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If it were easy … it cannot be educational.
In education, as elsewhere, the broad
primrose path leads to a nasty place.

 

Alfred North Whitehead
“The Aims of Education,” in

 

Alfred North Whitehead, An Anthology,

 

F. S. C. Northrop and M. W. Gross, eds.,
Macmillan, New York, 1953, p. 90.

 

remarkable things
occur in accordance with Nature,

the cause of which is unknown;
others occur contrary to Nature,

which are produced by skill
for the benefit of mankind.

 

Mechanica

 

, Aristotle (384–322 BCE)

Many scholars doubt that the 

 

Mechanica

 

,
the oldest known textbook on engineering,

was written by Aristotle. Perhaps it was written
by Straton of Lampsacus (a.k.a. Strato Physicus,

died c. 270 BCE), who was a graduate student 
under Aristotle and who eventually succeeded
Theophrastus as head of the Peripatetic school.
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INTRODUCTION

 

ou are a member of a group assigned to experimentally determine the behavior of
certain mixtures that are to be used in a new process. Your first task is to make a

1000-ml mixture that is roughly equimolar in isopropanol and water; then you will
determine the exact composition to within ±0.002 mole fraction. Your equipment con-
sists of a 1000-ml volumetric flask, assorted pipettes and graduated cylinders, a ther-
mometer, a barometer, a library, and a brain. You measure 300 ml of water and stir it
into 700 ml of alcohol—Oops!—the meniscus falls below the 1000-ml line. Must have
been careless. You repeat the procedure: same result. Something doesn’t seem right.

At the daily meeting it quickly becomes clear that other members of the group are
also perplexed. For example, Leia reports that she’s getting peculiar results with the
isopropanol-methyl(ethyl)ketone mixtures: her volumes are 

 

greater

 

 than the sum of
the pure component volumes. Meanwhile, Luke has been measuring the freezing
points of water in ethylene glycol and he claims that the freezing point of the 50%
mixture is well 

 

below

 

 the freezing points of both pure water and pure glycol. Then
Han interrupts to say that 50:50 mixtures of benzene and hexafluorobenzene freeze at
temperatures 

 

higher

 

 than either pure component.
These conflicting results are puzzling; can they all be true? To keep the work going

efficiently, the group needs to deal with the phenomena in an orderly way. Further-
more, you want to understand what’s happening in these mixtures so that next time
you won’t be surprised.

 

0.1  NATURAL PHENOMENA

 

These kinds of phenomena affect the course of chemical engineering practice. As
chemical engineers we create new processes for new products and refurbish old pro-
cesses to meet new specifications. Those processes may involve mixing, separation,
chemical reaction, heat transfer, and mass transfer. To make homemade ice cream we
mix fluids, promote heat transfer, and induce a phase change, without worrying much
about efficiency or reproducibility. But to design an economical process that makes ice

Y
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cream in a consistent and efficient manner, we must have quantitative knowledge of
the properties and phase behavior of pure substances and their mixtures. 

The acquisition of that knowledge appears to be an overwhelming task. An essen-
tially infinite number of mixtures can be formed from the more than 22,000,000 pure
substances now identified by the 

 

Chemical Abstracts Registry

 

, a large number of proper-
ties must be studied, and an extensive range of operating variables must be explored.
We will never be able to measure the properties needed for all possible mixtures over
all required conditions. Theory is of limited help: our inability to create a detailed
quantum mechanical description of matter, coupled with our ignorance of intermolec-
ular forces, prevents our computing from first principles all the property values we
may need. Is there anything we can do?

The most successful approach combines classical thermodynamics with modeling.
Classical thermodynamics provides a grand scheme for organizing our knowledge of
chemical systems, including reaction and phase equilibria. Thermodynamics provides
rigorous relations among quantities, thereby reducing the amount of experiment that
must be done and providing tests for consistency. Thermodynamics establishes neces-
sary and sufficient conditions for the occurrence of vapor-liquid, liquid-liquid, and
solid-fluid equilibria; further, thermodynamics identifies directions for mass transfer
and chemical reactions. Thermodynamics allows us to determine how a situation will
respond to changes in temperature, pressure, and composition. Thermodynamics
identifies bounds: What is the least amount of heat and work that must be expended
on a given process? What is the best yield we can obtain from a chemical reaction? 

Thermodynamics carries us a long way toward the solution of a problem, but it
doesn’t carry us to the end because thermodynamics 

 

itself

 

 involves no numbers. To
get numbers we must either do experiments or do some more fundamental theory,
such as statistical mechanics or molecular simulation. With the demand for property
values far exceeding both the predictive power of theory and the range of experiment,
we use modeling to interpolate and extrapolate the limited available data.

This book is intended to help you master the concepts and tools of modern thermo-
dynamic analysis. To achieve that goal, we will review fundamentals, especially those
that pertain to mixtures, reaction equilibria, and phase equilibria: the objective is to
solidify your grounding in the essentials. In most undertakings the first step is the
most difficult, and yet, without the essentials, we haven’t a clue as to how to start. A
virtue of thermodynamics is that it 

 

always

 

 gives us a starting point for an analysis. But
to pursue the rest of an analysis intelligently, you must choose models that are appro-
priate for your problem, taking into account the advantages and limitations that they
offer. Finally, to complete an analysis efficiently and effectively, you must have experi-
ence. This book tries to instruct you in 

 

how

 

 to perform thermodynamic analyses and
provides opportunities for you to practice that procedure. The program begins in
Chapter 1, but before embarking we use the rest of this introduction to clarify some
misconceptions you may have obtained from previous exposures to the subject. 

 

0.2  THERMODYNAMICS, SCIENCE, AND ENGINEERING

 

Chemical engineering thermodynamics balances science and engineering. But when
the subject is studied, that balance can be easily upset either in favor of a “practical”
study that ignores scientifically-based generality, consistency, and constraint, or in
favor of a “scientific” study that ignores practical motivation and utility. Beyond the
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introductory level, such unbalanced approaches rarely promote facility with the mate-
rial. To clarify this issue, we use this section to distinguish the development of science
from the practice of engineering.

Legend has it that a falling apple inspired Newton’s theory of gravitation. More
likely the theory was the culmination of much thinking and several observations, of
which the last perhaps involved an apple. Once his theory was tested in various situa-
tions and found satisfactory, it became known as a universal law. Newton’s encounter
with an apple may or may not have happened, but nevertheless the story conveys the
most common method of discovery. This method, in which a few particular observa-
tions are extended to a single broad generality, is called 

 

induction

 

. The method is sum-
marized schematically on the left side of Figure 0.1. (For more on the role of induction
in scientific discovery, see Polya [1].)

The law of gravitation illustrates the principal goal of science: to identify, organize,
codify, and compress a large amount of information into a concise statement. Another
example is Maxwell’s proposal that electricity and magnetism can be described by the
same set of differential equations. Still another example occurs in linear transport the-

I N
D

U
C

T
IO

N
D

E
D

U
C

T
IO

N

1st & 2nd laws of thermodynamics
molecular theory of matter

system, state,
process, surroundings

energy,
heat capacities,
equations of state

energy conservation,
entropy generation

phase and
reaction
equilibria

cubic
equations
of state

reactions,
separations,
heat transfer

Propose
Theory

Secondary
Concepts

Primitive
Concepts

Test
Theory

Accept
Theory

Particular
Relations

Engineering
Relations

Industrial
Processes

Figure 0.1 Schematic of the principal ways in which science and engineering are practiced. Sci-
ence proceeds mainly by induction from primitive concepts to general theories. From those gen-
eralities engineering proceeds by deduction to create new processes and products.
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ory in which Newton’s law of viscosity, Fourier’s law of heat conduction, Fick’s law of
mass transfer, and Ohm’s law of electrical conduction all collapse into a single form

flux   =   – coefficient  

 

×

 

  gradient (0.2.1)

Such generalizations can also be found in thermodynamics; for example, Gibbs
described phase equilibrium using the thermodynamics originally developed to ana-
lyze heat engines and other thermal processes. These examples illustrate that the
more highly developed a scientific discipline, the fewer, broader and more powerful
its laws, so that one general goal of science is to make efficient use of brain power [2],

science   

 

⇔

 

   the economy of thought (0.2.2)

The practice of engineering is an activity distinct from the development of science.
A well-engineered product or process accomplishes its allotted task through simple
design, easy operation, moderate cost, infrequent maintenance, and long life: one
well-engineered product was the original Volkswagen Beetle. These attributes of
design, operation, and maintenance all contribute to an efficient use of resources; i.e., 

engineering   

 

⇔

 

   the economy of resources (0.2.3)

Engineering practice is not science, but economic insights from science contribute to
the economical use of resources: the general theories and laws produced by the minds
of scientists become tools in the hands of engineers. But because those theories and
laws are so general (to achieve economy of thought), we must first reduce them to
forms appropriate to our situation. This method, in which a generality is reduced to
apply to a particular case, is called 

 

deduction

 

; it is the primary way by which engineers
use science. This use is illustrated on the right side of Figure 0.1.

The broad generalities of science are of such overwhelming importance that they
deserve a handy and memorable name: we call them the things that are 

 

always true

 

.
An example is the statement of conservation of mass. Conservation of mass represents
economy of thought because it applies to any situation that does not involve nuclear
reactions. But to actually use it, we must deduce the precise form that pertains to our
problem: What substances are involved? What are the input and output streams? Is
the situation a transient or steady state?

Besides the generalities of natural phenomena, science produces another set of
things that are always true: definitions. Definitions promote clear thinking as science
pushes along its path toward new generalities. By construction, definitions are always
true and therefore they are important to engineering analysis. Ignoring definitions
leads to fuzzy analysis and ambiguous communications. While there is much science
in thermodynamics, engineers rarely study thermodynamics for the sake of its sci-
ence. Instead, we must confront the science because articulating an always true serves
as a crucial step in every thermodynamic analysis.

As you use this book to restudy thermodynamics, you may realize that your earlier
experience with the subject was more like the left-hand side (uphill) of Figure 0.1. It
may not have been clear that your goal was to reach the top, so that everything you
did afterwards could be downhill (right-hand side). You may even have tried to “tun-
nel through” to applications, meaning you may have memorized particular formulae
and used them without serious regard for their origins or limitations. It is true that



 

 

 

0.3   WHY THERMODYNAMICS IS CHALLENGING

 

5

 

formulae must be used, but we should apply their most general and reliable forms,
being sensitive to what they can and cannot say about a particular situation.

In this text our goal is to enable you to deduce those methods and relations that
pertain to particular applications. We develop fundamentals in an uphill approach,
and we apply those fundamentals in a downhill fashion, taking advantage of any
knowledge you may already have and attempting to include all the essentials in an
accessible way. Throughout, we include sample applications appropriate to the level
of learning you should have achieved, and we exhort you to develop facility with the
material through repetition, practice, and extension.

To become proficient with thermodynamics and reach deep levels of understand-
ing, you must have not only ability. In addition, you must adapt to alternative ways of
thinking, make a commitment to learning, and exercise your new skills through per-
sonal reflection, interactive conversation, and problem solving. In this way you, your
classmates, and your instructor can all benefit from your efforts. 

 

0.3  WHY THERMODYNAMICS IS CHALLENGING

 

In this section we cite two stumbling blocks that often hinder a study of thermody-
namics: its scope and its abstract nature. Both can lead to frustration, but in this book
we try to offer strategies that help you minimize your frustrations with the material. 

 

0.3.1 Large Number of Relations

 

In studying thermodynamics, it is easy to be overwhelmed by the large number of
mathematical relations. Those relations may be algebraic, such as equations of state,
or they may be differential, such as the Maxwell relations. The number is large
because many variables are needed to describe natural phenomena and because addi-
tional variables have been created by humans to achieve economy of thought. To keep
the material under control, it must be organized in ways that are sensible rather than
arbitrary. Numerous relations may arise in the search for economy of thought, but in
studying a subject we should economize resources, such as brain power, by appealing
to orderliness and relative importance.

As an example, consider these four properties: temperature 

 

T

 

, pressure 

 

P

 

, volume

 

V

 

, and entropy 

 

S

 

. For a system of constant mass we can use these four properties to
form twelve common first derivatives:

How shall we organize these derivatives? We choose an engineering approach in
which we group them according to relative importance; that is, we declare as most

T∂
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important those derivatives that convey the most useful information. If we do this, we
obtain a hierarchy of derivatives ranked from most useful to least useful. 

The hierarchy can be constructed from the simple rules presented in Chapter 3, but
for now we merely note that such rankings can easily be found. So, of the twelve
derivatives involving T, P, V, and S, three are very useful, six are moderately useful,
and three are rarely used by engineers. Consequently, in an engineering study of
those twelve derivatives, you should devote your effort to the most important nine—
a savings of 25%. Moreover, by developing such patterns and using them repetitively,
we hope to help you grapple with the material in systematic and successful ways.

0.3.2 Abstraction in Thermodynamic Properties

Thermodynamic abstraction takes two forms. One occurs in conceptuals—quantities
such as entropy, chemical potential, and fugacity—which are often presented as arbi-
trarily defined concepts having only tenuous contacts to reality. Abstraction, it is true,
is a prevalent feature of engineering thermodynamics; but it cannot be otherwise, for
abstraction serves vital functions. Through the mechanism of conceptual properties,
abstraction achieves economy of thought by providing simple expressions for the con-
straints that Nature imposes on phenomena. Moreover, through simplification,
abstraction achieves economy of resources by providing means for identifying and
separating important quantities from unimportant details.

Non-measurable concepts repel engineers—people who like to get their hands on
things. But to use conceptuals effectively, we must appreciate why they have been
invented and understand how they connect to reality. So in presenting abstract quan-
tities, we will not only provide formal definitions, but we will also rationalize their
forms relative to alternatives and offer interpretations that provide physical meaning. 

In addition to physical interpretations, we will also try to reduce the level of
abstraction by appealing to molecular theory. It is true that thermodynamics can be
developed in a logical and self-contained way without introducing molecules, and in
fact the subject is often taught in that way. But such a presentation may be a disservice
to today’s students who are familiar and comfortable with molecules. Whenever we
can, we use molecular theory to provide physical interpretations, to simplify explana-
tions, to generalize results, and to stimulate insight into macroscopic phenomena.

0.3.3 Abstraction in Thermodynamic Modeling

The second abstraction occurs in modeling. In science and engineering, progress often
involves isolating the dominant elements from a complex situation—a cutting away
of undergrowth to reveal more clearly both forest and trees. Although abstract models
are not real, without them we would be overwhelmed by the complexities of reality.
Moreover, even when an abstraction—call it an idealization—does not precisely rep-
resent part of a real situation, the idealization might serve as a basis for systematic
learning and later analysis. 

One such strategy separates reality into ideal and correction terms. For thermody-
namic properties this separation often takes an additive form

real    =     ideal   +   correction (0.3.1)
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This pattern appears in the virial equation of state, in correlations of gas properties
based on residual properties, and in correlations of liquid mixture properties based on
excess properties. Another separation of reality takes a multiplicative form,

real    =     ideal  ×  correction (0.3.2)

This pattern is used to correlate gas volumes in terms of the compressibility factor, to
correlate gas phase fugacities in terms of fugacity coefficients, and to correlate liquid
mixture fugacities in terms of activity coefficients. 

According to a traditional engineering view, much of the abstraction in thermody-
namics can be eliminated if we avoid its scientific foundations and discuss only its
practical applications. Alternatively, according to a traditional scientific view, when
we combine modeling with thermodynamics to enhance its usefulness, we spoil its
beauty and logical consistency. In this text we intend to strike a middle ground
between these conflicting views. We seek to preserve and exploit the subject’s logic,
but we will also combine the scientific formalism with engineering modeling because
we intend to actually apply the science to realistic situations. 

0.4  THE ROLE OF THERMODYNAMIC MODELING

In § 0.1 we noted that pure thermodynamics is not generally sufficient to solve engi-
neering problems. Thermodynamics provides numerous relations among such quan-
tities as temperature, pressure, heat capacities, and chemical potentials, but to obtain
numerical values for those quantities, we must rely on experimental data—thermody-
namics itself provides no numbers.

But reliable experiments are expensive and time-consuming to perform, and conse-
quently we rarely have enough data to satisfy engineering needs. So we contrive
models to extend the range of validity of data. At the present time, successful models
usually have some basis in molecular theory. As suggested by Figure 0.2, modern
model building involves an interplay among thermodynamics, molecular theory,
molecular simulation, and experiment: thermodynamics identifies quantities that are
important in a particular application, molecular theory provides mathematical forms
for representing those quantities, while molecular simulation and experiment provide
data for obtaining values of parameters in the mathematical forms. 

The resulting models may be used in various applications, including chemical reac-
tion equilibria, which is important to chemical reactor design, and phase equilibria,
which arises in distillation, solvent extraction, and crystallization. But in addition to
such traditional applications, thermodynamic models may also be used to help solve
many other engineering problems, such as those involving surface and interfacial
phenomena, supercritical extraction, hazardous waste removal, polymer and compos-
ite material development, and biological processing.

No single book could provide a complete description of all the topics—fundamen-
tals, experiments, modeling, and applications—implied by Figure 0.2. In this book we
choose to emphasize fundamental thermodynamics (Parts I, II, and III) and calcula-
tions for systems having multiple phases and reactions (Part IV); these topics arise in
many common applications. Since we cannot possibly cover everything, we will con-
centrate on the fundamentals and illustrate their use in enough applications so you
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can learn how they are applied. As a result, you should be able to take advantage of
thermodynamics in situations that are not covered explicitly here. Truly fundamental
concepts are permanent and universal, it is only the applications that go in and out of
style.

LITERATURE CITED
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Figure 0.2 By combining molecular theory, thermodynamics, experimental data, and molecular
simulation, thermodynamic modeling simplifies and extends descriptions of physical and
chemical properties. This contributes to the reliable and accurate design, optimization, and
operation of engineering processes and equipment. Note the distinction between molecular
models used in molecular simulation and macroscopic models used in thermodynamics.
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PRIMITIVES

 

n this chapter we review elementary concepts that are used to describe Nature.
These concepts are so basic that we call them 

 

primitives

 

, for everything in later
chapters builds on these ideas. You have probably encountered this material before,
but our presentation may be new to you. The chapter is divided into primitive things
(§ 1.1), primitive quantities (§ 1.2), primitive changes (§ 1.3), and primitive analyses
(§ 1.4).

 

1.1  PRIMITIVE THINGS

 

Every thermodynamic analysis focuses on a 

 

system

 

—what you’re talking about. The
system occupies a definite region in space: it may be composed of one homogeneous
phase or many disparate parts. When we start an analysis, we must properly and
explicitly identify the system; otherwise, our analysis will be vague and perhaps mis-
leading. In some situations there is only one correct identification of the system; in
other situations, several correct choices are possible, but some may simplify an analy-
sis more than others.

A system can be described at either of two levels: a 

 

macroscopic

 

 description pertains
to a system sufficiently large to be perceived by human senses; a 

 

microscopic

 

 descrip-
tion pertains to individual molecules and how those molecules interact with one
another. Thermodynamics applies to macroscopic entities; nevertheless, we will occa-
sionally appeal to microscopic descriptions to interpret macroscopic phenomena.
Both levels contain primitive things.

 

1.1.1 Macroscopic Things

 

Beyond the system lies the rest of the universe, which we call the 

 

surroundings

 

. Actu-
ally, the surroundings include only that part of the universe close enough to affect the
system in some way. For example, in studying how air in a balloon responds to being
moved from a cool room to a warm one, we might choose the air in the balloon to be

I



 

 

 

1.1   PRIMITIVE THINGS

 

11

 

the system and choose the air in the warmer room to be the surroundings. If the uni-
verse beyond the room does not affect the balloon, then objects and events outside the
room can be ignored.

An 

 

interaction

 

 is a means by which we can cause a change in the system while we
remain in the surroundings; that is, an action in the surroundings will cause a
response in the system only if the proper interaction exists. Interactions are of two
types: thermal and nonthermal. A 

 

nonthermal

 

 interaction connects some variable 

 

x

 

 in
the system to a variable 

 

y

 

 in the surroundings. This means that 

 

x

 

 and 

 

y

 

 are not inde-
pendent; instead, they are coupled by a relation of the form

(1.1.1)

Each nonthermal interaction involves a force that tends to change something about
the system. Of most concern to us will be the nonthermal interaction in which a
mechanical force deforms the system volume. In this case, the system volume is 

 

x

 

 in
(1.1.1) and the surroundings have volume 

 

y

 

. When the system volume increases, the
volume of the surroundings necessarily decreases, and vice versa. One of these vari-
ables, typically the system variable 

 

x

 

, is chosen to measure the extent of the interac-
tion; this variable is called the 

 

interaction coordinate

 

.
When two or more nonthermal interactions are established, the choice of interac-

tion coordinates must be done carefully, to ensure that the coordinates are mutually
independent. That is, each interaction coordinate must be capable of being manipu-
lated while all others are held fixed. Such coordinates are called 

 

generalized coordinates

 

,
the interaction corresponding to a generalized coordinate is said to be 

 

conjugate

 

 to its
coordinate, and each conjugate interaction is said to be 

 

orthogonal

 

 to every other inter-
action [1–3]. As suggested by Figure 1.1, many orthogonal interactions are possible;
examples (with their conjugate coordinates) are mechanical interactions (volume),
chemical interactions (composition), gravitational interactions (position relative to a
mass), and electrical interactions (position relative to a charge).

 

Figure 1.1

 

A system may engage in several kinds of orthogonal interactions with its surround-
ings. Examples include mechanical interactions, by which a force acts to change some coordi-
nate of the system; chemical interactions, by which amounts of species change either by
chemical reaction or by diffusion across boundaries; and thermal interactions, by which the sys-
tem responds to a temperature difference across the boundary.

F x y,( ) 0=

chemical interaction
for species A thermal interaction

chemical
interaction
for species B

mechanical interaction

Boundary

Surroundings

System
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Besides nonthermal interactions, the system and surroundings may be connected
through a 

 

thermal

 

 interaction. The thermal interaction causes a change in the system
by means of a difference in hotness and coldness, which is measured by a temperature
difference between system and surroundings. The thermal interaction distinguishes
thermodynamics from other branches of science: when the thermal interaction is
unimportant or irrelevant, some other branch of knowledge can be applied. For exam-
ple, in predicting the motions of bodies in the solar system, the interactions are gravi-
tational and classical mechanics describes the motion. For the behavior of electrons in
molecules, the interactions are electromagnetic and quantum mechanics applies.

 

Boundaries

 

 separate a system from its surroundings, and the nature of the boundary
may limit how the system interacts with its surroundings. Therefore the location and
nature of the boundary must be carefully and completely articulated to successfully
analyze a system. Boundaries are usually physical entities, such as walls, but they can
be chosen to be imaginary. Common boundaries are listed in Table 1.1. 

 

1.1.2 Microscopic Things

 

Molecular theory asserts that all matter is composed of molecules, with molecules
made up of one or more atoms. What evidence do we have for the existence of mole-
cules? That is, why do we believe that matter is ultimately composed of lumps, rather
than being continuous on all scales? (For a review of the nineteenth-century debate on
the discrete vs. continuous universe, see Nye [4].) One piece of evidence is the law of
definite proportions: the elements of the periodic table combine in discrete amounts to
form compounds. Another piece of evidence is obtained by shining X rays on a crys-
talline solid: the resulting diffraction pattern is an array of discrete points, not a con-
tinuous spectrum. More evidence is provided by Brownian motion; see Figure 1.2. 

Molecules themselves exhibit certain primitive characteristics: (a) they have size
and shape, (b) they exert forces on one another, and (c) they are in constant motion at
high velocities. Molecules vary in size according to the number and kind of constitu-
ent atoms: an argon atom has a “diameter” of about 3.4(10

 

–10

 

) m; a fully extended
octane chain (C

 

8

 

H

 

18

 

) is about 10(10

 

–10

 

) m long; the double helix of human DNA (a
polymer) is about 20(10

 

–10

 

) m thick and, when extended, is about 0.04 m long [5].

 

Table 1.1

 

Examples of boundaries between systems and surroundings

 

Boundary Constraints on interactions

 

Open Any interaction is possible

Closed Impenetrable by matter, but other kinds of
interactions can occur

Semipermeable Penetrable by some chemical species, but not
by others; all other interactions are possible

Insulated Thermal interactions are not possible, but
nonthermal interactions can occur

Rigid Boundary cannot be mechanically deformed

Isolated No interactions can occur
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These microscopic sizes imply that huge numbers of molecules make up a macro-
scopic chunk of matter: there are about as many molecules in one living cell as there
are cells in one common domestic cat [6].

The size and shape of a molecule constitute its 

 

molecular structure

 

, which is a pri-
mary aspect of molecular identity. But identity may not be conserved: in the absence
of chemical reactions, identity is preserved at the molecular level, but when reactions
do occur, identity is preserved only at the atomic level. Molecular structure results
from forces acting among constituent atoms. These forces are of two types: (a) chemi-
cal forces, which are caused by sharing of electrons and are the primary determinants
of structure, and (b) physical forces, which are mainly electrostatic. Molecular struc-
ture is dynamic, not static, because the atoms in a molecule are continually moving
about stable positions: the structure ascribed to a molecule is really a time-average
over a distribution. In large molecules the structure may be an average over several
different “sub-structures” that are formed when groups of atoms rearrange them-
selves relative to other parts of the molecule. Such rearrangements occur, for example,
as internal rotations in alkanes and folding motions in proteins. Molecular structure
and its distribution can be distorted by changes in temperature and pressure.

 

Figure 1.2

 

One piece of evidence for the existence of molecules is Brownian motion: a small
macroscopic particle suspended in a medium will exhibit irregular trajectories caused by the
particle colliding with molecules of the medium. The trajectories shown here are from Perrin
[7], in which a mastic grain of 1.06(10

 

–6

 

) m diameter was suspended in a liquid. The dots repre-
sent positions of the grain observed at intervals of 30 seconds, with the positions projected onto
a horizontal plane (orthogonal to the force of gravity). The straight lines indicate the order of
observations; but otherwise, they have no physical significance. (Units on the axes are arbi-
trary.) Note that this image is incomplete because it is a two-dimensional projection from a
three-dimensional phenomenon.
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Besides forces acting among atoms on one molecule (

 

intramolecular forces

 

), there are
also 

 

intermolecular forces

 

 acting between molecules. Such forces depend on distances
between molecular centers and, in nonspherical molecules, on the relative orienta-
tions of the molecules. When molecules are widely separated, as in a gas, intermolec-
ular forces are small; see Figure 1.3. If we squeeze the gas, it may condense to form a
liquid; evidently, when molecules are pushed moderately close together they attract
one another. But if we squeeze on the condensate, the liquid resists strongly: when
molecules are close together they repel one another. This behavior is typical. 

Even a superficial knowledge of molecular structure and intermolecular forces may
help us explain why some substances behave as they do. For example, at ambient con-
ditions the chain molecule n-decane C

 

10

 

H

 

22

 

 is a liquid, while the double-ring mole-
cule naphthalene C

 

10

 

H

 

8

 

 is solid. This difference is not caused by the small difference
in molecular masses—these substances have similar boiling points and critical points.
Rather, it is caused by the difference in molecular structure. Differences in structure
cause differences in molecular flexibility and in the ability of molecules to pack. Such
differences lead to different temperatures at which molecular kinetic energies over-
come intermolecular potential energies thereby allowing molecular centers to move
enough to produce phase changes; for example, solids melt and liquids vaporize.

 

Figure 1.3

 

Schematic of the potential energy and force acting between two spherical molecules,
such as those of argon. When two molecules are far apart, they do not interact, so both the force
and the potential energy are zero. When the molecules are close together, their electron clouds
are distorted, causing a strong repulsive force. At intermediate separations, the molecules
attract one another. Here the scales on ordinate and abscissa are dimensionless. On the abscissa,
distances have been divided by 

 

σ

 

, which is related to the atomic diameter. On the ordinate,
energies were divided by the magnitude of the minimum energy 

 

u

 

min

 

, while dimensionless
forces were computed as 

 

F

 

σ

 

/u

 

min
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According to kinetic theory, molecules in liquids and gases are continually moving.
We see this in Brownian motion, and in some cases, we can sense molecular diffusion:
when a bottle is opened, we can soon decide whether it contained ammonia or per-
fume. Further, molecular motion serves as the mechanism for the thermal interaction.

 

1.2  PRIMITIVE QUANTITIES

 

Once we have identified the system, its boundaries, and its interactions with the sur-
roundings, we must describe the condition of the system. This description involves
certain quantities, called 

 

properties

 

, whose values depend only on the current condi-
tion. We take properties to be macroscopic concepts; microscopically, there are addi-
tional quantities, such as bond lengths, force constants, and multipole moments, that
describe molecular structure and define intermolecular forces. These microscopic
quantities are not properties, but they contribute to the values taken by properties. 

In thermodynamics, we assume properties are continuous and differentiable. These
assumptions cannot be rigorously confirmed because sufficient experiments cannot be
done to verify them; nevertheless, they allow us to invoke the mathematical limit for
transforming discretely distributed data into continuous functions. They seem to fail
only in special cases, such as at critical points. These mathematical assumptions are so
significant that they could be considered fundamental laws.

 

1.2.1 Generalized Forces

 

Recall from § 1.1.1 that we impose changes on a system via thermal and nonthermal
interactions. In the case of nonthermal interactions, changes are caused by forces.
Common forces and their conjugate nonthermal interactions are listed in Table 1.2. A
force has the following characteristics: 

(a) It causes or can cause a change in the condition of a system; the change results 
in a modification of the value of a generalized coordinate.

(b) It can be measured by a balancing procedure; that is, an unknown force is 
measurable by finding a calibrated standard that stops the action of the 
unknown force.

 

 

Table 1.2

 

Common macroscopic interactions

 

Interaction Generalized coordinate Conjugate force

 

Mechanical System volume Pressure

Gravitational Position of a mass Gravitational field

Interfacial Area of boundary Interfacial tension

Chemical Species mole number Chemical potential

Electrical Position of electric charge Electric field



 

16

 

PRIMITIVES

 

In classical mechanics forces are said to be 

 

conservative

 

 if they can be written as the
negative gradient of some potential energy function. An example is the force 

 

F

 

g

 

exerted on an object in a gravitational field of potential energy 

 

E

 

p

 

,

(1.2.1)

Here 

 

m

 

 is the mass of the object, 

 

g

 

 is the gravitational acceleration, and 

 

z

 

 is the dis-
tance the object’s center lies from the center of the field. The negative sign indicates an
attractive force and we recognize the result as Newton’s second law.

We can extend this idea to thermodynamics by defining any force to be conserva-
tive if it is proportional to some thermodynamic potential function differentiated with
respect to a generalized coordinate. Under this definition, the forces cited in Table 1.2
are all conservative. A particular example is the pressure involved in the mechanical
interaction; in Chapter 2 we will find that

(1.2.2)

where 

 

S

 

 is the entropy. Here the internal energy 

 

U

 

 serves as the thermodynamic
potential function that connects the generalized coordinate 

 

V

 

 to its conjugate force 

 

P

 

.
One of our goals is to identify thermodynamic potential functions for computation-
ally convenient choices of generalized coordinates and their conjugate forces.

Besides conservative forces, there are other forces that are not conjugate to a gener-
alized coordinate through a derivative of some potential function. All such forces are
said to be 

 

dissipative

 

, because they add to the amount of energy needed to change a
state; ultimately, that extra energy is dissipated as heat. Common examples are fric-
tional forces that must be overcome whenever one part of a system moves relative to
other parts. All real macroscopic forces have dissipative components, and one of the
goals of thermodynamics is to account for any energy dissipated as heat.

For the thermal interaction, the force is sometimes identified as the temperature
with its generalized coordinate being the entropy [8]. Such an identification provides
an obvious and appealing symmetry because it makes thermal interactions appear to
be structurally analogous to nonthermal interactions; however, we prefer not to make
such an identification because for all known nonthermal interactions the generalized
coordinate can be measured, whereas entropy cannot. In this book we will consider
only mechanical, gravitational, interfacial, and chemical forces plus the thermal inter-
actions; others will not be used.

 

1.2.2 Equilibrium and State

 

The condition of a system is said to be an 

 

equilibrium

 

 one when all forces are in balance
and the thermal interaction is not acting, either because it is blocked or because tem-
peratures are the same on both sides of the boundary. These restrictions apply not
only to interactions across system boundaries, but also to interactions between system
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parts. At equilibrium, macroscopic properties do not change with time nor with mac-
roscopic position within a uniform portion of the system. Equilibrium conditions dif-
fer from 

 

steady state

 

 conditions. During steady states, net interactions are constant
with time, while at equilibrium net interactions are not merely constant, but zero.
Moreover, when equilibrium conditions are disturbed by a small interaction, the sys-
tem tends to resist the interaction; that is, a small disturbance from equilibrium causes
only a small bounded change in the system’s condition. This is called 

 

Le Chatelier’s
principle. 

Equilibrium is an idealized concept because everything in the universe is appar-
ently changing on some time-scale (the scales range from femtoseconds to eons). The
concept is useful when changes occur on time-scales that are unimportant to the
observer. For example, a system may have corroding boundaries or its contents may
be decomposing because of electromagnetic radiation (visible or ultraviolet light, for
example); it may be expanding via chemical explosion or collapsing under glacial
weight. In any situation, we must identify those interactions that occur over the time-
scale of our application. “Equilibrium” is said to exist when those interactions are
brought into balance. If other interactions are long-lived compared to the time-scale of
interest and if, during that time-scale, those interactions have little effect on the sys-
tem’s condition, then those interactions can be ignored.

By stipulating values for a certain number of properties, we establish the condition
of the system: the thermodynamic state. The number of properties needed depends on
such things as the number of parts of the system and the number of chemical species
in each part. This issue will be addressed in Chapter 3. When only a few properties are
sufficient to identify the state, it may be useful to construct a state diagram by plotting
independent properties on mutually orthogonal coordinate axes. The dimensionality
of this diagram equals the number of properties needed to identify the state.

We say a state is well-defined when sufficient property values are specified to locate
a system on its state diagram. If, in a well-defined state, the system is at equilibrium,
then the condition is said to be an equilibrium state. Consequently, all equilibrium
states are well-defined, but well-defined states need not be equilibrium states. In fact,
a well-defined state may not be physically realizable—it may be thermodynamically
unstable or hypothetical or an idealization. For example, many well-defined states of
an ideal gas cannot be realized in a laboratory; nevertheless, thermodynamic analyses
can be performed on such hypothetical systems.

Since by definition properties depend only on the state, properties are called state
functions. State functions have convenient mathematical attributes. For example, in
the calculus they form exact differentials (see Appendix A); this means that if a system
is changed from state 1 to state 2, then the change in any state function F is computed
merely by forming the difference

(1.2.3)

For specified initial (1) and final (2) states, the value of the change ∆F is always the
same, regardless of how state 2 is produced from state 1. Examples of measurable
state functions include temperature, pressure, volume, heat capacity, and number of
moles. Properties constitute an important set of primitives, for without state func-
tions, there would be no thermodynamics.

∆F F2 F1–=
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1.2.3 Extensive and Intensive Properties

Thermodynamic properties can be classified in various ways. One classification
divides properties into two kinds: extensive and intensive. Extensive properties are
those whose experimental values must be obtained by a measurement that encom-
passes the entire system, either directly or indirectly. An indirect measurement would
apply to systems of disparate parts; measurements would be performed on all the
parts and the results added to obtain the total property for the system. Examples
include the total volume, the total amount of material, and the total internal energy.

Intensive properties are those whose experimental values can be obtained either by
inserting a probe at discrete points into the system or (equivalently) by extracting a
sample from the system. If the system is composed of disparate parts, values for
intensive properties may differ in different parts. Examples of intensive properties are
the temperature, pressure, density, and internal energy per mole.

Redlich [2] suggests a simple thought-experiment that allows us to distinguish
extensive properties from intensive ones. Let our system be in an equilibrium state,
for which values of properties can be assigned, and imagine replicating the system
(fancifully, run it through a duplicating machine), while keeping the original state
undisturbed. Our new system is now a composite of the original plus the replica.
Extensive properties are those whose values in the composite differ from those in the
original system, while intensive properties are those whose values are the same in both
the composite and the original.

These operational distinctions between extensive and intensive avoid ambiguities
that can occur in other definitions. Some of those definitions merely say that extensive
properties are proportional to the amount of material N in the system, while intensive
properties are independent of N. Other definitions are more specific by identifying
extensive properties to be those that are homogeneous of degree one in N, while
intensive properties are of degree zero (see Appendix A).

But these definitions can lead to ambiguities, especially when we must interpret
certain partial derivatives that often arise in thermodynamics. For example, is the sys-
tem pressure P extensive? Some definitions suggest that P does not change with N,
and for a pure substance it is true that

(1.2.4)

where v = V/N is the molar volume. That is, here P = P(T, v) does not change when
material is added to the system because the container volume V must increase to keep
the molar volume v constant. However, it is also true that

(1.2.5)

where the quantity held fixed is the container volume V. In fact, for a pure ideal gas,

(1.2.6)
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because for an ideal gas P = NRT/V. That is, P increases when we increase the amount
of an ideal gas while T and container volume V remain fixed. The lesson here is that
an intensive property (such as P) may or may not respond to a change in N, depend-
ing on which quantities are held fixed when N is changed.

Any extensive property can be made intensive by dividing it by the total amount of
material in the system; however, not all extensive properties are proportional to the
amount of material. For example, the interfacial area between the system and its
boundary satisfies our definition of an extensive property, but this area changes not
only when we change the amount of material but also when we merely change the
shape of the system. Further, although some intensive properties can be made exten-
sive by multiplying by the amount of material, temperature and pressure cannot be
made extensive.

In this book we restrict ourselves to extensive properties that are homogeneous of
degree one in the amount of material. Specifically, for a multicomponent system con-
taining component mole numbers N1, N2, … , we will use only those extensive prop-
erties F that are related to their intensive analogs f by

(1.2.7)

Here p1 and p2 are any two independent intensive properties, the xi = Ni/N are mole
fractions, and N = ΣNi. Therefore, if we fix values for p1 and p2 while doubling all
mole numbers, then values for all extensive properties F double. However, we do not
expect that (1.2.7) is either necessary or sufficient for identifying extensive properties. 

One motivation for distinguishing extensive from intensive is that the intensive
thermodynamic state does not depend on the amount of material. The same intensive
state can be attained in a hot toddy the size of a tea cup or the size of a swimming
pool. This means we can perform a single analysis using intensive variables, but then
apply the results to various systems of different sizes.

1.2.4 Measurables and Conceptuals

Thermodynamic analyses are also helped by another classification of properties: one
that distinguishes measurables from conceptuals. Measurables are properties whose
values can be determined directly from an experiment; these are the properties of ulti-
mate interest because they can be monitored and controlled in an industrial setting.
Examples are temperature, pressure, total volume, mole fraction, surface area, and
electric charge. Conceptuals are properties whose values cannot be obtained directly
from experiment; their values must be obtained by some mathematical procedure
applied to measurables. (In some cases we can contrive special experimental situa-
tions so that a change in a conceptual can be measured.) Conceptuals simplify thermo-
dynamic analyses; for example, conceptuals often simplify those basic equations that
describe Nature’s constraints on a system or process. The common conceptuals are
energy, entropy, the Gibbs energy, chemical potential, fugacity, and activity coefficient.

Conceptuals play an intermediate role in engineering practice; they are a means to
an end. For example, assume we are to diagnose and correct a process (perhaps a dis-
tillation column) that is behaving abnormally (improper product concentration in the
overhead). To document the abnormality, we collect data on certain measurables (say

F p1 p2 N1 N2 …, , , ,( ) Nf p1 p2 x1 x2 …, , , ,( )=
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temperature, pressure, and composition). We translate these measurements into val-
ues for conceptuals (such as energies and fugacities) and perform an analysis that
reveals the source of the abnormality (perhaps insufficient heat supplied). Then using
relations between conceptuals and measurables, we formulate a strategy for correct-
ing the problem; the strategy is implemented via measurables and interactions.

1.3  PRIMITIVE CHANGES

The engineer’s task is not merely to describe the current thermodynamic state of a
system; an engineer must also anticipate how that state will respond when conditions
in the surroundings change. A related problem is also important; that is, an engineer
may need to decide how to manipulate conditions in the surroundings to produce a
desired change in the system. For example, consider a vapor in equilibrium with an
equimolar mixture of ethanol and water initially at 1 bar. Say we want to increase the
pressure to 10 bar, while preserving the two phases and the equimolar composition in
the liquid. The thermodynamic problem is to identify the new temperature and new
vapor composition, but the engineering problem is to identify the valve settings
needed to achieve the desired final state. Any time a system moves from one equilib-
rium state to another, the change is called a process. Processes include all kinds of
physical changes, which are typically monitored by changes in temperature, pressure,
composition, and phase; moreover, processes can also include chemical changes—
changes in molecular identities—which occur during chemical reactions.

Possible processes are limited by the nature of system boundaries and by condi-
tions in the surroundings. The kinds of processes allowed by particular boundaries
are listed in Table 1.3. Often we cause a particular process to occur by bringing the
system into contact with a reservoir that forces a particular system property to remain
constant. Common reservoirs include the thermal (or heat) reservoir, which maintains
the system at a constant temperature (an isothermal process), and the mechanical res-
ervoir, which imposes its pressure on the system (isobaric process).

We will find it useful to identify certain limiting cases of processes. To facilitate the
discussion, we introduce the following notation. Let ∆ represent the net total of all

Table 1.3 Typical boundaries and reservoirs with their corresponding
processes

Boundary or reservoir Process

Closed Constant mass

Thermally insulated Adiabatic

Rigid Constant volume (isometric)

Closed and rigid Constant density (isochoric)

Closed, rigid, insulated Constant energy

Heat reservoir Constant temperature (isothermal)

Mechanical reservoir Constant pressure (isobaric)
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driving forces acting on a system, and let δ be the differential analog of ∆. In general,
the driving forces can be divided into two types: external forces ∆ext that act across sys-
tem boundaries and internal forces ∆int that act within the system but between differ-
ent parts of it. As a result, we can write

(1.3.1)

Moreover, any driving force may be composed of both conservative and dissipative
components; we let F represent all dissipative components of the driving forces. 

We first define the static limit of any process as that produced when all net driving
forces are removed,

(1.3.2)

This means that in the static limit, we expect any process to degenerate to an equilib-
rium state: a physically realizable point on a state diagram. But note that to achieve
equilibrium, all external and internal driving forces must be zero. In general, an equi-
librium state is not obtained by taking only the external driving forces to zero; for
example, an isolated system need not be at equilibrium, nor need its state even be
well-defined. 

In some (troublesome) situations, taking all external driving forces to zero does
result in a well-defined state, but the presence of internal driving forces precludes
equilibrium. These states can often be identified by administering a small disturbance.
For example, by careful addition, we may create a supersaturated solution of sugar in
water. When all net external driving forces are brought to zero, the state is well-
defined: the solution is a single liquid phase at a definite temperature, pressure, and
composition. However, this well-defined state is not at equilibrium; in supersaturated
solutions there exist internal driving forces tending to produce a new phase, although
this tendency is kinetically limited. But if we disturb the solution, perhaps by adding
a small crystal of sugar, those internal driving forces are relieved by rapid formation
of solid sugar.

If, instead of taking all driving forces to zero, we make them differential, then we
say the process is quasi-static,

(1.3.3)

Differential driving forces produce a differential process; however, we can contrive a
finite process by stringing together a sequence of quasi-static steps. From an equilib-
rium state (a point on a state diagram) we use differential driving forces to take a step,
then we let the system relax back to equilibrium. This new equilibrium condition
locates a new point on a state diagram. Repeating the sequence (differential step +
relaxation to equilibrium) many times, we generate a series of points that represent a

∆ ∆ext ∆int+=

process( )
∆ 0→
lim process( )

∆ext 0→
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lim equilibrium
state 
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process path on a state diagram. Such a quasi-static process is illustrated schemati-
cally in the middle panel of Figure 1.4.

Even though a quasi-static process is driven differentially, the driving forces may
still contain dissipative components. These components may arise because some
properties have finite differences across boundaries or they may arise from differen-
tial effects accumulated over a finite process. If we could remove all dissipative com-
ponents F, so the process would be driven only by conservative forces, then the
change of state would be reversible. This reversible limit can be expressed as

(1.3.4)

Formally, this limit is sufficient to define a reversible change, but in practice the dissi-
pative components F can be made to vanish only by simultaneously making the total
driving force ∆ vanish. To remind ourselves of this, we rewrite (1.3.4) in the form

(1.3.5)

To the degree that a reversible change is viewed as a process, analogous to a quasi-
static process, the following distinction occurs: if the dissipative forces can be made to
vanish, F → 0, then the driving forces must also vanish, ∆ → 0; however, the converse
is not necessarily true. That is, if ∆ → 0, then we may or may not also have F → 0. In
other words, a reversible change has quasi-static characteristics, but a quasi-static pro-
cess need not be reversible [9]. Since, in the reversible limit, all driving forces are taken
to zero, every state visited during a reversible change is an equilibrium state; hence, a
reversible change can be represented by a continuous line on a state diagram.

Now we address the apparent contradiction between the limit in (1.3.5) and that in
(1.3.2): both have ∆ → 0, but with different results. The resolution is that the static
limit in (1.3.2) can describe a real process, while the reversible limit in (1.3.5) is an ide-
alization. That is, a reversible “process” is not really a process at all [10], it is only a

Figure 1.4 Comparison of changes of state as represented on a state (PV) diagram for a pure,
one-phase substance. During an (a) irreversible process, intermediate states are unknown and
unknowable; during a (b) quasi-static process, the system moves in small discrete steps
between identifiable equilibrium states; during a (c) reversible change, every intermediate state
is a well-defined equilibrium state.
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continuous sequence of equilibrium states on a state diagram. We emphasize this dis-
tinction by calling the reversible limit a reversible change, not a reversible “process.“

In a reversible change, no energy is used to overcome dissipative forces, so a
reversible path from initial state 1 to final state 2 can also be traversed in the opposite
direction, returning both system and surroundings to their initial conditions. The
equilibrium states visited during the process 2-1 are identical to those visited during
1-2, just in reverse order. Although the reversible change is an unrealizable idealiza-
tion, it is useful because (i) it allows calculations to be done using only system proper-
ties and (ii) it provides bounds on energy requirements for a process.

All real processes are in fact irreversible: they proceed in a finite time and are not a
continuous string of equilibrium states. Typically, an irreversible process involves a
stage during which the state of the system cannot be identified, as in the top part of
Figure 1.5. Irreversible processes are driven by macroscopic property gradients across
system boundaries, so that in practice no real change can be reversed without causing
some change in the surroundings. That is, irreversible processes involve dissipative
forces, such as friction and turbulence, which must be overcome to return the system
to any previous state. The magnitudes of dissipative forces depend on system state
and on the magnitudes of property gradients; these determine the degree of irrevers-
ibility. Strongly irreversible processes are less efficient than weakly irreversible ones.
Often, highly irreversible processes are driven by large gradients, which make the
process proceed quickly: fast processes are usually more irreversible than slow ones.
But process speed may not correlate with gradient size; for example, if a boundary
poses a large resistance, then even a slow process may require a large driving force.

Figure 1.5 Schematic of a quasi-static process compared with a finite irreversible process. The
system initially in a state having properties Ti, Pi, and Ni is to be changed to a final state having
Tf, Pf, and Nf. In the finite irreversible process (top) the system passes through intermediate
states that are undefined. During the quasi-static process (bottom) the change occurs in differen-
tial stages; at the end of each stage the system is allowed to relax to an intermediate state that is
well-defined. In both processes, overall changes in state functions, such as ∆T = Tf – Ti and ∆P =
Pf – Pi, are the same.
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1.4  PRIMITIVE ANALYSES

In later chapters, much of our attention will focus on analyzing how a system
responds to a process. The primitive stages of an analysis lead to a sketch or diagram
that helps us visualize the system and the processes acting on it. We divide such
sketches into two general classes: one for closed systems (§ 1.4.1), the other for open
systems (§ 1.4.2). For closed systems, no further primitive concepts apply, and a ther-
modynamic analysis proceeds as described in Chapter 2. But for open systems, the
sketch can be enhanced by invoking one additional primitive concept: equations that
represent system inventories. These equations are discussed in § 1.4.2.

1.4.1 Closed-System Analyses: Two-Picture Problems

When processes are applied to closed systems, we can usually identify the system
state at two or more different times. The diagrams in Figure 1.4 and schematics in Fig-
ure 1.5 are of this type; in those examples, we know the initial and final states of the
system. Intermediate states may be knowable (reversible) or unknowable (irrevers-
ible); nevertheless, the identities of two states may be sufficient to allow us to analyze
the change. We call these situations “two-picture” problems because the primitive
analysis leads us to sketches representing two (or more) system states.

1.4.2 Open-System Analyses: One-Picture Problems

When streams are flowing through an open system, a primitive analysis leads us to
represent the situation by a single sketch, perhaps like that in Figure 1.6. We call this a
“one-picture” problem. In these situations we can extend the primitive analysis to
include equations that represent inventories on selected quantities. We develop those
equations here.
 

Figure 1.6 Schematic representation of terms appearing in the stuff equation (1.4.1). The
amount of stuff accumulated in a system may change because of stuff added to the system, stuff
removed from the system, stuff generated in the system, or stuff consumed in the system.
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For the system in Figure 1.6, the boundary allows transfer of some quantity which,
for generality, we call stuff. By identifying all ways by which the amount of stuff may
change, we obtain a general balance equation, which we call the stuff equation [11],

(1.4.1)

In general the stuff equation is a differential equation and its accumulation term can
be positive, negative, or zero; that is, the amount of stuff in the system may increase,
decrease, or remain constant with time. In a particular situation several kinds of stuff
may need to be inventoried; examples include molecules, energy, and entropy.

The stuff equation applies to both conserved and non-conserved quantities. Con-
served quantities can be neither created nor destroyed; so, for such quantities the stuff
equation reduces to a general conservation principle

(1.4.2)

One important conservation principle is provided by molecular theory: atoms are
conserved parcels of matter. (We ignore subatomic processes such as fission or fusion
and consider only changes that do not modify the identities of atoms.) At the macro-
scopic level this conservation principle is the mass or material balance

(1.4.3)

If, instead of total material, the inventory is to be conducted on chemical species
(moles), then (1.4.3) continues to apply, so long as chemical reactions are not occur-
ring. If reactions occur, then mole numbers may change and (1.4.1) would apply
rather than (1.4.3). So, in the absence of nuclear processes, mass is always conserved,
but moles are generally conserved only in the absence of chemical reactions.

If during a process the rates of accumulation, generation, and consumption are all
zero, then the process is said to be in steady state with respect to transfer of that partic-
ular stuff. In such cases the general differential balance (1.4.1) reduces to a simple
algebraic equation

(1.4.4)
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If the process is not a steady state, then it is a transient, and the system either gains
(rate of accumulation > 0) or loses (rate of accumulation < 0) stuff over time. In the
analysis of any real process, the appropriate form (1.4.1)–(1.4.3) must be identified and
integrated. For some processes the integration can readily be done analytically, such
as for steady states (1.4.4), but others may require elaborate numerical treatments.

The one-picture approach generalizes to situations in which mass and energy enter
and leave the system simultaneously, as in Figure 1.7. Mass may enter the system
through any number of input streams and leave through additional output streams.
Each stream may have its own temperature, pressure, composition, and flow rate.
Further, energy may also be transferred to and from the system via thermal and non-
thermal interactions with the surroundings. In such situations, we can write a stuff
equation for each molecular species and a separate, independent stuff equation for
energy, as we shall see in Chapter 2.

1.5  SUMMARY

We have reviewed the primitive things, quantities, changes, and analyses that form
the basis for thermodynamics as it is developed in this book. Whenever possible we
have offered definitions of the primitives, but in every case we moved beyond simple
definitions: we tried to show why each primitive is important, and we tried to clarify
subtleties that often surround certain primitives. 

At the macroscopic level, primitive things include the system and the boundary
that separates the system from its surroundings. Macroscopic things also include the
thermal and nonthermal interactions by which we stand in the surroundings and
either measure something in the system or cause a change in the system. Macroscopic
things are composed of microscopic things—molecules, atoms, and the forces that act
among them. Although classical thermodynamics is a purely macroscopic discipline,
we will, when it is economical to do so, use molecular arguments to help explain mac-
roscopically observed behavior. Moreover, molecular theory is now used as a basis for
developing many thermodynamic models; to use those models properly, we need
some appreciation of molecular theory.

Figure 1.7 Schematic of a one-picture situation in which an open system exchanges mass with
its surroundings via input and output streams. In addition, the system exchanges energy with
its surroundings via thermal and nonthermal interactions. Text is the temperature and Pext is the
pressure on the external side of the boundary at the point where energy transfers occur.
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Primitive quantities include generalized forces, the concepts of equilibrium and
state, and ways to classify properties. The ideas surrounding force, equilibrium, and
state are absolutely crucial because they identify those situations which are amenable
to thermodynamic analysis. We will have much more to say about these concepts; for
example, we want to devise quantitative ways for identifying the state of a system
and for deciding whether the system is at equilibrium. Although classifications of
properties are not crucial, the classifications—extensive and intensive or measurable
and conceptual—facilitate our development and study of the subject.

Changes in a system state are caused by interactions, and we focused on the dis-
tinction between reversible changes and irreversible processes. The importance of this
distinction cannot be overemphasized because its implications seem to often be mis-
understood. The implications can contribute to engineering practice; for example, cal-
culations for reversible changes require values only for differences in system
properties, but calculations for irreversible processes require values for quantities of
both system and surroundings. Consequently, calculations for reversible changes are
nearly always easier than those for irreversible processes. We prefer easy calculations.

Although reversible changes are idealizations—real processes are always irrevers-
ible—they can be useful. In some situations the value of a quantity computed for a
reversible change is exactly the same as that for an irreversible process, so we calculate
the quantity using the reversible change. In other situations the values computed for a
reversible change bound the values for the irreversible process, and those bounds may
contribute to an engineering design or to the operation of a production facility. In still
other situations, an efficiency for a real irreversible process may be known relative to
that for a reversible change; then, we compute quantities for the reversible change and
apply the efficiency factor to obtain the value for the real process. 

These uses are important to a proper application of thermodynamics in real situa-
tions. But in addition, the distinction between reversible and irreversible lies at the
core of the science of thermodynamics; for example, what happens to the energy that is
wasted in irreversible processes? This is a purely thermodynamic question.

Finally, we discussed the primitive steps in beginning an analysis that will deter-
mine how a system responds to processes. Those primitive steps culminate either in a
two-picture diagram for closed systems or in a one-picture diagram for open systems.
In addition, for open systems we identified forms of a general balance equation that
apply to any kind of stuff that may cross system boundaries. With all these primitive
concepts in place, we can begin the uphill development of thermodynamics.
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PROBLEMS

1.1 For each of the following situations, identify (i) the system, (ii) the boundaries,
(iii) the surroundings, and (iv) the kinds of interactions that can occur. Do not
attempt to solve the problem.
(a) Hot coffee is placed in a vacuum bottle and the top is sealed. Estimate the

temperature of the coffee after 4 hours.
(b) A can of your favorite beverage, initially at room temperature, is placed in a

freezer. How long must the can remain there to cool the liquid to 40°F?
(c) A bottle of soda is capped when the pressure of carbonation is 0.20 MPa.

How long before the pressure has dropped to 0.11 MPa?
(d) Each tire on a car is charged with air to 0.20 MPa. The car is then driven for

300 km at an average speed of 100 km/h. Estimate the tire pressure at the end
of the trip.

(e) If the price of electric power is $0.10 per kWh in Denver, what is the cost of
heating 500 cm3 of water from 300 K to boiling on an electric stove in Denver?

(f) At the end of the trip in part (d), a pinhole leak develops in the car’s radiator
and coolant is being lost at the rate of 3 l/hr. Is the leaking coolant vapor or
liquid? Ten minutes later, has the engine temperature increased or decreased?

(g) Tabitha the Untutored put her birthday balloon near a sunny window and,
for the next few days, observed interesting behavior: each afternoon the bal-
loon was closer to the ceiling than it was in the morning, and each day its
maximum height was less than the day before. What was the maximum tem-
perature of the balloon each day, and how many days passed before the bal-
loon failed to rise from the floor?
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1.2 For each situation in Problem 1.1, discuss how you would use abstraction (i.e.,
simplifying assumptions) to make the system amenable to analysis. Do not
attempt to abstract the process. Estimate the order of magnitude of the error intro-
duced by each simplification.

1.3 For each situation in Problem 1.1, cite the process involved. What abstraction (i.e.,
simplifying assumptions) could you use to make each process amenable to anal-
ysis? Would your abstraction make the estimate for the desired quantity too large
or too small? What additional data would you need to solve each problem?

1.4 For each process in Problem 1.1, cite those aspects that are dissipative.

1.5 How would you determine whether the thermodynamic state of a system
depended on the shape of its boundary? If you found that it did, what would be
the consequences?

1.6 If energy is a conceptual and not measurable, then what is being measured in
kilowatt-hours by that circular device (with the rotating disc) on the exterior of
most American houses?

1.7 Using only what you know at this moment, and without referring to any
resource, estimate the diameter of one water molecule. Clearly state any assump-
tions made and estimate the uncertainty in your answer.

1.8 According to kinetic theory, the root-mean-square (rms) velocity of an atom in a
monatomic fluid is related to the absolute temperature by νrms = (3kT/m)1/2

where m is the mass of one atom, k is the Boltzmann constant, k = R/NA =
1.381(10–23) J/(K molecule), and NA is Avogadro’s number. Compute the rms
velocity (in km/hr) for one argon atom at 300 K.

1.9 At atmospheric pressure aqueous mixtures of simple alcohols exhibit the follow-
ing kinds of phase behavior. Explain these using molecular forces and structure. 

(a) Methanol and water mix in all proportions and do not exhibit an azeotrope. 

(b) Ethanol and water mix in all proportions and form an azeotrope when the
mixture is nearly pure ethanol. 

(c) Normal propanol mixes with water in all proportions, as does isopropanol,
and both mixtures form azeotropes near the equimolar composition. The n-
propanol azeotrope has a higher concentration of water than does the isopro-
panol azeotrope. 

(d) Normal butanol and isobutanol are each only partially miscible in water;
however, at pressures above ambient, each butanol mixes with water in all
proportions and each exhibits an azeotrope. 

(e) 2-methyl-2-propanol and trimethylmethanol each mix with water in all pro-
portions and form azeotropes at compositions near pure water. The 2-methyl-
2-propanol azeotrope has a higher concentration of alcohol than does the tri-
methylmethanol azeotrope.
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1.10 Following are the melting (Tm), boiling (Tb), and critical (Tc) temperatures for
benzene, cyclohexane, decane, and naphthalene. Explain the trends in terms of
molecular structure and forces. Data from [12].

1.11 Following are the melting (Tm), boiling (Tb), and critical (Tc) temperatures of the
normal alkanes from C1 to C10. Explain the trends in terms of molecular structure
and forces. Data from [12].

1.12 Following are the melting (Tm) and boiling (Tb) temperatures of selected
hydrides from Group VI of the periodic table. Explain the trends in terms of
molecular structure and forces. Data from [13].

Substance Mol. wt. Tm(°C) Tb(°C) Tc(°C)

Benzene 78.1 5.5 80.1 288.9

Cyclohexane 84.2 6.5 80.6 280.3

Naphthalene 128.2 78.2 128.0 475.2

Decane 142.3 –29.7 174.1 344.5

Substance Mol. wt. Tm(K) Tb(K) Tc(K)

Methane 16. 40.7 111.7 190.6

Ethane 30.1 90.4 184.6 305.3

Propane 44.1 91.4 231.0 369.8

Butane 58.1 134.8 272.7 425.1

Pentane 72. 143.4 309.2 469.7

Hexane 86.2 177.8 341.9 507.6

Heptane 100.2 182.6 371.6 540.2

Octane 114.2 216.4 389.8 568.7

Nonane 128.3 219.7 424.0 594.6

Decane 142.3 243.5 447.3 617.7

Substance Formula Mol. wt. Tm(°C) Tb(°C)

Hydrogen telluride H2Te 130 –51 –4

Hydrogen selenide H2Se 81 –61 –42

Hydrogen sulfide H2S 34 –82 –61

Hydrogen oxide H2O 18 0 100
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1.13 The ideal-gas equation of state, PV = NRT, applies to certain pure gases and their
mixtures. Consider such a mixture confined in a closed, rigid vessel, and contain-
ing Ni moles of each component i. Determine the expression that would allow
you to compute how the pressure would change when a small amount of pure
substance i is added to the mixture at fixed temperature; that is, find the expres-
sion for the following partial derivative,

1.14 Consider a binary gas mixture that obeys the virial equation of state,

Here, v = V/N, each xi is a mole fraction for one component, xi = Ni/(N1 + N2),
and the Bij are called second virial coefficients; they are intensive properties that
depend only on temperature. Derive the expression for the partial derivative

which has a physical interpretation analogous to that given for the partial deriva-
tive in Problem 1.13.

1.15 Use the stuff equation for mass to obtain equations for the following situations.

(a) A mixing device is steadily fed material through streams 1 and 2, and it
steadily discharges material through stream 3. The flow rates and are
known; write an equation for the feed rate of stream 2.

(b) A mixing device is steadily fed by streams 1 and 2 for a duration τ; this device
has no discharge. If the feed rates and are known, write an equation
for the total moles accumulated.

(c) A mixing device is fed by streams 1 and 2 for a duration τ; however, the feed
rates are not steady, but are proportional to time, t,

 and 

If the constants a1 and a2 are known, write an equation for the change in the
moles accumulated.

(d) A chemical reactor is steadily fed by two streams: one feeds pure reactant A
at rate , the other feeds pure reactant B at rate . In the reactor, A and B
combine to form product C (i.e., A + B → C), and C is discharged at a steady
rate. Given the fractional conversion of A, αA = (NAin – NAout)/NAin, write an
equation for , the rate at which C is discharged.
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THE FIRST AND SECOND LAWS

 

uch of thermodynamics concerns the causes and consequences of changing the
state of a system. For example, you may be confronted with a polymerization

process that converts esters to polyesters for the textile industry, or you may need a
process that removes heat from a chemical reactor to control the reaction temperature
and thereby control the rate of reaction. You may need a process that pressurizes a
petroleum feed to a flash distillation unit, or you may need a process that recycles
plastic bottles into garbage bags. In these and a multitude of other such situations, a
system is to be subjected to a process that converts an initial state into some final state.

Changes of state are achieved by processes that force the system and its surround-
ings to exchange material or energy or both. Energy may be exchanged directly as
heat and work; energy is also carried by any material that enters or leaves a system. A
change of state may involve not only changes in measurables, such as 

 

T

 

 and 

 

P

 

, but it
may also involve phase changes and chemical reactions. To design and operate such
processes we must be able to predict and control material and energy transfers.

Thermodynamics helps us determine energy transfers that accompany a change of
state. To compute those energetic effects, we can choose from two basic strategies, as
illustrated in Figure 2.1. In the first strategy we directly compute the heat and work
that accompany a process. But to perform such calculations, we must know the pro-
cess path that the system follows from the initial to the final state. That is, heat and
work are process-dependent quantities. Unfortunately, the path can be properly char-
acterized only for reversible changes. All real processes are irreversible and rarely do
we know enough about the process to be able to directly compute heat and work.

In the second strategy we avoid direct computations of heat and work by reformu-
lating our problem in terms of thermodynamic state functions. State functions depend
on the condition of the system, not on the process; for example, changes in state func-
tions are determined only from the initial and final states of the system (see Figure
2.2). State functions simplify thermodynamic calculations because they allow us to
analyze ill-defined real processes in terms of well-defined changes of state. So long as
the initial and final system states are the same, then we can compute changes in state
functions along any computationally convenient path.
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Figure 2.1

 

Thermodynamics provides two basic strategies for computing energy requirements
associated with changes of state in closed systems. When we know the process path then heat
and work effects can be computed directly. But more often the process path is not known, and
then we compute changes in state functions along a 

 

convenient

 

 path.

 

Figure 2.2

 

A principal value of thermodynamics is that process diagrams, like this one, com-
mute: along any indirect, computationally convenient process-path, the change in any state
function 
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 is the same as its change along the direct irreversible path: 
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THE FIRST AND SECOND LAWS

 

In this chapter we develop expressions that relate heat and work to state functions:
those relations constitute the first and second laws of thermodynamics. We begin by
reviewing basic concepts about work (§ 2.1); that discussion leads us to the first law
(§ 2.2) for closed systems. Our development follows the ideas of Redlich [1]. Then we
rationalize the second law (§ 2.3) for closed systems, basing our arguments on those
originally devised by Carathéodory [2–4]. Finally, by straightforward applications of
the stuff equations introduced in § 1.4, we extend the first and second laws to open
systems (§ 2.4).

 

2.1  WORK

 

In this section we review those general features of work that lead to the first law of
thermodynamics. We start with fundamental ideas about mechanical work (§ 2.1.1),
then consider the work that causes a change of system volume (§ 2.1.2), and we offer
an example (§ 2.1.3). Finally, we discuss experimental observations about adiabatic
work that serve as the foundation for the first law (§ 2.1.4).

 

2.1.1 Work to Displace a System

 

As our system, consider a macroscopic object, say a table. To move the table a distance

 

x

 

, we must apply a force 

 

F

 

 and thereby expend an amount of work 

 

W

 

. When the force
is exerted in the direction of the motion (
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 is parallel to 

 

x

 

), then the work is given by

 (2.1.1)

When 
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 are not parallel, we replace the integrand in (2.1.1) with the component
of 

 

F

 

 that is parallel to 

 

x

 

; this may be found by forming the vector dot product between
the force vector and a unit vector parallel to 

 

x

 

. For a differential change in position 

 

dx

 

,
we need only a small amount of work 

 

δ

 

W

 

,

(2.1.2)

Before going further we choose a sign convention for 

 

W

 

. In this book we consis-
tently make quantities positive when they are added to the system; therefore, we use

 

W

 

  >  0,  when work is done on the system, and

 

W

 

  <  0,  when the system does work on its surroundings.

This choice is arbitrary, so when studying thermodynamics you must take care to
identify the convention that applies to the material at hand. 

Notions of work can be illustrated by considering mechanical situations in which
we want either to change the position of our system in the earth’s gravitational field
or to change the velocity of our system. For gravitational effects, the force is given by
Newton’s second law 

W F xd∫=

δW F dx=
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(2.1.3)

where 

 

m

 

 is the system mass and 

 

g

 

 is the gravitational acceleration. Over most eleva-
tions of interest 

 

g

 

 is a constant, independent of the system’s distance from the center
of the earth. Therefore, using (2.1.3) in (2.1.1) gives the work required to change the
system height from 

 

z

 

1

 

 to 

 

z

 

2

 

,

(2.1.4)

where 

 

z

 

 is measured along a line from the center of the earth to the system’s center of
mass. This work is usually identified as a change in gravitational potential energy

 

∆

 

E

 

p

 

, which depends on a variable 

 

∆

 

z

 

 that is external to the system. Our sign conven-
tion implies that when 

 

z

 

2

 

 > 

 

z

 

1

 

 we must do work to elevate the system, 

 

W

 

 > 0, and then
the external potential energy increases.

Now consider the work needed to change a system’s velocity. Our system has mass

 

m

 

 and is initially moving with velocity 

 

ν

 

. To change the velocity we must exert a force,
which is given by Newton’s second law written in the form

(2.1.5)

For a change in velocity from 

 

ν

 

1

 

 to 

 

ν

 

2

 

, we substitute (2.1.5) into (2.1.1),

 (2.1.6)

 (2.1.7)

This work is usually identified as the change in kinetic energy, 

 

∆

 

E

 

k

 

, which depends on
a quantity 

 

∆ν

 

2

 

 that is external to the system. Our sign convention implies that to
increase a system’s velocity, we must exert a force parallel to that velocity, so 

 

W

 

 > 0,
and hence the external kinetic energy increases. The external kinetic and potential
energies sum to the total external energy 

 

E

 

ext

 

, so their changes obey

(2.1.8)

Substituting an energy change for an amount of work encompasses important con-
cepts that are easily overlooked: First, changes in a particular form of energy (a con-
ceptual) can sometimes be interpreted as a particular kind of work (a measurable).
That is, we establish a relation between an abstract quantity and one that has physical
meaning. Second, these forms of energy are defined only as changes; however, by
defining a particular position or velocity to be zero, we can create (apparently) abso-
lute values for 

 

E

 

p

 

 or 

 

E

 

k

 

. The difference forms that occur in (2.1.4), (2.1.7), and (2.1.8)

F mg=

W mg zd
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allow us to introduce arbitrary reference points for conceptuals: in (2.1.4) values of
position can be measured relative to any arbitrary height, while in (2.1.7), velocities
can be measured relative to any convenient frame of motion. 

2.1.2 Work Accompanying a Volume Change

In addition to the mechanical forms of work discussed above, there are many other
forms. For example, work is involved in electrical charging that results from a current
flow, in changes of surface area that are opposed by surface tension, and in magneti-
zation caused by a magnetic field. Such forms are all equivalent to mechanical work.
However, in the thermodynamics of fluids, the most common form is the mechanical
work that deforms the system boundary and thereby changes the system volume. 

If, during such a deformation, a force acts on a uniform segment of the boundary,
then we can multiply and divide (2.1.2) by the uniform segment area A and write,

(2.1.9)

Here V is the system volume and Pext is the surrounding (external) pressure exerted
on the boundary to produce the deformation. The pressure Pext is always positive. The
negative sign in (2.1.9) is chosen so that when the system volume decreases (dV < 0),
the work is positive, and when the volume increases (dV > 0), the work is negative.
For a finite deformation from V1 to V2,

 always true (2.1.10)

This equation is always true because it is a definition: it defines the work done when
V changes by a finite amount.

Although (2.1.10) is always true, it is only useful when we know how Pext and V are
related during the process that deforms our system. Rarely do we have such a rela-
tion, and even if we did, it would apply only to particular situations because Pext is a
process variable. Generally, we prefer to use the system pressure P rather than the
external pressure Pext, but P is often undefined during an irreversible process, so
(2.1.10) must be used, perhaps with an estimate for Pext(V). If the system pressure P is
defined, then it can be related to V through an equation of state, but this would help
us compute the work only if we knew how P and Pext were related. In a process, the
exact relation between P and Pext is determined by the behavior of the boundary, but
at least we can make the following general observations.

In § 1.2.1 we noted that any force acting on a system generally decomposes into
conservative and dissipative components. For a pressure that deforms the system vol-
ume, the conservative component equals the system pressure P, so the general relation
between P and Pext can be written as

(2.1.11)

δW F
A
----– xA( )d Pext Vd–= =

W Pext Vd
V1

V2

∫–=

Pext P P±=
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Here P is the pressure needed to overcome dissipative forces. Since dissipative forces
always act to oppose the tendency for change, the sign on P is determined by the pre-
vailing force. For example, to compress the system, we must have Pext > P, and the dis-
sipative pressure opposes the compression by increasing the pressure that must be
overcome by Pext ,

for compression (2.1.12)

However, in an expansion, Pext < P, and now the dissipative pressure opposes the
expansion by reducing the pressure that is to overcome Pext ,

for expansion (2.1.13)

Equations (2.1.12) and (2.1.13) are written for finite irreversible processes. For a
quasi-static process, the dissipative pressure is a differential quantity dP. Moreover,
for a reversible change, dissipative components vanish (P = 0), and P = Pext . Then
(2.1.9) gives the reversible work,

(2.1.14)

Likewise, for a finite reversible change (2.1.14) becomes

 (2.1.15)

Equations (2.1.14) and (2.1.15) are idealizations that are never obeyed exactly by real
systems. A reversible change is not a realizable process, it is merely a sequence of
equilibrium states on a state diagram (see § 1.3 and the Example in § 2.1.3). 

If two states can be connected by both a reversible change and an irreversible pro-
cess, then we can relate the reversible work to the irreversible work. Substituting the
expression for Pext (2.1.11) into the definition of work (2.1.9), we find

(2.1.16)

The quantity δWlost is called the lost work; it is the energy needed to overcome dissipa-
tive forces,

(2.1.17)

The lost work is zero for a reversible change; otherwise, it is always positive. For
example, an irreversible compression has dV < 0, P > 0 by (2.1.12), and hence
δWlost > 0. Similarly, an irreversible expansion has dV > 0, P < 0 by (2.1.13), so again
we have δWlost > 0. Rearranging (2.1.16) we find*

(2.1.18)

* When the other sign convention is chosen for the work, the lost work is defined by δWlost = δWrev – δWirr , 
so in both sign conventions the lost work is positive or zero.

Pext P P+=

Pext P P–=

δWrev P dV–=

Wrev P
V1

V2

∫ dV–=

δWirr δWrev δWlost+=

δWlost PdV– 0≥≡

δWirr δWrev– δWlost 0≥=
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Consequently, we always have

(2.1.19)

This means that a reversible change is more efficient than any irreversible process
between the same two states. During a compression the irreversible work done to the
system is larger than Wrev because part of Wirr is wasted in overcoming dissipative
forces that oppose the compression. Likewise, during an expansion the irreversible
work done by the system is less than Wrev because part of Wirr must overcome dissipa-
tive forces that oppose the expansion. Lost work measures irreversibilities: high irre-
versibilities imply large values for Wlost. But Wlost is a process variable, so it cannot be
computed solely from system properties; values for Wlost must be either measured or
estimated. 

Even if a change of state were reversible, direct computation of the work would
still require us to know how the system pressure changes during the process; that is,
to evaluate the integral in (2.1.15) we must have a quantitative form for the integrand
P(V). The integral represents an area on a state diagram, plotted in terms of pressure
and volume. Obviously the magnitude of that area depends not only on the initial and
final states, P(V1) and P(V2), but also on the process-path that connects them. So, work
does not form exact differentials and its value depends on the process, as well as on
the initial and final states of the system. See Figure 2.3 and the Example in § 2.1.3. 

Such process dependence complicates analyses because every time we encounter a
different variation of P with V, we must reanalyze the entire situation to find the work.
Moreover, if the process is irreversible, then either P is undefined during the process
or the variation of P with V is unknown. Either situation prevents us from computing
the work directly and solely in terms of system properties. Life can be simpler when
we can deal with state functions.

2.1.3 Example

How does the work for an irreversible process differ from that for a quasi-static
process and for a reversible change?

Consider a 5-cm ID cylinder fitted with a double-headed piston, as in Figure 2.4. One
end of the cylinder is loaded with 0.01 moles of methane; the other end is charged
with 0.02 moles of air, initially at 1.4 bar. There is friction at the contact points between
the piston heads and cylinder walls. The air chamber is fitted with a pressure gauge
and two vents to the surrounding atmosphere. One vent is a large ID line fitted with a

Figure 2.3 For reversible changes the
work associated with a volume change
is measured by the area under the pro-
cess path on a P-V diagram. Here the
area under path 1A2 differs from that
under path 1B2 and therefore the
amount of work differs for the two pro-
cesses: in general, work is a process-
dependent quantity, not a state function.

δWirr δWrev≥

P

V

2

1

A

  B
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ball valve; the other is a small ID line fitted with a needle valve. The atmospheric pres-
sure is constant at 1 bar. Attached to the piston is a position indicator, by which we can
determine the volumes of both the methane and the air. The methane chamber is
immersed in a heat bath that is maintained at 25°C.

System. We identify the system as the 0.01 moles of methane. When the system is at
equilibrium, its temperature is 25°C. Initially the methane pressure is P1 = 1.4 bar, and
we want to decrease that value to P4 = 1.1 bar.

Process 1: Finite stepwise irreversible expansion. From the initial conditions, we want to
expand the methane to 1.1 bar. To create a pressure imbalance across the piston, we
vent the air chamber. In this first example, air is removed by cycling the ball valve
open and shut three times. During each cycle enough air is vented to reduce P by 0.1
bar. The vent line is so large that each drop in Pext is nearly instantaneous. Between
each cycle the system is given time to reestablish equilibrium, as indicated by steady
readings on the pressure gauges and the position indicator.

This expansion can be illustrated by a “process” diagram on which we plot the air
pressure measured by the gauge (which is external to the methane system) and the
methane volume, determined from the position of the piston. On such a diagram the
process is approximately a decreasing staircase. The area under the curve on the pro-
cess diagram gives the magnitude of the work done by the expanding methane,

(2.1.20)

 
Since the system volume increases (V4 > V1), the work is negative: the expanding
methane does work on its surroundings. Each cycling of the valve produces a step-

Figure 2.4 Schematic diagram of the double-headed piston-cylinder apparatus. To move the
piston, any pressure imbalance between the methane and air chambers must overcome friction
at the surfaces of contact between the piston heads and cylinder walls.
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change in Pext, and the integral in (2.1.20) accumulates the areas of the three shaded
rectangles shown on the left in Figure 2.5. 

If we want to show a state diagram for the methane during the expansion, we can
only plot the four points at which the system is at equilibrium. (See the right side of
Figure 2.5.) We cannot draw a process path on the state diagram because during each
expansion cycle the methane is not in any well-defined state: the process is irrevers-
ible. This means that the state diagram cannot be used to evaluate the work. In partic-
ular, a smooth curve connecting the four points does not represent the process path,
and the area under that curve would not be the work done: W ≠ – ∫ PdV. 

Process 2: Quasi-static irreversible expansion. From the initial conditions, we now
expand the methane by just barely opening the needle valve, slowly venting air. The
process path is a continuous curve on the process diagram, but the curve is not
smooth; even though the air is vented continuously, the piston does not move contin-
uously because of friction between the piston and cylinder walls. During any move-
ment the total force acting on the piston is the algebraic sum of contributions from the
methane, the air, and friction,

 (2.1.21)

where A is the cross-sectional area of the piston. The frictional force is composed of
two components: a static part (sf ) and a kinetic part (kf ). Kinetic friction is zero when
the piston is stationary, while static friction is present whenever there is a tendency to
change the piston’s velocity. To move the piston from rest, sufficient air must be
removed so that the imbalance ∆P is large enough to overcome static friction, where

∆P  =  Pmethane  –  Pair (2.1.22)

To keep the piston moving once it starts, ∆P must exceed the combined effects of
static and kinetic friction. But as the piston moves, Pmethane decreases while Pair
increases, because the moving piston compresses air faster than air is being vented. So
for sufficiently slow venting, the movement of the piston causes ∆P to decrease and
frictional forces stop the motion. Therefore, the methane volume is first constant while
Pext decreases, then the piston moves, increasing both V and Pext . When Pext is large

Figure 2.5 Process 1 on a process diagram (left) and on a state diagram (right)
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enough, the piston stops, and the cycle repeats. We assume that after each cycle, the
piston remains stationary long enough for the methane to reach an equilibrium state
at which its pressure P is defined. The process appears as in Figure 2.6.

Since this process is driven by small pressure imbalances, the process is essentially
quasi-static. On the state diagram (in Figure 2.6) the process path is the sequence of P-
V points read from the pressure gauge and position indicator when the system passes
though the intermediate stationary states. But even though the process is driven by
small pressure differences, dissipative forces are present and the process is irrevers-
ible. The work is still the area under the path on the process diagram. But the work
would not be given by the area under a smooth curve on the state diagram. 

Process 3: Reversible change. To convert Process 2 into the reversible change shown in
Figure 2.7, we must remove any friction. We lubricate the piston-cylinder interface;
however, we cannot remove all friction and, consequently, a reversible change cannot
be attained. But by removing as much friction as possible and venting the air slowly,
the discontinuities in the process path in Figure 2.6 could be made smaller and the
corresponding points on the state diagram would be more numerous and closer

Figure 2.6 Process 2 on a process diagram (left) and on a state diagram (right)

Figure 2.7 In the limiting case of a reversible change (Process 3), the process path would appear
the same on both a process diagram (left) and a state diagram (right).
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together. Extrapolating to the limit of no friction, the process paths on the two dia-
grams would coincide: the expansion would follow the 25°C isotherm on both dia-
grams. Then, both would appear as in Figure 2.7 and the reversible work could be
computed from either via

 (2.1.23)

2.1.4 Adiabatic Work

Consider a pure gas held in the cylinder of a piston-cylinder apparatus; the cylinder is
thermally insulated from its surroundings. We take the gas to be our system, which is
initially at equilibrium at temperature T1, volume V1, and total number of moles N.
Experiment shows that specifying these three quantities fixes the thermodynamic
state of pure systems. From this initial state we place a single large weight on top of
the piston, exerting a constant pressure (Pext) on the gas and changing its volume. The
system is closed so N is unchanged and the system is insulated so the process is adia-
batic. At the end of the process the system is allowed to relax to equilibrium at its final
volume Vn; the temperature is then measured and found to have increased, Tn > T1.
The work used in the process is given by (2.1.10) as

 (2.1.24)

This is a real irreversible process, and so (2.1.10) rather than (2.1.15) applies. We label
this work with subscript A to indicate that a particular adiabatic process was used.

Now we repeat the experiment using a different adiabatic process B. The system is
still closed, and the initial and final states are still [T1, V1] and [Tn, Vn], but we use a
sequence of steps with various weights, so the volume changes in a different way;
hence, the degree of irreversibility differs from that in process A. In general, to achieve
the required final state [Tn, Vn] we may have to use some combination of compres-
sions and expansions. The work required for this second process is

(2.1.25)

Remarkably, we obtain the same value as we found for the first adiabatic process; that
is, experimentally we find

 (2.1.26)

This means that, although the integrands in (2.1.24) and (2.1.25) differ for the two pro-
cesses, the areas under the two curves are the same.

We now repeat the same total change of state many times using all manner of irre-
versible processes. For example, besides applying a pressure, we might pass a current
through an electrical resistor inserted into the gas (electrical work), or we might rotate
a paddle-wheel mounted in the gas (mechanical work). Some of these experiments
might even approximate reversible changes. In all cases, so long as the system has the
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same contents, remains closed, and has the same thermally insulated boundary, then
we find that the same amount of work is needed to change from the initial state
[T1, V1] to the final state [Tn, Vn]. That is, experiment shows that the adiabatic work
done on or by closed systems is independent of the process.

The work to displace a system or change its velocity can be viewed as a change in
external energy (§ 2.1.1). Similarly, the adiabatic work can be interpreted as a change
in an energy; we call it the internal energy U. Therefore, using Wad for the adiabatic
work, we write

always true (2.1.27)

The internal energy is an extensive conceptual (nonmeasurable) property of a system.
It is called internal because its value is determined by the system’s state as character-
ized by system properties such as temperature T, pressure P, and number of moles N.
This distinguishes U from the external energy (2.1.8), which is related to measurables
determined by the external position or velocity of the system. Macroscopically, inter-
nal energy can be interpreted as the means by which energy is stored in the mass of a
system. A microscopic interpretation of U is given in § 2.2.3.

Experiments analogous to those just described were first performed by Joule in the
1840s [5]. Those experiments accomplished several things: they fully discredited the
old caloric theory of heat (a theory that considered heat to be transported by move-
ment of a substance called caloric), they demonstrated that a temperature change can
occur without heat transfer, and they provided a numerical conversion factor between
equivalent amounts of heat and work. However for us, Joule’s most important result
leads to (2.1.27). 

2.2  THE FIRST LAW

Consider a change of state that can be accomplished both adiabatically and nonadia-
batically; we want to extend our analysis to include the nonadiabatic paths. That is,
we repeat the experiments of § 2.1.4 using the same closed system and the same initial
and final states [T1, V1] and [Tn, Vn]; however, we remove the thermal insulation. So
the difference compared to the experiments in § 2.1.4 is that now the system and its
surroundings are in contact via two interactions: the thermal interaction and a force (a
nonthermal interaction) that changes the system volume. As in § 2.1.4, we perform a
series of experiments in which we use many different irreversible processes to cause
the same change of state. The results from these experiments show that, for such non-
adiabatic processes, the work computed from (2.1.10) is always greater than the adia-
batic value. Moreover the various nonadiabatic processes give values of the work that
differ from one another: nonadiabatic work is a path function.

2.2.1 Heat

For the experiments just described, which were performed between the same initial
and final states, the difference between the adiabatic (Wad) and nonadiabatic (Wnad)
work must be the energy transferred through the thermal interaction. We call this
energy the heat Q, which is an extensive, measurable, process variable,

∆U Wad=
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(2.2.1)

Although this definition of Q may differ from ones more familiar to you, in fact (2.2.1)
possesses all the attributes normally associated with heat transfer. It is important
because it provides a precise quantitative relation that is generally useful.

Equation (2.2.1) provides a means for determining Q by measuring work: for a
given process between states 1 and 2, Q may be determined by measuring the work
required by the process, and then measuring the work required by any adiabatic pro-
cess between the same two states. If we want a value for reversible heat transfer, the
nonadiabatic process must be reversible; however, the value of work for the adiabatic
process is independent of reversibility. When state 2 cannot be reached adiabatically
from state 1, then instead of measuring the adiabatic work W12, we would measure
the adiabatic work for the opposite process (from state 2 to state 1) W21. Then (2.1.27)
allows us to compute W12 by  

(2.2.2)

Note that the definition of heat in (2.2.1) does not involve temperature. Tempera-
ture is a property that measures “hotness,” the intensity of heat; it does not measure a
quantity of heat, which is not a property. Temperature and heat are related only in sit-
uations in which a temperature difference is allowed to affect a system: a temperature
difference can cause heat transfer via the thermal interaction. But heat transfer is not
necessary to change a temperature, nor does temperature necessarily change as a
result of a heat transfer.

Just as for work, we must choose a sign convention for heat. We use

Q   >   0, if heat is transferred to the system from the surroundings, and

Q   <   0, if heat is transferred from the system to the surroundings.

Since the nonadiabatic work is a path function and the rhs of (2.2.1) is a linear combi-
nation of a path function (Wnad ) and a change in a state function (Wad), heat must also
be a path function. It is not a property of the system. Like work, heat is energy that can
be identified only as it crosses the system boundary.

2.2.2 The First Law for Closed Systems

What we have accomplished thus far can now be collected and condensed into the
first law for closed systems. We begin with differential processes and state the first
law in two parts. In the first part, we identify the adiabatic work as the change in a
state function, the internal energy,

Part 1, Law 1 closed systems (2.2.3)

Then we substitute (2.2.3) into the differential form of (2.2.1) to obtain

Part 2, Law 1 closed systems (2.2.4)

Q Wad Wnad–≡

Wad12 Wad21–=

dU δWad=

dU δQ δW+=
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These two equations represent the first law for differential processes acting on closed
systems; they are always true. 

When a change of state can be performed both reversibly and irreversibly, the
change in U must be the same for both. Then we can write

(2.2.5)

Even though δQ ≠ δQrev and δW ≠ δWrev, the sum (δQ + δW) must have the same value
as the sum (δQrev + δWrev). This suggests that some results computed for reversible
changes can be applied to real (irreversible) processes.

Because heat and work do not form exact differentials, we have written δQ and δW
rather than dQ and dW. That is, δQ represents a small amount of heat, while dU repre-
sents a differential change in internal energy. Integrating δQ produces a finite amount
of heat Q, while integrating dU produces a finite change in internal energy ∆U. Then
for a finite process, we can integrate (2.2.4) to obtain

(2.2.6)

Equation (2.2.6) makes the remarkable assertion that the algebraic combination of two
path functions always yields a change in a state function: that is, between two speci-
fied state points, the value of ∆U is always the same, regardless of the values of Q and
W used to cause the change of state.

Heat and work are not properties of either the system or the surroundings; they
exist only during the interaction that carries them across the boundary. However, for
certain special processes Q and W are separately related to changes in state functions.
We have already seen that if no thermal interaction exists, then the adiabatic work
equals ∆U and it can be calculated assuming a reversible change. Likewise, if only a
thermal interaction connects the system to the surroundings (the process is workfree),
then the heat transferred equals ∆U, 

(2.2.7)

If the center of our closed system undergoes changes in position or velocity during
a process, then we must allow for possible changes in external energy. In such cases
the first law (2.2.6) becomes

(2.2.8)

The combined internal and external energy of a system is called the total energy E

(2.2.9)

However, in many situations ∆Ek and ∆Ep are either identically zero or they are negli-
gible compared to the magnitude of ∆U, so (2.2.6) is usually sufficient for our needs.
Note that like Ek and Ep, we cannot ascribe absolute values to E or U; we can only
obtain changes in their values or values relative to some arbitrarily chosen reference

dU δQ δW+ δQrev δWrev+ δQrev PdV–= = =

∆U Q W+=

∆Uwf Qwf=

∆U ∆Ek ∆Ep+ + Q W+=

∆E ∆U ∆Ek ∆Ep+ +≡
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state. In the latter case, the value at a reference state is often set to zero (e.g., Uref = 0),
so that tables appear to contain absolute values. This is done for computational conve-
nience because, in practice, we only need values for changes and in such calculations,
the value at the reference state cancels [for example, ∆U = (U2 – Uref) – (U1  – Uref) =
(U2 – U1)].

In many applications the quantities we can actually measure or manipulate are the
heat and work effects on the external side of the system boundary. We call these Qext
and Wext; they would be measured at a point on the boundary at which the surround-
ings have temperature Text and pressure Pext. These external heat and work effects
would differ from the heat and work effects felt by the system whenever the system
boundary possesses a finite mass that could store energy. In such cases, the second
part of the first law for closed systems generalizes (via the stuff equation (1.4.1) and
Figure 1.7) to

(2.2.10)

Here dUb represents a change in internal energy of the boundary, and we have
assumed changes in kinetic and potential energies are negligible. The advantage to
(2.2.10) is that it explicitly contains those process variables that might be used to
manipulate the system’s state.

2.2.3 Molecular Interpretations

The internal energy U is a macroscopic property that represents the mechanism by
which energy is stored in a system. Microscopically, energy is stored in the kinetic and
potential energies of individual molecules. These molecular energies differ from the
external kinetic and potential energies, which are associated with the center of mass of
the entire system. In a static system, changes in external energy are zero; nevertheless,
the molecules possess kinetic energy because they are continually moving, and they
contain potential energy because molecules exert forces on one another. Consequently,
the internal energy is viewed as being composed of two molecular contributions,

(2.2.11)

Here u is the intensive internal energy, N is the number of molecules, uk is the molecu-
lar kinetic energy, and up is the molecular potential energy; the angle brackets indicate
an average over all molecules. Note that in molecular theory we can write an equation
that represents the absolute internal energy, but in thermodynamics we cannot.

Consider a system of N spherical atoms (such as those of argon), each having a
mass m and some velocity νi. The atomic velocities differ, but we can form an average
velocity (which would be zero for a static system) and an average molecular kinetic
energy (which is always greater than zero),

(2.2.12)

dU dUb+ δQ δW dUb+ + δQext δWext+= =

u U
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Recall that one mole of gas has N ≈ 1023 molecules, so it is not practical for us to know
the velocities of the molecules; nevertheless, relations like (2.2.12) can offer insight
into the meanings of thermodynamic quantities. The many different velocities con-
tained in (2.2.12) form a distribution; for a static system at equilibrium, that distribu-
tion is a Gaussian.

The potential portion of the internal energy decomposes into several parts, and
those parts generally make very different contributions to changes in the internal
energy of a system. The most important part is the configurational internal energy 〈uc〉
which results from forces acting between different molecules. You are familiar with
some of these forces; they include hydrogen bonding and forces arising from interac-
tions between dipole moments. A second part of 〈up〉 arises from vibrational and rota-
tional motions of atoms within individual molecules (intramolecular interactions).
These energies may contribute to ∆U at high densities when neighboring molecules
inhibit the motions of one another. When these effects are important, they are usually
combined into a change in configurational energy ∆〈uc〉. The third contribution to 〈up〉
originates from electronic energies associated with chemical bonds; however, in non-
reacting systems at common temperatures, changes in these energies do not contrib-
ute to ∆U. Therefore, the molecular expression (2.2.11) for a change in internal energy
is usually written as the sum of kinetic and configurational contributions,

(2.2.13)

When heat and work cross a boundary and enter a system, those energies are
immediately parceled out among the molecules—some goes to change molecular
kinetic energies and the rest goes to change molecular configurational energies. We do
not talk about heat or work “in” a system because to the molecules it is all just so
much energy: the molecules do not know whether that energy came from some heat
effect or from some work mode. Further, in thermodynamics the state is specified by
values for a certain number of properties (such as T, P, and N), but in statistical
mechanics the state is specified by just two things: the molecular energies available to
the system and the distribution of molecular energies among those available. When we
change the state, we may be changing the available energies, or the distribution, or
both. In fact, in statistical mechanics we can show that work modes change the avail-
able energies while heat effects change the distribution. 

After a change of state, the system relaxes to equilibrium; this means that the mole-
cules must properly distribute themselves among the available energies that are
allowed to that state. (Note that thermodynamics gives us no information as to how
long such a relaxation process might take.) Each equilibrium state has a unique set of
available energies and a unique distribution among those energies, independent of
the process by which the state is attained. During a reversible change, the system is
driven by differential forces from one equilibrium state to the next, and the molecules
continuously readjust themselves to maintain the correct distribution among available
energies. Consequently, the macroscopic state is always well-defined and the change
can be represented by a continuous curve on a state diagram. But during an irrevers-
ible process, the available energies and the distribution are out of balance and are not
those of any well-defined state: intermediate states are unknown and unknowable.
The state becomes knowable only when an irreversible process is complete and the
molecules have achieved the correct distribution among available energies.

∆u ∆ uk〈 〉 ∆ uc〈 〉+=
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2.3  THE SECOND LAW

Recall that a principal goal of this chapter is to relate path functions to state functions.
One realization of that goal is provided by the first law (2.2.6): the algebraic sum of
heat and work produces a change in a state function—the internal energy. But can we
be more direct? Is there a way to directly relate work and heat to state functions, with-
out combining the two through the first law? For the reversible work caused by a vol-
ume change, we know that

(2.3.1)

So, although δWrev depends on path, dividing by P gives a change in a state function,

(2.3.2)

That is, the reciprocal pressure is an integrating factor that converts δWrev into an
exact differential. (Integrating factors are discussed in Appendix A.)

However, it is not immediately obvious how to convert δQ into an exact differen-
tial. We might tentatively guess that a form analogous to (2.3.2) can be found; that is,
perhaps there is another integrating factor λ such that

 (2.3.3)

Here S stands for a new state function and the identity of the integrating factor λ is yet
to be discovered. The objectives of this section are to develop (2.3.3) and identify λ.

2.3.1 Entropy and Thermodynamic Temperature

Our presentation of the second law is based on the rigorous development by Car-
athéodory [2]. Carathéodory’s approach has been described in detail by Chan-
drasekhar [3] and Kestin [4], so we need only outline the arguments here.

We begin by introducing the idea of inaccessible states. Consider a closed system
containing a pure single phase; this system has only one interaction with its surround-
ings—the work mode that can change the volume. Therefore, the system can undergo
only adiabatic processes. For a pure substance at constant mass, we need only two
properties to identify the state; we choose volume V and internal energy U. Experi-
mentally, we find that for reversible changes of volume, our system follows a unique
curve on a UV-state diagram, as in Figure 2.8. That curve is called a reversible adiabat;
note that its slope is negative,

(2.3.4)
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From state 1 any reversible adiabatic volume change leaves the system somewhere on
the curve shown in Figure 2.8. Further, each reversible adiabat is unique; that is,
reversible adiabats do not intersect. If they did, then it would be possible to find two
different values of the adiabatic work for the same change of state; this would violate
the first law.

If we want to move from state 1 in Figure 2.8 to states not on the reversible adiabat,
then we find experimentally that we must use an irreversible process. However, using
an irreversible adiabatic process does not allow us to reach every other state on the
diagram. From state 1, we can only reach states above the reversible adiabat by means
of some irreversible adiabatic process; those states are said to be accessible. To reach
states below the line (shaded region in Figure 2.8.), we must use some nonadiabatic
process; that is, we must transfer heat. This means that a particular asymmetry exists
among the states that are accessible using adiabatic processes.

The existence of states that are inaccessible to adiabatic processes was shown by
Carathéodory to be necessary and sufficient for the existence of an integrating factor
that converts δQrev into an exact differential [2–4]. From the calculus we know that for
differential equations in two independent variables, an integrating factor always
exists; in fact, an infinite number of integrating factors exist. Experimentally, we find
that for pure one-phase substances, only two independent intensive properties are
needed to identify a thermodynamic state. So for the experimental situation we have
described, we can write δQrev as a function of two variables and choose the integrat-
ing factor. The simplest choice is to identify the integrating factor as the positive abso-
lute thermodynamic temperature λ = T. Then (2.3.3) becomes

(2.3.5)

The new state function S is named the entropy; it is an extensive, conceptual property
and has dimensions of (energy/absolute temperature). Although we have discussed
the development of (2.3.5) in terms of pure substances, which require only two prop-

Figure 2.8 Schematic plot of states
accessible via adiabatic processes
in closed systems. From the initial
state 1 only states on the line can
be reached by reversible adiabatic
volume changes. States above the
reversible adiabat can be reached
only by processes that include irre-
versible adiabatic volume changes.
States below the reversible adiabat
cannot be reached by any adiabatic
volume change.
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erties to identify the state, Carathéodory proved that this entire development extends
in a straightforward (but tedious) way to systems requiring any number of properties.
Consequently, the definition (2.3.5) is completely general [2–4].

Microscopically, the absolute temperature is proportional to the average kinetic
energies of the molecules. For a substance such as argon, whose molecules are
spheres, the molecular kinetic energy in (2.2.12) is caused by translational motion,

(2.3.6)

Here k is Boltzmann’s constant, m is the mass of one molecule, N is the total number
of molecules present, νi is the velocity of molecule i, and the angle brackets represent
an average over molecules, as in (2.2.12). Boltzmann’s constant is related to the gas
constant R by k = RNA, where NA is Avogadro’s number; therefore, k can be inter-
preted as the molecular gas constant. Note that temperature is simply proportional to
the kinetic contribution to the molecular internal energy in (2.2.12).

Absolute temperature is defined by (2.3.6), but that definition applies only when N
is large enough for there to be a statistically meaningful distribution of molecular
velocities so that a reliable average can be determined. This means temperature is a
macroscopic property; an individual molecule does not have a temperature, it has
velocity and kinetic energy. A change in temperature measures the work needed to
change the time-average molecular velocities. In adiabatic processes the temperature
changes, even though no heat is transferred, because when work is done on or by a
system, the average molecular velocities must change.

2.3.2 The Second Law for Closed Systems

What we have accomplished so far can now be collected into the second law for
closed systems. Analogous to the first law, we state the second law in two parts. First
is the definition of the entropy, which relates a path function to a new state function,

Part 1, Law 2 closed systems (2.3.5)

The second part prescribes the observed limits on the directions of adiabatic processes
in closed systems (i.e., it identifies those states that are accessible and inaccessible by
adiabatic processes),

dS  >  0, for irreversible adiabatic processes

Part 2, Law 2 dS  =  0, for reversible adiabatic changes of state (2.3.7)

dS  <  0, for changes of state that cannot be realized adiabatically

The second part of the second law (2.3.7) divides a state diagram into three parts (a
line and two areas), as illustrated on the TS diagram in Figure 2.9. We emphasize that
the second law (2.3.7) does not preclude the system entropy S from decreasing; in fact,
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the entropy must decrease whenever heat is removed from a system during a work-
free process. Let us compare the second law (2.3.7) with the first law (2.2.4): the first
law asserts that energy is a conserved quantity, but in contrast, the second law asserts
that entropy may not be conserved; entropy is created during irreversible processes. 

The traditional formulation of the second law is given by (2.3.5) and (2.3.7); how-
ever, there is an alternative that may be useful, especially for open systems. Again, the
statement is in two parts: a definition of entropy plus an assertion that entropy is not
conserved because we now explicitly include entropy changes in the boundary. The
definition takes the form of the stuff equation (1.4.1) with Figure 1.7,

(2.3.8)

Here Qext is the amount of heat crossing at the outside boundary between the system
and its surroundings, Text is the temperature at the (external) point of heat transfer,
and Sb is the entropy of the boundary. If we interpret (2.3.8) as a stuff equation, then
the lhs is the accumulation term, the first term on the rhs is an interaction term, and
dSgen represents entropy generated in the system and its boundaries. The sign conven-
tion for Qext is the same as that for any quantity crossing a boundary, see the Example
in § 2.3.3. Note that (2.3.8) contains no work term. The form of the second law in
(2.3.8) is completely general: it applies to open and closed systems undergoing any
kind of change of state. A particular advantage to (2.3.8) is that it explicitly contains
Qext, so it may be used to identify those portions of the boundary at which irrevers-
ibilities occur.

The generation term in (2.3.8) accounts for entropy created by dissipative forces.
The second part of the second law states that this generation term is always either
positive or zero:

(2.3.9)

Figure 2.9 Graphical interpreta-
tion of the second law (2.3.7) for
closed systems. For any closed
system initially at state 1, adia-
batic processes can only move the
system to states having entropy
S2 ≥ S1; on this diagram, all such
states lie on or to the right of the
vertical line through state 1.
Shaded region here corresponds
to the shaded region in Figure 2.8.
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For reversible changes the generation term is zero because dissipative forces are not
present (see § 1.3); consequently, entropy is conserved during a reversible change.
Further, for a reversible change, (2.3.8) and (2.3.9) reduce to the definition in (2.3.5). If
a change of state is adiabatic and reversible, then the first term on the rhs of (2.3.8) is
zero and the remainder, combined with (2.3.9), reduces to the equality in (2.3.7). 

In practice, the second law form (2.3.8) is useful only when the generation term can
be estimated, typically through some measured or estimated efficiency factor. Nor-
mally, changes in entropy are computed by integrating over changes in measurables,
as we show in Part II of this book. But in any case, we would combine (2.3.5) and
(2.3.8) to obtain Sgen. For the special case of a reversible change (dSgen = 0), (2.3.8) pro-
vides a useful relation among property changes and heat flows.

But aside from these practical considerations, (2.3.8) may offer some additional
insight over (2.3.5). For example, (2.3.8) shows that the system entropy can increase,
decrease, or remain constant, depending on the relative sizes of the two terms on the
rhs. More importantly, (2.3.8) helps clarify the nonconservative nature of entropy:
when a process drives a system through unidentifiable states, then the generation
term in (2.3.8) will be positive and entropy is created in the system and its boundary.
Consequently, for a specified value of Text and a given change of state, δQirr ≤ δQrev,
which means δWirr ≥ δWrev [this is consistent with the sign of the lost work given in
(2.1.18)]. Therefore for the specified change of state, either the magnitude of the work
actually produced is less than that obtained from the reversible change or the magni-
tude of the work actually required is more than that needed for the reversible change.

To say this another way, entropy is created through the action of dissipative forces
that are wasteful because they convert some energy into heat, reducing the amount
available for performing useful work. Consequently, we try to control process effi-
ciency by minimizing the generation term: to increase efficiency, decrease dSgen. We
attain maximum efficiency when dSgen = 0; however, this means all steps would be
reversible, which is impossible. Different kinds of irreversibilities are produced by dif-
ferent property gradients, so it is natural to ask which gradients—temperature, pres-
sure, or composition—create the largest entropies. In many applications, temperature
gradients are most wasteful. Fortunately, temperature gradients are usually the ones
most easily modified and controlled; for example, air and water streams fed to power-
plant boilers and to multiple-effect evaporators are routinely preheated by hot exit
streams to reduce temperature gradients, providing considerable gains in efficiency.

When two states can be connected by both a reversible change and an irreversible
process, we can combine the first and second laws to show that dSgen can never be
negative (see Problem 2.9). The result is

(2.3.10)

We want to deduce the sign of dSgen. We know that δWlost ≥ 0, so we need to show that
the heat-transfer term in (2.3.10) cannot be negative. There are three cases.

(a) Consider an irreversible process that adds heat to the system. We have δWlost 
> 0 while δQirr > 0 and Text > T, so both terms on the rhs of (2.3.10) are posi-
tive. Hence, dSgen > 0.

