? that is external to the system. Our sign convention implies that to
increase a system’s velocity, we must exert a force parallel to that velocity, so W > 0,
and hence the external kinetic energy increases. The external kinetic and potential
energies sum to the total external energy E,,;, so their changes obey

AE,, = AE +AE, (2.1.8)

Substituting an energy change for an amount of work encompasses important con-
cepts that are easily overlooked: First, changes in a particular form of energy (a con-
ceptual) can sometimes be interpreted as a particular kind of work (a measurable).
That is, we establish a relation between an abstract quantity and one that has physical
meaning. Second, these forms of energy are defined only as changes; however, by
defining a particular position or velocity to be zero, we can create (apparently) abso-
lute values for Ep or E;. The difference forms that occur in (2.1.4), (2.1.7), and (2.1.8)



36 THE FIRST AND SECOND LAWS

allow us to introduce arbitrary reference points for conceptuals: in (2.1.4) values of
position can be measured relative to any arbitrary height, while in (2.1.7), velocities
can be measured relative to any convenient frame of motion.

2.1.2 Work Accompanying a Volume Change

In addition to the mechanical forms of work discussed above, there are many other
forms. For example, work is involved in electrical charging that results from a current
flow, in changes of surface area that are opposed by surface tension, and in magneti-
zation caused by a magnetic field. Such forms are all equivalent to mechanical work.
However, in the thermodynamics of fluids, the most common form is the mechanical
work that deforms the system boundary and thereby changes the system volume.

If, during such a deformation, a force acts on a uniform segment of the boundary,
then we can multiply and divide (2.1.2) by the uniform segment area A and write,

SW = —%d(xA) —_pP,_.dV (2.1.9)

ext

Here V is the system volume and P,,; is the surrounding (external) pressure exerted
on the boundary to produce the deformation. The pressure P, is always positive. The
negative sign in (2.1.9) is chosen so that when the system volume decreases (dV < 0),
the work is positive, and when the volume increases (dV > 0), the work is negative.
For a finite deformation from V; to V,,

V)
W= - J.V P, ., dv always true (2.1.10)
1

This equation is always true because it is a definition: it defines the work done when
V changes by a finite amount.

Although (2.1.10) is always true, it is only useful when we know how P,,; and V are
related during the process that deforms our system. Rarely do we have such a rela-
tion, and even if we did, it would apply only to particular situations because P,,; is a
process variable. Generally, we prefer to use the system pressure P rather than the
external pressure P, but P is often undefined during an irreversible process, so
(2.1.10) must be used, perhaps with an estimate for P,,(V). If the system pressure P is
defined, then it can be related to V through an equation of state, but this would help
us compute the work only if we knew how P and P,,; were related. In a process, the
exact relation between P and P, is determined by the behavior of the boundary, but
at least we can make the following general observations.

In § 1.2.1 we noted that any force acting on a system generally decomposes into
conservative and dissipative components. For a pressure that deforms the system vol-
ume, the conservative component equals the system pressure D, so the general relation
between P and P,,; can be written as

=P+ 7P (2.1.11)
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Here P is the pressure needed to overcome dissipative forces. Since dissipative forces
always act to oppose the tendency for change, the sign on P is determined by the pre-
vailing force. For example, to compress the system, we must have P,,; > P, and the dis-
sipative pressure opposes the compression by increasing the pressure that must be
overcome by P,,;,

P,,=P+P for compression (2.1.12)

However, in an expansion, P,; < P, and now the dissipative pressure opposes the
expansion by reducing the pressure that is to overcome P,,;,

=P-P for expansion (2.1.13)

Equations (2.1.12) and (2.1.13) are written for finite irreversible processes. For a
quasi-static process, the dissipative pressure is a differential quantity dP. Moreover,
for a reversible change, dissipative components vanish (P = 0), and P = P,,;. Then
(2.1.9) gives the reversible work,

oW,,, = -Pdv (2.1.14)

re

Likewise, for a finite reversible change (2.1.14) becomes
)
Wyeo == [ PdV (2.1.15)
V1

Equations (2.1.14) and (2.1.15) are idealizations that are never obeyed exactly by real
systems. A reversible change is not a realizable process, it is merely a sequence of
equilibrium states on a state diagram (see § 1.3 and the Example in § 2.1.3).

If two states can be connected by both a reversible change and an irreversible pro-
cess, then we can relate the reversible work to the irreversible work. Substituting the
expression for P, (2.1.11) into the definition of work (2.1.9), we find

SW,,, = 8W,, + dW,,_, (2.1.16)

The quantity 8W,,, is called the lost work; it is the energy needed to overcome dissipa-
tive forces,

W,y = -PdV 2 0 (2.1.17)
The lost work is zero for a reversible change; otherwise, it is always positive. For
example, an irreversible compression has dV < 0, P > 0 by (2.1.12), and hence

dW)ys > 0. Similarly, an irreversible expansion has dV > 0, P <0 by (2.1.13), so again
we have 8W,,; > 0. Rearranging (2.1.16) we find”

6Wirr - 6I/vrev = 6Vvlost 20 (2-1‘18)

*When the other sign convention is chosen for the work, the lost work is defined by §Wjyg = SW,, — 8W,,
so in both sign conventions the lost work is positive or zero.
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Figure 2.3 For reversible changes the °
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cess path on a P-V diagram. Here the
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cesses: in general, work is a process- ?
dependent quantity, not a state function.
Vv
Consequently, we always have
W, = = W (2.1.19)

This means that a reversible change is more efficient than any irreversible process
between the same two states. During a compression the irreversible work done to the
system is larger than W,,, because part of W;,, is wasted in overcoming dissipative
forces that oppose the compression. Likewise, during an expansion the irreversible
work done by the system is less than W,,,, because part of W;,, must overcome dissipa-
tive forces that oppose the expansion. Lost work measures irreversibilities: high irre-
versibilities imply large values for W),,;. But W), is a process variable, so it cannot be
computed solely from system properties; values for W),;; must be either measured or
estimated.

Even if a change of state were reversible, direct computation of the work would
still require us to know how the system pressure changes during the process; that is,
to evaluate the integral in (2.1.15) we must have a quantitative form for the integrand
P(V). The integral represents an area on a state diagram, plotted in terms of pressure
and volume. Obviously the magnitude of that area depends not only on the initial and
final states, P(V7) and P(V,), but also on the process-path that connects them. So, work
does not form exact differentials and its value depends on the process, as well as on
the initial and final states of the system. See Figure 2.3 and the Example in § 2.1.3.

Such process dependence complicates analyses because every time we encounter a
different variation of P with V, we must reanalyze the entire situation to find the work.
Moreover, if the process is irreversible, then either P is undefined during the process
or the variation of P with V is unknown. Either situation prevents us from computing
the work directly and solely in terms of system properties. Life can be simpler when
we can deal with state functions.

2.1.3 Example

How does the work for an irreversible process differ from that for a quasi-static
process and for a reversible change?

Consider a 5-cm ID cylinder fitted with a double-headed piston, as in Figure 2.4. One
end of the cylinder is loaded with 0.01 moles of methane; the other end is charged
with 0.02 moles of air, initially at 1.4 bar. There is friction at the contact points between
the piston heads and cylinder walls. The air chamber is fitted with a pressure gauge
and two vents to the surrounding atmosphere. One vent is a large ID line fitted with a
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Figure 2.4 Schematic diagram of the double-headed piston-cylinder apparatus. To move the
piston, any pressure imbalance between the methane and air chambers must overcome friction
at the surfaces of contact between the piston heads and cylinder walls.

ball valve; the other is a small ID line fitted with a needle valve. The atmospheric pres-
sure is constant at 1 bar. Attached to the piston is a position indicator, by which we can
determine the volumes of both the methane and the air. The methane chamber is
immersed in a heat bath that is maintained at 25°C.

System. We identify the system as the 0.01 moles of methane. When the system is at
equilibrium, its temperature is 25°C. Initially the methane pressure is P; = 1.4 bar, and
we want to decrease that value to P4 = 1.1 bar.

Process 1: Finite stepwise irreversible expansion. From the initial conditions, we want to
expand the methane to 1.1 bar. To create a pressure imbalance across the piston, we
vent the air chamber. In this first example, air is removed by cycling the ball valve
open and shut three times. During each cycle enough air is vented to reduce P by 0.1
bar. The vent line is so large that each drop in P, is nearly instantaneous. Between
each cycle the system is given time to reestablish equilibrium, as indicated by steady
readings on the pressure gauges and the position indicator.

This expansion can be illustrated by a “process” diagram on which we plot the air
pressure measured by the gauge (which is external to the methane system) and the
methane volume, determined from the position of the piston. On such a diagram the
process is approximately a decreasing staircase. The area under the curve on the pro-
cess diagram gives the magnitude of the work done by the expanding methane,

4
V4
W= _'[V1 P dV = _%Pexti(vi_vi_1) (2.1.20)
i=

Since the system volume increases (V, > V7), the work is negative: the expanding
methane does work on its surroundings. Each cycling of the valve produces a step-
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Figure 2.5 Process 1 on a process diagram (left) and on a state diagram (right)

change in P,,;, and the integral in (2.1.20) accumulates the areas of the three shaded
rectangles shown on the left in Figure 2.5.

If we want to show a state diagram for the methane during the expansion, we can
only plot the four points at which the system is at equilibrium. (See the right side of
Figure 2.5.) We cannot draw a process path on the state diagram because during each
expansion cycle the methane is not in any well-defined state: the process is irrevers-
ible. This means that the state diagram cannot be used to evaluate the work. In partic-
ular, a smooth curve connecting the four points does not represent the process path,
and the area under that curve would not be the work done: W # — [ PdV.

Process 2: Quasi-static irreversible expansion. From the initial conditions, we now
expand the methane by just barely opening the needle valve, slowly venting air. The
process path is a continuous curve on the process diagram, but the curve is not
smooth; even though the air is vented continuously, the piston does not move contin-
uously because of friction between the piston and cylinder walls. During any move-
ment the total force acting on the piston is the algebraic sum of contributions from the
methane, the air, and friction,

F F

total = “methane methane

~Fui= Foy = Fyp = (P ~Pu)A- Fy - Fyp (2121)
where A is the cross-sectional area of the piston. The frictional force is composed of
two components: a static part (sf) and a kinetic part (kf). Kinetic friction is zero when
the piston is stationary, while static friction is present whenever there is a tendency to
change the piston’s velocity. To move the piston from rest, sufficient air must be
removed so that the imbalance AP is large enough to overcome static friction, where

AP = Pyiethane = Pair (2.1.22)

To keep the piston moving once it starts, AP must exceed the combined effects of
static and kinetic friction. But as the piston moves, P, e decreases while P,;,
increases, because the moving piston compresses air faster than air is being vented. So
for sufficiently slow venting, the movement of the piston causes AP to decrease and
frictional forces stop the motion. Therefore, the methane volume is first constant while
DP,.; decreases, then the piston moves, increasing both V and P,,;. When P, is large
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Figure 2.6 Process 2 on a process diagram (left) and on a state diagram (right)

enough, the piston stops, and the cycle repeats. We assume that after each cycle, the
piston remains stationary long enough for the methane to reach an equilibrium state
at which its pressure P is defined. The process appears as in Figure 2.6.

Since this process is driven by small pressure imbalances, the process is essentially
quasi-static. On the state diagram (in Figure 2.6) the process path is the sequence of P-
V points read from the pressure gauge and position indicator when the system passes
though the intermediate stationary states. But even though the process is driven by
small pressure differences, dissipative forces are present and the process is irrevers-
ible. The work is still the area under the path on the process diagram. But the work
would not be given by the area under a smooth curve on the state diagram.

Process 3: Reversible change. To convert Process 2 into the reversible change shown in
Figure 2.7, we must remove any friction. We lubricate the piston-cylinder interface;
however, we cannot remove all friction and, consequently, a reversible change cannot
be attained. But by removing as much friction as possible and venting the air slowly,
the discontinuities in the process path in Figure 2.6 could be made smaller and the
corresponding points on the state diagram would be more numerous and closer

Process Diagram (P,,;V) State Diagram (PV)
Pextl I p 1 [
B 25°C isotherm B 25°C isotherm
P exty [~ P 4 [
Vi Vy Vi Vy

Figure 2.7 In the limiting case of a reversible change (Process 3), the process path would appear
the same on both a process diagram (left) and a state diagram (right).
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together. Extrapolating to the limit of no friction, the process paths on the two dia-
grams would coincide: the expansion would follow the 25°C isotherm on both dia-
grams. Then, both would appear as in Figure 2.7 and the reversible work could be
computed from either via

Vy Vy
W =- P _.d4dV = - PdVv 2.1.23
jvl ext J.v1 ( )

2.1.4 Adiabatic Work

Consider a pure gas held in the cylinder of a piston-cylinder apparatus; the cylinder is
thermally insulated from its surroundings. We take the gas to be our system, which is
initially at equilibrium at temperature T4, volume V7, and total number of moles N.
Experiment shows that specifying these three quantities fixes the thermodynamic
state of pure systems. From this initial state we place a single large weight on top of
the piston, exerting a constant pressure (P,,;) on the gas and changing its volume. The
system is closed so N is unchanged and the system is insulated so the process is adia-
batic. At the end of the process the system is allowed to relax to equilibrium at its final
volume V,;; the temperature is then measured and found to have increased, T, > T;.
The work used in the process is given by (2.1.10) as

Vn
W, = -JV P, ,dV =P, (V, -V, (2.1.24)
1

This is a real irreversible process, and so (2.1.10) rather than (2.1.15) applies. We label
this work with subscript A to indicate that a particular adiabatic process was used.

Now we repeat the experiment using a different adiabatic process B. The system is
still closed, and the initial and final states are still [Ty, V4] and [T,,, V], but we use a
sequence of steps with various weights, so the volume changes in a different way;
hence, the degree of irreversibility differs from that in process A. In general, to achieve
the required final state [T,,, V,,] we may have to use some combination of compres-
sions and expansions. The work required for this second process is

n-1

Vi’l
WB =~ jvl Pext dv = _;Pexti(vi+1 - Vz‘) (2.1.25)
1=

Remarkably, we obtain the same value as we found for the first adiabatic process; that
is, experimentally we find

W, = W, (2.1.26)

This means that, although the integrands in (2.1.24) and (2.1.25) differ for the two pro-
cesses, the areas under the two curves are the same.

We now repeat the same total change of state many times using all manner of irre-
versible processes. For example, besides applying a pressure, we might pass a current
through an electrical resistor inserted into the gas (electrical work), or we might rotate
a paddle-wheel mounted in the gas (mechanical work). Some of these experiments
might even approximate reversible changes. In all cases, so long as the system has the
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same contents, remains closed, and has the same thermally insulated boundary, then
we find that the same amount of work is needed to change from the initial state
[T;, V1] to the final state [T,,, V,,]. That is, experiment shows that the adiabatic work
done on or by closed systems is independent of the process.

The work to displace a system or change its velocity can be viewed as a change in
external energy (§ 2.1.1). Similarly, the adiabatic work can be interpreted as a change
in an energy; we call it the internal energy U. Therefore, using W, for the adiabatic
work, we write

AU =W, always true (2.1.27)

The internal energy is an extensive conceptual (nonmeasurable) property of a system.
It is called internal because its value is determined by the system’s state as character-
ized by system properties such as temperature T, pressure P, and number of moles N.
This distinguishes U from the external energy (2.1.8), which is related to measurables
determined by the external position or velocity of the system. Macroscopically, inter-
nal energy can be interpreted as the means by which energy is stored in the mass of a
system. A microscopic interpretation of U is given in § 2.2.3.

Experiments analogous to those just described were first performed by Joule in the
1840s [5]. Those experiments accomplished several things: they fully discredited the
old caloric theory of heat (a theory that considered heat to be transported by move-
ment of a substance called caloric), they demonstrated that a temperature change can
occur without heat transfer, and they provided a numerical conversion factor between
equivalent amounts of heat and work. However for us, Joule’s most important result
leads to (2.1.27).

2.2 THE FIRST LAW

Consider a change of state that can be accomplished both adiabatically and nonadia-
batically; we want to extend our analysis to include the nonadiabatic paths. That is,
we repeat the experiments of § 2.1.4 using the same closed system and the same initial
and final states [T, V1] and [T,,, V,,]; however, we remove the thermal insulation. So
the difference compared to the experiments in § 2.1.4 is that now the system and its
surroundings are in contact via two interactions: the thermal interaction and a force (a
nonthermal interaction) that changes the system volume. As in § 2.1.4, we perform a
series of experiments in which we use many different irreversible processes to cause
the same change of state. The results from these experiments show that, for such non-
adiabatic processes, the work computed from (2.1.10) is always greater than the adia-
batic value. Moreover the various nonadiabatic processes give values of the work that
differ from one another: nonadiabatic work is a path function.

2.2.1 Heat

For the experiments just described, which were performed between the same initial
and final states, the difference between the adiabatic (W,;) and nonadiabatic (W,,;;)
work must be the energy transferred through the thermal interaction. We call this
energy the heat Q, which is an extensive, measurable, process variable,
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Q=Wy - W, (2.2.1)

Although this definition of Q may differ from ones more familiar to you, in fact (2.2.1)
possesses all the attributes normally associated with heat transfer. It is important
because it provides a precise quantitative relation that is generally useful.

Equation (2.2.1) provides a means for determining Q by measuring work: for a
given process between states 1 and 2, Q may be determined by measuring the work
required by the process, and then measuring the work required by any adiabatic pro-
cess between the same two states. If we want a value for reversible heat transfer, the
nonadiabatic process must be reversible; however, the value of work for the adiabatic
process is independent of reversibility. When state 2 cannot be reached adiabatically
from state 1, then instead of measuring the adiabatic work Wj,, we would measure
the adiabatic work for the opposite process (from state 2 to state 1) Wy;. Then (2.1.27)
allows us to compute Wy, by

Waar = = Waan (22.2)

Note that the definition of heat in (2.2.1) does not involve temperature. Tempera-
ture is a property that measures “hotness,” the intensity of heat; it does not measure a
quantity of heat, which is not a property. Temperature and heat are related only in sit-
uations in which a temperature difference is allowed to affect a system: a temperature
difference can cause heat transfer via the thermal interaction. But heat transfer is not
necessary to change a temperature, nor does temperature necessarily change as a
result of a heat transfer.

Just as for work, we must choose a sign convention for heat. We use

Q > 0, if heat is transferred to the system from the surroundings, and

Q < 0, if heatis transferred from the system to the surroundings.
Since the nonadiabatic work is a path function and the rhs of (2.2.1) is a linear combi-
nation of a path function (W,,;;) and a change in a state function (W,;), heat must also

be a path function. It is not a property of the system. Like work, heat is energy that can
be identified only as it crosses the system boundary.

2.2.2 The First Law for Closed Systems

What we have accomplished thus far can now be collected and condensed into the
first law for closed systems. We begin with differential processes and state the first
law in two parts. In the first part, we identify the adiabatic work as the change in a
state function, the internal energy,

Part1, Law 1 du = 8W,, closed systems (2.2.3)
Then we substitute (2.2.3) into the differential form of (2.2.1) to obtain

Part 2, Law 1 du = 6Q +dW closed systems (2.2.4)
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These two equations represent the first law for differential processes acting on closed
systems; they are always true.
When a change of state can be performed both reversibly and irreversibly, the
change in U must be the same for both. Then we can write
du = 8Q+dW = 8Q

+8W,,, = 8Q,,,~ PdV (2.2.5)

rev rev
Even though 8Q # 8Q,,, and W # 8W,,,, the sum (3Q + dW) must have the same value
as the sum (3Q,,, + 8W,,,). This suggests that some results computed for reversible
changes can be applied to real (irreversible) processes.

Because heat and work do not form exact differentials, we have written 8Q and 6W
rather than dQ and dW. That is, 8Q represents a small amount of heat, while dU repre-
sents a differential change in internal energy. Integrating 8Q produces a finite amount
of heat Q, while integrating dU produces a finite change in internal energy AU. Then
for a finite process, we can integrate (2.2.4) to obtain

AU = Q+W (2.2.6)

Equation (2.2.6) makes the remarkable assertion that the algebraic combination of two
path functions always yields a change in a state function: that is, between two speci-
fied state points, the value of AU is always the same, regardless of the values of Q and
W used to cause the change of state.

Heat and work are not properties of either the system or the surroundings; they
exist only during the interaction that carries them across the boundary. However, for
certain special processes Q and W are separately related to changes in state functions.
We have already seen that if no thermal interaction exists, then the adiabatic work
equals AU and it can be calculated assuming a reversible change. Likewise, if only a
thermal interaction connects the system to the surroundings (the process is workfree),
then the heat transferred equals AU,

If the center of our closed system undergoes changes in position or velocity during
a process, then we must allow for possible changes in external energy. In such cases
the first law (2.2.6) becomes

AU+AEk+AEP =Q+W (2.2.8)

The combined internal and external energy of a system is called the total energy E

AE = ALI+AEk+AEp (2.2.9)

However, in many situations AE; and AE,, are either identically zero or they are negli-
gible compared to the magnitude of AU, so (2.2.6) is usually sufficient for our needs.
Note that like E; and E,, we cannot ascribe absolute values to E or U; we can only
obtain changes in their values or values relative to some arbitrarily chosen reference
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state. In the latter case, the value at a reference state is often set to zero (e.g., Uref: 0),
so that tables appear to contain absolute values. This is done for computational conve-
nience because, in practice, we only need values for changes and in such calculations,
the value at the reference state cancels [for example, AU = (Up — Uyp) = (Uy — Uyep) =
(U - Uy)].

In many applications the quantities we can actually measure or manipulate are the
heat and work effects on the external side of the system boundary. We call these Q,.;
and W,,;; they would be measured at a point on the boundary at which the surround-
ings have temperature T,,; and pressure P,,;. These external heat and work effects
would differ from the heat and work effects felt by the system whenever the system
boundary possesses a finite mass that could store energy. In such cases, the second
part of the first law for closed systems generalizes (via the stuff equation (1.4.1) and
Figure 1.7) to

du+dU, = 6Q+ oW +dU, = 8Q,,,+dW,, (2.2.10)

Here dU, represents a change in internal energy of the boundary, and we have
assumed changes in kinetic and potential energies are negligible. The advantage to
(2.2.10) is that it explicitly contains those process variables that might be used to
manipulate the system’s state.

2.2.3 Molecular Interpretations

The internal energy U is a macroscopic property that represents the mechanism by
which energy is stored in a system. Microscopically, energy is stored in the kinetic and
potential energies of individual molecules. These molecular energies differ from the
external kinetic and potential energies, which are associated with the center of mass of
the entire system. In a static system, changes in external energy are zero; nevertheless,
the molecules possess kinetic energy because they are continually moving, and they
contain potential energy because molecules exert forces on one another. Consequently,
the internal energy is viewed as being composed of two molecular contributions,

" = % = (i) + () 2.2.11)

Here u is the intensive internal energy, A\’ is the number of molecules, uy is the molecu-
lar kinetic energy, and u,, is the molecular potential energy; the angle brackets indicate
an average over all molecules. Note that in molecular theory we can write an equation
that represents the absolute internal energy, but in thermodynamics we cannot.

Consider a system of ‘N spherical atoms (such as those of argon), each having a
mass m and some velocity v;. The atomic velocities differ, but we can form an average
velocity (which would be zero for a static system) and an average molecular kinetic
energy (which is always greater than zero),

N
(u,) = 2%[2 v (2.2.12)

i=1
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Recall that one mole of gas has N'= 102 molecules, so it is not practical for us to know
the velocities of the molecules; nevertheless, relations like (2.2.12) can offer insight
into the meanings of thermodynamic quantities. The many different velocities con-
tained in (2.2.12) form a distribution; for a static system at equilibrium, that distribu-
tion is a Gaussian.

The potential portion of the internal energy decomposes into several parts, and
those parts generally make very different contributions to changes in the internal
energy of a system. The most important part is the configurational internal energy (u,.)
which results from forces acting between different molecules. You are familiar with
some of these forces; they include hydrogen bonding and forces arising from interac-
tions between dipole moments. A second part of (up) arises from vibrational and rota-
tional motions of atoms within individual molecules (intramolecular interactions).
These energies may contribute to AU at high densities when neighboring molecules
inhibit the motions of one another. When these effects are important, they are usually
combined into a change in configurational energy A{u,). The third contribution to (u,)
originates from electronic energies associated with chemical bonds; however, in non-
reacting systems at common temperatures, changes in these energies do not contrib-
ute to AU. Therefore, the molecular expression (2.2.11) for a change in internal energy
is usually written as the sum of kinetic and configurational contributions,

Au = Auy) +Adu,) (2.2.13)

When heat and work cross a boundary and enter a system, those energies are
immediately parceled out among the molecules—some goes to change molecular
kinetic energies and the rest goes to change molecular configurational energies. We do
not talk about heat or work “in” a system because to the molecules it is all just so
much energy: the molecules do not know whether that energy came from some heat
effect or from some work mode. Further, in thermodynamics the state is specified by
values for a certain number of properties (such as T, P, and N), but in statistical
mechanics the state is specified by just two things: the molecular energies available to
the system and the distribution of molecular energies among those available. When we
change the state, we may be changing the available energies, or the distribution, or
both. In fact, in statistical mechanics we can show that work modes change the avail-
able energies while heat effects change the distribution.

After a change of state, the system relaxes to equilibrium; this means that the mole-
cules must properly distribute themselves among the available energies that are
allowed to that state. (Note that thermodynamics gives us no information as to how
long such a relaxation process might take.) Each equilibrium state has a unique set of
available energies and a unique distribution among those energies, independent of
the process by which the state is attained. During a reversible change, the system is
driven by differential forces from one equilibrium state to the next, and the molecules
continuously readjust themselves to maintain the correct distribution among available
energies. Consequently, the macroscopic state is always well-defined and the change
can be represented by a continuous curve on a state diagram. But during an irrevers-
ible process, the available energies and the distribution are out of balance and are not
those of any well-defined state: intermediate states are unknown and unknowable.
The state becomes knowable only when an irreversible process is complete and the
molecules have achieved the correct distribution among available energies.
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2.3 THE SECOND LAW

Recall that a principal goal of this chapter is to relate path functions to state functions.
One realization of that goal is provided by the first law (2.2.6): the algebraic sum of
heat and work produces a change in a state function—the internal energy. But can we
be more direct? Is there a way to directly relate work and heat to state functions, with-
out combining the two through the first law? For the reversible work caused by a vol-
ume change, we know that

8W,,, = —PdV (23.1)

re

So, although 8W,,, depends on path, dividing by P gives a change in a state function,

4%
o Pm} =-dV (2.3.2)

That is, the reciprocal pressure is an integrating factor that converts W,,, into an
exact differential. (Integrating factors are discussed in Appendix A.)

However, it is not immediately obvious how to convert 8Q into an exact differen-
tial. We might tentatively guess that a form analogous to (2.3.2) can be found; that is,
perhaps there is another integrating factor A such that

SQT’EU

=d 2.3.
3 S (2.3.3)

Here S stands for a new state function and the identity of the integrating factor A is yet
to be discovered. The objectives of this section are to develop (2.3.3) and identify A.

2.3.1 Entropy and Thermodynamic Temperature

Our presentation of the second law is based on the rigorous development by Car-
athéodory [2]. Carathéodory’s approach has been described in detail by Chan-
drasekhar [3] and Kestin [4], so we need only outline the arguments here.

We begin by introducing the idea of inaccessible states. Consider a closed system
containing a pure single phase; this system has only one interaction with its surround-
ings—the work mode that can change the volume. Therefore, the system can undergo
only adiabatic processes. For a pure substance at constant mass, we need only two
properties to identify the state; we choose volume V and internal energy U. Experi-
mentally, we find that for reversible changes of volume, our system follows a unique
curve on a UV-state diagram, as in Figure 2.8. That curve is called a reversible adiabat;
note that its slope is negative,

(gg)Q:O <0 (2.3.4)
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From state 1 any reversible adiabatic volume change leaves the system somewhere on
the curve shown in Figure 2.8. Further, each reversible adiabat is unique; that is,
reversible adiabats do not intersect. If they did, then it would be possible to find two
different values of the adiabatic work for the same change of state; this would violate
the first law.

If we want to move from state 1 in Figure 2.8 to states not on the reversible adiabat,
then we find experimentally that we must use an irreversible process. However, using
an irreversible adiabatic process does not allow us to reach every other state on the
diagram. From state 1, we can only reach states above the reversible adiabat by means
of some irreversible adiabatic process; those states are said to be accessible. To reach
states below the line (shaded region in Figure 2.8.), we must use some nonadiabatic
process; that is, we must transfer heat. This means that a particular asymmetry exists
among the states that are accessible using adiabatic processes.

The existence of states that are inaccessible to adiabatic processes was shown by
Carathéodory to be necessary and sufficient for the existence of an integrating factor
that converts 8Q,,, into an exact differential [2—4]. From the calculus we know that for
differential equations in two independent variables, an integrating factor always
exists; in fact, an infinite number of integrating factors exist. Experimentally, we find
that for pure one-phase substances, only two independent intensive properties are
needed to identify a thermodynamic state. So for the experimental situation we have
described, we can write 8Q,,, as a function of two variables and choose the integrat-
ing factor. The simplest choice is to identify the integrating factor as the positive abso-
lute thermodynamic temperature A = T. Then (2.3.3) becomes

SQrev

ds =
T

(2.3.5)

The new state function S is named the entropy; it is an extensive, conceptual property
and has dimensions of (energy/absolute temperature). Although we have discussed
the development of (2.3.5) in terms of pure substances, which require only two prop-
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erties to identify the state, Carathéodory proved that this entire development extends
in a straightforward (but tedious) way to systems requiring any number of properties.
Consequently, the definition (2.3.5) is completely general [2-4].

Microscopically, the absolute temperature is proportional to the average kinetic
energies of the molecules. For a substance such as argon, whose molecules are
spheres, the molecular kinetic energy in (2.2.12) is caused by translational motion,

N
3kT m 2
= = (up) = 27\[2_1\}1‘ (2.3.6)

Here k is Boltzmann’s constant, m is the mass of one molecule, ‘N'is the total number
of molecules present, v; is the velocity of molecule i, and the angle brackets represent
an average over molecules, as in (2.2.12). Boltzmann's constant is related to the gas
constant R by k = RN, where N, is Avogadro’s number; therefore, k can be inter-
preted as the molecular gas constant. Note that temperature is simply proportional to
the kinetic contribution to the molecular internal energy in (2.2.12).

Absolute temperature is defined by (2.3.6), but that definition applies only when N’
is large enough for there to be a statistically meaningful distribution of molecular
velocities so that a reliable average can be determined. This means temperature is a
macroscopic property; an individual molecule does not have a temperature, it has
velocity and kinetic energy. A change in temperature measures the work needed to
change the time-average molecular velocities. In adiabatic processes the temperature
changes, even though no heat is transferred, because when work is done on or by a
system, the average molecular velocities must change.

2.3.2 The Second Law for Closed Systems

What we have accomplished so far can now be collected into the second law for
closed systems. Analogous to the first law, we state the second law in two parts. First
is the definition of the entropy, which relates a path function to a new state function,

SQVE'U

Part 1, Law 2 ds = T

closed systems (2.3.5)

The second part prescribes the observed limits on the directions of adiabatic processes
in closed systems (i.e., it identifies those states that are accessible and inaccessible by
adiabatic processes),
dS > 0, for irreversible adiabatic processes
Part 2, Law 2 dS = 0, for reversible adiabatic changes of state (2.3.7)
dS < 0, for changes of state that cannot be realized adiabatically
The second part of the second law (2.3.7) divides a state diagram into three parts (a

line and two areas), as illustrated on the TS diagram in Figure 2.9. We emphasize that
the second law (2.3.7) does not preclude the system entropy S from decreasing; in fact,
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the entropy must decrease whenever heat is removed from a system during a work-
free process. Let us compare the second law (2.3.7) with the first law (2.2.4): the first
law asserts that energy is a conserved quantity, but in contrast, the second law asserts
that entropy may not be conserved; entropy is created during irreversible processes.

The traditional formulation of the second law is given by (2.3.5) and (2.3.7); how-
ever, there is an alternative that may be useful, especially for open systems. Again, the
statement is in two parts: a definition of entropy plus an assertion that entropy is not
conserved because we now explicitly include entropy changes in the boundary. The
definition takes the form of the stuff equation (1.4.1) with Figure 1.7,

8Qexl‘

ext

dS+ds, = +nggn (2.3.8)

Here Q,,; is the amount of heat crossing at the outside boundary between the system
and its surroundings, T,,; is the temperature at the (external) point of heat transfer,
and S, is the entropy of the boundary. If we interpret (2.3.8) as a stuff equation, then
the lhs is the accumulation term, the first term on the rhs is an interaction term, and
dS ., represents entropy generated in the system and its boundaries. The sign conven-
tion for Q,,; is the same as that for any quantity crossing a boundary, see the Example
in § 2.3.3. Note that (2.3.8) contains no work term. The form of the second law in
(2.3.8) is completely general: it applies to open and closed systems undergoing any
kind of change of state. A particular advantage to (2.3.8) is that it explicitly contains
Q,xt, SO it may be used to identify those portions of the boundary at which irrevers-
ibilities occur.

The generation term in (2.3.8) accounts for entropy created by dissipative forces.
The second part of the second law states that this generation term is always either
positive or zero:

i, =0 for .reversib'le changes (23.9)
8 >0 for irreversible processes
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For reversible changes the generation term is zero because dissipative forces are not
present (see § 1.3); consequently, entropy is conserved during a reversible change.
Further, for a reversible change, (2.3.8) and (2.3.9) reduce to the definition in (2.3.5). If
a change of state is adiabatic and reversible, then the first term on the rhs of (2.3.8) is
zero and the remainder, combined with (2.3.9), reduces to the equality in (2.3.7).

In practice, the second law form (2.3.8) is useful only when the generation term can
be estimated, typically through some measured or estimated efficiency factor. Nor-
mally, changes in entropy are computed by integrating over changes in measurables,
as we show in Part II of this book. But in any case, we would combine (2.3.5) and
(2.3.8) to obtain Sg,,,. For the special case of a reversible change (dSg,,, = 0), (2.3.8) pro-
vides a useful relation among property changes and heat flows.

But aside from these practical considerations, (2.3.8) may offer some additional
insight over (2.3.5). For example, (2.3.8) shows that the system entropy can increase,
decrease, or remain constant, depending on the relative sizes of the two terms on the
rhs. More importantly, (2.3.8) helps clarify the nonconservative nature of entropy:
when a process drives a system through unidentifiable states, then the generation
term in (2.3.8) will be positive and entropy is created in the system and its boundary.
Consequently, for a specified value of T,,; and a given change of state, 8Q;,, < 8Q,,,
which means 8W;,, > 8W,,, [this is consistent with the sign of the lost work given in
(2.1.18)]. Therefore for the specified change of state, either the magnitude of the work
actually produced is less than that obtained from the reversible change or the magni-
tude of the work actually required is more than that needed for the reversible change.

To say this another way, entropy is created through the action of dissipative forces
that are wasteful because they convert some energy into heat, reducing the amount
available for performing useful work. Consequently, we try to control process effi-
ciency by minimizing the generation term: to increase efficiency, decrease dS,,,. We
attain maximum efficiency when dS,,, = 0; however, this means all steps would be
reversible, which is impossible. Different kinds of irreversibilities are produced by dif-
ferent property gradients, so it is natural to ask which gradients—temperature, pres-
sure, or composition—create the largest entropies. In many applications, temperature
gradients are most wasteful. Fortunately, temperature gradients are usually the ones
most easily modified and controlled; for example, air and water streams fed to power-
plant boilers and to multiple-effect evaporators are routinely preheated by hot exit
streams to reduce temperature gradients, providing considerable gains in efficiency.

When two states can be connected by both a reversible change and an irreversible
process, we can combine the first and second laws to show that dS,,, can never be
negative (see Problem 2.9). The result is

T
Tdsgen = SWpq + (1 T )SQZ‘W (2.3.10)
ext

We want to deduce the sign of dSg,,,. We know that W, 2 0, so we need to show that
the heat-transfer term in (2.3.10) cannot be negative. There are three cases.

(a) Consider an irreversible process that adds heat to the system. We have W,
> 0 while 8Q;,, > 0 and T,,; > T, so both terms on the rhs of (2.3.10) are posi-
tive. Hence, dSg,,, > 0.
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(b) Now consider an irreversible process that removes heat from the system. We
still have 8W;,g; > 0 while 8Q;,, < 0 and T,,; < T, so both terms on the rhs of
(2.3.10) are again positive. Hence, we still have dS,,,, > 0.

(c) For any reversible change, 8W,,; = 0 and T,,; = T + dT, so both terms on the
rhs are zero; hence, dS cen = 0.

Equation (2.3.10) shows that in closed systems, entropy can be generated in two
general ways. First, as already discussed in § 2.1.2, the lost work 8W,,; is the energy
needed to overcome dissipative forces that act to oppose a mechanical process. Sec-
ond, the heat-transfer term in (2.3.10) contributes when a finite temperature difference
irreversibly drives heat across system boundaries. This second term is zero in two
important special cases: (a) for adiabatic processes, 8Q;,, = 0, and (b) for processes in
which heat is driven by a differential temperature difference, T,,; = T + dT. In both of
these special cases, (2.3.10) reduces to

TdS,,, = 8W,,, (23.11)

This special form, rather than (2.3.10), is more often presented in textbooks. However,
(2.3.10) makes clear that even in a workfree process we expect entropy to be generated
because of irreversible heat transfer. In fact, when the heat transfer term is not zero, it
is usually larger that the lost work term.

2.3.3 Example
How do the sign and magnitude of Q,,; differ from those for Q?

In the first part of the second law (2.3.8), we introduced a heat transfer term Q,,; that
represents the amount of heat entering or leaving a system at the external side of its
boundary. This is in contrast to the heat Q, which is the amount of heat that actually
enters or leaves the system. These two terms, Q,,; and Q, may differ, depending on
the amount of entropy generated in the boundary; however, in many applications, the
two will have similar magnitudes.

Now consider the signs of Q and Q,,;. We have adopted a consistent sign conven-
tion for all quantities that cross a boundary: anything entering a system is positive,
anything leaving a system is negative (§ 2.2.1). So we expect the sign of Q,,; to be the
same as that for Q.

But note that our convention means that the sign depends on the identity of the
system. When dealing with Q,,; this can lead to confusion because to compute a value
for Q,,; we might reverse the identities of system and surroundings. Such a reversal
may enable us to take advantage of quantities in the surroundings whose values we
know, so that a value for Q,,; can be computed.

To keep clear the proper sign for Q,,; it may be helpful to imagine yourself as an
observer located in the “surroundings” to which the current step in your calculation
applies. (This is the natural location for an engineer; that is, we typically stand in the
surroundings and try to measure or manipulate quantities in the system.) If the heat
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Refrigerated Air Refrigerated Air
(surroundings) (system)
'\_/’ ~— —

Drinkable Drinkable
Liquid Liquid
Qext<0 ‘. Qx>0

(system) o (surroundings)
R ~ N

Figure 2.10 Schematics of a beverage cooling in a refrigerator. (left) The system is the drinkable
liquid, and the engineer stands in the surroundings, which is the air inside the refrigerator.
(right) The roles of system and surroundings are reversed compared to those at left. In both
cases, heat is removed from the beverage and the engineer is in the surroundings, but the sign
of Q,,; is determined by our choice for the system.

Q,yt is coming toward you, then it is leaving the system and it is negative; if heat is
moving away from you, then it is entering the system and it is positive.

To have an example, consider cooling a can of beverage in a refrigerator, as in Fig-
ure 2.10. On the left in Figure 2.10 we identify the following equivalences:

system & beverage
boundary & can
surroundings < air in refrigerator

We always place the observer in the surroundings, which on the left in Figure 2.10 is
the refrigerated air (i.e., inside the refrigerator). Then, since the beverage is being
cooled, heat moves toward the observer, so Q,,; < 0.

However, sometimes calculations are simplified if we choose the refrigerated air as
the system, rather than the beverage. Then we would identify these equivalences:

system & air in refrigerator
boundary & can
surroundings <  beverage

The observer is always in the surroundings, which now is the beverage, as on the
right in Figure 2.10. We are still cooling the beverage, but now heat moves away the
observer, s0 Q,y; > 0. Therefore, the sign of Q,,; on the right in Figure 2.10 differs from
that on the left in Figure 2.10, although the processes in both are exactly the same. The
signs of quantities crossing boundaries depend on the identity of the system.
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2.4 THERMODYNAMIC STUFF EQUATIONS

In § 2.2 and 2.3 we presented the first and second laws for closed systems. In practice
these would apply to such situations as those batch processes in which the amount of
material in the system is constant over the period of interest. But many production
facilities are operated with material and energy entering and leaving the system. To
analyze such situations, we must extend the first and second laws to open systems.
The extensions are obtained by straightforward applications of the stuff equations
cited in § 1.4. We begin by clarifying our notation (§ 2.4.1), then we write stuff equa-
tions for material (§ 2.4.2), for energy (§ 2.4.3), and for entropy (§ 2.4.4). These three
stuff equations are always true and must be satisfied by any process, and therefore
they can be used to test whether a proposed process is thermodynamically feasible
(§24.5).

2.4.1 Notation

In the sections that follow we will repeatedly encounter the sum (U + PV), so it will be
convenient to replace that sum with a single symbol H. Hence, we define

H = U+PV (2.4.1)

Later, we will find that H is more than a notational convenience. For example, we
already know that U is a state function, and it is simple to show (Problem 2.26) that
(PV) is also a state function; consequently, H is a state function. It is named the
enthalpy: an extensive, conceptual property of any system. It has dimensions of energy.
For the special case in which a closed system undergoes a reversible isobaric
change of state, we can assign a physical interpretation to dH. In such cases, (2.4.1)

gives
dH = dU+PdV = dU-38W,, = 8Q isobaric (2.4.2)

rev

That is, for reversible isobaric changes of state, the enthalpy change of the system is
the same as the heat transferred to or from the system. Unfortunately, for other pro-
cesses acting on closed systems, no such simple interpretation applies; nevertheless,
we will find the enthalpy to be a useful conceptual for both closed and open systems.

In the remainder of § 2.4 we will be concerned with open systems in which both
mass and energy can enter and leave the system. We adopt the following notation. At
any instant, the system has total number of moles N, total energy E = Ne, and total
entropy S = Ns. Material can enter the system through any number of feed streams o =
1,2, ... and leave through any number of discharge streams p =1, 2, ... . Energy may
enter and leave the system by heat transfer Q, through work modes, and by material
entering and leaving the system.

The possible work modes are of two kinds: (a) those that deform the boundary W,
and (b) those that cross the boundary W;,. The latter includes wires carrying electrical
current and rotating shafts or reciprocating pistons for performing mechanical work;
these modes are called shaft work, hence the subscript sh on W. Common mechanical
devices that produce or consume shaft work include pumps and compressors, which
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Feed streams o Discharge streams f
—_— —_—
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Ty Po, Ng, Tp, Pp, Np
Textr p ext

Qext Wb,ext Wsh,ext

Figure 2.11 Schematic of a system open to mass transfer through streams o and P, heat transfer
through any number of conduits, and work effects via any number of interactions that either
deform the boundary or cross the boundary. The subscripts ext on Q and W indicate that their
values may differ on the inside and outside of the boundary. The thickness of the boundary has
been enlarged for emphasis.

do work on the system, so Wy, > 0, and turbines, which are driven by the system, so
W, < 0. However, we caution that shaft work is a generic term for any work that
crosses a boundary; it is not limited to electrical and mechanical modes and it does
not necessarily involve a physical shaft. But in any case, the effects of shaft work can
always be made equivalent to those of some mechanical device that does have a rotat-
ing shaft. Our notation is summarized in Figure 2.11.

2.4.2 Material Balance

In § 2.4 we restrict our attention to systems in which no chemical reactions occur;
then, over any small time interval dt, the change in the number of moles in the system
is given by the overall material balance (1.4.3), which we write as

dN = Y AN, - Y dN, (2.4.3)
o B

If the feed and discharge streams flow at steady state, then no change occurs in the
amount of material in the system, and (2.4.3) reduces to

D AN, - Y ANy = 0 (2.4.4)
¢ B

We will sometimes write balance equations, such as (2.4.3) and (2.4.4), explicitly in
terms of flow rates of material and energy, with a flow rate indicated by an over-dot.
For example, in terms of molar flow rates, (2.4.3) becomes
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Ndt = Y Nodt -y Nyt (2.4.5)
o B

where N = dN/dt . Since the time interval dt is common to all terms, (2.4.5) simplifies
to

N =Y N, _EB: Np (2.4.6)

2.4.3 First Law for Open Systems (Energy Balance)

At any instant, the system in Figure 2.11 has total energy E = Ne, where e represents
the combined internal and external energies,

e=u+e.+e (2.4.7)

p

Here u is the molar internal energy, ¢, is the molar kinetic energy, and ey is the molar
potential energy of the system. In many cases, changes in the kinetic and potential
energies are zero or are negligible, and then e in (2.4.7) is merely the internal energy u.

Equation (2.4.7) gives the total energy in the system at any instant; now consider
how that value might change. We have already cited heat transfer Q, work effects that
deform the boundary W, and shaft work Wy, (see Figure 2.11). Besides these, the sys-
tem energy may change because of material crossing the boundary. Material flowing
in any stream o (or B) has internal energy U, kinetic energy myv2/2 due to its
motion relative to the system, and potential energy mz, ¢ due to its position relative
to a reference elevation. Therefore, each stream can have

1 2
N,e, = Nou, + imava + Mz, 8 (2.4.8)

In addition, there is work associated with making each chunk of material flow
through the system. Specifically, each volume element of any stream (ot or ) contrib-
utes to the flow by deforming the volume element ahead of it, thereby doing work of
the usual (P dV) form. So for any stream (o or 3)

flow

SW/Y = £P,dV, = £P,0,dN, i—a,B (2.4.9)

The sign of this work term is positive for streams o entering the system and negative
for streams B leaving the system.

Finally, we want to be completely general at this point, so we also consider the pos-
sibility that energy in the boundary may change during a process. We let E, = Nye,,
represent, at any instant, the total energy in the boundary. This energy can be decom-
posed into internal, kinetic, and potential energies, just as in (2.4.7). In many applica-
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tions the boundary energy E, is negligible, not because ¢, is small, but because Ny, is
small.

Collecting all possible ways by which energy can be exchanged between the system
and its surroundings, we obtain the total energy balance (first law) for open systems

d(Ne) +dE;, = Y (e +Poo,)dNy =Y (eg+ Pgug)dNy +8Q +8W, + 8W,;,  (2.4.10)
¢ B

Note that the total differential d(Ne) on the lhs differs from the terms dN, and dN g on

the rhs; that is, (2.4.10) allows for the possibility that the amount of material in the sys-

tem can change during a process. This most general form of the first law is always true.

However in many situations, this general form simplifies because some contributions

are zero or are negligible compared to other contributions. For easy reference, we col-
lect many of its useful forms here.

Closed systems. For closed systems, all dN, = 0, all dNg = 0, while N and N, are con-
stant, so the general form (2.4.10) reduces to

Nde +Nyde, = 8Q + W (2.4.11)

We have written W for W, + W,;,. This closed-system form simplifies further in these
special situations:

(a) Negligible external energy and negligible boundary mass,
dU = 8Q + W (2.4.12)
(b) No thermal interaction (adiabatic process),

du = 3W = sW,,, (2.4.13)

(c) No work modes (workfree process),

dU = 8Q = 8Q (2.4.14)

rev

Open systems. For open systems the kinetic and potential energy terms are usually
negligible compared to the internal energy terms; then, ¢; = u; for the system and for
each stream. Hence, the general form (2.4.10) simplifies to

d(Nu) +dU, = ZhadNa - ZthNB +8Q+8W, +3W,, (2.4.15)
o
B

Note we have introduced the enthalpy (2.4.1) for each stream. For steady-state flows
of mass and energy, d(Ne) =0, dU;, =0, and
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% - N o = constant for all streams o and B (2.4.16)

i—? = Q. = constant for all heat conduits (2.4.17)
SZSh = Wsh = constant for all shaft work modes (2.4.18)
% W, =0 (2.4.19)

At steady state, (2.4.19) applies because we cannot contrive a way to continuously
deform the boundary. Under the restrictions (2.4.16)—(2.4.19), the general energy bal-
ance simplifies to

Zhal\.l(x _ZhBNﬁ + Q + Wsh =0 steady state (2.4.20)
o B

For steady-state workfree processes, (2.4.20) shows that the heat transferred can be
computed from the enthalpy change between inlets and outlets; common applications
include steady-state heat exchangers. For steady-state adiabatic processes, (2.4.20)
shows that the shaft work can be obtained from the enthalpy change; these situations
arise in adiabatic pumps, turbines, and compressors.

2.4.4 The Second Law for Open Systems (Entropy Balance)

In addition to material and energy balances, we may also perform an entropy balance
on the system in Figure 2.11. But since entropy is not conserved (entropy can be gener-
ated in the system and its boundary), we must appeal to a more general form of the
stuff equation, namely (1.4.1). The balance can be written as a generalization of the
first part of the second law (2.3.8), in which terms are now included to account for
entropy carried by the streams:

8
d(Ns) +dS;, = D sqdNy— D spdNp + TQ“’“ +dSg,, (2.4.21)
o

ext
p

This general form of the second law is always true. Note that (2.4.21) contains no work
effects—the system entropy is not affected by work interactions. Further, note that the
second part of the second law (2.3.9) still applies, so the generation term in (2.4.21)
must be positive or zero. In contrast, the system entropy S may increase, decrease, or
remain constant. For closed systems (2.4.21) reduces to (2.3.8).
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If the process is a steady state, then no net change occurs in the amount of entropy
in the system or boundary and (2.4.21) reduces to

ext
+ ngen =0 steady state  (2.4.22)

xt

ZsadNa - ZSBdNB + 6;2
o B e

Further, if the boundary is well-insulated, then we are left with

ZsadNa - ZSBdNB + ngen = 0  steady state, adiabat  (2.4.23)
o
B

Finally, if a reversible change occurs, then ngen = 0, and (2.4.23) for an insulated
steady-flow system reduces to

zsadNa - ZSBdNB =0 steady state, reversible adiabat ~ (2.4.24)
o B

Rate forms of (2.4.22)—(2.4.24), analogous to (2.4.20) can easily be written.

2.4.5 Feasibility Analyses

The material, energy, and entropy balances presented in § 2.4.2-2.4.4 must be obeyed
by any process that does not involve chemical or nuclear reactions. Consequently, they
can be used to help troubleshoot problems that may arise in many process operations;
they may also be used to test the thermodynamic feasibility of a process that may be
proposed during a design project. To be feasible a process must satisfy

(a) conservation of matter (2.4.3),
(b) the first law (2.4.10), and
(c) the second law (2.4.21).

The conservation equations for matter (2.4.3) and energy (2.4.10) provide con-
straints on quantities, and therefore they allow us to test for consistency in the specifi-
cations of a proposed process. For example, with these conservation laws we may be
able to test whether the proposed outputs of matter or energy are consistent with the
proposed inputs. However, the entropy balance (2.4.21) is not a conservation law, and
therefore it does not provide a check on quantities or consistency. Instead, it provides
a constraint on the direction of a proposed process. Some proposed processes can be
performed in both forward and reverse directions, but many others can be performed
in only one way. In the latter cases, the entropy balance can be used to identify the
ranges of operating variables (temperatures, pressure, flow rates) that must be used to
make a proposed process proceed in the desired direction.
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stream 2
stream 1 ) 1 bar, 250°C
—_— Contraption
1 bar stream 3
200°C
3 .
10 m”/min 1 bar, 150°C

Figure 2.12 Schematic of a device intended to convert a feed stream (1) into two discharge
streams, one hotter (2), the other cooler (3) than the feed

Although the general stuff equations (2.4.3), (2.4.10), and (2.4.21) are always true,
they may not always be useful. To be useful, sufficient information must be available
from calculations or measurements. Specifically, to test whether a process satisfies the
first law, we must have either (a) complete specifications of the initial and final states
of the system, or (b) values for both the heat and the work. To test whether the second
law is satisfied, we must know the value for the heat; then we would use (2.4.21) to
compute dS,,, and determine whether the second part of the second law is obeyed.

But when these criteria are met, the thermodynamic stuff equations are powerful
and versatile. In particular, they can be implemented without knowing the detailed
mechanisms by which a proposed process is to accomplish its task. This occurs
because the first and second laws establish equivalences between process variables (Q
and W) and changes in system variables (such as u, h, and s).

2.4.6 Example

How do we use the thermodynamic stuff equations to test the feasibility of a pro-
posed process?

Dr. Emmett Brown has built a mysterious contraption which is housed in an insulated
container; no wires or shafts penetrate the container walls. The device is supplied
with steam at 1 bar, 200°C, and a steady rate of 10 m®/min. The device splits the feed
into two streams, which leave the device at steady flow rates. Doc Brown claims that
stream 2 leaves the device at 1 bar, 250°C while stream 3 leaves at 1 bar, 150°C. A sche-
matic is shown in Figure 2.12. Relevant thermodynamic properties of each stream are
given in Table 2.1. Can this device perform as advertised?

Table 2.1 Properties of steam at 1 bar; from steam tables in [6]

Stream 1 Stream 2 Stream 3
T (°C) 200. 250. 150.
v (m>/kg) 2.172 2.406 1.936
u (kJ/kg) 2658. 2733. 2582.
h (K] /kg) 2875. 2974. 2776.

s (k] /kg K) 7.834 8.032 7.613
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In Table 2.1 the values for u and s are relative to zero values at the reference state,
which was chosen to be 0°C and 1.013 bar. Note from the table that each stream has
values for Pv = h — u that are small relative to those for u and h.

System. We choose the system to be the contraption and the steam within.

Step 1: Apply conservation of mass. Steady-state mass flow through the device must
obey

My = My + My = 4.6 kg/min (2.4.25)

Note that this does not necessarily mean that the flow rates of streams 2 and 3 will be
the same.

Step 2: Apply the first law. For a steady flow situation with negligible changes in
external kinetic and potential energies, the first-law form (2.4.20) applies,

D bt~ X hgig+ Q + W, = 0 (2.4.26)
o B

Here we have used a mass basis rather than a mole basis. Recall that the index o runs
over inlet streams, while index B runs over outlets. In this problem, the device is insu-
lated, no shaft work crosses the boundary, and we presume the boundary itself has
negligible mass. Then (2.4.26) reduces to

hymy — hytiy —hytiy = 0 (2.4.27)
Solving (2.4.25) and (2.4.27) simultaneously with enthalpies from Table 2.1, we find

my =23 kg/min (2.4.28)

ST

m2=m3=

This means that, to satisfy the first law, valves must be adjusted so that streams 2 and
3 leave the device at the same mass flow rate.

Step 3: Apply the second law. For a system flowing at steady state through an insu-
lated enclosure, the second law in the form (2.4.23) applies

N sqritg— Y spiitg + Sgen = 0 (2.4.29)
o
B

where, again, we have used a mass basis. The entropy generation term must always
be positive or zero; therefore, we must have

égen = szn.12 + 537;13 —sln.11 >0 (2.4.30)
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Using the mass flow rates from steps 1 and 2 and the entropy values from Table 2.1,
we find

Seen = —0.053 KJ/(min K) (2.4.31)

So even though the first law might be satisfied, the second law would be violated; the
contraption will not function as planned. Can you contrive modifications of the pro-
cess that would make the desired initial and final states feasible?

Comment. Note that we have made a definitive statement about the feasibility of a
proposed process without knowing details about the process itself. We are able to do
so because the first and second laws effectively replace process-dependent heat and
work effects with process-independent changes in state functions.

2.5 SUMMARY

In this chapter we have developed the first and second laws for closed and open sys-
tems. For closed systems both laws are motivated by the desire to relate the process
variables Q and W to changes in system properties. To emphasize this common
theme, we have stated each law in two parts: part 1 defines a new state function
(either U or S) and part 2 imposes limitations on how the new state function changes
with certain changes of state. For closed systems, the first law asserts that an exact dif-
ferential (dU) is obtained from the algebraic sum of §Q and 8W, while the second law
asserts that an exact differential (dS) is obtained by applying an integrating factor to
8Q,ep- If a quantity forms an exact differential, then it is a system property, and
changes in its value are not affected by the process that connects two states.

For open systems, the first and second laws are particular forms of the general stuff
equation presented in § 1.4. The first law represents an energy balance on a system,
and it asserts that energy is a conserved quantity. Similarly, the second law represents
an entropy balance, but the second law asserts that entropy is not conserved: through
the actions of dissipative forces, entropy is created (but never consumed) during any
irreversible process.

The first and second laws are concise statements of constraints that Nature imposes
on energy transfers involved in any process. As such, they can be used in several ways
to obtain quantitative information about processes that connect a given initial state to
a given final state. A typical engineering question is to determine the amounts of Q
and W needed for a proposed change of state. If the process path is known or can be
reliably estimated, then Q and W may be computed directly, without recourse to the
laws of thermodynamics. But in most situations, the process path is unknown and in
fact unknowable; then, our strategy would be to invoke the first and second laws, so
that we may perform the analysis solely in terms of system-dependent state functions.
Variations on this problem are also common; for example, we may know an initial
state and need to identify the final state that would result when known amounts of Q
and W cross the boundary.

Other applications of the laws include feasibility analyses, such as in the Example
of § 2.4.6. In these situations we usually know the initial and final states that we want;
the question is whether it is thermodynamically possible to start from the given initial
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state and achieve the desired final state. If the answer is no, then we consider whether
adjustments can be made in either the initial or final state to obtain a change that is
thermodynamically possible. If the answer is yes, then we may proceed to a detailed
design of a process itself, including an assessment of economic feasibility.

But although the first and second laws meet our objective of relating Q and W to
system properties, that objective has been obtained at a price. The price is that, while
the first and second laws have identified new system properties, U and S, those new
properties are conceptuals, not measurables. To obtain full benefit from the first and
second laws, we must relate U and S to measurables—preferably measurable operat-
ing variables such as temperature, pressure, and composition. And so, the first and
second laws have certainly achieved the economy of thought characteristic of science,
but before we can apply those laws in an engineering setting, we must establish rela-
tions between conceptuals and measurables.
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PROBLEMS

2.1 Argon is held in a vertical piston-cylinder apparatus. The piston has a diameter
of 5 cm and a weight-pan is attached to the piston shaft.

(a) If atmospheric pressure is 1 bar and the gas is at 1.5 bar, what is the mass of
piston and pan?

(b) How much work is done when a 50-kg mass is placed on the pan and the gas
is compressed isothermally at 300 K?

(c) Approximately how much work is done if 50 kg of sand are placed on the
pan 1 grain at a time while the gas is kept at 300 K?

(d) Repeat parts (b) and (c) for processes that are adiabatic and begin at 300 K.
For such processes, PV is a constant where y = 1.7 for ambient argon.
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For every workfree process between the same initial and final states, show that
the heat effect is the same, regardless of how the heat is transferred.

For any workfree isothermal process on a closed system, show that g = TAs.

In some of Joule’s experiments, work was done on water held in an adiabatic cal-
orimeter. The work was done by a rotating paddle, driven by falling weights.
Assume the volume of the water remains constant during these experiments.

(a) In one experiment a 25-kg mass was allowed to fall 20 times through a height
of 2 m; what was the maximum amount of work done?

(b) If a 25-kg mass were fired into the calorimeter and brought to a standstill,
what should its initial velocity be to accomplish the same effect as in (a)?

(c) If the calorimeter held 1.2 kg of water and if process (a) caused the water tem-
perature to rise from 288 to 290 K, what is the numerical value for the factor
that connects temperature rise to work under these conditions?

In some of his experiments, Joule used electrical work rather than mechanical
work. To achieve the same effect as in Problem 2.4(a), for what duration would
electrical work have to be provided to the calorimeter, if the current originated
from a 100-volt battery and it encountered a 1000-ohm resistance?

Steam flows at 2.5 kg /s through a turbine, generating electricity at the rate of 1
MW. The inlet velocity of the steam is 100 m/s and the outlet velocity is 30 m/s;
the inlet is located 30 m above the outlet. Of the total power generated, estimate
the fraction contributed by the change in kinetic energy of the steam and the frac-
tion contributed by the change in potential energy.

Fill in the missing entries (...) for the signs in the following table. Here AU, Q,
and W apply to a closed system. (Note that “0” indicates a value of zero.)

Sign of AU Sign of W Sign of Q
(a) 0 +
(b) 0 +
(©) +
(d) -
(e)
(f)
(8) -

o + + +
[

One mole of hydrogen initially at 10 bar, 300 K expands reversibly to 1 bar, 500 K.
The expansion is carried out along a straight-line path on a Pv diagram. Deter-
mine Q and W. If necessary, assume Pv = RT, (du/dT), = 5R/2, and (du/dv)r = 0.

Consider a closed system that can change from state 1 to state 2 via both a revers-
ible change and an irreversible process. Assume boundary effects are negligible.
Combine the first law and the expression for lost work (2.1.18) with the second-
law forms (2.3.5) and (2.3.8) to derive (2.3.10).
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2.10 Consider one mole of a gas that obeys Pv = RT and has (du/dT), = 3R/2 with
(du/dv)r = 0. The gas undergoes a reversible change of state, so the first law

89,0, = du—-9ow,,, (P2.10.1)
can be written
ou
8G,0p = 3T dT + Pdv (P2.10.2)
v

(a) Determine whether or not (P2.10.2) is an exact differential.

(b) For the special case of a reversible adiabatic change, (P2.10.2) becomes

Ju
~ (%) g4 p P2.10.
0 (aT)vd + Pdv (P2.10.3)

Find the equation for the process path on a Tv diagram by solving the differ-
ential equation (P2.10.3) using exact differentials. If (P2.10.3) is not exact, you
must find an integrating factor.

(c) If we replace 8g,,, with the definition of the entropy, then (P2.10.2) is

-1

ds = (ai‘) aT + £ 4o (P2.10.4)
T v

aoT T

Determine whether or not this expression is an exact differential.

2.11 (a) Show that there are only two situations in which isentropic processes can
occur on closed systems: either the process is reversible and adiabatic or the
process removes heat from the system. Are all adiabatic processes isentropic?

(b) For open systems, show that it is possible for the system entropy to decrease
or remain unchanged, even when heat enters the system. For the isentropic
case, give the conditions that must apply to the inlet and outlet streams.

2.12 For a certain process, one mole of neon is needed at 300 K, 1 bar; the gas is avail-
able at 500 K, 3 bar. Determine whether or not the required change of state can be
accomplished adiabatically. If necessary, assume neon obeys Pv = RT and has
(0u/9T), = 3R /2 with (du/dv)r = 0.

2.13 Assume carbon monoxide obeys Pv = RT, (du/dT), = 5R/2, and (du/dv)r = 0. On
a Pv diagram, sketch the states accessible from 20°C, 1 bar by (a) reversible adia-
bats and (b) real adiabatic processes. Are any states inaccessible by adiabatic pro-
cesses?

2.14 When a closed system is compressed isothermally, we expect to remove heat
from the system.
(a) Use the first and second laws to confirm this.
(b) Cite a situation in which this would not be true.

(c) When heat must be removed, show that more heat must be removed from a
real compression than from a reversible one.
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The Second Law is sometimes stated as The total energy of the universe is constant,
but the total entropy is continually increasing and must ultimately reach a maximum.

(a) Is all of this always true? If not, what other statements should be made?

(b) Does this statement automatically imply an ultimate “heat death” of the uni-
verse where all heterogeneities of matter and energy are eliminated? Explain.

Rifkin and Howard [7] quote Bertrand Russell as saying Whenever there is a great
deal of energy in one region and very little in a neighboring region, energy tends to travel
from the one region to the other, until equality is established. This whole process may be
described as a tendency towards democracy.

(a) Does energy always flow from a high “concentration” to a low one? If not,
give an example in which it does not.

(b) This might imply that democracy is an equilibrium state and suggests that it
will be the case in which energy is evenly distributed. Do you believe it?
What about the distribution of entropy?

(c) Do you think such concepts can really be applied to human affairs?

(d) On what length scale might Russell’s arguments become inexact?

One analysis of manufacturing efficiency can be made by determining wasted
energy through an analysis of any heat and work effects together with the
changes of state that the materials undergo. To illustrate, consider a process that
changes a closed system'’s internal energy by Au, entropy by As, and volume by
Av; no chemical reactions or changes of composition occur. The only energy input
is heat g from condensing steam at the temperature T,. The energy outputs are
heat and volumetric work to the environment, which is at fixed T, and P,. Then,
inefficiencies in the process can be measured by the extra amount of heat
required due to irreversibilities. Use the first and second laws to show that this
extra heat is given by

T

Glost = 9 — 7—==(Au+P Av—T As) (P2.17.1)
Ts - To

Give an example of an industry where this analysis might be usable. Suggest

how the values of Au, As, and Av might be determined.

A fluid is leaking steadily through a well-insulated valve at the end of a pipe.

(a) Do any always true relations connect conceptual properties of the fluid just
upstream of the valve with those just downstream? If so, write them.

(b) Are there any always true relations that connect measurables just upstream of
the valve with those just downstream? If so, write them.

A “heat engine” is any cyclic device that takes heat from a high-temperature res-
ervoir, does useful work, and expels unused heat to a low-temperature reservoir.
For a specified amount of heat into the engine, show that any real (i.e., irrevers-
ible) heat engine always produces less useful work than would a reversible heat
engine operating between the same two reservoirs.

In analyzing real processes, when is the entropy balance helpful as opposed to
merely being an additional equation with an additional unknown?
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2.21 A “heat pump” is any cyclic device that uses work from the surroundings to
move heat from a low-temperature reservoir to a high-temperature reservoir. For
a specified amount of work, show that any real heat pump always removes less
heat from the low-temperature reservoir than would a reversible heat pump
between the same two reservoirs.

2.22 For the following situations, write appropriate forms of the mass and energy bal-
ances, but include only terms that are nonzero. The problems are not to be solved.

(a) Steam flows steadily through a horizontal, insulated nozzle. Find the diame-
ter of the outlet that gives no change in velocity.

(b) Abattery-driven toy runs until it stops. How much energy was in the battery
at the start?

(c) Two metal blocks initially at different temperatures make contact in an insu-
lated container. How much heat was transferred? From which block?

(d) Steam drives a turbine to steadily generate electricity. There are two steam
outlets. What is the state of the steam in the second outlet?

(e) A 100-watt incandescent light bulb is turned on. What is the temperature of
the glass surface after 10 minutes?

2.23 A closed insulated vessel having rigid walls is divided into two compartments
by a membrane. One compartment is loaded with a fluid at state 1; the other
compartment is evacuated. The membrane ruptures, allowing the fluid to fill the
vessel. Show that the final state of the fluid (2) must have u, = u; but s, > sy,
regardless of the nature of the fluid. (This process is called a Joule expansion.)

2.24 A well-insulated cylinder, having a volume of 1 m3, is initially filled with 1 kmole
of helium at 300 K. A valve on the cylinder is opened, allowing the pressure to
fall rapidly to 1 bar; then the valve is closed. After a period of time, a gauge reads
92.86 K for the temperature of helium in the cylinder. Discuss whether this tem-
perature reading could be correct.

2.25 Arigid insulated vessel is divided into two compartments: one contains a fluid at
T1, P; and the other is under vacuum. The compartments are connected by a pipe
fitted with a pressure relief valve; the relief valve bursts. You, as the engineer
responsible for the unit, examine the system two hours later.

(a) What always true relations exist to connect initial conceptual properties to
the final conceptuals?

(b) What always true relations exist to connect initial measurables to final mea-
surables? Are these enough to determine whether pressure and temperature
gauges on the vessel have been damaged?

2.26 In (2.4.1) we defined the enthalpy H to be the sum (U + PV). We already know
that U is a state function.
(a) Without using H, prove that the product PV is also a state function.

(b) Prove that the sum of any two state functions is also a state function.
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FUNDAMENTAL RELATIONS

In the previous chapter we accomplished our first objective: we showed how the
process variables heat and work are related to changes in system properties, the
internal energy U and the entropy S. Those relations are provided by the first and sec-
ond laws. Now our problem is to learn how to compute changes in U and S. Since U
and S cannot be obtained directly from experiment, we must first relate AU and AS to
measurable state functions, particularly temperature, pressure, volume, composition,
and heat capacities. When we can establish such relations, our strategy in a process
analysis can take the path on the left branch of the diagram shown in Figure 3.1.

Unfortunately, AU and AS are not always simply related to measurables, nor are AU
and AS always directly related to convenient changes of state. So to ease conceptual
and computational difficulties, we create additional state functions. Then we must
establish how AU and AS are related to these new state functions and, in turn, how
changes in the new functions are related to measurables. In these situations, our strat-
egy follows the right branch of the diagram in Figure 3.1. In this chapter we develop
relations that allow us to follow both strategies represented in the figure.

Our long-term goal is to be able to analyze processes, and since processes cause
changes in system states, we begin by discussing the conditions that must be satisfied
to characterize a state (§ 3.1). Then we introduce new conceptual state functions (§ 3.2)
and show how they respond to changes in temperature, pressure, volume, and com-
position (§ 3.3 and § 3.4). Next we summarize those differential relations that enable
us to use measurables to compute changes in conceptuals (§ 3.5); the relevant measur-
ables include heat capacities, volumetric equations of state, and perhaps results from
phase equilibrium experiments.

Lastly, we combine the first and second laws to obtain explicit expressions for the
reversible heat and reversible work (§ 3.6 and § 3.7). Those expressions are general in
that they apply to mixtures of any number of components in open or closed systems;
however, as with everything done in Part I of this book, the expressions apply only to
a single homogeneous phase. The expressions for Q,,, and W,,, given in § 3.7 com-
plete the program outlined in Figure 3.1.
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Problem: Use 1%t and 2" laws
Find valuesof Qand W |[— ™ to relate Q and W
for a process to AU and AS
Relate AU and AS Relate AU and AS to
to measurables new conceptuals

Relate changes in
new conceptuals
to measurables

Obtain values
B for Q and W

Figure 3.1 A thermodynamic analysis of a process usually proceeds by using the first and sec-
ond laws to relate path functions to changes in conceptual properties. Then values of property
changes are computed either (i) directly, by relating them to measurables (left), or (ii) indirectly,
by first relating those changes to still other conceptual properties, and in turn, relating those
conceptuals to measurables (right).

3.1 STATE OF SINGLE HOMOGENEOUS PHASES

One objective of thermodynamics is to analyze how the state (§ 1.2.2) responds when
a system undergoes a process or sequence of processes (§ 1.3). In this section we
address two important questions that naturally arise concerning relations between
process and state: In § 3.1.1 we determine the minimum number of interactions that
are required to change the state and in § 3.1.2 we determine the number of property
values required to identify the final state. We restrict our attention here to multicom-
ponent systems forming a single homogeneous phase; the generalizations to mul-
tiphase and reacting systems are considered in Chapters 9 and 10.

We distinguish between intensive state and extensive state. The intensive state can
be identified solely in terms of intensive properties, and therefore it does not involve
amounts of material. In contrast, identification of an extensive state must include a
value for at least one extensive property, usually either the total amount of material or
the total volume. Often only intensive states are needed to perform process analyses,
while extensive states are usually needed to perform process designs.



3.1 STATE OF SINGLE HOMOGENEOUS PHASES 71
3.1.1 Number of Interactions to Change a State

To change a thermodynamic state, we stand in the surroundings and apply interac-
tions that cross the boundary. So we would like to know the number of orthogonal
interactions that are available for changing the extensive state,

number of available
v o= ( ) (3.1.1)

orthogonal interactions

For a mixture of C components, there are C independent mole numbers, each of which
could be manipulated through its own interaction. In addition, most systems of inter-
est have the thermal interaction plus a work interaction that can change the system’s
volume. Therefore, in most cases the maximum number of orthogonal interactions
will be given by

Vypar = C+2 single, homogeneous phase  (3.1.2)

If other orthogonal work modes are present, such as electrical or surface work, then
the number on the rhs of (3.1.2) would increase accordingly.

The value given by (3.1.2) represents the maximum number of orthogonal interac-
tions. However, the actual number will be less when external constraints are imposed.
An external constraint blocks or controls an interaction so that it is not available for
manipulating the system. For example, we might insulate the system to block the
thermal interaction. Let S,,; count the number of external constraints imposed on
interactions. Then, to manipulate the state, we would have

V=V =S, =C+2-5,,  single, homogeneous phase  (3.1.3)

max

A special case of (3.1.3) occurs when we block all interactions that would change
the amounts of components in a closed system. Then S,,; = C, and (3.1.3) reduces to

V=2 single, homogeneous phase and C known amounts (3.1.4)

So we have only two interactions available to manipulate the state. This result is
Duhem’s theorem applied to a single homogeneous phase. The extension of (3.1.4) to
multiphase systems is developed in Chapter 9.

To change an intensive state, we have two possibilities. (a) We might fix the
amounts of all components, so (3.1.4) applies. Then we can change the intensive state
using the thermal interaction or the PV work mode or both. (b) We might want to
change the composition. But we cannot directly manipulate a mole fraction, we can
only change a composition by changing amounts of components, so (3.1.3) applies.
Therefore (3.1.3) generally gives the number of available interactions for changing
both extensive and intensive states. Note that it is possible to change the extensive
state without changing the intensive state.
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3.1.2 Number of Properties to Identify an Equilibrium State

After a change is finished, the system relaxes to an equilibrium state; that state is iden-
tified by giving values for properties, so we need to know how many property values
are required. Experiment shows that a modest number of properties are sufficient to
identify the state; that is, only a few properties are independent. To test for a complete
set of independent properties, we specify values for F,, properties {p;,, i=1,2, ...,
F,y ). If the value of each property p; can be freely manipulated, while the value of any
other property not in the set cannot be freely manipulated, then the F,, properties {p;}
form a complete set of independent properties. This implies that any property F is
related to the properties p; through some function v,

F=vypy.pypp ) (3.1.5)

A relation such as (3.1.5) is called an equation of state. The obvious question now is,
What must be the value of F,,?

Our initial guess is likely to be that F,, = V, which would mean that the number of
properties needed to identify the extensive state is the same as the number of interac-
tions available for manipulating the extensive state. But, in fact, F,, may differ from V
because of constraints. There are competing effects from two kinds of constraints.

(a) External constraints were introduced in § 3.1.1. But although external con-
straints reduce the number of available interactions during a state change, once equi-
librium is established, external constraints do not affect the number of properties
needed to identify the final state. It is true that an external constraint may couple two
otherwise independent properties while a process is being carried out, but that cou-
pling does not apply to the equilibrium state. For example, consider a pure fluid in an
isolated system; hence, S,,; = 3 and (3.1.3) gives V = 0. That is, no interactions are
available to manipulate an isolated system. Nevertheless, F,, # 0; that is, an essen-
tially infinite number of states can be isolated, so we still need some number of prop-
erties to identify the particular equilibrium state confined to an isolated system.

(b) Internal constraints are those imposed by Nature through such mechanisms as
multiphase and reaction equilibria. Internal constraints couple otherwise independent
properties, thereby reducing the total number needed to identify equilibrium states.
Let S represent the number of internal constraints, then the number of independent
properties F,, needed to identify the extensive state is given by

F = -S (3.1.6)

ex max
Using (3.1.2) for the usual situations of interest, we have

F

ex

C+2-S§ single, homogeneous phase  (3.1.7)

where at least one of the F,, properties must be extensive. The only internal con-
straints available to homogeneous one-phase fluids are those that occur at vapor-
liquid critical points. Vapor-liquid critical points are one-phase situations having S=2.
Then a pure fluid would have F,, = 1: we need only the amount of material to identify
the extensive state of a pure fluid at its critical point.
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To identify intensive states, we need (C — 1) independent mole fractions, rather than
C independent mole numbers. So the number of independent properties needed to
identify an intensive state is
F=7F, -1 (3.1.8)
Hence,

F=C+1-S single, homogeneous phase (3.1.9)

where all F properties must be intensive. The quantity F is often called the number of
degrees of freedom. The Gibbs phase rule extends (3.1.9) to multiphase systems.

3.1.3 Proper Counting

We must take care to avoid misusing or misinterpreting the values given by V and F,,.
Here are three common pitfalls to avoid.

(a) Do not confuse V with F,,. Vis the number of orthogonal interactions needed to
manipulate a system, while F,, is the number of independent properties needed to
identify an extensive state after a process is completed and equilibrium is established.
External constraints reduce the number of interactions available for manipulation,
while internal constraints reduce the number of properties required for identification.
The numbers F,, and F play crucial roles in testing whether thermodynamic prob-
lems are well-posed, that is, whether the number of knowns is sufficient to allow us to
compute values for unknowns.

(b) A second pitfall is to assume that when you have established values for F inde-
pendent variables, then you have uniguely defined the intensive state. This may not be
so: an equation of state may not be monotone in its independent variables. For exam-
ple, some properties of some pure fluids pass through extrema, as in Figure 3.2. Such
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Figure 3.2 Isothermal compressibility K7 (§ 3.3.3) of pure liquid water at 1 atm. For pure liquid
water, F = 2. Nevertheless, if we were to specify that P = 1 atm and that water had an isother-
mal compressibility Ky = 46(107%) /bar, we still could not uniquely identify the intensive state
because Kt for pure liquid water is not monotone in temperature. Data taken from [1].
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extrema are common in fluid mixtures. For example, many mixtures in vapor-liquid
equilibrium exhibit azeotropes: maxima or minima in isothermal plots of pressure vs.
mole fraction and in isobaric plots of temperature vs. mole fraction.

(c) A third pitfall can occur when exercising the option of replacement. Note that F
tells us only the number of properties needed as arguments in an equation of state; so
long as those arguments are independent and intensive, we are free to choose their
identities. But whether a particular property is legitimate depends on the identities of
the other properties to be used. For example, assume we have an equation of state in
the form P = f(T, v); then we might replace the molar volume v with the density p and
use the equation in the form P = (T, p ). However, we cannot keep v and replace tem-
perature T with density p; that is, P # f”(p , v) because a one-to-one correspondence
exists between p and v (specifically, p = 1/v). So, when you replace one argument with
another, you should confirm that the new arguments are mutually independent.

3.2 FUNDAMENTAL EQUATIONS

Often we can simplify an analysis by combining the first and second laws to eliminate
heat and work in favor of changes in state functions. Such replacements yield the fun-
damental equations of thermodynamics. These equations allow us to determine the
effects of state changes without requiring us to evaluate heat and work. In what fol-
lows, we first present the forms for closed systems (§ 3.2.1) and then give those for
open systems (§ 3.2.2).

3.2.1 Closed Systems

Consider a closed homogeneous system that has negligible boundary mass and that
has only two interactions with its surroundings: the thermal interaction and one
mechanical work mode that can alter the system volume. Through these interactions
the system is subjected to some differential process that changes the state. Since U is a
state function, dU is unaffected by the reversibility of the process; so,

du = du,,, = du, (32.1)

irr
Substituting the first law (2.2.4), we have

du = 8Q,,, + 8W,,, = 8Q,,, + SW,, (32.2)

rev rev r

For the reversible change we write 8Q,,, = TdS and 8W,,, = —PdV. So making these
substitutions leaves

du = TdS-PdV

8Q,;,, +oW, . (3.2.3)
or simply

au

TdS—-PdV (3.2.4)
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which is the fundamental equation for closed systems. We emphasize that (3.2.4) applies
to any process regardless of reversibility. However, for irreversible processes (T dS) is
not the heat transferred nor is (-PdV) the work done; in fact, as we discussed in
§2.3.2, 8Q;,, < (T'dS) and 8W;,, > (-PdV). This means that, in irreversible processes,
heat and work are distributed between (T dS) and (-P dV) in some unknown way; that
distribution depends on the degree of irreversibility.

According to (3.1.9), we need two independent intensive properties from which to
construct an equation of state for a pure single phase. The fundamental equation
(3.2.4) implies that if we want to use the internal energy as the dependent variable,
then we should use S and V as independent variables,”

U= uces,V) (3.2.5)

That is, S and V are the “natural” or “canonical” variables when we choose an equa-
tion of state to be explicit in U. Of course, we could express U in any pair of indepen-
dent intensive quantities; for example, we could use U(T, P) or U(S, P) or U(T, V), etc.
But U(S, V) is the natural choice because if we knew the function U(S, V) for our sys-
tem, that knowledge would be sufficient to determine values for the remaining prop-
erties in the fundamental equation. To do so, we would merely need to evaluate
derivatives,

ou ou
== d -P=|—2= 3.2.6
(85 )VN an (BV)SN ( )

However, if we had some other functional representation for U, we would not have
sufficient information to compute the remaining properties in (3.2.4). For example, say
we had the function U(S, P). Then to obtain the volume V, instead of differentiating,
we would have to integrate the second differential equation appearing in (3.2.6), and
to evaluate that integral, we would need an integration constant; that is, we would
need a value for U at some volume V. Consequently, U(S, P) is not a complete descrip-
tion of our system and this is why we say that U(S, V) is “fundamental.”

But for engineering use, S and V are not convenient independent variables; S, for
example, is not measurable at all and V may not be easy to control in a laboratory or
industrial situation. We would prefer to use easily measured and controlled proper-
ties as independent variables; in particular, we would like to use T and P. But if we
merely replace S and V in (3.2.5) with T and P, so we have U(T, P), then we will have
lost information and made subsequent computations of AU more complicated. Hence,
if we want to replace S and V as independent variables but preserve the fundamental
nature of the equation of state, then we must also change the dependent variable U.
This can be done via Legendre transforms.