TdSgen δWlost 1
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(b) Now consider an irreversible process that removes heat from the system. We 
still have δWlost > 0 while δQirr < 0 and Text < T, so both terms on the rhs of 
(2.3.10) are again positive. Hence, we still have dSgen > 0.

(c) For any reversible change, δWlost = 0 and Text = T ± dT, so both terms on the 
rhs are zero; hence, dSgen = 0.

Equation (2.3.10) shows that in closed systems, entropy can be generated in two
general ways. First, as already discussed in § 2.1.2, the lost work δWlost is the energy
needed to overcome dissipative forces that act to oppose a mechanical process. Sec-
ond, the heat-transfer term in (2.3.10) contributes when a finite temperature difference
irreversibly drives heat across system boundaries. This second term is zero in two
important special cases: (a) for adiabatic processes, δQirr = 0, and (b) for processes in
which heat is driven by a differential temperature difference, Text = T ± dT. In both of
these special cases, (2.3.10) reduces to

 (2.3.11)

This special form, rather than (2.3.10), is more often presented in textbooks. However,
(2.3.10) makes clear that even in a workfree process we expect entropy to be generated
because of irreversible heat transfer. In fact, when the heat transfer term is not zero, it
is usually larger that the lost work term.

2.3.3 Example

How do the sign and magnitude of Qext differ from those for Q?

In the first part of the second law (2.3.8), we introduced a heat transfer term Qext that
represents the amount of heat entering or leaving a system at the external side of its
boundary. This is in contrast to the heat Q, which is the amount of heat that actually
enters or leaves the system. These two terms, Qext and Q, may differ, depending on
the amount of entropy generated in the boundary; however, in many applications, the
two will have similar magnitudes.

Now consider the signs of Q and Qext. We have adopted a consistent sign conven-
tion for all quantities that cross a boundary: anything entering a system is positive,
anything leaving a system is negative (§ 2.2.1). So we expect the sign of Qext to be the
same as that for Q.

But note that our convention means that the sign depends on the identity of the
system. When dealing with Qext this can lead to confusion because to compute a value
for Qext we might reverse the identities of system and surroundings. Such a reversal
may enable us to take advantage of quantities in the surroundings whose values we
know, so that a value for Qext can be computed. 

To keep clear the proper sign for Qext it may be helpful to imagine yourself as an
observer located in the “surroundings” to which the current step in your calculation
applies. (This is the natural location for an engineer; that is, we typically stand in the
surroundings and try to measure or manipulate quantities in the system.) If the heat

TdSgen δWlost=
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Qext is coming toward you, then it is leaving the system and it is negative; if heat is
moving away from you, then it is entering the system and it is positive. 

To have an example, consider cooling a can of beverage in a refrigerator, as in Fig-
ure 2.10. On the left in Figure 2.10 we identify the following equivalences:

system ⇔ beverage
boundary ⇔ can
surroundings ⇔ air in refrigerator

We always place the observer in the surroundings, which on the left in Figure 2.10 is
the refrigerated air (i.e., inside the refrigerator). Then, since the beverage is being
cooled, heat moves toward the observer, so Qext < 0. 

However, sometimes calculations are simplified if we choose the refrigerated air as
the system, rather than the beverage. Then we would identify these equivalences:

system ⇔ air in refrigerator
boundary ⇔ can
surroundings ⇔ beverage

The observer is always in the surroundings, which now is the beverage, as on the
right in Figure 2.10. We are still cooling the beverage, but now heat moves away the
observer, so Qext > 0. Therefore, the sign of Qext on the right in Figure 2.10 differs from
that on the left in Figure 2.10, although the processes in both are exactly the same. The
signs of quantities crossing boundaries depend on the identity of the system.

Figure 2.10 Schematics of a beverage cooling in a refrigerator. (left) The system is the drinkable
liquid, and the engineer stands in the surroundings, which is the air inside the refrigerator.
(right) The roles of system and surroundings are reversed compared to those at left. In both
cases, heat is removed from the beverage and the engineer is in the surroundings, but the sign
of Qext is determined by our choice for the system.
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2.4  THERMODYNAMIC STUFF EQUATIONS

In § 2.2 and 2.3 we presented the first and second laws for closed systems. In practice
these would apply to such situations as those batch processes in which the amount of
material in the system is constant over the period of interest. But many production
facilities are operated with material and energy entering and leaving the system. To
analyze such situations, we must extend the first and second laws to open systems.
The extensions are obtained by straightforward applications of the stuff equations
cited in § 1.4. We begin by clarifying our notation (§ 2.4.1), then we write stuff equa-
tions for material (§ 2.4.2), for energy (§ 2.4.3), and for entropy (§ 2.4.4). These three
stuff equations are always true and must be satisfied by any process, and therefore
they can be used to test whether a proposed process is thermodynamically feasible
(§ 2.4.5).

2.4.1 Notation

In the sections that follow we will repeatedly encounter the sum (U + PV), so it will be
convenient to replace that sum with a single symbol H. Hence, we define

(2.4.1)

Later, we will find that H is more than a notational convenience. For example, we
already know that U is a state function, and it is simple to show (Problem 2.26) that
(PV) is also a state function; consequently, H is a state function. It is named the
enthalpy: an extensive, conceptual property of any system. It has dimensions of energy.

For the special case in which a closed system undergoes a reversible isobaric
change of state, we can assign a physical interpretation to dH. In such cases, (2.4.1)
gives

isobaric (2.4.2)

That is, for reversible isobaric changes of state, the enthalpy change of the system is
the same as the heat transferred to or from the system. Unfortunately, for other pro-
cesses acting on closed systems, no such simple interpretation applies; nevertheless,
we will find the enthalpy to be a useful conceptual for both closed and open systems.

In the remainder of § 2.4 we will be concerned with open systems in which both
mass and energy can enter and leave the system. We adopt the following notation. At
any instant, the system has total number of moles N, total energy E = Ne, and total
entropy S = Ns. Material can enter the system through any number of feed streams α =
1, 2, … and leave through any number of discharge streams β = 1, 2, … . Energy may
enter and leave the system by heat transfer Q, through work modes, and by material
entering and leaving the system.

The possible work modes are of two kinds: (a) those that deform the boundary Wb
and (b) those that cross the boundary Wsh. The latter includes wires carrying electrical
current and rotating shafts or reciprocating pistons for performing mechanical work;
these modes are called shaft work, hence the subscript sh on W. Common mechanical
devices that produce or consume shaft work include pumps and compressors, which

H U PV+≡

dH dU PdV+ dU δWrev– δQrev= = =
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do work on the system, so Wsh > 0, and turbines, which are driven by the system, so
Wsh < 0. However, we caution that shaft work is a generic term for any work that
crosses a boundary; it is not limited to electrical and mechanical modes and it does
not necessarily involve a physical shaft. But in any case, the effects of shaft work can
always be made equivalent to those of some mechanical device that does have a rotat-
ing shaft. Our notation is summarized in Figure 2.11.

2.4.2 Material Balance

In § 2.4 we restrict our attention to systems in which no chemical reactions occur;
then, over any small time interval dt, the change in the number of moles in the system
is given by the overall material balance (1.4.3), which we write as 

 (2.4.3)

If the feed and discharge streams flow at steady state, then no change occurs in the
amount of material in the system, and (2.4.3) reduces to

 (2.4.4)

We will sometimes write balance equations, such as (2.4.3) and (2.4.4), explicitly in
terms of flow rates of material and energy, with a flow rate indicated by an over-dot.
For example, in terms of molar flow rates, (2.4.3) becomes

Figure 2.11 Schematic of a system open to mass transfer through streams α and β, heat transfer
through any number of conduits, and work effects via any number of interactions that either
deform the boundary or cross the boundary. The subscripts ext on Q and W indicate that their
values may differ on the inside and outside of the boundary. The thickness of the boundary has
been enlarged for emphasis.
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 (2.4.5)

where . Since the time interval dt is common to all terms, (2.4.5) simplifies
to

 (2.4.6)

2.4.3 First Law for Open Systems (Energy Balance)

At any instant, the system in Figure 2.11 has total energy E = Ne, where e represents
the combined internal and external energies,

(2.4.7)

Here u is the molar internal energy, ek is the molar kinetic energy, and ep is the molar
potential energy of the system. In many cases, changes in the kinetic and potential
energies are zero or are negligible, and then e in (2.4.7) is merely the internal energy u.

Equation (2.4.7) gives the total energy in the system at any instant; now consider
how that value might change. We have already cited heat transfer Q, work effects that
deform the boundary Wb, and shaft work Wsh (see Figure 2.11). Besides these, the sys-
tem energy may change because of material crossing the boundary. Material flowing
in any stream α (or β) has internal energy Uα, kinetic energy mανα

2 /2 due to its
motion relative to the system, and potential energy mαzα g due to its position relative
to a reference elevation. Therefore, each stream can have

(2.4.8)

In addition, there is work associated with making each chunk of material flow
through the system. Specifically, each volume element of any stream (α or β) contrib-
utes to the flow by deforming the volume element ahead of it, thereby doing work of
the usual (P dV) form. So for any stream (α or β)

i = α, β (2.4.9)

The sign of this work term is positive for streams α entering the system and negative
for streams β leaving the system.

Finally, we want to be completely general at this point, so we also consider the pos-
sibility that energy in the boundary may change during a process. We let Eb = Nb eb
represent, at any instant, the total energy in the boundary. This energy can be decom-
posed into internal, kinetic, and potential energies, just as in (2.4.7). In many applica-
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tions the boundary energy Eb is negligible, not because eb is small, but because Nb is
small.

Collecting all possible ways by which energy can be exchanged between the system
and its surroundings, we obtain the total energy balance (first law) for open systems

 

(2.4.10)

Note that the total differential d(Ne) on the lhs differs from the terms dNα and dNβ on
the rhs; that is, (2.4.10) allows for the possibility that the amount of material in the sys-
tem can change during a process. This most general form of the first law is always true.
However in many situations, this general form simplifies because some contributions
are zero or are negligible compared to other contributions. For easy reference, we col-
lect many of its useful forms here.

Closed systems. For closed systems, all dNα = 0, all dNβ = 0, while N and Nb are con-
stant, so the general form (2.4.10) reduces to

(2.4.11)

We have written W for Wb + Wsh. This closed-system form simplifies further in these
special situations:

(a) Negligible external energy and negligible boundary mass,

(2.4.12)

(b) No thermal interaction (adiabatic process),

(2.4.13)

(c) No work modes (workfree process),

(2.4.14)

Open systems. For open systems the kinetic and potential energy terms are usually
negligible compared to the internal energy terms; then, ei = ui for the system and for
each stream. Hence, the general form (2.4.10) simplifies to

(2.4.15)

Note we have introduced the enthalpy (2.4.1) for each stream. For steady-state flows
of mass and energy, d(Ne) = 0, dUb = 0, and

d Ne( ) dEb+ eα Pαvα+( )dNα
α
∑ eβ Pβvβ+( )dNβ

β
∑ δQ+– δWb δWsh+ +=

Nde Nbdeb+ δQ δW+=

dU δQ δW+=

dU δW δWrev= =

dU δQ δQrev= =

d Nu( ) dUb+ hαdNα
α
∑ hβdNβ

β
∑ δQ+– δWb δWsh+ +=
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(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

At steady state, (2.4.19) applies because we cannot contrive a way to continuously
deform the boundary. Under the restrictions (2.4.16)–(2.4.19), the general energy bal-
ance simplifies to

steady state (2.4.20)

For steady-state workfree processes, (2.4.20) shows that the heat transferred can be
computed from the enthalpy change between inlets and outlets; common applications
include steady-state heat exchangers. For steady-state adiabatic processes, (2.4.20)
shows that the shaft work can be obtained from the enthalpy change; these situations
arise in adiabatic pumps, turbines, and compressors.

2.4.4 The Second Law for Open Systems (Entropy Balance)

In addition to material and energy balances, we may also perform an entropy balance
on the system in Figure 2.11. But since entropy is not conserved (entropy can be gener-
ated in the system and its boundary), we must appeal to a more general form of the
stuff equation, namely (1.4.1). The balance can be written as a generalization of the
first part of the second law (2.3.8), in which terms are now included to account for
entropy carried by the streams:

(2.4.21)

This general form of the second law is always true. Note that (2.4.21) contains no work
effects—the system entropy is not affected by work interactions. Further, note that the
second part of the second law (2.3.9) still applies, so the generation term in (2.4.21)
must be positive or zero. In contrast, the system entropy S may increase, decrease, or
remain constant. For closed systems (2.4.21) reduces to (2.3.8).

dNα
dt

-----------
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If the process is a steady state, then no net change occurs in the amount of entropy
in the system or boundary and (2.4.21) reduces to

steady state (2.4.22)

Further, if the boundary is well-insulated, then we are left with

steady state, adiabat (2.4.23)

Finally, if a reversible change occurs, then dSgen = 0, and (2.4.23) for an insulated
steady-flow system reduces to

steady state, reversible adiabat (2.4.24)

Rate forms of (2.4.22)–(2.4.24), analogous to (2.4.20) can easily be written.

2.4.5 Feasibility Analyses

The material, energy, and entropy balances presented in § 2.4.2–2.4.4 must be obeyed
by any process that does not involve chemical or nuclear reactions. Consequently, they
can be used to help troubleshoot problems that may arise in many process operations;
they may also be used to test the thermodynamic feasibility of a process that may be
proposed during a design project. To be feasible a process must satisfy

(a) conservation of matter (2.4.3),

(b) the first law (2.4.10), and

(c) the second law (2.4.21).

The conservation equations for matter (2.4.3) and energy (2.4.10) provide con-
straints on quantities, and therefore they allow us to test for consistency in the specifi-
cations of a proposed process. For example, with these conservation laws we may be
able to test whether the proposed outputs of matter or energy are consistent with the
proposed inputs. However, the entropy balance (2.4.21) is not a conservation law, and
therefore it does not provide a check on quantities or consistency. Instead, it provides
a constraint on the direction of a proposed process. Some proposed processes can be
performed in both forward and reverse directions, but many others can be performed
in only one way. In the latter cases, the entropy balance can be used to identify the
ranges of operating variables (temperatures, pressure, flow rates) that must be used to
make a proposed process proceed in the desired direction. 
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Although the general stuff equations (2.4.3), (2.4.10), and (2.4.21) are always true,
they may not always be useful. To be useful, sufficient information must be available
from calculations or measurements. Specifically, to test whether a process satisfies the
first law, we must have either (a) complete specifications of the initial and final states
of the system, or (b) values for both the heat and the work. To test whether the second
law is satisfied, we must know the value for the heat; then we would use (2.4.21) to
compute dSgen and determine whether the second part of the second law is obeyed.

But when these criteria are met, the thermodynamic stuff equations are powerful
and versatile. In particular, they can be implemented without knowing the detailed
mechanisms by which a proposed process is to accomplish its task. This occurs
because the first and second laws establish equivalences between process variables (Q
and W) and changes in system variables (such as u, h, and s).

2.4.6 Example

How do we use the thermodynamic stuff equations to test the feasibility of a pro-
posed process?

Dr. Emmett Brown has built a mysterious contraption which is housed in an insulated
container; no wires or shafts penetrate the container walls. The device is supplied
with steam at 1 bar, 200°C, and a steady rate of 10 m3/min. The device splits the feed
into two streams, which leave the device at steady flow rates. Doc Brown claims that
stream 2 leaves the device at 1 bar, 250°C while stream 3 leaves at 1 bar, 150°C. A sche-
matic is shown in Figure 2.12. Relevant thermodynamic properties of each stream are
given in Table 2.1. Can this device perform as advertised?

 

Figure 2.12 Schematic of a device intended to convert a feed stream (1) into two discharge
streams, one hotter (2), the other cooler (3) than the feed

Table 2.1 Properties of steam at 1 bar; from steam tables in [6]

Stream 1 Stream 2 Stream 3

T (°C ) 200. 250. 150.

v (m3/kg) 2.172 2.406 1.936

u (kJ/kg) 2658. 2733. 2582.

h (kJ/kg) 2875. 2974. 2776.

s (kJ/kg K) 7.834 8.032 7.613

 
  Contraption

stream 1

stream 2

stream 31 bar
200°C
10 m3/min

1 bar, 250°C

1 bar, 150°C
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In Table 2.1 the values for u and s are relative to zero values at the reference state,
which was chosen to be 0°C and 1.013 bar. Note from the table that each stream has
values for Pv = h – u that are small relative to those for u and h.

System. We choose the system to be the contraption and the steam within.

Step 1: Apply conservation of mass. Steady-state mass flow through the device must
obey

(2.4.25)

Note that this does not necessarily mean that the flow rates of streams 2 and 3 will be
the same.

Step 2: Apply the first law. For a steady flow situation with negligible changes in
external kinetic and potential energies, the first-law form (2.4.20) applies,

(2.4.26)

Here we have used a mass basis rather than a mole basis. Recall that the index α runs
over inlet streams, while index β runs over outlets. In this problem, the device is insu-
lated, no shaft work crosses the boundary, and we presume the boundary itself has
negligible mass. Then (2.4.26) reduces to

(2.4.27)

Solving (2.4.25) and (2.4.27) simultaneously with enthalpies from Table 2.1, we find

(2.4.28)

This means that, to satisfy the first law, valves must be adjusted so that streams 2 and
3 leave the device at the same mass flow rate.

Step 3: Apply the second law. For a system flowing at steady state through an insu-
lated enclosure, the second law in the form (2.4.23) applies

(2.4.29)

where, again, we have used a mass basis. The entropy generation term must always
be positive or zero; therefore, we must have

(2.4.30)
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Using the mass flow rates from steps 1 and 2 and the entropy values from Table 2.1,
we find

(2.4.31)

So even though the first law might be satisfied, the second law would be violated; the
contraption will not function as planned. Can you contrive modifications of the pro-
cess that would make the desired initial and final states feasible?

Comment. Note that we have made a definitive statement about the feasibility of a
proposed process without knowing details about the process itself. We are able to do
so because the first and second laws effectively replace process-dependent heat and
work effects with process-independent changes in state functions. 

2.5  SUMMARY

In this chapter we have developed the first and second laws for closed and open sys-
tems. For closed systems both laws are motivated by the desire to relate the process
variables Q and W to changes in system properties. To emphasize this common
theme, we have stated each law in two parts: part 1 defines a new state function
(either U or S) and part 2 imposes limitations on how the new state function changes
with certain changes of state. For closed systems, the first law asserts that an exact dif-
ferential (dU) is obtained from the algebraic sum of δQ and δW, while the second law
asserts that an exact differential (dS) is obtained by applying an integrating factor to
δQrev. If a quantity forms an exact differential, then it is a system property, and
changes in its value are not affected by the process that connects two states.

For open systems, the first and second laws are particular forms of the general stuff
equation presented in § 1.4. The first law represents an energy balance on a system,
and it asserts that energy is a conserved quantity. Similarly, the second law represents
an entropy balance, but the second law asserts that entropy is not conserved: through
the actions of dissipative forces, entropy is created (but never consumed) during any
irreversible process.

The first and second laws are concise statements of constraints that Nature imposes
on energy transfers involved in any process. As such, they can be used in several ways
to obtain quantitative information about processes that connect a given initial state to
a given final state. A typical engineering question is to determine the amounts of Q
and W needed for a proposed change of state. If the process path is known or can be
reliably estimated, then Q and W may be computed directly, without recourse to the
laws of thermodynamics. But in most situations, the process path is unknown and in
fact unknowable; then, our strategy would be to invoke the first and second laws, so
that we may perform the analysis solely in terms of system-dependent state functions.
Variations on this problem are also common; for example, we may know an initial
state and need to identify the final state that would result when known amounts of Q
and W cross the boundary.

Other applications of the laws include feasibility analyses, such as in the Example
of § 2.4.6. In these situations we usually know the initial and final states that we want;
the question is whether it is thermodynamically possible to start from the given initial

   •
Sgen 0.053–  kJ/(min K)=
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state and achieve the desired final state. If the answer is no, then we consider whether
adjustments can be made in either the initial or final state to obtain a change that is
thermodynamically possible. If the answer is yes, then we may proceed to a detailed
design of a process itself, including an assessment of economic feasibility. 

But although the first and second laws meet our objective of relating Q and W to
system properties, that objective has been obtained at a price. The price is that, while
the first and second laws have identified new system properties, U and S, those new
properties are conceptuals, not measurables. To obtain full benefit from the first and
second laws, we must relate U and S to measurables—preferably measurable operat-
ing variables such as temperature, pressure, and composition. And so, the first and
second laws have certainly achieved the economy of thought characteristic of science,
but before we can apply those laws in an engineering setting, we must establish rela-
tions between conceptuals and measurables.
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PROBLEMS

2.1 Argon is held in a vertical piston-cylinder apparatus. The piston has a diameter
of 5 cm and a weight-pan is attached to the piston shaft.
(a) If atmospheric pressure is 1 bar and the gas is at 1.5 bar, what is the mass of

piston and pan? 
(b) How much work is done when a 50-kg mass is placed on the pan and the gas

is compressed isothermally at 300 K?
(c) Approximately how much work is done if 50 kg of sand are placed on the

pan 1 grain at a time while the gas is kept at 300 K?
(d) Repeat parts (b) and (c) for processes that are adiabatic and begin at 300 K.

For such processes, PVγ is a constant where γ = 1.7 for ambient argon.
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2.2 For every workfree process between the same initial and final states, show that
the heat effect is the same, regardless of how the heat is transferred.

2.3 For any workfree isothermal process on a closed system, show that q = T∆s.

2.4 In some of Joule’s experiments, work was done on water held in an adiabatic cal-
orimeter. The work was done by a rotating paddle, driven by falling weights.
Assume the volume of the water remains constant during these experiments.

(a) In one experiment a 25-kg mass was allowed to fall 20 times through a height
of 2 m; what was the maximum amount of work done?  

(b) If a 25-kg mass were fired into the calorimeter and brought to a standstill,
what should its initial velocity be to accomplish the same effect as in (a)?

(c) If the calorimeter held 1.2 kg of water and if process (a) caused the water tem-
perature to rise from 288 to 290 K, what is the numerical value for the factor
that connects temperature rise to work under these conditions?

2.5 In some of his experiments, Joule used electrical work rather than mechanical
work. To achieve the same effect as in Problem 2.4(a), for what duration would
electrical work have to be provided to the calorimeter, if the current originated
from a 100-volt battery and it encountered a 1000-ohm resistance? 

2.6 Steam flows at 2.5 kg/s through a turbine, generating electricity at the rate of 1
MW. The inlet velocity of the steam is 100 m/s and the outlet velocity is 30 m/s;
the inlet is located 30 m above the outlet. Of the total power generated, estimate
the fraction contributed by the change in kinetic energy of the steam and the frac-
tion contributed by the change in potential energy.

2.7 Fill in the missing entries (…) for the signs in the following table. Here ∆U, Q,
and W apply to a closed system. (Note that “0” indicates a value of zero.)

2.8 One mole of hydrogen initially at 10 bar, 300 K expands reversibly to 1 bar, 500 K.
The expansion is carried out along a straight-line path on a Pv diagram. Deter-
mine Q and W. If necessary, assume Pv = RT, (∂u/∂T)v = 5R/2, and (∂u/∂v)T = 0.

2.9 Consider a closed system that can change from state 1 to state 2 via both a revers-
ible change and an irreversible process. Assume boundary effects are negligible.
Combine the first law and the expression for lost work (2.1.18) with the second-
law forms (2.3.5) and (2.3.8) to derive (2.3.10).

Sign of ∆U Sign of W Sign of Q

(a) 0 + …

(b) 0 … +

(c) + … 0

(d) – + …

(e) … + –

(f) … + –

(g) – 0 …
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2.10 Consider one mole of a gas that obeys Pv = RT and has (∂u/∂T)v = 3R/2 with
(∂u/∂v)T = 0. The gas undergoes a reversible change of state, so the first law

(P2.10.1)

can be written

(P2.10.2)

(a) Determine whether or not (P2.10.2) is an exact differential.

(b) For the special case of a reversible adiabatic change, (P2.10.2) becomes

(P2.10.3)

Find the equation for the process path on a Tv diagram by solving the differ-
ential equation (P2.10.3) using exact differentials. If (P2.10.3) is not exact, you
must find an integrating factor.

(c) If we replace δqrev with the definition of the entropy, then (P2.10.2) is

 (P2.10.4)

Determine whether or not this expression is an exact differential.

2.11 (a) Show that there are only two situations in which isentropic processes can
occur on closed systems: either the process is reversible and adiabatic or the
process removes heat from the system. Are all adiabatic processes isentropic?

(b) For open systems, show that it is possible for the system entropy to decrease
or remain unchanged, even when heat enters the system. For the isentropic
case, give the conditions that must apply to the inlet and outlet streams.

2.12 For a certain process, one mole of neon is needed at 300 K, 1 bar; the gas is avail-
able at 500 K, 3 bar. Determine whether or not the required change of state can be
accomplished adiabatically. If necessary, assume neon obeys Pv = RT and has
(∂u/∂T)v = 3R/2 with (∂u/∂v)T = 0.

2.13 Assume carbon monoxide obeys Pv = RT, (∂u/∂T)v = 5R/2, and (∂u/∂v)T = 0. On
a Pv diagram, sketch the states accessible from 20°C, 1 bar by (a) reversible adia-
bats and (b) real adiabatic processes. Are any states inaccessible by adiabatic pro-
cesses?

2.14 When a closed system is compressed isothermally, we expect to remove heat
from the system. 

(a) Use the first and second laws to confirm this. 

(b) Cite a situation in which this would not be true. 

(c) When heat must be removed, show that more heat must be removed from a
real compression than from a reversible one.
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2.15 The Second Law is sometimes stated as The total energy of the universe is constant,
but the total entropy is continually increasing and must ultimately reach a maximum.
(a) Is all of this always true? If not, what other statements should be made?  
(b) Does this statement automatically imply an ultimate “heat death” of the uni-

verse where all heterogeneities of matter and energy are eliminated? Explain.

2.16 Rifkin and Howard [7] quote Bertrand Russell as saying Whenever there is a great
deal of energy in one region and very little in a neighboring region, energy tends to travel
from the one region to the other, until equality is established. This whole process may be
described as a tendency towards democracy.
(a) Does energy always flow from a high “concentration” to a low one? If not,

give an example in which it does not.
(b) This might imply that democracy is an equilibrium state and suggests that it

will be the case in which energy is evenly distributed. Do you believe it?
What about the distribution of entropy?

(c) Do you think such concepts can really be applied to human affairs?
(d) On what length scale might Russell’s arguments become inexact?

2.17 One analysis of manufacturing efficiency can be made by determining wasted
energy through an analysis of any heat and work effects together with the
changes of state that the materials undergo. To illustrate, consider a process that
changes a closed system’s internal energy by ∆u, entropy by ∆s, and volume by
∆v; no chemical reactions or changes of composition occur. The only energy input
is heat q from condensing steam at the temperature Ts. The energy outputs are
heat and volumetric work to the environment, which is at fixed To and Po. Then,
inefficiencies in the process can be measured by the extra amount of heat
required due to irreversibilities. Use the first and second laws to show that this
extra heat is given by

 (P2.17.1)

Give an example of an industry where this analysis might be usable. Suggest
how the values of ∆u, ∆s, and ∆v might be determined.

2.18 A fluid is leaking steadily through a well-insulated valve at the end of a pipe.
(a) Do any always true relations connect conceptual properties of the fluid just

upstream of the valve with those just downstream? If so, write them.
(b) Are there any always true relations that connect measurables just upstream of

the valve with those just downstream? If so, write them.

2.19 A “heat engine” is any cyclic device that takes heat from a high-temperature res-
ervoir, does useful work, and expels unused heat to a low-temperature reservoir.
For a specified amount of heat into the engine, show that any real (i.e., irrevers-
ible) heat engine always produces less useful work than would a reversible heat
engine operating between the same two reservoirs.

2.20 In analyzing real processes, when is the entropy balance helpful as opposed to
merely being an additional equation with an additional unknown?

qlost q
Ts

Ts To–
------------------ ∆u Po∆v To∆s–+( )–=
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2.21 A “heat pump” is any cyclic device that uses work from the surroundings to
move heat from a low-temperature reservoir to a high-temperature reservoir. For
a specified amount of work, show that any real heat pump always removes less
heat from the low-temperature reservoir than would a reversible heat pump
between the same two reservoirs. 

2.22 For the following situations, write appropriate forms of the mass and energy bal-
ances, but include only terms that are nonzero. The problems are not to be solved.

(a) Steam flows steadily through a horizontal, insulated nozzle. Find the diame-
ter of the outlet that gives no change in velocity.

(b) A battery-driven toy runs until it stops. How much energy was in the battery
at the start?

(c) Two metal blocks initially at different temperatures make contact in an insu-
lated container. How much heat was transferred? From which block? 

(d) Steam drives a turbine to steadily generate electricity. There are two steam
outlets. What is the state of the steam in the second outlet?

(e) A 100-watt incandescent light bulb is turned on. What is the temperature of
the glass surface after 10 minutes?

2.23 A closed insulated vessel having rigid walls is divided into two compartments
by a membrane. One compartment is loaded with a fluid at state 1; the other
compartment is evacuated. The membrane ruptures, allowing the fluid to fill the
vessel. Show that the final state of the fluid (2) must have u2 = u1 but s2 > s1,
regardless of the nature of the fluid. (This process is called a Joule expansion.)

2.24 A well-insulated cylinder, having a volume of 1 m3, is initially filled with 1 kmole
of helium at 300 K. A valve on the cylinder is opened, allowing the pressure to
fall rapidly to 1 bar; then the valve is closed. After a period of time, a gauge reads
92.86 K for the temperature of helium in the cylinder. Discuss whether this tem-
perature reading could be correct. 

2.25 A rigid insulated vessel is divided into two compartments: one contains a fluid at
T1, P1 and the other is under vacuum. The compartments are connected by a pipe
fitted with a pressure relief valve; the relief valve bursts. You, as the engineer
responsible for the unit, examine the system two hours later.

(a) What always true relations exist to connect initial conceptual properties to
the final conceptuals?

(b) What always true relations exist to connect initial measurables to final mea-
surables? Are these enough to determine whether pressure and temperature
gauges on the vessel have been damaged?

2.26 In (2.4.1) we defined the enthalpy H to be the sum (U + PV). We already know
that U is a state function.

(a) Without using H, prove that the product PV is also a state function.

(b) Prove that the sum of any two state functions is also a state function.
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n the previous chapter we accomplished our first objective: we showed how the
process variables heat and work are related to changes in system properties, the
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measurable state functions, particularly temperature, pressure, volume, composition,
and heat capacities. When we can establish such relations, our strategy in a process
analysis can take the path on the left branch of the diagram shown in Figure 3.1.

Unfortunately, 

 

∆

 

U

 

 and 

 

∆

 

S

 

 are not always simply related to measurables, nor are 

 

∆

 

U

 

and 

 

∆

 

S

 

 always directly related to convenient changes of state. So to ease conceptual
and computational difficulties, we create additional state functions. Then we must
establish how 

 

∆

 

U

 

 and 

 

∆

 

S

 

 are related to these new state functions and, in turn, how
changes in the new functions are related to measurables. In these situations, our strat-
egy follows the right branch of the diagram in Figure 3.1. In this chapter we develop
relations that allow us to follow both strategies represented in the figure.

Our long-term goal is to be able to analyze processes, and since processes cause
changes in system states, we begin by discussing the conditions that must be satisfied
to characterize a state (§ 3.1). Then we introduce new conceptual state functions (§ 3.2)
and show how they respond to changes in temperature, pressure, volume, and com-
position (§ 3.3 and § 3.4). Next we summarize those differential relations that enable
us to use measurables to compute changes in conceptuals (§ 3.5); the relevant measur-
ables include heat capacities, volumetric equations of state, and perhaps results from
phase equilibrium experiments. 

Lastly, we combine the first and second laws to obtain explicit expressions for the
reversible heat and reversible work (§ 3.6 and § 3.7). Those expressions are general in
that they apply to mixtures of any number of components in open or closed systems;
however, as with everything done in Part I of this book, the expressions apply only to
a single homogeneous phase. The expressions for 

 

Q

 

rev

 

 and 

 

W

 

rev

 

 given in § 3.7 com-
plete the program outlined in Figure 3.1.

I



 

70

 

FUNDAMENTAL RELATIONS

 

3.1  STATE OF SINGLE HOMOGENEOUS PHASES

 

One objective of thermodynamics is to analyze how the state (§ 1.2.2) responds when
a system undergoes a process or sequence of processes (§ 1.3). In this section we
address two important questions that naturally arise concerning relations between
process and state: In § 3.1.1 we determine the minimum number of interactions that
are required to change the state and in § 3.1.2 we determine the number of property
values required to identify the final state. We restrict our attention here to multicom-
ponent systems forming a single homogeneous phase; the generalizations to mul-
tiphase and reacting systems are considered in Chapters 9 and 10.

We distinguish between intensive state and extensive state. The 

 

intensive

 

 state can
be identified solely in terms of intensive properties, and therefore it does not involve
amounts of material. In contrast, identification of an 

 

extensive

 

 state must include a
value for at least one extensive property, usually either the total amount of material or
the total volume. Often only intensive states are needed to perform process analyses,
while extensive states are usually needed to perform process designs.

 

Figure 3.1

 

A thermodynamic analysis of a process usually proceeds by using the first and sec-
ond laws to relate path functions to changes in conceptual properties. Then values of property
changes are computed either (i) directly, by relating them to measurables (

 

left

 

), or (ii) indirectly,
by first relating those changes to still other conceptual properties, and in turn, relating those
conceptuals to measurables (

 

right

 

).

 

Problem

 

:
Find values of 

 

Q

 

 and 

 

W

 

for a process

Use 1

 

st

 

 and 2
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 laws
to relate 

 

Q

 

 and 

 

W

 

to 

 

∆
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S

 

Relate 

 

∆
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3.1.1 Number of Interactions to Change a State

 

To change a thermodynamic state, we stand in the surroundings and apply interac-
tions that cross the boundary. So we would like to know the number of orthogonal
interactions that are available for changing the extensive state,

(3.1.1)

For a mixture of 

 

C

 

 components, there are 

 

C

 

 independent mole numbers, each of which
could be manipulated through its own interaction. In addition, most systems of inter-
est have the thermal interaction plus a work interaction that can change the system’s
volume. Therefore, in most cases the maximum number of orthogonal interactions
will be given by

 

single, homogeneous phase

 

(3.1.2)

If other orthogonal work modes are present, such as electrical or surface work, then
the number on the rhs of (3.1.2) would increase accordingly.

The value given by (3.1.2) represents the maximum number of orthogonal interac-
tions. However, the actual number will be less when external constraints are imposed.
An 

 

external

 

 

 

constraint

 

 blocks or controls an interaction so that it is not available for
manipulating the system. For example, we might insulate the system to block the
thermal interaction. Let 

 

S

 

ext

 

 count the number of external constraints imposed on
interactions. Then, to manipulate the state, we would have

 

single, homogeneous phase

 

(3.1.3)

A special case of (3.1.3) occurs when we block all interactions that would change
the amounts of components in a closed system. Then 

 

S

 

ext

 

 = 

 

C

 

, and (3.1.3) reduces to

 

single, homogeneous phase and 

 

C

 

 known amounts

 

(3.1.4)

So we have only two interactions available to manipulate the state. This result is

 

Duhem’s theorem

 

 applied to a single homogeneous phase. The extension of (3.1.4) to
multiphase systems is developed in Chapter 9.

To change an intensive state, we have two possibilities. (a) We might fix the
amounts of all components, so (3.1.4) applies. Then we can change the intensive state
using the thermal interaction or the 

 

PV

 

 work mode or both. (b) We might want to
change the composition. But we cannot directly manipulate a mole fraction, we can
only change a composition by changing amounts of components, so (3.1.3) applies.
Therefore (3.1.3) generally gives the number of available interactions for changing
both extensive and intensive states. Note that it is possible to change the extensive
state without changing the intensive state.

Vmax
number of available

orthogonal interactions 
 ≡

Vmax C 2+=

V Vmax Sext– C 2 Sext–+= =

V 2=
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3.1.2 Number of Properties to Identify an Equilibrium State

 

After a change is finished, the system relaxes to an equilibrium state; that state is iden-
tified by giving values for properties, so we need to know how many property values
are required. Experiment shows that a modest number of properties are sufficient to
identify the state; that is, only a few properties are 

 

independent

 

. To test for a complete
set of independent properties, we specify values for 

 

F

 

ex

 

 properties {

 

p

 

i

 

, 

 

i

 

 = 1, 2, … ,

 

F

 

ex

 

}. If the value of each property 

 

p

 

i

 

 can be freely manipulated, while the value of any
other property not in the set cannot be freely manipulated, then the 

 

F

 

ex

 

 properties {

 

p

 

i

 

}
form a complete set of independent properties. This implies that any property 

 

F

 

 is
related to the properties 

 

p

 

i

 

 through some function 

 

ψ

 

,

(3.1.5)

A relation such as (3.1.5) is called an 

 

equation of state

 

. The obvious question now is,
What must be the value of 

 

F

 

ex

 

? 
Our initial guess is likely to be that 

 

F

 

ex

 

 = 

 

V

 

, which would mean that the number of
properties needed to identify the extensive state is the same as the number of interac-
tions available for manipulating the extensive state. But, in fact, 

 

F

 

ex

 

 may differ from 

 

V

 

because of constraints. There are competing effects from two kinds of constraints.
(a) External constraints were introduced in § 3.1.1. But although external con-

straints reduce the number of available interactions during a state change, once equi-
librium is established, external constraints do not affect the number of properties
needed to identify the final state. It is true that an external constraint may couple two
otherwise independent properties while a process is being carried out, but that cou-
pling does not apply to the equilibrium state. For example, consider a pure fluid in an
isolated system; hence, 

 

Sext = 3 and (3.1.3) gives V = 0. That is, no interactions are
available to manipulate an isolated system. Nevertheless, Fex ≠ 0; that is, an essen-
tially infinite number of states can be isolated, so we still need some number of prop-
erties to identify the particular equilibrium state confined to an isolated system.

(b) Internal constraints are those imposed by Nature through such mechanisms as
multiphase and reaction equilibria. Internal constraints couple otherwise independent
properties, thereby reducing the total number needed to identify equilibrium states.
Let S represent the number of internal constraints, then the number of independent
properties Fex needed to identify the extensive state is given by

(3.1.6)

Using (3.1.2) for the usual situations of interest, we have

single, homogeneous phase (3.1.7)

where at least one of the Fex properties must be extensive. The only internal con-
straints available to homogeneous one-phase fluids are those that occur at vapor-
liquid critical points. Vapor-liquid critical points are one-phase situations having S = 2.
Then a pure fluid would have Fex = 1: we need only the amount of material to identify
the extensive state of a pure fluid at its critical point.

F ψ p1  p2  …  pFex
,,,( )=

Fex Vmax S–=

Fex C 2 S–+=
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To identify intensive states, we need (C – 1) independent mole fractions, rather than
C independent mole numbers. So the number of independent properties needed to
identify an intensive state is 

(3.1.8)

Hence,
single, homogeneous phase (3.1.9)

where all F properties must be intensive. The quantity F is often called the number of
degrees of freedom. The Gibbs phase rule extends (3.1.9) to multiphase systems.

3.1.3 Proper Counting

We must take care to avoid misusing or misinterpreting the values given by V and Fex.
Here are three common pitfalls to avoid.

(a) Do not confuse V with Fex . V is the number of orthogonal interactions needed to
manipulate a system, while Fex is the number of independent properties needed to
identify an extensive state after a process is completed and equilibrium is established.
External constraints reduce the number of interactions available for manipulation,
while internal constraints reduce the number of properties required for identification.
The numbers Fex and F play crucial roles in testing whether thermodynamic prob-
lems are well-posed, that is, whether the number of knowns is sufficient to allow us to
compute values for unknowns.

(b) A second pitfall is to assume that when you have established values for F inde-
pendent variables, then you have uniquely defined the intensive state. This may not be
so: an equation of state may not be monotone in its independent variables. For exam-
ple, some properties of some pure fluids pass through extrema, as in Figure 3.2. Such

Figure 3.2 Isothermal compressibility κT (§ 3.3.3) of pure liquid water at 1 atm. For pure liquid
water, F = 2. Nevertheless, if we were to specify that P = 1 atm and that water had an isother-
mal compressibility κT = 46(10–6)/bar, we still could not uniquely identify the intensive state
because κT for pure liquid water is not monotone in temperature. Data taken from [1].

F Fex 1–=

F C 1 S–+=
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extrema are common in fluid mixtures. For example, many mixtures in vapor-liquid
equilibrium exhibit azeotropes: maxima or minima in isothermal plots of pressure vs.
mole fraction and in isobaric plots of temperature vs. mole fraction.

(c) A third pitfall can occur when exercising the option of replacement. Note that F
tells us only the number of properties needed as arguments in an equation of state; so
long as those arguments are independent and intensive, we are free to choose their
identities. But whether a particular property is legitimate depends on the identities of
the other properties to be used. For example, assume we have an equation of state in
the form P = f (T, v); then we might replace the molar volume v with the density ρ and
use the equation in the form P = f ′(T, ρ ). However, we cannot keep v and replace tem-
perature T with density ρ; that is, P ≠ f ′′(ρ , v) because a one-to-one correspondence
exists between ρ and v (specifically, ρ = 1/v). So, when you replace one argument with
another, you should confirm that the new arguments are mutually independent.  

3.2  FUNDAMENTAL EQUATIONS

Often we can simplify an analysis by combining the first and second laws to eliminate
heat and work in favor of changes in state functions. Such replacements yield the fun-
damental equations of thermodynamics. These equations allow us to determine the
effects of state changes without requiring us to evaluate heat and work. In what fol-
lows, we first present the forms for closed systems (§ 3.2.1) and then give those for
open systems (§ 3.2.2). 

3.2.1 Closed Systems

Consider a closed homogeneous system that has negligible boundary mass and that
has only two interactions with its surroundings: the thermal interaction and one
mechanical work mode that can alter the system volume. Through these interactions
the system is subjected to some differential process that changes the state. Since U is a
state function, dU is unaffected by the reversibility of the process; so,

(3.2.1)

Substituting the first law (2.2.4), we have

(3.2.2)

For the reversible change we write δQrev = TdS and δWrev = – PdV. So making these
substitutions leaves

(3.2.3)

or simply

(3.2.4)

dU dUrev dUirr= =

dU δQrev δWrev+ δQirr δWirr+= =

dU TdS PdV– δQirr δWirr+= =

dU TdS PdV–=
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which is the fundamental equation for closed systems. We emphasize that (3.2.4) applies
to any process regardless of reversibility. However, for irreversible processes (T dS) is
not the heat transferred nor is (–P dV) the work done; in fact, as we discussed in
§ 2.3.2, δQirr < (T dS) and δWirr > (–P dV). This means that, in irreversible processes,
heat and work are distributed between (T dS) and (–P dV) in some unknown way; that
distribution depends on the degree of irreversibility.

According to (3.1.9), we need two independent intensive properties from which to
construct an equation of state for a pure single phase. The fundamental equation
(3.2.4) implies that if we want to use the internal energy as the dependent variable,
then we should use S and V as independent variables,*

(3.2.5)

That is, S and V are the “natural” or “canonical” variables when we choose an equa-
tion of state to be explicit in U. Of course, we could express U in any pair of indepen-
dent intensive quantities; for example, we could use U(T, P) or U(S, P) or U(T, V), etc.
But U(S, V) is the natural choice because if we knew the function U(S, V) for our sys-
tem, that knowledge would be sufficient to determine values for the remaining prop-
erties in the fundamental equation. To do so, we would merely need to evaluate
derivatives,

     and    (3.2.6)

However, if we had some other functional representation for U, we would not have
sufficient information to compute the remaining properties in (3.2.4). For example, say
we had the function U(S, P). Then to obtain the volume V, instead of differentiating,
we would have to integrate the second differential equation appearing in (3.2.6), and
to evaluate that integral, we would need an integration constant; that is, we would
need a value for U at some volume V. Consequently, U(S, P) is not a complete descrip-
tion of our system and this is why we say that U(S, V) is “fundamental.”

But for engineering use, S and V are not convenient independent variables; S, for
example, is not measurable at all and V may not be easy to control in a laboratory or
industrial situation. We would prefer to use easily measured and controlled proper-
ties as independent variables; in particular, we would like to use T and P. But if we
merely replace S and V in (3.2.5) with T and P, so we have U(T, P), then we will have
lost information and made subsequent computations of ∆U more complicated. Hence,
if we want to replace S and V as independent variables but preserve the fundamental
nature of the equation of state, then we must also change the dependent variable U.
This can be done via Legendre transforms.

Legendre transformation is a mathematical technique for exchanging one indepen-
dent variable for another in a function; see Appendix A. One consequence of such
transformations is that, not only do we obtain a new independent variable, but we
also obtain a new function. Legendre transforms have the structure

* For closed systems, relations among thermodynamics properties can be developed using extensive prop-
erties (such as U and V) or intensive properties (such as u and v). We usually use extensive properties.

U U S V,( )=

T
S∂

∂U
 
 

VN
= P–

V∂
∂U

 
 

SN
=



76 FUNDAMENTAL RELATIONS

 (3.2.7)

where

 (3.2.8)

Because of (3.2.8), one independent variable cannot be replaced by any arbitrarily cho-
sen variable. For transformations of the fundamental equation, this means that the
product of the old and new variables must have dimensions of energy. 

In the fundamental equation (3.2.4) let us choose to replace V with its conjugate
variable, the pressure P. Then the Legendre transform is

(3.2.9)

The new function H defined by this transform is the enthalpy, previously introduced in
§ 2.4.1. It is an extensive, conceptual state function and has dimensions of energy.
Forming the total differential of (3.2.9) and substituting (3.2.4) for dU, we obtain

(3.2.10)

So, S and P are the canonical variables for H, and (3.2.10) is a form of the fundamental
equation in which S and P are independent. 

We obtain another form of the fundamental equation if we replace S with T in the
original form (3.2.4). Therefore we introduce the Legendre transform

(3.2.11)

which defines another new conceptual state function, the Helmholtz energy A. Forming
the total differential of (3.2.11) and using (3.2.4) to eliminate dU we find

(3.2.12)

A fourth form of the fundamental equation can be obtained by applying a double
Legendre transform to U,

(3.2.13)

which defines still another new conceptual state function, the Gibbs energy G. Forming
the total differential of (3.2.13) and substituting (3.2.10) for dH leaves

(3.2.14)

The Helmholtz and Gibbs energies are both extensive, conceptual state functions hav-
ing dimensions of energy. Unfortunately, only in special cases do the changes ∆A and
∆G have physical interpretations.

new
function 

  old
function 

  old
variable 

  new
variable 

 –=

new
variable 

  ∂ old function( )
∂ old variable( )
------------------------------------=

H U PV–( )– U PV+= =

dH TdS VdP+=

A U TS–=

dA SdT– PdV–=

G U PV–( )– TS– H TS–= =

dG SdT– VdP+=
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For closed systems, (3.2.4), (3.2.10), (3.2.12), and (3.2.14) are the four forms of the
fundamental equation. For easy reference, we collect them together here:

(3.2.4)

(3.2.10)

(3.2.12)

(3.2.14)

Each of these is always true; they are four equivalent, though different, ways of con-
veying the same information. No one is any more basic than another. You must decide
which is most appropriate for the problem at hand. The choice depends on which set
of independent variables (S, V), (S, P), (T, V), or (T, P) best simplifies your problem.
For example, in analyzing multiphase systems, the Gibbs energy (3.2.14) is often used
because temperature and pressure are usually the variables most easily measured or
controlled. But in developing models for PvT equations of state, the Helmholtz energy
(3.2.12) is often used because we prefer to write those equations in the form P = P(T,
v). This preference usually simplifies the development, especially in models for mul-
tiphase systems wherein different values of the molar volume v can give the same
pressure P. Note the distinction between analyzing experimental data (T and P are
convenient) and developing theoretical models (T and v are convenient).

The new properties H, A, and G are conceptuals, as are S and U. Unfortunately,
these new conceptuals are not amenable to physical interpretation, except in special
situations. One special case is an open-system, such as in § 2.4.3, where we found that
the enthalpy accounts for energy (flow work plus internal energy) entering and leav-
ing the system via the mass in flowing streams. Another special case is the reversible
isobaric change of state on closed systems, for then (3.2.10) reduces to dH = δQrev , as
we showed in (2.4.2). Similarly, for a reversible isothermal change, (3.2.12) reduces to

fixed T, closed system (3.2.15)

Since a reversible change provides the maximum (minimum) amount of work for a
given expansion (compression), the change in Helmholtz energy provides a bound on
the work associated with an isothermal process.

3.2.2 Open Systems

We now extend the fundamental equation to systems that can exchange mass with
their surroundings. Through such systems may pass any number of components {1, 2,
3, … }, for which we write the complete set of mole numbers as {N1, N2, N3, … }. We
want to construct an extensive equation of state that provides the internal energy in
terms of its canonical variables. But for an open system, the extensive internal energy
U depends not only on S and V but also on the numbers of moles of each component
present, so we write

dU TdS PdV–=

dH TdS VdP+=

dA SdT– PdV–=

dG SdT– VdP+=

dA PdV– δWrev= =
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(3.2.16)

Since U is a state function, its total differential is 

(3.2.17)

Here N = Σ Ni is the total number of moles present and the notation Nj≠i means that in
taking the derivative, all mole numbers are held fixed except that of component i.
Using (3.2.6) for the coefficients in (3.2.17) we find

(3.2.18)

Equation (3.2.18) is the first form of the fundamental equation for open systems. In
the case of a reversible change, each term in (3.2.18) has a simple physical interpreta-
tion: (T dS) is the heat crossing system boundaries; (–P dV) is the work that alters the
system volume; and (∂U/∂Ni) dNi is related to the work that causes component i to
diffuse across system boundaries. For irreversible processes no such simple interpre-
tations apply; nevertheless, since the lhs is an exact differential, (3.2.18) is valid
regardless of whether a change of state is reversible. In a similar fashion we can
extend each of the other forms of the fundamental equation to open systems. The
results are

(3.2.19)

(3.2.20)

(3.2.21)

It is remarkable that in these four forms of the fundamental equation, the partial
derivatives wrt Ni are numerically equal; that is,

(3.2.22)

It is therefore convenient to give these four derivatives a common symbol  and a
special name—the chemical potential. We use the symbol  for reasons that will
become obvious in § 3.4; the name chemical potential arises from processes described

U U S V N1 N2 …, , , ,( )=

dU
S∂

∂U
 
 

VN
dS

V∂
∂U

 
 

SN
dV

Ni∂
∂U

 
 
 

SVN j i≠

dNi
i

∑+ +=

dU TdS PdV–
Ni∂

∂U

 
 
 

SVN j i≠

dNi
i

∑+=

dH TdS VdP
Ni∂

∂H

 
 
 

SPN j i≠

dNi
i

∑+ +=

dA SdT– PdV–
Ni∂

∂A

 
 
 

TVN j i≠

dNi
i

∑+=

dG SdT– VdP
Ni∂

∂G

 
 
 

TPN j i≠

dNi
i

∑+ +=

Ni∂
∂U

 
 
 

SVN j i≠
Ni∂

∂H

 
 
 

SPN j i≠
Ni∂

∂A

 
 
 

TVN j i≠
Ni∂

∂G

 
 
 

TPN j i≠

= = =

Gi
Gi
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in Chapter 7. This choice implies that of the four derivatives in (3.2.22), we take that
involving the Gibbs energy to be the defining relation for the chemical potential:

(3.2.23)

The chemical potential is an intensive conceptual state function and has dimensions
of (energy/mole). It is closely related to the reversible work needed to add to the sys-
tem a small amount of component i, when the addition is done with temperature,
pressure, and all other mole numbers held fixed. (This statement is proved in § 3.7.3.)
For a pure substance (3.2.23) simplifies to

(3.2.24)

For pure substances, the chemical potential is merely the molar Gibbs energy.
For multicomponent open systems, then, the four extensive forms of the funda-

mental equation, (3.2.18)–(3.2.21), can be written as

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)

3.2.3 Integrated Forms

The differential forms of the fundamental equation for open systems can be integrated
over a change in the amount of material, yielding an integrated form for each equa-
tion. When our system is a mixture, we can change the amount Ni of each component
i by the same factor c: Ni → cNi. The integration over the change is simply done if we
remember that intensive properties (such as T, P, and ) are independent of the num-
ber of moles present, while the total properties S, U, H, A, and G are homogeneous of
degree one in the mole numbers. As a result, Euler’s theorem for homogeneous func-
tions applies (see Appendix A) and we can immediately write for (3.2.25)

Gi Ni∂
∂G

 
 
 

TPN j i≠

≡

Gpure i T P,( )
N∂

∂G
 
 

TP

∂ Ng( )
∂N

---------------- 
 

TP
g T P,( )= = =

dU TdS PdV– Gi dNi
i

∑+=

dH TdS VdP Gi dNi
i

∑+ +=

dA SdT– PdV– Gi dNi
i

∑+=

dG SdT– VdP Gi dNi
i

∑+ +=

Gi
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(3.2.29)

Similarly, the other open system forms (3.2.26)–(3.2.28) integrate to

(3.2.30)

(3.2.31)

(3.2.32)

Note that for a pure substance, (3.2.32) is the same as (3.2.24). These forms of the fun-
damental equation are consistent with the Legendre transforms that define H (3.2.9),
A (3.2.11), and G (3.2.13).

3.3  RESPONSE TO A CHANGE IN T, P, OR V

In this and the next section we consider how properties in closed systems respond to
changes in measurable state functions. Each such response is given by a partial deriv-
ative, and we are particularly interested in how conceptuals respond to changes in
measurables because several of those derivatives are measurable, even though the
conceptuals themselves are not.

We can consider any property (a state function) to be expressible as some function
of temperature and pressure,

(3.3.1)

Here F could be any of the extensive properties V, U, H, S, A, or G. Then the total dif-
ferential of F gives rise to two partial derivatives, 

(3.3.2)

where subscript N means all mole numbers are held fixed. Alternatively, we could
consider F to be expressible as some function of temperature and volume,

(3.3.3)

U TS PV– Gi Ni
i

∑+=

H TS Gi Ni
i

∑+=

A PV– Gi Ni
i

∑+=

G Gi Ni
i

∑=

F F T P,( )=

dF
T∂

∂F
 
 

PN
dT

P∂
∂F

 
 

TN
dP+=

F F T V,( )=
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where F could now be P, U, H, S, A, or G. Then the total differential involves two other
partial derivatives,

(3.3.4)

With these four kinds of partial derivatives and many dependent properties to con-
sider, a huge number of partial derivatives can be formed. Fortunately, only a few
have simple and useful forms; we are not interested here in the complicated or rarely
used ones. We judge the importance of derivatives based on whether the dependent,
independent, and held-fixed variables are conceptuals or measurables. Our classifica-
tion scheme is summarized in Table 3.1.

3.3.1 Temperature Changes

In this section we present those class I and class II derivatives that show how proper-
ties respond to changes in temperature. First, we consider the effects of temperature
changes on two measurables—pressure and volume; then we describe the effects on
internal energy, enthalpy, and entropy; and finally, we present the effects on Gibbs
and Helmholtz energies.

Response of P and v to changes in T. The response of pressure to a constant-volume
change in temperature defines the thermal pressure coefficient, γv ,

Table 3.1 Classification of thermodynamic derivatives, with classes
ranked by engineering importance. Here Ci represents a conceptual
and Mi represents a measurable.

Class Relative importance Form

I Most important

II Second in importance

III Third in importance    and   

IV Least important    and   

M2∂

∂M1

 
 
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M3

M2∂

∂C1

 
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 

M3

M2∂

∂M1

 
 
 

C3
M2∂

∂C1

 
 
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C3

C2∂

∂C1

 
 
 

M3
C2∂

∂C1

 
 
 

C3

dF
T∂

∂F
 
 

VN
dT

V∂
∂F

 
 

TN
dV+=
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(3.3.5)

while the fractional response of volume to an isobaric change in temperature defines
the volume expansivity, α,

(3.3.6)

Both of these class I derivatives are intensive measurable state functions. The thermal
pressure coefficient is the slope of an isomet on a PT diagram and is positive for both
liquids and gases. But γv-values for liquids are much greater than those for gases; rep-
resentative values are given in Table 3.2.

The volume expansivity α is usually positive; that is, most materials expand on
heating. For low-density gases, α ≈ 1/T and it decreases with increasing pressure. In
contrast, liquids have values that are roughly an order of magnitude smaller than 1/T
and they are nearly constant over modest changes of temperature and pressure. The
expansivity α of water is anomalous: it is negative at atmospheric pressure and tem-
peratures below 4°C. Moreover, α for water is not monotone with either isobaric
changes in temperature nor with isothermal changes in pressure.

Table 3.2 Thermodynamic response functions of aira compared to those of
liquid waterb 

a. Properties of air were computed assuming an ideal gas, except value for cp taken 
from Vargaftik [2].

b. Properties for water taken from Rowlinson and Swinton [3].

Property Air
Saturated 

liquid water

Molecular weight 29 18

Temperature, T (K) 300 293.15

Pressure, P (bar) 1 0.023

Density, ρ (g/cm3) 0.0012 1

Adiabatic compressibility, κs (bar–1) 0.72 45.6(10)–6

Isothermal compressibility, κT (bar–1) 1 45.9(10)–6

Isobaric heat capacity, cp (J/mol K) 29 75.3

Isometric heat capacity, cv (J/mol K) 21 74.8

Thermal pressure coefficient, γv (bar/K) 0.0033 4.6

Volume expansivity, α  (K–1) 0.0033 21.(10–5)

γv T∂
∂P

 
 

v
≡

α 1
V
----

T∂
∂V

 
 

PN
≡
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Response of U, H, and S to changes in T. The response of the internal energy to an
isometric change in T and that of the enthalpy to an isobaric change in T define the
isometric and isobaric heat capacities, 

(3.3.7)

(3.3.8)

These class II derivatives are extensive measurable state functions. Both Cv and Cp are
always positive, so U (H) always increases with isometric (isobaric) increases in T. The
heat capacities are experimentally accessible by measuring the temperature change
that accompanies addition of a small amount of energy (such as heat) to a system at
constant volume, to yield Cv , or reversibly at constant pressure, to yield Cp; that is,

(3.3.9)

(3.3.10)

The heat capacities are sensitive to changes in T, generally they increase with increas-
ing T. But, except near the gas-liquid critical point, they are weak functions of P and V.

Applying the definitions (3.3.7) and (3.3.8) to the fundamental equations (3.2.4) for
dU and (3.2.10) for dH, respectively, we obtain the following expressions for the
response of entropy to changes in temperature:

(3.3.11)

(3.3.12)

These class II derivatives are important because each gives the response of a concep-
tual to a change in state, with the response given solely in terms of measurables. Since
Cp and Cv are positive, S must always increase with both isometric and isobaric
increases in T.

Response of G and A to changes in T. From the forms of the fundamental equation
(3.2.12) for dA and (3.2.14) for dG, we obtain the following temperature derivatives:

(3.3.13)
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T∂
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PN T∂
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 

VN
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Although these are class II derivatives, they are not generally useful for obtaining the
response to a change in temperature, because the entropy is not directly measurable.
However, if S can be obtained from a heat capacity via (3.3.11) or (3.3.12), then (3.3.13)
can be integrated to obtain ∆G or ∆A. But (3.3.13) is more likely to be used to obtain
expressions for S when the temperature dependence of G or A is known or can be
estimated.

More useful are the Gibbs-Helmholtz equations, in which the temperature deriva-
tive of G/T is related to H and that of A/T is related to U. To derive the first of these,
start with the Legendre transform that defines G,

(3.2.13)

and substitute (3.3.13) for S,

(3.3.14)

This is a linear, first-order differential equation in the independent variables T and P
and it can be solved by finding an integrating factor (see Appendix A). Equivalently,
we multiply (3.3.14) by 1/T2 and rearrange to obtain

(3.3.15)

Now we realize that

(3.3.16)

So we substitute (3.3.15) into (3.3.16) and find

(3.3.17)

This is the Gibbs-Helmholtz equation for G; it provides the response of (G/T) to changes
in temperature. By an analogous procedure, we can derive a second Gibbs-Helmholtz
equation that gives the response of (A/T) to changes in T,

(3.3.18)
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3.3.2 Example

How do we compute the response of the Gibbs energy to a finite isobaric change in
temperature?

For a finite change in temperature, at fixed pressure, the corresponding change in the
Gibbs energy g is formally obtained by integrating (3.3.13). But to perform that inte-
gration, we must know how the entropy s depends on T and P; this is rarely known,
so (3.3.13) is little used. Alternatively, we may integrate the Gibbs-Helmholtz equation
(3.3.17); for a change from T1 to T2, we obtain

(3.3.19)

The rhs can be evaluated using an integration by parts, but a less direct attack is more
economical. We start by writing the Legendre transform for g as

(3.3.20)

Then

(3.3.21)

An expression for ∆h can be obtained by integrating the definition of cp (3.3.8), 

(3.3.22)

Similarly, ∆s can be obtained by integrating (3.3.12),

(3.3.23)

Substituting (3.3.22) and (3.3.23) into (3.3.21) gives

(3.3.24)

g T2 P,( )
RT2

---------------------
g T1 P,( )

RT1
---------------------–
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RT2
------------ Td
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-------- 
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where the integrals are to be evaluated at fixed P. If cp is assumed constant, indepen-
dent of T, then the integrals in (3.3.24) can be immediately evaluated. Otherwise, the
temperature dependence of cp is usually represented by some simple polynomial.

Note that (3.3.24) gives only ∆( g/RT ), not ∆g itself; even if we have values for T2,
T1, and ∆( g/RT ), we still cannot solve algebraically for ∆g. Further, note that (3.3.24)
contains h(T1, P), not ∆h; hence, the value computed for ∆( g/RT ) depends on the refer-
ence state at which the enthalpy is set to zero. In spite of these limitations, (3.3.24) is
useful because the quantity g/RT arises naturally in many applications, such as
descriptions of chemical reaction equilibria.

3.3.3 Pressure Changes

We first consider how volume responds to changes in P, then we consider how the
conceptuals G, H, and S each respond. 

Response of v to changes in P.  Changes of volume in response to changes in pres-
sure are given by the compressibilities. Two are in common use: one for isothermal
changes κT and the other for reversible adiabatic changes κs,

(3.3.25)

(3.3.26)

Both compressibilities are intensive measurable state functions, though κT is propor-
tional to a class I derivative, while κs is proportional to one of class III. Because vol-
ume decreases with increasing pressure, these definitions contain negative signs to
make the compressibilities positive. Besides PvT experiments, κs can also be obtained
from measurements of the speed of sound. The reciprocal isothermal compressibility
is called the bulk modulus.

At the gas-liquid critical point κT diverges. Otherwise, values of the compressibili-
ties are large for gases, but small and nearly constant for liquids; sample values are
given in Table 3.2 and Figure 3.2. The idealizations

    and    (3.3.27)

define an incompressible substance and are reliable approximations for normal liquids
and solids over modest changes of state. The incompressible fluid is a simplification
much used in fluid mechanics.

The isothermal compressibility (3.3.25), the thermal pressure coefficient (3.3.5), and
the volume expansivity (3.3.6) satisfy a triple product rule (Appendix A):

(3.3.28)

Specifically,

κT
1
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(3.3.29)

Moreover, we can show (Problem 3.11) that the ratio of the compressibilities equals
the ratio of the heat capacities,

(3.3.30)

and we can show that the difference in heat capacities always obeys

(3.3.31)

The inequality is always true because stable phases must have κT > 0, as we shall
prove in Chapter 8.

Response of G, H, and S to changes in P.  The fundamental equation provides three
important relations for pressure derivatives of conceptuals. The first, obtained from
(3.2.14) for dG, is

(3.3.32)

This is an important class II derivative because it gives a response of the Gibbs energy
directly and solely in terms of the measurables P, V, and T. Since V > 0, G must always
increase with an isothermal increase in pressure.

Another pressure derivative is hidden in (3.2.14); it is one of the Maxwell relations.
Recall from the calculus (Appendix A) that a function of two variables, such as G(T,
P), forms an exact total differential if its second cross-partial derivatives are equal;
that is, if

 (3.3.33)

But, from the development of the fundamental equation, we already know that G is a
state function; therefore, (3.3.33) must be satisfied. Further, the fundamental equation
(3.2.14) gives the two inner derivatives in (3.3.33): (3.3.13) for the inner T-derivative
and (3.3.32) for the inner P-derivative. Therefore, on putting (3.3.13) into the lhs of
(3.3.33) and (3.3.32) into the rhs, we find

a Maxwell relation (3.3.34)

This is an important class II derivative, because it gives the response of the entropy
directly and solely in terms of P, V, and T. An analogous Maxwell relation can be
derived from each of the other three forms of the fundamental equation, (3.2.4),
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(3.2.10), and (3.2.12); however, those from (3.2.4) and (3.2.10) are unimportant class III
derivatives. The Maxwell relation from (3.2.12) is given in § 3.3.4.

The third important pressure derivative gives the response of the enthalpy to iso-
thermal changes in pressure. From the fundamental equation (3.2.10) and the Max-
well relation (3.3.34) we have

(3.3.35)

For gases α ≈ 1/T, while for liquids v is small, so in both cases the molar enthalpy h is
little affected by isothermal changes in pressure.

3.3.4 Volume Changes

There are no important class I derivatives which provide a response to changes in vol-
ume; however, three class II derivatives are important. One is given by the fundamen-
tal equation (3.2.12) for dA,

(3.3.36)

which relates a response of the Helmholtz energy to a measurable. The second is the
Maxwell relation that arises from (3.2.12). Its derivation is exactly analogous to that
given above for (3.3.34). The result is

a Maxwell relation (3.3.37)

where γv is the thermal pressure coefficient. The importance of (3.3.37) is equal to that
of the other Maxwell relation given in (3.3.34).

The third gives the response of the internal energy to an isothermal change in vol-
ume. It is derived from the fundamental equation (3.2.4) and the Maxwell relation
(3.3.37) using a procedure analogous to that used for (3.3.35); the result is

(3.3.38)

For gases γv ≈ P/T, so U is nearly independent of changes in volume. For liquids, we
usually find Tγv > P, and then U increases with isothermal increases in volume.

3.4  RESPONSE TO A CHANGE IN MOLE NUMBER

In the previous two sections we presented those simple derivative relations that char-
acterize changes of state in closed systems or systems of constant composition. But
engineering practice is more often concerned with open multicomponent systems—
systems of variable composition. In those situations the behavior of our system is
affected by the kinds and amounts of components that are present. 
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Multicomponent systems offer an extraordinary range of diverse behaviors. For
example, in one-phase systems, property values of mixtures are often intermediate
among those of the pure components; but equally often, values pass through extrema
with composition, as they do for salts in water, for many polymer blends, and for bio-
chemicals in solvents. In multiphase systems, different phases typically have different
compositions and we exploit the spontaneous mass transfer between phases in such
separation processes as distillation, extraction, crystallization, osmosis, and deter-
gency. Furthermore, chemical reactions necessarily involve mixtures and thermody-
namics controls the direction as well as the extent of reactions. In addition to using
reactions to produce new products, reactions are important in cooking, combustion,
and biological processes. The thermodynamics of multicomponent systems is central
to chemical engineering practice. 

In this section we consider how thermodynamic properties are affected by changes
in the amounts of components. Such changes promote a response that is governed by
the partial molar properties. In what follows, we apply the calculus and define certain
useful quantities, but no new thermodynamics is introduced. 

3.4.1 Partial Molar Properties

Consider any extensive property F for a mixture that contains C components whose
mole numbers are {N1, N2, … , NC }. The mixture is a single homogeneous phase with
no internal constraints, so (3.1.7) indicates that F depends on (C + 2) independent vari-
ables:

(3.4.1)

Note that the list of independent variables contains both intensive and extensive
properties; this is legitimate because F is extensive.

Now let the intensive analog of F be f = F/N, where N is the total number of moles
in the mixture. In special cases (revealed in Chapters 4 and 5) F can be computed by a
mole-fraction average of the pure-component properties fpure i. But in general

(3.4.2)

is only an approximation that is sometimes correct and other times wrong. Tests of
(3.4.2) are given in Figure 3.3 for estimating the molar volumes of two liquid mixtures.
For water-ethanol, the simple average (3.4.2) produces mixture volumes within 1%,
over the entire composition range. However, for mixtures of benzene and carbon tet-
rachloride, the volumes provided by (3.4.2) are in error by about 10% over a substan-
tial range of compositions. For the volume, the approximation (3.4.2) can be seriously
wrong because the forces acting among molecules in a mixture may not be simple
averages of the forces acting among the same molecules in pure substances.

Since (3.4.2) is not generally obeyed, the question arises, What property of each
component should be mole-fraction averaged to obtain the mixture value for f ? Note
that, analogous to (3.4.1), we can write 

F F T P N1 N2 … NC, , , , ,( )=

f xi fpure i
i

∑≈
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(3.4.3)

This means the extensive property F is homogeneous of order one in the total number
of moles N. This homogeneity gives to extensive quantities a number of desirable
attributes, which are developed in Appendix A. One rigorous consequence is

always true (3.4.4)

where

(3.4.5)

The derivative operator appearing in (3.4.5) is called the partial molar derivative, and
the quantity  defined by (3.4.5) is called the partial molar F for component i. It is the
partial molar property that can always be mole-fraction averaged to obtain the mixture
property F. Note, however, that  is itself a property of the mixture, not a property of
pure i; partial molar properties depend on temperature, pressure, and composition.
We emphasize that the definition (3.4.5) demands that F be extensive and that the
properties held fixed can only be temperature, pressure, and all other mole numbers
except Ni. Partial molar properties are intensive state functions; they may be either
measurable or conceptual depending on the identity of F. 

Figure 3.3 Tests of estimating mixture volumes by mole-fraction averaging the pure compo-
nent volumes. The broken straight lines are the mole-fraction averages of the pure volumes, as
computed via (3.4.2). The solid lines are the true mixture volumes taken from [4]. Benzene(1)-
carbon tetrachloride(2) liquid mixtures (top) are at 25°C, 1 atm. The water(1)-ethanol(2) liquid
mixtures (bottom) are at 20°C, 1 atm.
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The definition (3.4.5) is amenable to a physical interpretation; for example, let F be
the mixture volume V. According to (3.4.5), the partial molar volume can be obtained
by fixing the state at a particular T, P, and composition and measuring an initial value
for V. After adding a small amount of component i, while maintaining the values of T,
P, and all other Nj≠i, we measure the volume again. The ratio of the volume change to
the amount of i added, ∆V/∆Ni, is approximately ; the approximation becomes
exact as we decrease the amount of i added. See Figure 3.4. A partial molar property
may be positive or negative, depending on whether F increases or decreases when a
small amount of i is added.

For a pure substance, the sum in (3.4.4) contains only one term and we have

(3.4.6)

That is, for a single component the partial molar property is merely the pure molar
property. Hence, in the pure-fluid limit each isothermal-isobaric curve for a partial
molar property (plotted against mole fraction) coincides with the value for the mix-
ture property, as in Figure 3.5.

The partial derivative is a linear operator; therefore, the partial molar derivative
(3.4.5) may be applied to all those expressions given in § 3.2, producing partial molar
versions of the fundamental equations. In particular, when we apply the partial molar
derivative to the integrated forms (3.2.29)–(3.2.31) of the fundamental equations, we
obtain the following important relations among partial molar properties:

(3.4.7)

(3.4.8)

(3.4.9)

Figure 3.4 For this mixture, the partial molar volume for water can be determined, according to
(3.4.5), by measuring how the total volume changes when a small amount of water is added to
the equilibrium mixture with T, P, and the amounts of all other components fixed. (Our thanks to
Verna O’Connell for this recipe.)

one 6-oz can frozen orange juice (undiluted)
one 6-oz can frozen lemonade (undiluted)
one 46-oz can pineapple juice
two qts. ginger ale (chilled)
(or one qt. ginger ale + one qt. champagne)

Combine first three ingredients and allow
flavors to blend for 3–4 hours in a refrigera-
tor.  At serving time, pour mixture over ice
in a large punch bowl. Add remaining
ingredients and stir gently.  Serves 10–12.

Vi

Fpure 1 fpure 1=

Ui TSi PVi– Gi+=

Hi TSi Gi+=

Ai PVi– Gi+=
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Figure 3.5 Molar volumes (solid lines) and partial molar volumes (broken lines) for binary liq-
uid mixtures. Top is for benzene(1)-carbon tetrachloride(2) mixtures at 25°C, 1 atm. Bottom is for
water(1)-ethanol(2) mixtures at 20°C, 1 atm. Note that if the partial molar volume of one com-
ponent in a binary increases, then by the Gibbs-Duhem equation (3.4.13), the partial molar vol-
ume of the other component must decrease. Values computed from data in [4].
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Figure 3.5 shows how partial molar volumes change with composition (a) for
water-ethanol mixtures, wherein the  are weak functions of composition, and (b)
for benzene-carbon tetrachloride mixtures, wherein the  are strong functions of
composition. Partial molar volumes are usually positive as in Figure 3.5, but some are
negative, indicating that the mixture contracts when a particular component is added.
This generally happens for the partial molar volumes of “heavy” solutes when the
mixture is near the critical point of the solvent. An example is the partial molar vol-
ume of NaCl in aqueous solution, shown in Figure 3.6. The negative values occur
when attractive forces between solute (NaCl) and solvent (H2O) molecules are strong
enough to cause the mixture volume to decrease. Negative partial molar volumes
indicate that interactions between unlike molecules (NaCl-H2O) are stronger than
those between solvent molecules (H2O-H2O).

3.4.2 Gibbs-Duhem Equations

Besides (3.4.4), another attribute of partial molar properties, also derived in Appendix
A, is that they obey a set of relations known as Gibbs-Duhem equations. For the
generic extensive property F(T, P, {N }), the general form of the Gibbs-Duhem equation is

(3.4.10)

On these derivatives the subscript x means that the composition is held fixed. For a
mixture of C components, the Gibbs-Duhem equation (3.4.10) establishes a single rela-

Figure 3.6 Partial molar volumes are usually positive, but they can be negative, as are these for
NaCl in aqueous solutions, all at 200 bar. Computed from data in Pitzer et al. [5].
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tion among T, P, and the partial molar properties . That is, the intensive quantity f
depends on only (C + 1) independent intensive properties, as required by (3.1.9).

For isothermal-isobaric processes (3.4.10) reduces to a relation among the partial
molar quantities themselves,

fixed T and P (3.4.11)

And in a binary mixture (3.4.11) further simplifies to

fixed T and P (3.4.12)

Since T and P are fixed in (3.4.12), an obvious choice is to use a mole fraction as the
independent variable, then (3.4.12) can be written as

(3.4.13)

The last equality is valid because a binary has dx1 = –dx2. The simple form of the
Gibbs-Duhem equation (3.4.13) says that in a binary at fixed T and P, if   increases as
x1 increases, then  must simultaneously decrease. This behavior can be seen in the
partial molar volumes plotted in Figure 3.5; for example, in the water-ethanol mix-
tures,  increases with x2 while simultaneously  decreases.

3.4.3 Chemical Potential

Note that the chemical potential , defined by (3.2.23), has the structure of (3.4.5);
that is, the chemical potential is the partial molar Gibbs energy. This is why we use the
partial-molar notation for the chemical potential: the notation reminds us that the
chemical potential has mathematical and physical characteristics in common with
other partial molar properties. For example, the integrated form of dG in (3.2.32) is
consistent with the mole-fraction average (3.4.4) and the pure-fluid chemical potential
(3.2.24) is consistent with (3.4.6) for the molar Gibbs energy. The chemical potential
plays a central role in phase equilibria and chemical reaction equilibria; therefore, we
will need to know how  responds to changes of state.

The response of G to a change in T is given by (3.3.13), while the response to a
change in P is given by (3.3.32). Consider first the pressure derivative,

(3.3.32)

For mixtures, this derivative must be evaluated with all mole numbers fixed, and we
remind ourselves of that by the subscript N. Now apply the partial molar derivative
in (3.4.5) to both sides of (3.3.32); we obtain
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(3.4.14)

But G is a state function, so we can interchange the order of differentiation on the lhs,
identify the resulting inner derivative as the chemical potential, and write

(3.4.15)

Note that we now indicate constant composition (subscript x) because the chemical
potential is intensive. Repeating these steps for the temperature derivative (3.3.13), we
find

(3.4.16)

Moreover, a Gibbs-Helmholtz equation relates the chemical potential to the partial
molar enthalpy,

(3.4.17)

In a mixture the chemical potentials of all components are not independent; rather,
they are related through the Gibbs-Duhem equation. So letting f = g in (3.4.10), 

(3.4.18)

or

(3.4.19)

and for isothermal-isobaric processes,

fixed T and P (3.4.20)

In a mixture, the chemical potentials for all components cannot change freely in
response to a change of state; rather, they must change so as to satisfy (3.4.19) or
(3.4.20). Consequently, if we have a correlation that estimates (C –1) chemical poten-
tials, then the last may be computed from the Gibbs-Duhem equation. Alternatively, if
correlations are available to estimate all C chemical potentials for a mixture, then the
Gibbs-Duhem equation can be used to test whether the correlations are thermody-
namically consistent.
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3.5  DIFFERENTIAL RELATIONS BETWEEN CONCEPTUALS                              
AND MEASURABLES

With results from previous sections we can develop differential relations that enable
us to compute conceptuals from measurables. We consider five conceptuals: U, H, S,
A, and G. Recall we cannot obtain absolute values for these properties, we can com-
pute only changes in their values caused by a change of state. Fortunately, values for
changes ∆U, ∆H, ∆S, ∆A, and ∆G are sufficient for our needs. 

First let us identify the measurables we need to carry out a computation. 

(a) To account for temperature changes (§ 3.3.1), we need heat capacities in the
form of either Cp(T, P, N1, N2, … ) or Cv(T, V, N1, N2, … ).

(b) To account for pressure or volume changes (§ 3.3.3 and 3.3.4), we need some
volumetric equation of state for the measurables {T, V, P, N1, N2, … },

(3.5.1)

(c) To account for changes in composition, we need expressions for certain par-
tial molar properties (§ 3.4). Usually these are obtained from (a) or (b) or both.

Volumetric equations of state (3.5.1) typically take one of two forms, either a pressure-
explicit form,

(3.5.2)

or a volume-explicit form

(3.5.3)

Therefore our strategy differs somewhat depending on which of these describes our
mixture to the desired accuracy and with minimum complexity. The pressure-explicit
form is more general, so (3.5.2) is more commonly encountered, but (3.5.3) is usually
more computationally convenient.

3.5.1 When T, P, and {N } Are Independent

When temperature and pressure are the independent variables, the shortest route to
the conceptuals is via the enthalpy and the entropy. So consider

(3.5.4)

for which the total differential is

F P V T N1 N2 …, , , , ,( ) 0=

P P T v x1 x2 …, , , ,( )=

V Nv T P x1 x2 …, , , ,( )=

H H T P N1 N2 …, , , ,( )=
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(3.5.5)

The isobaric temperature derivative of H is the constant-pressure heat capacity (3.3.8),
while the isothermal pressure derivative of H is given in § 3.3.3,

(3.3.35)

where α is the volume expansivity (3.3.6). So with (3.3.8), (3.3.35), and the partial
molar enthalpy, (3.5.5) becomes

(3.5.6)

Similarly, for the entropy we find

(3.5.7)

For changes of state at constant composition, we need Cp together with the volumetric
equation of state before we can integrate (3.5.6) and (3.5.7) for ∆H and ∆S. With values
for ∆H and ∆S, we can then apply the defining Legendre transforms (3.2.9) for U,
(3.2.11) for A, and (3.2.13) for G to obtain changes in the other conceptuals. If the
change of state includes a change in composition, then we will also need values for
the partial molar enthalpy and entropy. Recall from § 3.4.3 that these partial molar
quantities are simply related to the chemical potential.

3.5.2 When T, V, and {N } Are Independent

When temperature and volume are the independent variables, the most direct route to
the conceptuals is via the internal energy and the entropy. So we consider

(3.5.8)

for which the total differential is

(3.5.9)

The isothermal volume derivative of U is given in § 3.3.4,
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(3.3.38)

where γv is the thermal pressure coefficient (3.3.5). The isometric temperature deriva-
tive of U is the constant-volume heat capacity (3.3.7); so using (3.3.7) and (3.3.38) in
(3.5.9) gives

(3.5.10)

The remaining partial derivative can be related to partial molar properties by the pro-
cedure developed in Problem 3.26. The final result is

(3.5.11)

As the second conceptual we consider the entropy,

(3.5.12)

By a procedure exactly analogous to what we did above for U, we find

(3.5.13)

For changes of state at constant composition, we need Cv and the volumetric equation
of state to be able to integrate (3.5.11) and (3.5.13) for ∆U and ∆S. With values for ∆U
and ∆S, we can then apply the defining Legendre transforms (3.2.9) for H, (3.2.11) for
A, and (3.2.13) for G to obtain changes in the other conceptuals. If the change of state
includes a change in composition, then we will also need values for the partial molar
volume, enthalpy, and entropy; as shown in § 3.4.3, these partial molar quantities are
simply related to the chemical potential.

3.6  GENERALIZED STUFF EQUATIONS

In § 2.4 we presented differential forms of the thermodynamic stuff equations for
overall mass, energy, and entropy flows through open systems. Usually, such systems,
together with their inlet and outlet streams, will be mixtures of any number of compo-
nents. Individual components can contribute in different ways to mass, energy, and
entropy flows, so here we generalize the stuff equations to show explicitly the contri-
butions from individual components; these generalized forms contain partial molar
properties introduced in § 3.4.
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Thermodynamic stuff equations are internal constraints on the variables that
describe open systems. Therefore, in § 3.6.2 and 3.6.3 we show how those constraints
enter determinations of the number of independent quantities needed to analyze
open steady-flow systems.

3.6.1 Thermodynamic Stuff Equations in Terms of Components

Consider an open multicomponent system composed of a single homogeneous phase,
such as is shown schematically in Figure 3.7. At any instant the system has tempera-
ture T, pressure P, and total number of moles N. The system contains C components,

(3.6.1)

The temperature outside the system boundary is Text. Heat Q may cross the boundary,
shaft work Wsh may act through the boundary, and the boundary itself may be
deformed by boundary work Wb. Material may enter the system through any number
of feed streams α and leave through any number of discharge streams β.

Material balances. The overall mass balance on the system is written in (2.4.3). The
corresponding balance on each component i is therefore

(3.6.2)

Energy balance. The overall energy balance for open systems appears as (2.4.15) in
§ 2.4. Here we neglect the boundary energy Ub and introduce partial molar quantities
for each component i, so (2.4.15) becomes

 

Figure 3.7 Schematic of a single-phase multicomponent system open to exchange of mass and
energy with its surroundings
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(3.6.3)

Here we have introduced the following shorthand,

(3.6.4)

For processes in which molecular identities are preserved (nonreacting systems), the
lhs of (3.6.3) expands to

(3.6.5)

The second term on the rhs can be replaced with the Gibbs-Duhem equation (3.4.10),
so (3.6.5) becomes

(3.6.6)

Then finally, the overall energy balance can be written in terms of components as

(3.6.7)

Entropy balance. The open-system entropy balance appears in (2.4.21). Again, we
neglect the boundary term and introduce partial molar entropies for each component,
so (2.4.21) becomes

(3.6.8)

where ∆Sαβ is defined as in (3.6.4) and dSgen is the entropy created in the system and
its boundary. Continuing to limit our attention to nonreacting systems, we expand the
lhs and apply the Gibbs-Duhem equation, so the lhs can be written as

(3.6.9)

Therefore, the entropy balance (3.6.8) becomes

d NiUi
i

∑ 
  ∆Hαβ δQ δWb δWsh+ + +=

∆Hαβ Hαi dNαi
i

∑
α
∑ Hβi dNβi

i
∑

β
∑–≡

d NiUi
i

∑ 
  Ui dNi

i
∑ Ni dUi

i
∑+=

d NiUi
i

∑ 
  Ui dNi

i
∑ T∂

∂U
 
 

PN
dT

P∂
∂U

 
 

TN
dP+ +=

Ui dNi
i

∑ T∂
∂U

 
 

PN
dT

P∂
∂U

 
 

TN
dP+ + ∆Hαβ δQ δWb δWsh+ + +=

d NiSi
i

∑ 
  ∆Sαβ

δQ
Text
---------- dSgen+ +=

d NiSi
i

∑ 
  Si dNi

i
∑ T∂

∂S
 
 

PN
dT

P∂
∂S

 
 

TN
dP+ +=



 3.6   GENERALIZED STUFF EQUATIONS 101

(3.6.10)

3.6.2 Number of Independent Variables for Open Steady-Flow Systems

Many industrial processes take place in open systems in which material enters and
leaves the system through process streams and in which energy can cross system
boundaries as heat and work. At any instant, a complete identification of the state
requires specification of values for such variables as temperatures, pressures, compo-
sitions, and flow rates. However, because of the stuff equations in § 3.6.1, not all of
these quantities are independent. So we have here the same kinds of questions
addressed in § 3.1: How many interactions are available to change the state? How
many independent variables must be specified to identify the state of an open steady-
flow system? The discussion here extends that in § 3.1 from closed systems to open
ones; however, the discussion remains limited to systems composed of a single homo-
geneous phase with no chemical reactions. The extensions to multiphase systems are
given in § 9.1 and to those having chemical reactions in § 10.3.1

As an example of an open system, consider a fixed (control) volume that is open to
steady-state mass and energy transfers with its surroundings. Crossing the system
boundaries are Np ports through which one-phase mixtures of C components enter
and leave the system. For steady flow situations, we must have at least one inlet and
one outlet, so Np ≥ 2. The system is in thermal contact with its surroundings and an
interaction exists by which shaft work is done, either on or by the system. Note that
we do not consider a work mode that could change the size or shape of the control
volume.

First we want to determine the number of interactions that are available for manip-
ulating the system state. We assume that each of our one-phase streams obeys (3.1.2);
that is, each has (C + 2) interactions with its surroundings. In addition, the control vol-
ume has the thermal interaction plus the shaft-work mode. Therefore, the maximum
number of orthogonal interactions is given by

(3.6.11)

However, just as in § 3.1.1, the number of orthogonal interactions actually available
may be less than this maximum because of external constraints imposed on some
interactions. Examples of external constraints include fixed flow rates of some
streams, insulated streams, no shaft work, and some components missing from some
streams. (For example, the number of constraints is increased by unity for each com-
ponent missing from each stream.) Let Sext be the total number of external constraints,
then the number of available interactions is given by

(3.6.12)

Second we want the number of independent variables needed to identify the sys-
tem state. This number will be less than V because of internal constraints. For open
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systems, the internal constraints are a material balance for each component plus an
overall energy balance; note that the entropy balance is not an internal constraint.
Therefore the total number of internal constraints is

(3.6.13)

and the number of independent variables is

(3.6.14)

The quantities counted by Fex in (3.6.14) all pertain to streams and energy conduits
crossing the system boundary; none are properties of the system itself. This occurs
because all flows are steady states. Further note that, unlike for closed systems, the
independent quantities needed for open systems may include process variables, such
as Q and W. Values of Fex independent quantities, together with any external con-
straints and solutions to the material and energy balances, give a complete description
of the system. However, if values for some number of variables less than Fex are
known, then the state is not identifiable. Such incomplete descriptions can arise in
design situations, and then complete descriptions might be obtained by including
additional (nonthermodynamic) feasibility or economic constraints. 

Since V, the number of variables available to manipulate the state, is larger than Fex,
the number needed to identify the state, simply manipulating variables (such as by
changing valve settings) may not set enough variables to provide a complete thermo-
dynamic description of an open system. Instead, additional constraints must be
imposed or additional constraint relations must be found to complete the identifica-
tion of state. Moreover, the values for V and Fex depend on your choice of system, so
making another choice may simplify an analysis or make an incomplete description
complete. This possibility is illustrated in the following example.

3.6.3 Example

How many independent variables must be known to analyze a simple heat
exchanger?

We intend to reduce the temperature of a hot nitrogen stream by bringing it into ther-
mal contact with a stream of cooling water. The cooling is done in an insulated,
double-tube, countercurrent-flow heat exchanger, as shown schematically in Figure
3.8. We consider two analyses of this one situation.

Analysis 1. First we consider situations in which the heat duty  is to be calculated.
Our first problem is then this: how many variables must be known before we can
compute ? To answer this question, we choose the system to be the water side of the
exchanger tube. Therefore, C = 1, because the water is pure, and Np = 2, because the
water tube has one inlet and one outlet. Hence, the maximum possible number of
interactions available for manipulating the system is, from (3.6.11),

 (3.6.15)

S C 1+=

Fex V S– V C 1+( )– Np C 2+( ) C 1–( ) Sext––= = =

Q
•

Q
•

Vmax Np C 2+( ) 2+ 2 1 2+( ) 2+ 8= = =
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The only external constraint on the system (water) is lack of any shaft work, so Sext =
1. (Note that this system is not insulated.) Therefore, (3.6.12) gives

(3.6.16)

The seven available interactions are a thermal interaction, a work mode, and a mass
flow interaction for the inlet (total of 3), likewise for the outlet (3 more), plus a thermal
interaction on the control volume.

To obtain the number of variables needed to identify the state, we apply (3.6.14);
hence, we need the number of internal constraints. For water as our system, we have a
steady-state material balance and an energy balance. Therefore, (3.6.14) gives

 
(3.6.17)

A typical set of the required five variables would be the temperatures and pressures of
the inlet and outlet water streams, Ti, To, Pi, and Po, plus the inlet water flow rate .
With values for these five variables, we can solve the steady-state material balance for
the outlet water flow rate (the inlet and outlet mass flow rates are equal here) and we
can solve the steady-state energy balance for . In this example the value computed
for the heat duty is the actual value for the real process, regardless of reversibility,
because the process is workfree. However, in the general case, when heat and work
both cross a system boundary, the energy balance gives only their sum. Variations on
this problem are also possible; for example, if we knew values for the five variables Ti,
To, Pi, Po and , then we could solve the energy balance for the required water flow
rate. Or, if we knew Ti, Pi, Po, , and , then we could solve for the outlet water tem-
perature To.

Analysis 2. In this second analysis, we consider situations in which the heat duty is
unimportant and can be eliminated. In these cases we take the entire exchanger as the
system. Now the system involves two substances, so C = 2, and it has two inlets plus
two outlets, so Np = 4. We also have the following external constraints: no shaft work
(1), no heat transfer between system and surroundings (1), and only one component
in each of the four streams (4). So the number of interactions available for manipulat-
ing this system, given by (3.6.12), is

Figure 3.8 Schematic of a steady-flow, insulated, countercurrent, double-tube heat exchanger
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(3.6.18)

We also have three internal constraints: a material balance on each component plus
the energy balance, so (3.6.14) gives

(3.6.19)

A typical set of these nine variables would be the pressures of the four streams, the
two inlet flow rates, and the temperatures of three streams. If values for these nine
quantities were known, then we could solve the material and energy balances for the
gas and water outlet flow rates and for the temperature of the fourth stream. In
another version of this problem we might know the temperatures and pressures of all
four streams plus one inlet flow rate; then we could obtain the other three flow rates
by solving the two component material balances plus the energy balance.

These two analyses illustrate several important points: (a) The number of indepen-
dent variables Fex usually depends on what is chosen as the system. (b) The identity
of the system also determines the number of dependent variables and the equations
used to solve for their values. (c) The quantities counted in (3.6.14) for Fex can include
heat and work effects, which are process variables, not system properties. 

3.7  GENERAL EXPRESSIONS FOR HEAT AND WORK

In § 3.2 we combined the first and second laws to eliminate Q and W and thereby
obtained forms of the fundamental equation; those forms all contain some conceptual,
such as U, S, or G. But as engineers we more often need values for heat and work
rather than for changes in conceptuals. Unfortunately we cannot devise a purely theo-
retical scheme for computing the heat and work requirements for a real process: every
real process involves irreversibilities, and the magnitudes of those irreversibilities
must either be measured or estimated. Usually such measurements or estimates are
made relative to reversible changes, so we need to be able to compute the heat and
work that accompany reversible changes. The necessary equations are derived here.

3.7.1 Heat

For the generic, open, nonreacting system represented schematically in Figure 3.7, an
expression for Q is obtained by rearranging the entropy balance (3.6.10),

(3.7.1)

Here ∆Sαβ is defined analogously to (3.6.4). In general the entropy generation term is
unknown, but if we consider reversible changes, then dSgen = 0, and (3.7.1) reduces to

V Np C 2+( ) 2 Sex–+ 4 2 2+( ) 2 6–+ 12= = =

Fex V S– 12 3– 9= = =

δQext
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(3.7.2)

For this to apply, the external temperature Text must either equal the system tempera-
ture T and all stream temperatures Tα and Tβ, or there must be reversible means for
transferring heat across any finite temperature difference. For real processes, the
amount of heat given by (3.7.2) will bound the actual heat requirements: an upper
bound if heat is added to the system (δQrev > 0), a lower bound if heat is removed
(δQrev < 0). 

In the special case of workfree processes with negligible kinetic and potential
energy changes, the heat can be obtained from the overall energy balance (3.6.7),

(3.7.3)

In workfree processes, the heat given by (3.7.3) is the actual heat δQext, regardless of
the reversibility of the process.

Open steady-flow systems.  In these cases, no change in accumulation occurs for any
component in the system, so dNi = 0, and the material balances (3.6.2) become

for each component i (3.7.4)

where the  represent molar flow rates. Similarly, (3.7.2) for the reversible heat sim-
plifies to

(3.7.5)

Closed systems. For reversible changes of state in closed systems, dNi = dNαi = dNβi
= 0, and the overall entropy balance (3.6.10) reduces to

closed system (3.7.6)

Integrating this from an initial state (1) to a final state (2) yields

 closed system (3.7.7)

If the reversible change is isothermal, then T1 = T2 = Text, and (3.7.7) reduces to the
first part of the second law for closed systems; cf. (2.3.5).

δQrev

Text
--------------- Si dNi

i
∑ T∂

∂S
 
 

PN
dT

P∂
∂S

 
 

TN
dP ∆Sαβ–+ +=

δQwf Ui dNi
i

∑ T∂
∂U

 
 

PN
dT

P∂
∂U

 
 

TN
dP ∆Hαβ–+ +=

0 N
  •

αi
α
∑ N

  •
βi

β
∑–=

N
•

Q
  •

rev Text Sαi N
  •

αi
i

∑
α
∑– Sβi N

  •
βi

i
∑

β
∑+=

δQrev

Text
--------------- d NiSi

i
∑ 

  Nds= =

Qrev Text N s T2 P2 x{ }, ,( ) s T1 P1 x{ }, ,( )–[ ]=



106 FUNDAMENTAL RELATIONS

3.7.2 Work

To obtain a corresponding expression for work in nonreacting systems, we use the
rearranged entropy balance (3.7.1) to eliminate δQext from the energy balance (3.6.7),

(3.7.8)

To obtain a computationally more viable form, we consider reversible changes (dSgen
= 0) and combine the boundary work and shaft work into a total work term,

(3.7.9)

Then (3.7.8) can be rearranged to read

(3.7.10)

Note that if Text ≠ T, then the work given by (3.7.10) must include the reversible work
that accompanies any reversible heat transfer between system and surroundings. For
real processes, the amount of work given by (3.7.10) will bound the actual work: an
upper bound if work is done by the system (δWt,rev < 0), a lower bound if work is
done on the system (δWt,rev > 0). 

For adiabatic processes, the overall energy balance (3.6.7) simplifies to

(3.7.11)

and the adiabatic work given by (3.7.11) will be the actual work, regardless of revers-
ibility. Note that the rhs of (3.7.11) is the same as the rhs of (3.7.3) for workfree heat.

If, in addition to all the other restrictions we have applied in obtaining (3.7.10), we
also consider isothermal processes, then T = Tα = Tβ = Text and

(3.7.12)

while

(3.7.13)
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With these, (3.7.10) simplifies to

(3.7.14)

where ∆Gαβ is defined analogously to ∆Hαβ in (3.6.4).

Open steady-flow systems.  For steady flow, each material balance again takes the
form (3.7.4), and (3.7.10) reduces to

(3.7.15)

If the process is also isothermal, so Tα = Tβ = Text, then (3.7.15) simplifies further to

(3.7.16)

(3.7.17)

For isothermal steady-flow processes, the reversible work is given by the accumulated
difference in Gibbs energy between inlets and outlets. 

Closed systems.  For reversible isothermal changes of state in closed systems, we
have dNi = dNαi = dNβi = 0, and T = Text. Then, combining (3.7.6) for the reversible heat
with the overall energy balance (3.6.3), and ignoring boundary effects, we find

(3.7.18)

Integrating this from an initial state (1) to a final state (2) yields

(3.7.19)

For isothermal processes on closed systems, the reversible work is given by the
change in Helmholtz energy, as already noted in (3.2.15).

3.7.3 Physical Meaning of the Chemical Potential

In § 3.2.2 we remarked that the chemical potential (3.2.23) is closely related to the
reversible isothermal-isobaric work involved in adding a small amount of component
i to a mixture. This statement can be proved using expressions developed in § 3.7.2.
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Consider a container filled with a one-phase multicomponent mixture of composi-
tion {x}; the container is immersed in a reservoir that imposes its temperature T and
pressure P on the mixture. The container is fitted with a single inlet by which more
material can be reversibly injected, as shown schematically in Figure 3.9. The process
considered here is addition to the container of a small amount of pure component 1.
The reversible work associated with this process is given by (3.7.14); for an isobaric
injection of material through one inlet with no outlets, (3.7.14) reduces to

(3.7.20)

Here α = 1 because there is only one inlet, dN11 is the amount of pure component 1
added, so dN1 = dN11, while all the other mole numbers in the container remain con-
stant; so, dNj = 0 for j ≠ 1. Therefore, since the small amount added hardly affects the
composition, (3.7.20) reduces to

(3.7.21)

Here, we have used the fact that a pure component chemical potential is merely the
molar Gibbs energy (3.4.6). Now according to (3.7.9), δWt,rev accounts for both the
boundary work and the shaft work. Separating these two components in (3.7.21)
leaves

(3.7.22)

For the work to deform the boundary (the boundary must deform to keep the pres-
sure constant), we can write

(3.7.23)

With the help of the isothermal-isobaric Gibbs-Duhem equation, (3.7.23) simplifies to 

Figure 3.9 Schematic of a one-phase mixture immersed in a TP reservoir. The mixture is open
to a single inlet (stream 1) through which a small amount of pure component 1 is added.
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    (3.7.24)

Because all mole numbers are constant except N1, only the first term in the sum con-
tributes,

(3.7.25)

Substituting (3.7.25) into (3.7.22) gives

(3.7.26)

or

(3.7.27)

Since only a small amount of component 1 is being added, the composition {x} is
essentially constant during the process, so

(3.7.28)

The difference between the chemical potential for component 1 in a mixture and that
for pure 1 is the reversible work (per mole) that accompanies the transfer of a small
amount of 1 from the pure state at T and P to the mixture at the same T and P. This
constitutes a physical interpretation of the chemical potential (a conceptual) in terms
of reversible work (a measurable).

The result (3.7.28) applies to mixtures containing any number of components. For
binary mixtures, we will prove in Chapter 8 that a stable one-phase binary always has 

(3.7.29)

Therefore the work given by (3.7.27) is always negative, so long as the mixture
remains a stable single phase; that is, whenever one component is added to a binary
mixture at fixed T and P, the system does work on the surroundings. Unfortunately,
the work given by (3.7.27) is too small to be useful, and it is usually dissipated.

3.7.4 Minimum Work to Separate a Mixture

A common problem in chemical process design is to develop methods for separating
mixtures. Such methods require energy, but the requirements may vary substantially
from one method (e.g., distillation) to another (e.g., reverse osmosis). In choosing
among alternative methods, it may be useful to know the minimum energy require-
ments for a particular separation. The minimum requirements are given by reversible
changes; here we show that the reversible work required for an isothermal-isobaric
separation can be computed from the component chemical potentials.
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Consider a vessel containing a one-phase multicomponent mixture of composition
{x}; the vessel is immersed in a TP reservoir, as in Figure 3.10. The container is fitted
with one outlet for each component. The process is to extract one pure component
through each outlet. The reversible work for this process is again given by (3.7.14),
which for no inlets becomes

(3.7.30)

Since each outlet stream carries one pure component i and there is one such stream β
for each component, the double sum in (3.7.30) is redundant. Therefore we can write
(3.7.30) as

(3.7.31)

Here we are removing each component from the mixture, so the change dNi in the sys-
tem is related to the flow of component i through its outlet by

(3.7.32)

Therefore (3.7.31) can be written as

(3.7.33)

As in § 3.7.3, we separate the total work into its boundary and shaft components, and
use (3.7.25) for the boundary work. These manipulations give the shaft work as

(3.7.34)

Hence,

(3.7.35)

Figure 3.10 Schematic of a one-phase mixture immersed in a TP reservoir. The mixture is open
to multiple outlets; one pure component can be extracted through each outlet.
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If we extract all components in such a way that the composition {x} remains con-
stant throughout the separation, then (3.7.35) can be immediately integrated to yield

(3.7.36)

where Ni is the total number of moles of component i in the vessel at the start of the
separation. Using (3.4.4) for the mixture term, (3.7.36) becomes

(3.7.37)

Here Gmix is the total Gibbs energy of the original mixture. The term in brackets is
called the change of Gibbs energy on mixing,

(3.7.38)

Hence, the minimum isothermal-isobaric work needed to separate a mixture into its
pure components is given by the negative change of Gibbs energy on mixing. Note
that (3.7.37) is not limited to any particular phase: it applies to solids, liquids, and
gases. In Chapter 6 we will show how to evaluate the differences in (3.7.37) and
(3.7.38) for particular classes of mixtures.

3.8  SUMMARY

In this chapter we have presented fundamental thermodynamic relations among
properties—quantities that depend on the system state. But in addition, we need to be
able to determine how such properties respond when we change the state. Changes
result from interactions—mass and energy crossing the system boundary—and so we
need to characterize processes, as well as system states. Those characterizations may
involve a description of how a system responds to particular interactions, or it may
involve a determination of the interactions required to cause a particular change. 

The first important relation we introduced was the fundamental equation, which
provides relations among changes in certain thermodynamic properties. The funda-
mental equation was obtained (§ 3.2) by combining the first and second laws to elimi-
nate the path functions Q and W. In the absence of path functions, we were able to
transform the fundamental equation into alternative forms by applying attributes of
exact differentials. These alternative forms allow us to choose a convenient set of inde-
pendent variables to use when performing a thermodynamic analysis.

 We then presented important derivatives that explicitly show how particular prop-
erties respond to changes in temperature or pressure or mole number (§ 3.3 and 3.4).
Some of those many derivatives are measurable and therefore, when the relevant
experimental data are available, those derivatives provide means for obtaining
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numerical values for changes in some state functions. More generally, in § 3.5 we cited
the experimental data needed to compute changes in any of the conceptuals U, H, A,
G, or S. The required information includes thermal data, in the form of heat capacities,
and volumetric data, in the form of PvTx equations of state.

Two patterns occur in this chapter, and we draw your attention to them here. One
is the degree to which elements in thermodynamics are isomorphic to elements in the
calculus. For example, the state functions of thermodynamics are, in the calculus,
merely those quantities that form exact differentials. Several such isomorphisms are
cited in Table 3.3, suggesting that much of fundamental thermodynamics is merely an
application of the calculus. One striking consequence is that although the first and
second laws, formulated in Chapter 2, did not explicitly contain anything about mix-
tures, we were, nevertheless, able to show formally how properties of mixtures may
differ from those of pure substances. 

A second general pattern occurs in how we use the calculus to formulate the
response of a thermodynamic property to a change of state. The pattern can be
resolved into the following steps: 

(a) Identify the property of interest, call it F. 
(b) Determine the appropriate number of other independent properties needed

to identify the state, and choose a particular set of those properties (say T, P,
and {N }). Then we might consider the property F to be expressible as

(3.8.1)

(c) Form the total differential dF, which represents the response of F to a change
in the quantities T, P, and {N },

(3.8.2)

(d) Relate the partial-derivative coefficients in (3.8.2) to measurables. Here we
have made the common (but arbitrary) choice of T and P as independent;

Table 3.3 Selected isomorphisms between the calculus and thermodynamics

Calculus Thermodynamics

Exact differentials ⇒ Changes in state functions; Maxwell eqs.

Integrating factors ⇒ Definition of S; Gibbs-Helmholtz equations

Partial derivatives ⇒ Response functions; partial molar properties

Legendre transforms ⇒ Definitions of H, A, and G

Implicit function theorem ⇒ Triple product rules

Homogeneous functions ⇒ Integrate fundamental eqs.; Gibbs-Duhem eq.
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however, if variables other than T and P are chosen, then the partial molar
quantities will not appear as simply as they do in (3.8.2). 

(e) Integrate dF over the change of state to obtain ∆F. To compute those integrals,
we need data or correlations that contain the state dependencies of the mea-
surables introduced into (3.8.2). 

We have not yet broached the problems associated with correlating data, so we are not
yet ready to perform step (e). However, regardless of the correlation used, the proce-
dure (a)–(e) or its equivalent must be used to obtain values for changes in conceptuals.

Lastly, we recognize that engineers routinely need to know heat and work effects
associated with changes of state. Therefore, in § 3.6 and § 3.7 we developed formal
expressions that allow us to use state functions to calculate the reversible heat and
reversible work. In most cases Qrev and Wrev only bound the actual values, but such
bounds are often helpful in design and processing situations. To get values of Q and
W for real processes we usually estimate the magnitude of the entropy generated and
make corrections to Qrev and Wrev; such estimates often involve process efficiencies
extracted either from experiment or from correlations.

But while we have accomplished much in this chapter, more remains to be done.
For example, we have established numerous relations among properties, but we have
not addressed the most viable ways for obtaining numerical values for any of them.
That task is taken up in Part II of this book. Moreover, throughout Part I we have
restricted ourselves to single-phase, homogeneous systems; the problems posed by
multiphase systems are tackled in Part III. Nevertheless, you will find that everything
done in later chapters builds on the material presented here.
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PROBLEMS

3.1 A liquid mixture of ethanol and water completely fills the cylinder of a piston-
cylinder apparatus. The cylinder is closed to mass transfer, but its walls are ther-
mally conducting and the piston can be moved. Determine values for V, Fex, and
F, and explain what each of these quantities means. If the cylinder were insu-
lated, which of your values change and which remain the same?
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3.2 The ideal-gas equation, R = PV/NT, is an example of the generic equation of state
written in (3.1.5); it implies that P, V, N, and T are not all independent.

(a) If we choose F = V, then what properties should appear in the argument list
when the ideal-gas law serves as the basis for the function ψ in (3.1.5)? 

(b) If we choose F = P, then what properties should be in the argument list? 

(c) For a pure ideal gas, how many properties are needed for identifying an
extensive equilibrium state; that is, what is the value of Fex?

(d) Evaluate the partial derivatives (∂P/∂N)TV and (∂P/∂N)Tv for an ideal gas.

3.3 For a fixed amount of a pure gas (not necessarily ideal) at state (P1, V1), 

(a) Prove that, on a PV diagram, only one reversible isotherm passes through
(P1, V1); i.e., V = 1.

(b) Prove that there is only one reversible adiabat through (P1, V1); i.e., V = 1.

3.4 Starting from the fundamental equation for closed systems, obtain expressions
that give each of the following solely in terms of measurables,

3.5 If a change in the shape of a system can make a difference in its properties, then
we must allow for a new interaction: the surface work mode. 

(a) Let the surface work be expressed as δWsur = σ dA , where A is the system sur-
face area (extensive) and σ is the “surface tension” (a measurable). Write this
system’s fundamental equations in U and G.

(b) If a new function ϒ is to be defined whose variables are S, σ, V, and N, what
Legendre transform would be used?

(c) Derive at least two relations such that each connects a class I derivative of the
surface tension σ to another class I derivative.

3.6 Consider a rubber band that can be elongated in a vacuum. The work of stretch-
ing the band is δWrev = – τ dL, where τ is the tension and L is the length.

(a) For this system, what is the fundamental equation in U?

(b) Obtain two relations between class II derivatives of S and class I derivatives. 

(c) If τ = kLT, where k is a constant, show that U depends only on temperature.

(d) The temperature of the rubber band increases during an adiabatic stretching.
What does this suggest about the variation of U and S with T?

3.7 (a) Find a relation for (∂U/∂Ni) in terms of measurables and accessible partial
derivatives, such as the chemical potential for component i. The derivative is
to be taken at fixed T, V, and Nj≠i.

(b) Find a relation for  in terms of measurables and accessible partial deriva-
tives, such as the chemical potential for component i.
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3.8 Calculate the changes in H and G/T when 1,3 butadiene, in the ideal-gas state, is
heated at constant pressure from 300 to 1000 K. The heat capacity for 1,3 butadi-
ene as an ideal gas is given by

(P3.8.1)

where T is in Kelvin, A = 0.290, B = 4.70476, and C = –0.15714.

3.9 One mole of nitrogen undergoes the following three-step cyclic process, which
starts and ends at 5 bar and 5 liter:

(a) Reversible expansion at constant isothermal compressibility to 10 liter,

(b) Reversible compression at constant volume expansivity to 5 liter, 

(c) Irreversible isometric cooling to 5 bar.

Determine the net work done and the net heat transferred over one cycle.
Assume the ideal-gas equation is obeyed with cv = 5R/2.

3.10 (a) Ten moles of liquid water are initially at 20°C and 1 bar. The water is to be
compressed isothermally to 500 bar, with the compression done in such a way
that the required work is minimized. Use the response functions for water
from Table 3.2 to estimate the final density, the amount of work required, and
the direction and amount of any heat transferred.

(b) Repeat (a) for ten moles of air, assuming air is an ideal gas with cv = 5R/2.

3.11 (a) Prove (3.3.30): the ratio of compressibilities is the ratio of heat capacities.

(b) Evaluate this ratio for air and for water using data from Table 3.2.

3.12 Consider a pure ideal gas with constant heat capacity cv. For an arbitrary state
(P1, v1), prove (a) that the slopes of the reversible adiabat and reversible isotherm
through (P1, v1) are both negative, and (b) that, as v increases, P along the adiabat
decreases faster than does P along the isotherm.

3.13 Heat capacities are functions of state and their response to changes in pressure or
volume are related to the equation of state. Prove that

    and    

3.14 Pure water is to be compressed from 1 bar, 20°C. (a) If the compression is done
adiabatically to 100 bar, can the final temperature be 30°C? (b) If the compression
is done adiabatically to 200 bar, what is the lowest possible final temperature?

3.15 For a substance with constant cp, show that isobaric cooling and heating pro-
cesses produce straight lines on a plot of s vs. ln T.
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3.16 The sonic velocity w in a fluid is a thermodynamic property related to the adia-
batic compressibility by w = 1/(ρκs)1/2, where ρ is the mass density of the fluid.
(a) Show that w can also be written in terms of the isothermal compressibility 

(P3.16.1)

(b) Use data from Table 3.2 to compare the sonic velocity in air (used in deter-
mining Mach numbers for speeds of aircraft) with that in water (used in
detecting submarines and other underwater objects).

(c) What are the magnitudes of the absolute and relative errors in the sonic
velocity of air if we assume κs= κT at 1 bar and 25°C?

3.17 Consider a binary mixture of 1 and 2 having molar volume v. Show that the par-
tial molar volumes can be written in the form of Legendre transforms,

(P3.17.1)

and

(P3.17.2)

3.18 A mixture of ethanol(1) and water(2) has x1 = 0.7 and a density ρ = 0.8306 g/cm3.
At these conditions, the partial molar volume of water is  = 15.68 cm3/mole. 
(a) What is the value of  the partial molar volume for ethanol?  
(b) Estimate the mixture density ρ when x1 is changed from 0.70 to 0.71 at fixed T

and P. 
(c) Do you expect  to increase or decrease when x1 is increased from 0.70 at

fixed T and P? Justify your expectation and clearly cite all assumptions made.

3.19 At 20°C and 1 bar a binary liquid mixture of 1 and 2 has the composition depen-
dence of the partial molar volume of component 1 given by

(P3.19.1)

where A is a constant. Find the analogous expression for .

3.20 Consider a binary mixture of components 1 and 2 at fixed T and P. For such a
mixture, show whether or not it is legitimate to represent a partial molar prop-
erty as a linear function of composition. For example, show whether we may
write the partial molar volume as

(P3.20.1)

where A is a constant, independent of composition.

w
1

ρκT 1 TVαγv( ) cp⁄–( )
-------------------------------------------------------------=

V1 v x2 x2∂
∂v

 
 
 

TP

–=

V2 v x1 x1∂
∂v

 
 
 

TP

–=

V2

V1,

V1

V1 vpure 1 Ax2
2

+=

V2

V1 vpure 1 A x2+=



 PROBLEMS 117

3.21 (a) What information would enable you to integrate (3.5.7) to obtain ∆S?

(b) What information would enable you to integrate (3.5.13) to obtain ∆S?

3.22 For a single-phase substance containing any number of components, show that

(P3.22.1)

3.23 A stream of air (stream A) initially at 20°C is to be heated to 60°C by bringing it
into contact with a second air stream (stream B) in a double-tube heat exchanger.
Stream B enters the exchanger at 80°C. Assume the exchanger is well-insulated
and operates at constant P; also assume air obeys Pv = RT and has constant cp.

(a) If the exchanger operates countercurrently and the mass flow rates of the two
streams are the same, determine the outlet temperature of stream B.

(b) If the exchanger operates co-currently and the mass flow rates are equal,
determine the outlet temperature of stream B.

(c) Schematically sketch, on the same diagram, your results from part (b) in the
form of the temperature of each stream versus distance down the exchanger
from inlet to outlet. Compare and discuss your results for (a) and (b); in par-
ticular, what’s the same and what differs in processes (a) and (b)?

3.24 Derive the expression for the shaft work wsh done by a reversible adiabatic com-
pressor, assuming the fluid is an ideal gas with constant heat capacities. Your
result should take the form

(P3.24.1)

where γ is the ratio of heat capacities (a measurable), γ = cp/cv.

3.25 A Joule-Thomson (J-T) expansion occurs whenever a steadily flowing fluid
passes through a conduit or device that is well-insulated and that involves no
shaft work.   

(a) Because of friction, we expect a pressure drop across a J-T expansion; that is,
Pout < Pin. Develop a thermodynamic argument to confirm this.

(b) However, show thermodynamically that there is no constraint on the relation
between Tin and Tout: a fluid may be heated or cooled by a J-T expansion.

(c) The J-T coefficient is defined by (∂T/∂P)h. Find an expression for this deriva-
tive solely in terms of measurables.

(d) Evaluate the J-T coefficient for an ideal gas.

3.26 Complete the derivation of (3.5.11) from (3.5.10) by showing that

(P3.26.1)
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3.27 The forms of the fundamental equation contain five conceptuals: U, S, H, A, and
G. For these properties we can only obtain changes, such as ∆U, or values relative
to a prechosen reference state, such as U = Uref + ∆U. As part of a process design
project, you need to construct a table of these five properties for a certain pure
substance (like the steam tables). First, you select a reference state: a phase, a
temperature Tref , and a pressure Pref . 
(a) Of the five conceptuals, how many can be arbitrarily set to zero at the refer-

ence state?
(b) Let n represent the number found in part (a); n ≤ 5. At the reference state, can

any n of the five conceptuals be set to zero? Or are there constraints on the
identities of the n properties?

3.28 In modern steam tables, the reference state is usually taken to be the saturated
liquid at its triple point (Tref = 273.16 K, Pref = 0.611 kPa); at this state the internal
energy and entropy are set to zero: uref  = sref  = 0. An excerpt from such a table
follows.

(a) For 1 g of steam heated isobarically at 1 bar from 100 to 400°C, compute ∆h,
∆s, and ∆g.

(b) For 1 g of steam compressed isothermally from 1 to 20 bar at 400°C, compute
∆h, ∆s, and ∆g.

(c) If, instead of the saturated liquid used above, the reference state is chosen to
be superheated steam at Tref = 100°C and Pref = 10 kPa, then the above table
becomes the one below. For the same processes as in (a), use the following
table to compute ∆h, ∆s, and ∆g. 

(d) For the same processes as in (b), use this new table to compute ∆h, ∆s, and ∆g.
(e) Compare your results from (a) with those from (c) and compare your results

from (b) with those from (d). Explain any differences.

P = 1 bar P = 20 bar

T(°C) h(J/g) s(J/g K) h(J/g) s(J/g K)

100 2676.2 7.3614 . . . . . .

400 3278.2 8.5435 3247.6 7.1271

P = 1 bar P = 20 bar

T(°C) h(J/g) s(J/g K) h(J/g) s(J/g K)

100 –11.3 3.9434 . . . . . .

400 590.7 5.1255 560.1 3.7091
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PROPERTIES RELATIVE TO IDEAL GASES

 

n Part I we established formal relations between process variables and system
properties and between measurables and conceptuals; we also established relations

among various conceptuals. Those relations suggest that properties can serve as the
basis for thermodynamics analysis, but Part I does not provide values for any quanti-
ties. To get numbers we must do something beyond formal thermodynamics; ulti-
mately, we must rely on experimental data and on models based on that data. In
particular, experiments describe systems in terms of measurables, but before we can
perform thermodynamic calculations, we need to know how to convert those measur-
ables into conceptuals. In this chapter and the next, we focus on practical strategies for
obtaining values for conceptuals.

One strategy, and one much used in thermodynamics, divides a property 

 

F

 

 into
two parts: an ideal contribution, 

 

F

 

id

 

, and a deviation or correction term, 

 

F

 

dev

 

. This
strategy can be realized in at least two ways. In the first, the deviation takes the form
of a 

 

difference measure

 

,

(4.0.1)

While in the second, the deviation takes the form of a 

 

ratio measure

 

,

(4.0.2)

In both ways the ideal substance must be well defined and its properties must be easy
to compute; beyond that, the choice of ideality is made strictly for convenience. In
both approaches the job of computing the property 

 

F

 

 is reduced to the (hopefully) eas-
ier job of computing one of the deviation terms, either 

 

F

 

dev

 

 or 
Of the many measurables that exist, the ones whose values can be determined most

readily are temperature, pressure, volume, and heat capacities. Of the many sub-
stances that exist, the ones whose measurables are most easily related to conceptuals
are the substances that obey the ideal-gas equation of state. Therefore, the ideal gas

Fdev F Fid–=

F′dev
F

Fid
-------=

F′dev .

I
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often serves as a computationally convenient ideal substance for the deviation mea-
sures defined in (4.0.1) and (4.0.2), even when the magnitudes of the deviations are
not small. In this chapter we show how to use the ideal gas as the basis for computing
values for conceptual properties.

In § 4.1 we introduce ideal gases and their mixtures, and we derive equations for
computing their thermodynamic properties. Then, we use the rest of the chapter to
develop expressions for computing deviations from ideal-gas values: the difference
measures in § 4.2, the ratio measures in § 4.3.

To compute values for the deviation measures, we need volumetric data for the
substance of interest; such data are usually correlated in terms of a model 

 

PvTx

 

 equa-
tion of state. In § 4.4 we develop expressions that enable us to use equations of state to
compute difference and ratio measures for deviations from the ideal gas. Finally, in
§ 4.5 we present a few simple models for the volumetric equation of state of real flu-
ids. These few models are enough to introduce some of the problems that arise in
attempting to analytically represent the 

 

PvTx

 

 behavior of real substances, and they
allow us to compute values for conceptuals, using the expressions from § 4.5. How-
ever, more thorough expositions on equations of state must be found elsewhere [1–4].

 

4.1  IDEAL GASES

 

An ideal gas has three defining characteristics: (a) Its molecules exert no forces on one
another, so there is no intermolecular potential energy. (b) Its atoms and molecules do
have motion, so there is molecular kinetic energy and temperature. (c) Its molecules
can exchange momentum with the walls of a confining vessel, so the gas has a pres-
sure and volume. The absence of repulsive forces between molecules implies that an
ideal gas can be compressed to zero volume without a phase change. The absence of
attractive interactions implies that the gas has no driving force for condensation to a
liquid or solid phase: an ideal gas remains gaseous at all state conditions. Ignoring
intermolecular forces is a drastic assumption, except for supercritical substances at
low pressure; however, we will use the ideal gas, not so much as an approximation to
real substances, but rather as a basis for obtaining properties of real substances. 

 

4.1.1 Pure Ideal Gases

 

Historically, the ideal-gas equation of state

 

ideal gas

 

(4.1.1)

was obtained by combining the experimental 

 

PvT

 

 data of low density gases that is
codified in the laws of Boyle and Charles. Alternatively, this equation can be derived
formally in statistical mechanics, under the assumption that there are no forces acting
among the molecules.

For a substance that obeys (4.1.1), we can use (3.3.35) for 

 

H

 

 and (3.3.38) for 

 

U

 

 to
show that 

 

U

 

 and 

 

H

 

 of an ideal gas depend only on temperature,

    and    (4.1.2)

PV NRT=

Uig Nuig T( )= Hig Nhig T( )=
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These results are consistent with our definition of the ideal gas as a substance having
no intermolecular forces. Recall the internal energy is the mechanism for storing
energy; specifically, 

 

U

 

 is the combined kinetic and potential energies of the molecules.
But if molecules exert no forces on one another, then they can have no molecular
potential energy, and energy can be stored only as molecular kinetic energy. There-
fore, (4.1.2) is consistent with (2.3.6), which states that molecular kinetic energy is
related only to the absolute temperature, not to pressure or volume.

Thermodynamics cannot identify the forms taken by the functions of temperature
in (4.1.2), but those functions can be found using either kinetic theory or statistical
mechanics. Those functions are determined by the kinds of motions that are allowed
to the atoms on a molecule; that is, they are determined by molecular structure. For
molecules whose allowed motions (i.e., degrees of freedom) are predominantly exter-
nal translations and rotations,

(4.1.3)

where 

 

υ

 

 is the number of degrees of freedom. Spherical molecules, such as argon,
have only translational degrees of freedom and 

 

υ

 

 = 3. Rigid diatomics, such as oxy-
gen, have three translational plus two rotational degrees of freedom, so 

 

υ

 

 = 5. But real
molecules also have internal degrees of freedom (such as bond vibration, bond bend-
ing, and bond rotation), producing internal energies that are more complicated than
(4.1.3) and then 

 

υ

 

 is usually a function of temperature.
With the equation of state (4.1.1) and an expression for the internal energy, such as

(4.1.3), we can integrate relations in § 3.3 to obtain expressions for differences in all
other thermodynamic properties of a pure ideal gas. The results include

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

(4.1.8)

Since 

 

c

 

v

 

 and 

 

c

 

p

 

 are necessarily positive, the ideal-gas enthalpy and internal energy
must always increase with increasing temperature. Likewise, the ideal-gas entropy
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must increase with isobaric or isometric increases in temperature, decrease with iso-
thermal increases in pressure, and increase with isothermal increases in volume. We
emphasize that unlike u and h, the entropy s depends on pressure and volume as well
as temperature.

The fundamental equations (3.2.12) and (3.2.14) can be used to determine how the
ideal-gas Gibbs and Helmholtz energies respond to changes of state. For example, for
isothermal changes in pressure,

fixed T (4.1.9)

So in an ideal-gas, G and A always increase with isothermal increases in P.
Although no gas is truly ideal, real gases approximate ideal-gas behavior when the

gas density is sufficiently small: at low densities there are few collisions or interac-
tions among real molecules. Molecular size correlates with the density at which a gas
becomes nearly ideal: the larger the molecules, the lower the density must be. This is
because the range and strength of intermolecular forces increase with the number of
electrons per molecule. We can make these statements precise by considering the zero
density limit of volumetric equations of state. The limit can be expressed in either of
two forms, depending on the identity of the independent variables.

If the independent variables are temperature and volume, our equation of state
takes the form,

(4.1.10)

then the ideal-gas limit occurs when the (extensive) volume of the container is made
infinitely large (specifically, when the container volume is large compared to the vol-
ume of the molecules themselves),

 fixed T and N (4.1.11)

Hence,

 fixed T and N (4.1.12)

All pressure-explicit equations of state should satisfy this limit.
Alternatively, if the independent variables are chosen to be temperature and pres-

sure, then our equation of state takes the form

(4.1.13)

Now the ideal-gas limit should be expressed in terms of pressure; by inverting (4.1.12)
we find that the limit occurs when the pressure is made vanishingly small,

fixed T and N (4.1.14)
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All volume-explicit equations of state should satisfy this limit. For gases composed of
small rigid molecules such as nitrogen and carbon dioxide at ambient and higher tem-
peratures, properties are generally within 1% of their ideal-gas values for pressures
up to roughly 10 bar. So the stuff you are now breathing is essentially an ideal gas.

4.1.2 Mixtures of Ideal Gases

In an ideal-gas mixture the molecules do not exert forces on one another, but mole-
cules of different species are distinguishable; for example, they may have different
masses or different structures or both. But because there are no intermolecular forces,
each molecule is “unaware” of the presence of other molecules and therefore unaware
that other species are present.

Consider an ideal-gas mixture confined to a vessel of volume V at temperature T.
For such mixtures, each extensive property F is merely the sum of the corresponding
extensive properties of the pure ideal-gas components, with each component at the
mixture temperature T and occupying a container of the same volume V [5, 6]:

(4.1.15)

where V = Vmix = Vi for each pure i. Here F could be U, H, S, A, or G; it could not, of
course, be the volume. The intensive version of (4.1.15) is

(4.1.16)

where the molar volumes are related by vi = Nv/Ni.
To understand why (4.1.15) is valid, note that in a classical description of matter the

values of extensive properties are determined by four attributes: (1) the number and
structure of the molecules present, (2) the molecular kinetic energy, (3) the molecular
potential energy (i.e., intermolecular forces), and (4) the nature of molecular interac-
tions with the surroundings. These four attributes are identical on the two sides of
(4.1.15): both the mixture and the collection of pure gases have the same number and
kinds of molecules, they have the same molecular kinetic energies (temperatures), the
same molecular potential energies (none), and the same interactions with their sur-
roundings. This last attribute includes not only repulsive interactions between gas
molecules and container walls that give rise to a pressure P, but also any spatial con-
straints imposed on the gas that restrict the molecules to containers of common vol-
umes V. Some form of (4.1.15) is often used as a thermodynamic definition of an ideal-
gas mixture, but we prefer to cite (4.1.15) as a consequence of the molecular definition
given at the beginning of § 4.1.

From (4.1.15) we can derive expressions for all properties of ideal-gas mixtures; for
example, we can immediately determine the pressure. To do so, we use the funda-
mental equation (3.2.12) to write any mixture or pure-component pressure as

(4.1.17)
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Writing (4.1.15) explicitly for the Helmholtz energy A and applying the derivative in
(4.1.17) to each term, we obtain

(4.1.18)

Since Vpure i = V for each component i, we merely write V for the extensive volumes of
the mixture and all pure components. Using (4.1.17) in (4.1.18) yields the law of additive
pressures [6]:

(4.1.19)

Note that although the extensive volumes are all the same V = Vpure i , the intensive
volumes differ, v < vpure i, because each pure gas necessarily contains fewer molecules
than the mixture. Equation (4.1.19) states that the pressure of an ideal-gas mixture is
the sum of the pure component pressures, when Ni molecules of each pure i are con-
fined to a vessel having the same extensive volume V as that of the mixture vessel and
each pure is at the mixture temperature T. Since each pure component is an ideal gas,
we can substitute the ideal-gas law (4.1.1) into the rhs of (4.1.19) and find the same
equation of state as for pure gases,

(4.1.20)

4.1.3 Partial Molar Properties of Ideal Gases

To obtain the partial molar properties of ideal-gas mixtures we apply the partial molar
derivative (3.4.5) either to the ideal-gas law, to obtain the partial molar volume, or to
the general expression (4.1.15), to obtain other properties. The generic expression
(4.1.15) yields

 (4.1.21)

Here P is the pressure of the mixture at T and v. But fpure k is intensive and therefore it
does not depend on any Ni; so in the sum, only the term having i = k contributes to the
derivative and we find

(4.1.22)

Note that vi ≠ v. Because of (4.1.19), we can also express (4.1.22) in terms of pressure,
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(4.1.23)

Note that the mixture pressure P is not the same as that of the pure: 
Recall that F in (4.1.22) can be any of U, H, S, A, or G. For ideal-gas mixtures, the

generic result (4.1.22) reduces to either of two forms depending on whether F is a ther-
mal property (i.e., first-law property, U or H) or an entropic property (i.e., second-law
property, S, A, or G).

First-law properties. The partial molar volume can be found by applying the partial
molar derivative (3.4.5) to the equation of state (4.1.20); the result is

(4.1.24)

That is, the partial molar volume for component i is the molar volume of pure i at the
same T and P as the mixture. We emphasize that (4.1.23) and (4.1.24) are evaluated dif-
ferently. Specifically, in (4.1.24) the pure molar volume v is to be evaluated at the T and
P of the mixture; however, in (4.1.23) the pure component property f is to be evaluated
at the mixture T and at the pressure Ppure i = NiRT/V, which is always less than the
mixture pressure P. In other words, (4.1.23) does not apply to the volume.

To obtain the partial molar internal energy and enthalpy, we use the generic expres-
sion (4.1.22) to obtain

(4.1.25)

(4.1.26)

But the pure ideal-gas internal energy and enthalpy are independent of pressure and
volume, so these reduce to

(4.1.27)

(4.1.28)

Second-law properties. Writing (4.1.22) explicitly for the partial molar entropy, we
have

(4.1.29)

This implies that the entropy does not change when ideal gases are mixed at constant
T and v. But rather than T and v, usually we want to use T and P as the independent
variables. Here P represents the pressure when the mixture has temperature T and
molar volume v. Therefore, (4.1.29) can be written as
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(4.1.30)

But from (4.1.15) the pure components each occupy a container having the same vol-
ume V as the mixture; they are not at the same pressure (the mixture and each pure
have different numbers of moles, so their pressures differ, even though their tempera-
tures and extensive volumes are the same). So on the rhs of (4.1.30), we cannot simply
replace vi with P because they refer to different states and because the ideal-gas
entropy depends on pressure and volume. Instead, to express the rhs of (4.1.30) in
terms of the mixture pressure P, we must correct the pure component entropy on the
rhs from the pure component pressure Ppure i to the mixture pressure P.

The correction can be evaluated from the Maxwell relation (3.3.34). For the pure
ideal gas it is

ideal gas (4.1.31)

Separating variables and integrating along the isotherm T from Ppure i to the mixture
pressure P, we find

(4.1.32)

Since the mixture and pure i are ideal gases at the same T and V, we have

(4.1.33)

and (4.1.32) can be written as

(4.1.34)

Substituting the intensive version of (4.1.34) into the rhs of (4.1.30) gives the final
result

(4.1.35)

An analogous procedure yields, for the Gibbs and Helmholtz energies,

(4.1.36)

and

(4.1.37)
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Note that since xi < 1, the last term on the rhs of (4.1.35) is necessarily positive and
likewise those on the rhs of (4.1.36) and (4.1.37) are necessarily negative. This means
that, for isothermal-isobaric mixing of ideal gases, the entropy increases, while the
Gibbs and Helmholtz energies decrease. But note that this behavior differs from that
for isothermal-isometric mixing.

4.1.4 Properties of Ideal-Gas Mixtures

To obtain the properties of ideal-gas mixtures we simply accumulate the partial molar
properties according to (3.4.4), all at the same T and P,

(3.4.4)

Then on substituting (4.1.24) into (3.4.4), we find that the volume of an ideal-gas mix-
ture is the mole-fraction average of the pure molar volumes, 

(4.1.38)

Likewise, substituting (4.1.27) and (4.1.28) into (3.4.4) shows that the internal energy
and enthalpy depend only on temperature and composition,

(4.1.39)

(4.1.40)

To obtain the heat capacities, we apply the definitions (3.3.7) and (3.3.8) to (4.1.39)
and (4.1.40), respectively. The results are

(4.1.41)

(4.1.42)

Further, the difference between the heat capacities for ideal-gas mixtures is the same
as for pure ideal gases (4.1.4). In summary, all first-law properties of ideal-gas mix-
tures are rigorously obtained by mole-fraction averaging pure ideal-gas properties.

For second-law properties, we substitute (4.1.35)–(4.1.37) into (3.4.4) to find

(4.1.43)
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(4.1.44)

(4.1.45)

The quantity (–R Σxi ln xi) is called the ideal entropy of mixing; it is always positive, so
that the entropy of an ideal-gas mixture is always greater than the mole-fraction aver-
age of the pure component entropies, when the mixture and all pures are at the same
T and P. But note that the entropy of mixing appears because the pure components are
at the same P as the mixture, rather than at the same volume. If the pures had been
specified at the same extensive volume as the mixture, then, as implied by (4.1.29), the
entropy would not change on mixing. Therefore, an increase of entropy on mixing
occurs not only because molecules of different species are distinguishable [5], but also
because, for isobaric mixing, the space available to the molecules increases.

4.1.5 Example

When an ideal-gas mixture is separated into its pure components, is less work
required for a separation at constant T and P or for one at constant T and V?

One mole of an equimolar mixture of methane and ethane is confined to a vessel at
25°C and 1 bar. The mixture is to be isothermally separated into its pure components. 

Isobaric separation. In an isobaric process, the mixture and the pure components are
each to be at 1 bar. Under the stated conditions these gases are essentially ideal; hence,
by the ideal-gas law, the volumes of the pure gases are each half the volume of the
original mixture, as shown in Figure 4.1. The lower bound on the work occurs when
the separation is performed reversibly, and the required reversible isothermal-isobaric
work was determined in § 3.7.4. The general result was found to be the negative
change of Gibbs energy on mixing, 

Figure 4.1 Schematic of an isothermal-isobaric process for separating a binary ideal-gas mix-
ture into its pure components
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 (4.1.46)

For ideal gases, we replace Gmix in (4.1.46) with the extensive form of (4.1.44), finding

(4.1.47)

The positive value indicates that work must be done on the mixture to achieve an
isobaric separation. In a real isothermal-isobaric separation of ideal gases, more than
this minimum amount of work would be needed, because a real process would be
irreversible. Moreover, when separating real mixtures (whose components have inter-
molecular forces), the total minimum work would not be given by (4.1.47). However,
it could still be determined from Gm using (4.1.46), provided a reliable model were
available for the Gibbs energy of the mixture and each pure. Expressions for Gm of real
mixtures would be more complicated than the ideal-gas expression (4.1.47) but such
expressions could be obtained from model equations of state.

Isometric separation. In the isometric process the mixture and the pure components
are each confined to vessels having the same volume, as in Figure 4.2. For this process,
the derivation of the expression for the reversible work parallels that given in § 3.7.4
for the isobaric work. We start with the expression for the total, reversible, isothermal
work (3.7.14), written for two outlets and no inlets,

   (4.1.48)

Here, the boundary work is zero because V remains constant. Using the ideal-gas law
and the chain rule, the middle term in (4.1.48) becomes ∑ RT dNi = 0, so we have left
 

  (4.1.49)

Figure 4.2 Schematic of an isothermal process for separating a binary ideal-gas mixture into its
pure components, with each gas held in a vessel of the same volume V
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Note that the term in brackets is not the change in Helmholtz energy on mixing Am,
because the terms that define Am must be at a common pressure, but the terms in
(E4.1.5) are at a common extensive volume. Substituting the ideal-gas expression
(4.1.45) for Amix in (4.1.49), we obtain

(4.1.50)

This means that it is thermodynamically possible to separate an ideal-gas mixture into
its pure components without doing any work, if the process is performed at constant
T and V. But in real separations of ideal gases some amount of work would be needed
to overcome irreversibilities. The important lesson here is that the minimum work to
perform the isometric separation, given by (4.1.50), differs from that for the isobaric
separation, given by (4.1.47). 

4.1.6 Entropy and Disorder

Entropy is frequently interpreted physically as a measure of the amount of “order” or
“disorder” in a system. Specifically, statements are made to the effect that increases in
the disorder of a system are reflected by increases in entropy. In this section we
explore such claims. Mixing is one process in which substances can be considered to
become less ordered, and so, if the conventional wisdom is correct, the mixing of pure
substances should be accompanied by entropy increases. To test this, we consider two
processes for mixing pure ideal gases: (a) one at fixed T and P, (b) another at fixed T
and V. 

Isothermal-isobaric mixing. Consider N1 moles of pure ideal gas 1 and N2 moles of
pure ideal gas 2 initially in separate containers at the same T and P. We mix these two
gases in such a way that the mixture remains at the same T and P; note this is the
reverse of the process shown in Figure 4.1. We want to determine whether the change
in entropy is positive, negative, or zero. The entropy change is given by

(4.1.51)

From (4.1.43) we have for the mixture

(4.1.52)

So substituting (4.1.52) into (4.1.51) leaves

(4.1.53)

We consider two cases: (i) If the gases differ (say methane and ethane), then xi < 1 and
(4.1.53) shows that S increases, as expected,
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mixing different ideal gases (4.1.54)

(ii) However, if the gases are the same (e.g., two samples of methane), then i = 1, xi = 1,
and (4.1.53) gives

mixing the same ideal gas (4.1.55)

Isothermal-isometric mixing. Now consider N1 moles of pure ideal gas 1 and N2
moles of pure ideal gas 2 initially in separate containers at the same T and V. We mix
these two gases in such a way that the mixture remains at the same T and V; this is the
reverse of the process shown in Figure 4.2. For this situation the entropy change is 

(4.1.56)

For this process, (4.1.15) gives the mixture entropy,

(4.1.57)

Combining (4.1.57) with (4.1.56) leaves,

mixing different ideal gases (4.1.58)

However, if we mix two samples of the same gas, then (4.1.56) becomes

   (4.1.59)

The entropy changes because the molar volume of the pure in the final state differs
from that of the two pures in their initial states. The response of S to changes in v is
given by the Maxwell relation in (3.3.37). For ideal gases it becomes

ideal gas (4.1.60)

Separating variables and integrating over the volume, we find for each sample i, 

     (4.1.61)

Hence, both terms in the sum in (4.1.59) are negative and therefore,

mixing the same ideal gas   (4.1.62)
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Our results, summarized in Table 4.1, imply that entropy does not necessarily mea-
sure the amount of “disorder.” When ideal gases are mixed (and “disorder” presum-
ably increases), the entropy may increase, decrease, or remain constant, depending on
how the mixing is done and on whether we are mixing different gases or samples of
the same gas. Note that none of the results in Table 4.1 violate the second law.

4.2  DEVIATIONS FROM IDEAL GASES: DIFFERENCE MEASURES

In § 4.1.4 we found that to compute the thermodynamic properties of ideal-gas mix-
tures, we need only the mixture composition plus the pure ideal-gas properties at the
same state condition as the mixture. In other words, the properties of ideal-gas mix-
tures are easy to compute. We would like to take advantage of this, even for sub-
stances that are not ideal gases. To do so we introduce, for a generic property F, a
residual property Fres, which serves as a difference measure for how our substance devi-
ates from ideal-gas behavior.

By dividing F into an ideal-gas part plus a residual part, we sometimes ease the
computational burden incurred when we need to compute the properties F of a real
mixture. Of course, this strategy is most successful when our real substance does not
differ much from an ideal gas, for then Fres is a small portion of the total property F
and we may be able to tolerate a sizable error in estimating that small portion. As a
result, residual properties have been most useful for nonideal gas mixtures. They are
also legitimate entities for liquids and solids, though for condensed phases their mag-
nitudes are large. In traditional practice residual properties were infrequently used for
condensed phases; however, recent advances in modeling enable us to evaluate resid-
ual properties for dense fluids as well as for gases.

We define two classes of residual properties: isobaric ones and isometric ones. The
isobaric residual properties (§ 4.2.1) are the traditional forms and use P as the inde-
pendent variable. The isometric ones (§ 4.2.2) use v as the independent variable and
thereby simplify computations when our equation of state is explicit in the pressure;
such equations of state are now commonly used to correlate thermodynamic data for
dense fluids. Although isometric property calculations may be more complicated than
those for isobaric properties, with the help of computers, this is not really an issue.

4.2.1 Isobaric Residual Properties

These residual properties are defined only for those thermodynamic properties F that
can be made extensive:

Table 4.1 Changes in entropy for mixing ideal gases at fixed T and
V and at fixed T and P

Gases being mixed Fixed T & V Fixed T & P

Samples of the same ideal gas ∆S  <  0 ∆S  = 0

Different ideal gases ∆S  =  0 ∆S  >  0
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(4.2.1)

Note that all three terms in (4.2.1) are to be evaluated at the same temperature, pres-
sure, and composition. In general, Fres may be positive, negative, or zero. An ideal gas
has all residual properties equal to zero; if a substance has only some residual proper-
ties equal to zero, it is not an ideal gas. 

Since the definition (4.2.1) is a linear combination of thermodynamic properties, all
relations among extensive properties, such as those in Chapter 3, can be expressed in
terms of residual properties. Examples of such relations include the four forms of the
fundamental equation and the Maxwell relations. Moreover, using the expressions
developed in § 4.1.4 for ideal-gas mixtures, the following intensive forms for residual
properties are obtained:

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

The residual chemical potential

(4.2.8)

can be found either by applying the partial molar derivative to (4.2.7) or by substitut-
ing (4.1.37) for the chemical potential of an ideal gas directly into the definition (4.2.8).
Both procedures give the same result,

(4.2.9)

In all these equations (4.2.2)–(4.2.9), the mixture and each pure ideal gas must be at
the same temperature, pressure, and composition, except the ideal-gas values for U
and H, which only must be at the same temperature and composition because the
ideal-gas internal energy and enthalpy are independent of pressure.
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4.2.2 Isometric Residual Properties

Instead of using T and P as the independent variables, as we did in § 4.2.1, we could
choose T and V. Therefore, we define another set of residual properties in which the
real substance and the ideal gas each occupy a container of the same volume V. Exten-
sive isometric residual properties are defined by

(4.2.10)

The corresponding intensive analogs are defined by

(4.2.11)

In the definition (4.2.10), F can be any of the extensive properties U, H, S, A, or G and
in (4.2.11) f can be any of their intensive analogs. Of course, the extensive and inten-
sive (isometric) residual volumes are always zero. In addition, (4.2.11) can be used to
define a residual pressure,

(4.2.12)

For intensive properties, the generic forms for the residual properties are all
obtained by combining (4.1.16) with the definition (4.2.11):

(4.2.13)

Here, as in (4.1.16), the pure ideal-gas molar volumes are related to the mixture molar
volume by vi = Nv/Ni. Equation (4.2.13) applies to both first-law and second-law
properties, and we have

(4.2.14)

(4.2.15)

  (4.2.16)

(4.2.17)

(4.2.18)
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Note that here the second-law properties contain no ideal entropy of mixing term,
because the mixture and all pure ideal-gas components are at the same temperature
and same extensive volume V. 

The isometric residual chemical potential can be obtained from that part of (3.2.22)
which relates the chemical potential to the Helmholtz energy,

(4.2.19)

Using (4.2.17) for the residual Helmholtz energy, we find

(4.2.20)

In all the equations (4.2.14)–(4.2.20) the mixture and each pure ideal gas must be at the
same temperature, composition, and extensive volume.

4.2.3 Relations Between the Two Kinds of Residual Properties

We now relate the two kinds of residual properties introduced in § 4.2.1 and 4.2.2.
First write the intensive form of the definition (4.2.1) for isobaric residual properties,

(4.2.21)

and then subtract this from the definition (4.2.11) for f res(T, v, {x}). The result is

(4.2.22)

where

(4.2.23)

We emphasize that in (4.2.23) the independent variables P and v are each properties of
the real substance; they are not related by the ideal-gas law, so the value for ∆f ig given
by (4.2.23) is not necessarily zero.

When f is the volume, vres(T, v, {x}) = 0, and (4.2.22) reduces to (4.2.2). Likewise,
when f is the pressure we have Pres(T, P, {x}) = 0, then (4.2.22) reduces to (4.2.12). Oth-
erwise, for first-law properties, we have

(4.2.24)

and

(4.2.25)

because the ideal-gas values of u and h are independent of P and v.
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But for second-law properties, the relations are not as simple as (4.2.24) and
(4.2.25). To have a representative second-law property, consider the entropy. The Max-
well relation (3.3.34) leads to

(4.2.26)

(4.2.27)

So for the entropy, (4.2.22) combined with (4.2.27) gives

(4.2.28)

With ures, hres, and sres determined, we can use the defining Legendre transforms to
relate the residual Gibbs energy, Helmholtz energy, and chemical potential. The
results are

(4.2.29)

(4.2.30)

(4.2.31)

We caution that (4.2.31) cannot be derived in a simple way by applying the partial
molar derivative to the difference in residual Gibbs energies given in (4.2.30). The dif-
ficulty is that the partial molar derivative imposes a fixed pressure, but when the lhs
of (4.2.30), gres(T, v, {x}), is changed at fixed pressure, the mixture and ideal-gas vol-
umes are no longer the same. Consequently, the isobaric derivative of the lhs of
(4.2.30) is not an isometric residual property; in particular, it is not the lhs of (4.2.31).

In all the equations relating second-law residual properties (4.2.28)–(4.2.31), the
compressibility factor Z is to be evaluated at the state (T, P, v, {x}) of the real substance
of interest. The state dependence of Z is discussed in the next section.

4.3  DEVIATIONS FROM IDEAL GASES:  RATIO MEASURES

Besides difference measures, it is frequently convenient to describe deviations from
ideality by using ratio measures. In this section we present the ratio measures com-
monly employed to measure deviations from ideal-gas behavior: the compressibility
factor and the fugacity coefficient.

4.3.1 Compressibility Factor

The compressibility factor Z serves as a ratio measure for how a real-substance vol-
ume deviates from that of an ideal gas at the same T and P,
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(4.3.1)

Therefore, an ideal gas has Z = 1, but the converse is not true: a substance may have Z
≈ 1 but not be ideal. Nonideal gases may have Z > 1, Z < 1, or Z = 1.

The compressibility factor serves a purpose similar to that of the isobaric residual
volume: both measure how the volume of a substance deviates from the ideal-gas vol-
ume at the same T and P. The distinction is that one is a difference, while the other is a
ratio. But the two are related; the relation is found by combining (4.2.2) with (4.3.1),

(4.3.2)

The compressibility factor and residual volume of pure ethane are compared in
Figure 4.3 for temperatures above the critical point. Note that neither Z nor vres is con-
stant: both change with T and P. Along isotherms near Tc they decrease with increas-
ing pressure, pass through minima, and increase as P goes to high values. At high
temperatures the minima are weaker, until at sufficiently high temperatures, both Z
and vres increase monotonically with increasing pressure. This behavior is typical of
many gases.

Extrema are usually caused by competing effects. In Figure 4.3 the competition is
between repulsive and attractive forces acting among the molecules. Consider the low
temperature isotherm for Z in Figure 4.3. When the pressure is low, the molecules are
widely separated (on the average), their interactions are infrequent and weak, so the
gas is essentially ideal. As the pressure is increased, molecules are pushed together,
they begin to attract one another, and the molar volume contracts, causing vres to
become negative and Z to decrease below unity. But as the pressure is increased more,
electron clouds begin to overlap: repulsive forces become strong enough to counter-
balance attractive forces, so vres and Z pass through minima. At still higher pressures,
repulsive forces dominate attractive forces and the molar volume becomes greater
than the ideal-gas value. Along each low temperature isotherm there is a pressure at
which the repulsive and attractive forces balance, making vres = 0 and Z = 1, although
the gas is not ideal.  

A principal difference between Z and vres, seen in Figure 4.3, is the limiting behav-
ior at P = 0. At zero pressure we expect (4.1.14) to be obeyed and the gas to be ideal;
the limiting value Z = 1 supports that expectation. That is,

fixed T (4.3.3)

Similarly, we might at first expect vres = 0 at P = 0; however, Figure 4.3 implies that,
with temperature fixed, vres approaches a non-zero constant as P approaches zero.
Moreover, the value of that constant changes with temperature:

fixed T   (4.3.4)
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Figure 4.3 Effects of pressure on residual volumes and compressibility factors along three
supercritical isotherms for pure ethane. Broken horizontal lines represent values for the ideal
gas. The ethane critical point occurs at Tc = 305.3 K and Pc = 48.7 bar. Note that Z → 1 as P → 0,
regardless of the temperature; however, the residual volumes do not approach zero in the same
limit. Instead, they obey (4.3.4). Further note that each isotherm has Z = 1 at some high pres-
sure, although ethane is not an ideal gas at those pressures. Curves calculated from experimen-
tal data given in [7].
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Later in this chapter we will discover the identity of the constant in (4.3.4), but for
now we merely note that it arises because of intermolecular forces. In particular, that
limiting value of vres plays a central role in describing nonideal gas behavior at low
pressures.

This comparison of Z and vres illustrates the complementary roles that a ratio mea-
sure and a difference measure can play in describing the same kind of deviation from
ideality. Both describe the same kinds of deviations, but each reveals those deviations
in different ways. In a particular situation one measure or the other may prove more
illuminating or useful or both. 

4.3.2 Fugacity

The fugacity is a property, created by G. N. Lewis, to provide an alternative to the
chemical potential [8]. Conceptually, fugacity offers no advantage over the chemical
potential, but it does offer computational advantages, particularly for mixtures. The
definition of fugacity is motivated by the response of the chemical potential in an
ideal gas when the state is changed isothermally. For an ideal-gas mixture, that
response is derived from (4.1.44) and found to be

fixed T (4.3.5)

At fixed T, the pure-fluid term can respond only to changes in P, so we can write

(4.3.6)

Hence,

fixed T (4.3.7)

Lewis defined the fugacity fi as an analogy to the ideal-gas expression (4.3.7). The
definition contains two parts. For component i in a mixture of any phase, the first part
of the definition is

Part 1 of Definition fixed T (4.3.8)

To preserve thermodynamic consistency, we require that the general expression (4.3.8)
revert to the special form (4.3.7) if our substance is indeed an ideal gas. Therefore as
the second part of the definition, we require that the ideal-gas fugacity obey

Part 2 of Definition (4.3.9)

The two parts, (4.3.8) and (4.3.9), together constitute a complete definition of the fugac-
ity. The chemical potential is an intensive, conceptual, state function and it has dimen-
sions of energy/mole; the fugacity, as defined by (4.3.8) and (4.3.9), is also an
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intensive, conceptual, state function, but it has dimensions of pressure. For a pure
component the chemical potential is merely the molar Gibbs energy, so the definition
of the fugacity reduces to

fixed T (4.3.10)

(4.3.11)

We can obtain an algebraic form of (4.3.8) by integrating from a reference state (®),
along an isotherm, to the state of interest. The general result is

(4.3.12)

This algebraic form is always true, but it is not computationally useful until we identify
the reference state and determine a value for the fugacity in that state. (“Reference
state” refers to the lower limit on the integral that produced (4.3.12) from (4.3.8).)

We cite two reasons for introducing fugacity as an alternative to the chemical
potential. One is to obtain the algebraic form (4.3.12), which replaces a difference mea-
sure with a ratio measure. In many applications, functional forms for ratios are less
complicated than the corresponding forms for differences. Such simplifications facili-
tate numerical calculations. Further, the expressions (4.3.7) and (4.3.8) for the chemical
potential become troublesome as xi → 0; in comparison, the fugacity remains well
behaved (fi → 0 as xi → 0). A second reason is that the second part of the definition
(4.3.9) identifies the ideal gas as the reference state for fugacity, and numerical values
for ideal-gas fugacities are readily obtainable.

A principal use of fugacity is in phase equilibrium computations—a use we will
develop in Part III of this book—but for now note that fi is a well-defined quantity,
even for systems of a single phase. Incidentally, although Lewis first defined the quan-
tity fi and chose its name, he did not create the word fugacity. The word itself is a nom-
inative form derived from the Latin verb fugere, which means to flee. According to the
Oxford English Dictionary the word fugacity was used as early as 1666 by Robert Boyle.
So the word is old, though it is now rarely used in other than technical discourse. 

A response of the fugacity to a change in state is simply found by combining the
definition (4.3.8) with the appropriate response of the chemical potential, as given in
§ 3.4.3. For isothermal changes in pressure, (4.3.8) combined with (3.4.15) gives

(4.3.13)

For isobaric changes in temperature, we choose the ideal gas as the reference state in
(4.3.12), divide (4.3.12) by RT, and take the temperature derivative of both sides with
pressure and composition fixed. On applying the Gibbs-Helmholtz equation (3.4.17),
we find
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(4.3.14)

In addition, the fugacities of all components in a mixture are not independent;
rather, they are related through the Gibbs-Duhem equation. If we use g/RT for the
generic function f in the Gibbs-Duhem equation (3.4.10), we find

(4.3.15)

In particular, at fixed T and P, a binary mixture must have

fixed T and P (4.3.16)

So for example, if f1 increases as x1 increases, then f2 must decrease.

4.3.3 Fugacity Coefficient

In this subsection we introduce a ratio measure that indicates how the fugacity of a
real substance deviates from that of an ideal gas. As the reference state, we choose the
ideal-gas mixture at the same temperature, pressure, and composition as our real mix-
ture. Then, on integrating the definition of fugacity (4.3.8) from the ideal-gas state to
the real state, we obtain an algebraic form analogous to (4.3.12); that is, we find

(4.3.17)

The ratio of fugacities on the rhs is the desired deviation measure; it is called the fugac-
ity coefficient ϕi, 

(4.3.18)

The lhs of (4.3.17) is the isobaric residual chemical potential, so we can write

always true (4.3.19)

This relates a ratio measure to a difference measure. Physically, the residual chemical
potential (and therefore the fugacity coefficient) measures the reversible isothermal-
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isobaric work done in extracting a small amount of component i from an ideal-gas
mixture and injecting it into the real mixture. This interpretation arises from (6.3.8),
which is derived in § 6.3.1. For a pure substance the definition (4.3.18) simplifies to

(4.3.20)

and (4.3.19) reduces to

(4.3.21)

The fugacity coefficient is always positive; however, it may be greater or less than
unity. The ideal gas has ϕi = 1, but the converse is not true: a substance having ϕi = 1 is
not necessarily an ideal gas. Note that the definition (4.3.18) places no restriction on
the kind of phase to which ϕi may be applied; it is a legitimate property of solids, liq-
uids, and gases, though it is most often applied to fluids.

Figure 4.4 compares the two ratio measures, Z and ϕ, for deviations from ideal-gas
behavior for pure ammonia along the subcritical isotherm at 100°C. The figure shows
that Z(P) is discontinuous across the vapor-liquid phase transition, while ϕ(P) is not.
The discontinuity in Z occurs because the vapor and liquid phases have different
molar volumes. In contrast, ϕ(P) appears continuous and smooth, though in fact it is
only piecewise continuous. That is, the ϕ(P) curves for vapor and liquid intersect at
the saturation point, but they intersect with different slopes. Near the triple point that
difference in slopes is marked, but near the critical point the difference is small: the

Figure 4.4 Comparison of the ratio measures Z and ϕ for pure ammonia at 100°C. The ammo-
nia critical point occurs at Tc = 405.6 K and Pc = 111.5 atm. These curves are plots of data tabu-
lated by Walas [9].
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curve for ϕ(P) in Figure 4.4 appears to make a smooth transition across the saturation
pressure (near 60 atm). 

To obtain the response of the fugacity coefficient to a change in state, we combine
the relation (4.3.19) with the appropriate response of the residual chemical potential.
At fixed composition, the fundamental equation can be written in the form

(4.3.22)

Then the response of ϕi to an isothermal change in pressure is given by

   (4.3.23)

and the response to an isobaric change in T is given by a Gibbs-Helmholtz equation,

    (4.3.24)

Note that the temperature derivative of lnϕi is the same as the temperature derivative
of lnfi; cf. (4.3.14) with (4.3.24). Further, the fugacity coefficients must obey a Gibbs-
Duhem equation. Letting gres/RT be the generic function f in the Gibbs-Duhem equa-
tion (3.4.10), we find

(4.3.25)

At fixed T and P this reduces to

fixed T and P (4.3.26)

Figure 4.5 shows how changes in composition usually affect fugacity coefficients in
binary mixtures of nonideal gases. In the figure, note that the values of ϕ for CO2 and
C3H8 at least qualitatively satisfy the Gibbs-Duhem equation (4.3.26); that is, as the
mole fraction of CO2 increases, one fugacity coefficient increases while the other
decreases. Note also that for both substances, the slope of each ϕi(xi) is zero in its pure-
fluid limit, as required by (4.3.26). Since both these ϕs are less than unity, the corre-
sponding component residual chemical potentials are negative, by (4.3.19).

Figure 4.6 shows how a gas-phase fugacity coefficient may be affected by increas-
ing pressure: ϕ increases, passes through a maximum, and decreases at high pressure.
Just as for the minimum in Z in Figure 4.3, the maximum in Figure 4.6 can be
explained by competition between attractive and repulsive forces among molecules.  
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Figure 4.5 Typical composition dependence of fugacity coefficients in gas mixtures. Fugacity
coefficients in carbon dioxide + propane mixtures at 100°F, 200 psia. These curves are corrected
from results tabulated by Walas [9].

Figure 4.6 Effect of pressure on fugacity coefficient for CO2 in carbon dioxide(1) + n-butane(2)
mixtures containing 85 mole % butane at 171°C. Replotted from a figure in Prausnitz et al. [10].
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4.4  CONCEPTUALS FROM MEASURABLES USING EQUATIONS OF STATE

In this section we present explicit expressions that allow us to use the measurables P,
v, T, and {x} to compute values for u, h, s, a, and g. We can only obtain values for these
conceptuals relative to some well-defined reference state, so here we choose the refer-
ence to be the ideal gas. As a result, the expressions obtained below provide the resid-
ual properties. In addition, from the expression for the residual chemical potential we
can readily obtain expressions for the fugacity coefficient. All the relations derived
below involve integrals over functions of P, V, T, and {x}, and to exploit those rela-
tions, we need a volumetric equation of state for our substance.

A volumetric equation of state takes one of two forms. A volume-explicit equation
has the form v = v(T, P, {x}), while a pressure-explicit equation has the form P = P(T, v,
{x}). Therefore, our expressions for conceptuals divide into two classes, depending on
whether P (§ 4.4.1) or v (§ 4.4.2) is independent. In a particular problem, calculations
are often simplified by using one set of independent variables rather than the other. To
choose between the two sets, we follow the steps given in Figure 4.7.

The choice hinges on whether the independent variable (P or v) in our equation of
state is appropriate for the conceptual whose value we need to compute. Recall from
Chapter 3 that the fundamental equations for u and a have v as the independent vari-
able, while those for h and g have P. Consequently, if we need to compute ∆u or ∆a,
then we prefer to use a pressure-explicit equation of state, P(T, v, {x}), but if we need to
compute ∆h or ∆g, then we prefer to use a volume-explicit equation, v(T, P, {x}). Note
that if we need ∆s, fi , or ϕi, then little advantage is offered by one kind of equation
over the other: both kinds involve about the same computational effort. These possi-
bilities summarize the lhs of the diagram in Figure 4.7.

However, if the independent variable (P or v) in our equation of state differs from
the one that is appropriate for a particular conceptual, then a more involved computa-
tional procedure must be followed. This procedure appears on the rhs of the figure.
For example, if we need ∆h(T, P, {x}), but our equation of state uses (T, v, {x}), then we
have an incompatible situation to resolve. It should be resolved not by tampering
with the expression given in § 4.4.1 for the residual enthalpy, but instead by comput-
ing ∆h indirectly via a Legendre transform. Therefore the procedure should be this:

(a) Solve the equation of state for v at the known values of T, P, {x}.

(b) Compute ures(T, v, {x}) using the equation given in § 4.4.2.

(c) Form ∆u from ures by ∆u  = ∆ures + ∆uig.

(d) Obtain ∆h using the defining Legendre transform ∆h = ∆u + ∆(Pv).

4.4.1 When T, P, and {x} Are Independent

When we have an equation of state in the form v(T, P, {x}), then pressure is the inde-
pendent variable (rather than v), and the relevant forms for conceptuals are the iso-
baric residual properties introduced in § 4.2.1. To evaluate those quantities, we start
with the observation that the residual properties are all state functions; this allows us
to write
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(4.4.1)

The lower limit is zero because the residual properties of ideal gases are zero. Our
objective is to write the rhs of (4.4.1) as an integral over a measurable, and since our
equation of state has P independent, we choose P to be that measurable. Therefore, we
write (4.4.1) as

fixed T and {x} (4.4.2)

where π is the dummy integration variable that corresponds to the pressure. Equation
(4.4.2) serves as the starting point for evaluating any isobaric residual property from a

Figure 4.7 Steps involved in identifying the set of independent variables (T, P, {x}) or (T, v, {x})
to be used in computing conceptuals from PvTx equations of state (EoS)
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volume-explicit equation of state. In practice, we need to evaluate only three proper-
ties: the residual volume (vres), one first-law conceptual (ures or hres), and one second-
law conceptual (sres, ares, or gres); then the remaining residual properties can be com-
puted from Legendre transforms.

First-law properties. First note that we can obtain the residual volume by evaluating
v(T, P, {x}) directly from the volumetric equation of state, then

(4.2.2)

Second, since P is the independent variable, the appropriate first-law conceptual to
evaluate is the enthalpy. For the enthalpy, (4.4.2) becomes

(4.4.3)

The second equality is valid because the enthalpy of an ideal gas does not depend on
pressure. In § 3.3.3 we obtained the derivative in (4.4.3) in terms of measurables; so,
on substituting the intensive form of (3.3.35) into (4.4.3), we find

fixed T and {x} (4.4.4)

where α is the volume expansivity. This expression allows us to compute values for
the isobaric residual enthalpy from an equation of state of the form v(T, P, {x}). Note
that (4.4.4) applies to pure substances as well as to mixtures.

Second-law properties. With P as the independent variable, we could evaluate either
g or s as the second-law property; here we choose s. Then (4.4.2) becomes

(4.4.5)

With the help of the Maxwell relation (3.3.34), we find

fixed T and {x} (4.4.6)

Although each term in the integrand divergences in the P → 0 limit, those divergences
cancel, so the integral in (4.4.6) is bounded. Equation (4.4.6) provides a computational
route for obtaining the residual entropy from equations of state of the form v(T, P, {x});
it applies to pure substances as well as mixtures. With vres, hres, and sres now deter-
mined, the remaining residual properties, ures, gres, and ares, can be obtained from their
defining Legendre transforms.

vres T P x{ }, ,( ) v T P x{ }, ,( ) RT
P

--------–=

hres T P x{ }, ,( ) ∂hres

∂π
------------ 

 
Tx

πd
0

P

∫ ∂h
∂π
------ 

 
Tx

πd
0

P

∫= =

hres T P x{ }, ,( ) v 1 Tα–( ) πd
0

P

∫=

sres T P x{ }, ,( ) ∂sres

∂π
------------ 

 
Tx

πd
0

P

∫ ∂s
∂π
------ 

 
Tx

∂sig

∂π
--------- 

 
Tx

– πd
0

P

∫= =

sres T P x{ }, ,( ) vα R
π----– 

  πd
0

P

∫–=



 4.4   CONCEPTUALS FROM MEASURABLES USING EQUATIONS OF STATE 149

Residual chemical potential. For the chemical potential of component i in a mixture,
(4.4.2) becomes

(4.4.7)

Hence,

fixed T and {x} (4.4.8)

For a pure fluid, (4.4.8) simplifies to

fixed T (4.4.9)

In both (4.4.8) and (4.4.9), the two terms in the integrand cancel as P → 0, so no diver-
gence occurs in the ideal-gas limit.

Fugacity coefficient. To obtain computationally useful expressions for fugacity coeffi-
cients, we merely need to combine (4.4.8) with (4.3.19), which relates the fugacity coef-
ficient to the residual chemical potential. So for a mixture we have

fixed T and {x} (4.4.10)

while for a pure substance, combining (4.4.9) with (4.3.19) leaves

fixed T (4.4.11)

4.4.2 When T, v, and {x} Are Independent

When we have an equation of state in the form P(T, v, {x}), then the isometric residual
properties are easier to compute than are the isobaric ones. However, in applications,
we usually need the isobaric residual properties, not the isometric ones. We follow a
two-step procedure to obtain values for isobaric residual properties: (1) evaluate the
isometric residual properties from the integrals presented in this section, then (2) con-
vert those isometric properties to isobaric ones using the relations given in § 4.2.3.

The procedure for obtaining computationally useful expressions for isometric
residual properties parallels that used in § 4.4.1 for the isobaric properties. That is,
analogous to (4.4.2), we can obtain each residual property by starting from
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fixed T and {x} (4.4.12)

where ψ is the dummy integration variable that corresponds to the molar volume v
and the ideal-gas limit is attained as v → ∞. As in § 4.4.1, of the five conceptuals u, h, s,
a, and g, we actually only need to evaluate (4.4.12) for one first-law property and one
second-law property, then the others can be obtained from Legendre transforms.

First-law properties. With volume taken to be independent, the appropriate first-law
conceptual is the internal energy, and (4.4.12) becomes

(4.4.13)

Using the intensive form of (3.3.38) for the volume derivative of u, we find

fixed T and {x} (4.4.14)

where γv is the thermal pressure coefficient. This result applies to pure substances and
mixtures. Once we have a value for the isometric quantity ures from (4.4.14), we also
have the isobaric property ures, by (4.2.24).

Second-law properties. As the second-law property, we again choose s, so (4.4.12)
becomes

(4.4.15)

Using the Maxwell relation (3.3.37), we find

fixed T and {x} (4.4.16)

which applies to pure substances as well as mixtures. With a value for the isometric
sres from (4.4.16), we can obtain the corresponding value of the isobaric property sres

by applying (4.2.28). The isobaric vres can be obtained simply from (4.2.2). Then with
vres, ures, and sres now determined, the remaining isobaric residual properties, hres, gres,
and ares, can be obtained from their defining Legendre transforms.

Residual chemical potential. To obtain the isometric residual chemical potential, we
evaluate the general form (4.4.12) by integrating over either the intensive volume v or
the extensive volume V; we used the intensive volume above. But the following devel-
opment is somewhat easier if we use the extensive volume, so we rewrite (4.4.12) as
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(4.4.17)

where Ψ is the dummy integration variable that corresponds to the extensive volume
V. Using (4.2.19), we write

(4.4.18)

(4.4.19)

At first glance, the rhs of (4.4.19) appears peculiar because we have an intensive prop-
erty (pressure) responding to changes in the amount of material. But note the vari-
ables held fixed on the rhs—not the molar volume v, but the extensive volume V. For
example, if at fixed T we add to the amount of gas held in a rigid vessel (so V is fixed),
then P changes (usually it increases). So the derivatives on the rhs of (4.4.19) are well-
defined; in fact, for the ideal gas we have

(4.4.20)

Then we combine (4.4.17), (4.4.19), and (4.4.20) to obtain

fixed T and {x} (4.4.21)

where the integration is over the extensive volume (V ⇔ Ψ). With a value for the iso-
metric residual chemical potential from (4.4.21), we can obtain the corresponding
value for the isobaric property by applying (4.2.31). Equation (4.4.21) applies to mix-
tures and pure fluids, though for pure fluids it simplifies to

fixed T (4.4.22)

Fugacity coefficient. Substituting (4.4.21) into (4.2.31) gives the isobaric residual
chemical potential, then substituting that into (4.3.19) leaves

fixed T and {x} (4.4.23)
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For pure fluids this simplifies to

fixed T (4.4.24)

Note that the integrations for mixtures above must be done over the extensive volume
(V ⇔ Ψ); however, the integrations for pures can be done over either the extensive
volume V or the intensive volume (v ⇔ ψ).

4.5  SIMPLE MODELS FOR EQUATIONS OF STATE

The expressions for residual properties derived in § 4.4 all involve integrals over vari-
ous functions of the measurables P, v, T, and {x}. Therefore, to actually compute those
integrals, and hence to obtain numerical values for residual properties, we must have
numerical or analytic forms for volumetric equations of state. In this section we
present a few simple but important forms that model the nonideal-gas behavior of
real fluids: the hard-sphere fluid (§ 4.5.1), the virial equations (§ 4.5.2–4.5.5), and selec-
tions from the van der Waals family of equations (§ 4.5.6–4.5.12). These are not by any
means the only analytic forms available for equations of state, but they are enough to
allow us to exercise the relations given in the previous section and to obtain qualita-
tive descriptions of fluid behavior. A more thorough discussion of PvTx equations can
be found in books by Sandler et al. [3], Sengers et al. [4], and Poling et al. [11].

4.5.1 Hard Spheres

As the density of a fluid is decreased, the effects of forces between molecules weaken,
and the fluid behaves more like an ideal gas; that is, the behavior of real fluids may
simplify under extreme conditions. Another extreme occurs by making the tempera-
ture high, for then many simple fluids behave as if they were composed of hard
spheres:

fixed v (4.5.1)

In a hard-sphere fluid each molecule occupies space and the molecules exert forces on
one another, but those forces are purely repulsive and act only when spheres collide:
the spheres act like billiard balls. So the hard-sphere substance is an extreme model,
but under certain conditions it is more realistic than the ideal-gas model.

In a pure hard-sphere fluid, all spheres have the same diameter σ and the com-
pressibility factor Z depends on only the fluid density ρ = N/V, where N is the number
of spheres held in a vessel of volume V. For hard spheres, the density is convention-
ally cited in terms of the packing fraction η, which is the ratio of the volume of the
spheres to the volume of their container:

(4.5.2)
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where NA is Avogadro’s number. There is an upper bound on the value of η because a
rigid vessel can hold only a finite number of rigid spheres; in particular, voids
between closed-packed spheres make η < 1. The maximum packing fraction occurs
when the spheres form a face-centered cubic (fcc) lattice—the structure used by gro-
cers to stack oranges for display. (The hexagonal close-packed structure also gives the
same maximum density.) The maximum packing fraction is then

(4.5.3)

However, this maximum is for a solid phase, wherein spheres are so closely packed
that long-range order is preserved and there is little, if any, net diffusion of spheres.
For the pure hard-sphere fluid, the upper bound on η is even less; the fluid-solid phase
transition occurs at η = 2ηmax/3 = 0.494 [12]. For η ≤ 0.494 the substance is fluid and
long-range order is disrupted by molecular motions. Without attractive forces
between spheres, no vapor-liquid phase transition occurs and we refer to the material
at η < 0.494 as merely “fluid.” The hard-sphere phase diagram is shown in Figure 4.8.

Over the years numerous functional forms have been devised for the hard-sphere
compressibility factor Z(η). A simple yet accurate expression has been devised by Car-
nahan and Starling [13]:

η ≤ 0.494 (4.5.4)

Since η < 1, the hard-sphere Z is always greater than unity and as η → 0 this expres-
sion reduces to the ideal-gas value, Z = 1. 

Figure 4.8 Phase diagram for a pure substance composed of hard spheres. The fluid-phase Z
was computed from the Carnahan-Starling equation (4.5.4); the solid-phase Z was taken from
the computer simulation data of Alder et al. [14]. The broken horizontal line at Zη = 6.124 con-
nects fluid (η = 0.494) and solid (η = 0.545) phases that can coexist in equilibrium, as computed
by Hoover and Ree [12].
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By combining the Carnahan-Starling equation with the integral forms in § 4.4.2, we
can evaluate the residual properties of a pure hard-sphere fluid. The results are [15]

(4.5.5)

(4.5.6)

(4.5.7)

Note that since Z > 1, vres is always positive, while sres is always negative. With these
three residual properties, others can be obtained via Legendre transforms, and we
find that hres, ares, gres, and ln ϕi are always positive.

The Carnahan-Starling equation of state (4.5.4) has been extended by Mansoori et
al. [16] to binary mixtures of hard spheres having different diameters. Binary mixtures
of hard spheres exhibit fluid-solid phase transitions at packing fractions somewhat
larger than that for the pure substance; that is, at η > 0.5. The exact state for the transi-
tion depends on composition and on the relative sizes of the spheres. We expect the
density of the transition to increase as the size disparity increases; the limited com-
puter simulation data available support this expectation [17]. Certain kinds of hard-
sphere mixtures are the simplest substances to exhibit a fluid-fluid phase transition
[17], but those phase transitions are more like liquid-liquid than vapor-liquid. Ana-
lytic representations of the Z(η) for hard-sphere and other hard-body fluids have been
critically reviewed by Boublik and Nezbeda [18].

4.5.2 Virial Expansion in Density

Real fluids are neither ideal gases nor are they composed of hard spheres. But if the
density is low, a gas might be nearly ideal, or if the temperature is high, a gas might
behave somewhat like a fluid of hard spheres. In such cases the ideal-gas or hard-
sphere models may serve as references in expansions that approximate real behavior.
In this section we consider Taylor expansions (see Appendix A) of the compressibility
factor Z about that for the ideal gas. The expansions may be done using either density
or pressure as the independent variable; we introduce the density expansion first.

Consider a one-component gas at temperature T and molar density ρ = 1/v. At low
to moderate densities we write the compressibility factor as an expansion in ρ about
the ideal-gas value (ρ = 0):

fixed T (4.5.8)

Note that this expansion is performed along the isotherm T and each derivative is
evaluated in the ideal-gas limit. The derivatives are called virial coefficients
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(4.5.9)

(4.5.10)

and similarly for higher-order coefficients. Therefore, one form of the virial equation of
state is a power series in density

(4.5.11)

The virial coefficients are measurable state functions; for pure gases, they depend only
on temperature and are independent of density and pressure. 

The second virial coefficient is the limiting slope of an isotherm as the gas-phase
density approaches zero; this interpretation is illustrated in Figure 4.9. Different iso-

Figure 4.9 Second virial coefficients can be interpreted either as slopes or as intercepts. Top:
Compressibility factors for pure nitrogen gas at 200 K and 600 K [19]. At each temperature, B(T)
is the slope of the isotherm as ρ → 0. Bottom: The data replotted as (Z – 1)/ρ; now B(T) is the
intercept of an isotherm as ρ → 0. Points are data from [19]; straight lines are least-squares fits.
Note that B may be positive or negative.
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therms approach zero density in different ways, so B changes with temperature. At
low temperatures, attractive forces among molecules dominate repulsive forces so Z <
1 and B is negative. At high temperatures, repulsive forces dominate, Z > 1, and then
B is positive. Consequently, we expect B to be negative at low temperatures and to
increase with increasing temperature; this behavior is shown in Figure 4.10 for
helium. At very high temperatures B passes through a maximum and then decreases
to a finite positive value: some “softness” exists in short-range repulsive forces, which
reflects distortion of electron clouds. Note that while B changes sign, C remains posi-
tive over most temperatures of interest. 

The temperature at which B changes sign is called the Boyle temperature TB; it occurs
at roughly two-thirds of the critical temperature, TB/Tc ≈ 2/3. The Boyle temperature
is used in Figure 4.10 to make the plotted temperature dimensionless. To make B and
C dimensionless, we use the Boyle volume which is defined by [20]

(4.5.12)

Then in Figure 4.10 we use

      and       (4.5.13)

Real molecules have impenetrable cores (two molecules cannot occupy the same
space at the same time), so the high-temperature limit of B(T) is a finite value charac-
teristic of the size and shape of the core; for nearly spherical molecules, the value will
be that for an equivalent hard-sphere fluid. In practice, experimental data rarely

Figure 4.10 Temperature dependence of the second and third virial coefficients for pure
helium. Here B* = B/vB and C* = C/vB

2, where vB is the Boyle volume defined in (4.5.12) and TB
is the Boyle temperature. Data taken from Dymond and Smith [21].

vB TB Td
dB

 
 

TB

≡

B∗ B vB⁄= C∗ C vB
2⁄=

-2

-1

0

1

2

0.1 1 10 100

B
* 

an
d

 C
*

T/TB

C*

B*



 4.5   SIMPLE MODELS FOR EQUATIONS OF STATE 157

extend to sufficiently high temperatures to determine the limit. However for spherical
molecules, we can obtain the limiting value by substituting the hard-sphere equation
of state (4.5.4) into the definition of B (4.5.9), performing the differentiation, and tak-
ing the low density limit. The result is

(4.5.14)

or

(4.5.15)

Here σ is an effective hard-sphere diameter whose value depends on the kind of gas.
We construe another interpretation of B(T) by rearranging the equation of state

(4.5.11) and taking the ideal-gas limit; we find

fixed T (4.5.16)

This limit is illustrated in the bottom panel of Figure 4.9. Further, note that the lhs of
(4.5.16) is the same as the limit on the rhs of (4.3.4); hence, the second virial coefficient
is the low-density limit of the residual volume,

fixed T (4.5.17)

In a fashion similar to that for B(T), higher-order virial coefficients can be inter-
preted as limiting derivatives of the slopes of isotherms. For example, the third virial
coefficient C is the limiting slope of the slope. Consequently, as we move to higher
order, the virial coefficients become progressively more difficult to measure. More-
over, the effects of temperature on the higher order coefficients are more complicated
than that on B; for example, Figure 4.10 shows that when T is increased, C(T) quickly
increases, passes through a maximum, and slowly decays.

In addition to pure gases, the Taylor expansion (4.5.8) can be applied to gaseous
mixtures. The resulting form is still (4.5.11), but the virial coefficients now depend on
both temperature and composition. The composition dependence is rigorously
obtained from statistical mechanics; here we are interested only in the results. For a
mixture containing n components,

(4.5.18)

(4.5.19)
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The coefficients Bij and Cijk depend only on temperature; that is, all the composition
dependence of the mixture coefficients appears explicitly on the rhs of these equa-
tions. Those coefficients having the same indices, such as B22 and C111, are the pure-
component coefficients discussed earlier: their values are obtained from PvT measure-
ments on pure gases. However, those coefficients having different indices, such as B12,
are properties of the mixtures and their values must be obtained from measurements
on mixtures. These coefficients are often called the unlike interaction coefficients.

Nature does not know the labels that we have arbitrarily assigned to each compo-
nent (i = 1 or i = 2, etc.), so the coefficients must be invariant under permutations of
those labels; that is, we have Bij = Bji and similarly Cijk = Cikj = Cjik = Cjki = Ckij = Ckji.
Therefore, although the double sum for B in (4.5.18) contains n2 terms, the number of
unique terms is only n(n+1)/2. Likewise, the treble sum for C in (4.5.19) contains n3

terms, but only n(n+1)(n+2)/3! of them are unique.
Measurements of B(T) have been made for many pure gases and some mixtures;

some data also exist for C(T), but few experiments are accurate enough to provide
D(T) or higher coefficients. The existing data for B(T) and C(T) up to 2002 have been
critically compiled by Dymond et al. [22].

4.5.3 Virial Expansion in Pressure

As an alternative to using density as the independent variable in a virial equation of
state, we could use pressure. Then the Taylor expansion takes this form,

fixed T (4.5.20)

Again, this expansion is performed along an isotherm T and each derivative is evalu-
ated in the ideal-gas limit. These derivatives are defined to be the pressure-virial coeffi-
cients

(4.5.21)

(4.5.22)

So this second form of the virial equation of state is a power series in pressure

(4.5.23)

We can ascribe the same kinds of mathematical and physical interpretations to the
pressure coefficients as we did to the density coefficients, but the two sets of coeffi-
cients differ numerically. We can see this merely by considering units: the primed
coefficients have dimensions that are powers of P–1, while the unprimed coefficients
have dimensions in powers of ρ–1.
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But, although the two sets of coefficients differ, they are related. We can find the
relations by equating the two expansions (4.5.11) and (4.5.23), keeping all terms; that
is, at a particular state condition, the value of Z must be unaffected by whether we
represent it by the complete ρ-expansion or by the complete P-expansion,

(4.5.24)

Now either we use the ρ-expansion to eliminate P from the rhs, or else we use the P-
expansion to eliminate ρ from the lhs. Then we equate coefficients of terms having the
same order; the results are

(4.5.25)

(4.5.26)

So if we have the ρ-coefficients, we may compute the P-coefficients, and vice versa: we
need measure only one set of coefficients.

4.5.4 Truncated Virial Expansions

As implied by (4.5.24), the ρ-expansion and the P-expansion give the same value of Z
if all terms in both expansions are used. But in practice we do not have values for all
the coefficients; measurements have been done only for B(T) and perhaps C(T). There-
fore, we must use truncated versions of the virial equations. However, truncated ver-
sions of the ρ-expansion and the P-expansion behave differently: they may give
different values for Z. We consider four possible equations:

(4.5.27)

(4.5.28)

(4.5.29)

(4.5.30)

Which of these should we use? On both theoretical and experimental grounds, the
density expansion is preferred over the pressure expansion. The theoretical argument
is that statistical mechanics provides a rigorous derivation of the density expansion.
That derivation shows how the virial equation corrects for deviations from ideal-gas
behavior: the second virial coefficient B accounts for interactions between pairs of
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molecules, the third virial coefficient C accounts for interactions among triplets of
molecules, etc. In contrast, (4.5.26) shows that C′ combines effects from two-body and
three-body interactions.

The experimental argument is that, for a finite number of terms, the ρ-expansion is
more easily fit to experimental PvT data. This statement can be justified by comparing
plots of isotherms of Z vs. P with Z vs. ρ. The pressure plot will contain regions with
large slopes, while the density plot will show less drastic variations [20].

But aside from these theoretical and experimental considerations, there are practi-
cal ones concerning which truncated expansion is more accurate and which is easier
to use [10]. To address the question of accuracy, Figure 4.11 compares the four trun-
cated expansions (4.5.27–30) applied to one isotherm of carbon dioxide. Up to about
50 bar, the first-order equations (4.5.27) and (4.5.28) are equally reliable in reproducing
the experimental data; so which to use merely depends on whether we want ρ or P as
an independent variable.

Beyond about 50 bar, high accuracy demands the next term in each expansion; oth-
erwise, at high pressures, both first-order equations produce negative Z-values, with
the density expansion becoming negative at the lower pressure. With the third virial
coefficients included, the figure indicates that up to about 100 bar the two equations
are almost equally reliable. Beyond about 120 bar, the density expansion remains reli-
able, but the pressure expansion qualitatively fails: it misses the minimum in the iso-
therm and eventually it gives negative values for Z. This behavior is typical; that is,
beyond the second term, the density expansion is usually more reliable than the pres-
sure expansion. But we caution that, for a particular gas, the relative accuracy of the

Figure 4.11 Comparison of truncated virial equations applied to carbon dioxide at 350 K. The
critical point occurs near Tc = 304 K, Pc = 73.8 bar. Points are experimental data from Vargaftik
[19]. Values of B and C taken from Dymond and Smith [21]: B = –85.5 cc/mol and C = 3500 (cc/
mol)2. Z1 is first-order density expansion (4.5.27), Z2 is first-order pressure expansion (4.5.28),
Z3 is second-order density expansion (4.5.29), Z4 is second-order pressure expansion (4.5.30).
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two second-order expansions depends crucially on the values of C and C′—quantities
that may be difficult to measure or estimate accurately.

Finally, we emphasize that, even if we had several virial coefficients for a sub-
stance, the virial equations still only apply to gases and gas mixtures—both the den-
sity expansion and the pressure expansion fail to converge for liquids. Moreover, in
practice we can find data or correlations for, at most, B and C, so the expansions
should only be used for gases at low to moderate densities. 

4.5.5 Example

How do we use the virial equations to compute values for the residual properties of
gas mixtures? 

Consider gaseous mixtures of methane and sulfur hexafluoride at 60°C, 20 bar; we
want to compute ures, hres, and sres across the entire composition range. For these small
molecules at this modest pressure, the volumetric behavior is adequately represented
by the virial equation in the form

(4.5.31)

with B given by

(4.5.18)

The model (4.5.31) is simple enough that it can be written explicitly in both v and P, so
we can compare results for the isobaric residual properties with those for the isomet-
ric residual properties.

When T, P, and {x} are independent. The volume explicit form of the equation of
state (4.5.31) is

(4.5.32)

Therefore the residual volume is merely the second virial coefficient,

(4.5.33)

To evaluate other isobaric residual properties, we will need the state dependence of
the volume expansivity. Applying the definition (3.3.6) of α to the equation of state
(4.5.32), we find

(4.5.34)
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With the equation of state (4.5.32) and (4.5.34), we can evaluate the integral in
(4.4.4) to obtain the residual enthalpy,

(4.5.35)

The residual internal energy is then obtained from a Legendre transform,

(4.5.36)

Finally, we use (4.5.32) and (4.5.34) in (4.4.6) to obtain the isobaric residual entropy,

(4.5.37)

When T, v, and {x} are independent. The model (4.5.31) can be written in a pressure-
explicit form as

(4.5.38)

From this we can find the isometric residual pressure,

(4.5.39)

To evaluate other isometric residual properties, we will need the thermal pressure
coefficient (3.3.5). Applying its definition to the equation of state (4.5.38), we obtain

(4.5.40)

Now we can substitute (4.5.38) and (4.5.40) into (4.4.14) to obtain the isometric
residual internal energy,

(4.5.41)

This is the same as (4.5.36); that is, the isometric and isobaric internal energies are the
same. This was proved in (4.2.24). Similarly by (4.2.25), the isometric and isobaric
residual enthalpies are also the same,

(4.5.42)
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To obtain the isometric residual entropy, we substitute (4.5.40) into (4.4.16) and find

(4.5.43)

So the isobaric and isometric residual entropies differ by RlnZ, as required by (4.2.28).

Sample calculations for the equimolar mixture. To use the above expressions we
need values for B and its temperature derivative dB/dT. For CH4(1)-SF6(2) mixtures,
Dymond and Smith [21] give the experimental values of Bij in Table 4.2. The value of B
was then computed from (4.5.18) using x1 = x2 = 0.5, and the temperature derivative of
B was estimated as a central difference,

    (4.5.44)

With values from Table 4.2, we can compute residual properties for the equimolar
mixture at 60°C, 20 bar. The results are in Table 4.3. Plots of the residual properties
over the full composition range are presented in Figure 4.12.   

Table 4.2 Values of second virial coefficients for methane(1)-
sulfur hexafluoride(2) mixtures. Bij values from [21]. Values of
B and dB/dT are for equimolar mixtures.

313.15 K 333.15 K 353.15 K

B11 (cm3/mol) –37.9 –31.8 –26.6

B12 (cm3/mol) –85. –68. –57.

B22 (cm3/mol) –253. –223. –192.

B (cm3/mol) –115. –98. –83.

dB/dT (cm3/mol K) 0.80

Table 4.3 Residual properties for equimolar mixtures of
CH4-SF6 at 60°C, 20 bar, computed from virial equations

Property Value Equation

ures –534. J/mol (4.5.36) or (4.5.41)

hres –730. J/mol (4.5.35) or (4.5.42)

sres(T, P, {x}) –1.60 J/mol K (4.5.37)

sres(T, v, {x}) –1.00 J/mol K (4.5.43)

sres T v x{ }, ,( ) P
Td

dB
– R Zln–=

Td
dB ∆B

∆T
-------≈
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4.5.6 Van der Waals Equation of State

The ideal-gas law, hard-sphere equation of state, and virial equations all have rigor-
ous foundations in statistical mechanics. But they are so simple that none applies over
all fluid regions of the phase diagram; in particular, none of these apply to liquids or
very dense gases. The development of a widely applicable volumetric equation of
state is a formidable theoretical problem, because it must properly account for both
short-range repulsive forces and long-range attractive forces among the molecules.
We do not consider that problem in any detail here; instead, we must be content to
introduce a class of semitheoretical approximations (§ 4.5.8–4.5.9) that are based on
the equation originally devised by van der Waals.

Recall that the virial equations originate from Taylor expansions about the ideal
gas. Alternatives can be obtained by expanding, not about ideal gases, but about hard
spheres. Real fluids approach hard-sphere behavior in the isochoric high-temperature
limit (4.5.1), so we use the parameter β = 1/RT as the independent variable. Then on
truncating the expansion at first-order, we have

fixed ρ (4.5.45)

The first term on the rhs accounts for short-range repulsive forces among the mole-
cules, while the second term accounts for long-range attractive forces. We now seek
approximate forms for the temperature and density dependence of these two terms.

In the time of van der Waals (1870s) forms for the hard-sphere compressibility fac-
tor were unknown, and so he had to contrive an estimate. His approximation can be
rationalized as follows. First, consider the definition of the compressibility factor,

(4.5.46)

Figure 4.12 Dimensionless residual properties for gaseous CH4-SF6 mixtures at 60°C, 20 bar,
from the virial equation (4.5.31). It is an artifact of the model that ures/RT = sres(T, P, {x})/R.
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Since hard-sphere forces are purely repulsive (Zhs > 1), the ideal-gas volume must be
smaller than the hard-sphere volume to produce the same pressure at the same tem-
perature. So van der Waals wrote

van der Waals (4.5.47)

where ρ = 1/v and v is the molar volume of the hard-sphere fluid. The parameter b is
called the covolume; it measures the space that cannot be occupied by a molecular cen-
ter because that space is already occupied by other molecules (the so-called excluded
volume). Therefore, b attempts to correct the ideal-gas law for the fact that molecules
are not points. 

The covolume b depends on state condition and on the kinds of molecules. To
obtain a value for b, van der Waals devised an argument based in kinetic theory [23].
In practice, the covolume is usually taken to be a constant for a particular substance,
with its value obtained by a fit to experimental data. If we do take b to be constant, if
the molecules can be approximated as spheres, and if we want the equation of state to
reliably reproduce Z at low densities, then the covolume can be taken to be the hard-
sphere second virial coefficient,

(4.5.48)

Here σ is the diameter of one sphere, NA is Avogadro’s number, ρ is the molar density,
and η is the packing fraction (4.5.2). The derivation of (4.5.48) is straightforward and
is left as an exercise. Since the volume of one sphere is πσ3/6, (4.5.48) indicates that, at
low densities, the space excluded by one molecule is not merely the volume of that
molecule; rather, it is four times larger.

At this point, the equation of state has the form

(4.5.49)

To approximate the second term, we seek qualitative guidance from a simple virial
equation,

(4.5.50)

Taking the isochoric β-derivative, and recalling that B depends only on temperature,

(4.5.51)

We contrive a simple expression for the β-dependence of the second virial coefficient
by taking B(T) values for a simple gas and plotting them as B vs. β. We find that, over
most of the temperature range, B is roughly linear in β with a negative slope. So we
approximate the temperature dependence of B as a straight line in β,

Zhs
v

v b–
-----------
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1 bρ–
---------------= =
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(4.5.52)

Hence,

(4.5.53)

Combining (4.5.49), (4.5.51), and (4.5.53) yields the van der Waals equation [23, 24]

(4.5.54)

In the van der Waals model (4.5.54), the first term makes the compressibility factor
larger than the ideal-gas value to account for repulsive forces among the molecules.
The second term makes Z smaller, to account for attractive forces. So the two terms
compete in their effects on Z; one term or the other may dominate, depending on state
condition (T and ρ). In the low-density limit, the van der Waals equation collapses to
the ideal-gas law, while in the high temperature limit it approximates the hard-sphere
equation of state. Formally, the parameters a and b depend on state condition as well
as the kind of molecules, but in practice values for a and b are usually assumed to be
constant for a particular substance (see § 4.5.10).

4.5.7 Example

If a fluid has Z = 1, is it necessarily an ideal gas?

Consider the van der Waals equation (4.5.54), which we now write as

(4.5.55)

The issue is whether all residual properties are zero whenever Z = 1. To test this, con-
sider the residual internal energy, which can be obtained by using (4.5.55) in (4.4.14);
the result is

(4.5.56)

Then

(4.5.57)

When Z = 1, (4.5.57) reduces to (4.5.56),

Z = 1 (4.5.58)

and (4.5.55) gives

B aβ– c+≈

βd
dB

 
  a–=

Z 1
1 bρ–
---------------

aρ
RT
--------–=

Z 1 bρ
1 bρ–
---------------

aρ
RT
--------–+=

uvdw
res aρ–=

hvdw
res uvdw

res Pvvdw
res

+ aρ– RT Z 1–( )+= =

hvdw
res uvdw

res aρ–= =
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Z = 1 (4.5.59)

Combining (4.5.58) and (4.5.59) leaves

Z = 1 (4.5.60)

These residual properties are zero only at the one temperature T = a/bR. Hence in
general, the fluid is not an ideal gas, even though Z = 1. Note that in the ideal-gas limit
(ρ → 0), (4.5.55) has Z = 1, (4.5.56) has ures = 0, and (4.5.57) has hres = 0, as they should.

4.5.8 Redlich-Kwong Equation of State

The van der Waals equation is historically important because it was the first equation
of state to predict the vapor-liquid phase transition. However, although it is qualita-
tively informative, it is quantitatively unreliable, especially for dense fluids. The prin-
cipal use of the van der Waals equation has been as a starting point for devising more
reliable, and more complex, equations of state. Modified van der Waals equations
have been devised by the hundreds, most with only empirical justification. Here we
cite two important modifications.

Since van der Waals made approximations in arriving at both terms in his equation,
we have two kinds of possible improvements. Historically, more effort has been
devoted to the second term—the one that tries to account for attractive forces. At least
two corrections can be made to the attractive term.

First, we can improve on the approximation (4.5.52) that the second virial coeffi-
cient is linear in β; in fact, B is more nearly linear in β3/2, so we replace (4.5.52) with

(4.5.61)

which leads to

(4.5.62)

and our equation of state becomes

(4.5.63)

Second, we expect this improved attractive term to be most reliable at low densi-
ties, because it is based on the virial equation. To extend it to higher densities, we
could append more terms (terms that roughly correspond to higher-order terms in the
virial equation), but those extra terms would introduce more parameters in addition

ρ a bRT–
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-------------------=
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to a and b. Alternatively, we can hope to combine those missing additional terms by
resumming their effects into a single factor. There is no unique way to perform this
resummation and many forms have been tried. A particularly simple and successful
form has proven to be (1 + bρ)–1, perhaps because the desired resummation of omitted
terms can be approximated by

(4.5.64)

Our equation then has the form

(4.5.65)

If we adopt the original van der Waals form for Zhs, then we have the Redlich-Kwong
equation of state [25],

(4.5.66)

This development of the Redlich-Kwong equation is not a derivation, but only a
systematic rationalization of the modifications. The equation is noteworthy because it
provides substantial quantitative improvements over the original van der Waals equa-
tion. Nevertheless, Redlich himself remarked that there is no real theoretical justifica-
tion for the changes made in the attractive term [26]. Modern formulations of the
attractive term make the parameter a temperature dependent; examples are the Peng-
Robinson [27] and Redlich-Kwong-Soave [28] equations. For other forms, see [3, 4, 11].

4.5.9 Modified Redlich-Kwong Equation of State

We now consider modifications to the repulsive term in the van der Waals equation.
Although the van der Waals hard-sphere term is correct at low densities, Figure 4.13
shows that it quickly becomes erroneous as the density is increased: the excluded vol-
ume is not constant, but depends on density in some complicated way. Therefore we
can improve the equation of state by using the Carnahan-Starling form (4.5.4) for Zhs.
Our modified Redlich-Kwong (mRK) equation of state is then [29]

(4.5.67)

 
which is similar to the DeSantis equation [30]. If we use (4.5.48) to eliminate ρ in favor
of the packing fraction η as the density variable, then 

(4.5.68)
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Unlike the van der Waals and Redlich-Kwong equations, which are cubics in density,
this mRK equation is fifth-order. It is not unusual that improvements in accuracy are
accompanied by increases in algebraic complexity; here the complexity occurs
because we have combined a theoretically reliable repulsive term with an empirically
proven attractive term.

With expressions from § 4.4.2, we can use the modified Redlich-Kwong equation
(4.5.68) to obtain estimates for the residual properties of pure fluids. Those expres-
sions contain the two parameters a and b; the results for the isobaric residual proper-
ties are 

(4.5.69)

(4.5.70)

(4.5.71)

Other residual properties can be obtained via Legendre transforms. Note that in the
zero-density limit, these residual properties all go to zero, as they should. Further, in
the hard-sphere limit (a = 0) these expressions revert to the Carnahan-Starling expres-
sions (4.5.5)–(4.5.7), as they should.

Figure 4.13 At moderate to high densities, the van der Waals (vdW) approximation (4.5.47) to
the hard-sphere compressibility factor is in serious error when compared to the essentially
exact Carnahan-Starling (CS) expression (4.5.4).
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4.5.10 Parameters in Semitheoretical Models

We have now introduced three semitheoretical equations of state: van der Waals
(vdW), Redlich-Kwong (RK), and the modified Redlich-Kwong (mRK). Each contains
two parameters, a and b. For a particular pure gas, values for a and b can be obtained
by fitting to two or more experimental PvT points. Traditionally, however, values have
been obtained by matching the equation of state to the gas-liquid critical point, Tc, Pc,
and vc. At the critical point the critical isotherm passes through a point of inflection, so
we have the two conditions

and (4.5.72)

These provide two algebraic equations that can be solved simultaneously, yielding
expressions for a and b in terms of either Tc and vc or Tc and Pc. This procedure offers
at least two advantages: (1) The critical properties of many pure substances have been
measured [11] and if they have not been measured, they can be estimated by group
contribution methods [11]. (2) By forcing the equation of state to reproduce the critical
point, we ensure that the equation distinguishes the supercritical one-phase region of
the phase diagram from the subcritical two-phase region. However, these semitheo-
retical equations have been found to provide only semiquantitative descriptions of the
critical region itself [4].

The resulting expressions for a and b are given in Table 4.4 for each of the three
equations of state. Also given in the table are values of the critical compressibility fac-
tor Zc provided by each equation. Those values fall in the range 0.3 < Zc < 0.4, but for
fluids of small rigid molecules such as argon, oxygen, nitrogen, and methane, the
experimental value of Zc ≈ 0.29. Judging the three equations on just these values of Zc ,
we expect mRK to perform better than RK and, in turn, RK to be better than vdW.
Usually, this is so. However, each of these equations predicts that Zc will have the

Table 4.4 Expressions for parameters a and b in terms of critical
properties for three semitheoretical equations of state

vdW
(4.5.54)

RK
(4.5.66)

mRK
(4.5.67)

Zc 3/8 0.333 0.316

in terms of Tc and vc

b/vc 1/3 0.2599 0.3326

a/(vc RTc ) 9/8 1.2824 1.4630 

in terms of Tc and Pc

bPc /RTc 1/8 0.08664 0.1050

aPc /(RTc )2 27/64 0.4275 0.4619 

ρ∂
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same value for all substances, although in fact, Zc spans a range of values for different
materials, with most substances having Zc < 0.3.

We caution that the expressions in Table 4.4 for a(Tc, Pc) and b(Tc, Pc) are consistent
with those for a(Tc, vc) and b(Tc, vc) only for the value of Zc quoted in the table. If, as is
likely, a substance has some value of Zc other than the tabulated one, then values com-
puted for the parameters will differ, depending on whether the Tc-vc forms or the Tc-
Pc forms are used. For example, n-hexane has Zc = 0.26; consequently, for the Redlich-
Kwong equation,

    but    (4.5.73)

Similar discrepancies occur between a(Tc , vc) and a(Tc , Pc). In general, the parameter
values computed from Tc and Pc should be used rather than those from Tc and vc [31].
 

4.5.11 Comparisons of Results from vdW, RK, and mRK Equations

We now show predictions of the compressibility factor for pure carbon dioxide along
two isotherms, one supercritical and the other subcritical. All results shown here used
values of a and b computed from Tc and Pc . Figure 4.14 shows the results for the
supercritical isotherm, T = 350 K. Up to about 75 bar, the three equations are all in
good agreement with experiment, indicating that, at least at this temperature, all three
satisfactorily estimate the second virial coefficient. However, for P > 100 bar, errors in

Figure 4.14 Comparison of the van der Waals (vdW), Redlich-Kwong (RK), and modified
Redlich-Kwong (mRK) equations for predicting the compressibility factor of carbon dioxide
along the supercritical isotherm T = 350 K. For each equation the parameters a and b were com-
puted from expressions in Table 4.4, using Tc = 304.2 K and Pc = 73.82 bar. Points are experimen-
tal values taken from Vargaftik [19].
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the vdW equation become substantial and for P > 170 bar they are intolerable. In con-
trast, the RK form is qualitatively reliable up to 175 bar, while the mRK form remains
quantitatively reliable to 250 bar.

Figure 4.15 shows a similar comparison along the subcritical isotherm 273.15 K. For
the vapor phase the three equations are about equally reliable, but for the liquid the
three differ substantially. For the liquid, values of Z from the vdW equation exceed
unity and therefore do not appear on the plot. Values from RK have the correct slope
but are too large by factors of 3 to 4. The mRK equation performs better than the oth-
ers, but it underestimates Z with errors reaching a factor of 2 at 100 bar. 

We emphasize that for these comparisons, the equation-of-state parameters were
obtained from Tc and Pc ; none of the equations were fit to any data on either isotherm.
Considering its simplicity, the mRK equation is a remarkable improvement over the
older cubic forms. But it is still only a qualitative guide for the high-pressure liquid:
reproducing the behavior of both liquid and dense-gas phases of polyatomic sub-
stances is too much to expect of any simple, two-parameter equation of state. But for
another perspective on this issue, see Gregorowycz et al. [32].

4.5.12 Mixtures

Lastly we note that extending semitheoretical equations of state to mixtures is not
straightforward because we have no theoretical guidance as to how parameters, such

Figure 4.15 Same as Figure 4.14, but for carbon dioxide along the subcritical isotherm T =
273.15 K. Broken vertical line indicates the vapor pressure 34.84 bar at 273.15 K. Points are
experimental values taken from Vargaftik [19]. The vdW results for the liquid phase all have Z
> 1 and therefore are not shown. These curves were computed by setting T and v to their exper-
imental values and solving each empirical equation for P, and hence Z. The comparisons differ
significantly if, instead, experimental values for T and P are specified and the equations are
solved by trial for v.
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as a and b, depend on composition. This situation differs from that for the virial equa-
tions, for statistical mechanics tells us exactly how the virial coefficients depend on
composition. For semitheoretical equations we are forced to guess the composition
dependence of the parameters. Usually such guesses are in the form of mixing rules, in
which mixture parameters are prescribed as some composition-dependent functions
of the pure-component parameters; for example, we might try simple mole fraction
averages of the pure parameters:

(4.5.74)

(4.5.75)

But these mixing rules are not particularly reliable, motivating searches for better rela-
tions; as usual, improvements in reliability are purchased at the price of increased
complexity. For example, one improvement is a set of “van der Waals” mixing rules in
which (4.5.75) is retained for b, but a is obtained from

(4.5.76)

where each sum runs over all components. Here aii = apure i, but an additional pre-
scription is needed to obtain aij  when j ≠ i. Other mixing rules are discussed in [11].

It is conventional to estimate values for unlike parameters (such as aij) by combin-
ing the pure-component parameters (aii = apure i and ajj = apure j); such prescriptions
are called combining rules. One choice is a simple arithmetic average,

(4.5.77)

But when this is inserted into (4.5.76), we merely recover the simple mixing rule
(4.5.74). An alternative is a geometric mean,

(4.5.78)

Substituting this into (4.5.76) yields

(4.5.79)

Note that mixing rules depend on composition, but combining rules do not.
These kinds of empirical prescriptions often work reasonably well for properties of

gas mixtures at low to moderate pressures. But for gases at high pressure, liquids, and
phase-equilibrium calculations, further complications may be needed. One strategy is
to introduce an adjustable parameter kij , so the combining rule (4.5.78) becomes
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(4.5.80)

Values of kij are usually small and positive (between 0.0 and 0.2); they may be
assumed constant or they may be allowed to depend on temperature. They are best
obtained by fitting experimental data: small variations in the value of kij can drasti-
cally affect the values of some properties, such as liquid-phase fugacity coefficients.

Note that for correlating or predicting properties of mixtures, we invoke approxi-
mate models at several different conceptual and computational levels: model equa-
tions of state, mixing rules, combining rules, adjustable parameters. Consequently, the
possible combinations are numerous and the resulting complications can become sub-
tle. All mixing rules and combining rules are essentially ad hoc and their use can lead
to vagaries that are vexing.

4.6  SUMMARY

In this chapter we have developed ways for computing conceptual thermodynamic
properties relative to well-defined states provided by the ideal gas. We identified two
ways for measuring deviations from ideal-gas behavior: differences and ratios. Rela-
tive to the ideal gas, the difference measures are the isobaric and isometric residual
properties, while the ratio measures are the compressibility factor and fugacity coeffi-
cient. These differences and ratios all apply to the properties of any single homoge-
neous phase (liquid or gas) composed of any number of components.

We then developed equations for computing the difference and ratio measures
from the measurables P, v, T, and x. Data for these measurables are correlated by some
volumetric equation of state, usually an analytic equation explicit in pressure P(v, T,
{x}) or explicit in volume v(P, T, {x}). So the equations we derived for the conceptuals
all involve integrals over appropriate functions of the equation of state. Then, in the
last section of the chapter, we presented a few simple models for equations of state;
these models are sufficient to illustrate the problems that arise both in trying to use
simple analytic functions to represent volumetric data and in evaluating the integrals
that provide values for conceptual properties.

We emphasize that the difference and ratio measures are means, not ends. That is,
in a thermodynamic analysis of a process, the goal is not to determine a value for a
residual property itself; instead, the determination of a residual property is an inter-
mediate step in computing how a conceptual responds to a change of state. To deter-
mine how a total property F changes from state 1 to state 2, we would write

(4.6.1)

where terms on the rhs are evaluated from a PvTx equation of state and ideal-gas heat
capacities. Similarly, when fugacity coefficients occur in problem descriptions, the
goal is not to obtain values for fugacity coefficients, but rather to use them to obtain
values for fugacities,

(4.6.2)

aij 1 kij–( ) aii a jj=

∆F12 ∆F12
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+=
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In this chapter we have taken a significant and substantial step away from the for-
mal thermodynamics of Part I toward the practical use of thermodynamics contained
in Part IV. As we journey from Part I to Part IV, it is important to continually distin-
guish the approximations from the things that are rigorously correct. In this chapter
the difference and ratio measures are all rigorous, because they are merely definitions.
In addition, the relations that connect those deviation measures to measurables are
also rigorous: no approximations or simplifying assumptions underlie any of the inte-
grals appearing in § 4.4. Approximations occur when we use a model (such as an
equation of state) to represent experimental data for measurables. And, of course,
when we combine an approximate model with a rigorous integral for a conceptual,
the result is an approximate value for the conceptual.

This illustrates an important advantage that accrues in working with conceptual
properties: by constructing unambiguous definitions, we can devise computationally
viable schemes of analysis without sacrificing thermodynamic rigor. Our computa-
tional procedures can therefore be exact, and uncertainties arise only when we imple-
ment the procedure; that is, when we choose a model to represent experimental data.
Such a strategy limits the possible sources of error to clearly identifiable portions of an
analysis. 

It then becomes a matter of engineering judgement as to which model should be
used in a particular situation. For example, we want to balance computational com-
plexity against numerical reliability, but there are other concerns, such as the avail-
ability of experimental data. The proper exercise of engineering judgement is crucial
to success in applying thermodynamics to real processes, and therefore it is an issue
we will address repeatedly. In fact, if a situation is misjudged, causing an inappropri-
ate model to be used, then even though the computational procedure is exact, the
advantages of thermodynamic rigor are lost and the results are unreliable.
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PROBLEMS

4.1 Use the fundamental equations with the Maxwell relations (3.3.34) and (3.3.37) to
show that, for ideal gases, neither U nor H changes (a) with isothermal changes
in pressure nor (b) with isothermal changes in volume.

4.2 Derive (4.1.7) which gives the response of the entropy of an ideal gas when both
T and P are changed at constant mass.