Legendre transformation is a mathematical technique for exchanging one indepen-
dent variable for another in a function; see Appendix A. One consequence of such
transformations is that, not only do we obtain a new independent variable, but we
also obtain a new function. Legendre transforms have the structure

* For closed systems, relations among thermodynamics properties can be developed using extensive prop-
erties (such as U and V) or intensive properties (such as u and v). We usually use extensive properties.
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new _ old old new
(function) - (function) - (Variable)(variable) (3.2.7)

where

( new ) _ d(old function)
variable d(old variable)

(3.2.8)

Because of (3.2.8), one independent variable cannot be replaced by any arbitrarily cho-
sen variable. For transformations of the fundamental equation, this means that the
product of the old and new variables must have dimensions of energy.

In the fundamental equation (3.2.4) let us choose to replace V with its conjugate
variable, the pressure P. Then the Legendre transform is

H=U-(-PV)=U+PV (3.2.9)
The new function H defined by this transform is the enthalpy, previously introduced in
§ 2.4.1. Tt is an extensive, conceptual state function and has dimensions of energy.
Forming the total differential of (3.2.9) and substituting (3.2.4) for dU, we obtain
dH = TdS+ VdP (3.2.10)
So, S and P are the canonical variables for H, and (3.2.10) is a form of the fundamental
equation in which S and P are independent.

We obtain another form of the fundamental equation if we replace S with T in the
original form (3.2.4). Therefore we introduce the Legendre transform

A=U-TS (3.2.11)

which defines another new conceptual state function, the Helmholtz energy A. Forming
the total differential of (3.2.11) and using (3.2.4) to eliminate dU we find

dA = —-SdT -PdV (3.2.12)

A fourth form of the fundamental equation can be obtained by applying a double
Legendre transform to U,

G=U-(-PV)-TS = H-TS (3.2.13)

which defines still another new conceptual state function, the Gibbs energy G. Forming
the total differential of (3.2.13) and substituting (3.2.10) for dH leaves

dG = —-SdT +VdP (3.2.14)

The Helmholtz and Gibbs energies are both extensive, conceptual state functions hav-
ing dimensions of energy. Unfortunately, only in special cases do the changes AA and
AG have physical interpretations.
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For closed systems, (3.2.4), (3.2.10), (3.2.12), and (3.2.14) are the four forms of the
fundamental equation. For easy reference, we collect them together here:

du = TdS-PdV (3.2.4)
dH = TdS+VdP (3.2.10)
dA = —SdT - PdV (3.2.12)
dG = - SdT + VdP (3.2.14)

Each of these is always true; they are four equivalent, though different, ways of con-
veying the same information. No one is any more basic than another. You must decide
which is most appropriate for the problem at hand. The choice depends on which set
of independent variables (S, V), (S, P), (T, V), or (T, P) best simplifies your problem.
For example, in analyzing multiphase systems, the Gibbs energy (3.2.14) is often used
because temperature and pressure are usually the variables most easily measured or
controlled. But in developing models for PvT equations of state, the Helmholtz energy
(3.2.12) is often used because we prefer to write those equations in the form P = P(T,
v). This preference usually simplifies the development, especially in models for mul-
tiphase systems wherein different values of the molar volume v can give the same
pressure P. Note the distinction between analyzing experimental data (T and P are
convenient) and developing theoretical models (T and v are convenient).

The new properties H, A, and G are conceptuals, as are S and U. Unfortunately,
these new conceptuals are not amenable to physical interpretation, except in special
situations. One special case is an open-system, such as in § 2.4.3, where we found that
the enthalpy accounts for energy (flow work plus internal energy) entering and leav-
ing the system via the mass in flowing streams. Another special case is the reversible
isobaric change of state on closed systems, for then (3.2.10) reduces to dH = 8Q,,,, as
we showed in (2.4.2). Similarly, for a reversible isothermal change, (3.2.12) reduces to

dA = -PdV = oW, fixed T, closed system  (3.2.15)

Since a reversible change provides the maximum (minimum) amount of work for a
given expansion (compression), the change in Helmholtz energy provides a bound on
the work associated with an isothermal process.

3.2.2 Open Systems

We now extend the fundamental equation to systems that can exchange mass with
their surroundings. Through such systems may pass any number of components {1, 2,
3, ... }, for which we write the complete set of mole numbers as {N, Ny, N3, ... }. We
want to construct an extensive equation of state that provides the internal energy in
terms of its canonical variables. But for an open system, the extensive internal energy
U depends not only on S and V but also on the numbers of moles of each component
present, so we write
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U = U(S,V,Ny, Ny, ...) (3.2.16)

Since U is a state function, its total differential is

U - (%I)VNder(au) v + z(aNJ Nl. (3.2.17)

Here N = X N;is the total number of moles present and the notation N;,; means that in
taking the derivative, all mole numbers are held fixed except that of component i.
Using (3.2.6) for the coefficients in (3.2.17) we find

dU = TdS - PdV+2[ ] le. (3.2.18)
i 1 SVN

Equation (3.2.18) is the first form of the fundamental equation for open systems. In
the case of a reversible change, each term in (3.2.18) has a simple physical interpreta-
tion: (T'dS) is the heat crossing system boundaries; (-P dV) is the work that alters the
system volume; and (dU/dN;)dN; is related to the work that causes component i to
diffuse across system boundaries. For irreversible processes no such simple interpre-
tations apply; nevertheless, since the lhs is an exact differential, (3.2.18) is valid
regardless of whether a change of state is reversible. In a similar fashion we can
extend each of the other forms of the fundamental equation to open systems. The
results are

oN.

1

dH = TdS+ VdP + dN, (3.2.19)
Z[aNl)SPN]-#- l
dA = - SdT - PdV+2[ J dN, (3.2.20)
N Jrvn,,,
dG = — SdT + VdP + 2[36] dN, (32.21)
TPN

It is remarkable that in these four forms of the fundamental equation, the partial
derivatives wrt N; are numerically equal; that is,

(3”} _ (aH] - (aA} _ [ac) (3.2.22)
INiJsvn,,, \ONiJsen, . NiJrvw, . \NiJren,

It is therefore convenient to give these four derivatives a common symbol G; and a
special name—the chemical potential. We use the symbol G; for reasons that will
become obvious in § 3.4; the name chemical potential arises from processes described
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in Chapter 7. This choice implies that of the four derivatives in (3.2.22), we take that
involving the Gibbs energy to be the defining relation for the chemical potential:

G = [ac) (3.2.23)
aNi TPvati

The chemical potential is an intensive conceptual state function and has dimensions
of (energy /mole). It is closely related to the reversible work needed to add to the sys-
tem a small amount of component i, when the addition is done with temperature,
pressure, and all other mole numbers held fixed. (This statement is proved in § 3.7.3.)
For a pure substance (3.2.23) simplifies to

Gpurei(T, P) = (g%)ﬂ) = (%)H) = ¢(T,P) (3.2.24)

For pure substances, the chemical potential is merely the molar Gibbs energy.
For multicomponent open systems, then, the four extensive forms of the funda-
mental equation, (3.2.18)-(3.2.21), can be written as

dU = TdS-PdV + G;dN, (3.2.25)
i
dH = TdS+VdP+ Y G; dN, (3.2.26)
i
dA = -SdT-PdV +) G;dN, (3.2.27)
i
dG = —SdT + VdP + ZC,. dN, (3.2.28)

1

3.2.3 Integrated Forms

The differential forms of the fundamental equation for open systems can be integrated
over a change in the amount of material, yielding an integrated form for each equa-
tion. When our system is a mixture, we can change the amount N; of each component
i by the same factor ¢: N; — cN;. The integration over the change is simply done if we
remember that intensive properties (such as T, P, and éi ) are independent of the num-
ber of moles present, while the total properties S, U, H, A, and G are homogeneous of
degree one in the mole numbers. As a result, Euler’s theorem for homogeneous func-
tions applies (see Appendix A) and we can immediately write for (3.2.25)
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U=TS-PV+YGN, (3.2.29)

1

Similarly, the other open system forms (3.2.26)-(3.2.28) integrate to

H =TS+ GiN, (3.2.30)
i
A=-PV+Y GN, (3.2.31)
i
G =GN, (3.2.32)

i

Note that for a pure substance, (3.2.32) is the same as (3.2.24). These forms of the fun-
damental equation are consistent with the Legendre transforms that define H (3.2.9),
A (3.2.11), and G (3.2.13).

3.3 RESPONSE TO A CHANGEINT, P, ORV

In this and the next section we consider how properties in closed systems respond to
changes in measurable state functions. Each such response is given by a partial deriv-
ative, and we are particularly interested in how conceptuals respond to changes in
measurables because several of those derivatives are measurable, even though the
conceptuals themselves are not.

We can consider any property (a state function) to be expressible as some function
of temperature and pressure,

F = F(T, P) (3.3.1)

Here F could be any of the extensive properties V, U, H, S, A, or G. Then the total dif-
ferential of F gives rise to two partial derivatives,

dF = (ai) T + (ai) P (332)
JT /PN JoPJTN

where subscript N means all mole numbers are held fixed. Alternatively, we could
consider F to be expressible as some function of temperature and volume,

F = E(T, V) (3.3.3)
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Table 3.1 Classification of thermodynamic derivatives, with classes
ranked by engineering importance. Here C; represents a conceptual
and M; represents a measurable.

Class Relative importance Form
oM,
I Most important —
oM, |m 3
JaCy
II Second in importance —
oM 2 M,

11 Third in importance and
Cs Cs

oM, oM,
JCy JC,
v Least important — and |—

where F could now be P, U, H, S, A, or G. Then the total differential involves two other
partial derivatives,

dF = (ai) T + (ai) qv (3.3.4)
0T JVN oV JTN

With these four kinds of partial derivatives and many dependent properties to con-
sider, a huge number of partial derivatives can be formed. Fortunately, only a few
have simple and useful forms; we are not interested here in the complicated or rarely
used ones. We judge the importance of derivatives based on whether the dependent,
independent, and held-fixed variables are conceptuals or measurables. Our classifica-
tion scheme is summarized in Table 3.1.

3.3.1 Temperature Changes

In this section we present those class I and class II derivatives that show how proper-
ties respond to changes in temperature. First, we consider the effects of temperature
changes on two measurables—pressure and volume; then we describe the effects on
internal energy, enthalpy, and entropy; and finally, we present the effects on Gibbs
and Helmholtz energies.

Response of P and v to changes in T. The response of pressure to a constant-volume
change in temperature defines the thermal pressure coefficient, v,
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T = (gi;)v (3.3.5)

while the fractional response of volume to an isobaric change in temperature defines
the volume expansivity, o,

1 BV)
_ 1(ov 33.6
¢ v(aT PN (3.36)

Both of these class I derivatives are intensive measurable state functions. The thermal
pressure coefficient is the slope of an isomet on a PT diagram and is positive for both
liquids and gases. But y,-values for liquids are much greater than those for gases; rep-
resentative values are given in Table 3.2.

The volume expansivity o is usually positive; that is, most materials expand on
heating. For low-density gases, oo = 1/T and it decreases with increasing pressure. In
contrast, liquids have values that are roughly an order of magnitude smaller than 1/T
and they are nearly constant over modest changes of temperature and pressure. The
expansivity o of water is anomalous: it is negative at atmospheric pressure and tem-
peratures below 4°C. Moreover, o for water is not monotone with either isobaric
changes in temperature nor with isothermal changes in pressure.

Table 3.2 Thermodynamic response functions of air® compared to those of
liquid water?

Molecular weight 29 18
Temperature, T (K) 300 293.15
Pressure, P (bar) 1 0.023
Density, p (g/cm?) 0.0012 1
Adjiabatic compressibility, « (bar™) 0.72 45.6(10)°
Isothermal compressibility, k7 (bar™) 1 45.9(10)°
Isobaric heat capacity, c, (J/mol K) 29 75.3
Isometric heat capacity, ¢, (J/mol K) 21 74.8
Thermal pressure coefficient, v, (bar/K) 0.0033 4.6
Volume expansivity, o (K1) 0.0033 21.(107°)

a. Properties of air were computed assuming an ideal gas, except value for ¢, taken
from Vargaftik [2].
b. Properties for water taken from Rowlinson and Swinton [3].
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Response of U, H, and S to changes in T. The response of the internal energy to an
isometric change in T and that of the enthalpy to an isobaric change in T define the
isometric and isobaric heat capacities,

C, = (SLY{)VN (3.3.7)
c,= (gi; )PN (33.8)

These class II derivatives are extensive measurable state functions. Both C, and C, are
always positive, so U (H) always increases with isometric (isobaric) increases in T. The
heat capacities are experimentally accessible by measuring the temperature change
that accompanies addition of a small amount of energy (such as heat) to a system at
constant volume, to yield C,, or reversibly at constant pressure, to yield C,; that is,

. 8Q
C =1 (—) 3.3.9
v ATHEO AT JyN ( )
o
C = lim (ﬁ’) (3.3.10)
P aT=>0o\ AT JPN

The heat capacities are sensitive to changes in T, generally they increase with increas-
ing T. But, except near the gas-liquid critical point, they are weak functions of P and V.

Applying the definitions (3.3.7) and (3.3.8) to the fundamental equations (3.2.4) for
dU and (3.2.10) for dH, respectively, we obtain the following expressions for the
response of entropy to changes in temperature:

C
(ai) - v (33.11)
0T /VN T
aS Cp
9o = & 3.3.12
(BT)PN T ( )

These class II derivatives are important because each gives the response of a concep-
tual to a change in state, with the response given solely in terms of measurables. Since
Cp and C, are positive, S must always increase with both isometric and isobaric
increases in T.

Response of G and A to changes in T. From the forms of the fundamental equation
(3.2.12) for dA and (3.2.14) for dG, we obtain the following temperature derivatives:

(37(;)131\1 B (%)VN = G319
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Although these are class II derivatives, they are not generally useful for obtaining the
response to a change in temperature, because the entropy is not directly measurable.
However, if S can be obtained from a heat capacity via (3.3.11) or (3.3.12), then (3.3.13)
can be integrated to obtain AG or AA. But (3.3.13) is more likely to be used to obtain
expressions for S when the temperature dependence of G or A is known or can be
estimated.

More useful are the Gibbs-Helmholtz equations, in which the temperature deriva-
tive of G/T is related to H and that of A/T is related to U. To derive the first of these,
start with the Legendre transform that defines G,

G=H-TS (3.2.13)

and substitute (3.3.13) for S,

G = H+T(a£) (33.14)
0T /PN

This is a linear, first-order differential equation in the independent variables T and P
and it can be solved by finding an integrating factor (see Appendix A). Equivalently,
we multiply (3.3.14) by 1/ T? and rearrange to obtain

1 BG) G H

o _ s -4 3.3.15

T(aT PN T2 T2 ( )
Now we realize that

Jd (G 1 (aG) G

A el === - = 3.3.16

aT(T)pN T\oT /PN T2 ( )

So we substitute (3.3.15) into (3.3.16) and find

1(9) - - (33.17)
OT\T /pN T2
This is the Gibbs-Helmholtz equation for G; it provides the response of (G/T) to changes

in temperature. By an analogous procedure, we can derive a second Gibbs-Helmholtz
equation that gives the response of (A/T) to changesin T,

7(é) -_u (3.3.18)
0T\ T Jyn T2
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3.3.2 Example

How do we compute the response of the Gibbs energy to a finite isobaric change in
temperature?

For a finite change in temperature, at fixed pressure, the corresponding change in the
Gibbs energy g is formally obtained by integrating (3.3.13). But to perform that inte-
gration, we must know how the entropy s depends on T and P; this is rarely known,
s0 (3.3.13) is little used. Alternatively, we may integrate the Gibbs-Helmholtz equation
(3.3.17); for a change from T to T,, we obtain

T, P TP g
8(Ty, P)  g(Ty,P) _ —f 20D or (3.3.19)
RT, RT, T) RT?

The rhs can be evaluated using an integration by parts, but a less direct attack is more
economical. We start by writing the Legendre transform for g as

8= L) _As
A(RT) A(RT R (3:3.20)
Then
g\ _ Iy (1) Al As
A(RT) == M7)* RT, R (3321)

An expression for Al can be obtained by integrating the definition of ¢, (3.3.8),

b= [2eDydr (3.3.22)
- J.Tl ¢,(T) 3.

Similarly, As can be obtained by integrating (3.3.12),

Ty ¢ (T)
As 27p
=2 = T 3.2
R JTl kT “ (3.323)

Substituting (3.3.22) and (3.3.23) into (3.3.21) gives

T, P TP T, P 4
8(Tp, P) g(Ty, ) n(Ty )(L_L)+L J' 2 e (T)dT (3.3.24)
RT, RT, R \T, T, RT, Jr,?
Ty ¢, (T)

B JTl RT
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where the integrals are to be evaluated at fixed P. If ¢, is assumed constant, indepen-
dent of T, then the integrals in (3.3.24) can be immediately evaluated. Otherwise, the
temperature dependence of ¢, is usually represented by some simple polynomial.

Note that (3.3.24) gives only A(g/RT), not Ag itself; even if we have values for T,
T1, and A(g/RT), we still cannot solve algebraically for Ag. Further, note that (3.3.24)
contains h(Ty, P), not Ah; hence, the value computed for A(g/RT ) depends on the refer-
ence state at which the enthalpy is set to zero. In spite of these limitations, (3.3.24) is
useful because the quantity ¢/RT arises naturally in many applications, such as
descriptions of chemical reaction equilibria.

3.3.3 Pressure Changes

We first consider how volume responds to changes in P, then we consider how the
conceptuals G, H, and S each respond.

Response of v to changes in P. Changes of volume in response to changes in pres-
sure are given by the compressibilities. Two are in common use: one for isothermal
changes k7 and the other for reversible adiabatic changes «;,

1(dv

Kp =- Z_’(ETP)T (3.3.25)
1(dv

K, = - 5(87))5 (3.3.26)

Both compressibilities are intensive measurable state functions, though x7 is propor-
tional to a class I derivative, while x; is proportional to one of class III. Because vol-
ume decreases with increasing pressure, these definitions contain negative signs to
make the compressibilities positive. Besides PuT experiments, K, can also be obtained
from measurements of the speed of sound. The reciprocal isothermal compressibility
is called the bulk modulus.

At the gas-liquid critical point k7 diverges. Otherwise, values of the compressibili-
ties are large for gases, but small and nearly constant for liquids; sample values are
given in Table 3.2 and Figure 3.2. The idealizations

k=0 and o =0 (3.3.27)

define an incompressible substance and are reliable approximations for normal liquids
and solids over modest changes of state. The incompressible fluid is a simplification
much used in fluid mechanics.

The isothermal compressibility (3.3.25), the thermal pressure coefficient (3.3.5), and
the volume expansivity (3.3.6) satisfy a triple product rule (Appendix A):

(57). Gl (o) = - 6328

Specifically,
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o =Y, Kr (3.3.29)

Moreover, we can show (Problem 3.11) that the ratio of the compressibilities equals
the ratio of the heat capacities,

“r (3.3.30)
< 3.
and we can show that the difference in heat capacities always obeys

TVo?
Kr

C,-C, = >0 (3.3.31)

The inequality is always true because stable phases must have kr > 0, as we shall
prove in Chapter 8.

Response of G, H, and S to changes in P. The fundamental equation provides three
important relations for pressure derivatives of conceptuals. The first, obtained from
(3.2.14) for dG, is

(g%)m -V (33.32)

This is an important class II derivative because it gives a response of the Gibbs energy
directly and solely in terms of the measurables P, V, and T. Since V > 0, G must always
increase with an isothermal increase in pressure.

Another pressure derivative is hidden in (3.2.14); it is one of the Maxwell relations.
Recall from the calculus (Appendix A) that a function of two variables, such as G(T,
P), forms an exact total differential if its second cross-partial derivatives are equal;

that is, if
385 oy = 3755 o 6339
JPL\JT /pNITN  dTL\OP /TNIPN

But, from the development of the fundamental equation, we already know that G is a
state function; therefore, (3.3.33) must be satisfied. Further, the fundamental equation
(3.2.14) gives the two inner derivatives in (3.3.33): (3.3.13) for the inner T-derivative
and (3.3.32) for the inner P-derivative. Therefore, on putting (3.3.13) into the lhs of
(3.3.33) and (3.3.32) into the rhs, we find

(a—s) = —(a—v) = -Vo a Maxwell relation (3.3.34)
JdPJTN JoT /PN
This is an important class II derivative, because it gives the response of the entropy

directly and solely in terms of B, V, and T. An analogous Maxwell relation can be
derived from each of the other three forms of the fundamental equation, (3.2.4),
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(3.2.10), and (3.2.12); however, those from (3.2.4) and (3.2.10) are unimportant class III
derivatives. The Maxwell relation from (3.2.12) is given in § 3.3.4.

The third important pressure derivative gives the response of the enthalpy to iso-
thermal changes in pressure. From the fundamental equation (3.2.10) and the Max-
well relation (3.3.34) we have

(aﬂ) = T(ai) +V = -T(al) +V =V(A-al) (3.3.35)
0P JTN oPJTN oT /PN

For gases o = 1/T, while for liquids v is small, so in both cases the molar enthalpy £ is
little affected by isothermal changes in pressure.

3.3.4 Volume Changes

There are no important class I derivatives which provide a response to changes in vol-
ume; however, three class II derivatives are important. One is given by the fundamen-
tal equation (3.2.12) for dA,

(?Té)m —_p (3.3.36)

which relates a response of the Helmholtz energy to a measurable. The second is the
Maxwell relation that arises from (3.2.12). Its derivation is exactly analogous to that
given above for (3.3.34). The result is

(?)iv)TN = (g%)v =Y a Maxwell relation (3.3.37)

where v, is the thermal pressure coefficient. The importance of (3.3.37) is equal to that
of the other Maxwell relation given in (3.3.34).

The third gives the response of the internal energy to an isothermal change in vol-
ume. It is derived from the fundamental equation (3.2.4) and the Maxwell relation
(3.3.37) using a procedure analogous to that used for (3.3.35); the result is

ou oP
a4 =T=]| =P =Ty.-P 3.3.38
(av)m (BT)U To ( :

For gases v, = P/T, so U is nearly independent of changes in volume. For liquids, we
usually find Ty, > P, and then U increases with isothermal increases in volume.

3.4 RESPONSE TO A CHANGE IN MOLE NUMBER

In the previous two sections we presented those simple derivative relations that char-
acterize changes of state in closed systems or systems of constant composition. But
engineering practice is more often concerned with open multicomponent systems—
systems of variable composition. In those situations the behavior of our system is
affected by the kinds and amounts of components that are present.
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Multicomponent systems offer an extraordinary range of diverse behaviors. For
example, in one-phase systems, property values of mixtures are often intermediate
among those of the pure components; but equally often, values pass through extrema
with composition, as they do for salts in water, for many polymer blends, and for bio-
chemicals in solvents. In multiphase systems, different phases typically have different
compositions and we exploit the spontaneous mass transfer between phases in such
separation processes as distillation, extraction, crystallization, osmosis, and deter-
gency. Furthermore, chemical reactions necessarily involve mixtures and thermody-
namics controls the direction as well as the extent of reactions. In addition to using
reactions to produce new products, reactions are important in cooking, combustion,
and biological processes. The thermodynamics of multicomponent systems is central
to chemical engineering practice.

In this section we consider how thermodynamic properties are affected by changes
in the amounts of components. Such changes promote a response that is governed by
the partial molar properties. In what follows, we apply the calculus and define certain
useful quantities, but no new thermodynamics is introduced.

3.4.1 Partial Molar Properties

Consider any extensive property F for a mixture that contains C components whose
mole numbers are {N7, Ny, ..., Nc}. The mixture is a single homogeneous phase with
no internal constraints, so (3.1.7) indicates that F depends on (C + 2) independent vari-
ables:

F = F(T,P,N;, Ny, ..., Np) (34.1)

Note that the list of independent variables contains both intensive and extensive
properties; this is legitimate because F is extensive.

Now let the intensive analog of F be f= F/N, where N is the total number of moles
in the mixture. In special cases (revealed in Chapters 4 and 5) F can be computed by a
mole-fraction average of the pure-component properties Jfpure i- But in general

f= 2% fourei (342)

is only an approximation that is sometimes correct and other times wrong. Tests of
(3.4.2) are given in Figure 3.3 for estimating the molar volumes of two liquid mixtures.
For water-ethanol, the simple average (3.4.2) produces mixture volumes within 1%,
over the entire composition range. However, for mixtures of benzene and carbon tet-
rachloride, the volumes provided by (3.4.2) are in error by about 10% over a substan-
tial range of compositions. For the volume, the approximation (3.4.2) can be seriously
wrong because the forces acting among molecules in a mixture may not be simple
averages of the forces acting among the same molecules in pure substances.

Since (3.4.2) is not generally obeyed, the question arises, What property of each
component should be mole-fraction averaged to obtain the mixture value for f? Note
that, analogous to (3.4.1), we can write
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110

. 3
Mixture molar volume, v (cm”/mol)

10 | | | |
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Component 2 mole fraction, x,

Figure 3.3 Tests of estimating mixture volumes by mole-fraction averaging the pure compo-
nent volumes. The broken straight lines are the mole-fraction averages of the pure volumes, as
computed via (3.4.2). The solid lines are the true mixture volumes taken from [4]. Benzene(1)-
carbon tetrachloride(2) liquid mixtures (top) are at 25°C, 1 atm. The water(1)-ethanol(2) liquid
mixtures (bottom) are at 20°C, 1 atm.

F = Nf(T,P,xq, X9, ..., Xc_1) (3.4.3)

This means the extensive property F is homogeneous of order one in the total number
of moles N. This homogeneity gives to extensive quantities a number of desirable
attributes, which are developed in Appendix A. One rigorous consequence is

f= in F; always true (3.4.4)
i

where

gl
I

oF
=|— (3.4.5)
(aNiJTPNj¢i

The derivative operator appearing in (3.4.5) is called the partial molar derivative, and
the quantity F; defined by (3.4.5) is called the partial molar F for component i. It is the
partial molar property that can always be mole-fraction averaged to obtain the mixture
property F. Note, however, that F; is itself a property of the mixture, not a property of
pure i; partial molar properties depend on temperature, pressure, and composition.
We emphasize that the definition (3.4.5) demands that F be extensive and that the
properties held fixed can only be temperature, pressure, and all other mole numbers
except N;. Partial molar properties are intensive state functions; they may be either
measurable or conceptual depending on the identity of F.
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one 6-0z can frozen orange juice (undiluted) Combine first three ingredients and allow

one 6-0z can frozen lemonade (undiluted) flavors to blend for 3-4 hours in a refrigera-
one 46-0z can pineapple juice tor. At serving time, pour mixture over ice
two qts. ginger ale (chilled) in a large punch bowl. Add remaining
(or one qt. ginger ale + one qt. champagne) ingredients and stir gently. Serves 10-12.

Figure 3.4 For this mixture, the partial molar volume for water can be determined, according to
(3.4.5), by measuring how the total volume changes when a small amount of water is added to
the equilibrium mixture with T, P, and the amounts of all other components fixed. (Our thanks to
Verna O’Connell for this recipe.)

The definition (3.4.5) is amenable to a physical interpretation; for example, let F be
the mixture volume V. According to (3.4.5), the partial molar volume can be obtained
by fixing the state at a particular T, P, and composition and measuring an initial value
for V. After adding a small amount of component i, while maintaining the values of T,
P, and all other N._;, we measure the volume again. The ratio of the volume change to
the amount of i added, AV/AN;, is approximately V;; the approximation becomes
exact as we decrease the amount of i added. See Figure 3.4. A partial molar property
may be positive or negative, depending on whether F increases or decreases when a
small amount of 7 is added.

For a pure substance, the sum in (3.4.4) contains only one term and we have

Fpurel = fpure1 (3.4.6)

That is, for a single component the partial molar property is merely the pure molar
property. Hence, in the pure-fluid limit each isothermal-isobaric curve for a partial
molar property (plotted against mole fraction) coincides with the value for the mix-
ture property, as in Figure 3.5.

The partial derivative is a linear operator; therefore, the partial molar derivative
(3.4.5) may be applied to all those expressions given in § 3.2, producing partial molar
versions of the fundamental equations. In particular, when we apply the partial molar
derivative to the integrated forms (3.2.29)-(3.2.31) of the fundamental equations, we
obtain the following important relations among partial molar properties:

Ui = Tgl — PVZ +é’i (347)
H; = TS;+G; (3.4.8)
A; = -PV;+G; (3.4.9)
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Figure 3.5 Molar volumes (solid lines) and partial molar volumes (broken lines) for binary lig-
uid mixtures. Top is for benzene(1)-carbon tetrachloride(2) mixtures at 25°C, 1 atm. Bottom is for
water(1)-ethanol(2) mixtures at 20°C, 1 atm. Note that if the partial molar volume of one com-
ponent in a binary increases, then by the Gibbs-Duhem equation (3.4.13), the partial molar vol-
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ume of the other component must decrease. Values computed from data in [4].
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Figure 3.6 Partial molar volumes are usually positive, but they can be negative, as are these for
NaCl in aqueous solutions, all at 200 bar. Computed from data in Pitzer et al. [5].

Figure 3.5 shows how partial molar volumes change with composition (a) for
water-ethanol mixtures, wherein the V; are weak functions of composition, and (b)
for benzene-carbon tetrachloride mixtures, wherein the V; are strong functions of
composition. Partial molar volumes are usually positive as in Figure 3.5, but some are
negative, indicating that the mixture contracts when a particular component is added.
This generally happens for the partial molar volumes of “heavy” solutes when the
mixture is near the critical point of the solvent. An example is the partial molar vol-
ume of NaCl in aqueous solution, shown in Figure 3.6. The negative values occur
when attractive forces between solute (NaCl) and solvent (H,O) molecules are strong
enough to cause the mixture volume to decrease. Negative partial molar volumes
indicate that interactions between unlike molecules (NaCl-H,O) are stronger than
those between solvent molecules (H,O-H,0).

3.4.2 Gibbs-Duhem Equations

Besides (3.4.4), another attribute of partial molar properties, also derived in Appendix
A, is that they obey a set of relations known as Gibbs-Duhem equations. For the
generic extensive property F(T, P, {N}), the general form of the Gibbs-Duhem equation is

St - () ar- (%) ap-o 6.410)

1

On these derivatives the subscript x means that the composition is held fixed. For a
mixture of C components, the Gibbs-Duhem equation (3.4.10) establishes a single rela-
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tion among T, P, and the partial molar properties F;. That is, the intensive quantity f
depends on only (C + 1) independent intensive properties, as required by (3.1.9).

For isothermal-isobaric processes (3.4.10) reduces to a relation among the partial
molar quantities themselves,

C
Y xdF; =0 fixed T and P (3.4.11)

1

And in a binary mixture (3.4.11) further simplifies to
xqdF1 + x,dFy = 0 fixed T and P (3.4.12)

Since T and P are fixed in (3.4.12), an obvious choice is to use a mole fraction as the
independent variable, then (3.4.12) can be written as

oF oF oF
Y e I e o i (3.4.13)
0xq )rp 0xy )op 0%y )op

The last equality is valid because a binary has dx; = —dx,. The simple form of the
Gibbs-Duhem equation (3.4.13) says that in a binary at fixed T and P, if F; increases as
x1 increases, then F, must simultaneously decrease. This behavior can be seen in the
partial molar volumes plotted in Figure 3.5; for example, in the water-ethanol mix-
tures, V5, increases with x, while simultaneously V},,;, decreases.

3.4.3 Chemical Potential

Note that the chemical potential G;, defined by (3.2.23), has the structure of (3.4.5);
that is, the chemical potential is the partial molar Gibbs energy. This is why we use the
partial-molar notation for the chemical potential: the notation reminds us that the
chemical potential has mathematical and physical characteristics in common with
other partial molar properties. For example, the integrated form of dG in (3.2.32) is
consistent with the mole-fraction average (3.4.4) and the pure-fluid chemical potential
(3.2.24) is consistent with (3.4.6) for the molar Gibbs energy. The chemical potential
plays a central role in phase equilibria and chemical reaction equilibria; therefore, we
will need to know how G; responds to changes of state.

The response of G to a change in T is given by (3.3.13), while the response to a
change in P is given by (3.3.32). Consider first the pressure derivative,

(g%)m -V (3.3.32)

For mixtures, this derivative must be evaluated with all mole numbers fixed, and we
remind ourselves of that by the subscript N. Now apply the partial molar derivative
in (3.4.5) to both sides of (3.3.32); we obtain
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0 [(dG T
A f = V. 3.4.14
aNi[(aP)TN}TpNj;‘i ! ( )

But G is a state function, so we can interchange the order of differentiation on the lhs,
identify the resulting inner derivative as the chemical potential, and write

(aa_clii )T -7, (34.15)
X

Note that we now indicate constant composition (subscript x) because the chemical
potential is intensive. Repeating these steps for the temperature derivative (3.3.13), we
find
aéi) <
-— =-5; 3.4.16
(aT Px ! ( )
Moreover, a Gibbs-Helmholtz equation relates the chemical potential to the partial
molar enthalpy,
G: H.:
[i (E’-ﬂ = —L (3.4.17)
oT \RT) |py RT?

In a mixture the chemical potentials of all components are not independent; rather,
they are related through the Gibbs-Duhem equation. So letting f = ¢ in (3.4.10),

C
Y x,dG; - (ai) dT - (‘lg) dP = 0 (3.4.18)
: ! JdT /px 0P /Tx

or

C
Y x;dG; = -sdT +vdP (3.4.19)
i
and for isothermal-isobaric processes,
C p—
in dG; =0 fixed T and P (3.4.20)
i

In a mixture, the chemical potentials for all components cannot change freely in
response to a change of state; rather, they must change so as to satisfy (3.4.19) or
(3.4.20). Consequently, if we have a correlation that estimates (C —1) chemical poten-
tials, then the last may be computed from the Gibbs-Duhem equation. Alternatively, if
correlations are available to estimate all C chemical potentials for a mixture, then the
Gibbs-Duhem equation can be used to test whether the correlations are thermody-
namically consistent.
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3.5 DIFFERENTIAL RELATIONS BETWEEN CONCEPTUALS
AND MEASURABLES

With results from previous sections we can develop differential relations that enable
us to compute conceptuals from measurables. We consider five conceptuals: U, H, S,
A, and G. Recall we cannot obtain absolute values for these properties, we can com-
pute only changes in their values caused by a change of state. Fortunately, values for
changes AU, AH, AS, AA, and AG are sufficient for our needs.

First let us identify the measurables we need to carry out a computation.

(a) To account for temperature changes (§ 3.3.1), we need heat capacities in the
form of either CP(T, P, Ny, Ny, ...)or C(T, V, Ny, Ny, ...).

(b) To account for pressure or volume changes (§ 3.3.3 and 3.3.4), we need some
volumetric equation of state for the measurables {T, V, B, Ny, N,, ... },

F(P,V,T,N;,N,,...) = 0 (35.1)

(c) To account for changes in composition, we need expressions for certain par-
tial molar properties (§ 3.4). Usually these are obtained from (a) or (b) or both.

Volumetric equations of state (3.5.1) typically take one of two forms, either a pressure-
explicit form,

P = P(T,v,xq, Xy, ...) (3.5.2)
or a volume-explicit form

1%

No(T, P, xq, xp, ...) (3.5.3)

Therefore our strategy differs somewhat depending on which of these describes our
mixture to the desired accuracy and with minimum complexity. The pressure-explicit
form is more general, so (3.5.2) is more commonly encountered, but (3.5.3) is usually
more computationally convenient.

3.5.1 When T, P, and {N} Are Independent

When temperature and pressure are the independent variables, the shortest route to
the conceptuals is via the enthalpy and the entropy. So consider

H = H(T,P,N},N,, ...) (3.5.4)

for which the total differential is
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dH = (aﬂ) dT+(aH) ap+ 3| 25 dN, (3.5.5)
oT JoP JTN ; aNl TpNj;ti

The isobaric temperature derivative of H is the constant-pressure heat capacity (3.3.8),
while the isothermal pressure derivative of H is given in § 3.3.3,

OHY o
(a?)TN = V(1-aT) (3.3.35)

where a is the volume expansivity (3.3.6). So with (3.3.8), (3.3.35), and the partial
molar enthalpy, (3.5.5) becomes

dH = C,dT +V(1-aT)dP + ZHi dN; (3.5.6)

i
Similarly, for the entropy we find
C, _
ds = LdT - Vo dP+ ZsidNi (3.5.7)
1

For changes of state at constant composition, we need C, together with the volumetric
equation of state before we can integrate (3.5.6) and (3.5.7) for AH and AS. With values
for AH and AS, we can then apply the defining Legendre transforms (3.2.9) for U,
(3.2.11) for A, and (3.2.13) for G to obtain changes in the other conceptuals. If the
change of state includes a change in composition, then we will also need values for
the partial molar enthalpy and entropy. Recall from § 3.4.3 that these partial molar
quantities are simply related to the chemical potential.

3.5.2 When T, V, and {N} Are Independent

When temperature and volume are the independent variables, the most direct route to
the conceptuals is via the internal energy and the entropy. So we consider

U = U(T, V,N;, Ny, ...) (3.5.8)

for which the total differential is

du = (gi;) dT + (ag)T dv + Z{BNJ Nl- (35.9)

The isothermal volume derivative of U is given in § 3.3.4,
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ou
el =Tv. - P 3.3.38
(E)V)TN Yo ( )

where v, is the thermal pressure coefficient (3.3.5). The isometric temperature deriva-
tive of U is the constant-volume heat capacity (3.3.7); so using (3.3.7) and (3.3.38) in
(3.5.9) gives

au

] dN. (3.5.10)
NiJrvn,,,

1

dU = C,dT +(Ty, - P)dV + 2(

The remaining partial derivative can be related to partial molar properties by the pro-
cedure developed in Problem 3.26. The final result is

du = CvdT+(TyU—P)dV+Z(HZ-—TyUl7i) dN, (3.5.11)

1
As the second conceptual we consider the entropy,

S = S(T,V,N,,N,, ...) (3.5.12)

By a procedure exactly analogous to what we did above for U, we find
C, _ _
ds = TdT+yvdV+2(Si—yvVi)dNi (3.5.13)
i

For changes of state at constant composition, we need C, and the volumetric equation
of state to be able to integrate (3.5.11) and (3.5.13) for AU and AS. With values for AU
and AS, we can then apply the defining Legendre transforms (3.2.9) for H, (3.2.11) for
A, and (3.2.13) for G to obtain changes in the other conceptuals. If the change of state
includes a change in composition, then we will also need values for the partial molar
volume, enthalpy, and entropy; as shown in § 3.4.3, these partial molar quantities are
simply related to the chemical potential.

3.6 GENERALIZED STUFF EQUATIONS

In § 2.4 we presented differential forms of the thermodynamic stuff equations for
overall mass, energy, and entropy flows through open systems. Usually, such systems,
together with their inlet and outlet streams, will be mixtures of any number of compo-
nents. Individual components can contribute in different ways to mass, energy, and
entropy flows, so here we generalize the stuff equations to show explicitly the contri-
butions from individual components; these generalized forms contain partial molar
properties introduced in § 3.4.
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Thermodynamic stuff equations are internal constraints on the variables that
describe open systems. Therefore, in § 3.6.2 and 3.6.3 we show how those constraints
enter determinations of the number of independent quantities needed to analyze
open steady-flow systems.

3.6.1 Thermodynamic Stuff Equations in Terms of Components

Consider an open multicomponent system composed of a single homogeneous phase,
such as is shown schematically in Figure 3.7. At any instant the system has tempera-
ture T, pressure P, and total number of moles N. The system contains C components,

N=3N, (3.6.1)

i

The temperature outside the system boundary is T,,;. Heat Q may cross the boundary,
shaft work W, may act through the boundary, and the boundary itself may be
deformed by boundary work W,. Material may enter the system through any number
of feed streams o and leave through any number of discharge streams 3.

Material balances. The overall mass balance on the system is written in (2.4.3). The
corresponding balance on each component i is therefore

dN; = Y ANy, - > dNp, (3.6.2)
o p

Energy balance. The overall energy balance for open systems appears as (2.4.15) in
§ 2.4. Here we neglect the boundary energy U}, and introduce partial molar quantities
for each component i, so (2.4.15) becomes

Feed streams o Discharge streams 3
—_—— e
System: single
- = homogeneous phase - =
Ty Po, Ng, Tg, Pg, Np

Textr P ext
Qext i Wsh,exti

Figure 3.7 Schematic of a single-phase multicomponent system open to exchange of mass and
energy with its surroundings
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d(ZNiHi) = AHg + 8Q + 8W, + 8W,, (3.6.3)
i

Here we have introduced the following shorthand,

AHyp = 3N HoidNy; - > Y HpidN, (3.6.4)
o i i

B

For processes in which molecular identities are preserved (nonreacting systems), the
lhs of (3.6.3) expands to

d(ZNiUZ-) = Y UidN; + Y N,dU; (3.6.5)
i i i

The second term on the rhs can be replaced with the Gibbs-Duhem equation (3.4.10),
s0 (3.6.5) becomes

d(ZNiUi) Zu dN, +(§;{)PN(1T (gllf) dP (3.6.6)

Then finally, the overall energy balance can be written in terms of components as

- ou ou
Z’Ui AN, + ((_TT )PNdT + (ETP )TNdP = AH,g +3Q+38W,+38W,,  (367)

Entropy balance. The open-system entropy balance appears in (2.4.21). Again, we
neglect the boundary term and introduce partial molar entropies for each component,
50 (2.4.21) becomes

ext

(TN = aSgp + 2 0Q 1 s, (3.6.8)

where ASyg is defined as in (3.6.4) and dS,, is the entropy created in the system and
its boundary. Continuing to limit our attentlon to nonreacting systems, we expand the
lhs and apply the Gibbs-Duhem equation, so the lhs can be written as

d(leSi) Zs dN; + (ai) NdT+(gi) AP (3.6.9)

Therefore, the entropy balance (3.6.8) becomes
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= 85 aS 8Qext‘
S.dN, (7) T (7) AP = AS ds 3.6.10
zi: AN+ (57 ) AT+ (55 op * T +dSg,, ( )

3.6.2 Number of Independent Variables for Open Steady-Flow Systems

Many industrial processes take place in open systems in which material enters and
leaves the system through process streams and in which energy can cross system
boundaries as heat and work. At any instant, a complete identification of the state
requires specification of values for such variables as temperatures, pressures, compo-
sitions, and flow rates. However, because of the stuff equations in § 3.6.1, not all of
these quantities are independent. So we have here the same kinds of questions
addressed in § 3.1: How many interactions are available to change the state? How
many independent variables must be specified to identify the state of an open steady-
flow system? The discussion here extends that in § 3.1 from closed systems to open
ones; however, the discussion remains limited to systems composed of a single homo-
geneous phase with no chemical reactions. The extensions to multiphase systems are
given in § 9.1 and to those having chemical reactions in § 10.3.1

As an example of an open system, consider a fixed (control) volume that is open to
steady-state mass and energy transfers with its surroundings. Crossing the system
boundaries are N, ports through which one-phase mixtures of C components enter
and leave the system. For steady flow situations, we must have at least one inlet and
one outlet, so N, > 2. The system is in thermal contact with its surroundings and an
interaction exists by which shaft work is done, either on or by the system. Note that
we do not consider a work mode that could change the size or shape of the control
volume.

First we want to determine the number of interactions that are available for manip-
ulating the system state. We assume that each of our one-phase streams obeys (3.1.2);
that is, each has (C + 2) interactions with its surroundings. In addition, the control vol-
ume has the thermal interaction plus the shaft-work mode. Therefore, the maximum
number of orthogonal interactions is given by

Vipax = Ny(C+2)+2 (3.6.11)

m

However, just as in § 3.1.1, the number of orthogonal interactions actually available
may be less than this maximum because of external constraints imposed on some
interactions. Examples of external constraints include fixed flow rates of some
streams, insulated streams, no shaft work, and some components missing from some
streams. (For example, the number of constraints is increased by unity for each com-
ponent missing from each stream.) Let S,,; be the total number of external constraints,
then the number of available interactions is given by

V= Vyor = Soxt = N, (C+2)+2-8, (3.6.12)

Second we want the number of independent variables needed to identify the sys-
tem state. This number will be less than V because of internal constraints. For open
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systems, the internal constraints are a material balance for each component plus an
overall energy balance; note that the entropy balance is not an internal constraint.
Therefore the total number of internal constraints is

S=C+1 (3.6.13)
and the number of independent variables is

Fpp = V=S =V-(C+1) = N,(C+2)-(C-1) =S, (3.6.14)

ex

The quantities counted by F,, in (3.6.14) all pertain to streams and energy conduits
crossing the system boundary; none are properties of the system itself. This occurs
because all flows are steady states. Further note that, unlike for closed systems, the
independent quantities needed for open systems may include process variables, such
as Q and W. Values of F,, independent quantities, together with any external con-
straints and solutions to the material and energy balances, give a complete description
of the system. However, if values for some number of variables less than F,, are
known, then the state is not identifiable. Such incomplete descriptions can arise in
design situations, and then complete descriptions might be obtained by including
additional (nonthermodynamic) feasibility or economic constraints.

Since V, the number of variables available to manipulate the state, is larger than F,,,
the number needed to identify the state, simply manipulating variables (such as by
changing valve settings) may not set enough variables to provide a complete thermo-
dynamic description of an open system. Instead, additional constraints must be
imposed or additional constraint relations must be found to complete the identifica-
tion of state. Moreover, the values for V and F,, depend on your choice of system, so
making another choice may simplify an analysis or make an incomplete description
complete. This possibility is illustrated in the following example.

3.6.3 Example

How many independent variables must be known to analyze a simple heat
exchanger?

We intend to reduce the temperature of a hot nitrogen stream by bringing it into ther-
mal contact with a stream of cooling water. The cooling is done in an insulated,
double-tube, countercurrent-flow heat exchanger, as shown schematically in Figure
3.8. We consider two analyses of this one situation.

Analysis 1. First we consider situations in which the heat duty Q is to be calculated.
Our first problem is then this: how many variables must be known before we can
compute 3? To answer this question, we choose the system to be the water side of the
exchanger tube. Therefore, C = 1, because the water is pure, and Np = 2, because the
water tube has one inlet and one outlet. Hence, the maximum possible number of
interactions available for manipulating the system is, from (3.6.11),

Vinax = Np(C+2)+2 =2(1+2)+2 =38 (3.6.15)
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cool N,
gas
cool warm
water water
hOt N2
gas

Figure 3.8 Schematic of a steady-flow, insulated, countercurrent, double-tube heat exchanger

The only external constraint on the system (water) is lack of any shaft work, so S,,; =
1. (Note that this system is not insulated.) Therefore, (3.6.12) gives

V=8-1=7 (3.6.16)

The seven available interactions are a thermal interaction, a work mode, and a mass
flow interaction for the inlet (total of 3), likewise for the outlet (3 more), plus a thermal
interaction on the control volume.

To obtain the number of variables needed to identify the state, we apply (3.6.14);
hence, we need the number of internal constraints. For water as our system, we have a
steady-state material balance and an energy balance. Therefore, (3.6.14) gives

F_ =V-S=7-2=5 (3.6.17)

A typical set of the required five variables would be the temperatures and pressures of
the inlet and outlet water streams, T;, T,, P;, and P, plus the inlet water flow rate N.
With values for these five variables, we can solve the steady-state material balance for
the outlet water flow rate (the inlet and outlet mass flow rates are equal here) and we
can solve the steady-state energy balance for Q. In this example the value computed
for the heat duty is the actual value for the real process, regardless of reversibility,
because the process is workfree. However, in the general case, when heat and work
both cross a system boundary, the energy balance gives only their sum. Variations on
this problem are also possible; for example, if we knew values for the five variables T,
T,, P;, Pyand Q, then we could solve the energy balance for the required water flow
rate. Or, 1f we knew T;, P;, P, Q, and N, then we could solve for the outlet water tem-
perature T,

Analysis 2. In this second analysis, we consider situations in which the heat duty is
unimportant and can be eliminated. In these cases we take the entire exchanger as the
system. Now the system involves two substances, so C = 2, and it has two inlets plus
two outlets, so N, = 4. We also have the following external constraints: no shaft work
(1), no heat transfer between system and surroundings (1), and only one component
in each of the four streams (4). So the number of interactions available for manipulat-
ing this system, given by (3.6.12), is
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V= N,(C+2)+2-5,, = 42+2)+2-6 = 12 (3.6.18)

We also have three internal constraints: a material balance on each component plus
the energy balance, so (3.6.14) gives

F_ =V-S=12-3=9 (3.6.19)

ex

A typical set of these nine variables would be the pressures of the four streams, the
two inlet flow rates, and the temperatures of three streams. If values for these nine
quantities were known, then we could solve the material and energy balances for the
gas and water outlet flow rates and for the temperature of the fourth stream. In
another version of this problem we might know the temperatures and pressures of all
four streams plus one inlet flow rate; then we could obtain the other three flow rates
by solving the two component material balances plus the energy balance.

These two analyses illustrate several important points: (a) The number of indepen-
dent variables F,, usually depends on what is chosen as the system. (b) The identity
of the system also determines the number of dependent variables and the equations
used to solve for their values. (c) The quantities counted in (3.6.14) for F,, can include
heat and work effects, which are process variables, not system properties.

3.7 GENERAL EXPRESSIONS FOR HEAT AND WORK

In § 3.2 we combined the first and second laws to eliminate Q and W and thereby
obtained forms of the fundamental equation; those forms all contain some conceptual,
such as U, S, or G. But as engineers we more often need values for heat and work
rather than for changes in conceptuals. Unfortunately we cannot devise a purely theo-
retical scheme for computing the heat and work requirements for a real process: every
real process involves irreversibilities, and the magnitudes of those irreversibilities
must either be measured or estimated. Usually such measurements or estimates are
made relative to reversible changes, so we need to be able to compute the heat and
work that accompany reversible changes. The necessary equations are derived here.

3.7.1 Heat

For the generic, open, nonreacting system represented schematically in Figure 3.7, an
expression for Q is obtained by rearranging the entropy balance (3.6.10),

8Qexl‘

ext

- 25 25
_ ;si dN, + (B—T)PNdT ¥ (a?)TNdP ~ASyp —dS,, (37.1)

Here ASg is defined analogously to (3.6.4). In general the entropy generation term is
unknown, but if we consider reversible changes, then ngen =0, and (3.7.1) reduces to
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5 )
Qrer _ zSidNﬁ(a—S) dT + (85) AP~ ASg (37.2)
Tt - JdT/PN JdPJTN

For this to apply, the external temperature T,,; must either equal the system tempera-
ture T and all stream temperatures Ty, and Tp, or there must be reversible means for
transferring heat across any finite temperature difference. For real processes, the
amount of heat given by (3.7.2) will bound the actual heat requirements: an upper
bound if heat is added to the system (8Q,,, > 0), a lower bound if heat is removed
(8Q,ep < 0).

In the special case of workfree processes with negligible kinetic and potential
energy changes, the heat can be obtained from the overall energy balance (3.6.7),

ou ol
= u; dN aT dP - AH 3.7.3
¥Quy = 2 " (8T)PN +(8P )TN ap ( )

In workfree processes, the heat given by (3.7.3) is the actual heat 8Q,,;, regardless of
the reversibility of the process.

Open steady-flow systems. In these cases, no change in accumulation occurs for any
component in the system, so dN; = 0, and the material balances (3.6.2) become

0= Z I:] Z NBz for each component i (3.7.4)

o

where the N represent molar flow rates. Similarly, (3.7.2) for the reversible heat sim-
plifies to

Qrev= Ext[ Zz I:’oci"'zzgﬁiﬁ]ﬁj} (3.7.5)
B

o i i

Closed systems. For reversible changes of state in closed systems, dN; = dN; = dNp;
=0, and the overall entropy balance (3.6.10) reduces to

SQVEU C
= d( N.S‘) = Nds closed system (3.7.6)
Text z,’ s

Integrating this from an initial state (1) to a final state (2) yields
Qep = Tpxt NIs(Ty, Py, {x}) —s(Tq, Py, {x})] closed system (3.7.7)

If the reversible change is isothermal, then T| = T, = T,,4, and (3.7.7) reduces to the
first part of the second law for closed systems; cf. (2.3.5).
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3.7.2 Work

To obtain a corresponding expression for work in nonreacting systems, we use the
rearranged entropy balance (3.7.1) to eliminate 8Q,,; from the energy balance (3.6.7),

_ — oqu-T tS] B[U—TextS]
Z[ui_TextSi]dNi"'(—m) dT+(—) apr (3.7.8)
- oT PN opP TN
= AH(XB_TextASOLB+8Wb+6WSh_Textngen

To obtain a computationally more viable form, we consider reversible changes (dSg,,
=0) and combine the boundary work and shaft work into a total work term,

6Vvt, rev — wa, rev t SWsh’ rev (3.7.9)
Then (3.7.8) can be rearranged to read
Jdu-T,,,S] Au-T,_,S]
SW, = (—”f ) dT (—exf) ip 3710
t, rev 9T N + 5P N ( )

ASyg

ext

+ 3 (Ui =Ty SildN; = AHy+ T
i

Note that if T,,; # T, then the work given by (3.7.10) must include the reversible work
that accompanies any reversible heat transfer between system and surroundings. For
real processes, the amount of work given by (3.7.10) will bound the actual work: an
upper bound if work is done by the system (8W; ., < 0), a lower bound if work is
done on the system (8W; ,,, > 0).

For adiabatic processes, the overall energy balance (3.6.7) simplifies to

- ou ou
W, 4q = Zui AN + (ETT)deT + (ZTP )TNdP ~AH,g (3.7.11)
1

and the adiabatic work given by (3.7.11) will be the actual work, regardless of revers-
ibility. Note that the rhs of (3.7.11) is the same as the rhs of (3.7.3) for workfree heat.

If, in addition to all the other restrictions we have applied in obtaining (3.7.10), we
also consider isothermal processes, then T =T, = Tg = T,,,; and

u,-T1,.,S;=U;-TS; = A (3.7.12)

ext

while

]
H
wnl

=H;-TS; =

Ll

i =Tyut Si (3.7.13)
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With these, (3.7.10) simplifies to
SW = 2 A;jdN. + (7811) dP — AG (3.7.14)
t, rev ,‘ i \or)rN of

where AGg is defined analogously to AHg in (3.6.4).

Open steady-flow systems. For steady flow, each material balance again takes the
form (3.7.4), and (3.7.10) reduces to

Wi o = =3 3 [Hai =Ty Soil N + 3 N [Hpj — Ty Spil Ny (37.15)
o i B i

If the process is also isothermal, so T, = Tg = Ty, then (3.7.15) simplifies further to

V.Vt, rev _Zzéai I;]ai +ZZGB1‘ I;]Bl (3.7.16)
i B i

o

= -3 G N+ 3 Gy N (3.7.17)
a p

For isothermal steady-flow processes, the reversible work is given by the accumulated
difference in Gibbs energy between inlets and outlets.

Closed systems. For reversible isothermal changes of state in closed systems, we
have dN; = dN; = dNg; =0, and T = T,;. Then, combining (3.7.6) for the reversible heat
with the overall energy balance (3.6.3), and ignoring boundary effects, we find

oW

t, rev

= Y d(A;N,) = Nda (3.7.18)

Integrating this from an initial state (1) to a final state (2) yields

W = N[a(T, P, {x})—a(T, P}, {x})] (3.7.19)

t, rev

For isothermal processes on closed systems, the reversible work is given by the
change in Helmholtz energy, as already noted in (3.2.15).

3.7.3 Physical Meaning of the Chemical Potential

In § 3.2.2 we remarked that the chemical potential (3.2.23) is closely related to the
reversible isothermal-isobaric work involved in adding a small amount of component
i to a mixture. This statement can be proved using expressions developed in § 3.7.2.
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Consider a container filled with a one-phase multicomponent mixture of composi-
tion {x}; the container is immersed in a reservoir that imposes its temperature T and
pressure P on the mixture. The container is fitted with a single inlet by which more
material can be reversibly injected, as shown schematically in Figure 3.9. The process
considered here is addition to the container of a small amount of pure component 1.
The reversible work associated with this process is given by (3.7.14); for an isobaric
injection of material through one inlet with no outlets, (3.7.14) reduces to

8V\]t, rev = ZZidNi - 2 ZéaidNou‘ (3.7.20)
i o i

Here o = 1 because there is only one inlet, dN7; is the amount of pure component 1
added, so dN; = dNy;, while all the other mole numbers in the container remain con-
stant; so, dN; = 0 for j # 1. Therefore, since the small amount added hardly affects the
composition, (3.7.20) reduces to

8W, oo = A1(T, P, {x})dN; = g1 (T, P)dN, (3.7.21)

t, rev

Here, we have used the fact that a pure component chemical potential is merely the
molar Gibbs energy (3.4.6). Now according to (3.7.9), 8W; ,,,, accounts for both the
boundary work and the shaft work. Separating these two components in (3.7.21)
leaves

W

sh, rev

= Ay (T, P, {x}) AN} = §pyre1 (T. PYAN{ = 8W,, (3.7.22)

For the work to deform the boundary (the boundary must deform to keep the pres-
sure constant), we can write

wa, rev = -PdV = _Pd(ZViNi) (3.7.23)
i

With the help of the isothermal-isobaric Gibbs-Duhem equation, (3.7.23) simplifies to

one-phase mixture pure 1
T, P, dNy;
T, B, {x} ~ T,P
TP reservoir TP reservoir

Figure 3.9 Schematic of a one-phase mixture immersed in a TP reservoir. The mixture is open
to a single inlet (stream 1) through which a small amount of pure component 1 is added.
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8Wy, oo = —PD VidN, (3.7.24)
i

Because all mole numbers are constant except Ny, only the first term in the sum con-
tributes,

8W, ., = —PV7dN, (3.7.25)
Substituting (3.7.25) into (3.7.22) gives

W

shoreo = [A{ (T, P, {x}) 1(T,P)+ PV ]dN, (3.7.26)

-8 pure
or

SWepy rep = [G1(T. P, {x}) = §pure 1 (T, P)1dN; (3.7.27)

Since only a small amount of component 1 is being added, the composition {x} is
essentially constant during the process, so

4% _
ds}l\il,lrev = Gy (T, P, {x}) - Spure 1 (T, P) (3.7.28)

The difference between the chemical potential for component 1 in a mixture and that
for pure 1 is the reversible work (per mole) that accompanies the transfer of a small
amount of 1 from the pure state at T and P to the mixture at the same T and P. This
constitutes a physical interpretation of the chemical potential (a conceptual) in terms
of reversible work (a measurable).

The result (3.7.28) applies to mixtures containing any number of components. For
binary mixtures, we will prove in Chapter 8 that a stable one-phase binary always has

G1(T, P, {x}) < &pure1(T. P) (3.7.29)

Therefore the work given by (3.7.27) is always negative, so long as the mixture
remains a stable single phase; that is, whenever one component is added to a binary
mixture at fixed T and P, the system does work on the surroundings. Unfortunately,
the work given by (3.7.27) is too small to be useful, and it is usually dissipated.

3.7.4 Minimum Work to Separate a Mixture

A common problem in chemical process design is to develop methods for separating
mixtures. Such methods require energy, but the requirements may vary substantially
from one method (e.g., distillation) to another (e.g., reverse osmosis). In choosing
among alternative methods, it may be useful to know the minimum energy require-
ments for a particular separation. The minimum requirements are given by reversible
changes; here we show that the reversible work required for an isothermal-isobaric
separation can be computed from the component chemical potentials.
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Consider a vessel containing a one-phase multicomponent mixture of composition
{x}; the vessel is immersed in a TP reservoir, as in Figure 3.10. The container is fitted
with one outlet for each component. The process is to extract one pure component
through each outlet. The reversible work for this process is again given by (3.7.14),
which for no inlets becomes

W, oo ZA dN, + Z ZGBldNBZ (3.7.30)

Since each outlet stream carries one pure component i and there is one such stream f3
for each component, the double sum in (3.7.30) is redundant. Therefore we can write
(3.7.30) as

W, oo ZA dN; + ngurel (3.7.31)

Here we are removing each component from the mixture, so the change dN; in the sys-
tem is related to the flow of component i through its outlet by

dN; = —dN,, (3.7.32)

11

Therefore (3.7.31) can be written as

W, oo ZA ANy = Y Goure iAN; (3.7.33)
i

As in § 3.7.3, we separate the total work into its boundary and shaft components, and
use (3.7.25) for the boundary work. These manipulations give the shaft work as

6Vvsh, rev = Z[Al + PVi - gpure il dNi (3.7.34)
i
Hence,

W oo = D 1Gi (T, PuAX}) = 8o 1 (T PYIAN, (3.7.35)

1, T, P

one-phase mixture pure
T, B, {x} pure2, T, P
TP reservoir TP reservoir

Figure 3.10 Schematic of a one-phase mixture immersed in a TP reservoir. The mixture is open
to multiple outlets; one pure component can be extracted through each outlet.
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If we extract all components in such a way that the composition {x} remains con-
stant throughout the separation, then (3.7.35) can be immediately integrated to yield

Wi reo = = [Gi (T, P, {x}) = 8 pure i (T, PN, (3.7.36)

i

where N; is the total number of moles of component i in the vessel at the start of the
separation. Using (3.4.4) for the mixture term, (3.7.36) becomes

W reo = | o (TP ATD = TN 8 (T2 P) (3.737)

Here G,,;, is the total Gibbs energy of the original mixture. The term in brackets is
called the change of Gibbs energy on mixing,

(T, P) (3.7.38)

pure i

G"= G (TP {x}) - D N; g
i

Hence, the minimum isothermal-isobaric work needed to separate a mixture into its
pure components is given by the negative change of Gibbs energy on mixing. Note
that (3.7.37) is not limited to any particular phase: it applies to solids, liquids, and
gases. In Chapter 6 we will show how to evaluate the differences in (3.7.37) and
(3.7.38) for particular classes of mixtures.

3.8 SUMMARY

In this chapter we have presented fundamental thermodynamic relations among
properties—quantities that depend on the system state. But in addition, we need to be
able to determine how such properties respond when we change the state. Changes
result from interactions—mass and energy crossing the system boundary—and so we
need to characterize processes, as well as system states. Those characterizations may
involve a description of how a system responds to particular interactions, or it may
involve a determination of the interactions required to cause a particular change.

The first important relation we introduced was the fundamental equation, which
provides relations among changes in certain thermodynamic properties. The funda-
mental equation was obtained (§ 3.2) by combining the first and second laws to elimi-
nate the path functions Q and W. In the absence of path functions, we were able to
transform the fundamental equation into alternative forms by applying attributes of
exact differentials. These alternative forms allow us to choose a convenient set of inde-
pendent variables to use when performing a thermodynamic analysis.

We then presented important derivatives that explicitly show how particular prop-
erties respond to changes in temperature or pressure or mole number (§ 3.3 and 3.4).
Some of those many derivatives are measurable and therefore, when the relevant
experimental data are available, those derivatives provide means for obtaining
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Table 3.3 Selected isomorphisms between the calculus and thermodynamics

Calculus Thermodynamics
Exact differentials = Changes in state functions; Maxwell eqgs.
Integrating factors = Definition of S; Gibbs-Helmholtz equations
Partial derivatives = Response functions; partial molar properties
Legendre transforms = Definitions of H, A, and G

Implicit function theorem =  Triple product rules

Homogeneous functions = Integrate fundamental eqs.; Gibbs-Duhem eq.

numerical values for changes in some state functions. More generally, in § 3.5 we cited
the experimental data needed to compute changes in any of the conceptuals U, H, A,
G, or S. The required information includes thermal data, in the form of heat capacities,
and volumetric data, in the form of PvTx equations of state.

Two patterns occur in this chapter, and we draw your attention to them here. One
is the degree to which elements in thermodynamics are isomorphic to elements in the
calculus. For example, the state functions of thermodynamics are, in the calculus,
merely those quantities that form exact differentials. Several such isomorphisms are
cited in Table 3.3, suggesting that much of fundamental thermodynamics is merely an
application of the calculus. One striking consequence is that although the first and
second laws, formulated in Chapter 2, did not explicitly contain anything about mix-
tures, we were, nevertheless, able to show formally how properties of mixtures may
differ from those of pure substances.

A second general pattern occurs in how we use the calculus to formulate the
response of a thermodynamic property to a change of state. The pattern can be
resolved into the following steps:

(a) Identify the property of interest, call it F.

(b) Determine the appropriate number of other independent properties needed
to identify the state, and choose a particular set of those properties (say T, P,
and {N}). Then we might consider the property F to be expressible as

F = F(T,P,N;,N,, ...) (3.8.1)

(c) Form the total differential dF, which represents the response of F to a change
in the quantities T, P, and {N},

oF oF -
dF = |— dT +| — dP F:dN. 3.8.2
(BT)PN +(8P)TN +zl,‘ e (3.82)

(d) Relate the partial-derivative coefficients in (3.8.2) to measurables. Here we
have made the common (but arbitrary) choice of T and P as independent;
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however, if variables other than T and P are chosen, then the partial molar
quantities will not appear as simply as they do in (3.8.2).

(e) Integrate dF over the change of state to obtain AF. To compute those integrals,
we need data or correlations that contain the state dependencies of the mea-
surables introduced into (3.8.2).

We have not yet broached the problems associated with correlating data, so we are not
yet ready to perform step (e). However, regardless of the correlation used, the proce-
dure (a)-(e) or its equivalent must be used to obtain values for changes in conceptuals.

Lastly, we recognize that engineers routinely need to know heat and work effects
associated with changes of state. Therefore, in § 3.6 and § 3.7 we developed formal
expressions that allow us to use state functions to calculate the reversible heat and
reversible work. In most cases Q,,, and W,,, only bound the actual values, but such
bounds are often helpful in design and processing situations. To get values of Q and
W for real processes we usually estimate the magnitude of the entropy generated and
make corrections to Q,,, and W,,,; such estimates often involve process efficiencies
extracted either from experiment or from correlations.

But while we have accomplished much in this chapter, more remains to be done.
For example, we have established numerous relations among properties, but we have
not addressed the most viable ways for obtaining numerical values for any of them.
That task is taken up in Part II of this book. Moreover, throughout Part I we have
restricted ourselves to single-phase, homogeneous systems; the problems posed by
multiphase systems are tackled in Part III. Nevertheless, you will find that everything
done in later chapters builds on the material presented here.
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PROBLEMS

3.1 A liquid mixture of ethanol and water completely fills the cylinder of a piston-
cylinder apparatus. The cylinder is closed to mass transfer, but its walls are ther-
mally conducting and the piston can be moved. Determine values for V, F,,, and
F, and explain what each of these quantities means. If the cylinder were insu-
lated, which of your values change and which remain the same?
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3.2

3.3

3.4

3.5

3.6

3.7

FUNDAMENTAL RELATIONS

The ideal-gas equation, R = PV/NT, is an example of the generic equation of state
written in (3.1.5); it implies that P, V, N, and T are not all independent.

(a) If we choose F =V, then what properties should appear in the argument list
when the ideal-gas law serves as the basis for the function y in (3.1.5)?

(b) If we choose F = B, then what properties should be in the argument list?

(c) For a pure ideal gas, how many properties are needed for identifying an
extensive equilibrium state; that is, what is the value of F,,?

(d) Evaluate the partial derivatives (P /0dN)ry and (0P /dN)r, for an ideal gas.

For a fixed amount of a pure gas (not necessarily ideal) at state (P, V1),

(a) Prove that, on a PV diagram, only one reversible isotherm passes through
(Pl/ Vl); i.e., V=1.

(b) Prove that there is only one reversible adiabat through (Py, V); i.e., V=1.

Starting from the fundamental equation for closed systems, obtain expressions
that give each of the following solely in terms of measurables,

I - I - R )
oT Jvn™ \oT Jen™ \9P )TN’ \0V /PN

If a change in the shape of a system can make a difference in its properties, then
we must allow for a new interaction: the surface work mode.

(a) Let the surface work be expressed as W, = 6 dA, where A is the system sur-
face area (extensive) and ¢ is the “surface tension” (a measurable). Write this
system’s fundamental equations in U and G.

(b) If a new function Y is to be defined whose variables are S, ¢, V, and N, what
Legendre transform would be used?

(c) Derive at least two relations such that each connects a class I derivative of the
surface tension ¢ to another class I derivative.

Consider a rubber band that can be elongated in a vacuum. The work of stretch-
ing the band is 8W,,, = — T1dL, where 1 is the tension and L is the length.

(a) For this system, what is the fundamental equation in U?
(b) Obtain two relations between class II derivatives of S and class I derivatives.
(c) If t=kLT, where k is a constant, show that U depends only on temperature.

(d) The temperature of the rubber band increases during an adiabatic stretching.
What does this suggest about the variation of U and S with T?

(a) Find a relation for (dU/0N;) in terms of measurables and accessible partial
derivatives, such as the chemical potential for component i. The derivative is
to be taken at fixed T, V, and Nj#.

(b) Find a relation for H ; in terms of measurables and accessible partial deriva-
tives, such as the chemical potential for component i.
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3.8 Calculate the changes in H and G/T when 1,3 butadiene, in the ideal-gas state, is
heated at constant pressure from 300 to 1000 K. The heat capacity for 1,3 butadi-
ene as an ideal gas is given by

cp/R = A+ B(T/100) + C(T/lOO)2 (P3.8.1)
where T is in Kelvin, A = 0.290, B = 4.70476, and C = -0.15714.

3.9 One mole of nitrogen undergoes the following three-step cyclic process, which
starts and ends at 5 bar and 5 liter:

(a) Reversible expansion at constant isothermal compressibility to 10 liter,
(b) Reversible compression at constant volume expansivity to 5 liter,

(c) Irreversible isometric cooling to 5 bar.

Determine the net work done and the net heat transferred over one cycle.
Assume the ideal-gas equation is obeyed with ¢, = 5R /2.

3.10 (a) Ten moles of liquid water are initially at 20°C and 1 bar. The water is to be
compressed isothermally to 500 bar, with the compression done in such a way
that the required work is minimized. Use the response functions for water
from Table 3.2 to estimate the final density, the amount of work required, and
the direction and amount of any heat transferred.

(b) Repeat (a) for ten moles of air, assuming air is an ideal gas with ¢, = 5R/2.

3.11 (a) Prove (3.3.30): the ratio of compressibilities is the ratio of heat capacities.

(b) Evaluate this ratio for air and for water using data from Table 3.2.

3.12 Consider a pure ideal gas with constant heat capacity c,. For an arbitrary state
(P1, v1), prove (a) that the slopes of the reversible adiabat and reversible isotherm
through (P, v;) are both negative, and (b) that, as v increases, P along the adiabat
decreases faster than does P along the isotherm.

3.13 Heat capacities are functions of state and their response to changes in pressure or
volume are related to the equation of state. Prove that

aoC 2 aC 2
oP )N oT? JpN WV Jrn AT JvN

3.14 Pure water is to be compressed from 1 bar, 20°C. (a) If the compression is done
adiabatically to 100 bar, can the final temperature be 30°C? (b) If the compression
is done adiabatically to 200 bar, what is the lowest possible final temperature?

3.15 For a substance with constant c,, show that isobaric cooling and heating pro-
cesses produce straight lines on a plot of s vs. In T.
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3.16 The sonic velocity w in a fluid is a thermodynamic property related to the adia-
batic compressibility by w = 1/ (pk,)!/2, where p is the mass density of the fluid.

(a) Show that w can also be written in terms of the isothermal compressibility

1
w = (P3.16.1)

Joxr(1-(TVay,)/c,)

(b) Use data from Table 3.2 to compare the sonic velocity in air (used in deter-
mining Mach numbers for speeds of aircraft) with that in water (used in
detecting submarines and other underwater objects).

(c) What are the magnitudes of the absolute and relative errors in the sonic
velocity of air if we assume k;= k7 at 1 bar and 25°C?

3.17 Consider a binary mixture of 1 and 2 having molar volume v. Show that the par-
tial molar volumes can be written in the form of Legendre transforms,

Vi=o _xz(avJ (P3.17.1)
dx, P
and
Vy =0 _xl(gvxl) (P3.17.2)
TP

3.18 A mixture of ethanol(1) and water(2) has x; = 0.7 and a density p = 0.8306 g/ cm’.
At these conditions, the partial molar volume of water is V5 = 15.68 cm®/mole.

(a) What is the value of V{, the partial molar volume for ethanol?

(b) Estimate the mixture density p when x; is changed from 0.70 to 0.71 at fixed T
and P.

(c) Do you expect V1 to increase or decrease when x; is increased from 0.70 at
fixed T and P? Justify your expectation and clearly cite all assumptions made.

3.19 At 20°C and 1 bar a binary liquid mixture of 1 and 2 has the composition depen-
dence of the partial molar volume of component 1 given by

Vi = Opre1 + AX (P3.19.1)

where A is a constant. Find the analogous expression for V.

3.20 Consider a binary mixture of components 1 and 2 at fixed T and P. For such a
mixture, show whether or not it is legitimate to represent a partial molar prop-
erty as a linear function of composition. For example, show whether we may
write the partial molar volume as

Vi = Opprer + A%, (P3.20.1)

where A is a constant, independent of composition.
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3.21 (a) What information would enable you to integrate (3.5.7) to obtain AS?
(b) What information would enable you to integrate (3.5.13) to obtain AS?

3.22 For a single-phase substance containing any number of components, show that

C,dT + V(Ty,-P)(a.dT - x;dP) -y N;dlU; = 0 (P3.22.1)

1

3.23 A stream of air (stream A) initially at 20°C is to be heated to 60°C by bringing it
into contact with a second air stream (stream B) in a double-tube heat exchanger.
Stream B enters the exchanger at 80°C. Assume the exchanger is well-insulated
and operates at constant P; also assume air obeys Pv = RT and has constant c,,.

(a) If the exchanger operates countercurrently and the mass flow rates of the two
streams are the same, determine the outlet temperature of stream B.

(b) If the exchanger operates co-currently and the mass flow rates are equal,
determine the outlet temperature of stream B.

(c) Schematically sketch, on the same diagram, your results from part (b) in the
form of the temperature of each stream versus distance down the exchanger
from inlet to outlet. Compare and discuss your results for (a) and (b); in par-
ticular, what's the same and what differs in processes (a) and (b)?

3.24 Derive the expression for the shaft work wy, done by a reversible adiabatic com-
pressor, assuming the fluid is an ideal gas with constant heat capacities. Your
result should take the form

RT, P Nw-1)/y
w,, = —in “{1_( "”f) } (P3.24.1)
o(y-1) P,

m

where 7 is the ratio of heat capacities (a measurable), y= ¢ /¢y

3.25 A Joule-Thomson (J-T) expansion occurs whenever a steadily flowing fluid
passes through a conduit or device that is well-insulated and that involves no
shaft work.

(a) Because of friction, we expect a pressure drop across a J-T expansion; that is,
P+ < P;,. Develop a thermodynamic argument to confirm this.

(b) However, show thermodynamically that there is no constraint on the relation
between T}, and T,,;: a fluid may be heated or cooled by a J-T expansion.

(c) The J-T coefficient is defined by (dT/dP),. Find an expression for this deriva-
tive solely in terms of measurables.

(d) Evaluate the J-T coefficient for an ideal gas.

3.26 Complete the derivation of (3.5.11) from (3.5.10) by showing that

[au} - H - Ty,V, (P3.26.1)
aNi TVN]-#
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3.27 The forms of the fundamental equation contain five conceptuals: U, S, H, A, and
G. For these properties we can only obtain changes, such as AU, or values relative
to a prechosen reference state, such as U = Uy + AU. As part of a process design
project, you need to construct a table of these five properties for a certain pure
substance (like the steam tables). First, you select a reference state: a phase, a
temperature T, and a pressure P,.

(a) Of the five conceptuals, how many can be arbitrarily set to zero at the refer-
ence state?

(b) Let n represent the number found in part (a); n < 5. At the reference state, can
any n of the five conceptuals be set to zero? Or are there constraints on the
identities of the n properties?

3.28 In modern steam tables, the reference state is usually taken to be the saturated
liquid at its triple point (T,r = 273.16 K, P,,r= 0.611 kPa); at this state the internal
energy and entropy are set to zero: u,, =s,s = 0. An excerpt from such a table
follows.

P =1bar P =20 bar

T(°C) h(J/g) s(J/g K) h()/g) s(J/g K)

100 2676.2 7.3614

400 3278.2 8.5435 3247.6 7.1271

(a) For 1 g of steam heated isobarically at 1 bar from 100 to 400°C, compute Ah,
As, and Ag.

(b) For 1 g of steam compressed isothermally from 1 to 20 bar at 400°C, compute
Ah, As, and Ag.

(c) If, instead of the saturated liquid used above, the reference state is chosen to
be superheated steam at Ty, = 100°C and P, = 10 kPa, then the above table
becomes the one below. For the same processes as in (a), use the following
table to compute Ah, As, and Ag.

P=1Dbar P =20 bar

T(°C) h(J/g) s(J/g K) h(J/g) s(J/g K)

100 -11.3 3.9434

400 590.7 5.1255 560.1 3.7091

(d) For the same processes as in (b), use this new table to compute Ah, As, and Ag.
(e) Compare your results from (a) with those from (c) and compare your results
from (b) with those from (d). Explain any differences.
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4

PROPERTIES RELATIVE TO IDEAL GASES

In Part I we established formal relations between process variables and system
properties and between measurables and conceptuals; we also established relations
among various conceptuals. Those relations suggest that properties can serve as the
basis for thermodynamics analysis, but Part I does not provide values for any quanti-
ties. To get numbers we must do something beyond formal thermodynamics; ulti-
mately, we must rely on experimental data and on models based on that data. In
particular, experiments describe systems in terms of measurables, but before we can
perform thermodynamic calculations, we need to know how to convert those measur-
ables into conceptuals. In this chapter and the next, we focus on practical strategies for
obtaining values for conceptuals.

One strategy, and one much used in thermodynamics, divides a property F into
two parts: an ideal contribution, F;;, and a deviation or correction term, Fy,,. This
strategy can be realized in at least two ways. In the first, the deviation takes the form
of a difference measure,

Fup = F=Fiy (4.0.1)
While in the second, the deviation takes the form of a ratio measure,

, F
E =L (4.0.2)
dev Fz‘d

In both ways the ideal substance must be well defined and its properties must be easy
to compute; beyond that, the choice of ideality is made strictly for convenience. In
both approaches the job of computing the property F is reduced to the (hopefully) eas-
ier job of computing one of the deviation terms, either F,,, or F},, .

Of the many measurables that exist, the ones whose values can be determined most
readily are temperature, pressure, volume, and heat capacities. Of the many sub-
stances that exist, the ones whose measurables are most easily related to conceptuals
are the substances that obey the ideal-gas equation of state. Therefore, the ideal gas
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often serves as a computationally convenient ideal substance for the deviation mea-
sures defined in (4.0.1) and (4.0.2), even when the magnitudes of the deviations are
not small. In this chapter we show how to use the ideal gas as the basis for computing
values for conceptual properties.

In § 4.1 we introduce ideal gases and their mixtures, and we derive equations for
computing their thermodynamic properties. Then, we use the rest of the chapter to
develop expressions for computing deviations from ideal-gas values: the difference
measures in § 4.2, the ratio measures in § 4.3.

To compute values for the deviation measures, we need volumetric data for the
substance of interest; such data are usually correlated in terms of a model PvTx equa-
tion of state. In § 4.4 we develop expressions that enable us to use equations of state to
compute difference and ratio measures for deviations from the ideal gas. Finally, in
§ 4.5 we present a few simple models for the volumetric equation of state of real flu-
ids. These few models are enough to introduce some of the problems that arise in
attempting to analytically represent the PuTx behavior of real substances, and they
allow us to compute values for conceptuals, using the expressions from §4.5. How-
ever, more thorough expositions on equations of state must be found elsewhere [1-4].

4.1 IDEAL GASES

An ideal gas has three defining characteristics: (a) Its molecules exert no forces on one
another, so there is no intermolecular potential energy. (b) Its atoms and molecules do
have motion, so there is molecular kinetic energy and temperature. (c) Its molecules
can exchange momentum with the walls of a confining vessel, so the gas has a pres-
sure and volume. The absence of repulsive forces between molecules implies that an
ideal gas can be compressed to zero volume without a phase change. The absence of
attractive interactions implies that the gas has no driving force for condensation to a
liquid or solid phase: an ideal gas remains gaseous at all state conditions. Ignoring
intermolecular forces is a drastic assumption, except for supercritical substances at
low pressure; however, we will use the ideal gas, not so much as an approximation to
real substances, but rather as a basis for obtaining properties of real substances.

4.1.1 Pure Ideal Gases
Historically, the ideal-gas equation of state
PV = NRT ideal gas (4.1.1)

was obtained by combining the experimental PvT data of low density gases that is
codified in the laws of Boyle and Charles. Alternatively, this equation can be derived
formally in statistical mechanics, under the assumption that there are no forces acting
among the molecules.

For a substance that obeys (4.1.1), we can use (3.3.35) for H and (3.3.38) for U to
show that U and H of an ideal gas depend only on temperature,

Uig — Nuig(T) and Hig = Nhig(T) (4.1.2)
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These results are consistent with our definition of the ideal gas as a substance having
no intermolecular forces. Recall the internal energy is the mechanism for storing
energy; specifically, U is the combined kinetic and potential energies of the molecules.
But if molecules exert no forces on one another, then they can have no molecular
potential energy, and energy can be stored only as molecular kinetic energy. There-
fore, (4.1.2) is consistent with (2.3.6), which states that molecular kinetic energy is
related only to the absolute temperature, not to pressure or volume.