4.3 A mixture of ideal gases is to expand adiabatically from 5 bar, 100°C to 20°C.
Which mixture would produce the larger amount of work: an equimolar mixture
of methane and ethane or an equimolar mixture of ethane and propane? The
pure component heat capacities obey [11]

with T in K  (P4.3.1)

4.4 For a pure ideal gas, sketch a temperature-entropy diagram that contains isobars
and isenthalps.

A B(103) C(105) D(108) E(1011)

methane 4.568 –8.975 3.631 –3.407 1.091

ethane 4.178 –4.427 5.660 –6.651 2.487

propane 3.847 5.131 6.011 –7.893 3.079

cp
ig R⁄ A BT CT2 DT3 ET4

+ + + +=
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4.5 In a certain plant, a continuous isothermal-isobaric process is needed for extract-
ing pure ethane from ethane-methane mixtures at 1 bar, 300 K. The gases may be
assumed to be ideal with heat capacities given in Problem 4.3.
(a) For an equimolar mixture flowing at two mol/s, what would be the mini-

mum rate of work needed to achieve a complete separation into the pure
components? How much heat would have to be transferred? Would the heat
have to be added or removed from the system?

(b) Repeat part (a) for a mixture composed of 90 mole% methane, flowing at 10
mol/s.

(c) Note that the processes in (a) and (b) both produce one mol/s of pure ethane,
yet, even for ideal gases, the two processes require different amounts of
work. What do these results suggest about diluting substances in one part of
a process if they must be purified later?

4.6 A spherical weather balloon is filled at ground-level (1 bar, 300 K) with 1 m3 of
helium. (a) What would be the diameter of the balloon at an altitude of 4 km,
where T = 260 K and P = 0.8 bar? (b) What would be the diameter in (a) if the bal-
loon were filled with hydrogen rather than helium? (c) What would be the differ-
ence in maximum masses that the hydrogen and helium balloons could lift in air
to 4 km?

4.7 Determine the difference, if any, between each of the following pairs of deriva-
tives. In each case, your result should be expressed in terms of measurables,
including perhaps measurable response functions:

(a)     and   

(b)      and    

(c)     and   

4.8 Determine expressions for the isobaric residual properties ures, hres, sres, and gres

for a pure gas that obeys the virial equation Z = 1 + Bρ + Cρ2.

4.9 Use data from steam tables to estimate the values of the fugacity for saturated
liquid water and saturated steam, both at the normal boiling point.

4.10 Compute and plot the fugacities f1(x1) and f2(x1) over the entire composition
range for binary mixtures of carbon tetrachloride(1) and sulfur hexafluoride(2) at
271.6 K and 20 bar. Make one plot for each component. On each plot show curves
produced from each of the following assumptions: (a) the mixture is an ideal gas,
(b) the mixture is nonideal but obeys Z = 1 + BP/RT. The expression for the par-
tial molar volume is given in Problem 4.23. Values of the Bij for this mixture are
B11 = –112.4 cc/mol, B22 = –339 cc/mol, and B12 = –193 cc/mol.

P∂
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 
 
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4.11 (a) For a pure gas that obeys the simple virial equation Z = 1 + BP/RT, show that
the fugacity coefficient is given by

(P4.11.1)

(b) For a binary gas mixture that obeys Z = 1 + BP/RT, show that the fugacity
coefficient of component 1 is given by

(P4.11.2)

where B is the mixture second virial coefficient (4.5.18). The partial molar vol-
ume for this situation is given in Problem 4.23.

4.12 Consider a binary mixture of components 1 and 2. 
(a) Prove that at fixed T and P, if the fugacity of one component passes through

an extremum with mole fraction x1, then the fugacity of the other component
also passes through an extremum at the same value of the mole fraction. 

(b) For the same conditions as in (a), prove that the two components have oppo-
site extrema; e.g., if one is a maximum, then the other must be a minimum.

4.13 Determine a reliable estimate for the maximum work that could be obtained
when one mole of pure methane, initially at 25°C, 30 bar, adiabatically expands
to twice its original volume. Assume for these conditions that methane obeys the
model Z = 1 + BP/RT, with

(P4.13.1)

where TR = T/Tc. For the ideal-gas heat capacity, you may assume cp is indepen-
dent of temperature, with cp = 19R/4. Methane has Tc = 190.6 K and Pc = 46 bar.

4.14 (a) Starting from the mixture expression for the fugacity coefficient (4.4.10),
derive the pure-fluid expression (4.4.11).

(b) Starting from the mixture expression for the fugacity coefficient (4.4.23),
derive the pure-fluid expression (4.4.24). 

4.15 At moderate pressures methane obeys Z = 1 + BP/RT, with B = a – b/RT and a =
0.043 m3/kmol, b = 2.29(106) MPa m6/kmol2. At very low pressures, the methane
heat capacity obeys cp = α + βT, with α = 19.87 kJ/(K kmol) and β = 0.05 kJ/(K2

kmol).
(a) Based on this information, obtain an expression for the T and P dependence

of cp that would apply at moderate pressures.
(b) Compute the adiabatic power required to continuously change 1 kmol/s of

methane from 290 K, 5 bar to 350 K, 20 bar.
(c) What fraction of your answer in (b) comes from residual contributions?

ϕln BP
RT
--------=

ϕ1ln P
RT
-------- B– 2 x1 B11 2 x2 B12+ +( )=

BPc

RTc
---------- 0.083 0.422

TR
1.6

-------------–=
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4.16 Samples of two pure gases, one containing N1 moles and the other N2, are ini-
tially both at To, Po. The gases are mixed and, by a sequence of heat and work
effects, are brought to a final state at T, P. The pure gases and their mixtures obey
Z = 1 + BP/RT, with Bij = aij – bij/T2 for T in K The pure ideal-gas heat capacities
can be correlated by cp/R = αi + βiT with T in K. The parameters aij, bij, αi, and βi
are all constants, independent of state. 

(a) Obtain expressions for the changes in U and S for the process.

(b) You need to perform this process under the following conditions: N1 = 1
kmol, N2 = 2 kmol, To = 300 K, Po = 5 bar, T = 400 K, and P = 1 bar. Parameter
values: α1 = α2 = 3, β1 = 0.01/K, β2 = 0.005/K, a11 = 0.2 m3/kmol, a22 = 0.1
m3/kmol, b11 = 1.25(105) m3 K2/kmol, b22 = 1(105) m3 K2/kmol. The mixture
also has B12 = (B11 + B22)/2. To design equipment for performing such a pro-
cess, you would like to know the minimum energy requirements; that is, you
would like to compute the reversible heat and work effects. Show whether
this problem is well-posed; that is, show whether enough information is
known to enable you to compute Qrev and Wrev. If the problem is well-posed,
use your results from (a) to compute the Qrev and Wrev . If not, what other
information would you need?

4.17 For a pure gas that obeys the truncated virial equation, Z = 1 + BP/RT, show
whether or not the internal energy changes (a) with isothermal changes in pres-
sure and (b) with isothermal changes in volume.

4.18 Pure carbon dioxide is to be compressed, reversibly and isothermally, from 1 bar,
350 K to 200 bar. At 350 K CO2 has B = –85.5 cc/mol and C = 3500 (cc/mol)2.
Compute the work required using each of the following equations of state: 

(a) ideal-gas law

(b) Z = 1 + BP/RT

(c) Z = 1 + Bρ + Cρ2

(d) Z = 1 + B′P + C′P2

4.19 Use each of the following equations of state to estimate the density of an equimo-
lar gaseous mixture of carbon tetrachloride(1) and sulfur hexafluoride(2) at 271.6
K and 75 bar. At 271.6 K the third virial coefficients are C111 = 7620 (cc/mol)2,
C222 = 18,640 (cc/mol)2, C112 = 10,260 (cc/mol)2, and C122 = 14,530 (cc/mol)2. Val-
ues for the second virial coefficients are given in Problem 4.10.

(a) ideal-gas law

(b) Z = 1 + BP/RT

(c) Z = 1 + Bρ + Cρ2

(d) Z = 1 + B′P + C′P2

4.20 Use the fact that the critical isotherm passes through a point of inflection at the
critical point (4.5.72) to derive all the expressions in Table 4.4 for the parameters a
and b in the following equations of state: (i) van der Waals, (ii) Redlich Kwong,
and (iii) modified Redlich-Kwong.
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4.21 Show that the van der Waals equation of state gives ures = –aρ for a pure fluid.
Here ρ is the molar density while a is the parameter in the equation of state and is
assumed to be constant. What is the significance of the sign of ures? What is the
ideal-gas limit for the van der Waals expression for ures?

4.22 A stream of pure ethylene is to be cooled from 100°C to 25°C in a single-pass,
counter-flow, tube-in-shell heat exchanger. The gas enters the tube at 25 bar and a
volumetric flow rate of 3 m3/min. Cooling water is available at 20°C and can be
heated no more than 10 C°. The heat exchanger is well-insulated. Determine the
required flow rate of cooling water for the following cases:

(a) Assume ethylene is an ideal gas with

(P4.22.1)

and A = 1.424, B = 0.0144, C = –4.39(10–6).

(b) Assume ethylene still has the heat capacity (P4.22.1), but now it obeys Z = 1 +
BP/RT with B given by the Pitzer correlation [33],

(P4.22.2)

(P4.22.3)

(P4.22.4)

where TR = T/Tc, Tc = 282.4 K, Pc = 50.4 bar, and acentric factor ω = 0.085.

4.23 For a multicomponent gas mixture that obeys Z = 1 + BP/RT, show that the par-
tial molar volume of component i is given by

(P4.23.1)

where the sum runs over all components.

4.24 Use the Carnahan-Starling equation 

(a) To derive (4.5.6) for the residual internal energy for a pure hard-sphere fluid.

(b) To derive (4.5.7) for the residual entropy for a fluid of pure hard spheres.

4.25 Estimate the volume required of a rigid tank to store one kilogram of gaseous
propane at 25 bar, 100°C. Use (a) the Redlich-Kwong equation and (b) the modi-
fied Redlich-Kwong equation. Propane has Tc = 369.9 K, Pc = 42.5 bar, and molec-
ular weight = 44.1.

cp
ig R⁄ A BT CT2

+ +=

BPc

RTc
---------- Bo ωB1+=

Bo 0.083 0.422

TR
1.6

-------------–=

B1 0.139 0.172

TR
4.2

-------------–=

Vi
RT
P

-------- B– 2 xkBik
k

∑+=



182 PROPERTIES RELATIVE TO IDEAL GASES

4.26 Show that the van der Waals covolume b is the same as the hard-sphere second
virial coefficient Bhs; that is, derive (4.5.48). To do so, rearrange the van der Waals
estimate of Zhs (4.5.47) to find

(P4.26.1)

and compare with Bhs from the virial equation written for hard spheres.

4.27 For pure substances that obey the Redlich-Kwong equation of state, derive the
following expressions for isobaric residual properties:

(a)

(b)  

(c)  

(d)  

4.28 (a) Consider a pure fluid of hard spheres that obeys the Carnahan-Starling equa-
tion (4.5.4). Show that such a fluid always has positive values for the residual
properties hres and gres and a positive value for ln ϕ.

(b) Show that the van der Waals equation of state gives cv = cv(T) but it also gives
cp = cp(T, P).

4.29 The Joule-Thomson (J-T) expansion, introduced in Problem 3.25, is characterized
by the J-T coefficient, µ = (∂T/∂P)h. 

(a) Evaluate µ for a pure fluid that obeys the Redlich-Kwong equation.

(b) What is the physical significance of states at which µ > 0? Of µ < 0? 

(c) The J-T inversion temperature is the temperature at which µ changes sign;
i.e., at which µ = 0. Use the Redlich-Kwong equation to obtain an expression
for the inversion temperature as a function of molar volume.

4.30 Consider a binary gas that obeys the virial equation Z = 1 + Bρ. 

(a) Under what conditions, if any, will work have to be done on the gas in order
to add a small amount (x3 < 10–4) of a third component at fixed T and P?

(b) Under what conditions, if any, will the fugacity of this dilute component pass
through an extremum as P is increased with T and {x} fixed?

(c) Repeat (a) and (b) for gases that obey Z = 1 + Bρ + Cρ2.
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4.31 This exercise illustrates one approach commonly used in developing thermody-
namic models: a reliable functional form for a property of one substance is
extended to a class of substances by parameterizing in terms of critical proper-
ties, and perhaps improved somewhat by curve fitting. Use the Redlich-Kwong
equation of state to obtain an expression for the temperature dependence of the
second virial coefficient. Then use the relations a(Tc, Pc ) and b(Tc , Pc ) from Table
4.4 to replace the equation of state parameters a and b with critical properties.
Show that your result can be expressed in reduced form as

(P4.31.1)

where TR = T/Tc is the reduced temperature. Now using this form as a guide, we
generalize by writing

(P4.31.2)

We then obtain values of the parameters α, β, and γ by a least squares fit to B(T)
data for gases composed of small rigid nonpolar molecules. Using the numerical
values in (P4.31.1) as initial guesses in the fit, the result is the expression for Bo
given by the Pitzer correlation in Problem 4.22.

BPc

RTc
---------- 0.08664 0.4275

TR
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n Chapter 4 we used differences and ratios to relate the conceptuals of real sub-
stances to those of ideal gases. To compute values for those differences and ratios,

we use the equations given in § 4.4 together with a volumetric equation of state. Such
equations of state are available for many mixtures, particularly gases; however, few of
those equations reliably correlate properties of condensed-phase mixtures. Although
some equations of state reproduce the behavior of condensed phases of complex sub-
stances, those equations are complicated and applying them can require considerable
computational skill and resources. This is particularly true when we attempt to apply
equations of state to mixtures of liquids.

Therefore we seek ways for computing conceptuals of condensed phases while
avoiding the need for volumetric equations of state. One way to proceed is to choose
as a basis, not the ideal gas, but some other ideality that is, in some sense, “closer” to
condensed phases. By “closer” we mean that changes in composition more strongly
affect properties than changes in pressure or density. The basis exploited in this chap-
ter is the 

 

ideal solution

 

. We still use difference measures and ratio measures, but they
will now refer to deviations from an ideal solution, rather than deviations from an
ideal gas.

We start the development in § 5.1 by defining ideal solutions and giving expres-
sions for computing their conceptual properties. In § 5.2 we introduce the excess
properties, which are the differences that measure deviations from ideal-solution
behavior, and in § 5.3 we show that excess properties can be computed from residual
properties. In § 5.4 we introduce the activity coefficient, which is the ratio that mea-
sures deviations from ideal-solution behavior, and in § 5.5 we show that activity coef-
ficients can be computed from fugacity coefficients. This means that deviations from
ideal-solution behavior are formally related to deviations from ideal-gas behavior, but
in practice, one kind of deviation may be easier to compute than the other. Tradition-
ally, activity coefficients have been correlated by fitting excess-property models to
available experimental data; simple forms for such models are introduced in § 5.6.
Those few simple models are enough to allow us to exercise many of the relations pre-
sented in this chapter; however, more thorough discussions of models for excess prop-
erties and activity coefficients must be found elsewhere [1, 2].

I

 

IDEAL SOLUTIONS
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We define an ideal solution to be a mixture in which the molecules of different species
are distinguishable (they have different masses or different structures or both); how-
ever, unlike the ideal gas, the molecules in an ideal solution exert forces on one
another. When those forces are the same for all molecules, independent of species,
then a solution is said to be ideal. This insensitivity to differences in molecular interac-
tions does not mean that all properties are independent of composition (even in ideal-
gas mixtures, most properties change with composition), but it does mean that when
ideal-solution properties change with composition, they do so in regular ways. No
real mixture is truly ideal, although many real mixtures are nearly ideal when they
contain only molecules that are structurally similar; this includes isotopic mixtures
(H

 

2

 

O + D

 

2

 

O), mixtures of components from a homologous series (methanol + ethanol
+ propanol), and mixtures of components that have a dominant structural characteris-
tic, such as the aromatic ring in mixtures of benzene + toluene. Note that this defini-
tion does not restrict us to a particular phase; that is, gases may form ideal solutions.
But the common use of this approach is for condensed phases—liquids and solids.

When intermolecular forces are independent of composition, each fugacity devi-
ates from its ideal-gas value by an amount that is also independent of composition.
This means each ideal-solution fugacity coefficient does not depend on composition,

(5.1.1)

Since the ideal-gas fugacity is linear in the mole fraction 

 

x

 

i

 

 while  is independent of
mole fraction, the ideal-solution fugacity must also be linear in 

 

x

 

i

 

. We write that lin-
earity in this form:

(5.1.2)

where the proportionality constant  is the fugacity of the pure component in some
well-defined 

 

standard state.

 

*

 

 We denote standard-state properties with a superscript 

 

o

 

.
The standard-state temperature is always taken to be the mixture temperature 

 

T

 

, but
the standard-state pressure  need not be the same as that of the mixture. Further,
the value of  may be allowed to change when the mixture 

 

P

 

 changes, and we may
choose different standard-state pressures for different components 

 

i

 

. 
The linear form (5.1.2) is the simplest expression that can be devised for the compo-

sition dependence of a fugacity, and in fact (5.1.2) can be considered to be a thermody-
namic definition of 

 

ideal solution

 

. Even the ideal-gas mixture, for which = 1, is a
special kind of ideal solution; that is, the ideal-gas fugacity takes the form (5.1.2) with

 

*

 

  

 

Standard state

 

 (o) is a district in the land of 

 

reference states

 

 (®). In contrast to the definition given above for
standard state, a reference state (introduced in § 4.3.2) is any well-defined state with respect to which values
of conceptuals are computed: a value for a reference-state property amounts to a lower limit on an integral
that gives a change in a conceptual. For example, reference states are used in obtaining the values for 

 

u

 

, 

 

h

 

,
and 

 

s

 

 that appear in steam tables. Reference states may be pure states or mixtures, so their property values
may depend on composition. We caution that some authors make other distinctions between standard state
and reference state; and some use these two terms synonymously. 
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 But real mixtures (nonideal solutions) have fugacities that are
necessarily more complicated functions of composition than (5.1.2). Historically, the
expression (5.1.2) was useful because a value for the standard-state fugacity  can be
extracted from experimental data without appealing to a volumetric equation of state.
But this advantage is becoming less important as more equations of state are being
devised for correlating the 

 

PvTx

 

 behavior of liquids, as well as dense gases. 
On combining (5.1.2) with (5.1.1) we find

(5.1.3)

This shows that, although the ideal-solution fugacity coefficient is independent of
composition, it does depend on the choice made for the standard state. Consequently,
the ideal-solution fugacity coefficient is not the same as the standard-state fugacity
coefficient unless we choose  That is, in general

(5.1.4)

 Many choices for the standard state are possible, and in fact, we need not even
choose the same standard state for all species in a mixture. But to have an example for
use throughout this chapter, we introduce the most common choice: the 

 

Lewis-Randall
rule

 

 [3], in which the standard state for each component is taken to be the pure sub-
stance in the same phase and at the same 

 

T

 

 and 

 

P

 

 as the mixture. With this choice,
each standard-state fugacity is given by

(5.1.5)

and the ideal-solution fugacity in (5.1.2) becomes

(5.1.6)

We refer to such a mixture as a 

 

Lewis-Randall ideal solution

 

.

 

5.1.1 Partial Molar Properties of Lewis-Randall Ideal Solutions

 

To obtain expressions for the partial molar properties of ideal solutions, we first deter-
mine the chemical potential. Using the ideal-solution fugacity (5.1.6) in the integrated
definition of fugacity (4.3.12) we find

(5.1.7)

For a Lewis-Randall ideal solution,  is the molar Gibbs energy of the pure compo-
nent at the mixture 

 

T

 

 and 

 

P

 

. The derivatives of  given in § 3.4.3 provide other prop-
erties; for example, the temperature and pressure derivatives of (5.1.7) produce the
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partial molar entropy and volume, respectively. Further, the Gibbs-Helmholtz equa-
tion (3.4.17) applied to (5.1.7) gives the partial molar enthalpy. Then the remaining
properties can be found from their defining Legendre transforms. The results fall into
two classes: those for first-law properties and those for second-law properties. 

The partial molar results for first-law properties are independent of composition:
these properties are simply the values of the corresponding first-law properties of the
pure component in its standard state:

(5.1.8)

(5.1.9)

(5.1.10)

In contrast, partial molar results for second-law properties depend on composition
through entropy of mixing terms:

(5.1.11)

(5.1.12)

(5.1.13)

Note that each second-law property diverges in the dilute-solution limit (

 

x

 

i

 

 

 

→

 

 0). Note
also that each expression in (5.1.8)–(5.1.13) has the 

 

same

 

 functional form as the corre-
sponding expression for an ideal-gas mixture (cf. § 4.1.3). 

 

5.1.2 Total Properties of Lewis-Randall Ideal Solutions

 

With the partial molar properties now known, expressions for the total properties of
ideal solutions can be formed from the generic relation between a mixture property
and its corresponding component partial molar properties:

(3.4.4)

Again, the results divide into expressions for first-law properties,

(5.1.14)

(5.1.15)

Vi
is

T P,( ) vi
o T P,( )=

Ui
is

T P,( ) ui
o T P,( )=

Hi
is

T P,( ) hi
o T P,( )=

Si
is

T P x{ }, ,( ) si
o T P,( ) R xiln–=

Gi
is

T P x{ }, ,( ) gi
o T P,( ) RT xiln+=

Ai
is

T P x{ }, ,( ) ai
o T P,( ) RT xiln+=

f T P x{ }, ,( ) xi Fi T P x{ }, ,( )
i

∑=

vis T P x{ }, ,( ) xi vi
o T P,( )

i
∑=

uis T P x{ }, ,( ) xi ui
o T P,( )

i
∑=



188 PROPERTIES RELATIVE TO IDEAL SOLUTIONS

(5.1.16)

(5.1.17)

and expressions for second-law properties,

(5.1.18)

(5.1.19)

(5.1.20)

For the Lewis-Randall ideal solution, all terms in these equations must be at the same
temperature, pressure, and phase, even if some of those states are not physically real-
izable. For example, if P is below the vapor pressure of a pure substance, then that
substance cannot exist as a liquid; nevertheless, the properties of a hypothetical liquid
at that P might still be useful. Note that these results for ideal solutions are function-
ally the same as those given in § 4.1.4 for ideal-gas mixtures. This reinforces our com-
ment that an ideal-gas mixture is merely one kind of ideal solution.

5.1.3 Changes of Properties on Mixing

Besides total properties, it is often useful to compare mixture properties to those of the
pure components. Such comparisons can be made by defining, for any extensive
property F, a change of property on mixing Fm,

(5.1.21)

where the mixture and all pures are at the same T and P. A particular instance of
(5.1.21) is the change of Gibbs energy on mixing Gm, encountered in § 3.7.4 and § 4.1.5.

To evaluate Fm for the special case of ideal solutions, we merely substitute (5.1.14)–
(5.1.20) in turn into (5.1.21). On so doing, we find that each first-law property takes a
simple form, 

(5.1.22)

(5.1.23)
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(5.1.24)

while each second-law property contains an entropy of mixing term,

(5.1.25)

(5.1.26)

(5.1.27)

For the Lewis-Randall ideal solution, these expressions simplify as follows. 

(a) Changes in first-law properties (5.1.22)–(5.1.24) all vanish: when an Lewis-
Randall ideal solution is formed by mixing pure components at fixed T and 
P, there are no volumetric or thermal effects associated with the mixing. 

(b) Changes in second-law properties (5.1.25)–(5.1.27) are not zero; instead, all 
reduce to an entropy of mixing term. Consequently, an Lewis-Randall ideal-
solution has sm always positive while gm and am are always negative. 

Item (b) means that, at fixed T and P, work must always be done on a Lewis-Randall
ideal solution to separate it into its pure components. Further note that this work does
not depend on phase: the minimum work to separate a liquid ideal solution at T, P,
and {x} is the same as that to separate an ideal-gas mixture at the same T, P, and {x}. 

5.2  DEVIATIONS FROM IDEAL SOLUTIONS: DIFFERENCE MEASURES

Although no real mixture is truly ideal, we can often use the concept of an ideal solu-
tion to reduce the labor needed to compute property values for real mixtures. To do so
we introduce, for each property f, an excess property f E, 

(5.2.1)

Here f represents an intensive property value for the real mixture, and all three terms
in (5.2.1) are at the same temperature T, pressure P, composition {x}, and phase. The
excess properties provide a convenient way for measuring how a real mixture devi-
ates from an ideal solution. In general, an excess property f E may be positive, nega-
tive, or zero. An ideal solution will have all excess properties equal to zero. Note that
the value for f E depends on the choice of standard state used to define the ideal solu-
tion. Further note that the definition (5.2.1) is not restricted to any phase: excess prop-
erties may be defined for solids, liquids, and gases, although they are most commonly
used for condensed phases.

his m, xi hi
o T P,( ) hpure i T P,( )–[ ]

i
∑=

sis m, xi si
o T P,( ) spure i T P,( )–[ ]

i
∑ R xi xiln

i
∑–=

gis m, xi gi
o T P,( ) gpure i T P,( )–[ ]

i
∑ RT xi xiln

i
∑+=

ais m, xi ai
o T P,( ) apure i T P,( )–[ ]

i
∑ RT xi xiln

i
∑+=

f E T P x{ }, ,( ) f T P x{ }, ,( ) f is T P x{ }, ,( )–=



190 PROPERTIES RELATIVE TO IDEAL SOLUTIONS

5.2.1 Excess Properties and Mixing Properties

Excess properties are simply related to the changes of properties on mixing defined in
§ 5.1.2. Specifically, if we combine the definition of f E (5.2.1) with the intensive version
of the definition of Fm (5.1.21), we obtain

(5.2.2)

That is, the excess properties are the differences between the real and ideal-solution
changes of properties on mixing. The result (5.2.2) can be used for any ideal solution
defined relative to any standard state; for example, when excess properties are rela-
tive to the Lewis-Randall ideal solution, we substitute the ideal-solution expressions
(5.1.22)–(5.1.27) into (5.2.2) to obtain the following relations between f E and f m. First-
law excess properties are identical to the changes on mixing,

(5.2.3)

(5.2.4)

(5.2.5)

while second-law excess properties differ from the changes on mixing by entropy of
mixing terms,

(5.2.6)

(5.2.7)

(5.2.8)

We emphasize that (5.2.3)–(5.2.8) only apply when we use the Lewis-Randall standard
state (5.1.5) for the ideal solution.

Since the definition (5.2.1) is a linear combination of thermodynamic properties, all
the usual relations for extensive properties (see Chapter 3) can be expressed in terms
of excess properties. Those relations include the Legendre transforms, the four forms
of the fundamental equation, the response functions, and the Maxwell relations. Such
relations reduce the amount of information needed to compute values for excess
properties.
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5.2.2 Excess Gibbs Energy and Its Derivatives

If we write the fundamental equation (3.2.28) for the excess Gibbs energy, we have

(5.2.9)

where is the excess chemical potential for component i. We can obtain another
form of this equation by replacing GE with (GE/RT) as the dependent variable,

(5.2.10)

With the analog of the Gibbs-Helmholtz equation (3.3.17),

(5.2.11)

and the analog of the pressure derivative (3.3.32),

(5.2.12)

(5.2.10) becomes

(5.2.13)

This equation has units of moles; it is important because T, P, Ni, V
E, and HE are all

measurable. And although the excess chemical potentials cannot be measured
directly, they can be extracted from phase-equilibrium data. (It is instructive to note
that while absolute values for conceptuals, such as H, can never be measured, certain
kinds of differences in conceptuals, such as HE and Hm, can be.)

The excess chemical potentials are not independent; rather, they are related
through a Gibbs-Duhem equation. In particular, if we let gE be the function f in the
generic Gibbs-Duhem equation (3.4.10), we obtain

(5.2.14)

And if T and P are fixed, then (5.2.14) reduces to 
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fixed T and P (5.2.15)

When excess properties are defined relative to the Lewis-Randall ideal solution, vE

and hE have simple physical interpretations. For vE, we combine the ideal-solution
form (5.1.14) with the definition (5.2.1) to obtain

(5.2.16)

where vE could be positive, negative, or zero. Let’s consider some representative liq-
uid mixtures. For example, mixtures of benzene and toluene are nearly ideal solutions
with respect to the Lewis-Randall standard state. At ambient conditions, they have vE

= 0: mixing 50 cc of benzene with 50 cc of toluene produces 100 cc of mixture. In con-
trast, Figure 3.3 shows that ethanol-water mixtures have vE < 0: at ambient conditions,
50 cc of ethanol added to 50 cc of water produces less than 100 cc of mixture. Further,
Figure 3.3 also shows that mixtures of carbon tetrachloride and benzene have vE > 0:
50 cc of CCl4 added to 50 cc of C6H6 produces more than 100 cc of mixture.

In an ideal solution intermolecular forces are the same between all molecules,
regardless of species: differences in those forces produce nonzero values for excess
properties. In particular, magnitudes and signs of excess properties are determined by
imbalances in the strengths of interactions between molecules of the same component
(like interactions) as compared to those between molecules of different components
(unlike interactions). Figure 5.1 illustrates these points by showing vE at 25°C for

Figure 5.1 Excess volumes (relative to Lewis-Randall ideal solutions) for binary liquid mix-
tures of benzene plus an alcohol, all at 25°C. MeOH = methanol, EtOH = ethanol, 1-PrOH = n-
propanol, 1-BuOH = n-butanol, and 2-PrOH = isopropanol. Adapted from Battino [4].
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binary mixtures of benzene plus an alcohol. For mixtures of benzene plus methanol or
ethanol, vE can be either positive or negative, depending on composition. However, as
the hydrocarbon chain of the alcohol is made longer, vE becomes positive over all
compositions. Further, vE is influenced not only by the size of the hydrocarbon chain,
but also by the location of the -OH group; consequently, vE for benzene + 2-propanol
is much larger than vE for benzene + 1-propanol.

For the excess enthalpy, combining (5.1.16) with the definition (5.2.1) leaves

(5.2.17)

When pure components are mixed at constant T and P, an energy balance shows that
hE measures the heat effect. In the Lewis-Randall standard state, ideal solutions have
no heat effect on mixing, hE = hm = 0; but for real mixtures, the heat effect may be exo-
thermic (q = hE < 0) or endothermic (q = hE > 0). 

Excess properties are usually strong functions of composition; they may also be
strong functions of temperature, but for liquids they are usually weak functions of
pressure. Figures 5.2 and 5.3 show typical plots of the composition dependence of gE,
hE, and sE in sample binary liquid mixtures. The gE values were obtained from analy-
ses of vapor-liquid equilibrium data, the hE values are from calorimetric data, and the
sE values were computed from the Legendre transform,

(5.2.18)

Figure 5.2 Composition dependence of excess properties (relative to Lewis-Randall ideal solu-
tions) in representative binary liquid mixtures. (a) (left) n-hexane(1)–cyclohexane(2) at 20°C, (b)
(right) chloroform(1)–acetone(2) at 25°C. Note different scales on ordinates. Redrawn from plots
in [5].
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In Figure 5.2(a) all three excess properties are positive; for binary mixtures, hE and gE

are often positive, while sE may be of either sign. In Figure 5.2(b) all three properties
are negative; this is less common than (a), but not rare. Note that the magnitudes of
the excess properties in Figure 5.2(b) are about an order of magnitude larger than
those in Figure 5.2(a). In Figure 5.3, the behavior is more complex: both hE and sE are
negative, but sE has the larger magnitude, so by (5.2.18), gE is positive.

Figure 5.4 shows how temperature affects the excess properties in ethanol-water
mixtures. At ambient temperatures, hE and sE are negative, with TsE < hE, so gE is pos-
itive. As T increases, both hE and sE become more positive. Note that at 70°C, hE may
be positive or negative, depending on composition. These changes in excess proper-
ties reflect complex and subtle changes in effects of molecular interactions in response
to the change in temperature. 

An important point to note from Figures 5.2–5.4 is that gE is a weak function of
temperature and is more nearly symmetric in composition than either hE or sE. These
features are common to many binary mixtures: the nonidealities, as functions of com-
position, are more uniform in gE than in either of the separate contributions, hE and sE.
Furthermore, the relations among gE, hE, and sE lead to patterns of behavior that can
be important in applications [6].

Lastly, we emphasize that the definition of the excess properties (5.2.1) is com-
pletely general in that it can be used to measure deviations from any kind of ideal
solution. In this section we have illustrated that definition using ideal solutions based
on the Lewis-Randall standard state (5.1.5). This is a typical application; however,
other kinds of ideal solutions, based on other standard states, can be defined and
prove useful in special situations. In those cases, the generic definition of the excess
property (5.2.1) still applies.

5.3  EXCESS PROPERTIES FROM RESIDUAL PROPERTIES

Traditionally, values for excess properties were obtained either directly from experi-
ment or indirectly, by fitting a small number of measured values to a model. But
excess properties can also be obtained from residual properties, which are extracted
from PvTx measurements. In this section we develop relations that enable us to com-

Figure 5.3 Effect of composition on the
excess properties in binary liquid mixtures
of n-octane(1) and tetraethylmethane(2) at
50°C. Excess properties defined relative to
the Lewis-Randall ideal solution. Redrawn
from plots in [5].
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pute excess properties from residual properties, and hence from volumetric equations
of state. We consider volume-explicit equations of state (§ 5.3.1) first and follow with
pressure-explicit equations (§ 5.3.2).

5.3.1 When T, P, and {x} Are Independent

When the mixture of interest is described by an equation of state of the form v(T, P,
{x}), then the definition of the excess properties (5.2.1) can be combined with the defi-
nition of isobaric residual properties (4.2.1) to yield the intensive form

(5.3.1)

Figure 5.4 Effect of temperature on the excess properties for liquid mixtures of water(1) and
ethanol(2). Note that gE/RT is only weakly affected by these changes in T, while hE/RT changes
sign. Excess properties relative to Lewis-Randall ideal solution. From data tabulated in [7].
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where the second term on the rhs is the residual property of the ideal solution. The
general result (5.3.1) enables us to compute excess properties from known values of
isobaric residual properties. In addition, (5.3.1) can be used to find equations that
enable us to compute excess properties directly from v(T, P, {x}) equations of state. 

To illustrate how (5.3.1) is applied, we use the simple virial equation 

(5.3.2)

to compute excess properties for gaseous mixtures of methane and sulfur hexafluo-
ride at 60°C, 20 bar. In § 4.5.5 we used this same equation of state to compute residual
properties for this mixture. The volume-explicit form of this equation is

(5.3.3)

where B is given for mixtures by (4.5.18). 
Using expressions from § 5.1.2 for Lewis-Randall ideal-solution properties and

those from § 4.1.4 for ideal-gas mixtures, (5.3.1) can be written as

(5.3.4)

where represents the residual property for component i in the Lewis-Randall
standard state (5.1.5). Equation (5.3.4) applies to both first-law and second-law prop-
erties. For second-law properties, the entropy of mixing terms for the ideal gas and
ideal solution are the same, and so they cancel when (4.2.1) and (5.2.1) are combined.

To obtain the excess volume, we substitute the model (5.3.3) into (5.3.4) and obtain

(5.3.5)

(5.3.6)

Using (4.5.18) for B and simplifying, (5.3.6) becomes

(5.3.7)

where
(5.3.8)

Note that δ12 quantifies the imbalance of forces acting between molecular pairs of the
same component (B11 and B22) as compared to pairs of different components (B12); δ12
may be positive or negative. Further, an ideal solution has δ12 = 0 because all forces
are the same (B11 = B22 = B12); however, the mixture would not be an ideal gas unless
the forces were not only the same, but also all zero. 
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To obtain an expression for the excess enthalpy, we substitute (4.5.35) for the resid-
ual enthalpy into (5.3.4) and find

(5.3.9)

Similarly, to obtain the excess entropy we substitute (4.5.37) for sres into (5.3.4),

(5.3.10)

Then a Legendre transform gives

(5.3.11)

To compute excess properties from (5.3.9)–(5.3.11), we need values for δ12 and its
temperature derivative. For these mixtures, values for Bij are found in Table 4.2, and
then (5.3.8) gives 

(5.3.12)

The values in Table 4.2 for the Bij can also be used to estimate the derivative in (5.3.10)
as a finite difference; we find

(5.3.13)

Results from (5.3.9)–(5.3.11) over the entire composition range are shown in Figure 5.5. 

Figure 5.5 Excess properties for gaseous mixtures of methane and sulfur hexafluoride at 60°C
and 20 bar; computed from the virial equation (5.3.3) using (5.3.9)–(5.3.11). Excess properties
relative to Lewis-Randall ideal solution (5.1.6).
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5.3.2 When T, V, and {x} Are Independent

In this subsection we consider those situations in which our mixture is described by a
pressure-explicit equation of state, P = P(T, v, {x}). Our objective is still to relate excess
properties to residual properties and to the equation of state, but with v as an inde-
pendent variable, we would prefer to express those relations in terms of the isometric
residual properties, rather than the isobaric ones. However, the development is not as
simple as what we did in the previous section because now we have an inconsistency:
the equation of state and the isometric residual properties use (T, v, {x}) as the inde-
pendent variables, but the excess properties defined by (5.2.1) use (T, P, {x}).

For first-law conceptuals (u and h) this inconsistency poses no problem because
values of first-law isometric and isobaric residual properties are the same; see (4.2.24)
and (4.2.25). However, for second-law conceptuals (g, a, and s) the two kinds of resid-
ual properties differ (see § 4.2.3), so we must exercise care when using residual prop-
erties to evaluate second-law conceptuals. We need to evaluate only three quantities
(vE, uE, and sE) then the remaining three (hE, gE, and aE) can be obtained from Le-
gendre transforms. We also obtain the expression for the excess chemical potential in
terms of isometric residual chemical potentials.

To obtain the excess volume at a specified mixture state (T, P, {x}), we still apply
(5.3.4), in which the mixture and all standard states are at the same temperature and
pressure. Formally this poses no problem, but for some equations of state we will
have to perform trial-and-error calculations to obtain volumes.

From a pressure-explicit equation of state, the internal energy is the appropriate
first-law conceptual to evaluate. Since isometric residual internal energies are identi-
cal to isobaric ones (4.2.24), we can immediately write (5.3.4) as

(5.3.14)

To evaluate uE, we merely substitute (4.4.14) for each term on the rhs of (5.3.14). 
As the second-law conceptual, we choose the entropy; combining (4.2.28) for the

isometric residual entropy with (5.3.4), we obtain

(5.3.15)

where  is the compressibility factor for component i in its standard state. Similarly,
the excess chemical potential is given by

(5.3.16)

Note that the mixture state of interest is identified by (T, P, {x}), so the value for the
mixture volume v must be obtained by solving the equation of state at (T, P, {x}). But

 is the molar volume of component i in its standard state at T and P.
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To illustrate how these equations are applied, we repeat the calculations in § 5.3.1
to obtain excess properties for gaseous mixtures of methane and sulfur hexafluoride
at 60°C, 20 bar. Values for the isometric residual properties of this mixture have
already been determined in § 4.5.5. We continue to use the virial equation of state
(5.3.2), but now we write it in a pressure-explicit form,

(5.3.17)

with B for mixtures given by (4.5.18). As always, before calculations can be done, we
must identify the standard-state for each component. To be consistent with § 5.3.1, we
again choose the Lewis-Randall standard state (5.1.5).

The excess volume is still determined by the procedure used in § 5.3.1, leading to
the same result (5.3.7). Then to obtain ures, we substitute (4.5.41) for ures(T, v, {x}) into
(5.3.14) and obtain

(5.3.18)

Substituting (4.5.43) for sres(T, v, {x}) into (5.3.15) yields

(5.3.19)

This is the same result as found in (5.3.10). With vE, uE, and sE known, we can obtain
hE and gE by Legendre transforms. The results are (5.3.9) for hE and (5.3.11) for gE.
Since the expressions for the excess properties obtained here are exactly those found in
§ 5.3.1, the numerical results are also the same. In particular, the excess properties for
this mixture are still as represented in Figure 5.5. 

The approach used here differs from that in § 5.3.1 merely because of the form
adopted for the equation of state. For the simple virial equation (5.3.2), we can choose
whether we want to use a volume-explicit or a pressure-explicit form. Both forms give
the same results for excess properties, and both require about the same computational
effort. However for dense fluids, more complicated equations of state must be used;
often, they are cubic or higher-order polynomials in the volume. That is, most are
pressure-explicit, they cannot be converted into volume-explicit forms, and in such
cases, we must use the expressions (5.3.14)–(5.3.16) to obtain excess properties. 

5.3.3 Compare Values of Excess Properties with Residual Properties

In § 4.5.5 we computed residual properties for gaseous mixtures of methane and sul-
fur hexafluoride mixtures at 60°C and 20 bar. In § 5.3.1 and 5.3.2 we computed excess
properties for this same mixture. We can also compute residual properties for the
ideal solution (Lewis-Randall standard state). Comparisons of these three kinds of dif-
ference measures are shown in Table 5.1 for equimolar mixtures. We see that the
equimolar mixture of methane and sulfur hexafluoride exhibits positive deviations
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from ideal-solution behavior and negative deviations from ideal-gas behavior. Fur-
ther, these systems expand slightly on mixing and the mixing is endothermic; how-
ever, since the mixture is a gas, these effects are small. This behavior is common; it can
usually be attributed to strong attractive forces acting between molecules of the same
component, as compared to weaker forces acting between molecules of different com-
ponents.

5.4  DEVIATIONS FROM IDEAL SOLUTIONS: RATIO MEASURES

In addition to the excess properties, which are difference measures for deviations
from ideal-solution behavior, we also find it convenient to have ratio measures. In
particular, for phase equilibrium calculations, it proves useful to have ratios that mea-
sure how the fugacity of a real mixture deviates from that of an ideal solution. Such
ratios are called activity coefficients. The activity coefficients can be viewed as special
kinds of a more general quantity, called the activity; so we first introduce the activity
(§ 5.4.1) and then discuss the activity coefficient (§ 5.4.2).

5.4.1 Activity

Consider the algebraic form (4.3.12) that results from an isothermal integration of the
first part of the definition of fugacity,

(4.3.12)

For the reference state, lets us choose a pure-component standard state: the real (or hypo-
thetical) pure substance at the temperature of the mixture and at some convenient

Table 5.1 Excess properties compared to isobaric residual
properties for gaseous equimolar mixtures of methane and
sulfur hexafluoride at 60°C and 20 bar. These excess
properties are relative to the Lewis-Randall ideal solution.

Property Excess
Isobaric 
residual

Ideal-
solution 
residual

Volume (cm3/mol) 29.7 –97.7 –127.4

Enthalpy (J/mol) 126. –730. –856.

Entropy (J/mol K) 0.20 –1.60 –1.80

Gibbs energy (J/mol) 59.4 –197. –256.
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pressure  This pressure need not be the same as the pressure P of the mixture.*

Then (4.3.12) becomes

(5.4.1)

and the ratio on the rhs defines the activity for component i,

(5.4.2)

The result (5.4.1) establishes a connection between a difference and a ratio,

(5.4.3)

The activity is a dimensionless, conceptual, state function. The notation used in the
argument list for ⁄i is intended to emphasize that the numerical value for the activity
depends, not only on the state of the mixture (T, P, {x}), but also on the choice of the
standard state. At this point we have not completely identified the standard state; we
have said it is the pure substance at T but we have not specified the pressure or the
phase. This leaves some flexibility in using the activity. For example, we might com-
plete the choice of standard state by identifying it as the real pure liquid i at T and at
its vapor pressure This is a common choice. However, as an alternative, we
might also choose the (hypothetical) pure ideal gas at T and P of the mixture; then the
resulting activity would be closely related to the fugacity coefficient. Other choices are
also possible, and some are convenient in certain situations. 

Numerical values for the activity are always positive, and its value becomes unity
only when the mixture fugacity fi equals the value of the fugacity in the standard
state. Since that standard state is a pure state, not an ideal-solution state, the activity
does not measure deviations from ideal-solution behavior. Nevertheless, the activity
proves useful in certain kinds of engineering calculations, which we shall explore in
Part IV of this book.

5.4.2 Activity Coefficient

To have a useful ratio that measures how a real fugacity deviates from that in an ideal
solution, we return to the definition of the fugacity (4.3.8), and we integrate that defi-
nition from an ideal-solution state to the mixture of interest. For the fugacity of i, the

* In the land of pure-component standard states, the Lewis-Randall rule (5.1.5) is but a district. The two dif-
fer in their standard-state pressures and phases. The Lewis-Randall standard-state pressure and phase are
always those of the mixture, but in a generic pure-component standard state, the standard-state pressure
and phase need not be the same as those of the mixture. In general, the choice for standard-state is dictated
by the availability of a value for the pure-component fugacity: either from a reduction of experimental data,
or from a correlation, or from an estimate. We caution that other authors may make other distinctions, and
some may make no distinction between the Lewis-Randall rule and the pure-component standard state.
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ideal solution is at the temperature and composition of the mixture, but it may be at
any convenient pressure  In such cases, the integrated definition of the fugacity
(4.3.12) takes the form

(5.4.4)

and the ratio on the rhs is defined to be the activity coefficient γ i,

(5.4.5)

We caution that this definition of the activity coefficient* is incomplete because
there is no unique ideal solution. Moreover, the pressure is chosen for computa-
tional convenience; it may or may not be the same as the mixture pressure P. So the
value of  in (5.4.5) cannot be determined until we identify our choice for the ideal
solution. In the jargon of solution thermodynamics, a value of γ i is meaningless unless
we are also told the standard state to which it refers. We will use the notation

(5.4.6)

when it is important to emphasize that the value of γ i depends on the standard-state
fugacity  Note that the standard-state pressures can have different values for
different components.

The activity coefficient is a dimensionless, conceptual, state function. Its value is
always positive; however, it may be greater or less than unity. The ideal solution has
all γ i = 1, but the converse is not true: a mixture having all activity coefficients equal to
unity may not be an ideal solution. Note that the definition (5.4.5) places no restriction
on the kind of phase to which γ i may be applied: γ i is a legitimate property of gases,
although it is used most often for liquids and solids.

In § 5.1 we observed that every ideal-solution fugacity (5.1.2) is linear in its mole
fraction. We now write (5.1.2) in a more explicit form,

(5.4.7)

So the definition of the activity coefficient (5.4.5) can be written

(5.4.8)

* The term “activity coefficient” was apparently first used by Savante Arrhenius in his doctoral dissertation
(1884); the modern definition was given by A. A. Noyes and W. C. Bray in a paper published in 1911 [8].
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This explicitly relates the activity coefficient to the standard-state fugacity and to the
activity ⁄i defined in (5.4.2). Another important relation can be obtained by combining
(5.4.4) and (5.4.5); this produces

(5.4.9)

If we let each standard-state pressure  be that of the mixture (  = P), then the lhs
becomes an excess chemical potential,

(5.4.10)

This relates a difference measure to a ratio measure for deviations from ideal-solution
behavior. 

We emphasize that in writing (5.4.10) we have specified the temperature and pres-
sure of the standard state, but we still have not made a unique choice for the standard
state because we have not yet specified its phase. One common choice is the Lewis-
Randall standard state, defined in (5.1.5), in which each standard-state fugacity is
taken to be that for the pure component in the same phase and at the same tempera-
ture T and pressure P as the mixture,

for all i (5.4.11)

Then, substituting this into (5.4.7), we obtain the ideal-solution fugacity, which is that
of a Lewis-Randall ideal solution,

(5.1.6)

Note that pure component i may or may not actually exist in the same phase as the
mixture at T and P; if it cannot, then the standard state is said to be hypothetical. But
whether the standard state is real or hypothetical is immaterial; what is important is
that the state is well-defined and that we can assign a value to (T, ). 

Using the Lewis-Randall rule (5.4.11) for the standard state fugacity in (5.4.5), the
resulting expression for the activity coefficient γ i approaches unity as the mixture is
made more nearly pure in component i:

(5.4.12)

If we consider the other extreme, in which the mixture is made infinitely dilute in
component i, then (in the Lewis-Randall standard state) the activity coefficient γ i
approaches a finite value, called the activity coefficient at infinite dilution, 
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(5.4.13)

Schematic representations of a component’s fugacity and its activity coefficient, rela-
tive to the Lewis-Randall standard state, are given in Figure 5.6 for the case in which
γ i > 1.

If we have the excess chemical potentials for all components in our mixture, then
we can combine them via (3.4.4) to obtain the excess Gibbs energy. Further, if we use
(5.4.10) to express the chemical potentials in terms of activity coefficients, then we can
compute gE from activity coefficients,

(5.4.14)

When a mixture has all γ i > 1, then gE > 0, and we say the mixture exhibits positive
deviations from ideal-solution behavior. Inversely, if a mixture has all γ i < 1, then gE <
0, and we say the mixture exhibits negative deviations from ideal-solution behavior.
In some mixtures, the intermolecular forces are more complicated, causing some com-
ponents to have γ i < 1 while others have γ i > 1.

Activity coefficients can display wide variations in response to changes in composi-
tion. For example, consider the three binaries that can be extracted from a ternary
mixture of acetone, chloroform, and methanol. Figure 5.7 shows the composition
dependence of activity coefficients in those three binary mixtures. Since all these γ i are
in the Lewis-Randall standard state, each γ i satisfies the pure-component limit given
in (5.4.12). But, depending on the kinds of molecules present, γ i may be greater than
unity or less than unity; for example, the acetone-chloroform mixtures have γ i < 1, but
the mixtures containing the alcohol have γ i > 1. Furthermore, the values of the γ i in

Figure 5.6 Schematic of the composition dependence of the fugacity f1 and activity coefficient
γ1 in a binary mixture at fixed T and P. This activity coefficient is based on the Lewis-Randall
standard state (5.4.11) and therefore satisfies the pure-fluid (5.4.12) and dilute-solution (5.4.13)
limits. Note that the fugacity of the ideal-solution (broken line) is linear in the mole fraction and
that, in the Lewis-Randall standard state, f1

o = fpure 1.
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Figure 5.7 Activity coefficients for each component in three binary liquid mixtures, all at 60°C.
Top: acetone-chloroform, Middle: acetone-methanol, Bottom: methanol-chloroform. Note the
scale change from one ordinate to the next. These γ i are based on the Lewis-Randall standard
state and were computed using the Margules model, with parameters from Table E.2. Note in
the top panel that γ i < 1, while in the middle and bottom panels γ i > 1. After a similar figure in
Prausnitz et al. [2] and based on original data in Severns et al. [9].
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one binary are not simply related to those in either other binary. This suggests that
values of activity coefficients (and hence the kinds of deviations from ideality) are
affected by forces acting between molecules of different species.

Substituting (5.4.10) into (5.2.13) gives the fundamental equation for excess proper-
ties in terms of activity coefficients,

(5.4.15)

This form can be used to obtain the response of an activity coefficient to a change in T
or P. Since the lhs of (5.4.15) is an exact differential, the response of γ i to an isothermal
change in pressure is given by

(5.4.16)

while the response to an isobaric change in temperature is

(5.4.17)

Further, in any given mixture the activity coefficients are not independent; rather,
they are related through a Gibbs-Duhem equation. We may derive the equation either
by letting f = gE/RT in the generic Gibbs-Duhem equation (3.4.10), or by substituting
(5.4.10) into the Gibbs-Duhem equation (5.2.14) for gE; by either procedure we obtain

(5.4.18)

For liquids hE can be large, so the first term on the rhs is usually important, unless T is
held fixed; however, liquids often have small values for vE, so the second term is usu-
ally negligible. At fixed T and P (5.4.18) reduces to 

fixed T and P (5.4.19)

This form of the Gibbs-Duhem equation can be used to show that, when the pure-
component limit is taken, the isothermal-isobaric slope of (ln γ i) vs. xi is zero,

(5.4.20)
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Note that, because of the Gibbs-Duhem equation (5.4.19), if a binary mixture has γ1
increase (decrease) with x1, then γ2 must simultaneously decrease (increase); this can
be seen in any of the three panels appearing in Figure 5.7.

5.4.3 Example

How are activity coefficients related to the minimum work needed to separate a
mixture into its pure components?

In § 3.7.4 we showed that, at fixed T and P, the minimum work needed to completely
separate a mixture is given by the negative change in Gibbs energy on mixing,

(5.4.21)

To obtain an expression for the rhs in terms of activity coefficients, we choose the
Lewis-Randall standard state, and then we use (5.2.7) to eliminate gm in favor of gE,

(5.4.22)

Now we use (5.4.14) to introduce the activity coefficients; we are left with

(5.4.23)

This gives the minimum work needed to achieve an isothermal-isobaric separation. If
the mixture were an ideal solution, then all the γ i = 1, and we would have

ideal solution (5.4.24)

This also applies to any ideal-gas mixture, which is merely a special kind of ideal solu-
tion; therefore, our result is consistent with the ideal-gas expression found in § 4.1.5.

For negative deviations from ideal-solution behavior, all γ i < 1, and (5.4.23) gives
wsh, rev > 0. In such cases we must always do work on the mixture to accomplish the
separation. Similarly, for small positive deviations, we have (xi γ i) < 1, even though γ i
> 1, so (5.4.23) still gives wsh, rev > 0, and work must still be done to cause a separation.
However, if the γ i are positive and large enough, then (5.4.23) may yield wsh, rev < 0. In
these situations, the proposed one-phase mixture is usually unstable and it spontane-
ously splits into two phases (see Chapter 8). However, the new phases would not be
pure components; instead, each phase would be a mixture having a composition that
differs from the original proposed mixture. To determine the minimum work to com-
plete the separation, we would need the composition of each phase and then we could
apply (5.4.23) to each. The result would be that work would still have to be done on
each phase to separate each into the pure components. Note that the physical interpre-

wsh rev, gm T P x{ }, ,( )–=

wsh rev, gE T P x{ }, ,( )– RT xi xiln
i

∑–=

wsh rev, RT xi xiγ i( )ln
i

∑–=

wsh rev, RT xi xi( )ln
i

∑–= 0>



208 PROPERTIES RELATIVE TO IDEAL SOLUTIONS

tation of activity coefficients given by (5.4.23) applies only to γ i in the Lewis-Randall
standard state; activity coefficients wrt other standard states will have other interpre-
tations.

5.5  ACTIVITY COEFFICIENTS FROM FUGACITY COEFFICIENTS

In § 5.3 we showed how excess properties, which are difference measures for devia-
tions from ideal-solution behavior, can be obtained from residual properties, which are
difference measures for deviations from ideal-gas behavior. In this section we establish
a similar set of equations that relate activity coefficients to fugacity coefficients. As a
result, the equations given here, together with those in § 5.3, establish a complete con-
nection between the description of mixtures based on models for PvTx equations of
state and the description based on models for gE and γ i.

For any one component i in a mixture, the fugacity can be expressed in terms of the
fugacity coefficient (4.3.18) or in terms of the activity coefficient (5.4.5). The value for
the fugacity must, of course, be the same regardless of how it is obtained, so we can
equate (4.3.18) with (5.4.5) and write

(5.5.1)

Hence, the activity coefficient and the fugacity coefficient are related by

(5.5.2)

or more formally,

(5.5.3)

Here is the standard-state fugacity at some convenient pressure  The standard-
state fugacity deviates from its ideal-gas value by an amount that is measured by a
standard-state fugacity coefficient , so (5.5.3) can also be written as

(5.5.4)

Three commonly used options are available for dealing with the pressures appearing
in (5.5.4); each choice leads to a particular kind of activity coefficient. In what follows,
we distinguish among the three using subtle, but vital, differences in notation. In
applications, the choice of which to use is based on practical considerations. 
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5.5.1 Use the Same Pressure for Standard State and Mixture,  = P

If we choose the standard-state pressure  to be the mixture pressure P, then we
have the Lewis-Randall standard state (5.1.5), and (5.5.4) reduces to 

(5.5.5)

So, when γ i and ϕi are both evaluated at the mixture T and P, the activity coefficient
can be interpreted as a ratio measure for how the fugacity coefficient ϕi deviates from
the standard-state fugacity coefficient  The result (5.5.5) directly connects ratio
measures for deviations from the ideal gas to ratio measures for deviations from an
ideal solution. Consequently, it provides a computational means for theories and
equation-of-state models based on one kind of ideality (ideal gas) to be used in theo-
ries and models based on the other (ideal solution). The activity coefficient (5.5.5) is
the one commonly encountered; it is simply related to the excess chemical potential,

(5.4.10)

5.5.2 Use  ≠≠≠≠ P and Place Pressure Effect in Fugacity Coefficient

A second possibility occurs when we have, or can readily compute, ϕi not at the mix-
ture pressure P but at some other pressure  Then we correct ϕi for the pressure dif-
ference. The correction is computed from (4.3.23),

(5.5.6)

Separating variables and integrating along the mixture isotherm at fixed composition,
we find

(5.5.7)

Integrating the ideal-gas term in (5.5.6) leaves

(5.5.8)

Then, on combining (5.5.8) with (5.5.5), we obtain the following relation between the
activity coefficient (at P) and the fugacity coefficient (at 
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(5.5.9)

The integral on the rhs is to be evaluated at fixed temperature and composition.
The exponential term corrects ϕi from the standard pressure to the mixture pressure
and is called the Poynting factor. Since (5.5.9) has been derived without assumptions
from (5.5.5), the two equations are formally equivalent. That is, (5.5.9) offers no formal
advantage over (5.5.5), because the values for ϕi,  and used in (5.5.9) should be
consistent with a particular PvTx equation of state. However in some situations,
(5.5.9) may be more amenable to reliable approximation than (5.5.5). For example, if
the integral in (5.5.9) is over only states of a condensed phase, then we might assume
that is a constant without seriously affecting the accuracy of the final value com-
puted for γ i.

The activity coefficient in (5.5.9) is related to chemical potentials by

(5.4.9)

where the ideal solution is at the standard-state pressure. Note that the rhs is a differ-
ence between a real and an ideal-solution property, so it is similar to an excess prop-
erty. But the rhs is not an excess property when  ≠ P; cf. (5.2.1).

5.5.3 Use  ≠≠≠≠ P and Place Pressure Effect in Activity Coefficient

A third possibility is to compute the activity coefficient directly at the standard-state
pressure 

(5.5.10)

Then we obtain the activity coefficient at the mixture pressure P by substituting
(5.5.10) into (5.5.9),

(5.5.11)

where  is the partial molar volume of component i in the real mixture and the inte-
gration is done along the mixture isotherm at constant composition. The form (5.5.11)
for γ i can also be derived starting from (5.4.16), which expresses the pressure deriva-
tive of γ i in terms of the excess partial molar volume. 
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One advantage offered by (5.5.11) is that it collects all the pressure effects into a sin-
gle term. As we shall see in § 5.6, many models for gE contain no pressure depen-
dence; hence, those models provide no pressure dependence for the activity
coefficient, and such models are strictly valid only at the standard-state pressure 
To include pressure in those models, we could use (5.5.11), if we have a reliable esti-
mate for the partial molar volume—say, from a PvTx equation of state.

The activity coefficient (5.5.10) is related to chemical potentials by

(5.5.12)

Both terms on the rhs are at the same pressure and so we could identify the rhs as an
excess property. However, it is probably better not to do so because we could choose
different standard-state pressures for different components 

When the standard-state pressure is taken to be the mixture pressure 
then these distinctions disappear and the three activity coefficients (5.5.5), (5.5.9), and
(5.5.11) are the same. But when  the numerical values for these three activity
coefficients can differ, though the differences are usually not significant at pressures
below 10 bar. However, such differences can contribute to the complexity encountered
when trying to use a model for activity coefficients as a basis for developing mixing
rules for equations of state.

5.6  SIMPLE MODELS FOR NONIDEAL SOLUTIONS

Here we introduce models commonly used to represent the composition dependence
of excess properties in liquid mixtures. Just as in § 4.5 for volumetric equations of
state, the models considered here are semitheoretical: they may have some limited
mathematical or physical basis, but they inevitably contain parameters whose values
must be obtained from experimental data. The emphasis here is on the composition
dependence of γ i because, for condensed phases, composition is the most important
variable; temperature is next in importance, and pressure is least important.

The strategy for devising models for activity coefficients is based on modeling gE,
rather than modeling the γ i directly. With a functional form adopted for gE, the corre-
sponding expressions for the γ i can be obtained by applying the partial molar deriva-
tive in (5.4.10). In addition, if the model parameters are known functions of T and P,
then expressions for hE and vE can be obtained from (5.2.11) and (5.2.12). This would
enable us to obtain the T and P effects on the γ i from (5.4.16) and (5.4.17).

This indirect approach to modeling activity coefficients is used for at least two rea-
sons: (a) When we model gE and evaluate the γ i from (5.4.10), then the γ i automatically
satisfy the Gibbs-Duhem equation (5.4.18). However, if we try to construct indepen-
dent models for all the γ i of a mixture, either the proposed equations for the γ i may fail
to satisfy the Gibbs-Duhem equation or else an apparently simple form for one activ-
ity coefficient, γ1, may lead to a complicated form for another, γ2. (b) For many mix-
tures, it is easier to develop accurate models for gE than it is to directly develop
accurate models for γ i . Moreover, when the γ i are obtained from a gE model, the
resulting expressions for the γ i are often less complicated than forms devised by a
direct modeling procedure. In this section we introduce two classes of models for gE:
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one based on Taylor’s expansions (§ 5.6.1–5.6.4) and another with some basis in
molecular theory (§ 5.6.5).

5.6.1 Series Representations for GE

Consider a binary mixture containing components 1 and 2, and let us choose the
Lewis-Randall standard state (5.1.5) to define an ideal solution. Our objective is to
obtain a functional model to represent the composition dependence of the excess
Gibbs energy. If we look back at Figures 5.2–5.5, we see that, for binary liquid mix-
tures at fixed T, gE is nearly parabolic in x1, even when hE and sE are not parabolic.
This suggests a first approximation to gE(x1), 

(5.6.1)

where the parameter A is dimensionless and independent of composition; it may
depend on T and P, but for liquids the pressure dependence is usually ignored. Values
for A are usually obtained from fits to experimental data. Because of the Gibbs-
Duhem equation (5.2.14), (5.6.1) is the simplest expression we can use to represent the
composition dependence of gE for a binary mixture, provided we choose the Lewis-
Randall standard state for both components.

Many ways can be proposed for correcting gE for deviations from the simple qua-
dratic behavior given in (5.6.1). One simple way is to expand gE in a power series in
the mole fraction of one component; e.g., for a binary at fixed T and P, we can write

(5.6.2)

Since x1 = 1 – x2, we could have just as well expanded in x2, but if we did then the val-
ues of the parameters (A′, B′, C′, etc.) would change. That is, the coefficients in (5.6.2)
depend on which species is labeled component 1 and which is component 2. This
asymmetry in the labels can be reduced (but not eliminated) by using (x1 – x2) as the
independent variable; then we obtain the Redlich-Kister expansion [10]

(5.6.3)

The parameters (A, B, C, etc.) are independent of composition; they do depend on T
and P, though the P dependence is usually ignored for liquids. The Redlich-Kister
expansion is fully equivalent to (5.6.2), but in (5.6.3) the magnitudes of the parameters
(A, B, C, etc.) are unaffected when the component labels are interchanged; however, if
the labels are interchanged, the signs of the coefficients on the odd-order terms (B, D,
F, etc.) also change. At present, values for these parameters cannot be computed from
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some more fundamental theory; they can only be obtained from fits to experimental
data.

As with any infinite series, the Redlich-Kister expansion can be used for calcula-
tions only after it has been truncated. Truncation at low order can account only for
small deviations from a quadratic in x1; for highly nonquadratic behavior, we must
use a high-order expansion. However, high-order expansions are troublesome to use,
not only because their algebraic forms are complicated, but also because the value for
each parameter must be obtained from a fit to experimental data. These complications
become problematic when the expansion is applied to mixtures containing more than
two components, because ternary and higher-order coefficients appear. Each level of
truncation produces a different form for the activity coefficients, but since this is an
introductory discussion, we consider only the simple forms that result from trunca-
tions after the first and second terms.

5.6.2 Porter Equation

On truncating the Redlich-Kister expansion (5.6.3) after the first term, we are left with
the parabolic form in (5.6.1). Traditionally, (5.6.1) has been called the two-suffix Mar-
gules equation [11], but this name can be ambiguous and so we prefer to call it Porter’s
equation [12]. Applying (5.4.10) to (5.6.1) shows that the activity coefficients are also
quadratic in the mole fractions, as shown in Figure 5.8,

(5.6.4)

(5.6.5)

These activity coefficients are relative to the Lewis-Randall standard state (5.1.5);
hence, they must satisfy the pure-component limit given in (5.4.12). That is, γ i → 1 as

Figure 5.8 Substantial symmetry exists in the composition dependence of the excess Gibbs
energy and activity coefficients for binary mixtures that obey the Porter equation (5.6.1).
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xi → 1, where i = 1 or 2. In the dilute-solution limit (5.4.13), the activity coefficients in
(5.6.4) and (5.6.5) are simply related to the parameter,

(5.6.6)

For some mixtures, values of γ i
∞  can be extracted from experiment and in those cases

we have a convenient means for determining a value for the parameter A. Because the
Porter equation (5.6.1) contains only one parameter, a high degree of symmetry exists
among the values of gE, ln γ1, and ln γ2. For binary mixtures, the symmetry appears as
in Figure 5.8.

The Porter equation is the simplest expression we can write for nonideal solutions;
nevertheless, it can describe both positive (A > 0) and negative (A < 0) deviations from
ideal-solution behavior. Some real mixtures obey the Porter equation fairly well, espe-
cially mixtures composed of molecules that are nonpolar and have similar sizes and
shapes. Even some mixtures containing polar components may obey the Porter equa-
tion over limited ranges of temperatures. Values of A are given in Table E.1 (Appendix
E) for some representative mixtures. 

If the temperature and pressure dependence of the Porter parameter A is known
(from experiment), then we can obtain values for hE and vE from (5.2.11) and (5.2.12).
The results are

(5.6.7)

(5.6.8)

Then sE can be obtained from the Legendre transform for gE (5.2.18),

(5.6.9)

Mixtures that obey (5.6.1) and (5.6.7)–(5.6.9) are variously called simple mixtures,
symmetric mixtures, or sometimes regular mixtures (but this last is a misnomer). We
follow Rowlinson and Swinton [13] and call them quadratic mixtures, because for such
mixtures all the excess properties are parabolic in a mole fraction x1.

We caution that a binary mixture may obey the Porter equation (5.6.1) but still not
be a quadratic mixture; that is, gE may be parabolic in composition but hE and sE may
not be. An example is the hexane-cyclohexane mixture shown in Figure 5.2. Such
behavior occurs because asymmetries in hE and sE approximately cancel when they
combine via the Legendre transform (5.2.18) to form gE. Such cancellations are the
norm rather than the exception. To say this another way, the Redlich-Kister expansion
for gE (5.6.3) is usually dominated by the first term, which is symmetric in x1 and x2.
However, in the analogous expansions for hE and sE, asymmetric terms are frequently
important.
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5.6.3 Margules Equation

If we truncate the Redlich-Kister expansion (5.6.3) after the second term, we are left
with

(5.6.10)

This is not symmetric in x1 and x2; however, by multiplying A by (x1 + x2 = 1) and re-
collecting terms, we obtain the symmetric form

(5.6.11)

where A1 ≡ A + B and A2 ≡ A – B. Applying the partial molar derivative in (5.4.10) to
(5.6.11) produces the corresponding expressions for the activity coefficients,

(5.6.12)

(5.6.13)

Historically, these have been called the 3-suffix Margules equations [11], but we will
simply call them the Margules equations. The parameters A1 and A2 are independent of
composition, but they generally depend on T and P. Usually, the effects of P are
ignored and the effects of T are obtained experimentally. However, if data are lacking
or if the changes in state condition are modest, then A1 and A2 are often assumed to be
constants. When data are available, we often find that A1 and A2 vary as 1/T.

The Margules expressions for activity coefficients are based on the Lewis-Randall
standard state (5.1.5), and therefore they must obey the pure-component limit (5.4.12).
In addition, as with Porter’s equations, the parameters A1 and A2 are simply related to
the activity coefficients at infinite dilution. In particular, when we apply the dilute-
solution limit (5.4.13) to (5.6.12) and (5.6.13), we obtain

(5.6.14)

(5.6.15)

So if we have experimental data for both γ1
∞ and γ2

∞, then (5.6.14) and (5.6.15) provide
a straightforward way to obtain values for the Margules parameters. If a binary mix-
ture happens to have γ1

∞ = γ2
∞, so that A1 = A2, then the Margules equations collapse

to the Porter equations.
The Margules equations apply to many binary mixtures, including those that dis-

play positive deviations from ideality, mixtures that exhibit negative deviations from
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ideality, mixtures in which one activity coefficient is greater than unity and the other
less than unity, and mixtures in which activity coefficients pass through extrema. Val-
ues of the Margules parameters for representative mixtures are given in Table E.2.
However, the Margules equations can fail when strong specific interactions occur
among only some of the constituent molecules. Examples include hydrogen bonding,
dimerization in acids, and association in alcohols and aqueous solutions. In such
cases, more complicated functional forms are needed to adequately represent the
composition dependence of gE.

5.6.4 Multicomponent Mixtures

The expressions in § 5.6.1–5.6.3 apply only to binary mixtures; however, the Redlich-
Kister expansion can be extended to multicomponent solutions. One multicomponent
version of the Redlich-Kister expansion is

(5.6.16)

where

(5.6.17)

and

(5.6.18)

In practice, the ternary and higher-order terms are usually ignored. For example, a
ternary mixture might be modeled as

(5.6.19)

Although (5.6.19) does not explicitly contain high-order parameters that account
for multibody interactions among molecules, such interactions are embedded implic-
itly in those parameters, such as Bij and Cij , that are multiplied by three or more mole
fractions. By ignoring any explicit representation of multibody interactions, we obtain
a computational advantage: the remaining parameters (Aij, Bij , etc.) have the same
values for multicomponent mixtures as they do for binary mixtures of components i
and j. Therefore, no data for multicomponent mixtures are needed to evaluate any
parameter in (5.6.19). However, this computational advantage may result in a loss of
accuracy when applied to some mixtures.

The multicomponent version of Porter’s equation is equivalent to (5.6.19),

(5.6.20)
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and applying (5.4.10) to (5.6.20) gives the activity coefficient of component k as

(5.6.21)

For binary mixtures, (5.6.20) reduces to (5.6.1) and (5.6.21) reduces to (5.6.4).
The multicomponent version of the Margules equation is

(5.6.22)

where Aij = Aji, but Bij = –Bji. Applying (5.4.10) to (5.6.22) gives the activity coefficient
of component k as

(5.6.23)

For binary mixtures, (5.6.22) reduces to (5.6.11) and (5.6.23) reduces to (5.6.12).

5.6.5 Semitheoretical Models for GE

For mixtures that do not obey the Porter or Margules equations, additional high-order
terms must be kept in the Redlich-Kister expansion; hence, more parameters must be
evaluated from experimental data. Alternatively, if we want to keep only two parame-
ters, then we must abandon the Redlich-Kister expansion for some more complicated
representation of gE. Many functional forms have been proposed [1, 2], but here we
restrict our attention to a useful expression proposed by Wilson in 1964 [14] and now
identified as one of the class of “local-composition” models [2]. For binary mixtures
Wilson’s equation takes the form

(5.6.24)

where the parameters Λ12 and Λ21 depend on temperature. Values for these parame-
ters are extracted from experiment.

Applying the partial molar derivative in (5.4.10) to (5.6.24) provides Wilson’s
expressions for the activity coefficients
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(5.6.27)

These activity coefficients are based on the Lewis-Randall standard state (5.1.5), and
therefore they must obey the pure-component limits (5.4.12). In addition, the dilute-
solution limit (5.4.13) provides relations between the activity coefficients and the
parameters,

(5.6.28)

(5.6.29)

Unlike the corresponding expressions from the Porter and Margules equations, these
nonlinear equations must be solved simultaneously by trial to obtain values for the
parameters Λ12 and Λ21 from known values of  and . The logarithmic terms in
(5.6.28) and (5.6.29) allow the Wilson equations to correlate large values of the 
using small values of the parameters Λij. However we caution that, for some mixtures
having both  and  less than unity, three sets of Λ-parameters can be found to sat-
isfy (5.6.28) and (5.6.29) [15].

An ideal solution has Λ12  = Λ21 = 1, but the converse is not true: mixtures having
Λ12  = Λ21 = 1 at one temperature are not necessarily ideal solutions. Further, (5.6.28)
and (5.6.29) require the parameters to be positive. Nevertheless, Wilson’s equations
apply to both positive and negative deviations from ideal-solution behavior. In partic-
ular, Wilson’s equations successfully correlate activity coefficients for highly nonideal
solutions, including those, such as alcohol-hydrocarbon solutions, that involve hydro-
gen bonding and chemical association. However, for weakly nonideal solutions, the
Wilson equation may offer no improvement over the Margules equation. Moreover, as
will be discussed later, the mathematical form of Wilson’s equation cannot describe
mixtures that undergo liquid-liquid phase splits, despite its ability to correlate large
values of infinite-dilution activity coefficients 

The Redlich-Kister expansion for the excess Gibbs energy gEprovides no guidance
about the temperature dependence of its parameters, and so temperature effects can
only be obtained from experiment. In contrast, Wilson’s equation is based on a theory
that estimates the temperature dependence of the parameters,

(5.6.30)

Here the ρi are pure component molar densities and the ∆λij are parameters that
depend on the identities of species i and j. The ∆λij are often assumed to be indepen-
dent of state condition; alternatively, they may be modeled as simple functions of T.
But usually (5.6.30) allows the two temperature-dependent parameters Λ12 and Λ21 to
be replaced by two temperature-independent parameters ∆λ12 and ∆λ21. Values of ρi
and the ∆λij for selected binary mixtures are given in Table E.3. A more extensive col-
lection of values for the Wilson parameters can be found in the Dechema series [16].
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Approximations for hE and vE can be obtained by applying (5.2.11) and (5.2.12) to
the Wilson expressions (5.6.24) and (5.6.30). The result for the excess volume has never
been used. For the excess enthalpy of a binary mixture we find

(5.6.31)

where the αi are pure-component volume expansivities and Ψ is given by

(5.6.32)

This Ψ-term is the dominant contribution to hE. With gE and hE determined, sE can be
obtained from the Legendre transform (5.2.18). But we caution that, just as some mix-
tures may obey the Porter equation and yet not be quadratic mixtures, so too may
some mixtures obey the Wilson equation (5.6.24) for gE and yet not obey (5.6.31) for
hE. Consequently, while we might obtain values for the parameters ∆λij by fitting calo-
rimetric data, the resulting values may or may not reliably predict gE. 

The multicomponent version of Wilson’s equation is

(5.6.33)

where
(5.6.34)

As before, Λij ≠ Λji, and Λij = 1 when i = j. Applying (5.4.10) to (5.6.33) gives the activ-
ity coefficient for component k as

(5.6.35)

Note that the Λij in (5.6.34) and the Λik in (5.6.35) are all binary parameters; that is,
their values are obtained from data for binary mixtures, and their temperature depen-
dence is still usually assumed to be described by (5.6.30). Unlike the multicomponent
versions of the Redlich-Kister expansion discussed in § 5.6.4, the theoretical basis for
(5.6.33) suggests that high-order multibody parameters are not needed in Wilson’s
equation; in practice, this appears to be true for many mixtures.

5.7  SUMMARY

In this chapter we developed ways for computing values for conceptuals relative to
their values for any well-defined ideal solution. The computational strategy is based
on quantities that reveal how a property deviates from its ideal-solution value: the
excess properties are difference measures, while the activity coefficient is a ratio mea-
sure. In other words, the strategy used in this chapter repeats that used in Chapter 4,
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with excess properties being analogous to residual properties and activity coefficients
being analogous to fugacity coefficients. For example, to determine how a total prop-
erty F changes from state 1 to state 2, we would use an excess property like this:

(5.7.1)

Likewise, to obtain a value for a fugacity, we would use an activity coefficient like this:

 (5.7.2)

Note that (5.7.1) is exactly analogous to (4.6.1) and that (5.7.2) is analogous to (4.6.2).
Such analogies are explored more thoroughly in the next chapter; here we point out
how the approach developed in Chapter 4 differs from that presented here.

First, we note that the ideal solution is a more general concept than the ideal gas.
By an ideal solution we mean one in which the intermolecular forces are all the same,
even though the molecules differ; this can be accomplished in many different ways. In
contrast, by an ideal gas we mean a substance in which the intermolecular forces are
all zero; this can be done in only one way. In other words, in any ideal solution each
component fugacity is linear in its mole fraction,  ∝ xi, and many choices are avail-
able for the (composition-independent) proportionality constant. That constant is
called the standard-state fugacity,  and it is only when we choose the standard
state that we identify a particular ideal solution. For an ideal gas the proportionality
constant is the pressure; hence, an ideal-gas mixture is one kind of ideal solution.

It may seem that the residual properties offer additional flexibility because we
defined two kinds—isobaric ones and isometric ones—while we introduced only iso-
baric excess properties. But this difference is mainly one of historical significance. The
two kinds of residual properties allow us to perform calculations using both pressure-
explicit and volume-explicit equations of state. In contrast, the excess properties were
originally applied only to liquids, for which pressure and volume effects are often
ignored. We could certainly define isometric excess properties, but in practical appli-
cations involving liquids, there seems to be little advantage to doing so. Differences
between isometric and isobaric excess properties are discussed by Rowlinson and
Swinton [13], but for condensed phases, those differences are usually small.

Since the ideal-solution concept is not restricted to a particular kind of intermolecu-
lar force, we have significant flexibility in performing thermodynamic analyses. In
many situations, use of one kind of ideal solution may simplify an analysis more than
another. For example, calculations are often easier when we use one ideality for non-
electrolyte solutions, another for dilute solutions, another for electrolytes, and yet
another for polymeric blends. This degree of flexibility is not obtained by basing all
analyses on ideal gases.

The ideal-gas and ideal-solution approaches also differ because they are based on
different kinds of experimental data. The residual properties and fugacity coefficients
depend on volumetric data: measurements of P, v, T, and {x}. But the excess properties
and activity coefficients depend on density measurements for vE, calorimetric mea-
surements for hE, and phase-equilibrium data for gE and γ i. Modern modeling tends
to rely on volumetric data (equations of state), and a principal feature of this chapter
has been to establish how excess properties can be computed from residual properties
and how activity coefficients can be computed from fugacity coefficients. But note that
such calculations can be performed in either direction; that is, at least in principle,

∆F12 ∆F12
E ∆F12

is
+=

fi xi γ i fi
o

=

fi
is

fi
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residual properties can be computed from excess properties and fugacity coefficients
from activity coefficients. In practice, these latter calculations can be performed only
when we know (or can estimate) how parameters in models for the excess properties
change with state condition. When this can be done, models for gE might be used to
formulate mixing rules for equations of state [17].

But aside from these practical considerations, another motivation underlies the
development of ways for measuring deviations from ideal-solution behavior: the
hope that macroscopic quantities can reveal differences in intermolecular forces. Rela-
tive differences in intermolecular forces can explain much of the interesting and
unusual behavior observed in mixtures—oil and water do not mix because attractive
forces between oil and water molecules are much weaker than those acting among
just water molecules and among just oil molecules. These kinds of differences can be
quantified using values for excess properties extracted from macroscopic experi-
ments. Consequently, excess properties can not only serve as vehicles for computing
conceptuals that may be needed in an engineering analysis, but in addition they may
also serve to reveal microscopic differences that can explain macroscopic behavior.
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PROBLEMS

5.1 Compute the minimum isothermal-isobaric work needed to separate an equimo-
lar mixture of benzene and toluene into its pure components at 80°C and 1 bar. 

(a) Assume the mixture is an ideal gas.

(b) Assume the mixture is an ideal solution.

5.2 Consider a multicomponent mixture that obeys P = RT/(v–b) with

Show that such a mixture is an ideal solution.

5.3 Amagat’s “law” approximates a mixture volume by mole-fraction averaging the
pure-component volumes

Show that this leads to the ideal-solution expression: fi(T, P, {x}) = xi fpure i(T, P).

5.4 Determine the minimum work needed to remove one mole of solute from each of
the following at 1 bar, 25°C: (a) 99 moles of solvent, (b) 999 moles of solvent (1
part per thousand), (c) 1 part per million, (d) 1 part per billion. Is “dilution the
solution to pollution” if the solute must ultimately be recovered?

b xi bpure i
i

∑=

v T P x{ }, ,( ) xi vpure i T P,( )
i

∑=
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5.5 The behavior of the excess properties for ethanol-water mixtures, shown in Fig-
ure 5.4, suggests that modeling excess properties can be difficult. 

(a) What is the simplest functional form that could reproduce the figure’s
response of gE to changes in T and x1? 

(b) What would be the simplest expression for the excess heat capacity cp
E that is

consistent with the figure?

5.6 Scatchard and Ticknor [18] have reported experimental results for excess proper-
ties of methanol-benzene mixtures between 25 and 55°C. For equimolar mixtures
their results for gE can be represented by

 T in K (P5.6.1)

(a) One hundred moles of each pure liquid are added to a double-walled vessel;
each pure is initially at 30°C. If the mixing is to be done isothermally, should
steam or cooling water be supplied to control the temperature?

(b) If instead of mixing isothermally, the mixing is done adiabatically, by insulat-
ing the vessel, estimate the final temperature of the mixture. Pure component 
heat capacities are cp/R ≈ 9.94 for methanol and cp/R ≈ 16.36 for benzene.

(c) Determine the value of the isobaric heat capacity for this mixture at 30°C. 

5.7 At 50°C a binary liquid mixture has gE/RT = 0.5 x1x2 and vE = 4 x1x2 (cm3/mol).
For the mixture having x1 = 0.3 at 50°C, by how much must the pressure change
to cause the activity coefficient γ1 to increase by 1%?

5.8 If ethyl ether(1) and ethanol(2) were mixed continuously at 2 bar, 310 K, would
steam or cooling water be required to maintain the temperature constant at
310 K? Assume these mixtures obey the Margules equation (5.6.11) with

(P5.8.1)

and a1 = 0.1665, b1 = 233.74, a2 = 0.5908, b2 = 197.55.

5.9 Consider a binary mixture that has sE = 0 and hE/RT = 0.6 x1x2, with the ideal
solution relative to the Lewis-Randall standard state. Find the expression for the
composition dependence of gm , the change in Gibbs energy on mixing.

5.10 Derive (5.3.4), which relates excess properties to residual properties. To cover all
possibilities you must do the derivation twice: (i) once for a first-law property (u
or h) and (ii) again for a second-law property (s, g, or a).

5.11 Consider a binary mixture that obeys the Margules equations. What conditions,
if any, must the parameters A1 and A2 obey if γ1 vs. x1 passes through an extre-
mum at some composition 0 < x1 < 1?

gE

RT
-------- 0.25 423.5

T
-------------– 2.475 Tln– 17.55+ 

 =

Ai ai
bi

T K( )
-------------+=
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5.12 A binary “Flory-Huggins” mixture (often a polymer mixture) has

(P5.12.1)

(P5.12.2)

with the ideal solution defined relative to the Lewis-Randall standard state. Here
A is a constant, xi are mole fractions, ϕi are apparent volume fractions,

(P5.12.3)

and vi is the molar volume of pure component i. Using A = 1, plot the composi-
tion dependence of gE (i.e., gE vs. x1) for the cases v2/v1 = 1, 10, and 100.

5.13 Consider a binary mixture that has

where a and b are constants at fixed T and P. Find the corresponding expression
for the composition dependence of γ2.

5.14 For a certain binary mixture at fixed T and P, Dr. Emmett Brown has proposed
that the composition dependence of the component-1 fugacity be represented by

Do you find any problem with this proposal?

5.15 Consider a binary mixture at fixed T and P. The composition dependence of the
fugacity of component 1 is given by

where parameter A is a constant, independent of T and P.

(a) Find the expression for the composition dependence of the fugacity of com-
ponent 2. 

(b) Using fpure 1 = 1 bar, plot f1 vs. x1 for A = 0, 0.1, 0.5, 1, 2, and 3.

hE

RT
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sE

R
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ϕ1
x1
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 ln– x2
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 ln–=

ϕi
xi vi

x1v1 x2v2+
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γ1ln ax2
3 bx2
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5.16 Inspired by the simplicity of the Porter equation, Tabitha the Untutored claims
that it is easy to contrive models for the composition dependence of activity coef-
ficients. 

(a) To illustrate, Tabitha proposes that some binary mixtures must obey

where A is constant at fixed T and P. Find the resulting expression for the
composition dependence of γ1, where γ1 is relative to the pure component
standard state. Is there a problem when applying your result to real mixtures?

(b) Undaunted, Tabitha proposes another correlation for binaries,

where A is constant at fixed T and P. Find the corresponding expression for
the composition dependence of γ2. Test whether the expressions for γ1 and γ2
satisfy the Gibbs-Duhem equation. Is there any problem with trying to apply
your result for γ2 to real mixtures?

5.17 An article by certain alchemists in an obscure medieval journal reported infinite-
dilution activity coefficients for binary mixtures of the rare substances jekyll-
hyde(1) and neroburn(2). For 300 K ≤ T ≤ 400 K, they gave

    and    

Somewhat later, a rival group disputed this and claimed instead that

    and    

To resolve this discrepancy, you have done calorimetric experiments on these
mixtures between 300 and 400 K. Your data can be correlated by

Which activity coefficients are consistent with the calorimetric data?

5.18 Consider a set of consistent data for activity coefficients of a binary mixture at
low pressures. Show that, at constant temperature, 

That is, the data should produce a plot of (ln γ1 – ln γ2) vs. x1 such that the curve
defines two regions of equal area and opposite signs.

gE

RT
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2 x2
2
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γ1ln A x2
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5.19 Measurements of the nonidealities for a certain binary organic solution are
claimed to be represented by 

where a, b, and c are constants. It is also claimed that ln  = 1 at 300 K.

(a) What must be the values of a and c to achieve thermodynamic consistency?

(b) Give expressions for ln γ1, ln γ2, and ln  at 300 K.

(c) Give expressions for gE and hE.

5.20 It has been claimed that nonidealities in a certain binary mixture can be
described by

 

(a) Find consistent expressions for ln γ2, gE, and hE.

(b) A calorimetric experiment on this mixture gave hE/RT = 1 for the equimolar
mixture at 300 K. Evaluate  and  at 325 K.

5.21 For binary mixtures at fixed P, determine the temperature dependence of ln γ1
when (a) gE/RT is independent of T, (b) gE is independent of T, (c) hE is indepen-
dent of T, (d) hE = 0, (e) sE = 0.

5.22 At 25°C a certain binary mixture has the following values for activity coefficients:

Determine whether Porter, Margules, or Wilson equations best represent these
data and find the values of the parameters for your choice.

5.23 At 105°C mixtures of ethanol(1) and toluene(2) have activity coefficients at infi-
nite dilution given approximately as  = 5.197 and  = 4.811. Compute and
plot γ1 vs. x1 using (a) the Margules equations and (b) Wilson’s equations.

5.24 Write out the complete equation representing gE/RT for a ternary mixture mod-
eled by the multicomponent Margules equation (5.6.22). Also write out the com-
plete expression for ln γ3. 

x1 γ1 γ2

0.2 1.12 1.04

0.4 0.94 1.12

0.6 0.92 1.13

0.8 0.97 0.99

∂ γ1ln

∂x2
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T
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2( ) T⁄ bTx2 cT2
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∞ γ2

∞
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∞
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5.25 Tabitha the Untutored is working with some binary hydrocarbon mixtures that
boil above 450 K. She reads in her thermo textbook that “Such substances form
athermal mixtures; that is, no change in temperature occurs when the pure com-
ponents are mixed adiabatically.”

(a) What can you say about the signs and values of the excess properties gE, hE,
and sE for athermal mixtures?

(b) Reading further, Tabitha finds that, for athermal mixtures, a “good approxi-
mation” for gE is

(P5.25.1)

where ϕi represents the volume fraction defined in Problem 5.12. Comparing
this with (5.4.14), Tabitha quickly concludes that γ i = ϕi/xi. But this expression
gave poor results when compared to data taken in the company’s laboratory.
Tabitha argued that the data must be wrong and that the technicians should
redo the experiments. Do you agree with her? (Amazingly, it never occurred
to her that the authors of the textbook might be wrong!) 

5.26 Activity coefficients of water (w) in solutions containing sugar (s) are often corre-
lated by ln γw = α(1 – xw)2, where α is a constant. Write an expression for the com-
position dependence of gE and ln γs, taking into account that the solubility of
sugar is limited to 0 < xs < 0.25.

5.27 Obtain expressions for the pressure dependence of the fugacity f1 at fixed T,
when the pressure dependence of the partial molar volume is given by each of
the following: (a) , (b) , (c) . Here a, b, and c are con-
stants, independent of state.

5.28 Each of the following applies to the fugacity for one component in a binary mix-
ture. In each case, indicate how the quantities γ1, f1

o, and  have been treated if
the expression was obtained from (i) Equation (5.5.5), (ii) Equation (5.5.9), and
(iii) Equation (5.5.11):

(a)

(b)

(c)

The parameters a, b, … , h depend on substance but are independent of state.

5.29 Assume mixtures of methanol(1) and water(2) obey Wilson’s equations with ∆λ12
= 0.347 kJ/mol, ∆λ21 = 2.178 kJ/mol, ρ1 = 24.55 mol/liter, and ρ2 = 55.34 mol/
liter. If the temperature of an equimolar mixture is increased from 20°C to 30°C,
by how much do both activity coefficients change? 
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RELATIONS AMONG RELATIONS

 

n previous chapters we have introduced many quantities, and we have developed
many relations among those many quantities. We use this chapter to summarize the

most important of those relations and to show you that we have consistently used a
single approach in developing those relations. We start in § 6.1 by reminding you of
the subtle distinctions between system states and constraints on interactions that may
be in force when we change a state. Constraints are usually imposed in terms of mea-
surables; for example, constant temperature or constant volume or no heat transfer.
But such constraints can have profound effects on conceptuals and, in particular, on
our choices for the most useful and economical expressions for relating measurables
to conceptuals.

At this point we have developed two principal ways for relating conceptuals to
measurables: one based on the ideal gas (Chapter 4) and the other based on the ideal
solution (Chapter 5). Both routes use the same strategy—determine deviations from a
well-defined ideality—with the deviations computed either as differences or as ratios.
Since both routes are based on the same underlying strategy, a certain amount of sym-
metry pertains to the two; for example, the forms for the difference measures—the
residual properties and excess properties—are functionally analogous. 

We use § 6.2 to emphasize the symmetries that exist among difference measures
and among ratio measures. Difference measures are commonly used to compute ther-
modynamic properties of single homogeneous phases, while ratio measures are most
often used in phase and reaction equilibrium calculations. In § 6.3 we show that simi-
larities among ratio measures extend to their physical interpretations. Then in § 6.4 we
collect in one place the five most important ratio measures that are used to compute
values for fugacities.

Finally in § 6.5, we illustrate that our two approaches—differences and ratios—are
formally equivalent. Consequently, we can, in principle, use differences to compute
ratios and vice versa. Whether this can be done in practice depends on the kinds and
quantities of experimental data that are available. But in addition, such equivalences
can be exploited in thermodynamic modeling, for example, by using 

 

g

 

E

 

 models (dif-
ference measures) to obtain mixing rules in 

 

PvTx

 

 equations of state. The resulting

 

PvTx

 

 equations would then be used to compute fugacity coefficients (ratio measures). 

I
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6.1  EFFECTS OF EXTERNAL CONSTRAINTS ON SYSTEM STATES

 

In previous chapters we have tried to convince you that if we have a complete equa-
tion of state for a one-phase substance, then we can compute values for 

 

all

 

 thermody-
namic properties. Up to now, much of our attention has focused on volumetric
equations of state, 

 

P

 

(

 

T

 

, 

 

v

 

, {

 

x

 

}) or 

 

v

 

(

 

T

 

, 

 

P

 

, {

 

x

 

}), because these equations contain only mea-
surables. But those forms are not the only possibilities. For example, our fairy god-
mother might present us with a complete functional form for the Helmholtz energy

(6.1.1)

or for the Gibbs energy,

(6.1.2)

From either of these we could use relations presented in earlier chapters to obtain all
remaining thermodynamic properties. 

To determine the number of independent properties required to completely define
an equation of state, we use the procedure introduced in § 3.1. There we made a dis-
tinction between 

 

V

 

, the number of orthogonal interactions available to manipulate a
state, and 

 

F

 

ex

 

, the number of independent properties needed to identify a state. We
also noted that 

 

V

 

 is affected by any external constraints imposed on interactions, but
that 

 

F

 

ex

 

 is not. We elaborate on this distinction here.
Consider two systems, 1 and 2. System 1 is a one-phase mixture of 

 

C

 

 components,
with mole numbers {

 

N

 

}. This mixture fills a rigid vessel of volume 

 

V

 

1

 

, and the vessel
is immersed in a heat bath maintained at temperature 

 

T

 

1

 

. System 2 is another sample
of the same mixture, having the same 

 

C

 

 components and the same mole numbers {

 

N

 

}.
System 2 fills the cylinder of a piston-cylinder apparatus. The cylinder is immersed in
a heat bath at 

 

T

 

2

 

. A constant external pressure is imposed on the mixture; at equilib-
rium the system pressure 

 

P

 

2

 

 balances that external pressure. Therefore, system 2 is at
constant pressure, while system 1 is at constant volume. 

We adjust the two heat baths so the two temperatures are the same,

(6.1.3)

and we adjust the external pressure on system 2 so the two volumes are the same,

(6.1.4)

To identify each state (with 

 

S

 

 = 0), we must by (3.1.7) specify values for (

 

C

 

 + 2) proper-
ties. We have met this requirement: 

 

T

 

1

 

, 

 

V

 

1

 

, 

 

and

 

 

 

C

 

 mole numbers. Moreover, the two
sets of values are identical. Hence, the two states are identical, and consequently, 

 

all

 

thermodynamic properties are 

 

exactly

 

 the same in the two systems, even though the
external constraints differ. (This assumes relations among properties are monotonic; if
they are not, we can still adjust 

 

T

 

, 

 

V

 

, and {

 

N

 

} so that the two states are identical.)
But while the two equilibrium states are the same, we may feel that some things

about these two situations differ. We bring two things to your attention here. One dif-
ference is the identity of the natural variables for describing a state. In system 1 with 

 

V

A A T V N{ }, ,( )=

G G T P N{ }, ,( )=

T1 T2=

P2 P T1 V1 N{ }, ,( )=
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fixed, a natural choice is an expression for the Helmholtz energy (6.1.1), while for sys-
tem 2 with 

 

P

 

 fixed, a natural choice would be an expression for the Gibbs energy
(6.1.2). “Natural” here means economical in terms of computations needed for an ana-
lyis. For example, the entropies are the same in the two situations, but in system 1 the
entropy 

 

S

 

 is economically posed in terms of 

 

A

 

, while in system 2 it is better posed in
terms of 

 

G

 

:

(6.1.5)

Likewise, all chemical potentials are the same,

 

for all i

 

(6.1.6)

This distinction in the choice of appropriate dependent variables will influence our
development of the criteria for equilibrium, which appears in Chapter 7.

A second difference is in how the two systems respond to internal fluctuations or to
externally imposed disturbances. Such responses are quantified by the thermody-
namic response functions and, again, the natural choices for these two systems differ.
For example, the first-order response to a change in temperature is given by (6.1.5),
but the second-order response is given by a heat capacity: the response for system 1 is
given by 

 

C

 

v

 

, while that for system 2 is given by 

 

C

 

p

 

. These two heat capacities differ:

(6.1.7)

This means, for example, that if we increase the temperature of both heat baths by
5°C, the new equilibrium states reached by the two systems will differ. Other inequal-
ities, similar to (6.1.7), occur between other high-order derivatives of 

 

A

 

 and 

 

G

 

, leading
to differences between other response functions.

More generally, external constraints affect many aspects of thermodynamic theory
and practice. In experiments, certain constraints make particular response functions
much easier to measure than others. In statistical mechanics, theoretical descriptions
of natural fluctuations are determined by the external constraints imposed on sys-
tems. In thermodynamic modeling, external constraints guide us toward those prop-
erties that offer the most economical routes to complete descriptions of states.
Similarly, in thermodynamic analysis, constraints help us separate dependent vari-
ables from independent ones and help us choose those independent variables that are
most likely to simplify the analysis. If we merely wanted to develop a thermodynamic
description of equilibrium systems, we could ignore external constraints, but since we
want to change system states and perform engineering analyses that reveal the conse-
quences of such changes, we must learn to recognize external constraints and account
for the limitations they may impose on system behavior and performance. A more
complete discussion of relations between thermodynamic properties and external
constraints can be found in [1].
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6.2  SYMMETRY IN ROUTES TO CONCEPTUALS

 

We will need values of conceptuals for two classes of problems: (a) calculation of ther-
modynamic properties for one-phase systems and (b) calculation of multiphase and
chemical reaction equilibria. For both kinds of problems, we use the same basic strat-
egy: (i) Compare raw or modeled experimental data with computed properties of an
ideal substance to obtain measures for deviations from the ideality, then (ii) exploit
the deviation measures to obtain expressions for the required conceptuals in terms of
measurables. Calculations of one-phase properties are typically based on differences,
while phase and reaction equilibrium calculations typically use ratios. In § 6.2.1 and
6.2.2 we focus on difference measures, while in § 6.2.3 and 6.2.4 we consider ratio
measures.

 

6.2.1 Generalized Difference Measure

 

In Chapters 4 and 5 we used the same basic strategy for obtaining changes in concep-
tuals for homogeneous single-phase systems. In both chapters we used a difference 

 

f

 

d

 

to compare a real property value 

 

f to that of some ideal substance f id; extending this
approach in a completely general way, we define a generalized difference measure by

(6.2.1)

The ideal substance may be real or hypothetical, so long as its state (Tid, Pid, {xid}) is
well-defined. To make the difference measure fd useful, the ideal property value f id

must be readily obtained, either from experiment, theory, or correlation. Note that in
this most general form, the ideal state (T id, Pid, {xid}) need not be the same as the state
of the real substance (T, P, {x}).

Since the properties f and f id are state functions and the definition (6.2.1) is a linear
combination of state functions, the difference fd is also a state function. This means fd
forms exact differentials, so (6.2.1) can be written as

(6.2.2)

In other words, the concept of an ideal substance can be interpreted mathematically as
the lower limit of an integration. If the ideal substance is chosen to be the ideal gas at
the same state as the real substance (T id = T, Pid = P, {xid } = {x}), then the differences fd
are the residual properties of Chapter 4. Alternatively, if the ideal substance is taken to
be the Lewis-Randall ideal solution at (T, P, {x}), then the differences fd are the excess
properties of Chapter 5. These two possibilities are compared in Table 6.1.

To emphasize that the definition (6.2.1) is completely general and that the ideal
substance is at the discretion of the user, we introduce a third class of difference mea-
sures, distinct from the residual properties and excess properties. These new differ-
ences may be called generalized changes of properties on mixing [2-4]; they are defined by
the intensive form

f d T P x{ }  T id Pid x id{ }, ,;, ,( ) f T P x{ }, ,( ) f id T id Pid x id{ }, ,( )–=

f d fd
f

id

f

∫=
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(6.2.3)

where the sum runs over all components. In this form, the ideal “substance” is a set of
pure components, each in a standard state  these standard states need not be
the same as the mixture state (T, P), nor need they be the same for all pures.

The generalized difference measure (6.2.1) provides options for computing changes
in conceptuals: it is merely a matter of computational convenience whether we use
residual properties, excess properties, or changes of properties on mixing. To illus-
trate, consider a change from state 1 to state 2. For such a process, we could obtain the
change in any conceptual ∆f12 using residual properties,

(6.2.4)

In such cases, values for the residual properties would be obtained from integrals over
appropriate functions of a PvTx equation of state, as discussed in § 4.4.

Or we could obtain ∆f12 using excess properties,

(6.2.5)

In this approach, values for the excess properties would most likely be obtained from
models for gE, although PvTx equations of state could also be used.

Or we could obtain ∆f12 using changes of properties on mixing,

(6.2.6)

In these situations values for the properties f M would be obtained by integrating
appropriate functions of a PvTx equation of state. However, this approach is little
used nowadays; instead, when a reliable equation of state is available for a substance,
the residual properties are usually used to obtain ∆f12. In any case, the strategy based
on difference measures is a completely general one that can be implemented in vari-
ous ways to help reduce the computational burden of an analysis. 

Table 6.1 Routes to properties devised in Chapters 4 and 5 use the
same strategy: compute deviations from a well-defined ideality

Deviations from ideality

Ideality Differences Ratios

Ideal gas Residual properties Fugacity coefficient

Ideal solution Excess properties Activity coefficient
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6.2.2 Symmetry in Use of Difference Measures

Since the residual properties and excess properties are merely two particular mem-
bers of the general class of differences defined in (6.2.1), we might expect that the
functional forms for relations among excess properties bear similarities to the forms
for relations among residual properties. Indeed, many such similarities exist, and in
fact the similarities extend beyond functional relations to encompass the entire strat-
egy used in relating conceptuals to experimentally accessible quantities. 

That basic strategy is illustrated in Table 6.1. First we define an ideal mixture whose
properties we can readily determine. Then for real mixtures we compute deviations
from the ideality as either difference measures or ratio measures. In one route the ide-
ality is the ideal-gas mixture, the difference measures are residual properties, and the
ratio measure is the fugacity coefficient. In the other route the ideality is the ideal
solution, the difference measures are excess properties, and the ratio measure is the
activity coefficient.  

Figure 6.1 summarizes the strategy we follow to obtain forms for computing prop-
erty changes of one-phase systems. In route 1A, the required experimental data

Figure 6.1 To obtain changes in properties of one-phase mixtures, our basic strategy is to com-
pute deviations relative to some ideality. In route 1A (left) the ideality is the ideal gas and the
deviations are the residual properties. In route 1B (right) the ideality is an ideal solution and the
deviations are the excess properties. In addition, we could use the relations in § 5.3 to compute
residual properties from excess properties and vice versa.

PvTx data
cp

ig  data

v(T, P, {x}) data
h(T, P, {x}) data

phase equilibrium data

PvTx model gE(T, P, {x}) model

Residual 
properties

    ∆fd = ∆f res

Excess 
properties
∆fd = ∆f E

Ideal-gas
properties

   ∆fid = ∆f ig

Ideal-solution
properties
 ∆fid = ∆f is

∆f  =  ∆fd  +  ∆fid

(§ 5.3)

Route 1A Route 1B
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include heat capacity values for the pure-component ideal gases plus volumetric data
for the mixture. Those data are correlated as a model PvTx equation of state, and that
model together with the relations in § 4.4 provide values for residual properties. Then
we combine those residual properties with ideal-gas properties to obtain differences
in properties for the substance of interest.

In route 1B, also shown in Figure 6.1, the required experimental data include mix-
ture volumes, enthalpies, and some amount of phase-equilibrium data. From those
data, values for excess properties are extracted and fit to a model for gE. However,
before excess properties can be found, we must define the ideal solution; that is, we
must choose the standard state for each component. With the excess-property model
plus values for ideal-solution properties, we can then compute property differences
for the substance of interest.

Traditionally, route 1A was used only for gases and route 1B was used only for liq-
uids. Route 1B is still rarely used for gases because it requires much more experimen-
tal data than route 1A; however, when route 1B is applied to liquids and pressure
effects can be ignored, then the amount of data required is tolerable. Conversely, route
1A was, in the past, little used for liquids, because older PvTx equations of state were
not sufficiently reliable when applied to liquids. Modern volumetric equations of state
often overcome this deficiency, so route 1A is now a viable method for liquids, as well
as gases. Therefore, the relation between residual properties and excess properties
given by

   (6.2.7)

might be used to obtain excess properties if mixture residual properties are known,
and conversely. The determination of excess properties from residual properties was
developed in § 5.3 and is indicated by the horizontal line in Figure 6.1. 

6.2.3 Generalized Ratio Measure

In Chapters 4 and 5 we developed two versions of the same basic strategy for obtain-
ing fugacities: we defined a ratio that compares the real-substance fugacity fi to that of
the substance in some reference state fi

®. We generalize this approach by defining a
generalized ratio measure, the generalized activity,

(6.2.8)

Just as for the generalized difference (6.2.1), the reference state used in (6.2.8) may be
real or hypothetical; it need not be the same as the real state. On taking the logarithm
of (6.2.8), we obtain a difference,

(6.2.9)
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Moreover, as in (6.2.2), we can interpret the rhs of (6.2.9) as the result of an integration,

(6.2.10)

so we may view the reference state as the lower limit of an integration.
Unfortunately, the general activity ⁄i is not simply related to a difference in chemi-

cal potentials, because the definition of the fugacity (4.3.8) requires that the real and
reference states be at the same temperature. Fortunately, we lose almost nothing in
computational convenience by taking the reference state to be at the same tempera-
ture as the mixture of interest; then, the activity can be written as

(6.2.11)

6.2.4 Symmetry in Use of Ratio Measures

In the above expressions, the reference is chosen by the user; the choice is based on
computational convenience. For example, if we choose the reference to be the pure
component at the temperature T and pressure P of the mixture, then (6.2.8) becomes
the usual activity, and the difference in (6.2.11) becomes the change of chemical poten-
tial on mixing,

(6.2.12)

Alternatively, if the reference is taken to be the ideal gas at the same state as the mix-
ture, then (6.2.8) becomes the fugacity coefficient, and the difference in (6.2.11) is the
residual chemical potential. Then, instead of (6.2.12), we would have

(6.2.13)

Further, if the reference is taken to be a Lewis-Randall ideal solution, then the ratio in
(6.2.8) is the activity coefficient, while the difference in (6.2.11) becomes the excess
chemical potential. Then, instead of (6.2.12) or (6.2.13), we would have

(6.2.14)
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These are the common choices for the reference, but they are not the only possibilities:
in special situations other choices may be more useful. For example, for electrolyte
solutions it often proves convenient to use, as the reference, a hypothetical mixture at
some composition other than the composition of interest.

The relations (6.2.12)–(6.2.14) show that the activity, fugacity coefficient, and activ-
ity coefficient are all particular forms of the generalized activity, just as various chem-
ical potentials in (6.2.12)–(6.2.14) are all particular forms of the generalized difference
in chemical potentials (6.2.1). In addition, the structural analogies suggested by
(6.2.12)–(6.2.14) extend to various derivatives, some of which are summarized in Table
6.2. For example, when pressure changes, each of these quantities responds according
to some form of the partial molar volume. Note that ( /RT) and (ln fi) have the same
response to changes in pressure. Likewise, when temperature changes, each quantity
responds according to some form of the Gibbs-Helmholtz equation, which involves a
partial molar enthalpy. Note that (ln fi) and (ln ϕi) have the same response to changes
in temperature. 

The derivatives of ϕi and γ i in Table 6.2 indicate how the strength of a nonideality
responds to changes of state. For example, when a nonideal gas has all > 0, then
each ϕi increases with isothermal increases in pressure. So if the mixture also has all ϕi
> 1, then the gas becomes more nonideal as pressure increases; this is the common
behavior. However, if all ϕi < 1, then the nonideality weakens with increasing pres-
sure. Similarly, if a nonideal solution has all < 0, then each γ i increases with iso-
baric increases in temperature. So, if the mixture is a positive deviant (it has all γ i > 1),

Table 6.2 The fugacity, fugacity coefficient, activity, and activity coefficient are
equivalent representations of the chemical potential; those equivalences extend to
their pressure and temperature derivatives.

Property Pressure effect Temperature effect

Chemical 
potential

(3.4.15) (3.4.17)
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then the mixture becomes more nonideal as the temperature is increased. But if the
mixture is a negative deviant (all γ i < 1), then the nonideality weakens with increasing
temperature.

In addition to the similarities among derivatives shown in Table 6.2, each form of
the chemical potential is constrained by a Gibbs-Duhem equation, as shown in Table
6.3. For isothermal-isobaric changes in composition, the rhs of each equation in Table
6.3 vanishes; for example, (3.4.19) becomes

fixed T and P (3.4.20)

Further, for changes of state at constant composition, the forms of the Gibbs-Duhem
equation in Table 6.3 can be related to derivatives in Table 6.2. For example, for a
change in pressure at constant temperature and constant composition, (4.3.13) com-
bines with (4.3.15) to yield

(6.2.18)

Similar relations can be obtained from other quantities appearing in Tables 6.2 and 6.3. 

Table 6.3 The chemical potential, fugacity, fugacity coefficient, activity, and
activity coefficient are all constrained by a form of the Gibbs-Duhem equation.
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To obtain values for fugacities, we must make contact with experimental data, usu-
ally through one of the two routes summarized in Figure 6.2. In the figure, route 2A
combines experimental PvTx data with properties of ideal gases to form the fugacity
coefficient. Then the definition of the fugacity coefficient can be used to extract values
for the fugacity. Alternatively, fugacities can be obtained by following route 2B in Fig-
ure 6.2. Then the required experimental data are mixture volumes, enthalpies, and
limited phase-equilibrium data that produce excess properties. Those data, fit to a gE

model and combined with computed properties of ideal solutions, yield activity coef-
ficients. These activity coefficients can then be used to obtain values for fugacities. 

Figure 6.2 suggests that route 2B requires considerably more experimental effort
than route 2A, because route 2B requires data from volumetric, calorimetric, and
phase-equilibrium measurements. But for condensed phases, pressure effects can
often be ignored, and then the experimental effort demanded by route 2B may not be
excessive. Traditionally route 2A was applied to gases and route 2B was reserved for
condensed phases, but now we may be able to use PvTx equations of state to deter-
mine activity coefficients and fugacities of liquids. Inversely, we may be able to use a
gE model as the basis for devising mixing rules for PvTx models, as discussed in § 5.5
and § 6.5. These additional routes are indicated by the horizontal line in Figure 6.2.

Figure 6.2 Schematic illustration of the strategies used to obtain computational forms for
fugacities, which are needed for phase- and reaction-equilibrium calculations. Traditionally,
route 2A has been mostly used for gases, while route 2B was confined to condensed phases.
However, these uses were dictated, not by thermodynamic limitations, but by limitations of the
models used to correlate the data.

PvTx data
v(T, P, {x}) data
h(T, P, {x}) data

phase equilibrium data

PvTx model gE(T, P, {x}) model

Fugacity
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6.3  PHYSICAL INTERPRETATIONS OF SELECTED CONCEPTUALS

The similarities in the expressions for the fugacity ratios shown in (6.2.12)–(6.2.14)
extend to their physical interpretations; in this section we show that each ratio (hence,
each difference in chemical potentials) can be simply interpreted as the reversible
work involved in a certain well-defined process: the activity is related to the reversible
work involved in adding more of one component to a mixture (§ 6.3.1); the residual
Gibbs energy is related to the reversible work involved in changing an ideal gas into a
real gas (§ 6.3.2); the excess Gibbs energy is related to the reversible work involved in
converting an ideal solution into a real mixture (§ 6.3.3). We also show that the corre-
sponding differences in partial molar entropies can be interpreted as reversible heat
effects. 

6.3.1 Adding More of One Component to a Mixture

First we consider the reversible addition of a small amount of pure component i to a
mixture at fixed temperature and pressure. This process has already been discussed in
§ 3.7.3; there we showed that, for each mole of substance added, the reversible shaft
work is given by

(6.3.1)

Using (6.2.12) for the rhs, we find

(6.3.2)

So, when we choose the pure-substance reference state to be at the same temperature
and pressure as the mixture, then the activity of component i is simply related to the
reversible isothermal-isobaric work involved in adding a small amount of pure i to
the mixture. This provides a physical interpretation for the activity.

For this process, the heat effect is given by the entropy balance (3.6.10), now written
for one inlet and no outlets. Since the process is isothermal, the system (T), inlet (Tα),
and external boundary (Text) all have the same temperature, T = Tα = Text, so (3.6.10)
becomes

(6.3.3)

For an isothermal-isobaric addition of a small amount of component i to a mixture,
the reversible heat effect is given by the change in partial molar entropy on mixing. 

In the special case of ideal gases, (6.3.2) reduces to

(6.3.4)

while (6.3.3) reduces to
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(6.3.5)

Similarly, for Lewis-rule ideal solutions, (6.3.2) again reduces to

(6.3.6)

and (6.3.3) reduces to

(6.3.7)

For both idealities, when material is added, the volume must expand to keep P con-
stant and we must add heat to keep T constant. If we mole-fraction average the work
given in (6.3.1), we obtain the change in Gibbs energy on mixing, gm, which is the
reversible isothermal-isobaric work involved in forming a mixture from its pure com-
ponents; cf. § 3.7.4 in which we consider the reverse process.

The above analysis applies for moving one component from a pure state into a mix-
ture, but we can generalize to moving a component from one mixture to another. In
those cases, the reversible shaft work is given by

(6.3.8)

If the component fugacity in the original mixture {xo} exceeds that in the target mix-
ture, then the shaft work is negative and the system can be used to do work. However,
if the fugacity in the target is larger, then work must be done to force the process to
proceed in the desired direction. For this reason, energy must be supplied to concen-
trate such mixtures as toxic wastes and sewage.

6.3.2 Changing an Ideal Gas into Real Stuff

To obtain a physical interpretation for the residual Gibbs energy, we start with an
ideal-gas mixture confined to a closed vessel. As the process, we consider the revers-
ible isothermal-isobaric conversion of the ideal-gas molecules into real ones. Although
this process is hypothetical, it is a mathematically well-defined operation in statistical
mechanics; the process amounts to a “turning on” of intermolecular forces. We first
want to obtain an expression for the work, but since the process involves a change in
molecular identities, we must start with the general energy balance (3.6.3). For a sys-
tem with no inlets and no outlets, (3.6.3) becomes

(6.3.9)

where the sum runs over all components i. Recall Wb is the work involved in deform-
ing the boundary, while Wsh is the shaft work (i.e., non-boundary work) associated
with the process. Similarly, the general entropy balance (3.6.8) is written for a closed
system as

qrev
ig RT xiln– 0>=

wsh rev,
is RT xiln 0<=

qrev
is RT xiln– 0>=

wsh rev, Gi T P x{ }, ,( ) Gi T P xo{ }, ,( )– RT
fi T P x{ }, ,( )

fi T P xo{ }, ,( )
----------------------------------ln= =

δWb rev, δWsh rev,+ d NiUi
i

∑ 
  δQrev–=



 6.3   PHYSICAL INTERPRETATIONS OF SELECTED CONCEPTUALS 241

(6.3.10)

For an isothermal process, T = Text ; then combining (6.3.9) with (6.3.10) to eliminate
the heat, and recalling that A = U – TS, we find

(6.3.11)

where a is the molar Helmholtz energy of the system. The reversible boundary work
is given by

(6.3.12)

We combine (6.3.11) with (6.3.12), recall that  the process is isobaric and constant mass,
and write

(6.3.13)

Finally, we integrate (6.3.13) from the ideal-gas state to that of the real stuff,

(6.3.14)

(6.3.15)

This shows that the residual Gibbs energy can be interpreted physically as the revers-
ible isothermal-isobaric shaft work involved in “turning on” intermolecular forces,
thereby converting ideal-gas molecules into real molecules. In general this work may
be positive or negative. For a single component (6.3.15) reduces to

(6.3.16)

which is the reversible isothermal-isobaric work involved in transforming one mole of
pure ideal gas into a real substance.

If we integrate the differential boundary work in (6.3.12) over the change from
ideal gas to real substance, we obtain

(6.3.17)

So the residual volume is proportional to the reversible isothermal-isobaric boundary
work associated with converting ideal gas into real substance.

The corresponding heat effect associated with the process is obtained from the
entropy balance (6.3.10); in particular, for an isothermal constant-mass process,
(6.3.10) becomes

(6.3.18)

δQrev Text d Ni Si
i
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wsh rev, RT ϕpure iln=
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And integrating over the process, as we did to obtain (6.3.15), we find

(6.3.19)

So we can interpret the residual entropy as proportional to the reversible isothermal-
isobaric heat involved in converting ideal-gas molecules into real molecules. With the
results from (6.3.15), (6.3.17), and (6.3.19) we can show that process satisfies the first
law, ∆u = ures = wb + wsh + q.

6.3.3 Changing an Ideal Solution into Real Stuff

To obtain a physical interpretation for the excess Gibbs energy, we consider a Lewis-
Randall ideal solution confined to a closed vessel, and we determine the reversible
isothermal-isobaric work involved in converting the ideal solution into a real mixture.
Again this is a hypothetical process: all intermolecular forces are initially the same
(but they are nonzero), and the process changes the forces into those of real molecules.

The development of the expression for the reversible work is exactly that already
done in § 6.3.2, and the result is functionally the same as (6.3.13),

(6.3.20)

Integrating this from the ideal-solution state to the real state of interest, we obtain

(6.3.21)

(6.3.22)

This provides a physical interpretation for the excess Gibbs energy. Note that the
work computed from (6.3.22) may be positive or negative, depending on whether the
real mixture exhibits positive or negative deviations from ideality.

The heat associated with the process is also obtained in a manner that parallels that
in § 6.3.2; the result is proportional to the excess entropy,

(6.3.23)

The direction of the heat transfer may be into or out of the system. Finally, analogous
to (6.3.17), the boundary work for this process is

(6.3.24)

This indicates that the reversible boundary work for the process is proportional to the
excess volume. Equations (6.3.22)–(6.3.24) satisfy the first law, ∆u = uE = wb + wsh + q.

qrev Tsres T P x{ }, ,( )=

δWsh rev, Ndg=

wsh rev, g T P x{ }, ,( ) gis T P x{ }, ,( )–=

gE T P x, ,( ) RT xi γ iln
i

∑==

qrev TsE T P x{ }, ,( )=

wb rev, PvE–=



 6.4   FIVE FAMOUS FUGACITY FORMULAE 243

6.4  FIVE FAMOUS FUGACITY FORMULAE*

In § 6.2.4 we showed the similarities that occur in the fugacity ratios that define the
fugacity coefficient, the activity, and the activity coefficient, and in § 6.3 those quanti-
ties were given physical interpretations. In this section we summarize certain general-
ized expressions that relate the fugacity to measurables. Many such relations can be
written, but only five forms are in common use.

Fugacity Formula #1. If along an isotherm T, we have a complete Pvx equation of
state for our mixture, then we can compute fi from the definition of the fugacity coeffi-
cient (4.3.18). Here we write that definition in the form

  FFF #1 (6.4.1)

If the equation of state is volume-explicit, then

(4.4.10)

while if it is pressure-explicit, then

(4.4.23)

Fugacity Formula #2. If we have, from experiment or correlation, the value of a
standard-state fugacity  at the mixture temperature and pressure, so we can use the
Lewis-Randall rule (5.1.5), then we recast FFF #1 into an alternative form. First multi-
ply and divide (6.4.1) by the known standard-state fugacity ,

(6.4.2)

Now replace the denominator with

(6.4.3)

and use (5.5.5) to identify the ratio ϕ i(T, P, {x})/ϕ i
o(T, P)  as the activity coefficient; then

(6.4.2) becomes

  FFF #2 (6.4.4)

This activity coefficient is simply related to the excess chemical potential (5.4.10).

*  Professor M. M. Abbott originated this name for the following useful forms for fugacity [5].

fi T P x{ }, ,( ) xi P ϕi T P x{ }, ,( )=

ϕi T P x{ }, ,( )ln
πVi
RT
---------- 1– πd

π------0

P

∫=

ϕiln T P x{ }, ,( ) Ψ
RT
-------- ∂P

∂Ni
--------- 

 
TVN j i≠

1– Ψd
Ψ-------V

∞

∫ Zln–=

fi
o

fi
o

fi T P x{ }, ,( ) xi P
ϕi T P x{ }, ,( )

fi
o T P,( )

---------------------------------fi
o T P,( )=

fi
o T P,( ) P ϕi

o T P,( )=

fi T P x{ }, ,( ) xiγ i T P x{ }; fi
o T P,( ), ,( ) fi

o T P,( )=



244 RELATIONS AMONG RELATIONS

Fugacity Formula #3. If we have, from experiment or correlation, the value for a
standard-state fugacity at the mixture temperature but at some standard-state pres-
sure  that differs from the mixture pressure P, then we need a Poynting factor to
correct the standard-state fugacity from  to P. The correction is given in Table 6.2:

(6.4.5)

Separating variables and integrating along the mixture isotherm, we find

(6.4.6)

where  is the partial molar volume of component i in its standard state. Putting
(6.4.6) into FFF #2 leaves

 FFF #3 (6.4.7)

Note that the activity coefficient in (6.4.7) is exactly the activity coefficient that
appears in FFF #2 of (6.4.4); it is only the expression for the standard-state fugacity in
(6.4.6) that has changed in writing (6.4.7).

Fugacity Formula #4. Consider again the situation in which FFF #3 applies: we have
a value of a standard-state fugacity  at the mixture temperature and at some pres-
sure  other than the mixture pressure P. But rather than divide the pressure effects
between two terms, we might want to combine them into a single term. This situation
occurs, for example, when neither data nor a model provides a convenient expression
for the pressure correction that appears in (6.4.7). In such cases we might choose to
keep all the pressure dependence in the activity coefficient. 

To accomplish this, we proceed in a manner analogous to that for obtaining FFF #2.
First, multiply and divide FFF #1 by the known standard-state fugacity  

(6.4.8)

Then replace the denominator with

(6.4.9)

and use (5.5.4) to identify  as the activity coefficient; so (6.4.8) becomes
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  FFF #4 (6.4.10)

Note that the activity coefficient in (6.4.10) differs from those in (6.4.4) and (6.4.7) and
that it is not simply related to an excess Gibbs energy.

Fugacity Formula #5. In FFF #3 we divided the pressure effects between the activity
coefficient and a Poynting factor, while in FFF #4 we placed all the pressure effect in
the activity coefficient. Still another possibility is to place all the pressure effect in a
Poynting factor. To derive this form, we start with FFF #4 and use (5.5.11) to replace
γ i(T, P, {x}) with γ i(T, , {x}). The result is

  FFF #5 (6.4.11)

Note that in FFF #5 neither the activity coefficient nor the standard-state fugacity
depends on the mixture pressure. The Poynting factor in FFF #5 can be computed,
provided we can evaluate the partial molar volume for the real substance along the
isotherm T from  to P. In contrast, the Poynting factor appearing in FFF #3 applies
to component i in its standard state and involves an integral over the partial molar
volume of that standard-state substance.

An alternative derivation of FFF #5 can be performed by starting with FFF #3 and
moving the pressure dependence of γ i(T, P, {x}) into a Poynting factor. That Poynting
factor will contain an integral over the partial molar excess volume. Then we would
combine that Poynting factor with the one already appearing in FFF #3. 

Summary of procedure. To develop the fugacity formulae #2–5 presented above, we
follow this procedure:

(a) In every case, we start from FFF #1, which defines the fugacity coefficient.

(b) Then we multiply and divide FFF #1 by a known standard-state fugacity  

(i) for FFF #2, we use 

(ii) but for FFF #3–5, we use 

(c) Next we use one of the relations from § 5.5 to identify some ratio as an activity
coefficient: 

(i) for FFF #2 and 3 we use γ i(P; P), 

(ii) for FFF #4, γ i(P; ),

(iii) and for FFF #5, γ i( ; ).

(d) Finally, the appropriate Poynting factor is applied when needed. In FFF #3
the Poynting factor corrects only the standard-state fugacity, but in FFF #5 the 
Poynting factor corrects the solution fugacity. 
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Numerical results from FFF. We now show numerical results from each FFF applied
to the same mixture: an equimolar gaseous mixture of methane(1) and sulfur hexaflu-
oride(2) at 60°C and 20 bar. We determined residual properties for this mixture in
§ 4.5.5 and excess properties in § 5.3.1–5.3.3. For the equation of state we use the sim-
ple virial equation written in volume-explicit form,

(4.5.32)

with B given by (4.5.18) and values of the Bij given in Table 4.2. We choose the stan-
dard state for each component to be the pure gas at 60°C and 10 bar. Then the pure-
component fugacity coefficients are given by (P4.11.1) and the Poynting factor PF1
that appears in FFF #3 is given by

(6.4.12)

(6.4.13)

For the model (4.5.32) applied to binary mixtures, the fugacity coefficients are given
by (P4.11.2). Similarly, the general expression for the partial molar volume is given in
(P4.23.1). Then the Poynting factor that appears in FFF #5 is

(6.4.14)

(6.4.15)

where j ≠ i and δ12 is the collection of Bijs given in (5.3.8).
The numerical results leading to the fugacity for methane (component 1) are sum-

marized in Table 6.4. All five fugacity equations provide exactly the same value for the
fugacity, as they should. The values of all fugacity coefficients are close to unity, indi-
cating the pure components and the mixture are nearly ideal gases. However, unlike
liquids, these gas-phase systems produce large values for the Poynting factors. Fur-
ther, note that values obtained for activity coefficients change when we change the
standard state, even though the final values obtained for the fugacity are unchanged.
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6.5  MIXING RULES FROM MODELS FOR EXCESS GIBBS ENERGY

We have noted that historically PvTx models and fugacity coefficients were restricted
to gas-phase mixtures, while gE models and activity coefficients were restricted to
condensed-phase mixtures. But these restrictions are not thermodynamic; instead,
they arose because of limitations in the models themselves and because of computa-
tional difficulties that occur in solving sets of nonlinear algebraic equations. But with
continuing improvements in models, as well as in the power and availability of digital
computers, we can contrive complicated models for nearly any system. In particular,
FFF #1 is now being applied to virtually all types of mixtures and phases.

Use of FFF #1 requires a PvTx equation of state for the mixture and each standard
state, and we noted in § 4.5.12 that the outstanding problems in applying PvTx equa-
tions to mixtures are the choices for mixing rules and combining rules. One approach
to this problem is to base mixing rules on models for gE. The motivation is to combine
the composition-dependence in gE models with the pressure-dependence in PvTx

Table 6.4 Numerical results from each of the FFF in computations for the fugacity
of methane(1) in an equimolar methane-sulfur hexafluoride mixture at 60°C, 20 bar

Property
Eq. 

used
FFF #1
(6.4.1)

FFF #2
(6.4.4)

FFF #3
(6.4.7)

FFF #4
(6.4.10)

FFF#5
(6.4.11)

x1 . . . 0.5 0.5 0.5 0.5 0.5

P/bar . . . 20 20 20 20 20

/bar . . . . . . . . . 10 10 10

ϕ1(P) (4.4.10) 0.9985 . . . . . . 0.9985 . . .

ϕ1( ) (4.4.10) . . . . . . . . . 0.9992 0.9992

(P) (4.4.11) . . . 0.9773 . . . . . . . . .

( ) (4.4.11) . . . . . . 0.9886 0.9886 0.9886

(P)/bar (6.4.1) . . . 19.546 . . . . . . . . .

( )/bar (6.4.1) . . . . . . 9.886 9.886 9.886

γ1(P; P) (5.5.5) . . . 1.0217 1.0217 . . . . . .

γ1(P; ) (5.5.9) . . . . . . . . . 2.020 . . .

γ1( ; ) (5.5.10) . . . . . . . . . . . . 1.011

PF1 (6.4.13) . . . . . . 1.9772 . . . . . .

PF2 (6.4.15) . . . . . . . . . 1.998 1.998

f1/bar (FFF) 9.985 9.985 9.985 9.985 9.985

P1
o

P1
o

ϕ1
o

ϕ1
o P1

o

f1
o

f1
o P1

o

P1
o

P1
o P1

o
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models. This may be attempted in many different ways, and development of viable
strategies remains a central problem in thermodynamic modeling. One approach
would be to simply rearrange (5.5.5) to read

(6.5.1)

Formally, this could be used to connect a PvTx model for ϕi (lhs) with a model for the
activity coefficient (rhs). However, this approach is unattractive because it would
require us to deal separately with each component.

A better approach is to start from a particular model for gE(T, P, {x}; {A}), such as
the Porter, Margules, or Wilson models introduced in § 5.6. Here the {A} are the model
parameters, whose values are usually obtained by fits to phase-equilibrium data. We
then select a PvTx model; often a cubic is used. In this discussion, we consider the
Redlich-Kwong equation (§ 4.5.8). This model contains parameters {a, b} that depend
on composition via some mixing rules (§ 4.5.12). Our strategy is to find those mixing
rules by matching the gE model to gE given by the PvTx equation.

We can use a PvTx model to obtain gE via the residual Gibbs energy, as described in
§ 5.3. For the standard state of each component, we choose the pure component at the
mixture T and P. Then we can write

(6.5.2)

(6.5.3)

where Z = Pv(T, P, {x})/RT is the mixture compressibility factor at T, P, and {x}, while
Zpure i = Pvpure i(T, P)/RT is that for pure i at T and P. The equation-of-state parame-
ters {a, b} are obtained by matching, at a single state, the value of gE from an excess-
property model to the value of gE given by the equation of state via (6.5.3). After the
equation-of-state parameters are found, fugacity coefficients are determined from
(4.4.10), and fugacities are obtained from FFF #1. Each pairing of a particular equation
of state to a particular gE model produces a unique matching, but the possibilities are
many and the resulting expressions for ϕi can be complicated [6, 7].

One of the first implementations of the above procedure was that by Huron and
Vidal [8]. They retained the simple mixing rule for the Redlich-Kwong parameter b,

(4.5.75)
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and they obtained the mixing rule for a under the assumption that, in the limit of infi-
nite pressure, the excess Gibbs and Helmholtz energies are the same. The resulting
mixing rule for the Redlich-Kwong parameter a was then found to be

Huron-Vidal (6.5.4)

The factor 1.443  changes when other model equations of state are used. Note that
(6.5.4) involves only pure component parameters, ai and bi; so, no combining rules are
needed. However, these mixing rules do not reproduce the known composition
dependence of the second virial coefficient (4.5.18).

Under different assumptions, Wong and Sandler [9] used the Redlich-Kwong equa-
tion with the mixing rule (6.5.4) to obtain a quadratic rule,

Wong-Sandler (6.5.5)

with

(6.5.6)

To obtain the unlike parameters, Wong and Sandler chose these combining rules,

(6.5.7)

and

(6.5.8)

The value of the binary interaction parameter kij must be estimated or found by fitting
mixture data. Our brief introduction to this approach has been based on the Redlich-
Kwong equation, but the procedure can be implemented with any PvTx equation.
More generally, the approach discussed here can provide accurate predictions of fluid
properties at high T and P using model gE parameters fit at low T and P. The proce-
dure is now routinely used in process simulation software. 

6.6  SUMMARY

The theme of this chapter is that, while thermodynamic descriptions of mixtures
involve a large number of equations, those equations tend to fall into a few repeated
patterns. By recognizing the patterns, we not only broaden our understanding, but we
also reduce the number of different things that must be mastered. 

The first pattern encompasses the difference measures for deviations from some
well-defined ideality. In § 6.2.1 we defined a generalized difference, and we showed
that this class of generalized differences contains the residual properties, excess prop-
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erties, and changes of properties on mixing. In principle, any one of these differences
can be used to compute the thermodynamic properties of any substance, including
substances composed of any number of components and any kind of phase. In prac-
tice, the choice of which difference to use is dictated by the available data and by what
additional data you can calculate or reliably estimate. Strategies for choosing among
computational options will be discussed in Chapter 10. For now the important lesson
is to appreciate that different versions of the same pattern provide computational
options, and much of an engineer’s job is choosing from among the available options.

The second pattern includes the ratio measures for representing chemical poten-
tials. These are all ratios of fugacities, with the general form being the generalized
activity defined by (6.2.8). With only a small loss of generality, we choose the real and
reference states to be at the same temperature, then the fugacity is related to some dif-
ference in chemical potentials, as shown in § 6.2.4. Every form for the fugacity shown
in § 6.2.4 involves a reference, and until that reference is identified, those relations
carry little meaning and have no computational utility. Fortunately, the choice of ref-
erence is at the discretion of the user. 

Because the fugacity coefficient, activity, and activity coefficient are each a special
case of the generalized activity (6.2.8), each has a similar physical interpretation. As
shown in § 6.3, each ratio is simply related to the reversible work involved in moving
molecules from a reference substance into the real substance of interest. With this
physical interpretation, we can anticipate why the fugacity is intimately involved in
calculations for phase equilibria. Consider two phases α and β in contact at the same
temperature and pressure. If the phases are out of equilibrium, say with  then
by (6.3.8) work must be supplied to move molecules of component i from β to α; if
that work is not supplied, then molecules of component i will naturally diffuse from
phase α to phase β. That is, in the absence of temperature and pressure gradients, mol-
ecules tend to diffuse from regions of high fugacity to regions of low fugacity; this
point will be made mathematically precise in the next chapter. 

Values for fugacities are nearly always calculated using one of the five famous
fugacity formulae cited in § 6.4. Again, these five formulae represent options that we
can exploit in solving all kinds of phase separation and chemical reaction problems.
The commonly used procedures for attacking such problems will be developed in
Chapter 10, the solution techniques will be described in Chapter 11, and particular
examples will be offered in Chapter 12.
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PROBLEMS

6.1 Consider a binary mixture of components A and B. The mixture is initially at (T1,
P1) and undergoes a change of state to (T2, P2). The composition remains fixed
during the process. For any extensive property F, show that the change ∆F12 for
this change of state can be computed either in terms of isobaric residual proper-
ties or in terms of excess properties. That is, prove that

(P6.1.1)

6.2 A certain equimolar binary mixture is at T = 25°C and P = 10 bar. At 25°C compo-
nent 1 has P1

s  = 1.0 bar, fpure 1(1 bar) = 0.9 bar, fpure1(10 bar) = 2.0 bar, f1(1 bar, x =
0.5) = 0.35 bar, f1(10 bar, x = 0.5) = 1.2 bar. Determine values for each of the fol-
lowing at 25°C and 10 bar:

(a) The fugacity coefficient ϕ1 in the equimolar mixture. 

(b) The fugacity coefficient ϕpure 1.  

(c) The activity coefficient γ1(T, P, {x}; fpure 1(T, P)) in the equimolar mixture.

(d) The activity coefficient γ1(T, P, {x}; fpure 1(T, P1
s )) in the equimolar mixture.

(e) The activity coefficient γ1(T, P1
s, {x}; fpure 1(T, P1

s )) in the equimolar mixture.

(f) The activity ⁄1 for the equimolar mixture, with the standard state for ⁄1
based on the pure-component at the mixture T and P.

6.3 For the process of converting an ideal gas into a real substance, show that the
heat and work effects presented in § 6.3.2 and 6.3.3 are consistent with the energy
balance on a closed system.

6.4 Consider an isothermal-isobaric process in which a small amount of component i
is removed from an ideal-gas mixture at T, P, {x} and injected into a real mixture
at the same T, P, and {x}. (a) Show that the required minimum work is given by
RT ln ϕi. (b) Show that the reversible heat effect is given by 

∆F12 ∆F12
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ig
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TSi
res.
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6.5 Consider a binary mixture of 1 and 2 that obeys the following model equations:

and

where  is the vapor pressure for pure i. Find the expression for the fugacity of
component 1 in terms of the state variables (T, P, x1) and the constant parameters
(a12, b12, c12, α1, α2, n, m, β1, θ1).

 
6.6 Consider an isothermal-isobaric process in which a small amount of component i

is removed from a Lewis-Randall ideal solution at T, P, {x} and injected into a real
mixture at the same T, P, and {x}. 

(a) Show that the required minimum work is given by RT ln γ i. 

(b) Show that the reversible heat effect is given by 

6.7 Evaluate the reversible shaft work, the boundary work, and the heat effect when
each of the following pure substances is converted isothermally-isobarically from
an ideal gas into the real substance.

(a) Pure gaseous methyl chloride at 370 K, 0.2 MPa, with virial coefficients given
by Mansoorian et al. [10]: B = –0.01293 exp[1110/T] liter/mol and C = 192
exp[–0.0219 T] (liter/mol)2, T in K. 

(b) Pure n-hexane at T/Tc = 1.1 and v/vc = 0.9. If necessary, assume the modified
Redlich-Kwong equation (4.5.67) applies. 

6.8 Evaluate the reversible work and the heat effect associated with the isothermal-
isobaric conversion of an equimolar liquid solution of carbon tetrachloride +
chloroform into an ideal gas at 298 K, 0.1 MPa. Assume the real mixture can be
modeled by the Porter equation with parameter given in Table E.1.

6.9 Perform calculations to check and confirm the numerical values in Table 6.4.

6.10 Show that when the pressure is low enough, FFF # 3, 4, and 5 are all essentially
the same as FFF #2.

6.11 For a pure liquid at 350 K and having a molar volume v = 0.1 liter/mol, estimate
the pressure at which the Poynting factor deviates by 2% from unity. For the pure
vapor pressure at 350 K, use Ps = 0.1 MPa.

6.12 At 100°C, estimate the amount by which the pressure must change from 1 bar to 

(a) increase the fugacity of water vapor by 5%

(b) increase the fugacity of liquid water by 5%.

gE

RT
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Tm------------+
 
 
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6.13 This problem is to illustrate that while the definition of the fugacity is unambigu-
ous, the choice for defining an ideal solution is arbitrary and therefore the defini-
tion of the activity coefficient is at our disposal. Consider a binary mixture that
obeys Porter’s equation

where the parameter A = 0.4. At the T and P of interest fpure 1 = 5 bar. Instead of
the Lewis-Randall rule, let us define an ideal solution based on the fugacity at the
equimolar composition; that is, choose

(P6.13.1)

(a) Sketch the fugacity f1(x1). On the same plot sketch the ideal-solution fugaci-
ties given by the Lewis-Randall rule and that given by (P6.13.1).

(b) Is the standard state used in (P6.13.1) a mixture, a real pure substance, or a
hypothetical pure substance?

(c) Define an activity coefficient ζ1 that measures deviations from the ideal solu-
tion defined in (P6.13.1),

(P6.13.2)

Show that this activity coefficient must obey the normalization

(d) Find an expression for ζ1 solely in terms of x1, the parameter A, and con-
stants. Plot ζ1 vs. x1 and on the same plot show γ1 (from the Porter equation)
in the Lewis-Randall standard state.

(e) For several values of x1, show that the fugacity given by f1 = x1 γ1 fpure1 is
numerically the same as the value given by f1 = x1 ζ1 .

(f) Define ζ2 as in (P6.13.2), with f2
is  = 2 x2 f2(T, P, x2 = 0.5). Find the expression

for the composition dependence of ζ1, and then show that ζ1 and ζ2 satisfy
the isothermal-isobaric Gibbs-Duhem equation.

6.14 (a) Sketch a plot of the fugacity of a pure substance as it is isothermally com-
pressed from a very low pressure to ten times its vapor pressure. Justify all
important features on your plot using appropriate FFF and “always-true”
relations.

(b) On the same plot as in (a), add the line for the fugacity if the substance is one
component in an equimolar binary mixture.

gE

RT
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is x1f1
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f1
is T P x1, ,( )

------------------------------=

ζ1x1 0.5→
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6.15 (a) Show that the fugacity of a pure liquid at pressure P and a subcritical temper-
ature T < Tc can be written as

(P6.15.1)

where Ps is the pure-liquid vapor pressure,  is the fugacity coefficient of the
pure saturated liquid, and vpure i is the molar volume of the pure liquid. 

(b) Estimate the fugacity of pure liquid water at 100°C and 200 bar. At 100°C the
second virial coefficient of pure water is B = –0.45 liter/mol.

6.16 An engineer, who works for one of your competitors, reveals that they use the
following proprietary expression for the fugacity of component 1 in a certain
binary liquid mixture (with P in MPa and T in K):

(a) Which FFF was probably used to obtain this expression?
(b) Obtain expressions for both activity coefficients, γ1 and γ2.
(c) What expressions for gE/RT and hE/RT are consistent with this form for f1?
(d) What expression for  is consistent with this form for f1? 

6.17 For very dilute mixtures of a gaseous solute(1) in water(2), experimental data
show that, over wide temperature ranges, the partial molar volume at infinite
dilution can be correlated by

where κT is the isothermal compressibility of pure water, ρ2 is the molar density
of pure water, and a, b, c are all constants. Obtain the expression for the infinite-
dilution fugacity coefficient and for the fugacity of the solute at low concentra-
tions in water.

6.18 Each of the following gives an expression for the fugacity of one component in a
system. For each, what real-substance state (T, P, { x }, phase) would be appropri-
ate? What models and assumptions were used to obtain the expression (e.g., FFF,
standard state, ideal solution, etc.)?

(a) (b) 

(c) (d) 

(e)
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TRANSFERS, TRANSFORMATIONS, 

AND EQUILIBRIA

 

hen two or more homogeneous systems are brought into contact to form a sin-
gle heterogeneous system, any of several actions may occur before equilibrium

is reestablished. The possibilities include mass and energy transfers, chemical reac-
tions, and the appearance or disappearance of phases. In this chapter we provide ther-
modynamic criteria for determining whether and to what extent such phenomena
actually occur. Surprisingly, these criteria invoke no new thermodynamics—we need
only combine familiar thermodynamic quantities in new ways and, in some cases,
apply to those quantities mathematical operations that we have not used heretofore.

The heterogeneities of most concern to us are those that involve the presence of
more than one phase. The analysis of multiphase systems can be important to the
design and operation of many industrial processes, especially those in which multiple
phases influence chemical reactions, heat transfer, or mixing. For example, phase-
equilibrium calculations form the bases for many separation processes, including

 

stagewise

 

 operations, such as distillation, solvent extraction, crystallization, and super-
critical extraction, and 

 

rate-limited

 

 operations, such as membrane separations. 
Analysis of multiphase systems is a principal theme of chemistry and chemical

engineering; another is analysis of chemical reactions—processes in which chemical
bonds are rearranged among species. Rearranging chemical bonds is the most effi-
cient way to store and release energy, it drives many natural processes, and it is used
industrially to make substitutes for, and concentrated forms of, natural products. 

The chapter divides in two: in early sections we describe the behavior of nonreact-
ing systems, while in later sections we deal with systems in which reactions occur. In
§ 7.1 we combine the first and second laws to obtain criteria for identifying limitations
on the directions of processes and for identifying equilibrium in closed multiphase
systems. Then in § 7.2 we develop the analogous relations for heat, work, and material
transfers in open systems. With the material in § 7.2 as a basis, we then present in § 7.3
the thermodynamic criteria for equilibrium among phases.

A similar program is used for reacting systems. In § 7.4 we extend the combined
first and second laws to closed systems undergoing chemical reactions, then in § 7.5
we show how the combined laws apply to reactions in open systems. In § 7.6 we for-
mulate the thermodynamic criterion for identifying reaction equilibria. By presenting

W



 

 

 

7.1   THE LAWS FOR CLOSED NONREACTING SYSTEMS

 

257

 

the criteria for both phase and reaction equilibria in the same chapter, we hope to
emphasize and exploit similarities that exist between the two. These criteria provide
foundations for the engineering calculations described in Part IV of this book.

 

7.1  THE LAWS FOR CLOSED NONREACTING SYSTEMS

 

Careful observation teaches us that, left undisturbed, every material system tends to
evolve to a unique equilibrium state that is consistent with any imposed constraints.
The rates of such evolutions cannot be determined from thermodynamics, but ther-
modynamics does provide quantitative criteria both for identifying the directions of
such evolutions and for identifying equilibrium once it is reached. Those criteria are
obtained by combining the first and second laws. 

In Chapter 3 we combined the first and second laws to obtain the fundamental
equations for closed systems; one example is (3.2.4), which we now write as

(7.1.1)

But in writing such equations, we assumed that our system is homogeneous—that its
values for intensive properties are uniform throughout. Here we want to generalize
the development so we can identify equilibrium in heterogeneous systems, especially
those in which the heterogeneity results from the presence of more than one part, such
as multiple phases. For such systems, the fundamental equation (7.1.1) takes the form
 

(7.1.2)

where each sum runs over all homogeneous parts of the system. The form (7.1.2)
allows for the possibility that, during a change of state, different system parts might
have different values for some intensive properties, such as temperature and pressure.
It allows for material exchange among parts. It also allows rigid or nonconducting
walls (or both) to separate different parts, so that even at equilibrium, all parts need
not have the same temperature or pressure.

Because of the generality of (7.1.2), a heterogeneous system may not be describable
by a single set of intensive system properties. But any resulting ambiguities can be
removed by restating the combined first and second laws in a form that contains only
extensive system properties plus constant intensive properties of the surroundings.
This general form of the combined first and second laws is derived in § 7.1.1. From
that general form, we deduce special forms that apply to adiabatic processes (§ 7.1.2)
and processes having constant 

 

T

 

 and 

 

V 

 

(§ 7.1.4) or constant 

 

T

 

 and 

 

P

 

 (§ 7.1.5).

 

7.1.1 The Combined Laws

 

Consider a closed system composed of one or more parts. The system has thermal and

 

Pv

 

 work-mode interactions with well-defined surroundings. The surroundings have
such a large capacity for providing and absorbing energy that such exchanges do not
affect its intensive properties. Consequently, the surroundings have a constant tem-

d Nu( ) Td Ns( )– Pd Nv( )+ 0=

d Nkuk( )
k

∑ Tk d Nksk( )
k

∑– Pk d Nkvk( )
k
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perature 

 

T

 

sur

 

 and pressure 

 

P

 

sur

 

 throughout any changes of state that occur in the sys-
tem. Effectively, the system and surroundings are isolated from the rest of the
universe, as in Figure 7.1, so that any change of state occurring in the system cannot
affect the total internal energy 

 

U

 

t

 

 of system plus surroundings,

(7.1.3)

Subscript 

 

b

 

 refers to the boundary between system and surroundings. We consider
here only those situations in which the boundary is of negligible mass compared to
that of the system, so it does not affect the amount of energy being transferred to or
from the system. The boundary prevents mass from entering or leaving the system,
while allowing energy to enter or leave. (If we need to account for boundary effects,
one way to do so would be to include the boundary as another part of the heteroge-
neous system.) Ignoring boundary effects, (7.1.3) reduces to

(7.1.4)

We now consider the term in (7.1.4) that applies to the surroundings. The first law
for the surroundings takes the form

(7.1.5)

but note what the signs mean for 

 

Q

 

sur

 

 and 

 

W

 

sur

 

 in (7.1.5): 

 

δ

 

Q

 

sur

 

 is positive if heat
enters the surroundings from the system. Likewise for 

 

δ

 

W

 

sur

 

. However, the signs for
the system terms 

 

Q

 

 and 

 

W

 

 mean the opposite: 

 

δ

 

Q

 

 is positive if heat enters the system
from the surroundings. Likewise for 

 

δ

 

W

 

. So before (7.1.5) can be combined with
(7.1.4), the sign conventions for 

 

Q

 

sur

 

 and 

 

W

 

sur

 

 must be made consistent with those
used for the system terms 

 

Q

 

 and 

 

W

 

. The two sign conventions can be made to agree by
setting 

 

δ

 

Q

 

sur

 

 = –

 

δ

 

Q

 

ext

 

 and 

 

δ

 

W

 

sur

 

 = – 

 

δ

 

W

 

ext

 

. (Recall from § 2.3.3 that the subscript 

 

ext

 

always means external to the system, so 

 

T

 

sur

 

 = 

 

T

 

ext

 

.) Therefore we write (7.1.5) as 

(7.1.6)

 

Figure 7.1

 

Schematic of a system and its surroundings isolated from the universe
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and we combine (7.1.6) with (7.1.4) to obtain

(7.1.7)

Next we replace the path functions in (7.1.7) with state functions. To eliminate the
heat, we appeal to the second law (2.3.8), which for this situation takes the form

(7.1.8)

Recall we always have 

 

dS

 

gen

 

 

 

≥

 

 0. Solving (7.1.8) explicitly for 

 

δ

 

Q

 

ext

 

 and substituting
the result into (7.1.7) gives

(7.1.9)

Now assume the only work mode is that associated with a volume change, so

(7.1.10)

where we have used dV = –dVsur. Substituting (7.1.10) into (7.1.9), remembering that
δWlost ≥ 0, and using N as the total number of moles in the system, we find

closed systems (7.1.11)

Equation (7.1.11) is a general form of the combined first and second laws applied to
closed systems; we call it the combined laws. Since Nu, Nv, and Ns are extensive proper-
ties of the system while Tsur and Psur are properties of the surroundings, (7.1.11)
applies both to homogeneous systems and to heterogeneous systems. If the system is
heterogeneous, but composed of homogeneous parts, then (7.1.11) can be written as a
sum over the homogeneous parts, as in (7.1.2).

The equality in (7.1.11) applies only to reversible changes, while the inequality
applies for real (i.e., irreversible) processes. The combined laws (7.1.11) differ from the
fundamental equation (3.2.4) in that (3.2.4) contains only system properties, while
(7.1.11) contains the temperature and pressure of the surroundings. If a change of state
occurs with Tsur = T and Psur = P, then the two equations are identical.

For a finite change of state at constant Tsur and Psur , the integrated form of (7.1.11) is

(7.1.12)

This equation is important because it establishes limits on the kinds of processes that
can naturally (spontaneously) occur to change the state of a closed system. If two
states satisfy the inequality, then the system can spontaneously evolve from the initial
to the final state, but only via some irreversible process. If two states fail to satisfy
(7.1.12), then the system cannot spontaneously evolve from the initial to the proposed

dU δQext– δWext– 0=

dS
δQext

Tsur
-------------- dSgen+=

dU δWext– Tsur dS– Tsur dSgen– 0≤=

δWext δWsur– Psur dVsur– δWlost+( )– Psur dV– δWlost–= = =

Ndu NPsur dv NTsur ds–+ 0≤

N∆u NPsur ∆v NTsur ∆s–+ 0≤
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final state. The equality in (7.1.12) pertains to reversible changes, but in practice the
equality cannot occur because reversible changes can only proceed differentially.

7.1.2 Adiabatic Processes on Closed Systems

If constraints are applied to the interactions available to our closed system, then
(7.1.11) simplifies accordingly. We first consider adiabatic processes in which only
work is done on or by a closed system. If we continue to ignore boundary effects, the
first law applied to an adiabatic process reduces to

closed, adiabatic (7.1.13)

Substituting this into (7.1.11), the combined laws simplify to NTsurds ≥ 0, and since Tsur
is an absolute temperature, we can write

closed, adiabatic (7.1.14)

Here the sum runs over all parts of a heterogeneous system. Note that we cannot
determine whether the entropy of some parts increases or decreases; it is only the total
entropy that is constrained. However, if the system is homogeneous, then the sum
contains only a single term, and (7.1.14) still applies.

The result (7.1.14) is merely a restatement of the second law: spontaneous adiabatic
changes of state occur only if they either increase the system’s total entropy or leave it
unaffected. If two states have the same entropy so Sfinal = Sinitial, then the system can
evolve along some reversible adiabatic path between the initial and the final states. If
Sfinal > Sinitial, then the system spontaneously evolves along some irreversible adia-
batic path. But if Sfinal < Sinitial, then the system cannot spontaneously evolve along
any adiabat from the initial to the final state. Since all real processes are irreversible,
any spontaneous adiabatic process occurring in a closed system must increase the sys-
tem’s total entropy. Such processes might involve heat transfer among parts of the
system, even if no heat is exchanged with the surroundings.

When a closed system cannot exchange either heat or work with the surroundings,
then the system is said to be isolated. For heterogeneous isolated systems, conservation
of mass, energy, and volume can be written as

(7.1.15)

(7.1.16)

(7.1.17)
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When these are substituted into (7.1.11), the combined laws again reduce to

isolated (7.1.18)

This shows that thermodynamic constraints on isolated systems are the same as those
for adiabatic processes on closed systems.

For an isolated system initially at equilibrium, a spontaneous process away from
equilibrium can only be initiated by removing a constraint, thereby allowing system
parts to interact. This means that if an isolated system is to undergo a spontaneous
change from an equilibrium state, then it must be initially composed of parts whose
properties are not all equal. Removing a constraint then allows certain intensive prop-
erty values to become uniform over parts of the system. For example, some parts of
the system may have different temperatures because the parts are separated by insu-
lated walls. By removing the insulation, heat transfer can take place so that, at equilib-
rium, the temperatures are the same. This suggests that in isolated systems, an
increase in entropy is associated with a relaxing of constraints. 

Note that (7.1.14) provides the criterion for identifying equilibrium both in isolated
systems and in closed, insulated systems. In both cases, a spontaneous change of state
can never reduce the system’s entropy; so, the equilibrium state has the largest value
of entropy that is consistent with the values of the intensive properties used to iden-
tify the state. 

7.1.3 Example

How does the entropy of an isolated system respond when two system parts, ini-
tially at different temperatures, are brought into contact during a workfree process?

Consider a chamber bound by rigid, impermeable nonconducting walls, as in Figure
7.2. The chamber is divided in two by a partition that is also rigid, impermeable, and
nonconducting; however, the partition is removable. On one side of the partition we
place one mole of a copper alloy having heat capacity cvs = 3R. The alloy is initially at
temperature Ts. On the other side of the partition we place one mole of an ideal gas
whose heat capacity is cvg = 3R/2. The gas is initially at temperature Tg .  

Figure 7.2 Schematic of an isolation chamber divided into two parts. A solid in one part is ini-
tially separated by a removable partition from a gas in the other part.
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k

∑ 0≥=

Gas

rigid, impermeable, nonconducting walls 

removable
partition

 
  Solid



262 TRANSFERS, TRANSFORMATIONS, AND EQUILIBRIA

So we have an isolated system divided into two parts; each part is initially in its
own equilibrium state, as identified by its intensive properties. To initiate a spontane-
ous process we relax a constraint: we remove the partition. Our objective is to test
(7.1.18); that is, we want to show that no matter what values are used for the initial
temperatures of the gas and alloy, the total entropy never decreases. Note that since
one part is a solid, no mass transfer occurs between parts: each part is closed.

First we determine the final states of the two parts. After the partition is removed
and equilibrium is reestablished, the gas and the alloy are in thermal equilibrium with
one another; that is, they have the same final temperature, 

(7.1.19)

Applying the first law to the total isolated system, we have

(7.1.20)

and since the heat capacities are constant

(7.1.21)

So

(7.1.22)

Substituting values for the numbers of moles and heat capacities, we find

(7.1.23)

Now we obtain the change in total entropy. For the entire system we can write

(7.1.24)

The entropy change of the alloy and of the gas can each be obtained by integrating
(3.3.11) over an isometric change on a closed system,

(7.1.25)

Using (7.1.25) for both the gas and the alloy, (7.1.24) becomes

(7.1.26)
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Since the mole numbers are the same for each part, we write N = Ng = Ns and substi-
tute (7.1.23) for the final temperature to find

(7.1.27)

This shows that ∆S is determined solely by the initial temperatures of the gas and
the alloy. Further, (7.1.27) shows that ∆S has its minimum value (= 0) when Ts = Tg ;
otherwise, ∆S > 0. Figure 7.3 shows values for ∆S computed from (7.1.27) over a range
of temperatures initially assigned to the alloy, with the gas always initially at 300 K.
Note that

(7.1.28)

This identifies the minimum in the curve shown in the figure and is consistent with
the equality in (7.1.18). Otherwise, the plot shows that the total entropy always
increases, in agreement with (7.1.18), no matter whether heat is transferred from the
gas to the solid or vice versa.
 

7.1.4 Isometric Processes with the Same Initial and Final Temperatures

In § 7.1.2 we showed that, for adiabatic processes occurring in closed systems, the
combined laws (7.1.11) reduce to a requirement that the system entropy must always
increase or remain constant. But if the system can exchange heat with its surround-
ings, then the entropy may increase, decrease, or remain constant, so for nonadiabatic
processes, the entropy no longer serves as an indicator for changes. In this and the

Figure 7.3 Change in total entropy caused by spontaneous workfree heat transfer in the iso-
lated system shown in Figure 7.2. No matter whether the gas is heated or cooled by the solid,
the total entropy increases, in agreement with (7.1.18).
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next section, we find the appropriate indicators for two processes that will be of par-
ticular use in describing phase equilibrium.

Consider the general closed-system situation shown in Figure 7.1, but now let the
system boundary be rigid, impermeable, and thermally conducting. Further, let the
surroundings be a heat reservoir at a constant temperature Tsur. If the system is heter-
ogeneous, then each part is closed to mass transfer, but all parts are in thermal contact
with one another. As in § 7.1.2 we want to learn how the system spontaneously
responds when its equilibrium is disturbed. We first consider a finite response with N
and V fixed, so the finite form of the combined laws (7.1.12) reduces to

fixed N and V (7.1.29)

This is almost a change in Helmholtz energy, so we apply the Legendre transform
(3.2.11) for A to the entire system and to each part,

(7.1.30)

When the closed parts undergo finite changes of state, this becomes

(7.1.31)

(7.1.32)

Combining (7.1.29) with (7.1.32) to eliminate N∆u, we have

(7.1.33)

Note that only initial and final values appear for properties of system parts. 
Before the process starts and after it ends, all system parts are in thermal equilib-

rium with one another and with the surroundings; therefore,

for all parts k (7.1.34)

Here subscript i indicates initial value and subscript f indicates final value. Using
(7.1.34) in (7.1.33) leaves

(7.1.35)

During an irreversible process the temperatures Tk are undefined; nevertheless,
(7.1.35) still applies, so long as all parts finally reach equilibrium at the temperature

N∆u Tsur N∆s– 0≤

A Nkak
k

∑ Nk uk Tksk–( )
k

∑= =
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k
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∑–=
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∆A ∆ Nkak( )
k

∑ 0≤=



 7.1   THE LAWS FOR CLOSED NONREACTING SYSTEMS 265

Tsur of the surroundings. If the system is homogeneous, then only one term appears in
the sum, and (7.1.35) reduces to ∆a ≤ 0. So when a fixed NV system is in thermal con-
tact with a heat bath and is subjected to a change of state, the system’s spontaneous
response is confined to processes that either lower the Helmholtz energy or leave it
unchanged. 

A similar restriction applies to any differential response; for example, consider a
fixed NV system initially in equilibrium with a surrounding heat bath. If the equilib-
rium state is differentially disturbed, the response is differential, so throughout the
response all Tk = Tsur. That is, in the differential case, the process is isothermal and
(7.1.35) becomes

fixed N, V, T (7.1.36)

Furthermore, throughout any reversible change all system temperatures are the
same, Tk = Tsur ≡ T, the equality in the combined first and second laws (7.1.11) applies,
and since N and V are fixed, (7.1.11) reduces to

(7.1.37)

Therefore, the equality in (7.1.35) applies to reversible changes, while the inequality
applies to irreversible processes. If two states have the same values for T, V, and A, so
Af = Ai, then the system can evolve along some reversible path between the initial and
final states. If the two states have Af < Ai, then the system spontaneously evolves
from the initial to the final state along some irreversible path. However if Af > Ai, then
the system cannot spontaneously evolve from the initial to the proposed final state. 

Equation (7.1.35) provides the criterion for identifying equilibrium in NVT sys-
tems: since a spontaneous change can never increase the Helmholtz energy, the equi-
librium state is that state having the smallest value of A that is consistent with the
values of those intensive properties used to identify the state. For any NVT system the
necessary and sufficient condition for equilibrium is that the total Helmholtz energy
be a minimum.

7.1.5 Processes with the Same Initial and Final Temperatures and Pressures

By a procedure that is exactly analogous to what we have just done for NVT systems,
we may also deduce the criteria for equilibrium in NPT systems. We again start from
the general closed-system situation shown in Figure 7.1, but now consider the special
case in which the surroundings contain a heat reservoir at temperature Tsur and a
mechanical reservoir at pressure Psur. The boundary between system and surround-
ings is impermeable but flexible and conducting. If the system is heterogeneous, sys-
tem parts are initially in thermal and mechanical contact with one another. 

For a finite response to a disturbance, the combined laws are still

 (7.1.12)

As before we introduce a Legendre transform, in this case (3.2.13) which defines the
Gibbs energy. In addition, the system is in equilibrium both before and after the
response, so analogous to (7.1.34) we have

dA 0≤

dA dU TdS– TdS PdV– TdS– 0= = =

N∆u NPsur ∆v NTsur ∆s–+ 0≤
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for all parts k (7.1.34)

and

for all parts k (7.1.38)

However, these relations constrain only the initial and final states of the system; dur-
ing the process, the system may be out of equilibrium, so the temperatures Tk and
pressures Pk are undefined. Combining (3.2.13), (7.1.12), (7.1.34) and (7.1.38) leaves

fixed N with (7.1.34) & (7.1.38) (7.1.39)

This result limits finite processes that may occur in closed systems that are in thermal
contact with a heat bath and in mechanical contact with a constant-pressure reservoir.
For a differential disturbance, arguments analogous to those leading to (7.1.36) can be
repeated, giving

fixed N, T, P (7.1.40)

For reversible changes, all system temperatures and pressures satisfy Tk = Tsur and
Pk = Psur throughout the process and (7.1.40) reduces to the equality. This means that
the equality in (7.1.40) applies to reversible changes, while the inequality applies to
irreversible processes. Equation (7.1.40) provides the criterion for identifying equilib-
rium in NPT systems: a spontaneous change of state can never increase the Gibbs
energy; therefore, the necessary and sufficient condition for equilibrium is that the
total Gibbs energy be a minimum. 

For other kinds of processes, other criteria apply. For example, any spontaneous
isometric-isentropic process must have

fixed N, V, S (7.1.41)

and the criterion for equilibrium is that the internal energy be a minimum. Similarly,
spontaneous isobaric-isentropic processes have

fixed N, P, S (7.1.42)

and the criterion for equilibrium is that the enthalpy be a minimum. Just as in (7.1.14),
(7.1.36), and (7.1.39), the equalities in (7.1.41) and (7.1.42) apply to reversible changes,
while the inequalities apply to irreversible processes. However, (7.1.41) and (7.1.42)
are generally of less practical use than (7.1.14), (7.1.36), or (7.1.39).

Finally, we caution that U, S, H, A, and G are all state functions, so for specified ini-
tial and final states, ∆U, ∆S, ∆H, ∆A, and ∆G are each process independent. However,
any criterion for equilibrium is restricted to a particular kind of process. For example,
we may certainly contrive a real process that has ∆S < 0 without violating (7.1.14).
However, (7.1.14) guarantees us that if a process does have ∆S < 0, then either the pro-
cess is not adiabatic, or the system is not of constant mass, or both.  

Tki Tkf Tsur= =

Pki Pkf Psur= =

∆G 0≤

dG 0≤

dU 0≤

dH 0≤
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7.1.6 Example

How can the combined laws be used to test the feasibility of proposed processes?

Saturated steam, initially at 100°C, is to be completely condensed to liquid. Determine
whether the condensation can be done (a) isothermally and isobarically and whether
it can be done (b) adiabatically. If either process is possible, determine bounds on the
heat and work that would be required. At 100°C, 1.013 bar, saturated steam tables give
the values in Table 7.1.

Isothermal-isobaric condensation. To be possible, this process must satisfy the form
of the combined laws appearing in (7.1.40), that is,

(7.1.43)

Using values from Table 7.1, we find

(7.1.44)

Although the sign of the answer is negative, its value is essentially zero within the
uncertainties with which properties can be measured. For example, discrepancies of
only ± 0.01% in the enthalpies could cause an uncertainty of ± 0.3 J/g in ∆g. Neverthe-
less, we judge that isothermal-isobaric condensation is thermodynamically possible. 

Bounds on q and w are obtained by assuming a reversible change; then,

(7.1.45)

and
(7.1.46)

So to accomplish the proposed condensation, a small amount of work would have to
be done on the steam and a large amount of heat would have to be removed. These
are the optimal values for q and w; in a real process more work would have to be done
and more heat would have to be removed. However in a real condensation, the
applied pressure would not have to be much more that the saturation pressure; in that
case, the above values for q and w would be close to the actual values.

Adiabatic condensation. The question here is whether we can force condensation by
some adiabatic change in the volume. An adiabatic process in a closed system must
satisfy the combined laws in the form of (7.1.14); that is, we must have ∆S ≥ 0. In Table
7.1 we find the entropy of saturated steam to be svap = 7.355 J/(g K); so, to achieve an

Table 7.1 Properties of saturated liquid water and
saturated steam at 100°C and 1.013 bar

v(cc/g) h(J/g) s(J/g K)

saturated liquid 1.044 419.1 1.307

saturated vapor 1673 2676 7.355

∆g ∆h ∆ Ts( )– ∆h T∆s–= = 0≤

∆g 419.1 2676–( ) 373.15 1.307 7.355–( )– 0.10 J/g–= =

w P∆v– 1.013 1.044 1673–( ) cc bar/g( ) 1 J/10 cc bar( ) 169 J/g=–= =

q ∆h 419 2676–( ) 2257 J/g–= = =
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adiabatic condensation, we must find a saturated liquid state that has a higher
entropy. But steam tables show that no liquid state has sliq > 7.355 J/(g K). This means
that without transferring heat, it is not possible to condense all the steam, no matter
how we might contrive to manipulate the system volume. However, note that the
reverse process is thermodynamically possible; that is, we can flash saturated liquid
water by adiabatically increasing the volume.

7.1.7 Selected Processes in Closed Heterogeneous Systems

In § 7.1.4 and 7.1.5 we developed constraints that apply to several kinds of processes: 

dS   ≥   0 fixed N, V, U (7.1.18)

dA   ≤   0 fixed N, V, T (7.1.36)

dG   ≤   0 fixed N, P, T (7.1.40)

 dU   ≤   0 fixed N, V, S (7.1.41)

dH   ≤   0 fixed N, P, S (7.1.42)

These constraints apply to both homogeneous and heterogeneous closed systems; in
heterogeneous systems, the system parts can exchange both matter and energy with
other parts, although they cannot exchange matter with the surroundings.

We consider a special set of heterogeneous systems in which all system parts have
the same temperature T and same pressure P. These conditions usually apply when
the parts are phases in contact with one another. In these cases, we find that the above
constraints all take the same form.

First, consider a system at fixed N, V, T. If we substitute the fundamental equation
(3.2.27) for dA into the constraint (7.1.36), we have

(7.1.47)

Here  is the chemical potential for component i in part k of the system. However,
any isothermal-isometric process has dV = Σk d(Nkvk) = 0 and dT = 0, so (7.1.47)
becomes

(7.1.48)

Now consider a system at fixed N, P, T. For these cases, we substitute the funda-
mental equation (3.2.28) for dG into the constraint (7.1.40) and obtain

(7.1.49)

But an isothermal-isobaric process has dT = 0 and dP = 0, so (7.1.49) reduces to (7.1.48).

dA Nk sk dT Pd Nkvk( )
k

∑–

k
∑– Gki dNki

i
∑

k
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The form (7.1.48) is also obtained when the fundamental equation (3.2.25) for dU is
substituted into the constraint (7.1.41) for fixed N, V, S systems and into the constraint
(7.1.18) for fixed N, V, U systems. It is also obtained when the fundamental equation
(3.2.26) for dH is substituted into the constraint (7.1.42) for fixed N, P, S systems. As
with other constraints derived in § 7.1.4–7.1.5, the equality in (7.1.48) applies to
reversible changes, while the inequality applies to irreversible processes. 

Although the one form (7.1.48) applies to several kinds of processes, the quantity
on the lhs is identified with the Gibbs energy only when T and P are the quantities
held fixed. When other quantities are fixed, the lhs takes other names, and for this rea-
son Prigogine and Defay identify the lhs of (7.1.48) as proportional to the affinity [1].
However, we reserve this name for the analogous quantity that arises in chemical
reaction equilibria (§ 7.4.4).

In addition to its generality, the form (7.1.48) is important because it leads to a com-
putational strategy for analyzing phase-equilibrium situations. In that strategy, a
phase-equilibrium problem is treated as a multivariable optimization in which the lhs
of (7.1.48) is the quantity to be minimized. An alternative strategy, in which the com-
putational problem is to solve a set of coupled nonlinear algebraic equations, arises
from the constraints on open-system processes developed in § 7.2.

7.2  THE LAWS FOR OPEN NONREACTING SYSTEMS

In this section we develop the combined laws for nonreacting systems that are open to
mass transfer. Consider a heterogeneous system composed of three parts: bulk phases
α and β plus an interface Ι between them, as in Figure 7.4. Each part contains C com-
ponents, and the state of each is identified by a temperature, a pressure, and a set of
mole numbers. Specifically, phase α has Tα, Pα, and total moles Nα; phase β has Tβ, Pβ,
and total moles Nβ; the interface has TΙ, PΙ, and total moles NΙ. The component chemi-

Figure 7.4 A three-part system composed of bulk phases α and β open to material and energy
transfers across interface Ι. The α reservoir maintains constant T and P in the α phase; β reser-
voir does the same for β phase. (Interface thickness exaggerated for clarity.)
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cal potentials are  and  Each phase is immersed in its own constant T-P reser-
voir; we can adjust T and P in each phase independently by adjusting T and P of each
reservoir.

The interface itself has negligible mass compared to the masses of the phases, and
during processes, states of the interface may be undefined or undefinable. We will
treat the interface as an open system and interpret each phase as a “port” for the other
phase; that is, the open-system energy and entropy balances from § 2.4 will apply. In
what follows, we first derive the combined first and second laws (§ 7.2.1). Then we
find limits on the directions (§ 7.2.2) and magnitudes (§ 7.2.3) of mass and energy
transfers between phases α and β. 

7.2.1 Combined Laws

Consider a differential process that transfers material and energy across an interface
of negligible mass, as in Figure 7.4. We choose the interface to be the system and write
material, energy, and entropy balances for it. Since no accumulation can occur in an
interface of negligible mass, those balance equations are merely

for i = 1, 2, … , C (7.2.1)

(7.2.2)

(7.2.3)

We have ignored kinetic and potential energy contributions to the energy balance. By
identifying the interface as the system, we are able to treat the phases α and β as ports
through which material and energy are exchanged with the interface. But we prefer to
express changes in terms of properties of the bulk phases, so we will replace interfa-
cial quantities in (7.2.1)–(7.2.3) with quantities pertaining to the phases. For example,
the material balance (7.2.1) can be expressed in terms of bulk-phase mole numbers as

for i = 1, 2, … , C (7.2.4)

The energy balance (7.2.2) represents the open-system form of the first law (2.4.15),
which can be written here as

(7.2.5)

This differs from (2.4.15) in that we now allow the intensive states of phases α and β to
vary during processes, whereas in (2.4.15) intensive states of feed and discharge
streams were assumed to be constant. To obtain the quantities in (7.2.5) in terms of
bulk-phase quantities, we employ the following observations. 

(a) Since any material entering the α(β) side of the interface must necessarily 
have come from the β(α) phase, we have d(hkNk,I ) = –d(hkNk), for k = α or β.

Gi
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(b) Any heat crossing the interface results from net heat transfer between the two 
phases, so δQ = –δQα – δQβ.

(c) Since the interface has negligible mass, no work is involved in deforming the 
shape of the interface and therefore δWb = 0.

(d) But shaft work could be done on or by the interface, so δWsh = – δWα – δWβ; 
for example, this shaft work could be that which displaces the interface in 
response to changes in volumes of the phases. 

Making all these substitutions, (7.2.5) becomes

(7.2.6)

Now consider the entropy balance (7.2.3) on the interface, which is given by a form
of (2.4.21) that is analogous to (7.2.5),

(7.2.7)

where the entropy generated in the interface is dSI
gen ≥ 0. To replace the interfacial

quantities in (7.2.7) with bulk-phase quantities, we use d(sk Nk,I ) = –d(skNk) and we
use δQk,ext = –δQk, where k = α or β. Then (7.2.7) becomes

(7.2.8)

We use (7.2.8) to eliminate δQα from the energy balance (7.2.6); we find

(7.2.9)

The terms under the sum in (7.2.9) result from mass transfer across the interface, so
those terms are zero when the phases are closed to one another. Then we are left with

closed α and β (7.2.10)

When the phases are open to one another with T and P fixed in each phase, then
each enthalpy term in (7.2.9) can be replaced with

fixed Tk and Pk (7.2.11)

and likewise, each entropy term can be written as
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fixed Tk and Pk (7.2.12)

We use the material balances (7.2.4) to replace each dNi
β with (–dNi

α)  and use a Le-
gendre transform to introduce the chemical potentials for components in phase α. So
(7.2.9) finally becomes

(7.2.13)

Equation (7.2.13) is a form of the combined first and second laws describing processes
in which material and energy cross an interface between bulk phases that are each at
their own fixed T and P. When only energy can be transferred between the phases,
then (7.2.13) reduces to (7.2.10). We now deduce limitations on the directions and
magnitudes of transfers by considering special cases of (7.2.10) and (7.2.13); the spe-
cial cases arise by applying constraints to the interface.

7.2.2 Limits on the Directions of Irreversible Transfers  (dSgen > 0)

Here we deduce bounds on the directions of irreversible transfers across the interface
in Figure 7.4. We consider six processes: workfree constant-mass heat transfer, adia-
batic constant-mass work, isobaric constant-mass heat transfer, isothermal constant-
mass work, isothermal-isobaric diffusion, and adiabatic-workfree diffusion.

Workfree, constant-mass heat transfer. Let the interface in Figure 7.4 be imperme-
able, thermal conducting, and fixed in position. When the interface is impermeable,
then each phase is closed; when the interface is fixed in position, then the volumes of
the two phases are constant: Vα = constant and Vβ = constant. We initiate a process by
adjusting the reservoirs so the phases have different pressures and temperatures. For
this situation, the closed-system form (7.2.10) of the combined laws reduces to

(7.2.14)

This constraint applies to heat crossing the interface in either direction, but to have a
particular example, say the process transfers heat from phase α to phase β. Then δQβ

> 0, and the inequality in (7.2.14) requires Tα > Tβ; that is, the temperature difference
(Tα – Tβ) drives workfree, constant-mass heat transfer. For such processes, heat always
flows from regions of high temperature to regions of low temperature.

Adiabatic constant-mass work. Now let the interface be impermeable, thermally
nonconducting, and movable. We initiate an adiabatic process by again adjusting the
reservoirs so the phases have different temperatures and pressures. Under these con-
ditions, the closed-system form (7.2.10) of the combined laws reduces to
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(7.2.15)

In this development we have located all irreversibilities in the interface, and since the
work terms in (7.2.15) are external to the interface, each is reversible,

(7.2.16)

Furthermore, the total volume is constant, so dVβ = –dVα; therefore, the work terms in
(7.2.15) can be written as

(7.2.17)

Combining (7.2.17) with (7.2.15) leaves

(7.2.18)

Consider expansion of α against β, so dVα > 0. Then, we must have Pα > Pβ to make
the lhs of (7.2.18) positive. Similarly, when phase α is compressed, then dVα < 0 and
(7.2.18) requires Pα < Pβ. That is, for both expansions and compressions of phase α,
the pressure difference (Pα – Pβ) drives an adiabatic, constant-mass change of volume,
and the work associated with such volume changes “flows” from regions of high
pressure to regions of low pressure. Similar statements apply for other work modes.

Isobaric, constant-mass heat transfer. Let the interface in Figure 7.4 be impermeable,
thermal conducting, and movable. We manipulate the reservoirs so the pressures are
the same in the two phases; thereafter, the interface moves in response to any (differ-
ential) pressure difference so we have Pα = Pβ = constant. We initiate a process by
adjusting the reservoirs so the temperatures differ in the two phases. Since the inter-
face is impermeable, the closed-system form (7.2.10) of the combined laws applies,

(7.2.10)

We again use (7.2.17) for the work terms, obtaining

(7.2.19)

But the pressures are balanced, so this reduces to

(7.2.20)
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which is the same as in (7.2.14) for workfree heat transfer. Consequently, a tempera-
ture difference drives isobaric heat transfer, and heat always flows from regions of
high temperature to regions of low temperature.

Isothermal constant-mass work. Let the interface remain impermeable, thermally
conducting, and movable, as above. But now adjust the reservoirs so the phases have
the same temperature; thereafter, the interface conducts heat in response to any (dif-
ferential) temperature difference so that Tα = Tβ = constant. Then further adjust the
reservoirs so the phases initially have different pressures; the pressure difference
moves the interface, so one phase does work against the other. Under these condi-
tions, the closed-system form (7.2.10) of the combined laws reduces to

(7.2.21)

We again use (7.2.17) for the work terms, finding

(7.2.22)

which is the same as (7.2.18). So we find that a pressure difference drives an isother-
mal volume change, and work always “flows” from regions of high pressure to
regions of low pressure.

Isothermal-isobaric single-component diffusion. Now consider both phases to con-
tain samples of the same pure component, and let the interface between them be ther-
mally conducting, movable, and permeable. Adjust the reservoirs so the phases have
the same T and P; then we have Tα = Tβ = constant and Pα = Pβ = constant. The pro-
cess is diffusion of the pure component across the interface. Under these restrictions,
the combined laws (7.2.13) reduce to

(7.2.23)

Since Tα = Tβ, we can use a Legendre transform (G = H – TS) for the β-phase to sim-
plify (7.2.23) to

(7.2.24)

We now use (7.2.17) for the two work terms, 

(7.2.25)

but the pressures are the same in the two phases, so we are left with just the term for
diffusion of pure-component 1 across the interface,

(7.2.26)
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But a pure-substance chemical potential is merely the molar Gibbs energy, so (7.2.26)
can also be written as

(7.2.27)

This constraint applies to diffusion in either direction, but to have an example, assume
the pure substance diffuses from the α phase to the β phase. Then dN1

α < 0, and the
inequality in (7.2.27) can be satisfied only when g1

α > g1
β; that is, a difference in the

molar Gibbs energies drives isothermal-isobaric diffusion of a pure substance. In such
cases, the pure substance always diffuses from regions of high g1 to regions of low g1.
This means that for single-component diffusion occurring at fixed temperature and
pressure, the component never diffuses against a gradient of its molar Gibbs energy.
However, a pure component may diffuse against its density gradient; for example,
pure vapor may condense to liquid.

Equation (7.2.27) may also be expressed in terms of fugacity; to do so, we first inte-
grate the definition of fugacity (4.3.10), at fixed T, from the β-phase to the α-phase. The
result is analogous to the algebraic form (4.3.12),

(7.2.28)

Then substituting (7.2.28) into (7.2.27) gives

(7.2.29)

Since we have chosen dN1
α < 0, the inequality in (7.2.29) can be satisfied only when

f1
α  > f1

β ; that is, a difference in fugacities is equivalent to a difference in chemical
potentials, and for isothermal-isobaric diffusion of one component, the component
always diffuses from regions of high fugacity to regions of low fugacity. Equation
(7.2.29) illustrates that the fugacity is fully equivalent to the chemical potential: fugac-
ity is more important and informative than might be construed from the common
interpretation that fugacity is merely a “corrected” pressure.

Isothermal-isobaric multicomponent diffusion. The constraint (7.2.27) applies to
single-component diffusion; now we consider multicomponent diffusion across the
interface in Figure 7.4. Using the same analysis as used above for single-component
diffusion, the combined laws (7.2.13) reduce to

(7.2.30)

Since we have Tα = Tβ, we can again use a Legendre transform to obtain
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(7.2.31)

This constraint can also be expressed in terms of fugacity; to do so, we proceed analo-
gously to what was done above to obtain (7.2.29). The result is

(7.2.32)

For irreversible diffusion, the inequalities in (7.2.31) and (7.2.32) apply; we now iden-
tify two ways by which such diffusional processes can satisfy those inequalities.

Uncoupled diffusion. If the diffusion of each component is unaffected by the diffu-
sion of all other components, then the only general way by which (7.2.31) can be satis-
fied is term-by-term. That is, each term in the sum in (7.2.31) obeys the single-
component constraint (7.2.27), so at fixed T and P, each component can only diffuse
from regions of high chemical potential (fugacity) to regions of low chemical potential
(fugacity). In uncoupled, isothermal-isobaric diffusion, a component never diffuses
against its chemical potential gradient, although, if the solution is sufficiently non-
ideal, some components may diffuse against their concentration gradients.

Coupled diffusion. But in addition, the diffusion of components may be coupled, as
alluded to by Prigogine and Defay [1]. In these situations, (7.2.31) need not be satisfied
term-by-term; the only thermodynamic constraint is that the entire sum satisfy
(7.2.31). As an example, consider binary diffusion in an isothermal workfree process;
then (7.2.31) reduces to two terms,

(7.2.33)

This inequality can still be satisfied, even when one term is negative, so long as 
is coupled to  in such a way that the negative term on the lhs is always domi-
nated by the positive term. When  >  we expect  < 0; that is, we expect
component 1 to diffuse along its chemical potential gradient from phase α to phase β.
But if this occurs with  coupled to , then it is possible to also have  < 0,
even when   < . In this case component 2 also diffuses from phase α to phase β,
but it does so against its chemical potential gradient. One way this can occur is when
molecules of different substances solvate so strongly that they diffuse together—mol-
ecules of one species effectively “carry” those of another species. We will find in
§ 7.4.4 that this kind of behavior can also occur in systems undergoing coupled chem-
ical reactions when driven by finite reaction rates.

Adiabatic workfree diffusion. Finally, let the interface be thermally nonconducting,
fixed in position, and permeable. Now T and P can differ in the two phases, but nei-
ther heat nor work can be transferred across the interface. Then the combined laws
(7.2.13) reduce to
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(7.2.34)

As in the isothermal case, adiabatic multicomponent diffusion may be coupled or
uncoupled, but here we want to emphasize the roles of enthalpy and entropy differ-
ences, so consider uncoupled diffusion. In some mixtures diffusion of component i is
driven by the enthalpy difference in (7.2.34); then component i diffuses from regions
of high partial molar enthalpy to regions having lower values. In other mixtures, dif-
fusion is driven by the entropy difference, and then component i diffuses from regions
of low partial molar entropy to regions having higher values. In still other mixtures
the enthalpy and entropy terms in (7.2.34) may either compete, so the net diffusion of
i is small, or they may reinforce one another, causing large quantities of i to diffuse. In
short, (7.2.34) captures a variety of possible behaviors that can be explained thermo-
dynamically by whether enthalpy and entropy effects are competing or compensat-
ing. In later chapters, we will find that the relative sizes of enthalpy and entropy
effects can be used to interpret other kinds of behaviors in multicomponent mixtures.

7.2.3 Limits on the Magnitudes of Irreversible Transfers  (dSgen > 0)

In the previous section we found that, in certain special cases, the directions of energy
and mass transfer are limited by gradients in certain intensive properties. In this sec-
tion we show that, during irreversible transfers of heat and work, not only are there
constraints on the directions, but constraints also apply to the magnitudes. To develop
the argument, we reconsider irreversible, isothermal, constant-mass work as dis-
cussed in § 7.2.2. For such a process, we have already seen that the combined laws
reduce to

fixed T and N (7.2.21)

To have a particular example, assume phase α does work on phase β, so δWα < 0 and
δWβ > 0. Then (7.2.21) becomes

(7.2.35)

or

(7.2.36)

That is, the amount of work done by phase α exceeds that done on phase β. 
What happens to the extra work done by phase α but not applied to phase β? To

answer this question, consider the energy balance (7.2.6) written for our constant-
mass process,

(7.2.37)

Hence,
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(7.2.38)

This shows that heat transfer must occur during our proposed process—the process is
isothermal, not adiabatic. (For an adiabatic, constant-mass process, the energy balance
(7.2.6) requires (–δWα – δWβ) = 0, regardless of reversibility.)

Further, the heat transfer is constrained by (7.2.38); that is, (7.2.38) requires

(7.2.39)

Hence,

(7.2.40)

So if δQα > 0, then more heat would appear in the α phase than left the β phase, and if
δQα < 0, then more heat would appear in the β phase than left the α phase. What is the
source of the extra heat?

Since the first law (7.2.37) must be obeyed, we can only conclude that the extra
work done by phase α, but not accessible to phase β, is converted into the extra heat
that appears in the system. That is, part of the work done by phase α is not “usefully”
applied to phase β; instead, it is “lost” in overcoming irreversibilities and is dissipated
as heat. A general expression for the lost work is given in (2.3.10). But here the process
is isothermal, so T ≡ Tα = Tβ  = Text and (2.3.10) reduces to

(7.2.41)

For our example process, in which phase α does work on phase β, we have

(7.2.42)

And, simultaneously, for heat transferred from phase β to phase α, we have

(7.2.43)

This shows that the amount of useful work is limited because some is used to over-
come irreversibilities and is, thereby, converted into heat.

In real processes Sgen cannot be computed directly, so we usually account for irre-
versibilities by using an efficiency to correct results that have been calculated assum-
ing reversible changes. For example, isentropic efficiencies are used to correct results
computed for reversible adiabatic work generators (e.g., turbines) and consumers
(e.g., compressors). Likewise, in stagewise separation processes, stage or overall effi-
ciencies are used to correct results computed for reversible mass transfer based on
phase equilibria. Values for such efficiencies are obtained empirically by observing the
performance of a real process over actual changes of state and comparing it to the ide-
alized performance. Note that a reversible change will provide at least one property
whose value differs from that for the real process. For example, the outlet temperature
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from a reversible turbine will always be lower than that from a real turbine operated
from the same initial temperature and pressure to the same final pressure.

According to (7.2.41), the lost work in an irreversible process is related to entropy
generated in the interface, which is the source of the inequality in the combined laws
(7.2.13). In complex processes, each term on the lhs of (7.2.13) can contribute to
“wasted” energy. However, in real chemical processes, the largest contributor is typi-
cally the δQ term; in comparison, the δW and dN terms are often smaller.

7.3  CRITERIA FOR PHASE EQUILIBRIUM

In § 7.2 we used the combined first and second laws to obtain limitations on the direc-
tions and magnitudes of irreversible transfers of energy and material between fluid
phases. Now we use the combined laws to obtain quantitative criteria for identifying
thermodynamic equilibrium. In § 1.2.2 we gave a qualitative description of equilib-
rium: a situation in which no driving forces are present that could change the state. To
make this qualitative statement quantitative, we take advantage of the close connec-
tion that exists between equilibrium states and reversible changes of state (see § 1.3). 

In reversible changes the entropy generation term is zero, the equalities in the com-
bined laws (7.2.10) and (7.2.13) apply, and the system (the interface in Figure 7.4) is in
equilibrium with its surroundings (the bulk phases α and β). Consequently, the equa-
tions that constrain the driving forces for reversible changes also describe equilibrium
situations. We exploit this observation to obtain criteria for thermal, mechanical, and
diffusional equilibria. These criteria are equivalent to the extrema found for concep-
tual property changes in § 7.1; however, the relations developed here are not con-
nected to any process. Rather, they identify the equilibrium state regardless of how it
is achieved. 

7.3.1 Thermal Equilibrium (dSgen = 0)

For constant-mass heat transfer that is either workfree or isobaric, the combined laws
(7.2.10) reduce to

(7.2.14)

The inequality in (7.2.14) arises because of entropy generation: the inequality applies
to irreversible heat transfer, while the equality applies to heat transfer associated with
a reversible change of state. In § 1.3, we identified reversible changes as idealized situ-
ations attained when all driving forces and their dissipative components are taken to
zero. And in § 7.2.2 we found that, for constant-mass heat transfer that is either iso-
baric or workfree, the driving force is the temperature difference ∆ ≡ Tα – Tβ. Let F
represent the dissipative components of the driving force ∆; then, according to (1.3.5),
a reversible change results when the limits ∆ → 0 and F → 0 are taken simultaneously,
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reversible change (7.3.1)

We also showed in (1.3.2) that when all driving forces are actually (rather than ide-
ally) taken to zero (∆ → 0), then we obtain an equilibrium state,

equilibrium (7.3.2)

This limit identifies an equilibrium state provided no other internal or external driv-
ing forces exist when ∆ = 0. In § 1.3 we discussed the subtle distinction between the
idealized limit in (7.3.1) and the physically realizable limit in (7.3.2). In § 7.2.2 we
found that when Tα > Tβ then δQβ > 0, and when Tα < Tβ then δQβ < 0; therefore,
when the driving force is zero (∆ = 0), then Tα = Tβ and we must also have δQβ = 0.
Consequently, when the thermal driving force is zero, we have no heat transfer and
the system is said to be in thermal equilibrium,

thermal equilibrium (7.3.3)

Thermal equilibrium means that both terms in (7.3.2) are zero: the thermal driving
force is zero (Tα – Tβ = 0) and the rate of heat transfer is zero (δQβ = 0). Furthermore,
neither isobaric nor workfree constant-mass heat transfer can take place (δQβ ≠ 0) if
the thermal driving force is zero (Tα – Tβ = 0).

However, it is possible to have a finite driving force (Tα – Tβ ≠ 0) with no apparent
transfer of heat (δQβ = 0). Such situations are called metastable equilibria, since if such
states are perturbed by a small finite disturbance they relax irreversibly to an equilib-
rium state. For example, when a fluid of nonrigid molecules is allowed to undergo a
rapid adiabatic expansion, there is normally a rapid decrease in temperature. How-
ever for some molecules, internal molecular modes of bond vibration and rotation
relax over much longer time-scales than molecular translational modes. Under a rapid
expansion, such fluids can be caught in a metastable state in which all intensive mac-
roscopic properties, including temperature, have stationary values, yet kinetic ener-
gies of bond vibration and rotation remain much higher than the translational kinetic
energy. Rarefied gases may persist in such metastable states over long periods and
relax to true equilibrium states only after sufficient molecular collisions have occurred
to properly redistribute the molecular energies among all available modes.

7.3.2 Mechanical Equilibrium (dSgen = 0)

For a constant-mass adiabatic expansion and for a constant-mass isothermal expan-
sion of one phase against the other, the combined laws (7.2.10) reduce to

(7.2.22)
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Again, the inequality occurs because of entropy generation; and therefore, the in-
equality in (7.2.22) applies to irreversible processes, while the equality applies to
reversible changes. In § 7.2.2 we identified the pressure difference (Pα – Pβ) as the
driving force for volume changes. Repeating the argument given above for heat trans-
fer, we again establish a correspondence between the limit for reversible changes and
the limit for equilibrium states (see § 1.3). So by taking the driving force (∆ = Pα – Pβ)
to zero, we obtain an equilibrium state,

(7.3.4)

This limit identifies an equilibrium state provided no other internal or external driv-
ing forces exist when ∆ = 0. In § 7.2.2 we found that when Pα > Pβ then dVα > 0, and
when Pα < Pβ then dVα < 0. Hence when the driving force is zero, Pα = Pβ, then we
must also have dVα = 0; this identifies a condition of mechanical equilibrium,

mechanical equilibrium (7.3.5)

We emphasize that states in mechanical equilibrium have both the driving force (Pα –
Pβ) and the volume change (dVα) equal to zero. Moreover, neither isothermal nor adi-
abatic constant-mass changes in volume can occur without a mechanical driving
force; that is, we cannot have dVα ≠ 0 with Pα – Pβ = 0.

However, it is possible to have a finite driving force (Pα – Pβ ≠ 0) with no apparent
change in volume (dVα = 0). These are metastable states. Mechanical metastabilities
can occur in substances, such as certain polymers and metal alloys, that exhibit
“memory.” When such materials are rapidly deformed, they can retain the deformed
shape after the deforming force is removed. However, the material may regain its
original shape in response to some disturbance, such as heating.

7.3.3 Single-Component Diffusional Equilibrium (dSgen = 0)

For isothermal-isobaric diffusion of pure substance 1, the combined laws (7.2.13)
reduce to

(7.2.26)

where the inequality applies to irreversible processes, and the equality applies to
reversible changes. In § 7.2.2 we found that the difference in chemical potentials
serves as the driving force for single-component diffusion. So, analogous to (7.3.2)
and (7.3.4), an equilibrium state is obtained by taking the limit as the driving force
goes to zero,

(7.3.6)
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where ∆ = . This limit identifies an equilibrium state provided no other inter-
nal or external driving forces exist when ∆ = 0. In § 7.2.2 we found that ∆ < 0 leads to

 > 0, and ∆ > 0 causes  < 0. Hence, when the driving force is zero, then 
= 0; that is,

diffusional equilibrium (7.3.7)

identifies a condition of single-component diffusional equilibrium. Since for pures,
the chemical potential is merely the molar Gibbs energy, (7.3.7) can also be expressed
as

pure diffusional equilibrium (7.3.8)

Note that diffusional equilibrium occurs only when both terms in (7.3.6) are zero:
∆ = 0 and  = 0. Isothermal-isobaric diffusion cannot occur in the absence of a
driving force; that is, we cannot have  ≠ 0 with ∆ = 0. However, we can observe
metastable equilibria in which a finite driving force exists (∆ ≠ 0), but apparently no
diffusion takes place (  = 0). As an example, such diffusional metastabilities can
occur when the pure substance can condense into more than one kind of solid phase.
Then, on bringing two forms of the solid into contact at different states, the molar
Gibbs energies of the two phases differ, but the rate of diffusion in solids can be so
small that the metastability may persist over significantly long times.

The criteria for diffusional equilibrium (7.3.8) can also be expressed in terms of
fugacities: at equilibrium the equality in (7.2.29) applies and we have

pure diffusional equilibrium (7.3.9)

When these fugacities are not equal, then the system is not in diffusional equilibrium,
and the difference in fugacities can be interpreted as the driving force for isothermal-
isobaric diffusion: material will diffuse from the phase having the higher fugacity to
the phase having the lower fugacity.

7.3.4 Multicomponent Diffusional Equilibrium (dSgen = 0)

For isothermal-isobaric multicomponent diffusion, the combined laws (7.2.13) reduce
to

(7.2.31)

where the inequality applies to irreversible processes and the equality applies to
reversible changes. The difference in chemical potentials is still the driving force for
diffusion, as in the single-component case (see also § 7.2.2), and an equilibrium state is
attained by taking all driving forces to zero, 
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(7.3.10)

where ∆i =  This limit identifies an equilibrium state provided no other inter-
nal or external driving forces exist when all ∆i = 0. 

In the nonequilibrium situations discussed in § 7.2.2, the mechanism of diffusion
may, in some situations, couple some or all of the  But the  in (7.3.10) cannot
be coupled when all driving forces are zero. So here we only need consider uncoupled
diffusion; then, the  in (7.3.10) are mutually independent, each term in the sum
must be separately zero, and each species must obey the single-component criterion
(7.3.7),

for all i in diffusional equilibrium (7.3.11)

This can also be written in terms of the fugacity of each species,

for all i in diffusional equilibrium (7.3.12)

Since the diffusional equilibrium criterion (7.3.12) applies separately to each term
in (7.3.10), we must have, at equilibrium, = 0 for every component i. This means
that diffusional equilibrium requires not only the absence of diffusion of any compo-
nent i (  = 0) but, in addition, the absence of any driving force for diffusion of any
component (∆i = 0). We never observe diffusion (  ≠ 0) in the absence of a gradient
in the chemical potentials (∆i = 0); this cannot occur even if the diffusion is coupled,
for a zero driving force for component i disrupts any coupling for that component.

However, we may observe metastable states in which the driving force is finite (∆i
≠ 0), but diffusion is apparently not taking place (  = 0). These diffusional metasta-
bilities occur, for example, in colloidal suspensions, such as foams, surfactant bubbles,
and liquid membranes. Systems of these structures can have finite concentration gra-
dients (hence chemical potential gradients); nevertheless, some colloidal structures
can persist over macroscopically long times. It then becomes an issue as to whether
these life-times are sufficiently long that equilibrium thermodynamics can be applied.

7.3.5 Thermodynamic Equilibrium

Thermodynamic equilibrium encompasses thermal, mechanical, and chemical equi-
librium. Chemical equilibrium, in turn, includes both diffusional and reaction equilib-
rium. In this section we have considered only nonreacting systems, and so, at this
point, we have developed only the criteria for thermal, mechanical, and diffusional
equilibrium; criteria for reaction equilibrium are given in § 7.6.

Thermodynamic equilibrium occurs when all net driving forces are zero (dSgen = 0);
this includes driving forces between system and surroundings as well as those
between different system parts. Since equilibrium criteria apply to different system
parts, they can serve as quantitative prescriptions for identifying equilibrium between
phases α and β:
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thermal equilibrium (7.3.3)

mechanical equilibrium (7.3.5)

diffusional equilibrium for all i (7.3.11)
or

diffusional equilibrium for all i (7.3.12)

For a system of C components, the sets of equations {(7.3.3), (7.3.5), (7.3.11)} or
{(7.3.3), (7.3.5), (7.3.12)} each represent (C + 2) algebraic equations that can be used to
identify phase equilibrium situations; of these, the sets of equations containing chem-
ical potentials (7.3.11) and fugacities (7.3.12) each represent C nonlinear equations that
usually must be solved by trial.

But even though equilibrium implies the absence of net driving forces for change,
molecules continually cross the interface in both directions, causing the properties of
each phase to fluctuate about stable equilibrium values. Although macroscopic driv-
ing forces are in balance when two phases are in equilibrium, the situation is a
dynamic one on a microscopic scale.

7.3.6 Example

Can the criteria (7.3.11) for diffusional equilibrium, which require equality of the
chemical potentials, be reconciled with the general criterion for isothermal-isobaric
equilibrium, namely dG = 0 (7.1.40)?

The objective here is to show that the diffusional equilibrium criteria (7.3.11) are a con-
sequence of the more general equilibrium criterion (7.1.40) that applies to any NPT
system, including systems containing more than one phase.

Consider a multicomponent system contained in a closed vessel and maintained at
constant T and P, as represented schematically in Figure 7.5. We seek the conditions
under which the system can exist as two phases in equilibrium. Since the external res-
ervoir imposes its temperature and pressure on both phases, no driving forces exist

Figure 7.5 Schematic of a two-phase
system whose temperature and pres-
sure are held constant by thermal and
mechanical interactions with a con-
stant TP reservoir. The system cannot
exchange mass with the reservoir or
the surroundings; however, the two
phases can exchange mass with one
another.

Tα Tβ
=

Pα Pβ
=

Gi
α

Gi
β

=

fi
α

fi
β

=

phase α
reservoir that
imposes fixed
T and P on
system

phase β



 7.3   CRITERIA FOR PHASE EQUILIBRIUM 285

for net heat transfer, bulk mass transfer, or volume changes. The only possible
changes result from diffusional mass transfer across the phase boundary.  

Call the phases α and β; they could be any combination of solid, liquid, or gas.
Although the interface between two phases is open to mass and energy transfers, the
entire system here is closed. Since T and P are fixed for the entire system, the NPT cri-
terion for equilibrium (7.1.40) applies; that is, the system’s total Gibbs energy will be a
minimum at equilibrium,

fixed T and P (7.3.13)

The system Gibbs energy is the sum of contributions from each phase

(7.3.14)

and (3.2.32) can be used to write G for each phase in terms of chemical potentials,

(7.3.15)

Now we determine the response of G to diffusion of a differential amount of each
component from one phase to the other. Forming the total differential of (7.3.15) and
substituting it into (7.3.13) yields

(7.3.16)

But at fixed T and P the Gibbs-Duhem equation requires

     and   (7.3.17)

So (7.3.16) reduces to

(7.3.18)

The total system is closed, so

(7.3.19)

That is, whatever leaves the α-phase necessarily enters the β-phase, and vice versa.
Using (7.3.19) to eliminate the  from (7.3.18), we find
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(7.3.20)

This is (7.3.10), and the argument following (7.3.10) can be repeated leading to (7.3.11),
as required. The general criterion for isothermal-isobaric equilibrium (7.1.40) includes
the diffusional equilibrium criteria (7.3.11) as a special case. QED

7.4  THE LAWS FOR CLOSED REACTING SYSTEMS

It is perhaps surprising that thermodynamics can tell us anything about chemical
reactions, for when we encounter a reaction, we naturally think of rates, and we know
that thermodynamics cannot be applied to problems posed by reaction rates or mech-
anisms. However, a chemical reaction is a change, so whenever the initial and final
states of a reaction process are well-defined, differences in thermodynamic state func-
tions can be evaluated, just as they can be evaluated for other kinds of processes. In
particular, the laws of thermodynamics impose limitations on the directions and mag-
nitudes (extents) of reactions, just as they impose limitations on other processes. For
example, thermodynamics can tell us the direction of a proposed reaction; it can tell
us what the equilibrium composition of a reaction mixture should be; and it can help
us decide how to adjust operating variables to improve the yields of desired products.
These kinds of issues can be addressed using equations derived in this and the next
section; moreover, these equations are derived without introducing any new thermo-
dynamic fundamentals or assumptions.

In this section we obtain the combined first and second laws for reacting systems.
The development parallels that presented in § 7.1 for nonreacting systems. However,
the development here is more elaborate than the earlier one because our analysis must
account for the fact that, during reactions, chemical species are not conserved. This
problem is addressed in § 7.4.1 and examples are offered in § 7.4.2 and 7.4.3; then in
§ 7.4.4 we derive the combined laws for reactions in closed systems.

7.4.1 Stuff Equations for Material Undergoing Reactions in Closed Systems

In elementary chemistry courses, we are taught that, when analyzing a reacting mix-
ture, we should first write the reaction and balance it. This strategy is appropriate
when the system involves a single elementary reaction, such as might represent com-
plete combustion of methane. However, industrial processes typically involve dozens
of reactions occurring simultaneously; in those situations, the elementary strategy
would require us to write a complete set of independent reactions that involve all spe-
cies present. This can be an overwhelming task, for often we do not even know how
many reactions could occur, much less what those reactions might be—we have only a
list of reactants and products. Fortunately, this is all we need for a thermodynamic
analysis, because changes in state variables are not affected by reaction paths; for a
thermodynamic analysis, we only need a systematic procedure for identifying and
balancing some set of independent reactions that represent the conversion of reactants
into products. Such a systematic procedure can be formulated in several ways [2–4].

Gi
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Gi
β

–( ) dNi
α

i
∑ 0=
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 We emphasize that the reactions used in the analysis do not have to be the reac-
tions actually occurring—we only need any convenient hypothetical path that con-
nects products to reactants. In fact, we don’t even need reactions at all, so long as we
can achieve a balance on every element present. Further, “elements” need not be
atoms; they can be groups of atoms that may or may not constitute real molecules.
Our procedure for identifying and balancing reactions reduces to the stuff equation
for material, reformulated to apply to elements. We consider reactions in closed sys-
tems here and reactions in open systems in § 7.5.

Consider a closed system containing a total of C chemical species, with Ni moles of
species i present at any time. In this section we consider a molecule of each species i to
be composed of aki atoms of element k; the total number of elements present is repre-
sented by me. Then the total number of atoms bk for each element k is given by

k = 1, 2, … , me (7.4.1)

These equations provide the fundamental connections between elements and species
in a closed system. Since the equations (7.4.1) are linear in the mole numbers, we can
write them economically in matrix form,

(7.4.2)

where A is the (me × C ) array of coefficients aki, the vector of mole numbers N is of
length C, and the rhs vector b is of length me . (For a review of the jargon and opera-
tions of matrix algebra, see Appendix B.) Since each column Ai of the matrix repre-
sents the chemical formula for species i, we refer to A as the formula matrix for the
reacting system.

During a reaction in a closed system, it is not species that are conserved, but ele-
ments. That is, the Ni in (7.4.2) change, but the bk in (7.4.2) remain constant. Therefore,

(7.4.3)

or

(7.4.4)

where (dN) is a vector of length C. Equation (7.4.4) is a statement of conservation of
elements; it is a form of the stuff equation that is useful when the amounts of species
change due to reactions.

In a traditional approach to reaction equilibria, we first write a set of R indepen-
dent reactions and then balance those reactions. This establishes the stoichiometry of
the system. However, (7.4.4) represents a useful alternative to balancing reactions
because it allows us to impose conservation of elements without explicitly identifying
the reactions themselves. Before we can balance any reaction, we must identify all the
species that participate in the reaction. In simple situations, the participants may be

aki Ni
i
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∑ bk=
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aki dNi
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known, and then we may choose to proceed in the traditional way [2] or by a hybrid
method [3, 4]. But many reaction processes are complex; examples include reactions
during combustion, in biological processes, and in catalysis. In such cases, it is better
to avoid guessing the reactions; instead, we use (7.4.4) and perform the necessary
operations on the formula matrix A.

One important operation allows us to identify the number of independent reac-
tions. In the traditional approach, we must reduce the proposed reactions to an inde-
pendent set, but when many reactions occur, finding an independent set can be
tedious and prone to error. However, in (7.4.4) the number of independent reactions R
is simply related to the rank of the formula matrix A; specifically,

(7.4.5)

The balance equations (7.4.3) express conservation of elements, but they do not tell
us how the species mole numbers Ni change as reactions proceed. If we know how the
Ni change, then we have a direct way for determining the composition of the mixture.
Let Ni

o represent the number of moles of species i initially present and consider a gen-
eral situation in which R independent reactions take place. Then at any time during
the process, the number of moles of species i is given by the net amounts of i gener-
ated and consumed. Those net amounts are the combined results of all reactions, so
we write

(7.4.6)

where ∆Nij is the change in Ni caused by reaction j. When Ni is a product of reaction j,
then ∆Nij > 0, and when it is a reactant, then ∆Nij < 0.

But during reaction j the changes ∆Nij are not independent; rather, they are coupled
through the stoichiometry of the reaction. Consequently, if we designate any one spe-
cies r as the independent species for reaction j, then we can monitor the changes of all
other species in j relative to that of r. This allows us to write (7.4.6) as

(7.4.7)

For each species i in reaction j, the ratio here is a constant, which we call ν′,

(7.4.8)

so (7.4.7) becomes

(7.4.9)
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The relation (7.4.9) allows us to follow the progress of reaction j by monitoring only
the one quantity ∆Nrj. 

But the quantities ν′ij introduce an undesirable asymmetry among the species par-
ticipating in reaction j; for example, (7.4.8) implies that ν′rj = 1. To avoid treating one
species as special, we rescale all the ν′ij parameters by a constant factor, thereby defin-
ing

(7.4.10)

where the value of the one quantity νrj can be set arbitrarily to any convenient value.
The quantities νij are called stoichiometric coefficients; their values are constant for a
particular reaction. By convention, reactants in j have νij < 0, and products have νij > 0.
Using (7.4.10) in (7.4.9), the number of moles of i present at any time is 

(7.4.11)

To follow the progress of reaction j, we monitor one quantity: ∆Nrj. But the change
in the number of moles of any species i cannot be affected by the identity of the sub-
stance chosen to play the role of the independent species r. So we define the ratio on
the rhs to be the extent of reaction j,

(7.4.12)

Note that ξj is extensive and has units of moles; also note that there is one extent ξj for
each independent reaction. The definition (7.4.12) applies for any species selected as r,
so a particular choice does not have to be made explicitly; moreover, it allows us to
use any convenient value for the stoichiometric coefficient νrj, so that none of the νij
need necessarily be set to unity. 

At the start of reaction j, ∆Nrj = 0, and by (7.4.12) the extent is also initially zero: ξj =
0. If the reaction proceeds in the direction implied by the sign of νij , then ξj > 0. But we
might identify r incorrectly; that is, we might designate species r as a reactant when,
in fact, it is produced as a product. In such cases ξj < 0, and the reaction actually pro-
ceeds in the “reverse” direction.

Putting (7.4.12) into (7.4.11), we obtain the following general form for the total
number of moles of species i present at any time during the R reactions,

(7.4.13)

For differential changes, the definition (7.4.12) becomes

νij ν′ij νrj=
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(7.4.14)

and since the identification of species r is arbitrary (so long as νrj ≠ 0), (7.4.14) must be
obeyed by every species in j.

To obtain stoichiometric coefficients, we first form the total differential of (7.4.13),

(7.4.15)

Then we substitute this into the balance equation (7.4.3),

(7.4.16)

But the R reactions are independent and all the dξs are nonzero, so the quantity in
parenthesis must be zero for each reaction j; that is, each reaction must have

j = 1, 2, … ,R (7.4.17)

where A is the formula matrix in (7.4.2) and ννννj is the vector of stoichiometric coeffi-
cients for reaction j, νννν j

T = (ν1j ν2j ν3j …). Equation (7.4.17) represents a balancing of
reaction j , and since values are known for the elements in A, (7.4.17) can be solved for
the stoichiometric coefficients. However as noted above, the value of one νij (that for
the reference substance νrj ) can always be chosen arbitrarily, so (7.4.17) does not have
a unique solution.