Thermodynamics cannot identify the forms taken by the functions of temperature
in (4.1.2), but those functions can be found using either kinetic theory or statistical
mechanics. Those functions are determined by the kinds of motions that are allowed
to the atoms on a molecule; that is, they are determined by molecular structure. For
molecules whose allowed motions (i.e., degrees of freedom) are predominantly exter-
nal translations and rotations,

U = SNRT (4.13)
where v is the number of degrees of freedom. Spherical molecules, such as argon,
have only translational degrees of freedom and v = 3. Rigid diatomics, such as oxy-
gen, have three translational plus two rotational degrees of freedom, so v = 5. But real
molecules also have internal degrees of freedom (such as bond vibration, bond bend-
ing, and bond rotation), producing internal energies that are more complicated than
(4.1.3) and then v is usually a function of temperature.

With the equation of state (4.1.1) and an expression for the internal energy, such as
(4.1.3), we can integrate relations in § 3.3 to obtain expressions for differences in all
other thermodynamic properties of a pure ideal gas. The results include

c;g—c;g =R (4.1.4)
. , , T, .
Au' = u'8(T,) —u's(T)) = jT c(T)dT (4.15)
1
, . , T, .
AR = W(T,) - K'S8(T)) = jT c$(TydT (4.1.6)
1
ie g ig T2 cig(T)d b2
As'S = §'8(T,, Py)—s"8(T,, Py) = IT pT T - R ng: 4.1.7)
1
T, 8 v
- J' 2T ar 4 RIn2 (4.1.8)
T U1

Since ¢, and ¢, are necessarily positive, the ideal-gas enthalpy and internal energy
must always increase with increasing temperature. Likewise, the ideal-gas entropy
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must increase with isobaric or isometric increases in temperature, decrease with iso-
thermal increases in pressure, and increase with isothermal increases in volume. We
emphasize that unlike u and 5, the entropy s depends on pressure and volume as well
as temperature.

The fundamental equations (3.2.12) and (3.2.14) can be used to determine how the
ideal-gas Gibbs and Helmholtz energies respond to changes of state. For example, for
isothermal changes in pressure,

) ) P,
Aa'® = Ag'® = RT Ing- fixed T (4.1.9)
1

So in an ideal-gas, G and A always increase with isothermal increases in P.

Although no gas is truly ideal, real gases approximate ideal-gas behavior when the
gas density is sufficiently small: at low densities there are few collisions or interac-
tions among real molecules. Molecular size correlates with the density at which a gas
becomes nearly ideal: the larger the molecules, the lower the density must be. This is
because the range and strength of intermolecular forces increase with the number of
electrons per molecule. We can make these statements precise by considering the zero
density limit of volumetric equations of state. The limit can be expressed in either of
two forms, depending on the identity of the independent variables.

If the independent variables are temperature and volume, our equation of state
takes the form,

P = P(T,0) (4.1.10)
then the ideal-gas limit occurs when the (extensive) volume of the container is made

infinitely large (specifically, when the container volume is large compared to the vol-
ume of the molecules themselves),

lim (real stuff) = ideal gas fixed T and N (4.1.11)
V>
Hence,
lim P = P'¢ fixed T and N 4.1.12)
Voo

All pressure-explicit equations of state should satisfy this limit.
Alternatively, if the independent variables are chosen to be temperature and pres-
sure, then our equation of state takes the form

v = o(T, P) (4.1.13)

Now the ideal-gas limit should be expressed in terms of pressure; by inverting (4.1.12)
we find that the limit occurs when the pressure is made vanishingly small,

lim V = V¢ fixed T and N (4.1.14)
P—0
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All volume-explicit equations of state should satisfy this limit. For gases composed of
small rigid molecules such as nitrogen and carbon dioxide at ambient and higher tem-
peratures, properties are generally within 1% of their ideal-gas values for pressures
up to roughly 10 bar. So the stuff you are now breathing is essentially an ideal gas.

4.1.2 Mixtures of Ideal Gases

In an ideal-gas mixture the molecules do not exert forces on one another, but mole-
cules of different species are distinguishable; for example, they may have different
masses or different structures or both. But because there are no intermolecular forces,
each molecule is “unaware” of the presence of other molecules and therefore unaware
that other species are present.

Consider an ideal-gas mixture confined to a vessel of volume V at temperature T.
For such mixtures, each extensive property F is merely the sum of the corresponding
extensive properties of the pure ideal-gas components, with each component at the
mixture temperature T and occupying a container of the same volume V' [5, 6]:

mix purei

F (T, V,{N}) = 2#3 (T,V,N)) (4.1.15)

where V = V,,.. = V; for each pure i. Here F could be U, H, S, A, or G; it could not, of
course, be the volume. The intensive version of (4.1.15) is

FEATo ) = Y v 5 (T o) (4.1.16)

1

where the molar volumes are related by v; = Nv/N;.

To understand why (4.1.15) is valid, note that in a classical description of matter the
values of extensive properties are determined by four attributes: (1) the number and
structure of the molecules present, (2) the molecular kinetic energy, (3) the molecular
potential energy (i.e., intermolecular forces), and (4) the nature of molecular interac-
tions with the surroundings. These four attributes are identical on the two sides of
(4.1.15): both the mixture and the collection of pure gases have the same number and
kinds of molecules, they have the same molecular kinetic energies (temperatures), the
same molecular potential energies (none), and the same interactions with their sur-
roundings. This last attribute includes not only repulsive interactions between gas
molecules and container walls that give rise to a pressure P, but also any spatial con-
straints imposed on the gas that restrict the molecules to containers of common vol-
umes V. Some form of (4.1.15) is often used as a thermodynamic definition of an ideal-
gas mixture, but we prefer to cite (4.1.15) as a consequence of the molecular definition
given at the beginning of § 4.1.

From (4.1.15) we can derive expressions for all properties of ideal-gas mixtures; for
example, we can immediately determine the pressure. To do so, we use the funda-
mental equation (3.2.12) to write any mixture or pure-component pressure as

p= _(S%)TN (4.1.17)
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Writing (4.1.15) explicitly for the Helmholtz energy A and applying the derivative in
(4.1.17) to each term, we obtain

ig ig
QAS. (T, V,{N}) ) z IAL e (T, V,N)) (1.18)
oV N aV TN;

i

Since Viyre =V for each component i, we merely write V for the extensive volumes of
the mixture and all pure components. Using (4.1.17) in (4.1.18) yields the law of additive
pressures [6]:

PE (T.v,{x}) = S P (T,o. ) (4.1.19)

mix purei‘”> “purei
i

Note that although the extensive volumes are all the same V = V1 ;, the intensive
volumes differ, v < vy i, because each pure gas necessarily contains fewer molecules
than the mixture. Equation (4.1.19) states that the pressure of an ideal-gas mixture is
the sum of the pure component pressures, when N; molecules of each pure i are con-
fined to a vessel having the same extensive volume V as that of the mixture vessel and
each pure is at the mixture temperature T. Since each pure component is an ideal gas,
we can substitute the ideal-gas law (4.1.1) into the rhs of (4.1.19) and find the same
equation of state as for pure gases,

8 = (4.1.20)

pis _ ZNz‘RT _ NRT
TV %
1

4.1.3 Partial Molar Properties of Ideal Gases

To obtain the partial molar properties of ideal-gas mixtures we apply the partial molar
derivative (3.4.5) either to the ideal-gas law, to obtain the partial molar volume, or to
the general expression (4.1.15), to obtain other properties. The generic expression
(4.1.15) yields

g (FS P) :
S = | i = 7( N, £ (T, ) 4121
i ( aNl- JTPN]‘¢1' E)Ni % kfpurek( Uk) TPN. ( )

j#i

Here P is the pressure of the mixture at T and v. But f,rc i is intensive and therefore it
does not depend on any N;; so in the sum, only the term having i = k contributes to the
derivative and we find

F&(T, 0, {x}) = £

purei

(T, v,) (4.1.22)

Note that v; # v. Because of (4.1.19), we can also express (4.1.22) in terms of pressure,
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ES(TPAx)) = f5,i(T.PS ) (4.1.23)

Note that the mixture pressure P is not the same as that of the pure: pi8 purei # P-

Recall that F in (4.1.22) can be any of U, H, S, A, or G. For ideal- gas mixtures, the
generic result (4.1.22) reduces to either of two forms depending on whether F is a ther-
mal property (i.e., first-law property, U or H) or an entropic property (i.e., second-law

property, S, A, or G).

First-law properties. The partial molar volume can be found by applying the partial
molar derivative (3.4.5) to the equation of state (4.1.20); the result is

Vig(T, P, {x}) = R?T = (T, P) (4.1.24)

pure i

That is, the partial molar volume for component i is the molar volume of pure i at the
same T and P as the mixture. We emphasize that (4.1.23) and (4.1.24) are evaluated dif-
ferently. Specifically, in (4.1.24) the pure molar volume v is to be evaluated at the T and
P of the mixture; however, in (4.1.23) the pure component property fis to be evaluated
at the mixture T and at the pressure Ppyre j = N;RT/V, which is always less than the
mixture pressure P. In other words, (4.1.23) does not apply to the volume.

To obtain the partial molar internal energy and enthalpy, we use the generic expres-
sion (4.1.22) to obtain

LI (T o, {x}) = u'$ T,v,) (4.1.25)

pure i

H (T v, {x}) = hpurel(T, v;) (4.1.26)

But the pure ideal-gas internal energy and enthalpy are independent of pressure and
volume, so these reduce to

US(T, {x}) = 13 e (T) (4.1.27)

H’g(T (x}) = b8

i (T) (4.1.28)

Second-law properties. Writing (4.1.22) explicitly for the partial molar entropy, we
have

S(T, 0, {x}) = 65 (T, v,) (4.1.29)

pure i

This implies that the entropy does not change when ideal gases are mixed at constant
T and v. But rather than T and v, usually we want to use T and P as the independent
variables. Here P represents the pressure when the mixture has temperature T and
molar volume v. Therefore, (4.1.29) can be written as
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SE(T,P, {x}) = 52 (T, P (4.1.30)

purei pure i)
But from (4.1.15) the pure components each occupy a container having the same vol-
ume V as the mixture; they are not at the same pressure (the mixture and each pure
have different numbers of moles, so their pressures differ, even though their tempera-
tures and extensive volumes are the same). So on the rhs of (4.1.30), we cannot simply
replace v; with P because they refer to different states and because the ideal-gas
entropy depends on pressure and volume. Instead, to express the rhs of (4.1.30) in
terms of the mixture pressure P, we must correct the pure component entropy on the
rhs from the pure component pressure P pure i tO the mixture pressure P.

The correction can be evaluated from the Maxwell relation (3.3.34). For the pure
ideal gas it is

as _ (v _ _NR .
(ETP)TN N (E)T)PN - P ideal gas (4.1.31)

Separating variables and integrating along the isotherm T from Ppyre i to the mixture
pressure P, we find

(T,P,N;) - 58

pure i pure i

P .
(TP N, = Nl.Rln( pl‘fel) (4.1.32)

pure i?

Since the mixture and pure i are ideal gases at the same T and V, we have

Ppurei N RT V

_ . 4133
P VO NRT - i (4.133)
and (4.1.32) can be written as
ig
S ke i(T: Pouress Np) = S5 i(T, PN ~ N;R Inx, (4.1.34)

Substituting the intensive version of (4.1.34) into the rhs of (4.1.30) gives the final
result

S (T P, {x}) =ss (T,P)-R Inx; (4.1.35)

pure i

An analogous procedure yields, for the Gibbs and Helmholtz energies,

AS(T, P, {x}) = aS__ (T.P) + RT Inx, (4.1.36)

pure i

and

G (T P,{x}) = gpurEI(T, P) + RT Inx; (4.1.37)
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Note that since x; < 1, the last term on the rhs of (4.1.35) is necessarily positive and
likewise those on the rhs of (4.1.36) and (4.1.37) are necessarily negative. This means
that, for isothermal-isobaric mixing of ideal gases, the entropy increases, while the
Gibbs and Helmholtz energies decrease. But note that this behavior differs from that
for isothermal-isometric mixing.

4.1.4 Properties of Ideal-Gas Mixtures

To obtain the properties of ideal-gas mixtures we simply accumulate the partial molar
properties according to (3.4.4), all at the same T and P,

= Y ES (3.4.4)
i

Then on substituting (4.1.24) into (3.4.4), we find that the volume of an ideal-gas mix-
ture is the mole-fraction average of the pure molar volumes,

TP {x)) = SV = Yol (T P) (4.1.38)

i i

Likewise, substituting (4.1.27) and (4.1.28) into (3.4.4) shows that the internal energy
and enthalpy depend only on temperature and composition,

WS(T, {x}) = 3y upgum(T) (4.1.39)

i

BT AxD) = Y xS () (4.1.40)

i

To obtain the heat capacities, we apply the definitions (3.3.7) and (3.3.8) to (4.1.39)
and (4.1.40), respectively. The results are

eS(T, {x}) = sz Coptorei(T) (4.1.41)
(T AxD) = Y xic,s (D) (4.1.42)

i

Further, the difference between the heat capacities for ideal-gas mixtures is the same

as for pure ideal gases (4.1.4). In summary, all first-law properties of ideal-gas mix-

tures are rigorously obtained by mole-fraction averaging pure ideal-gas properties.
For second-law properties, we substitute (4.1.35)—(4.1.37) into (3.4.4) to find

$8(T, P, {x}) = x, Purel(ir P) - sz Inx, (4.1.43)

i
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§HT P {x}) = Y 2,880 i(T.P) +RT Y x; Inx, (4.1.44)

i i

a$(T, P, {x}) = le.a;gurei(n P) +RT Y x;Inx, (4.1.45)
: .

1

The quantity (-R Xx;1Inx;) is called the ideal entropy of mixing; it is always positive, so
that the entropy of an ideal-gas mixture is always greater than the mole-fraction aver-
age of the pure component entropies, when the mixture and all pures are at the same
T and P. But note that the entropy of mixing appears because the pure components are
at the same P as the mixture, rather than at the same volume. If the pures had been
specified at the same extensive volume as the mixture, then, as implied by (4.1.29), the
entropy would not change on mixing. Therefore, an increase of entropy on mixing
occurs not only because molecules of different species are distinguishable [5], but also
because, for isobaric mixing, the space available to the molecules increases.

4.1.5 Example

When an ideal-gas mixture is separated into its pure components, is less work
required for a separation at constant T and P or for one at constant T and V?

One mole of an equimolar mixture of methane and ethane is confined to a vessel at
25°C and 1 bar. The mixture is to be isothermally separated into its pure components.

Isobaric separation. In an isobaric process, the mixture and the pure components are
each to be at 1 bar. Under the stated conditions these gases are essentially ideal; hence,
by the ideal-gas law, the volumes of the pure gases are each half the volume of the
original mixture, as shown in Figure 4.1. The lower bound on the work occurs when
the separation is performed reversibly, and the required reversible isothermal-isobaric
work was determined in § 3.7.4. The general result was found to be the negative
change of Gibbs energy on mixing,

Pure methane

/ T=25°C Nj=0.5mol
Methane-ethane mixture P=1bar V=12.39 liter

T =25°C N =1mol

P=1bar V =24.79 liter \ Pure ethane

T=25°C N,=0.5mol
P=1bar V =12.39 liter

Figure 4.1 Schematic of an isothermal-isobaric process for separating a binary ideal-gas mix-
ture into its pure components
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W = ~G"(T,P{NY) = =G,y (T, P.AND + D N; o rei(T, P)  (41.46)

sh, rev
i

For ideal gases, we replace G,,;, in (4.1.46) with the extensive form of (4.1.44), finding

W = —RT Y N;Inx; = 1.721J (4.1.47)

sh, rev
i

The positive value indicates that work must be done on the mixture to achieve an
isobaric separation. In a real isothermal-isobaric separation of ideal gases, more than
this minimum amount of work would be needed, because a real process would be
irreversible. Moreover, when separating real mixtures (whose components have inter-
molecular forces), the total minimum work would not be given by (4.1.47). However,
it could still be determined from G using (4.1.46), provided a reliable model were
available for the Gibbs energy of the mixture and each pure. Expressions for G of real
mixtures would be more complicated than the ideal-gas expression (4.1.47) but such
expressions could be obtained from model equations of state.

Isometric separation. In the isometric process the mixture and the pure components
are each confined to vessels having the same volume, as in Figure 4.2. For this process,
the derivation of the expression for the reversible work parallels that given in § 3.7.4
for the isobaric work. We start with the expression for the total, reversible, isothermal
work (3.7.14), written for two outlets and no inlets,

— A —
W, oy = 3 AidN, + (%)TNdP + Gpurei dN; (4.1.48)
i i

Here, the boundary work is zero because V remains constant. Using the ideal-gas law
and the chain rule, the middle term in (4.1.48) becomes Y. RT dN; = 0, so we have left

Wep oo = —[Amix(T, VAND = Y Nty (T, V. Ni)J (4.1.49)

1

Pure methane

T =25°C N =1mol
P =1bar V =24.79 liter

Pure ethane

/ T =25°C N7 =0.5mol
Methane-ethane mixture P=05bar V=2479 liter

T =25°C N, =0.5mol
P=05bar V =24.79 liter

Figure 4.2 Schematic of an isothermal process for separating a binary ideal-gas mixture into its
pure components, with each gas held in a vessel of the same volume V
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Note that the term in brackets is not the change in Helmholtz energy on mixing A",
because the terms that define A must be at a common pressure, but the terms in
(E4.1.5) are at a common extensive volume. Substituting the ideal-gas expression
(4.1.45) for A,,;, in (4.1.49), we obtain

1 =0 (4.1.50)

sh, rev

This means that it is thermodynamically possible to separate an ideal-gas mixture into
its pure components without doing any work, if the process is performed at constant
T and V. But in real separations of ideal gases some amount of work would be needed
to overcome irreversibilities. The important lesson here is that the minimum work to
perform the isometric separation, given by (4.1.50), differs from that for the isobaric
separation, given by (4.1.47).

4.1.6 Entropy and Disorder

Entropy is frequently interpreted physically as a measure of the amount of “order” or
“disorder” in a system. Specifically, statements are made to the effect that increases in
the disorder of a system are reflected by increases in entropy. In this section we
explore such claims. Mixing is one process in which substances can be considered to
become less ordered, and so, if the conventional wisdom is correct, the mixing of pure
substances should be accompanied by entropy increases. To test this, we consider two
processes for mixing pure ideal gases: (a) one at fixed T and P, (b) another at fixed T
and V.

Isothermal-isobaric mixing. Consider N1 moles of pure ideal gas 1 and N, moles of
pure ideal gas 2 initially in separate containers at the same T and P. We mix these two
gases in such a way that the mixture remains at the same T and P; note this is the
reverse of the process shown in Figure 4.1. We want to determine whether the change
in entropy is positive, negative, or zero. The entropy change is given by

AS(T.P) = ST, P, N)—ZNisig (T, P) (4.1.51)

pure i
i

From (4.1.43) we have for the mixture

pure i

S$(T.P.N) = Y N;s& (T, P) - R YN, Inx, (4.1.52)
i ‘

1

So substituting (4.1.52) into (4.1.51) leaves

AS(T,P) = - R ZNI. Inx; (4.1.53)

1

We consider two cases: (i) If the gases differ (say methane and ethane), then x; <1 and
(4.1.53) shows that S increases, as expected,
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AS(T,P) >0 mixing different ideal gases  (4.1.54)

(ii) However, if the gases are the same (e.g., two samples of methane), theni=1, x;=1,
and (4.1.53) gives

AS(T,P) =0 mixing the same ideal gas (4.1.55)

Isothermal-isometric mixing. Now consider N7 moles of pure ideal gas 1 and N,
moles of pure ideal gas 2 initially in separate containers at the same T and V. We mix
these two gases in such a way that the mixture remains at the same T and V; this is the
reverse of the process shown in Figure 4.2. For this situation the entropy change is

AS(T, V) = S8(T, V,N) - ZNZ spurel(T, V/N)) (4.1.56)
i
For this process, (4.1.15) gives the mixture entropy,
S*8(T, V,N) = ZN spurel(T, V/N,) (4.1.57)
Combining (4.1.57) with (4.1.56) leaves,
AS(T,V) =0 mixing different ideal gases ~ (4.1.58)

However, if we mix two samples of the same gas, then (4.1.56) becomes

AS(T, V) = ZN [spureI(T V/N) - (T, V/N))] (4.1.59)

pure i

The entropy changes because the molar volume of the pure in the final state differs
from that of the two pures in their initial states. The response of S to changes in v is
given by the Maxwell relation in (3.3.37). For ideal gases it becomes

(5:):

Separating variables and integrating over the volume, we find for each sample i,

= (g%) = lé ideal gas (4.1.60)
0

N do VN
7

X N.
As; = RJ’ =Rln—I = RlIn— < 0 (4.1.61)
VN N

Hence, both terms in the sum in (4.1.59) are negative and therefore,

AS(T,V) < 0 mixing the same ideal gas (4.1.62)
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Table 4.1 Changes in entropy for mixing ideal gases at fixed T and

V and at fixed T and P
Gases being mixed FixedT&V  Fixed T& P
Samples of the same ideal gas AS <0 AS =0
Different ideal gases AS =0 AS >0

Our results, summarized in Table 4.1, imply that entropy does not necessarily mea-
sure the amount of “disorder.” When ideal gases are mixed (and “disorder” presum-
ably increases), the entropy may increase, decrease, or remain constant, depending on
how the mixing is done and on whether we are mixing different gases or samples of
the same gas. Note that none of the results in Table 4.1 violate the second law.

4.2 DEVIATIONS FROM IDEAL GASES: DIFFERENCE MEASURES

In § 4.1.4 we found that to compute the thermodynamic properties of ideal-gas mix-
tures, we need only the mixture composition plus the pure ideal-gas properties at the
same state condition as the mixture. In other words, the properties of ideal-gas mix-
tures are easy to compute. We would like to take advantage of this, even for sub-
stances that are not ideal gases. To do so we introduce, for a generic property F, a
residual property F'®, which serves as a difference measure for how our substance devi-
ates from ideal-gas behavior.

By dividing F into an ideal-gas part plus a residual part, we sometimes ease the
computational burden incurred when we need to compute the properties F of a real
mixture. Of course, this strategy is most successful when our real substance does not
differ much from an ideal gas, for then F'® is a small portion of the total property F
and we may be able to tolerate a sizable error in estimating that small portion. As a
result, residual properties have been most useful for nonideal gas mixtures. They are
also legitimate entities for liquids and solids, though for condensed phases their mag-
nitudes are large. In traditional practice residual properties were infrequently used for
condensed phases; however, recent advances in modeling enable us to evaluate resid-
ual properties for dense fluids as well as for gases.

We define two classes of residual properties: isobaric ones and isometric ones. The
isobaric residual properties (§ 4.2.1) are the traditional forms and use P as the inde-
pendent variable. The isometric ones (§ 4.2.2) use v as the independent variable and
thereby simplify computations when our equation of state is explicit in the pressure;
such equations of state are now commonly used to correlate thermodynamic data for
dense fluids. Although isometric property calculations may be more complicated than
those for isobaric properties, with the help of computers, this is not really an issue.

4.2.1 Isobaric Residual Properties

These residual properties are defined only for those thermodynamic properties F that
can be made extensive:



134 PROPERTIES RELATIVE TO IDEAL GASES

TES

(T, P, {N}) = F(T, P, {N}) - F$(T, P, {N}) 4.2.1)

Note that all three terms in (4.2.1) are to be evaluated at the same temperature, pres-
sure, and composition. In general, F** may be positive, negative, or zero. An ideal gas
has all residual properties equal to zero; if a substance has only some residual proper-
ties equal to zero, it is not an ideal gas.

Since the definition (4.2.1) is a linear combination of thermodynamic properties, all
relations among extensive properties, such as those in Chapter 3, can be expressed in
terms of residual properties. Examples of such relations include the four forms of the
fundamental equation and the Maxwell relations. Moreover, using the expressions
developed in § 4.1.4 for ideal-gas mixtures, the following intensive forms for residual
properties are obtained:

o (T, P{x}) = o(T, P{x}) - KL (422)
WP Ax) = (TP () = 3 (1) (4.23)
(T, P, {x}) = (T, P, {x}) —sz Hnre (1) (42.4)
(T, P.{x1) = s(T. P, {x}) _z l purel(T p)+sz Inx; (4.2.5)
d**(T. P, {x}) = a(T, P, {x}) —le purei(T.P) - RT Rl (42:6)
(T P {x}) = g(T.P.{x}) - 3 %, 85,0(T. P)~RT Y xInx, (4.2.7)

i i
The residual chemical potential
res — — ig
(T’ P’{x}) = Gz(T’ P’{x})_Gi (T’ P&{x}) (428)

can be found either by applying the partial molar derivative to (4.2.7) or by substitut-
ing (4.1.37) for the chemical potential of an ideal gas directly into the definition (4.2.8).
Both procedures give the same result,

"(T, P, {x}) = G(T,P,{x})- gpurel(T,P)—RT Inx, (4.2.9)

In all these equations (4.2.2)-(4.2.9), the mixture and each pure ideal gas must be at
the same temperature, pressure, and composition, except the ideal-gas values for U
and H, which only must be at the same temperature and composition because the
ideal-gas internal energy and enthalpy are independent of pressure.
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4.2.2 Isometric Residual Properties

Instead of using T and P as the independent variables, as we did in § 4.2.1, we could
choose T and V. Therefore, we define another set of residual properties in which the
real substance and the ideal gas each occupy a container of the same volume V. Exten-
sive isometric residual properties are defined by

I’ES

(T,V,{NY) = F(T, V, INY) - F&(T, V, {N}) (4.2.10)
The corresponding intensive analogs are defined by

(T, v, {x}) = f(T, v, {x})—fig(T, o, {x}) (4.2.11)

In the definition (4.2.10), F can be any of the extensive properties U, H, S, A, or G and
in (4.2.11) f can be any of their intensive analogs. Of course, the extensive and inten-
sive (isometric) residual volumes are always zero. In addition, (4.2.11) can be used to
define a residual pressure,

P*(T, v, {x}) = P(T, v, {x}) - = (4.2.12)

For intensive properties, the generic forms for the residual properties are all
obtained by combining (4.1.16) with the definition (4.2.11):

fET o {xp) = f(Too {x)) - Z F e (T, 0) (4.2.13)

Here, as in (4.1.16), the pure ideal-gas molar volumes are related to the mixture molar
volume by v; = Nv/N;. Equation (4.2.13) applies to both first-law and second-law
properties, and we have

W0 () = (T ) = 3 e (T) (4214)
W0 1) = BT o ) = 3 e (D) (42.15)
(T, 0, {x}) = s(T, v, {x}) - le Spure (T, 2) 4216)
a"(T,0.{x}) = a(T, 0, {x}) - Z i Tpure (T 27) “217)

VES

(T,v,{x}) = g(T, v, {x})- Zx g;gurei(tr, v) (4.2.18)
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Note that here the second-law properties contain no ideal entropy of mixing term,
because the mixture and all pure ideal-gas components are at the same temperature
and same extensive volume V.

The isometric residual chemical potential can be obtained from that part of (3.2.22)
which relates the chemical potential to the Helmholtz energy,

res
G(T, v, {x}) = | 2D (4.2.19)
ON; JrvN.,.
j#i
Using (4.2.17) for the residual Helmholtz energy, we find
G/ (T.0. {x}) = GU(T. 0. {x}) ~a3 e 1(T.0)) (4.2.20)

purei

In all the equations (4.2.14)-(4.2.20) the mixture and each pure ideal gas must be at the
same temperature, composition, and extensive volume.

4.2.3 Relations Between the Two Kinds of Residual Properties

We now relate the two kinds of residual properties introduced in § 4.2.1 and 4.2.2.
First write the intensive form of the definition (4.2.1) for isobaric residual properties,

FO(T, P, {x}) = £(T, P, {x}) - f3(T, P, {x}) 4221)
and then subtract this from the definition (4.2.11) for f (T, v, {x}). The result is

res

(T, 0, {x}) = f(T, P, {x}) +AfS (4.2.22)

where
AfS = f8T P, {x) - F8(T 0, {x)) (42.23)

We emphasize that in (4.2.23) the independent variables P and v are each properties of
the real substance; they are not related by the ideal-gas law, so the value for Af* given
by (4.2.23) is not necessarily zero.

When f is the volume, v"*(T, v, {x}) = 0, and (4.2.22) reduces to (4.2.2). Likewise,
when fis the pressure we have P"*(T, D, {x}) = 0, then (4.2.22) reduces to (4.2.12). Oth-
erwise, for first-law properties, we have

res

u (T,v,{x})

res

u (T,P,{x}) (4.2.24)

and

res

W (T, v, {x}) = W(T, P, {x}) (4.2.25)

because the ideal-gas values of u and & are independent of P and v.
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But for second-law properties, the relations are not as simple as (4.2.24) and
(4.2.25). To have a representative second-law property, consider the entropy. The Max-
well relation (3.3.34) leads to

. p ig P 4
A= [ (al) an = R T (4.2.26)
pis\dT /PN pi8
= Rin2ELodxh) o g P2l Rz (4.2.27)
P8(T, v, {x}) RT

So for the entropy, (4.2.22) combined with (4.2.27) gives

res res

(T, v, {x}) = (T, P, {x}) - RInZ (4.2.28)

With 4™, h™®, and s"* determined, we can use the defining Legendre transforms to
relate the residual Gibbs energy, Helmholtz energy, and chemical potential. The
results are

res res

a (T,v,{x}) =a (T,P,{x})+RTInZ (4.2.29)
¢ (T, v, {x}) = ¢ (T, P,{x})+RTInZ (4.2.30)
G, “(T,v,{x}) = G/ "(T,P,{x})+RT InZ (4.2.31)

We caution that (4.2.31) cannot be derived in a simple way by applying the partial
molar derivative to the difference in residual Gibbs energies given in (4.2.30). The dif-
ficulty is that the partial molar derivative imposes a fixed pressure, but when the lhs
of (4.2.30), ¢"*(T, v {x}), is changed at fixed pressure, the mixture and ideal-gas vol-
umes are no longer the same. Consequently, the isobaric derivative of the lhs of
(4.2.30) is not an isometric residual property; in particular, it is not the lhs of (4.2.31).

In all the equations relating second-law residual properties (4.2.28)—(4.2.31), the
compressibility factor Z is to be evaluated at the state (T, P, v, {x}) of the real substance
of interest. The state dependence of Z is discussed in the next section.

4.3 DEVIATIONS FROM IDEAL GASES: RATIO MEASURES

Besides difference measures, it is frequently convenient to describe deviations from
ideality by using ratio measures. In this section we present the ratio measures com-
monly employed to measure deviations from ideal-gas behavior: the compressibility
factor and the fugacity coefficient.

4.3.1 Compressibility Factor

The compressibility factor Z serves as a ratio measure for how a real-substance vol-
ume deviates from that of an ideal gas at the same T and P,
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o(T,P,{x}) _ PV

Z = (4.3.1)

Therefore, an ideal gas has Z = 1, but the converse is not true: a substance may have Z
=1 but not be ideal. Nonideal gases may have Z>1,Z<1,0or Z=1.

The compressibility factor serves a purpose similar to that of the isobaric residual
volume: both measure how the volume of a substance deviates from the ideal-gas vol-
ume at the same T and P. The distinction is that one is a difference, while the other is a
ratio. But the two are related; the relation is found by combining (4.2.2) with (4.3.1),

res
v

_RT
= 5 (Z-1) (4.3.2)

The compressibility factor and residual volume of pure ethane are compared in
Figure 4.3 for temperatures above the critical point. Note that neither Z nor v"* is con-
stant: both change with T and P. Along isotherms near T, they decrease with increas-
ing pressure, pass through minima, and increase as P goes to high values. At high
temperatures the minima are weaker, until at sufficiently high temperatures, both Z
and v"* increase monotonically with increasing pressure. This behavior is typical of
many gases.

Extrema are usually caused by competing effects. In Figure 4.3 the competition is
between repulsive and attractive forces acting among the molecules. Consider the low
temperature isotherm for Z in Figure 4.3. When the pressure is low, the molecules are
widely separated (on the average), their interactions are infrequent and weak, so the
gas is essentially ideal. As the pressure is increased, molecules are pushed together,
they begin to attract one another, and the molar volume contracts, causing v"* to
become negative and Z to decrease below unity. But as the pressure is increased more,
electron clouds begin to overlap: repulsive forces become strong enough to counter-
balance attractive forces, so v and Z pass through minima. At still higher pressures,
repulsive forces dominate attractive forces and the molar volume becomes greater
than the ideal-gas value. Along each low temperature isotherm there is a pressure at
which the repulsive and attractive forces balance, making " =0 and Z =1, although
the gas is not ideal.

A principal difference between Z and v"*, seen in Figure 4.3, is the limiting behav-
ior at P = 0. At zero pressure we expect (4.1.14) to be obeyed and the gas to be ideal;
the limiting value Z = 1 supports that expectation. That is,

lim Z =1 fixed T (4.3.3)
P—-0

Similarly, we might at first expect v"* = 0 at P = 0; however, Figure 4.3 implies that,
with temperature fixed, v approaches a non-zero constant as P approaches zero.
Moreover, the value of that constant changes with temperature:

lim 0" = lim RT(Z-1)

= constant fixed T (4.3.4)
P—-0 P->0
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Figure 4.3 Effects of pressure on residual volumes and compressibility factors along three
supercritical isotherms for pure ethane. Broken horizontal lines represent values for the ideal
gas. The ethane critical point occurs at T, = 305.3 K and P, = 48.7 bar. Note that Z — 1 as P — 0,
regardless of the temperature; however, the residual volumes do not approach zero in the same
limit. Instead, they obey (4.3.4). Further note that each isotherm has Z = 1 at some high pres-
sure, although ethane is not an ideal gas at those pressures. Curves calculated from experimen-

tal data given in [7].
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Later in this chapter we will discover the identity of the constant in (4.3.4), but for
now we merely note that it arises because of intermolecular forces. In particular, that
limiting value of v"* plays a central role in describing nonideal gas behavior at low
pressures.

This comparison of Z and v illustrates the complementary roles that a ratio mea-
sure and a difference measure can play in describing the same kind of deviation from
ideality. Both describe the same kinds of deviations, but each reveals those deviations
in different ways. In a particular situation one measure or the other may prove more
illuminating or useful or both.

res

4.3.2 Fugacity

The fugacity is a property, created by G. N. Lewis, to provide an alternative to the
chemical potential [8]. Conceptually, fugacity offers no advantage over the chemical
potential, but it does offer computational advantages, particularly for mixtures. The
definition of fugacity is motivated by the response of the chemical potential in an
ideal gas when the state is changed isothermally. For an ideal-gas mixture, that
response is derived from (4.1.44) and found to be

G = dg' .+ RTdInx, fived T (4.3.5)

purei

At fixed T, the pure-fluid term can respond only to changes in P, so we can write

4GY* = v o;dP + RTdInx, = 4P+ RTdInx, (43.6)

~ “purei

Hence,
G = RTdIn(x,P) fixed T 4.3.7)

Lewis defined the fugacity f; as an analogy to the ideal-gas expression (4.3.7). The
definition contains two parts. For component i in a mixture of any phase, the first part
of the definition is

Part 1 of Definition dG; = RTd Inf; fixed T (4.3.8)

To preserve thermodynamic consistency, we require that the general expression (4.3.8)
revert to the special form (4.3.7) if our substance is indeed an ideal gas. Therefore as
the second part of the definition, we require that the ideal-gas fugacity obey

Part 2 of Definition fiig = x.P (4.3.9)

The two parts, (4.3.8) and (4.3.9), together constitute a complete definition of the fugac-
ity. The chemical potential is an intensive, conceptual, state function and it has dimen-
sions of energy/mole; the fugacity, as defined by (4.3.8) and (4.3.9), is also an
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intensive, conceptual, state function, but it has dimensions of pressure. For a pure
component the chemical potential is merely the molar Gibbs energy, so the definition
of the fugacity reduces to

A8purei = RTINS e fixed T (4.3.10)
ig _
fpurei =P (4.3.11)

We can obtain an algebraic form of (4.3.8) by integrating from a reference state (®),
along an isotherm, to the state of interest. The general result is

f(T, P, {x})

AT, PO 1Y)

CAT, P, {x}) — G(T, P, {x®}) = RT In (4.3.12)

This algebraic form is always true, but it is not computationally useful until we identify
the reference state and determine a value for the fugacity in that state. (“Reference
state” refers to the lower limit on the integral that produced (4.3.12) from (4.3.8).)

We cite two reasons for introducing fugacity as an alternative to the chemical
potential. One is to obtain the algebraic form (4.3.12), which replaces a difference mea-
sure with a ratio measure. In many applications, functional forms for ratios are less
complicated than the corresponding forms for differences. Such simplifications facili-
tate numerical calculations. Further, the expressions (4.3.7) and (4.3.8) for the chemical
potential become troublesome as x; — 0; in comparison, the fugacity remains well
behaved (f; — 0 as x; — 0). A second reason is that the second part of the definition
(4.3.9) identifies the ideal gas as the reference state for fugacity, and numerical values
for ideal-gas fugacities are readily obtainable.

A principal use of fugacity is in phase equilibrium computations—a use we will
develop in Part III of this book—but for now note that f; is a well-defined quantity,
even for systems of a single phase. Incidentally, although Lewis first defined the quan-
tity f; and chose its name, he did not create the word fugacity. The word itself is a nom-
inative form derived from the Latin verb fugere, which means fo flee. According to the
Oxford English Dictionary the word fugacity was used as early as 1666 by Robert Boyle.
So the word is old, though it is now rarely used in other than technical discourse.

A response of the fugacity to a change in state is simply found by combining the
definition (4.3.8) with the appropriate response of the chemical potential, as given in
§ 3.4.3. For isothermal changes in pressure, (4.3.8) combined with (3.4.15) gives

dInf; V;
—! = 43.1
( opP )Tx RT ( 3 3)

For isobaric changes in temperature, we choose the ideal gas as the reference state in
(4.3.12), divide (4.3.12) by RT, and take the temperature derivative of both sides with
pressure and composition fixed. On applying the Gibbs-Helmholtz equation (3.4.17),
we find
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—res

(a_lnf 'i) __Hi (43.14)
oT JpPx RT2 e

In addition, the fugacities of all components in a mixture are not independent;
rather, they are related through the Gibbs-Duhem equation. If we use g/RT for the
generic function fin the Gibbs-Duhem equation (3.4.10), we find

h v
indlnfi = —R—TZdT + mdP (4.3.15)
1

In particular, at fixed T and P, a binary mixture must have

ol ol ol
%, (Lfl) - x, (sz) - xz( o/ 2) fired Tand P (4.3.16)
dxy Jrp dxy Jrp dx, Jrp

So for example, if f1 increases as x; increases, then f, must decrease.

4.3.3 Fugacity Coefficient

In this subsection we introduce a ratio measure that indicates how the fugacity of a
real substance deviates from that of an ideal gas. As the reference state, we choose the
ideal-gas mixture at the same temperature, pressure, and composition as our real mix-
ture. Then, on integrating the definition of fugacity (4.3.8) from the ideal-gas state to
the real state, we obtain an algebraic form analogous to (4.3.12); that is, we find

— —1 1 T7 P7
Gi(T, P, {x}) — GA(T,P,{x}) = RT LS (4.3.17)

F8(T, P, {x})

The ratio of fugacities on the rhs is the desired deviation measure; it is called the fugac-
ity coefficient @;,

(T, P, {x}) _ f(T.P,{x})
£3(T, P, {x}) x;P

(4.3.18)

The lhs of (4.3.17) is the isobaric residual chemical potential, so we can write

—=res

G; (T,P,{x}) = RT In@,(T, P, {x}) always true (4.3.19)

This relates a ratio measure to a difference measure. Physically, the residual chemical
potential (and therefore the fugacity coefficient) measures the reversible isothermal-
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isobaric work done in extracting a small amount of component i from an ideal-gas
mixture and injecting it into the real mixture. This interpretation arises from (6.3.8),
which is derived in § 6.3.1. For a pure substance the definition (4.3.18) simplifies to

_ fpurei(T’ P) _ furei(T’ P)

| = - (4.3.20)
pure 1 lg P
fpure i(T’ P)
and (4.3.19) reduces to
Gpurei(T, P) = RT In@ (T, P) (4.3.21)

The fugacity coefficient is always positive; however, it may be greater or less than
unity. The ideal gas has ¢; = 1, but the converse is not true: a substance having ¢; =1 is
not necessarily an ideal gas. Note that the definition (4.3.18) places no restriction on
the kind of phase to which ¢; may be applied; it is a legitimate property of solids, lig-
uids, and gases, though it is most often applied to fluids.

Figure 4.4 compares the two ratio measures, Z and ¢, for deviations from ideal-gas
behavior for pure ammonia along the subcritical isotherm at 100°C. The figure shows
that Z(P) is discontinuous across the vapor-liquid phase transition, while ¢(P) is not.
The discontinuity in Z occurs because the vapor and liquid phases have different
molar volumes. In contrast, ¢(P) appears continuous and smooth, though in fact it is
only piecewise continuous. That is, the ¢(P) curves for vapor and liquid intersect at
the saturation point, but they intersect with different slopes. Near the triple point that
difference in slopes is marked, but near the critical point the difference is small: the

I
. vapor
| pressure

Z or @

P (atm)

Figure 4.4 Comparison of the ratio measures Z and ¢ for pure ammonia at 100°C. The ammo-
nia critical point occurs at T, = 405.6 K and P, = 111.5 atm. These curves are plots of data tabu-
lated by Walas [9].
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curve for ¢(P) in Figure 4.4 appears to make a smooth transition across the saturation
pressure (near 60 atm).

To obtain the response of the fugacity coefficient to a change in state, we combine
the relation (4.3.19) with the appropriate response of the residual chemical potential.
At fixed composition, the fundamental equation can be written in the form

—=res —=res —res

dG;" = —8°dT+ V."dp (4.3.22)

Then the response of @; to an isothermal change in pressure is given by

aln(pl- Vi
= e 4.3.2
( oP )Tx ( 3 3)

and the response to an isobaric change in T is given by a Gibbs-Helmholtz equation,

—res

(aln(Pi) :_Ii (4.324)
aT Jox - Rp2 -

Note that the temperature derivative of Ing; is the same as the temperature derivative
of Inf;; cf. (4.3.14) with (4.3.24). Further, the fugacity coefficients must obey a Gibbs-
Duhem equation. Letting ¢/ RT be the generic function f in the Gibbs-Duhem equa-
tion (3.4.10), we find

hres Ures
indln(pi = —RTsz + zpdP (4.3.25)
1
At fixed T and P this reduces to
) x;dIng; = 0 fixed T and P (4.3.26)
i

Figure 4.5 shows how changes in composition usually affect fugacity coefficients in
binary mixtures of nonideal gases. In the figure, note that the values of ¢ for CO, and
C3Hg at least qualitatively satisfy the Gibbs-Duhem equation (4.3.26); that is, as the
mole fraction of CO, increases, one fugacity coefficient increases while the other
decreases. Note also that for both substances, the slope of each @;(x;) is zero in its pure-
fluid limit, as required by (4.3.26). Since both these @s are less than unity, the corre-
sponding component residual chemical potentials are negative, by (4.3.19).

Figure 4.6 shows how a gas-phase fugacity coefficient may be affected by increas-
ing pressure: ¢ increases, passes through a maximum, and decreases at high pressure.
Just as for the minimum in Z in Figure 4.3, the maximum in Figure 4.6 can be
explained by competition between attractive and repulsive forces among molecules.
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Figure 4.5 Typical composition dependence of fugacity coefficients in gas mixtures. Fugacity
coefficients in carbon dioxide + propane mixtures at 100°F, 200 psia. These curves are corrected
from results tabulated by Walas [9].
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¢

1.2

ideal gas

P (bar)

Figure 4.6 Effect of pressure on fugacity coefficient for CO, in carbon dioxide(1) + n-butane(2)
mixtures containing 85 mole % butane at 171°C. Replotted from a figure in Prausnitz et al. [10].
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4.4 CONCEPTUALS FROM MEASURABLES USING EQUATIONS OF STATE

In this section we present explicit expressions that allow us to use the measurables P,
u, T, and {x} to compute values for u, h, s, a, and g. We can only obtain values for these
conceptuals relative to some well-defined reference state, so here we choose the refer-
ence to be the ideal gas. As a result, the expressions obtained below provide the resid-
ual properties. In addition, from the expression for the residual chemical potential we
can readily obtain expressions for the fugacity coefficient. All the relations derived
below involve integrals over functions of P, V, T, and {x}, and to exploit those rela-
tions, we need a volumetric equation of state for our substance.

A volumetric equation of state takes one of two forms. A volume-explicit equation
has the form v = (T, P, {x}), while a pressure-explicit equation has the form P = P(T, g,
{x}). Therefore, our expressions for conceptuals divide into two classes, depending on
whether P (§ 4.4.1) or v (§ 4.4.2) is independent. In a particular problem, calculations
are often simplified by using one set of independent variables rather than the other. To
choose between the two sets, we follow the steps given in Figure 4.7.

The choice hinges on whether the independent variable (P or v) in our equation of
state is appropriate for the conceptual whose value we need to compute. Recall from
Chapter 3 that the fundamental equations for u and a have v as the independent vari-
able, while those for 1 and g have P. Consequently, if we need to compute Au or Ag,
then we prefer to use a pressure-explicit equation of state, P(T, v, {x}), but if we need to
compute Al or Ag, then we prefer to use a volume-explicit equation, v(T, P, {x}). Note
that if we need As, f;, or @, then little advantage is offered by one kind of equation
over the other: both kinds involve about the same computational effort. These possi-
bilities summarize the lhs of the diagram in Figure 4.7.

However, if the independent variable (P or v) in our equation of state differs from
the one that is appropriate for a particular conceptual, then a more involved computa-
tional procedure must be followed. This procedure appears on the rhs of the figure.
For example, if we need Ah(T, P, {x}), but our equation of state uses (T, v, {x}), then we
have an incompatible situation to resolve. It should be resolved not by tampering
with the expression given in § 4.4.1 for the residual enthalpy, but instead by comput-
ing Ah indirectly via a Legendre transform. Therefore the procedure should be this:

(a) Solve the equation of state for v at the known values of T, P, {x}.
(b) Compute u"*(T, v, {x}) using the equation given in § 4.4.2.
(c) Form Au from u"** by Au = Au" + Au8.

(d) Obtain Ak using the defining Legendre transform Ah = Au + A(Pv).

4.4.1 When T, P, and {x} Are Independent

When we have an equation of state in the form o(T, P, {x}), then pressure is the inde-
pendent variable (rather than v), and the relevant forms for conceptuals are the iso-
baric residual properties introduced in § 4.2.1. To evaluate those quantities, we start
with the observation that the residual properties are all state functions; this allows us
to write
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fres(T P, {x}) = Jfres(,g) res _ J‘g dfres 441)

The lower limit is zero because the residual properties of ideal gases are zero. Our
objective is to write the rhs of (4.4.1) as an integral over a measurable, and since our
equation of state has P independent, we choose P to be that measurable. Therefore, we
write (4.4.1) as

P res
F5(T, P, {x}) = JO (agn )Txdn fived Tand (x)  (4.4.2)

where 7 is the dummy integration variable that corresponds to the pressure. Equation
(4.4.2) serves as the starting point for evaluating any isobaric residual property from a

I. Identify state function f” that solves your
problem. f” could be u, h, s, a, g, f;, or @;.

Y

II. Choose a PuTx EoS that applies to your
substance: either P(T, y, {x}) or (T, P, {x}).

l

III. For your EoS, identify the appropriate
state function /" to compute:

A. IonSisP(v) use f=P u,a,s, f;, or ¢,
B. If EoSisv(P), usef =v h, g, s, f;, or ¢;.

¢

Is f’ (step I) same as f (step III)?

Use equations in § 4.4 to <—, |—> (a) Solve your EoS for P, if you

Yes No |know v, or for v, if you know P.

compute f® and % from
EoS.

(b) Use equations in § 4.4 to
compute " and %8 from EoS.

(c) Use Legendre transforms
to convert fto f”.

Figure 4.7 Steps involved in identifying the set of independent variables (T, B, {x}) or (T, v, {x})
to be used in computing conceptuals from PvTx equations of state (EoS)
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volume-explicit equation of state. In practice, we need to evaluate only three proper-
ties: the residual volume (v"*), one first-law conceptual (1" or h'**), and one second-
law conceptual (s"*, a", or g'®); then the remaining residual properties can be com-
puted from Legendre transforms.

First-law properties. First note that we can obtain the residual volume by evaluating
o(T, P, {x}) directly from the volumetric equation of state, then

0" (T, P, {x}) = o(T, P, {x}) — R?T (42.2)

Second, since P is the independent variable, the appropriate first-law conceptual to
evaluate is the enthalpy. For the enthalpy, (4.4.2) becomes

W (T, P, {x}) = jj(ahres)hdn - Jj(ah)Txdn (4.4.3)

omn on

The second equality is valid because the enthalpy of an ideal gas does not depend on
pressure. In § 3.3.3 we obtained the derivative in (4.4.3) in terms of measurables; so,
on substituting the intensive form of (3.3.35) into (4.4.3), we find

res

P
H(T, P, {x1) =J'Ov(1—Ta)dn fived Tand {x}  (4.4.4)

where o is the volume expansivity. This expression allows us to compute values for
the isobaric residual enthalpy from an equation of state of the form (T, P, {x}). Note
that (4.4.4) applies to pure substances as well as to mixtures.

Second-law properties. With P as the independent variable, we could evaluate either
g or s as the second-law property; here we choose s. Then (4.4.2) becomes

srianimn = [00) = (@), GO s

With the help of the Maxwell relation (3.3.34), we find

res

P
s (T,P,{x}) = _J.O (v(x - %)drc fixed T and {x} (4.4.6)

Although each term in the integrand divergences in the P — 0 limit, those divergences
cancel, so the integral in (4.4.6) is bounded. Equation (4.4.6) provides a computational
route for obtaining the residual entropy from equations of state of the form v(T, B, {x});
it applies to pure substances as well as mixtures. With v*, h"®, and s"* now deter-
mined, the remaining residual properties, ", ¢'*, and 4", can be obtained from their
defining Legendre transforms.
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Residual chemical potential. For the chemical potential of component 7 in a mixture,
(4.4.2) becomes

B p aélres P

G/ P xy = [ || dn=[ V% (4.47)

0 on Tx 0
Hence,
res(T, P, {x}) = J [V - R—Tg:}dn fixed T and {x} (4.4.8)

For a pure fluid, (4.4.8) simplifies to

765 .

Gpurei(T P) = gheei(T, P) = RTj Z-1T  frdr  @49)

In both (4.4.8) and (4.4.9), the two terms in the integrand cancel as P — 0, so no diver-
gence occurs in the ideal-gas limit.

Fugacity coefficient. To obtain computationally useful expressions for fugacity coeffi-
cients, we merely need to combine (4.4.8) with (4.3.19), which relates the fugacity coef-
ficient to the residual chemical potential. So for a mixture we have

Ing,(T, P, {x}) =j [%_1}‘1 fixed Tand {x}  (4.4.10)

while for a pure substance, combining (4.4.9) with (4.3.19) leaves

P
lntppurei(T, p) = JO [Z-1] ‘% fixed T (4.4.11)

4.4.2 When T, v, and {x} Are Independent

When we have an equation of state in the form P(T, v, {x}), then the isometric residual
properties are easier to compute than are the isobaric ones. However, in applications,
we usually need the isobaric residual properties, not the isometric ones. We follow a
two-step procedure to obtain values for isobaric residual properties: (1) evaluate the
isometric residual properties from the integrals presented in this section, then (2) con-
vert those isometric properties to isobaric ones using the relations given in § 4.2.3.

The procedure for obtaining computationally useful expressions for isometric
residual properties parallels that used in § 4.4.1 for the isobaric properties. That is,
analogous to (4.4.2), we can obtain each residual property by starting from
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res

freS(T, v,{x}) = JU (agw )Txdw fixed Tand {x}  (4.4.12)

where y is the dummy integration variable that corresponds to the molar volume v
and the ideal-gas limit is attained as v — 0. As in § 4.4.1, of the five conceptuals u, 1, s,
a, and g, we actually only need to evaluate (4.4.12) for one first-law property and one
second-law property, then the others can be obtained from Legendre transforms.

First-law properties. With volume taken to be independent, the appropriate first-law
conceptual is the internal energy, and (4.4.12) becomes

res
W (T, v, {x}) = Jv (agw )Txdw _ JU (%)T dy (4.4.13)
oo oo X

Using the intensive form of (3.3.38) for the volume derivative of u, we find

res

u (T,v,{x}) = Jw[P— Ty,ldy fixed Tand {x}  (4.4.14)

where 7, is the thermal pressure coefficient. This result applies to pure substances and
mixtures. Once we have a value for the isometric quantity »" from (4.4.14), we also
have the isobaric property 1", by (4.2.24).

Second-law properties. As the second-law property, we again choose s, so (4.4.12)
becomes

(T, v, {x)) = J:(aaS:;S)TxdW - J: {(5_\3)“_@5_5)4@ (4.4.15)

Using the Maxwell relation (3.3.37), we find

res “TR
T, v, = - — d ixed T and 44.16
s (T,v,{x}) L Llf YU} v fixed T and {x}  ( )

which applies to pure substances as well as mixtures. With a value for the isometric
s" from (4.4.16), we can obtain the corresponding value of the isobaric property s
by applying (4.2.28). The isobaric v"* can be obtained simply from (4.2.2). Then with
v, u™, and 5" now determined, the remaining isobaric residual properties, h™*, ¢'*,
and a’*

, can be obtained from their defining Legendre transforms.

Residual chemical potential. To obtain the isometric residual chemical potential, we
evaluate the general form (4.4.12) by integrating over either the intensive volume v or
the extensive volume V; we used the intensive volume above. But the following devel-
opment is somewhat easier if we use the extensive volume, so we rewrite (4.4.12) as
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— res

res V l
G; (T.v,{x}) =j (aac_\y] dv (4.4.17)
e Tx

where W is the dummy integration variable that corresponds to the extensive volume
V. Using (4.2.19), we write

[BG?“J _ {a (aA”SJ } _ {a(aAr“) } 44.19)
A% TN A% BNI TVN]'#—i TN E)Nl oV JIN TVN].¢1-

res ig
) _[aap ] __ (gi ] N (%LJ (4.4.19)
N; TVN, N; TVN; . N; TVNjsi

At first glance, the rhs of (4.4.19) appears peculiar because we have an intensive prop-
erty (pressure) responding to changes in the amount of material. But note the vari-
ables held fixed on the rhs—not the molar volume v, but the extensive volume V. For
example, if at fixed T we add to the amount of gas held in a rigid vessel (so V is fixed),
then P changes (usually it increases). So the derivatives on the rhs of (4.4.19) are well-
defined; in fact, for the ideal gas we have

ig
(E’L) - {a (M)} - RT (4.4.20)
aNi TVNj¢i aNi %4 TVNj::i 1%

Then we combine (4.4.17), (4.4.19), and (4.4.20) to obtain

G/ (T, 0, {x}) = J':[(B—P —R_T}dlp fixed Tand {x} (4.4.21)

aNi)TVNj¢i g

where the integration is over the extensive volume (V < ). With a value for the iso-
metric residual chemical potential from (4.4.21), we can obtain the corresponding
value for the isobaric property by applying (4.2.31). Equation (4.4.21) applies to mix-
tures and pure fluids, though for pure fluids it simplifies to

—=res

Gpurei(T, v) = RTJ.OO[Z—I]%V+RT(Z—1) fixed T (4.4.22)
v

Fugacity coefficient. Substituting (4.4.21) into (4.2.31) gives the isobaric residual
chemical potential, then substituting that into (4.3.19) leaves

- [T (2P 114 _ ,
Ing(T, P, {x}) = —[V[RT(BNi)TVNjii 1} G - InZ  fixed Tand (] (44.23)
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For pure fluids this simplifies to
In (T,P) = J [Z-1] w+(Z 1) - InZ fixed T (4.4.24)
OpureilTs ) _ dV -1) - e 4.

Note that the integrations for mixtures above must be done over the extensive volume
(V& ¥); however, the integrations for pures can be done over either the extensive
volume V or the intensive volume (v < ).

4.5 SIMPLE MODELS FOR EQUATIONS OF STATE

The expressions for residual properties derived in § 4.4 all involve integrals over vari-
ous functions of the measurables P, v, T, and {x}. Therefore, to actually compute those
integrals, and hence to obtain numerical values for residual properties, we must have
numerical or analytic forms for volumetric equations of state. In this section we
present a few simple but important forms that model the nonideal-gas behavior of
real fluids: the hard-sphere fluid (§ 4.5.1), the virial equations (§ 4.5.2-4.5.5), and selec-
tions from the van der Waals family of equations (§ 4.5.6-4.5.12). These are not by any
means the only analytic forms available for equations of state, but they are enough to
allow us to exercise the relations given in the previous section and to obtain qualita-
tive descriptions of fluid behavior. A more thorough discussion of PvTx equations can
be found in books by Sandler et al. [3], Sengers et al. [4], and Poling et al. [11].

4.5.1 Hard Spheres

As the density of a fluid is decreased, the effects of forces between molecules weaken,
and the fluid behaves more like an ideal gas; that is, the behavior of real fluids may
simplify under extreme conditions. Another extreme occurs by making the tempera-
ture high, for then many simple fluids behave as if they were composed of hard
spheres:

lim (real stuff) = hard-sphere substance fixed v (4.5.1)

T — large

In a hard-sphere fluid each molecule occupies space and the molecules exert forces on
one another, but those forces are purely repulsive and act only when spheres collide:
the spheres act like billiard balls. So the hard-sphere substance is an extreme model,
but under certain conditions it is more realistic than the ideal-gas model.

In a pure hard-sphere fluid, all spheres have the same diameter ¢ and the com-
pressibility factor Z depends on only the fluid density p = N/V, where N is the number
of spheres held in a vessel of volume V. For hard spheres, the density is convention-
ally cited in terms of the packing fraction m, which is the ratio of the volume of the
spheres to the volume of their container:

3
_ Vspheres _ N475(0/2)3 — TN 40 (4.5.2)
n ik = 5.
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where N 4 is Avogadro’s number. There is an upper bound on the value of 1 because a
rigid vessel can hold only a finite number of rigid spheres; in particular, voids
between closed-packed spheres make 1 < 1. The maximum packing fraction occurs
when the spheres form a face-centered cubic (fcc) lattice—the structure used by gro-
cers to stack oranges for display. (The hexagonal close-packed structure also gives the
same maximum density.) The maximum packing fraction is then

_ 2 04048 (4.5.3)

max 6

However, this maximum is for a solid phase, wherein spheres are so closely packed
that long-range order is preserved and there is little, if any, net diffusion of spheres.
For the pure hard-sphere fluid, the upper bound on 1 is even less; the fluid-solid phase
transition occurs at 1 = 21,,,5,/3 = 0.494 [12]. For n < 0.494 the substance is fluid and
long-range order is disrupted by molecular motions. Without attractive forces
between spheres, no vapor-liquid phase transition occurs and we refer to the material
atm < 0.494 as merely “fluid.” The hard-sphere phase diagram is shown in Figure 4.8.

Over the years numerous functional forms have been devised for the hard-sphere
compressibility factor Z(n). A simple yet accurate expression has been devised by Car-
nahan and Starling [13]:

14n+n° -1
7 = n T]3T]
(I-m)

Since M < 1, the hard-sphere Z is always greater than unity and as 1 — 0 this expres-
sion reduces to the ideal-gas value, Z =1.

N <0.494 (4.5.4)

12 —
g L solid
Zn -
4 L
0 | I
0 0.2 0.4 0.6

Figure 4.8 Phase diagram for a pure substance composed of hard spheres. The fluid-phase Z
was computed from the Carnahan-Starling equation (4.5.4); the solid-phase Z was taken from
the computer simulation data of Alder et al. [14]. The broken horizontal line at Zn = 6.124 con-
nects fluid (N = 0.494) and solid (1 = 0.545) phases that can coexist in equilibrium, as computed
by Hoover and Ree [12].
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By combining the Carnahan-Starling equation with the integral forms in § 4.4.2, we
can evaluate the residual properties of a pure hard-sphere fluid. The results are [15]

N (53
o"(T, P) = —4 (Z—‘l-) (4.5.5)
6M Z
u(T,P) = 0 (4.5.6)
(T, P) = RInZ + w (4.5.7)
(I-m)

Note that since Z > 1, v™* is always positive, while s is always negative. With these
three residual properties, others can be obtained via Legendre transforms, and we
find that 1'%, 4™, ¢'*, and In @, are always positive.

The Carnahan-Starling equation of state (4.5.4) has been extended by Mansoori et
al. [16] to binary mixtures of hard spheres having different diameters. Binary mixtures
of hard spheres exhibit fluid-solid phase transitions at packing fractions somewhat
larger than that for the pure substance; that is, at | > 0.5. The exact state for the transi-
tion depends on composition and on the relative sizes of the spheres. We expect the
density of the transition to increase as the size disparity increases; the limited com-
puter simulation data available support this expectation [17]. Certain kinds of hard-
sphere mixtures are the simplest substances to exhibit a fluid-fluid phase transition
[17], but those phase transitions are more like liquid-liquid than vapor-liquid. Ana-
lytic representations of the Z(n) for hard-sphere and other hard-body fluids have been
critically reviewed by Boublik and Nezbeda [18].

4.5.2 Virial Expansion in Density

Real fluids are neither ideal gases nor are they composed of hard spheres. But if the
density is low, a gas might be nearly ideal, or if the temperature is high, a gas might
behave somewhat like a fluid of hard spheres. In such cases the ideal-gas or hard-
sphere models may serve as references in expansions that approximate real behavior.
In this section we consider Taylor expansions (see Appendix A) of the compressibility
factor Z about that for the ideal gas. The expansions may be done using either density
or pressure as the independent variable; we introduce the density expansion first.
Consider a one-component gas at temperature T and molar density p =1/v. At low
to moderate densities we write the compressibility factor as an expansion in p about

the ideal-gas value (p = 0):
2 2
0=0 2! apz T

Note that this expansion is performed along the isotherm T and each derivative is
evaluated in the ideal-gas limit. The derivatives are called virial coefficients

Z=7| _+ p@%)T f..  fxedT (458)

p=0
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B(T) = (a—z) ‘ = second virial coefficient (4.5.9)
apJT| _ 0
2
1 (92 L -
C(T) == = third virial coefficient (4.5.10)
21 0p2 Jp .
p =

and similarly for higher-order coefficients. Therefore, one form of the virial equation of
state is a power series in density

Z=1+Bp+Cp°+... 45.11)

The virial coefficients are measurable state functions; for pure gases, they depend only
on temperature and are independent of density and pressure.

The second virial coefficient is the limiting slope of an isotherm as the gas-phase
density approaches zero; this interpretation is illustrated in Figure 4.9. Different iso-

p(mol/cms)
0 0.002 0.004 0.006 0.008 0.01
1.4 I i i i |
1.2
Z
ideal gas
1 ——"" . . . _._._._. -
0.8
40 —
— 600 K
20 &=
@-Dip T ideal gas
0 - — . . e .
20 |
| 200 K
-40 I I I I |
0 0.002 0.004 0.006 0.008 0.01
p(mol/cm3)

Figure 4.9 Second virial coefficients can be interpreted either as slopes or as intercepts. Top:
Compressibility factors for pure nitrogen gas at 200 K and 600 K [19]. At each temperature, B(T)
is the slope of the isotherm as p — 0. Bottom: The data replotted as (Z — 1)/p; now B(T) is the
intercept of an isotherm as p — 0. Points are data from [19]; straight lines are least-squares fits.
Note that B may be positive or negative.
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therms approach zero density in different ways, so B changes with temperature. At
low temperatures, attractive forces among molecules dominate repulsive forces so Z <
1 and B is negative. At high temperatures, repulsive forces dominate, Z > 1, and then
B is positive. Consequently, we expect B to be negative at low temperatures and to
increase with increasing temperature; this behavior is shown in Figure 4.10 for
helium. At very high temperatures B passes through a maximum and then decreases
to a finite positive value: some “softness” exists in short-range repulsive forces, which
reflects distortion of electron clouds. Note that while B changes sign, C remains posi-
tive over most temperatures of interest.

The temperature at which B changes sign is called the Boyle temperature Tg; it occurs
at roughly two-thirds of the critical temperature, Tg/ T, = 2/3. The Boyle temperature
is used in Figure 4.10 to make the plotted temperature dimensionless. To make B and
C dimensionless, we use the Boyle volume which is defined by [20]

dB
vp = TB(ﬁ) (4.5.12)

Tg
Then in Figure 4.10 we use

B* = B/vy and C* = C/v} (4.5.13)

Real molecules have impenetrable cores (two molecules cannot occupy the same
space at the same time), so the high-temperature limit of B(T) is a finite value charac-
teristic of the size and shape of the core; for nearly spherical molecules, the value will
be that for an equivalent hard-sphere fluid. In practice, experimental data rarely

100

T/Ty

Figure 4.10 Temperature dependence of the second and third virial coefficients for pure
helium. Here B* = B/vg and C* = C/vg?, where vy is the Boyle volume defined in (4.5.12) and Tj
is the Boyle temperature. Data taken from Dymond and Smith [21].
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extend to sufficiently high temperatures to determine the limit. However for spherical
molecules, we can obtain the limiting value by substituting the hard-sphere equation
of state (4.5.4) into the definition of B (4.5.9), performing the differentiation, and tak-
ing the low density limit. The result is

3
lim B(T) = B" = 2no” cm3 /molecule (4.5.14)
T — large 3
or
hs 2n03NA 3
B = — cm® /mol (4.5.15)

Here ¢ is an effective hard-sphere diameter whose value depends on the kind of gas.
We construe another interpretation of B(T) by rearranging the equation of state
(4.5.11) and taking the ideal-gas limit; we find

lim 2=1 = B(T) fixed T (4.5.16)
p—0 p

This limit is illustrated in the bottom panel of Figure 4.9. Further, note that the lhs of
(4.5.16) is the same as the limit on the rhs of (4.3.4); hence, the second virial coefficient
is the low-density limit of the residual volume,

lim 0" = B(T) fixed T (4.5.17)
p—0

In a fashion similar to that for B(T), higher-order virial coefficients can be inter-
preted as limiting derivatives of the slopes of isotherms. For example, the third virial
coefficient C is the limiting slope of the slope. Consequently, as we move to higher
order, the virial coefficients become progressively more difficult to measure. More-
over, the effects of temperature on the higher order coefficients are more complicated
than that on B; for example, Figure 4.10 shows that when T is increased, C(T) quickly
increases, passes through a maximum, and slowly decays.

In addition to pure gases, the Taylor expansion (4.5.8) can be applied to gaseous
mixtures. The resulting form is still (4.5.11), but the virial coefficients now depend on
both temperature and composition. The composition dependence is rigorously
obtained from statistical mechanics; here we are interested only in the results. For a
mixture containing n components,

B(T, x) = 22"1‘ x; By(T) (4.5.18)
i

C(T, {x}) = ZZin % 0, Ciip(T) (4.5.19)
ik
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The coefficients B;; and C;j; depend only on temperature; that is, all the composition
dependence of the mixture coefficients appears explicitly on the rhs of these equa-
tions. Those coefficients having the same indices, such as B,, and C;;;, are the pure-
component coefficients discussed earlier: their values are obtained from PvT measure-
ments on pure gases. However, those coefficients having different indices, such as By,
are properties of the mixtures and their values must be obtained from measurements
on mixtures. These coefficients are often called the unlike interaction coefficients.

Nature does not know the labels that we have arbitrarily assigned to each compo-
nent (i =1 or i = 2, etc.), so the coefficients must be invariant under permutations of
those labels; that is, we have B;; = B;; and similarly Cy = Cy; = Cjx = Cjgi = Cyij = Cyi.
Therefore, although the double sum for B in (4.5.18) contains n~ terms, the number of
unique terms is only n(n+1)/2. Likewise, the treble sum for C in (4.5.19) contains n’
terms, but only n(n+1)(1n+2)/3! of them are unique.

Measurements of B(T) have been made for many pure gases and some mixtures;
some data also exist for C(T), but few experiments are accurate enough to provide
D(T) or higher coefficients. The existing data for B(T) and C(T) up to 2002 have been
critically compiled by Dymond et al. [22].

4.5.3 Virial Expansion in Pressure

As an alternative to using density as the independent variable in a virial equation of
state, we could use pressure. Then the Taylor expansion takes this form,
0Z

2 2
-2, ,+P(Z)] Z—(”]
oP Tlh_o '\op2 )r

Again, this expansion is performed along an isotherm T and each derivative is evalu-
ated in the ideal-gas limit. These derivatives are defined to be the pressure-virial coeffi-
cients

+ ... fixed T (4.5.20)
P=0

B/(T) = (%Z) (4.5.21)
PJT|,_,
1(9’z
c/(T) =—|2% (4.5.22)
2! 9p2 T
P=0
So this second form of the virial equation of state is a power series in pressure
Z=1+BP+CP+.. (4.5.23)

We can ascribe the same kinds of mathematical and physical interpretations to the
pressure coefficients as we did to the density coefficients, but the two sets of coeffi-
cients differ numerically. We can see this merely by considering units: the primed
coefficients have dimensions that are powers of P~!, while the unprimed coefficients
have dimensions in powers of pL.
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But, although the two sets of coefficients differ, they are related. We can find the
relations by equating the two expansions (4.5.11) and (4.5.23), keeping all terms; that
is, at a particular state condition, the value of Z must be unaffected by whether we
represent it by the complete p-expansion or by the complete P-expansion,

Z(T,p) = Z(T, P) (4.5.24)
Now either we use the p-expansion to eliminate P from the rhs, or else we use the P-
expansion to eliminate p from the lhs. Then we equate coefficients of terms having the

same order; the results are

B

p-l (4.5.25)
2

C = C‘Bz (4.5.26)
(RT)

So if we have the p-coefficients, we may compute the P-coefficients, and vice versa: we
need measure only one set of coefficients.

4.5.4 Truncated Virial Expansions

As implied by (4.5.24), the p-expansion and the P-expansion give the same value of Z
if all terms in both expansions are used. But in practice we do not have values for all
the coefficients; measurements have been done only for B(T) and perhaps C(T). There-
fore, we must use truncated versions of the virial equations. However, truncated ver-
sions of the p-expansion and the P-expansion behave differently: they may give
different values for Z. We consider four possible equations:

Z=1+Bp (4.5.27)
BP

Z=1+z= (4.5.28)

Z =1+Bp+Cp° (4.5.29)
BP 2( P2

Z=1+3=+(C-B )(ITT‘) (4.5.30)

Which of these should we use? On both theoretical and experimental grounds, the
density expansion is preferred over the pressure expansion. The theoretical argument
is that statistical mechanics provides a rigorous derivation of the density expansion.
That derivation shows how the virial equation corrects for deviations from ideal-gas
behavior: the second virial coefficient B accounts for interactions between pairs of
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molecules, the third virial coefficient C accounts for interactions among triplets of
molecules, etc. In contrast, (4.5.26) shows that C’ combines effects from two-body and
three-body interactions.

The experimental argument is that, for a finite number of terms, the p-expansion is
more easily fit to experimental PvT data. This statement can be justified by comparing
plots of isotherms of Z vs. P with Z vs. p. The pressure plot will contain regions with
large slopes, while the density plot will show less drastic variations [20].

But aside from these theoretical and experimental considerations, there are practi-
cal ones concerning which truncated expansion is more accurate and which is easier
to use [10]. To address the question of accuracy, Figure 4.11 compares the four trun-
cated expansions (4.5.27-30) applied to one isotherm of carbon dioxide. Up to about
50 bar, the first-order equations (4.5.27) and (4.5.28) are equally reliable in reproducing
the experimental data; so which to use merely depends on whether we want p or P as
an independent variable.

Beyond about 50 bar, high accuracy demands the next term in each expansion; oth-
erwise, at high pressures, both first-order equations produce negative Z-values, with
the density expansion becoming negative at the lower pressure. With the third virial
coefficients included, the figure indicates that up to about 100 bar the two equations
are almost equally reliable. Beyond about 120 bar, the density expansion remains reli-
able, but the pressure expansion qualitatively fails: it misses the minimum in the iso-
therm and eventually it gives negative values for Z. This behavior is typical; that is,
beyond the second term, the density expansion is usually more reliable than the pres-
sure expansion. But we caution that, for a particular gas, the relative accuracy of the

0.8 ve
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Figure 4.11 Comparison of truncated virial equations applied to carbon dioxide at 350 K. The
critical point occurs near T, = 304 K, P, = 73.8 bar. Points are experimental data from Vargaftik
[19]. Values of B and C taken from Dymond and Smith [21]: B =-85.5 cc/mol and C = 3500 (cc/
mol)2. Z1 is first-order density expansion (4.5.27), Z2 is first-order pressure expansion (4.5.28),
Z3 is second-order density expansion (4.5.29), Z4 is second-order pressure expansion (4.5.30).
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two second-order expansions depends crucially on the values of C and C*“—quantities
that may be difficult to measure or estimate accurately.

Finally, we emphasize that, even if we had several virial coefficients for a sub-
stance, the virial equations still only apply to gases and gas mixtures—both the den-
sity expansion and the pressure expansion fail to converge for liquids. Moreover, in
practice we can find data or correlations for, at most, B and C, so the expansions
should only be used for gases at low to moderate densities.

4.5.5 Example

How do we use the virial equations to compute values for the residual properties of
gas mixtures?

Consider gaseous mixtures of methane and sulfur hexafluoride at 60°C, 20 bar; we
want to compute 1", ", and s across the entire composition range. For these small
molecules at this modest pressure, the volumetric behavior is adequately represented
by the virial equation in the form

Z =1+ % (4.5.31)
with B given by
n n
B(T, x) = ZZxZ- x; Bii(T) (4.5.18)
i

The model (4.5.31) is simple enough that it can be written explicitly in both v and P, so
we can compare results for the isobaric residual properties with those for the isomet-
ric residual properties.

When T, P, and {x} are independent. The volume explicit form of the equation of
state (4.5.31) is

v=—+B (4.5.32)
p

Therefore the residual volume is merely the second virial coefficient,

2 =B (4.5.33)

To evaluate other isobaric residual properties, we will need the state dependence of
the volume expansivity. Applying the definition (3.3.6) of o to the equation of state
(4.5.32), we find

o = 1(5 +@) (4.5.34)
U\P dT



162 PROPERTIES RELATIVE TO IDEAL GASES

With the equation of state (4.5.32) and (4.5.34), we can evaluate the integral in
(4.4.4) to obtain the residual enthalpy,

W(T, P, {x}) =P (B -T %) (4.5.35)

The residual internal energy is then obtained from a Legendre transform,

res dB
= -PT— 4.5.36
T ( )

res res

u (T,P,{x}) =h (T,P,{x})-Pov

Finally, we use (4.5.32) and (4.5.34) in (4.4.6) to obtain the isobaric residual entropy,

res dB
s (T,P,{x}) = —Pd—T (4.5.37)

When T, v, and {x} are independent. The model (4.5.31) can be written in a pressure-
explicit form as

p= RT (4.5.38)
v-B

From this we can find the isometric residual pressure,

pres = BRT

o0 B (4.5.39)

To evaluate other isometric residual properties, we will need the thermal pressure
coefficient (3.3.5). Applying its definition to the equation of state (4.5.38), we obtain

RT dB

oB) T (4.5.40)

R
A

Now we can substitute (4.5.38) and (4.5.40) into (4.4.14) to obtain the isometric
residual internal energy,

u (T, v, {x}) = —PTZ—]; (4.5.41)

This is the same as (4.5.36); that is, the isometric and isobaric internal energies are the
same. This was proved in (4.2.24). Similarly by (4.2.25), the isometric and isobaric
residual enthalpies are also the same,

W(T, v, {x}) = P(B -T Zi;) (4.5.42)
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Table 4.2 Values of second virial coefficients for methane(1)-
sulfur hexafluoride(2) mixtures. B;; values from [21]. Values of
B and dB/dT are for equimolar mixtures.

313.15K 333.15K 353.15K

By; (cm®/mol) -37.9 -31.8 -26.6
By, (ecm3/mol) —-85. -68. -57.
By, (cm3/mol) —253. —223. -192.
B (cm®/mol) -115. -98. -83.
dB/dT (cm?/mol K) 0.80

To obtain the isometric residual entropy, we substitute (4.5.40) into (4.4.16) and find

(T, 0, {x}) = _p% _ RInZ (4.5.43)

So the isobaric and isometric residual entropies differ by RInZ, as required by (4.2.28).

Sample calculations for the equimolar mixture. To use the above expressions we
need values for B and its temperature derivative dB/dT. For CH(1)-SF¢(2) mixtures,
Dymond and Smith [21] give the experimental values of B;; in Table 4.2. The value of B
was then computed from (4.5.18) using x; = x, = 0.5, and the temperature derivative of
B was estimated as a central difference,

a8 _ AB (4.5.44)

With values from Table 4.2, we can compute residual properties for the equimolar
mixture at 60°C, 20 bar. The results are in Table 4.3. Plots of the residual properties
over the full composition range are presented in Figure 4.12.

Table 4.3 Residual properties for equimolar mixtures of
CHy-SF¢ at 60°C, 20 bar, computed from virial equations

Property Value Equation
u'es -534.J/mol (4.5.36) or (4.5.41)
jres -730.]/mol (4.5.35) or (4.5.42)
S"S(T. P, {x}) -1.60 J/mol K (4.5.37)

§S(T o {x))  —1.00]/molK (4.5.43)
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Figure 4.12 Dimensionless residual properties for gaseous CH4-SF¢ mixtures at 60°C, 20 bar,
from the virial equation (4.5.31). It is an artifact of the model that 4"/ RT = s"(T, P, {x})/R.

4.5.6 Van der Waals Equation of State

The ideal-gas law, hard-sphere equation of state, and virial equations all have rigor-
ous foundations in statistical mechanics. But they are so simple that none applies over
all fluid regions of the phase diagram; in particular, none of these apply to liquids or
very dense gases. The development of a widely applicable volumetric equation of
state is a formidable theoretical problem, because it must properly account for both
short-range repulsive forces and long-range attractive forces among the molecules.
We do not consider that problem in any detail here; instead, we must be content to
introduce a class of semitheoretical approximations (§ 4.5.8-4.5.9) that are based on
the equation originally devised by van der Waals.

Recall that the virial equations originate from Taylor expansions about the ideal
gas. Alternatives can be obtained by expanding, not about ideal gases, but about hard
spheres. Real fluids approach hard-sphere behavior in the isochoric high-temperature
limit (4.5.1), so we use the parameter B = 1/RT as the independent variable. Then on
truncating the expansion at first-order, we have

Z = Zhs+[3(az)p

2B fixed p (4.5.45)

B=0

The first term on the rhs accounts for short-range repulsive forces among the mole-
cules, while the second term accounts for long-range attractive forces. We now seek
approximate forms for the temperature and density dependence of these two terms.
In the time of van der Waals (1870s) forms for the hard-sphere compressibility fac-
tor were unknown, and so he had to contrive an estimate. His approximation can be
rationalized as follows. First, consider the definition of the compressibility factor,

_ (T, P)

z .
v'8(T, P)

(4.5.46)
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Since hard-sphere forces are purely repulsive (Z;; > 1), the ideal-gas volume must be
smaller than the hard-sphere volume to produce the same pressure at the same tem-
perature. So van der Waals wrote

Z,, = Z%b = ﬁ van der Waals (4.5.47)

where p = 1/v and v is the molar volume of the hard-sphere fluid. The parameter b is
called the covolume; it measures the space that cannot be occupied by a molecular cen-
ter because that space is already occupied by other molecules (the so-called excluded
volume). Therefore, b attempts to correct the ideal-gas law for the fact that molecules
are not points.

The covolume b depends on state condition and on the kinds of molecules. To
obtain a value for b, van der Waals devised an argument based in kinetic theory [23].
In practice, the covolume is usually taken to be a constant for a particular substance,
with its value obtained by a fit to experimental data. If we do take b to be constant, if
the molecules can be approximated as spheres, and if we want the equation of state to
reliably reproduce Z at low densities, then the covolume can be taken to be the hard-
sphere second virial coefficient,

b =B, = LN, = (4.5.48)

Here ¢ is the diameter of one sphere, N 4 is Avogadro’s number, p is the molar density,
and 7 is the packing fraction (4.5.2). The derivation of (4.5.48) is straightforward and
is left as an exercise. Since the volume of one sphere is 16°/6, (4.5.48) indicates that, at
low densities, the space excluded by one molecule is not merely the volume of that
molecule; rather, it is four times larger.

At this point, the equation of state has the form

=5 i),

To approximate the second term, we seek qualitative guidance from a simple virial
equation,

(4.5.49)

B=0

Z =1+Bp (4.5.50)

Taking the isochoric B-derivative, and recalling that B depends only on temperature,

(gg)p - p(%) (4.5.51)

We contrive a simple expression for the f-dependence of the second virial coefficient
by taking B(T) values for a simple gas and plotting them as B vs. B. We find that, over
most of the temperature range, B is roughly linear in B with a negative slope. So we
approximate the temperature dependence of B as a straight line in j3,
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B ~ aB +C (4552)

Hence,
dB
=2 4.5.53
(dB) g (4.5.53)
Combining (4.5.49), (4.5.51), and (4.5.53) yields the van der Waals equation [23, 24]

1 ap
Z = —_— - —— 4.5.54
1-bp RT ( )

In the van der Waals model (4.5.54), the first term makes the compressibility factor
larger than the ideal-gas value to account for repulsive forces among the molecules.
The second term makes Z smaller, to account for attractive forces. So the two terms
compete in their effects on Z; one term or the other may dominate, depending on state
condition (T and p). In the low-density limit, the van der Waals equation collapses to
the ideal-gas law, while in the high temperature limit it approximates the hard-sphere
equation of state. Formally, the parameters a and b depend on state condition as well
as the kind of molecules, but in practice values for a and b are usually assumed to be
constant for a particular substance (see § 4.5.10).