With values known for the stoichiometric coefficients, we can sum (7.4.13) to obtain
the total number of moles at any point during the reactions,

(7.4.18)

(7.4.19)

where No is the total amount present at the start of all reactions,

(7.4.20)
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and σj is the algebraic sum of all stoichiometric coefficients for reaction j,

(7.4.21)

Note that σj is positive when the total number of moles increases, negative when the
total number decreases, or zero when the total number is unchanged by the reaction.
With (7.4.13) and (7.4.19), we can form the mole fraction for each species at any time
during the reactions,

(7.4.22)

We have noted that ξj = 0 at the start of reaction j. Let us consider the normal situa-
tion in which ξj increases from zero as the reaction proceeds. In such cases, there is an
upper bound to ξj, based merely on conservation of atoms. That bound occurs when
one reactant is first depleted; that is, when the mole fraction of the limiting species x{

first reaches zero. We determine the bound by solving (7.4.22) with x{ = 0,

(7.4.23)

The values for this upper bound can be found by computing the rhs of (7.4.23) for
each reactant participating in reaction j; the smallest of those values is the upper
bound and identifies the limiting reactant. But although (7.4.23) provides a bound on
the extent of reaction, that bound is based on material balances; in practice, it is rarely
reached. Instead, most reactions reach thermodynamic equilibrium before all the initial
loading of any reactant is depleted; the equilibrium value obeys 0 <  ξe  <  ξub.

The above development should make clear the following points: 

(a) For a particular reaction j, the values of the stoichiometric coefficients νij are 
determined only to within an arbitrary multiplicative constant. The value of 
this constant is set by choosing the value of the coefficient νrj for one species r; 
often that value is ±1, but other choices are sometimes convenient. 

(b) The changes in mole numbers ∆Nij for all species i participating in reaction j 
can be represented by one independent variable ξj and those changes are cou-
pled through the vector of stoichiometric coefficients ννννj. 

(c) The values of the extent of reaction ξj depend on the stoichiometric coeffi-
cients, so different balances of reaction j set different bounds on the extent. 

(d) The extent of reaction ξj is extensive, has units, and is not restricted to the 
range [0, 1]. 
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7.4.2 Example

How do we determine the composition of a reacting mixture at any point during a
single reaction?

Consider the synthesis of ammonia from nitrogen and hydrogen, with the reactants
loaded into the reactor in the ratio  = 3/1, where  = the initial number of
moles of nitrogen and  = the initial number of moles of hydrogen. We want to
obtain the composition of the reaction mixture during the course of the reaction.

In the notation of § 7.4.1, we have total number of species C = 3 and total number of
elements me = 2. Let the values of the index over elements be k = 1 for nitrogen (N) and
k = 2 for hydrogen (H). Let the values of the index over species be i = 1 for nitrogen
(N2), i = 2 for hydrogen (H2), and i = 3 for ammonia (NH3). Then the number of ele-
ments k on each species i is given by aki; hence, the formula matrix is

(7.4.24)

Note that each column of A represents the chemical formula for one of the species.
The rank of A is 2 (see Appendix B); therefore, the number of independent reactions is

(7.4.25)

That is, in this simple example, only one independent reaction occurs. To find the stoi-
chiometric coefficients in that reaction, we solve

(7.4.17)

(7.4.26)

This represents two equations in three unknowns. We can pick the value of one stoi-
chiometric coefficient, and since ammonia is the desired product, we set ν31 = 1 (recall,
products have ν > 0). Then (7.4.26) gives ν11 = –1/2 and ν21 = –3/2. Consequently, the
one independent balanced reaction is

(7.4.27)

or in a traditional form,  
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(7.4.28)

Choosing a basis of one mole of nitrogen initially loaded into the reactor, we use
(7.4.22) to obtain the following expressions for the species mole fractions, 

(7.4.29)

       and          (7.4.30)

Using (7.4.23) we can find the upper bound on the extent; hence, ξub = 2 moles and
both reactants are completely consumed at the same time. We now use (7.4.29) and
(7.4.30) to obtain the composition at any point during the reaction (0 ≤ ξ ≤ 2). Sample
results are given in Table 7.2.

Note that 

(a) the stoichiometry of the reaction couples the compositions so that a value for 
the one variable ξ allows us to determine values for the mole fractions of all 
reactants and products,

(b) at every value of the extent ξ the mole fractions sum to one, 

(c) the total number of moles is not constant during the reaction,

(d) the calculations of the mole fractions did not require us to explicitly write the 
chemical reactions (7.4.27) and (7.4.28), and 

(e) the above procedure is sufficiently systematic so that it can be readily imple-
mented on a computer. 

Point (d) is worth emphasizing: the balanced reactions (7.4.27) and (7.4.28) were dis-
played merely to offer a familiar interpretation for the matrix equation (7.4.17); how-
ever, those chemical reactions did not explicitly contribute to the solution of the
problem. 

Table 7.2 Sample results for composition of reaction mixture
during synthesis of ammonia (7.4.27) based on an initial
loading of 3 moles of H2 plus 1 mole of N2

ξξξξ N = 4 – ξξξξ

0 4 0.25 0.75 0

0.5 3.5 0.214 0.643 0.143

1 3 0.167 0.5 0.333

1.5 2.5 0.1 0.3 0.6

2 2 0 0 1

1
2
---N2

3
2
---H2+ NH3→
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1 ξ 2⁄–

4 1 2⁄– 3 2⁄– 1+( )ξ+
---------------------------------------------------------

1 ξ 2⁄–
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7.4.3 Example

How do we determine the composition at any point during a process involving
multiple reactions?

Consider the formation of synthesis gas (CO and H2) by incomplete combustion of
methane in oxygen. Let  be the initial number of moles of methane and let  be
the initial number of moles of oxygen. Assume the feed ratio is  = 3/2. We
expect the products will be CO2, H2O, CO, and H2. So we have C = 6 species formed
from me = 3 elements (C, H, and O), and the formula matrix looks like this:

(7.4.31)

The rank of this matrix is 3 (see Appendix B); therefore, the number of independent
reactions is R = C – rank(A) = 6 – 3 = 3. So we have to find the stoichiometric coeffi-
cients for three independent reactions; to do so, we must solve

j = 1, 2, 3 (7.4.17)

For each reaction, (7.4.17) has this form:

j = 1, 2, 3 (7.4.32)

Equation (7.4.32) represents three equations in six unknowns. To solve these, we must
choose, for each reaction, values for any three of the νij. This means there are many
possible solutions to the three equations in (7.4.32). In general, different values
assigned to the three arbitrarily chosen νij will produce different balanced reactions,
and each trio of reactions will have its own set of extents {ξj}. Nevertheless, every trio
of reactions will yield the same mole fractions at any point during the process.

For the first reaction, j = 1, we choose ν11 = –2, ν21 = –1, and ν31 = 0; then (7.4.32)
gives ν41 = 0, ν51 = 2, ν61 = 4, and the reaction provides the desired products:

(7.4.33)

For the second reaction, j = 2, we choose ν12 = –1, ν22 = –2, and ν62 = 0. Then (7.4.32)
gives ν32 = 1, ν42 = 2, ν52 = 0, and this reaction produces an undesired product (CO2):
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(7.4.34)

For the third reaction, j = 3, we choose ν13 = 0, ν33 = –2, and ν63 = 0. Then (7.4.32) gives
ν23 = 1, ν43 = 0, and ν53 = 2, so the third reaction converts the undesired CO2 to the
desired product CO:

(7.4.35)

If we choose as a basis one mole of CH4 (  = 1), then  =1.5 moles, and we can
use (7.4.22) to obtain the following expressions for the species mole fractions,

(7.4.36)

(7.4.37)

  (7.4.38)

and the total number of moles is given by

(7.4.39)

Sample results for the mole fractions at a few selected values of the extents are given
in Table 7.3. In general, the objective would be to maximize the amount of synthesis
gas produced (CO and H2), while minimizing the amounts of other species. But none
of the product distributions shown in Table 7.3 are optimal. An optimal distribution

Table 7.3 Sample compositions from synthesis-gas production at selected
values of the three extents of reaction

Extents N Mole fractions, xi

ξξξξ1 ξξξξ2 ξξξξ3 mol CH4 O2 CO2 H2O CO H2

0 0 0 2.5 0.4 0.6 0 0 0 0

0 0.5 0 2.5 0.2 0.2 0.2 0.4 0 0

0 1 0.5 3 0 0 0 0.667 0.333 0

0.15 0.3 0.15 3.1 0.129 0.290 0 0.194 0.194 0.194

0.25 0.5 0 3.25 0 0.077 0.154 0.308 0.154 0.308

0.3 0.3 0.15 3.55 0.028 0.211 0 0.169 0.254 0.338

0.5 0 0 4.0 0 0.25 0. 0 0.25 0.5

CH4– 2O2– CO2 2H2O+ + 0=

O2 2CO2– 2CO+ 0=
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can be obtained by finding appropriate values for the extents; however, that distribu-
tion is not likely to be the equilibrium distribution. To find the equilibrium concentra-
tion, we must obtain equilibrium values for the extents ξj by applying the criteria for
reaction equilibria developed in § 7.6. Ways for applying those criteria are described
in Chapter 10. 

�

The examples in § 7.4.2 and 7.4.3 show how material balances are applied in react-
ing situations to obtain elemental balances, the number of independent reactions, and
values for stoichiometric coefficients. In the above examples, we use atoms as the con-
served elements, that is, as the reaction invariants. But in some situations the analysis
can be simplified by choosing groups of atoms or fragments of molecules as the ele-
mental invariants. Examples of such fragments include a benzene ring and an -OH
group. Formally, the procedure is just as we have illustrated above, except that groups
(rather than elements) form the rows of the formula matrix. Such an approach can be
useful when we know that thermodynamic or kinetic constraints make certain inde-
pendent reactions unlikely. The net effect is to decrease the number of independent
reactions compared to the number provided solely from material-balance consider-
ations. In addition, use of groups in reaction analysis, combined with use of the same
groups in phase-equilibrium situations, can simplify calculations in such applications
as reactive distillation. The development and use of this method has been described
by Pérez Cisneros et al. [3, 4]. 

7.4.4 Combined Laws for Reactions in Closed Systems (dSgen > 0)

With the notation and stuff equations from the previous section, we can now extend
the combined first and second laws from unreacting systems (§ 7.1 and 7.2) to reacting
systems. To facilitate the presentation, it is useful to introduce a new set of property
differences that apply to reacting systems. For any extensive property F in a reacting
system, we define a change in F for each reaction j by the intensive quantity

j = 1, 2, … , R (7.4.40)

where  is the partial molar property, C is the number of species in the mixture, and
νij is the stoichiometric coefficient for species i in reaction j. Recall that νij < 0 if i is a
reactant and νij > 0 if i is a product. The quantity F could be any of the usual thermo-
dynamic properties, including U, H, S, A, and G. As is often the case, situations in
which F = G have special significance, so the (negative) change of Gibbs energy for
reaction j is given a special name: it is called the affinity, Aj , 

(7.4.41)

The affinity is an intensive conceptual property having dimensions of energy/mol.
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Consider a closed system containing a total of C chemical species, with Ni moles of
species i present at any time. The values of the mole numbers Ni are changing due to
R independent reactions taking place. The value of R can be obtained using the proce-
dure described in § 7.4.1. Because of the reactions, the state of the system changes and,
consequently, the values of properties change. Consider any one such property F, 

(7.4.42)

The response of F to the change of state can be written as

(7.4.43)

The first term on the rhs is given by the Gibbs-Duhem equation (3.4.10). Moreover the
system is closed, so the change in mole numbers Ni can be caused only by reactions;
therefore, we can substitute (7.4.15) for the dNi in (7.4.43) and obtain

(7.4.44)

where ξ j is the extent of reaction j. Using the definition (7.4.40) of the change of F due
to reaction j and holding T and P fixed, (7.4.44) becomes

fixed T and P (7.4.45)

This is a general result for the total differential of any extensive property F responding
to R chemical reactions occurring in a closed system at fixed T and P.

For a closed system in which reactions are occurring, the combined first and second
laws should be written as a generalized form of (7.1.11),

closed systems (7.4.46)

This form is appropriate because in reacting systems, the mole numbers N may
change, even though the system is closed. We restrict our attention to reactions per-
formed at fixed temperature and pressure: T = Tsur and P = Psur . Therefore, we can use
(7.4.45) for each total differential in (7.4.46), and (7.4.46) becomes

fixed T and P (7.4.47)

Recall the ∆Fj are all intensive. Since T and P are fixed, we can write (7.4.47) as
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fixed T and P (7.4.48)

Introducing the affinity via (7.4.41), we find

fixed T and P (7.4.49)

where vj is the rate of reaction j, defined by

(7.4.50)

At equilibrium all reaction rates are zero; otherwise, they are always finite, although
they may be positive or negative.

Equation (7.4.49) is the combined law for closed systems in which chemical reac-
tions are occurring at fixed T and P. For such systems, the combined law imposes a
limitation on the direction in which reactions can proceed: they can only proceed in
ways that cause the lhs of (7.4.49) to be positive or zero. Recall from § 7.1 that the in-
equality in the combined law results from entropy generation; so in general, for closed
systems at fixed T and P, we expect chemical reactions to be accompanied by genera-
tion of entropy in the system. However, we caution that the total entropy of the system
may increase or decrease because the process is isothermal, not adiabatic. We now
interpret the combined law (7.4.49) for single reactions and for multiple reactions.

Single reactions. For one reaction, (7.4.49) reduces to

(7.4.51)

If v = 0, then no reaction is occurring and the equality in (7.4.51) applies; otherwise, for
v ≠ 0 we have two possibilities: (i) If v > 0, then we must have A > 0 for the reaction to
proceed in the forward direction, and (ii) if v < 0, then we must have A < 0 for the reac-
tion to proceed in the reverse direction. If the inequality in (7.4.51) is violated, then the
reaction cannot proceed in the proposed direction at fixed T and P. Note that, for a sin-
gle reaction, we can never have A = 0 with v ≠ 0 because reactions occurring at finite
rates always generate entropy.

To gain some additional insight into (7.4.51), consider the form of the combined
laws in terms of the chemical potentials (7.4.41). For a single reaction, (7.4.51) is

(7.4.52)

or

fixed T and P (7.4.53)
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where index i runs over products while k runs over reactants. We distinguish products
from reactants in such a way that dξ > 0. Therefore (7.4.53) requires the reaction to
proceed from a situation of larger Gibbs energy (reactants) to one having a smaller
value (products); this is consistent with the analysis in § 7.1.5.

Uncoupled multiple reactions. Multiple reactions taking place in a closed system at
fixed T and P must satisfy the combined law (7.4.49). However, if the reactions are
uncoupled, then each term in the sum on the lhs of (7.4.49) is independent of every
other term, and therefore each term must be positive, if that reaction proceeds in the
proposed direction. This means that each reaction in the system must separately sat-
isfy the single reaction form of the combined law which appears in (7.4.51). Reactions
are usually uncoupled when no reactant or product participates in more than one
reaction.

Coupled multiple reactions. But multiple reactions may be coupled, often because
some reactants or products participate in more than one reaction, though this condi-
tion is neither necessary nor sufficient for coupling. When reactions are coupled, not
all the terms in the sum in (7.4.49) are independent, and then it is possible for some of
the terms to be negative. Nevertheless, the coupled reactions can still proceed, so long
as enough positive terms are available to dominate the sum, forcing the combined
laws to be obeyed. 

An important example of coupling has been cited by Prigogine and Defay [1]: at
ambient conditions, the synthesis of urea via the single reaction

(7.4.54)

has an affinity of A1 ≈ – 46 kJ/mol. So, when only ammonia and carbon dioxide are
present, urea will not be formed by this reaction. However, in the human liver, the
reaction (7.4.54) is coupled to oxidation of glucose,

(7.4.55)

which has an affinity of A2 ≈ 482 kJ/mol. Then the combined law (7.4.49) requires

(7.4.56)

So

(7.4.57)

This shows that coupling promotes formation of urea in the liver; in fact, a small
amount of oxidation “pumps” a significant amount of urea formation, in spite of the
fact that, without coupling, urea would not be formed at all. It seems likely that many
living organisms use coupling to promote chemical reactions that would not other-
wise occur. Unfortunately, the identification of coupled phenomena is not a problem
that can be addressed by thermodynamics. In fact, some effects attributed to thermo-

2NH3 CO2+   →
  ← NH2( )2CO H2O+

C6H12O6 6O2+   →
  ← 6CO2 6H2O+

46v1– 482v2+ 0>

v1
482
46
---------v2< 10v2≈ 0>
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dynamic coupling actually result from faulty analysis that ignores the presence of
intermediate species; such intermediates may change the signs (from negative to pos-
itive) of the affinities for some reactions in certain reaction sequences [5].

7.5  THE LAWS FOR OPEN REACTING SYSTEMS

In this section we extend the development in § 7.4 to reactions taking place in open
systems. First we develop the open-system material-balance equations for reactions
(§ 7.5.1) and then we develop the combined laws (§ 7.5.2).

7.5.1 Stuff Equation for Material in a Single Open Phase

Open-system chemical reactions cause changes in many important situations, such as
meteorological and biological systems [1]. Early studies of such systems raised ques-
tions about the generality of the laws of thermodynamics because workers failed to
distinguish open systems from those that are closed. This confusion was largely
resolved by Prigogine, whose work on these problems contributed to his Nobel Prize.

Consider an open system having any number of inlets α and any number of outlets
β. For such a system, the general stuff equation (1.4.1) can be written in terms of the
number of moles of species i,

(7.5.1)

Here the superscript gen refers to generation of species i, con refers to consumption,
and acc refers to accumulation of i in the system. When chemical reactions are occur-
ring, the difference between the generation and consumption terms reflects the net
effect of reactions (rxn). Moreover, we already have an expression (7.4.15) for the
change in species mole numbers due to reactions; here we write (7.4.15) in the form

(7.5.2)

Recall that R is the number of independent reactions, ξj is the extent of reaction j, and
each νij is a stoichiometric coefficient for species i in reaction j. Combining (7.5.1) and
(7.5.2), we have

i = 1, 2, … , C (7.5.3)

This is the general form of the stuff equation for an open system containing a total of C
species, some or all of which are engaged in chemical reactions.

If we want (7.5.3) explicitly in terms of rates of change, we can write
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(7.5.4)

where vj is the reaction rate for the jth reaction; see (7.4.50). In the special case of a
closed system, there are no inlets or outlets, and (7.5.4) reduces to

closed systems (7.5.5)

which merely confirms that the mole numbers of reacting species are not necessarily
conserved, even in closed systems.

7.5.2 Combined Laws for Reactions in Open Systems

To obtain the combined first and second laws for open systems with chemical reac-
tions, we proceed just as we did in § 7.2.1 for nonreacting systems. Our situation can
still be represented by Figure 7.4, which contains bulk phases α and β separated by an
interface Ι. The temperatures and pressures in the phases are controlled by reservoirs,
as in Figure 7.4. We again choose the interface to be the system, and the interface still
has negligible mass, so no mass, energy, or entropy accumulate there; that is, (7.2.1)–
(7.2.3) still apply. However, we now have R independent reactions occurring in each
bulk phase, although no reactions occur in the interface. The development is exactly
that in § 7.2.1, giving the same result

(7.2.13)

In § 7.2.1, the changes in bulk-phase mole numbers dNα and dNβ were caused by
diffusion across the interface. But here, those changes may result from diffusion or
chemical reaction or both. So for each component in each phase, we write

k = α, β (7.5.6)

Using (7.4.15) for the reaction term, (7.5.6) can be written as

k = α, β (7.5.7)

Further, note that whatever diffuses from one phase, across the interface, must enter
the other phase; so we have
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(7.5.8)

Therefore, (7.2.13) becomes

(7.5.9)

Introducing the affinity from (7.4.41), we obtain

(7.5.10)

Equation (7.5.10) is the combined first and second laws for open systems undergoing
chemical reactions with T and P constant in each phase. It imposes limitations on the
combined effects of reactions, material transfers, and energy transfers across an inter-
face between bulk phases α and β.

When the only work mode is Pv work, and when the temperatures and pressures
are not only constant, but also the same in the two phases (Tα = Tβ and Pα = Pβ), then
(7.5.10) collapses to

Tα=Tβ & Pα=Pβ (7.5.11)

For processes occurring at fixed Tα = Tβ and fixed Pα = Pβ, (7.5.11) imposes limitations
on diffusion and reaction taking place in multiphase systems. For finite rates of diffu-
sion and reaction, only the inequality in (7.5.11) applies. Then, as discussed in detail in
§ 7.2.2 for diffusion and in § 7.4.4 for reactions, there are two general ways by which
the inequality can be satisfied: uncoupled situations and coupled ones. 

In completely uncoupled situations, every diffusion rate and every reaction rate is
independent of all other rates, and then every term in (7.5.11) must be positive. But
although the completely uncoupled situation is mathematically possible, it rarely
occurs in practice; in most multiphase reacting systems, coupling is present—espe-
cially coupling between diffusion and reaction. In such cases, some terms in (7.5.11)
can be negative, so long as they are dominated by positive terms so that the inequality
is obeyed. Then it is possible for some species to diffuse against their chemical poten-
tial gradients or for some reactions to proceed against their affinities. However, these
kinds of behavior are often obscured because, in practice, a few terms in (7.5.11) often
dominate the sum.
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7.6  CRITERIA FOR REACTION EQUILIBRIUM

In this section we use the combined laws from § 7.5 to obtain the criteria for reaction
equilibria in both closed and open systems. The development here parallels that pre-
sented in § 7.3 for phase equilibrium.

7.6.1 Closed Systems

For R independent reactions taking place in a closed system at fixed T and P, the com-
bined laws are

fixed T and P (7.4.49)

Just as in the nonreacting situations discussed in § 7.3, the inequality in (7.4.49)
applies to irreversible processes and the equality applies to reversible changes. Now
we repeat the argument in § 7.3.1 that establishes a correspondence between revers-
ible changes and equilibrium states; the consequence is that the equality in (7.4.49)
applies both to reversible changes and to equilibrium states. Therefore, for reaction
equilibrium at fixed T and P, we must have

fixed T and P (7.6.1)

However, this is only necessary but not sufficient for identifying equilibrium. For
example, when reactions are coupled it may happen that some terms in (7.6.1) are pos-
itive while others are negative, so the sum is zero; nevertheless, reactions are in
progress (vj ≠ 0) and the system is not at equilibrium.

Equilibrium means that all driving forces are zero. For chemical reaction j, the driv-
ing force is the affinity Aj: reaction equilibrium (at fixed T and P) occurs when each
affinity is zero. When this condition is met, the equality in (7.6.1) is satisfied term-by-
term,

j = 1, 2, … , R fixed T and P (7.6.2)

However, (7.6.2) is necessary but still not sufficient for reaction equilibrium. The nec-
essary and sufficient conditions are simply

j = 1, 2, … , R fixed T and P (7.6.3)

If no driving force exists for reaction j (Aj = 0), then the reaction is not occurring; so, a
consequence of (7.6.3) is that the rates are also zero,

j = 1, 2, … , R fixed T and P (7.6.4)
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For a system of R reactions, we obtain the equilibrium composition, not by solving the
rate equations (7.6.4), but rather by solving the R criteria (7.6.3) for equilibrium values
of R extents of reaction, ξj

e , j = 1, 2, … , R . Those equilibrium equations are developed
and discussed in Chapter 10.

7.6.2 Open Systems

Open-system processes may include chemical reactions, diffusional mass transfer, and
energy transfer across system boundaries. All such processes must satisfy the open-
system form of the combined laws. When these processes are all complete and equi-
librium is established, then it is the equality in (7.5.10) that applies. However, this
statement is only a necessary condition; it is not sufficient. The necessary and suffi-
cient conditions for equilibrium are that each term in (7.5.10)—including each term in
each sum—must be zero. In other words, the system must simultaneously satisfy the
criteria already discussed for thermal equilibrium (7.3.3), mechanical equilibrium
(7.3.5), diffusional equilibrium (7.3.11) or (7.3.12), and reaction equilibrium (7.6.3).

7.6.3 Example

Can the criteria (7.6.3) for reaction equilibrium, which require all affinities to be
zero, be reconciled with the general criterion for isothermal-isobaric equilibrium,
namely dG = 0 (7.1.40)?

The objective here is to show that the reaction equilibrium criteria (7.6.3) are a conse-
quence of the more general equilibrium criterion (7.1.40) that applies to any NPT sys-
tem, including reacting systems. Consider a system of C species confined to a closed
vessel and maintained at constant T and P by contact with an external heat and work
reservoir. The species may undergo R independent chemical reactions. Since T and P
are fixed for the entire system, the NPT criterion for equilibrium (7.1.40) applies; that
is, when all reactions are complete and equilibrium is reached, the system’s total
Gibbs energy will be a minimum,

fixed T and P (7.6.5)

The total Gibbs energy can be obtained from the species chemical potentials,

(7.6.6)

where the sum runs over all species including all products and reactants. Consider a
process in which all reactions proceed by a differential amount; the response of G to
such a change is, in general,

(7.6.7)
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But at fixed T and P, the first term on the rhs is zero by the Gibbs-Duhem equation,
and the second term can be rewritten using (7.4.15). The result is

fixed T and P (7.6.1)

and the arguments following (7.6.1) can be repeated leading to (7.6.3), as required. The
general criterion for isothermal-isobaric equilibrium (7.1.40) includes the reaction-
equilibrium criteria (7.6.3) as a special case. QED

7.7  SUMMARY

In this chapter we formulated the combined first and second laws for closed and open
systems, both with and without chemical reactions. We found that each form of the
combined laws imposes limitations on the directions and magnitudes of processes;
particular forms apply to particular kinds of processes and systems. In addition, the
combined laws provide the conditions that must be satisfied when all processes are
complete and equilibrium has been established. This means that the material in this
chapter can serve as the starting point for any thermodynamic analysis.

In every case, we found that the directions and magnitudes of natural processes
arise from entropy generation, which is always positive. This applies not only to pro-
cesses involving mechanical work, but also to those involving heat transfer, diffu-
sional mass transfer, and chemical reactions. However, we also showed that entropy
generation is mandatory only for the overall process. When a process involves two or
more coupled mechanisms, then an individual mechanism might proceed in a direc-
tion opposite to that followed when the mechanism operates alone. The importance of
such coupling is that it can enable certain transfers or transformations to occur as part
of a larger process, when otherwise those same transfers or transformations could not
occur in isolation. 

The constraints imposed by the combined laws all adhere to a single basic pattern,

(7.7.1)

During any process a driving force produces a change, and the rate of change is cou-
pled to the driving force in such a way that (7.7.1) is always obeyed. We have encoun-
tered the following examples of (7.7.1) applied to individual processes: when
mechanical work causes an expansion or contraction of a system, a pressure difference
(Pα – Pβ) drives a volume change (dV ); when a thermal interaction exists between two
systems, a temperature difference (Tα – Tβ) drives heat transfer from one system to
the other (δQ); when material diffuses between phases α and β, a difference in chemi-
cal potentials drives the mass transfer (dNi); and when chemical reactions occur, the
affinity (A) determines the progress of a reaction (dξ). At equilibrium the equality in
(7.7.1) applies because both the driving force and the rate are zero: at equilibrium not
only is there no change in the state, but also there is no tendency for change. A sche-
matic of (7.7.1) for a single independent process appears in Figure 7.6.  

A j vj
j

R

∑ 0=

driving forces
for change 

  rate of
change 

 ×∑ 0≥



306 TRANSFERS, TRANSFORMATIONS, AND EQUILIBRIA

For most nonequilibrium situations, the inequality in (7.7.1) applies: a nonzero
driving force causes a nonzero rate of change. But nonequilibrium situations can also
be found in which the equality in (7.7.1) is satisfied. These occur when a finite driving
force is not sufficient to overcome a resistance to change; such situations are metasta-
ble and can be catastrophically sensitive to small disturbances. However, we never
observe situations in which a finite change is coupled to a zero driving force.  

For situations involving mechanical work and heat transfer, we have some intu-
ition and experience to support the notions that driving forces are connected to rates,
and that an absence of driving forces implies zero rates. Such familiarity may foster
understanding because those driving forces and rates involve common measurables,
such as temperature and pressure. However, for phase and reaction equilibrium, the
driving forces imposed by Nature appear in terms of conceptuals: the chemical poten-
tials or, equivalently, the fugacities. These conceptual driving forces are only subtly
connected to physical reality, as we tried to show in Chapters 4–6.

Nevertheless, the equilibrium criteria presented in this chapter serve as the starting
points for performing engineering analyses on situations involving changes of state,
phase equilibrium, and reaction equilibrium. However, since these criteria appear in
terms of conceptuals (fugacities), we must first restate them in terms of measurables
before calculations can be performed. In principle, such restatements are straightfor-
ward: we merely select an appropriate form from the five famous fugacity formulae
and combine that form with an appropriate model for the required experimental data
(a PVTx model or a GE model). This is easier said than done; to select appropriate
models and fugacity formulae, we must exercise considerable engineering judgement.
Moreover, the resulting equations must nearly always be solved by trial, and they are
best solved on a computer. These are not thermodynamic issues, but they are impor-
tant practical issues, and they will be discussed in Part IV.

Figure 7.6 Schematic of Equation (7.7.1) for any one independent process, such as work, heat
transfer, diffusion, or chemical reaction. Closed circle identifies the equilibrium state in which
there is neither a driving force nor a change. Broken horizontal line locates metastable states, in
which a nonzero driving force fails to cause a change. Shaded regions cannot be reached by a
single process.
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PROBLEMS

7.1 (a) When isometric-isentropic processes are applied to closed systems, show that
(7.1.41) applies to the resulting changes of state and show that, when N, V,
and S are fixed, equilibrium occurs when the internal energy is minimized.
Describe a physical process that has N, V, and S fixed. 

(b) When isobaric-isentropic processes are applied to closed systems, show that
(7.1.42) describes the resulting changes of state and show that, when N, P, and
S are fixed, equilibrium occurs when the enthalpy is minimized. Describe a
physical process that has N, P, and S fixed.

7.2 A quantity of pure oxygen is initially at 25°C and 1 bar. The gas is needed at 50°C
and 2 bar. Can the required change of state be accomplished by some adiabatic
manipulation of the volume? If not, what is the highest pressure that could be
attained by an adiabatic process that ends at 50°C? Assume cp = 7R/2. Clearly
state any other assumptions made.

7.3 A vessel formed from rigid, thermally conducting walls is immersed in a heat
bath at 25°C. The vessel has total volume V and is divided into two compart-
ments, α and β, by a rigid, movable, thermally conducting partition. The parti-
tion can slide laterally with little friction; initially the partition is positioned so
that one compartment has a volume Vα = V/5. The partition is initially held in
place by stops. Each compartment is loaded with ten moles of pure nitrogen. A
process is initiated by removing the stops, allowing the partition to irreversibly
slide to a new equilibrium position. Estimate the amount of entropy generated.

7.4 Consider a system in which the electrostatic work mode is important,
 where E is the electric field and q is the charge. Show that isothermal

transfer of charge across the system boundary occurs from the region of high
field to that of low field.

δWe E dq=
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7.5 Tabitha the Untutored has adopted the intuitively seductive position that the
driving force for pure-component diffusion is a density difference: material
always diffuses from regions of high density to regions of low density. Hence,
Tabitha claims that part of the criteria for equilibrium is an absence of density
gradients in a system. 

(a) Use saturated steam tables to either support or oppose to this claim. 

(b) If you do not believe the claim, then what is the driving force for diffusion?
Can you use the saturated steam tables to help demonstrate your answer?

7.6 For each of the following phase-equilibrium situations, write a complete set of
independent equalities that are always true at equilibrium:

(a) pure carbon dioxide in vapor-solid equilibrium.

(b) a binary mixture of benzene and water in three-phase vapor-liquid-liquid
equilibrium.

(c) carbonated water in equilibrium with its vapor (CO2 + H2O).

(d) a binary mixture of 1 and 2 held in one half of a diffusion cell; the other half
contains pure 1 and is separated from the mixture by a semipermeable mem-
brane. The membrane passes 1 but not 2. The cell is immersed in a heat bath.

7.7 Could a difference in strengths of electric fields cause diffusion of a component
against its chemical potential gradient? If so, could this occur with neutral mole-
cules or only with charged molecules?

7.8 Consider a liquid solution in equilibrium with its vapor. Show that

 

where  is the change in the partial molar entropy for component i
on condensation and  is the change in partial molar enthalpy of component i
on condensation.

7.9 Steam and methane can react to form hydrogen, carbon monoxide, and carbon
dioxide. (a) Obtain the stoichiometric coefficients and a set of independent reac-
tions for this system. (b) If a reactor initially contains 4 moles of steam and 2
moles of methane, find the composition of the mixture when 1 mole of steam and
0.1 mole of methane remain.

7.10 Carbon and zinc oxide can react to form Zn, CO, and CO2. (a) Obtain the stoichi-
ometric coefficients and a set of independent reactions for this system. (b) The
reactions can be carried out at 1300 K, 1 bar, with ZnO and C as solids and Zn,
CO, and CO2 in a vapor phase. If the system initially has three moles each of ZnO
and C, what will be the vapor-phase composition when one mole each of ZnO
and C remain?

7.11 Consider the situation described in the example in § 7.4.3, with an initial loading
of 1.5 moles of methane and 1 mole of oxygen. Find values for the extents of reac-
tions that will provide the maximum amounts of CO and H2.

∆Si ∆Hi( ) T⁄=

∆Si Si
{

Si
v

–=
∆Hi
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7.12 Repeat the analysis in the example of § 7.4.2, but for the one arbitrarily selected
stoichiometric coefficient, use ν11 = –1. Create a table of compositions vs. extent
of reaction and compare it with the one in the example. Which quantities change
and which remain unaffected by the way the reaction is balanced? Discuss.

7.13 Consider ammonia reacting with propane and propylene to form methane,
hydrogen, and hydrogen cyanide.
(a) Obtain the stoichiometric coefficients and a set of independent reactions for

this system. 
(b) For the reactions carried out in the gas phase at 300 K, 1 bar, determine the

affinities for each reaction, as functions of the extents of reaction, when the
initial mixture contains 100 moles of ammonia, one mole of propane, and one
mole of propylene. Assume the gas is ideal and recall ideal gases have

You may use the following values for the standard-state chemical potentials:

7.14 Let a binary mixture of components 1 and 2 form each of the phases α and β in
Figure 7.4. The interface between the phases is thermally nonconducting, fixed in
position, and permeable to both components. The position of the interface is such
that each phase has the same volume. Further, we load the same number of mol-
ecules of each component into each phase. We start an adiabatic, workfree pro-
cess by adjusting the temperatures so that Tα > Tβ. 
(a) If component 1 diffuses from phase β to phase α, is the process driven by an

enthalpy difference or by an entropy difference?
(b) Is it possible for component 1 to diffuse in one direction across the interface

while simultaneously component 2 diffuses in the opposite direction?
Explain your answer.

(c) When the process ends and equilibrium is established (and assuming no
phase changes occur), will the two phases have the same temperature? The
same composition?

Species NH3 HCN C3H6 C3H8 CH4 H2

–1,900 15,000 7,500 –2,800 –610 0

Gi Gi
o

RT xiP( )ln+=

Gi
o

R (K)⁄
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uring the design and operation of chemical processes, we routinely propose a
state for a system by specifying a temperature, pressure, composition, and

phase. Then the question is, Can the system be brought to that state? This is a question
of observability. In many situations, particularly those involving multicomponent
mixtures, the answer is not at all obvious. For example, at certain values for 

 

T

 

 and 

 

P

 

,
mixtures of phenol and water can undergo drastic phase changes in response to slight
changes in composition: a mixture of phenol in water might be a one-phase vapor, or a
one-phase water-rich liquid, or a phenol-rich liquid in equilibrium with a water-rich
liquid, or it might be in three-phase vapor-liquid-liquid equilibrium.

In the previous chapter we derived criteria for identifying equilibrium states; for
example, in a closed system at fixed 

 

T

 

 and 

 

P

 

, the equilibrium state is the one that min-
imizes the Gibbs energy. That minimization is equivalent to satisfying the equality of
component fugacities. More generally, we derived criteria for thermal, mechanical,
and diffusional equilibrium in open systems. But although those criteria can be used
to identify equilibrium states, they are not always sufficient to answer the question of
observability. Observability requires stability. Thermodynamic states can be stable,
metastable, or unstable; a stable equilibrium state is always observable, a metastable
state may sometimes be observed, and an unstable state is never observed.

In this chapter we develop the stability criteria for both pure substances and for
mixtures. Since we have three kinds of equilibria, we have three kinds of stabilities:
thermal stability, mechanical stability, and diffusional stability. If the proposed state of
a single phase violates any of these criteria, then the phase might spontaneously split
into two or more phases. Therefore, violations of stability criteria contribute to the
wealth of phase behavior observed in Nature. In this chapter we introduce some of
the phase behavior that results from instabilities, but the subject is an extensive one,
so the descriptions of observable phase behavior are continued in the next chapter.

In § 8.1 we derive the thermal and mechanical stability criteria for closed systems,
and in § 8.2 we apply those criteria to pure substances. In pure substances only ther-
mal and mechanical instabilities are possible; diffusional instabilities never occur
because pure substances cannot exhibit concentration gradients. Then in § 8.3 we
derive the diffusional stability criteria for open systems, and in § 8.4 we apply those

D
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criteria to fluid mixtures. In general, to answer the question of observability, we have
three stability criteria to test, but fortunately, the three are inclusive: if a one-phase
mixture is diffusionally stable, then it is also mechanically stable, and if the mixture is
mechanically stable, then it is also thermally stable. 

Stability criteria are economically posed in terms of conceptuals, such as 

 

S

 

, 

 

G

 

, or 

 

A

 

,
but before we can test for stability, we must connect the stability criteria to measur-
ables. The connections can be achieved either via models for volumetric equations of
state, say 

 

P

 

(

 

T

 

, 

 

v

 

, {

 

x

 

}), or (in cases of mixtures) via models for 

 

g

 

E

 

(

 

T

 

, 

 

P

 

, {

 

x

 

}). Both
approaches are viable when all phases are fluid; however, a 

 

g

 

E

 

 model should be used
for any solid phase. In general, then, we continue to face the ever-present thermody-
namic problem of establishing useful relations between conceptuals and measurables.

 

8.1  PHASE STABILITY IN CLOSED SYSTEMS

 

The thermodynamics in this book is restricted to a description of well-defined states
and to analyses of processes that change the system from one state to another. Ther-
modynamics deals mainly with equilibrium states, which were discussed in a qualita-
tive way in § 1.2.2 and in a quantitative way in § 7.1. In both § 1.2.2 and § 7.1 we tacitly
assumed that the situations under discussion were 

 

stable

 

 equilibrium states. But in
general a stable state is only one of several possible kinds of states that are available to
systems. In § 8.1.1 we describe the kinds of states that can be legitimately proposed for
thermodynamic systems, and we identify those that are observed in practice. 

Once we know the states that are available, then we want quantitative criteria that
enable us to identify the state actually assumed by the system. Formally, the criteria
are contained in § 7.1; for example, if the system is maintained at a constant 

 

T

 

 and 

 

P

 

,
then the observed equilibrium state will be the one that satisfies (7.1.40)—the state
that minimizes the Gibbs energy. So if at fixed 

 

T

 

 and 

 

P

 

, a system can possibly exist as
one phase or as two phases, the observed equilibrium situation will be the one with
the lower Gibbs energy. For example, when

(8.1.1)

then the observed equilibrium situation will be a single phase. The criteria (7.1.40)
and (8.1.1) are often used to identify phase-equilibrium situations. However, criteria
such as (8.1.1) require us to solve the phase-equilibrium problem for the compositions
of the two phases. It is often useful to have alternatives to (8.1.1) that involve only the
state of the proposed one-phase situation; such forms are derived in § 8.1.2 for closed
systems and in § 8.3 for open systems.

 

8.1.1 Stability of Well-Defined States

 

By a 

 

well-defined

 

 state we mean a state to which property values can be assigned. The
class of well-defined states contains the observable equilibrium states discussed in
§ 1.2.2; but in addition, the class includes hypothetical states that are not observable
but that nevertheless can be identified as points on phase diagrams. Often we need to
determine whether a hypothetical state is in fact observable; thermodynamics pro-

gone phase gtwo phases<
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vides criteria for making such determinations. Sometimes we refer to hypothetical
states as 

 

proposed

 

 states, since they often occur in the development of a proposed solu-
tion to a thermodynamic analysis. 

In the general case (considering not just thermodynamic systems), well-defined
states can be divided into two types: 

 

static

 

 and 

 

dynamic

 

. Static well-defined states are
always equilibrium states in which all forces acting on a system are balanced at every
instant; however, static states are not accessible to thermodynamic systems, so we do
not discuss them further here.

In dynamic situations forces are not balanced at every instant; one special case of
dynamic situations is the 

 

steady state

 

, in which forces are constant but they are not bal-
anced by opposing forces. In addition, dynamic situations may include states at equi-
librium. In 

 

dynamic equilibria

 

 forces fluctuate at every instant, but the forces are
balanced when they are averaged over finite durations and finite parts of the system.
The relevant time and length scales may or may not be sensible or important to an
observer. Moreover, these scales can differ substantially for systems in different
phases of aggregation; for example, property fluctuations in solids are typically orders
of magnitude smaller than those in fluids. 

Dynamic states subdivide into various classes, as shown in Figure 8.1. The subdivi-
sions depend on stability characteristics, that is, on how a system spontaneously
responds to small perturbations or disturbances. In general the response can take one
of three possibilities: a large response, a small bounded response, or no response (that

 

Figure 8.1

 

The hierarchy of system states

System
Situations

Well-defined 
States

Nonequilibrium 
Conditions

Dynamic Static
(nonthermodynamic)

Unstable
Equilibrium

Stable
Equilibrium

Metastable
“Equilibrium”

Neutral
“Equilibrium”

    Not observable                  Observable                      Observable                     Observable

    Never observed             Usually observed           Sometimes observed        Sometimes observed



 

 

 

8.1   PHASE STABILITY IN CLOSED SYSTEMS

 

313

 

is, no change in the balance of forces). When a system is unaffected by a small distur

 

-

 

bance, the state is said to be 

 

neutral

 

. When a system exhibits a small bounded response
to a small disturbance, the state is said to be a 

 

stable equilibrium

 

 state. Systems in stable
states often respond not merely in a bounded way to a disturbance, but they may also
return to their original unperturbed state.

When a system exhibits a large response to a small disturbance, the state is 

 

unstable

 

.
Unstable states may be proposed for equilibrium and nonequilibrium situations;
however, unstable states are not observed in thermodynamic systems [1]. Thermody-
namic states are always dynamic situations in which molecular-scale fluctuations are
continually disturbing the state. Therefore if a proposed state happens to be unstable,
that state will not be observed because spontaneous fluctuations drive the system
away from the unstable state and toward some equilibrium state.

These distinctions among states can be illustrated by appealing to a mechanical
analogy, as in Figure 8.2. The figure shows a schematic diagram of a ball that rolls on a
track; the elevation 

 

z

 

 of the ball changes with its position 

 

x

 

 along the track. At any
instant the forces acting on the ball are (a) the downward force of gravity and (b) the
opposing upward force of the track. (We ignore friction.) Equilibrium occurs when
these two forces are balanced. 

The gravitational potential energy 

 

E

 

p

 

 is given by (2.1.4),

(8.1.2)

where 

 

m

 

 is the mass of the ball, 

 

g

 

 is the gravitational acceleration, and 

 

z

 

 is the eleva-
tion of the center of the ball relative to some arbitrary datum. Since 

 

m

 

 and 

 

g

 

 are con-
stants over modest changes of 

 

z

 

, the ordinate plotted in Figure 8.2 is proportional to

 

E

 

p

 

. This potential energy gives rise to a gravitational force,  

 

Figure 8.2

 

Kinds of states that are possible in a mechanical system, such as a roller coaster in a
gravitational field
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(8.1.3)

where the sign indicates an attraction. This is Newton’s second law.
Figure 8.2 illustrates that different types of extrema correspond to different

responses to small disturbances and therefore to different stability characteristics. 

 

Sta-
ble equilibrium

 

 occurs at the global minimum in 

 

z

 

(

 

x

 

) or equivalently in 

 

E

 

p

 

(

 

z

 

): if a small
disturbance is applied to the ball when it is at the global minimum, the resulting
forces return the ball to that minimum. The ball exhibits a small response to a small
disturbance. In contrast, 

 

unstable equilibria

 

 occur at maxima in 

 

z

 

(

 

x

 

): if a small distur-
bance is applied to the ball when it is at rest at a maximum, the resulting forces push
the ball farther from the maximum. The ball exhibits a large response to a small dis-
turbance. 

 

Neutral equilibria

 

 occur at points of inflection, because at those points a small
disturbance has no effect on the balance of forces.

Lastly we mention the troublesome distinction that exists between the global mini-
mum and local minima in Figure 8.2. We emphasize that only the global minimum is
identified as the stable equilibrium state. In mechanics, local minima are sometimes
called 

 

local equilibrium

 

 states, but in thermodynamics they are usually called 

 

metastable

 

equilibrium states. Differential criteria cannot distinguish metastable states from sta-
ble states: both kinds of equilibria exhibit small bounded responses to differential dis-
turbances. Without knowing the form of the curve, such as in Figure 8.2, a metastable
state can be identified only by testing its response to a finite (as opposed to a differen-
tial) change of state. The response is monitored by observing an appropriate potential
function 

 

ψ

 

. If 

 

ψ

 

 always increases in response to a finite disturbance, then the original
state was a stable equilibrium one; but if some finite disturbances cause 

 

ψ

 

 to decrease,
then the original state was metastable. In Figure 8.2, the quantity 

 

ψ

 

 is the potential
energy; in thermodynamic systems the role of 

 

ψ

 

 is played by the function that identi-
fies equilibrium: 

 

U

 

, 

 

G

 

, 

 

H

 

, 

 

A

 

, or –

 

S

 

. Recall we found in § 7.1 that the choice from among

 

U

 

, 

 

G

 

, 

 

H

 

, 

 

A

 

, or –

 

S

 

 is dictated by the independent properties used to fix the thermody-
namic state; for example, if the state of a closed system is set by holding 

 

T

 

, 

 

P

 

, and 

 

N

 

constant, then equilibrium occurs when the Gibbs energy 

 

G

 

 is minimized.
Metastable equilibrium states are observed in thermodynamic systems; one exam-

ple is a 

 

superheated liquid

 

, attained by careful isobaric heating of a pure liquid above its
vapor-liquid saturation temperature but without boiling. This metastability can often
be disrupted by a small (but finite) mechanical disturbance; the response may be an
instantaneous and violent partial flash in which the newly created gas-phase rapidly
expands, splashing liquid over a large area. The danger inherent in this sensitive
metastability motivates caution when heating liquids over low-temperature flames.
Other examples of observable metastabilities include the phenomena known as 

 

anti-
bubbles

 

, in which a liquid droplet is surrounded by vapor which, in turn, is sur-
rounded by more liquid [2]. In response to external disturbances, antibubbles can
undergo violent phase changes. 

Still other examples of observable metastabilities include 

 

subcooled phases

 

, such as
subcooled vapors to make liquids, subcooled liquids to make solids, and subcooled
solids to make other solids. The lifetimes of such metastable phases can be substantial,
because the nucleation of new phases may require particular kinds of fluctuations that
occur only rarely. Lastly we mention the huge number of observable conformational
metastabilities that can be exhibited by large molecules such as proteins.     

Fg zd

dEp
 
 – mg–= =



 8.1   PHASE STABILITY IN CLOSED SYSTEMS 315

8.1.2 Criteria for Stability

We have noted that thermodynamic equilibrium is a dynamic situation: because of
molecular motions, microscopic regions of a system have intensive properties that
continually fluctuate about their equilibrium values. Consequently, localized inhomo-
geneities in property values occur, at least over some time and length scales. In this
section we develop thermodynamic conditions under which such fluctuations would
not change the state (disturb the stability) of a pure fluid. For example, if some small
fluctuation in temperature or pressure occurs in a localized portion of a system, will
the inhomogeneities die away, leaving the overall state undisturbed? Or will such
inhomogeneities grow, eventually driving the system to a new state—perhaps, even
causing a phase transition?

Consider a pure one-phase fluid at equilibrium and confined to an isolated vessel.
To analyze the response to a small fluctuation, imagine dividing the fluid into a large
part A and a small part B, as in Figure 8.3. Part B is not necessarily a fixed region of
space, but rather a particular collection of molecules whose number is constant over
the time-scale of interest and whose average properties are well defined. Now imag-
ine a fluctuation occurring in B, disturbing its energy UB and volume VB. Since exten-
sive properties are additive and the total system is isolated, we have

(8.1.4)

(8.1.5)
and

(8.1.6)

For small fluctuations, the response of the total entropy can be reliably estimated
by a Taylor’s expansion,

Figure 8.3 Schematic diagram of an isolated system with a local element B distinguished from
the rest of the system A. For the stability analysis here, the element B is identified by a particu-
lar amount of material that remains constant; however, continual motion and rearrangement of
the molecules in B cause the energy UB and volume VB to fluctuate.

U UA UB+ constant= =

V VA VB+ constant= =

S SA SB+=

Part A

Part B

rigid,
impermeable,
nonconducting
boundary



316 CRITERIA FOR OBSERVABILITY

         (8.1.7)

The notation used here is adopted from the variational calculus; it is defined in
Appendix G. Since the system is initially at equilibrium, S is a maximum. Such max-
ima have δS = 0, and they have

(8.1.8)

This means the surface S(U, V, N) is concave around a stable equilibrium state. If δ2S =
0, as it is at critical points, then we would have to consider higher-order variations [3,
4], but this is beyond our present objective. The first-order response to the fluctuation
is given by

(8.1.9)

Since the total internal energy is constant (8.1.4) and so too is the total volume (8.1.5),
we can eliminate the variations in B in favor of those in A and write

(8.1.10)

The variations δUA and δVA are arbitrary and independent of one another, so (8.1.10)
can satisfy δS = 0 only if we have, initially,

(8.1.11)

and

(8.1.12)

The portions A and B are each representative samples of the same fluid and, at the
start of the fluctuation, A and B are in equilibrium; hence, the value of each intensive
property in A is initially the same as in B. For example, by the fundamental equation
(3.2.4), (8.1.11) merely says that initially TA = TB, while (8.1.12) states that initially we
have PA = PB.

To apply the stability criterion (8.1.8) we need the second-order variation of S
which, from (8.1.9), is found to be
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(8.1.13)

where Sxy is a shorthand for the second derivative (∂2S/∂X ∂Y); see Appendix G.
Using the conservation equations (8.1.4) and (8.1.5) together with the fact that all
intensive properties are initially the same in parts A and B, (8.1.13) becomes

(8.1.14)

where N = NA + NB. Equation (8.1.14) poses the test for stable equilibrium in terms of
the response of the A-part of the system. Since we are interested only in the sign of
δ2S, we delete the A-superscripts and drop the factor N/NB. The criterion for stable
equilibrium is then

(8.1.15)

In the language of linear algebra, the rhs of (8.1.15) is a quadratic form (see Appendix
B); that is, letting (δU  δV) be the vector of variations, (8.1.15) can be written as

(8.1.16)

where S is the symmetric matrix

(8.1.17)

If δ2S is to be negative for all possible variations δU and δV, then the matrix S must be
negative definite; or equivalently, (–S) must be positive definite. The conditions under
which S is negative definite are given by a theorem from linear algebra: it is necessary
and sufficient that the principal minors of S satisfy the following inequalities [5]:

(8.1.18)

and

(8.1.19)

When an equilibrium state satisfies (8.1.18) and (8.1.19), then the system is stable to
small fluctuations. We now reexpress these criteria in terms of measurables.
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8.1.3 Stability Criteria in Terms of Measurables

To evaluate Suu, we first rewrite the fundamental equation (3.2.4) in the form

(8.1.20)

Then

(8.1.21)

Hence,

(8.1.22)

Therefore, to satisfy the stability criterion (8.1.18), we must have

(8.1.23)

This is the criterion for thermal stability: for a system in a well-defined state to be dif-
ferentially stable, its internal energy must always increase in response to any isometric
fluctuation that increases the temperature.

To evaluate Suv, we use the fundamental equation (8.1.20) and write

(8.1.24)

(8.1.25)

where γv is the thermal pressure coefficient defined in (3.3.5). 
To evaluate Svv, we again use (8.1.20) to obtain

(8.1.26)

The second derivative on the rhs is given in (8.1.24). To obtain the first derivative, con-
sider U = U(P, V), and with help from Chapter 3, we eventually find

(8.1.27)

Therefore,
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(8.1.28)

where α is the volume expansivity (3.3.6). Combining (8.1.24), (8.1.26), and (8.1.28)
yields

(8.1.29)

where κT is the isothermal compressibility (3.3.25). Finally, putting (8.1.22), (8.1.25),
and (8.1.29) into the criterion (8.1.19) gives

(8.1.30)

or
(8.1.31)

This is the criterion for mechanical stability: for a thermally stable system to also be
mechanically stable, the system volume must always decrease in response to any iso-
thermal fluctuation that increases the pressure.

Note that it appears to be possible for (8.1.30) to be satisfied by having both Cv < 0
and κT < 0; however, this is only a mathematical possibility that cannot actually occur.
In fact, we expect that the mechanical stability limit will be violated before the thermal
limit, because the mechanical limit represents a response of higher-order than the
thermal limit [3]; higher-order terms approach zero before lower-order terms. This
expectation is confirmed experimentally: whenever an initially stable system is driven
into an unstable region of its phase diagram, the mechanical stability limit is always
violated before the thermal limit. In other words, a state may be mechanically unsta-
ble but remain thermally stable, because κT appears only in (8.1.31) and not in (8.1.23).
The mechanical stability criterion (8.1.31) is a stronger test than the thermal stability
criterion (8.1.23). 

With the differential stability criteria (8.1.23) and (8.1.30) plus relations given in
Chapter 3, we may identify bounds on other thermodynamic properties. For example,
(3.3.31) relates the isometric and isobaric heat capacities,

(8.1.32)

This implies that a differentially stable system must have

(8.1.33)

Similarly, (3.3.30) relates the heat capacities and compressibilities, so that (3.3.30)
together with (8.1.33) implies
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(8.1.34)

Hence,

(8.1.35)

The equalities in (8.1.33) and (8.1.35) apply only when the expansivity α = 0, a condi-
tion that rarely occurs.

Lastly, we emphasize that (8.1.23) and (8.1.31) are differential criteria: they provide
the conditions under which a system is stable to small disturbances (otherwise the
Taylor series (8.1.7) does not apply). Unfortunately, those criteria cannot be used to
determine whether a proposed state is metastable or stable, because metastable states
can also satisfy differential stability criteria. To distinguish metastable states from sta-
ble ones, we must observe the system’s response to a finite, as opposed to a differen-
tial, disturbance.

8.2  PURE SUBSTANCES

We now use the stability criteria from § 8.1.2 to help judge the observability of pure-
fluid states and to help describe phase behavior of pure fluids. Issues of observability
constitute the theme of this chapter, and so it may be helpful to clarify how an observ-
able state differs from one that is observed. We use observable to mean a state that can
be realized in a laboratory. To realize an observable state, it is necessary to adjust cer-
tain measurables, such as T, P, and {x}, to particular values; however, such adjust-
ments may not be sufficient to create an observable state. Some observable states can
only be observed when measurables are manipulated in certain ways. In general, sta-
ble equilibrium states are always observable, but they are not always observed: some-
times a metastable state will be observed instead of a stable state. In contrast, an
unstable state is neither observable nor observed (see Figure 8.1).

In the descriptions of pure-fluid phase behavior presented in this section, we rely
on the simple yet qualitatively realistic equation of state developed by Redlich and
Kwong (4.5.66). That equation is cubic in the volume and can be written in a pressure-
explicit form,

(8.2.1)

The parameters a and b can be related to critical properties, as in Table 4.4.
To start the section, we develop relations by which an equation of state can be used

to identify the observability of a proposed pure-fluid state (§ 8.2.1), and we illustrate
with an example (§ 8.2.2). Then we qualitatively describe pure-fluid Pv diagrams
(§ 8.2.3 and 8.2.4), and follow with quantitative methods for determining vapor pres-
sures (§ 8.2.5) and latent heats of vaporization (§ 8.2.6). We end the section with brief
qualitative comments on pure-component phase equilibria involving solids (§ 8.2.7).
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8.2.1 Determination of Phase Stability for Pure Fluids

The problem to be considered is this: we have proposed a T and P for a pure one-
phase fluid and we want to determine whether that state is observable. To answer
this, we apply the following criteria, which are obeyed by any stable pure-fluid state:

(a) It is stable to small disturbances; that is, it satisfies the differential criteria for 
thermal (8.1.23) and mechanical (8.1.31) stability.

(b) It has a lower Gibbs energy than any other state that can exist at the same T 
and P.

If (a) is violated, then (b) is also violated, and the proposed single-phase state is unsta-
ble: it is not observable. If (a) is obeyed, but (b) is violated, then the proposed single-
phase state is metastable: it is observable and it might be observed. If (b) is satisfied,
then (a) is also satisfied, and the proposed single-phase fluid is stable and observable.
When the proposed state is unstable or metastable, the observed state may be one
phase or more; unstable and metastable one-phase states do not always split into two
or more phases.

A conventional way to address the criteria (a) and (b) is to employ a volumetric
equation of state of the form P(T, v) that applies to all fluid phases of our pure sub-
stance. The Redlich-Kwong equation (8.2.1) is an example. Any properly constructed
model for a volumetric equation of state should satisfy the thermal stability criterion
(Cv > 0), and as far as we are aware, all cubic equations of state having constant
parameters (a and b) do so. Consequently, thermal stability only needs to be tested
when we construct complicated equations of state, such as those that are high-order
polynomials in v or that have temperature-dependent parameters. Moreover, as we
noted under (8.1.31), the mechanical stability criterion is a stronger test, so we do not
consider thermal stability further here. 

To test for mechanical stability, we first solve our equation of state for all real roots;
these roots correspond to the available volumes at the proposed T and P. If only one
real root for v is obtained and (8.1.31) is obeyed, then the proposed single-phase is sta-
ble and observable at the given T and P. This solves our problem.

More problematic are those situations in which the equation of state provides mul-
tiple roots for v at the given T and P. Which of these are observable? To decide, we first
eliminate any v-roots that fail to satisfy the differential criterion for mechanical stabil-
ity (8.1.31). That criterion can be written in several forms, but it may be more helpful
here to state it as a criterion for instabilities,

unstable (8.2.2)

Therefore if the isotherm on a Pv diagram has a positive slope at the root v, then that
state is unstable and it cannot be observed.

At this point we have eliminated all roots that fail to satisfy the mechanical stability
criterion, but we do not yet have a unique root that is stable. To select from among the
remaining alternatives, we apply criterion (b), cited at the start of this section. That
criterion is a consequence of the equilibrium conditions developed in § 7.1.5: the sta-
ble equilibrium state will have a lower value of the Gibbs energy than any other state
that might exist at the specified T and P. 
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We first test single-phase states. Let vk(T, P) be the desired volume of the proposed
state, and let vj(T, P) be another root. Then the test is whether

(8.2.3)

If this condition is satisfied for all roots j ≠ k, then the proposed state vk(T, P) is the sta-
ble state and it is observable.

The criterion (8.2.3) is posed in terms of conceptuals, but to perform the test, it
must be connected to measurables. For computations based on a volumetric equation
of state, it is usually convenient to relate g to measurables via fugacity coefficients. So
we integrate the definition of the fugacity (4.3.10) from pure state vj(T, P) to pure state
vk(T, P),

(8.2.4)

Then the condition (8.2.3) can be written in terms of the fugacity as

(8.2.5)

and on substituting FFF # 1 (6.4.1), we obtain (8.2.5) in the form

(8.2.6)

These pure-component fugacity coefficients can be computed from the known equa-
tion of state by evaluating (4.4.24). At the specified T and P, the stable equilibrium
state will be that single-phase state whose volume provides the lowest value of the
fugacity coefficient.

Finally, we note that two pure volumes might have the same value for the fugacity
coefficient, at the same T and P,

(8.2.7)

When this occurs, the stable state can be a two-phase equilibrium situation. We
describe calculations for identifying these situations in § 8.2.5.

8.2.2 Example

How is a cubic equation of state used to test the stability of a proposed state for a
pure one-phase fluid?

To make this general question concrete, we repose it this way: Is pure propane a stable
one-phase gas at 300 K, 15 bar? To address this question, we adopt the Redlich-Kwong
equation of state (8.2.1) and obtain values for the Redlich-Kwong parameters a and b
from critical properties. Propane has Tc = 369.8 K and Pc = 42.4 bar; hence, the expres-
sions in Table 4.4 give
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(8.2.8)

(8.2.9)

To answer the question, we apply the procedure outlined in § 8.2.1.

Step 1. Determine all real roots at the specified T and P. Since the Redlich-Kwong
equation is cubic in v, we can solve it analytically using Cardan’s method (Appendix
C). That method gives three real roots at 300 K, 15 bar: a gas-phase root, vgas = 1194 cc/
mol, plus two others, v2 = 368.2 cc/mol and v3 = 100.8 cc/mol.

Step 2. Eliminate any roots having (∂P/∂V)T > 0. The Redlich-Kwong equation gives

(8.2.10)

At 300 K, 15 bar, 1194 cc/mol, the gas-phase root gives (∂P/∂V)T = –0.008 bar mol/cc:
the proposed gaseous state is not unstable. For the “middle” root (368.2 cc/mol),
(8.2.10) gives (∂P/∂V)T = 0.07 bar mol/cc; therefore, this state is unstable and can be
eliminated from further consideration. For the liquid root (100.8 cc/mol), (8.2.10)
gives (∂P/∂V)T = –7.0 bar mol/cc; so this state is also not unstable. We have two vol-
umes to consider further and three possible outcomes: the fluid is a stable single-
phase gas, or it is a stable single-phase liquid, or it exists in two-phase vapor-liquid
equilibrium (VLE).

Step 3. Of the two remaining one-phase states, at the given T and P, which has the
smaller value of ϕ? That is, we apply (8.2.6), which offers the following possibilities:

(a) If ϕgas  <  ϕliq, then the gas is the stable phase.
(b) If ϕgas  >  ϕliq, then the liquid is the stable phase.
(c) If ϕgas  =  ϕliq, then two-phase VLE is the stable situation.

The Redlich-Kwong equation is pressure-explicit, so we compute the fugacity coeffi-
cient from (4.4.24). We find the Redlich-Kwong expression for ϕ to be

(8.2.11)

where β is a dimensionless group,

(8.2.12)

At 300 K, 15 bar, (8.2.11) gives ϕgas = 0.78 and ϕliq = 0.65. Therefore at the given T and
P, the stable state is liquid. The gas phase is metastable, and the two phases cannot
exist in equilibrium with one another. 
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8.2.3 Stable One-Phase States of Pure Fluids

The discussions in § 8.2.1 and 8.2.2 imply that a Pv diagram can be divided into two
regions: one in which each isotherm can have only one value for the volume v at every
pressure P, and a second region in which an isotherm may have multiple values for v
at some pressures P. These two regions are separated by the critical isotherm; for the
fluid in Figure 8.4, the critical isotherm occurs at Tc = 304.2 K. 

Every state “above” the critical isotherm (T > Tc) is a stable single-phase fluid,
because it has no alternatives: each (T, P)-point has only one volume available. There-
fore each state satisfies the mechanical stability criterion and all supercritical iso-
therms have negative slopes on Pv diagrams, as in Figure 8.4. Gases and vapors have
high molar volumes, while liquids have smaller volumes. But along supercritical iso-
therms (such as T = 350 K in Figure 8.4), there is no clear distinction between gas and
liquid. If a supercritical fluid can be condensed by decreasing T at fixed P or by
increasing P at fixed T, then we call it a vapor. But if a supercritical fluid can only be
condensed by changing both T and P, then we call those substances fluids (though
they could also be called gases). When the distinction among liquid, gas, vapor, etc. is
unimportant, we will also use fluid as a generic term to mean any non-solid phase. 

Along any isotherm below Tc (a subcritical isotherm), multiple volumes occur for
pressures P < Pc. When calculated from analytic equations of state, each subcritical
isotherm has one or more regions of positive slope and two or more regions of nega-
tive slope (such as along T = 250 K in Figure 8.4). At the smallest molar volumes the
slope is negative [(∂P/∂v)T < 0] and the fluid is one-phase liquid. Similarly, at the larg-

Figure 8.4 Four isotherms of a pure fluid computed from the Redlich-Kwong equation of state.
Parameters a and b were computed from Tc and Pc using the relations in Table 4.4. The critical
point (filled square) was taken to be Tc = 304.2 K and Pc = 73.8 bar, which is that for carbon diox-
ide. However, with these values the Redlich-Kwong equation gives vc = 114 cc/mol, which is
not a good approximation to the experimental value of 94 cc/mol for CO2. Note that the two
isotherms below Tc contain metastable and unstable states.

-100

-50

0

50

100

150

100 1000

P
  (

ba
r)

v  (cc/mol)

350 K

304.2 K

275 K

250 K



 8.2   PURE SUBSTANCES 325

est molar volumes the slope is also negative and the fluid is one-phase vapor. But over
some range of volumes the slope is positive [(∂P/∂v)T > 0] and by (8.2.2) the fluid is
unstable. Such states are not observable, and the fluid will spontaneously relax to
some other situation that is stable. The stable situation may be one phase or two. 

The critical isotherm (Tc = 304.2 K in Figure 8.4) separates those fluids that are
always one phase from those that can split in two. The critical isotherm does not con-
tain any unstable points (points having positive slopes), but it does pass through one
point of zero slope. This is a point of inflection and identifies the critical point; any
pure-fluid critical point has

pure critical point (8.2.13)

and

pure critical point (8.2.14)

Note that a critical fluid is a one-phase substance, not two. To locate a critical point,
we use our particular equation of state to solve the one-phase equations (8.2.13) and
(8.2.14); we do not solve any phase-equilibrium equations to find Tc, Pc, and vc.

Since the isotherm has zero slope at the critical point, the isothermal compressibil-
ity at the critical point obeys

(8.2.15)

This suggests that near the critical point a fluid displays unusual behavior. The behav-
ior is unusual because natural fluctuations are not completely suppressed, as they are
when κT is bounded and positive, but neither are fluctuations able to grow so as to
force a phase change, as they can when κT is negative. Such fluctuations cause the
observable phenomenon known as critical opalescence; moreover, critical fluctuations
are independent of molecular constitution, so that near their critical points all fluids
have certain traits in common. Descriptions of critical phenomena are beyond the
scope of this book; see instead [6].

The division of a Pv diagram into supercritical and subcritical regions helps relate
the diagram to the stability criteria derived in § 8.1. In addition, that division corre-
sponds to certain mathematical descriptions of critical and stability phenomena.
Recall, supercritical isotherms provide only one real root for v from an analytic equa-
tion of state, while subcritical isotherms provide more than one real root; such a
change in the number of real roots is called a bifurcation of an algebraic equation. The
existence of critical points and the (mathematical) possibilities of unstable states are
reflected in bifurcations of the algebraic equations of state that attempt to describe the
phenomena [7]: the critical point can be called a bifurcation point. But although cubic
equations of state, such as the Redlich-Kwong, exhibit bifurcations, they do not reli-
ably describe the behavior of fluids in the critical region: such classical models fail to
reproduce the correct scaling laws [6].

The jargon associated with bifurcations will be used in the following ways. When
we say an equation has not bifurcated, we merely mean that an equation provides
only one real root for the quantity of interest. When we say an equation has bifur-
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cated, we mean the equation provides more than one root. An example of the context
would be this: All states along supercritical isotherms are stable single phases because
the equation of state does not bifurcate at supercritical states. For pure fluids, this
usage probably provides only limited benefits. But when we come to mixtures, the jar-
gon is convenient because mixtures have other equations, in addition to equations of
state, that can bifurcate, and bifurcations of equations for different properties lead to
different kinds of stability behavior, as we shall see in § 8.4.2.

8.2.4 Metastable and Two-Phase States of Pure Fluids

Recall from § 8.1 that differential stability criteria, such as (8.2.2), cannot distinguish
stable states from metastable states. In fact Figure 8.4 contains states on the 250 K iso-
therm that have negative slope (κT > 0), but which are metastable and so are not nor-
mally observed. In Figure 8.4, one metastable region includes a range of volumes over
which the 250 K isotherm has negative pressures. In engineering practice, negative
pressures are rarely observed; nevertheless, they are not necessarily artifacts of the
equation of state.

A negative pressure implies that a substance is under tension rather than compres-
sion (i.e., a pull rather than a push). Negative pressures are not possible in ideal gases
because without intermolecular forces there is no resistance to a tension. Even in most
real gases, the collective effects of intermolecular forces are so weak that a negative
pressure could be achieved only with difficulty, if at all. However, liquids are another
matter. In liquids, molecules exert attractive forces on one another, so liquids can
resist tension and sustain negative pressures. Negative pressures are commonly used
by Nature to move water from roots, through narrow xylem vessels, to leaves of trees
and other plants [8]: so long as the fluid remains a continuous phase, transpiration lit-
erally pulls water up from plant roots.

For a pure substance, such as in Figure 8.5, metastable states on an isotherm lie
between stable states and unstable states. At one end of the metastable range, metasta-
ble states are separated from unstable states by a curve called the spinodal. For a pure
substance, the spinodal is the locus of points at which the differential stability crite-
rion (8.2.2) is first violated, that is, the points at which

pure spinodal (8.2.16)

Since this condition is also satisfied by the critical point, a pure-fluid critical point
must lie on the spinodal. For a pure substance that obeys the Redlich-Kwong equation
of state, the spinodal temperatures and volumes are related by

(8.2.17)

By substituting (8.2.17) into the Redlich-Kwong equation (8.2.1), we can relate the
pressure to the volume along the spinodal; a plot appears in Figure 8.5. Note that, at
the critical point, the spinodal intersects the critical isotherm at its point of inflection. 
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Along any pure-fluid, subcritical isotherm, the spinodal separates unstable states
from metastable states. At the other end of an isotherm’s metastable range, metastable
states are separated from stable states by the points at which vapor-liquid, phase-
equilibrium criteria are satisfied. Those criteria were stated in § 7.3.5: the two-phase
situation must exhibit thermal equilibrium, mechanical equilibrium, and diffusional
equilibrium. Since we are on an isotherm, the temperatures in the two phases must be
the same, and the thermal equilibrium criterion is satisfied. 

We use superscript v to indicate the vapor phase and use { to indicate the liquid.
Then mechanical equilibrium will occur when there is no net driving force tending to
change the volume of either phase; this occurs when

(8.2.18)

where Ps is the saturation pressure common to both phases; Ps is usually called the
vapor pressure. For a pure fluid, the vapor pressure depends only on temperature.

For a pure fluid, diffusional equilibrium will occur when there is no net driving
force for diffusion of material from one phase to the other. This occurs when

    (8.2.19)

For a pure substance, the fugacity depends on temperature, pressure, and phase. The
locus of saturated liquid and saturated vapor states that satisfy both (8.2.18) and
(8.2.19) forms the vapor-liquid saturation curve (also called the vapor pressure curve).
Pure-fluid vapor pressures Ps increase with increasing T. But along the liquid branch

Figure 8.5 Two isotherms taken from Figure 8.4 together with the spinodal, all computed from
the Redlich-Kwong equation of state. The critical point is marked with a filled square. States
under the spinodal (shaded) are unstable and cannot exist as single phases; states above the
spinodal may be stable or metastable.

Pv P{ Ps≡=

f
v

f
{=

-100

-50

0

50

100

150

100 1000

P
  (

ba
r)

v  (cc/mol)

Tc = 304.2 K

250 K

 unstable

spinodal

unstable



328 CRITERIA FOR OBSERVABILITY

of the vapor-pressure curve, Ps increases with increasing molar volume v, while along
the vapor branch, Ps decreases with increasing v. This is shown in Figure 8.6. Hence at
some v, the vapor-pressure curve passes through a maximum: that maximum coin-
cides with the spinodal at the critical point. Subcritical isotherms, such as that at 250 K
in the figure, cut the saturation curve at two points, one for the saturated liquid, the
other for saturated vapor. Those two phases have the same pressure (the vapor pres-
sure Ps), so they can be connected by a horizontal tie line, which “ties” together the
two phases that are in equilibrium. Cubic equations of state approximate the tie line
by a “van der Waals loop” between the two saturated volumes. Isotherms computed
from more complicated equations of state may exhibit more complicated behavior. 

The behavior of metastable and unstable fluids is determined by the external con-
straints imposed on the system (see § 6.1). For example, the behavior at fixed T and P
differs from that at fixed T and v, where v is the overall molar volume. 

(a) Fluids at proposed states (fixed T and v) under the spinodal will always spon-
taneously split into a saturated vapor phase in equilibrium with a saturated 
liquid phase; the final pressure will be the vapor pressure Ps(T). Fluids at pro-
posed states (fixed T and v) between the spinodal and the saturation curve are 
metastable; those metastable one-phase fluids may be observed or the fluid 
may split into two phases at Ps(T). 

(b) In contrast, fluids at fixed T and P will only split into two phases if P is the 
vapor pressure for T. Otherwise, unstable fluids at fixed T and P always relax 
to the stable one-phase fluid having the lowest molar Gibbs energy. Further, 
metastable fluids at fixed T and P may be observed, or those fluids may also 
relax to the stable one-phase condition.

Figure 8.6 Vapor-liquid equilibrium curve for the substance of Figure 8.4, computed from the
Redlich-Kwong equation of state. The critical point is marked with a filled square. Also shown
is the 250 K isotherm taken from Figure 8.4. At this temperature the Redlich-Kwong equation
gives Ps = 40.8 bar; the saturated vapor and liquid volumes occur at the filled circles. The van
der Waals loop is that part of the 250 K isotherm between the saturated phases.
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8.2.5 Vapor Pressures from Equations of State

Before we can solve the equilibrium criteria (8.2.18) and (8.2.19) to obtain the satura-
tion curve, we must replace the fugacities with measurables. One way to proceed is to
use famous fugacity formula #1 (6.4.1), which connects fugacities to measurables via
fugacity coefficients ϕ. Since both vapor and liquid are pure phases and the pressures
in each phase are the same, (8.2.19) combined with (6.4.1) reduces to

(8.2.20)

We will find in § 9.1 that, for a pure substance in two-phase equilibrium, only one
property is needed to specify the intensive state; in (8.2.20) we have used temperature.
However, even after we set a value for the subcritical temperature, (8.2.20) remains
implicit in three unknowns: the vapor pressure Ps plus the molar volumes of the liq-
uid and vapor phases, vv and v{. To close the problem we need another equation, typ-
ically, a PvT equation of state that relates Ps to both saturated volumes at the specified
T. Therefore, we must choose an equation of state that is sufficiently complicated that
it bifurcates and provides multiple roots for the volume over some range of states.
Such equations of state are explicit in the pressure [P = P(T, v)], and then we would
compute ϕ from

(4.4.24)

We apply (4.4.24) to each phase; for each, the integration in (4.4.24) is to be performed
along the same subcritical isotherm. When we apply (4.4.24) to the liquid, the lower
integration limit is v{, and when we apply it to the vapor, the lower limit is vv. Note
that the value of the compressibility factor Z in the liquid phase differs from that in
the vapor (Z{ ≠ Zv) because the molar volumes of the two phases differ. Under the
integral, the value of Z is not constant, but changes with molar volume: Z = Z(T, ψ).
However, outside the integral, the other two values of Z are fixed at the saturation
conditions: Z = Z{(T, v{) and Z = Zv(T, vv).

Using (4.4.24) for both sides of (8.2.20) and simplifying algebraically, we obtain the
following important result,

fixed T < Tc (8.2.21)

In passing from (4.4.24) to (8.2.21) we have changed the dummy integration variable
from ψ to v once that dummy variable can be clearly distinguished from the integra-
tion limits. The functional form for the integrand P(T, v) is provided by the pressure-
explicit equation of state. The integration in (8.2.21) is on the chosen subcritical iso-
therm T, along the van der Waals loop, from the saturated liquid volume v{ to the sat-
urated vapor volume vv.

Equation (8.2.21) says that at any subcritical temperature, the vapor pressure is
given by a mean-value theorem (Appendix A): Ps is the mean of the pressures along
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Figure 8.7 Three interpretations of the integrations (8.2.21) and (8.2.22) that determine the
vapor-liquid saturation pressure for a pure substance. In each panel the solid curve is the 250 K
isotherm from Figure 8.5. The filled circles locate the saturated volumes at Ps = 21.9 bar. Top:
The shaded area is that given by the integral in (8.2.21). Middle: The shaded region is the rectan-
gular area Ps(vv – v{). According to (8.2.21), the shaded regions in the top two panels have the
same area.  Bottom: The shaded area is that provided by the equal-area construction (8.2.22); in
this panel, the positive and negative areas cancel one another.
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the van der Waals loop. Hence, the area under the van der Waals loop (top panel in
Figure 8.7) is the same as the area of a rectangle of width (vv – v{) and height Ps (mid-
dle panel in Figure 8.7).

An alternative form of (8.2.21) can be attributed to Clerk Maxwell [9]. Cross multi-
ply the denominator in (8.2.21) from the rhs to the lhs and then subtract the rhs from
the lhs. We obtain

fixed T < Tc (8.2.22)

This form is called Maxwell’s equal area construction and is illustrated in the bottom
panel of Figure 8.7. The form (8.2.22) states that the van der Waals loop and the tie line
bound two areas whose magnitudes cancel when combined algebraically. 

8.2.6 Latent Heats of Vaporization from Equations of State

A PvT equation of state not only provides the saturation pressure and volumes of a
pure substance in vapor-liquid equilibrium, it can also provide the latent heat associ-
ated with the phase change,

(8.2.23)

By adding and subtracting the ideal-gas enthalpy, (8.2.23) can be expressed in terms of
the residual enthalpies,

(8.2.24)

We now use the Legendre transform (3.2.9) to relate hres to ures and vres, use (4.4.14) for
ures, (4.2.2) for vres, and with the help of the mean-value form for the vapor pressure
(8.2.21), we find

fixed T < Tc (8.2.25)

where γv is the thermal pressure coefficient (3.3.5) and the integration is along the sub-
critical isotherm T around the van der Waals loop.

We can also show that the latent heat is simply related to the slope of the vapor
pressure curve Ps(T). Let us differentiate the vapor pressure in (8.2.21) wrt tempera-
ture; we recognize that the integration limits v{ and vv must change with temperature,
so we apply the Leibniz rule for differentiating such integrals (Appendix A). The
result is

fixed T < Tc (8.2.26)

This is another mean-value theorem; on a PT diagram, the slope of the vapor-pressure
curve is the mean of the values of the thermal pressure coefficient along the van der
Waals loop. Combining (8.2.25) and (8.2.26) gives Clapeyron’s equation
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(8.2.27)

where ∆v = vv – v{. Clapeyron’s equation is always true; moreover, a form analogous
to (8.2.27) also applies to pure-component liquid-solid and solid-vapor equilibria.
Consequently, on a PT diagram the slope of the melting curve is proportional to the
latent heat of melting and the slope of the sublimation curve is proportional to the
latent heat of sublimation.

For vapor-liquid equilibria, Clapeyron’s equation simplifies. Multiply and divide
the rhs by P/RT, and then Clapeyron’s equation (8.2.27) can be written as

(8.2.28)

where ∆Z is the difference in compressibility factors of the two phases, ∆Z = Zv – Z{.
Both ∆hvap and ∆Z vary with temperature; however, their ratio (∆hvap/∆Z) is roughly
constant, as shown in Figure 8.8. Therefore we assume (∆hvap/∆Z) is constant, sepa-
rate variables in (8.2.28), and integrate along the saturation curve. The result is

(8.2.29)

where A is an integration constant. Near the triple point, ∆Z ≈ Zv ≈ 1, and (8.2.29)
becomes an integrated form of the Clausius-Clapeyron equation,  

Figure 8.8 Latent heats of vaporization ∆hvap for pure water. The heat of vaporization of a pure
substance is not constant; rather, it varies from a maximum at the triple point (0.01°C for water)
to zero at the critical point (374.15°C for water). In contrast, the ratio ∆hvap/∆Z is roughly con-
stant over the entire range of saturation temperatures.
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(8.2.30)

         
where B is another positive constant. Away from the triple point, (8.2.29) is a much
better approximation to the vapor-pressure curve than is (8.2.30). Note that, fortu-
itously, the Clausius-Clapeyron equation is also obtained from (8.2.29) by assuming,
incorrectly, that ∆Z ≈ 1 and ∆hvap ≈ constant.

 Equation (8.2.29) suggests that a straight line will be obtained when logarithms of
pure-component vapor pressures are plotted against reciprocal absolute tempera-
tures; further, the slope of that line provides an estimate for the latent heat of vapor-
ization. This is tested in Figure 8.9 using vapor-pressure data of water; the degree of
linearity is striking and is typical of most pure substances. Any deviation from a
straight line is often taken into account by including additional terms in (8.2.30). For
example, at low temperatures a commonly used alternative is Antoine’s equation [10], 

Figure 8.9 Vapor pressures of pure water from triple point to critical point. In both panels the
points are from steam tables. Top: curve is a simple interpolation through the points. Bottom:
line is a least-squares fit to the Clausius-Clapeyron form (8.2.30).
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   (8.2.31)

Values for the parameters A, B, and C are obtained by fitting to experimental vapor-
pressure data; usually, they are all positive, as in Appendix D. But over a wide range
of temperatures, a better correlation is the Wagner equation [11],  

(8.2.32)

Here, τ = 1 – T/Tc , with Tc the critical temperature and Pc the critical pressure. Values
for the parameters a-d are obtained by fitting vapor-pressure data Ps(T). If the avail-
able data approach the critical point, then a reliable estimate to Pc can be obtained by
making Pc an additional parameter in the fit [12].

8.2.7 Pure-Component Phase Equilibria Involving Solids

Properties of solids differ from those of fluids because in solids the motions of mole-
cules are highly restricted. The molecules may be confined to periodic arrays, produc-
ing crystalline structures such as the face-centered cubic (fcc) and body-centered cubic
(bcc), or they may be periodic only in certain directions, producing layered or amor-
phous structures such as graphite. Besides equilibrium structures, many solids can
exist for prolonged periods in metastable structures; examples include glasses.

Solid-fluid equilibria include coexistence of solids with liquids and coexistence of
solids with vapors. On a pure-component Pv diagram, such as the one shown in Fig-
ure 8.10, the melting lines mark the transition from states of one-phase solid to those
of one-phase liquid. The melting lines are a pair of essentially straight, nearly vertical
lines, separated by a region of metastable and unstable states, analogous to those
appearing under the vapor-pressure curve in Figure 8.6. The melting lines are nearly
vertical because ∆h/∆Z is large. In addition, the sublimation curves denote the transi-
tion from one-phase solid directly to one-phase vapor. Again, the sublimation curves
appear in two branches, separated by a region of metastable and unstable states.

The melting lines, sublimation curves, and branches of the vapor-pressure curve all
terminate at the horizontal broken line in Figure 8.10. That line, which is both an iso-
bar and an isotherm, contains the triple point: an equilibrium situation in which three
phases coexist simultaneously. A triple point occurs at one pressure and one tempera-
ture, but at three different molar volumes—one for each phase; hence, the triple point
is marked by three filled circles on Figure 8.10. For liquid water in contact with water
vapor and the normal phase of ice, the triple point occurs at 0.01°C and 0.0061 bar.

The criteria for equilibria involving solid phases are exactly those given in § 7.3.5
for any phase-equilibrium situation: phases in equilibrium have the same tempera-
tures, pressures, and fugacities. Moreover, pure-component solid-fluid equilibria obey
the Clapeyron equation (8.2.27). This means the latent heat of melting is proportional
to the slope of the melting curve on a PT diagram and the latent heat of sublimation is
proportional to the slope of the sublimation curve. In the case of solid-gas equilibria,
the Clausius-Clapeyron equation (8.2.30) often provides a reliable relation between
temperature and sublimation pressures, analogous to that for vapor-liquid equilibria. 
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In principle the stability of pure solid phases can be judged using the thermal and
mechanical stability criteria derived in § 8.1.2, but those criteria are not useful for sol-
ids when they are implemented via volumetric equations of state. To use an equation
of state to test for solid-phase stability, the equation would have to extend an isotherm
from a fluid phase into a solid region of the phase diagram. But any analytically con-
tinuous, differentiable function that provides such an extension also predicts a solid-
fluid critical point—a point that does not actually exist.

To test whether a proposed state will involve one or more solid phases, we usually
use the criterion (7.1.40) which states that the equilibrium situation is the one that
minimizes the Gibbs energy at the specified T and P. To perform such a calculation we
need a model for the solid-phase Gibbs energy, and those models, in turn, require
experimental data for the solid phase. The solid-phase data most often used are ther-
mal data, such as heat capacities and latent heats for phase transitions.

Besides solid-fluid equilibria, some pure materials can exist in more than one stable
solid structure, giving rise to solid-solid equilibria. Examples include equilibria
between the fcc and bcc forms of iron, equilibria between rhombic and monoclinic sul-
fur, and equilibria among the many different phases of ice. Such solid-solid phase
transitions are accompanied by a volume change and a latent heat, and these two
quantities are related through the Clapeyron equation (8.2.27). When a pure material
can undergo solid-solid phase transitions, then the substance usually exhibits multi-
ple triple points. Besides the usual solid-vapor-liquid point, the pure substance might
also exist in solid-solid-liquid or solid-solid-solid equilibria. Several such triple points
occur in water, caused by equilibria involving various forms of ice [13]. 

Figure 8.10 Schematic Pv diagram for a pure substance with the solid phase included. Shaded
regions are metastable and unstable states. Vapor-liquid critical point (filled square) occurs at
the maximum in the vapor-pressure curve. Filled circles are the triple-point volumes at which
solid, liquid, and vapor all coexist in three-phase equilibrium.
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8.3  PHASE STABILITY IN OPEN SYSTEMS

The thermal and mechanical stability criteria (8.1.23) and (8.1.31) apply both to pure
fluids and to mixtures; however, for homogeneous mixtures, those criteria are not suf-
ficient to identify stable systems because, in addition to energy and volume fluctua-
tions, mixtures have concentration fluctuations. These fluctuations occur in localized
regions of a system when material spontaneously aggregates and redisperses. If such
fluctuations are not to disturb a system’s stability, then the mixture must satisfy a set
of conditions known as the material or diffusional stability criteria. These criteria are
derived in a manner similar to that given in § 8.1.2 for (8.1.23) and (8.1.31), so we only
sketch the procedure here. 

For the derivation of stability criteria in § 8.1.2 we divided the fluid of interest into
regions A and B; both regions were of constant mass, but their volumes and energies
could fluctuate. Those same criteria would have been obtained if we had considered
A and B to be regions of fixed volume, with energy and mass fluctuations, or by con-
sidering A and B to be open, so that their energies, volumes, and masses could all fluc-
tuate. We employ this last strategy for mixtures.

Consider a one-phase binary mixture of components 1 and 2 confined to an isolated
vessel, and imagine dividing the fluid into parts A and B. But unlike the pure case,
region B is open to A, so that a fluctuation occurring in part B disturbs not only its
internal energy UB and volume VB, but also the mole numbers N1

B and N2
B. Conse-

quently, the concentration in B fluctuates by transfers of material to and from part A.
In addition to the constraints on U, V, and S given by (8.1.4)–(8.1.6), the total amounts
of each component are conserved,

(8.3.1)

(8.3.2)

As in § 8.1.2, stable equilibrium occurs when the total entropy is a maximum; hence, 

(8.1.8)

and the response of the total entropy takes a form analogous to (8.1.10),

(8.3.3)
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At equilibrium we must have δS = 0, which requires each bracketed term in (8.3.3) to
be zero. Just as in (8.1.11) and (8.1.12), the first term implies TA = TB and the second
that PA = PB. In addition, the last two terms imply that the chemical potentials for
component 1 are the same in parts A and B; likewise for those of component 2.

Continuing the derivation in parallel to the steps from (8.1.13) to (8.1.15), we find
the stability criterion, analogous to (8.1.15), to be

(8.3.4)

where S is the symmetric matrix

(8.3.5)

Again, Sxy is a shorthand for the second derivatives; for example,

(8.3.6)

and

(8.3.7)

As in (8.1.16), if the inequality in (8.3.4) is to be obeyed for all possible variations
δU, δV, δN1, and δN2, then S must be negative definite; that is, the principal minors of
S must satisfy the following four inequalities:
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The first two are the conditions for thermal and mechanical stability derived in § 8.1.2:
the constraints on the isometric heat capacity (8.1.23) and isothermal compressibility
(8.1.31) apply to mixtures as well as pure fluids.

To pose the condition (8.3.8) in terms of measurables, we need to evaluate the six
unique derivatives that appear in the determinant. Three have already been deter-
mined in § 8.1.2: Suu is given by (8.1.22), Suv by (8.1.25), and Svv by (8.1.29). For the
other three derivatives, we find

(8.3.10)

(8.3.11)

(8.3.12)

Substituting the six elements (8.1.22), (8.1.25), (8.1.29), (8.3.10), (8.3.11), and (8.3.12)
into the matrix (8.3.8) and evaluating the determinant, we find, after some lengthy
algebra,

(8.3.13)

This is the criterion for material or diffusional stability: for a binary mixture to be differ-
entially stable, the mixture must have Cv > 0, κT > 0, and (at fixed T and P) the chemi-
cal potential of component 1 must always increase in response to any increase in N1.
This means that if an isothermal-isobaric plot of the chemical potential (or fugacity)
passes through an extremum with x1, then the mixture is unstable for some x1-values.
The result (8.3.13) confirms (3.7.29) in which we claimed that the chemical potential of
a pure component is always greater than its value in any mixture at the same T and P.

The fourth inequality (8.3.9) does not provide any new constraint, but merely gives
the analog of (8.3.13) for component 2. In other words, because the labeling of compo-
nents is arbitrary, an expression like (8.3.13) must be obeyed by each component in the
mixture. This can also be deduced in a different way: for a binary, if component 1
obeys (8.3.13), then the Gibbs-Duhem equation demands that component 2 obey the
analogous constraint.

Since a mixture must have Cv > 0 and κT > 0 for thermal and mechanical stability,
many authors simplify (8.3.13) to

(8.3.14)
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For states at which the equation of state provides only one real root for v, then κT > 0
and the simplification (8.3.14) is legitimate. But when the equation of state has bifur-
cated, producing multiple roots for v, then we must exercise care when using (8.3.14)
in place of (8.3.13). Some of those volume roots will have κT < 0 and therefore will be
mechanically unstable, even if those roots also have  > 0, so they satisfy (8.3.14).
Consequently, those fluids are diffusionally unstable because (8.3.13) is violated. For
cubic equations of state, it is the “middle” root for v that has  > 0, but κT < 0, as
illustrated in Figure 8.11. Equations of state that are higher-order polynomials in v will
have additional roots that behave as in Figure 8.11. So when we test for the observabil-
ity of proposed states and we do not know where that state lies on a phase diagram,
we should apply the complete stability criterion (8.3.13), rather than the abbreviated
form (8.3.14). 

Figure 8.11 An unstable fluid may be misjudged to be stable if the criterion used is (8.3.14),
rather than the complete criterion (8.3.13). These plots show how  and κT change along a
line of fixed T = 220 K and fixed x1 = 0.75 for a mixture of methane(1) and propane(2), as com-
puted from the Redlich-Kwong equation. Shaded regions indicate unstable fluids. Here the
fluid having v given by the “middle” root of the cubic is diffusionally unstable because κT < 0,
even though  > 0.
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The criterion (8.3.13) implies that if a mixture is mechanically unstable (κT < 0),
then it is also diffusionally unstable, just as (8.1.30) implies that if a fluid is thermally
unstable (Cv < 0), then it is also mechanically unstable. But a fluid may be diffusion-
ally unstable while remaining mechanically and thermally stable. In fact, whenever a
stable mixture is driven into an unstable region of its phase diagram, the diffusional
stability limit is always violated before the mechanical or thermal limits are violated,
because higher-order terms approach zero before lower-order terms [3]. This can be
seen in Figure 8.11. This means that the diffusional stability criterion (8.3.13) is a stron-
ger test for thermodynamic stability than the mechanical criterion and (as noted in
§ 8.1.2) the mechanical criterion, in turn, is a stronger test than the thermal criterion.

Note that the arrangement of the independent variables in (8.3.4) is arbitrary, so if
we change the order, we obtain other forms for the stability criteria. However, these
other forms are not additional constraints; they are merely other versions of the con-
straints already found. For example, if we change the order so that (8.3.4) reads

(8.3.15)

then the first inequality, analogous to (8.1.18), becomes

(8.3.16)

with Snn still given by (8.3.12). This inequality is obviously obeyed by a system in a
stable equilibrium state, because (8.3.12) is merely a linear combination of the thermal,
mechanical, and diffusional criteria already derived. The lesson is that (8.3.16) does
not convey any information not already contained in the conditions (8.1.23), (8.1.31),
and (8.3.13). Beegle et al. provide an extensive list of possible forms for the differential
stability criteria involving various orderings of the independent variables, including
several choices for the independent variables themselves [4].

The above procedure can be repeated to obtain the stability criteria for multicom-
ponent mixtures. For a mixture of C components, the criterion is still (8.3.4) in which S
is the (C + 2)2 matrix of second derivatives analogous to (8.3.5). The fluid is stable to
small disturbances when S is negative definite; that is, when odd-order principal
minors of S are negative and simultaneously those of even order are positive. The
reduction of those minors to economical forms is a tedious exercise that can often be
alleviated by posing the criteria in terms of G or A rather than S.

8.4  FLUID MIXTURES

In this section we describe the common stability behavior displayed by binary mix-
tures (§ 8.4.1), including a scheme for classifying that behavior (§ 8.4.2). Then we show
how models can be used to test for the observability of one-phase binary mixtures;
first we consider PvTx models (§ 8.4.3 and 8.4.4) and then models for the excess Gibbs
energy (§ 8.4.5).
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8.4.1 Stability of Binary Mixtures

Ultimately, we want to develop a computational procedure for determining the
observability of a state proposed for a binary fluid. The motivation is that we want to
avoid trying to solve phase-equilibrium problems that do not exist. Therefore we first
test for observability, and if multiphase situations are observable, then we solve for
phase compositions, if they are required. In this section we consider situations in
which the proposed state is identified by specifying values for T, P, and x1. Such a
state could be in any one of three observable conditions: (a) a stable single phase, (b) a
stable multiphase equilibrium, or (c) a metastable single phase. Some metastable
phases can only relax to a stable single phase, but other metastable phases can split
into multiple phases. Multiphase equilibria in binaries are predominantly two-phase
situations, so we will restrict our attention to those possibilities here; however, three
and four-phase binaries are also possible. 

To connect mixture stability to mixture state, we show in Figure 8.12 a Pv diagram
for equimolar mixtures of methane and propane. This diagram was calculated using
the Redlich-Kwong equation (8.2.1) together with the simple mixing rules given in
§ 8.4.4. The diagram is typical of many binary mixtures, especially those whose vapor-
liquid critical lines are continuous curves between the pure component critical points.
However, we caution that not all binary mixture Pv diagrams appear as in Figure 8.12;

Figure 8.12 Pressure-volume diagram for equimolar mixtures of methane + propane, com-
puted from the Redlich-Kwong equation of state. Filled square is the critical point; filled circle is
the mechanical critical point. The two branches of the saturation curve separate stable states
from metastable states. The spinodal separates metastable states from unstable states and the
line of incipient mechanical instability separates diffusionally unstable states from states that
are both diffusionally and mechanically unstable. Since every point on this diagram represents
an equimolar mixture, no tie lines can be drawn.
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there is no single such diagram that is typical of all mixtures at all compositions.
Many of the possible diagrams are described in Chapter 9. 

In Figure 8.12 the outer envelope is the locus of saturated equimolar liquid states
and saturated equimolar vapor states. However, note that Figure 8.12 is not a phase-
equilibrium diagram: in Figure 8.12 every point on the two-phase line represents an
equimolar mixture, but phases in vapor-liquid equilibrium generally do not have the
same composition. Consequently, Figure 8.12 contains no tie lines across the two-
phase region. Outside the saturation envelope, the mixtures are stable one-phase flu-
ids. Underneath that envelope, the mixtures may be metastable one-phase fluids or
they may be unstable to one phase (that is, they may exist as two-phases). 

The middle envelope is the spinodal: the set of states that separate metastable states
from unstable states. Recall from § 8.3 that one-phase mixtures become diffusionally
unstable before becoming mechanically unstable. Therefore, the mixture spinodal is
the locus of points at which the diffusional stability criterion (8.3.14) is first violated;
that is, it is the locus of points having

mixture spinodal (8.4.1)

Between the spinodal and the saturation envelope, mixtures may exist as metastable
one-phase systems or as stable two-phase systems. The spinodal cannot cross the sat-
uration envelope, but the spinodal becomes tangent to the saturation envelope at the
critical point. 

For binary mixtures it is conventional to express the conditions for the critical point
in terms of the change in Gibbs energy on mixing (3.7.38):

binary critical point (8.4.2)

and

binary critical point (8.4.3)

These conditions identify both vapor-liquid and liquid-liquid critical points. For
vapor-liquid equilibria, they are satisfied when the spinodal coincides with the vapor-
liquid saturation curve. However, that point need not occur either at the maximum in
the saturation envelope or at the maximum in the spinodal; see Figure 8.12. Along a
spinodal the one-phase metastable system is balanced on the brink of an instability; at
a critical point that balance coincides with a two-phase situation and the resulting
fluctuations cause critical opalescence, just as they do at pure-fluid critical points.

The inner envelope in Figure 8.12 is the line of incipient mechanical instability: the
line separating states that are only diffusionally unstable from states that are both dif-
fusionally and mechanically unstable. The line of incipient mechanical instability is
the locus of points at which (8.1.31) is first violated; that is, the points at which
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(8.4.4)

The maximum in the line of incipient mechanical instability is called the mechanical
critical point. Note that the true critical point and the mechanical critical point occur at
roughly the same molar volume. This often occurs for mixtures whose spinodals (at
fixed composition) pass through maxima with v .

Figure 8.12 shows that if a mixture is mechanically unstable, then it is also diffu-
sionally unstable, because the line of incipient mechanical instability lies under the
spinodal, or equivalently because κT appears in both stability criteria (8.1.30) and
(8.3.13). Moreover, a one-phase mixture may be diffusionally unstable but remain
mechanically stable, because the spinodal lies above the line of incipient mechanical
instability, or equivalently because the mechanical criterion (8.1.30) can be satisfied
while the diffusional criterion (8.3.13) is violated. Further, Figure 8.12 contains states
at which no differential stability criteria are violated, but at which one-phase mixtures
are metastable rather than stable. This means that a violation of any differential stabil-
ity criteria (thermal, mechanical, or diffusional) is only sufficient, but not necessary,
for a phase separation to occur.

Phase stability can be described in terms of the Gibbs energy by appealing to the
equilibrium criterion (7.1.40): at fixed T and P, the system Gibbs energy must be a
minimum. Therefore, if a mixture is a stable single phase, then it must have a lower
Gibbs energy than the combined values of the pures; that is, the change of Gibbs
energy on mixing must be negative,

fixed T and P (8.4.5)

But this is only necessary for one-phase stability; it is not sufficient. This means if a
mixture violates (8.4.5), then it is definitely not stable; however, a mixture can obey
(8.4.5) but still split into two phases. An additional requirement is (8.3.14), which can
be expressed in terms of gm as

not unstable (8.4.6)

A stable one-phase mixture satisfies (8.4.6), but the converse is not true: a mixture
obeying (8.4.6) might be stable or metastable. However, if a mixture violates (8.4.6),
then the mixture is definitely unstable and not observable. 

When phase splits occur at fixed T and P, the compositions of the new phases gen-
erally differ from one another and they differ from that of the original one-phase mix-
ture. Those compositions are computed by solving the equality of fugacities (7.3.12),
using appropriate models for each phase. Such calculations will be the focus of our
attention in Chapter 10. Later in this section, we develop a procedure for determining
whether a proposed binary mixture can exist as a stable single phase, without solving
the phase equilibrium problem.
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8.4.2 Classes of Stability Behavior in Binary Mixtures

When mixture states are computed from a volumetric equation of state, then instabili-
ties can be related to bifurcations in an algebraic equation, just as we found for pure
fluids in § 8.2. Inversely, if no bifurcations occur, then the mixture remains a stable sin-
gle phase over all compositions, and the fugacity f1(x1) is a smooth monotonically
increasing curve, as shown for 100 bar in Figure 8.13. Analogous behavior is observed
for gm(x1): the stability requirement (8.4.6) on the second derivative of gm defines a
simple convex curve for gm(x1), like that shown on the left in Figure 8.14.

However if, over some range of compositions, the mixture splits into two phases,
then the single-phase equilibrium curve for gm(x1) will not be convex over all x1. Simi-
larly, the monotonicity of f1(x1) will be disrupted either by oscillations or by branch-
ing. These possibilities appear in Figure 8.13: oscillations occur in the f1(x1) curves for
30 and 60, while at 10 bar, the f1(x1) curve has divided into two distinct branches.
These phenomena are caused by bifurcations in either the equation of state or the
fugacity equation or both. Here we use those possibilities to identify four classes of
instabilities that can lead to vapor-liquid phase separations in binary mixtures. 

Figure 8.13 When computed from a cubic equation of state, violations of stability criteria affect
the form of an isothermal plot of fugacity for a binary mixture. At 100 bar and 275 K, this mix-
ture is a stable single-phase at all compositions, and f1(x1) increases monotonically. At 92 bar
the fugacity passes through a point of inflection: the critical point for this isotherm (filled
square). At 60 bar the mixture violates the diffusional stability criterion for some x1, while the
equation of state provides only one real root for v. The fugacity curve forms a loop, but f1(x1)
remains single-valued at every x1. At 30 bar the mixture violates both the diffusional and
mechanical stability criteria over some range of x1. The equation of state provides three real
roots for v(T, P, x); hence, the fugacity is now multivalued over some range of x1. At 10 bar, the
mechanical instabilities extend to pure 2, so the three branches of f1 emanate from the origin.
Broken horizontal lines are tie lines connecting phases in equilibrium (dots). Curves computed
from Redlich-Kwong equation.
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Class I: Only the fugacity equation bifurcates. In these situations the equation of
state does not bifurcate for either pure or for the mixture, so there is only one real root
for the volume at each x1 and the mechanical stability criterion cannot be violated. A
plot of gm(x1) provides a smooth continuous curve spanning all x1; however, the curve
will be concave over some x1 (as on the right in Figure 8.14). The concave region in
gm(x1) is caused by diffusional instabilities; that is, (8.4.6) is violated over some range
of x1. The corresponding isothermal-isobaric plot of the fugacity f1(x1) passes through
a loop, but f1 remains single-valued at each x1; see the curve for 60 bar in Figure 8.13.
This is analogous to the van der Waals loop on a pure-substance Pv diagram. Class I
behavior is also exhibited by mixtures in liquid-liquid and gas-gas equilibria; that is,
liquid-liquid and gas-gas phase splits are driven only by diffusional instabilities.

Class II: Both mixture equations bifurcate but the pure equations do not. In these
systems the mixture fugacity equation and the mixture equation of state both bifur-
cate. When the equation of state bifurcates, multiple roots occur for v, so gm(x1)
appears in distinct branches. Each branch corresponds to one root for v, but since
bifurcations do not occur in either pure-fluid equation of state, neither branch spans
all x1. In class II mixtures, instabilities may be caused by violations of the diffusional
criterion (8.4.6) or by violations of both the diffusional and mechanical stability crite-
rion (8.3.13). A sample plot of gm(x1) is shown in Figure 8.15. In some mixtures the
metastable regions of gm extend to positive values, violating (8.4.5). The fugacity
remains a single continuous curve that spans all x1, but because the fugacity equation
bifurcates, there is some range of x1 over which the fugacity is multivalued, like the
curve at 30 bar in Figure 8.13. On mixture PT diagrams, class II behavior occurs at
states below the mechanical critical line and at pressures below the spinodal of pure 1
but above the spinodal of pure 2 (component 1 is more volatile) [14]. 

Figure 8.14 Isothermal-isobaric plots of change of Gibbs energy on mixing for binary mixtures.
Left: Neither the equation of state nor the fugacity equation bifurcate, so the mixtures remain
stable single phases at all compositions. Right: Class I stability behavior: the fugacity equation
bifurcates, but the equation of state does not. This produces a region in gm that is concave and a
vapor-liquid phase split. Filled circles are phases in equilibrium; solid lines stable; long dashes
metastable; short dashes unstable. All curves computed from the Redlich-Kwong equation.
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Class III: Both mixture equations and one pure equation bifurcate.  This behavior
differs from class II in that now one branch of gm(x1) spans all x1. This happens when
the equation of state for one pure bifurcates in addition to the bifurcations that occur
in both the mixture equation of state and the mixture fugacity equation. We distin-
guish two subclasses: in class IIIA mixtures the pure-2 equation bifurcates, while in
class IIIB mixtures the pure-1 equation bifurcates. Since f1 = 0 when x1 = 0, the three
branches of f1 in class IIIA mixtures must all emanate from the origin, like the curve
for 10 bar in Figure 8.13. In class IIIB mixtures, the pure-1 fugacities will generally
have different values, as in Figure 8.16; the smallest identifies the stable pure phase. 

Consider those branches of gm and f1 that extend over all x1. In both class IIIA and
class IIIB, those branches will contain (at least) some region that is stable; the remain-
ing portion (if any) will be metastable, but not unstable. In class IIIA the stable phase
corresponds to parts of the curve near x1 = 1, while in class IIIB it will occupy parts
near x1 = 0. The unstable phase will be confined to its own branch, as in Figure 8.16. 

Figure 8.15  Change of Gibbs energy on
mixing for class II stability behavior at
constant T and P. Both the mixture equa-
tion of state and the fugacity equation
bifurcate, producing distinct branches in
gm and a vapor-liquid phase separation.
However, no branch spans all x1. Filled cir-
cles are phases in equilibrium; long dashes
metastable; short dashes unstable. Curves
computed using Redlich-Kwong equation.

Figure 8.16 Isothermal-isobaric plot of fugacity f1 for a binary mixture exhibiting class IIIB sta-
bility behavior. The pure component-1 equation of state bifurcates, producing three branches in
f1; however, since the pure component-2 equation of state does not bifurcate, only one branch
spans all x1. Filled circles mark phases in equilibrium. Solid lines stable; long dashes metasta-
ble; short dashes unstable. All curves computed from the Redlich-Kwong equation of state.
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Class IV: Only the equation of state bifurcates. In these cases the fugacity equation
does not bifurcate, so no differential diffusional stability criteria are violated. Never-
theless, metastabilities may occur and those metastabilities can lead to phase changes.
In these mixtures both pure-component equations of state bifurcate, so gm and f1 each
divide into three distinct branches, with each branch spanning the entire range of
compositions. Typical curves are shown in Figure 8.17. Unstable phases are confined
to one branch; however, portions of some branches may have gm > 0, violating the
one-phase requirement (8.4.5). On mixture PT diagrams, class IV behavior occurs at
pressures below those of the spinodals of both pure vapors and at temperatures less
than those of the spinodals of both pure liquids [14]. The existence of class IV behav-
ior illustrates that differential stability criteria are only necessary, but not sufficient, to
identify stable one-phase mixtures.

8.4.3 Determining Stability Using Fugacities from Equations of State

It is traditional to base determinations of phase stability on the change in Gibbs
energy of mixing gm. But computations of phase equilibria are now more often done
via volumetric equations of state, so it may prove more useful to base stability deter-
minations on fugacities. We develop the necessary relations here and illustrate their
application with an example in the following section. We limit the presentation to sta-
bility of binary mixtures.

The one-phase stability criteria are posed in terms of gm in (8.4.5) and (8.4.6), but
before we use those criteria to test for stability, it will prove more convenient to repose
them in terms of the fugacity. We can rewrite (8.4.5) and (8.4.6) in terms of fugacities
by combining the definition of gm (3.7.38) with the integrated definition of the fugacity
in (4.3.12). Then (8.4.5) requires that stable phases have

Figure 8.17 Isothermal-isobaric plots of fugacity and change of Gibbs energy on mixing for
binary mixtures exhibiting class IV stability behavior. The equation of state bifurcates, but the
fugacity equation does not. Left: The fugacity appears in three branches that span all x1; one
branch contains all unstable states. Right: Each branch of gm also spans the entire composition
range. In both panels, filled circles are phases in equilibrium; solid lines stable, long dashes
metastable, short dashes unstable. Computed from Redlich-Kwong equation. 
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(8.4.7)

and (8.4.6) requires that stable and metastable phases have

not unstable (8.4.8)

Since mole fractions and fugacities are always positive, (8.4.7) suggests that stable
one-phase mixtures have

i = 1, 2 (8.4.9)

Nevertheless, it is mathematically possible for some components to violate (8.4.9)
while the mixture still might obey (8.4.7). But with the help of (8.4.8) we can show
that, in fact, both components of a stable, one-phase binary must satisfy (8.4.9). The
proof is given in Appendix F. Consequently, if a single-phase binary mixture has fi >
fpure i, then that phase cannot be stable. 

However, (8.4.9) is only necessary, not sufficient. So if we find a mixture that obeys
(8.4.9) we cannot say whether it is stable, metastable, or unstable. This is illustrated in
Figure 8.18. Therefore (8.4.9) is useful, but it is not complete. For example, assume we
are at the state α in Figure 8.18. We need to know whether or not that state is a stable
single-phase mixture. The state satisfies (8.4.9), but that is not enough to determine
stability. Note on the figure that at this T, P, and f1, the stable mixture might be one-
phase α, one-phase β, one-phase γ, or some two-phase combination of the three. 

Figure 8.18 Isothermal-isobaric plot of fugacity for component 1 in a binary mixture. Portions
of the curve above the broken horizontal line are not stable because of (8.4.9). The three mix-
tures α, β, and γ have the same value for the fugacity, but only one of the three forms a stable
single phase; e.g., mixture at γ violates (8.4.8) and so it is unstable even though it satisfies (8.4.9).
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To decide among these possibilities we need a stability criterion for mixtures at
fixed T, P, and fugacity f1. Equivalently, we can develop the criterion in terms of T, P,
and the chemical potential , then convert it to fugacities at the end. Imagine a one-
phase binary mixture surrounded by a reservoir that imposes its temperature, pres-
sure, and chemical potential  on the system. The latter is accomplished by a semi-
permeable membrane that separates the system from the reservoir. The membrane
allows molecules of component 1 to pass, but it blocks passage of molecules of com-
ponent 2. When diffusional equilibrium is established, the value of the chemical
potential  is the same in the system and in the reservoir. The extensive state of the
system is identified by giving values for the fixed quantities T, P, , and N2. 

These independent variables motivate us to define a new thermodynamic quantity
Ψ using this Legendre transform:

(8.4.10)

The quantity Ψ is an extensive conceptual having dimensions of energy. Forming the
total differential and using (3.2.28) for dG, we obtain for the binary,

(8.4.11)

For equilibrium at fixed T, P, , and N2 (8.4.11) reduces to

(8.4.12)

and in fact Ψ must be a minimum at equilibrium. This means if two states have the
same values for T, P, , and N2, the stable equilibrium state will be that having the
lower value of Ψ. The two states could differ, for example, in their compositions.

Fortunately, the quantity Ψ is a familiar property. To discover its identify, recall that
we can use (3.2.32) to write the Gibbs energy of any binary as

(8.4.13)

Substituting this into (8.4.10) leaves

(8.4.14)

Dividing by N2 gives the intensive version

(8.4.15)

This means at fixed T, P, , and N2, the equilibrium state of the binary mixture is that
which minimizes the chemical potential of component 2. Since the chemical potential
is conceptually equivalent to the fugacity, we can also say that the equilibrium state is
that which minimizes the fugacity of component 2.
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Therefore, of the alternatives α, β, and γ in Figure 8.18, the stable one-phase mixture
is that which has the lowest value for f2. We would compute f2 from an appropriate
equation of state. If two of those states had the same value of f2, then a two-phase
equilibrium situation could occur. The condition (8.4.9) together with minimization of
f2 give us sufficient tools for determining the stability of states proposed for binary
mixtures. Note we can make such judgements without solving the phase-equilibrium
problem. We illustrate with an example. 

8.4.4 Example

How do we use a volumetric equation of state to determine whether a proposed
state of a binary mixture is a stable single phase?

During a process design we need to formulate a mixture of methane(1) and pro-
pane(2) that has x1 = 0.25 at 275 K and 30 bar. Can this mixture exist as a stable single
phase?

To address this issue, we use the Redlich-Kwong equation of state (8.2.1) with the
simple mixing rules from § 4.5.12,

(8.4.16)

(8.4.17)

Values for the aij and bi can be obtained from pure-component critical properties using
these relations from Table 4.4

(8.4.18)

(8.4.19)

together with these empirical combining rules:

(8.4.20)

(8.4.21)

(8.4.22)
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and

(8.4.23)

The subscripts cii and cjj indicate pure-component critical properties. Note that all
quantities in (8.4.18)–(8.4.23) are invariant under exchange of labels i and j; for exam-
ple, a21 = a12. Resulting values for these parameters are given in Table 8.1.

The fugacity is obtained from the Redlich-Kwong equation by evaluating (4.4.23)
for the fugacity coefficient and then applying FFF#1. The result from (4.4.23) is

(8.4.24)

Here v is the mixture molar volume, while β and Ω11 are dimensionless groups:

(8.4.25)

(8.4.26)

with
(8.4.27)

The expression for ϕ2 is functionally the same as (8.4.24), but with subscripts 1 and 2
interchanged. To evaluate pure-component fugacities, (8.4.24) still applies, but in a
simplified form because a pure substance has b1 = b and a11 = a = σ11, so Ω11 = β; the
result appears in (8.2.11). We caution that in evaluating ϕpure from (8.4.24), the pure-
component T and P must be the same T and P as the mixture. Often a T-P pair will
produce multiple pure states (volumes) that satisfy the analytic equation of state, even
if a single state is found for the mixture. Of those multiple solutions, only the stable
equilibrium state is the appropriate state to be used in the following calculations. The
stable pure state can be identified by the procedure illustrated in § 8.2.2. To determine
the stability of the proposed mixture, we proceed as follows.

Table 8.1 Values of Redlich-Kwong parameters for methane(1)-propane(2) 
mixtures; computed using (8.4.18)–(8.4.23)
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11 190.6 46. 99. 0.2874 3.222 (107) 29.85

22 369.8 42.4 203. 0.2800 18.33 (107) 62.82

12 265.5 43.2 145. 0.2837 7.850 (107)
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Step 1. Determine whether the equation of state bifurcates when applied to each
pure substance at the proposed mixture T and P. The mixture temperature (275 K) is
above the critical temperature of pure methane (190.6 K), so pure methane is a single-
phase fluid and the equation of state cannot bifurcate. For pure propane we solve the
Redlich-Kwong equation (8.2.1) for v at 275 K and 30 bar. We find a single real root (v
= 90.5 cc/mol), so pure propane is a single-phase liquid and, again, the equation of
state does not bifurcate. Since the equation of state does not bifurcate for either pure
substance, the mixture fugacity f1 forms a single continuous curve that spans all x1:
the mixtures exhibit either class I or class II stability behavior.

Step 2. Evaluate the fugacity for pure 1 at the mixture T and P. Applying (8.2.11) to
pure methane at 275 K and 30 bar, we find ϕpure 1 = 0.931. Then FFF#1 gives

(8.4.28)

Step3. Evaluate the fugacity for component 1 in the mixture at the given T, P, x1. At
x1 = 0.25 the mixing rules (8.4.16) and (8.4.17) give these values for the mixture param-
eters: a = 13.45(107)(cc/mol)2 bar K0.5 and b = 54.58 cc/mol. With these, the Redlich-
Kwong equation gives a single real root for the mixture volume (v = 88.9 cc/mol); the
stability behavior is class I. Then (8.4.24) gives ϕ1 = 3.396 and FFF#1 gives

(8.4.29)

Step 4. Check whether f1 > fpure 1; if so, the proposed mixture state is not stable. The
values in (8.4.28) and (8.4.29) do not obey this inequality; that is, (8.4.9) is satisfied.
Unfortunately, this is not sufficient for us to draw any conclusion about the stability of
the proposed mixture. But for mixtures in which (8.4.9) is violated, this test would
identify the proposed mixture as not stable and our problem would be solved.

Step 5. Determine whether the mixture fugacity equation has bifurcated at the same
value of f1 and the given T and P. This can be done graphically or analytically by solv-
ing (8.4.24) using a trial-and-error procedure. For pedagogical reasons we use the
graphical approach here. First, we use (8.4.24) to compute f1 over the entire range of
x1, then we plot the results. The plot appears in Figure 8.18; on that plot, point α repre-
sents our proposed mixture. The plot indicates that two other mixtures have the same
values for T, P, and f1: mixture γ at x1 = 0.477 and mixture β at x1 = 0.911.

Step 6. Determine the value of f2 for all roots at the specified T, P, and f1. We apply
the Redlich-Kwong equation together with (8.4.24) to find the values in Table 8.2. We

Table 8.2 Values of fugacity f2 for mixtures of
methane and propane having T = 275 K, P = 30
bar, and f1 = 25.47 bar

Root x1 v (cc/mol) f2 (bar)

α 0.25 88.9 4.54

γ 0.477 184. 5.48

β 0.911 686. 1.78

fpure 1 ϕpure 1P 0.931 30× 27.9 bar= = =

f1 x1 ϕ1 P 0.25 3.396 30×× 25.47 bar= = =
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emphasize that the three roots in Table 8.2 are caused by bifurcations in the fugacity
equation (8.4.24), not by bifurcations in the Redlich-Kwong equation of state (8.2.1). 

Step 7. Identify the root having the lowest value of f2 as the stable one-phase mixture
at the proposed T, P, and f1. From Table 8.2 we see that the stable one-phase mixture is
root β. Therefore root α, which is our proposed mixture, is not a stable one-phase mix-
ture. Further, Figure 8.18 shows that root α satisfies the requirement on the derivative
(8.4.8), so the proposed mixture is not unstable. Hence, it must be metastable: it might
be observed, but more likely it will split into two phases. To find the compositions of
those phases, we would solve the phase-equilibrium problem. Other procedures for
identifying stable one-phase mixtures include the tangent-plane method which origi-
nates with Gibbs [15] and has been fully developed by Michelsen, especially for multi-
component mixtures [16].

8.4.5 Determining Stability Using Models for Excess Gibbs Energy

We have shown how models for volumetric equations of state can be used with stabil-
ity criteria to predict vapor-liquid phase separations. However, not all phase equilib-
ria are conveniently described by volumetric equations of state; for example, liquid-
liquid, solid-solid, and solid-fluid equilibria are usually correlated using models for
the excess Gibbs energy gE. When solid phases are present, one motivation for not
using a PvT equation is to avoid the introduction of spurious fluid-solid critical
points, as discussed in § 8.2.5. A second motivation is that properties of liquids and
solids are little affected by moderate changes in pressure, so PvT equations can be
unnecessarily complicated when applied to condensed phases. In contrast, gE-models
often do not contain pressure or density; instead, they attempt to account only for the
effects of temperature and composition. Such models are thereby limited to descrip-
tions of phase separations that are driven by diffusional instabilities, and the stability
behavior must be of class I (see § 8.4.2). In this section we show how a gE-model can
describe liquid-liquid and solid-solid equilibria.

To pose the diffusional stability criterion (8.4.6) in terms of gE(x), we rearrange
(5.2.7) to express gm in terms of gE,

(8.4.30)

Applying (8.4.6) to (8.4.30), the diffusional stability criterion for a binary is obtained in
terms of gE as

binary, not unstable (8.4.31)

To illustrate, we use Porter’s equation, which is the simplest possible model of gE

for binary mixtures (see § 5.6.2), 

(8.4.32)
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Note that the parameter A is dimensionless and depends only on temperature.
Although simple, Porter’s equation can reproduce states that violate the diffusional
stability criterion, thereby giving rise to liquid-liquid or solid-solid equilibria.
Whether or not such violations occur depends on the parameter A. To identify the sta-
bility bound on A, we substitute Porter’s equation (8.4.32) into (8.4.31), and find

stable binary (8.4.33)

At a given temperature, if A < 2 then the binary is a stable one-phase mixture at all
compositions. However if at some other temperature, A > 2, then over some range of
x1 the mixture is either metastable or unstable and a phase split can occur.

When a split does occur, the compositions of the two phases, call them α and β, are
obtained by solving the equilibrium conditions on the fugacities,

i = 1, 2 (8.4.34)

For Porter’s equation, this becomes

i = 1, 2; j = 1, 2; i ≠ j (8.4.35)

Equation (8.4.35) represents two nonlinear algebraic equations that must be solved by
trial. Examples of such roots, which represent the compositions of the two phases in
equilibrium, are shown in Figure 8.19. Because of the symmetry in Porter’s equation
(8.4.32), the equilibrium curve in Figure 8.19 is symmetric about the equimolar com-
position. For example, the equilibrium compositions obtained from Porter’s equations
satisfy x1

β = 1 – x1
α. (This relation is model-dependent and rarely occurs in practice.) 

Figure 8.19 Stability of binary mixtures as given by the Porter equation (8.4.32) over a range of
values for the parameter A. For A < 2, mixtures are stable in all proportions. For A > 2, mixtures
can be stable, unstable, or metastable, depending on composition. Shaded regions are metasta-
ble. Curve separating stable from metastable states is the two-phase equilibrium curve,
obtained by solving (8.4.35). A sample solution to (8.4.35) is shown for A = 3; filled circles give
compositions of phases in equilibrium.
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Porter’s equation also provides an estimate for the spinodal, which separates
unstable states from metastable ones. In terms of gE, the spinodal of a binary occurs
when the diffusional stability criterion is first violated, that is, when

(8.4.36)

Substituting Porter’s equation (8.4.32) into (8.4.36) gives the composition of the spin-
odal at a specified temperature, 

(8.4.37)

  
The two roots of (8.4.37) represent the compositions of each phase on the two
branches of the spinodal. In Figure 8.19, the spinodal is the curve that separates unsta-
ble states from metastable ones (shaded).

Since pressure and density are often unimportant to descriptions of liquids and sol-
ids, binary liquid-liquid and solid-solid phase diagrams are often limited to plots of
temperature vs. composition. Figure 8.20 shows such a Txx diagram computed from
the Porter equation with the temperature dependence of A given by

T in °C (8.4.38)

For T > 50°C, A < 2 and the mixture is a single stable phase at all compositions. How-
ever, for T < 50°C, the diffusional stability criterion is violated and the mixture can

Figure 8.20 Txx diagram for liquid-liquid or solid-solid equilibria in binary mixtures that obey
the Porter equation (8.4.32) with parameter A given by (8.4.38). Filled square is the critical
point; filled circles lie on the isotherm at 30°C. The inner envelope, with labels C and D, is the
spinodal and satisfies (8.4.37). The outer envelope is the equilibrium curve, which satisfies the
equilibrium conditions (8.4.35).
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split into two phases, over some range of compositions. At T = 50°C, A = 2 and the
mixture exhibits a critical point, analogous to a gas-liquid critical point. 

As a particular example, consider the isotherm at 30°C. In the figure this isotherm
is marked by the letters B and E on the phase equilibrium curve, where the equality of
fugacities (8.4.34) is satisfied, and it is marked with C and D on the spinodal, where
(8.4.36) is obeyed. Therefore at 30°C,

Analogous to the descriptions of vapor-liquid equilibria presented in § 8.4.2, the
stability of condensed phases can be described in terms of the change of Gibbs energy
on mixing gm(x) and its second mole-fraction derivative. Figure 8.21 shows gm(x) and
its second derivative along two isotherms for the binary mixture of Figure 8.20. Along
the isotherm at 60°C, Figure 8.21 shows that the second derivative of gm is positive at
all compositions, so the mixture remains a stable single phase. This is consistent with
the diagram in Figure 8.20, which shows that no phase split occurs for T > 50°C. 

However at 30°C, Figure 8.21 shows that the second derivative becomes negative at
the points labeled C and D, and therefore at 30°C the mixture separates into two
phases. The compositions of the two phases are given by the points B and E, obtained
by solving the phase equilibrium conditions (8.4.35); those equilibrium points are con-
nected by a tie line. The four points B–E correspond to the points having the same
labels on the Txx diagram in Figure 8.20. Along the isothermal segments BC and DE
the mixture can exist as a single metastable phase, or it can separate into two phases.
But along the segment CD the diffusional stability criterion is violated and the mix-
ture always splits into two phases. 

The liquid-liquid or solid-solid equilibrium situation in Figure 8.21 is analogous to
the vapor-liquid equilibrium situation in right panel of Figure 8.14; in each case the
phase separation is driven by diffusional instabilities. However, most correlations for
gE(x) do not allow for the possibility of mechanical instabilities because they do not
involve the mixture pressure or density. Therefore such correlations produce curves
for gm that are always continuous through the unstable region: the stability behavior
is class I. 

8.5  SUMMARY

In this chapter the central issue has been the observability of a proposed state: if we
need a mixture at a particular T, P, {x}, and phase, Can that phase actually exist at the
specified T, P, and {x}? If the proposed state is unstable, then it is neither observable
nor observed; if it is metastable, it is observable and sometimes observed; and if it is
stable, it is observable and usually observed. To distinguish among these possibilities,
we have brought to bear two general tests: (i) differential stability criteria, which dis-

if x1 < x1
B then the mixture is a stable single phase, rich in species 2,

if x1
B  < x1 < x1

C then the mixture may be a metastable single phase,

if x1
C  < x1 < x1

D then the mixture must be in two-phase equilibrium,

if x1
D  < x1 < x1

E then the mixture may be a metastable single phase, and

if x1
E  < x1 then the mixture is a stable single phase, rich in species 1.
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tinguish unstable states from the others, and (ii) equilibrium criteria, which distin-
guish stable states from the others. 

The differential stability criteria were derived by finding conditions that maximize
the total entropy in an isolated system. Those conditions constrain how the system
responds to thermal, mechanical, and diffusional fluctuations. In the derivations,
those constraints are conveniently posed as stability criteria; they show us that a stable
substance must always obey the thermal criterion (8.1.23), the mechanical criterion
(8.1.31), and the diffusional criterion (8.3.14). But the converses of those statements are
not always true; for example, a mechanically stable fluid always has κT > 0, but a fluid
having κT > 0 is not necessarily stable—it might be metastable. Therefore, in using
these differential criteria (as opposed to merely deriving them), many ambiguities can
be avoided if we repose each constraint in the form of an instability criterion; such cri-
teria identify those thermodynamic states at which a pure substance or mixture is dif-
ferentially unstable.

Figure 8.21 gm(x) and its second mole-fraction derivative computed from Porter’s equation for
the binary mixtures in Figure 8.20. At 60°C the diffusional stability criterion is satisfied at all
compositions and the mixture is a stable single phase. However at 30°C, states between C and
D violate the diffusional stability criterion and the mixture splits into two phases: C and D lie
on the spinodal. Filled circles at 30°C correspond to states of the same labels in Figure 8.20. 
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The first instability criterion is that a thermally unstable substance always has

thermally unstable (8.5.1)

The second is that a mechanically unstable substance always has

mechanically unstable (8.5.2)

These first two criteria (8.5.1) and (8.5.2) apply to pure substances and to mixtures.
The third criterion is that a diffusionally unstable mixture always has

diffusionally unstable (8.5.3)

Not only are these statements always true, but their converses are also always true.
For example, a mechanically unstable substance has CvκT < 0, and conversely, a sub-
stance that has CvκT < 0 is always mechanically unstable.

The forms (8.5.1)–(8.5.3) show that these differential criteria are inclusive: a mixture
that is diffusionally stable is also mechanically stable, and a mechanically stable sub-
stance is also thermally stable. Inversely, a thermally unstable fluid is also mechani-
cally unstable, and a mechanically unstable mixture is also diffusionally unstable. In
addition, use of the diffusional instability criterion (8.5.3), may remind us that a
binary mixture can be diffusionally unstable because κT < 0 even when  > 0.

However, the full instability criteria (8.5.1)–(8.5.3) still cannot distinguish stable
states from metastable states; but then, no differential test can make this distinction.
To distinguish stable states from metastable states, we must apply an appropriate
equilibrium criteria. For example, if T and P have been specified for a proposed state,
then the stable state is the one that minimizes the Gibbs energy. Using this as a basis,
we showed how to identify the stable state for pure fluids and for binary mixtures.

A second theme of this chapter is that phase transitions decouple from unstable
states. Unstable fluids may or may not split into two phases, depending on where the
state lies on the phase diagram and on what external constraints are imposed. If T and
v are fixed, then unstable pure fluids will undergo phase splits. But if T and P are
fixed, then an unstable pure fluid will not necessarily separate into two phases: it may
relax to another one-phase situation. In addition, unstable binary fluids at fixed T and
P above the mechanical critical line always split into two phases, but below the
mechanical critical line they do not necessarily split. Moreover, phase separations do
not necessarily originate from unstable states; metastable fluids may also separate
into two phases. These comments mean that, at fixed (T, P, {x}), differential stability
criteria alone may not be enough to help us decide whether a phase split will occur.

Although methods for identifying phase splits generally involve more that just dif-
ferential stability criteria, they do not require us to solve the phase-equilibrium prob-
lem for the compositions of any new phases. Such methods are particularly useful
when we only need to know whether or not a one-phase fluid can separate. Even
when we need to compute equilibrium compositions, it is wise to precede the calcula-
tions with a determination as to whether a phase separation can actually be observed.
In such cases, the phase stability tests presented in this chapter can serve as informa-
tive preliminaries to solving phase-equilibrium problems.

Cv 0<

Cv κT 0<

G11

Cv κT
----------------- 0<

G11
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PROBLEMS

8.1 Consider a gas that obeys the simple virial equation Z = 1 + BP/RT. Determine
whether this substance can become mechanically unstable. Is your conclusion
affected by whether the gas is pure or a mixture?

8.2 (a) Consider a pure fluid composed of spherical molecules. At low densities this
fluid is essentially an ideal gas with internal energy u = 3RT/2. Determine
whether this fluid can become thermally unstable and mechanically unstable.

(b) Consider the same substance as in (a), but now at a higher density where it
obeys the Redlich-Kwong equation of state (8.2.1). Determine whether the
fluid can now become thermally unstable.

8.3 Start with the equality of fugacities (7.3.12) for vapor-liquid equilibrium and per-
form the steps cited in § 8.2.5 to derive (8.2.21) for pure-component vapor pres-
sures. Continue the derivation to obtain the equal-area form (8.2.22).

8.4 Use the Redlich-Kwong equation (8.2.1) along with (8.2.21) to estimate the vapor-
pressure curve Ps(T) for pure carbon dioxide. Then use your results to test the
Clausius-Clapeyron equation by preparing a plot analogous to that in the bottom
of Figure 8.9. Include on your plot the following experimental values of the
vapor pressure (from Vargaftik [17]):

8.5 Use the Antoine’s equation in Appendix D to estimate the latent heat of vapor-
ization for toluene at its normal boiling point, 110.63°C, and its normal melting
point, –95°C. Compare your estimates with the experimental values, which are
near 364 J/gm and 453 J/gm, respectively [17].

8.6 Use Figure 8.9 to estimate the latent heat of vaporization for pure water. Com-
pare your value with that at the normal boiling point, as given by steam tables.

8.7 Starting with the definition of the latent heat of vaporization in (8.2.23), perform
the steps cited in § 8.2.6 to derive (8.2.25), which allows us to compute the latent
heat from a volumetric equation of state.

8.8 Tabitha the Untutored claims that a simple quadratic form such as

should be sufficient to reproduce vapor-liquid equilibrium data for pure fluids.
Here A, B, and C are empirical parameters that depend only on temperature. Val-
ues of A, B, and C may be positive or negative. Tabitha points out that at fixed P
and fixed T < Tc, such an equation could yield two roots for the volume: one
could be that for saturated liquid, while the other could be for saturated vapor.
Do you agree with the claim that such a form is sufficient? Justify your position.

T (K) 220 235 250 265 280 295 304.2

P (bar) 6.0 10.75 17.9 27.9 41.6 59.8 73.8

P RT⁄ A B v⁄ C v2⁄+ +=
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8.9 The stability test for a pure substance, as illustrated in § 8.2.2, applies when the
proposed state is at a fixed T and P. But when the state is identified by fixing T
and v, then the procedure in § 8.2.2 must be modified. To help develop a basis for
a new procedure, perform the following.

(a) For a pure, stable, one-phase substance, prove that an isothermal plot of the
Helmholtz energy vs. molar volume a(v) is a convex curve with negative
slope; i.e., prove that, for all v,

    and    

(b) For a pure substance, sketch a subcritical isotherm on an a-v diagram and
show the vapor-liquid tie line. Also sketch a supercritical isotherm.

8.10 Write a computer program that uses a cubic equation of state for determining the
stability of a pure fluid at a proposed state (T, P). Use the Redlich-Kwong equa-
tion of state and check your program by repeating the calculations outlined in
§ 8.2.2. Then use your program to determine the stability of the following states;
if any of the following are not stable, find the stable state at the specified T and P.

8.11 Consider N moles of a pure substance in a closed system at a proposed state (T, v)
that is unstable. With T and v fixed, an unstable pure substance always separates
into two phases, α and β. The final pressure would be the saturation pressure
Ps(T). Let vα and vβ be the molar volumes of the equilibrium phases.

(a) Use a material balance to derive the Lever Rule, which gives the relative
amounts in the two phases,

(P8.11.1)

(b) Let the equilibrium phases be vapor (α) and liquid (β). Sketch a subcritical
isotherm on a Pv diagram for a pure fluid and draw the tie line at the vapor
pressure Ps. For a particular value of the overall volume v, show on your plot
how the tie line is related to the numerator and denominator in (P8.11.1).

Species Phase T (K) P (bar)

(a) propane gas 298 1

(b) propane gas 298 12

(c) propane liquid 350 25

(d) propane liquid 350 32

(e) n-butane gas 298 1

(f) n-butane gas 298 4

(g) n-butane liquid 350 11

(h) n-butane liquid 350 12
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8.12 A pure one-phase substance completely fills a closed rigid vessel at fixed temper-
ature. Maynard Malaprop claims that it is sometimes possible to reduce the sys-
tem pressure by isothermally adding more material. That is, for an extensive
volume V, he claims that there are states at which

(P8.12.1)

(a) To illustrate his claim, Maynard uses the van der Waals equation,

 

He says that if a van der Waals fluid is at a state such that

 

then the inequality in (P8.12.1) is satisfied and the pressure will decrease with
increasing N. Confirm this. (Here TR = T/Tc and vR = v/vc.)

(b) In spite of the result in (a), you may remain skeptical; after all, a mathemati-
cally correct result is not necessarily sound thermodynamically, is it? May-
nard scoffs at this: surely you don’t believe that thermodynamics can violate
mathematics? Construct a thermodynamically rigorous argument that proves
or disproves Maynard’s claim about the inequality in (P8.12.1).

(c) Now consider a mixture. The question is whether we can identify any con-
straint on the sign of the response of the pressure to an increase in the mole
number of one species; that is,

To do so, use a triple product rule to relate this derivative to measurables. For
a mixture, is there some constraint which demands that the pressure must
always increase or decrease when Ni is increased?

8.13 Use the Redlich-Kwong equation (8.2.1) along with (8.2.25) to estimate the latent
heat of vaporization for pure isobutane at 20°C. Compare your estimate with the
experimental value of 336 J/gm [17].

8.14 (a) Use the definition of a derivative to derive the Leibniz rule for differentiating
integrals (see Appendix A).

(b) Starting from (8.2.21) for vapor pressure, derive Clapeyron’s equation
(8.2.27).

(c) From (8.2.27), derive the Clausius-Clapeyron equation (8.2.30).
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8.15 Consider binary liquid mixtures of benzene and toluene at 20°C and 1 bar. Show
whether, at any composition, such mixtures can exhibit diffusional instabilities; if
so, they would split into two liquid phases.

8.16 Consider a binary gas mixture that obeys the virial equation Z = 1 + BP/RT,
where the mixture B is given by (4.5.18). Show whether or not this mixture can be
diffusionally unstable.

8.17 Following the procedure outlined in § 8.4.4, use the Redlich-Kwong equation
(8.2.1) to compute the fugacity f1(x1) for the following mixtures. Prepare plots of
your results and identify the regions over which one-phase mixtures are defi-
nitely stable and definitely not stable. Will phase splits occur from those situa-
tions that are not stable? Let the first named component be 1.

(a) carbon dioxide and n-butane at 260K and 10 bar

(b) carbon dioxide and n-butane at 300K and 8.5 bar

(c) methane and propane at 165K and 1 bar

(d) methane and propane at 278K and 10 bar

8.18 At 30°C binary liquid mixtures of methanol(1) and heptane(2) roughly obey Por-
ter’s equation and have γ1

∞ ≈ γ2
∞ ≈ 11.0. Determine whether, at 30°C, these mix-

tures exhibit liquid-liquid phase splits over some range of compositions.

8.19 Consider a binary liquid mixture that obeys Porter’s equation, gE/RT = A x1 x2,
where the dimensionless parameter A depends on temperature. 

(a) Derive the diffusional stability criterion (8.4.33). 

(b) Derive the expression (8.4.37) for the spinodal. 

(c) Assume the temperature dependence of A is given by (8.4.38). Compute
gm(x)/RT and its second composition derivative at 20°C, 40°C, and 55°C. Plot
your results as in Figure 8.21. At each temperature, indicate whether a phase
split occurs; if a split does occur, label the regions of stable, metastable, and
unstable phases on your plot. (If a split occurs, you do not have to compute
the compositions of the two phases.)

8.20 Use the Redlich-Kwong equation and the mixing rules given in § 8.4.4 to com-
pute the spinodal and line of incipient mechanical instability for equimolar mix-
tures of carbon dioxide and n-butane. Plot your curves on a Pv diagram. (You do
not have to compute the saturation curves, since methods for doing so are not
presented until Chapter 10.)

8.21 Consider a binary mixture that obeys the van Laar equation

where A and B are constants. Find the expression for the liquid-liquid critical
temperature, if there is one.

gE

RT
--------

x1x2

Ax1 Bx2+
--------------------------=
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8.22 Consider a binary mixture for which one activity coefficient obeys

where A is a constant. Find an expression for the liquid-liquid critical tempera-
ture in terms of A, if such a critical point exists.

8.23 For a certain binary liquid mixture the excess volume and excess enthalpy obey
vE = ATx1x2 and hE = Bx1x2, where A and B are independent of T and P.

(a) Find the consistent expression for gE in terms of T, P, x1, and x2.

(b) The mixture has a liquid-liquid critical point at 330 K and 1 bar. It also has vE

= –1 cm3/mol, hE/RT = 0.2 for the equimolar mixture at 330 K. Estimate the
liquid-liquid critical temperature at 100 bar.

8.24 A certain binary liquid mixture exists in two-phase liquid-liquid equilibrium.
What should be the expression for gE if the mole fractions of the two phases are
independent of temperature?

8.25 Sketch an isothermal-isobaric plot of the change of Gibbs energy on mixing gm

vs. mole fraction x1 for a binary mixture in three-phase vapor-liquid-liquid equi-
librium. Include the tie lines on your plot and indicate the compositions of the
three phases.

8.26 (a) Derive the thermal stability criterion for a binary mixture that undergoes
only fluctuations in U at fixed N1, N2, and V.

(b) Derive the mechanical stability criterion for a binary mixture that undergoes
only volume fluctuations at fixed T, N1, and N2.

(c) Derive the diffusional stability criterion for a binary mixture that undergoes
only fluctuations in N1 at fixed T, P, and N2.

8.27 For a binary mixture that splits into two liquid phases, prepare plots of ln f1 vs.
x1 along three isotherms: one below, one above, and one at the liquid-liquid criti-
cal temperature.

8.28 For the classes of binary-mixture stability behavior discussed in § 8.4.2 make a
table that tells whether the equation of state and the fugacity equation bifurcate.
Your table should contain five rows, one for each class (I, II, IIIA, IIIB, IV), and it
should have four columns, one for each equation (pure-1 equation of state, pure-
2 equation of state, mixture equation of state, and mixture fugacity equation).

8.29 Write a computer program that determines the stability of a one-phase binary
mixture at a proposed T, P, and x1. Use the Redlich-Kwong equation of state with
the simple mixing rules given in § 8.4.4. Test your program by applying it to the
situation described in § 8.4.4.

RT γ1ln A x1 1–( )2
=
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8.30 Use your computer program from Problem 8.29 to determine the stability of the
following proposed states for mixtures of methane(1) and propane(2). If the pro-
posed state is not stable, is the stable situation one phase or two?   

8.31 Derive the following stability criteria, given in terms of the Helmholtz energy A,
for a binary mixture at fixed T and V. 

    and    

where

To do so, use a system like that in Figure 8.3, but now consider the small region B
to be of fixed volume and temperature. However, region B is open to the larger
region, so the mole numbers (N1 and N2) fluctuate in both regions.

T (K) P (bar) x1 Phase

(a) 165 1  0.3 liquid

(b) 216 34  0.82 liquid

(c) 278 10  0.15 liquid

(d) 278 10  0.35 liquid

(e) 278 10 0.4 liquid

(f) 278 20 0.167 vapor

(g) 278 20 0.2 vapor

(h) 278 33.6 0.47 vapor

(i) 278 50 0.3 liquid

(j) 278 50 0.4 liquid

(k) 278 50 0.6 vapor

(l) 300 15 0.2 liquid

(m) 300 50 0.28 liquid
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ith many million pure substances now known, an essentially infinite number of
mixtures can be formed, resulting in a diversity of phase behavior that is over-

whelming. Consider just two components: not only can binary mixtures exhibit solid-
gas, liquid-solid, and liquid-gas equilibria, but they might also exist in liquid-liquid,
solid-solid, gas-gas, gas-liquid-liquid, solid-liquid-gas, solid-solid-gas, solid-liquid-
liquid, solid-solid-liquid, and solid-solid-solid equilibria. That’s a dozen different
kinds of phase equilibrium situations—just for binary mixtures. For multicomponent
mixtures the possibilities seem endless.

In this chapter we describe the kinds of phase behavior that are commonly
observed in pure fluids, binary mixtures, and some ternary mixtures. The descriptions
typically take the form of phase diagrams, and we show how studies of phase behav-
ior can be made systematic by identifying classes of diagrams. Since we are interested
in describing what is actually seen, the mixture diagrams presented in this chapter are
plotted in terms of measurables: usually temperature, pressure, composition, or a sub-
set of those. Calculations of phase equilibria necessarily involves conceptuals, and
such calculations are discussed in Chapter 10. Here we only describe phenomena.

We start in § 9.1 by giving prescriptions for determining the number of properties
needed to identify the thermodynamic state in multicomponent mixtures. Those pre-
scriptions include Duhem’s theorem and the Gibbs phase rule as special cases. The
required number of properties determines the dimensionality of the state diagram
needed to represent phase behavior. Then in § 9.2 we summarize some features of
pure-component diagrams that have not been discussed in earlier chapters.

Sections 9.3–9.5 present the common phase behavior of binary mixtures: § 9.3
describes vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria at low pres-
sures; § 9.4 considers solid-fluid equilibria; and § 9.5 discusses common high-pressure
fluid-phase equilibria. Then § 9.6 briefly describes the basic vapor-liquid and liquid-
liquid equilibria that can occur in ternary mixtures. This chapter describes many
apparently different phase behaviors, and so we try to show when those differences
are more apparent than real. The organization is intended to bring out underlying
similarities, thereby reducing the number of different things to be learned.
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9.1  THERMODYNAMIC STATE FOR MULTIPHASE SYSTEMS

 

In § 3.1 we discussed the thermodynamic state for closed systems composed of a sin-
gle homogeneous phase; we now extend that discussion to heterogeneous systems,
especially, systems containing more than one phase. The fundamental questions
addressed in § 3.1 are revisited here: How many interactions are available for manipu-
lating the state (§ 9.1.1)? How many property values are needed to identify the state
(§ 9.1.2)? Even when we specify the correct number of properties for identifying the
state, is there still a possibility of encountering computational difficulties (§ 9.1.3)?

 

9.1.1 Number of Interactions to Change a State

 

Consider a system composed of 

 

C

 

 components in a single homogeneous phase. The
system can interact with its surroundings through the thermal interaction, a 

 

PV

 

 work
mode, and the exchange of any of the components. For such a system, we found in
§ 3.1.1 that the number of interactions available for changing the state is given by

(9.1.1)

Here 

 

S

 

ext

 

 is the number of any external constraints that block interactions. If other
work modes, such as electrical or surface work, are present, then the rhs of (9.1.1)
increases accordingly. Note that the number of interactions applied to a system is
independent of the condition of material within the system. For example, instead of
being homogeneous, the system might consist of two phases, such as vapor and liq-
uid. Nevertheless, we still interact with such a system by exchanging, at most, any of

 

C

 

 components, heat, and 

 

PV

 

 work. Therefore, (9.1.1) also applies to heterogeneous
systems composed of 

 

P

 

 homogeneous phases. Just as in § 3.1.1, (9.1.1) applies to
changes in both intensive and extensive states. Further, just as in § 3.1.1, if we block all
mass-transfer interactions (so 

 

S

 

ext

 

 = 

 

C

 

), then (9.1.1) reduces to Duhem’s theorem for
multiphase systems,

(9.1.2)

 

9.1.2 Number of Properties to Identify an Equilibrium State

 

For a single homogeneous phase containing 

 

C

 

 components, we found in § 3.1.2 that
the number of properties needed to identify the extensive state is given by

 

one phase

 

(9.1.3)

where

(9.1.4)

V C 2 Sext–+=
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Again this assumes only the thermal interaction and a single work mode are present.
For a heterogeneous system containing 

 

P

 

 homogeneous phases, (9.1.4) applies to
each, so

(9.1.5)

But at equilibrium we also have internal constraints imposed by Nature. For exam-
ple, if the 

 

P

 

 homogeneous phases are all open to one another through (

 

P

 

 – 1) different
interfaces, then each interface imposes the (

 

C

 

 + 2) phase-equilibrium constraints given
in § 7.3.5. For the one interface between phases 

 

α

 

 and 

 

β

 

 in equilibrium, these con-
straints are

(9.1.6)

(9.1.7)

 

i = 1, 2, … ,

 

 C

 

(9.1.8)

Therefore instead of (9.1.3), we have

(9.1.9)

or

 

any number of phases

 

(9.1.10)

Here 

 

S

 

 counts any 

 

additional

 

 internal constraints besides the phase-equilibrium con-
straints in (9.1.6)–(9.1.8). Examples include constraints imposed by critical points (cer-
tain stability relations must be obeyed) and azeotropes (certain relations must exist
among 

 

T

 

, 

 

P

 

, and the compositions of the phases). The number given by (9.1.10) can be
much less than the total number of variables given by (9.1.5). For example, a four-
component system in three-phase equilibrium has 

 

V

 

max

 

 = 18, but only 

 

F

 

ex

 

 = 6 of those
are needed to identify the extensive state (with 

 

S

 

 = 0). Values for the other twelve
would be computed by solving stuff equations together with the phase-equilibrium
equations (9.1.6)–(9.1.8); those calculations may or may not be easily performed.

To determine the number of properties needed for identifying the intensive equilib-
rium state, we remove the total amount of material as a possible variable; hence,

(9.1.11)

Then for 

 

P

 

 phases, using (9.1.10) in (9.1.11) leaves

 

any number of phases

 

(9.1.12)

Counted in 

 

F

 

′

 

 are the relative sizes of the phases. For example, for ethanol and water
in vapor-liquid equilibrium, we have 

 

C

 

 = 2, 

 

P

 

 = 2, and 

 

S

 

 = 0, so (9.1.11) gives 

 

F

 

′

 

 = 3: we
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need values for three independent intensive properties to identify the intensive state.
The three could be 

 

T

 

, 

 

P

 

, and 

 

N

 

v

 

/

 

N

 

, where 

 

N

 

v

 

/

 

N

 

 is the fraction of material in the vapor
phase. Another legitimate set is 

 

T

 

, 

 

ρ

 

, and 

 

z

 

E

 

, where 

 

z

 

E

 

 represents the overall mole frac-
tion of ethanol in the system.

Often we ignore the relative sizes of the phases when describing the intensive state;
doing so removes (

 

P – 1) variables from the number in (9.1.12), leaving the generalized
phase rule,

(9.1.13)

The phase rule gives the number of properties needed for identifying the intensive
state of closed systems. However, the form (9.1.13) applies only to those situations that
conform to our assumptions: 

(a) we have only one work mode, 

(b) we have ignored the relative sizes of phases, and 

(c) we have no chemical reactions. 

Systems with reactions are discussed in § 10.3.1. When no other internal constraints
apply, then S = 0, and the general rule (9.1.13) reduces to the Gibbs phase rule,

(9.1.14)

On subtracting (9.1.13) from (9.1.12), we find that F differs from F ′ by the (P – 1)
ratios that represent the relative amounts in the phases,

(9.1.15)

For one-phase nonreacting systems (P = 1), (9.1.15) gives F ′ = F; otherwise, the rela-
tive amounts contribute to the number of properties counted by F ′, but they do not
contribute to the number counted by F. This difference between F and F ′ allows us to
distinguish between two kinds of phase diagrams. On an F ′ diagram, the relative
amounts in the phases must be known to locate a multiphase state (a point); an exam-
ple of such a plot is a pure substance Pv diagram. However, on an F diagram, the rel-
ative amounts do not help us locate a multiphase state; an example is any PT diagram.
If a mixture diagram has composition plotted, then it is an F ′-diagram.

Therefore, one important use of F ′ is in constructing and interpreting phase dia-
grams. When we intend to represent the behavior of a system on a phase diagram, F ′
(not F) gives the dimensionality of the space needed for the plot. For example, to rep-
resent the states of pure water with no constraints (C = 1 and S = 0), (9.1.12) gives F ′ =
2; that is, all intensive states of pure water can be represented on a two-dimensional
surface, such as a plot of P vs. T or one of P vs. v. Note that the value given by (9.1.12)
for F ′ is independent of the number of phases present; for example, if the water is in
vapor-liquid equilibrium, (9.1.12) still gives F ′ = 2 because the relative amounts in the
two phases can change at fixed pressure. However, we caution that states identified
by F ′ variables may not be unique; see § 9.1.3.

A principle use of F occurs when analyzing constrained equilibria: the value of F
gives the dimensionality of the object that represents a constrained equilibrium on an
F-diagram. For example, if we have pure water constrained to states in vapor-liquid

F C 2 P– S–+=

F C 2 P–+=

F′ F– P 1–=
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equilibrium, then P = 2 and the Gibbs phase rule (9.1.14) gives F = 1: states of two-
phase equilibria appear as lines on a one-component F-diagram (such as a PT dia-
gram). Table 9.1 gives examples of the kinds of geometric objects that appear on F-
diagrams when constraints are imposed on pure components and on binary mixtures. 

Another principal use of F and F ′ is in testing whether equilibrium problems are
well posed. To use F and F ′ properly for this purpose, we must first decide whether
we have an F-problem or an F ′-problem. For an F-problem, one of the phase rules,
(9.1.13) or (9.1.14), tells us the number of property values we must know to have a
well-posed problem. But for an F ′-problem, the required number is given by (9.1.12).
Versions of (9.1.12) and (9.1.13) for reacting systems are developed in § 10.3.1. 

9.1.3 Indifferent States

Situations can arise in which we have apparently specified values for enough proper-
ties, and yet the state is still not uniquely identified. We follow Prigogine and Defay
[2] and call these indifferent states. The existence of these situations can frustrate some
trial-and-error procedures for solving phase-equilibrium problems. 

Table 9.1 Kinds of geometric objects appearing on F diagrams when constraints
apply to phase-equilibrium situations; values of F from (9.1.13)a 

CCCC  PPPP Constraints (SSSS ) Example FFFF Object

1 1 none (0) L, S, V 2 surface

1 mechanical stabilityb (2) VL critical point 0 point

2 none (0) SL, SV, VL 1 line

3 none (0) SLV triple point 0 point

2 1 none (0) L, S, V 3 volume

1 diffusional stabilityc (2) VL critical points 1 line

1 diff. stab. (2); Tx extremum (1) critical azeotrope 0 point

2 none (0) SL, LL, LV 2 surface

2 Tx extremum (1) azeotrope 1 line

2 diffusional stability (2) VLL crit. end pt. 0 point

3 none (0) SVL, VLL 1 line

4 none (0) SLLV, SSLV 0 point

a This is a modified version of a table originally devised by de Loos [1].
b The two mechanical stability constraints are (8.2.13) and (8.2.14).
c The two diffusional stability constraints are (8.4.2) and (8.4.3).
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One kind of indifference occurs when we have specified too few property values to
solve a problem; for example, we give an F-specification when we actually need an
F ′-specification (recall, F < F ′). An example occurs when we specify T and P for a
one-component vapor-liquid equilibrium system, but we need to determine the frac-
tion of material in the vapor phase. This is an indifferent situation because, at the
specified T and P, our system can be at any of an infinite number of points along the
tie line between liquid and vapor.

A second kind of indifference occurs when we specify values for the correct num-
ber of property values, but those properties are not all independent, or if they are
independent initially, they become coupled (via internal constraints) during a calcula-
tion. Examples include azeotropes and critical points that could be encountered dur-
ing vapor-liquid equilibrium calculations, because at azeotropes and critical points, T,
P, and {x} are not mutually independent. In such situations, the number of properties
required by an F ′-specification is not wrong, but the particular properties chosen to
satisfy the requirement are no longer independent. The possibility of computational
algorithms entering indifferent situations can lead to frustration or erroneous inter-
pretations of results; this problem will be discussed further (but not resolved) when
we present computational algorithms in Chapter 11. Here are some examples.

Example 1.  For a binary mixture in vapor-liquid equilibrium with no other con-
straints, we have C = 2, P = 2, S = 0, so F ′ = 3. Therefore, specifying values for T, P, and
z1 provides an F ′-specification. Knowing the overall mole fraction z1 allows us to
compute the relative amounts in the two phases. Hence, the state is not indifferent.

Example 2. For a binary mixture in vapor-liquid equilibrium at a homogeneous azeo-
trope, we have C = 2, P = 2, S = 1, so F ′ = 2. Specifying values for T and P creates an
indifferent situation because T and P are coupled through the azeotropic condition.
For the same reason, specifying T and z1 is not appropriate (at an azeotrope z1 = x1  =
y1). But specifying values for T and an overall system density ρ does provide a unique
F ′-specification and avoids an indifferent situation. 

Example 3. For a binary mixture in vapor-liquid-liquid equilibrium, we have C = 2,
P = 3, S = 0, so F ′ = 3. But setting values for T, P, and z1 creates an indifferent situation
because T and P are coupled through the three-phase equilibrium criteria. However,
specifying values for T and the ratios of amount of vapor to the amounts in each liq-
uid phase does provide a unique F ′-specification and avoids an indifferent situation. 

9.2  PURE SUBSTANCES

Pure substance phase diagrams may be created using any combination of indepen-
dent properties. First we consider diagrams containing only measurables (§ 9.2.1), and
then diagrams containing one conceptual (§ 9.2.2).

9.2.1 Diagrams Containing Only Measurables

For a pure substance existing as a single phase with no internal constraints, (9.1.12)
gives F ′ = 2, indicating that intensives states can be represented on phase diagrams of
two dimensions. Those diagrams may be F-diagrams, such as the PT diagram on the
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left in Figure 9.1, or they may be F ′-diagrams, such as the Pv diagram on the right in
Figure 9.1. As listed in Table 9.1, one-phase situations appear as areas on the pure-
component diagrams in Figure 9.1; two-phase equilibrium situations appear as lines;
three-phase situations (triple points) occur as points. On the F-diagram, the triple
point is a single point because all three phases have the same T and P; however, on the
F ′-diagram, it appears as three points because each phase has its own molar volume.

On the PT diagram in Figure 9.1, non-solid areas divide into four distinct regions.
One-phase vapor states lie below the vapor-pressure curve at temperatures T < Tc,
while one-phase gas states have T > Tc and P < Pc. This means that a vapor can be con-
densed either by an isothermal compression or by an isobaric cooling, but a gas can be
condensed only by some process that involves cooling. In a similar manner, one-phase
liquid states lie above the vapor-pressure curve at temperatures T < Tc , while one-
phase fluid states have T > Tc and P > Pc. Unfortunately, these distinctions are not uni-
versally used: some authors do not distinguish vapor from gas or gas from fluid.

Note in Figure 9.1 that multiphase situations on F-diagrams form objects of differ-
ent dimensionality from the same situations on F ′-diagrams. This occurs because one
variable plotted on F ′-diagrams takes different values for each phase in equilibrium;
in Figure 9.1 that variable is the molar volume. Phases in equilibrium have the same T
and P, but their molar volumes differ. For example, on the PT diagram in Figure 9.1,
two-phase situations are lines, but on the Pv diagram, two-phase situations span
areas. When an F-specification is made, the molar volumes of equilibrium phases are
fixed, regardless of the quantities present. However, even if we keep T and P fixed, we
might change the distribution of material between the two phases, thereby changing
the F ′-specification. The distribution of material (i.e., the relative amounts in the two
phases) can be computed by solving a material balance, that is, by applying a lever
rule.

In § 8.2.6 we found that the slope of any two-phase line on a pure-component PT
diagram obeys the Clapeyron equation,

Figure 9.1 Schematic phase diagrams for a pure substance. (left) An F-diagram, which cannot
show the relative amounts in each phase when two phases are present. (right) An F ′-diagram,
which can show relative amounts. cp = critical point and tp = triple point.
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 pure, always true (9.2.1)

where ∆h is the enthalpy change (or “latent heat”) across the phase transition and ∆v
is the corresponding change in the molar volumes. The subscript σ in (9.2.1) reminds
us that the derivative is evaluated along a two-phase saturation line. According to the
Clapeyron equation (9.2.1), the slope of the vapor-pressure curve is related to the
latent heat of vaporization ∆hvap, the slope of the fusion curve is related to the latent
heat of melting ∆hm, and the slope of the sublimation curve is related to the latent heat
of sublimation ∆hsub. For phase changes from solid to liquid, from solid to vapor, and
from liquid to vapor, the latent heats ∆h are always positive.

But while the vapor-pressure and sublimation curves always have positive slopes,
the slope of the melting curve may be positive or negative. Most pure materials
expand on melting, so vliq > vsol, ∆v > 0, and therefore (∂P/∂T)σ > 0. The correspond-
ing PT diagram is like that shown on the left in Figure 9.2. However, a few materials,
including water, contract on melting (ice floats on water); these have vliq < vsol, then ∆v
< 0, and therefore the Clapeyron equation gives (∂P/∂T)σ < 0. The resulting PT dia-
gram is like that shown on the right in Figure 9.2. In both cases, the melting curves are
essentially vertical.

9.2.2 Diagrams Containing a Conceptual

Pure substance F ′ diagrams can be constructed using conceptuals as well as measur-
ables. The ones commonly encountered are pressure-enthalpy and enthalpy-entropy

Figure 9.2 PT diagrams for two pure substances: one that expands on melting (methane) and
one that contracts on melting (water). Data for methane taken from Tester [3] and for water
from Eisenberg and Kauzmann [4].
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Figure 9.3 Along subcritical isotherms for pure fluids, the fugacity passes through stable, meta-
stable, and unstable regions just as does the pressure. Here we have plotted the subcritical iso-
therm T/Tc = 0.863 for a van der Waals fluid. Each point (a–f) on the fugacity plot corresponds
to the point of the same label on the Pv diagram. Points b and e have the same fugacity and
pressure (P s/Pc = 0.539) and therefore locate the vapor-liquid equilibrium state. Points c and d
are on the spinodal. Line segment bc locates metastable liquid states; segment de locates meta-
stable vapor states; segment cd locates unstable states.
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diagrams, which are often used to analyze the performance of machines that intercon-
vert heat and work. For pure fluids, such diagrams present the same kinds of features
already discussed: single phases occupy areas and two-phase situations span areas
bounded by two-phase saturation curves. When first confronting such diagrams, you
should orient yourself using what you already know: (a) vapor-liquid tie lines are
both isobars and isotherms, (b) the vapor-liquid saturation curves intersect at the crit-
ical point, (c) at fixed T and P, saturated vapor always has larger values for enthalpy
and entropy than saturated liquid.

In Chapter 8 we discussed the mechanical stability of a pure fluid in terms of the
behavior of a subcritical isotherm on a Pv diagram. A sample isotherm is shown at the
top of Figure 9.3, computed using the van der Waals equation of state. Also in Chapter
8 we showed that pure-fluid vapor-liquid equilibrium states are found by solving the
equilibrium conditions (9.1.8). The equality of chemical potentials in (9.1.8) can also be
expressed as an equality of fugacities; in the case of pure-fluid vapor-liquid equilibria,

(9.2.2)

The bottom of Figure 9.3 shows the fugacity computed from the van der Waals
equation along the same isotherm shown in the top of the figure. In the f P plot, note
that curves for each one-phase fluid must have positive slopes because

(9.2.3)

The intersection of those two one-phase lines satisfies (9.2.2) and therefore identifies
the vapor-liquid saturation point. The lines for one-phase liquids terminate at the
spinodal—they become unstable—and the unstable portion of the van der Waals loop
is represented by the broken line on the f P plot.

9.3  BINARY MIXTURES OF FLUIDS AT LOW PRESSURES

We now describe the phase behavior exhibited by binary mixtures at modest pres-
sures. The kinds of behavior observed in Nature include vapor-liquid equilibria (VLE,
§ 9.3.1–9.3.3), azeotropes (§ 9.3.4), critical points (§ 9.3.5), liquid-liquid equilibria (LLE,
§ 9.3.6), and vapor-liquid-liquid equilibria (VLLE, § 9.3.7). When solid-fluid equilibria
occur (§ 9.4), many (but not all) of the resulting phase diagrams are analogous to their
counterparts in fluid-fluid equilibria; for example, many liquid-solid diagrams are
analogous to vapor-liquid diagrams.

9.3.1 Isothermal Pxy Diagrams for Binary VLE

Consider a mixture of components 1 and 2 in vapor-liquid equilibrium in a closed ves-
sel at temperature T and pressure P. Let the composition of the liquid phase be repre-
sented by the mole fraction x1 and that of the vapor by mole fraction y1. The
properties of first importance are the four measurables T, P, x1, and y1. In the absence
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of additional constraints, (9.1.12) gives F ′ = 3; that is, three-dimensional plots give a
complete representation of binary VLE. But the Gibbs phase rule (9.1.14) gives F = 2:
only two properties are needed to create an F-diagram for a binary. So rather than cre-
ate 3D plots, it is conventional to fix T (or P) and plot P (or T), x1, and y1, with both
sets of mole fractions plotted on the abscissa. We describe isothermal Pxy plots here.

A typical isothermal Pxy diagram is shown in Figure 9.4. This figure was calculated
from the Redlich-Kwong equation of state using critical properties for an aromatic
and a short-chain alkane. Component 1 is the alkane and is the more volatile compo-
nent; that is, at fixed T < Tc, pure 1 has a higher vapor pressure than pure 2. The entire
diagram in Figure 9.4 is at one temperature: 330 K. 

The curves in Figure 9.4 are saturated one-phase lines. The upper curve (nearly
straight) is Px1; it gives compositions of liquids in equilibrium with vapors. The lower
curve is Py1; it gives compositions of equilibrium vapors. Therefore, the diagram
divides into three regions. At high pressures (above Px1), these mixtures are single-
phase liquids; they have F = 3, so values must be given for T, P, and x1 to identify a
state. Similarly, at low pressures (below Py1), these mixtures are single-phase vapors;
they also have F = 3, so values must be given for T, P, and y1 to identify a state. The
third region lies between the two-phase curves; these are two-phase VLE states. Those
states require F ′ = 3 if the relative amounts in the two phases are needed; otherwise,
they only require F = 2 to identify the intensive state without relative amounts.

Consider the one-phase liquid state A, which is at 330 K, 25 bar, and overall compo-
sition z1 = 0.8. From point A a reversible isothermal expansion will trace the vertical
path through points B, C, D, and E. During the expansion along AB, the mixture
remains one-phase liquid, but the pressure decreases as the volume expands. At point

Figure 9.4 Isothermal Pxy diagram at 330 K computed from the Redlich-Kwong equation of
state. Component 1 is an alkane; 2 is an aromatic. Broken vertical line represents a reversible
isothermal expansion from one-phase liquid at A to one-phase vapor at E. Broken horizontal
line is the vapor-liquid tie line at 10 bar. Filled squares mark pure-component vapor pressures
at 330 K. Note that component 1 is more volatile than component 2.
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B the pressure has reached 16.8 bar and the mixture is a saturated liquid; any further
expansion will cause a bubble of vapor to form. Hence the line through B is called the
bubble-P curve; it relates pressures to the compositions of saturated liquid mixtures. 

If we continue the expansion from point B, the mixture progresses through a
sequence of two-phase states BE. In this two-phase expansion, the pressure continues
to decrease, and the vapor phase grows at the expense of the liquid. During the
expansion, the compositions of the vapor and liquid change, but the overall composi-
tion remains constant at z1 = 0.8.

If we stop the expansion momentarily at 10 bar (point C), we can use the diagram
to obtain the compositions and relative amounts in the two phases. Construct the hor-
izontal through C, then x1 and y1 are given by the intersections of the horizontal (a tie
line) with the two-phase curves. These intersections are marked with triangles; we
find x1 = 0.449 and y1 = 0.937. On an isothermal Pxy diagram, tie lines are horizontal
because at equilibrium both phases have the same pressure. The fraction of the system
in the vapor phase can be determined by material balance (a lever rule):

(9.3.1)

Now continue the expansion from point C to D. At D the pressure is only 3.77 bar,
and as the last drop of liquid disappears the mixture becomes all vapor. Therefore the
line through D is called the dew-P curve, it relates pressures to the compositions of sat-
urated vapor mixtures. In the region below D, the mixture is one-phase vapor.

If we change the temperature from 330 K, as in Figure 9.5, then the two-phase
region must shift to other pressures. For example, if we increase the temperature, then

Figure 9.5 Effect of temperature on the Pxy diagram for the alkane(1)-aromatic(2) mixture of
Figure 9.4. The 330 K-isotherm is subcritical, but the 430 K-isotherm has a critical point (dot) at
56.1 bar and z1 = 0.781. Computed from Redlich-Kwong equation.
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to keep both liquid and vapor phases, we must also increase the pressure. Figure 9.5
shows how the two-phase region moves when T is changed from 330 K to 430 K. At
430 K the bubble-P and dew-P curves no longer span the entire composition range
because a mixture critical point occurs. That critical point has P = 56.1 bar and overall
composition z1 = 0.781 at 430 K. Note in Figure 9.5 that the mixture critical point
occurs at the maximum pressure on the two-phase envelope.

In Figure 9.5 we see that, except near the critical point, the slope of the bubble curve
has the same sign as the slope of the dew curve. We now prove that this is usually the
case. First, use Table 6.3 to write the Gibbs-Duhem equation for the fugacities in each
phase:

  (9.3.2)

and

(9.3.3)

Since the temperatures, pressures, and fugacities are the same in the two phases, we
can subtract (9.3.2) from (9.3.3) to find

(9.3.4)

where ∆ indicates differences between properties of vapor and liquid. The mole frac-
tions must sum to unity in each phase, so for a binary,

(9.3.5)

Using this and considering fixed T, (9.3.4) reduces to

fixed T (9.3.6)

For the slope of the isothermal Px curve, this becomes

(9.3.7)

The subscript σ reminds us that the derivatives are to be evaluated along the vapor-
liquid saturation curve. Here, we seek an expression for the derivative on the rhs.

At fixed T, we can write the total differential of the fugacity as

(9.3.8)

RT xi d filn
i

∑ h{

T
-----– dT v{dP+=

RT yi d filn
i

∑ hv

T
-----– dT vvdP+=

RT yi xi–( )d filn
i

∑ ∆h
T

-------– dT ∆v dP+=

y1 x1– y2 x2–( )–=

RT y1 x1–( ) d f1ln d f2ln–( ) ∆v dP=

RT y1 x1–( )
∂ f1ln

∂x1
--------------

 
 
 

Tσ

∂ f2ln

∂x1
--------------

 
 
 

Tσ

– ∆v
x1∂

∂P
 
 

Tσ
=

d filn
∂ filn

∂P
------------- 

 
Tx

dP
∂ filn

∂xi
-------------

 
 
 

TP

dxi+=



 9.3   BINARY MIXTURES OF FLUIDS AT LOW PRESSURES 379

Introducing the partial molar volume from Table 6.2 and rearranging, we have

(9.3.9)

Substituting (9.3.9) into (9.3.7) for each component, we find

(9.3.10)

With the help of the Gibbs-Duhem equation on the lhs, (9.3.10) simplifies to

(9.3.11)

But

(9.3.12)

So (9.3.11) finally can be written as

(9.3.13)

By an analogous procedure, starting from (9.3.6), we obtain the expression for the
slope of an isothermal Py saturation curve,

(9.3.14)

where  To satisfy the diffusional stability criterion (8.3.14), the mole-
fraction derivatives of the fugacities in (9.3.13) and (9.3.14) must always be positive.
Further, away from critical points, the differences in partial molar volumes are posi-
tive, so the lhs of both (9.3.13) and (9.3.14) have the same sign: each has the same sign
as (y1 – x1). However, near a mixture critical point for y1 > x1, it is possible for the par-
tial molar volume of component 2 to become negative in the vapor. Then the denomi-
nator of (9.3.14) is negative while that of (9.3.13) is positive; hence, the slopes of the Px
and Py curves may differ very near a mixture critical point. This can be seen near the
critical point shown in Figure 9.5 at 430 K.
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9.3.2 Isobaric Txy Diagrams for Binary VLE

Consider the same binary VLE mixtures as in § 9.3.1, but now let us hold pressure
fixed and plot T against x1 and y1. A typical plot appears in Figure 9.6. The locus of
temperatures and saturated liquid compositions defines the bubble-T curve, while that
of temperatures and saturated vapor compositions defines the dew-T curve. At subcrit-
ical pressures, both curves span the entire composition range from the boiling point of
pure 1 to that of pure 2. The Txy diagram divides into three regions: a one-phase
vapor region at high temperatures, a one-phase liquid region at low temperatures,
and a two-phase region at intermediate temperatures.

In Figure 9.6 the broken vertical line represents a reversible isobaric cooling from
one-phase vapor at point A through the two-phase region to one-phase liquid at E.
When the one-phase vapor reaches point B, it is saturated and any further cooling
condenses a drop of liquid. Continued cooling from B to D increases the amount of
liquid at the expense of the vapor, until at D the last bubble of vapor disappears.

At any point C on the line BD we may construct a horizontal tie line and obtain the
compositions of the liquid and vapor phases. On Txy diagrams, tie lines are horizontal
because at equilibrium both phases are at the same T. In the figure, point C lies on the
415 K tie line and the equilibrium compositions are x1 = 0.418 and y1 = 0.774. The cool-
ing process in Figure 9.6 is done at a constant overall mole fraction z1 = 0.6, so we can
apply a lever rule to obtain the fraction of material that is vapor at point C:

(9.3.15)

Figure 9.6 Isobaric Txy diagram at 30 bar for the same alkane(1)-aromatic(2) mixture shown in
Figure 9.4. The broken vertical line represents a reversible isobaric cooling from one-phase
vapor at A to one-phase liquid at E. The broken horizontal line is the vapor-liquid tie line at 415
K. Filled squares are pure-component boiling points at 30 bar. 
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Expressions for the slopes of isobaric Tx and Ty curves can be derived using a proce-
dure analogous to that used in § 9.3.1 for Px and Py curves. The expression for Tx is

(9.3.16)

where  is the difference in partial molar enthalpies between vapor and liquid
phases. Further, we can use a triple product rule [see (9.3.18) below] to relate slopes of
isobaric saturation curves [such as (9.3.13)] to slopes of isothermal ones [such as
(9.3.16)]; the result is that most binary mixtures in VLE have

      and      (9.3.17)

Again, we use the subscript σ to emphasize that we are considering only changes of
state that preserve two-phase equilibria. Exceptions to (9.3.17) usually occur only near
mixture critical points. Otherwise, particularly at low pressures, if the isothermal Px
curve increases (decreases) with x1, then the corresponding isobaric Tx curve usually
decreases (increases). This relation between slopes can be seen by comparing the Pxy
diagram in Figure 9.4 with the Txy diagram in Figure 9.6.

If we increase the pressure from 30 bar, as in Figure 9.7, then the two-phase region
in Figure 9.6 shifts to higher temperatures, just as the pure-component boiling points

Figure 9.7 Effect of pressure on the Txy diagram for the alkane(1)-aromatic(2) mixture of
Figure 9.6. At 30 bar all these mixtures are subcritical, but at 55 bar two critical points occur
(dots): one at 423.55 K with z1 = 0.8075 and another at 533.60 K with z1 = 0.2255. Filled
squares mark pure-component boiling points at 30 bar.
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must increase. Figure 9.7 shows how the two-phase region moves when the pressure
is changed from 30 bar to 55 bar. At 55 bar the bubble-T and dew-T curves no longer
span the entire composition range: this isobar lies above the critical pressures of both
pure components, so neither pure exhibits VLE. However, over a mid-range of com-
positions, the mixtures can exist in two phases. At 55 bar these mixtures have two crit-
ical points, one at the lowest T, the other at the highest T. In § 9.3.5 we show that
critical points always occur at such extrema.

9.3.3 PT Diagrams for Binary VLE

The Pxy and Txy diagrams shown in the previous sections are F ′ diagrams: they allow
us to determine the relative distribution of material between two phases in equilib-
rium, such as in (9.3.1) and (9.3.15). Now we describe a typical F-diagram, which is
obtained by plotting two-phase pressures against the corresponding temperatures. An
example appears in Figure 9.8, which was computed from the Redlich-Kwong equa-
tion for the same mixture shown in Figures 9.4–9.7. 

In Figure 9.8, the solid curves are the pure-component vapor pressure curves; each
ends at its pure critical point (closed circles). For these systems, the locus of mixture
critical points (dashed line) connects the pure-component critical points. This behav-
ior is common to many binary mixtures, but it is not universal. The figure shows rep-
resentative lines of constant composition at x1 = y1 = 0.25 and x1 = y1 = 0.75. For this
mixture every line of constant composition passes through a mixture critical point,
but not all mixtures behave this way. For some binaries, certain mixtures of constant
composition have no critical points; for others, some constant-composition mixtures

Figure 9.8 Pressure-temperature diagram for the alkane(1)-aromatic(2) mixture in Figures 9.4-
9.7. Solid lines are pure vapor-pressure curves, ending at pure critical points (filled circles).
Dashed line is the mixture critical line. Dash-dot lines are liquid constant-composition lines;
small dashed lines are vapor constant-composition lines. Filled square at A is a vapor-liquid
equilibrium point; it occurs at 14.5 bar, 386.7 K, x1 = 0.25, y1 = 0.75.
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have multiple critical points. On PT diagrams, two-phase VLE points occur at inter-
sections of x1 and y1 curves; an example is shown in Figure 9.8. For mixtures having
continuous critical lines, such intersections occur at T < Tc1 for all x1 and y1 lines; how-
ever, for T > Tc2, no such intersections occur. This is consistent with Figure 9.7. 

On PT diagrams the lines of constant composition are related to the saturation
curves that appear on Pxy and Txy diagrams; specifically, these three sets of saturation
curves are related through a triple product rule,

(9.3.18)

The numerator in (9.3.18) is the slope of an isothermal Px curve (9.3.13) and the
denominator is the slope of an isobaric Tx curve (9.3.16). Combining those expressions
for numerator and denominator, we obtain

(9.3.19)

This result is the analog of the Clapeyron equation (8.2.27) extended from pure sub-
stances to binary mixtures. It gives the slope of a saturation line of constant composi-
tion plotted on a PT diagram. The differences in partial molar enthalpies and volumes
in (9.3.19) are usually positive, so the slope given by (9.3.19) is usually positive (see
Figure 9.8). However, negative values of those slopes are observed for some mixtures
at states near mixture critical points; these are usually caused by negative partial
molar volumes of the heavier component.
 

9.3.4 Extrema on Pxy and Txy Diagrams: Azeotropes

The phase diagrams shown in Figures 9.4–9.7 all have T and P monotonic in the com-
positions of both phases. Consequently, at any fixed pressure the mixture boiling
points are bounded by the pure-component boiling points, and at any fixed tempera-
ture the mixture pressures are bounded by the pure-component vapor pressures. But
binary mixtures can have T and P pass through extrema with composition. Consider
the slope of an isothermal Px curve for a binary mixture in VLE,

(9.3.13)
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(a) If the compositions of the two phases become equal (y1 = x1), but the compo-
sition derivatives of the fugacity remain positive, so the phases remain stable, 
then the extrema are called homogeneous azeotropes. 

(b) If the compositions become equal, and if in addition the composition deriva-
tives of the fugacity also vanish, then the resulting extrema are mixture criti-
cal points. These are discussed in § 9.3.5.

A mixture VLE state that satisfies the criterion (a) cited above is called a homoge-
neous azeotrope, a word formed from a (without) + zeo (Greek for boil) + tropos (Greek
for turning or changing). That is, a homogeneous azeotrope boils without changing its
composition (y1 = x1), and according to (9.3.13) and (9.3.16), when y1 = x1, extrema
occur on both the binary Pxy diagram and the Txy diagram. The extrema may be max-
ima or minima, but maxima in Pxy are more common; see Figure 9.9. Note that the
extremum in the P-x1 curve coincides with that in the P-y1 curve. Further, (9.3.17)

Figure 9.9 Positive homogeneous azeotropes in mixtures of ethanol(1) and benzene(2). The Pxy
diagram is at 370 K, and the Txy diagram is at 2.5 bar. Filled circles locate the azeotropes. These
diagrams were calculated using the Margules equations for activity coefficients, with parame-
ters taken from Appendix E. (Computations discussed in Chapter 11.)
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implies that when a maximum (minimum) occurs on an isothermal Pxy diagram, then
a minimum (maximum) occurs on the corresponding isobaric Txy diagram. 

Mixtures that have a maximum in the Px curve exhibit positive deviations from
ideal-solution behavior; that is, the activity coefficients are greater than unity. Such
mixtures are called positive deviants and their azeotropes are called positive azeotropes.
Since such mixtures have minima in their Tx curves, those same azeotropes are also
called minimum boiling-point azeotropes. Positive deviants usually occur when attrac-
tive intermolecular forces between molecules of the same species are stronger than
those between molecules of different species.

A few binary mixtures exhibit negative azeotropes; these are caused by negative devi-
ations from ideality as reflected in activity coefficients that are less than unity. An
example is the azeotrope formed by mixtures of acetone and chloroform, shown in
Figure 9.10. Now both the Px and Py curves pass through minima at the same compo-
sition, while the corresponding Tx and Ty curves pass through maxima. Hence nega-

Figure 9.10 Negative homogeneous azeotropes (dots) in mixtures of acetone(1) and chloro-
form(2). The Pxy diagram is at 50°C; the Txy diagram is at 0.75 bar. Computed using the Mar-
gules model for activity coefficients, with parameter values from Walas [5]. (Computations
discussed in Chapter 11.)
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tive azeotropes are also called maximum boiling-point azeotropes. Negative deviants
usually occur when molecules of different species attract one another more strongly
than molecules of the same species. In addition, negative deviants may also occur
when large disparities exist in the sizes or conformational structures of molecules,
such as may be found in many polymer solutions.

When azeotropes form, mixtures at nearby states may not be uniquely identified by
an F-specification; e.g., for a binary in VLE, the Gibbs phase rule (9.1.14) gives

(9.3.20)

So we expect that setting values for T and P would allow us to determine the compo-
sitions of vapor and liquid phases. However, near an azeotrope, the saturation curves
pass through extrema, causing some tie lines to separate into two branches: one on
either side of the azeotrope with both branches having the same T and P. Therefore,
the phase-equilibrium equations have two solutions for the compositions of both
vapor and liquid. The Gibbs phase rule cannot account for nonmonotonicity of prop-
erties. To distinguish between the two pairs of roots, we need to set an additional
property; typically, the overall composition z1. That is, we need an F ′ specification to
uniquely identify states near azeotropes.

Azeotropes shift to other pressures and compositions in response to changes in
temperature (see Figure 9.11), but we can devise a simple relation between the azeo-
tropic T and P. We start from (9.3.4), which applies to any binary VLE situation,

(9.3.4)

Figure 9.11 Effect of temperature on positive azeotropes formed in mixtures of methyl ace-
tate(1) and methanol(2). Calculated using the Wilson model for activity coefficients, with
parameters from Appendix E.
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But at a homogeneous azeotrope xi = yi, so the lhs of (9.3.4) vanishes, and we have

(9.3.21)

This is a remarkable result, for it is merely the Clapeyron equation (8.2.27) extended
from pure substances to azeotropic mixtures. The derivative on the lhs represents the
slope of the locus of azeotropes on a PT diagram. We can use (9.3.21) as a basis for cor-
relating azeotropic temperatures and pressures, just as we used it in § 8.2.6 for corre-
lating pure-component vapor pressures. We obtain the same generalized form of the
Clausius-Clapeyron equation,

(9.3.22)

Here PAz is the azeotropic pressure at absolute temperature T, while A and B are
parameters whose values are obtained by fits to azeotropic data. This correlation
works well for both positive and negative azeotropes, as shown in Figure 9.12. The
principal drawback to (9.3.22) is that the azeotropic compositions remain implicit; to
find those compositions, we must solve the phase-equilibrium problem.

Since vapor and liquid have the same composition at a homogeneous azeotrope,
the occurrence of an azeotrope prevents a separation by simple distillation. Once an
azeotrope forms on a stage or plate of a distillation column, no further separation
occurs and the azeotropic mixture becomes one of the product streams. For example,
simple distillation cannot be used to extract pure-grain alcohol from ethanol-water
mixtures because an azeotrope forms at atmospheric pressure. 

Figure 9.12 Tests of the Clausius-Clapeyron equation (9.3.22) for correlating azeotropic pres-
sures and temperatures. Circles are positive azeotropes formed in mixtures of methyl acetate
and methanol (see Figure 9.11). Triangles are negative azeotropes that occur in mixtures of ace-
tone and chloroform (see Figure 9.10). Lines are least-squares fits.
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However, we have seen that azeotropic compositions change in response to
changes in temperature and pressure (Figure 9.11), and such changes can sometimes
be exploited to avoid azeotropes in distillation columns; for example, we might work
around azeotropes by using two distillation columns operating at different pressures.
Alternatively, some azeotropic binaries can be separated by performing the distilla-
tion in the presence of a third component; this is called extractive distillation. But these
strategies have limited flexibility, and often azeotropic mixtures must be separated by
some method other than distillation; alternatives include solvent extraction, mem-
brane separation, and combinations of different processes.

Homogeneous azeotropes occur in a great many binary mixtures, and tables of
azeotropic temperatures, pressures, and compositions can be found in the compila-
tions by Horsley [6] and by Gmehling et al. [7]. Such azeotropes occur when one
vapor phase is in equilibrium with one liquid phase. In addition, extrema in isother-
mal Pxy and isobaric Txy diagrams occur in some three-phase VLLE situations for
binary mixtures. These are called heterogeneous azeotropes. But at heterogeneous azeo-
tropes the composition of the vapor is rarely the same as that of either liquid; these sit-
uations are discussed in § 9.3.7.

9.3.5 Extrema on Pxy and Txy Diagrams: Mixture Critical Points

In (8.4.2) and (8.4.3) the conditions for a binary critical point are given in terms of the
change of Gibbs energy on mixing. Those conditions can also be expressed in terms of
the fugacity of either component,

mixture critical point (9.3.23)

and

mixture critical point (9.3.24)

These mean that an isothermal-isobaric plot of f1 vs. x1 passes through a point of
inflection at the critical point, as was illustrated in Figure 8.13. Points that satisfy only
(9.3.23) locate the spinodal, and when the spinodal coincides with the vapor-liquid
saturation curve, then both (9.3.23) and (9.3.24) are satisfied and a vapor-liquid critical
point occurs. 

If we substitute (9.3.23) into (9.3.13), we find that critical points occur at extrema on
isothermal Px and Py plots. Likewise if we substitute (9.3.23) into (9.3.16), we find that
critical points occur at extrema on isobaric Tx and Ty plots. However, the converses of
these statements are not true: extrema on such plots are not necessarily critical points;
we have already seen that they could be azeotropes. Further, those extrema mean that
the numerator and denominator in the triple product rule (9.3.18) are both zero; how-
ever, that ratio need not be zero, so on PT diagrams, critical points rarely occur at
extrema of constant-composition lines.
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9.3.6 Binary Liquid-Liquid Equilibria

In § 8.4.5 we described the stability conditions that, when violated, can cause a one-
phase liquid mixture to separate into two liquid phases. We also showed in Figure
8.20 an isobaric, liquid-liquid, Txx diagram on which one-phase states divide into sta-
ble, metastable, and unstable states. Liquid-liquid separations occur in nonideal mix-
tures that have strong positive deviations from ideal-solution behavior; in such
mixtures the activity coefficients become much greater than unity. This occurs when
attractive forces between molecules of the same species are stronger than those
between molecules of different species. Liquid-liquid separations have never been
observed in mixtures that are negative deviants over the entire composition range.

The Txx diagram shown in Figure 8.20 is typical of most binary liquid-liquid sys-
tems: the two-phase curve passes through a maximum in temperature. The maximum
is called a consolute point (also known as a critical mixing point or a critical solution
point), and since T is a maximum, the mixture is said to have an upper critical solution
temperature (UCST). A particular example is phenol and water, shown in Figure 9.13.
At T > Tc, molecular motions are sufficient to counteract the intermolecular forces that
cause separation.

A few binaries have lower critical solution temperatures (LCST), in which the mix-
ture is a one-phase liquid at low temperatures, but splits into two liquid phases at
high temperatures. Solutions forming LCSTs include mixtures of a light hydrocarbon
and a substance composed of small polar molecules (such as carbon dioxide or ethyl
ether), mixtures of a short-chain hydrocarbon and a long-chain hydrocarbon, mixtures
of water with a glycol ether or an organic base or a surfactant, and mixtures of a poly-
mer with a hydrocarbon. An example is presented on the right in Figure 9.13. 

In many mixtures having LCSTs, relatively strong attractive forces act between
molecules of different species as well as between molecules of the same species; often
such forces are caused by hydrogen bonding. At low temperatures T < Tc attractions
between unlike molecules dominate and prevent a liquid-liquid split. But the strength

Figure 9.13  Left: Mixtures of phenol (C6H6O) and water have a UCST near 67°C and 0.35
weight fraction phenol [8–11]. Right: Mixtures of triethylamine(1) (C6H15N) and water(2) have
an LCST near 18.3°C and x1 ≈ 0.095 [12].
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of forces such as hydrogen bonding decrease rapidly as temperature increases, and if
the attractions between unlike molecules are weakened more than those between like
molecules, then a phase separation can occur. For mixtures composed of components
of very different molecular sizes, the entropy increase on mixing, which prevents a
phase split at low temperatures, is diminished, and a phase split can occur, if energetic
effects are large enough.

A few binaries have both a UCST and an LCST, and these divide into two classes.
Those having UCST > LCST are said to exhibit a closed solubility loop; an example is
nicotine and water, shown in Figure 9.14. Others have UCST < LCST and are said to
exhibit a miscibility gap (also shown in Figure 9.14); examples include mixtures of
methane with 1-hexene and of benzene with polyisobutene. (Some mixtures of sulfur
with a hydrocarbon (such as sulfur + benzene) also have miscibility gaps, but in these
mixtures the gap probably occurs because the molecular structure of sulfur changes
with temperature [15].) A closed loop would be observed for more binaries except that
some other phase transition intervenes as T is changed. For example, increasing T
may cause vaporization before a UCST can appear; this happens in mixtures of water
with 3-ethyl-4-methyl pyridine. Similarly, decreasing T may cause freezing before an
LCST can occur; this happens in mixtures of water and methyl(ethyl)ketone wherein
solidification prevents formation of an LCST at 1 atm.[5]. Over 6000 critical solution
points have been tabulated in a book by Francis [16].

9.3.7 Vapor-Liquid-Liquid Equilibria in Binary Mixtures

F ′-phase diagrams for binary VLLE situations combine VLE diagrams from § 9.3.2
with LLE diagrams from § 9.3.6. This is illustrated in Figure 9.15. At the high pressure
P1 of Figure 9.15, three-phase VLLE does not occur. Instead, the binary may exist in
any of four conditions: (i) a single-phase vapor at very high T, (ii) two-phase VLE at

Figure 9.14 Examples of binary mixtures that have both a UCST and an LCST. Left: Mixtures of
nicotine (C10H14N2) and water have a closed solubility loop, with UCST = 233°C and LCST =
61.5°C [13]. Right: Mixtures of 1-hexene (C6H12) and methane have a miscibility gap, with
UCST = 133.8 K and LCST = 179.6 K [14]. Pure hexene solidifies at 133.3 K, so the UCST occurs
just above the melting curve of the mixtures.
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Figure 9.15 Effect of pressure on Txy diagram for a binary mixture that exhibits vapor-liquid-
liquid equilibrium via a heterogeneous azeotrope. At high pressures (top) the VLE and LLE
regions are separated by a one-phase liquid region, and no VLLE occurs. Broken line at top is
locus of homogeneous azeotropes. But at low pressures (bottom) the VLE and LLE regions inter-
sect along an isotherm (broken horizontal line) at which the three phases coexist. Filled circles
give compositions of the three phases in equilibrium; center circle gives composition of the
vapor. Note that the change in pressure has little effect on the LLE envelope.
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high temperatures, (iii) a single liquid phase at moderate T, or (iv) two-phase LLE at
low temperatures. Note that the mixture forms a positive azeotrope; such azeotropes
are common in mixtures that undergo liquid-liquid phase splits. (Very few binaries
are known to exhibit both negative azeotropes and LLE, but when they do, the com-
position of the azeotrope is well away from the compositions of the liquid immiscibil-
ity; an example is H2O + HCl, in which the negative azeotrope occurs at low HCl
concentrations while LLE occurs at high HCl concentrations.)

If we decrease the pressure in Figure 9.15, then the VLE region moves to lower tem-
peratures. The broken line in the top of Figure 9.15 shows how the azeotropic temper-
ature and composition respond to changes in P. The LLE region may also move to
higher T, but such movement is usually slight because liquids are little affected by
moderate pressure changes. Nevertheless, the movement of the VLE region reduces
the area of the miscibility gap that lies between the LLE and VLE regions. 

If the pressure is decreased to P2 in Figure 9.15, then the VLE and LLE regions
intersect along an isotherm. That is the temperature of the three-phase VLLE situa-
tion, and the isotherm joins the compositions of the three equilibrium phases. For this
situation, the Gibbs phase rule (9.1.14) gives

(9.3.25)

This means that at any given pressure, such as P2 in Figure 9.15, three-phase VLLE
occurs at only one temperature. That temperature identifies a heterogeneous azeotrope:
at the pressure P2 the azeotropic temperature is the lowest at which vapor can exist in
equilibrium with liquid. At this T, boiling of the two-phase liquid will produce a
vapor of fixed composition, regardless of the overall composition of the system.

In the bottom panel of Figure 9.15, the region labeled Lα marks one-phase liquid
that is rich in component 2; similarly, region Lβ is occupied by one-phase liquid rich in
1. Along the horizontal three-phase isotherm, the points give the compositions of the
three phases: the left point gives x1 for liquid α, the right point gives x1 for liquid β,
and the center point gives y1 for the vapor. At temperatures above the three-phase line
but below the pure boiling points, the mixture can be in one of five situations: (i) one-
phase liquid α, (ii) VLE between liquid α and vapor, (iii) one-phase vapor, (iv) VLE
between liquid β and vapor, or (v) one-phase liquid β. At temperatures below the
three-phase line, the mixture can be in one of three situations: (i) one-phase liquid α,
(ii) two-phase LLE, or (iii) one-phase liquid β.

In Figure 9.16 we show the isothermal Pxy diagram that corresponds to the isobaric
Txy diagram in Figure 9.15. Because of the triple product rule (9.3.18), the Pxy dia-
gram is qualitatively inverted compared to the isobaric Txy diagram. At the one T in
Figure 9.16, the VLLE situation occurs at one pressure. At pressures above the three-
phase pressure, the mixture can exist in one of three situations: (i) one-phase liquid α,
(ii) two-phase LLE, or (iii) one-phase liquid β. At pressures below that of VLLE but
greater than the pure vapor pressures, the mixture can exist in one of five situations:
(i) one-phase liquid α, (ii) VLE between vapor and liquid α, (iii) one-phase vapor, (iv)
VLE between vapor and liquid β, or (v) one-phase liquid β.

The behavior shown in Figures 9.15 and 9.16 is common to many mixtures of
immiscible liquids, but several variations are also possible. Here are some of the alter-
natives: (i) Most immiscible liquids have UCSTs, as in Figure 9.15, but mixtures with

F C 2 P–+ 2 2 3–+ 1= = =
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LCSTs can also exhibit VLLE; examples include water + 2-butanol and water + 2-
butanone. In such cases, VLLE prevents formation of a closed solubility loop. (ii)
Many immiscible liquids form homogeneous azeotropes at high pressures, as in Fig-
ure 9.15, but some do not. Those without azeotropes include CO2 + long-chain
alkanes, such as n-octane and n-decane. (iii) Often VLLE occurs at heterogeneous
azeotropes, as in Figure 9.15, and then the vapor-phase composition lies between the
compositions of the two liquid phases. However, VLLE also occurs in some mixtures
in which the vapor-phase composition does not lie between the compositions of the
liquid phases. Examples of the latter include ammonia + toluene and water + phenol.

Can binary mixtures coexist as three liquid phases? Such behavior is not prevented
by the phase rule, but very unusual intermolecular forces would be required. As far as
we are aware, binary LLLE occurs only when the components react to form either a
physical or a chemical compound, so the mixture effectively becomes a ternary. An
example is n-butyl chloral hydrate in water [17, 18].

9.4  BINARY MIXTURES CONTAINING SOLIDS

Simple fluid-solid phase behavior is analogous to the liquid-vapor behavior discussed
in § 9.3. Since properties of solid phases are largely unaffected by changes in pressure,
we need consider only temperature-composition diagrams. Then simple solid-phase
equilibria can be described using the Txy diagrams from § 9.3.2, relabeling vapor
regions as liquid regions and relabeling liquid regions as solid regions. 

But not all solid-phase equilibria are simple; complications may occur due to (i)
partial immiscibility of solid phases, (ii) the presence of more than one crystalline
structure (polymorphism) of a solid phase, and (iii) reaction of pure compounds to
form solid intermolecular compounds. When any of these occur, the phase diagrams
are complex; but fortunately, those diagrams can be generally understood as superpo-
sitions of simpler diagrams.

Figure 9.16 Schematic isothermal Pxy diagram for the binary shown in Figure 9.15. Broken hor-
izontal line is the three-phase tie line for VLLE (heterogeneous azeotrope). At this temperature,
LLE occurs at high pressures and VLE occurs at low pressures. 
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9.4.1 Completely Miscible Mixtures

Solid components are rarely miscible at all concentrations. Those that are completely
miscible have basic structural units (atoms, molecules, or ions) that are similar. Exam-
ples include binary alloys (gold + silver) in which the atomic diameters of the two
metals are nearly the same, mixtures of similar salts (NaCl + AgCl), and mixtures of
large organic molecules having similar structures, such as β-methylnaphthalene + β-
chloronaphthalene. In such cases the temperature-composition diagrams are similar
to the Txy diagram in Figure 9.6. The two-phase lines change continuously and mono-
tonically from the melting point of one pure solid to that of the other. The two-phase
liquid-solid region separates one-phase liquid mixtures, at high temperatures, from
one-phase solid mixtures, at low temperatures. The upper two-phase curve, the liqui-
dus, is analogous to the dew-T curve and gives compositions of saturated liquids. The
lower curve, the solidus, is analogous to the bubble-T curve and gives compositions of
saturated solids. Tie lines are isotherms and are therefore horizontal, just like those in
Figure 9.6.

Extrema can occur on Txx diagrams that describe liquid-solid equilibria for com-
pletely miscible solids; these extrema are analogous to homogeneous azeotropes and
are called solutropes. Such liquid-solid Txx diagrams are analogous to the vapor-liquid
Txy diagrams shown in Figures 9.9 and 9.10. For example, mixtures of d-carvoxime
and 1-carvoxime have a maximum melting-point solutrope, while binary mixtures of p-
dichlorobenzene and p-chloroiodobenzene have a minimum melting-point solutrope.

In addition, miscible liquid-solid systems can display phase behavior more com-
plex than vapor-liquid systems. For example, mixtures of carbon tetrachloride and
cyclohexanone form a compound from one molecule of each pure; this compound (x1
= 0.5) melts at –39.6°C. Below this temperature, the compound exhibits two minimum
melting temperatures; so the melting curve for this binary has three extrema, two
minima and a maximum, and all three lie below the melting points of the pure com-
ponents. Compound formation in a solid phase can also cause constant-composition
melting without an extremum in temperature. This occurs in mixtures of bromine and
iodine. At 40°C the compound IBr melts at constant composition, although this tem-
perature lies between the melting points of pure iodine and pure bromine. Phase dia-
grams for these kinds of solid systems can be found in the book by Walas [5].

9.4.2 Immiscible Solids with Miscible Liquids

Solid solutions are usually composed of dissimilar components, with the result that
most solid mixtures exhibit partial or (essentially) complete immiscibility. Partial
immiscibility is often observed in metallic alloys [19], while complete immiscibility is
common in solid mixtures of organic substances. We first consider partially immisci-
ble components. In most partially immiscible solids, as temperature increases the con-
centration range for solid-solid equilibria decreases. If the melting point is sufficiently
high, then the solid-solid equilibrium curve will close at a maximum temperature and
the SSE diagram will be analogous to an LLE diagram with a UCST; see Figure 9.17(a). 

More often, however, an increase in temperature produces melting before the SSE
situation disappears. Then the resulting phase diagram is a fusion of the LSE curves
and the SSE curves, as shown in Figure 9.17(b). The isotherm at which the LSE and
SSE curves join, T* in Figure 9.17(b), is a three-phase line representing a liquid mixture
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in equilibrium with two solid-phase mixtures. The minimum in the liquidus at T* is
analogous to a heterogeneous azeotrope and is called a eutectic; T* is called the eutectic
temperature. As an example, eutectics occur in mixtures of lead + tin, commonly used
as solder to join wires and metal pipes. If the volume of a eutectic is allowed to
expand, forming a vapor phase, then we can have two components in four-phase
VLLS equilibrium. At such a point the phase rule (9.1.14) gives F = 0, and the state is
called a quadruple point, in analogy to the triple point of pure-component equilibria.   

Figure 9.17 Typical Txx diagrams for binary LSE situations in which two solid phases occur. (a)
A binary alloy in which a miscibility gap separates the region of two-phase SSE from that of
two-phase LSE. The LSE situation exhibits a minimum melting-point solutrope. (b) Another
alloy in which no miscibility gap occurs; instead, the LSE and SSE regions join at the eutectic
temperature T*, which represents a three-phase LSSE condition. At T* the composition of the
liquid phase lies between those of the two solid phases. (c) A binary alloy in which a miscibility
gap exists, but without a solutrope. (d) An alloy in which the LSE and SSE regions join at the
peritectic temperature T*, where three-phase LSSE occurs. At T* the mole fraction of the liquid
phase is less than those of the two solid phases. Note that panel (b) can be formed by combining
the LSE and SSE regions in panel (a), and panel (d) can be formed by combining the LSE and
SSE regions in panel (c).
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Eutectics occur when a discontinuity in the liquidus corresponds to a minimum
temperature. In addition, three-phase LSSE can occur at liquidus discontinuities that
are not minima in temperature; these are called peritectics. An example is shown in
Figure 9.17(d), which can be interpreted as a superposition of the LSE and SSE regions
of the diagram in Figure 9.17(c). A few binaries are known to exhibit both eutectics
and peritectics; examples include mixtures of methylcyclopentane and cyclohexane,
which have a eutectic at –144.7°C and a peritectic at –100°C.

Finally, we consider substances that are almost completely immiscible as solids. In
these cases the mixtures often contain an organic compound with water; the resulting
phase diagrams are relatively simple. Usually adding a pure component lowers the
melting point, causing a eutectic on the liquidus, as in Figure 9.18; but now the eutec-
tic liquid is in equilibrium with essentially pure solids. These eutectic solids are usu-
ally agglomerates of fine crystals, though still separate phases. Since eutectic liquids
freeze at temperatures below those of either pure component, they are routinely used
when it is necessary to maintain fluid phases at subfreezing temperatures. An exam-
ple is ethylene glycol + water, used as a coolant for internal combustion engines.

9.4.3 Experimental Determination of Liquidus and Solidus

Consider a one-phase substance being cooled or heated isobarically at a constant rate;
assuming the heat capacity is constant, a plot of temperature versus time will be lin-
ear. But when a phase transition is encountered, the heat effect changes. This change
occurs for two reasons: one is the latent heat that accompanies the transition and the
other is a change in the heat capacity that occurs as the old phase is transformed into
the new. These changes cause a discontinuity in the slope of the temperature-time
plot, thereby providing a signature for the onset of a phase change. 

This procedure has been a traditional experimental method for locating the solidus
and liquidus on LSE phase diagrams. To avoid effects of metastabilities, the solidus is

Figure 9.18 Schematic Txx diagram for a binary mixture that is completely immiscible in the
solid phase. Filled circles are pure solid melting points; filled square is the eutectic. Note that
the melting point of the eutectic is lower than that of both pure solids.
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usually located by heating, while the liquidus is usually located by cooling. Figure
9.19 shows a schematic cooling curve for a binary alloy, such as a mixture of lead and
tin. The process is performed on a mixture of known constant composition, and it is
started at a high temperature TA in the one-phase liquid region of the phase diagram.
By cooling at a constant rate, the temperature falls from A to B on the vertical line on
the Txx diagram; this path corresponds to the linear segment AB on the temperature-
time (Tt) diagram. At point B solidification begins to occur, forming a solid phase β in
equilibrium with the liquid. As cooling continues, the system passes through a
sequence of two-phase equilibrium states in which the amount of solid β increases,
while the amount of liquid decreases. (These changes in amounts can be determined
from a lever rule.) This process corresponds to the linear path BC on the Tt diagram in
Figure 9.19. 

At the eutectic temperature T*, the solid phase α begins to form and we can observe
all three phases of liquid-solid-solid equilibrium. At this point, continued cooling
removes latent heat from the remaining liquid, so more solid phases α and β form, but
no further change in temperature can occur; as a result, the path CD on the Tt diagram
is horizontal. When all liquid has disappeared, removing more heat cools the system
below T* and pushes the mixture into the two-phase solid-solid region of the phase
diagram. The slope of each branch of the cooling curve is related to the heat capacities
and latent heats for the corresponding phase change.

The cooling curve in Figure 9.19 is an idealized schematic in which the discontinui-
ties in slope occur at sharply defined temperatures. In reality the transitions from one
straight line to the next on the Tt diagram are rounded and may appear continuous.
Such indistinct discontinuities may be caused by too rapid cooling, supercooling, or
incomplete mixing, which produces local nonuniformities in the sample. 

Supercooling can also cause the spontaneous appearance of new phases, accompa-
nied by large latent heat effects and a temporary increase in temperature. Since liquids
can be so easily supercooled, cooling curves often fail to locate the solidus reliably;
cooling curves typically yield values of the solidus temperature that are too low.
Therefore, once the liquid phase has completely solidified, the solidus is often deter-
mined by reversing the process and heating the solid back to the solidus [20]. To locate

Figure 9.19 Schematic Txx diagram and the temperature-time diagram by which cooling
curves are used to locate point B on the liquidus and to locate the eutectic temperature T*
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the entire liquidus and solidus, this procedure is repeated for many overall composi-
tions. More examples of cooling curves are available in the book by Adamson [21].

9.4.4 Immiscible Solids and Immiscible Liquids

Many nonmetallic substances are almost completely immiscible in both the solid and
the liquid phases. For such mixtures the Txx diagram is composed of an LLE diagram
superimposed on an LSE diagram. Almost any mixture having a UCST will give such
a diagram; an example is phenol and water, shown in Figure 9.20. On that diagram, at
high temperatures, T > UCST, the mixture is one-phase liquid. At 42.5 > T > 1.3°C the
system can exist in an LLE situation or in an LSE situation; in the latter, a phenol-rich
liquid is in equilibrium with pure phenol solid. At 1.3°C the system is in three-phase
equilibrium involving a water-rich liquid, a phenol-rich liquid, and pure phenol solid.
At –1.3°C a eutectic forms in which the two pure solids are each in equilibrium with a
nearly pure-water liquid phase.

The lesson here is that, while the phase behavior of just two components can
involve complications among several solid, liquid, and gaseous phases, the resulting
phase diagrams can be understood as superpositions of simple diagrams discussed in
this chapter. For example, the phenol-water diagram in Figure 9.20 combines its LLE
diagram from the left of Figure 9.13 with its LSE diagram, which is like Figure 9.18.

Figure 9.20 Txx diagram for phenol-water mixtures at 1 bar. These mixtures are partially
immiscible as liquids and completely immiscible as solids. Sp = pure phenol solid; Sw = pure
ice. Note the eutectic for nearly pure-water mixtures. Data from [8–11].
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9.5  BINARY MIXTURES OF FLUIDS AT HIGH PRESSURES

In previous sections we discussed phase diagrams for binary mixtures at moderate
pressures. When mixtures contain only condensed phases, their phase diagrams are
little affected by increases in pressure. However, phase diagrams involving vapors
can show substantial changes with increasing pressure. For example, mixture critical
lines may not be continuous curves connecting the pure-component critical points;
liquid phases may split in two, causing three-phase vapor-liquid-liquid equilibria;
and high-pressure gas mixtures may themselves split, causing gas-gas equilibria.
Many different kinds and combinations of fluid-phase behavior have been observed
in binary mixtures, but in this section we can summarize only the commonly
observed behavior. Our presentation summarizes more detailed descriptions of high-
pressure phase equilibria given by Rowlinson and Swinton [22] and by Schneider [23].

9.5.1 Classification of Phase Diagrams

Binary mixtures can exhibit so many different kinds of fluid-phase behavior [23, 24]
that we need a way to organize and classify them. The classification presented here is
based on a scheme first suggested by Scott and van Konynenburg [25, 26]. In their
original work Scott and van Konynenburg used the van der Waals equation to iden-
tify different forms for mixture critical lines. Since that work, more complicated PvT
equations of state have been used to identify additional shapes for critical lines; how-
ever, many of those have not been observed experimentally.