4.5.7 Example
If a fluid has Z = 1, is it necessarily an ideal gas?
Consider the van der Waals equation (4.5.54), which we now write as

_ bp _ ap
7 = 1+1_bp 27 (4.5.55)

The issue is whether all residual properties are zero whenever Z = 1. To test this, con-
sider the residual internal energy, which can be obtained by using (4.5.55) in (4.4.14);
the result is

res

Uy = —AP (4.5.56)
Then
he o =us +Put = —ap+RT(Z-1) (4.5.57)
When Z =1, (4.5.57) reduces to (4.5.56),
Wy = Ungy = —ap zZ-1 (4.5.58)

and (4.5.55) gives
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a—bRT

p = Z=1 (4.5.59)
ab
Combining (4.5.58) and (4.5.59) leaves
ey = Uy = bRE‘” Z-1 (4.5.60)

These residual properties are zero only at the one temperature T = a/bR. Hence in
general, the fluid is not an ideal gas, even though Z = 1. Note that in the ideal-gas limit
(p —0), (4.5.55) has Z =1, (4.5.56) has u"* =0, and (4.5.57) has I"* = 0, as they should.

4.5.8 Redlich-Kwong Equation of State

The van der Waals equation is historically important because it was the first equation
of state to predict the vapor-liquid phase transition. However, although it is qualita-
tively informative, it is quantitatively unreliable, especially for dense fluids. The prin-
cipal use of the van der Waals equation has been as a starting point for devising more
reliable, and more complex, equations of state. Modified van der Waals equations
have been devised by the hundreds, most with only empirical justification. Here we
cite two important modifications.

Since van der Waals made approximations in arriving at both terms in his equation,
we have two kinds of possible improvements. Historically, more effort has been
devoted to the second term—the one that tries to account for attractive forces. At least
two corrections can be made to the attractive term.

First, we can improve on the approximation (4.5.52) that the second virial coeffi-
cient is linear in f3; in fact, B is more nearly linear in [33/ 2 sowe replace (4.5.52) with

B~—a'B?+c (4.5.61)
which leads to
dB) 3a’ 172 -1/2
— | =-= =—aT 4.5.62
(%)= 3" (4562)
and our equation of state becomes
- _ _4ap
Z=2- —7 (4.5.63)

Second, we expect this improved attractive term to be most reliable at low densi-
ties, because it is based on the virial equation. To extend it to higher densities, we
could append more terms (terms that roughly correspond to higher-order terms in the
virial equation), but those extra terms would introduce more parameters in addition
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to a4 and b. Alternatively, we can hope to combine those missing additional terms by
resumming their effects into a single factor. There is no unique way to perform this
resummation and many forms have been tried. A particularly simple and successful
form has proven to be (1 + bp)~, perhaps because the desired resummation of omitted
terms can be approximated by

(1+bp) ' = 1=bp + (bp)* = (bp)° + ... (4.5.64)

Our equation then has the form

ap
Z=z7, - — " (4.5.65)
" RT3/2(1 4+ bp)

If we adopt the original van der Waals form for Z;,, then we have the Redlich-Kwong
equation of state [25],

1 ap

Z = -
1-bp  RT32(1+bp)

(4.5.66)

This development of the Redlich-Kwong equation is not a derivation, but only a
systematic rationalization of the modifications. The equation is noteworthy because it
provides substantial quantitative improvements over the original van der Waals equa-
tion. Nevertheless, Redlich himself remarked that there is no real theoretical justifica-
tion for the changes made in the attractive term [26]. Modern formulations of the
attractive term make the parameter a temperature dependent; examples are the Peng-
Robinson [27] and Redlich-Kwong-Soave [28] equations. For other forms, see [3, 4, 11].

4.5.9 Modified Redlich-Kwong Equation of State

We now consider modifications to the repulsive term in the van der Waals equation.
Although the van der Waals hard-sphere term is correct at low densities, Figure 4.13
shows that it quickly becomes erroneous as the density is increased: the excluded vol-
ume is not constant, but depends on density in some complicated way. Therefore we
can improve the equation of state by using the Carnahan-Starling form (4.5.4) for Z,.
Our modified Redlich-Kwong (mRK) equation of state is then [29]

14n+n°-n° a
7z = -*N*h ; N — P (4.5.67)
(1-m) RT?7“(1 +bp)
which is similar to the DeSantis equation [30]. If we use (4.5.48) to eliminate p in favor
of the packing fraction 1 as the density variable, then

1+n+ 2 3 4a
7 - l+n+n -n n (4.5.68)

(1-m)° bRT®/2(1 +4n)
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Figure 4.13 At moderate to high densities, the van der Waals (vdW) approximation (4.5.47) to
the hard-sphere compressibility factor is in serious error when compared to the essentially
exact Carnahan-Starling (CS) expression (4.5.4).

Unlike the van der Waals and Redlich-Kwong equations, which are cubics in density,
this mRK equation is fifth-order. It is not unusual that improvements in accuracy are
accompanied by increases in algebraic complexity; here the complexity occurs
because we have combined a theoretically reliable repulsive term with an empirically
proven attractive term.

With expressions from § 4.4.2, we can use the modified Redlich-Kwong equation
(4.5.68) to obtain estimates for the residual properties of pure fluids. Those expres-
sions contain the two parameters a and b; the results for the isobaric residual proper-
ties are

res
Py (T,P) _ 7.1 = 8bp(8—bp)_ ap (4.5.69)
RT (4-bp)>  RT32(1+bp)
res
u (T’ P) - _ 3a 11'1(1 +bp) (4570)
RT 2bRT3/2
res
s (TP _ 117 +bp(3bp—126) 1 _n(1+bp) (4.5.71)
R (4-bp) 2bRT3/2

Other residual properties can be obtained via Legendre transforms. Note that in the
zero-density limit, these residual properties all go to zero, as they should. Further, in
the hard-sphere limit (2 = 0) these expressions revert to the Carnahan-Starling expres-
sions (4.5.5)—(4.5.7), as they should.
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4.5.10 Parameters in Semitheoretical Models

We have now introduced three semitheoretical equations of state: van der Waals
(vdW), Redlich-Kwong (RK), and the modified Redlich-Kwong (mRK). Each contains
two parameters, a and b. For a particular pure gas, values for a and b can be obtained
by fitting to two or more experimental PvT points. Traditionally, however, values have
been obtained by matching the equation of state to the gas-liquid critical point, T, P,.,
and v,.. At the critical point the critical isotherm passes through a point of inflection, so

we have the two conditions
2
(a—P) =0 and a—P
ap T Tc ap2 T

These provide two algebraic equations that can be solved simultaneously, yielding
expressions for a and b in terms of either T, and v, or T, and P,.. This procedure offers
at least two advantages: (1) The critical properties of many pure substances have been
measured [11] and if they have not been measured, they can be estimated by group
contribution methods [11]. (2) By forcing the equation of state to reproduce the critical
point, we ensure that the equation distinguishes the supercritical one-phase region of
the phase diagram from the subcritical two-phase region. However, these semitheo-
retical equations have been found to provide only semiquantitative descriptions of the
critical region itself [4].

The resulting expressions for a and b are given in Table 4.4 for each of the three
equations of state. Also given in the table are values of the critical compressibility fac-
tor Z, provided by each equation. Those values fall in the range 0.3 < Z, < 0.4, but for
fluids of small rigid molecules such as argon, oxygen, nitrogen, and methane, the
experimental value of Z, = 0.29. Judging the three equations on just these values of Z,
we expect mRK to perform better than RK and, in turn, RK to be better than vdW.
Usually, this is so. However, each of these equations predicts that Z. will have the

=0 4.5.72)

T

c

Table 4.4 Expressions for parameters 2 and b in terms of critical
properties for three semitheoretical equations of state

vdW RK mRK
(4.5.54) (4.5.66) (4.5.67)
Z, 3/8 0.333 0.316
in terms of T, and v,
blv, 1/3 0.2599 0.3326
a/(v.RT,) 9/8 1.2824 [T, 1.4630 /T

in terms of T, and P,

bP,/RT, 1/8 0.08664 0.1050
aP./(RT, )? 27/ 64 0.4275 [T 0.4619 /T,
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same value for all substances, although in fact, Z_ spans a range of values for different
materials, with most substances having Z. < 0.3.

We caution that the expressions in Table 4.4 for a(T,, P,) and b(T,, P,) are consistent
with those for a(T,, v,) and b(T,, v,.) only for the value of Z. quoted in the table. If, as is
likely, a substance has some value of Z, other than the tabulated one, then values com-
puted for the parameters will differ, depending on whether the T,.-v, forms or the T,-
P forms are used. For example, n-hexane has Z. = 0.26; consequently, for the Redlich-
Kwong equation,

b(T,,v.) = 962 cc/mol but b(T,., P, = 123.1 cc/mol (4.5.73)

Similar discrepancies occur between a(T,, v,) and a(T,, P.). In general, the parameter
values computed from T, and P, should be used rather than those from T, and v, [31].

4.5.11 Comparisons of Results from vdW, RK, and mRK Equations

We now show predictions of the compressibility factor for pure carbon dioxide along
two isotherms, one supercritical and the other subcritical. All results shown here used
values of a2 and b computed from T, and P,. Figure 4.14 shows the results for the
supercritical isotherm, T = 350 K. Up to about 75 bar, the three equations are all in
good agreement with experiment, indicating that, at least at this temperature, all three
satisfactorily estimate the second virial coefficient. However, for P > 100 bar, errors in

0.4 | | | | |
0 50 100 150 200 250
P (bar)

Figure 4.14 Comparison of the van der Waals (vdW), Redlich-Kwong (RK), and modified
Redlich-Kwong (mRK) equations for predicting the compressibility factor of carbon dioxide
along the supercritical isotherm T = 350 K. For each equation the parameters @ and b were com-
puted from expressions in Table 4.4, using T, = 304.2 K and P, = 73.82 bar. Points are experimen-
tal values taken from Vargaftik [19].
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Figure 4.15 Same as Figure 4.14, but for carbon dioxide along the subcritical isotherm T =
273.15 K. Broken vertical line indicates the vapor pressure 34.84 bar at 273.15 K. Points are
experimental values taken from Vargaftik [19]. The vdW results for the liquid phase all have Z
>1 and therefore are not shown. These curves were computed by setting T and v to their exper-
imental values and solving each empirical equation for P, and hence Z. The comparisons differ
significantly if, instead, experimental values for T and P are specified and the equations are
solved by trial for v.

the vdW equation become substantial and for P > 170 bar they are intolerable. In con-
trast, the RK form is qualitatively reliable up to 175 bar, while the mRK form remains
quantitatively reliable to 250 bar.

Figure 4.15 shows a similar comparison along the subcritical isotherm 273.15 K. For
the vapor phase the three equations are about equally reliable, but for the liquid the
three differ substantially. For the liquid, values of Z from the vdW equation exceed
unity and therefore do not appear on the plot. Values from RK have the correct slope
but are too large by factors of 3 to 4. The mRK equation performs better than the oth-
ers, but it underestimates Z with errors reaching a factor of 2 at 100 bar.

We emphasize that for these comparisons, the equation-of-state parameters were
obtained from T, and P,; none of the equations were fit to any data on either isotherm.
Considering its simplicity, the mRK equation is a remarkable improvement over the
older cubic forms. But it is still only a qualitative guide for the high-pressure liquid:
reproducing the behavior of both liquid and dense-gas phases of polyatomic sub-
stances is too much to expect of any simple, two-parameter equation of state. But for
another perspective on this issue, see Gregorowycz et al. [32].

4.5.12 Mixtures

Lastly we note that extending semitheoretical equations of state to mixtures is not
straightforward because we have no theoretical guidance as to how parameters, such
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as a and b, depend on composition. This situation differs from that for the virial equa-
tions, for statistical mechanics tells us exactly how the virial coefficients depend on
composition. For semitheoretical equations we are forced to guess the composition
dependence of the parameters. Usually such guesses are in the form of mixing rules, in
which mixture parameters are prescribed as some composition-dependent functions
of the pure-component parameters; for example, we might try simple mole fraction
averages of the pure parameters:

amix = inapurei (4:574:)

i

bmix = in bpurei (4575)

1

But these mixing rules are not particularly reliable, motivating searches for better rela-
tions; as usual, improvements in reliability are purchased at the price of increased
complexity. For example, one improvement is a set of “van der Waals” mixing rules in
which (4.5.75) is retained for b, but a is obtained from

Apiy = Zin Xja; (4.5.76)
i

where each sum runs over all components. Here a;; = apy ;, but an additional pre-
scription is needed to obtain a;; when j #i. Other mixing rules are discussed in [11].

It is conventional to estimate values for unlike parameters (such as a;;) by combin-
ing the pure-component parameters (a;; = Apure i and ajj = Apure ]-),‘ such prescriptions
are called combining rules. One choice is a simple arithmetic average,

aj; = 0'5(aii+“]’j) (4.5.77)

But when this is inserted into (4.5.76), we merely recover the simple mixing rule
(4.5.74). An alternative is a geometric mean,

a; = Jaga; (4.5.78)

Substituting this into (4.5.76) yields
2
0. = (in JLT”) (4.5.79)
i

Note that mixing rules depend on composition, but combining rules do not.

These kinds of empirical prescriptions often work reasonably well for properties of
gas mixtures at low to moderate pressures. But for gases at high pressure, liquids, and
phase-equilibrium calculations, further complications may be needed. One strategy is

to introduce an adjustable parameter k;;, so the combining rule (4.5.78) becomes
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a; = (1-ky) Ja;a; (4.5.80)

Values of k;; are usually small and positive (between 0.0 and 0.2); they may be
assumed constant or they may be allowed to depend on temperature. They are best
obtained by fitting experimental data: small variations in the value of k;; can drasti-
cally affect the values of some properties, such as liquid-phase fugacity coefficients.

Note that for correlating or predicting properties of mixtures, we invoke approxi-
mate models at several different conceptual and computational levels: model equa-
tions of state, mixing rules, combining rules, adjustable parameters. Consequently, the
possible combinations are numerous and the resulting complications can become sub-
tle. All mixing rules and combining rules are essentially ad hoc and their use can lead
to vagaries that are vexing.

4.6 SUMMARY

In this chapter we have developed ways for computing conceptual thermodynamic
properties relative to well-defined states provided by the ideal gas. We identified two
ways for measuring deviations from ideal-gas behavior: differences and ratios. Rela-
tive to the ideal gas, the difference measures are the isobaric and isometric residual
properties, while the ratio measures are the compressibility factor and fugacity coeffi-
cient. These differences and ratios all apply to the properties of any single homoge-
neous phase (liquid or gas) composed of any number of components.

We then developed equations for computing the difference and ratio measures
from the measurables P, 1, T, and x. Data for these measurables are correlated by some
volumetric equation of state, usually an analytic equation explicit in pressure P(y, T,
{x}) or explicit in volume v(P, T, {x}). So the equations we derived for the conceptuals
all involve integrals over appropriate functions of the equation of state. Then, in the
last section of the chapter, we presented a few simple models for equations of state;
these models are sufficient to illustrate the problems that arise both in trying to use
simple analytic functions to represent volumetric data and in evaluating the integrals
that provide values for conceptual properties.

We emphasize that the difference and ratio measures are means, not ends. That is,
in a thermodynamic analysis of a process, the goal is not to determine a value for a
residual property itself; instead, the determination of a residual property is an inter-
mediate step in computing how a conceptual responds to a change of state. To deter-
mine how a total property F changes from state 1 to state 2, we would write

res

_ ig
AF,, = AF}y +AFj, (4.6.1)

where terms on the rhs are evaluated from a PoTx equation of state and ideal-gas heat
capacities. Similarly, when fugacity coefficients occur in problem descriptions, the
goal is not to obtain values for fugacity coefficients, but rather to use them to obtain
values for fugacities,

fi = x;¢0; P (4.6.2)
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In this chapter we have taken a significant and substantial step away from the for-
mal thermodynamics of Part I toward the practical use of thermodynamics contained
in Part IV. As we journey from Part I to Part IV, it is important to continually distin-
guish the approximations from the things that are rigorously correct. In this chapter
the difference and ratio measures are all rigorous, because they are merely definitions.
In addition, the relations that connect those deviation measures to measurables are
also rigorous: no approximations or simplifying assumptions underlie any of the inte-
grals appearing in § 4.4. Approximations occur when we use a model (such as an
equation of state) to represent experimental data for measurables. And, of course,
when we combine an approximate model with a rigorous integral for a conceptual,
the result is an approximate value for the conceptual.

This illustrates an important advantage that accrues in working with conceptual
properties: by constructing unambiguous definitions, we can devise computationally
viable schemes of analysis without sacrificing thermodynamic rigor. Our computa-
tional procedures can therefore be exact, and uncertainties arise only when we imple-
ment the procedure; that is, when we choose a model to represent experimental data.
Such a strategy limits the possible sources of error to clearly identifiable portions of an
analysis.

It then becomes a matter of engineering judgement as to which model should be
used in a particular situation. For example, we want to balance computational com-
plexity against numerical reliability, but there are other concerns, such as the avail-
ability of experimental data. The proper exercise of engineering judgement is crucial
to success in applying thermodynamics to real processes, and therefore it is an issue
we will address repeatedly. In fact, if a situation is misjudged, causing an inappropri-
ate model to be used, then even though the computational procedure is exact, the
advantages of thermodynamic rigor are lost and the results are unreliable.
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PROBLEMS

4.1 Use the fundamental equations with the Maxwell relations (3.3.34) and (3.3.37) to
show that, for ideal gases, neither U nor H changes (a) with isothermal changes
in pressure nor (b) with isothermal changes in volume.

4.2 Derive (4.1.7) which gives the response of the entropy of an ideal gas when both
T and P are changed at constant mass.

4.3 A mixture of ideal gases is to expand adiabatically from 5 bar, 100°C to 20°C.
Which mixture would produce the larger amount of work: an equimolar mixture
of methane and ethane or an equimolar mixture of ethane and propane? The
pure component heat capacities obey [11]

c;g/R = A+BT+CT*+DT +ET*  withTink  (P43.1)

A B10® cao® Dao®  E@o™
methane 4.568 -8.975 3.631 -3.407 1.091
ethane 4.178 —4.427 5.660 —6.651 2.487
propane 3.847 5.131 6.011 -7.893 3.079

4.4 For a pure ideal gas, sketch a temperature-entropy diagram that contains isobars
and isenthalps.
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4.5

4.6

4.7

4.8

4.9

PROPERTIES RELATIVE TO IDEAL GASES

In a certain plant, a continuous isothermal-isobaric process is needed for extract-
ing pure ethane from ethane-methane mixtures at 1 bar, 300 K. The gases may be
assumed to be ideal with heat capacities given in Problem 4.3.

(a) For an equimolar mixture flowing at two mol/s, what would be the mini-
mum rate of work needed to achieve a complete separation into the pure
components? How much heat would have to be transferred? Would the heat
have to be added or removed from the system?

(b) Repeat part (a) for a mixture composed of 90 mole% methane, flowing at 10
mol/s.

(c) Note that the processes in (a) and (b) both produce one mol/s of pure ethane,
yet, even for ideal gases, the two processes require different amounts of
work. What do these results suggest about diluting substances in one part of
a process if they must be purified later?

A spherical weather balloon is filled at ground-level (1 bar, 300 K) with 1 m® of
helium. (a) What would be the diameter of the balloon at an altitude of 4 km,
where T = 260 K and P = 0.8 bar? (b) What would be the diameter in (a) if the bal-
loon were filled with hydrogen rather than helium? (c) What would be the differ-
ence in maximum masses that the hydrogen and helium balloons could lift in air
to 4 km?

Determine the difference, if any, between each of the following pairs of deriva-
tives. In each case, your result should be expressed in terms of measurables,
including perhaps measurable response functions:

S a5’
@) (ﬁ)n\f and (ﬁ )TN
oP oP
® (57), = (57,

res res
(c) (a—s ) and (BS J
aV JIN oV )N

Determine expressions for the isobaric residual properties u
for a pure gas that obeys the virial equation Z = 1 + Bp + Cp?.

res res re. res
, h'*, s

° and g

Use data from steam tables to estimate the values of the fugacity for saturated
liquid water and saturated steam, both at the normal boiling point.

4.10 Compute and plot the fugacities f1(x;) and f5(x;) over the entire composition

range for binary mixtures of carbon tetrachloride(1) and sulfur hexafluoride(2) at
271.6 K and 20 bar. Make one plot for each component. On each plot show curves
produced from each of the following assumptions: (a) the mixture is an ideal gas,
(b) the mixture is nonideal but obeys Z = 1 + BP/RT. The expression for the par-
tial molar volume is given in Problem 4.23. Values of the B;; for this mixture are
Byy =-112.4 cc/mol, By, = -339 cc/mol, and By, =-193 cc/mol.
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4.11 (a) For a pure gas that obeys the simple virial equation Z =1 + BP/RT, show that
the fugacity coefficient is given by

Ing = o= (P4.11.1)

(b) For a binary gas mixture that obeys Z = 1 + BP/RT, show that the fugacity
coefficient of component 1 is given by

Ing, = ITP]:(—B"‘Z?H Bi1+2x,By,) (P4.11.2)

where B is the mixture second virial coefficient (4.5.18). The partial molar vol-
ume for this situation is given in Problem 4.23.

4.12 Consider a binary mixture of components 1 and 2.

(a) Prove that at fixed T and P, if the fugacity of one component passes through
an extremum with mole fraction xy, then the fugacity of the other component
also passes through an extremum at the same value of the mole fraction.

(b) For the same conditions as in (a), prove that the two components have oppo-
site extrema; e.g., if one is a maximum, then the other must be a minimum.

4.13 Determine a reliable estimate for the maximum work that could be obtained
when one mole of pure methane, initially at 25°C, 30 bar, adiabatically expands
to twice its original volume. Assume for these conditions that methane obeys the
model Z =1 + BP/RT, with

BP
¢ _ 0083 - 2422 (P4.13.1)
RT 16
c TR

where Ty = T/T.. For the ideal-gas heat capacity, you may assume c, is indepen-
dent of temperature, with ¢, = 19R/4. Methane has T, = 190.6 K and P, = 46 bar.

4.14 (a) Starting from the mixture expression for the fugacity coefficient (4.4.10),
derive the pure-fluid expression (4.4.11).

(b) Starting from the mixture expression for the fugacity coefficient (4.4.23),
derive the pure-fluid expression (4.4.24).

4.15 At moderate pressures methane obeys Z =1 + BP/RT, withB=a-b/RT and a =
0.043 m3/kmol, b = 2.29(10°) MPa m®/kmol2. At very low pressures, the methane
heat capacity obeys Cp =0+ BT, with o = 19.87 kJ /(K kmol) and B = 0.05 K/ (K2
kmol).

(a) Based on this information, obtain an expression for the T and P dependence
of ¢, that would apply at moderate pressures.

(b) Compute the adiabatic power required to continuously change 1 kmol/s of
methane from 290 K, 5 bar to 350 K, 20 bar.

(c) What fraction of your answer in (b) comes from residual contributions?
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4.16 Samples of two pure gases, one containing N; moles and the other N,, are ini-
tially both at T°, P°. The gases are mixed and, by a sequence of heat and work
effects, are brought to a final state at T, P. The pure gases and their mixtures obey
Z =1+ BP/RT, with B;; = a;; — b;;/ T2 for T in K The pure ideal-gas heat capacities
can be correlated by ¢,/ R = o; + B;T with T in K. The parameters a;;, b;;, o;, and p;

are all constants, independent of state.

(a) Obtain expressions for the changes in U and S for the process.

(b) You need to perform this process under the following conditions: Ny = 1
kmol, Ny =2 kmol, T° =300 K, P° =5 bar, T =400 K, and P =1 bar. Parameter
values: O] =0 = 3, Bl = 001/K, BZ = OOO5/K, a = 0.2 m3/kmol, Adpp = 0.1
m?/kmol, by = 1.25(10%) m> K2/kmol, byy = 1(10°) m® K2/kmol. The mixture
also has By, = (By; + Byy)/2. To design equipment for performing such a pro-
cess, you would like to know the minimum energy requirements; that is, you
would like to compute the reversible heat and work effects. Show whether
this problem is well-posed; that is, show whether enough information is
known to enable you to compute Q,,, and W,,,. If the problem is well-posed,
use your results from (a) to compute the Q,,, and W,,,. If not, what other
information would you need?

4.17 For a pure gas that obeys the truncated virial equation, Z = 1 + BP/RT, show
whether or not the internal energy changes (a) with isothermal changes in pres-
sure and (b) with isothermal changes in volume.

4.18 Pure carbon dioxide is to be compressed, reversibly and isothermally, from 1 bar,
350 K to 200 bar. At 350 K CO, has B = -85.5 cc/mol and C = 3500 (cc/mol).
Compute the work required using each of the following equations of state:

(a) ideal-gas law

(b) Z=1+ BP/RT

(c) Z:1+Bp+Cp2
(d) Z=1+B'P+CP?

4.19 Use each of the following equations of state to estimate the density of an equimo-
lar gaseous mixture of carbon tetrachloride(1) and sulfur hexafluoride(2) at 271.6
K and 75 bar. At 271.6 K the third virial coefficients are Cy3; = 7620 (cc/mol)?,
Coy = 18,640 (cc/mol)?, Cq1p = 10,260 (cc/mol)?, and Cqpy = 14,530 (cc/mol)?. Val-
ues for the second virial coefficients are given in Problem 4.10.
(a) ideal-gas law
(b) Z=1+BP/RT
(c) Z=1+Bp+Cp2
(d) Z=1+B'P+(CP?

4.20 Use the fact that the critical isotherm passes through a point of inflection at the
critical point (4.5.72) to derive all the expressions in Table 4.4 for the parameters a
and b in the following equations of state: (i) van der Waals, (ii) Redlich Kwong,
and (iii) modified Redlich-Kwong.
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4.21 Show that the van der Waals equation of state gives u"* = —ap for a pure fluid.
Here p is the molar density while a is the parameter in the equation of state and is
assumed to be constant. What is the significance of the sign of #"*? What is the
ideal-gas limit for the van der Waals expression for 1/*?

4.22 A stream of pure ethylene is to be cooled from 100°C to 25°C in a single-pass,
counter-flow, tube-in-shell heat exchanger. The gas enters the tube at 25 bar and a
volumetric flow rate of 3 m®/min. Cooling water is available at 20°C and can be
heated no more than 10 C°. The heat exchanger is well-insulated. Determine the
required flow rate of cooling water for the following cases:

(a) Assume ethylene is an ideal gas with

c;g/R = A+BT+CT> (P4.22.1)

and A = 1.424, B =0.0144, C = —4.39(107°).

(b) Assume ethylene still has the heat capacity (P4.22.1), but now it obeys Z =1 +
BP/RT with B given by the Pitzer correlation [33],

BP,
- B,+ 0B, (P4222)
RT,
B, = 0.083 - 2222 (P422.3)
Tx
B, = 0139 L1722 (P4.22.4)
Tr

where Tg =T/T,, T, =282.4 K, P, =50.4 bar, and acentric factor ® = 0.085.

4.23 For a multicomponent gas mixture that obeys Z =1 + BP/RT, show that the par-
tial molar volume of component i is given by

- _ RT
Vi= D - B+ zgkaik (P4.23.1)

where the sum runs over all components.

4.24 Use the Carnahan-Starling equation
(a) To derive (4.5.6) for the residual internal energy for a pure hard-sphere fluid.
(b) To derive (4.5.7) for the residual entropy for a fluid of pure hard spheres.

4.25 Estimate the volume required of a rigid tank to store one kilogram of gaseous
propane at 25 bar, 100°C. Use (a) the Redlich-Kwong equation and (b) the modi-
fied Redlich-Kwong equation. Propane has T, = 369.9 K, P, = 42.5 bar, and molec-
ular weight = 44.1.



182 PROPERTIES RELATIVE TO IDEAL GASES

4.26 Show that the van der Waals covolume b is the same as the hard-sphere second
virial coefficient By; that is, derive (4.5.48). To do so, rearrange the van der Waals
estimate of Z;,; (4.5.47) to find

b= lim (E) = lim (E) (P4.26.1)
p—0\ Zp p—0\L P

and compare with By, from the virial equation written for hard spheres.

4.27 For pure substances that obey the Redlich-Kwong equation of state, derive the
following expressions for isobaric residual properties:

-3a
(@) u'® = In(1 +bp)

20T P

“3a RTbp ap
(b) 1 = In(1+bp)+ -

AT 1=bp JT(1+0bp)
© s = —Z _In(1+bp) +RIn(1-bp) +RInZ

2bTJT

- bp ap
d) Ing_ . = —2 _In(1+bp)-In(1-bp)—InZ + -
PUte By RT T 1-bp RTJT(1+0bp)

4.28 (a) Consider a pure fluid of hard spheres that obeys the Carnahan-Starling equa-
tion (4.5.4). Show that such a fluid always has positive values for the residual
properties 1"* and ¢’ and a positive value for In ¢.

(b) Show that the van der Waals equation of state gives c, = ¢,(T) but it also gives
= cp(T, P).

4.29 The Joule-Thomson (J-T) expansion, introduced in Problem 3.25, is characterized
by the J-T coefficient, u = (0T /dP)y,.

(a) Evaluate u for a pure fluid that obeys the Redlich-Kwong equation.
(b) What is the physical significance of states at which u > 0? Of u < 0?

(c) The J-T inversion temperature is the temperature at which u changes sign;
i.e., at which y = 0. Use the Redlich-Kwong equation to obtain an expression
for the inversion temperature as a function of molar volume.

4.30 Consider a binary gas that obeys the virial equation Z =1 + Bp.

(a) Under what conditions, if any, will work have to be done on the gas in order
to add a small amount (x5 < 107*) of a third component at fixed T and P?

(b) Under what conditions, if any, will the fugacity of this dilute component pass
through an extremum as P is increased with T and {x} fixed?

(c) Repeat (a) and (b) for gases that obey Z =1+ Bp + sz.
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4.31 This exercise illustrates one approach commonly used in developing thermody-
namic models: a reliable functional form for a property of one substance is
extended to a class of substances by parameterizing in terms of critical proper-
ties, and perhaps improved somewhat by curve fitting. Use the Redlich-Kwong
equation of state to obtain an expression for the temperature dependence of the
second virial coefficient. Then use the relations a(T,, P,) and b(T,, P,) from Table
4.4 to replace the equation of state parameters a and b with critical properties.
Show that your result can be expressed in reduced form as

BP
€ = 0.08664 - (#225 (P4.31.1)
RTC TR

where Ty = T/T, is the reduced temperature. Now using this form as a guide, we
generalize by writing

BP
C=o - L] (P4.31.2)
c T}({

We then obtain values of the parameters o, B, and y by a least squares fit to B(T)
data for gases composed of small rigid nonpolar molecules. Using the numerical
values in (P4.31.1) as initial guesses in the fit, the result is the expression for B,
given by the Pitzer correlation in Problem 4.22.



5

PROPERTIES RELATIVE TO
IDEAL SOLUTIONS

In Chapter 4 we used differences and ratios to relate the conceptuals of real sub-
stances to those of ideal gases. To compute values for those differences and ratios,
we use the equations given in § 4.4 together with a volumetric equation of state. Such
equations of state are available for many mixtures, particularly gases; however, few of
those equations reliably correlate properties of condensed-phase mixtures. Although
some equations of state reproduce the behavior of condensed phases of complex sub-
stances, those equations are complicated and applying them can require considerable
computational skill and resources. This is particularly true when we attempt to apply
equations of state to mixtures of liquids.

Therefore we seek ways for computing conceptuals of condensed phases while
avoiding the need for volumetric equations of state. One way to proceed is to choose
as a basis, not the ideal gas, but some other ideality that is, in some sense, “closer” to
condensed phases. By “closer” we mean that changes in composition more strongly
affect properties than changes in pressure or density. The basis exploited in this chap-
ter is the ideal solution. We still use difference measures and ratio measures, but they
will now refer to deviations from an ideal solution, rather than deviations from an
ideal gas.

We start the development in § 5.1 by defining ideal solutions and giving expres-
sions for computing their conceptual properties. In §5.2 we introduce the excess
properties, which are the differences that measure deviations from ideal-solution
behavior, and in § 5.3 we show that excess properties can be computed from residual
properties. In § 5.4 we introduce the activity coefficient, which is the ratio that mea-
sures deviations from ideal-solution behavior, and in § 5.5 we show that activity coef-
ficients can be computed from fugacity coefficients. This means that deviations from
ideal-solution behavior are formally related to deviations from ideal-gas behavior, but
in practice, one kind of deviation may be easier to compute than the other. Tradition-
ally, activity coefficients have been correlated by fitting excess-property models to
available experimental data; simple forms for such models are introduced in § 5.6.
Those few simple models are enough to allow us to exercise many of the relations pre-
sented in this chapter; however, more thorough discussions of models for excess prop-
erties and activity coefficients must be found elsewhere [1, 2].
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5.1 IDEAL SOLUTIONS

We define an ideal solution to be a mixture in which the molecules of different species
are distinguishable (they have different masses or different structures or both); how-
ever, unlike the ideal gas, the molecules in an ideal solution exert forces on one
another. When those forces are the same for all molecules, independent of species,
then a solution is said to be ideal. This insensitivity to differences in molecular interac-
tions does not mean that all properties are independent of composition (even in ideal-
gas mixtures, most properties change with composition), but it does mean that when
ideal-solution properties change with composition, they do so in regular ways. No
real mixture is truly ideal, although many real mixtures are nearly ideal when they
contain only molecules that are structurally similar; this includes isotopic mixtures
(HyO + D,0), mixtures of components from a homologous series (methanol + ethanol
+ propanol), and mixtures of components that have a dominant structural characteris-
tic, such as the aromatic ring in mixtures of benzene + toluene. Note that this defini-
tion does not restrict us to a particular phase; that is, gases may form ideal solutions.
But the common use of this approach is for condensed phases—liquids and solids.
When intermolecular forces are independent of composition, each fugacity devi-
ates from its ideal-gas value by an amount that is also independent of composition.
This means each ideal-solution fugacity coefficient does not depend on composition,

is

fi fiis

¢ (T, P) =

Since the ideal-gas fugacity is linear in the mole fraction x; while (p:S is independent of
mole fraction, the ideal-solution fugacity must also be linear in x;. We write that lin-
earity in this form:

(5.1.2)

where the proportionality constant f; is the fugacity of the pure component in some
well-defined standard state.” We denote standard-state properties with a superscript o.
The standard-state temperature is always taken to be the mixture temperature T, but
the standard- state pressure P! need not be the same as that of the mixture. Further,
the value of P! may be allowed to change when the mixture P changes, and we may
choose different standard-state pressures for different components i.

The linear form (5.1.2) is the simplest expression that can be devised for the compo-
sition dependence of a fugacity, and in fact (5.1.2) can be considered to be a thermody-
namic definition of ideal solution. Even the ideal-gas mixture, for which (p? =1,is a
special kind of ideal solution; that is, the ideal-gas fugacity takes the form (5.1.2) with

" Standard state (0) is a district in the land of reference states (®). In contrast to the definition given above for
standard state, a reference state (introduced in § 4.3.2) is any well-defined state with respect to which values
of conceptuals are computed: a value for a reference-state property amounts to a lower limit on an integral
that gives a change in a conceptual. For example, reference states are used in obtaining the values for u, h,
and s that appear in steam tables. Reference states may be pure states or mixtures, so their property values
may depend on composition. We caution that some authors make other distinctions between standard state
and reference state; and some use these two terms synonymously.
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Po =P and fo = P. But real mixtures (nonideal solutions) have fugacities that are
necessarlly more complicated functions of composition than (5.1.2). Hlstor1cally, the
expression (5.1.2) was useful because a value for the standard-state fugacity f can be
extracted from experimental data without appealing to a volumetric equation of state.
But this advantage is becoming less important as more equations of state are being
devised for correlating the PvTx behavior of liquids, as well as dense gases.

On combining (5.1.2) with (5.1.1) we find

0T, P) = F(T P)) (5.1.3)
5 1.

This shows that, although the ideal-solution fugacity coefficient is independent of
composition, it does depend on the choice made for the standard state. Consequently,
the ideal-solution fugacity coefﬁc1ent is not the same as the standard-state fugacity
coefficient unless we choose P = P. Thatis, in general

£(T, P?))
— 7
i

QT PY) = 0;%(T, P) (5.1.4)

Many choices for the standard state are possible, and in fact, we need not even
choose the same standard state for all species in a mixture. But to have an example for
use throughout this chapter, we introduce the most common choice: the Lewis-Randall
rule [3], in which the standard state for each component is taken to be the pure sub-
stance in the same phase and at the same T and P as the mixture. With this choice,
each standard-state fugacity is given by

£(T, P}y = f(T,P) = (T, P) (5.1.5)

pure i

and the ideal-solution fugacity in (5.1.2) becomes

£5(TPAXD) = % foe (T, P) (5.1.6)

We refer to such a mixture as a Lewis-Randall ideal solution.

5.1.1 Partial Molar Properties of Lewis-Randall Ideal Solutions

To obtain expressions for the partial molar properties of ideal solutions, we first deter-
mine the chemical potential. Using the ideal-solution fugacity (5.1.6) in the integrated
definition of fugacity (4.3.12) we find

GI'(T,P,{x}) = ¢%(T, P) + RT Inx, (5.1.7)

For a Lewis-Randall ideal solution, g¢ is the molar Gibbs energy of the pure compo-
nent at the mixture T and P. The derivatives of G; given in § 3.4.3 provide other prop-
erties; for example, the temperature and pressure derivatives of (5.1.7) produce the
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partial molar entropy and volume, respectively. Further, the Gibbs-Helmholtz equa-
tion (3.4.17) applied to (5.1.7) gives the partial molar enthalpy. Then the remaining
properties can be found from their defining Legendre transforms. The results fall into
two classes: those for first-law properties and those for second-law properties.

The partial molar results for first-law properties are independent of composition:
these properties are simply the values of the corresponding first-law properties of the
pure component in its standard state:

VE(T,P) = 0T, P) (5.1.8)
US(T. P) = u’(T, P) (5.1.9)
H(T, P) = K(T, P) (5.1.10)

In contrast, partial molar results for second-law properties depend on composition
through entropy of mixing terms:

SF(T,P,{x}) = (T, P) - RInx, (5.1.11)
Gi'(T,P,{x}) = ¢'(T, P) + RT Inx, (51.12)
AF(T,P,{x}) = a'(T.P) +RT Inx, (5.1.13)

Note that each second-law property diverges in the dilute-solution limit (x; — 0). Note
also that each expression in (5.1.8)~(5.1.13) has the same functional form as the corre-
sponding expression for an ideal-gas mixture (cf. § 4.1.3).

5.1.2 Total Properties of Lewis-Randall Ideal Solutions

With the partial molar properties now known, expressions for the total properties of
ideal solutions can be formed from the generic relation between a mixture property
and its corresponding component partial molar properties:

FT, P {x}) = Y % Fy(T, P, {x}) (3.4.4)

Again, the results divide into expressions for first-law properties,

o"(T, P, {x}) = > x;0{(T, P) (5.1.14)

1

u(T, P, {x}) = Y x,ul(T, P) (5.1.15)

i
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BT, P, {x}) = Y xH(T, P) (5.1.16)

1

0

e (T, P, {x}) = Y x;¢p (T, P) (5.1.17)

and expressions for second-law properties,

$S(T, P, {x}) = 3 ST, P) = R Y x;Inx, (5.1.18)
i i

¢ (T, P, {x}) = 3 x,8{(T,P) + RT Y x; Inx, (5.1.19)
i i

aS(T, P, {x}) = Y x,a{(T, P) + RT ¥ x; Inx, (5.1.20)
i i

For the Lewis-Randall ideal solution, all terms in these equations must be at the same
temperature, pressure, and phase, even if some of those states are not physically real-
izable. For example, if P is below the vapor pressure of a pure substance, then that
substance cannot exist as a liquid; nevertheless, the properties of a hypothetical liquid
at that P might still be useful. Note that these results for ideal solutions are function-
ally the same as those given in § 4.1.4 for ideal-gas mixtures. This reinforces our com-
ment that an ideal-gas mixture is merely one kind of ideal solution.

5.1.3 Changes of Properties on Mixing

Besides total properties, it is often useful to compare mixture properties to those of the
pure components. Such comparisons can be made by defining, for any extensive
property F, a change of property on mixing F"",

F"(T,P,{N}) = F(T, P, {N}) —ZNi Fpurei(T- P) (5.1.21)

where the mixture and all pures are at the same T and P. A particular instance of
(5.1.21) is the change of Gibbs energy on mixing G™, encountered in § 3.7.4 and § 4.1.5.

To evaluate F™ for the special case of ideal solutions, we merely substitute (5.1.14)-
(5.1.20) in turn into (5.1.21). On so doing, we find that each first-law property takes a
simple form,

oM = 3%, [0(T, P) = 0o (T, P (5.1.22)
i

is, m

W™ = N [](T, P) = e (T, P (5.1.23)

i
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B =N (T, P) e i(T. P (5.1.24)

1

while each second-law property contains an entropy of mixing term,

ST = N 15](T, P) =5 e (T, P = R x; Inx; (5.1.25)
i i

g5 =Y % 18](T, P) = g e i(T, P)] + RTY x; Inx; (5.1.26)
i i

@ = P (T P) =gy (T P)] + RT3, I, 5127

1 1

For the Lewis-Randall ideal solution, these expressions simplify as follows.

(a) Changes in first-law properties (5.1.22)—(5.1.24) all vanish: when an Lewis-
Randall ideal solution is formed by mixing pure components at fixed T and
P, there are no volumetric or thermal effects associated with the mixing.

(b) Changes in second-law properties (5.1.25)—(5.1.27) are not zero; instead, all
reduce to an entropy of mixing term. Consequently, an Lewis-Randall ideal-
solution has s" always positive while ¢"" and a™ are always negative.

Item (b) means that, at fixed T and P, work must always be done on a Lewis-Randall
ideal solution to separate it into its pure components. Further note that this work does
not depend on phase: the minimum work to separate a liquid ideal solution at T, P,
and {x} is the same as that to separate an ideal-gas mixture at the same T, P, and {x}.

5.2 DEVIATIONS FROM IDEAL SOLUTIONS: DIFFERENCE MEASURES

Although no real mixture is truly ideal, we can often use the concept of an ideal solu-
tion to reduce the labor needed to compute property values for real mixtures. To do so
we introduce, for each property f, an excess property fF,

FET P {x}) = F(T.P, {x}) - f(T, P, {x}) (5.2.1)

Here f represents an intensive property value for the real mixture, and all three terms
in (5.2.1) are at the same temperature T, pressure P, composition {x}, and phase. The
excess properties provide a convenient way for measuring how a real mixture devi-
ates from an ideal solution. In general, an excess property f£ may be positive, nega-
tive, or zero. An ideal solution will have all excess properties equal to zero. Note that
the value for ff depends on the choice of standard state used to define the ideal solu-
tion. Further note that the definition (5.2.1) is not restricted to any phase: excess prop-
erties may be defined for solids, liquids, and gases, although they are most commonly
used for condensed phases.
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5.2.1 Excess Properties and Mixing Properties

Excess properties are simply related to the changes of properties on mixing defined in
§ 5.1.2. Specifically, if we combine the definition of f (5.2.1) with the intensive version
of the definition of F™ (5.1.21), we obtain

FE(T, P, {x}) = f"(T, P, {x})—fis’m(T, P, {x}) (5.2.2)

That is, the excess properties are the differences between the real and ideal-solution
changes of properties on mixing. The result (5.2.2) can be used for any ideal solution
defined relative to any standard state; for example, when excess properties are rela-
tive to the Lewis-Randall ideal solution, we substitute the ideal-solution expressions
(5.1.22)—~(5.1.27) into (5.2.2) to obtain the following relations between f Eand f™. First-
law excess properties are identical to the changes on mixing,

oE(T, P, {x}) = v"(T, P, {x}) (5.2.3)
uE(T, P, {x1) = u" (T, P, {x}) (5.2.4)
WE(T, P, {x}) = h"(T, P, {x}) (5.2.5)

while second-law excess properties differ from the changes on mixing by entropy of
mixing terms,

sE(T, P, {x}) = s"(T, P, {x})+R2xi Inx; (5.2.6)
gE(T, P, {x}) = g"(T, P, {x})—RTZxZ- Inx; (5.2.7)
aE(T, P, {x}) = a"(T, P, {x})—RTZxZ- Inx; (5.2.8)

1

We emphasize that (5.2.3)—(5.2.8) only apply when we use the Lewis-Randall standard
state (5.1.5) for the ideal solution.

Since the definition (5.2.1) is a linear combination of thermodynamic properties, all
the usual relations for extensive properties (see Chapter 3) can be expressed in terms
of excess properties. Those relations include the Legendre transforms, the four forms
of the fundamental equation, the response functions, and the Maxwell relations. Such
relations reduce the amount of information needed to compute values for excess
properties.
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5.2.2 Excess Gibbs Energy and Its Derivatives

If we write the fundamental equation (3.2.28) for the excess Gibbs energy, we have

dGF = —sEaT+ VEdP+Y G dN, (5.2.9)

i

where G, is the excess chemical potential for component i. We can obtain another
form of this equation by replacing GF with (GE/RT) as the dependent variable,

GEY _ a(GE/RT)) (B(GE/RT)) 1 o AE
d(RT)_( ot (F 5 P RE RO ANy (6210)

With the analog of the Gibbs-Helmholtz equation (3.3.17),

E E
(a__(c / RT)) __H (5.2.11)
oT PN~ RT2
and the analog of the pressure derivative (3.3.32),
a(GE/RT)) _vE
( oP TN ~ RT (6212)
(5.2.10) becomes
d(—) _ aT + g dP . —ZG dN, (5.2.13)
RT RT2

This equation has units of moles; it is important because T, P, N;, VE, and HF are all
measurable. And although the excess chemical potentials cannot be measured
directly, they can be extracted from phase-equilibrium data. (It is instructive to note
that while absolute values for conceptuals, such as H, can never be measured, certain
kinds of differences in conceptuals, such as HF and H™, can be.)

The excess chemical potentials are not mdependent rather they are related
through a Gibbs-Duhem equation. In particular, if we let gF be the function f in the
generic Gibbs-Duhem equation (3.4.10), we obtain

C
3 x,dG; = ~sFdT + oFdP (5.2.14)

i

And if T and P are fixed, then (5.2.14) reduces to
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3 x,dG; =0 fixed T and P (5.2.15)

When excess properties are defined relative to the Lewis-Randall ideal solution, oF

and hE have simple physical interpretations. For vf, we combine the ideal-solution
form (5.1.14) with the definition (5.2.1) to obtain

oE(T, P, {x}) = o(T, P, {x})—zxiv?(:r, P) (5.2.16)

where oF could be positive, negative, or zero. Let’s consider some representative liq-
uid mixtures. For example, mixtures of benzene and toluene are nearly ideal solutions
with respect to the Lewis-Randall standard state. At ambient conditions, they have of
= 0: mixing 50 cc of benzene with 50 cc of toluene produces 100 cc of mixture. In con-
trast, Figure 3.3 shows that ethanol-water mixtures have vF < 0: at ambient conditions,
50 cc of ethanol added to 50 cc of water produces less than 100 cc of mixture. Further
Figure 3.3 also shows that mixtures of carbon tetrachloride and benzene have vf > 0:
50 cc of CCly added to 50 cc of CgHg produces more than 100 cc of mixture.

In an ideal solution intermolecular forces are the same between all molecules,
regardless of species: differences in those forces produce nonzero values for excess
properties. In particular, magnitudes and signs of excess properties are determined by
imbalances in the strengths of interactions between molecules of the same component
(like interactions) as compared to those between molecules of different Components
(unlike interactions). Figure 5.1 illustrates these points by showing vf at 25°C for

0.3

<
ro

e
[y

UE(cm3/mol)

X alcohol

Figure 5.1 Excess volumes (relative to Lewis-Randall ideal solutions) for binary liquid mix-
tures of benzene plus an alcohol, all at 25°C. MeOH = methanol, EtOH = ethanol, 1-PrOH = n-
propanol, 1-BuOH = n-butanol, and 2-PrOH = isopropanol. Adapted from Battino [4].
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binary mixtures of benzene plus an alcohol. For mixtures of benzene plus methanol or
ethanol, vF can be either positive or negative, depending on composition. However, as
the hydrocarbon chain of the alcohol is made longer, & becomes positive over all
compositions. Further, v* is influenced not only by the size of the hydrocarbon chain,
but also by the location of the -OH group; consequently, v for benzene + 2-propanol
is much larger than v* for benzene + 1-propanol.

For the excess enthalpy, combining (5.1.16) with the definition (5.2.1) leaves

WE(T, P, {x}) = (T, P, {x})_zxihf(T, P) (5.2.17)

When pure components are mixed at constant T and P, an energy balance shows that
hE measures the heat effect. In the Lewis-Randall standard state, ideal solutions have
no heat effect on mixing, hE = W = 0; but for real mixtures, the heat effect may be exo-
thermic (g = hE < 0) or endothermic (g= hE > 0).

Excess properties are usually strong functions of composition; they may also be
strong functions of temperature, but for liquids they are usually weak functions of
pressure. Figures 5.2 and 5.3 show typical plots of the composition dependence of gF,
hE, and sF in sample binary liquid mixtures. The g* values were obtained from analy-
ses of vapor-liquid equilibrium data, the hF values are from calorimetric data, and the
sF values were computed from the Legendre transform,

sE = (hE-gBy/T (5.2.18)
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Figure 5.2 Composition dependence of excess properties (relative to Lewis-Randall ideal solu-
tions) in representative binary liquid mixtures. (a) (left) n-hexane(1)-cyclohexane(2) at 20°C, (b)
(right) chloroform(1)-acetone(2) at 25°C. Note different scales on ordinates. Redrawn from plots
in [5].
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In Figure 5.2(a) all three excess properties are positive; for binary mixtures, hf and gF
are often positive, while s¥ may be of either sign. In Figure 5.2(b) all three properties
are negative; this is less common than (a), but not rare. Note that the magnitudes of
the excess properties in Figure 5.2(b) are about an order of magnitude larger than
those in Figure 5.2(a). In Figure 5.3, the behavior is more complex: both 1f and sF are
negative, but sF has the larger magnitude, so by (5.2.18), g* is positive.

Figure 5.4 shows how temperature affects the excess properties in ethanol-water
mixtures. At ambient temperatures, hF and st are negative, with TsF < hE, so gF is pos-
itive. As T increases, both hF and s* become more positive. Note that at 70°C, hF may
be positive or negative, depending on composition. These changes in excess proper-
ties reflect complex and subtle changes in effects of molecular interactions in response
to the change in temperature.

An important point to note from Figures 5.2-5.4 is that ¢f is a weak function of
temperature and is more nearly symmetric in composition than either hE or sF. These
features are common to many binary mixtures: the nonidealities, as functions of com-
position, are more uniform in gE than in either of the separate contributions, hE and st
Furthermore, the relations among g%, hF, and st lead to patterns of behavior that can
be important in applications [6].

Lastly, we emphasize that the definition of the excess properties (5.2.1) is com-
pletely general in that it can be used to measure deviations from any kind of ideal
solution. In this section we have illustrated that definition using ideal solutions based
on the Lewis-Randall standard state (5.1.5). This is a typical application; however,
other kinds of ideal solutions, based on other standard states, can be defined and
prove useful in special situations. In those cases, the generic definition of the excess
property (5.2.1) still applies.

5.3 EXCESS PROPERTIES FROM RESIDUAL PROPERTIES

Traditionally, values for excess properties were obtained either directly from experi-
ment or indirectly, by fitting a small number of measured values to a model. But
excess properties can also be obtained from residual properties, which are extracted
from PuTx measurements. In this section we develop relations that enable us to com-
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0.4 —

Figure 5.4 Effect of temperature on the excess properties for liquid mixtures of water(1) and
ethanol(2). Note that gE/RT is only weakly affected by these changes in T, while hf/RT changes
sign. Excess properties relative to Lewis-Randall ideal solution. From data tabulated in [7].

pute excess properties from residual properties, and hence from volumetric equations
of state. We consider volume-explicit equations of state (§ 5.3.1) first and follow with
pressure-explicit equations (§ 5.3.2).

5.3.1 When T, P, and {x} Are Independent

When the mixture of interest is described by an equation of state of the form o(T, P,
{x}), then the definition of the excess properties (5.2.1) can be combined with the defi-
nition of isobaric residual properties (4.2.1) to yield the intensive form

is,res

FET, P {x)) = (T, P, {x}) - f7(T, P, {x}) (5.3.1)
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where the second term on the rhs is the residual property of the ideal solution. The
general result (5.3.1) enables us to compute excess properties from known values of
isobaric residual properties. In addition, (5.3.1) can be used to find equations that
enable us to compute excess properties directly from v(T, P, {x}) equations of state.

To illustrate how (5.3.1) is applied, we use the simple virial equation

z=1+80 (5.3.2)
RT

to compute excess properties for gaseous mixtures of methane and sulfur hexafluo-
ride at 60°C, 20 bar. In § 4.5.5 we used this same equation of state to compute residual
properties for this mixture. The volume-explicit form of this equation is

o= RL g (5.3.3)
P

where B is given for mixtures by (4.5.18).
Using expressions from § 5.1.2 for Lewis-Randall ideal-solution properties and
those from § 4.1.4 for ideal-gas mixtures, (5.3.1) can be written as

BT, P, {x}) = £, P, {x}) - le. £, P x)) (5.3.4)

where f;""* represents the residual property for component i in the Lewis-Randall
standard state (5.1.5). Equation (5.3.4) applies to both first-law and second-law prop-
erties. For second-law properties, the entropy of mixing terms for the ideal gas and
ideal solution are the same, and so they cancel when (4.2.1) and (5.2.1) are combined.
To obtain the excess volume, we substitute the model (5.3.3) into (5.3.4) and obtain

oE(T,P,{x}) = 5 +B —xl(R?T ¥ BH) - xZ(liPT. ¥ BZZ) (5.3.5)

B-x,B;; —x,B,, (5.3.6)

Using (4.5.18) for B and simplifying, (5.3.6) becomes

oF(T, P, {x}) = x;%,8,,(T) (5.3.7)
where
815(T) = 2B15(T) = By;(T) = Byy(T) (5.3.8)

Note that 8;, quantifies the imbalance of forces acting between molecular pairs of the
same component (By; and B,,) as compared to pairs of different components (By); 81>
may be positive or negative. Further, an ideal solution has 8;, = 0 because all forces
are the same (By; = By, = Byy); however, the mixture would not be an ideal gas unless
the forces were not only the same, but also all zero.
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Figure 5.5 Excess properties for gaseous mixtures of methane and sulfur hexafluoride at 60°C
and 20 bar; computed from the virial equation (5.3.3) using (5.3.9)-(5.3.11). Excess properties
relative to Lewis-Randall ideal solution (5.1.6).

To obtain an expression for the excess enthalpy, we substitute (4.5.35) for the resid-
ual enthalpy into (5.3.4) and find

. a3,
HE(T, P, {x}) = x,2,P (812—Tﬁ ) (53.9)

Similarly, to obtain the excess entropy we substitute (4.5.37) for s into (5.3.4),

s°(T, P, {x}) = _xlxzchT (5.3.10)

Then a Legendre transform gives

gE(T, P, {x}) = xyx, P8;,(T) (5.3.11)

To compute excess properties from (5.3.9)-(5.3.11), we need values for 8, and its
temperature derivative. For these mixtures, values for B;; are found in Table 4.2, and
then (5.3.8) gives

8, = 119 cm® /mol (5.3.12)

The values in Table 4.2 for the Bjj can also be used to estimate the derivative in (5.3.10)
as a finite difference; we find

dd;,  Ad,

= 040 cm’ /mol K (5.3.13)
dT AT

Results from (5.3.9)-(5.3.11) over the entire composition range are shown in Figure 5.5.
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5.3.2 When T, V, and {x} Are Independent

In this subsection we consider those situations in which our mixture is described by a
pressure-explicit equation of state, P = P(T, v, {x}). Our objective is still to relate excess
properties to residual properties and to the equation of state, but with v as an inde-
pendent variable, we would prefer to express those relations in terms of the isometric
residual properties, rather than the isobaric ones. However, the development is not as
simple as what we did in the previous section because now we have an inconsistency:
the equation of state and the isometric residual properties use (T, v, {x}) as the inde-
pendent variables, but the excess properties defined by (5.2.1) use (T, B, {x}).

For first-law conceptuals (1« and h) this inconsistency poses no problem because
values of first-law isometric and isobaric residual properties are the same; see (4.2.24)
and (4.2.25). However, for second-law conceptuals (g, 4, and s) the two kinds of resid-
ual properties differ (see § 4.2.3), so we must exercise care when using residual prop-
erties to evaluate second-law conceptuals. We need to evaluate only three quantities
(oF, uE, and sF) then the remaining three (HE, gE, and aF) can be obtained from Le-
gendre transforms. We also obtain the expression for the excess chemical potential in
terms of isometric residual chemical potentials.

To obtain the excess volume at a specified mixture state (T, P, {x}), we still apply
(5.3.4), in which the mixture and all standard states are at the same temperature and
pressure. Formally this poses no problem, but for some equations of state we will
have to perform trial-and-error calculations to obtain volumes.

From a pressure-explicit equation of state, the internal energy is the appropriate
first-law conceptual to evaluate. Since isometric residual internal energies are identi-
cal to isobaric ones (4.2.24), we can immediately write (5.3.4) as

o,res

uE(T, P, )y = u"N(T, 0, fxh =Y x " (T, 0, {x}) (5.3.14)

To evaluate uF, we merely substitute (4.4.14) for each term on the rhs of (5.3.14).
As the second-law conceptual, we choose the entropy; combining (4.2.28) for the
isometric residual entropy with (5.3.4), we obtain

o,res

sE(T, P, {x}) = s (T, v, {x}) - in s;

Z  (53.15)

(T, v?, {x})+ Rin an
i

1

where Zf is the compressibility factor for component i in its standard state. Similarly,
the excess chemical potential is given by

Gi(T, P, {x}) = Gi°(T, v,{x})—in G, v?,{x})—RTin 1nZ£O (5.3.16)
i i j

1

Note that the mixture state of interest is identified by (T, B, {x}), so the value for the
mixture volume v must be obtained by solving the equation of state at (T, P, {x}). But
v} is the molar volume of component i in its standard state at T and P.
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To illustrate how these equations are applied, we repeat the calculations in § 5.3.1
to obtain excess properties for gaseous mixtures of methane and sulfur hexafluoride
at 60°C, 20 bar. Values for the isometric residual properties of this mixture have
already been determined in § 4.5.5. We continue to use the virial equation of state
(5.3.2), but now we write it in a pressure-explicit form,

(5.3.17)

with B for mixtures given by (4.5.18). As always, before calculations can be done, we
must identify the standard-state for each component. To be consistent with § 5.3.1, we
again choose the Lewis-Randall standard state (5.1.5).

The excess volume is still determined by the procedure used in § 5.3.1, leading to
the same result (5.3.7). Then to obtain u"*, we substitute (4.5.41) for u"*(T, v, {x}) into
(5.3.14) and obtain

s
uB(T, P, {x}) = —x;x, PT ﬁlz (5.3.18)

Substituting (4.5.43) for s"(T, v, {x}) into (5.3.15) yields

ET p - _ Pislz (5.3.19)
S ( ’ ’{x}) xlxz dT .

This is the same result as found in (5.3.10). With oF, uE, and sF known, we can obtain
hE and gE by Legendre transforms. The results are (5.3.9) for hE and (5.3.11) for gE.
Since the expressions for the excess properties obtained here are exactly those found in
§ 5.3.1, the numerical results are also the same. In particular, the excess properties for
this mixture are still as represented in Figure 5.5.

The approach used here differs from that in § 5.3.1 merely because of the form
adopted for the equation of state. For the simple virial equation (5.3.2), we can choose
whether we want to use a volume-explicit or a pressure-explicit form. Both forms give
the same results for excess properties, and both require about the same computational
effort. However for dense fluids, more complicated equations of state must be used;
often, they are cubic or higher-order polynomials in the volume. That is, most are
pressure-explicit, they cannot be converted into volume-explicit forms, and in such
cases, we must use the expressions (5.3.14)—(5.3.16) to obtain excess properties.

5.3.3 Compare Values of Excess Properties with Residual Properties

In § 4.5.5 we computed residual properties for gaseous mixtures of methane and sul-
fur hexafluoride mixtures at 60°C and 20 bar. In § 5.3.1 and 5.3.2 we computed excess
properties for this same mixture. We can also compute residual properties for the
ideal solution (Lewis-Randall standard state). Comparisons of these three kinds of dif-
ference measures are shown in Table 5.1 for equimolar mixtures. We see that the
equimolar mixture of methane and sulfur hexafluoride exhibits positive deviations
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Table 5.1 Excess properties compared to isobaric residual
properties for gaseous equimolar mixtures of methane and
sulfur hexafluoride at 60°C and 20 bar. These excess
properties are relative to the Lewis-Randall ideal solution.

. Ideal-
Isobaric .
Property Excess . solution
residual .
residual
Volume (cm®/mol) 29.7 -97.7 -127.4
Enthalpy (J/mol) 126. ~730. —856.
Entropy (J/mol K) 0.20 -1.60 -1.80
Gibbs energy (J/mol) 594 -197. -256.

from ideal-solution behavior and negative deviations from ideal-gas behavior. Fur-
ther, these systems expand slightly on mixing and the mixing is endothermic; how-
ever, since the mixture is a gas, these effects are small. This behavior is common; it can
usually be attributed to strong attractive forces acting between molecules of the same
component, as compared to weaker forces acting between molecules of different com-
ponents.

5.4 DEVIATIONS FROM IDEAL SOLUTIONS: RATIO MEASURES

In addition to the excess properties, which are difference measures for deviations
from ideal-solution behavior, we also find it convenient to have ratio measures. In
particular, for phase equilibrium calculations, it proves useful to have ratios that mea-
sure how the fugacity of a real mixture deviates from that of an ideal solution. Such
ratios are called activity coefficients. The activity coefficients can be viewed as special
kinds of a more general quantity, called the activity; so we first introduce the activity
(§ 5.4.1) and then discuss the activity coefficient (§ 5.4.2).

5.4.1 Activity

Consider the algebraic form (4.3.12) that results from an isothermal integration of the
first part of the definition of fugacity,

fi(T, P, {x})

21, PP, 121

GAT.P,{x}) - G{(T,P®, {x®}) = RT In (4.3.12)

For the reference state, lets us choose a pure-component standard state: the real (or hypo-
thetical) pure substance at the temperature of the mixture and at some convenient
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pressure P?. This pressure need not be the same as the pressure P of the mixture.”
Then (4.3.12) becomes

— — f(Ta P7 {x})
Gi(T,P,{x}) - G{(T,P}) = RT In-——— (5.4.1)
(T, PY)
and the ratio on the rhs defines the activity for component i,
fi(T, P, {x})
a(T, P {x}; ff) = e (5.4.2)
AT, P?)

The result (5.4.1) establishes a connection between a difference and a ratio,

Gi(T,P,{x}) — G{(T,PY) = RT Ina,(T, P, {x}; f") (5.4.3)

The activity is a dimensionless, conceptual, state function. The notation used in the
argument list for a; is intended to emphasize that the numerical value for the activity
depends, not only on the state of the mixture (T, P, {x}), but also on the choice of the
standard state. At this point we have not completely identified the standard state; we
have said it is the pure substance at T but we have not specified the pressure P? or the
phase. This leaves some flexibility in using the activity. For example, we might com-
plete the choice of standard state by identifying it as the real pure liquid i at T and at
its vapor pressure P?(T). This is a common choice. However, as an alternative, we
might also choose the (hypothetical) pure ideal gas at T and P of the mixture; then the
resulting activity would be closely related to the fugacity coefficient. Other choices are
also possible, and some are convenient in certain situations.

Numerical values for the activity are always positive, and its value becomes unity
only when the mixture fugacity f; equals the value of the fugacity in the standard
state. Since that standard state is a pure state, not an ideal-solution state, the activity
does not measure deviations from ideal-solution behavior. Nevertheless, the activity
proves useful in certain kinds of engineering calculations, which we shall explore in
Part IV of this book.

5.4.2 Activity Coefficient

To have a useful ratio that measures how a real fugacity deviates from that in an ideal
solution, we return to the definition of the fugacity (4.3.8), and we integrate that defi-
nition from an ideal-solution state to the mixture of interest. For the fugacity of i, the

" In the land of pure-component standard states, the Lewis-Randall rule (5.1.5) is but a district. The two dif-
fer in their standard-state pressures and phases. The Lewis-Randall standard-state pressure and phase are
always those of the mixture, but in a generic pure-component standard state, the standard-state pressure
and phase need not be the same as those of the mixture. In general, the choice for standard-state is dictated
by the availability of a value for the pure-component fugacity: either from a reduction of experimental data,
or from a correlation, or from an estimate. We caution that other authors may make other distinctions, and
some may make no distinction between the Lewis-Randall rule and the pure-component standard state.
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ideal solution is at the temperature and composition of the mixture, but it may be at
any convenient pressure P7. In such cases, the integrated definition of the fugacity
(4.3.12) takes the form

_ s T, P,
Gi(T, P, {x}) - G; (T, P% {x}) = RT In M (5.4.4)

(T, P, {x})

and the ratio on the rhs is defined to be the activity coefficient v;,

(T, P,
’YZ. = u (5'4'5)

£5(T, P9, {x})

We caution that this definition of the activity coefficient is incomplete because
there is no unique ideal solution. Moreover, the pressure P{ is chosen for computa-
tional convenience; it may or may not be the same as the mixture pressure P. So the
value of f; S in (5.4.5) cannot be determined until we identify our choice for the ideal
solution. In the j jargon of solution thermodynamics, a value of y; is meaningless unless
we are also told the standard state to which it refers. We will use the notation

Y; = vi{(T, P, {x}; f(T, P})) (5.4.6)

when it is important to emphasize that the value of y; depends on the standard-state
fugacity f7. Note that the standard-state pressures P] can have different values for
different components.

The activity coefficient is a dimensionless, conceptual, state function. Its value is
always positive; however, it may be greater or less than unity. The ideal solution has
all y; = 1, but the converse is not true: a mixture having all activity coefficients equal to
unity may not be an ideal solution. Note that the definition (5.4.5) places no restriction
on the kind of phase to which y; may be applied: vy; is a legitimate property of gases,
although it is used most often for liquids and solids.

In § 5.1 we observed that every ideal-solution fugacity (5.1.2) is linear in its mole
fraction. We now write (5.1.2) in a more explicit form,

5T, P, {x}) = x; £{(T, PY) (5.4.7)

So the definition of the activity coefficient (5.4.5) can be written

(T. P (T, P Y
_ TP Axh (T PAxE f) (5.4.8)
x; f(T, PY) Xi

i

" The term “activity coefficient” was apparently first used by Savante Arrhenius in his doctoral dissertation
(1884); the modern definition was given by A. A. Noyes and W. C. Bray in a paper published in 1911 [8].
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This explicitly relates the activity coefficient to the standard-state fugacity and to the
activity a; defined in (5.4.2). Another important relation can be obtained by combining
(5.4.4) and (5.4.5); this produces

GAT, P, {x}) - G(T, P% {x}) = RT Iny/(T, P, {x}; f7) (5.4.9)

If we let each standard-state pressure P be that of the mixture (P{ = P), then the Ihs
becomes an excess chemical potential,

Gi(T,P,{x}) = RTIny,(T, P, {x}; f)) (5.4.10)

This relates a difference measure to a ratio measure for deviations from ideal-solution
behavior.

We emphasize that in writing (5.4.10) we have specified the temperature and pres-
sure of the standard state, but we still have not made a unique choice for the standard
state because we have not yet specified its phase. One common choice is the Lewis-
Randall standard state, defined in (5.1.5), in which each standard-state fugacity is
taken to be that for the pure component in the same phase and at the same tempera-
ture T and pressure P as the mixture,

F(T, (P =P)) = (T, P) for all i (5.4.11)

1, purei

Then, substituting this into (5.4.7), we obtain the ideal-solution fugacity, which is that
of a Lewis-Randall ideal solution,

F(T, PAXY) = % Fyes (T, P) (5.1.6)

Note that pure component i may or may not actually exist in the same phase as the
mixture at T and P; if it cannot, then the standard state is said to be hypothetical. But
whether the standard state is real or hypothetical is immaterial; what is important is
that the state is well-defined and that we can assign a value to f}(T, P? ).

Using the Lewis-Randall rule (5.4.11) for the standard state fugacity in (5.4.5), the
resulting expression for the activity coefficient y; approaches unity as the mixture is
made more nearly pure in component i:

[ ST P Axh) }: (5.4.12)

lim y; = lim 7D

x.—1 xi—>1

i X

f, purei

If we consider the other extreme, in which the mixture is made infinitely dilute in
component i, then (in the Lewis-Randall standard state) the activity coefficient vy;
approaches a finite value, called the activity coefficient at infinite dilution,



204 PROPERTIES RELATIVE TO IDEAL SOLUTIONS

3 — - 3
"
2 L — 2
Y1
1 1
fi __—— fpurel
T
Qle==-"1" | | | 0
0 0.2 0.4 0.6 0.8 1
X1

Figure 5.6 Schematic of the composition dependence of the fugacity f7 and activity coefficient
V1 in a binary mixture at fixed T and P. This activity coefficient is based on the Lewis-Randall
standard state (5.4.11) and therefore satisfies the pure-fluid (5.4.12) and dilute-solution (5.4.13)
limits. Note that the fugacity of the ideal-solution (broken line) is linear in the mole fraction and
that, in the Lewis-Randall standard state, f{ = foure 1-

lim y/(T, P, {x}) = v; (T, P) (5.4.13)
xl-—>0

Schematic representations of a component’s fugacity and its activity coefficient, rela-
tive to the Lewis-Randall standard state, are given in Figure 5.6 for the case in which
v;i> 1.

If we have the excess chemical potentials for all components in our mixture, then
we can combine them via (3.4.4) to obtain the excess Gibbs energy. Further, if we use
(5.4.10) to express the chemical potentials in terms of activity coefficients, then we can
compute g from activity coefficients,

GE(T, P, {x}) = inéf(:r, P.{x}) = RT Y x;Iny(T. P, {x}) (5.4.14)

1 1

When a mixture has all y; > 1, then gf > 0, and we say the mixture exhibits positive
deviations from ideal-solution behavior. Inversely, if a mixture has all y; < 1, then gE <
0, and we say the mixture exhibits negative deviations from ideal-solution behavior.
In some mixtures, the intermolecular forces are more complicated, causing some com-
ponents to have y; < 1 while others have y; > 1.

Activity coefficients can display wide variations in response to changes in composi-
tion. For example, consider the three binaries that can be extracted from a ternary
mixture of acetone, chloroform, and methanol. Figure 5.7 shows the composition
dependence of activity coefficients in those three binary mixtures. Since all these y; are
in the Lewis-Randall standard state, each v; satisfies the pure-component limit given
in (5.4.12). But, depending on the kinds of molecules present, y; may be greater than
unity or less than unity; for example, the acetone-chloroform mixtures have y; < 1, but
the mixtures containing the alcohol have v; > 1. Furthermore, the values of the v; in
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Figure 5.7 Activity coefficients for each component in three binary liquid mixtures, all at 60°C.
Top: acetone-chloroform, Middle: acetone-methanol, Bottom: methanol-chloroform. Note the
scale change from one ordinate to the next. These Y; are based on the Lewis-Randall standard
state and were computed using the Margules model, with parameters from Table E.2. Note in
the top panel that y; < 1, while in the middle and bottom panels y; > 1. After a similar figure in
Prausnitz et al. [2] and based on original data in Severns et al. [9].



206 PROPERTIES RELATIVE TO IDEAL SOLUTIONS

one binary are not simply related to those in either other binary. This suggests that
values of activity coefficients (and hence the kinds of deviations from ideality) are
affected by forces acting between molecules of different species.

Substituting (5.4.10) into (5.2.13) gives the fundamental equation for excess proper-
ties in terms of activity coefficients,

GEY_( HE vE
d(ﬁ) = ( RTZJ dT + RTdP+21nyZ dN, (5.4.15)

This form can be used to obtain the response of an activity coefficient to a change in T
or P. Since the lhs of (5.4.15) is an exact differential, the response of y; to an isothermal
change in pressure is given by

—E
dlny; v
( oP )TN " RT (5.4.16)

while the response to an isobaric change in temperature is

E

Blnyi) H;
—t =-—L 4.17
( oT RT2 6 )

Further, in any given mixture the activity coefficients are not independent; rather,
they are related through a Gibbs-Duhem equation. We may derive the equation either
by letting f = ¢%/RT in the generic Gibbs-Duhem equatlon (3.4.10), or by substituting
(5.4.10) into the Gibbs-Duhem equation (5.2.14) for g; by either procedure we obtain

C
x.dlny;, = ——dT + 2 ap (5.4.18)
2 1 1 RT RT

i

For liquids ¥ can be large, so the first term on the rhs is usually important, unless T is
held fixed; however, liquids often have small values for v%, so the second term is usu-
ally negligible. At fixed T and P (5.4.18) reduces to

c
Y x;dlny; =0 fixed T and P (5.4.19)

i

This form of the Gibbs-Duhem equation can be used to show that, when the pure-
component limit is taken, the isothermal-isobaric slope of (In y;) vs. x; is zero,

olny.
lim ( nyl) =0 (5.4.20)
xi—>1 axi TP
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Note that, because of the Gibbs-Duhem equation (5.4.19), if a binary mixture has y;
increase (decrease) with x;, then vy, must simultaneously decrease (increase); this can
be seen in any of the three panels appearing in Figure 5.7.

5.4.3 Example

How are activity coefficients related to the minimum work needed to separate a
mixture into its pure components?

In § 3.7.4 we showed that, at fixed T and P, the minimum work needed to completely
separate a mixture is given by the negative change in Gibbs energy on mixing,

Wepy pep = =8 (T, P {x3) (5.421)

To obtain an expression for the rhs in terms of activity coefficients, we choose the
Lewis-Randall standard state, and then we use (5.2.7) to eliminate ¢" in favor of gE,

E
Wy, rep = ~8 (TP, {x})=RT Y x;Inx; (5.4.22)

1

Now we use (5.4.14) to introduce the activity coefficients; we are left with

W reo = —RT D x;In(x;7,) (5.4.23)
i

This gives the minimum work needed to achieve an isothermal-isobaric separation. If
the mixture were an ideal solution, then all the y; = 1, and we would have

W, pop = —RT 23(1- In(x;) > 0 ideal solution (5.4.24)
i

This also applies to any ideal-gas mixture, which is merely a special kind of ideal solu-
tion; therefore, our result is consistent with the ideal-gas expression found in § 4.1.5.
For negative deviations from ideal-solution behavior, all y; < 1, and (5.4.23) gives
Wy, o > 0. In such cases we must always do work on the mixture to accomplish the
separation. Similarly, for small positive deviations, we have (x; y;) < 1, even though v;
> 1, so (5.4.23) still gives wy, ,., > 0, and work must still be done to cause a separation.
However, if the v; are positive and large enough, then (5.4.23) may yield wy, ,,, < 0. In
these situations, the proposed one-phase mixture is usually unstable and it spontane-
ously splits into two phases (see Chapter 8). However, the new phases would not be
pure components; instead, each phase would be a mixture having a composition that
differs from the original proposed mixture. To determine the minimum work to com-
plete the separation, we would need the composition of each phase and then we could
apply (5.4.23) to each. The result would be that work would still have to be done on
each phase to separate each into the pure components. Note that the physical interpre-
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tation of activity coefficients given by (5.4.23) applies only to y; in the Lewis-Randall
standard state; activity coefficients wrt other standard states will have other interpre-
tations.

5.5 ACTIVITY COEFFICIENTS FROM FUGACITY COEFFICIENTS

In § 5.3 we showed how excess properties, which are difference measures for devia-
tions from ideal-solution behavior, can be obtained from residual properties, which are
difference measures for deviations from ideal-gas behavior. In this section we establish
a similar set of equations that relate activity coefficients to fugacity coefficients. As a
result, the equations given here, together with those in § 5.3, establish a complete con-
nection between the description of mixtures based on models for PvTx equations of
state and the description based on models for gF and ;.

For any one component i in a mixture, the fugacity can be expressed in terms of the
fugacity coefficient (4.3.18) or in terms of the activity coefficient (5.4.5). The value for
the fugacity must, of course, be the same regardless of how it is obtained, so we can
equate (4.3.18) with (5.4.5) and write

fi= 1 h = 0 (55.1)

Hence, the activity coefficient and the fugacity coefficient are related by

'f'ig x; P
L B o (55.2)
7 X ff
or more formally,
(p' (Ts Pa {X}) P
Yi(T, P, {x}; f(T,P})) = ———— (5.5.3)

AT, P9)

Here £ is the standard-state fugacity at some convenient pressure P;. The standard-
state fugacity f° deviates from its ideal-gas value by an amount that is measured by a

standard-state fugacity coefficient ¢/, so (5.5.3) can also be written as

(pi (T’ P’ {x})P

(T, P, {x}; fXT, P?%)) =
v, ( {x}; F;(T, P})) T, P P

(5.5.4)

Three commonly used options are available for dealing with the pressures appearing
in (5.5.4); each choice leads to a particular kind of activity coefficient. In what follows,
we distinguish among the three using subtle, but vital, differences in notation. In
applications, the choice of which to use is based on practical considerations.
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5.5.1 Use the Same Pressure for Standard State and Mixture, Plf’ =P

If we choose the standard-state pressure P/ to be the mixture pressure P, then we
have the Lewis-Randall standard state (5.1.5), and (5.5.4) reduces to

(p' (Ts P7 {x})
[ T’ P7 ; f'o T’ P = Z—— 5.5.5
WP AxY; T P) = = (5.5.5)

So, when v; and ¢; are both evaluated at the mixture T and P, the activity coefficient
can be interpreted as a ratio measure for how the fugacity coefficient ¢; deviates from
the standard-state fugacity coefficient ¢¢. The result (5.5.5) directly connects ratio
measures for deviations from the ideal gas to ratio measures for deviations from an
ideal solution. Consequently, it provides a computational means for theories and
equation-of-state models based on one kind of ideality (ideal gas) to be used in theo-
ries and models based on the other (ideal solution). The activity coefficient (5.5.5) is
the one commonly encountered; it is simply related to the excess chemical potential,

RT Iny,(T, P, {x}; T, P)) = Gi (T, P, {x}) (5.4.10)

5.5.2 Use P} # P and Place Pressure Effect in Fugacity Coefficient

A second possibility occurs when we have, or can readily compute, ¢; not at the mix-

ture pressure P but at some other pressure P;. Then we correct ¢; for the pressure dif-

ference. The correction is computed from (4.3.23),

dlng, Vi Vi 1
(ap) AT (5.5.6)

Separating variables and integrating along the mixture isotherm at fixed composition,
we find

P _res
(pi(T’ p, {.X}) = (pi(T’ Plo’ {x})exp{% J‘Po Vi (T7 T, {X})dTC} (557)

Integrating the ideal-gas term in (5.5.6) leaves

P? P _
©(T, P, {x}) = ¢(T, P, {x}) FlexpL%T fpo Vi(T,m, {x})dn} (5.5.8)

Then, on combining (5.5.8) with (5.5.5), we obtain the following relation between the
activity coefficient (at P) and the fugacity coefficient (at P;’ ),
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(PZ(T9 P?; {x})

z l l o} (T, Py)

P
exp L{_l]—" jpo ViT,r, {x})dn} (5.5.9)

The integral on the rhs is to be evaluated at fixed temperature and composition.
The exponential term corrects @; from the standard pressure to the mixture pressure
and is called the Poynting factor. Since (5.5.9) has been derived without assumptions
from (5.5.5), the two equations are formally equivalent. That is, (5.5.9) offers no formal
advantage over (5.5.5), because the values for ¢;, (p‘;, and V; used in (5.5.9) should be
consistent with a particular PvTx equation of state. However in some situations,
(5.5.9) may be more amenable to reliable approximation than (5.5.5). For example, if
the integral in (5.5.9) is over only states of a condensed phase, then we might assume
that V; is a constant without seriously affecting the accuracy of the final value com-
puted for v;.

The activity coefficient in (5.5.9) is related to chemical potentials by

RTIny,(T, P, {x}; fAT,P})) = G«(T, P, {x})—éfs(T, P! {x}) (5.4.9)

where the ideal solution is at the standard-state pressure. Note that the rhs is a differ-
ence between a real and an ideal-solution property, so it is similar to an excess prop-
erty. But the rhs is not an excess property when P} = P; cf. (5.2.1).

5.5.3 Use P? # P and Place Pressure Effect in Activity Coefficient

A third possibility is to compute the activity coefficient directly at the standard-state
pressure P?,

(pi (T’ P?’ {x})

(T, P%, {x}; fUT, P?%)) =
Yi(T, Pi, {x}; £i(T, P})) (T, P

(5.5.10)

Then we obtain the activity coefficient at the mixture pressure P by substituting
(5.5.10) into (5.5.9),

Vi(T, P, {x}; f(T,P})) = v(T, P, {x}; f{(T,P)) (5.5.11)

1 "5
X ex}{ﬁ JPDVI-(T, T, {x})dn}

where V; is the partial molar volume of component i in the real mixture and the inte-
gration is done along the mixture isotherm at constant composition. The form (5.5.11)
for y; can also be derived starting from (5.4.16), which expresses the pressure deriva-
tive of y; in terms of the excess partial molar volume.
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One advantage offered by (5.5.11) is that it collects all the pressure effects into a sin-
gle term. As we shall see in § 5.6, many models for ¢* contain no pressure depen-
dence; hence, those models provide no pressure dependence for the activity
coefficient, and such models are strictly valid only at the standard-state pressure P?.
To include pressure in those models, we could use (5.5.11), if we have a reliable esti-
mate for the partial molar volume—say, from a PvTx equation of state.

The activity coefficient (5.5.10) is related to chemical potentials by

RTIny,(T, P}, {x}; fAT,P9)) = Gy«(T, Pf,{x})—éfs(T, P?, {x}) (5.5.12)

Both terms on the rhs are at the same pressure and so we could identify the rhs as an
excess property. However, it is probably better not to do so because we could choose
different standard-state pressures for different components (P{ # P3).

When the standard-state pressure is taken to be the mixture pressure (P} = P),
then these distinctions disappear and the three activity coefficients (5.5.5), (5.5.9), and
(5.5.11) are the same. But when P? # P, the numerical values for these three activity
coefficients can differ, though the differences are usually not significant at pressures
below 10 bar. However, such differences can contribute to the complexity encountered
when trying to use a model for activity coefficients as a basis for developing mixing
rules for equations of state.

5.6 SIMPLE MODELS FOR NONIDEAL SOLUTIONS

Here we introduce models commonly used to represent the composition dependence
of excess properties in liquid mixtures. Just as in § 4.5 for volumetric equations of
state, the models considered here are semitheoretical: they may have some limited
mathematical or physical basis, but they inevitably contain parameters whose values
must be obtained from experimental data. The emphasis here is on the composition
dependence of v; because, for condensed phases, composition is the most important
variable; temperature is next in importance, and pressure is least important.

The strategy for devising models for activity coefficients is based on modehng gk
rather than modeling the v; directly. With a functional form adopted for gF, the corre-
sponding expressions for the y; can be obtained by applying the partial molar deriva-
tive in (5.4.10). In addltlon if the model parameters are known functions of T and P,
then expressions for hE and oF can be obtained from (5.2.11) and (5.2.12). This would
enable us to obtain the T and P effects on the y; from (5.4.16) and (5.4.17).

This indirect approach to modeling activity coefficients is used for at least two rea-
sons: (a) When we model ¢* and evaluate the y; from (5.4.10), then the y; automatically
satisfy the Gibbs-Duhem equation (5.4.18). However, if we try to construct indepen-
dent models for all the y; of a mixture, either the proposed equations for the y; may fail
to satisfy the Gibbs-Duhem equation or else an apparently simple form for one activ-
ity coefficient, y;, may lead to a complicated form for another, y,. (b) For many mix-
tures, it is easier to develop accurate models for gF than it is to dlrectly develop
accurate models for y;. Moreover, when the 7y, are obtained from a g¢f model, the
resulting expressions for the y; are often less complicated than forms devised by a
direct modeling procedure. In this section we introduce two classes of models for g*:
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one based on Taylor’s expansions (§5.6.1-5.6.4) and another with some basis in
molecular theory (§ 5.6.5).

5.6.1 Series Representations for GF

Consider a binary mixture containing components 1 and 2, and let us choose the
Lewis-Randall standard state (5.1.5) to define an ideal solution. Our objective is to
obtain a functional model to represent the composition dependence of the excess
Gibbs energy. If we look back at Figures 5.2-5.5, we see that, for bmary liquid mix-
tures at fixed T, g* is nearly parabolic i 1r1 x1, even when hF and st are not parabolic.
This suggests a first approximation to g (xl),

gE

RT = Axqx, (5.6.1)
where the parameter A is dimensionless and independent of composition; it may
depend on T and P, but for liquids the pressure dependence is usually ignored. Values
for A are usually obtained from fits to experimental data. Because of the Gibbs-
Duhem equation (5.2.14), (5.6. 1) is the simplest expression we can use to represent the
composition dependence of gF for a binary mixture, provided we choose the Lewis-
Randall standard state for both components.

Many ways can be proposed for correcting gt for deviations from the simple qua-
dratic behavior given in (5.6.1). One simple way is to expand g* in a power series in
the mole fraction of one component; e.g., for a binary at fixed T and P, we can write

gE

RTx1x2

= A"+B'x; + C’x% + ... (5.6.2)

Since x; = 1 - x,, we could have just as well expanded in x,, but if we did then the val-
ues of the parameters (A, B, C’, etc.) would change. That is, the coefficients in (5.6.2)
depend on which species is labeled component 1 and which is component 2. This
asymmetry in the labels can be reduced (but not eliminated) by using (x; — x,) as the
independent variable; then we obtain the Redlich-Kister expansion [10]

E
g 2
RTrm, = A+B(x;—x,) +Clxy—xp)" + ... (5.6.3)

The parameters (4, B, C, etc.) are independent of composition; they do depend on T
and P, though the P dependence is usually ignored for liquids. The Redlich-Kister
expansion is fully equivalent to (5.6.2), but in (5.6.3) the magnitudes of the parameters
(A, B, C, etc.) are unaffected when the component labels are interchanged; however, if
the labels are interchanged, the signs of the coefficients on the odd-order terms (B, D,
F, etc.) also change. At present, values for these parameters cannot be computed from
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some more fundamental theory; they can only be obtained from fits to experimental
data.

As with any infinite series, the Redlich-Kister expansion can be used for calcula-
tions only after it has been truncated. Truncation at low order can account only for
small deviations from a quadratic in xy; for highly nonquadratic behavior, we must
use a high-order expansion. However, high-order expansions are troublesome to use,
not only because their algebraic forms are complicated, but also because the value for
each parameter must be obtained from a fit to experimental data. These complications
become problematic when the expansion is applied to mixtures containing more than
two components, because ternary and higher-order coefficients appear. Each level of
truncation produces a different form for the activity coefficients, but since this is an
introductory discussion, we consider only the simple forms that result from trunca-
tions after the first and second terms.

5.6.2 Porter Equation

On truncating the Redlich-Kister expansion (5.6.3) after the first term, we are left with
the parabolic form in (5.6.1). Traditionally, (5.6.1) has been called the two-suffix Mar-
gules equation [11], but this name can be ambiguous and so we prefer to call it Porter’s
equation [12]. Applying (5.4.10) to (5.6.1) shows that the activity coefficients are also
quadratic in the mole fractions, as shown in Figure 5.8,

Iny, = Ax) (5.6.4)
Iny, = Ax (5.6.5)

These activity coefficients are relative to the Lewis-Randall standard state (5.1.5);
hence, they must satisfy the pure-component limit given in (5.4.12). That is, y; > 1 as

A Iny,”=A Iny,”=A

0.5A

0 l |

0 0.2 0.4 0.6 0.8 1
X1

Figure 5.8 Substantial symmetry exists in the composition dependence of the excess Gibbs
energy and activity coefficients for binary mixtures that obey the Porter equation (5.6.1).
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x; = 1, where i = 1 or 2. In the dilute-solution limit (5.4.13), the activity coefficients in
(5.6.4) and (5.6.5) are simply related to the parameter,

Iny] = Iny, = A (5.6.6)

For some mixtures, values of y;° can be extracted from experiment and in those cases
we have a convenient means for determining a value for the parameter A. Because the
Porter equation (5.6. 1) contains only one parameter, a high degree of symmetry exists
among the values of ¢F, In y;, and In y,. For binary mixtures, the symmetry appears as
in Figure 5.8.

The Porter equation is the simplest expression we can write for nonideal solutions;
nevertheless, it can describe both positive (A > 0) and negative (A < 0) deviations from
ideal-solution behavior. Some real mixtures obey the Porter equation fairly well, espe-
cially mixtures composed of molecules that are nonpolar and have similar sizes and
shapes. Even some mixtures containing polar components may obey the Porter equa-
tion over limited ranges of temperatures. Values of A are given in Table E.1 (Appendix

E) for some representative mixtures.

If the temperature and pressure dependence of the Porter parameter A is known
(from experiment), then we can obtain values for hE and oF from (5.2.11) and (5.2.12).
The results are

oF = xx, RT(g‘;) (5.6.7)
hE 0A
=, (ETT)p (5.6.8)

Then s can be obtained from the Legendre transform for gE (5.2.18),

N

Mixtures that obey (5.6.1) and (5.6.7)—~(5.6.9) are variously called simple mixtures,
symmetric mixtures, or sometimes regular mixtures (but this last is a misnomer). We
follow Rowlinson and Swinton [13] and call them quadratic mixtures, because for such
mixtures all the excess properties are parabolic in a mole fraction x;.

We caution that a binary mlxture may obey the Porter equation (5.6. 1) but stlll not
be a quadratic mixture; that is, g may be parabolic in composition but #* and s may
not be. An example is the hexane-cyclohexane rmxture shown in Figure 5.2. Such
behavior occurs because asymmetries in hF and st approxnnately cancel when they
combine via the Legendre transform (5.2.18) to form gf. Such cancellations are the
norm rather than the exception. To say this another way, the Redlich-Kister expansion
for gF (5.6.3) is usually dominated by the ﬁrst term which is symmetric in x; and x,.
However, in the analogous expansions for hF and sf, asymmetric terms are frequently
important.



5.6 SIMPLE MODELS FOR NONIDEAL SOLUTIONS 215
5.6.3 Margules Equation

If we truncate the Redlich-Kister expansion (5.6.3) after the second term, we are left
with

gE

RTx1x2

= A+B(x;-x,) (5.6.10)

This is not symmetric in x; and x,; however, by multiplying A by (x; + x, = 1) and re-
collecting terms, we obtain the symmetric form

gE

RTxlx2

= Agx; + Ayx, (5.6.11)

where A; = A+ B and A, = A - B. Applying the partial molar derivative in (5.4.10) to
(5.6.11) produces the corresponding expressions for the activity coefficients,

Iny, = x5 [Ay+2x, (A - Ay] (5.6.12)

Iny, = x3 [Ay +2x,(Ay - A})] (5.6.13)

Historically, these have been called the 3-suffix Margules equations [11], but we will
simply call them the Margules equations. The parameters A; and A, are independent of
composition, but they generally depend on T and P. Usually, the effects of P are
ignored and the effects of T are obtained experimentally. However, if data are lacking
or if the changes in state condition are modest, then A; and A, are often assumed to be
constants. When data are available, we often find that A; and A, vary as 1/T.

The Margules expressions for activity coefficients are based on the Lewis-Randall
standard state (5.1.5), and therefore they must obey the pure-component limit (5.4.12).
In addition, as with Porter’s equations, the parameters A; and A, are simply related to
the activity coefficients at infinite dilution. In particular, when we apply the dilute-
solution limit (5.4.13) to (5.6.12) and (5.6.13), we obtain

Iny] = A, (5.6.14)

Iny; = A, (5.6.15)

So if we have experimental data for both y;” and v5, then (5.6.14) and (5.6.15) provide
a straightforward way to obtain values for the Margules parameters. If a binary mix-
ture happens to have y;” = v5, so that A; = A, then the Margules equations collapse
to the Porter equations.

The Margules equations apply to many binary mixtures, including those that dis-
play positive deviations from ideality, mixtures that exhibit negative deviations from
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ideality, mixtures in which one activity coefficient is greater than unity and the other
less than unity, and mixtures in which activity coefficients pass through extrema. Val-
ues of the Margules parameters for representative mixtures are given in Table E.2.
However, the Margules equations can fail when strong specific interactions occur
among only some of the constituent molecules. Examples include hydrogen bonding,
dimerization in acids, and association in alcohols and aqueous solutions. In such
cases, more complicated functlonal forms are needed to adequately represent the
composition dependence of gF.

5.6.4 Multicomponent Mixtures

The expressions in § 5.6.1-5.6.3 apply only to binary mixtures; however, the Redlich-
Kister expansion can be extended to multicomponent solutions. One multicomponent
version of the Redlich-Kister expansion is

Iy iy Yy, (5.6.16)

i#j izjzk
where
3 (A B (x—x)+ Co(xi—x )P 4 ] (5.6.17)
RT ~ TR T A TA T T T o
and
8iik
RZ]T = X;X; kaz]k + ... (5.6.18)

In practice, the ternary and higher-order terms are usually ignored. For example, a
ternary mixture might be modeled as

E
RSt R B (5.6.19)
RT ~ RT ' RT ' RT

Although (5.6.19) does not explicitly contain high-order parameters that account
for multibody interactions among molecules, such interactions are embedded implic-
itly in those parameters, such as Bj; and C;;, that are multiplied by three or more mole
fractions. By ignoring any explicit representation of multibody interactions, we obtain
a computational advantage: the remaining parameters (A;;, Bj;, etc.) have the same
values for multicomponent mixtures as they do for binary mixtures of components i
and j. Therefore, no data for multicomponent mixtures are needed to evaluate any
parameter in (5.6.19). However, this computational advantage may result in a loss of
accuracy when applied to some mixtures.

The multicomponent version of Porter’s equation is equivalent to (5.6.19),

= Zin x]. Aij (5.6.20)

i<j
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and applying (5.4.10) to (5.6.20) gives the activity coefficient of component k as

Iny, = Y xAg— Y > %% Ay (5.6.21)

izk i<j

For binary mixtures, (5.6.20) reduces to (5.6.1) and (5.6.21) reduces to (5.6.4).
The multicomponent version of the Margules equation is

ZZx X [Ay+Bji(x; = x))] (5.6.22)

l<]

where A;; = A;;, but B;; = -Bj;. Applying (5.4.10) to (5.6.22) gives the activity coefficient

of Component k as

Inyy = Y 0l A+ Bip(x;=2x01= . %% [A;+2B(x;—x)]  (5.6.23)

izk i<j

For binary mixtures, (5.6.22) reduces to (5.6.11) and (5.6.23) reduces to (5.6.12).

5.6.5 Semitheoretical Models for GF

For mixtures that do not obey the Porter or Margules equations, additional high-order
terms must be kept in the Redlich-Kister expansion; hence, more parameters must be
evaluated from experimental data. Alternatively, if we want to keep only two parame-
ters, then we must abandon the Redlich-Kister expansion for some more complicated
representation of ¢&. Many functional forms have been proposed [1, 2], but here we
restrict our attention to a useful expression proposed by Wilson in 1964 [14] and now
identified as one of the class of “local-composition” models [2]. For binary mixtures
Wilson’s equation takes the form

E
1§T —xyIn(xy+x5,A5) — X In(xy +x7 Ay) (5.6.24)

where the parameters A, and Ay, depend on temperature. Values for these parame-
ters are extracted from experiment.

Applying the partial molar derivative in (5.4.10) to (5.6.24) provides Wilson's
expressions for the activity coefficients

Iny; = —In(xy + x5 Apy) +x,Q (5.6.25)

Iny, = —In(xy +x7 Ay) —x1Q (5.6.26)

where
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A A
Q= 2__ 21 (5.6.27)
Xy + Xy Aqp Xy + X1 Ay

These activity coefficients are based on the Lewis-Randall standard state (5.1.5), and
therefore they must obey the pure-component limits (5.4.12). In addition, the dilute-
solution limit (5.4.13) provides relations between the activity coefficients and the
parameters,

Iny] =1 - InAyy — Ay (5.6.28)

Iny; =1 - InAy — Ay (5.6.29)

Unlike the corresponding expressions from the Porter and Margules equations, these
nonlinear equations must be solved simultaneously by trial to obtain values for the
parameters Aqp and Ay from known values of vy’ and v, . The logarithmic terms in
(5.6.28) and (5.6.29) allow the Wilson equations to correlate large values of the vy}’
using small values of the parameters Aj;. However we caution that, for some mixtures
having both Y] and y5 less than unity, three sets of A-parameters can be found to sat-
isfy (5.6.28) and (5.6.29) [15].

An ideal solution has A1y = Ay = 1, but the converse is not true: mixtures having
A1p = Ay; =1 at one temperature are not necessarily ideal solutions. Further, (5.6.28)
and (5.6.29) require the parameters to be positive. Nevertheless, Wilson’s equations
apply to both positive and negative deviations from ideal-solution behavior. In partic-
ular, Wilson's equations successfully correlate activity coefficients for highly nonideal
solutions, including those, such as alcohol-hydrocarbon solutions, that involve hydro-
gen bonding and chemical association. However, for weakly nonideal solutions, the
Wilson equation may offer no improvement over the Margules equation. Moreover, as
will be discussed later, the mathematical form of Wilson’s equation cannot describe
mixtures that undergo liquid-liquid phase splits, despite its ability to correlate large
values of infinite-dilution activity coefficients y: .

The Redlich-Kister expansion for the excess Gibbs energy gFprovides no guidance
about the temperature dependence of its parameters, and so temperature effects can
only be obtained from experiment. In contrast, Wilson’s equation is based on a theory
that estimates the temperature dependence of the parameters,

A = —Z:exp(—i—j) (5.6.30)

Here the p; are pure component molar densities and the A};; are parameters that
depend on the identities of species i and j. The AL;j are often assumed to be indepen-
dent of state condition; alternatively, they may be modeled as simple functions of T.
But usually (5.6.30) allows the two temperature-dependent parameters A, and Ay to
be replaced by two temperature-independent parameters A\, and A),;. Values of p;
and the AL;; for selected binary mixtures are given in Table E.3. A more extensive col-
lection of values for the Wilson parameters can be found in the Dechema series [16].
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Approximations for hf and vF can be obtained by applying (5.2.11) and (5.2.12) to
the Wilson expressions (5.6.24) and (5.6.30). The result for the excess volume has never
been used. For the excess enthalpy of a binary mixture we find

hE = x %500y — 0 )QRT? + P (5.6.31)
where the o; are pure-component volume expansivities and ¥ is given by

A1y AN A,y AN
g o o202 Bo1 B (5.6.32)
X1+ Xy Agp Xy + X1 Ay

This W-term is the dominant contribution to hF. With gE and hF determined, st can be
obtained from the Legendre transform (5.2.18). But we caution that, just as some mix-
tures may obey the Porter equation and yet not be quadrat1c mixtures, so too may
some mixtures obey the Wilson equation (5.6.24) for gF and yet not obey (5.6.31) for
hE. Consequently, while we might obtain values for the parameters A\, j by fitting calo-
rimetric data, the resulting values may or may not reliably predict g*.

The multicomponent version of Wilson’s equation is

= —in lnl—‘z (5633)

where

—
Il

X Ajj (5.6.34)
]
As befor.e,. Ajj# Aji, and Ajj =1 when i = j. Applying (5.4.10) to (5.6.33) gives the activ-
ity coefficient for component k as

A,
Iny, = 1-Inl - Yy, le (5.6.35)
1

i

Note that the A;; in (5.6.34) and the Aj in (5.6.35) are all binary parameters; that is,
their values are obtamed from data for binary mixtures, and their temperature depen-
dence is still usually assumed to be described by (5.6.30). Unlike the multicomponent
versions of the Redlich-Kister expansion discussed in § 5.6.4, the theoretical basis for
(5.6.33) suggests that high-order multibody parameters are not needed in Wilson’s
equation; in practice, this appears to be true for many mixtures.

5.7 SUMMARY

In this chapter we developed ways for computing values for conceptuals relative to
their values for any well-defined ideal solution. The computational strategy is based
on quantities that reveal how a property deviates from its ideal-solution value: the
excess properties are difference measures, while the activity coefficient is a ratio mea-
sure. In other words, the strategy used in this chapter repeats that used in Chapter 4,
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with excess properties being analogous to residual properties and activity coefficients
being analogous to fugacity coefficients. For example, to determine how a total prop-
erty F changes from state 1 to state 2, we would use an excess property like this:

E .
AF;, = AF},+AF}, (5.7.1)

Likewise, to obtain a value for a fugacity, we would use an activity coefficient like this:
fi = x fi" (5.7.2)

Note that (5.7.1) is exactly analogous to (4.6.1) and that (5.7.2) is analogous to (4.6.2).
Such analogies are explored more thoroughly in the next chapter; here we point out
how the approach developed in Chapter 4 differs from that presented here.

First, we note that the ideal solution is a more general concept than the ideal gas.
By an ideal solution we mean one in which the intermolecular forces are all the same,
even though the molecules differ; this can be accomplished in many different ways. In
contrast, by an ideal gas we mean a substance in which the intermolecular forces are
all zero; this can be done in only one way. In other words, in any ideal solution each
component fugacity is linear in its mole fraction, f; IS oc x;, and many choices are avail-
able for the (composition-independent) proportlonahty constant. That constant is
called the standard-state fugacity, f;°, and it is only when we choose the standard
state that we identify a particular ideal solution. For an ideal gas the proportionality
constant is the pressure; hence, an ideal-gas mixture is one kind of ideal solution.

It may seem that the residual properties offer additional flexibility because we
defined two kinds—isobaric ones and isometric ones—while we introduced only iso-
baric excess properties. But this difference is mainly one of historical significance. The
two kinds of residual properties allow us to perform calculations using both pressure-
explicit and volume-explicit equations of state. In contrast, the excess properties were
originally applied only to liquids, for which pressure and volume effects are often
ignored. We could certainly define isometric excess properties, but in practical appli-
cations involving liquids, there seems to be little advantage to doing so. Differences
between isometric and isobaric excess properties are discussed by Rowlinson and
Swinton [13], but for condensed phases, those differences are usually small.

Since the ideal-solution concept is not restricted to a particular kind of intermolecu-
lar force, we have significant flexibility in performing thermodynamic analyses. In
many situations, use of one kind of ideal solution may simplify an analysis more than
another. For example, calculations are often easier when we use one ideality for non-
electrolyte solutions, another for dilute solutions, another for electrolytes, and yet
another for polymeric blends. This degree of flexibility is not obtained by basing all
analyses on ideal gases.

The ideal-gas and ideal-solution approaches also differ because they are based on
different kinds of experimental data. The residual properties and fugacity coefficients
depend on volumetric data: measurements of P, v, T, and {x}. But the excess properties
and activity coefﬁc1ents depend on density measurements for oF, calorimetric mea-
surements for hf, and phase-equilibrium data for ¢* and y;. Modern modeling tends
to rely on VolumetnC data (equations of state), and a principal feature of this chapter
has been to establish how excess properties can be computed from residual properties
and how activity coefficients can be computed from fugacity coefficients. But note that
such calculations can be performed in either direction; that is, at least in principle,
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residual properties can be computed from excess properties and fugacity coefficients
from activity coefficients. In practice, these latter calculations can be performed only
when we know (or can estimate) how parameters in models for the excess properties
change with state condition. When this can be done, models for ¢¥ might be used to
formulate mixing rules for equations of state [17].

But aside from these practical considerations, another motivation underlies the
development of ways for measuring deviations from ideal-solution behavior: the
hope that macroscopic quantities can reveal differences in intermolecular forces. Rela-
tive differences in intermolecular forces can explain much of the interesting and
unusual behavior observed in mixtures—oil and water do not mix because attractive
forces between oil and water molecules are much weaker than those acting among
just water molecules and among just oil molecules. These kinds of differences can be
quantified using values for excess properties extracted from macroscopic experi-
ments. Consequently, excess properties can not only serve as vehicles for computing
conceptuals that may be needed in an engineering analysis, but in addition they may
also serve to reveal microscopic differences that can explain macroscopic behavior.

LITERATURE CITED

[1] S.I Sandler, H. Orbey, and B.-I. Lee in Models for Thermodynamic and Phase Equi-
libria Calculations, S. 1. Sandler (ed.), Marcel Dekker, New York, 1993.

[2] J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermody-
namics of Fluid-Phase Equilibria, 3rd ed., Prentice-Hall, Upper Saddle River,
NJ,1999.

[3] G.N.Lewis and M. Randall, Thermodynamics, 2nd ed., revised by K. S. Pitzer and
L. Brewer, McGraw-Hill, New York, 1961, ch. 18.

[4] R. Battino, “Volume Changes on Mixing for Binary Mixtures of Liquids,” Chem.
Rev, 71, 5 (1971).

[5] I Prigogine and R. Defay, Chemical Thermodynamics, D. H. Everett (transl.), Long-
mans, Green and Co., London, 1954.

[6] M. M. Abbott, M. V. Ariyapadi, N. Balsara, S. Dasgupta, J. S. Furno, P. Futerko,
D. P. Gapinski, T. A. Grocela, R. D. Kaminsky, S. G. Karlsruher, E. W. Kiewra, A.
S. Narayan, K. K. Nass, J. P. O’Connell, C. J. Parks, D. F. Rogowski, G. S. Roth, M.
B. Sarsfield, K. M. Smith, M. Sujanani, J. J. Tee, N. Tzouvaras, “A Field Guide to
the Excess Functions,” Chem. Engr. Ed., 28, 18 (1994).

[71 R. C. Pemberton and C. J. Mash, “Thermodynamic Properties of Aqueous Non-
electrolyte Mixtures. II. Vapour Pressures and Excess Gibbs Energies for Water +
Ethanol at 303.15 to 363.15 K Determined by an Accurate Static Method,” J. Chem.
Thermodynamics, 10, 867 (1978).

[8] J. W. Servos, Physical Chemistry from Ostwald to Pauling, Princeton University
Press, Princeton, NJ, 1990.

[9] W.H. Severns, Jr., A. Sesonske, R. H. Perry, and R. L. Pigford, “Estimation of Ter-
nary Vapor-Liquid Equilibrium,” A. I. Ch. E. ], 1, 401 (1955).



222 PROPERTIES RELATIVE TO IDEAL SOLUTIONS

[10] O. Redlich and A. T. Kister, “Thermodynamics of Nonelectrolyte Solutions. Alge-
braic Representation of Thermodynamic Properties and the Classification of
Solutions,” Ind. Eng. Chem., 40, 345 (1948).

[11] M. Margules, “Uber dir Zusammensetzung der gesittigten Dampfe von Mis-
chungen,” Sitzunsber Akad. Wiss. Wien., 104, 1243 (1895).

[12] A. W. Porter, “The Vapour-Pressures of Mixtures,” Trans. Faraday Soc., 16, 336
(1921).

[13] J. S. Rowlinson and F. L. Swinton, Liguids and Liquid Mixtures, 3rd ed., Butter-
worth, London, 1982.

[14] G. M. Wilson, “Vapor-Liquid Equilibrium. XI. A New Expression for the Excess
Free Energy of Mixing,” J. Am. Chem. Soc., 86, 127 (1964).

[15] K. Miyahara, H. Sadotomo, and K. Kitamura, “Evaluation of the Wilson Parame-
ters by Nomographs,” J. Chem. Eng. Japan, 3, 157 (1970).

[16] J. Gmehling and U. Onken, Vapor-Liquid Equilibrium Data Collection, Chemistry
Data Series (several volumes), DECHEMA, Frankfurt am Main, Germany, 1977.

[17] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Lig-
uids, 5th ed., McGraw-Hill, New York, 2001.

[18] G. Scatchard and L. B. Ticknor, “Vapor-Liquid Equilibrium. IX. The Methanol-
Carbon Tetrachloride-Benzene System,” J. Am. Chem. Soc., 74, 3724 (1952).

PROBLEMS

5.1 Compute the minimum isothermal-isobaric work needed to separate an equimo-
lar mixture of benzene and toluene into its pure components at 80°C and 1 bar.

(a) Assume the mixture is an ideal gas.

(b) Assume the mixture is an ideal solution.
5.2 Consider a multicomponent mixture that obeys P = RT/(v-b) with

b= in bpurei

1
Show that such a mixture is an ideal solution.

5.3 Amagat’s “law” approximates a mixture volume by mole-fraction averaging the
pure-component volumes

o(T, P {x}) = ) % Ve (T P)
i
Show that this leads to the ideal-solution expression: fi(T, B, {x}) = x; fpure i(T, P).
5.4 Determine the minimum work needed to remove one mole of solute from each of
the following at 1 bar, 25°C: (a) 99 moles of solvent, (b) 999 moles of solvent (1

part per thousand), (c) 1 part per million, (d) 1 part per billion. Is “dilution the
solution to pollution” if the solute must ultimately be recovered?
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The behavior of the excess properties for ethanol-water mixtures, shown in Fig-
ure 5.4, suggests that modeling excess properties can be difficult.

(a) What is the simplest functional form that could reproduce the figure’s
response of gF to changes in T and x;?

(b) What would be the simplest expression for the excess heat capacity c,f that is
consistent with the figure?

Scatchard and Ticknor [18] have reported experimental results for excess proper-
ties of methanol-benzene mixtures between 25 and 55°C. For equimolar mixtures
their results for g& can be represented by

E
3 - 0.25(— 42% _2475InT + 17.55) Tin K (P5.6.1)

RT

(a) One hundred moles of each pure liquid are added to a double-walled vessel;
each pure is initially at 30°C. If the mixing is to be done isothermally, should
steam or cooling water be supplied to control the temperature?

(b) If instead of mixing isothermally, the mixing is done adiabatically, by insulat-
ing the vessel, estimate the final temperature of the mixture. Pure component
heat capacities are cp/ R = 9.94 for methanol and cp/ R = 16.36 for benzene.

(c) Determine the value of the isobaric heat capacity for this mixture at 30°C.

At 50°C a binary liquid mixture has gF/RT = 0.5 x;x, and vF = 4 x;x, (cm3/mol).
For the mixture having x; = 0.3 at 50°C, by how much must the pressure change
to cause the activity coefficient y; to increase by 1%?

If ethyl ether(1) and ethanol(2) were mixed continuously at 2 bar, 310 K, would
steam or cooling water be required to maintain the temperature constant at
310 K? Assume these mixtures obey the Margules equation (5.6.11) with

b.
A;=a;+ T(Il() (P5.8.1)

and a; = 0.1665, by = 233.74, a, = 0.5908, b, = 197.55.

Consider a binary mixture that has s = 0 and hF/RT = 0.6 x1x,, with the ideal
solution relative to the Lewis-Randall standard state. Find the expression for the
composition dependence of ¢, the change in Gibbs energy on mixing.

5.10 Derive (5.3.4), which relates excess properties to residual properties. To cover all

possibilities you must do the derivation twice: (i) once for a first-law property (u
or h) and (ii) again for a second-law property (s, g, or a).

5.11 Consider a binary mixture that obeys the Margules equations. What conditions,

if any, must the parameters A; and A, obey if y; vs. x; passes through an extre-
mum at some composition 0 < x; < 1?
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5.12 A binary “Flory-Huggins” mixture (often a polymer mixture) has

hE
§E——xln&—xln(p—2 (P5.12.2)
R - 1 Xq 2 Xy e

with the ideal solution defined relative to the Lewis-Randall standard state. Here
Ais a constant, x; are mole fractions, ¢; are apparent volume fractions,

X;0;

% = T (P5.12.3)

and v; is the molar volume of pure component i. Using A = 1, plot the composi-
tion dependence of gE (i.e., gE vs. x1) for the cases v,/v; =1, 10, and 100.

5.13 Consider a binary mixture that has
Iny, = axg + bx%

where a and b are constants at fixed T and P. Find the corresponding expression
for the composition dependence of 5.

5.14 For a certain binary mixture at fixed T and P, Dr. Emmett Brown has proposed
that the composition dependence of the component-1 fugacity be represented by

fl = xl(2 - xl)fpure 1
Do you find any problem with this proposal?

5.15 Consider a binary mixture at fixed T and P. The composition dependence of the
fugacity of component 1 is given by

fl = xl(exp[Axg]) fpurel

where parameter A is a constant, independent of T and P.

(a) Find the expression for the composition dependence of the fugacity of com-
p p P gacity
ponent 2.

(b) Using f, =1 bar, plot f; vs. x; for A=0,0.1,0.5, 1, 2, and 3.
g pure 1 p 1 1
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5.16 Inspired by the simplicity of the Porter equation, Tabitha the Untutored claims
that it is easy to contrive models for the composition dependence of activity coef-
ficients.

(a) To illustrate, Tabitha proposes that some binary mixtures must obey

where A is constant at fixed T and P. Find the resulting expression for the
composition dependence of y;, where v; is relative to the pure component
standard state. Is there a problem when applying your result to real mixtures?

(b) Undaunted, Tabitha proposes another correlation for binaries,
4
Iny; = Ax,

where A is constant at fixed T and P. Find the corresponding expression for
the composition dependence of y,. Test whether the expressions for y; and vy,
satisfy the Gibbs-Duhem equation. Is there any problem with trying to apply
your result for y, to real mixtures?

5.17 An article by certain alchemists in an obscure medieval journal reported infinite-

dilution activity coefficients for binary mixtures of the rare substances jekyll-
hyde(1) and neroburn(2). For 300 K < T <400 K, they gave

ny? = 249+ 2% oy = 1474+ 200
T(K) T(K)

Somewhat later, a rival group disputed this and claimed instead that
Iny] = 31.08-5InT(K) and Iny, = 18.67-3InT(K)

To resolve this discrepancy, you have done calorimetric experiments on these
mixtures between 300 and 400 K. Your data can be correlated by

c;:/R = X1 X5 (5xq +3x,)
Which activity coefficients are consistent with the calorimetric data?

5.18 Consider a set of consistent data for activity coefficients of a binary mixture at
low pressures. Show that, at constant temperature,

1 Y1
Inf—=]dx, =0
J‘0 (Yz) 1

That is, the data should produce a plot of (In y; — In v,) vs. x1 such that the curve
defines two regions of equal area and opposite signs.
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5.19 Measurements of the nonidealities for a certain binary organic solution are
claimed to be represented by

Jln b
( Yl) = alnT+iz+£
8x2 TP T

where g, b, and ¢ are constants. It is also claimed that In y;o =1 at 300 K.
(a) What must be the values of @ and c to achieve thermodynamic consistency?
(b) Give expressions for In y;, In y,, and In y; at 300 K.

(c) Give expressions for g& and hE.

5.20 It has been claimed that nonidealities in a certain binary mixture can be
described by

Iny, = (ax%)/T +bTxy+ cT2

(a) Find consistent expressions for In v,, gE, and hE.

(b) A calorimetric experiment on this mixture gave HE/RT =1 for the equimolar
mixture at 300 K. Evaluate y] and v, at325K.

5.21 For binary mixtures at fixed P, determine the temperature dependence of In y;
when (a) ¢¥/RT is independent of T, (b) ¥ is independent of T, (c) hF is indepen-
dentof T, (d) hE = 0, (e) sE = 0.

5.22 At 25°C a certain binary mixture has the following values for activity coefficients:

X1 71 T2

0.2 1.12 1.04
0.4 0.94 1.12
0.6 0.92 1.13
0.8 0.97 0.99

Determine whether Porter, Margules, or Wilson equations best represent these
data and find the values of the parameters for your choice.

5.23 At 105°C mixtures of ethanol(1) and toluene(2) have activity coefficients at infi-
nite dilution given approximately as y; = 5.197 and y, = 4.811. Compute and
plot y; vs. x; using (a) the Margules equations and (b) Wilson's equations.

5.24 Write out the complete equation representing gE /RT for a ternary mixture mod-
eled by the multicomponent Margules equation (5.6.22). Also write out the com-
plete expression for Inys.
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5.25 Tabitha the Untutored is working with some binary hydrocarbon mixtures that
boil above 450 K. She reads in her thermo textbook that “Such substances form
athermal mixtures; that is, no change in temperature occurs when the pure com-
ponents are mixed adiabatically.”

(a) What can you say about the signs and values of the excess properties gF, hF,
and sF for athermal mixtures?

(b) Reading further, Tabitha finds that, for athermal mixtures, a “good approxi-
mation” for g is

E
8 91 P2

where @; represents the volume fraction defined in Problem 5.12. Comparing
this with (5.4.14), Tabitha quickly concludes that y; = ¢,/ x;. But this expression
gave poor results when compared to data taken in the company’s laboratory.
Tabitha argued that the data must be wrong and that the technicians should
redo the experiments. Do you agree with her? (Amazingly, it never occurred
to her that the authors of the textbook might be wrong!)

5.26 Activity coefficients of water (w) in solutions containing sugar (s) are often corre-
lated by Iny,, = a1 - xw)z, where o is a constant. Write an expression for the com-
position dependence of ¢* and Invy,, taking into account that the solubility of
sugar is limited to 0 < x, < 0.25.

5.27 Obtain expressions for the pressure dependence of the fugacity f; at fixed T,
when the pressure dependence of the partial molar volume is given by each of
the following: (a) V1 = a, (b) V1 = bP, (c) V1 = ¢/P.Here 4, b, and c are con-
stants, independent of state.

5.28 Each of the following applies to the fugacity for one component in a binary mix-
ture. In each case, indicate how the quantities y;, £1%, and V; have been treated if
the expression was obtained from (i) Equation (5.5.5), (ii) Equation (5.5.9), and
(iii) Equation (5.5.11):

(@) f1(T,P,xy) = xjexpla+ (b+cxa)/T]
(b) (T, P, xy) = x,exp[(a/T +bP)x5+ (c+d/T)P+e+g/T +hT]

(c) f1(T,P,xy) = xlexp[u+b/T+cx%x2+dx1x§+(eP)/T]

The parameters 4, b, ..., h depend on substance but are independent of state.

5.29 Assume mixtures of methanol(1) and water(2) obey Wilson’s equations with Ai;,
= 0.347 kJ/mol, Aky; = 2.178 kJ/mol, p; = 24.55 mol/liter, and p, = 55.34 mol/
liter. If the temperature of an equimolar mixture is increased from 20°C to 30°C,
by how much do both activity coefficients change?
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RELATIONS AMONG RELATIONS

In previous chapters we have introduced many quantities, and we have developed
many relations among those many quantities. We use this chapter to summarize the
most important of those relations and to show you that we have consistently used a
single approach in developing those relations. We start in § 6.1 by reminding you of
the subtle distinctions between system states and constraints on interactions that may
be in force when we change a state. Constraints are usually imposed in terms of mea-
surables; for example, constant temperature or constant volume or no heat transfer.
But such constraints can have profound effects on conceptuals and, in particular, on
our choices for the most useful and economical expressions for relating measurables
to conceptuals.

At this point we have developed two principal ways for relating conceptuals to
measurables: one based on the ideal gas (Chapter 4) and the other based on the ideal
solution (Chapter 5). Both routes use the same strategy—determine deviations from a
well-defined ideality—with the deviations computed either as differences or as ratios.
Since both routes are based on the same underlying strategy, a certain amount of sym-
metry pertains to the two; for example, the forms for the difference measures—the
residual properties and excess properties—are functionally analogous.

We use § 6.2 to emphasize the symmetries that exist among difference measures
and among ratio measures. Difference measures are commonly used to compute ther-
modynamic properties of single homogeneous phases, while ratio measures are most
often used in phase and reaction equilibrium calculations. In § 6.3 we show that simi-
larities among ratio measures extend to their physical interpretations. Then in § 6.4 we
collect in one place the five most important ratio measures that are used to compute
values for fugacities.

Finally in § 6.5, we illustrate that our two approaches—differences and ratios—are
formally equivalent. Consequently, we can, in principle, use differences to compute
ratios and vice versa. Whether this can be done in practice depends on the kinds and
quantities of experimental data that are available. But in addition, such equivalences
can be exploited in thermodynamic modeling, for example, by using ¢ models (dif-
ference measures) to obtain mixing rules in PvTx equations of state. The resulting
PuTx equations would then be used to compute fugacity coefficients (ratio measures).
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6.1 EFFECTS OF EXTERNAL CONSTRAINTS ON SYSTEM STATES

In previous chapters we have tried to convince you that if we have a complete equa-
tion of state for a one-phase substance, then we can compute values for all thermody-
namic properties. Up to now, much of our attention has focused on volumetric
equations of state, P(T, v, {x}) or v(T, P, {x}), because these equations contain only mea-
surables. But those forms are not the only possibilities. For example, our fairy god-
mother might present us with a complete functional form for the Helmholtz energy

A

A(T, V,{N}) (6.1.1)
or for the Gibbs energy,
G

G(T,P,{N}) (6.1.2)

From either of these we could use relations presented in earlier chapters to obtain all
remaining thermodynamic properties.

To determine the number of independent properties required to completely define
an equation of state, we use the procedure introduced in § 3.1. There we made a dis-
tinction between 'V, the number of orthogonal interactions available to manipulate a
state, and F,,, the number of independent properties needed to identify a state. We
also noted that 'V is affected by any external constraints imposed on interactions, but
that F,, is not. We elaborate on this distinction here.

Consider two systems, 1 and 2. System 1 is a one-phase mixture of C components,
with mole numbers {N}. This mixture fills a rigid vessel of volume V7, and the vessel
is immersed in a heat bath maintained at temperature T;. System 2 is another sample
of the same mixture, having the same C components and the same mole numbers {N}.
System 2 fills the cylinder of a piston-cylinder apparatus. The cylinder is immersed in
a heat bath at T,. A constant external pressure is imposed on the mixture; at equilib-
rium the system pressure P, balances that external pressure. Therefore, system 2 is at
constant pressure, while system 1 is at constant volume.

We adjust the two heat baths so the two temperatures are the same,

T, =T, (6.1.3)
and we adjust the external pressure on system 2 so the two volumes are the same,
P, = P(T, Vi, {N}) (6.1.4)

To identify each state (with S = 0), we must by (3.1.7) specify values for (C + 2) proper-
ties. We have met this requirement: Ty, V1, and C mole numbers. Moreover, the two
sets of values are identical. Hence, the two states are identical, and consequently, all
thermodynamic properties are exactly the same in the two systems, even though the
external constraints differ. (This assumes relations among properties are monotonic; if
they are not, we can still adjust T, V, and {N} so that the two states are identical.)

But while the two equilibrium states are the same, we may feel that some things
about these two situations differ. We bring two things to your attention here. One dif-
ference is the identity of the natural variables for describing a state. In system 1 with V
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fixed, a natural choice is an expression for the Helmholtz energy (6.1.1), while for sys-
tem 2 with P fixed, a natural choice would be an expression for the Gibbs energy
(6.1.2). “Natural” here means economical in terms of computations needed for an ana-
lyis. For example, the entropies are the same in the two situations, but in system 1 the
entropy S is economically posed in terms of A, while in system 2 it is better posed in

terms of G:
J0A G
S, = |22 - _|Z= =S 6.1.5
1 (BT)VN (BT)PN 2 ( )

Likewise, all chemical potentials are the same,

= 0A oG — .
Giqy = (aN] = (E)N] = Gj) foralli  (6.1.6)
JTVN, iJTPN

This distinction in the choice of appropriate dependent variables will influence our
development of the criteria for equilibrium, which appears in Chapter 7.

A second difference is in how the two systems respond to internal fluctuations or to
externally imposed disturbances. Such responses are quantified by the thermody-
namic response functions and, again, the natural choices for these two systems differ.
For example, the first-order response to a change in temperature is given by (6.1.5),
but the second-order response is given by a heat capacity: the response for system 1 is
given by C,, while that for system 2 is given by C,,. These two heat capacities differ:

2 2
c, = —T(M) - -T(E’GJ - C, (6.1.7)
oT? Jyn aT? Jpn

This means, for example, that if we increase the temperature of both heat baths by
5°C, the new equilibrium states reached by the two systems will differ. Other inequal-
ities, similar to (6.1.7), occur between other high-order derivatives of A and G, leading
to differences between other response functions.

More generally, external constraints affect many aspects of thermodynamic theory
and practice. In experiments, certain constraints make particular response functions
much easier to measure than others. In statistical mechanics, theoretical descriptions
of natural fluctuations are determined by the external constraints imposed on sys-
tems. In thermodynamic modeling, external constraints guide us toward those prop-
erties that offer the most economical routes to complete descriptions of states.
Similarly, in thermodynamic analysis, constraints help us separate dependent vari-
ables from independent ones and help us choose those independent variables that are
most likely to simplify the analysis. If we merely wanted to develop a thermodynamic
description of equilibrium systems, we could ignore external constraints, but since we
want to change system states and perform engineering analyses that reveal the conse-
quences of such changes, we must learn to recognize external constraints and account
for the limitations they may impose on system behavior and performance. A more
complete discussion of relations between thermodynamic properties and external
constraints can be found in [1].
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6.2 SYMMETRY IN ROUTES TO CONCEPTUALS

We will need values of conceptuals for two classes of problems: (a) calculation of ther-
modynamic properties for one-phase systems and (b) calculation of multiphase and
chemical reaction equilibria. For both kinds of problems, we use the same basic strat-
egy: (i) Compare raw or modeled experimental data with computed properties of an
ideal substance to obtain measures for deviations from the ideality, then (ii) exploit
the deviation measures to obtain expressions for the required conceptuals in terms of
measurables. Calculations of one-phase properties are typically based on differences,
while phase and reaction equilibrium calculations typically use ratios. In § 6.2.1 and
6.2.2 we focus on difference measures, while in § 6.2.3 and 6.2.4 we consider ratio
measures.

6.2.1 Generalized Difference Measure

In Chapters 4 and 5 we used the same basic strategy for obtaining changes in concep-
tuals for homogeneous single-phase systems. In both chapters we used a difference f;
to compare a real property value f to that of some ideal substance f id, extending this
approach in a completely general way, we define a generalized difference measure by

FAT P, {x}: TP g™y = £(T, P, {a) - £19T™ PY (2 6.2.1)

The ideal substance may be real or hypothetical, so long as its state (T, P, {x}) is
well-defined. To make the difference measure f; useful, the ideal property value f*
must be readily obtained, either from experiment, theory, or correlation. Note that in
this most general form, the ideal state (T pid (xid}) need not be the same as the state
of the real substance (T, B, {x}).

Since the properties f and f @ are state functions and the definition (6.2.1) is a linear
combination of state functions, the difference f is also a state function. This means f;
forms exact differentials, so (6.2.1) can be written as

fy= L fid df (6.2.2)

In other words, the concept of an ideal substance can be interpreted mathematically as
the lower limit of an integration. If the ideal substance is chosen to be the ideal gas at
the same state as the real substance (T =T, P4 = p, {xid} = {x}), then the differences f,
are the residual properties of Chapter 4. Alternatively, if the ideal substance is taken to
be the Lewis-Randall ideal solution at (T, P, {x}), then the differences f; are the excess
properties of Chapter 5. These two possibilities are compared in Table 6.1.

To emphasize that the definition (6.2.1) is completely general and that the ideal
substance is at the discretion of the user, we introduce a third class of difference mea-
sures, distinct from the residual properties and excess properties. These new differ-
ences may be called generalized changes of properties on mixing [2-4]; they are defined by
the intensive form
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Mer p, 1xy: T Py = £(T. P 7% P° 623
FUTP AL TP = f(T,PAx) = Y% fpure i(TH P (6:2.3)
i

where the sum runs over all components. In this form, the ideal “substance” is a set of
pure components, each in a standard state (T¢, P?); these standard states need not be
the same as the mixture state (T, P), nor need they be the same for all pures.

The generalized difference measure (6.2.1) provides options for computing changes
in conceptuals: it is merely a matter of computational convenience whether we use
residual properties, excess properties, or changes of properties on mixing. To illus-
trate, consider a change from state 1 to state 2. For such a process, we could obtain the
change in any conceptual Af;, using residual properties,

res

Afp = Afpp

In such cases, values for the residual properties would be obtained from integrals over
appropriate functions of a PvTx equation of state, as discussed in § 4.4.
Or we could obtain Afj, using excess properties,

+AfS (6.2.4)

E .
Afpp = Afpp+ Afllsz (6.2.5)

In this approach, values for the excess properties would most likely be obtained from
models for gE, although PuTx equations of state could also be used.
Or we could obtain Af, using changes of properties on mixing,

M 0 0 0 0
Afiy = Afpy +, [xp S oureiTiz Pi2) = Xi1 fpurei(Ti1: Pin)] (6.2.6)
i

In these situations values for the properties fM would be obtained by integrating
appropriate functions of a PvTx equation of state. However, this approach is little
used nowadays; instead, when a reliable equation of state is available for a substance,
the residual properties are usually used to obtain Afj,. In any case, the strategy based
on difference measures is a completely general one that can be implemented in vari-
ous ways to help reduce the computational burden of an analysis.

Table 6.1 Routes to properties devised in Chapters 4 and 5 use the
same strategy: compute deviations from a well-defined ideality

Deviations from ideality

Ideality Differences Ratios
Ideal gas Residual properties Fugacity coefficient
1= fof 0 = 1/f"
Ideal solution Excess properties Activity coefficient

£ fogt V= £/




6.2 SYMMETRY IN ROUTES TO CONCEPTUALS 233
6.2.2 Symmetry in Use of Difference Measures

Since the residual properties and excess properties are merely two particular mem-
bers of the general class of differences defined in (6.2.1), we might expect that the
functional forms for relations among excess properties bear similarities to the forms
for relations among residual properties. Indeed, many such similarities exist, and in
fact the similarities extend beyond functional relations to encompass the entire strat-
egy used in relating conceptuals to experimentally accessible quantities.

That basic strategy is illustrated in Table 6.1. First we define an ideal mixture whose
properties we can readily determine. Then for real mixtures we compute deviations
from the ideality as either difference measures or ratio measures. In one route the ide-
ality is the ideal-gas mixture, the difference measures are residual properties, and the
ratio measure is the fugacity coefficient. In the other route the ideality is the ideal
solution, the difference measures are excess properties, and the ratio measure is the
activity coefficient.

Figure 6.1 summarizes the strategy we follow to obtain forms for computing prop-
erty changes of one-phase systems. In route 1A, the required experimental data

Route 1A Route 1B

o(T, P, {x}) data
h(T, P, {x}) data
phase equilibrium data

' '

PoTx data
crﬁg data

PuTx model ¢E(T, P, {x}) model
Ideal-gas Residual (85.3) Excess Ideal-solution
properties properties | <& ---®=| properties properties
Afig=Af* Afy=Af" Afy=AfE Afiy= Af®

l l

> Af = Afy + Afy

Figure 6.1 To obtain changes in properties of one-phase mixtures, our basic strategy is to com-
pute deviations relative to some ideality. In route 1A (left) the ideality is the ideal gas and the
deviations are the residual properties. In route 1B (right) the ideality is an ideal solution and the
deviations are the excess properties. In addition, we could use the relations in § 5.3 to compute
residual properties from excess properties and vice versa.
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include heat capacity values for the pure-component ideal gases plus volumetric data
for the mixture. Those data are correlated as a model PuTx equation of state, and that
model together with the relations in § 4.4 provide values for residual properties. Then
we combine those residual properties with ideal-gas properties to obtain differences
in properties for the substance of interest.

In route 1B, also shown in Figure 6.1, the required experimental data include mix-
ture volumes, enthalpies, and some amount of phase-equilibrium data. From those
data, values for excess properties are extracted and fit to a model for gE. However,
before excess properties can be found, we must define the ideal solution; that is, we
must choose the standard state for each component. With the excess-property model
plus values for ideal-solution properties, we can then compute property differences
for the substance of interest.

Traditionally, route 1A was used only for gases and route 1B was used only for lig-
uids. Route 1B is still rarely used for gases because it requires much more experimen-
tal data than route 1A; however, when route 1B is applied to liquids and pressure
effects can be ignored, then the amount of data required is tolerable. Conversely, route
1A was, in the past, little used for liquids, because older PvTx equations of state were
not sufficiently reliable when applied to liquids. Modern volumetric equations of state
often overcome this deficiency, so route 1A is now a viable method for liquids, as well
as gases. Therefore, the relation between residual properties and excess properties
given by

FETPAxY = FATPAx + 3% frei(Ts P) (627)

might be used to obtain excess properties if mixture residual properties are known,
and conversely. The determination of excess properties from residual properties was
developed in § 5.3 and is indicated by the horizontal line in Figure 6.1.

6.2.3 Generalized Ratio Measure

In Chapters 4 and 5 we developed two versions of the same basic strategy for obtain-
ing fugacities: we defined a ratio that compares the real-substance fugacity f; to that of
the substance in some reference state f;*. We generalize this approach by defining a
generalized ratio measure, the generalized activity,

(T, P, {x})

® ® ®

a(T, P, {x}; T, P®, {x®}) = -
721, P%, 121

(6.2.8)

Just as for the generalized difference (6.2.1), the reference state used in (6.2.8) may be
real or hypothetical; it need not be the same as the real state. On taking the logarithm
of (6.2.8), we obtain a difference,

Ina (T, P, {x}; T®, P%, {x®1) = Inf(T, P, {x}) - In£"(T, P%, x®})  (6.2.9)
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Moreover, as in (6.2.2), we can interpret the rhs of (6.2.9) as the result of an integration,

lnfi
Ina (T, P, {x}; T, P%, {x®}) :_[ _dinf; (6.2.10)

Inf;

so we may view the reference state as the lower limit of an integration.

Unfortunately, the general activity a; is not simply related to a difference in chemi-
cal potentials, because the definition of the fugacity (4.3.8) requires that the real and
reference states be at the same temperature. Fortunately, we lose almost nothing in
computational convenience by taking the reference state to be at the same tempera-
ture as the mixture of interest; then, the activity can be written as

RTIna (T, P, {x}: T, P® {x®}) = G{(T.P,{x})-GCi(T.P®, {x®})  (6211)

6.2.4 Symmetry in Use of Ratio Measures

In the above expressions, the reference is chosen by the user; the choice is based on
computational convenience. For example, if we choose the reference to be the pure
component at the temperature T and pressure P of the mixture, then (6.2.8) becomes
the usual activity, and the difference in (6.2.11) becomes the change of chemical poten-
tial on mixing,

fi(T, P, {x})

purei(T> P)

G; = RTIna; = RT In
fpurei

(6.2.12)

Alternatively, if the reference is taken to be the ideal gas at the same state as the mix-
ture, then (6.2.8) becomes the fugacity coefficient, and the difference in (6.2.11) is the
residual chemical potential. Then, instead of (6.2.12), we would have

_ f(T, P, {x
G;” = RTIng, = RT 1nw (6.2.13)

£18(T, P, {x})

Further, if the reference is taken to be a Lewis-Randall ideal solution, then the ratio in
(6.2.8) is the activity coefficient, while the difference in (6.2.11) becomes the excess
chemical potential. Then, instead of (6.2.12) or (6.2.13), we would have

_ AT, P, {x
cf = RTIny, = RT I 200D (6.2.14)

£5(T, P, {x})
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Table 6.2 The fugacity, fugacity coefficient, activity, and activity coefficient are
equivalent representations of the chemical potential; those equivalences extend to
their pressure and temperature derivatives.

Property Pressure effect Temperature effect

Chemi.cal [i(&)} - Zl_ (3.4.15) [_a_(gl_)} = __Hl (3.4.17)
potential dP\RT RT dT\RT RT2
— —res
Fugacity (alnfi) _ L (4.3.13) (%) = —Hi (4.3.14)
0P JTx RT dT Jpx RT2
—res —res
Fugacity (almpi) Vi s (almpi) =i @324)
coefficient 0P JTx RT oT JPx RT2
—m —m
Activity (aln"’li) Vi (6215) (@) _ZHL 6216
oP JTx RT JoT Jpx RT2 -
Acf?iv-ity ohnyy Vi (5.4.16) oy A (5.4.17)
coetficient ( 5P )Tx = RT 4. ( 5T )Px = R12 A

These are the common choices for the reference, but they are not the only possibilities:
in special situations other choices may be more useful. For example, for electrolyte
solutions it often proves convenient to use, as the reference, a hypothetical mixture at
some composition other than the composition of interest.

The relations (6.2.12)—(6.2.14) show that the activity, fugacity coefficient, and activ-
ity coefficient are all particular forms of the generalized activity, just as various chem-
ical potentials in (6.2.12)-(6.2.14) are all particular forms of the generalized difference
in chemical potentials (6.2.1). In addition, the structural analogies suggested by
(6.2.12)—(6.2.14) extend to various derivatives, some of which are summarized in Table
6.2. For example, when pressure changes, each of these quantities responds according
to some form of the partial molar volume. Note that (G; /RT) and (In f;) have the same
response to changes in pressure. Likewise, when temperature changes, each quantity
responds according to some form of the Gibbs-Helmholtz equation, which involves a
partial molar enthalpy. Note that (Inf;) and (In ¢;) have the same response to changes
in temperature.

The derivatives of @; and y; in Table 6.2 indicate how the strength of a nomdeahty
responds to changes of state. For example, when a nonideal gas has all Vi*>0, then
each @; increases with isothermal increases in pressure. So if the mixture also has all o;
> 1, then the gas becomes more nonideal as pressure increases; this is the common
behavior. However, if all @; < 1, then the nonldeahty weakens with increasing pres-
sure. Similarly, if a nonideal solution has all H < 0, then each v; increases with iso-
baric increases in temperature. So, if the mixture is a positive deviant (it has all y; > 1),
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Table 6.3 The chemical potential, fugacity, fugacity coefficient, activity, and
activity coefficient are all constrained by a form of the Gibbs-Duhem equation.

Identity of f . .
Property in (3.4.10) Form of Gibbs-Duhem equation
Chemical g in dG; = —sdT +vdP (3.4.19)
potential i
. g h v
Fugacity RT in dinf; = - R_Tsz + ﬁdP (4.3.15)
1
res res res
Fugacity g vdlne, = - " aT+Y_ap (4325
coefficient RT z i N0 RT2 RT ( )
1
" n" "
Activity T in dlna;, = - R_Tsz + ﬁdP (6.2.17)
1
Activity g n* ot
— x;dlny, = - ——dT + —=dP 5.4.18
coefficient RT z P RT2 RT ( )
1

then the mixture becomes more nonideal as the temperature is increased. But if the
mixture is a negative deviant (all y; < 1), then the nonideality weakens with increasing
temperature.

In addition to the similarities among derivatives shown in Table 6.2, each form of
the chemical potential is constrained by a Gibbs-Duhem equation, as shown in Table
6.3. For isothermal-isobaric changes in composition, the rhs of each equation in Table
6.3 vanishes; for example, (3.4.19) becomes

in dG; =0 fixed T and P (3.4.20)
i
Further, for changes of state at constant composition, the forms of the Gibbs-Duhem
equation in Table 6.3 can be related to derivatives in Table 6.2. For example, for a

change in pressure at constant temperature and constant composition, (4.3.13) com-
bines with (4.3.15) to yield

dInf; _ Vi v
Xu(G ), = 2o - R (6218)

i i

Similar relations can be obtained from other quantities appearing in Tables 6.2 and 6.3.
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Route 2A Route 2B

o(T, b, {x}) data
PuTx data h(T, P, {x}) data
phase equilibrium data

¢ '

PuTx model ¢E(T, P, {x}) model
‘ Std. state and
Ideal-gas Fugacity (§5.5) Activity ideals—si)liiir(l)n
fugacity coefficients, |<& ---®| coefficients, fugacities
8 <3P o v 7=
fi=x0;P
» -
or  fi=x;Yf{

Figure 6.2 Schematic illustration of the strategies used to obtain computational forms for
fugacities, which are needed for phase- and reaction-equilibrium calculations. Traditionally,
route 2A has been mostly used for gases, while route 2B was confined to condensed phases.
However, these uses were dictated, not by thermodynamic limitations, but by limitations of the
models used to correlate the data.

To obtain values for fugacities, we must make contact with experimental data, usu-
ally through one of the two routes summarized in Figure 6.2. In the figure, route 2A
combines experimental PvTx data with properties of ideal gases to form the fugacity
coefficient. Then the definition of the fugacity coefficient can be used to extract values
for the fugacity. Alternatively, fugacities can be obtained by following route 2B in Fig-
ure 6.2. Then the required experimental data are mixture volumes, enthalpies, and
limited phase-equilibrium data that produce excess properties. Those data, fit to a g&
model and combined with computed properties of ideal solutions, yield activity coef-
ficients. These activity coefficients can then be used to obtain values for fugacities.

Figure 6.2 suggests that route 2B requires considerably more experimental effort
than route 2A, because route 2B requires data from volumetric, calorimetric, and
phase-equilibrium measurements. But for condensed phases, pressure effects can
often be ignored, and then the experimental effort demanded by route 2B may not be
excessive. Traditionally route 2A was applied to gases and route 2B was reserved for
condensed phases, but now we may be able to use PvTx equations of state to deter-
mine activity coefficients and fugacities of liquids. Inversely, we may be able to use a
¢E model as the basis for devising mixing rules for PoTx models, as discussed in § 5.5
and § 6.5. These additional routes are indicated by the horizontal line in Figure 6.2.
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6.3 PHYSICAL INTERPRETATIONS OF SELECTED CONCEPTUALS

The similarities in the expressions for the fugacity ratios shown in (6.2.12)—(6.2.14)
extend to their physical interpretations; in this section we show that each ratio (hence,
each difference in chemical potentials) can be simply interpreted as the reversible
work involved in a certain well-defined process: the activity is related to the reversible
work involved in adding more of one component to a mixture (§ 6.3.1); the residual
Gibbs energy is related to the reversible work involved in changing an ideal gas into a
real gas (§ 6.3.2); the excess Gibbs energy is related to the reversible work involved in
converting an ideal solution into a real mixture (§ 6.3.3). We also show that the corre-
sponding differences in partial molar entropies can be interpreted as reversible heat
effects.

6.3.1 Adding More of One Component to a Mixture

First we consider the reversible addition of a small amount of pure component i to a
mixture at fixed temperature and pressure. This process has already been discussed in
§ 3.7.3; there we showed that, for each mole of substance added, the reversible shaft
work is given by

Wl e = Gi(T,P, {x})— Spurei(T> P) (6.3.1)
Using (6.2.12) for the rhs, we find

fAT, P, {x})

= RT Ina. 3.2
D) na, (6.3.2)

wsh, rev — RT lnf )
pure i

So, when we choose the pure-substance reference state to be at the same temperature
and pressure as the mixture, then the activity of component i is simply related to the
reversible isothermal-isobaric work involved in adding a small amount of pure i to
the mixture. This provides a physical interpretation for the activity.

For this process, the heat effect is given by the entropy balance (3.6.10), now written
for one inlet and no outlets. Since the process is isothermal, the system (T), inlet (T ),
and external boundary (T,,;) all have the same temperature, T = T, = T4, so (3.6.10)
becomes

= TIS(T, P, {x}) = S pyre (T P)] = TS!(T, P, {x}) (6.3.3)

Trev ure i

For an isothermal-isobaric addition of a small amount of component i to a mixture,
the reversible heat effect is given by the change in partial molar entropy on mixing.
In the special case of ideal gases, (6.3.2) reduces to

w$ = RTInx, < 0 (6.3.4)

sh, rev

while (6.3.3) reduces to
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g% = —RThnx; >0 (6.3.5)

Similarly, for Lewis-rule ideal solutions, (6.3.2) again reduces to

is
wsh, rev

RTInx; < 0 (6.3.6)

and (6.3.3) reduces to

is
qVEU

~RTInx; > 0 (6.37)

For both idealities, when material is added, the volume must expand to keep P con-
stant and we must add heat to keep T constant. If we mole-fraction average the work
given in (6.3.1), we obtain the change in Gibbs energy on mixing, ¢", which is the
reversible isothermal-isobaric work involved in forming a mixture from its pure com-
ponents; cf. § 3.7.4 in which we consider the reverse process.

The above analysis applies for moving one component from a pure state into a mix-
ture, but we can generalize to moving a component from one mixture to another. In
those cases, the reversible shaft work is given by

fi(T, P, {x})

wsh, rev — Gi(T’ P, {x}) - Gi(T’ P, {XO}) = RT lnfi(T, P, {xo})

(6.3.8)

If the component fugacity in the original mixture {x,} exceeds that in the target mix-
ture, then the shaft work is negative and the system can be used to do work. However,
if the fugacity in the target is larger, then work must be done to force the process to
proceed in the desired direction. For this reason, energy must be supplied to concen-
trate such mixtures as toxic wastes and sewage.

6.3.2 Changing an Ideal Gas into Real Stuff

To obtain a physical interpretation for the residual Gibbs energy, we start with an
ideal-gas mixture confined to a closed vessel. As the process, we consider the revers-
ible isothermal-isobaric conversion of the ideal-gas molecules into real ones. Although
this process is hypothetical, it is a mathematically well-defined operation in statistical
mechanics; the process amounts to a “turning on” of intermolecular forces. We first
want to obtain an expression for the work, but since the process involves a change in
molecular identities, we must start with the general energy balance (3.6.3). For a sys-
tem with no inlets and no outlets, (3.6.3) becomes

8va, reo t 6Vvsh, rev — d(ZNzal) - SQrev (6.3.9)
i

where the sum runs over all components i. Recall W, is the work involved in deform-
ing the boundary, while Wy, is the shaft work (i.e., non-boundary work) associated
with the process. Similarly, the general entropy balance (3.6.8) is written for a closed
system as
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6Qrev = Textd(zNigi) (6.3.10)
i

For an isothermal process, T = T,,;; then combining (6.3.9) with (6.3.10) to eliminate
the heat, and recalling that A= U - TS, we find

8‘/vb, rev+6Wsh, rev = d(ZNzZI) = d(Na) (6.3.11)
i

where 4 is the molar Helmholtz energy of the system. The reversible boundary work
is given by

W, e = -PdV = —NPdv (6.3.12)

We combine (6.3.11) with (6.3.12), recall that the process is isobaric and constant mass,
and write

SW = Nd(a+ Pv) = Ndg (6.3.13)

sh, rev

Finally, we integrate (6.3.13) from the ideal-gas state to that of the real stuff,

Wy, re = §(To P {x}) — g'S(T, P, {x}) (6.3.14)

¢“(T,P,x) =RT in Ing, (6.3.15)

1

This shows that the residual Gibbs energy can be interpreted physically as the revers-
ible isothermal-isobaric shaft work involved in “turning on” intermolecular forces,
thereby converting ideal-gas molecules into real molecules. In general this work may
be positive or negative. For a single component (6.3.15) reduces to

wSh, rev = RT ln(ppurei (6.3.16)

which is the reversible isothermal-isobaric work involved in transforming one mole of
pure ideal gas into a real substance.

If we integrate the differential boundary work in (6.3.12) over the change from
ideal gas to real substance, we obtain

res

Wy pop = —Po (6.3.17)
So the residual volume is proportional to the reversible isothermal-isobaric boundary
work associated with converting ideal gas into real substance.

The corresponding heat effect associated with the process is obtained from the
entropy balance (6.3.10); in particular, for an isothermal constant-mass process,
(6.3.10) becomes

8Q, = Td(ZN,-E) = TNds (6.3.18)

1
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And integrating over the process, as we did to obtain (6.3.15), we find

res

Qyep = Ts (T,P,{x}) (6.3.19)
So we can interpret the residual entropy as proportional to the reversible isothermal-
isobaric heat involved in converting ideal-gas molecules into real molecules. With the
results from (6.3.15), (6.3.17), and (6.3.19) we can show that process satisfies the first
law, Au = u's = wy, + wgy, + 4.

6.3.3 Changing an Ideal Solution into Real Stuff

To obtain a physical interpretation for the excess Gibbs energy, we consider a Lewis-
Randall ideal solution confined to a closed vessel, and we determine the reversible
isothermal-isobaric work involved in converting the ideal solution into a real mixture.
Again this is a hypothetical process: all intermolecular forces are initially the same
(but they are nonzero), and the process changes the forces into those of real molecules.

The development of the expression for the reversible work is exactly that already
done in § 6.3.2, and the result is functionally the same as (6.3.13),

W

sh, rev

= Ndg (6.3.20)

Integrating this from the ideal-solution state to the real state of interest, we obtain

Wep, rev = g(T, P?{x})—gis(T’ P, {x}) (6.3.21)

= ¢E(T,P,x) =RT in Iny, (6.3.22)

1

This provides a physical interpretation for the excess Gibbs energy. Note that the
work computed from (6.3.22) may be positive or negative, depending on whether the
real mixture exhibits positive or negative deviations from ideality.

The heat associated with the process is also obtained in a manner that parallels that
in § 6.3.2; the result is proportional to the excess entropy,

= TsE(T, P, {x}) (6.3.23)

qrev

The direction of the heat transfer may be into or out of the system. Finally, analogous
to (6.3.17), the boundary work for this process is

Wy oy = —PoF (6.3.24)

This indicates that the reversible boundary work for the process is proportional to the
excess volume. Equations (6.3.22)—(6.3.24) satisfy the first law, Au = uE = wy, + wg, + g.
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6.4 FIVE FAMOUS FUGACITY FORMULAE’

In § 6.2.4 we showed the similarities that occur in the fugacity ratios that define the
fugacity coefficient, the activity, and the activity coefficient, and in § 6.3 those quanti-
ties were given physical interpretations. In this section we summarize certain general-
ized expressions that relate the fugacity to measurables. Many such relations can be
written, but only five forms are in common use.

Fugacity Formula #1. If along an isotherm T, we have a complete Pux equation of
state for our mixture, then we can compute f; from the definition of the fugacity coeffi-
cient (4.3.18). Here we write that definition in the form

FFF #1 f(T,P,{x}) = x;PoAT, P, {x}) (6.4.1)

If the equation of state is volume-explicit, then

TCVZ'

Ing,(T, P, {x}) = .[(I: [ﬁ_l}d—” (4.4.10)

T

while if it is pressure-explicit, then

_pTE (Y e
1ncpi(T,P,{x})-jV[RT(aNi)TVNm & -mz @4

Fugacity Formula #2. If we have, from experiment or correlation, the value of a
standard-state fugacity f; at the mixture temperature and pressure, so we can use the
Lewis-Randall rule (5.1.5), then we recast FFF #1 into an alternative form. First multi-
ply and divide (6.4.1) by the known standard-state fugacity f;’,

(pz(T7 P7 {x}) 0.
f(T, P, =x,P———f(T,P 6.4.2
i( {xh) = x; 7T.P) (T, P) (6.4.2)
Now replace the denominator with
f{(T,P) = P ¢j(T, P) (6.4.3)

and use (5.5.5) to identify the ratio ¢,(T, P, {x})/¢{(T, P) as the activity coefficient; then
(6.4.2) becomes

FFF #2 £(T, P, {x}) = xy,(T, P, {x}; £(T, P)) £{(T, P) (6.4.4)

This activity coefficient is simply related to the excess chemical potential (5.4.10).

* Professor M. M. Abbott originated this name for the following useful forms for fugacity [5].
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Fugacity Formula #3. If we have, from experiment or correlation, the value for a
standard state fugacity f; at the mixture temperature but at some standard-state pres-
sure Pl that differs from the mixture pressure P, then we need a Poynting factor to
correct the standard-state fugacity from P to P. The correction is given in Table 6.2:

alnfio \7?
[ 5P ]Tx = — (6.4.5)

Separating variables and integrating along the mixture isotherm, we find

(6.4.6)

Vi(T, =)
AT, P) = fXT, P )exp“ ——dn}

RT

where \7? is the partial molar volume of component i in its standard state. Putting
(6.4.6) into FFF #2 leaves

, 0 P P VT, m)
FFF #3 f(T,P, {x}) = xiyi(T,P,{x};fi(T,P))fi(T,Pi)expJ ————dn | (64.7)
P
Note that the activity coefficient in (6.4.7) is exactly the activity coefficient that
appears in FFF #2 of (6.4.4); it is only the expression for the standard-state fugacity in
(6.4.6) that has changed in writing (6.4.7).

Fugacity Formula #4. Consider agam the situation in which FFF #3 applies: we have
a Value of a standard-state fugacity f - at the mixture temperature and at some pres-
sure P! other than the mixture pressure P. But rather than divide the pressure effects
between two terms, we mlght want to combine them into a smgle term. This situation
occurs, for example, when neither data nor a model provides a convenient expression
for the pressure correction that appears in (6.4.7). In such cases we might choose to
keep all the pressure dependence in the activity coefficient.

To accomplish this, we proceed in a manner analogous to that for obtammg FFF #2.
First, multiply and divide FFF #1 by the known standard-state fugacity f; AT, P ),

(T, P, {x
fi(T, P, {x}) = xiP(pl(—{})fio(T, P?) (6.4.8)
AT, P?)
1 >
Then replace the denominator with
0 0
fi(T,P}) = P°}(T, PY) (6.4.9)

and use (5.5.4) to identify (¢,P)/( (p?P?) as the activity coefficient; so (6.4.8) becomes
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FFF ¢4 fAT, P, {x}) = xyT, P, {x}; £(T, P)) £ (T, P?) (6.4.10)

Note that the activity coefficient in (6.4.10) differs from those in (6.4.4) and (6.4.7) and
that it is not simply related to an excess Gibbs energy.

Fugacity Formula #5. In FFF #3 we divided the pressure effects between the activity
coefficient and a Poynting factor, while in FFF #4 we placed all the pressure effect in
the activity coefficient. Still another possibility is to place all the pressure effect in a
Poynting factor. To derive this form, we start with FFF #4 and use (5.5.11) to replace
vi(T, P, {x}) with y,(T, P?, {x}). The result is

FFF #5 FAT, P, {x}) = xy«T, P}, {x}; F{(T, P))) F(T, PY) (6.4.11)

P Vi(T, )
d
X EXPUP? RT n}

Note that in FFF #5 neither the activity coefficient nor the standard-state fugacity
depends on the mixture pressure. The Poynting factor in FFF #5 can be computed,
provided we can evaluate the partial molar volume for the real substance along the
isotherm T from P? to P. In contrast, the Poynting factor appearing in FFF #3 applies
to component i in its standard state and involves an integral over the partial molar
volume of that standard-state substance.

An alternative derivation of FFF #5 can be performed by starting with FFF #3 and
moving the pressure dependence of y/(T, P, {x}) into a Poynting factor. That Poynting
factor will contain an integral over the partial molar excess volume. Then we would
combine that Poynting factor with the one already appearing in FFF #3.

Summary of procedure. To develop the fugacity formulae #2-5 presented above, we
follow this procedure:

(a) Inevery case, we start from FFF #1, which defines the fugacity coefficient.

(b) Then we multiply and divide FFF #1 by a known standard-state fugacity fioz
(i) for FFF #2, we use f; = f(T, P),
(ii) but for FFF #3-5, we use f; = £;(T, P}).

(c) Next we use one of the relations from § 5.5 to identify some ratio as an activity
coefficient:
(i) for FFF #2 and 3 we use v;(P; P),
(ii) for FFF #4, v;(P; P?),
(iii) and for FFF #5, v;(P;; P).

(d) Finally, the appropriate Poynting factor is applied when needed. In FFF #3

the Poynting factor corrects only the standard-state fugacity, but in FFF #5 the
Poynting factor corrects the solution fugacity.
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Numerical results from FFE. We now show numerical results from each FFF applied
to the same mixture: an equimolar gaseous mixture of methane(1) and sulfur hexaflu-
oride(2) at 60°C and 20 bar. We determined residual properties for this mixture in
§ 4.5.5 and excess properties in § 5.3.1-5.3.3. For the equation of state we use the sim-
ple virial equation written in volume-explicit form,

v = == +B (4.5.32)
P

with B given by (4.5.18) and values of the B;; given in Table 4.2. We choose the stan-
dard state for each component to be the pure gas at 60°C and 10 bar. Then the pure-
component fugacity coefficients are given by (P4.11.1) and the Poynting factor PF;
that appears in FFF #3 is given by

P VQ(T ) P vpurei(T, )
PF, = ex L in| = ex B e ' (6.4.12)
1 pUP? RT } pUpg RT
p By(P-P)
= In— 4+ 17 6.4.13
exp{ nP? + RT } ( )

For the model (4.5.32) applied to binary mixtures, the fugacity coefficients are given
by (P4.11.2). Similarly, the general expression for the partial molar volume is given in
(P4.23.1). Then the Poynting factor that appears in FFF #5 is

P VT, n)
PF, = ex ! dn (6.4.14)
: pUP? RT }
2 (0]
B..+x38:,)(P - P!
= exp{ln%+( ii + % 012)( Z)} (6.4.15)
P; RT

where j # i and 8y, is the collection of B;s given in (5.3.8).

The numerical results leading to the fugacity for methane (component 1) are sum-
marized in Table 6.4. All five fugacity equations provide exactly the same value for the
fugacity, as they should. The values of all fugacity coefficients are close to unity, indi-
cating the pure components and the mixture are nearly ideal gases. However, unlike
liquids, these gas-phase systems produce large values for the Poynting factors. Fur-
ther, note that values obtained for activity coefficients change when we change the
standard state, even though the final values obtained for the fugacity are unchanged.
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Table 6.4 Numerical results from each of the FFF in computations for the fugacity
of methane(1) in an equimolar methane-sulfur hexafluoride mixture at 60°C, 20 bar

Property Eq. FFF#1  FFF#2  FFF#3  FFF#4  FFF#5
used (6.4.1) (6.4.4) (6.4.7) (6.4.10) (6.4.11)

X . 0.5 0.5 0.5 0.5 0.5

P/bar . 20 20 20 20 20

P} /bar 10 10 10

¢1(P) (4.4.10)  0.9985 . . 0.9985

¢1(P]) (4.4.10) . . e 09992  0.9992

¢ (P) (4.4.11) . 0.9773

0] (P]) (4.4.11) . . 09886 09886  0.9886

fP(P)/bar  (6.4.1) . 19.546

£(P])/bar  (6.4.1) e . 9.886 9.886 9.886

11(P; P) (5.5.5) . 10217  1.0217

1(P; P7) (5.5.9) . o o 2.020

n(Pi; P7)  (55.10) 1.011

PF, (6.4.13) . . 1.9772

PF, (6.4.15) . . . 1.998 1.998

f1/bar (FFF) 9.985 9.985 9.985 9.985 9.985

6.5 MIXING RULES FROM MODELS FOR EXCESS GIBBS ENERGY

We have noted that historically PoTx models and fugacity coefficients were restricted
to gas-phase mixtures, while ¢f models and activity coefficients were restricted to
condensed-phase mixtures. But these restrictions are not thermodynamic; instead,
they arose because of limitations in the models themselves and because of computa-
tional difficulties that occur in solving sets of nonlinear algebraic equations. But with
continuing improvements in models, as well as in the power and availability of digital
computers, we can contrive complicated models for nearly any system. In particular,
FFF #1 is now being applied to virtually all types of mixtures and phases.

Use of FFF #1 requires a PvTx equation of state for the mixture and each standard
state, and we noted in § 4.5.12 that the outstanding problems in applying PvTx equa-
tions to mixtures are the choices for mixing rules and combining rules. One approach
to this problem is to base mixing rules on models for ¢E. The motivation is to combine
the composition-dependence in ¢F models with the pressure-dependence in PvTx
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models. This may be attempted in many different ways, and development of viable
strategies remains a central problem in thermodynamic modeling. One approach
would be to simply rearrange (5.5.5) to read

Formally, this could be used to connect a PvTx model for ¢; (lhs) with a model for the
activity coefficient (rhs). However, this approach is unattractive because it would
require us to deal separately with each component.

A better approach is to start from a particular model for ¢E(T, P, {x}; {A}), such as
the Porter, Margules, or Wilson models introduced in § 5.6. Here the {A} are the model
parameters, whose values are usually obtained by fits to phase-equilibrium data. We
then select a PvTx model; often a cubic is used. In this discussion, we consider the
Redlich-Kwong equation (§ 4.5.8). This model contains parameters {a, b} that depend
on composition via some mixing rules (§ 4.5.12). Our strategy is to find those mixing
rules by matching the ¢£ model to ¢F given by the PuTx equation.

We can use a PvTx model to obtain gE via the residual Gibbs energy, as described in

§ 5.3. For the standard state of each component, we choose the pure component at the
mixture T and P. Then we can write

res

(T, P, {x}; {a,b}) - Exi g;jfre (T, P; {a,b.}) (652)

gh (T, P, {x}; {a,b})

RT

Z—an+J (Z‘l )dv (6.5.3)
o(T, P, {x})

0 Zourei—1
o . Pl ) .
_in {Zpure i 11’lzpure it -[vi(T, P)( Upure i )dvz}
i

where Z = Pv(T, P, {x})/RT is the mixture compressibility factor at T, P, and {x}, while
Zpure i = Popure i(T, P)/RT is that for pure i at T and P. The equation-of-state parame-
ters {a, b} are obtained by matching, at a single state, the value of gF from an excess-
property model to the value of ¢E given by the equation of state via (6.5.3). After the
equation-of-state parameters are found, fugacity coefficients are determined from
(4.4.10), and fugacities are obtained from FFF #1. Each pairing of a particular equation
of state to a particular ¢£ model produces a unique matching, but the possibilities are
many and the resulting expressions for @; can be complicated [6, 7].

One of the first implementations of the above procedure was that by Huron and
Vidal [8]. They retained the simple mixing rule for the Redlich-Kwong parameter b,

b= xb (4.5.75)

1
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and they obtained the mixing rule for a under the assumption that, in the limit of infi-
nite pressure, the excess Gibbs and Helmholtz energies are the same. The resulting
mixing rule for the Redlich-Kwong parameter a was then found to be

a.
a=b inﬁ—1.443ﬁgfmdel Huron-Vidal (6.5.4)
. i

The factor 1.443 /T changes when other model equations of state are used. Note that
(6.5.4) involves only pure component parameters, a; and b; so, no combining rules are
needed. However, these mixing rules do not reproduce the known composition
dependence of the second virial coefficient (4.5.18).

Under different assumptions, Wong and Sandler [9] used the Redlich-Kwong equa-
tion with the mixing rule (6.5.4) to obtain a quadratic rule,

RTﬁ zz j ]( RTﬁ) Wong-Sandler ~ (6.5.5)

ij
with

b= Yxxb (6.5.6)
i

To obtain the unlike parameters, Wong and Sandler chose these combining rules,

and

(b - R;ﬁ)“ = (1K) % Kb - R;ﬁ)z‘i * (b - RTa«/T)'} 638

g 7

The value of the binary interaction parameter k;; must be estimated or found by fitting
mixture data. Our brief introduction to this approach has been based on the Redlich-
Kwong equation, but the procedure can be implemented with any PvTx equation.
More generally, the approach discussed here can provide accurate predictions of fluid
properties at high T and P using model gE parameters fit at low T and P. The proce-
dure is now routinely used in process simulation software.

6.6 SUMMARY

The theme of this chapter is that, while thermodynamic descriptions of mixtures
involve a large number of equations, those equations tend to fall into a few repeated
patterns. By recognizing the patterns, we not only broaden our understanding, but we
also reduce the number of different things that must be mastered.

The first pattern encompasses the difference measures for deviations from some
well-defined ideality. In § 6.2.1 we defined a generalized difference, and we showed
that this class of generalized differences contains the residual properties, excess prop-
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erties, and changes of properties on mixing. In principle, any one of these differences
can be used to compute the thermodynamic properties of any substance, including
substances composed of any number of components and any kind of phase. In prac-
tice, the choice of which difference to use is dictated by the available data and by what
additional data you can calculate or reliably estimate. Strategies for choosing among
computational options will be discussed in Chapter 10. For now the important lesson
is to appreciate that different versions of the same pattern provide computational
options, and much of an engineer’s job is choosing from among the available options.

The second pattern includes the ratio measures for representing chemical poten-
tials. These are all ratios of fugacities, with the general form being the generalized
activity defined by (6.2.8). With only a small loss of generality, we choose the real and
reference states to be at the same temperature, then the fugacity is related to some dif-
ference in chemical potentials, as shown in § 6.2.4. Every form for the fugacity shown
in § 6.2.4 involves a reference, and until that reference is identified, those relations
carry little meaning and have no computational utility. Fortunately, the choice of ref-
erence is at the discretion of the user.

Because the fugacity coefficient, activity, and activity coefficient are each a special
case of the generalized activity (6.2.8), each has a similar physical interpretation. As
shown in § 6.3, each ratio is simply related to the reversible work involved in moving
molecules from a reference substance into the real substance of interest. With this
physical interpretation, we can anticipate why the fugacity is intimately involved in
calculations for phase equilibria. Consider two phases o and P in contact at the same
temperature and pressure. If the phases are out of equilibrium, say with £*> IITB, then
by (6.3.8) work must be supplied to move molecules of component i from B to o if
that work is not supplied, then molecules of component i will naturally diffuse from
phase o to phase B. That is, in the absence of temperature and pressure gradients, mol-
ecules tend to diffuse from regions of high fugacity to regions of low fugacity; this
point will be made mathematically precise in the next chapter.

Values for fugacities are nearly always calculated using one of the five famous
fugacity formulae cited in § 6.4. Again, these five formulae represent options that we
can exploit in solving all kinds of phase separation and chemical reaction problems.
The commonly used procedures for attacking such problems will be developed in
Chapter 10, the solution techniques will be described in Chapter 11, and particular
examples will be offered in Chapter 12.
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PROBLEMS

6.1

6.2

6.3

6.4

Consider a binary mixture of components A and B. The mixture is initially at (T;,
Py) and undergoes a change of state to (T,, P,). The composition remains fixed
during the process. For any extensive property F, show that the change AF;, for
this change of state can be computed either in terms of isobaric residual proper-
ties or in terms of excess properties. That is, prove that

res ig

: .
AF;, = AF}5 + AF = AF, + AF}, (P6.1.1)

A certain equimolar binary mixture is at T = 25°C and P = 10 bar. At 25°C compo-
nent 1 has P{ = 1.0 bar, fpure 1(1 bar) = 0.9 bar, f,re1(10 bar) = 2.0 bar, £1(1 bar, x =
0.5) = 0.35 bar, f1(10 bar, x = 0.5) = 1.2 bar. Determine values for each of the fol-
lowing at 25°C and 10 bar:

(a) The fugacity coefficient @; in the equimolar mixture.

(b) The fugacity coefficient @, re 1-

(c) The activity coefficient y(T, P, {x}; fpure 1(T, P)) in the equimolar mixture.
(d) The activity coefficient y;(T, B, {x}; fpure 1(T, P7)) in the equimolar mixture.
(e) The activity coefficient y;(T, P, {x}; fpure 1(T, P}))in the equimolar mixture.

(f) The activity a; for the equimolar mixture, with the standard state for a;
based on the pure-component at the mixture T and P.

For the process of converting an ideal gas into a real substance, show that the
heat and work effects presented in § 6.3.2 and 6.3.3 are consistent with the energy
balance on a closed system.

Consider an isothermal-isobaric process in which a small amount of component i

is removed from an ideal-gas mixture at T, B, {x} and injected into a real mixture

at the same T, P, and {x}. (a) Show that the required minimum work is given by
res

RT In @;. (b) Show that the reversible heat effect is given by TS;"".
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6.5

6.6

6.7

6.8

6.9

RELATIONS AMONG RELATIONS

Consider a binary mixture of 1 and 2 that obeys the following model equations:

E
8 _ ‘12
RT = xlxz(a12+b12P+ﬁ)

P (X104 X0, s 9;
Z:1+ﬁ(?+7] and lnPl:Bl_Tz

where P! is the vapor pressure for pure i. Find the expression for the fugacity of
component 1 in terms of the state variables (T, P, x;) and the constant parameters

(a1, b1y, 12, 04, O, 1, 1, By, 67).

Consider an isothermal-isobaric process in which a small amount of component i
is removed from a Lewis-Randall ideal solution at T, B, {x} and injected into a real
mixture at the same T, P, and {x}.

(a) Show that the required minimum work is given by RT In y;.
(b) Show that the reversible heat effect is given by TSE.

Evaluate the reversible shaft work, the boundary work, and the heat effect when
each of the following pure substances is converted isothermally-isobarically from
an ideal gas into the real substance.

(a) Pure gaseous methyl chloride at 370 K, 0.2 MPa, with virial coefficients given
by Mansoorian et al. [10]: B = —-0.01293 exp[1110/T] liter/mol and C = 192
exp[-0.0219 T] (liter/mol)?2, T in K.

(b) Pure n-hexane at T/T, = 1.1 and v/ v, = 0.9. If necessary, assume the modified
Redlich-Kwong equation (4.5.67) applies.

Evaluate the reversible work and the heat effect associated with the isothermal-
isobaric conversion of an equimolar liquid solution of carbon tetrachloride +
chloroform into an ideal gas at 298 K, 0.1 MPa. Assume the real mixture can be
modeled by the Porter equation with parameter given in Table E.1.

Perform calculations to check and confirm the numerical values in Table 6.4.

6.10 Show that when the pressure is low enough, FFF # 3, 4, and 5 are all essentially

the same as FFF #2.

6.11 For a pure liquid at 350 K and having a molar volume v = 0.1 liter/ mol, estimate

the pressure at which the Poynting factor deviates by 2% from unity. For the pure
vapor pressure at 350 K, use P®=0.1 MPa.

6.12 At 100°C, estimate the amount by which the pressure must change from 1 bar to

(a) increase the fugacity of water vapor by 5%
(b) increase the fugacity of liquid water by 5%.
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6.13 This problem is to illustrate that while the definition of the fugacity is unambigu-

6.14

ous, the choice for defining an ideal solution is arbitrary and therefore the defini-
tion of the activity coefficient is at our disposal. Consider a binary mixture that
obeys Porter’s equation

gE
RT = Axqx,

where the parameter A = 0.4. At the T and P of interest f,re 1 = 5 bar. Instead of
the Lewis-Randall rule, let us define an ideal solution based on the fugacity at the
equimolar composition; that is, choose

£i5 = x fUT, P) = 2x,f,(T, P, (x; = 0.5)) (P6.13.1)

(a) Sketch the fugacity £1(x7). On the same plot sketch the ideal-solution fugaci-
ties given by the Lewis-Randall rule and that given by (P6.13.1).

(b) Is the standard state used in (P6.13.1) a mixture, a real pure substance, or a
hypothetical pure substance?

(c) Define an activity coefficient {; that measures deviations from the ideal solu-
tion defined in (P6.13.1),

= M (P6.13.2)

1 =
flls(T’ P7 xl)

Show that this activity coefficient must obey the normalization

lim Cl =1
x1—>0.5

(d) Find an expression for {; solely in terms of x;, the parameter A, and con-
stants. Plot {; vs. x; and on the same plot show y; (from the Porter equation)
in the Lewis-Randall standard state.

(e) For several values of x1, show that the fugacity given by f; = x1 V1 fpure1 i8
numerically the same as the value given by f] = x1 {; /7.

(f) Define {5 as in (P6.13.2), with fzis =2x,f5(T, P, x5 = 0.5). Find the expression
for the composition dependence of {;, and then show that {; and {, satisfy
the isothermal-isobaric Gibbs-Duhem equation.

(a) Sketch a plot of the fugacity of a pure substance as it is isothermally com-
pressed from a very low pressure to ten times its vapor pressure. Justify all
important features on your plot using appropriate FFF and “always-true”
relations.

(b) On the same plot as in (a), add the line for the fugacity if the substance is one
component in an equimolar binary mixture.
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6.15 (a) Show that the fugacity of a pure liquid at pressure P and a subcritical temper-
ature T < T, can be written as

P
FoureiT: P) = 9;(T, P°) P°(T) eX}{ [ pumdp} (P6.15.1)
p*

where P*is the pure-liquid vapor pressure, @; is the fugacity coefficient of the
pure saturated liquid, and vpye i is the molar volume of the pure liquid.

(b) Estimate the fugacity of pure liquid water at 100°C and 200 bar. At 100°C the
second virial coefficient of pure water is B = —0.45 liter /mol.

6.16 An engineer, who works for one of your competitors, reveals that they use the
following proprietary expression for the fugacity of component 1 in a certain
binary liquid mixture (with P in MPa and T in K):

3000 3000).2 . 0.1P
Infi(T, P,x;) = Inx; + 10 - - (1 + —T—)xz + —

(a) Which FFF was probably used to obtain this expression?

(b) Obtain expressions for both activity coefficients, y; and y,.

(c) What expressions for ¢E/RT and hE/RT are consistent with this form for f;?
(d) What expression for V{(T, P, x) is consistent with this form for f;?

6.17 For very dilute mixtures of a gaseous solute(1) in water(2), experimental data
show that, over wide temperature ranges, the partial molar volume at infinite
dilution can be correlated by

V1 = xp RT(1+p,{a+blexp(cp,)—11})

where k7 is the isothermal compressibility of pure water, p, is the molar density
of pure water, and 4, b, ¢ are all constants. Obtain the expression for the infinite-
dilution fugacity coefficient and for the fugacity of the solute at low concentra-
tions in water.

6.18 Each of the following gives an expression for the fugacity of one component in a
system. For each, what real-substance state (T, P, { x }, phase) would be appropri-

ate? What models and assumptions were used to obtain the expression (e.g., FFF,
standard state, ideal solution, etc.)?

(@) f,(T,P,{x}) = P (b) £,(T. P, {x}) = x,P
B,,P .
(©) fy(T.P,{x}) = PeXp(%) (d) £,(T.P, {x}) = x,P5(T)

() £,(T, P, {x}) = xlylcplPlexp{ _[ VldP}
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7

TRANSFERS, TRANSFORMATIONS,
AND EQUILIBRIA

hen two or more homogeneous systems are brought into contact to form a sin-

gle heterogeneous system, any of several actions may occur before equilibrium
is reestablished. The possibilities include mass and energy transfers, chemical reac-
tions, and the appearance or disappearance of phases. In this chapter we provide ther-
modynamic criteria for determining whether and to what extent such phenomena
actually occur. Surprisingly, these criteria invoke no new thermodynamics—we need
only combine familiar thermodynamic quantities in new ways and, in some cases,
apply to those quantities mathematical operations that we have not used heretofore.

The heterogeneities of most concern to us are those that involve the presence of
more than one phase. The analysis of multiphase systems can be important to the
design and operation of many industrial processes, especially those in which multiple
phases influence chemical reactions, heat transfer, or mixing. For example, phase-
equilibrium calculations form the bases for many separation processes, including
stagewise operations, such as distillation, solvent extraction, crystallization, and super-
critical extraction, and rate-limited operations, such as membrane separations.

Analysis of multiphase systems is a principal theme of chemistry and chemical
engineering; another is analysis of chemical reactions—processes in which chemical
bonds are rearranged among species. Rearranging chemical bonds is the most effi-
cient way to store and release energy, it drives many natural processes, and it is used
industrially to make substitutes for, and concentrated forms of, natural products.

The chapter divides in two: in early sections we describe the behavior of nonreact-
ing systems, while in later sections we deal with systems in which reactions occur. In
§ 7.1 we combine the first and second laws to obtain criteria for identifying limitations
on the directions of processes and for identifying equilibrium in closed multiphase
systems. Then in § 7.2 we develop the analogous relations for heat, work, and material
transfers in open systems. With the material in § 7.2 as a basis, we then presentin § 7.3
the thermodynamic criteria for equilibrium among phases.

A similar program is used for reacting systems. In § 7.4 we extend the combined
first and second laws to closed systems undergoing chemical reactions, then in § 7.5
we show how the combined laws apply to reactions in open systems. In § 7.6 we for-
mulate the thermodynamic criterion for identifying reaction equilibria. By presenting
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the criteria for both phase and reaction equilibria in the same chapter, we hope to
emphasize and exploit similarities that exist between the two. These criteria provide
foundations for the engineering calculations described in Part IV of this book.

7.1 THE LAWS FOR CLOSED NONREACTING SYSTEMS

Careful observation teaches us that, left undisturbed, every material system tends to
evolve to a unique equilibrium state that is consistent with any imposed constraints.
The rates of such evolutions cannot be determined from thermodynamics, but ther-
modynamics does provide quantitative criteria both for identifying the directions of
such evolutions and for identifying equilibrium once it is reached. Those criteria are
obtained by combining the first and second laws.

In Chapter 3 we combined the first and second laws to obtain the fundamental
equations for closed systems; one example is (3.2.4), which we now write as

d(Nu) - Td(Ns) + Pd(Nv) = 0 (7.1.1)

But in writing such equations, we assumed that our system is homogeneous—that its
values for intensive properties are uniform throughout. Here we want to generalize
the development so we can identify equilibrium in heterogeneous systems, especially
those in which the heterogeneity results from the presence of more than one part, such
as multiple phases. For such systems, the fundamental equation (7.1.1) takes the form

Y AN = D T d(Nysp) + Y Ppd(Nyop) = 0 (7.1.2)
k k k

where each sum runs over all homogeneous parts of the system. The form (7.1.2)
allows for the possibility that, during a change of state, different system parts might
have different values for some intensive properties, such as temperature and pressure.
It allows for material exchange among parts. It also allows rigid or nonconducting
walls (or both) to separate different parts, so that even at equilibrium, all parts need
not have the same temperature or pressure.

Because of the generality of (7.1.2), a heterogeneous system may not be describable
by a single set of intensive system properties. But any resulting ambiguities can be
removed by restating the combined first and second laws in a form that contains only
extensive system properties plus constant intensive properties of the surroundings.
This general form of the combined first and second laws is derived in § 7.1.1. From
that general form, we deduce special forms that apply to adiabatic processes (§ 7.1.2)
and processes having constant T and V (§ 7.1.4) or constant T and P (§ 7.1.5).

7.1.1 The Combined Laws

Consider a closed system composed of one or more parts. The system has thermal and
Pv work-mode interactions with well-defined surroundings. The surroundings have
such a large capacity for providing and absorbing energy that such exchanges do not
affect its intensive properties. Consequently, the surroundings have a constant tem-
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rigid, impermeable, nonconducting boundary

System

Surroundings

Figure 7.1 Schematic of a system and its surroundings isolated from the universe

perature T, and pressure Pg,, throughout any changes of state that occur in the sys-
tem. Effectively, the system and surroundings are isolated from the rest of the
universe, as in Figure 7.1, so that any change of state occurring in the system cannot
affect the total internal energy U, of system plus surroundings,

du, = du+du,, +dU, = 0 (7.1.3)

Subscript b refers to the boundary between system and surroundings. We consider
here only those situations in which the boundary is of negligible mass compared to
that of the system, so it does not affect the amount of energy being transferred to or
from the system. The boundary prevents mass from entering or leaving the system,
while allowing energy to enter or leave. (If we need to account for boundary effects,
one way to do so would be to include the boundary as another part of the heteroge-
neous system.) Ignoring boundary effects, (7.1.3) reduces to

dU+du,,, =0 (7.1.4)

We now consider the term in (7.1.4) that applies to the surroundings. The first law
for the surroundings takes the form

du,,, = 8Q,,,+8W, (7.1.5)

sur

but note what the signs mean for Q,, and Wj,, in (7.1.5): 8Q,, is positive if heat
enters the surroundings from the system. Likewise for dWj,,,. However, the signs for
the system terms Q and W mean the opposite: 8Q is positive if heat enters the system
from the surroundings. Likewise for 8W. So before (7.1.5) can be combined with
(7.1.4), the sign conventions for Q,,, and W, must be made consistent with those
used for the system terms Q and W. The two sign conventions can be made to agree by
setting 8Qs,,, = -0Q,; and dW;,,, = — 8W,,;. (Recall from § 2.3.3 that the subscript ext
always means external to the system, so T, = T,,;.) Therefore we write (7.1.5) as

dusur = _SQext_ oW

ext

(7.1.6)
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and we combine (7.1.6) with (7.1.4) to obtain

au -38Q, ,— W, , = 0 (7.1.7)

ext

Next we replace the path functions in (7.1.7) with state functions. To eliminate the
heat, we appeal to the second law (2.3.8), which for this situation takes the form

6Qexif

sur

s = +dS (7.1.8)

gen

Recall we always have dS,,, > 0. Solving (7.1.8) explicitly for 8Q,,; and substituting
the result into (7.1.7) gives

dU-8W, - T,

ur

dS = -T,,, dS,,, <0 (7.1.9)
Now assume the only work mode is that associated with a volume change, so
8I/vext = _SWsur = (= Psur dvsur + 6Wlost) =~ Psur dv - 6Vvlosif (7.1.10)

where we have used dV = -dV,,. Substituting (7.1.10) into (7.1.9), remembering that
dW)ys 2 0, and using N as the total number of moles in the system, we find

Ndu+NP,,  dv-NT,  ds <0 closed systems (7.1.11)

Equation (7.1.11) is a general form of the combined first and second laws applied to
closed systems; we call it the combined laws. Since Nu, Ny, and Ns are extensive proper-
ties of the system while T, and P,,, are properties of the surroundings, (7.1.11)
applies both to homogeneous systems and to heterogeneous systems. If the system is
heterogeneous, but composed of homogeneous parts, then (7.1.11) can be written as a
sum over the homogeneous parts, as in (7.1.2).

The equality in (7.1.11) applies only to reversible changes, while the inequality
applies for real (i.e., irreversible) processes. The combined laws (7.1.11) differ from the
fundamental equation (3.2.4) in that (3.2.4) contains only system properties, while
(7.1.11) contains the temperature and pressure of the surroundings. If a change of state
occurs with T, = T and Py, = P, then the two equations are identical.

For a finite change of state at constant T, and Py,,,, the integrated form of (7.1.11) is

NAu+NP,, Av—NT,,, As < 0 (7.1.12)

This equation is important because it establishes limits on the kinds of processes that
can naturally (spontaneously) occur to change the state of a closed system. If two
states satisfy the inequality, then the system can spontaneously evolve from the initial
to the final state, but only via some irreversible process. If two states fail to satisfy
(7.1.12), then the system cannot spontaneously evolve from the initial to the proposed
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final state. The equality in (7.1.12) pertains to reversible changes, but in practice the
equality cannot occur because reversible changes can only proceed differentially.

7.1.2 Adiabatic Processes on Closed Systems

If constraints are applied to the interactions available to our closed system, then
(7.1.11) simplifies accordingly. We first consider adiabatic processes in which only
work is done on or by a closed system. If we continue to ignore boundary effects, the
first law applied to an adiabatic process reduces to

Ndu = OW closed, adiabatic (7.1.13)

ext

Substituting this into (7.1.11), the combined laws simplify to NT,,,ds > 0, and since T,
is an absolute temperature, we can write

Nds = Zd(Nksk) >0 closed, adiabatic (7.1.14)
k

Here the sum runs over all parts of a heterogeneous system. Note that we cannot
determine whether the entropy of some parts increases or decreases; it is only the total
entropy that is constrained. However, if the system is homogeneous, then the sum
contains only a single term, and (7.1.14) still applies.

The result (7.1.14) is merely a restatement of the second law: spontaneous adiabatic
changes of state occur only if they either increase the system’s total entropy or leave it
unaffected. If two states have the same entropy so Sgna1 = Sinitial, then the system can
evolve along some reversible adiabatic path between the initial and the final states. If
Stinal > Sinitial, then the system spontaneously evolves along some irreversible adia-
batic path. But if Sga1 < Siniial, then the system cannot spontaneously evolve along
any adiabat from the initial to the final state. Since all real processes are irreversible,
any spontaneous adiabatic process occurring in a closed system must increase the sys-
tem’s total entropy. Such processes might involve heat transfer among parts of the
system, even if no heat is exchanged with the surroundings.

When a closed system cannot exchange either heat or work with the surroundings,
then the system is said to be isolated. For heterogeneous isolated systems, conservation
of mass, energy, and volume can be written as

dN = Y dNy = 0 (7.1.15)
k

Ndu = Y d(Nyuy) = 0 (7.1.16)
k

Ndv = =0 (7.1.17)

Zd(Nkvk) =
k
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When these are substituted into (7.1.11), the combined laws again reduce to

Nds = 3 d(Nys;) 2 0 isolated (7.1.18)
k

This shows that thermodynamic constraints on isolated systems are the same as those
for adiabatic processes on closed systems.

For an isolated system initially at equilibrium, a spontaneous process away from
equilibrium can only be initiated by removing a constraint, thereby allowing system
parts to interact. This means that if an isolated system is to undergo a spontaneous
change from an equilibrium state, then it must be initially composed of parts whose
properties are not all equal. Removing a constraint then allows certain intensive prop-
erty values to become uniform over parts of the system. For example, some parts of
the system may have different temperatures because the parts are separated by insu-
lated walls. By removing the insulation, heat transfer can take place so that, at equilib-
rium, the temperatures are the same. This suggests that in isolated systems, an
increase in entropy is associated with a relaxing of constraints.

Note that (7.1.14) provides the criterion for identifying equilibrium both in isolated
systems and in closed, insulated systems. In both cases, a spontaneous change of state
can never reduce the system’s entropy; so, the equilibrium state has the largest value
of entropy that is consistent with the values of the intensive properties used to iden-
tify the state.

7.1.3 Example

How does the entropy of an isolated system respond when two system parts, ini-
tially at different temperatures, are brought into contact during a workfree process?

Consider a chamber bound by rigid, impermeable nonconducting walls, as in Figure
7.2. The chamber is divided in two by a partition that is also rigid, impermeable, and
nonconducting; however, the partition is removable. On one side of the partition we
place one mole of a copper alloy having heat capacity c,; = 3R. The alloy is initially at
temperature T;. On the other side of the partition we place one mole of an ideal gas
whose heat capacity is Cyg = 3R/2. The gas is initially at temperature Ty.

rigid, impermeable, nonconducting walls

Solid Gas

removable

' partition

Figure 7.2 Schematic of an isolation chamber divided into two parts. A solid in one part is ini-
tially separated by a removable partition from a gas in the other part.
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So we have an isolated system divided into two parts; each part is initially in its
own equilibrium state, as identified by its intensive properties. To initiate a spontane-
ous process we relax a constraint: we remove the partition. Our objective is to test
(7.1.18); that is, we want to show that no matter what values are used for the initial
temperatures of the gas and alloy, the total entropy never decreases. Note that since
one part is a solid, no mass transfer occurs between parts: each part is closed.

First we determine the final states of the two parts. After the partition is removed
and equilibrium is reestablished, the gas and the alloy are in thermal equilibrium with
one another; that is, they have the same final temperature,

Tf = Tsf = Tgf (7119)
Applying the first law to the total isolated system, we have
AU = Allg+AUs =0 (7.1.20)

and since the heat capacities are constant

Ny Coo(Tf =Tg) + Nocyo (T =Ty) = 0 (7.1.21)
So
N Coolo + Ngcys T
T; = o8 8 (7.1.22)
Ngcvg+Nscvs

Substituting values for the numbers of moles and heat capacities, we find

1. .2
Ty = 3Ty +3T, (7.1.23)

Now we obtain the change in total entropy. For the entire system we can write

AS = ASg+AS; (7.1.24)

The entropy change of the alloy and of the gas can each be obtained by integrating
(3.3.11) over an isometric change on a closed system,

Ty c, T,
AS = NJ  2dT = NeyIn22 (7.1.25)
T, T T,

Using (7.1.25) for both the gas and the alloy, (7.1.24) becomes

T T
AS = Nycyg 1nT—fgr + Nycy 1nT—JS‘ (7.1.26)
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cool the gas heat the gas

0.6

0.4 Initial T of gas

AS (J/mol K)

0.2

200 300 400
Initial T(K) of alloy

Figure 7.3 Change in total entropy caused by spontaneous workfree heat transfer in the iso-
lated system shown in Figure 7.2. No matter whether the gas is heated or cooled by the solid,
the total entropy increases, in agreement with (7.1.18).

Since the mole numbers are the same for each part, we write N = N, = N; and substi-
tute (7.1.23) for the final temperature to find

(1+2(T,/Ty) 22+ Ty /Ty)

%) (7.1.27)

AS = 3NRIn

3

This shows that AS is determined solely by the initial temperatures of the gas and
the alloy. Further, (7.1.27) shows that AS has its minimum value (= 0) when T; = T;
otherwise, AS > 0. Figure 7.3 shows values for AS computed from (7.1.27) over a range
of temperatures initially assigned to the alloy, with the gas always initially at 300 K.
Note that

(aA_S) =0 (7.1.28)

This identifies the minimum in the curve shown in the figure and is consistent with
the equality in (7.1.18). Otherwise, the plot shows that the total entropy always
increases, in agreement with (7.1.18), no matter whether heat is transferred from the
gas to the solid or vice versa.

7.1.4 Isometric Processes with the Same Initial and Final Temperatures

In § 7.1.2 we showed that, for adiabatic processes occurring in closed systems, the
combined laws (7.1.11) reduce to a requirement that the system entropy must always
increase or remain constant. But if the system can exchange heat with its surround-
ings, then the entropy may increase, decrease, or remain constant, so for nonadiabatic
processes, the entropy no longer serves as an indicator for changes. In this and the
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next section, we find the appropriate indicators for two processes that will be of par-
ticular use in describing phase equilibrium.

Consider the general closed-system situation shown in Figure 7.1, but now let the
system boundary be rigid, impermeable, and thermally conducting. Further, let the
surroundings be a heat reservoir at a constant temperature T,,,. If the system is heter-
ogeneous, then each part is closed to mass transfer, but all parts are in thermal contact
with one another. As in § 7.1.2 we want to learn how the system spontaneously
responds when its equilibrium is disturbed. We first consider a finite response with N
and V fixed, so the finite form of the combined laws (7.1.12) reduces to

NAu-T , NAs <0 fixed N and V (7.1.29)

This is almost a change in Helmholtz energy, so we apply the Legendre transform
(3.2.11) for A to the entire system and to each part,

A= Y Ny = Y Nyl =Tysy) (7.1.30)
k k

When the closed parts undergo finite changes of state, this becomes

AA = Y [ANu) = AN Tysp)] (7.1.31)
k
Y AN = NAu-Y AN, Tys) (7.1.32)
k k

Combining (7.1.29) with (7.1.32) to eliminate NAu, we have
Y AN + Y AUT, =Ty, )N;s,] < 0 (7.1.33)
k k

Note that only initial and final values appear for properties of system parts.
Before the process starts and after it ends, all system parts are in thermal equilib-
rium with one another and with the surroundings; therefore,

T); = ka =T,,, for all parts k (7.1.34)

Here subscript i indicates initial value and subscript f indicates final value. Using
(7.1.34) in (7.1.33) leaves

AA = ZA(Nkak) <0 (7.1.35)
k

During an irreversible process the temperatures T) are undefined; nevertheless,
(7.1.35) still applies, so long as all parts finally reach equilibrium at the temperature
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T,y of the surroundings. If the system is homogeneous, then only one term appears in
the sum, and (7.1.35) reduces to Aa < 0. So when a fixed NV system is in thermal con-
tact with a heat bath and is subjected to a change of state, the system’s spontaneous
response is confined to processes that either lower the Helmholtz energy or leave it
unchanged.

A similar restriction applies to any differential response; for example, consider a
fixed NV system initially in equilibrium with a surrounding heat bath. If the equilib-
rium state is differentially disturbed, the response is differential, so throughout the
response all Ty = T,,. That is, in the differential case, the process is isothermal and
(7.1.35) becomes

dA <0 fixed N, V, T (7.1.36)

Furthermore, throughout any reversible change all system temperatures are the
same, Ty = T,,,, = T, the equality in the combined first and second laws (7.1.11) applies,
and since N and V are fixed, (7.1.11) reduces to

dA = dU-TdS = TdS-PdV -TdS = 0 (7.1.37)

Therefore, the equality in (7.1.35) applies to reversible changes, while the inequality
applies to irreversible processes. If two states have the same values for T, V, and A4, so
Ar = A;, then the system can evolve along some reversible path between the initial and
final states. If the two states have Ar < A;, then the system spontaneously evolves
from the initial to the final state along some irreversible path. However if A; > A;, then
the system cannot spontaneously evolve from the initial to the proposed final state.

Equation (7.1.35) provides the criterion for identifying equilibrium in NVT sys-
tems: since a spontaneous change can never increase the Helmholtz energy, the equi-
librium state is that state having the smallest value of A that is consistent with the
values of those intensive properties used to identify the state. For any NVT system the
necessary and sufficient condition for equilibrium is that the total Helmholtz energy
be a minimum.

7.1.5 Processes with the Same Initial and Final Temperatures and Pressures

By a procedure that is exactly analogous to what we have just done for NVT systems,
we may also deduce the criteria for equilibrium in NPT systems. We again start from
the general closed-system situation shown in Figure 7.1, but now consider the special
case in which the surroundings contain a heat reservoir at temperature Ty, and a
mechanical reservoir at pressure Pg,,. The boundary between system and surround-
ings is impermeable but flexible and conducting. If the system is heterogeneous, sys-
tem parts are initially in thermal and mechanical contact with one another.
For a finite response to a disturbance, the combined laws are still

NAu+NP,,, Av—NT,, As < 0 (7.1.12)

As before we introduce a Legendre transform, in this case (3.2.13) which defines the
Gibbs energy. In addition, the system is in equilibrium both before and after the
response, so analogous to (7.1.34) we have
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1

Ty = Tyr = Ty for all parts k (7.1.34)
and
P = Pkf =P, for all parts k (7.1.38)

1

However, these relations constrain only the initial and final states of the system; dur-
ing the process, the system may be out of equilibrium, so the temperatures T} and
pressures Py, are undefined. Combining (3.2.13), (7.1.12), (7.1.34) and (7.1.38) leaves

AG £ 0  fixed Nwith (7.1.34) &(7.1.38)  (7.1.39)

This result limits finite processes that may occur in closed systems that are in thermal
contact with a heat bath and in mechanical contact with a constant-pressure reservoir.
For a differential disturbance, arguments analogous to those leading to (7.1.36) can be
repeated, giving

dG £ 0 fixed N, T, P (7.1.40)

For reversible changes, all system temperatures and pressures satisfy Tj = T, and
Py = P, throughout the process and (7.1.40) reduces to the equality. This means that
the equality in (7.1.40) applies to reversible changes, while the inequality applies to
irreversible processes. Equation (7.1.40) provides the criterion for identifying equilib-
rium in NPT systems: a spontaneous change of state can never increase the Gibbs
energy; therefore, the necessary and sulfficient condition for equilibrium is that the
total Gibbs energy be a minimum.

For other kinds of processes, other criteria apply. For example, any spontaneous
isometric-isentropic process must have

du < 0 fixed N, V, S (7.1.41)

and the criterion for equilibrium is that the internal energy be a minimum. Similarly,
spontaneous isobaric-isentropic processes have

dH <0 fixed N, P, S (7.1.42)

and the criterion for equilibrium is that the enthalpy be a minimum. Just as in (7.1.14),
(7.1.36), and (7.1.39), the equalities in (7.1.41) and (7.1.42) apply to reversible changes,
while the inequalities apply to irreversible processes. However, (7.1.41) and (7.1.42)
are generally of less practical use than (7.1.14), (7.1.36), or (7.1.39).

Finally, we caution that U, S, H, A, and G are all state functions, so for specified ini-
tial and final states, AU, AS, AH, AA, and AG are each process independent. However,
any criterion for equilibrium is restricted to a particular kind of process. For example,
we may certainly contrive a real process that has AS < 0 without violating (7.1.14).
However, (7.1.14) guarantees us that if a process does have AS <0, then either the pro-
cess is not adiabatic, or the system is not of constant mass, or both.
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7.1.6 Example
How can the combined laws be used to test the feasibility of proposed processes?

Saturated steam, initially at 100°C, is to be completely condensed to liquid. Determine
whether the condensation can be done (a) isothermally and isobarically and whether
it can be done (b) adiabatically. If either process is possible, determine bounds on the
heat and work that would be required. At 100°C, 1.013 bar, saturated steam tables give
the values in Table 7.1.

Isothermal-isobaric condensation. To be possible, this process must satisfy the form
of the combined laws appearing in (7.1.40), that is,

Ag=Ah-A(Ts)=Ah-TAs< 0 (7.1.43)
Using values from Table 7.1, we find
Ag = (419.1 -2676) - 373.15(1.307 - 7.355) = -0.10]/g (7.1.44)

Although the sign of the answer is negative, its value is essentially zero within the

uncertainties with which properties can be measured. For example, discrepancies of

only +0.01% in the enthalpies could cause an uncertainty of + 0.3 J /g in Ag. Neverthe-

less, we judge that isothermal-isobaric condensation is thermodynamically possible.
Bounds on g and w are obtained by assuming a reversible change; then,

w = —PAv = —1.013(1.044 — 1673)(cc bar/g)(1]/10 cc bar)= 169 /g (7.1.45)

and
g = Ah = (419-2676) = 2257 J/g (7.1.46)

So to accomplish the proposed condensation, a small amount of work would have to
be done on the steam and a large amount of heat would have to be removed. These
are the optimal values for g and w; in a real process more work would have to be done
and more heat would have to be removed. However in a real condensation, the
applied pressure would not have to be much more that the saturation pressure; in that
case, the above values for g and w would be close to the actual values.

Adiabatic condensation. The question here is whether we can force condensation by
some adiabatic change in the volume. An adiabatic process in a closed system must
satisfy the combined laws in the form of (7.1.14); that is, we must have AS > 0. In Table
7.1 we find the entropy of saturated steam to be s, = 7.355 ]/ (g K); so, to achieve an

Table 7.1 Properties of saturated liquid water and
saturated steam at 100°C and 1.013 bar

v(cc/g) h(Jlg) s(J/g K)
saturated liquid 1.044 419.1 1.307
saturated vapor 1673 2676 7.355
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adiabatic condensation, we must find a saturated liquid state that has a higher
entropy. But steam tables show that no liquid state has s;;; >7.355 /(g K). This means
that without transferring heat, it is not possible to condense all the steam, no matter
how we might contrive to manipulate the system volume. However, note that the
reverse process is thermodynamically possible; that is, we can flash saturated liquid
water by adiabatically increasing the volume.

7.1.7 Selected Processes in Closed Heterogeneous Systems

In §7.1.4 and 7.1.5 we developed constraints that apply to several kinds of processes:

s > 0 fixed N, V, U (7.1.18)
dA < 0 fixed N, V, T (7.1.36)
iG < 0 fixed N, P, T (7.1.40)
du < 0 fixed N, V, S (7.1.41)
dH < 0 fixed N, P, S (7.1.42)

These constraints apply to both homogeneous and heterogeneous closed systems; in
heterogeneous systems, the system parts can exchange both matter and energy with
other parts, although they cannot exchange matter with the surroundings.

We consider a special set of heterogeneous systems in which all system parts have
the same temperature T and same pressure P. These conditions usually apply when
the parts are phases in contact with one another. In these cases, we find that the above
constraints all take the same form.

First, consider a system at fixed N, V, T. If we substitute the fundamental equation
(3.2.27) for dA into the constraint (7.1.36), we have

dA = —ZNksde—EPd(Nkvk)+22@kidei <0 (7.1.47)
k k ko

Here Gy; is the chemical potential for component i in part k of the system. However,
any isothermal-isometric process has dV = 2%, d(Nyv;) = 0 and dT = 0, so (7.1.47)
becomes

> > GridNy <0 (7.1.48)
k i

Now consider a system at fixed N, P, T. For these cases, we substitute the funda-
mental equation (3.2.28) for dG into the constraint (7.1.40) and obtain

dG = =Y NyspdT + Y NyogdP+ > Y GpidNy; < 0 (7.1.49)
k k ki

But an isothermal-isobaric process has dT = 0 and dP = 0, so (7.1.49) reduces to (7.1.48).
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The form (7.1.48) is also obtained when the fundamental equation (3.2.25) for dU is
substituted into the constraint (7.1.41) for fixed N, V, S systems and into the constraint
(7.1.18) for fixed N, V, U systems. It is also obtained when the fundamental equation
(3.2.26) for dH is substituted into the constraint (7.1.42) for fixed N, P, S systems. As
with other constraints derived in § 7.1.4-7.1.5, the equality in (7.1.48) applies to
reversible changes, while the inequality applies to irreversible processes.

Although the one form (7.1.48) applies to several kinds of processes, the quantity
on the lhs is identified with the Gibbs energy only when T and P are the quantities
held fixed. When other quantities are fixed, the lhs takes other names, and for this rea-
son Prigogine and Defay identify the lhs of (7.1.48) as proportional to the affinity [1].
However, we reserve this name for the analogous quantity that arises in chemical
reaction equilibria (§ 7.4.4).

In addition to its generality, the form (7.1.48) is important because it leads to a com-
putational strategy for analyzing phase-equilibrium situations. In that strategy, a
phase-equilibrium problem is treated as a multivariable optimization in which the lhs
of (7.1.48) is the quantity to be minimized. An alternative strategy, in which the com-
putational problem is to solve a set of coupled nonlinear algebraic equations, arises
from the constraints on open-system processes developed in § 7.2.

7.2 THE LAWS FOR OPEN NONREACTING SYSTEMS

In this section we develop the combined laws for nonreacting systems that are open to
mass transfer. Consider a heterogeneous system composed of three parts: bulk phases
o and B plus an interface I between them, as in Figure 7.4. Each part contains C com-
ponents, and the state of each is identified by a temperature, a pressure, and a set of
mole numbers. Specifically, phase a has T% P% and total moles N% phase B has TB, P8,
and total moles NP; the interface has T/, PL and total moles NI. The component chemi-

W
0. reservoir / B reservoir

/
To <09 <P
pu _ SWe b aws o
co N NP o

NN

Figure 7.4 A three-part system composed of bulk phases o and B open to material and energy
transfers across interface I. The o reservoir maintains constant T and P in the o phase; B reser-
voir does the same for § phase. (Interface thickness exaggerated for clarity.)
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cal potentials are Gj and @? . Each phase is immersed in its own constant T-P reser-
voir; we can adjust T and P in each phase independently by adjusting T and P of each
reservoir.

The interface itself has negligible mass compared to the masses of the phases, and
during processes, states of the interface may be undefined or undefinable. We will
treat the interface as an open system and interpret each phase as a “port” for the other
phase; that is, the open-system energy and entropy balances from § 2.4 will apply. In
what follows, we first derive the combined first and second laws (§ 7.2.1). Then we
find limits on the directions (§ 7.2.2) and magnitudes (§ 7.2.3) of mass and energy
transfers between phases o and .

7.2.1 Combined Laws

Consider a differential process that transfers material and energy across an interface
of negligible mass, as in Figure 7.4. We choose the interface to be the system and write
material, energy, and entropy balances for it. Since no accumulation can occur in an
interface of negligible mass, those balance equations are merely

dNT =0 fori=1,2,...,C (7.2.1)
dNTuly = o (7.2.2)
d(NIshy = o (7.2.3)

We have ignored kinetic and potential energy contributions to the energy balance. By
identifying the interface as the system, we are able to treat the phases o and B as ports
through which material and energy are exchanged with the interface. But we prefer to
express changes in terms of properties of the bulk phases, so we will replace interfa-
cial quantities in (7.2.1)—~(7.2.3) with quantities pertaining to the phases. For example,
the material balance (7.2.1) can be expressed in terms of bulk-phase mole numbers as

dNT= —an®—anP =0 pri=1,2,..,C (7.2.4)

The energy balance (7.2.2) represents the open-system form of the first law (2.4.15),
which can be written here as

p
dNTuly = Y a'NE) 4 8Q + 5w, +8W,, = 0 (7.2.5)

k=o

This differs from (2.4.15) in that we now allow the intensive states of phases o and B to
vary during processes, whereas in (2.4.15) intensive states of feed and discharge
streams were assumed to be constant. To obtain the quantities in (7.2.5) in terms of
bulk-phase quantities, we employ the following observations.

(a) Since any material entering the () side of the interface must necessarily
have come from the B(ct) phase, we have d(hkNkI) = —d(hkN¥), for k = o or B.
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(b) Any heat crossing the interface results from net heat transfer between the two

phases, so 8Q = -5Q¢ - 3QB.

(c) Since the interface has negligible mass, no work is involved in deforming the
shape of the interface and therefore W, = 0.

(d) But shaft work could be done on or by the interface, so W, = — W — SWB;
for example, this shaft work could be that which displaces the interface in
response to changes in volumes of the phases.

Making all these substitutions, (7.2.5) becomes

AN +8Q% + W™+ d(iPNP)y + 80P + swP = 0 (7.2.6)

Now consider the entropy balance (7.2.3) on the interface, which is given by a form
of (2.4.21) that is analogous to (7.2.5),

; LI 8lext p
(N's"y = z ———+ > d(s* N ) +dSgen = 0 (7.2.7)

k=o k=o

where the entropy generated in the interface is dSéen > 0. To replace the interfacial
quantities in (7.2.7) with bulk-phase quantities, we use d(skNk!) = —d(skNk) and we
use dQkext = _5Qk, where k = o or B. Then (7.2.7) becomes

(5Q +d(s"NY + 22 SQ + d(sﬁNB)J +dSh,, = 0 (7.2.8)
Th
We use (7.2.8) to eliminate Q% from the energy balance (7.2.6); we find

B

ol

(ZB - 1]6QB ~@W WPy = Y [N - T N = TS, 20 (729)
T

k=o

The terms under the sum in (7.2.9) result from mass transfer across the interface, so
those terms are zero when the phases are closed to one another. Then we are left with

T¢ B B
(—B—l]BQ ~ (W +8WP) 2 0 closedaand B (7.2.10)
T

When the phases are open to one another with T and P fixed in each phase, then
each enthalpy term in (7.2.9) can be replaced with

d(H*NFy = ZHf dN¥ fived T and P (7.2.11)
i

and likewise, each entropy term can be written as
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d(s"NY) = 231‘ dN* fived TCand PE (7.2.12)

1

We use the material balances (7.2.4) to replace each lei3 with (—le-(x) and use a Le-
gendre transform to introduce the chemical potentials for components in phase o. So
(7.2.9) finally becomes

(04
(25 - 1]5@3 ~@W* WP - Y G - (H - T%5))1dN® > 0 (7.2.13)
T )

1

Equation (7.2.13) is a form of the combined first and second laws describing processes
in which material and energy cross an interface between bulk phases that are each at
their own fixed T and P. When only energy can be transferred between the phases,
then (7.2.13) reduces to (7.2.10). We now deduce limitations on the directions and
magnitudes of transfers by considering special cases of (7.2.10) and (7.2.13); the spe-
cial cases arise by applying constraints to the interface.

7.2.2 Limits on the Directions of Irreversible Transfers (dS,, > 0)

Here we deduce bounds on the directions of irreversible transfers across the interface
in Figure 7.4. We consider six processes: workfree constant-mass heat transfer, adia-
batic constant-mass work, isobaric constant-mass heat transfer, isothermal constant-
mass work, isothermal-isobaric diffusion, and adiabatic-workfree diffusion.

Workfree, constant-mass heat transfer. Let the interface in Figure 7.4 be imperme-
able, thermal conducting, and fixed in position. When the interface is impermeable,
then each phase is closed; when the interface is fixed in position, then the volumes of
the two phases are constant: Vo = constant and VB = constant. We initiate a process by
adjusting the reservoirs so the phases have different pressures and temperatures. For
this situation, the closed-system form (7.2.10) of the combined laws reduces to

(T_(X_ 1)5QB > 0 (7.2.14)
B

This constraint applies to heat crossing the interface in either direction, but to have a
particular example, say the process transfers heat from phase o to phase B. Then 3QB
> 0, and the inequality in (7.2.14) requires T* > TB: that is, the temperature difference
(T%—TB) drives workfree, constant-mass heat transfer. For such processes, heat always
flows from regions of high temperature to regions of low temperature.

Adiabatic constant-mass work. Now let the interface be impermeable, thermally
nonconducting, and movable. We initiate an adiabatic process by again adjusting the
reservoirs so the phases have different temperatures and pressures. Under these con-
ditions, the closed-system form (7.2.10) of the combined laws reduces to
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—eWr+ewPy > 0 (7.2.15)

In this development we have located all irreversibilities in the interface, and since the
work terms in (7.2.15) are external to the interface, each is reversible,

OW = —PdV (7.2.16)

Furthermore, the total volume is constant, so dVP = -4V therefore, the work terms in
(7.2.15) can be written as

—W*+ WPy = (P*— PPyav® (7.2.17)
Combining (7.2.17) with (7.2.15) leaves
P*~PPav® > o (7.2.18)

Consider expansion of o against 3, so dV® > 0. Then, we must have P% > PB to make
the lhs of (7.2.18) positive. Similarly, when phase o is compressed, then dV® < 0 and
(7.2.18) requires P < PB. That is, for both expansions and compressions of phase o,
the pressure difference (P — PB) drives an adiabatic, constant-mass change of volume,
and the work associated with such volume changes “flows” from regions of high
pressure to regions of low pressure. Similar statements apply for other work modes.

Isobaric, constant-mass heat transfer. Let the interface in Figure 7.4 be impermeable,
thermal conducting, and movable. We manipulate the reservoirs so the pressures are
the same in the two phases; thereafter, the interface moves in response to any (differ-
ential) pressure difference so we have P% = PB = constant. We initiate a process by
adjusting the reservoirs so the temperatures differ in the two phases. Since the inter-
face is impermeable, the closed-system form (7.2.10) of the combined laws applies,

o
(T—B - 1)8(3B W+ swWP) > 0 (7.2.10)
T
We again use (7.2.17) for the work terms, obtaining
o
(T_B - 1J8QB +(P*-PPdv® > o (7.2.19)
T

But the pressures are balanced, so this reduces to

[T—a-l)agﬁ > 0 (7.2.20)
5
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which is the same as in (7.2.14) for workfree heat transfer. Consequently, a tempera-
ture difference drives isobaric heat transfer, and heat always flows from regions of
high temperature to regions of low temperature.

Isothermal constant-mass work. Let the interface remain impermeable, thermally
conducting, and movable, as above. But now adjust the reservoirs so the phases have
the same temperature; thereafter, the interface conducts heat in response to any (dif-
ferential) temperature difference so that T® = TB = constant. Then further adjust the
reservoirs so the phases initially have different pressures; the pressure difference
moves the interface, so one phase does work against the other. Under these condi-
tions, the closed-system form (7.2.10) of the combined laws reduces to

W+ WPy > 0 (7.2.21)

We again use (7.2.17) for the work terms, finding

P*~PPav®> o (7.2.22)

which is the same as (7.2.18). So we find that a pressure difference drives an isother-
mal volume change, and work always “flows” from regions of high pressure to
regions of low pressure.

Isothermal-isobaric single-component diffusion. Now consider both phases to con-
tain samples of the same pure component, and let the interface between them be ther-
mally conducting, movable, and permeable. Adjust the reservoirs so the phases have
the same T and P; then we have T® = TB = constant and P® = PP = constant. The pro-
cess is diffusion of the pure component across the interface. Under these restrictions,
the combined laws (7.2.13) reduce to

—EW+ WPy _[GY - (D - T8 1aNY = 0 (7.2.23)

Since T% = Tﬁ, we can use a Legendre transform (G = H — TS) for the B-phase to sim-
plify (7.2.23) to

C(@W WPy — [GY - GRIaNT > 0 (7.2.24)
We now use (7.2.17) for the two work terms,

(P%— PP)av* G} - Gh1ANY > 0 (7.2.25)

but the pressures are the same in the two phases, so we are left with just the term for
diffusion of pure-component 1 across the interface,

C1GS-GRlaNY = 0 (7.2.26)
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But a pure-substance chemical potential is merely the molar Gibbs energy, so (7.2.26)
can also be written as

~[g% - P1anT = 0 (7.2.27)

This constraint applies to diffusion in either direction, but to have an example, assume
the pure substance diffuses from the o phase to the B phase. Then dN{* < 0, and the
inequality in (7.2.27) can be satisfied only when gf‘ > g1B ; that is, a difference in the
molar Gibbs energies drives isothermal-isobaric diffusion of a pure substance. In such
cases, the pure substance always diffuses from regions of high g; to regions of low g;.
This means that for single-component diffusion occurring at fixed temperature and
pressure, the component never diffuses against a gradient of its molar Gibbs energy.
However, a pure component may diffuse against its density gradient; for example,
pure vapor may condense to liquid.

Equation (7.2.27) may also be expressed in terms of fugacity; to do so, we first inte-
grate the definition of fugacity (4.3.10), at fixed T, from the B-phase to the a-phase. The
result is analogous to the algebraic form (4.3.12),

fOC
g9 - gh = RTIN= (7.2.28)
B
1
Then substituting (7.2.28) into (7.2.27) gives
O
1 1 o
—RT In - le >0 (7.2.29)
f

1

Since we have chosen dN;* < 0, the inequality in (7.2.29) can be satisfied only when
> flﬁ ; that is, a difference in fugacities is equivalent to a difference in chemical
potentials, and for isothermal-isobaric diffusion of one component, the component
always diffuses from regions of high fugacity to regions of low fugacity. Equation
(7.2.29) illustrates that the fugacity is fully equivalent to the chemical potential: fugac-
ity is more important and informative than might be construed from the common
interpretation that fugacity is merely a “corrected” pressure.

Isothermal-isobaric multicomponent diffusion. The constraint (7.2.27) applies to
single-component diffusion; now we consider multicomponent diffusion across the
interface in Figure 7.4. Using the same analysis as used above for single-component
diffusion, the combined laws (7.2.13) reduce to

S IG - (AP - TSNy > 0 (7.2.30)

1

Since we have T = T we can again use a Legendre transform to obtain



276 TRANSFERS, TRANSFORMATIONS, AND EQUILIBRIA

(G - GP1AN® > 0 (7.2.31)

i

This constraint can also be expressed in terms of fugacity; to do so, we proceed analo-
gously to what was done above to obtain (7.2.29). The result is

0

fi
—RT Zln(ﬁ] >0 (7.2.32)
1

i

For irreversible diffusion, the inequalities in (7.2.31) and (7.2.32) apply; we now iden-
tify two ways by which such diffusional processes can satisfy those inequalities.

Uncoupled diffusion. If the diffusion of each component is unaffected by the diffu-
sion of all other components, then the only general way by which (7.2.31) can be satis-
fied is term-by-term. That is, each term in the sum in (7.2.31) obeys the single-
component constraint (7.2.27), so at fixed T and P, each component can only diffuse
from regions of high chemical potential (fugacity) to regions of low chemical potential
(fugacity). In uncoupled, isothermal-isobaric diffusion, a component never diffuses
against its chemical potential gradient, although, if the solution is sufficiently non-
ideal, some components may diffuse against their concentration gradients.

Coupled diffusion. But in addition, the diffusion of components may be coupled, as
alluded to by Prigogine and Defay [1]. In these situations, (7.2.31) need not be satisfied
term-by-term; the only thermodynamic constraint is that the entire sum satisfy
(7.2.31). As an example, consider binary diffusion in an isothermal workfree process;
then (7.2.31) reduces to two terms,

-Gy -G dNT - Go_GY ANy > 0 (7.2.33)

This inequality can still be satisfied, even when one term is negative, so long as dN7'

is coupled to dN3 in such a way that the negative term on the lhs is always domi-
nated by the positive term. When G} > G?, we expect dNY 1 < 0; that is, we expect
component 1 to diffuse along its chemical potentlal gradient from phase o to phase B.

But if this occurs with dN¢ 1 coupled to AN » , then it is possible to also have AN » <0,

even when G5 < Gg In this case component 2 also diffuses from phase o to phase f3,

but it does so against its chemical potential gradient. One way this can occur is when
molecules of different substances solvate so strongly that they diffuse together—mol-
ecules of one species effectively “carry” those of another species. We will find in
§ 7.4.4 that this kind of behavior can also occur in systems undergoing coupled chem-
ical reactions when driven by finite reaction rates.

Adiabatic workfree diffusion. Finally, let the interface be thermally nonconducting,
fixed in position, and permeable. Now T and P can differ in the two phases, but nei-
ther heat nor work can be transferred across the interface. Then the combined laws
(7.2.13) reduce to
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—Z[(H?‘-H?) _TYSY - 3?)]¢1N? >0 (7.2.34)

1

As in the isothermal case, adiabatic multicomponent diffusion may be coupled or
uncoupled, but here we want to emphasize the roles of enthalpy and entropy differ-
ences, so consider uncoupled diffusion. In some mixtures diffusion of component i is
driven by the enthalpy difference in (7.2.34); then component i diffuses from regions
of high partial molar enthalpy to regions having lower values. In other mixtures, dif-
fusion is driven by the entropy difference, and then component i diffuses from regions
of low partial molar entropy to regions having higher values. In still other mixtures
the enthalpy and entropy terms in (7.2.34) may either compete, so the net diffusion of
i is small, or they may reinforce one another, causing large quantities of i to diffuse. In
short, (7.2.34) captures a variety of possible behaviors that can be explained thermo-
dynamically by whether enthalpy and entropy effects are competing or compensat-
ing. In later chapters, we will find that the relative sizes of enthalpy and entropy
effects can be used to interpret other kinds of behaviors in multicomponent mixtures.

7.2.3 Limits on the Magnitudes of Irreversible Transfers (dSge, > 0)

In the previous section we found that, in certain special cases, the directions of energy
and mass transfer are limited by gradients in certain intensive properties. In this sec-
tion we show that, during irreversible transfers of heat and work, not only are there
constraints on the directions, but constraints also apply to the magnitudes. To develop
the argument, we reconsider irreversible, isothermal, constant-mass work as dis-
cussed in § 7.2.2. For such a process, we have already seen that the combined laws
reduce to

WP+ WPy > 0 fixed Tand N (7.2.21)

To have a particular example, assume phase o. does work on phase B, so 3W® < 0 and
SWB > 0. Then (7.2.21) becomes

—lswy-swP > 0o (7.2.35)

or
lsw? > swP (7.2.36)

That is, the amount of work done by phase o exceeds that done on phase f.

What happens to the extra work done by phase o but not applied to phase f? To
answer this question, consider the energy balance (7.2.6) written for our constant-
mass process,

50%+ 80P + sw®+swP = 0 (7.2.37)

Hence,
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50%+80P = —sw—sWP > 0 (7.2.38)

This shows that heat transfer must occur during our proposed process—the process is
isothermal, not adiabatic. (For an adiabatic, constant-mass process, the energy balance
(7.2.6) requires (-5W2 — §WB) = 0, regardless of reversibility.)

Further, the heat transfer is constrained by (7.2.38); that is, (7.2.38) requires

—1s0f +80% > 0 (7.2.39)

Hence,
5Q% > [86QP| (7.2.40)

So if 8Q® > 0, then more heat would appear in the o phase than left the B phase, and if
Q% < 0, then more heat would appear in the  phase than left the o. phase. What is the
source of the extra heat?

Since the first law (7.2.37) must be obeyed, we can only conclude that the extra
work done by phase 0, but not accessible to phase B, is converted into the extra heat
that appears in the system. That is, part of the work done by phase o is not “usefully”
applied to phase B; instead, it is “lost” in overcoming irreversibilities and is dissipated
as heat. A general expression for the lost work is given in (2.3.10). But here the process
is isothermal, so T=T%=TP =T, and (2.3.10) reduces to

BW,pqy = TdS,,, (7.2.41)

For our example process, in which phase o does work on phase 3, we have

SW,,., = — (oW —swP > 0 (7.2.42)
And, simultaneously, for heat transferred from phase B to phase o, we have

SW,,,, = - 15QF +8Q% > 0 (7.2.43)

This shows that the amount of useful work is limited because some is used to over-
come irreversibilities and is, thereby, converted into heat.

In real processes S, cannot be computed directly, so we usually account for irre-
versibilities by using an efficiency to correct results that have been calculated assum-
ing reversible changes. For example, isentropic efficiencies are used to correct results
computed for reversible adiabatic work generators (e.g., turbines) and consumers
(e.g., compressors). Likewise, in stagewise separation processes, stage or overall effi-
ciencies are used to correct results computed for reversible mass transfer based on
phase equilibria. Values for such efficiencies are obtained empirically by observing the
performance of a real process over actual changes of state and comparing it to the ide-
alized performance. Note that a reversible change will provide at least one property
whose value differs from that for the real process. For example, the outlet temperature
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from a reversible turbine will always be lower than that from a real turbine operated
from the same initial temperature and pressure to the same final pressure.

According to (7.2.41), the lost work in an irreversible process is related to entropy
generated in the interface, which is the source of the inequality in the combined laws
(7.2.13). In complex processes, each term on the lhs of (7.2.13) can contribute to
“wasted” energy. However, in real chemical processes, the largest contributor is typi-
cally the 8Q term; in comparison, the 8W and dN terms are often smaller.

7.3 CRITERIA FOR PHASE EQUILIBRIUM

In § 7.2 we used the combined first and second laws to obtain limitations on the direc-
tions and magnitudes of irreversible transfers of energy and material between fluid
phases. Now we use the combined laws to obtain quantitative criteria for identifying
thermodynamic equilibrium. In § 1.2.2 we gave a qualitative description of equilib-
rium: a situation in which no driving forces are present that could change the state. To
make this qualitative statement quantitative, we take advantage of the close connec-
tion that exists between equilibrium states and reversible changes of state (see § 1.3).

In reversible changes the entropy generation term is zero, the equalities in the com-
bined laws (7.2.10) and (7.2.13) apply, and the system (the interface in Figure 7.4) is in
equilibrium with its surroundings (the bulk phases o and ). Consequently, the equa-
tions that constrain the driving forces for reversible changes also describe equilibrium
situations. We exploit this observation to obtain criteria for thermal, mechanical, and
diffusional equilibria. These criteria are equivalent to the extrema found for concep-
tual property changes in § 7.1; however, the relations developed here are not con-
nected to any process. Rather, they identify the equilibrium state regardless of how it
is achieved.

7.3.1 Thermal Equilibrium (dS,, = 0)

For constant-mass heat transfer that is either workfree or isobaric, the combined laws
(7.2.10) reduce to

(T_a— 1)8(3B >0 (7.2.14)
5

The inequality in (7.2.14) arises because of entropy generation: the inequality applies
to irreversible heat transfer, while the equality applies to heat transfer associated with
a reversible change of state. In § 1.3, we identified reversible changes as idealized situ-
ations attained when all driving forces and their dissipative components are taken to
zero. And in § 7.2.2 we found that, for constant-mass heat transfer that is either iso-
baric or workfree, the driving force is the temperature difference A = T*- TP, Let F
represent the dissipative components of the driving force A; then, according to (1.3.5),
a reversible change results when the limits A — 0 and F — 0 are taken simultaneously,
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S B .
Iim | —-1[8Q" =0 reversible change (7.3.1)
F—-0 TB

A—0

We also showed in (1.3.2) that when all driving forces are actually (rather than ide-
ally) taken to zero (A — 0), then we obtain an equilibrium state,

(T B .
lim [—-1[8Q" =0 equilibrium (7.3.2)
A—0 TB

This limit identifies an equilibrium state provided no other internal or external driv-
ing forces exist when A = 0. In § 1.3 we discussed the subtle distinction between the
idealized limit in (7.3.1) and the physically realizable limit in (7.3.2). In § 7.2.2 we
found that when T% > TP then 8QB > 0, and when T* < TP then QB < 0; therefore,
when the driving force is zero (A = 0), then T% = TR and we must also have 8QB = 0.
Consequently, when the thermal driving force is zero, we have no heat transfer and
the system is said to be in thermal equilibrium,

= TB thermal equilibrium (7.3.3)

Thermal equilibrium means that both terms in (7.3.2) are zero: the thermal driving
force is zero (T®— TP = 0) and the rate of heat transfer is zero (8QP = 0). Furthermore,
neither isobaric nor workfree constant-mass heat transfer can take place (8QP = 0) if
the thermal driving force is zero (T* - TB=0).

However, it is possible to have a finite driving force (T* - TP # 0) with no apparent
transfer of heat (8QB = 0). Such situations are called metastable equilibria, since if such
states are perturbed by a small finite disturbance they relax irreversibly to an equilib-
rium state. For example, when a fluid of nonrigid molecules is allowed to undergo a
rapid adiabatic expansion, there is normally a rapid decrease in temperature. How-
ever for some molecules, internal molecular modes of bond vibration and rotation
relax over much longer time-scales than molecular translational modes. Under a rapid
expansion, such fluids can be caught in a metastable state in which all intensive mac-
roscopic properties, including temperature, have stationary values, yet kinetic ener-
gies of bond vibration and rotation remain much higher than the translational kinetic
energy. Rarefied gases may persist in such metastable states over long periods and
relax to true equilibrium states only after sufficient molecular collisions have occurred
to properly redistribute the molecular energies among all available modes.

7.3.2 Mechanical Equilibrium (dS,,,, = 0)

For a constant-mass adiabatic expansion and for a constant-mass isothermal expan-
sion of one phase against the other, the combined laws (7.2.10) reduce to

(P*—PPyav® > o (7.2.22)
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Again, the inequality occurs because of entropy generation; and therefore, the in-
equality in (7.2.22) applies to irreversible processes, while the equality applies to
reversible changes. In § 7.2.2 we identified the pressure difference (P* — PB) as the
driving force for volume changes. Repeating the argument given above for heat trans-
fer, we again establish a correspondence between the limit for reversible changes and
the limit for equilibrium states (see § 1.3). So by taking the driving force (A = P% — PB)
to zero, we obtain an equilibrium state,

lim (P%— PPydv® = 0 (7.3.4)
A—0

This limit identifies an equilibrium state provided no other internal or external driv-
ing forces exist when A = 0. In § 7.2.2 we found that when P > PB then dV2 > 0, and
when P < PB then dV® < 0. Hence when the driving force is zero, P = P, then we
must also have dV® = 0; this identifies a condition of mechanical equilibrium,

= PB mechanical equilibrium (7.3.5)

We emphasize that states in mechanical equilibrium have both the driving force (P%* —
PB) and the volume change (dV®) equal to zero. Moreover, neither isothermal nor adi-
abatic constant-mass changes in volume can occur without a mechanical driving
force; that is, we cannot have dVo # 0 with Po— PB = 0.

However, it is possible to have a finite driving force (P% — PB # 0) with no apparent
change in volume (dV® = 0). These are metastable states. Mechanical metastabilities
can occur in substances, such as certain polymers and metal alloys, that exhibit
“memory.” When such materials are rapidly deformed, they can retain the deformed
shape after the deforming force is removed. However, the material may regain its
original shape in response to some disturbance, such as heating.

7.3.3 Single-Component Diffusional Equilibrium (dS,, = 0)

For isothermal-isobaric diffusion of pure substance 1, the combined laws (7.2.13)
reduce to

_1cY-ch dN$ > 0 (7.2.26)

where the inequality applies to irreversible processes, and the equality applies to
reversible changes. In § 7.2.2 we found that the difference in chemical potentials
serves as the driving force for single-component diffusion. So, analogous to (7.3.2)
and (7.3.4), an equilibrium state is obtained by taking the limit as the driving force
goes to zero,

lim (~[Gy - Gy]) AN® = 0 (7.3.6)
A—0
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where A = é? - é‘f This limit identifies an equilibrium state provided no other inter-
nal or external driving forces ex1st when A = 0. In § 7.2.2 we found that A < 0 leads to
ANY 1 >0,and A >0 causes ANY 1 <0.Hence, when the driving force is zero, then ANY 1
= 0; that is,

@;x = é? diffusional equilibrium (7.3.7)

identifies a condition of single-component diffusional equilibrium. Since for pures,
the chemical potential is merely the molar Gibbs energy, (7.3.7) can also be expressed
as

g;x = g? pure diffusional equilibrium (7.3.8)

Note that dlffusmnal equilibrium occurs only when both terms in (7.3.6) are zero:

=0 and le = 0. Isothermal-isobaric dlffusmn cannot occur in the absence of a
dnvmg force; that is, we cannot have dNY 1 # 0 with A = 0. However, we can observe
metastable equilibria in Wthh a finite driving force exists (A # 0), but apparently no
diffusion takes place (dN] = 0). As an example, such diffusional metastabilities can
occur when the pure substance can condense into more than one kind of solid phase.
Then, on bringing two forms of the solid into contact at different states, the molar
Gibbs energies of the two phases differ, but the rate of diffusion in solids can be so
small that the metastability may persist over significantly long times.

The criteria for diffusional equilibrium (7.3.8) can also be expressed in terms of
fugacities: at equilibrium the equality in (7.2.29) applies and we have

fla = fF pure diffusional equilibrium (7.3.9)

When these fugacities are not equal, then the system is not in diffusional equilibrium,
and the difference in fugacities can be interpreted as the driving force for isothermal-
isobaric diffusion: material will diffuse from the phase having the higher fugacity to
the phase having the lower fugacity.

7.3.4 Multicomponent Diffusional Equilibrium (dSg,, = 0)

For isothermal-isobaric multicomponent diffusion, the combined laws (7.2.13) reduce
to

—Z[é?—é?] dNY > 0 (7.2.31)

where the inequality applies to irreversible processes and the equality applies to
reversible changes. The difference in chemical potentials is still the driving force for
diffusion, as in the single-component case (see also § 7.2.2), and an equilibrium state is
attained by taking all driving forces to zero,
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-2( lim [G; — é?])dN? =0 (7.3.10)
p A,—0

where A; = @? - C? . This limit identifies an equilibrium state provided no other inter-
nal or external driving forces exist when all A; = 0.

In the nonequilibrium situations dlscussed in§7. 2 2, the mecharusm of diffusion
may, in some situations, couple some or all of the dN But the dN in (7.3.10) cannot
be coupled when all drlvmg forces are zero. So here we only need consider uncoupled
diffusion; then, the dN in (7.3.10) are mutually independent, each term in the sum
must be separately zero, and each species must obey the single-component criterion
(7.3.7),

G; = é? for all i in diffusional equilibrium ~ (7.3.11)

This can also be written in terms of the fugacity of each species,

f; = f-B for all i in diffusional equilibrium  (7.3.12)

1 1

Since the diffusional equilibrium criterion (7 3.12) applies separately to each term
in (7.3.10), we must have, at equilibrium, dN =0 for every component i. This means
that d1ffus1ona1 equilibrium requires not only the absence of diffusion of any compo-
nent i (dN = 0) but, in addition, the absence of any ¢ driving force for diffusion of any
component (A; = 0). We never observe diffusion (dN # 0) in the absence of a gradient
in the chemical potentials (A; = 0); this cannot occur even if the diffusion is coupled,
for a zero driving force for component i disrupts any coupling for that component.

However, we may observe metastable states in whlch the driving force is finite (A;
#0), but diffusion is apparently not taking place (dN; = 0). These diffusional metasta-
bilities occur, for example, in colloidal suspensions, suCh as foams, surfactant bubbles,
and liquid membranes. Systems of these structures can have finite concentration gra-
dients (hence chemical potential gradients); nevertheless, some colloidal structures
can persist over macroscopically long times. It then becomes an issue as to whether
these life-times are sufficiently long that equilibrium thermodynamics can be applied.

7.3.5 Thermodynamic Equilibrium

Thermodynamic equilibrium encompasses thermal, mechanical, and chemical equi-
librium. Chemical equilibrium, in turn, includes both diffusional and reaction equilib-
rium. In this section we have considered only nonreacting systems, and so, at this
point, we have developed only the criteria for thermal, mechanical, and diffusional
equilibrium; criteria for reaction equilibrium are given in § 7.6.

Thermodynamic equilibrium occurs when all net driving forces are zero (dSgen = 0);
this includes driving forces between system and surroundings as well as those
between different system parts. Since equilibrium criteria apply to different system
parts, they can serve as quantitative prescriptions for identifying equilibrium between
phases o and B:
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thermal equilibrium ™ = TB (7.3.3)

mechanical equilibrium p* = pP (7.3.5)

diffusional equilibrium G? = GP for all i (7.3.11)
or

diffusional equilibrium fl-a = fiB for all i (7.3.12)

For a system of C components, the sets of equations {(7.3.3), (7.3.5), (7.3.11)} or
{(7.3.3), (7.3.5), (7.3.12)} each represent (C + 2) algebraic equations that can be used to
identify phase equilibrium situations; of these, the sets of equations containing chem-
ical potentials (7.3.11) and fugacities (7.3.12) each represent C nonlinear equations that
usually must be solved by trial.

But even though equilibrium implies the absence of net driving forces for change,
molecules continually cross the interface in both directions, causing the properties of
each phase to fluctuate about stable equilibrium values. Although macroscopic driv-
ing forces are in balance when two phases are in equilibrium, the situation is a
dynamic one on a microscopic scale.

7.3.6 Example

Can the criteria (7.3.11) for diffusional equilibrium, which require equality of the
chemical potentials, be reconciled with the general criterion for isothermal-isobaric
equilibrium, namely dG = 0 (7.1.40)?

The objective here is to show that the diffusional equilibrium criteria (7.3.11) are a con-
sequence of the more general equilibrium criterion (7.1.40) that applies to any NPT
system, including systems containing more than one phase.

Consider a multicomponent system contained in a closed vessel and maintained at
constant T and P, as represented schematically in Figure 7.5. We seek the conditions
under which the system can exist as two phases in equilibrium. Since the external res-
ervoir imposes its temperature and pressure on both phases, no driving forces exist

Figure 7.5 Schematic of a two-phase reservoir that

phase o imposes fixed
system whose temperature and pres- T and P on
sure are held constant by thermal and system
mechanical interactions with a con-
stant TP reservoir. The system cannot /
exchange mass with the reservoir or phase B

the surroundings; however, the two
phases can exchange mass with one
another.
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for net heat transfer, bulk mass transfer, or volume changes. The only possible
changes result from diffusional mass transfer across the phase boundary.

Call the phases o and f; they could be any combination of solid, liquid, or gas.
Although the interface between two phases is open to mass and energy transfers, the
entire system here is closed. Since T and P are fixed for the entire system, the NPT cri-
terion for equilibrium (7.1.40) applies; that is, the system’s total Gibbs energy will be a
minimum at equilibrium,

dG =0 fixed T and P (7.3.13)
The system Gibbs energy is the sum of contributions from each phase
G=ag%+aP (7.3.14)

and (3.2.32) can be used to write G for each phase in terms of chemical potentials,

G = YNIGI+ Y NPT (7.3.15)
i i

Now we determine the response of G to diffusion of a differential amount of each
component from one phase to the other. Forming the total differential of (7.3.15) and
substituting it into (7.3.13) yields

4G = Y NFdG) + ¥ Glang + Y NPac! + Y clan? = 0 (7.3.16)
i i i i

But at fixed T and P the Gibbs-Duhem equation requires

YNGG =0 and Y NPG! = 0 (7.3.17)
i

1

So (7.3.16) reduces to

Y GidNy + Y Glan? = 0 (7.3.18)
i i

The total system is closed, so

dNP = AN (7.3.19)

1

That is, whatever leaves the o-phase necessarily enters the B-phase, and vice versa.
Using (7.3.19) to eliminate the dN ? from (7.3.18), we find
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> G- Gl dN® = 0 (7.3.20)
i

This is (7.3.10), and the argument following (7.3.10) can be repeated leading to (7.3.11),
as required. The general criterion for isothermal-isobaric equilibrium (7.1.40) includes
the diffusional equilibrium criteria (7.3.11) as a special case. QED

7.4 THE LAWS FOR CLOSED REACTING SYSTEMS

It is perhaps surprising that thermodynamics can tell us anything about chemical
reactions, for when we encounter a reaction, we naturally think of rates, and we know
that thermodynamics cannot be applied to problems posed by reaction rates or mech-
anisms. However, a chemical reaction is a change, so whenever the initial and final
states of a reaction process are well-defined, differences in thermodynamic state func-
tions can be evaluated, just as they can be evaluated for other kinds of processes. In
particular, the laws of thermodynamics impose limitations on the directions and mag-
nitudes (extents) of reactions, just as they impose limitations on other processes. For
example, thermodynamics can tell us the direction of a proposed reaction; it can tell
us what the equilibrium composition of a reaction mixture should be; and it can help
us decide how to adjust operating variables to improve the yields of desired products.
These kinds of issues can be addressed using equations derived in this and the next
section; moreover, these equations are derived without introducing any new thermo-
dynamic fundamentals or assumptions.

In this section we obtain the combined first and second laws for reacting systems.
The development parallels that presented in § 7.1 for nonreacting systems. However,
the development here is more elaborate than the earlier one because our analysis must
account for the fact that, during reactions, chemical species are not conserved. This
problem is addressed in § 7.4.1 and examples are offered in § 7.4.2 and 7.4.3; then in
§ 7.4.4 we derive the combined laws for reactions in closed systems.

7.4.1 Stuff Equations for Material Undergoing Reactions in Closed Systems

In elementary chemistry courses, we are taught that, when analyzing a reacting mix-
ture, we should first write the reaction and balance it. This strategy is appropriate
when the system involves a single elementary reaction, such as might represent com-
plete combustion of methane. However, industrial processes typically involve dozens
of reactions occurring simultaneously; in those situations, the elementary strategy
would require us to write a complete set of independent reactions that involve all spe-
cies present. This can be an overwhelming task, for often we do not even know how
many reactions could occur, much less what those reactions might be—we have only a
list of reactants and products. Fortunately, this is all we need for a thermodynamic
analysis, because changes in state variables are not affected by reaction paths; for a
thermodynamic analysis, we only need a systematic procedure for identifying and
balancing some set of independent reactions that represent the conversion of reactants
into products. Such a systematic procedure can be formulated in several ways [2—4].
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We emphasize that the reactions used in the analysis do not have to be the reac-
tions actually occurring—we only need any convenient hypothetical path that con-
nects products to reactants. In fact, we don’t even need reactions at all, so long as we
can achieve a balance on every element present. Further, “elements” need not be
atoms; they can be groups of atoms that may or may not constitute real molecules.
Our procedure for identifying and balancing reactions reduces to the stuff equation
for material, reformulated to apply to elements. We consider reactions in closed sys-
tems here and reactions in open systems in § 7.5.

Consider a closed system containing a total of C chemical species, with N; moles of
species i present at any time. In this section we consider a molecule of each species i to
be composed of a;; atoms of element k; the total number of elements present is repre-
sented by m,. Then the total number of atoms by for each element k is given by

C
Yy N; = by k=1,2,...,m, (7.4.1)

i

These equations provide the fundamental connections between elements and species
in a closed system. Since the equations (7.4.1) are linear in the mole numbers, we can
write them economically in matrix form,

AN =D (7.4.2)

where A is the (m, x C) array of coefficients a;, the vector of mole numbers N is of
length C, and the rhs vector b is of length m,. (For a review of the jargon and opera-
tions of matrix algebra, see Appendix B.) Since each column A; of the matrix repre-
sents the chemical formula for species i, we refer to A as the formula matrix for the
reacting system.

During a reaction in a closed system, it is not species that are conserved, but ele-
ments. That is, the N; in (7.4.2) change, but the by in (7.4.2) remain constant. Therefore,

|
o

C
Y a4 dN; = (7.4.3)
i

or

A(dN)

I
o

(7.4.4)

where (dN) is a vector of length C. Equation (7.4.4) is a statement of conservation of
elements; it is a form of the stuff equation that is useful when the amounts of species
change due to reactions.

In a traditional approach to reaction equilibria, we first write a set of R indepen-
dent reactions and then balance those reactions. This establishes the stoichiometry of
the system. However, (7.4.4) represents a useful alternative to balancing reactions
because it allows us to impose conservation of elements without explicitly identifying
the reactions themselves. Before we can balance any reaction, we must identify all the
species that participate in the reaction. In simple situations, the participants may be
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known, and then we may choose to proceed in the traditional way [2] or by a hybrid
method [3, 4]. But many reaction processes are complex; examples include reactions
during combustion, in biological processes, and in catalysis. In such cases, it is better
to avoid guessing the reactions; instead, we use (7.4.4) and perform the necessary
operations on the formula matrix A.

One important operation allows us to identify the number of independent reac-
tions. In the traditional approach, we must reduce the proposed reactions to an inde-
pendent set, but when many reactions occur, finding an independent set can be
tedious and prone to error. However, in (7.4.4) the number of independent reactions R
is simply related to the rank of the formula matrix A; specifically,

R = C-rank(A) (7.4.5)

The balance equations (7.4.3) express conservation of elements, but they do not tell
us how the species mole numbers N; change as reactions proceed. If we know how the
N; change, then we have a direct way for determining the composition of the mixture.
Let N/ represent the number of moles of species i initially present and consider a gen-
eral situation in which R independent reactions take place. Then at any time during
the process, the number of moles of species i is given by the net amounts of i gener-
ated and consumed. Those net amounts are the combined results of all reactions, so
we write

R
0 0
N; = N{+AN; = N;+ Y AN, (7.4.6)
j

where AN;; is the change in N; caused by reaction j. When Nj is a product of reaction j,
then AN;; >0, and when it is a reactant, then AN;; <0.

But durmg reaction j the changes AN; are not independent; rather, they are coupled
through the stoichiometry of the reactlon Consequently, if we designate any one spe-
cies r as the independent species for reaction j, then we can monitor the changes of all
other species in j relative to that of r. This allows us to write (7.4.6) as

N; = N; +2 l] AN, (7.4.7)

For each species i in reaction j, the ratio here is a constant, which we call v/,

, ANI]

i = AN T constant (7.4.8)

rj
o (7.4.7) becomes

R
0 ’
N; = Nj+ Y Vi AN, (7.4.9)
j
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The relation (7.4.9) allows us to follow the progress of reaction j by monitoring only
the one quantity AN,,;.

But the quantities vjj introduce an undesirable asymmetry among the species par-
ticipating in reaction j; for example, (7.4.8) implies that v};= 1. To avoid treating one
species as special, we rescale all the Vjj parameters by a constant factor, thereby defin-
ing

V.o = ViV (7.4.10)

where the value of the one quantity v,; can be set arbitrarily to any convenient value.
The quantities v;; are called stoichiometric coefficients; their values are constant for a

6)
particular reaction. By convention, reactants in j have v;; < 0, and products have vij>0.

]
Using (7.4.10) in (7.4.9), the number of moles of i present at any time is

R AN .

0 Z rj
; ]
)

i

To follow the progress of reaction j, we monitor one quantity: AN,.. But the change
in the number of moles of any species i cannot be affected by the identity of the sub-
stance chosen to play the role of the independent species . So we define the ratio on
the rhs to be the extent of reaction j,

g = il (7.4.12)

Note that &; is extensive and has units of moles; also note that there is one extent &; for
each independent reaction. The definition (7.4.12) applies for any species selected as r,
so a particular choice does not have to be made explicitly; moreover, it allows us to
use any convenient value for the stoichiometric coefficient v,;, so that none of the v;;
need necessarily be set to unity.

At the start of reaction j, AN,; = 0, and by (7.4.12) the extent is also initially zero: §; =
0. If the reaction proceeds in the direction implied by the sign of v;;, then §; > 0. But we
might identify r incorrectly; that is, we might designate species r as a reactant when,
in fact, it is produced as a product. In such cases §; < 0, and the reaction actually pro-
ceeds in the “reverse” direction.

Putting (7.4.12) into (7.4.11), we obtain the following general form for the total
number of moles of species i present at any time during the R reactions,

R
N, = N?+vaf §; (7.4.13)
j

For differential changes, the definition (7.4.12) becomes
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dN

_
de; = v (7.4.14)

and since the identification of species r is arbitrary (so long as Vii# 0), (7.4.14) must be
obeyed by every species in j.
To obtain stoichiometric coefficients, we first form the total differential of (7.4.13),

R
dN; = YV, dg; (7.4.15)
j

Then we substitute this into the balance equation (7.4.3),

R (C
2( akivi]-)de“;j =0 (7.4.16)

j

But the R reactions are independent and all the d&s are nonzero, so the quantity in
parenthesis must be zero for each reaction j; that is, each reaction must have

Av; =0 j=1,2,...,R (7.4.17)

where A is the formula matrix in (7.4.2) and v; is the vector of stoichiometric coeffi-
cients for reaction j, V]T- = (V1j V2; V3;j ...). Equation (7.4.17) represents a balancing of
reaction j, and since values are known for the elements in A, (7.4.17) can be solved for
the stoichiometric coefficients. However as noted above, the value of one v;; (that for
the reference substance V,,]-) can always be chosen arbitrarily, so (7.4.17) does not have
a unique solution.

With values known for the stoichiometric coefficients, we can sum (7.4.13) to obtain
the total number of moles at any point during the reactions,

C

R
Z{N? + Zvij ij ] # constant (7.4.18)

i ]

Z
[

I
zZ
+

0 20]- g (7.4.19)

N’ = ZN‘? (7.4.20)
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and o; is the algebraic sum of all stoichiometric coefficients for reaction j,

C
s = Y (7.4.21)
i

Note that G; is positive when the total number of moles increases, negative when the
total number decreases, or zero when the total number is unchanged by the reaction.
With (7.4.13) and (7.4.19), we can form the mole fraction for each species at any time
during the reactions,

R
0
Ni+ Vit
N. j
S S
X = o - (7.4.22)

We have noted that ; = 0 at the start of reaction j. Let us consider the normal situa-
tion in which &; increases from zero as the reaction proceeds. In such cases, there is an
upper bound to &; based merely on conservation of atoms. That bound occurs when
one reactant is first depleted; that is, when the mole fraction of the limiting species x,
first reaches zero. We determine the bound by solving (7.4.22) with x,=0,

0
gub _ _N(

(7.4.23)

The values for this upper bound can be found by computing the rhs of (7.4.23) for
each reactant participating in reaction j; the smallest of those values is the upper
bound and identifies the limiting reactant. But although (7.4.23) provides a bound on
the extent of reaction, that bound is based on material balances; in practice, it is rarely
reached. Instead, most reactions reach thermodynamic equilibrium before all the initial
loading of any reactant is depleted; the equilibrium value obeys 0 < & < £,

The above development should make clear the following points:

(a) For a particular reaction j, the values of the stoichiometric coefficients v;; are
determined only to within an arbitrary multiplicative constant. The value of
this constant is set by choosing the value of the coefficient v,; for one species r;
often that value is 1, but other choices are sometimes convement

(b) The changes in mole numbers AN;; for all species i participating in reaction j
can be represented by one independent variable &; and those changes are cou-
pled through the vector of stoichiometric coefficients v;.

(c) The values of the extent of reaction ﬁ]- depend on the stoichiometric coeffi-
cients, so different balances of reaction j set different bounds on the extent.

(d) The extent of reaction E_,] is extensive, has units, and is not restricted to the
range [0, 1].
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7.4.2 Example

How do we determine the composition of a reacting mixture at any point during a
single reaction?

Consider the synthesis of ammonia from nitrogen and hydrogen with the reactants
loaded into the reactor in the ratio N 2/ N¢ 1 =3/1, where N 1 = the initial number of
moles of nitrogen and N2 = the initial number of moles of hydrogen. We want to
obtain the composition of the reaction mixture during the course of the reaction.

In the notation of § 7.4.1, we have total number of species C = 3 and total number of
elements m, = 2. Let the values of the index over elements be k =1 for nitrogen (N) and
k = 2 for hydrogen (H). Let the values of the index over species be i = 1 for nitrogen
(Nj), i = 2 for hydrogen (H,), and i = 3 for ammonia (NHj). Then the number of ele-
ments k on each species i is given by a;;; hence, the formula matrix is

N, H, NH,
\—,—J
A= |2 0 1 {N (7.4.24)
0o 2 3||H

Note that each column of A represents the chemical formula for one of the species.
The rank of A is 2 (see Appendix B); therefore, the number of independent reactions is

R = C-rank(A) = 3-2 =1 (7.4.25)

That is, in this simple example, only one independent reaction occurs. To find the stoi-
chiometric coefficients in that reaction, we solve

Av; = 0 (7.4.17)
5 h V11
0 1y | =19 (7.4.26)
0 2 3 0
V31

This represents two equations in three unknowns. We can pick the value of one stoi-
chiometric coefficient, and since ammonia is the desired product, we set v3; =1 (recall,
products have v > 0). Then (7.4.26) gives v{; =-1/2 and v,; = -3/2. Consequently, the
one independent balanced reaction is

1 3
- =N, - zH2+NH3 =0 (7.4.27)

or in a traditional form,
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1
2

3

—N2 + EHZ - NH3

(7.4.28)

Choosing a basis of one mole of nitrogen initially loaded into the reactor, we use
(7.4.22) to obtain the following expressions for the species mole fractions,

v = 1-£/2 _1-8/2

V7o 4r(-1/2-37241)E 4-¢
3(1-&/2

Xy = % and x3=4%§

(7.4.29)

(7.4.30)

Using (7.4.23) we can find the upper bound on the extent; hence, £“% = 2 moles and
both reactants are completely consumed at the same time. We now use (7.4.29) and
(7.4.30) to obtain the composition at any point during the reaction (0 < § < 2). Sample

results are given in Table 7.2.

Note that

(a) the stoichiometry of the reaction couples the compositions so that a value for
the one variable & allows us to determine values for the mole fractions of all
reactants and products,

(b) at every value of the extent & the mole fractions sum to one,

(c) the total number of moles is not constant during the reaction,

(d) the calculations of the mole fractions did not require us to explicitly write the
chemical reactions (7.4.27) and (7.4.28), and

(e) the above procedure is sufficiently systematic so that it can be readily imple-
mented on a computer.
Point (d) is worth emphasizing: the balanced reactions (7.4.27) and (7.4.28) were dis-

played merely to offer a familiar interpretation for the matrix equation (7.4.17); how-
ever, those chemical reactions did not explicitly contribute to the solution of the

problem.

Table 7.2 Sample results for composition of reaction mixture
during synthesis of ammonia (7.4.27) based on an initial
loading of 3 moles of Hj plus 1 mole of N,

3 N=4-§ *N, *H, *NH,
0 4 0.25 0.75 0

0.5 3.5 0.214 0.643 0.143
1 3 0.167 0.5 0.333
1.5 2.5 0.1 0.3 0.6

2 2 0 0 1
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7.4.3 Example

How do we determine the composition at any point during a process involving
multiple reactions?

Consider the formation of synthesis gas (CO and H,) by incomplete combustion of
methane in oxygen. Let N7 be the initial number of moles of methane and let N, be
the initial number of moles of oxygen. Assume the feed ratio is No/N] = 3/2. We
expect the products will be CO,, H,O, CO, and H,. So we have C = 6 species formed
from m, = 3 elements (C, H, and O), and the formula matrix looks like this:

CH, 0, CO, H,O CO H,

C
A= |4 0 0 2 0 2|1H (7.4.31)
O

The rank of this matrix is 3 (see Appendix B); therefore, the number of independent
reactions is R = C — rank(A) = 6 — 3 = 3. So we have to find the stoichiometric coeffi-
cients for three independent reactions; to do so, we must solve

Av; =0 i=1,2,3 (7.4.17)

For each reaction, (7.4.17) has this form:

Vi

V2]-
101010, 0
40020 2|/ Y=o j=1,23 (7.4.32)
02211 0|4 0

Vs;

| Vej]

Equation (7.4.32) represents three equations in six unknowns. To solve these, we must
choose, for each reaction, values for any three of the v;;. This means there are many
possible solutions to the three equations in (7.4.32). In general, different values
assigned to the three arbitrarily chosen vjj will produce different balanced reactions,
and each trio of reactions will have its own set of extents {éj}. Nevertheless, every trio
of reactions will yield the same mole fractions at any point during the process.

For the first reaction, j = 1, we choose v{; = -2, vo1 = -1, and v3; = 0; then (7.4.32)
gives v41 =0, v51 = 2, v¢1 = 4, and the reaction provides the desired products:

~2CH,-0,+2CO +4H, = 0 (7.4.33)

For the second reaction, j = 2, we choose v{; = -1, vy = -2, and v¢, = 0. Then (7.4.32)
gives v3p =1, v4p = 2, v5, = 0, and this reaction produces an undesired product (CO,):
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~CH, - 20, +CO, +2H,0 = 0 (7.4.34)

For the third reaction, j = 3, we choose vi3 =0, v33 =-2, and vg3 = 0. Then (7.4.32) gives
Voz =1, vg3 = 0, and vs3 = 2, so the third reaction converts the undesired CO, to the
desired product CO:

0,-2C0, +2CO = 0 (7.4.35)

If we choose as a basis one mole of CHy (Ntl) =1), then N g =1.5 moles, and we can
use (7.4.22) to obtain the following expressions for the species mole fractions,

28,

t) = (-2 &) Xy = = (7.4.36)
ty = (15-5 -2+ &) X5 = (28, +28) (7.437)
X3 = 1—\1—](2132—2§3) Xg = %%1 (7.4.38)
and the total number of moles is given by
N =25+38,+&; (7.4.39)

Sample results for the mole fractions at a few selected values of the extents are given
in Table 7.3. In general, the objective would be to maximize the amount of synthesis
gas produced (CO and H,), while minimizing the amounts of other species. But none
of the product distributions shown in Table 7.3 are optimal. An optimal distribution

Table 7.3 Sample compositions from synthesis-gas production at selected
values of the three extents of reaction

Extents N Mole fractions, x;

&1 §2 &3 mol CH4 02 C02 H20 CO H2

0 0 0 25 0.4 0.6 0 0 0 0
0 0.5 0 25 0.2 0.2 0.2 0.4 0 0
0 1 05 3 0 0 0 0667 0333 O
015 0.3 015 3.1 0129 0290 0 0194 0194 01%
025 05 0 325 0 0077 0154 0308 0.154 0308
0.3 0.3 015 355 0028 0211 O 0169 0254 0.338

0.5 0 0 4.0 0 0.25 0. 0 0.25 0.5
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can be obtained by finding appropriate values for the extents; however, that distribu-
tion is not likely to be the equilibrium distribution. To find the equilibrium concentra-
tion, we must obtain equilibrium values for the extents &; by applying the criteria for
reaction equilibria developed in § 7.6. Ways for applying those criteria are described
in Chapter 10.

%

The examples in § 7.4.2 and 7.4.3 show how material balances are applied in react-
ing situations to obtain elemental balances, the number of independent reactions, and
values for stoichiometric coefficients. In the above examples, we use atoms as the con-
served elements, that is, as the reaction invariants. But in some situations the analysis
can be simplified by choosing groups of atoms or fragments of molecules as the ele-
mental invariants. Examples of such fragments include a benzene ring and an -OH
group. Formally, the procedure is just as we have illustrated above, except that groups
(rather than elements) form the rows of the formula matrix. Such an approach can be
useful when we know that thermodynamic or kinetic constraints make certain inde-
pendent reactions unlikely. The net effect is to decrease the number of independent
reactions compared to the number provided solely from material-balance consider-
ations. In addition, use of groups in reaction analysis, combined with use of the same
groups in phase-equilibrium situations, can simplify calculations in such applications
as reactive distillation. The development and use of this method has been described
by Pérez Cisneros et al. [3, 4].

744 Combined Laws for Reactions in Closed Systems (dSg,,, > 0)

With the notation and stuff equations from the previous section, we can now extend
the combined first and second laws from unreacting systems (§ 7.1 and 7.2) to reacting
systems. To facilitate the presentation, it is useful to introduce a new set of property
differences that apply to reacting systems. For any extensive property F in a reacting
system, we define a change in F for each reaction j by the intensive quantity

c
AF; = Zvij F; j=12..,R  (7.4.40)
i

where F; is the partial molar property, C is the number of species in the mixture, and
v;; is the stoichiometric coefficient for species i in reaction j. Recall that v;; < 0ifiis a
reactant and v;; > 0 if 7 is a product. The quantity F could be any of the usual thermo-
dynamic properties, including U, H, S, A, and G. As is often the case, situations in
which F = G have special significance, so the (negative) change of Gibbs energy for
reaction j is given a special name: it is called the affinity, A;,

C
A, = -AG, = - v, C; (7.4.41)
i

The affinity is an intensive conceptual property having dimensions of energy / mol.
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Consider a closed system containing a total of C chemical species, with N; moles of
species i present at any time. The values of the mole numbers N; are changing due to
R independent reactions taking place. The value of R can be obtained using the proce-
dure described in § 7.4.1. Because of the reactions, the state of the system changes and,
consequently, the values of properties change. Consider any one such property F,

Nf = F = F(T, P,N;, N,, ...) (7.4.42)

The response of F to the change of state can be written as
C ~ Cc
d(Nf) = Y N;dF; + FidN, (7.4.43)
i i

The first term on the rhs is given by the Gibbs-Duhem equation (3.4.10). Moreover the
system is closed, so the change in mole numbers N; can be caused only by reactions;
therefore, we can substitute (7.4.15) for the dN; in (7.4.43) and obtain

R C
d(Nf) = (%)PNdT ¥ (%)TNdP " 2( > Fi}ig]. (7.4.44)
] 1

where ; is the extent of reaction j. Using the definition (7.4.40) of the change of F due
to reaction j and holding T and P fixed, (7.4.44) becomes

R
d(Nf) = ZAPj g fixed Tand P (7.4.45)
j

This is a general result for the total differential of any extensive property F responding
to R chemical reactions occurring in a closed system at fixed T and P.
For a closed system in which reactions are occurring, the combined first and second
laws should be written as a generalized form of (7.1.11),
d(Nu)+P

d(Nv)-T_. d(Ns) <0 closed systems ~ (7.4.46)

Sur Sur
This form is appropriate because in reacting systems, the mole numbers N may
change, even though the system is closed. We restrict our attention to reactions per-
formed at fixed temperature and pressure: T = T, and P = Pg,,,. Therefore, we can use
(7.4.45) for each total differential in (7.4.46), and (7.4.46) becomes

R
Z[Auj +PAV, ~TAS; 1dg; < 0 fixed Tand P (7.4.47)

]

Recall the AF]- are all intensive. Since T and P are fixed, we can write (7.4.47) as
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R
ZAG]- dF,]- <0 fixed T and P (7.4.48)
j

Introducing the affinity via (7.4.41), we find

R
YAy, >0 fixed T and P (7.4.49)
j
where v; is the rate of reaction j, defined by
= w(tE _ 9 (7.4.50)
v, = v(t, j) == 4.

At equilibrium all reaction rates are zero; otherwise, they are always finite, although
they may be positive or negative.

Equation (7.4.49) is the combined law for closed systems in which chemical reac-
tions are occurring at fixed T and P. For such systems, the combined law imposes a
limitation on the direction in which reactions can proceed: they can only proceed in
ways that cause the lhs of (7.4.49) to be positive or zero. Recall from § 7.1 that the in-
equality in the combined law results from entropy generation; so in general, for closed
systems at fixed T and P, we expect chemical reactions to be accompanied by genera-
tion of entropy in the system. However, we caution that the total entropy of the system
may increase or decrease because the process is isothermal, not adiabatic. We now
interpret the combined law (7.4.49) for single reactions and for multiple reactions.

Single reactions. For one reaction, (7.4.49) reduces to
Av > 0 (7.4.51)

If v =0, then no reaction is occurring and the equality in (7.4.51) applies; otherwise, for
v# 0 we have two possibilities: (i) If v> 0, then we must have A > 0 for the reaction to
proceed in the forward direction, and (ii) if v < 0, then we must have A4 < 0 for the reac-
tion to proceed in the reverse direction. If the inequality in (7.4.51) is violated, then the
reaction cannot proceed in the proposed direction at fixed T and P. Note that, for a sin-
gle reaction, we can never have 4 = 0 with v # 0 because reactions occurring at finite
rates always generate entropy.

To gain some additional insight into (7.4.51), consider the form of the combined
laws in terms of the chemical potentials (7.4.41). For a single reaction, (7.4.51) is

AGdE < 0 (7.4.52)

or

(Ei’w Gi)dé < (%Vk ‘Gk)dﬁ fixed Tand P (7.4.53)
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where index i runs over products while k runs over reactants. We distinguish products
from reactants in such a way that d§ > 0. Therefore (7.4.53) requires the reaction to
proceed from a situation of larger Gibbs energy (reactants) to one having a smaller
value (products); this is consistent with the analysis in § 7.1.5.

Uncoupled multiple reactions. Multiple reactions taking place in a closed system at
fixed T and P must satisfy the combined law (7.4.49). However, if the reactions are
uncoupled, then each term in the sum on the lhs of (7.4.49) is independent of every
other term, and therefore each term must be positive, if that reaction proceeds in the
proposed direction. This means that each reaction in the system must separately sat-
isfy the single reaction form of the combined law which appears in (7.4.51). Reactions
are usually uncoupled when no reactant or product participates in more than one
reaction.

Coupled multiple reactions. But multiple reactions may be coupled, often because
some reactants or products participate in more than one reaction, though this condi-
tion is neither necessary nor sufficient for coupling. When reactions are coupled, not
all the terms in the sum in (7.4.49) are independent, and then it is possible for some of
the terms to be negative. Nevertheless, the coupled reactions can still proceed, so long
as enough positive terms are available to dominate the sum, forcing the combined
laws to be obeyed.

An important example of coupling has been cited by Prigogine and Defay [1]: at
ambient conditions, the synthesis of urea via the single reaction

2NH, + CO, 2 (NH,),CO + H,0 (7.4.54)
has an affinity of A4; = — 46 kJ/mol. So, when only ammonia and carbon dioxide are

present, urea will not be formed by this reaction. However, in the human liver, the
reaction (7.4.54) is coupled to oxidation of glucose,

CgH;,04 + 60, 2 6CO, + 6H,0 (7.4.55)

which has an affinity of A, = 482 kJ/mol. Then the combined law (7.4.49) requires

—46v, +482v, > 0 (7.4.56)
So
v; < %vz = 10v, > 0 (7.4.57)

This shows that coupling promotes formation of urea in the liver; in fact, a small
amount of oxidation “pumps” a significant amount of urea formation, in spite of the
fact that, without coupling, urea would not be formed at all. It seems likely that many
living organisms use coupling to promote chemical reactions that would not other-
wise occur. Unfortunately, the identification of coupled phenomena is not a problem
that can be addressed by thermodynamics. In fact, some effects attributed to thermo-
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dynamic coupling actually result from faulty analysis that ignores the presence of
intermediate species; such intermediates may change the signs (from negative to pos-
itive) of the affinities for some reactions in certain reaction sequences [5].

7.5 THE LAWS FOR OPEN REACTING SYSTEMS

In this section we extend the development in § 7.4 to reactions taking place in open
systems. First we develop the open-system material-balance equations for reactions
(§ 7.5.1) and then we develop the combined laws (§ 7.5.2).

7.5.1 Stuff Equation for Material in a Single Open Phase

Open-system chemical reactions cause changes in many important situations, such as
meteorological and biological systems [1]. Early studies of such systems raised ques-
tions about the generality of the laws of thermodynamics because workers failed to
distinguish open systems from those that are closed. This confusion was largely
resolved by Prigogine, whose work on these problems contributed to his Nobel Prize.

Consider an open system having any number of inlets o and any number of outlets
B. For such a system, the general stuff equation (1.4.1) can be written in terms of the
number of moles of species i,

3 AN{ =Y NP+ AN§ AN = dNCS (7.5.1)
o B

Here the superscript gen refers to generation of species i, con refers to consumption,
and acc refers to accumulation of i in the system. When chemical reactions are occur-
ring, the difference between the generation and consumption terms reflects the net
effect of reactions (rxn). Moreover, we already have an expression (7.4.15) for the
change in species mole numbers due to reactions; here we write (7.4.15) in the form

i - i

R
gen con _ rxn _
AN3" —dN AN =Y v dE; (7.5.2)
j

Recall that R is the number of independent reactions, &; is the extent of reaction j, and
each v;; is a stoichiometric coefficient for species 7 in reaction j. Combining (7.5.1) and
(7.5.2), we have

R
SNy - Y aNP + Y v, de = AN i=1,2,..,C  (753)
o B ]

This is the general form of the stuff equation for an open system containing a total of C
species, some or all of which are engaged in chemical reactions.
If we want (7.5.3) explicitly in terms of rates of change, we can write
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. .. R .
ZNia _ZNiB +2Vij v = N/ (7.5.4)
o B j

where v; is the reaction rate for the jth reaction; see (7.4.50). In the special case of a
closed system, there are no inlets or outlets, and (7.5.4) reduces to

R o
Zvif v = NZ.”CC closed systems (7.5.5)
j

which merely confirms that the mole numbers of reacting species are not necessarily
conserved, even in closed systems.

7.5.2 Combined Laws for Reactions in Open Systems

To obtain the combined first and second laws for open systems with chemical reac-
tions, we proceed just as we did in § 7.2.1 for nonreacting systems. Our situation can
still be represented by Figure 7.4, which contains bulk phases o and B separated by an
interface I. The temperatures and pressures in the phases are controlled by reservoirs,
as in Figure 7.4. We again choose the interface to be the system, and the interface still
has negligible mass, so no mass, energy, or entropy accumulate there; that is, (7.2.1)-
(7.2.3) still apply. However, we now have R independent reactions occurring in each
bulk phase, although no reactions occur in the interface. The development is exactly
that in § 7.2.1, giving the same result

T2 1ls0% - sw™ + swh) - 3 Glan” - Z[H? ~T°5'1dNP >0 (72.13)
TB . 1 - 1

1 1
In § 7.2.1, the changes in bulk-phase mole numbers dN® and dNB were caused by

diffusion across the interface. But here, those changes may result from diffusion or
chemical reaction or both. So for each component in each phase, we write

dNY = AN® T N k=0, B (7.5.6)
Using (7.4.15) for the reaction term, (7.5.6) can be written as

. R
dNy = aNp e 3V agl k=0, B (7.5.7)
j

Further, note that whatever diffuses from one phase, across the interface, must enter
the other phase; so we have
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dN® O = _aNP (7.5.8)

Therefore, (7.2.13) becomes

[1_1]5(35 Z[G C (@ T8 1N (w4 swP)
B

R R
o el B o, B B
- E AG]- dE',]' - E (AHj—T ASj)déj >0 (7.5.9)
]

Introducing the affinity from (7.4.41), we obtain

o
(T__1JSQB—Z[G?—(H ~795 1N w4 sw)
B

i
‘R
+ Y 1A% dg - (aHP 1A% agf 1 > 0 (7.5.10)

Equation (7.5.10) is the combined first and second laws for open systems undergoing
chemical reactions with T and P constant in each phase. It imposes limitations on the
combined effects of reactions, material transfers, and energy transfers across an inter-
face between bulk phases o and .

When the only work mode is Pv work, and when the temperatures and pressures
are not only constant, but also the same in the two phases (T = TB and P% = PB), then
(7.5.10) collapses to

‘R
N (cie; Pran®if 4 3 ae? +7leE_,B T 1B & po_pp (7.5.11)
i j

For processes occurring at fixed T* = TP and fixed P = PB, (7.5.11) imposes limitations
on diffusion and reaction taking place in multiphase systems. For finite rates of diffu-
sion and reaction, only the inequality in (7.5.11) applies. Then, as discussed in detail in
§ 7.2.2 for diffusion and in § 7.4.4 for reactions, there are two general ways by which
the inequality can be satisfied: uncoupled situations and coupled ones.

In completely uncoupled situations, every diffusion rate and every reaction rate is
independent of all other rates, and then every term in (7.5.11) must be positive. But
although the completely uncoupled situation is mathematically possible, it rarely
occurs in practice; in most multiphase reacting systems, coupling is present—espe-
cially coupling between diffusion and reaction. In such cases, some terms in (7.5.11)
can be negative, so long as they are dominated by positive terms so that the inequality
is obeyed. Then it is possible for some species to diffuse against their chemical poten-
tial gradients or for some reactions to proceed against their affinities. However, these
kinds of behavior are often obscured because, in practice, a few terms in (7.5.11) often
dominate the sum.
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7.6 CRITERIA FOR REACTION EQUILIBRIUM

In this section we use the combined laws from § 7.5 to obtain the criteria for reaction
equilibria in both closed and open systems. The development here parallels that pre-
sented in § 7.3 for phase equilibrium.

7.6.1 Closed Systems

For R independent reactions taking place in a closed system at fixed T and P, the com-
bined laws are

2 A v; 20 fixed T and P (7.4.49)
J

Just as in the nonreacting situations discussed in § 7.3, the inequality in (7.4.49)
applies to irreversible processes and the equality applies to reversible changes. Now
we repeat the argument in § 7.3.1 that establishes a correspondence between revers-
ible changes and equilibrium states; the consequence is that the equality in (7.4.49)
applies both to reversible changes and to equilibrium states. Therefore, for reaction
equilibrium at fixed T and P, we must have

Z‘Aj v = 0 fixed T and P (7.6.1)
j

However, this is only necessary but not sufficient for identifying equilibrium. For
example, when reactions are coupled it may happen that some terms in (7.6.1) are pos-
itive while others are negative, so the sum is zero; nevertheless, reactions are in
progress (v; # 0) and the system is not at equilibrium.

Equilibrium means that all driving forces are zero. For chemical reaction j, the driv-
ing force is the affinity A;: reaction equilibrium (at fixed T and P) occurs when each
affinity is zero. When this condition is met, the equality in (7.6.1) is satisfied term-by-
term,

izlj v, = 0 j=1,2,...,R  fixed T and P (7.6.2)

However, (7.6.2) is necessary but still not sufficient for reaction equilibrium. The nec-
essary and sufficient conditions are simply

A. =0 j=1,2,...,R  fixed Tand P (7.6.3)

If no driving force exists for reaction j (4; = 0), then the reaction is not occurring; so, a
consequence of (7.6.3) is that the rates are also zero,

v; = 0 ji=1,2,...,R  fixed T and P (7.6.4)
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For a system of R reactions, we obtain the equilibrium composition, not by solving the
rate equations (7.6.4), but rather by solving the R criteria (7.6.3) for equilibrium values
of R extents of reaction, éje ,j=1,2, ..., R. Those equilibrium equations are developed
and discussed in Chapter 10.

7.6.2 Open Systems

Open-system processes may include chemical reactions, diffusional mass transfer, and
energy transfer across system boundaries. All such processes must satisfy the open-
system form of the combined laws. When these processes are all complete and equi-
librium is established, then it is the equality in (7.5.10) that applies. However, this
statement is only a necessary condition; it is not sufficient. The necessary and suffi-
cient conditions for equilibrium are that each term in (7.5.10)—including each term in
each sum—must be zero. In other words, the system must simultaneously satisfy the
criteria already discussed for thermal equilibrium (7.3.3), mechanical equilibrium
(7.3.5), diffusional equilibrium (7.3.11) or (7.3.12), and reaction equilibrium (7.6.3).

7.6.3 Example

Can the criteria (7.6.3) for reaction equilibrium, which require all affinities to be
zero, be reconciled with the general criterion for isothermal-isobaric equilibrium,
namely dG = 0 (7.1.40)?

The objective here is to show that the reaction equilibrium criteria (7.6.3) are a conse-
quence of the more general equilibrium criterion (7.1.40) that applies to any NPT sys-
tem, including reacting systems. Consider a system of C species confined to a closed
vessel and maintained at constant T and P by contact with an external heat and work
reservoir. The species may undergo R independent chemical reactions. Since T and P
are fixed for the entire system, the NPT criterion for equilibrium (7.1.40) applies; that
is, when all reactions are complete and equilibrium is reached, the system’s total
Gibbs energy will be a minimum,

dG =0 fixed T and P (7.6.5)
The total Gibbs energy can be obtained from the species chemical potentials,
G = Y NG; (7.6.6)

i

where the sum runs over all species including all products and reactants. Consider a
process in which all reactions proceed by a differential amount; the response of G to
such a change is, in general,

C C
dG = Y N;dG;+ Y G;dN, (7.6.7)
i i
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But at fixed T and P, the first term on the rhs is zero by the Gibbs-Duhem equation,
and the second term can be rewritten using (7.4.15). The result is

Zﬂj v, = 0 fixed T and P (7.6.1)

and the arguments following (7.6.1) can be repeated leading to (7.6.3), as required. The
general criterion for isothermal-isobaric equilibrium (7.1.40) includes the reaction-
equilibrium criteria (7.6.3) as a special case. QED

7.7 SUMMARY

In this chapter we formulated the combined first and second laws for closed and open
systems, both with and without chemical reactions. We found that each form of the
combined laws imposes limitations on the directions and magnitudes of processes;
particular forms apply to particular kinds of processes and systems. In addition, the
combined laws provide the conditions that must be satisfied when all processes are
complete and equilibrium has been established. This means that the material in this
chapter can serve as the starting point for any thermodynamic analysis.

In every case, we found that the directions and magnitudes of natural processes
arise from entropy generation, which is always positive. This applies not only to pro-
cesses involving mechanical work, but also to those involving heat transfer, diffu-
sional mass transfer, and chemical reactions. However, we also showed that entropy
generation is mandatory only for the overall process. When a process involves two or
more coupled mechanisms, then an individual mechanism might proceed in a direc-
tion opposite to that followed when the mechanism operates alone. The importance of
such coupling is that it can enable certain transfers or transformations to occur as part
of a larger process, when otherwise those same transfers or transformations could not
occur in isolation.

The constraints imposed by the combined laws all adhere to a single basic pattern,

z [(driving forces) y (rate of)} > 0 (7.7.1)
for change change

During any process a driving force produces a change, and the rate of change is cou-
pled to the driving force in such a way that (7.7.1) is always obeyed. We have encoun-
tered the following examples of (7.7.1) applied to individual processes: when
mechanical work causes an expansion or contraction of a system, a pressure difference
(P - PB) drives a volume change (dV'); when a thermal interaction exists between two
systems, a temperature difference (T* — TP) drives heat transfer from one system to
the other (8Q); when material diffuses between phases o and B, a difference in chemi-
cal potentials drives the mass transfer (dN;); and when chemical reactions occur, the
affinity (7A) determines the progress of a reaction (d§). At equilibrium the equality in
(7.7.1) applies because both the driving force and the rate are zero: at equilibrium not
only is there no change in the state, but also there is no tendency for change. A sche-
matic of (7.7.1) for a single independent process appears in Figure 7.6.
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real processes
(“forward”)
not possible

equilibrium

Rate of /

change O [ ® - — ———— ——- ~— metastable

real processes

(“reverse”) not possible

0
Driving force

Figure 7.6 Schematic of Equation (7.7.1) for any one independent process, such as work, heat
transfer, diffusion, or chemical reaction. Closed circle identifies the equilibrium state in which
there is neither a driving force nor a change. Broken horizontal line locates metastable states, in
which a nonzero driving force fails to cause a change. Shaded regions cannot be reached by a
single process.

For most nonequilibrium situations, the inequality in (7.7.1) applies: a nonzero
driving force causes a nonzero rate of change. But nonequilibrium situations can also
be found in which the equality in (7.7.1) is satisfied. These occur when a finite driving
force is not sufficient to overcome a resistance to change; such situations are metasta-
ble and can be catastrophically sensitive to small disturbances. However, we never
observe situations in which a finite change is coupled to a zero driving force.

For situations involving mechanical work and heat transfer, we have some intu-
ition and experience to support the notions that driving forces are connected to rates,
and that an absence of driving forces implies zero rates. Such familiarity may foster
understanding because those driving forces and rates involve common measurables,
such as temperature and pressure. However, for phase and reaction equilibrium, the
driving forces imposed by Nature appear in terms of conceptuals: the chemical poten-
tials or, equivalently, the fugacities. These conceptual driving forces are only subtly
connected to physical reality, as we tried to show in Chapters 4-6.

Nevertheless, the equilibrium criteria presented in this chapter serve as the starting
points for performing engineering analyses on situations involving changes of state,
phase equilibrium, and reaction equilibrium. However, since these criteria appear in
terms of conceptuals (fugacities), we must first restate them in terms of measurables
before calculations can be performed. In principle, such restatements are straightfor-
ward: we merely select an appropriate form from the five famous fugacity formulae
and combine that form with an appropriate model for the required experimental data
(a PVTx model or a GE model). This is easier said than done; to select appropriate
models and fugacity formulae, we must exercise considerable engineering judgement.
Moreover, the resulting equations must nearly always be solved by trial, and they are
best solved on a computer. These are not thermodynamic issues, but they are impor-
tant practical issues, and they will be discussed in Part IV.
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PROBLEMS

7.1

7.2

7.3

7.4

(a) When isometric-isentropic processes are applied to closed systems, show that
(7.1.41) applies to the resulting changes of state and show that, when N, V,
and S are fixed, equilibrium occurs when the internal energy is minimized.
Describe a physical process that has N, V, and S fixed.

(b) When isobaric-isentropic processes are applied to closed systems, show that
(7.1.42) describes the resulting changes of state and show that, when N, P, and
S are fixed, equilibrium occurs when the enthalpy is minimized. Describe a
physical process that has N, P, and S fixed.

A quantity of pure oxygen is initially at 25°C and 1 bar. The gas is needed at 50°C
and 2 bar. Can the required change of state be accomplished by some adiabatic
manipulation of the volume? If not, what is the highest pressure that could be
attained by an adiabatic process that ends at 50°C? Assume c, = 7R/2. Clearly
state any other assumptions made.

A vessel formed from rigid, thermally conducting walls is immersed in a heat
bath at 25°C. The vessel has total volume V and is divided into two compart-
ments, o and P, by a rigid, movable, thermally conducting partition. The parti-
tion can slide laterally with little friction; initially the partition is positioned so
that one compartment has a volume V® = V/5. The partition is initially held in
place by stops. Each compartment is loaded with ten moles of pure nitrogen. A
process is initiated by removing the stops, allowing the partition to irreversibly
slide to a new equilibrium position. Estimate the amount of entropy generated.

Consider a system in which the electrostatic work mode is important,
W, = Edq where E is the electric field and g is the charge. Show that isothermal
transfer of charge across the system boundary occurs from the region of high
field to that of low field.
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7.5

7.6

7.7

7.8

7.9

TRANSFERS, TRANSFORMATIONS, AND EQUILIBRIA

Tabitha the Untutored has adopted the intuitively seductive position that the
driving force for pure-component diffusion is a density difference: material
always diffuses from regions of high density to regions of low density. Hence,
Tabitha claims that part of the criteria for equilibrium is an absence of density
gradients in a system.

(a) Use saturated steam tables to either support or oppose to this claim.

(b) If you do not believe the claim, then what is the driving force for diffusion?
Can you use the saturated steam tables to help demonstrate your answer?

For each of the following phase-equilibrium situations, write a complete set of
independent equalities that are always true at equilibrium:

(a) pure carbon dioxide in vapor-solid equilibrium.

(b) a binary mixture of benzene and water in three-phase vapor-liquid-liquid
equilibrium.
(c) carbonated water in equilibrium with its vapor (CO, + H,O).

(d) a binary mixture of 1 and 2 held in one half of a diffusion cell; the other half
contains pure 1 and is separated from the mixture by a semipermeable mem-
brane. The membrane passes 1 but not 2. The cell is immersed in a heat bath.

Could a difference in strengths of electric fields cause diffusion of a component
against its chemical potential gradient? If so, could this occur with neutral mole-
cules or only with charged molecules?

Consider a liquid solution in equilibrium with its vapor. Show that
AS; = (AH;)/T

3 ot v . . . .
where AS; = 5;-5; is the change in the partial molar entropy for component i
on condensation and AH; is the change in partial molar enthalpy of component i
on condensation.

Steam and methane can react to form hydrogen, carbon monoxide, and carbon
dioxide. (a) Obtain the stoichiometric coefficients and a set of independent reac-
tions for this system. (b) If a reactor initially contains 4 moles of steam and 2
moles of methane, find the composition of the mixture when 1 mole of steam and
0.1 mole of methane remain.

7.10 Carbon and zinc oxide can react to form Zn, CO, and CO,. (a) Obtain the stoichi-

7.11

ometric coefficients and a set of independent reactions for this system. (b) The
reactions can be carried out at 1300 K, 1 bar, with ZnO and C as solids and Zn,
CO, and CO, in a vapor phase. If the system initially has three moles each of ZnO
and C, what will be the vapor-phase composition when one mole each of ZnO
and C remain?

Consider the situation described in the example in § 7.4.3, with an initial loading
of 1.5 moles of methane and 1 mole of oxygen. Find values for the extents of reac-
tions that will provide the maximum amounts of CO and H,.
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7.12 Repeat the analysis in the example of § 7.4.2, but for the one arbitrarily selected
stoichiometric coefficient, use v{; = —1. Create a table of compositions vs. extent
of reaction and compare it with the one in the example. Which quantities change
and which remain unaffected by the way the reaction is balanced? Discuss.

7.13 Consider ammonia reacting with propane and propylene to form methane,
hydrogen, and hydrogen cyanide.

(a) Obtain the stoichiometric coefficients and a set of independent reactions for
this system.

(b) For the reactions carried out in the gas phase at 300 K, 1 bar, determine the
affinities for each reaction, as functions of the extents of reaction, when the
initial mixture contains 100 moles of ammonia, one mole of propane, and one
mole of propylene. Assume the gas is ideal and recall ideal gases have

G; = Gi + RTIn(x,P)

You may use the following values for the standard-state chemical potentials:

Species NH; HCN C3;Hg C;Hg CH, H,

C?/ R (K) -1,900 15,000 7,500 —2,800 -610 0

7.14 Let a binary mixture of components 1 and 2 form each of the phases o and B in
Figure 7.4. The interface between the phases is thermally nonconducting, fixed in
position, and permeable to both components. The position of the interface is such
that each phase has the same volume. Further, we load the same number of mol-
ecules of each component into each phase. We start an adiabatic, workfree pro-
cess by adjusting the temperatures so that T*> T8,

(a) If component 1 diffuses from phase B to phase o, is the process driven by an
enthalpy difference or by an entropy difference?

(b) Is it possible for component 1 to diffuse in one direction across the interface
while simultaneously component 2 diffuses in the opposite direction?
Explain your answer.

(c) When the process ends and equilibrium is established (and assuming no
phase changes occur), will the two phases have the same temperature? The
same composition?
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CRITERIA FOR OBSERVABILITY

D uring the design and operation of chemical processes, we routinely propose a
state for a system by specifying a temperature, pressure, composition, and
phase. Then the question is, Can the system be brought to that state? This is a question
of observability. In many situations, particularly those involving multicomponent
mixtures, the answer is not at all obvious. For example, at certain values for T and P,
mixtures of phenol and water can undergo drastic phase changes in response to slight
changes in composition: a mixture of phenol in water might be a one-phase vapor, or a
one-phase water-rich liquid, or a phenol-rich liquid in equilibrium with a water-rich
liquid, or it might be in three-phase vapor-liquid-liquid equilibrium.

In the previous chapter we derived criteria for identifying equilibrium states; for
example, in a closed system at fixed T and P, the equilibrium state is the one that min-
imizes the Gibbs energy. That minimization is equivalent to satisfying the equality of
component fugacities. More generally, we derived criteria for thermal, mechanical,
and diffusional equilibrium in open systems. But although those criteria can be used
to identify equilibrium states, they are not always sufficient to answer the question of
observability. Observability requires stability. Thermodynamic states can be stable,
metastable, or unstable; a stable equilibrium state is always observable, a metastable
state may sometimes be observed, and an unstable state is never observed.

In this chapter we develop the stability criteria for both pure substances and for
mixtures. Since we have three kinds of equilibria, we have three kinds of stabilities:
thermal stability, mechanical stability, and diffusional stability. If the proposed state of
a single phase violates any of these criteria, then the phase might spontaneously split
into two or more phases. Therefore, violations of stability criteria contribute to the
wealth of phase behavior observed in Nature. In this chapter we introduce some of
the phase behavior that results from instabilities, but the subject is an extensive one,
so the descriptions of observable phase behavior are continued in the next chapter.

In § 8.1 we derive the thermal and mechanical stability criteria for closed systems,
and in § 8.2 we apply those criteria to pure substances. In pure substances only ther-
mal and mechanical instabilities are possible; diffusional instabilities never occur
because pure substances cannot exhibit concentration gradients. Then in § 8.3 we
derive the diffusional stability criteria for open systems, and in § 8.4 we apply those
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criteria to fluid mixtures. In general, to answer the question of observability, we have
three stability criteria to test, but fortunately, the three are inclusive: if a one-phase
mixture is diffusionally stable, then it is also mechanically stable, and if the mixture is
mechanically stable, then it is also thermally stable.

Stability criteria are economically posed in terms of conceptuals, such as S, G, or A,
but before we can test for stability, we must connect the stability criteria to measur-
ables. The connections can be achieved either via models for volumetric equations of
state, say P(T, v, {x}), or (in cases of mixtures) via models for gE(T, P, {x}). Both
approaches are viable when all phases are fluid; however, a ¢£ model should be used
for any solid phase. In general, then, we continue to face the ever-present thermody-
namic problem of establishing useful relations between conceptuals and measurables.

8.1 PHASE STABILITY IN CLOSED SYSTEMS

The thermodynamics in this book is restricted to a description of well-defined states
and to analyses of processes that change the system from one state to another. Ther-
modynamics deals mainly with equilibrium states, which were discussed in a qualita-
tive way in § 1.2.2 and in a quantitative way in § 7.1. In both § 1.2.2 and § 7.1 we tacitly
assumed that the situations under discussion were stable equilibrium states. But in
general a stable state is only one of several possible kinds of states that are available to
systems. In § 8.1.1 we describe the kinds of states that can be legitimately proposed for
thermodynamic systems, and we identify those that are observed in practice.

Once we know the states that are available, then we want quantitative criteria that
enable us to identify the state actually assumed by the system. Formally, the criteria
are contained in § 7.1; for example, if the system is maintained at a constant T and P,
then the observed equilibrium state will be the one that satisfies (7.1.40)—the state
that minimizes the Gibbs energy. So if at fixed T and P, a system can possibly exist as
one phase or as two phases, the observed equilibrium situation will be the one with
the lower Gibbs energy. For example, when

8one phase < Stwo phases (8-1-1)

then the observed equilibrium situation will be a single phase. The criteria (7.1.40)
and (8.1.1) are often used to identify phase-equilibrium situations. However, criteria
such as (8.1.1) require us to solve the phase-equilibrium problem for the compositions
of the two phases. It is often useful to have alternatives to (8.1.1) that involve only the
state of the proposed one-phase situation; such forms are derived in § 8.1.2 for closed
systems and in § 8.3 for open systems.

8.1.1 Stability of Well-Defined States

By a well-defined state we mean a state to which property values can be assigned. The
class of well-defined states contains the observable equilibrium states discussed in
§ 1.2.2; but in addition, the class includes hypothetical states that are not observable
but that nevertheless can be identified as points on phase diagrams. Often we need to
determine whether a hypothetical state is in fact observable; thermodynamics pro-
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vides criteria for making such determinations. Sometimes we refer to hypothetical
states as proposed states, since they often occur in the development of a proposed solu-
tion to a thermodynamic analysis.

In the general case (considering not just thermodynamic systems), well-defined
states can be divided into two types: static and dynamic. Static well-defined states are
always equilibrium states in which all forces acting on a system are balanced at every
instant; however, static states are not accessible to thermodynamic systems, so we do
not discuss them further here.

In dynamic situations forces are not balanced at every instant; one special case of
dynamic situations is the steady state, in which forces are constant but they are not bal-
anced by opposing forces. In addition, dynamic situations may include states at equi-
librium. In dynamic equilibria forces fluctuate at every instant, but the forces are
balanced when they are averaged over finite durations and finite parts of the system.
The relevant time and length scales may or may not be sensible or important to an
observer. Moreover, these scales can differ substantially for systems in different
phases of aggregation; for example, property fluctuations in solids are typically orders
of magnitude smaller than those in fluids.

Dynamic states subdivide into various classes, as shown in Figure 8.1. The subdivi-
sions depend on stability characteristics, that is, on how a system spontaneously
responds to small perturbations or disturbances. In general the response can take one
of three possibilities: a large response, a small bounded response, or no response (that

System
Situations
Well-defined Nonequilibrium
States Conditions
D . Static
ynhamic (nonthermodynamic)

Unstable Stable Metastable Neutral
Equilibrium Equilibrium “Equilibrium” “Equilibrium”
Not observable Observable Observable Observable
Never observed Usually observed Sometimes observed ~ Sometimes observed

Figure 8.1 The hierarchy of system states
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is, no change in the balance of forces). When a system is unaffected by a small distur-
bance, the state is said to be neutral. When a system exhibits a small bounded response
to a small disturbance, the state is said to be a stable equilibrium state. Systems in stable
states often respond not merely in a bounded way to a disturbance, but they may also
return to their original unperturbed state.

When a system exhibits a large response to a small disturbance, the state is unstable.
Unstable states may be proposed for equilibrium and nonequilibrium situations;
however, unstable states are not observed in thermodynamic systems [1]. Thermody-
namic states are always dynamic situations in which molecular-scale fluctuations are
continually disturbing the state. Therefore if a proposed state happens to be unstable,
that state will not be observed because spontaneous fluctuations drive the system
away from the unstable state and toward some equilibrium state.

These distinctions among states can be illustrated by appealing to a mechanical
analogy, as in Figure 8.2. The figure shows a schematic diagram of a ball that rolls on a
track; the elevation z of the ball changes with its position x along the track. At any
instant the forces acting on the ball are (a) the downward force of gravity and (b) the
opposing upward force of the track. (We ignore friction.) Equilibrium occurs when
these two forces are balanced.

The gravitational potential energy E, is given by (2.1.4),

Ep = mgz (8.1.2)

where m is the mass of the ball, g is the gravitational acceleration, and z is the eleva-
tion of the center of the ball relative to some arbitrary datum. Since m and g are con-
stants over modest changes of z, the ordinate plotted in Figure 8.2 is proportional to
E,. This potential energy gives rise to a gravitational force,

unstable
equilibrium

unstable
nonequilibrium

metastable

neutral

Elevation, z

stable

Position along track, x

Figure 8.2 Kinds of states that are possible in a mechanical system, such as a roller coaster in a
gravitational field
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r 4k 8.1.3
g——(E)——mg (8.1.3)

where the sign indicates an attraction. This is Newton’s second law.

Figure 8.2 illustrates that different types of extrema correspond to different
responses to small disturbances and therefore to different stability characteristics. Sta-
ble equilibrium occurs at the global minimum in z(x) or equivalently in Ep(z): if a small
disturbance is applied to the ball when it is at the global minimum, the resulting
forces return the ball to that minimum. The ball exhibits a small response to a small
disturbance. In contrast, unstable equilibria occur at maxima in z(x): if a small distur-
bance is applied to the ball when it is at rest at a maximum, the resulting forces push
the ball farther from the maximum. The ball exhibits a large response to a small dis-
turbance. Neutral equilibria occur at points of inflection, because at those points a small
disturbance has no effect on the balance of forces.

Lastly we mention the troublesome distinction that exists between the global mini-
mum and local minima in Figure 8.2. We emphasize that only the global minimum is
identified as the stable equilibrium state. In mechanics, local minima are sometimes
called local equilibrium states, but in thermodynamics they are usually called metastable
equilibrium states. Differential criteria cannot distinguish metastable states from sta-
ble states: both kinds of equilibria exhibit small bounded responses to differential dis-
turbances. Without knowing the form of the curve, such as in Figure 8.2, a metastable
state can be identified only by testing its response to a finite (as opposed to a differen-
tial) change of state. The response is monitored by observing an appropriate potential
function . If y always increases in response to a finite disturbance, then the original
state was a stable equilibrium one; but if some finite disturbances cause y to decrease,
then the original state was metastable. In Figure 8.2, the quantity y is the potential
energy; in thermodynamic systems the role of y is played by the function that identi-
fies equilibrium: U, G, H, A, or -S. Recall we found in § 7.1 that the choice from among
U, G, H, A, or =S is dictated by the independent properties used to fix the thermody-
namic state; for example, if the state of a closed system is set by holding T, P, and N
constant, then equilibrium occurs when the Gibbs energy G is minimized.

Metastable equilibrium states are observed in thermodynamic systems; one exam-
ple is a superheated liquid, attained by careful isobaric heating of a pure liquid above its
vapor-liquid saturation temperature but without boiling. This metastability can often
be disrupted by a small (but finite) mechanical disturbance; the response may be an
instantaneous and violent partial flash in which the newly created gas-phase rapidly
expands, splashing liquid over a large area. The danger inherent in this sensitive
metastability motivates caution when heating liquids over low-temperature flames.
Other examples of observable metastabilities include the phenomena known as anti-
bubbles, in which a liquid droplet is surrounded by vapor which, in turn, is sur-
rounded by more liquid [2]. In response to external disturbances, antibubbles can
undergo violent phase changes.

Still other examples of observable metastabilities include subcooled phases, such as
subcooled vapors to make liquids, subcooled liquids to make solids, and subcooled
solids to make other solids. The lifetimes of such metastable phases can be substantial,
because the nucleation of new phases may require particular kinds of fluctuations that
occur only rarely. Lastly we mention the huge number of observable conformational
metastabilities that can be exhibited by large molecules such as proteins.
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/ Part A

rigid,

impermeable,

nonconducting @
boundary

Figure 8.3 Schematic diagram of an isolated system with a local element B distinguished from
the rest of the system A. For the stability analysis here, the element B is identified by a particu-
lar amount of material that remains constant; however, continual motion and rearrangement of
the molecules in B cause the energy UB and volume VB to fluctuate.

8.1.2 Criteria for Stability

We have noted that thermodynamic equilibrium is a dynamic situation: because of
molecular motions, microscopic regions of a system have intensive properties that
continually fluctuate about their equilibrium values. Consequently, localized inhomo-
geneities in property values occur, at least over some time and length scales. In this
section we develop thermodynamic conditions under which such fluctuations would
not change the state (disturb the stability) of a pure fluid. For example, if some small
fluctuation in temperature or pressure occurs in a localized portion of a system, will
the inhomogeneities die away, leaving the overall state undisturbed? Or will such
inhomogeneities grow, eventually driving the system to a new state—perhaps, even
causing a phase transition?

Consider a pure one-phase fluid at equilibrium and confined to an isolated vessel.
To analyze the response to a small fluctuation, imagine dividing the fluid into a large
part A and a small part B, as in Figure 8.3. Part B is not necessarily a fixed region of
space, but rather a particular collection of molecules whose number is constant over
the time-scale of interest and whose average properties are well defined. Now imag-
ine a fluctuation occurring in B, disturbing its energy UB and volume VB. Since exten-
sive properties are additive and the total system is isolated, we have

U = U+ UP = constant (8.1.4)

V = VA+ VB = constant (8.1.5)
and

S=58+58 (8.1.6)

For small fluctuations, the response of the total entropy can be reliably estimated
by a Taylor’s expansion,
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AS = 85 +8°S + ... (8.1.7)

The notation used here is adopted from the variational calculus; it is defined in
Appendix G. Since the system is initially at equilibrium, S is a maximum. Such max-
ima have 8S = 0, and they have

8%5 < 0 (8.1.8)

This means the surface S(U, V, N) is concave around a stable equilibrium state. If 25 =
0, as it is at critical points, then we would have to consider higher-order variations [3,
4], but this is beyond our present objective. The first-order response to the fluctuation
is given by

A A
55 = |99 | suAaL|95T| sva (8.1.9)
autJya VA A

B B
+ 95~ SUB + 95~ SVB
ou®) s avB8) B

Since the total internal energy is constant (8.1.4) and so too is the total volume (8.1.5),
we can eliminate the variations in B in favor of those in A and write

A B A B
55 = { 057 | _ |98 }suA{ I . i }SVA (8.1.10)
auA VA auB VB BVA u? aVB uB

The variations U4 and §VA are arbitrary and independent of one another, so (8.1.10)
can satisfy 8S = 0 only if we have, initially,

A B
[35 Aj - (aSB] (8.1.11)
ous)ya au~)ys

A B
[95A] - (35]3] (8.1.12)
avA) A \ovB) s

The portions A and B are each representative samples of the same fluid and, at the
start of the fluctuation, A and B are in equilibrium; hence, the value of each intensive
property in A is initially the same as in B. For example, by the fundamental equation
(3.2.4), (8.1.11) merely says that initially TA = TB, while (8.1.12) states that initially we
have PA = PB,

To apply the stability criterion (8.1.8) we need the second-order variation of S
which, from (8.1.9), is found to be

and
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875 = SA (BUAY +252 SUASVA + SA (3VAY (8.1.13)

v

+ B (5UBY +25B suBsVE + sB (5VBY

uu

where S, is a shorthand for the second derivative (025/0X dY); see Appendix G.
Using the conservation equations (8.1.4) and (8.1.5) together with the fact that all
intensive properties are initially the same in parts A and B, (8.1.13) becomes

825 =[sA

uu

BUAY +252 SUASVA + 52 (5VAY [(IN/NB) < 0 (8.1.14)

where N = N4 + NB. Equation (8.1.14) poses the test for stable equilibrium in terms of
the response of the A-part of the system. Since we are interested only in the sign of
825, we delete the A-superscripts and drop the factor N/NB. The criterion for stable
equilibrium is then

8°S =5, (8U)*+2S, 3USV +S, (8V)*< 0 (8.1.15)

In the language of linear algebra, the rhs of (8.1.15) is a quadratic form (see Appendix
B); that is, letting (38U V) be the vector of variations, (8.1.15) can be written as

2 ou
0°S S <0 (8.1.16)
[su sV LSVJ

where S is the symmetric matrix

S S
S = {S”” S””] (8.1.17)

uv (%Y

If 325 is to be negative for all possible variations U and 8V, then the matrix S must be
negative definite; or equivalently, (-S) must be positive definite. The conditions under
which S is negative definite are given by a theorem from linear algebra: it is necessary
and sufficient that the principal minors of S satisfy the following inequalities [5]:

S,, <0 (8.1.18)

and

Suu SMU — S S

uv S"U"U

S,.S,. >0 (8.1.19)

When an equilibrium state satisfies (8.1.18) and (8.1.19), then the system is stable to
small fluctuations. We now reexpress these criteria in terms of measurables.
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8.1.3 Stability Criteria in Terms of Measurables

To evaluate S, we first rewrite the fundamental equation (3.2.4) in the form

s = 4, Pdv (8.1.20)
T T
Then
2
"), = autr), = = 60)
S = S N [ 8.1.21
Hence,
-1
e = = <0 (8.1.22)
T-C

0
Therefore, to satisfy the stability criterion (8.1.18), we must have

cC,>0 (8.1.23)

%

This is the criterion for thermal stability: for a system in a well-defined state to be dif-
ferentially stable, its internal energy must always increase in response to any isometric
fluctuation that increases the temperature.

To evaluate S, we use the fundamental equation (8.1.20) and write

d [(9S J (1 -1(oT
= —|{= =—|=] = —<|= 1.24
Suo BVKBLI)VL BV(T)U TZ(av)u (8:1.24)

ou/dV Ty —P
lz EaU/aT)) - = Y;; (8.1.25)
T v T°C,

where 7, is the thermal pressure coefficient defined in (3.3.5).
To evaluate S, we again use (8.1.20) to obtain

2 P
5. - [a s J -2 (B -y -2 (8.1.26)
avz u oV \T u TV /)u T2 VJu

The second derivative on the rhs is given in (8.1.24). To obtain the first derivative, con-
sider U = U(P, V), and with help from Chapter 3, we eventually find

au C”dp G Ty.-P|dV (8.1.27)
_Y—v +(V—O(+ '\{U— ) .

Therefore,
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oP —YU(CU )
) o= 2 2+Ty.-P 8.1.28
(8V)u C, Vo 1o ( )

where o is the volume expansivity (3.3.6). Combining (8.1.24), (8.1.26), and (8.1.28)
yields

1 (Ty,—P)?

S =
vo TVKT Tzcv

(8.1.29)

where k7 is the isothermal compressibility (3.3.25). Finally, putting (8.1.22), (8.1.25),
and (8.1.29) into the criterion (8.1.19) gives

S s _ss -1 (8.1.30)

uu“vo - “uv-uv 3
T3VC,x;
or
Kkp > 0 (8.1.31)

This is the criterion for mechanical stability: for a thermally stable system to also be
mechanically stable, the system volume must always decrease in response to any iso-
thermal fluctuation that increases the pressure.

Note that it appears to be possible for (8.1.30) to be satisfied by having both C,, <0
and k7 < 0; however, this is only a mathematical possibility that cannot actually occur.
In fact, we expect that the mechanical stability limit will be violated before the thermal
limit, because the mechanical limit represents a response of higher-order than the
thermal limit [3]; higher-order terms approach zero before lower-order terms. This
expectation is confirmed experimentally: whenever an initially stable system is driven
into an unstable region of its phase diagram, the mechanical stability limit is always
violated before the thermal limit. In other words, a state may be mechanically unsta-
ble but remain thermally stable, because k1 appears only in (8.1.31) and not in (8.1.23).
The mechanical stability criterion (8.1.31) is a stronger test than the thermal stability
criterion (8.1.23).

With the differential stability criteria (8.1.23) and (8.1.30) plus relations given in
Chapter 3, we may identify bounds on other thermodynamic properties. For example,
(3.3.31) relates the isometric and isobaric heat capacities,

~ TVo?
Cy = Cot (8.1.32)
This implies that a differentially stable system must have
C,2C,>0 (8.1.33)

Similarly, (3.3.30) relates the heat capacities and compressibilities, so that (3.3.30)
together with (8.1.33) implies
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T_ZP o (8.1.34)

Hence,

(8.1.35)

)
—
\Y
A
7
\Y
o

The equalities in (8.1.33) and (8.1.35) apply only when the expansivity o = 0, a condi-
tion that rarely occurs.

Lastly, we emphasize that (8.1.23) and (8.1.31) are differential criteria: they provide
the conditions under which a system is stable to small disturbances (otherwise the
Taylor series (8.1.7) does not apply). Unfortunately, those criteria cannot be used to
determine whether a proposed state is metastable or stable, because metastable states
can also satisfy differential stability criteria. To distinguish metastable states from sta-
ble ones, we must observe the system’s response to a finite, as opposed to a differen-
tial, disturbance.

8.2 PURE SUBSTANCES

We now use the stability criteria from § 8.1.2 to help judge the observability of pure-
fluid states and to help describe phase behavior of pure fluids. Issues of observability
constitute the theme of this chapter, and so it may be helpful to clarify how an observ-
able state differs from one that is observed. We use observable to mean a state that can
be realized in a laboratory. To realize an observable state, it is necessary to adjust cer-
tain measurables, such as T, P, and {x}, to particular values; however, such adjust-
ments may not be sufficient to create an observable state. Some observable states can
only be observed when measurables are manipulated in certain ways. In general, sta-
ble equilibrium states are always observable, but they are not always observed: some-
times a metastable state will be observed instead of a stable state. In contrast, an
unstable state is neither observable nor observed (see Figure 8.1).

In the descriptions of pure-fluid phase behavior presented in this section, we rely
on the simple yet qualitatively realistic equation of state developed by Redlich and
Kwong (4.5.66). That equation is cubic in the volume and can be written in a pressure-
explicit form,

RT a
v-b JT v(v +b)

P = (8.2.1)

The parameters 4 and b can be related to critical properties, as in Table 4.4.

To start the section, we develop relations by which an equation of state can be used
to identify the observability of a proposed pure-fluid state (§ 8.2.1), and we illustrate
with an example (§ 8.2.2). Then we qualitatively describe pure-fluid Pv diagrams
(§ 8.2.3 and 8.2.4), and follow with quantitative methods for determining vapor pres-
sures (§ 8.2.5) and latent heats of vaporization (§ 8.2.6). We end the section with brief
qualitative comments on pure-component phase equilibria involving solids (§ 8.2.7).
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8.2.1 Determination of Phase Stability for Pure Fluids

The problem to be considered is this: we have proposed a T and P for a pure one-
phase fluid and we want to determine whether that state is observable. To answer
this, we apply the following criteria, which are obeyed by any stable pure-fluid state:

(a) Itis stable to small disturbances; that is, it satisfies the differential criteria for
thermal (8.1.23) and mechanical (8.1.31) stability.

(b) It has a lower Gibbs energy than any other state that can exist at the same T
and P.

If (a) is violated, then (b) is also violated, and the proposed single-phase state is unsta-
ble: it is not observable. If (a) is obeyed, but (b) is violated, then the proposed single-
phase state is metastable: it is observable and it might be observed. If (b) is satisfied,
then (a) is also satisfied, and the proposed single-phase fluid is stable and observable.
When the proposed state is unstable or metastable, the observed state may be one
phase or more; unstable and metastable one-phase states do not always split into two
or more phases.

A conventional way to address the criteria (a) and (b) is to employ a volumetric
equation of state of the form P(T, v) that applies to all fluid phases of our pure sub-
stance. The Redlich-Kwong equation (8.2.1) is an example. Any properly constructed
model for a volumetric equation of state should satisfy the thermal stability criterion
(C, > 0), and as far as we are aware, all cubic equations of state having constant
parameters (2 and b) do so. Consequently, thermal stability only needs to be tested
when we construct complicated equations of state, such as those that are high-order
polynomials in v or that have temperature-dependent parameters. Moreover, as we
noted under (8.1.31), the mechanical stability criterion is a stronger test, so we do not
consider thermal stability further here.

To test for mechanical stability, we first solve our equation of state for all real roots;
these roots correspond to the available volumes at the proposed T and P. If only one
real root for v is obtained and (8.1.31) is obeyed, then the proposed single-phase is sta-
ble and observable at the given T and P. This solves our problem.

More problematic are those situations in which the equation of state provides mul-
tiple roots for v at the given T and P. Which of these are observable? To decide, we first
eliminate any v-roots that fail to satisfy the differential criterion for mechanical stabil-
ity (8.1.31). That criterion can be written in several forms, but it may be more helpful
here to state it as a criterion for instabilities,

(ai)) >0 unstable (8.2.2)
0v JT

Therefore if the isotherm on a Pv diagram has a positive slope at the root v, then that
state is unstable and it cannot be observed.

At this point we have eliminated all roots that fail to satisfy the mechanical stability
criterion, but we do not yet have a unique root that is stable. To select from among the
remaining alternatives, we apply criterion (b), cited at the start of this section. That
criterion is a consequence of the equilibrium conditions developed in § 7.1.5: the sta-
ble equilibrium state will have a lower value of the Gibbs energy than any other state
that might exist at the specified T and P.
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We first test single-phase states. Let vi(T, P) be the desired volume of the proposed
state, and let Uj(T, P) be another root. Then the test is whether

gpure(T’ P; Uk) < gpure(Ta P; U]) (8.2.3)

If this condition is satisfied for all roots j # k, then the proposed state vy (T, P) is the sta-
ble state and it is observable.

The criterion (8.2.3) is posed in terms of conceptuals, but to perform the test, it
must be connected to measurables. For computations based on a volumetric equation
of state, it is usually convenient to relate g to measurables via fugacity coefficients. So
we integrate the definition of the fugacity (4.3.10) from pure state v;(T, P) to pure state
v (T, P),

(T, P;v) —

g pure

f
gpure (T, P; U]) = RT 11‘1[ s kJ (8.2.4)

pure j
Then the condition (8.2.3) can be written in terms of the fugacity as

(T,P;0y) < fouee(T, P 0)) (8.2.5)

f i)ure pure

and on substituting FFF # 1 (6.4.1), we obtain (8.2.5) in the form
(ppure(T’ P; ZJk) < (ppure(T’ P; Z)]-) (8.2.6)

These pure-component fugacity coefficients can be computed from the known equa-
tion of state by evaluating (4.4.24). At the specified T and P, the stable equilibrium
state will be that single-phase state whose volume provides the lowest value of the
fugacity coefficient.

Finally, we note that two pure volumes might have the same value for the fugacity
coefficient, at the same T and P,

(T,P;v) = (T, P v)) (8.2.7)

Ppure Ppure
When this occurs, the stable state can be a two-phase equilibrium situation. We
describe calculations for identifying these situations in § 8.2.5.

8.2.2 Example

How is a cubic equation of state used to test the stability of a proposed state for a
pure one-phase fluid?

To make this general question concrete, we repose it this way: Is pure propane a stable
one-phase gas at 300 K, 15 bar? To address this question, we adopt the Redlich-Kwong
equation of state (8.2.1) and obtain values for the Redlich-Kwong parameters a and b
from critical properties. Propane has T, = 369.8 K and P, = 42.4 bar; hence, the expres-
sions in Table 4.4 give
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(RT,)*
a = 04275 [T, —— = 18.33(10”) (cc/mol)* (bar K*°) (8.2.8)
Cc
RT,
b = 0.08664 = 62.82 cc/mol (8.2.9)

c

To answer the question, we apply the procedure outlined in § 8.2.1.

Step 1. Determine all real roots at the specified T and P. Since the Redlich-Kwong
equation is cubic in 7, we can solve it analytically using Cardan’s method (Appendix
C). That method gives three real roots at 300 K, 15 bar: a gas-phase root, vg,, = 1194 cc/
mol, plus two others, v, = 368.2 cc/mol and v = 100.8 cc/mol.

Step 2. Eliminate any roots having (dP/dV)r > 0. The Redlich-Kwong equation gives

(BP) _ _—RT | a(2v +b)
T

— | = (8.2.10)

dv (U—b)2 A/T7J2(0+b)2
At 300 K, 15 bar, 1194 cc/mol, the gas-phase root gives (dP/0V)r = —0.008 bar mol/ cc:
the proposed gaseous state is not unstable. For the “middle” root (368.2 cc/mol),
(8.2.10) gives (0P/dV)r = 0.07 bar mol/cc; therefore, this state is unstable and can be
eliminated from further consideration. For the liquid root (100.8 cc/mol), (8.2.10)
gives (0P /0V)r = 7.0 bar mol/cc; so this state is also not unstable. We have two vol-
umes to consider further and three possible outcomes: the fluid is a stable single-
phase gas, or it is a stable single-phase liquid, or it exists in two-phase vapor-liquid
equilibrium (VLE).

Step 3. Of the two remaining one-phase states, at the given T and P, which has the
smaller value of ¢? That is, we apply (8.2.6), which offers the following possibilities:

A

(@) If @gys
(b) If @gqs
() If @gss = @yig, then two-phase VLE is the stable situation.

@iz, then the gas is the stable phase.

\

@1ig, then the liquid is the stable phase.

The Redlich-Kwong equation is pressure-explicit, so we compute the fugacity coeffi-
cient from (4.4.24). We find the Redlich-Kwong expression for ¢ to be

N el A TN (U_”’)
o = -~ ln( v) Iz - L2 —pn(2 (8.2.11)

where B is a dimensionless group,

a
bRT.JT

(8.2.12)

At 300 K, 15 bar, (8.2.11) gives @, = 0.78 and ¢y;; = 0.65. Therefore at the given T and
D, the stable state is liquid. The gas phase is metastable, and the two phases cannot
exist in equilibrium with one another.
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8.2.3 Stable One-Phase States of Pure Fluids

The discussions in § 8.2.1 and 8.2.2 imply that a Pv diagram can be divided into two
regions: one in which each isotherm can have only one value for the volume v at every
pressure B, and a second region in which an isotherm may have multiple values for v
at some pressures P. These two regions are separated by the critical isotherm; for the
fluid in Figure 8.4, the critical isotherm occurs at T, = 304.2 K.

Every state “above” the critical isotherm (T > T,) is a stable single-phase fluid,
because it has no alternatives: each (T, P)-point has only one volume available. There-
fore each state satisfies the mechanical stability criterion and all supercritical iso-
therms have negative slopes on Pv diagrams, as in Figure 8.4. Gases and vapors have
high molar volumes, while liquids have smaller volumes. But along supercritical iso-
therms (such as T = 350 K in Figure 8.4), there is no clear distinction between gas and
liquid. If a supercritical fluid can be condensed by decreasing T at fixed P or by
increasing P at fixed T, then we call it a vapor. But if a supercritical fluid can only be
condensed by changing both T and P, then we call those substances fluids (though
they could also be called gases). When the distinction among liquid, gas, vapor, etc. is
unimportant, we will also use fluid as a generic term to mean any non-solid phase.

Along any isotherm below T, (a subcritical isotherm), multiple volumes occur for
pressures P < P.. When calculated from analytic equations of state, each subcritical
isotherm has one or more regions of positive slope and two or more regions of nega-
tive slope (such as along T = 250 K in Figure 8.4). At the smallest molar volumes the
slope is negative [(0P/dv)T < 0] and the fluid is one-phase liquid. Similarly, at the larg-

150
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P (bar)
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100 1000
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Figure 8.4 Four isotherms of a pure fluid computed from the Redlich-Kwong equation of state.
Parameters a and b were computed from T, and P, using the relations in Table 4.4. The critical
point (filled square) was taken to be T, = 304.2 K and P, = 73.8 bar, which is that for carbon diox-
ide. However, with these values the Redlich-Kwong equation gives v, = 114 cc/mol, which is
not a good approximation to the experimental value of 94 cc/mol for CO,. Note that the two
isotherms below T, contain metastable and unstable states.
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est molar volumes the slope is also negative and the fluid is one-phase vapor. But over
some range of volumes the slope is positive [(dP/dv)t > 0] and by (8.2.2) the fluid is
unstable. Such states are not observable, and the fluid will spontaneously relax to
some other situation that is stable. The stable situation may be one phase or two.

The critical isotherm (T, = 304.2 K in Figure 8.4) separates those fluids that are
always one phase from those that can split in two. The critical isotherm does not con-
tain any unstable points (points having positive slopes), but it does pass through one
point of zero slope. This is a point of inflection and identifies the critical point; any
pure-fluid critical point has

(a—P) =0 pure critical point (8.2.13)
v JT
and
2
9P _ 0 pure critical point (8.2.14)
902 )7

Note that a critical fluid is a one-phase substance, not two. To locate a critical point,
we use our particular equation of state to solve the one-phase equations (8.2.13) and
(8.2.14); we do not solve any phase-equilibrium equations to find T, P, and v,.

Since the isotherm has zero slope at the critical point, the isothermal compressibil-
ity at the critical point obeys

Kp = oo (8.2.15)

This suggests that near the critical point a fluid displays unusual behavior. The behav-
ior is unusual because natural fluctuations are not completely suppressed, as they are
when 7 is bounded and positive, but neither are fluctuations able to grow so as to
force a phase change, as they can when 7 is negative. Such fluctuations cause the
observable phenomenon known as critical opalescence; moreover, critical fluctuations
are independent of molecular constitution, so that near their critical points all fluids
have certain traits in common. Descriptions of critical phenomena are beyond the
scope of this book; see instead [6].

The division of a Pv diagram into supercritical and subcritical regions helps relate
the diagram to the stability criteria derived in § 8.1. In addition, that division corre-
sponds to certain mathematical descriptions of critical and stability phenomena.
Recall, supercritical isotherms provide only one real root for v from an analytic equa-
tion of state, while subcritical isotherms provide more than one real root; such a
change in the number of real roots is called a bifurcation of an algebraic equation. The
existence of critical points and the (mathematical) possibilities of unstable states are
reflected in bifurcations of the algebraic equations of state that attempt to describe the
phenomena [7]: the critical point can be called a bifurcation point. But although cubic
equations of state, such as the Redlich-Kwong, exhibit bifurcations, they do not reli-
ably describe the behavior of fluids in the critical region: such classical models fail to
reproduce the correct scaling laws [6].

The jargon associated with bifurcations will be used in the following ways. When
we say an equation has not bifurcated, we merely mean that an equation provides
only one real root for the quantity of interest. When we say an equation has bifur-
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cated, we mean the equation provides more than one root. An example of the context
would be this: All states along supercritical isotherms are stable single phases because
the equation of state does not bifurcate at supercritical states. For pure fluids, this
usage probably provides only limited benefits. But when we come to mixtures, the jar-
gon is convenient because mixtures have other equations, in addition to equations of
state, that can bifurcate, and bifurcations of equations for different properties lead to
different kinds of stability behavior, as we shall see in § 8.4.2.

8.2.4 Metastable and Two-Phase States of Pure Fluids

Recall from § 8.1 that differential stability criteria, such as (8.2.2), cannot distinguish
stable states from metastable states. In fact Figure 8.4 contains states on the 250 K iso-
therm that have negative slope (k1 > 0), but which are metastable and so are not nor-
mally observed. In Figure 8.4, one metastable region includes a range of volumes over
which the 250 K isotherm has negative pressures. In engineering practice, negative
pressures are rarely observed; nevertheless, they are not necessarily artifacts of the
equation of state.

A negative pressure implies that a substance is under tension rather than compres-
sion (i.e., a pull rather than a push). Negative pressures are not possible in ideal gases
because without intermolecular forces there is no resistance to a tension. Even in most
real gases, the collective effects of intermolecular forces are so weak that a negative
pressure could be achieved only with difficulty, if at all. However, liquids are another
matter. In liquids, molecules exert attractive forces on one another, so liquids can
resist tension and sustain negative pressures. Negative pressures are commonly used
by Nature to move water from roots, through narrow xylem vessels, to leaves of trees
and other plants [8]: so long as the fluid remains a continuous phase, transpiration lit-
erally pulls water up from plant roots.

For a pure substance, such as in Figure 8.5, metastable states on an isotherm lie
between stable states and unstable states. At one end of the metastable range, metasta-
ble states are separated from unstable states by a curve called the spinodal. For a pure
substance, the spinodal is the locus of points at which the differential stability crite-
rion (8.2.2) is first violated, that is, the points at which

(a—P) =0 pure spinodal (8.2.16)
dv JT

Since this condition is also satisfied by the critical point, a pure-fluid critical point
must lie on the spinodal. For a pure substance that obeys the Redlich-Kwong equation
of state, the spinodal temperatures and volumes are related by

»\2/3
T = (M] (8.2.17)
i Ro>(v + b)>

By substituting (8.2.17) into the Redlich-Kwong equation (8.2.1), we can relate the
pressure to the volume along the spinodal; a plot appears in Figure 8.5. Note that, at
the critical point, the spinodal intersects the critical isotherm at its point of inflection.
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Figure 8.5 Two isotherms taken from Figure 8.4 together with the spinodal, all computed from
the Redlich-Kwong equation of state. The critical point is marked with a filled square. States
under the spinodal (shaded) are unstable and cannot exist as single phases; states above the
spinodal may be stable or metastable.

Along any pure-fluid, subcritical isotherm, the spinodal separates unstable states
from metastable states. At the other end of an isotherm’s metastable range, metastable
states are separated from stable states by the points at which vapor-liquid, phase-
equilibrium criteria are satisfied. Those criteria were stated in § 7.3.5: the two-phase
situation must exhibit thermal equilibrium, mechanical equilibrium, and diffusional
equilibrium. Since we are on an isotherm, the temperatures in the two phases must be
the same, and the thermal equilibrium criterion is satisfied.

We use superscript v to indicate the vapor phase and use ¢ to indicate the liquid.
Then mechanical equilibrium will occur when there is no net driving force tending to
change the volume of either phase; this occurs when

= pl= p° (8.2.18)

where P® is the saturation pressure common to both phases; P° is usually called the
vapor pressure. For a pure fluid, the vapor pressure depends only on temperature.

For a pure fluid, diffusional equilibrium will occur when there is no net driving
force for diffusion of material from one phase to the other. This occurs when

o= r" (8.2.19)

For a pure substance, the fugacity depends on temperature, pressure, and phase. The
locus of saturated liquid and saturated vapor states that satisfy both (8.2.18) and
(8.2.19) forms the vapor-liquid saturation curve (also called the vapor pressure curve).
Pure-fluid vapor pressures P° increase with increasing T. But along the liquid branch
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Figure 8.6 Vapor-liquid equilibrium curve for the substance of Figure 8.4, computed from the
Redlich-Kwong equation of state. The critical point is marked with a filled square. Also shown
is the 250 K isotherm taken from Figure 8.4. At this temperature the Redlich-Kwong equation
gives P® = 40.8 bar; the saturated vapor and liquid volumes occur at the filled circles. The van
der Waals loop is that part of the 250 K isotherm between the saturated phases.

of the vapor-pressure curve, P? increases with increasing molar volume v, while along
the vapor branch, P° decreases with increasing v. This is shown in Figure 8.6. Hence at
some v, the vapor-pressure curve passes through a maximum: that maximum coin-
cides with the spinodal at the critical point. Subcritical isotherms, such as that at 250 K
in the figure, cut the saturation curve at two points, one for the saturated liquid, the
other for saturated vapor. Those two phases have the same pressure (the vapor pres-
sure P?), so they can be connected by a horizontal tie line, which “ties” together the
two phases that are in equilibrium. Cubic equations of state approximate the tie line
by a “van der Waals loop” between the two saturated volumes. Isotherms computed
from more complicated equations of state may exhibit more complicated behavior.

The behavior of metastable and unstable fluids is determined by the external con-
straints imposed on the system (see § 6.1). For example, the behavior at fixed T and P
differs from that at fixed T and v, where v is the overall molar volume.

(a) Fluids at proposed states (fixed T and v) under the spinodal will always spon-
taneously split into a saturated vapor phase in equilibrium with a saturated
liquid phase; the final pressure will be the vapor pressure P¥(T). Fluids at pro-
posed states (fixed T and v) between the spinodal and the saturation curve are
metastable; those metastable one-phase fluids may be observed or the fluid
may split into two phases at P(T).

(b) In contrast, fluids at fixed T and P will only split into two phases if P is the
vapor pressure for T. Otherwise, unstable fluids at fixed T and P always relax
to the stable one-phase fluid having the lowest molar Gibbs energy. Further,
metastable fluids at fixed T and P may be observed, or those fluids may also
relax to the stable one-phase condition.
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8.2.5 Vapor Pressures from Equations of State

Before we can solve the equilibrium criteria (8.2.18) and (8.2.19) to obtain the satura-
tion curve, we must replace the fugacities with measurables. One way to proceed is to
use famous fugacity formula #1 (6.4.1), which connects fugacities to measurables via
fugacity coefficients ¢. Since both vapor and liquid are pure phases and the pressures
in each phase are the same, (8.2.19) combined with (6.4.1) reduces to

(p;ure(T) = (p;ure(T) (8220)

We will find in § 9.1 that, for a pure substance in two-phase equilibrium, only one
property is needed to specify the intensive state; in (8.2.20) we have used temperature.
However, even after we set a value for the subcritical temperature, (8.2.20) remains
implicit in three unknowns: the vapor pressure P° plus the molar volumes of the lig-
uid and vapor phases, v and v?. To close the problem we need another equation, typ-
ically, a PvT equation of state that relates P° to both saturated volumes at the specified
T. Therefore, we must choose an equation of state that is sufficiently complicated that
it bifurcates and provides multiple roots for the volume over some range of states.
Such equations of state are explicit in the pressure [P = P(T, v)], and then we would
compute ¢ from

ln(ppure(T’ p) = J.N[Z_l]d%"'(Z—l) - InZ (4.4.24)

We apply (4.4.24) to each phase; for each, the integration in (4.4.24) is to be performed
along the same subcritical isotherm. When we apply (4.4.24) to the liquid, the lower
integration limit is v/, and when we apply it to the vapor, the lower limit is v% Note
that the value of the compressibility factor Z in the liquid phase differs from that in
the vapor (Z/ # Z”) because the molar volumes of the two phases differ. Under the
integral, the value of Z is not constant, but changes with molar volume: Z = Z(T, y).
However, outside the integral, the other two values of Z are fixed at the saturation
conditions: Z = ZXT, vf) and Z = Z%(T, v?).

Using (4.4.24) for both sides of (8.2.20) and simplifying algebraically, we obtain the
following important result,

P(T) =

X4
vl - IUP(T, v do fixed T<T, (8.2.21)
v —of

In passing from (4.4.24) to (8.2.21) we have changed the dummy integration variable
from  to v once that dummy variable can be clearly distinguished from the integra-
tion limits. The functional form for the integrand P(T, v) is provided by the pressure-
explicit equation of state. The integration in (8.2.21) is on the chosen subcritical iso-
therm T, along the van der Waals loop, from the saturated liquid volume v? to the sat-
urated vapor volume o7

Equation (8.2.21) says that at any subcritical temperature, the vapor pressure is
given by a mean-value theorem (Appendix A): P? is the mean of the pressures along
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Figure 8.7 Three interpretations of the integrations (8.2.21) and (8.2.22) that determine the
vapor-liquid saturation pressure for a pure substance. In each panel the solid curve is the 250 K
isotherm from Figure 8.5. The filled circles locate the saturated volumes at P° = 21.9 bar. Top:
The shaded area is that given by the integral in (8.2.21). Middle: The shaded region is the rectan-
gular area P*(v? — vf). According to (8.2.21), the shaded regions in the top two panels have the
same area. Bottom: The shaded area is that provided by the equal-area construction (8.2.22); in
this panel, the positive and negative areas cancel one another.
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the van der Waals loop. Hence, the area under the van der Waals loop (top panel in
Figure 8.7) is the same as the area of a rectangle of width (¥ — vf) and height P® (mid-
dle panel in Figure 8.7).

An alternative form of (8.2.21) can be attributed to Clerk Maxwell [9]. Cross multi-
ply the denominator in (8.2.21) from the rhs to the lhs and then subtract the rhs from
the lhs. We obtain

JUU[P(T, v)—P(T)]dv = 0 fixed T<T, (8.2.22)
of

This form is called Maxwell’s equal area construction and is illustrated in the bottom
panel of Figure 8.7. The form (8.2.22) states that the van der Waals loop and the tie line
bound two areas whose magnitudes cancel when combined algebraically.

8.2.6 Latent Heats of Vaporization from Equations of State

A PuT equation of state not only provides the saturation pressure and volumes of a
pure substance in vapor-liquid equilibrium, it can also provide the latent heat associ-
ated with the phase change,

Ahye, = B = B (8.2.23)

By adding and subtracting the ideal-gas enthalpy, (8.2.23) can be expressed in terms of
the residual enthalpies,

Ahyg, = B0 1" (8.2.24)

We now use the Legendre transform (3.2.9) to relate 17 to u’es and v'¢s, use (4.4.14) for
u'es, (4.2.2) for v'es, and with the help of the mean-value form for the vapor pressure
(8.2.21), we find

Ahyep(T) = T JZ v,(T, 0) dv fixed T<T, (8.2.25)
0

where v, is the thermal pressure coefficient (3.3.5) and the integration is along the sub-
critical isotherm T around the van der Waals loop.

We can also show that the latent heat is simply related to the slope of the vapor
pressure curve P*(T). Let us differentiate the vapor pressure in (8.2.21) wrt tempera-
ture; we recognize that the integration limits v/ and v? must change with temperature,
so we apply the Leibniz rule for differentiating such integrals (Appendix A). The
result is

dp’ _
dT ~ o°

1 v? ‘
o J , Y (T, 0)do fixed T< T, (8.2.26)
(%

This is another mean-value theorem; on a PT diagram, the slope of the vapor-pressure
curve is the mean of the values of the thermal pressure coefficient along the van der
Waals loop. Combining (8.2.25) and (8.2.26) gives Clapeyron’s equation
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dpr’ _ Ahvup

ar- _ (8.2.27)
dT ~ TAv

where Av = v? — vf. Clapeyron’s equation is always true; moreover, a form analogous
to (8.2.27) also applies to pure-component liquid-solid and solid-vapor equilibria.
Consequently, on a PT diagram the slope of the melting curve is proportional to the
latent heat of melting and the slope of the sublimation curve is proportional to the
latent heat of sublimation.

For vapor-liquid equilibria, Clapeyron’s equation simplifies. Multiply and divide
the rhs by P/RT, and then Clapeyron’s equation (8.2.27) can be written as

s Al
ar- _ iz AZ”’ (8.2.28)
dT RT

where AZ is the difference in compressibility factors of the two phases, AZ = Z° - Z°,
Both Alyp and AZ vary with temperature; however, their ratio (Ahygp/AZ) is roughly
constant, as shown in Figure 8.8. Therefore we assume (Ahwp/ AZ) is constant, sepa-
rate variables in (8.2.28), and integrate along the saturation curve. The result is

—-Ah 1
InP° = ”“’”(-) A 8.2.29
n Raz \T)" (82.29)

where A is an integration constant. Near the triple point, AZ = Z” = 1, and (8.2.29)
becomes an integrated form of the Clausius-Clapeyron equation,
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Figure 8.8 Latent heats of vaporization Ay, for pure water. The heat of vaporization of a pure
substance is not constant; rather, it varies from a maximum at the triple point (0.01°C for water)
to zero at the critical point (374.15°C for water). In contrast, the ratio Ahmp/ AZ is roughly con-
stant over the entire range of saturation temperatures.
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InpP° = _TB +A (8.2.30)

where B is another positive constant. Away from the triple point, (8.2.29) is a much
better approximation to the vapor-pressure curve than is (8.2.30). Note that, fortu-
itously, the Clausius-Clapeyron equation is also obtained from (8.2.29) by assuming,
incorrectly, that AZ = 1 and Ahyap = constant.

Equation (8.2.29) suggests that a straight line will be obtained when logarithms of
pure-component vapor pressures are plotted against reciprocal absolute tempera-
tures; further, the slope of that line provides an estimate for the latent heat of vapor-
ization. This is tested in Figure 8.9 using vapor-pressure data of water; the degree of
linearity is striking and is typical of most pure substances. Any deviation from a
straight line is often taken into account by including additional terms in (8.2.30). For
example, at low temperatures a commonly used alternative is Antoine’s equation [10],
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Figure 8.9 Vapor pressures of pure water from triple point to critical point. In both panels the
points are from steam tables. Top: curve is a simple interpolation through the points. Bottom:
line is a least-squares fit to the Clausius-Clapeyron form (8.2.30).
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-B

InP° = +A (8.2.31)

Values for the parameters A, B, and C are obtained by fitting to experimental vapor-
pressure data; usually, they are all positive, as in Appendix D. But over a wide range
of temperatures, a better correlation is the Wagner equation [11],

(8.2.32)

P, 1-7

1 [PS] _at+ b+ ot 4 dt
n =

c

Here, 1 =1 - T/T,, with T, the critical temperature and P, the critical pressure. Values
for the parameters a-d are obtained by fitting vapor-pressure data P(T). If the avail-
able data approach the critical point, then a reliable estimate to P, can be obtained by
making P, an additional parameter in the fit [12].

8.2.7 Pure-Component Phase Equilibria Involving Solids

Properties of solids differ from those of fluids because in solids the motions of mole-
cules are highly restricted. The molecules may be confined to periodic arrays, produc-
ing crystalline structures such as the face-centered cubic (fcc) and body-centered cubic
(bce), or they may be periodic only in certain directions, producing layered or amor-
phous structures such as graphite. Besides equilibrium structures, many solids can
exist for prolonged periods in metastable structures; examples include glasses.

Solid-fluid equilibria include coexistence of solids with liquids and coexistence of
solids with vapors. On a pure-component Pv diagram, such as the one shown in Fig-
ure 8.10, the melting lines mark the transition from states of one-phase solid to those
of one-phase liquid. The melting lines are a pair of essentially straight, nearly vertical
lines, separated by a region of metastable and unstable states, analogous to those
appearing under the vapor-pressure curve in Figure 8.6. The melting lines are nearly
vertical because Ah/AZ is large. In addition, the sublimation curves denote the transi-
tion from one-phase solid directly to one-phase vapor. Again, the sublimation curves
appear in two branches, separated by a region of metastable and unstable states.

The melting lines, sublimation curves, and branches of the vapor-pressure curve all
terminate at the horizontal broken line in Figure 8.10. That line, which is both an iso-
bar and an isotherm, contains the triple point: an equilibrium situation in which three
phases coexist simultaneously. A triple point occurs at one pressure and one tempera-
ture, but at three different molar volumes—one for each phase; hence, the triple point
is marked by three filled circles on Figure 8.10. For liquid water in contact with water
vapor and the normal phase of ice, the triple point occurs at 0.01°C and 0.0061 bar.

The criteria for equilibria involving solid phases are exactly those given in § 7.3.5
for any phase-equilibrium situation: phases in equilibrium have the same tempera-
tures, pressures, and fugacities. Moreover, pure-component solid-fluid equilibria obey
the Clapeyron equation (8.2.27). This means the latent heat of melting is proportional
to the slope of the melting curve on a PT diagram and the latent heat of sublimation is
proportional to the slope of the sublimation curve. In the case of solid-gas equilibria,
the Clausius-Clapeyron equation (8.2.30) often provides a reliable relation between
temperature and sublimation pressures, analogous to that for vapor-liquid equilibria.
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Figure 8.10 Schematic Pv diagram for a pure substance with the solid phase included. Shaded
regions are metastable and unstable states. Vapor-liquid critical point (filled square) occurs at
the maximum in the vapor-pressure curve. Filled circles are the triple-point volumes at which
solid, liquid, and vapor all coexist in three-phase equilibrium.

In principle the stability of pure solid phases can be judged using the thermal and
mechanical stability criteria derived in § 8.1.2, but those criteria are not useful for sol-
ids when they are implemented via volumetric equations of state. To use an equation
of state to test for solid-phase stability, the equation would have to extend an isotherm
from a fluid phase into a solid region of the phase diagram. But any analytically con-
tinuous, differentiable function that provides such an extension also predicts a solid-
fluid critical point—a point that does not actually exist.

To test whether a proposed state will involve one or more solid phases, we usually
use the criterion (7.1.40) which states that the equilibrium situation is the one that
minimizes the Gibbs energy at the specified T and P. To perform such a calculation we
need a model for the solid-phase Gibbs energy, and those models, in turn, require
experimental data for the solid phase. The solid-phase data most often used are ther-
mal data, such as heat capacities and latent heats for phase transitions.

Besides solid-fluid equilibria, some pure materials can exist in more than one stable
solid structure, giving rise to solid-solid equilibria. Examples include equilibria
between the fcc and bee forms of iron, equilibria between rhombic and monoclinic sul-
fur, and equilibria among the many different phases of ice. Such solid-solid phase
transitions are accompanied by a volume change and a latent heat, and these two
quantities are related through the Clapeyron equation (8.2.27). When a pure material
can undergo solid-solid phase transitions, then the substance usually exhibits multi-
ple triple points. Besides the usual solid-vapor-liquid point, the pure substance might
also exist in solid-solid-liquid or solid-solid-solid equilibria. Several such triple points
occur in water, caused by equilibria involving various forms of ice [13].
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8.3 PHASE STABILITY IN OPEN SYSTEMS

The thermal and mechanical stability criteria (8.1.23) and (8.1.31) apply both to pure
fluids and to mixtures; however, for homogeneous mixtures, those criteria are not suf-
ficient to identify stable systems because, in addition to energy and volume fluctua-
tions, mixtures have concentration fluctuations. These fluctuations occur in localized
regions of a system when material spontaneously aggregates and redisperses. If such
fluctuations are not to disturb a system’s stability, then the mixture must satisfy a set
of conditions known as the material or diffusional stability criteria. These criteria are
derived in a manner similar to that given in § 8.1.2 for (8.1.23) and (8.1.31), so we only
sketch the procedure here.

For the derivation of stability criteria in § 8.1.2 we divided the fluid of interest into
regions A and B; both regions were of constant mass, but their volumes and energies
could fluctuate. Those same criteria would have been obtained if we had considered
A and B to be regions of fixed volume, with energy and mass fluctuations, or by con-
sidering A and B to be open, so that their energies, volumes, and masses could all fluc-
tuate. We employ this last strategy for mixtures.

Consider a one-phase binary mixture of components 1 and 2 confined to an isolated
vessel, and imagine dividing the fluid into parts A and B. But unlike the pure case,
region B is open to A, so that a fluctuation occurring in part B disturbs not only its
internal energy UB and volume VB, but also the mole numbers NP and NJ. Conse-
quently, the concentration in B fluctuates by transfers of material to and from part A.
In addition to the constraints on U, V, and S given by (8.1.4)~(8.1.6), the total amounts
of each component are conserved,

N? + N? constant (8.3.1)

constant (8.3.2)

A B
N, +N,
As in § 8.1.2, stable equilibrium occurs when the total entropy is a maximum; hence,

§%5 < 0 (8.1.8)

and the response of the total entropy takes a form analogous to (8.1.10),
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At equilibrium we must have 8S = 0, which requires each bracketed term in (8.3.3) to
be zero. Just as in (8.1.11) and (8.1.12), the first term implies TA = TB and the second
that PA = PB. In addition, the last two terms imply that the chemical potentials for
component 1 are the same in parts A and B; likewise for those of component 2.

Continuing the derivation in parallel to the steps from (8.1.13) to (8.1.15), we find
the stability criterion, analogous to (8.1.15), to be

8°S = [sU 8V 8N, 8N,| S

where S is the symmetric matrix
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Again, Sxy is a shorthand for the second derivatives; for example,
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(8.3.4)

(8.3.5)

(8.3.6)

(8.3.7)

As in (8.1.16), if the inequality in (8.3.4) is to be obeyed for all possible variations
8U, 8V, 8Ny, and 6N,, then S must be negative definite; that is, the principal minors of
S must satisfy the following four inequalities:

uu

uv
uu SH’U
uv 00
un SUTZ

S,, <0
uv > 0
SUZJ
un
<0
on
Snn
S| > 0

(8.1.18)

(8.1.19)

(8.3.8)

(8.3.9)



338 CRITERIA FOR OBSERVABILITY

The first two are the conditions for thermal and mechanical stability derived in § 8.1.2:
the constraints on the isometric heat capacity (8.1.23) and isothermal compressibility
(8.1.31) apply to mixtures as well as pure fluids.

To pose the condition (8.3.8) in terms of measurables, we need to evaluate the six
unique derivatives that appear in the determinant. Three have already been deter-
mined in § 8.1.2: S, is given by (8.1.22), S, by (8.1.25), and S, by (8.1.29). For the
other three derivatives, we find

H;-Ty,Vq
un = Z—U (8.3.10)
T’C,
vV, (Ty,-P)(H1-Ty,Vy)
Son = T ; (8.3.11)
T T2C,
2 = = 2 ~
5, = L TV 1196 (83.12)
nn TVKT TZCU T E)Nl TPN2

Substituting the six elements (8.1.22), (8.1.25), (8.1.29), (8.3.10), (8.3.11), and (8.3.12)
into the matrix (8.3.8) and evaluating the determinant, we find, after some lengthy
algebra,

oG
1 ( 1] > 0 (8.3.13)
T2C, TV \9N1JTPN,

This is the criterion for material or diffusional stability: for a binary mixture to be differ-
entially stable, the mixture must have C, >0, k>0, and (at fixed T and P) the chemi-
cal potential of component 1 must always increase in response to any increase in Nj.
This means that if an isothermal-isobaric plot of the chemical potential (or fugacity)
passes through an extremum with x{, then the mixture is unstable for some x;-values.
The result (8.3.13) confirms (3.7.29) in which we claimed that the chemical potential of
a pure component is always greater than its value in any mixture at the same T and P.

The fourth inequality (8.3.9) does not provide any new constraint, but merely gives
the analog of (8.3.13) for component 2. In other words, because the labeling of compo-
nents is arbitrary, an expression like (8.3.13) must be obeyed by each component in the
mixture. This can also be deduced in a different way: for a binary, if component 1
obeys (8.3.13), then the Gibbs-Duhem equation demands that component 2 obey the
analogous constraint.

Since a mixture must have C, > 0 and k7 > 0 for thermal and mechanical stability,
many authors simplify (8.3.13) to

G = 1] s o (8.3.14)
INy JrpN,
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For states at which the equation of state provides only one real root for v, then k1 > 0
and the simplification (8.3.14) is legitimate. But when the equation of state has bifur-
cated, producing multiple roots for v, then we must exercise care when using (8.3.14)
in place of (8.3.13). Some of those volume roots will have k< 0 and therefore will be
mechanically unstable, even if those roots also have Gy; > 0, so they satisfy (8.3.14).
Consequently, those fluids are diffusionally unstable because (8.3.13) is violated. For
cubic equations of state, it is the “middle” root for v that has Gi; > 0, but x < 0, as
illustrated in Figure 8.11. Equations of state that are higher-order polynomials in v will
have additional roots that behave as in Figure 8.11. So when we test for the observabil-
ity of proposed states and we do not know where that state lies on a phase diagram,
we should apply the complete stability criterion (8.3.13), rather than the abbreviated
form (8.3.14).
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Figure 8.11 An unstable fluid may be misjudged to be stable if the criterion used is (8.3.14),
rather than the complete criterion (8.3.13). These plots show how G1; and Ky change along a
line of fixed T =220 K and fixed x1 = 0.75 for a mixture of methane(1) and propane(2), as com-
puted from the Redlich-Kwong equation. Shaded regions indicate unstable fluids. Here the
fluid having v given by the “middle” root of the cubic is diffusionally unstable because K7 < 0,
even though Gy; >0.
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The criterion (8.3.13) implies that if a mixture is mechanically unstable (k7 < 0),
then it is also diffusionally unstable, just as (8.1.30) implies that if a fluid is thermally
unstable (C, < 0), then it is also mechanically unstable. But a fluid may be diffusion-
ally unstable while remaining mechanically and thermally stable. In fact, whenever a
stable mixture is driven into an unstable region of its phase diagram, the diffusional
stability limit is always violated before the mechanical or thermal limits are violated,
because higher-order terms approach zero before lower-order terms [3]. This can be
seen in Figure 8.11. This means that the diffusional stability criterion (8.3.13) is a stron-
ger test for thermodynamic stability than the mechanical criterion and (as noted in
§ 8.1.2) the mechanical criterion, in turn, is a stronger test than the thermal criterion.

Note that the arrangement of the independent variables in (8.3.4) is arbitrary, so if
we change the order, we obtain other forms for the stability criteria. However, these
other forms are not additional constraints; they are merely other versions of the con-
straints already found. For example, if we change the order so that (8.3.4) reads

3N,

s/|9Na2 | < o (8.3.15)
%

ou

5°s = [6N, 8N, 8V 68U

then the first inequality, analogous to (8.1.18), becomes

S, <0 (8.3.16)

nn

with S, still given by (8.3.12). This inequality is obviously obeyed by a system in a
stable equilibrium state, because (8.3.12) is merely a linear combination of the thermal,
mechanical, and diffusional criteria already derived. The lesson is that (8.3.16) does
not convey any information not already contained in the conditions (8.1.23), (8.1.31),
and (8.3.13). Beegle et al. provide an extensive list of possible forms for the differential
stability criteria involving various orderings of the independent variables, including
several choices for the independent variables themselves [4].

The above procedure can be repeated to obtain the stability criteria for multicom-
ponent mixtures. For a mixture of C components, the criterion is still (8.3.4) in which S
is the (C + 2)2 matrix of second derivatives analogous to (8.3.5). The fluid is stable to
small disturbances when S is negative definite; that is, when odd-order principal
minors of S are negative and simultaneously those of even order are positive. The
reduction of those minors to economical forms is a tedious exercise that can often be
alleviated by posing the criteria in terms of G or A rather than S.

8.4 FLUID MIXTURES

In this section we describe the common stability behavior displayed by binary mix-
tures (§ 8.4.1), including a scheme for classifying that behavior (§ 8.4.2). Then we show
how models can be used to test for the observability of one-phase binary mixtures;
first we consider PvTx models (§ 8.4.3 and 8.4.4) and then models for the excess Gibbs
energy (§ 8.4.5).
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8.4.1 Stability of Binary Mixtures

Ultimately, we want to develop a computational procedure for determining the
observability of a state proposed for a binary fluid. The motivation is that we want to
avoid trying to solve phase-equilibrium problems that do not exist. Therefore we first
test for observability, and if multiphase situations are observable, then we solve for
phase compositions, if they are required. In this section we consider situations in
which the proposed state is identified by specifying values for T, P, and x;. Such a
state could be in any one of three observable conditions: (a) a stable single phase, (b) a
stable multiphase equilibrium, or (c) a metastable single phase. Some metastable
phases can only relax to a stable single phase, but other metastable phases can split
into multiple phases. Multiphase equilibria in binaries are predominantly two-phase
situations, so we will restrict our attention to those possibilities here; however, three
and four-phase binaries are also possible.

To connect mixture stability to mixture state, we show in Figure 8.12 a Pv diagram
for equimolar mixtures of methane and propane. This diagram was calculated using
the Redlich-Kwong equation (8.2.1) together with the simple mixing rules given in
§ 8.4.4. The diagram is typical of many binary mixtures, especially those whose vapor-
liquid critical lines are continuous curves between the pure component critical points.
However, we caution that not all binary mixture Pv diagrams appear as in Figure 8.12;
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Figure 8.12 Pressure-volume diagram for equimolar mixtures of methane + propane, com-
puted from the Redlich-Kwong equation of state. Filled square is the critical point; filled circle is
the mechanical critical point. The two branches of the saturation curve separate stable states
from metastable states. The spinodal separates metastable states from unstable states and the
line of incipient mechanical instability separates diffusionally unstable states from states that
are both diffusionally and mechanically unstable. Since every point on this diagram represents
an equimolar mixture, no tie lines can be drawn.
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there is no single such diagram that is typical of all mixtures at all compositions.
Many of the possible diagrams are described in Chapter 9.

In Figure 8.12 the outer envelope is the locus of saturated equimolar liquid states
and saturated equimolar vapor states. However, note that Figure 8.12 is not a phase-
equilibrium diagram: in Figure 8.12 every point on the two-phase line represents an
equimolar mixture, but phases in vapor-liquid equilibrium generally do not have the
same composition. Consequently, Figure 8.12 contains no tie lines across the two-
phase region. Outside the saturation envelope, the mixtures are stable one-phase flu-
ids. Underneath that envelope, the mixtures may be metastable one-phase fluids or
they may be unstable to one phase (that is, they may exist as two-phases).

The middle envelope is the spinodal: the set of states that separate metastable states
from unstable states. Recall from § 8.3 that one-phase mixtures become diffusionally
unstable before becoming mechanically unstable. Therefore, the mixture spinodal is
the locus of points at which the diffusional stability criterion (8.3.14) is first violated;
that is, it is the locus of points having

_ oG x5 (0G
Gy = 1 = 2| = 0  mixture spinodal (8.4.1)
aNl TPN2 N axl TP

Between the spinodal and the saturation envelope, mixtures may exist as metastable
one-phase systems or as stable two-phase systems. The spinodal cannot cross the sat-
uration envelope, but the spinodal becomes tangent to the saturation envelope at the
critical point.

For binary mixtures it is conventional to express the conditions for the critical point
in terms of the change in Gibbs energy on mixing (3.7.38):

82 gm
— =0 binary critical point (8.4.2)
9x1 Jrp

and
83 gm
— =0 binary critical point (8.4.3)
9xy Jrp

These conditions identify both vapor-liquid and liquid-liquid critical points. For
vapor-liquid equilibria, they are satisfied when the spinodal coincides with the vapor-
liquid saturation curve. However, that point need not occur either at the maximum in
the saturation envelope or at the maximum in the spinodal; see Figure 8.12. Along a
spinodal the one-phase metastable system is balanced on the brink of an instability; at
a critical point that balance coincides with a two-phase situation and the resulting
fluctuations cause critical opalescence, just as they do at pure-fluid critical points.

The inner envelope in Figure 8.12 is the line of incipient mechanical instability: the
line separating states that are only diffusionally unstable from states that are both dif-
fusionally and mechanically unstable. The line of incipient mechanical instability is
the locus of points at which (8.1.31) is first violated; that is, the points at which
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(%)T = 0 (8.4.4)

The maximum in the line of incipient mechanical instability is called the mechanical
critical point. Note that the true critical point and the mechanical critical point occur at
roughly the same molar volume. This often occurs for mixtures whose spinodals (at
fixed composition) pass through maxima with v.

Figure 8.12 shows that if a mixture is mechanically unstable, then it is also diffu-
sionally unstable, because the line of incipient mechanical instability lies under the
spinodal, or equivalently because kr appears in both stability criteria (8.1.30) and
(8.3.13). Moreover, a one-phase mixture may be diffusionally unstable but remain
mechanically stable, because the spinodal lies above the line of incipient mechanical
instability, or equivalently because the mechanical criterion (8.1.30) can be satisfied
while the diffusional criterion (8.3.13) is violated. Further, Figure 8.12 contains states
at which no differential stability criteria are violated, but at which one-phase mixtures
are metastable rather than stable. This means that a violation of any differential stabil-
ity criteria (thermal, mechanical, or diffusional) is only sufficient, but not necessary,
for a phase separation to occur.

Phase stability can be described in terms of the Gibbs energy by appealing to the
equilibrium criterion (7.1.40): at fixed T and P, the system Gibbs energy must be a
minimum. Therefore, if a mixture is a stable single phase, then it must have a lower
Gibbs energy than the combined values of the pures; that is, the change of Gibbs
energy on mixing must be negative,

gm(xl) <0 fixed T and P (8.4.5)

But this is only necessary for one-phase stability; it is not sufficient. This means if a
mixture violates (8.4.5), then it is definitely not stable; however, a mixture can obey
(8.4.5) but still split into two phases. An additional requirement is (8.3.14), which can
be expressed in terms of g™ as

_ aa x2 2 m
G = 1 _2[08 >0 not unstable  (8.4.6)
N Jren, N Aaxd Jpp

A stable one-phase mixture satisfies (8.4.6), but the converse is not true: a mixture
obeying (8.4.6) might be stable or metastable. However, if a mixture violates (8.4.6),
then the mixture is definitely unstable and not observable.

When phase splits occur at fixed T and P, the compositions of the new phases gen-
erally differ from one another and they differ from that of the original one-phase mix-
ture. Those compositions are computed by solving the equality of fugacities (7.3.12),
using appropriate models for each phase. Such calculations will be the focus of our
attention in Chapter 10. Later in this section, we develop a procedure for determining
whether a proposed binary mixture can exist as a stable single phase, without solving
the phase equilibrium problem.
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Figure 8.13 When computed from a cubic equation of state, violations of stability criteria affect
the form of an isothermal plot of fugacity for a binary mixture. At 100 bar and 275 K, this mix-
ture is a stable single-phase at all compositions, and f7(x) increases monotonically. At 92 bar
the fugacity passes through a point of inflection: the critical point for this isotherm (filled
square). At 60 bar the mixture violates the diffusional stability criterion for some x;, while the
equation of state provides only one real root for v. The fugacity curve forms a loop, but f7(x{)
remains single-valued at every xy. At 30 bar the mixture violates both the diffusional and
mechanical stability criteria over some range of x1. The equation of state provides three real
roots for v(T, B, x); hence, the fugacity is now multivalued over some range of xy. At 10 bar, the
mechanical instabilities extend to pure 2, so the three branches of f; emanate from the origin.
Broken horizontal lines are tie lines connecting phases in equilibrium (dots). Curves computed
from Redlich-Kwong equation.

8.4.2 Classes of Stability Behavior in Binary Mixtures

When mixture states are computed from a volumetric equation of state, then instabili-
ties can be related to bifurcations in an algebraic equation, just as we found for pure
fluids in § 8.2. Inversely, if no bifurcations occur, then the mixture remains a stable sin-
gle phase over all compositions, and the fugacity f1(x;) is a smooth monotonically
increasing curve, as shown for 100 bar in Figure 8.13. Analogous behavior is observed
for g"(x1): the stability requirement (8.4.6) on the second derivative of ¢ defines a
simple convex curve for ¢"(xy), like that shown on the left in Figure 8.14.

However if, over some range of compositions, the mixture splits into two phases,
then the single-phase equilibrium curve for ¢g"(x;) will not be convex over all x;. Simi-
larly, the monotonicity of f7(x;) will be disrupted either by oscillations or by branch-
ing. These possibilities appear in Figure 8.13: oscillations occur in the f7(x{) curves for
30 and 60, while at 10 bar, the f1(x;) curve has divided into two distinct branches.
These phenomena are caused by bifurcations in either the equation of state or the
fugacity equation or both. Here we use those possibilities to identify four classes of
instabilities that can lead to vapor-liquid phase separations in binary mixtures.



8.4 FLUID MIXTURES 345

,,,,,,,,,,,,,,,,, O
-0.1
. vapor
&
%0 unstable —1-0.2
NS
- tie —-03
| | | | | | | |
0 0.5 1 0 0.5 1
X1 xl

Figure 8.14 Isothermal-isobaric plots of change of Gibbs energy on mixing for binary mixtures.
Left: Neither the equation of state nor the fugacity equation bifurcate, so the mixtures remain
stable single phases at all compositions. Right: Class I stability behavior: the fugacity equation
bifurcates, but the equation of state does not. This produces a region in g™ that is concave and a
vapor-liquid phase split. Filled circles are phases in equilibrium; solid lines stable; long dashes
metastable; short dashes unstable. All curves computed from the Redlich-Kwong equation.

Class I: Only the fugacity equation bifurcates. In these situations the equation of
state does not bifurcate for either pure or for the mixture, so there is only one real root
for the volume at each x; and the mechanical stability criterion cannot be violated. A
plot of g™(x) provides a smooth continuous curve spanning all x;; however, the curve
will be concave over some x; (as on the right in Figure 8.14). The concave region in
¢"(x1) is caused by diffusional instabilities; that is, (8.4.6) is violated over some range
of x1. The corresponding isothermal-isobaric plot of the fugacity f(x;) passes through
a loop, but f] remains single-valued at each x;; see the curve for 60 bar in Figure 8.13.
This is analogous to the van der Waals loop on a pure-substance Pv diagram. Class I
behavior is also exhibited by mixtures in liquid-liquid and gas-gas equilibria; that is,
liquid-liquid and gas-gas phase splits are driven only by diffusional instabilities.

Class II: Both mixture equations bifurcate but the pure equations do not. In these
systems the mixture fugacity equation and the mixture equation of state both bifur-
cate. When the equation of state bifurcates, multiple roots occur for v, so g"(xy)
appears in distinct branches. Each branch corresponds to one root for v, but since
bifurcations do not occur in either pure-fluid equation of state, neither branch spans
all x1. In class II mixtures, instabilities may be caused by violations of the diffusional
criterion (8.4.6) or by violations of both the diffusional and mechanical stability crite-
rion (8.3.13). A sample plot of g"(x;) is shown in Figure 8.15. In some mixtures the
metastable regions of g extend to positive values, violating (8.4.5). The fugacity
remains a single continuous curve that spans all x;, but because the fugacity equation
bifurcates, there is some range of x; over which the fugacity is multivalued, like the
curve at 30 bar in Figure 8.13. On mixture PT diagrams, class II behavior occurs at
states below the mechanical critical line and at pressures below the spinodal of pure 1
but above the spinodal of pure 2 (component 1 is more volatile) [14].
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Figure 8.15 Change of Gibbs energy on
mixing for class II stability behavior at
constant T and P. Both the mixture equa-
tion of state and the fugacity equation
bifurcate, producing distinct branches in
¢" and a vapor-liquid phase separation.
However, no branch spans all x;. Filled cir-
cles are phases in equilibrium; long dashes
metastable; short dashes unstable. Curves
computed using Redlich-Kwong equation.
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Class III: Both mixture equations and one pure equation bifurcate. This behavior
differs from class II in that now one branch of g"(x;) spans all xy. This happens when
the equation of state for one pure bifurcates in addition to the bifurcations that occur
in both the mixture equation of state and the mixture fugacity equation. We distin-
guish two subclasses: in class IIIA mixtures the pure-2 equation bifurcates, while in
class IIIB mixtures the pure-1 equation bifurcates. Since f; = 0 when x; = 0, the three
branches of f7 in class IIIA mixtures must all emanate from the origin, like the curve
for 10 bar in Figure 8.13. In class IIIB mixtures, the pure-1 fugacities will generally
have different values, as in Figure 8.16; the smallest identifies the stable pure phase.
Consider those branches of ¢ and f; that extend over all x;. In both class IIIA and
class IIIB, those branches will contain (at least) some region that is stable; the remain-
ing portion (if any) will be metastable, but not unstable. In class IIIA the stable phase
corresponds to parts of the curve near x; = 1, while in class IIIB it will occupy parts
near x1 = 0. The unstable phase will be confined to its own branch, as in Figure 8.16.
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Figure 8.16 Isothermal-isobaric plot of fugacity f for a binary mixture exhibiting class IIIB sta-
bility behavior. The pure component-1 equation of state bifurcates, producing three branches in
f1; however, since the pure component-2 equation of state does not bifurcate, only one branch
spans all x;. Filled circles mark phases in equilibrium. Solid lines stable; long dashes metasta-
ble; short dashes unstable. All curves computed from the Redlich-Kwong equation of state.
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Figure 8.17 Isothermal-isobaric plots of fugacity and change of Gibbs energy on mixing for
binary mixtures exhibiting class IV stability behavior. The equation of state bifurcates, but the
fugacity equation does not. Left: The fugacity appears in three branches that span all x;; one
branch contains all unstable states. Right: Each branch of ¢g" also spans the entire composition
range. In both panels, filled circles are phases in equilibrium; solid lines stable, long dashes
metastable, short dashes unstable. Computed from Redlich-Kwong equation.

Class IV: Only the equation of state bifurcates. In these cases the fugacity equation
does not bifurcate, so no differential diffusional stability criteria are violated. Never-
theless, metastabilities may occur and those metastabilities can lead to phase changes.
In these mixtures both pure-component equations of state bifurcate, so g and f; each
divide into three distinct branches, with each branch spanning the entire range of
compositions. Typical curves are shown in Figure 8.17. Unstable phases are confined
to one branch; however, portions of some branches may have g > 0, violating the
one-phase requirement (8.4.5). On mixture PT diagrams, class IV behavior occurs at
pressures below those of the spinodals of both pure vapors and at temperatures less
than those of the spinodals of both pure liquids [14]. The existence of class IV behav-
ior illustrates that differential stability criteria are only necessary, but not sufficient, to
identify stable one-phase mixtures.

8.4.3 Determining Stability Using Fugacities from Equations of State

It is traditional to base determinations of phase stability on the change in Gibbs
energy of mixing ¢”. But computations of phase equilibria are now more often done
via volumetric equations of state, so it may prove more useful to base stability deter-
minations on fugacities. We develop the necessary relations here and illustrate their
application with an example in the following section. We limit the presentation to sta-
bility of binary mixtures.

The one-phase stability criteria are posed in terms of ¢ in (8.4.5) and (8.4.6), but
before we use those criteria to test for stability, it will prove more convenient to repose
them in terms of the fugacity. We can rewrite (8.4.5) and (8.4.6) in terms of fugacities
by combining the definition of ¢ (3.7.38) with the integrated definition of the fugacity
in (4.3.12). Then (8.4.5) requires that stable phases have
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f;
inlnf <0 (8.4.7)

pure i

and (8.4.6) requires that stable and metastable phases have

dlnf:
( Z) > 0 not unstable (8.4.8)
dx; Jrp

Since mole fractions and fugacities are always positive, (8.4.7) suggests that stable
one-phase mixtures have

FAT, PAXY) < foyrei(T. P) i=1,2 (8.4.9)

Nevertheless, it is mathematically possible for some components to violate (8.4.9)
while the mixture still might obey (8.4.7). But with the help of (8.4.8) we can show
that, in fact, both components of a stable, one-phase binary must satisfy (8.4.9). The
proof is given in Appendix F. Consequently, if a single-phase binary mixture has f; >
fpure i- then that phase cannot be stable.

However, (8.4.9) is only necessary, not sufficient. So if we find a mixture that obeys
(8.4.9) we cannot say whether it is stable, metastable, or unstable. This is illustrated in
Figure 8.18. Therefore (8.4.9) is useful, but it is not complete. For example, assume we
are at the state o in Figure 8.18. We need to know whether or not that state is a stable
single-phase mixture. The state satisfies (8.4.9), but that is not enough to determine
stability. Note on the figure that at this T, P, and f;, the stable mixture might be one-
phase o, one-phase B, one-phase vy, or some two-phase combination of the three.

40 —
not stable by (8.4.9)
El
= fpurer
I
o ¥ B
20
0 | | | | |
0 0.2 0.4 0.6 0.8 1
X1

Figure 8.18 Isothermal-isobaric plot of fugacity for component 1 in a binary mixture. Portions
of the curve above the broken horizontal line are not stable because of (8.4.9). The three mix-
tures 0, B, and y have the same value for the fugacity, but only one of the three forms a stable
single phase; e.g., mixture at y violates (8.4.8) and so it is unstable even though it satisfies (8.4.9).
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To decide among these possibilities we need a stability criterion for mixtures at
fixed T, P, and fugacity f;. Equivalently, we can develop the criterion in terms of T, P,
and the chemical potential G1, then convert it to fugacities at the end. Imagine a one-
phase binary mixture surrounded by a reservoir that imposes its temperature, pres-
sure, and chemical potential G; on the system. The latter is accomplished by a semi-
permeable membrane that separates the system from the reservoir. The membrane
allows molecules of component 1 to pass, but it blocks passage of molecules of com-
ponent 2. When diffusional equilibrium is established, the value of the chemical
potential G; is the same in the system and in the reservoir. The extensive state of the
system is identified by giving values for the fixed quantities T, P, G;, and Nj.

These independent variables motivate us to define a new thermodynamic quantity
Y using this Legendre transform:

¥ = G-N,G (8.4.10)

The quantity ¥ is an extensive conceptual having dimensions of energy. Forming the
total differential and using (3.2.28) for dG, we obtain for the binary,

d¥ = - SdT + VdP + GodN, - N,dG, (8.4.11)

For equilibrium at fixed T, P, G1, and N, (8.4.11) reduces to
d¥ = 0 (8.4.12)

and in fact ¥ must be a minimum at equilibrium. This means if two states have the
same values for T, P, G, and N, the stable equilibrium state will be that having the
lower value of Y. The two states could differ, for example, in their compositions.

Fortunately, the quantity ¥ is a familiar property. To discover its identify, recall that
we can use (3.2.32) to write the Gibbs energy of any binary as

G = N;G1+N,G; (8.4.13)
Substituting this into (8.4.10) leaves

¥ = N,G, (8.4.14)
Dividing by N, gives the intensive version

v =G, (8.4.15)

This means at fixed T, P, G1, and N, the equilibrium state of the binary mixture is that
which minimizes the chemical potential of component 2. Since the chemical potential
is conceptually equivalent to the fugacity, we can also say that the equilibrium state is
that which minimizes the fugacity of component 2.
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Therefore, of the alternatives a, B, and yin Figure 8.18, the stable one-phase mixture
is that which has the lowest value for f,. We would compute f, from an appropriate
equation of state. If two of those states had the same value of f,, then a two-phase
equilibrium situation could occur. The condition (8.4.9) together with minimization of
f> give us sufficient tools for determining the stability of states proposed for binary
mixtures. Note we can make such judgements without solving the phase-equilibrium
problem. We illustrate with an example.

8.4.4 Example

How do we use a volumetric equation of state to determine whether a proposed
state of a binary mixture is a stable single phase?

During a process design we need to formulate a mixture of methane(1) and pro-
pane(2) that has x; = 0.25 at 275 K and 30 bar. Can this mixture exist as a stable single
phase?

To address this issue, we use the Redlich-Kwong equation of state (8.2.1) with the
simple mixing rules from § 4.5.12,

a= ZZJCZ- X;ja;; (8.4.16)
i

= in Dpure (8.4.17)

i

Values for the a;; and b; can be obtained from pure-component critical properties using
these relations from Table 4.4

2723
a;; = 04275 — (8.4.18)
! Pcz‘j
R cij
b; = 0.08664 (8.4.19)
Pcz'j

together with these empirical combining rules:

T = JToiTa; (8.4.20)

1/3  1/3..3
Zci]- = 0.5(Zcii+ch]-) (8.4.22)
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Table 8.1 Values of Redlich-Kwong parameters for methane(1)-propane(2)
mixtures; computed using (8.4.18)-(8.4.23)

T P Vcij Zj ajj b;
if (K) (bar) (cc/mol) (cc/mol)2 bar K05 cc/mol
11 190.6 46. 99. 0.2874 3.222 (107) 29.85
22 369.8 424 203. 0.2800 18.33 (107) 62.82
12 265.5 43.2 145. 0.2837 7.850 (107)
and
7 .RT ..
cij™* = cij

The subscripts cii and c¢jj indicate pure-component critical properties. Note that all
quantities in (8.4.18)—(8.4.23) are invariant under exchange of labels i and j; for exam-
ple, ay1 = a1,. Resulting values for these parameters are given in Table 8.1.

The fugacity is obtained from the Redlich-Kwong equation by evaluating (4.4.23)
for the fugacity coefficient and then applying FFF#1. The result from (4.4.23) is

b, by
Ing; = —L-~In (vvb)—l nZ - B+b Qyln (M) (8.4.24)

Here v is the mixture molar volume, while  and Q,; are dimensionless groups:

a

B= (8.4.25)
bRT.JT
20 b
Q = B(% - 31) (8.4.26)
with
Cyp = Xqlq1 + Xyl (8.4.27)

The expression for @, is functionally the same as (8.4.24), but with subscripts 1 and 2
interchanged. To evaluate pure-component fugacities, (8.4.24) still applies, but in a
simplified form because a pure substance has by = b and a;; = a4 = 671, so Q1 = f; the
result appears in (8.2.11). We caution that in evaluating @ from (8.4.24), the pure-
component T and P must be the same T and P as the rruxture Often a T-P pair will
produce multiple pure states (volumes) that satisfy the analytic equation of state, even
if a single state is found for the mixture. Of those multiple solutions, only the stable
equilibrium state is the appropriate state to be used in the following calculations. The
stable pure state can be identified by the procedure illustrated in § 8.2.2. To determine
the stability of the proposed mixture, we proceed as follows.
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Step 1. Determine whether the equation of state bifurcates when applied to each
pure substance at the proposed mixture T and P. The mixture temperature (275 K) is
above the critical temperature of pure methane (190.6 K), so pure methane is a single-
phase fluid and the equation of state cannot bifurcate. For pure propane we solve the
Redlich-Kwong equation (8.2.1) for v at 275 K and 30 bar. We find a single real root (v
= 90.5 cc/mol), so pure propane is a single-phase liquid and, again, the equation of
state does not bifurcate. Since the equation of state does not bifurcate for either pure
substance, the mixture fugacity f; forms a single continuous curve that spans all xq:
the mixtures exhibit either class I or class II stability behavior.

Step 2. Evaluate the fugacity for pure 1 at the mixture T and P. Applying (8.2.11) to
pure methane at 275 K and 30 bar, we find Ppure 1 = 0.931. Then FFF#1 gives

1, purel = (ppurel

P = 0.931x30 = 27.9 bar (8.4.28)
Step3. Evaluate the fugacity for component 1 in the mixture at the given T, P, x;. At
x1 = 0.25 the mixing rules (8.4.16) and (8.4.17) give these values for the mixture param-
eters: a = 13.45(107)(cc/mol)? bar K05 and b = 54.58 cc/mol. With these, the Redlich-
Kwong equation gives a single real root for the mixture volume (v = 88.9 cc/mol); the
stability behavior is class I. Then (8.4.24) gives @ = 3.396 and FFF#1 gives

f1=x,9;P =025x3.39 x30 = 25.47 bar (8.4.29)

Step 4. Check whether f; > fi, e 1; if 50, the proposed mixture state is not stable. The
values in (8.4.28) and (8.4.29) do not obey this inequality; that is, (8.4.9) is satisfied.
Unfortunately, this is not sufficient for us to draw any conclusion about the stability of
the proposed mixture. But for mixtures in which (8.4.9) is violated, this test would
identify the proposed mixture as not stable and our problem would be solved.

Step 5. Determine whether the mixture fugacity equation has bifurcated at the same
value of f] and the given T and P. This can be done graphically or analytically by solv-
ing (8.4.24) using a trial-and-error procedure. For pedagogical reasons we use the
graphical approach here. First, we use (8.4.24) to compute f; over the entire range of
x1, then we plot the results. The plot appears in Figure 8.18; on that plot, point o repre-
sents our proposed mixture. The plot indicates that two other mixtures have the same
values for T, P, and f7: mixture y at x; = 0.477 and mixture f at x; = 0.911.

Step 6. Determine the value of f; for all roots at the specified T, P, and f;. We apply
the Redlich-Kwong equation together with (8.4.24) to find the values in Table 8.2. We

Table 8.2 Values of fugacity f, for mixtures of
methane and propane having T =275 K, P = 30
bar, and f; = 25.47 bar

Root x1 v (cc/mol) /> (bar)
o 0.25 88.9 4.54
0.477 184. 5.48

B 0.911 686. 1.78
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emphasize that the three roots in Table 8.2 are caused by bifurcations in the fugacity
equation (8.4.24), not by bifurcations in the Redlich-Kwong equation of state (8.2.1).

Step 7. Identify the root having the lowest value of f; as the stable one-phase mixture
at the proposed T, P, and f;. From Table 8.2 we see that the stable one-phase mixture is
root B. Therefore root o, which is our proposed mixture, is not a stable one-phase mix-
ture. Further, Figure 8.18 shows that root o satisfies the requirement on the derivative
(8.4.8), so the proposed mixture is not unstable. Hence, it must be metastable: it might
be observed, but more likely it will split into two phases. To find the compositions of
those phases, we would solve the phase-equilibrium problem. Other procedures for
identifying stable one-phase mixtures include the tangent-plane method which origi-
nates with Gibbs [15] and has been fully developed by Michelsen, especially for multi-
component mixtures [16].

8.4.5 Determining Stability Using Models for Excess Gibbs Energy

We have shown how models for volumetric equations of state can be used with stabil-
ity criteria to predict vapor-liquid phase separations. However, not all phase equilib-
ria are conveniently described by volumetric equations of state; for example, liquid-
liquid, solid-solid, and solid-fluid equilibria are usually correlated using models for
the excess Gibbs energy ¢E. When solid phases are present, one motivation for not
using a PvT equation is to avoid the introduction of spurious fluid-solid critical
points, as discussed in § 8.2.5. A second motivation is that properties of liquids and
solids are little affected by moderate changes in pressure, so PvT equations can be
unnecessarily complicated when applied to condensed phases. In contrast, gE-models
often do not contain pressure or density; instead, they attempt to account only for the
effects of temperature and composition. Such models are thereby limited to descrip-
tions of phase separations that are driven by diffusional instabilities, and the stability
behavior must be of class I (see § 8.4.2). In this section we show how a ¢E-model can
describe liquid-liquid and solid-solid equilibria.

To pose the diffusional stability criterion (8.4.6) in terms of gE(x), we rearrange
(5.2.7) to express g" in terms of gE,

(T, P, {x}) = ¢"(T, P, {x})+RTY x/Inx, (8.4.30)

Applying (8.4.6) to (8.4.30), the diffusional stability criterion for a binary is obtained in
terms of gF as

2 F
g + RT >0 binary, not unstable  (8.4.31)
ax% TP 1%

To illustrate, we use Porter’s equation, which is the simplest possible model of g&
for binary mixtures (see § 5.6.2),

g°

(8.4.32)
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Note that the parameter A is dimensionless and depends only on temperature.
Although simple, Porter’s equation can reproduce states that violate the diffusional
stability criterion, thereby giving rise to liquid-liquid or solid-solid equilibria.
Whether or not such violations occur depends on the parameter A. To identify the sta-
bility bound on A, we substitute Porter’s equation (8.4.32) into (8.4.31), and find

A(T) < 2 stable binary (8.4.33)

At a given temperature, if A < 2 then the binary is a stable one-phase mixture at all
compositions. However if at some other temperature, A > 2, then over some range of
x7 the mixture is either metastable or unstable and a phase split can occur.

When a split does occur, the compositions of the two phases, call them o and B, are
obtained by solving the equilibrium conditions on the fugacities,

= P 1,2 (8.4.34)

For Porter’s equation, this becomes

x?‘exp[A(x?)2 ] = x?exp[A(x?)2 ] i=1,2j=1,2; i#j (8.4.35)

Equation (8.4.35) represents two nonlinear algebraic equations that must be solved by
trial. Examples of such roots, which represent the compositions of the two phases in
equilibrium, are shown in Figure 8.19. Because of the symmetry in Porter’s equation
(8.4.32), the equilibrium curve in Figure 8.19 is symmetric about the equimolar com-
position. For example, the equilibrium compositions obtained from Porter’s equations
satisfy x{P = 1 — x{*. (This relation is model-dependent and rarely occurs in practice.)

A unstable

|
|
|
:stable o stable ﬁ :
|
!

0 0.2 0.4 0.6 0.8 1
X1

Figure 8.19 Stability of binary mixtures as given by the Porter equation (8.4.32) over a range of
values for the parameter A. For A < 2, mixtures are stable in all proportions. For A > 2, mixtures
can be stable, unstable, or metastable, depending on composition. Shaded regions are metasta-
ble. Curve separating stable from metastable states is the two-phase equilibrium curve,
obtained by solving (8.4.35). A sample solution to (8.4.35) is shown for A = 3; filled circles give
compositions of phases in equilibrium.
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Porter’s equation also provides an estimate for the spinodal, which separates
unstable states from metastable ones. In terms of gE, the spinodal of a binary occurs
when the diffusional stability criterion is first violated, that is, when

2
(385 ] + BT _y (8.4.36)
TP

22 )y T2

Substituting Porter’s equation (8.4.32) into (8.4.36) gives the composition of the spin-
odal at a specified temperature,

1 2
x| = i(li “_fTT)) (8.4.37)

The two roots of (8.4.37) represent the compositions of each phase on the two
branches of the spinodal. In Figure 8.19, the spinodal is the curve that separates unsta-
ble states from metastable ones (shaded).

Since pressure and density are often unimportant to descriptions of liquids and sol-
ids, binary liquid-liquid and solid-solid phase diagrams are often limited to plots of
temperature vs. composition. Figure 8.20 shows such a Txx diagram computed from
the Porter equation with the temperature dependence of A given by

A =2+0.02[50-T] T in °C (8.4.38)

For T > 50°C, A <2 and the mixture is a single stable phase at all compositions. How-
ever, for T < 50°C, the diffusional stability criterion is violated and the mixture can

50 —
stable stable
one phase one phase
40
T (°C)
30
20
10 meta- unstable meta-
stable stable
0 l l l l |
0 0.2 0.4 0.6 0.8 1

X1

Figure 8.20 Txx diagram for liquid-liquid or solid-solid equilibria in binary mixtures that obey
the Porter equation (8.4.32) with parameter A given by (8.4.38). Filled square is the critical
point; filled circles lie on the isotherm at 30°C. The inner envelope, with labels C and D, is the
spinodal and satisfies (8.4.37). The outer envelope is the equilibrium curve, which satisfies the
equilibrium conditions (8.4.35).
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split into two phases, over some range of compositions. At T = 50°C, A = 2 and the
mixture exhibits a critical point, analogous to a gas-liquid critical point.

As a particular example, consider the isotherm at 30°C. In the figure this isotherm
is marked by the letters B and E on the phase equilibrium curve, where the equality of
fugacities (8.4.34) is satisfied, and it is marked with C and D on the spinodal, where
(8.4.36) is obeyed. Therefore at 30°C,

ifx) < xF then the mixture is a stable single phase, rich in species 2,
if xF <x1< xlc then the mixture may be a metastable single phase,

if xlc <x1 < x? then the mixture must be in two-phase equilibrium,

if xP <xq< xf then the mixture may be a metastable single phase, and
if xf <xq then the mixture is a stable single phase, rich in species 1.

Analogous to the descriptions of vapor-liquid equilibria presented in § 8.4.2, the
stability of condensed phases can be described in terms of the change of Gibbs energy
on mixing ¢"(x) and its second mole-fraction derivative. Figure 8.21 shows ¢™(x) and
its second derivative along two isotherms for the binary mixture of Figure 8.20. Along
the isotherm at 60°C, Figure 8.21 shows that the second derivative of g™ is positive at
all compositions, so the mixture remains a stable single phase. This is consistent with
the diagram in Figure 8.20, which shows that no phase split occurs for T > 50°C.

However at 30°C, Figure 8.21 shows that the second derivative becomes negative at
the points labeled C and D, and therefore at 30°C the mixture separates into two
phases. The compositions of the two phases are given by the points B and E, obtained
by solving the phase equilibrium conditions (8.4.35); those equilibrium points are con-
nected by a tie line. The four points B-E correspond to the points having the same
labels on the Txx diagram in Figure 8.20. Along the isothermal segments BC and DE
the mixture can exist as a single metastable phase, or it can separate into two phases.
But along the segment CD the diffusional stability criterion is violated and the mix-
ture always splits into two phases.

The liquid-liquid or solid-solid equilibrium situation in Figure 8.21 is analogous to
the vapor-liquid equilibrium situation in right panel of Figure 8.14; in each case the
phase separation is driven by diffusional instabilities. However, most correlations for
gE(x) do not allow for the possibility of mechanical instabilities because they do not
involve the mixture pressure or density. Therefore such correlations produce curves
for g’ that are always continuous through the unstable region: the stability behavior
is class I.

8.5 SUMMARY

In this chapter the central issue has been the observability of a proposed state: if we
need a mixture at a particular T, P, {x}, and phase, Can that phase actually exist at the
specified T, P, and {x}? If the proposed state is unstable, then it is neither observable
nor observed; if it is metastable, it is observable and sometimes observed; and if it is
stable, it is observable and usually observed. To distinguish among these possibilities,
we have brought to bear two general tests: (i) differential stability criteria, which dis-
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Figure 8.21 g™(x) and its second mole-fraction derivative computed from Porter’s equation for
the binary mixtures in Figure 8.20. At 60°C the diffusional stability criterion is satisfied at all
compositions and the mixture is a stable single phase. However at 30°C, states between C and
D violate the diffusional stability criterion and the mixture splits into two phases: C and D lie
on the spinodal. Filled circles at 30°C correspond to states of the same labels in Figure 8.20.

tinguish unstable states from the others, and (ii) equilibrium criteria, which distin-
guish stable states from the others.

The differential stability criteria were derived by finding conditions that maximize
the total entropy in an isolated system. Those conditions constrain how the system
responds to thermal, mechanical, and diffusional fluctuations. In the derivations,
those constraints are conveniently posed as stability criteria; they show us that a stable
substance must always obey the thermal criterion (8.1.23), the mechanical criterion
(8.1.31), and the diffusional criterion (8.3.14). But the converses of those statements are
not always true; for example, a mechanically stable fluid always has k7 > 0, but a fluid
having x> 0 is not necessarily stable—it might be metastable. Therefore, in using
these differential criteria (as opposed to merely deriving them), many ambiguities can
be avoided if we repose each constraint in the form of an instability criterion; such cri-
teria identify those thermodynamic states at which a pure substance or mixture is dif-
ferentially unstable.
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The first instability criterion is that a thermally unstable substance always has

C <0 thermally unstable (8.5.1)

%

The second is that a mechanically unstable substance always has

C,xr <0 mechanically unstable (8.5.2)

These first two criteria (8.5.1) and (8.5.2) apply to pure substances and to mixtures.
The third criterion is that a diffusionally unstable mixture always has

éll

Cv Kr

<0 diffusionally unstable (8.5.3)

Not only are these statements always true, but their converses are also always true.
For example, a mechanically unstable substance has C,kr < 0, and conversely, a sub-
stance that has C,x1 < 0 is always mechanically unstable.

The forms (8.5.1)-(8.5.3) show that these differential criteria are inclusive: a mixture
that is diffusionally stable is also mechanically stable, and a mechanically stable sub-
stance is also thermally stable. Inversely, a thermally unstable fluid is also mechani-
cally unstable, and a mechanically unstable mixture is also diffusionally unstable. In
addition, use of the diffusional instability criterion (8.5.3), may remind us that a
binary mixture can be diffusionally unstable because k1 < 0 even when Gy; > 0.

However, the full instability criteria (8.5.1)~(8.5.3) still cannot distinguish stable
states from metastable states; but then, no differential test can make this distinction.
To distinguish stable states from metastable states, we must apply an appropriate
equilibrium criteria. For example, if T and P have been specified for a proposed state,
then the stable state is the one that minimizes the Gibbs energy. Using this as a basis,
we showed how to identify the stable state for pure fluids and for binary mixtures.

A second theme of this chapter is that phase transitions decouple from unstable
states. Unstable fluids may or may not split into two phases, depending on where the
state lies on the phase diagram and on what external constraints are imposed. If T and
v are fixed, then unstable pure fluids will undergo phase splits. But if T and P are
fixed, then an unstable pure fluid will not necessarily separate into two phases: it may
relax to another one-phase situation. In addition, unstable binary fluids at fixed T and
P above the mechanical critical line always split into two phases, but below the
mechanical critical line they do not necessarily split. Moreover, phase separations do
not necessarily originate from unstable states; metastable fluids may also separate
into two phases. These comments mean that, at fixed (T, P, {x}), differential stability
criteria alone may not be enough to help us decide whether a phase split will occur.

Although methods for identifying phase splits generally involve more that just dif-
ferential stability criteria, they do not require us to solve the phase-equilibrium prob-
lem for the compositions of any new phases. Such methods are particularly useful
when we only need to know whether or not a one-phase fluid can separate. Even
when we need to compute equilibrium compositions, it is wise to precede the calcula-
tions with a determination as to whether a phase separation can actually be observed.
In such cases, the phase stability tests presented in this chapter can serve as informa-
tive preliminaries to solving phase-equilibrium problems.
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PROBLEMS

8.1 Consider a gas that obeys the simple virial equation Z = 1 + BP/RT. Determine
whether this substance can become mechanically unstable. Is your conclusion
affected by whether the gas is pure or a mixture?

8.2 (a) Consider a pure fluid composed of spherical molecules. At low densities this
fluid is essentially an ideal gas with internal energy u = 3RT/2. Determine
whether this fluid can become thermally unstable and mechanically unstable.

(b) Consider the same substance as in (a), but now at a higher density where it
obeys the Redlich-Kwong equation of state (8.2.1). Determine whether the
fluid can now become thermally unstable.

8.3 Start with the equality of fugacities (7.3.12) for vapor-liquid equilibrium and per-
form the steps cited in § 8.2.5 to derive (8.2.21) for pure-component vapor pres-
sures. Continue the derivation to obtain the equal-area form (8.2.22).

8.4 Use the Redlich-Kwong equation (8.2.1) along with (8.2.21) to estimate the vapor-
pressure curve P¥(T) for pure carbon dioxide. Then use your results to test the
Clausius-Clapeyron equation by preparing a plot analogous to that in the bottom
of Figure 8.9. Include on your plot the following experimental values of the
vapor pressure (from Vargaftik [17]):

T (K) 220 235 250 265 280 295 304.2
P (bar) 6.0 10.75 179 27.9 41.6 59.8 73.8

8.5 Use the Antoine’s equation in Appendix D to estimate the latent heat of vapor-
ization for toluene at its normal boiling point, 110.63°C, and its normal melting
point, -95°C. Compare your estimates with the experimental values, which are
near 364 J/gm and 453 J / gm, respectively [17].

8.6 Use Figure 8.9 to estimate the latent heat of vaporization for pure water. Com-
pare your value with that at the normal boiling point, as given by steam tables.

8.7 Starting with the definition of the latent heat of vaporization in (8.2.23), perform
the steps cited in § 8.2.6 to derive (8.2.25), which allows us to compute the latent
heat from a volumetric equation of state.

8.8 Tabitha the Untutored claims that a simple quadratic form such as

P/RT = A+B/v+C/v?

should be sufficient to reproduce vapor-liquid equilibrium data for pure fluids.
Here A, B, and C are empirical parameters that depend only on temperature. Val-
ues of A, B, and C may be positive or negative. Tabitha points out that at fixed P
and fixed T < T, such an equation could yield two roots for the volume: one
could be that for saturated liquid, while the other could be for saturated vapor.
Do you agree with the claim that such a form is sufficient? Justify your position.
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8.9 The stability test for a pure substance, as illustrated in § 8.2.2, applies when the
proposed state is at a fixed T and P. But when the state is identified by fixing T
and g, then the procedure in § 8.2.2 must be modified. To help develop a basis for
a new procedure, perform the following.

(a) For a pure, stable, one-phase substance, prove that an isothermal plot of the
Helmholtz energy vs. molar volume a(v) is a convex curve with negative
slope; i.e., prove that, for all o,

2
(a—a) <0 and e >0
0v/T 002 )1
(b) For a pure substance, sketch a subcritical isotherm on an a-v diagram and
show the vapor-liquid tie line. Also sketch a supercritical isotherm.

8.10 Write a computer program that uses a cubic equation of state for determining the
stability of a pure fluid at a proposed state (T, P). Use the Redlich-Kwong equa-
tion of state and check your program by repeating the calculations outlined in
§ 8.2.2. Then use your program to determine the stability of the following states;
if any of the following are not stable, find the stable state at the specified T and P.

Species Phase T(K) P (bar)

(a) propane gas 298 1
(b) propane gas 298 12
(o) propane liquid 350 25
(d) propane liquid 350 32
(e) n-butane gas 298

(f) n-butane gas 298 4
(g) n-butane liquid 350 11
(h) n-butane liquid 350 12

8.11 Consider N moles of a pure substance in a closed system at a proposed state (T, v)
that is unstable. With T and v fixed, an unstable pure substance always separates
into two phases, o and PB. The final pressure would be the saturation pressure
PS(T). Let v® and vB be the molar volumes of the equilibrium phases.

(a) Use a material balance to derive the Lever Rule, which gives the relative
amounts in the two phases,

_.B
-v (P8.11.1)

N
NP oo%-o
(b) Let the equilibrium phases be vapor (o) and liquid (). Sketch a subcritical
isotherm on a Pv diagram for a pure fluid and draw the tie line at the vapor

pressure P°. For a particular value of the overall volume v, show on your plot
how the tie line is related to the numerator and denominator in (P8.11.1).
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8.12 A pure one-phase substance completely fills a closed rigid vessel at fixed temper-
ature. Maynard Malaprop claims that it is sometimes possible to reduce the sys-
tem pressure by isothermally adding more material. That is, for an extensive
volume V, he claims that there are states at which

(QB) <0 (P8.12.1)
IONJTV

(a) To illustrate his claim, Maynard uses the van der Waals equation,

_ NRT _aN®
V-Nb V2

He says that if a van der Waals fluid is at a state such that

UR )2 9
T.(—% Z
“R R(UR—l/B <1

then the inequality in (P8.12.1) is satisfied and the pressure will decrease with
increasing N. Confirm this. (Here Tz = T/ T, and vg = v/v,.)

(b) In spite of the result in (a), you may remain skeptical; after all, a mathemati-
cally correct result is not necessarily sound thermodynamically, is it? May-
nard scoffs at this: surely you don’t believe that thermodynamics can violate
mathematics? Construct a thermodynamically rigorous argument that proves
or disproves Maynard’s claim about the inequality in (P8.12.1).

(c) Now consider a mixture. The question is whether we can identify any con-
straint on the sign of the response of the pressure to an increase in the mole
number of one species; that is,

FH’J i 0
IN; TVN;,; <

To do so, use a triple product rule to relate this derivative to measurables. For
a mixture, is there some constraint which demands that the pressure must
always increase or decrease when N; is increased?

8.13 Use the Redlich-Kwong equation (8.2.1) along with (8.2.25) to estimate the latent
heat of vaporization for pure isobutane at 20°C. Compare your estimate with the
experimental value of 336 J/gm [17].

8.14 (a) Use the definition of a derivative to derive the Leibniz rule for differentiating
integrals (see Appendix A).

(b) Starting from (8.2.21) for vapor pressure, derive Clapeyron’s equation
(8.2.27).

(c) From (8.2.27), derive the Clausius-Clapeyron equation (8.2.30).
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Consider binary liquid mixtures of benzene and toluene at 20°C and 1 bar. Show
whether, at any composition, such mixtures can exhibit diffusional instabilities; if
so, they would split into two liquid phases.

Consider a binary gas mixture that obeys the virial equation Z = 1 + BP/RT,
where the mixture B is given by (4.5.18). Show whether or not this mixture can be
diffusionally unstable.

Following the procedure outlined in § 8.4.4, use the Redlich-Kwong equation
(8.2.1) to compute the fugacity f(x1) for the following mixtures. Prepare plots of
your results and identify the regions over which one-phase mixtures are defi-
nitely stable and definitely not stable. Will phase splits occur from those situa-
tions that are not stable? Let the first named component be 1.

(a) carbon dioxide and n-butane at 260K and 10 bar
(b) carbon dioxide and n-butane at 300K and 8.5 bar
(c) methane and propane at 165K and 1 bar

(d) methane and propane at 278K and 10 bar

At 30°C binary liquid mixtures of methanol(1) and heptane(2) roughly obey Por-
ter’s equation and have y;” = v;” = 11.0. Determine whether, at 30°C, these mix-
tures exhibit liquid-liquid phase splits over some range of compositions.

Consider a binary liquid mixture that obeys Porter’s equation, g£/RT = Axqx,,
where the dimensionless parameter A depends on temperature.

(a) Derive the diffusional stability criterion (8.4.33).
(b) Derive the expression (8.4.37) for the spinodal.

(c) Assume the temperature dependence of A is given by (8.4.38). Compute
¢™(x)/RT and its second composition derivative at 20°C, 40°C, and 55°C. Plot
your results as in Figure 8.21. At each temperature, indicate whether a phase
split occurs; if a split does occur, label the regions of stable, metastable, and
unstable phases on your plot. (If a split occurs, you do not have to compute
the compositions of the two phases.)

Use the Redlich-Kwong equation and the mixing rules given in § 8.4.4 to com-
pute the spinodal and line of incipient mechanical instability for equimolar mix-
tures of carbon dioxide and n-butane. Plot your curves on a Pv diagram. (You do
not have to compute the saturation curves, since methods for doing so are not
presented until Chapter 10.)

Consider a binary mixture that obeys the van Laar equation

E
S 2]

RT ~ Ax1+Bx2

where A and B are constants. Find the expression for the liquid-liquid critical
temperature, if there is one.
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8.22 Consider a binary mixture for which one activity coefficient obeys
2
RTIny, = A(x;-1)

where A is a constant. Find an expression for the liquid-liquid critical tempera-
ture in terms of A, if such a critical point exists.

8.23 For a certain binary liquid mixture the excess volume and excess enthalpy obey
vk = ATx;x, and hE = Bxqx,, where A and B are independent of T and P.

(a) Find the consistent expression for ¢F in terms of T, P, x1, and Xj.

(b) The mixture has a liquid-liquid critical point at 330 K and 1 bar. It also has vE
= -1 cm3/mol, hE/RT = 0.2 for the equimolar mixture at 330 K. Estimate the
liquid-liquid critical temperature at 100 bar.

8.24 A certain binary liquid mixture exists in two-phase liquid-liquid equilibrium.
What should be the expression for ¢F if the mole fractions of the two phases are
independent of temperature?

8.25 Sketch an isothermal-isobaric plot of the change of Gibbs energy on mixing g
vs. mole fraction x; for a binary mixture in three-phase vapor-liquid-liquid equi-
librium. Include the tie lines on your plot and indicate the compositions of the
three phases.

8.26 (a) Derive the thermal stability criterion for a binary mixture that undergoes
only fluctuations in U at fixed Ny, N,, and V.

(b) Derive the mechanical stability criterion for a binary mixture that undergoes
only volume fluctuations at fixed T, Ny, and N,.

(c) Derive the diffusional stability criterion for a binary mixture that undergoes
only fluctuations in Ny at fixed T, P, and Nj.

8.27 For a binary mixture that splits into two liquid phases, prepare plots of In f; vs.
x1 along three isotherms: one below, one above, and one at the liquid-liquid criti-
cal temperature.

8.28 For the classes of binary-mixture stability behavior discussed in § 8.4.2 make a
table that tells whether the equation of state and the fugacity equation bifurcate.
Your table should contain five rows, one for each class (I, II, IITA, IIIB, IV), and it
should have four columns, one for each equation (pure-1 equation of state, pure-
2 equation of state, mixture equation of state, and mixture fugacity equation).

8.29 Write a computer program that determines the stability of a one-phase binary
mixture at a proposed T, D, and x;. Use the Redlich-Kwong equation of state with
the simple mixing rules given in § 8.4.4. Test your program by applying it to the
situation described in § 8.4.4.
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8.30 Use your computer program from Problem 8.29 to determine the stability of the
following proposed states for mixtures of methane(1) and propane(2). If the pro-
posed state is not stable, is the stable situation one phase or two?

T (K) P (bar) X1 Phase

(a) 165 1 0.3 liquid
(b) 216 34 0.82 liquid
() 278 10 0.15 liquid
(d) 278 10 0.35 liquid
(e) 278 10 0.4 liquid
(f) 278 20 0.167 vapor

(g) 278 20 0.2 vapor
(h) 278 33.6 0.47 vapor
(i) 278 50 0.3 liquid

) 278 50 0.4 liquid

(k) 278 50 0.6 vapor
m 300 15 0.2 liquid

(m) 300 50 0.28 liquid

8.31 Derive the following stability criteria, given in terms of the Helmholtz energy A,
for a binary mixture at fixed T and V.

A1 <0 and Aj1Ayp —ApAy > 0

oG,
AZ-]- =
ONjJTVN, .

To do so, use a system like that in Figure 8.3, but now consider the small region B
to be of fixed volume and temperature. However, region B is open to the larger
region, so the mole numbers (N7 and N») fluctuate in both regions.

where
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PHASE DIAGRAMS FOR REAL SYSTEMS

ith many million pure substances now known, an essentially infinite number of

mixtures can be formed, resulting in a diversity of phase behavior that is over-
whelming. Consider just two components: not only can binary mixtures exhibit solid-
gas, liquid-solid, and liquid-gas equilibria, but they might also exist in liquid-liquid,
solid-solid, gas-gas, gas-liquid-liquid, solid-liquid-gas, solid-solid-gas, solid-liquid-
liquid, solid-solid-liquid, and solid-solid-solid equilibria. That's a dozen different
kinds of phase equilibrium situations—just for binary mixtures. For multicomponent
mixtures the possibilities seem endless.

In this chapter we describe the kinds of phase behavior that are commonly
observed in pure fluids, binary mixtures, and some ternary mixtures. The descriptions
typically take the form of phase diagrams, and we show how studies of phase behav-
ior can be made systematic by identifying classes of diagrams. Since we are interested
in describing what is actually seen, the mixture diagrams presented in this chapter are
plotted in terms of measurables: usually temperature, pressure, composition, or a sub-
set of those. Calculations of phase equilibria necessarily involves conceptuals, and
such calculations are discussed in Chapter 10. Here we only describe phenomena.

We start in § 9.1 by giving prescriptions for determining the number of properties
needed to identify the thermodynamic state in multicomponent mixtures. Those pre-
scriptions include Duhem’s theorem and the Gibbs phase rule as special cases. The
required number of properties determines the dimensionality of the state diagram
needed to represent phase behavior. Then in § 9.2 we summarize some features of
pure-component diagrams that have not been discussed in earlier chapters.

Sections 9.3-9.5 present the common phase behavior of binary mixtures: § 9.3
describes vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria at low pres-
sures; § 9.4 considers solid-fluid equilibria; and § 9.5 discusses common high-pressure
fluid-phase equilibria. Then § 9.6 briefly describes the basic vapor-liquid and liquid-
liquid equilibria that can occur in ternary mixtures. This chapter describes many
apparently different phase behaviors, and so we try to show when those differences
are more apparent than real. The organization is intended to bring out underlying
similarities, thereby reducing the number of different things to be learned.
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9.1 THERMODYNAMIC STATE FOR MULTIPHASE SYSTEMS

In § 3.1 we discussed the thermodynamic state for closed systems composed of a sin-
gle homogeneous phase; we now extend that discussion to heterogeneous systems,
especially, systems containing more than one phase. The fundamental questions
addressed in § 3.1 are revisited here: How many interactions are available for manipu-
lating the state (§ 9.1.1)? How many property values are needed to identify the state
(§ 9.1.2)? Even when we specify the correct number of properties for identifying the
state, is there still a possibility of encountering computational difficulties (§ 9.1.3)?

9.1.1 Number of Interactions to Change a State

Consider a system composed of C components in a single homogeneous phase. The
system can interact with its surroundings through the thermal interaction, a PV work
mode, and the exchange of any of the components. For such a system, we found in
§ 3.1.1 that the number of interactions available for changing the state is given by

V=C+2-5,, (9.1.1)

Here S,,; is the number of any external constraints that block interactions. If other
work modes, such as electrical or surface work, are present, then the rhs of (9.1.1)
increases accordingly. Note that the number of interactions applied to a system is
independent of the condition of material within the system. For example, instead of
being homogeneous, the system might consist of two phases, such as vapor and lig-
uid. Nevertheless, we still interact with such a system by exchanging, at most, any of
C components, heat, and PV work. Therefore, (9.1.1) also applies to heterogeneous
systems composed of P homogeneous phases. Just as in § 3.1.1, (9.1.1) applies to
changes in both intensive and extensive states. Further, just as in § 3.1.1, if we block all
mass-transfer interactions (so S,,; = C), then (9.1.1) reduces to Duhem’s theorem for
multiphase systems,

V=2 (9.1.2)

9.1.2 Number of Properties to Identify an Equilibrium State

For a single homogeneous phase containing C components, we found in § 3.1.2 that
the number of properties needed to identify the extensive state is given by

F.=V _-8§ one phase (9.1.3)

where

=C+2 (9.1.4)



368 PHASE DIAGRAMS FOR REAL SYSTEMS

Again this assumes only the thermal interaction and a single work mode are present.
For a heterogeneous system containing P homogeneous phases, (9.1.4) applies to
each, so

Voax = P(C+2) (9.1.5)

m

But at equilibrium we also have internal constraints imposed by Nature. For exam-
ple, if the P homogeneous phases are all open to one another through (P - 1) different
interfaces, then each interface imposes the (C + 2) phase-equilibrium constraints given
in § 7.3.5. For the one interface between phases o and B in equilibrium, these con-
straints are

% = 7P (9.1.6)
p* = pP 9.1.7)
cr=gh i=1,2,...,C (9.1.8)
Therefore instead of (9.1.3), we have
F, = P(C+2)—(P-1)(C+2)-$ (9.1.9)
or
F, = C+2-5 any number of phases (9.1.10)

Here S counts any additional internal constraints besides the phase-equilibrium con-
straints in (9.1.6)—-(9.1.8). Examples include constraints imposed by critical points (cer-
tain stability relations must be obeyed) and azeotropes (certain relations must exist
among T, B, and the compositions of the phases). The number given by (9.1.10) can be
much less than the total number of variables given by (9.1.5). For example, a four-
component system in three-phase equilibrium has V,,,, = 18, but only F,, = 6 of those
are needed to identify the extensive state (with S = 0). Values for the other twelve
would be computed by solving stuff equations together with the phase-equilibrium

equations (9.1.6)—(9.1.8); those calculations may or may not be easily performed.
To determine the number of properties needed for identifying the intensive equilib-

rium state, we remove the total amount of material as a possible variable; hence,
F=F -1 (9.1.11)

ex
Then for P phases, using (9.1.10) in (9.1.11) leaves
F =C+1-S any number of phases (9.1.12)

Counted in F’ are the relative sizes of the phases. For example, for ethanol and water
in vapor-liquid equilibrium, we have C=2, P=2, and S=0, so (9.1.11) gives F’ = 3: we
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need values for three independent intensive properties to identify the intensive state.
The three could be T, P, and N, /N, where N, /N is the fraction of material in the vapor
phase. Another legitimate set is T, p, and zg, where zg represents the overall mole frac-
tion of ethanol in the system.

Often we ignore the relative sizes of the phases when describing the intensive state;
doing so removes (P — 1) variables from the number in (9.1.12), leaving the generalized
phase rule,

F=C+2-P-S (9.1.13)

The phase rule gives the number of properties needed for identifying the intensive
state of closed systems. However, the form (9.1.13) applies only to those situations that
conform to our assumptions:

(a) we have only one work mode,
(b) we have ignored the relative sizes of phases, and
(c) we have no chemical reactions.

Systems with reactions are discussed in § 10.3.1. When no other internal constraints
apply, then S =0, and the general rule (9.1.13) reduces to the Gibbs phase rule,

F=C+2-7P (9.1.14)

On subtracting (9.1.13) from (9.1.12), we find that F differs from F’ by the (P - 1)
ratios that represent the relative amounts in the phases,

F-F=P-1 (9.1.15)

For one-phase nonreacting systems (P = 1), (9.1.15) gives F’ = F; otherwise, the rela-
tive amounts contribute to the number of properties counted by F’, but they do not
contribute to the number counted by F. This difference between F and F’ allows us to
distinguish between two kinds of phase diagrams. On an F’ diagram, the relative
amounts in the phases must be known to locate a multiphase state (a point); an exam-
ple of such a plot is a pure substance Pv diagram. However, on an F diagram, the rel-
ative amounts do not help us locate a multiphase state; an example is any PT diagram.
If a mixture diagram has composition plotted, then it is an F’-diagram.

Therefore, one important use of F’ is in constructing and interpreting phase dia-
grams. When we intend to represent the behavior of a system on a phase diagram, F’
(not F) gives the dimensionality of the space needed for the plot. For example, to rep-
resent the states of pure water with no constraints (C=1 and S =0), (9.1.12) gives F’ =
2; that is, all intensive states of pure water can be represented on a two-dimensional
surface, such as a plot of P vs. T or one of P vs. v. Note that the value given by (9.1.12)
for F’ is independent of the number of phases present; for example, if the water is in
vapor-liquid equilibrium, (9.1.12) still gives F” = 2 because the relative amounts in the
two phases can change at fixed pressure. However, we caution that states identified
by F’ variables may not be unique; see § 9.1.3.

A principle use of F occurs when analyzing constrained equilibria: the value of F
gives the dimensionality of the object that represents a constrained equilibrium on an
F-diagram. For example, if we have pure water constrained to states in vapor-liquid
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Table 9.1 Kinds of geometric objects appearing on F diagrams when constraints
apply to phase-equilibrium situations; values of F from (9.1.13)2

o P Constraints (S) Example Object
1 1 none (0) LS,V surface
1 mechanical stabilityb (2) VL critical point point
2 none (0) SL, SV, VL line
3 none (0) SLV triple point point
2 1 none (0) LSV volume
1  diffusional stability< (2) VL critical points line
1 diff. stab. (2); Tx extremum (1)  critical azeotrope point
2 none (0) SL,LL, LV surface
2 Tx extremum (1) azeotrope line
2 diffusional stability (2) VLL crit. end pt. point
3 none (0) SVL, VLL line
4 none (0) SLLV, SSLV point

a This is a modified version of a table originally devised by de Loos [1].
b The two mechanical stability constraints are (8.2.13) and (8.2.14).
¢ The two diffusional stability constraints are (8.4.2) and (8.4.3).

equilibrium, then P = 2 and the Gibbs phase rule (9.1.14) gives F = 1: states of two-
phase equilibria appear as lines on a one-component F-diagram (such as a PT dia-
gram). Table 9.1 gives examples of the kinds of geometric objects that appear on F-
diagrams when constraints are imposed on pure components and on binary mixtures.
Another principal use of F and F’ is in testing whether equilibrium problems are
well posed. To use F and F’ properly for this purpose, we must first decide whether
we have an F-problem or an F’-problem. For an F-problem, one of the phase rules,
(9.1.13) or (9.1.14), tells us the number of property values we must know to have a
well-posed problem. But for an F’-problem, the required number is given by (9.1.12).
Versions of (9.1.12) and (9.1.13) for reacting systems are developed in § 10.3.1.

9.1.3 Indifferent States

Situations can arise in which we have apparently specified values for enough proper-
ties, and yet the state is still not uniquely identified. We follow Prigogine and Defay
[2] and call these indifferent states. The existence of these situations can frustrate some
trial-and-error procedures for solving phase-equilibrium problems.
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One kind of indifference occurs when we have specified too few property values to
solve a problem; for example, we give an F-specification when we actually need an
F’-specification (recall, F < F’). An example occurs when we specify T and P for a
one-component vapor-liquid equilibrium system, but we need to determine the frac-
tion of material in the vapor phase. This is an indifferent situation because, at the
specified T and P, our system can be at any of an infinite number of points along the
tie line between liquid and vapor.

A second kind of indifference occurs when we specify values for the correct num-
ber of property values, but those properties are not all independent, or if they are
independent initially, they become coupled (via internal constraints) during a calcula-
tion. Examples include azeotropes and critical points that could be encountered dur-
ing vapor-liquid equilibrium calculations, because at azeotropes and critical points, T,
P, and {x} are not mutually independent. In such situations, the number of properties
required by an F’-specification is not wrong, but the particular properties chosen to
satisfy the requirement are no longer independent. The possibility of computational
algorithms entering indifferent situations can lead to frustration or erroneous inter-
pretations of results; this problem will be discussed further (but not resolved) when
we present computational algorithms in Chapter 11. Here are some examples.

Example 1. For a binary mixture in vapor-liquid equilibrium with no other con-
straints, we have C=2, P=2, S=0, so F’ = 3. Therefore, specifying values for T, P, and
z1 provides an F’-specification. Knowing the overall mole fraction z; allows us to
compute the relative amounts in the two phases. Hence, the state is not indifferent.

Example 2. For a binary mixture in vapor-liquid equilibrium at a homogeneous azeo-
trope, we have C=2, P=2, S=1, so F’ = 2. Specifying values for T and P creates an
indifferent situation because T and P are coupled through the azeotropic condition.
For the same reason, specifying T and z; is not appropriate (at an azeotrope z; = x; =
y1)- But specifying values for T and an overall system density p does provide a unique
F’-specification and avoids an indifferent situation.

Example 3. For a binary mixture in vapor-liquid-liquid equilibrium, we have C = 2,
P=3,S=0,s0 F =3. But setting values for T, P, and z; creates an indifferent situation
because T and P are coupled through the three-phase equilibrium criteria. However,
specifying values for T and the ratios of amount of vapor to the amounts in each lig-
uid phase does provide a unique F’-specification and avoids an indifferent situation.

9.2 PURE SUBSTANCES

Pure substance phase diagrams may be created using any combination of indepen-
dent properties. First we consider diagrams containing only measurables (§ 9.2.1), and
then diagrams containing one conceptual (§ 9.2.2).

9.2.1 Diagrams Containing Only Measurables

For a pure substance existing as a single phase with no internal constraints, (9.1.12)
gives F’ = 2, indicating that intensives states can be represented on phase diagrams of
two dimensions. Those diagrams may be F-diagrams, such as the PT diagram on the
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Figure 9.1 Schematic phase diagrams for a pure substance. (left) An F-diagram, which cannot
show the relative amounts in each phase when two phases are present. (right) An F’-diagram,
which can show relative amounts. cp = critical point and tp = triple point.

left in Figure 9.1, or they may be F’-diagrams, such as the Pv diagram on the right in
Figure 9.1. As listed in Table 9.1, one-phase situations appear as areas on the pure-
component diagrams in Figure 9.1; two-phase equilibrium situations appear as lines;
three-phase situations (triple points) occur as points. On the F-diagram, the triple
point is a single point because all three phases have the same T and P; however, on the
F’-diagram, it appears as three points because each phase has its own molar volume.
On the PT diagram in Figure 9.1, non-solid areas divide into four distinct regions.
One-phase vapor states lie below the vapor-pressure curve at temperatures T < T,
while one-phase gas states have T > T, and P < P,.. This means that a vapor can be con-
densed either by an isothermal compression or by an isobaric cooling, but a gas can be
condensed only by some process that involves cooling. In a similar manner, one-phase
liquid states lie above the vapor-pressure curve at temperatures T < T, while one-
phase fluid states have T > T, and P > P... Unfortunately, these distinctions are not uni-
versally used: some authors do not distinguish vapor from gas or gas from fluid.

Note in Figure 9.1 that multiphase situations on F-diagrams form objects of differ-
ent dimensionality from the same situations on F’-diagrams. This occurs because one
variable plotted on F’-diagrams takes different values for each phase in equilibrium;
in Figure 9.1 that variable is the molar volume. Phases in equilibrium have the same T
and P, but their molar volumes differ. For example, on the PT diagram in Figure 9.1,
two-phase situations are lines, but on the Pv diagram, two-phase situations span
areas. When an F-specification is made, the molar volumes of equilibrium phases are
fixed, regardless of the quantities present. However, even if we keep T and P fixed, we
might change the distribution of material between the two phases, thereby changing
the F’-specification. The distribution of material (i.e., the relative amounts in the two
phases) can be computed by solving a material balance, that is, by applying a lever
rule.

In § 8.2.6 we found that the slope of any two-phase line on a pure-component PT
diagram obeys the Clapeyron equation,
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Figure 9.2 PT diagrams for two pure substances: one that expands on melting (methane) and
one that contracts on melting (water). Data for methane taken from Tester [3] and for water
from Eisenberg and Kauzmann [4].

(371;)6 = %} pure, always true (9.2.1)

where 