Identification of classes can be simplified if we work from an F-diagram, rather
than an F ′-diagram, so we base the classification on features of PT diagrams. For
many binary mixtures, the gas-liquid critical line on a PT diagram is a continuous
curve between the pure-component critical points. This occurs for many binaries, but
not for all. So, as in Figure 9.21, the Scott-van Konynenburg scheme first divides all

Figure 9.21 Hierarchy of binary fluid mixtures in the Scott-van Konynenburg classification,
based on high-pressure fluid-phase behavior
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binaries into two groups: those whose gas-liquid critical lines are continuous from one
pure-component critical point to the other, and those whose critical lines are discon-
tinuous. Then the mixtures in each group are divided into classes, depending on
whether liquid-liquid phase separations occur and, if so, on features of the three-
phase VLLE loci. This classification hierarchy is summarized in Figure 9.21.

A three-phase line will terminate when two of the three phases become identical;
such states mark the intersection of the three-phase line with a critical line. Consider
the three-phase vapor-liquid-liquid situation. If the two liquid phases become identi-
cal, then the VLLE line has intersected a locus of liquid-liquid critical points. Similarly,
if the vapor phase becomes identical to one of the liquid phases, then the VLLE line
has intersected a gas-liquid critical line. These intersections are called upper critical end
points (UCEP) if they occur at a maximum temperature on the VLLE locus; they are
called lower critical end points (LCEP) if they occur at a minimum temperature. The
number and kinds of critical end points help distinguish the classes in the Scott-van
Konynenburg scheme.

Representative PT diagrams for the five classes are sketched in Figure 9.22; that fig-
ure has been constructed with the following horizontal and vertical symmetries. The
top row in the figure contains all mixtures that have continuous critical lines between
the pure-component critical points; mixtures in the bottom row do not have their pure
critical points connected by a mixture critical line. The second column in Figure 9.22
contains those mixtures in which the VLLE line ends only at a UCEP, while the third
column is composed of those mixtures that have both an LCEP and a UCEP. We cau-
tion that each class further divides into subclasses, so the schematic PT diagrams in
Figure 9.22 only represent some members of each class. We now briefly summarize
the broad features of the five principal classes; more details can be found elsewhere
[22–26].

9.5.2 Binaries with Continuous Vapor-Liquid Critical Lines

Mixtures in this first group all have gas-liquid critical points that form a continuous
line between the critical points of the pure components. The three classes in this group
can be distinguished by the number of critical end points (CEPs). 

Class A. These binaries never exhibit LLE and therefore have no critical end points,
although many form azeotropes. However, most mixtures in class A would exhibit
LLE with UCEPs, except that solidification occurs at temperatures above that at which
a liquid-liquid split would occur. Although the mixture critical line is continuous, the
mixture critical T and P may not be bounded by the pure-component critical points. In
a few class A mixtures phase splits occur at temperatures above the critical points of
both pures. This could hardly be called liquid-liquid equilibrium; instead, such an
immiscibility is called gas-gas equilibrium (GGE). Three kinds of gas-gas equilibria
have been identified; that in class A is called GGE of the third kind. 

Class B. These binaries have continuous gas-liquid critical lines and undergo liquid-
liquid phase splits at low temperatures. The LLE curves have only UCSTs and the
three-phase VLLE line terminates at a UCEP by intersecting the locus of UCSTs (see
Figure 9.22). From the UCEP the UCST locus extends to higher pressures, but it does
not intersect the gas-liquid critical line. The slope of the UCST locus may be positive
or negative. 
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Class C. These binaries have both a UCST and an LCST at temperatures removed
from the critical temperatures of the pure components. The locus of UCSTs intersects
the VLLE line at a UCEP, while that for LCSTs intersects the VLLE line at an LCEP.
The loci of UCSTs and LCSTs may or may not form a continuous line of fluid-fluid
critical points. Few binaries have both UCSTs and LCSTs, so few fall into class C.

9.5.3 Binaries with Discontinuous Vapor-Liquid Critical Lines

When the mixture critical line is discontinuous, it is divided into two branches by a
three-phase VLLE line, as shown in Figure 9.22. The high temperature end of the
VLLE line is a UCEP that connects one branch of the critical line to the critical point of
the more volatile component. This branch of the critical line is usually short. Based on
the behavior of the critical branch emanating from the critical point of the less volatile
component, we divide these mixtures into two classes.

Class D. From the critical point of the less volatile component, the critical branch in
these mixtures traces a path to high pressures without terminating at a fluid-phase

Figure 9.22 Schematic PT diagrams for the five major classes of binary fluid mixtures. Large
dots are pure vapor-liquid critical points; dashed lines are pure vapor-pressure curves. Solid
lines starting from the pure, high-pressure critical point are mixture vapor-liquid critical lines;
other solid lines are mixture liquid-liquid critical lines. Small dots are upper (U) and lower (L)
critical end points; dash-dot lines are three-phase VLLE lines. Diagrams shown here are repre-
sentative of the classes, but they do not exhaust the possibilities.
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critical end point; however, at sufficiently high pressures solidification may occur. In
most class D mixtures the VLLE line lies between the pure-component vapor pressure
curves. However, in some mixtures the VLLE line lies above the vapor-pressure curve
of the more volatile component, causing heterogeneous azeotropes at low pressures.
A few class-D mixtures exhibit gas-gas equilibrium of the second kind, in which the
critical line passes through a temperature minimum, while others exhibit gas-gas
equilibrium of the first kind, in which the critical line has a maximum in temperature.
Mixtures in class D are the most highly nonideal and display the richest phase behav-
ior of any class in the Scott-van Konynenburg scheme. 

Class E. In these systems one branch of the critical line originates at the critical point
of the less volatile component and circles back to low temperatures and pressures, ter-
minating at an LCEP on the three-phase VLLE curve. At low temperatures the range
of liquid-liquid immiscibility ends at an LCST. So if we start at the critical point of the
less volatile component, we can experimentally trace the mixture critical loci in a con-
tinuous fashion from vapor-liquid critical states through liquid-liquid critical states.
Some mixtures in this class have a second region of liquid-liquid immiscibility with
another UCST at still lower temperatures: a miscibility gap.

9.5.4 Relations Among Classes

The Scott-van Konynenberg classification of binary mixtures helps us organize
observed behavior. For example, when we examine an oil reservoir, we know that the
number of phases observed will depend on the substances present, as well as on the
temperature, pressure, and composition. As material is removed from the reservoir,
the state changes, causing the phase behavior to change. Such changes may be, at least
qualitatively, anticipated and understandable in terms of the classification of binaries,
even though reservoir fluids are not binary mixtures.

But besides organizing observations, the classification scheme can also help us
devise strategies for manipulating phase behavior to achieve engineering goals. Phase
behavior reflects differences in intermolecular forces, and we have at least one crude
means for changing intermolecular forces—change a component. For example, recent
research has shown how variations in critical lines and shifts among classes can be
achieved by mixing alkanes of different chain lengths [24]. Similar shifts can also be
achieved by mixing polymers that have different molecular weights and different
molecular weight distributions. 

Such shifts in phase behavior are exploited in many applications. For example, in
“miscible flooding,” carbon dioxide, propane, or butane may be injected into reser-
voirs to recover underground oil. These light components tend to solubilize liquid oil
into a fluid phase that more readily flows to a recovery well; however, the phase dia-
grams for such mixtures are complicated by the presence of water. Likewise, de-
asphalting and dewaxing processes in refineries introduce light components into
heavy crudes to precipitate heavy components while solubilizing lighter ones.

We now offer some specific examples of how manipulating intermolecular forces
can cause a change from one class to another. Recall that at one extreme we have mix-
tures in class A, which are most nearly ideal, and at the other extreme we have those
in class D, which are most strongly nonideal. To change a mixture systematically from
ideal to highly nonideal, we must change the degree of disparity in intermolecular
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forces. This can be done in many ways; two are illustrated in Figure 9.23. In the top
part of Figure 9.23 we consider mixtures containing methane plus a second alkane.
These mixtures become more nonideal as the length of the second component is
increased; their nonideality also increases when branching or unsaturated bonds are
added to the molecules of one component. For example, methane and propane are
miscible in all proportions and their mixtures are class A, but when we reach methane
+ n-hexane, the nonideality is strong enough to cause liquid-liquid immiscibility and
we have a class E mixture. As we move to mixtures of methane + 1-hexene, we remain
in class E, but the mixtures are immiscible at low and high temperatures, with a misci-
bility gap at intermediate temperatures. Finally, when we reach methane + methylcy-
clopentane we have arrived in class D, and these mixtures exhibit GGE.

In another kind of progression, we can exploit not only size and shape effects, but
also differences in molecular polarity. An example appears in the lower part of Figure
9.23, wherein the intermediate class is B rather than E. This path is common to mix-
tures of polar + nonpolar molecules or strongly polar + weakly polar molecules.
Again the strategy is to increase the disparity in intermolecular forces as we move
from class A through B to D [22, 27–29].

A third progression carries us from class A directly to class C; nearly all known
class C mixtures contain water as one component. To have class C behavior, a mixture
apparently must have strong unlike-molecule (solvation) interactions, as well as
strong like-molecule (association) interactions. These effects often occur as a result of
hydrogen bonding. A particular example of the progression from A to C is provided
by aqueous-alcohol solutions, in which we systematically change the size and shape
of the alcohol. For example, liquid mixtures of water plus methanol, or ethanol, or a
propanol are all miscible and are class A mixtures; however, some butanol + water
mixtures are only partially miscible and are class C mixtures. In fact, water + dimeth-
ylethanol is a member of class A, while aqueous solutions of n-butanol and of both
methylpropanols are members of class C.  

Figure 9.23 Two paths by which we can use systematic replacements of one component to
move among classes of binary mixtures, thereby changing phase behavior. Mixtures of methane
and n-hexane exhibit LLE with a UCST and are in class E; mixtures of methane and 1-hexene
are also in class E, but they exhibit both a UCST and an LCST, as shown in Figure 9.14.
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These kinds of changes in composition can serve as a basis for improving process
designs. For example, because of the differences in phase behavior, liquid-liquid
phase separations (extraction) are more energy efficient than vapor-liquid phase sepa-
rations (distillation). So, if we have a VLE situation that can be converted to LLE by a
small change in composition, then we may be able to improve the economics and effi-
ciency of a particular separation. Subtle changes in composition can sometimes pro-
duce large changes in phase behavior.

9.5.5 Do All Mixtures Have Vapor-Liquid Critical Points?

Mixtures in classes D and E have discontinuous vapor-liquid critical lines, which sug-
gests that some mixtures may not have critical points at all compositions. To test this,
we used the Redlich-Kwong equation of state to compute the critical lines for a mix-
ture in class D. The equations to be solved are the conditions for a binary critical point
(9.3.23) and (9.3.24). The mixing rules used for the Redlich-Kwong parameters are
given in § 8.4.4, along with the Redlich-Kwong expression for the fugacity coefficient. 

The conditions (9.3.23) and (9.3.24) represent two algebraic equations that can be
solved for two of the three unknowns (Tc, Pc, and xmc , where xm is mole fraction of
methane). The equations are nonlinear in all three unknowns and must be solved
simultaneously by trial. We found the critical lines by setting a value for Tc , then solv-
ing (9.3.23) and (9.3.24) for Pc and xmc. The calculations were performed using pure-
component critical properties characteristic of methane (Tc = 190.6 K, Pc = 46 bar) and
ammonia (Tc = 405.6 K, Pc = 112.8 bar). Mixtures of methane and ammonia are known
to be members of class D; however, we caution that the critical lines provided by the
Redlich-Kwong equation with our simple mixing rules are only semiqualitative. But
since our intent is only to show qualitative behavior, this simple model is adequate.

The computed critical line is shown on the Tx diagram in Figure 9.24. As expected,
the critical line has two branches: a short branch extending from the pure methane

Figure 9.24 Vapor-liquid critical lines computed from the Redlich-Kwong equation of state for
binary mixtures of a methane-like component and an ammonia-like component. Filled circles
are pure-component critical points. Mixtures having compositions (0.43 < xm < 0.52) have two
critical points, but mixtures having (0.52 < xm < 0.89) have none.
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critical point to about 212 K with xm = 0.9, and a long branch extending from the pure
ammonia critical point to about 216 K with xm = 0.435. There is a small range in tem-
perature (212.5 K < T < 215.5 K) and a large range in composition (0.52 < xm < 0.89)
over which this model mixture displays no critical points: for these mixtures at tem-
peratures T < 215 K, vapor-liquid (fluid-fluid?) equilibrium can be observed at pres-
sures to hundreds—even thousands—of bars. Note that there is a small range of
compositions (0.43 < xm < 0.52) over which the mixtures exhibit more than one critical
point.

9.6  TERNARY MIXTURES

In this section we briefly describe some of the phase behavior that has been observed
in ternary mixtures. When three components are present, mixtures can exhibit a
wealth of phase behavior, including equilibria among solid, gas, and multiple liquid
phases. We have space here only to show the most common diagrams (§ 9.6.1)
observed for simple liquid-liquid (§ 9.6.2) and vapor-liquid (§ 9.6.3) equilibria. More
extensive descriptions can be found elsewhere [5, 17].

9.6.1 Phase Equilibria on Triangular Diagrams

Phase equilibria for ternary mixtures are conventionally represented on equilateral
triangular diagrams. Such diagrams provide a convenient way to present basic mate-
rial balance relations; these are reviewed in Appendix H. Triangular diagrams are F ′
diagrams, and for C = 3 components, (9.1.12) gives

(9.6.1)

where S is the number of internal constraints, excluding phase-equilibrium relations.
Typically, we plot isothermal-isobaric triangular diagrams, so (9.6.1) reduces to F ′ = 2:
we need two overall system mole fractions to locate the state on a triangular diagram.

To determine the number of properties needed to identify the state, we apply the
phase rule (9.1.13); for ternaries at fixed T and P, it becomes

(9.6.2)

So a one-phase ternary has F = 2; these states span areas on a triangular diagram. At
fixed T and P, a two-phase ternary has F = 1, which defines a line. Two-phase lines
appear in pairs, each giving the composition of one phase. Areas between two-phase
lines are traversed by tie lines, and, if the overall mole fractions are known, the rela-
tive amounts in the two phases can be found by lever rules. 

At fixed T and P, a three-phase ternary has F = 0, which defines a point. On a trian-
gular diagram, a three-phase situation produces three points, each giving the compo-
sition of one of the phases. The three points can be connected to form a triangle, and
the relative amounts in the three phases can be found by a tie-triangle rule (see
Appendix H). 

F′ C 1 S–+ 4 S–= =

F C 2 P– S–+ 3 P–= =



406 PHASE DIAGRAMS FOR REAL SYSTEMS

9.6.2 Liquid-Liquid Equilibria

Triangular diagrams are commonly used to depict liquid-liquid equilibria, and in ter-
nary mixtures many different kinds of diagrams can occur. Figure 9.25 shows sche-
matics of six common kinds of isothermal-isobaric diagrams, with the diagrams (a)–
(f) arranged according to the number of two-phase regions. This same arrangement is
obtained if we use, as the organizing principle, the number of binaries that undergo
liquid-liquid phase splits.   

Many ternaries display the simple behavior appearing in Figure 9.25(a), in which
only one binary undergoes LLE and the third component is completely miscible in
both phases. The resulting triangular diagram contains one single-phase region and
one two-phase region, and the two-phase boundary must contain a consolute point. A

Figure 9.25 Six common types of isothermal-isobaric triangular diagrams for ternary mixtures
that exhibit liquid-liquid equilibria. Filled circles locate consolute points. Numeral 3 inside a tri-
angle identifies three-phase LLLE; the compositions of the three phases are given by the verti-
ces of the triangles. These six diagrams are arranged by the number of two-phase regions: (a)
and (b) each have one, (c) has two, and (d)-(f) each have three. Adapted from Walas [5].
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consolute point is not necessarily an extremum on an isothermal-isobaric two-phase
line; instead, the consolute point corresponds to a tie line of zero length.

When two of the binaries can exhibit LLE, the resulting ternary diagram usually
takes one of the forms shown in (b), (c), or (d) of Figure 9.25. Of these, the simplest
appears in Figure 9.25(b). This diagram contains two single-phase regions separated
by one two-phase region that extends from one immiscible binary to the other. Conse-
quently, no consolute point occurs for any ternary mixture. 

In Figure 9.25(c) the two immiscible binaries give rise to two different two-phase
regions separated by one single-phase region. Each two-phase boundary contains a
consolute point, and at states between the two-phase regions, the ternary is com-
pletely miscible. This behavior is common; however, in some cases, mixtures at states
between the two-phase regions are not miscible, but instead split into three phases.
This possibility appears in Figure 9.25(d). The compositions of the three phases form
the vertices of a triangle, and each side of the triangle is bounded by a two-phase
region. Neither the vertices nor the sides of the three-phase triangle contain consolute
points; but since only two of the binaries exhibit LLE, the third two-phase region must
end at a consolute point.

If all three binaries can exhibit LLE, the resulting ternary diagram usually appears
as in either (e) or (f) of Figure 9.25. In (e) a one-phase region separates the three two-
phase regions, and each two-phase boundary contains a consolute point. Alterna-
tively, if a three-phase region separates the two-phase regions, we obtain a diagram
like that in (f). Now none of the two-phase boundaries contain consolute points.

Solutropes. In § H.1 of Appendix H, we remark on the invariance in composition that
occurs when a line on a triangular diagram lies parallel to an edge of the triangle. This
invariance takes on special significance when the parallel line is a tie line across a two-
phase region. When this occurs, the two phases in LLE have the same composition in
one component, and the mixture is called a solutrope. The component of common com-
position is the one represented by the vertex that lies opposite the tie line. An example
is the solutrope formed by mixtures of benzene, pyridine, and water, shown in Figure
9.26. In those mixtures, the solutropic benzene-rich phase has the same composition in
pyridine as the solutropic water-rich phase. 

Figure 9.26 Formation of a solutrope in mixtures of water, benzene (C6H6), and pyridine
(C5H5N). Filled circle marks consolute point. Adapted from Francis [17].
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Solutropes are not uncommon; they may occur in any of the classes of ternary mix-
tures shown in Figure 9.25. Their practical significance arises from their ability to
inhibit separations by liquid extraction, because transfers of components between
phases are often hindered when a mole fraction becomes the same in both phases.
Such inhibitions may be compounded if the densities of the phases also become equal,
as they may near solutropes. Since liquid extractions exploit density differences,
no separation occurs in an extraction process when the densities of the two phases
become equal, even if their compositions differ. 

Changes in Temperature. In general, the diagrams shown in Figure 9.25 apply to
mixtures of different components, but in some cases, they may apply to one mixture at
different values of T or P or both. Such changes in the diagram of one ternary can be
explained by changes in the miscibility of its component binaries. Further, not only
might changes of state shift a ternary among the classes shown in Figure 9.25, but
such changes may also cause more subtle shifts within a class. As an example, con-
sider mixtures of water, phenol, and triethylamine at 10°C and at 75°C. First, consider
the phase behavior of the three binaries: (a) at 10°C water and phenol are partially
miscible (see Figure 9.13), but they are completely miscible at 75°C. (b) At 10°C water
and triethylamine are completely miscible but they are partially miscible at 75°C. (c)
Phenol and triethylamine are completely miscible at both temperatures. Based on the
behaviors of these binaries, we would expect the ternary mixture to have a triangular
diagram like that in Figure 9.25(b); that is, we expect the ternary to have two one-
phase regions separated by a two-phase region without a consolute point. But, in fact,
the diagrams for both temperatures appear as in Figure 9.27. Both diagrams have one
single-phase region and one two-phase region with a consolute point; further, the
two-phase regions differ in subtle but significant ways. For example, at 10°C the con-
solute mixture contains very little phenol, but at 75°C it contains very little triethyl-
amine. Note that at 10°C pure phenol solidifies, producing a small region of liquid-
solid equilibrium in the ternary, but this does not affect our analysis of the LLE.    

Figure 9.27 Effect of temperature on LLE in mixtures of phenol, water, and triethylamine. At
10°C a consolute point occurs in mixtures lean in phenol, while at 75°C a consolute point occurs
in mixtures lean in triethylamine. At 10°C pure phenol solidifies. Compositions plotted here as
weight fractions. Adapted from Walas [5].
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9.6.3 Vapor-Liquid Equilibria

To show how vapor-liquid equilibria usually appear on triangular diagrams, we con-
sider the effects of temperature on mixtures of CO, N2, and H2 at 150 bar. This pres-
sure is above the critical pressures of all three pure components. First, we consider
mixtures at 78 K, as shown on the lhs of Figure 9.28. Pure hydrogen is supercritical at
this state, but 78 K is below the critical temperatures of both N2 and CO. Under these
conditions, binary mixtures of N2 with CO are single-phase liquids at all composi-
tions, but binary mixtures of H2 with N2 and of H2 with CO exhibit VLE. In all cases,
the vapor phase is rich in hydrogen. For ternary mixtures, the two-phase region spans
most CO and N2 compositions. Across the two-phase region tie lines have positive
slopes when the liquid contains a large fraction of CO and negative slopes when the
liquid contains a small fraction of CO.

When the temperature is raised to 88 K, then the H2-N2 binary is a single-phase
fluid at all concentrations, while the H2-CO binary can still exhibit VLE; see the rhs of
Figure 9.28. At this higher temperature, ternary mixtures undergo vapor-liquid phase
splits over a smaller region of the triangular diagram than they do at 78 K, though the
vapor phase is still rich in hydrogen. Since only one binary exhibits VLE, a critical
point must occur along the boundary of the two-phase region; such a critical point
represents a tie line of zero length, and it separates saturated ternary vapors from sat-
urated ternary liquids. The critical point does not necessarily occur at an extremum on
a two-phase line plotted on a triangular diagram at fixed T and P. Figure 9.28 illus-
trates that, on triangular diagrams, the shapes of two-phase regions can change dras-
tically in response to relatively minor changes of state.

Lastly, we mention that ternary fluid mixtures can exhibit homogeneous azeo-
tropes. These are vapor-liquid equilibrium states at which both phases have the same
composition and the pressure is an absolute maximum or minimum with respect to
composition at fixed temperature [6].

Figure 9.28 Effect of a temperature change on vapor-liquid equilibria in ternary mixtures of
carbon monoxide, nitrogen, and hydrogen at 150 bar. Mixtures rich in hydrogen are vapors;
those lean in hydrogen are liquids. At 78 K (left) a vapor-liquid phase split occurs for most of
these mixtures; however, at 88 K (right) VLE is confined to mixtures lean in nitrogen, and a
vapor-liquid critical point appears (filled circle). Data from Walas [5].
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9.7  SUMMARY

Even though we have limited this chapter to one-, two-, and three-component sub-
stances, we have seen a rich variety of phase-equilibrium behavior. We have tried to
show that much of that behavior can be organized to take advantage of similarities
and analogies. These similarities and analogies form basic patterns that promote
understanding; our understanding deepens when we can recognize the limitations
and exceptions to such organizing principles. Here is a summary of the more impor-
tant patterns.

First, recall the close analogies that exist between pure-component critical points
and those of binary-mixtures. Unlike simple phase changes, which represent transi-
tions between stable and metastable behavior, all critical points represent transitions
between stable and unstable behavior. For pure components, the transition is driven
by mechanical instabilities, and at vapor-liquid critical points pure fluids have

(8.2.13)

with

(8.2.14)

These equations imply that, at a critical point on a Pv diagram, the critical isotherm
passes through a point of inflection.

Similarly, for binary mixtures, transitions at critical points are driven by diffusional
instabilities; so, at both vapor-liquid and liquid-liquid critical points, binary mixtures
have

(9.3.23)

with

(9.3.24)

These equations imply that, at a critical point on a fugacity-composition diagram, an
isothermal-isobaric plot of the fugacity passes through a point of inflection. The anal-
ogies among critical points are even stronger than implied by the structures of the
pairs of equations (8.2.13)–(8.2.14) and (9.3.23)–(9.3.24): all critical points display cer-
tain universal features that are independent of the kinds of components present and
independent of the kind of criticality. See Sengers et al. [30].

Second, recall the many analogies that occur in the phase behavior of binary mix-
tures. For example, many features that occur on binary vapor-liquid phase diagrams
have counterparts on liquid-solid diagrams. Some of those equivalent features are
listed in Table 9.2. Furthermore, such equivalences include not only the kinds of
behavior but may also extend to the general shapes of two-phase lines. That is, many
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Txy diagrams for vapor-liquid equilibria are equivalent to Txx diagrams for liquid-
solid equilibria; we merely relabel the lines and regions. When two structures are the
same but have different labels, we say the structures are isomorphisms; an example is
shown in Figure 9.29. However, we caution that not all liquid-solid diagrams are iso-
morphic to vapor-liquid diagrams; liquid-solid systems can also display phase behav-
ior, such as peritectics, that rarely or never occurs in vapor-liquid systems.

Third, recall those fundamental features that are used to organize high-pressure
vapor-liquid behavior of binary mixtures. The relevant features are the vapor-liquid
and liquid-liquid critical lines on PT diagrams. Binaries are first divided into two
groups: mixtures in group 1 have continuous vapor-liquid critical lines between the
pure-component critical points, while those in group 2 do not. Then these two groups
are each divided into classes, based on their liquid-liquid critical lines. If a mixture
does not exhibit LLE, then it is in class A. Otherwise, group-1 (or group-2) mixtures
that exhibit only UCSTs are placed in class B (or class D). Similarly, group-1 (or group-
2) mixtures that exhibit both UCSTs and LCSTs are placed in class C (or class E). These

Table 9.2 Examples of equivalent features that can
appear on isobaric Txy and Txx diagrams for
vapor-liquid and liquid-solid equilibria of binary
mixtures

VLE LSE

dew-point curve ⇔ liquidus

bubble-point curve ⇔ solidus

homogeneous azeotrope ⇔ solutrope

heterogeneous azeotrope ⇔ eutectic

Figure 9.29 One of the many isomorphisms that exist between vapor-liquid and liquid-solid
phase diagrams for binary mixtures. (left) An isobaric Txy diagram with a minimum boiling-
point azeotrope and a miscibility gap above an LLE situation; (right) an isobaric Txx diagram
with a minimum melting-point solutrope and a miscibility gap above an SSE situation.

liquid

solid

S1 S2

S1 + S2

L + S

L + S

vapor

liquid

L1 L2

L1 + L2

V + L

V + L



412 PHASE DIAGRAMS FOR REAL SYSTEMS

five classes can then be divided into subclasses, based on more detailed behavior, but
these fundamental patterns provide a solid foundation for more detailed study.  

Lastly, recall that complicated phase diagrams are usually superpositions of simple
diagrams. For example, diagrams showing vapor, liquid, and solid phases are usually
combinations of vapor-liquid and liquid-solid diagrams. Diagrams showing vapor-
liquid critical end points are combinations of vapor-liquid and liquid-liquid dia-
grams. And liquid-solid diagrams containing both a eutectic and a peritectic can usu-
ally be resolved into a liquid-solid eutectic diagram plus a liquid-solid peritectic
diagram. In analyzing such diagrams, your strategy should be to divide and conquer. 

It is a sobering fact that this chapter introduces only the more common and least
complex kinds of multiphase behavior: the chapter fails to do full justice to Nature’s
diversity. Yet, the features described here should provide a structure by which you can
effectively analyze and use phase diagrams.
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PROBLEMS

9.1 Table 9.1 presents several phase-equilibrium situations and gives the value of the
variable F. For each entry in the table, give the corresponding value of F ′.

9.2 (a) On a pure-component Pv diagram, the triple point(s) are points, even though
(9.1.12) gives F ′ = 2, which suggests they should define a surface. Explain. 

(b) On an isothermal Pxy diagram for a binary mixture, what would be the object
that represents three-phase VLLE situations? Is your answer consistent with
the value of F ′ given by (9.1.12)? If not, explain.

9.3 (a) Use the Pxy diagram in Figure 9.4 to estimate the number of moles of liquid
present at 10 bar, 330 K when z1 = 0.75 and N = 10. 

(b) Use the Pxy diagram in Figure 9.4 to estimate the number of moles of liquid
present at 2 bar, 330 K when z1 = 0.75 and N = 10.

(c) Using the Pxy diagrams in Figure 9.5, describe the number and relative
amounts of the phases that appear when a mixture, initially having z1 = 0.79
at 430 K and 60 bar, is isothermally expanded to 30 bar.

9.4 Each entry in the following table represents a proposed problem concerning a
two-phase, VLE situation. For each problem, answer these four questions: 

(a) Is it an F problem or an F ′ problem? 

(b) Is it well-posed, underspecified, or overspecified? 

(c) If it is not well-posed, what reasonable changes will make it well-posed? 

(d) What always-true equations start a solution to the well-posed problem?  

9.5 What equation, relating temperature and pure-component vapor pressures,
would be consistent with the assumption that the difference in heat capacities

Casea

a Notation: {x} = set of liquid mole fractions, {y} = set of vapor mole fractions, {z} = set of 
feed mole fractions; V, L = fraction in vapor, in liquid; * = steady flow; subscripts 1, 2, 3, 
4 = components; subscript in = inlet.

CCCC Knowns Constraints To find

1 2 T, y1 . . . P, x1

2 4 T, P, x1, y1, y2 . . . x2, x3, y3

3 4 {x}, y1 . . . T, P, y2, y3, y4

4 3 T, x1, x3 . . . P, y2, y3

5 3 T, x1 . . . P, y1,V, L

6 3 T, P, z1,V isothermal* z2, {x}, {y}, L

7 3 {z},V, L, x1 adiabatic* x2, {y}, Tin, Pin
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between vapor and liquid is constant over a range of temperatures up to the boil-
ing point? 

9.6 For pure substance 1, which appears in Figure 9.18, draw a semiquantitative plot
of the molar Gibbs energy as a function of temperature from 0 to 100°C.

9.7 Each entry in the following table represents a proposed problem concerning a
multiphase equilibrium situation. For each entry, answer these questions:  

(a) Is it an F problem or an F ′ problem? 

(b) Is it well-posed, underspecified, or overspecified? 

(c) If it is not well-posed, what reasonable changes will make it well-posed? 

(d) What always-true equations start a solution for the well-posed problem? 

9.8 Using only the following information, estimate the triple-point temperature and
pressure of pure ethane: Tm = 89.9 K, Pc = 48.8 bar, Tc = 305.4 K, and

(P9.8.1)

where Ps is the vapor pressure, x = (1 – T/Tc), and the parameter values are as
follows: A = –6.34307, B = 1.01630, C = –1.19116, and D = –2.03539.

9.9 Draw an approximate, but quantitative, PT diagram for pure silicon based only
on the following information:

9.10 If the vapor pressure of a pure substance obeys ln Ps= A + B/T, what other infor-
mation would you need to obtain a consistent estimate for the temperature
dependence of the sublimation pressure, Psub?

Casea

a Notation same as in Problem 9.4, with following additions: S = fraction solid; {w} = set of 
solid mole fractions; superscripts α, β = liquid phases; subscripts in = inlet, o = outlet.

CCCC PPPP Knowns Constraints To find

1 4 2(LS) T, P, x1, w1, w2 . . . x2, x3, w3

2 3 4(VLLS) V, Tin, Pin adiabatic* {z}, Lα, Lβ, S, Po, {y}

3 2 2(VS) T, P solid phase 
pure

y1

4 3 3(VLL) {z}, P, y1, V . . . y2, {xα}, {xβ}, Lα, T

5 3 2(VL) {z}, To, Po, Pin adiabatic,  
reversible*

V, {x}, {y}, Tin

Tm = 1700 K ∆hm/R = 5600 K vs = 12 cc/mol

Tboil = 2700 K ∆hvap/R = 36,400 K v{/vs = 0.9 at Tm

Ps

Pc
-----

 
 
 

ln x A Bx0.5 Cx2 Dx5
+ + +( )

1 x–
-----------------------------------------------------------------=
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9.11 (a) For the (overall) equimolar mixture in Figure 9.17(c), draw the constant heat-
removal cooling curve, analogous to that appearing on the right in Figure
9.19.

(b) For the (overall) equimolar mixture in Figure 9.17(d), draw the constant heat-
removal cooling curve.

(c) For the (overall) equimolar mixture in Figure 9.18, draw the constant heat-
removal cooling curve.

9.12 Fluid mixtures that exhibit vapor-liquid and liquid-liquid equilibria can be sub-
jected to isothermal expansions performed at constant rates of work production.
The results would be pressure versus time plots with lines behaving like those on
the temperature versus time plot shown in Figure 9.19. For such expansions,
explain why the pressure-time lines would change slope.

 
9.13 (a) Using the plots in Figures 9.11 and 9.12 as a guide, develop an expression in

which the enthalpy of vaporization ∆hvap for azeotropes in methyl acetate-
methanol mixtures is related to the enthalpy of vaporization for azeotropes in
acetone-chloroform mixtures.

(b) Compare values of ∆hvap for the azeotropes to those of the pure components
in Figure 9.12. Conclusion?

9.14 Draw a Txx phase diagram consistent with the following information; in each
region of your diagram, indicate what phases would be present. Pure substance
A melts at 500 K while pure B melts at 800 K. Compound AB2, which behaves as
a pure component, melts at 600 K. The solid form of AB2 can dissolve substance B
up to xB = 0.8 for T < 700 K. Heating this solid at 700 K yields only a liquid and
pure solid B. When the liquid having xB = 0.10 is allowed to cool, pure solid A
separates first. Then, at 400 K, no further change in temperature occurs until all
liquid has disappeared, leaving a system containing solid A and solid AB2. 

9.15 (a) One mole of chloroform(1) is added to one mole of carbon tetrachloride(2),
completely filling a closed vessel. The mixture is then brought to 50°C at 0.55
bar. Under these conditions, the system is in vapor-liquid equilibrium; the
compositions of the phases are x1 = 0.428 and y1 = 0.556. Determine the total
number of moles in each phase.

(b) At the situation in (a) an additional 0.2 moles of chloroform are added. The
system is then returned to equilibrium at 50°C and 0.55 bar. How many
phases are present in this new situation? If your answer is two, what are the
compositions of the two phases?

9.16 (a) Derive (9.3.16), which gives the slope of an isobaric bubble-T curve for a
binary mixture in VLE. 

(b) Derive the expression, analogous to (9.3.16), that gives the slope of an iso-
baric dew-T curve.

(c) Under what conditions are the slopes in both (a) and (b) positive? negative?
of opposite signs?
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9.17 It is observed experimentally that two miscible subcritical components such as
water(1) and n-propanol(2) will change from one-phase liquid to two phases (LL
or VL) and even to three phases (VLL) when ethylene(3) is added at pressures
above 2 MPa and temperatures above the pure ethylene critical point Tc. Sketch a
triangular diagram for P > 2 MPa and T > Tc. Include on your diagram the
boundaries of the various regions and the expected orientations of the two-phase
tie lines.

9.18 Using an energy balance for a closed system, derive a relation for the slope of the
temperature-time diagram on the right of Figure 9.19, assuming removal of heat
at a constant rate. Assume the heat capacities of the phases are constant, but
include the latent heats for liquid-solid and solid-solid phase transitions. Does
your relation give a slope of zero at the three-phase line?

9.19 Consider the following isothermal-isobaric diagram for a ternary mixture that
exhibits liquid-liquid immiscibility.
(a) On the diagram, label any one, two, and

three-phase regions that appear.
(b) Of the three binary mixtures that can be

formed from these three components,
which are completely miscible at all com-
positions and which exhibit LLE?

(c) Show typical tie-lines for the ternary two-
phase regions and if a consolute point
occurs, circle it.

(d) Redraw the diagram for a higher tempera-
ture at which the two components along the base of the triangle are com-
pletely miscible, the other binary remains partly immiscible, and the three-
phase region remains.

9.20 Five moles of benzene(1), five moles of acetonitrile(2), and five moles of water(3)
are confined to a closed vessel at 1.0133 bar, 333 K. The mixture is observed to be
in three-phase equilibrium: a water-rich liquid (α), an organic-rich liquid (β), and
a vapor. Analyses of samples drawn from each phase give the following mole
fractions:  

(a) Determine the total number of moles in each phase. 
(b) Two more moles of water are added to the vessel, but the mixture remains

three phases with P = 1.0133 bar, T = 333 K. What are the new compositions of
the phases? Now how many moles are in each phase?

i Species xi
α xi

β yi

1 C6H6 0.0026 0.4786 0.4784

3 H2O 0.9212 0.0674 0.2397
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9.21 Using the following information for a binary mixture, draw a quantitative Txx
diagram at ambient pressure:
(a) Pure component 1 melts at 285 K and boils at 350 K. 
(b) Pure component 2 melts at 300 K but no boiling point is seen. 
(c) Pure component 1 has a crystalline phase change from α to β at 250 K. 
(d) The solubility of component 2 in solid component 1 is negligible at all T. 
(e) The solubilities of component 1 in phases α, β, and liquid ({) at various tem-

peratures are given by the following data:

(f) Constant-rate cooling curves from the vapor to a solid have breaks (b) in
slope and horizontals (h) at the following temperatures:  

240 K 250 K 260 K 270 K 280 K 290 K

x1
α 0.33 0.32 0.31  . . .  . . .  . . .

x1
β  . . . 0.0 0.1 0.2 0.15 0.1

x1
{  . . .  . . .  . . . 0.3 0.2 0.15

x1 T(K) T(K) T(K) T(K) T(K)

0.25 285 (b) 270 (h) 263 (h) 255 (b) . . .

0.5 340 (b) 322 (b) 280 (b) 270 (h) 263 (h)

0.75 350 (b) 325 (b) 285 (b) 270 (h) 263 (h)
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OPTIONS FOR EQUILIBRIUM 

CALCULATIONS

 

n previous parts of this book we have developed rigorous, generalized, thermody-
namic descriptions of phenomena. With this chapter we begin to convert those

descriptions into specific forms that can be applied to phase and reaction equilibrium
calculations. Such calculations always requires us to make decisions—to select from
among alternative computational strategies. For example, a common decision to be
faced is this: Which of the five famous fugacity formulae should I use? If, in a given
situation, our models are all reliable and their parameters are all known, and if we can
solve all appropriate thermodynamic relations, then our choices are relatively simple:
our decisions are dictated by the process, the substances involved, and their states.
Unfortunately, most situations are not so simple: we usually have limited information
about the process, all necessary properties of the substances may not be known, some
models may be of limited reliability, and rigorous computational routes may be inac-
cessible. Such constraints complicate the selection process, forcing us to balance ther-
modynamic rigor, model reliability, and computational simplicity.

In § 10.1 we present the basic thermodynamic relations that are used to start phase-
equilibrium calculations: we discuss vapor-liquid, liquid-liquid, and liquid-solid cal-
culations. We have seen that the most interesting phase behavior occurs in nonideal
solutions, but when we describe nonidealities using an ideal solution as a basis, we
must select an appropriate standard state. Common options for standard states are
discussed in § 10.2; they include pure-component standard states and dilute-solution
standard states. 

In § 10.3 we introduce two fundamental approaches to reaction equilibrium calcu-
lations: the traditional stoichiometric method and a nonstoichiometric method, which
is useful when many reactions are occurring and when products and reactants are
known but the reactions are unknown. In setting up both kinds of calculations, we
must again confront issues related to standard states, and we must select appropriate
computational forms. These issues are discussed in § 10.4 for reacting systems.

Finally, in § 10.5 we offer advice to help you select from among the available
options. We are not able to cover all possible options in this book, but the basics pre-
sented here should help organize your thinking when you come to apply thermody-
namics to both traditional and contemporary problems.

I
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10.1  BASIC PHASE-EQUILIBRIUM RELATIONS

 

Consider any two homogeneous phases 

 

α

 

 and 

 

β

 

 in equilibrium with one another at
temperature 

 

T

 

 and pressure 

 

P

 

. Each phase contains any number of nonreacting com-
ponents 

 

C

 

 that can freely cross the phase boundary. No other constraints apply, so the
intensive state can be identified by specifying values for 

 

F

 

 properties, with the num-
ber 

 

F

 

 given by the phase rule (9.1.13),

(10.1.1)

For example, if in addition to 

 

T

 

 (or 

 

P

 

), we know values for the (

 

C 

 

– 1) mole fractions in
one phase, then the state is specified, and we should be able to compute values for 

 

P

 

(or 

 

T

 

) plus the (

 

C 

 

–1) mole fractions in the other phase. The computation requires us to
solve the 

 

C

 

 phase-equilibrium conditions

 

i

 

 = 1, 2, … , 

 

C

 

(7.3.12)

These equilibrium conditions are 

 

always true

 

 in that they apply to every phase equi-
librium situation, and therefore, they serve as the starting point for solving 

 

every

 

phase-equilibrium problem. But to solve the equations in (7.3.12), the fugacities must
be replaced with expressions containing measurables and the measurables must be
replaced with numbers. Consequently, we are faced with two kinds of decisions: (a)
Which of the five famous fugacity formulae (FFF) from § 6.4 will we use for the fugac-
ities? (b) Which models (ideal gas, vapor-pressure correlations, Redlich-Kwong-Soave
equation of state, Wilson equations, etc.) will we use as the basis for introducing num-
bers into the problem? The first decision leads to one of three common strategies for
solving phase-equilibrium problems: the phi-phi method, the gamma-phi method,
and the gamma-gamma method. 

 

10.1.1 The Phi-Phi Method for VLE

 

If we choose to use FFF #1 for all components in both phases, then we have selected
the phi-phi method, and the equilibrium conditions (7.3.12) become

 

i

 

 = 1, 2, … , 

 

C

 

(10.1.2)

Since the pressures are the same in the two phases, this reduces to

 

i

 

 = 1, 2, … , 

 

C

 

(10.1.3)

The fugacity coefficients are to be obtained from a model for the 

 

PvTx

 

 equation of
state. The volume explicit form, 

 

v

 

(

 

P

 

, 

 

T

 

, {

 

x

 

}), should 

 

not

 

 be used for multiphase sys-
tems; instead, a pressure explicit model, 

 

P

 

(

 

T

 

, 

 

v

 

, {

 

x

 

}), should be chosen. Then the fugac-
ity coefficients would be computed from the integral in (4.4.23). 

F C 2 P–+ C 2 2–+ C= = =

fi
α

fi
β

=

xi
αϕi

αP xi
βϕi

βP=

xi
αϕi

α xi
βϕi

β
=
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In the past, the phi-phi method was little used either because volumetric equations
of state did not reliably reproduce the behavior of liquids and dense fluids or because
the computational difficulties were too great. But in recent years, significant improve-
ments have been made in equations of state and in computers, so that now the phi-phi
method is often the method of choice for vapor-liquid equilibria and for high-pressure
liquid-liquid and gas-gas equilibria. 

When the same equation of state is used to represent two-phase equilibria, the
fugacity must have the same value at two different mole fractions 

 

x

 

1

 

 at fixed 

 

T

 

 and 

 

P

 

.
This is illustrated in Figure 10.1 for a binary mixture that can exhibit VLE over a range
of states. The figure shows the fugacity of one component at five pressures along the
275 K isotherm. At this temperature, the mixture critical pressure occurs near 92 bar,
while the pressure of the mechanical critical point occurs near 45 bar. At supercritical
states along the isobar at 100 bar, the fugacity is single-valued in 

 

x

 

1

 

, the fugacity satis-
fies the diffusional stability criterion (8.4.8) at every x-value, and no phase separation
occurs. But at 60 bar, which lies below the critical point but above the mechanical crit-
ical point, the fugacity passes through a loop, the diffusional stability criterion is vio-
lated over a range of 

 

x

 

1

 

, and VLE occurs.
If the pressure is reduced to 30 bar, below the mechanical critical point, the loop in

the fugacity becomes more pronounced. Here 

 

f

 

1

 

 violates the diffusional stability crite-
rion (

 

∂

 

f

 

1

 

/

 

∂

 

x

 

1

 

 > 0 for stability) over only a small range of 

 

x

 

1

 

; but the mechanical stabil-
ity criterion (

 

κ

 

T

 

 > 0) is also violated at states between the extrema in 

 

f

 

1

 

. Finally, at the
lowest pressure (10 bar), the loop in 

 

f

 

1

 

 has completely closed, dividing 

 

f

 

1

 

 into two
parts: a vapor part that is linear and obeys the ideal-gas law, and a fluid part that
includes stable and metastable liquid states at small 

 

x

 

1

 

 values plus mechanically
unstable fluid states at higher 

 

x

 

1

 

 values. The broken horizontal lines in Figure 10.1 are
vapor-liquid tie lines, computed by solving the phi-phi equations (10.1.3) simulta-
neously for both components.

The behavior of the fugacity shown in Figure 10.1 is representative, but it is not the
only way that volumetric equations of state can produce changes in 

 

f

 

1

 

(

 

x

 

1

 

) with
changes in state. For example, at 10 bar, but at temperatures well below 275 K, the liq-
uid branch of 

 

f

 

1

 

 extends over all 

 

x

 

1

 

, and it is the vapor branch that can form a closed
loop. At still other states, both the liquid and the vapor branches extend over all 

 

x

 

1

 

,
and no loop (open or closed) occurs at all. These possibilities are discussed briefly in
§ 8.4.2 and in more detail elsewhere [1]. The lesson here is that even simple cubic
equations of state can provide relatively complicated forms for the fugacity, forms suf-
ficiently complicated to satisfy the phi-phi equations (10.1.3) for phase equilibria.

Conceptually, the simplest method for solving phase-equilibrium problems is the
phi-phi method, but computationally it is usually more complicated than other meth-
ods. The conceptual simplifications arise in part because no decisions need to be made
about reference states: the reference state is the ideal gas and the choice of the ideal-
gas reference is implicit in choosing to work with fugacity coefficients. Usually, the
same pressure-explicit equation of state is used for all components in all phases, for
this produces consistency in the results and helps in organizing the calculations. (The
same calculations are to be done for all components in all phases, and therefore com-
puter programs can be structured in obvious modular forms.) However, this need not
be done; different equations of states can be used for different phases.

Offsetting these advantages in the phi-phi method are certain disadvantages that
must be seriously considered. Instead of decisions about reference states, we are faced
with decisions about mixing rules: how should we represent the composition depen-
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dence of parameters appearing in our equation of state (such as 

 

a

 

 and 

 

b

 

 in a cubic)? We
have briefly mentioned this problem in § 4.5.12, but the problem is thorny and beset
with pitfalls. The computations themselves tend to be complicated on two counts: (i)
to obtain values for the 

 

ϕ

 

i

 

 we must perform nontrivial evaluations of the derivatives
and integrals that appear in (4.4.23), and (ii) to actually solve the phi-phi equations
(10.1.3) we must perform a trial-and-error search for the roots to a coupled set of non-
linear algebraic equations. Such searches involve several complications; for example,
at each step in the search, the molar volumes for each phase must be recomputed from

 

Figure 10.1

 

When computed from an analytic equation of state using FFF #1, the fugacity vs.
composition curve may change significantly with state condition. Top: PT diagram for a binary
mixture. Filled circles are pure critical points; vp1 and vp2 are pure vapor-pressure curves; cl =
critical line; mcl = mechanical critical line. Bottom: Corresponding fugacity of the more volatile
component at 275 K. Broken lines are vapor-liquid tie lines. Isobars at bottom correspond to
open circles at top. Bottom same as Figure 8.13. Computed from Redlich-Kwong equation. 
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the equation of state. This means we actually solve for C + 2 variables, rather than just
the C required variables. For cubics this can be done analytically, but more compli-
cated models require additional trial-and-error searches. Complications in equations
of state and mixing rules can improve accuracy and reliability, but those advantages
are purchased at the expense of increased complications in algorithms that are used to
solve the equations.

10.1.2 The Gamma-Phi Method for VLE

In this method we choose FFF #1 for the components in the vapor (α), but we use one
of FFF #2–5 for the components in the liquid (β). Therefore, we have four general ver-
sions of the gamma-phi method; however, at low pressures FFF #2–5 are all equiva-
lent, and we have this one general form:

i = 1, 2, … , C (10.1.4)

That is, at low pressures we ignore the pressure dependence of all activity coefficients
and all standard-state fugacities. In the β phase, values for the activity coefficients
depend on the choice made for the standard-state fugacity; for example, if the Lewis-
Randall standard state is chosen for all components (5.1.5), then the γ i would be
obtained from a model for the excess Gibbs energy. Common choices for the standard
state are discussed in § 10.2. In the α phase, values for the fugacity coefficients are
obtained from a volumetric equation of state; now, either pressure-explicit or volume-
explicit models may be chosen. Fortunately at low pressures, either the ideal-gas law
or a virial equation may be sufficiently accurate.

The gamma-phi method is illustrated graphically in Figure 10.2 for low-pressure
vapor-liquid equilibria in mixtures of ethanol + benzene. These mixtures exhibit azeo-
tropes, as shown in Figure 9.9. Here, we set the temperature to 370 K and the pressure
to 2.5 bar. Then vapor-phase fugacities were computed from FFF #1 using the ideal-
gas equation of state, while the liquid-phase fugacities were computed from FFF #2
using the Margules equations for activity coefficients, (5.6.12) and (5.6.13). At the spec-
ified T and P, phase equilibrium occurs at those mole fractions at which the gamma-
phi equations (10.1.4) are satisfied simultaneously by both components. Although mix-
tures of ethanol + benzene form azeotropes, an azeotrope is not observed at 370 K and
2.5 bar; instead, there are two sets of (x1, y1) values that satisfy the gamma-phi equa-
tions. So in this situation, the gamma-phi equations have two roots, representing two
tie lines for VLE.

At high pressures, the rhs of (10.1.4) should be replaced by one of FFF #3–5. Which
of those to choose depends on what other data are available for the component; gen-
eral considerations have been discussed in § 6.4. When FFF # 3 or 5 is chosen, a Poynt-
ing factor must be evaluated, often using a volumetric equation of state for the liquid;
that equation of state need not be the same as the one used for obtaining the fugacity
coefficients for the vapor (phase α).

The gamma-phi method has served as the traditional way for solving low-pressure
vapor-liquid equilibrium problems. The elimination of pressure (and hence volume)
from the representation of one phase considerably simplifies the calculations relative
to the phi-phi method, though the calculations generally still involve trial-and-error

xi
αϕi

α T P xα{ }, ,( )P xi
βγ i

β T xβ{ },( )fi
o T( )=
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searches. The disadvantages of the gamma-phi method include the three different
decisions that must be made for modeling the situation: (a) an equation-of-state
model must be chosen for the vapor phase, (b) a model must be selected for the fugac-
ity in the standard-state, and (c) a model must be chosen for the composition depen-
dence of the activity coefficients. At high pressures an additional disadvantage occurs
because inconsistencies may appear in the results computed from the different models
used for the two phases; such inconsistencies are most prominent near critical points.

Figure 10.2 Low-pressure vapor-liquid equilibrium computed from the gamma-phi method for
binary mixtures of ethanol(1) + benzene(2) at 370 K and 2.5 bar. Top: Fugacities of component 2
in each phase; Bottom: Fugacities of component 1 in each phase. The vapor-phase fugacities
(solid straight lines) were computed from FFF #1 using the ideal-gas law; the liquid-phase
fugacities (solid curves) were computed from FFF #2 using the Margules model with parame-
ters taken from Appendix E. Broken horizontal lines are tie lines for VLE. An azeotrope forms
near this temperature and pressure, so two pairs of tie lines occur. Note that the fugacities in
each phase obey the Gibbs-Duhem equation.
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10.1.3 The Gamma-Gamma Method for LLE

If we choose to use one of FFF #2–5 for all components in both phases, then we have
the gamma-gamma method. Invariably, the same FFF is used for both phases, so there
are four common versions of this method; but in principle, we could use any of the
four fugacity formulae 2–5 for each phase, so that for two-phase equilibrium, we have
ten possible versions of the method. At low pressures, the FFF #2–5 are equivalent,
and the gamma-gamma method simplifies to this one form

i = 1, 2, … , C (10.1.5)

Often the same standard state is chosen for a component in both phases, so that
(10.1.5) reduces further to

i = 1, 2, … , C (10.1.6)

Now the standard-state fugacity no longer enters explicitly into the calculation; how-
ever, the notation in (10.1.6) reminds us that the choice of standard state still affects
the values for the γs. Common choices for standard states are discussed in §10.2.

The gamma-gamma method is illustrated graphically in Figure 10.3 for a binary
mixture that exhibits liquid-liquid equilibrium. For this example, the fugacities were
computed from the low-pressure form of FFF #2 using Porter’s equations for the
activity coefficients, (5.6.4) and (5.6.5). The value of the Porter parameter (A = 2.4) cor-
responds to the temperature T = 30°C that occurs on the Txx diagram in Figure 8.20.
Note that, since the standard-state fugacities do not appear in (10.1.6), the ordinates in
Figure 10.3 have been normalized by those values; so in the Lewis-Randall standard
state, the plotted ratios fi/fi

o go to unity in the pure-component limits. At the fixed T
and P of the figure, phase equilibrium occurs at the values of x1 at which the gamma-
gamma equations (10.1.6) are satisfied simultaneously by each component. The sym-
metry in f1 and f2, evident in Figure 10.3, results from the simplicity of the Porter
equations and does not occur for most binary mixtures.

The gamma-gamma method should be used only for computing equilibria among
condensed phases, though this can include not only liquid-liquid but also liquid-solid
and solid-solid equilibria. At low pressures, the forms (10.1.5) and (10.1.6) are simple
to set up, but finding solutions may be problematic because we are seeking multiple
roots from a single model for activity coefficients. At high pressures, the full forms for
FFF #2–5 must be used, and then we have the same computational difficulties as
already discussed in § 10.1.2 and § 6.4. 

10.1.4 The Gamma-Gamma Method for LSE

Liquid-solid equilibria are attacked with the gamma-gamma method in the same gen-
eral way as liquid-liquid systems; however, the two applications differ in how the
standard-state fugacities are treated. We still start from the equality of fugacities, 

(10.1.7)
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For the solid-phase standard state, we use pure solid i at the system T and P; for the
liquid-phase standard state, we use the pure liquid at T and P. If the system tempera-
ture happens to be on the melting line for pure i, so T = Tm at P, then the standard-
state fugacities are equal,  and they cancel from (10.1.7). In this case, (10.1.7)
simplifies to 

But if T < Tm(P), then the standard-state fugacities do not cancel, and the standard
state for the liquid phase is the subcooled liquid at T; nevertheless, that subcooled state
is well-defined and can be legitimately used as a standard state. The standard-state
fugacities can be handled easily, if we rearrange (10.1.7) so that the ratio 
appears rather than the individual terms. If we have models for the activity coeffi-

Figure 10.3 Liquid-liquid equilibrium computed from the gamma-gamma method for a binary
mixture at fixed T and P. Top: Fugacity of component 2. Bottom: Fugacity of component 1. The
fugacities were computed from the low-pressure form of FFF #2 using Porter’s equations with
A = 2.4. Broken horizontal lines are tie lines.
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cients and if we know the solid-phase mole fraction  then that ratio is sufficient to
allow us to solve (10.1.7) for the liquid-phase mole fraction 

(10.1.8)

To evaluate the ratio of standard-state fugacities, we first integrate the definition of
the fugacity from the subcooled liquid at T to pure solid i at T,

(10.1.9)

where ∆gi is the difference between the pure solid and pure subcooled-liquid molar
Gibbs energies at T. To correct the rhs of (10.1.9) from the melting temperature Tm of
pure i to the system temperature T, we perform a double integration of the Gibbs-
Helmholtz equation, as in § 3.3.2. This gives

(10.1.10)

where ∆hi
m is the latent heat of melting for pure component i and ∆cp = cp

{  – cp
s is the

difference in pure-i heat capacities across the melting line.
Equation (10.1.10) is rigorous, but in using it, simplifying assumptions are usually

made. One approximation is to take cp
s from thermal experiments but estimate cp

{ by
extrapolating liquid values measured at states above the pure-i melting point Tm. An
alternative is to approximate ∆cp from the latent heat via

(10.1.11)

A third approximation is to neglect the second term on the rhs of (10.1.10). In any case,
when T < Tm then  <  so we expect the rhs of (10.1.10) to be negative. Typical
applications of this approach are to determine the freezing point depression when a
pure liquid is contaminated by a solid impurity or to estimate eutectic temperatures,
such as when salt is spread on highways to prevent icing.

10.2  CHOICES FOR STANDARD STATES IN GAMMA METHODS

The gamma-phi and gamma-gamma methods involve activity coefficients, which
measure how component fugacities in a real mixture deviate from those in an ideal
solution. Many kinds of ideal solutions are available, and yet all have one common
attribute: every ideal solution has each fugacity linear in its mole fraction,
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(5.4.7)

and the proportionality constant is called the standard-state fugacity. Therefore, before
we can obtain values for activity coefficients, we must choose a particular ideal solu-
tion; hence, we must choose a standard-state for each component. The standard state
must be at the same temperature as the real mixture, but the standard-state pressure

and its phase can both be chosen for computational convenience. The generic rela-
tion (5.4.7) represents any of an infinite number of straight lines on an isothermal plot
of fi vs. xi ; hence, there are an infinite number of ideal solutions.

But while we can pick any straight line and use it to represent an ideal-solution
fugacity, in practice we always choose a line that intersects or lies tangent to the curve
for the real fugacity at the standard-state pressure. This means that we choose

 = at some composition { }; then, at that composition,
the activity coefficient must be unity. At other mole fractions, the fugacity of the ideal
solution is given by the equation for the straight line,

(10.2.1)

Here ∆xi = xi – and the derivative is constant with composition because it repre-
sents the slope of the ideal-solution straight line. For binary mixtures, this derivative
is well defined; but for multicomponent mixtures, it is not, because many ways exist
to vary one mole fraction while constraining others. The resolution of this ambiguity
provides alternative standard states for multicomponent mixtures, as we shall see.

When we choose a standard state, we are merely identifying a particular ideal solu-
tion on which to base an activity coefficient. The standard state may be real or hypo-
thetical, so long as it is well-defined and so long as a value for its fugacity can be
obtained. Ultimately, the choice of standard state is made for computational conve-
nience; normally, this means either that reliable models for γ i exist, or else that the
value of γ i is close to unity over the states of interest. When neither of these conditions
pertain, we should consider changing the standard state. In many situations the
appropriate choice is one of the possibilities discussed in § 10.2.1–10.2.3; however,
when the mole fraction is not a convenient measure of composition, such as occurs for
mixtures of electrolytes or of polymers, then other standard states may be preferred.

10.2.1 Fugacities Based on Pure-Component Standard States

Often we know or can easily compute values of the fugacity for the pure component
at the mixture T and at some convenient pressure  then it is natural to base the def-
inition of the ideal solution on this known pure-component fugacity. To do so, we
choose  = 1; then the slope of the ideal-solution straight line is

(10.2.2)

and the generic expression (10.2.1) for the ideal solution becomes
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(10.2.3)

The choice

(10.2.4)

is called a pure-component standard state; it was introduced in § 5.4.1. Note we have
made no restriction as to phase: we may use the ideal-solution expression (10.2.3) to
model liquid mixtures, gas mixtures, and solid mixtures. Gas-phase ideal solutions
differ from ideal-gas mixtures.

In a generic pure-component standard state, the activity coefficient is expressed as

(10.2.5)

which is an example of FFF #4. For the special case in which  then (10.2.4)
becomes the Lewis-Randall rule (5.1.5), (10.2.3) becomes (5.1.6) for the Lewis-Randall
ideal solution, and (10.2.5) becomes

(10.2.6)

which is a particular example of FFF #2. In this case the pure-component limit is unity,
as given in (5.4.12), and the infinite-dilution limit (5.4.13) defines the infinite-dilution
activity coefficient. Activity coefficients greater than unity indicate positive deviations
from the Lewis-Randall ideal solution, while values less than unity indicate negative
deviations. Most binary mixtures are positive deviates.

If a value for a pure-component fugacity cannot be obtained at the mixture pres-
sure P, then one may be available at the pure vapor pressure  In such cases we
use a Poynting factor to correct the known fugacity to the system pressure,

(10.2.7)

Using FFF #1 for the fugacity at  and substituting (10.2.7) into (10.2.6), we find

(10.2.8)

where the fugacity coefficient  is for the pure saturated liquid or vapor; it is more
readily evaluated for the saturated vapor. The molar volume is for the pure con-
densed phase. Equation (10.2.8) is a particular example of FFF #3. 

fi
is T Pi

o xi, ,( ) xi fpure i T Pi
o,( )=

fi
o T Pi

o,( ) fpure i T Pi
o,( )=

γ i T P x{ }  fpure i T Pi
o,( );, ,( )

fi T P xi, ,( )

xi fpure i T Pi
o,( )

---------------------------------------=

Pi
o P,=

γ i T P x{ }  fpure i T P,( );, ,( )
fi T P xi, ,( )

xi fpure i T P,( )
-------------------------------------=

Pi
s T( ).

fpure i T P,( ) fpure i T Pi
s,( ) 1

RT
-------- vpure i T π,( ) πd

Pi
s

P

∫exp=

Pi
s,

γ i T P x{ }  fi
o T P,( );, ,( )

fi T P xi, ,( )

xi ϕi
s T( ) Pi

s T( ) 1
RT
-------- vpure i T π,( ) πd

Pi
s

P

∫exp

----------------------------------------------------------------------------------------------------------------=

ϕi
s



 10.2   CHOICES FOR STANDARD STATES IN GAMMA METHODS 431

For pure condensed phases, the Poynting factor in (10.2.8) is straightforward to
compute, but unless  it is usually small enough to neglect. For example, for liq-
uid water at 25°C and 10 bar, the error introduced by neglecting the Poynting factor is
less than 1%. Therefore, for condensed phases at low pressures, we usually approxi-
mate the pure-component standard-state fugacity (10.2.7) by

(10.2.9)

When we cannot obtain a pure-component fugacity at the mixture pressure P, but
we can get a value at another pressure  then we may elect to evaluate the activity
coefficient at  rather than at P. Now, instead of (10.2.6), we use an activity coeffi-
cient defined by

(10.2.10)

and then we use FFF #5 to evaluate the fugacity at the mixture pressure P. Note that
the activity coefficient in (10.2.10) does not depend on the system pressure P; this is
the basis for those models, such as Wilson equations, which contain no pressure
dependence. Furthermore, it is common to use (10.2.10) whenever the pressure is low,
and then there is no distinction among FFF #2–FFF #5. 

10.2.2 Example

What approximations might be considered when reducing the equality of fugaci-
ties to computational forms for solving phase-equilibrium problems?

Consider low-pressure, multicomponent, vapor-liquid equilibrium (VLE). The rele-
vant measurables are T, P, the liquid-phase mole fractions {x}, and the vapor-phase
mole fractions {y}; see Figure 10.4. A typical problem is that we know T and {x} and
we need to compute P and {y}. Note this is an F-problem (see § 9.1). 

Every phase-equilibrium problem is solved by starting from the phase-equilibrium
conditions (7.3.12), which express the equality of fugacities,  
   

i = 1, 2, … , C   (10.2.11)

Figure 10.4 Schematic of a closed system containing a mixture of any number of components in
a vapor-liquid equilibrium situation
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Note we always start with an equation that is always true. But before we can perform
computations, (10.2.11) must be reduced to a form involving measurables. Our pur-
pose here is to illustrate the reduction procedure and to consider options for making
approximations. 

For this low-pressure VLE situation, we choose the gamma-phi method (10.1.4),
using fugacity coefficients for the vapor phase and activity coefficients for the liquid
phase. In particular, we choose FFF #1 for the vapor and since we are considering only
low pressures, any one of FFF #2–5 for the liquid; at low pressures, FFF #2–5 are all
the same. Then, the gamma-phi equations take the form

i = 1, 2, … , C (10.2.12)

For the liquid-phase ideality we choose the Lewis-Randall ideal solution (5.1.6), and
since P is low, we approximate using (10.2.9). Then (10.2.12) becomes

i = 1, 2, … , C (10.2.13)

where the fugacity coefficients  and vapor pressures  depend only on the mix-
ture T because they are for pure saturated components. Values for the vapor pressures
would be computed from an appropriate model, such as the Antoine correlation in
Appendix D. Recall that in the pure limit, γ i = 1. In addition, if we retain VLE in the
pure limit (so P →  at fixed T), then we maintain full consistency only if ϕi → 
when xi → 1 and yi →1. 

In general, the fugacity coefficients appearing in (10.2.13) would be computed from
a volumetric equation of state using (4.4.10) or (4.4.23). However, if the pressure is suf-
ficiently low over the entire composition range, then the vapor mixture may be an
ideal gas, so all ϕi = ϕi

s = 1, or it may obey Amagat’s “law”, so all ϕi/  ≈ 1. In either
case, (10.2.13) reduces to

 i = 1, 2, … , C (10.2.14)

This is a computationally convenient form for solving low-pressure VLE problems.
The only remaining conceptuals are the γ i, which we assume depend only on T and
{x}; their values are usually obtained from an appropriate model, such as the Mar-
gules or Wilson equations in Chapter 5. In general, (10.2.14) constitutes C nonlinear
algebraic equations that can be solved for C unknowns from T, P, {x}, and {y}.

In the very special case that the system is composed only of molecules having simi-
lar intermolecular forces, so that the liquid is indeed a Lewis-Randall ideal solution,
then all the γ i = 1, and (10.2.14) simplifies to

i = 1, 2, … , C (10.2.15)

This is Raoult’s law, which applies only for ideal gases in equilibrium with ideal solu-
tions. It assumes that every component has vapor and liquid-phase fugacities that are
linear in the mole fractions. If T is known, then the C equations in (10.2.15) can be
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solved analytically for C unknowns. For example in our problem here, we know T and
{x}, we are to compute P and {y}, and the strategy is to eliminate the unknown mole
fractions {y} by summing (10.2.15) over all components; this yields the pressure,

(10.2.16)

With P determined, we can solve Raoult’s law (10.2.15) for each yi. A similar strategy
would be used if we knew T and {y} and had to compute P and {x}. However,
Raoult’s law is nonlinear in T (through the vapor pressures), so if T is unknown, then
(10.2.15) must be solved by trial.

Note that we start from a rigorous expression (10.2.12) that applies to any VLE situ-
ation. Then we systematically introduced three levels of approximation:

(a) If the system pressure is low enough that its effects on liquid-phase fugacities 
can be ignored, then we have (10.2.13), which applies to nonideal gases in 
equilibrium with nonideal liquid solutions.

(b) If in addition to (a), the pressure is so low that the fugacity coefficients are 
independent of composition, then we have (10.2.14): the situation is like an 
ideal-gas mixture in equilibrium with a nonideal liquid solution.

(c) If in addition to (a) and (b), the molecules are all so similar that the liquid is 
essentially a Lewis-Randall ideal solution, then Raoult’s law (10.2.15) applies.

To decide which of these can be used in a particular situation, we must know how liq-
uid and gas phase properties are affected (i) by common operating variables, such as
temperature and pressure, and (ii) by differences among the molecules that determine
the nonidealities. In short, we must exercise engineering judgement.

10.2.3 Fugacities Based on the Solute-Free, Henry’s Law, Ideal Solution

Although pure-component standard states are the ones most commonly used, situa-
tions arise in which a pure-liquid fugacity is unknown or difficult to determine. These
situations occur, for example, when the mixture temperature T is above the critical
temperature of the pure component (the gas solubility problem) and when T is below
the pure-component melting temperature (the solid solubility problem). In such cases,
we seek alternatives to the pure-component standard state. One way is to exploit any
data available for mixtures that contain only small amounts of the component; how-
ever, we emphasize that this approach does not require the real mixture to be dilute in
that component. We are merely seeking an alternative to pure-component data to use
as a basis for defining an ideal solution.

Therefore we define a new kind of ideal solution by choosing  = 0 in the generic
form (10.2.1). Since fi = 0 when  = 0, (10.2.1) reduces to

(10.2.17)
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To get a value for the slope of the ideal-solution straight line, we use the slope of the
real fugacity curve in the dilute-solution limit,

(10.2.18)

For binary mixtures, the derivative on the rhs is well-defined, but for multicomponent
mixtures it is not. For example, consider a ternary and let i = 1. Then there are an infi-
nite number of binary mixtures that can be formed from components 2 and 3 when we
set x1 = 0. Each of those binaries may produce a different value for the limiting deriva-
tive in (10.2.18).

One way to remove this ambiguity is to identify a set of components as solutes; we
use {s} to indicate that set. The component of interest is one of the solutes, i ∈ {s}. The
remaining components are identified as solvents; we use {sf } to indicate that the set of
solvents is solute-free. We can define solute-free mole fractions for the solvents by

j ∈ {sf } (10.2.19)

where the sum runs only over solvents. 
We choose to evaluate the derivative on the rhs in (10.2.18) by taking all solute mole

fractions to zero while holding fixed the solute-free mole fractions of the solvents; the
resulting derivative is called the solute-free Henry’s constant,

(10.2.20)

Henry’s constants are intensive, measurable properties having dimensions of pres-
sure; (10.2.20) indicates that the solute-free Henry’s constant depends on temperature,
pressure, and the solute-free mole fractions, but it does not depend on the solute mole
fractions. With (10.2.20), the fugacity of a solute i in a Henry’s law ideal solution is, as
required, linear in the mole fraction of i,

i ∈ {s} (10.2.21)

For binary mixtures with xi < 0.03, this often reliably estimates the fugacity for compo-
nent i; that is, near xi = 0, the real fugacity becomes linear in the mole fraction.

When the solute-free mixture is a condensed phase at T and P, we might find a
value for His at the saturation pressure of the solvent mixture rather than at the
mixture pressure P. When this happens we can apply a Poynting factor to correct the
known Henry’s constant, 

(10.2.22)
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Here the partial molar volume is evaluated in the infinite-dilution limit with solvent-
free mole fractions held fixed,

(10.2.23)

For solid solubility problems, the Poynting factor in (10.2.22) can be ignored, but it
must be included when analyzing gas solubility problems at high pressures. 

For binary mixtures we can use a simple plot, as in Figure 10.5, to compare the
Henry’s law ideal solution to the Lewis-Randall ideality. The plot shows the real
fugacity for component 1, as well as the Lewis-Randall and Henry’s law straight lines.
The Lewis-Randall fugacity coincides with the real value at x1 = 0 and at x1 = 1, but
the Henry’s law fugacity coincides only at x1 = 0. Also, since x1 lies on [0, 1], the inter-
cept of the Henry’s law curve at x1 = 1 is the Henry’s constant at the given T and P. 

Since the value of an activity coefficient depends on the standard state, an activity
coefficient based on (10.2.21) will differ numerically from one that is based on a pure-
component standard state. To emphasize that difference, we make a notational dis-
tinction between the two: we use γ for an activity coefficient in a pure-component
standard state and use γ* for an activity coefficient in the solute-free infinite-dilution
standard state. Then for γ*, the generic definition of the activity coefficient (5.4.5) gives

 

(10.2.24)

The normalization occurs in the dilute-solution limit, taken with T, P, and solute-free
mole fractions held fixed, 

Figure 10.5 Fugacity for one component in a binary mixture at fixed T and P (solid line). Upper
broken line is the fugacity for the Henry’s law (HL) ideal solution; lower broken line is that for
the Lewis-Randall (LR) ideal solution. Both idealities are based on standard states that are pure
fluids (intercepts at x1 = 1): LR uses the fugacity for real pure 1, while HL uses the fugacity (H1)
of a hypothetical pure fluid. Scale on ordinate arbitrary.
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(10.2.25)

Otherwise we usually have γ i* < 1, as suggested by Figure 10.5; in contrast, in the
Lewis-Randall standard state we usually have γ i > 1, also suggested by Figure 10.5.
This means that deviations from Lewis-Randall ideal-solution behaviors differ quali-
tatively from deviations from Henry’s law ideal-solution behaviors.

Figure 10.5 shows that the Henry’s constant is not only the slope of a real fugacity
curve at infinite dilution, but it is also the intercept of the ideal-solution line at x1 = 1.
It is the intercept that is a fugacity, not the slope, and therefore the standard state here
is not a mixture at infinite dilution, in fact, it is not a mixture at all. Instead, the stan-
dard state is a hypothetical pure substance whose fugacity equals the Henry’s constant
H1s. This point is important, but subtle; it can lead to confusion, because, although the
standard state is a pure substance, the identity of that pure substance changes when
we change the solute-free mole fractions. Since standard-state properties change with
the composition of the real mixture, we might conclude that the standard state is not
pure—but this is not so. When the {xsf } change, the value of the standard-state fugac-
ity H1s changes, not because the composition of the standard state changes (it is
always pure), but because the identity of every standard-state molecule changes.

10.2.4 Fugacities Based on the Reference-Solvent, Henry’s Law, Ideal Solution

Another way to remove the ambiguity that occurs in the limiting derivative of the
ideal-solution expression (10.2.18) is to declare one component r to be a reference sol-
vent. We then evaluate the derivative in (10.2.18) by taking xr → 1 while letting all
other mole fractions go to zero,

(10.2.26)

This defines a reference-solvent Henry’s law constant,

(10.2.27)

and the expression for the ideal-solution fugacity becomes

(10.2.28)

Note that the reference-solvent Henry’s constant does not depend on composition.
The form (10.2.28) states that when a mixture is nearly pure in the reference solvent r,
then the fugacity of any other component i is linear in its mole fraction. The reference-
solvent version of Henry’s law applies to real mixtures when the composition is dom-
inated by one component (the reference solvent). Both the reference-solvent and the
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solute-free forms of Henry’s law are expected to apply when a mixture contains only a
very small amount of the solute i. 

For binary mixtures the reference-solvent Henry’s constant is exactly the same as
the solute-free Henry’s constant

binary (10.2.29)

because in a binary, we must have x1 = 0 when x2 = 1. But for multicomponent mix-
tures, the two kinds of Henry’s constants generally differ. 

 Often we can find values for H1r, not at the mixture pressure P, but at the satura-
tion pressure of the reference solvent,  Then we can use a Poynting factor to
correct those values to the pressure of interest,

(10.2.30)

where

(10.2.31)

To measure deviations from a reference-solvent, Henry’s law ideal solution, we
introduce another activity coefficient defined by

(10.2.32)

The normalization is obtained in the pure reference-solvent limit,

(10.2.33)

Otherwise, values of may be greater than one or less than one, but values less than
one are more common. For a binary, the plot in Figure 10.5 applies to both a reference-
solvent ideal solution and a solute-free ideal solution. This activity coefficient is par-
ticularly useful when we can choose the reference-solvent vapor pressure to be the
standard-state pressure , for then Hir is a function only of T, and we may place all
pressure dependence either in an activity coefficient, as in FFF #4, or in a Poynting
factor, as in FFF #5.

10.2.5 Relations Among Activity Coefficients

We have now introduced three kinds of standard states for activity coefficients: one
based on pure-components (§ 10.2.1), a second based on the solute-free Henry’s law
(§ 10.2.3), and a third based on the reference-solvent Henry’s law (§ 10.2.4). The prin-
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cipal features of these three are compared in Table 10.1. Although these activity coeffi-
cients differ, they are related because they merely represent three separate routes to
the same quantity: the fugacity. To develop relations between any two constructs
(such as activity coefficients) for the fugacity, we always start by equating the two
expressions; that is, we start by writing

(10.2.34)

 
This identity merely states that the fugacity is always the fugacity, no matter how you cal-
culate it.

Relate γγγγ i* to γγγγ i.  If we extract the fugacity from (10.2.6) and use it on the lhs of
(10.2.34), and if we extract the fugacity from (10.2.24) and use it on the rhs, we obtain

(10.2.35)

Therefore, the two activity coefficients are simply proportional,

(10.2.36)

where all quantities are at the same T and P. At fixed T, P, and {xsf }, the ratio in
(10.2.36) is independent of composition, and then, as illustrated in Figure 10.6, a plot
of ln γ i* vs. xi is merely the same curve as ln γ i vs. xi, but displaced vertically by a con-
stant amount,

(10.2.37)

Table 10.1 Comparison of activity coefficients based on three choices for the
standard statea

Standard state
Std state 
fugacity

Activity
coefficient

Normalization

Pure component i 
at T, 

     

Solute-free solvent 
at T, , {xsf }

Pure reference 
solvent at T, 

 
    

a Standard-state pressures quoted here are those typically used for condensed phases;
they apply when FFF #5 is used to obtain fugacities from activity coefficients.
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Taking the pure-solute limit of (10.2.36) and appealing to the normalization of γ i,
we find  

(10.2.38)

For a binary, the ratio on the rhs of (10.2.38) is that of the two intercepts appearing at xi
= 1 in Figure 10.5. Similarly, taking the dilute-solute limit of (10.2.36) and applying the
normalization of γ i*, we obtain  

(10.2.39)

The limit on the rhs can be defined to be an activity coefficient at infinite dilution γ i
∞,  

fixed T, P, {xsf} (10.2.40)

So (10.2.39) becomes

(10.2.41)

This establishes a simple relation between two standard-state fugacities: that in the
Lewis-Randall standard state (fpure i) and that in the solute-free dilute-solution stan-
dard state (His). This relation may be useful in obtaining values for His because infi-
nite-dilution activity coefficients are measurables; for example, they can be extracted
from gas chromatographic experiments [2].

Figure 10.6 When T, P, and the solute-free mole fractions are fixed, then the solute-free Henry’s
law activity coefficient, γ i*, is simply proportional to the Lewis-Randall activity coefficient, γ i;
that is, ln γ i* vs. xi is the same curve as ln γ i vs. xi, except the two are vertically displaced from
one another by the constant amount given in (10.2.37).
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If we use (10.2.39) to eliminate His from (10.2.36), we obtain

(10.2.42)

So γ i* can be interpreted as a ratio measure for how the Lewis-Randall activity coeffi-
cient γ i deviates from its value at infinite dilution.

Relate γγγγ i
+ to γγγγ i.  Proceeding in a fashion similar to that above, we find that these two

activity coefficients are also simply proportional,

(10.2.43)

Here the ratio on the rhs is always independent of composition. The pure-solute limit
applied to (10.2.43) yields

(10.2.44)

while the pure reference-solvent limit gives

(10.2.45)

Define the limit on the rhs as the infinite-dilution activity coefficient in the reference-
solvent standard state,

(10.2.46)

This limit differs from the infinite-dilution limit in (10.2.40) because here the mole
fractions for all components i ≠ r go to zero as xr → 1, while in (10.2.40) all solute-free
mole fractions {xsf } are held fixed as xi → 0. Using (10.2.46) in (10.2.45) leaves

(10.2.47)

And if we use this to eliminate Hir from (10.2.43), we find

(10.2.48)

γ i
*

γ i

γ i
∞------=

γ i
+ γ i

fpure i

Hir
---------------=

γ i
+

xi 1→
lim

fpure i

Hir
---------------=

γ i
+

xi 1→
lim

fpure i

Hir
--------------- γ ixr 1→

lim
 
  1= =

γ ir
∞ γ ixr 1→

lim≡

γ ir
∞ Hir

fpure i
---------------=

γ i
+ γ i

γ ir
∞------=



 10.2   CHOICES FOR STANDARD STATES IN GAMMA METHODS 441

So γ i
+ can be interpreted as a ratio measure for how the activity coefficient γ i deviates

from its value in the limit of pure reference solvent.

10.2.6 Example

Do the three kinds of activity coefficients produce the same value for a fugacity?

We need to determine the value of the fugacity f1 for a ternary liquid mixture at 25°C
and 1 bar with compositions x1 = 0.2, x2 = 0.5, x3 = 0.3. We choose component 1 to be a
solute and take components 2 and 3 to be solvents. We have found data for the follow-
ing infinite-dilution activity coefficients: 

Using r = component 2 (10.2.49)

Using r = component 3 (10.2.50)

Using fixed {xsf } (10.2.51)

We assume the mixture can be modeled by the ternary form of Porter’s equation
(5.6.20),

(10.2.52)

The corresponding expression for the activity coefficient in the Lewis-Randall stan-
dard state is found from (5.6.21) to be

(10.2.53)

Evaluate Porter parameters. Applying the limit in (10.2.46) to (10.2.53), we obtain

r = component 2 (10.2.54)

Likewise,

r = component 3 (10.2.55)

To get A23 from the remaining infinite-dilution activity coefficient, we first rewrite
(10.2.53) in terms of solute-free mole fractions. A ternary must have

(10.2.56)

So we divide (10.2.53) by (x2 + x3) and apply the definition of solute-free mole frac-
tions (10.2.19). This gives

γ1r
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(10.2.57)

Taking the limit x1 → 0 with the solute-free mole fractions held fixed, we obtain

(10.2.58)

For x2 = 0.5 and x3 = 0.3, the values of the solute-free mole fractions are

and (10.2.59)

Using these with the values of A12 and A13 found above, (10.2.58) yields

(10.2.60)

This completes the determination of values for the three Porter parameters.

Lewis-Randall standard state. If we have a value for the pure 1 fugacity at 25°C and
1 bar, then we can use the activity coefficient in the Lewis-Randall standard state to
evaluate f1. A value for fpure 1 might be obtained from a correlation, an estimate, or a
reduction of experimental data. For this situation we find fpure 1 = 1.4 bar. Then

(10.2.61)

Using our values of A12, A13, and A23, Porter’s equation (10.2.53) gives

(10.2.62)

Then (10.2.61) becomes

(10.2.63)

Solute-free dilute-solution standard state. In this case we do not have a value for
fpure 1, so we cannot apply (10.2.61). But we are able to find or estimate a value for the
solute-free Henry’s constant at our solute-free mole fractions (10.2.59). The value is
found to be H1s = 2.547 bar. Then we obtain the fugacity from

(10.2.64)

We obtain the value for the activity coefficient by using (10.2.51) and (10.2.62) in
(10.2.42),
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(10.2.65)

Note that the value is less than unity. Now (10.2.64) becomes

(10.2.66)

This is the same value found in (10.2.63) using the Lewis-Randall standard state.

Reference-solvent dilute-solution standard state. In this case we do not have values
for fpure 1 or for H1s, so we cannot apply (10.2.61) or (10.2.64). However, we are able to
find or estimate a value for the reference-solvent Henry’s constant, with component 2
as the reference solvent. The value is found to be H1r = 4.648 bar. Then we obtain the
fugacity from

(10.2.67)

To obtain the value for the activity coefficient, we use (10.2.49) and (10.2.62) in
(10.2.48),

(10.2.68)

Again the value is less than unity. Now (10.2.67) becomes

(10.2.69)

This is the same value found in (10.2.63) using the Lewis-Randall standard state and
found in (10.2.66) using the solute-free dilute-solution standard state. 

In general we can say that the reference-solvent dilute-solution standard state is
easier to use than the solute-free dilute-solution standard state (except, of course,
when γ i* can be assumed to be unity). This is because H1r is completely independent of
composition, while H1s depends on the solute-free mole fractions. But more generally,
the lesson is that the three kinds of activity coefficients are simply proportional; they
are all embedded with the same information, so they all give the same value for a
fugacity. We use the particular standard state that allows us to take advantage of
available data and that simplifies calculations.

10.3  BASIC REACTION-EQUILIBRIUM RELATIONS

We now do for reaction-equilibrium problems what we have done in § 10.1 for phase-
equilibrium problems: we show how fundamental thermodynamic relations are used
to develop computational strategies. We start by discussing the number of indepen-
dent properties required to identify states in reacting systems (§ 10.3.1); then we
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present a stoichiometric approach to solving reaction equilibrium problems (§ 10.3.2–
10.3.5) and follow that with a nonstoichiometric approach (§ 10.3.6–10.3.7).

10.3.1 Thermodynamic State for Reacting Systems

Extending the development presented in Chapters 3 and 9, we discuss the number of
interactions available to change a state, the number of independent properties needed
to identify a final equilibrium state, and the number needed to establish a well-posed
reaction-equilibrium problem.

Number of interactions to change a state. Consider a system containing C chemical
species distributed among P phases. The system can interact with its surroundings
through the thermal interaction, a PV work mode, and a mass transfer interaction for
each component. For such a situation we found in (9.1.1) that the number of interac-
tions available for changing the state is given by

(9.1.1)

where Sext counts any external constraints on interactions. If chemical reactions are
occurring in the system, those reactions do not affect any interactions, so the number
of interactions available is still given by (9.1.1). Further, if we block all C mass-transfer
interactions, we still recover Duhem’s theorem,

(9.1.2)

So Duhem’s theorem applies to any closed system of any number of components, any
number of phases, and regardless of whether or not chemical reactions are taking
place.

Number of properties to identify final equilibrium states. For a closed nonreact-
ing system containing C components, we found in § 9.1.2 that the number of proper-
ties needed to identify the extensive state is given by

(9.1.10)

where S counts any additional internal constraints beyond those for phase equilib-
rium. Equation (9.1.10) applies to a system containing any number of phases. When
reactions are occurring, we have for each reaction j , a new extensive property—the
extent of reaction ξj. But for each reaction we also have a new internal constraint, the
criterion for reaction equilibrium,

j = 1, 2, … , R (7.6.3)

Consequently, the number of new properties is the same as the number of new con-
straints, so the total number of properties needed to satisfy (9.1.10) is unchanged. The
number given by (9.1.10) is that required to identify the final extensive state after all

V C 2 Sext–+=

V 2=

Fex C 2 S–+=

A j 0=



 10.3   BASIC REACTION-EQUILIBRIUM RELATIONS 445

reactions have ceased. To get the number needed to identify the final intensive state,
we do not count the total amount of material, so (9.1.10) becomes

(9.1.12)

Recall that if more than one phase is present, the number counted by F ′ includes the
relative amounts in the phases. 

We may also ask for an F-specification of the final equilibrium state. In this case we
ignore the relative amounts in the phases and we ignore the extents of reaction. How-
ever, the R reaction-equilibrium constraints (7.6.3) still apply, so the generalized phase
rule (9.1.13) becomes

(10.3.1)

Here S counts any additional internal constraints besides those for phase and reaction
equilibria. When S = 0 (10.3.1) reduces to the traditional form of the Gibbs phase rule
extended to reacting systems.

To illustrate, consider the gas-phase synthesis of ammonia,

(10.3.2)

We have C = 3 species, P = 1 phase, S = 0, and R = 1 reaction, so (10.3.1) gives the num-
ber of variables needed for an F-specification as

(10.3.3)

A legitimate set of these three properties would be T, P, and the equilibrium mole frac-
tion of ammonia y3. With these three, we can obtain values for the other equilibrium
mole fractions by solving material balance and reaction-equilibrium expressions. This
illustrates a typical use of the traditional phase rule (10.3.1): the F-specification tells us
the number of property values needed to identify the final equilibrium state after all
reactions are complete.

Number of properties to identify initial states. But for reacting systems, it is not an
F-specification that we usually need. Instead, we usually need to know how many
properties of the initial state are required, so that we can compute the final state. For
this purpose, an F-specification is insufficient because it identifies only a class of indif-
ferent states (see § 9.1.3 and [3, 4]). This situation is entirely analogous to certain prob-
lems that arise in phase-equilibrium calculations. For example, an F-specification of
the isothermal flash problem is indifferent because many different feeds produce the
same final T, P, {x}, and {y} in the flash chamber (they differ in the relative amounts in
the two phases). So to close the isothermal flash problem, we need an F ′-specification,
not an F-specification.

This same comment applies to reacting systems: to close a reaction equilibrium
problem we need an F ′-specification, not an F-specification. For example, reconsider
the ammonia synthesis (10.3.2), which has F = 3; so, we might try to close the problem
by setting values for T, P, and the initial mole fraction of nitrogen y1

o. But these three
values are not sufficient to solve for the equilibrium extent; hence, we cannot get the

F′ C 1 S–+=

F C 2 P– R– S–+=

N2 3H2+ 2NH3→

F 3 2 1– 1– 0–+ 3= =
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equilibrium mole fractions. Instead of y1
o, what we need are the relative amounts of

the components initially present; for example, N1
o/N2

o. But you are now thinking,
wait: if we know y1

o, then we also know the initial mole fraction of hydrogen,
y2

o, because the initial mole fractions sum to one. But in making this statement you
have tacitly assumed that no ammonia is present initially; i.e., you have set y3

o = 0. So
you have really set values for four properties, not three, and in fact, (9.1.12) gives

(10.3.4)

So to determine whether a reaction-equilibrium problem is well-posed in terms of
the initial state, the traditional version of the phase rule (10.3.1) does not help. Instead,
we use (9.1.10) if we want the extensive state, or we use the F ′-specification (9.1.12) if
we want the intensive state. Finally, note that the forms for (9.1.10) and (9.1.12) are
unaffected either by the number of phases present or by the number of reactions
occurring.

10.3.2 Stoichiometric Development

In this subsection we begin to develop equations that are commonly used to solve
reaction-equilibrium problems. Consider a one-phase system containing C species
and recall from § 7.1.7 that when we fix any one of the pairs (T and P), (T and v), (s and
P), or (s and v), then the criterion for equilibrium is always

(10.3.5)

For example, if T and P are fixed, then (10.3.5) is a consequence of G being a minimum
at equilibrium; similarly, if T and v are fixed, then (10.3.5) is a consequence of A being
a minimum at equilibrium. But when chemical reactions occur, the Ni in (10.3.5) are
not independent; rather, they can only change in ways that conserve the total number
of atoms bk for each element k in the system,

(7.4.1)

Here each aki is the number of atoms of element k contained by one molecule of spe-
cies i. Since the aki and bk are constants, the changes dNi are coupled via

(10.3.6)

This means that in reaction equilibrium problems, we are to solve the equilibrium
condition (10.3.5) subject to the constraints imposed by conservation of atoms (10.3.6).

F′ C 1 S–+ 3 1 0–+ 4= = =

Gi dNi
i

C

∑ 0=

aki Ni
i

C

∑ bk constant= =

aki dNi
i

C

∑ 0=
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Such problems can be attacked by either a stoichiometric development (discussed here)
or a nonstoichiometric development (discussed in § 10.3.6).

In the stoichiometric approach, the equilibrium condition (10.3.5) is imposed via a
known equilibrium constant Kj, while the relations among the dNi are found explicitly
by determining the stoichiometric coefficients νij for each reaction j. Then the coupled
dNi are replaced by one independent extent ξj for each reaction. For a system undergo-
ing R independent reactions, the combination of the Ks and ξs provides R algebraic
equations that can be solved for the equilibrium values of R extents of reaction ξj

e ;
from those, the equilibrium mole fractions can be obtained. 

Since the determinations of stoichiometric coefficients νij and extents of reaction ξj
have already been discussed and illustrated in § 7.4, we need only introduce the equi-
librium constant to complete the description of the stoichiometric approach to reac-
tion equilibrium problems. The full implementation of the stoichiometric approach is
described in § 10.4.3, after we have reviewed common choices for standard states.

Consider C species in a closed vessel undergoing R chemical reactions at fixed T
and P. In § 7.6.1 we found that these reactions are finished and equilibrium is reached
when the affinity Aj for each reaction j comes to zero,

j = 1, 2, … , R (10.3.7)

Here νij is the stoichiometric coefficient for species i in reaction j and  is the chemi-
cal potential for component i. To translate (10.3.7) into a computational form, we
choose to use fugacities rather than chemical potentials, for then we can exploit the
five famous fugacity formulae presented in § 6.4. Recall the fugacity is defined in
terms of the chemical potential by

(4.3.8)

Integrating this definition from a convenient reference state (®) to the final equilib-
rium state (T, P, {x}) gives (4.3.12), which we now write as

(10.3.8)

Since the definition of the fugacity (4.3.8) imposes a fixed temperature, the integration
leading to (10.3.8) must be done at the system temperature T. Moreover, we invariably
choose the reference state for species i to be pure i (xi = 1); then the reference state
becomes a standard state (® → o), and (10.3.8) can be written in terms of the activity
(6.2.8),

(10.3.9)

A j νij Gi T P x{ }, ,( )
i
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∑– 0= =

Gi

dGi RTd filn=

Gi T P x{ }, ,( ) Gi
®

T Pi
® x®{ }, ,( )– RT

fi T P x{ }, ,( )
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® T Pi

® x®{ }, ,( )
------------------------------------------ln=

Gi T P x{ }, ,( ) Gi
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T Pi
o,( ) RT ⁄i T P x{ }  fi

o T Pi
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However, note that the standard state for species i is not completely specified until we
choose a pressure and a phase. Common choices for standard states will be pre-
sented in § 10.4.1; for now, we continue by substituting (10.3.9) into (10.3.7),

(10.3.10)

The first sum is the change in standard-state Gibbs energies for reaction j,

(10.3.11)

The notation {Po} represents the set of standard-state pressures for all reactants and
products in reaction j ; this means that we may choose different standard-state pres-
sures for different species i. Combining (10.3.11) with (10.3.10) gives

(10.3.12)

We define the product of activities to be the equilibrium constant K for reaction j,

(10.3.13)

So (10.3.12) becomes

(10.3.14)

In general, a change in Gibbs energy can be positive or negative, and therefore a
reaction may have Kj > 1 or Kj < 1. Since products have νij > 0 while reactants have νij
< 0, and since, to first order, each component’s activity is proportional to the mole
fraction (⁄i ∝ xi), we can say the following: when the final mixture will contain
a high proportion of products, but inversely, when the final mixture will con-
tain a high proportion of reactants.

We emphasize that the standard-state change in Gibbs energy and the equilib-
rium constant Kj  depend only on the equilibrium temperature T and the prechosen
standard-state pressures {Po}. That is, even though individual activities depend on the
full state (T, P, {x}) of the equilibrium mixture, the product of activities in (10.3.13) is
independent of P and {x}. For many common reactions, values of K are tabulated in
handbooks at particular temperatures; then we correct those values to our tempera-
ture, as in § 10.3.5. For other reactions we must obtain values of K by computing the
standard-state change in Gibbs energy; this strategy is discussed in § 10.4.2.
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10.3.3 Example

How do we evaluate and interpret the equilibrium constant for a single reaction?

Consider synthesis of ammonia from nitrogen and hydrogen carried out in the gas
phase at 1 bar, 25°C. The stoichiometry for this reaction was determined in § 7.4.2. At
25°C and a standard pressure  = 1 bar, the JANAF tables [5] give the standard
change in Gibbs energy to form one mole of ideal-gas NH3 from its elements; that
value is ∆go = –16.45 kJ/(mol ammonia formed). With this we can use (10.3.14) to
obtain the value for K,

(10.3.15)

Therefore

(10.3.16)

The equilibrium mole fractions are related to K through the activities, so we appeal to
(10.3.13),

(10.3.17)

where the νi are stoichiometric coefficients and we use 1 = nitrogen, 2 = hydrogen, and
3 = ammonia. In § 7.4.2 we chose ν3 = 1 and then found ν1 = –1/2 and ν2 = –3/2. Fur-
ther, the activities can be expressed in terms of fugacities, so (10.3.17) becomes

(10.3.18)

The fugacities are related to the equilibrium mole fractions via the equilibrium
extent of reaction ξe. To proceed further, we must choose standard states (to get the
fi

os) and we must choose one of the FFF (to get the fis). All these quantities are esti-
mated or obtained from models; they cannot contain any unknowns except mole frac-
tions or the extent of reaction. Once these decisions are made, (10.3.18) becomes one
equation that can be solved for the equilibrium value of the one extent ξe. These steps
are performed in § 10.4.3, after we discuss options for standard states.

Note that since  we expect this reaction to favor formation of product, leav-
ing an equilibrium mixture that is predominantly ammonia. While this is a valid ther-
modynamic conclusion, it is incomplete because, in fact, at ambient conditions this
ammonia-synthesis reaction proceeds slowly. To be industrially viable, the reaction
must be carried out at elevated temperatures, where the equilibrium constant is actu-
ally smaller than it is at 25°C; compensation is achieved by increasing the reaction
pressure and using a catalyst. The controlling factor is a meager reaction rate, but
thermodynamics cannot address rates: in analyzing any reaction-equilibrium situa-
tion, thermodynamics can only bound what will be observed at the completion of a
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reaction. In the ammonia synthesis, as in most practical situations, a satisfactory engi-
neering solution requires us to combine thermodynamic analysis with other factors
and manipulate operating conditions in a creative way.

10.3.4 Response of Equilibrium Constants to Changes in Temperature

We have noted that the equilibrium constant Kj for reaction j depends only on the sys-
tem temperature T and the standard state. Often, we need to determine how the equi-
librium constant changes with temperature. For example, during a reactor design we
routinely want to know whether product yield can be improved by an increase or
decrease in operating temperature. Furthermore, many tables (discussed at the end of
§ 10.4.2) give values for equilibrium constants only at selected temperatures; then we
must correct those values to the temperature of our situation. 

To address such questions, we first form the temperature derivative of (10.3.14) and
invoke the Gibbs-Helmholtz equation (3.3.17),

(10.3.19)

Here  is the heat of reaction for reaction j carried out with all species in their stan-
dard states. If the heat of reaction is positive, then the reaction is endothermic and K
increases with increasing T; inversely, if the heat of reaction is negative, then the reac-
tion is exothermic and K decreases with increasing T. Therefore, for endothermic reac-
tions we tend to increase the equilibrium fraction of product by increasing T, while for
exothermic reactions we tend to increase the equilibrium fraction of product by
decreasing T. However, we caution that such simple thermodynamic rules must be
tempered by other considerations, such as kinetic constraints. For example, most sim-
ple reactions are exothermic, so the equilibrium product yield increases with decreas-
ing T, while the rate of reaction usually decreases. In such cases, the choice of
operating temperature must balance the maximum theoretical yield against compet-
ing kinetic effects. For some reactions, values of the standard heat of reaction have
been measured and tabulated, but in many cases we must compute the standard heat
of reaction from standard heats of formation (see § 10.4.2).

Integrating (10.3.19) allows us to use a value for an equilibrium constant at one
temperature T1 to compute its value at another temperature T2. The result is the inte-
grated form of the Gibbs-Helmholtz equation given in § 3.3.2, 

(10.3.20)
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Values for  are usually computed from tabulated values for the standard heat
capacities of reactant and products,

(10.3.21)

The result (10.3.20) is rigorous, but simplifying assumptions are often made. For
example, when temperature changes are moderate, the last two integrals in (10.3.20)
are often ignored. This is equivalent to assuming that the heat of reaction is constant,
independent of T. Then (10.3.20) simplifies to

(10.3.22)

where Ta is some “average” temperature between T1 and T2. Equation (10.3.22)
implies that plots of ln K vs. 1/T will give straight lines; such lines have positive
slopes for exothermic reactions and negative slopes for endothermic reactions. This
approximation is tested for a particular reaction in § 10.3.5.

A second approximation is to keep all terms in (10.3.20), but assume the are
constants, independent of T; then the integrals in (10.3.20) can be immediately evalu-
ated. Because of the opposite signs on the two integrals, this may be a reliable
assumption for some reactions, even when the heat capacities of the individual spe-
cies change over the temperature range of interest. 

10.3.5 Example

How do we determine the response of an equilibrium constant when temperature
changes?

Consider formation of hydrogen sulfide via the gas-phase reaction at 1 atm.,

(10.3.23)

At 1 atm. and 300 K, all species are ideal gases, and Bett et al. [6] give the following
values for standard-state changes of ideal-gas properties at 300 K and  = 1 atm.:

= –73 kJ/mol, = –84.7 kJ/mol, and = –11 J/(mol K). First, we find the
value of the equilibrium constant at 300 K. Then we determine its value at 700 K; this
is done in two ways: (a) assuming the heat of reaction is independent of T and (b)
assuming the heat of reaction changes with T, but that  is constant.

Value of equilibrium constant at 300 K. We substitute the value for the standard
change in Gibbs energy into (10.3.14) and find
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(10.3.24)

at 300 K (10.3.25)

This large value suggests that the reaction goes to completion at 300 K.

Estimate K at 700 K assuming a constant heat of reaction. Since the reaction is exo-
thermic, we expect the value of K at 700 K will be smaller than its value at 300 K. Here
we estimate K at 700 K, assuming ∆ho is constant; that is, we use (10.3.22).

(10.3.26)

This represents a straight line when ln K is plotted against 1/T2. Setting T2 = 700 K, we
find

at 700 K (10.3.27)

As expected, the value decreases with increasing T, but it remains large.

Estimate K at 700 K allowing the heat of reaction to change with T. We now include
the effects of T on the heat of reaction. Those effects are contained in (10.3.20) as the
integrals over the heat capacity difference. Since we have only the one value for ,
we can only assume it is constant; then, (10.3.20) gives

(10.3.28)

Using = –11 J/(mol K), T1 = 300 K, and T2 = 700 K, this gives

(10.3.29)

Then

at 700 K (10.3.30)

Assuming this is a better estimate than the value found in (10.3.27), the two values of
K differ by 44%, but both values are so large that this difference may be of little impor-
tance in practice. Since the effort required to evaluate (10.3.28) is little more than that
required to evaluate (10.3.22), we might as well use (10.3.28) when heat capacity data
are available. But when such data are not available for all reactants and products, then
we may be forced to use (10.3.22).
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10.3.6 Nonstoichiometric Development

In the typical reaction-equilibrium problem for a single reaction, we are to determine
the equilibrium composition at the end of the reaction. The problem is solved when
we find a set of mole fractions {x} that minimize G at fixed T and P, or that minimize A
at fixed T and v, etc. That is, in general we have a minimization problem of this form,

(10.3.31)

subject to the constraints that the mole numbers Ni can vary only in ways that con-
serve the total number of atoms bk for each element k. This conservation constraint
(7.4.1) can be stated in this way:

k = 1, 2, … , me (10.3.32)

Here aki is the number of atoms of element k on one molecule of species i, and me is the
total number of elements present. 

We cannot solve (10.3.31) merely by forming the total differential wrt the mole
numbers and setting that differential to zero, because the dNi are not independent;
instead, they are related through (10.3.32). In the stoichiometric development in
§ 10.3.2, the constraint (10.3.32) was included in the problem through stoichiometric
coefficients and an extent of reaction ξ. Here we impose the constraint in a different
way; namely, we allow the Ni in the equilibrium condition (10.3.31) to vary indepen-
dently and enforce the constraints (10.3.32) via Lagrange multipliers (see Appendix I).

Therefore for each element k, we scale the constraint (10.3.32) by a constant factor
called a Lagrange multiplier λk, 

k = 1, 2, … , me (10.3.33)

Since the lhs of (10.3.33) is still zero, we can sum it over all elements and add the sum
to the quantity to be minimized (10.3.31); that is, we merely add zero to (10.3.31). So
the minimization problem is now written as

(10.3.34)

Note that the multipliers λk must have appropriate units to preserve dimensional con-
sistency in (10.3.34). Our problem is to minimize the quantity in brackets over all pos-
sible variations in the set of mole fractions and the set of Lagrange multipliers. The
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advantage to (10.3.34) over the original problem (10.3.31) is that all xs and all λs can
vary independently. Therefore, we can form the total differential and set it to zero,

(10.3.35)

With all the dNi and dλk independent, this can only be zero if, in general, every coeffi-
cient is separately zero; therefore, we must have

i = 1, 2, … , C (10.3.36)

and

k = 1, 2, … , me (10.3.37)

Note that the equations (10.3.37) are merely the constraints (10.3.32).
To start toward a computational form for (10.3.36), recall that the chemical potential

can be expressed in terms of the activity ⁄i. So using (10.3.9) in (10.3.36), we obtain

i = 1, 2, … , C (10.3.38)

But we can make no further progress until we choose standard states for all species i;
the options are discussed in § 10.4.1. Nevertheless, the results (10.3.37) and (10.3.38)
represent (C + me) coupled algebraic equations that can be solved for C unknown equi-
librium mole numbers and me unknown Lagrange multipliers. The final form will be
developed in § 10.4.5.

10.3.7 Example

How do we use the nonstoichiometric method to set up equations for computing
the equilibrium composition at the completion of a single reaction?

Let us reconsider the ammonia synthesis already studied in § 7.4.2 and § 10.3.3. The
conditions are the same as in those examples: a gas-phase reaction at 1 bar, 25°C, with
three moles of H2 fed to the reactor for each mole of N2 fed. At 25°C and  = 1 bar,
the standard change in Gibbs energy is ∆go = –16.45 kJ/(mol ammonia formed) [5]. Let
subscripts 1 = nitrogen, 2 = hydrogen, and 3 = ammonia, and choose a basis of four
moles of feed.

The initial numbers of atoms of nitrogen and hydrogen are

Gi λkaki
k

me

∑+
 
 
 
 

dNi
i

C

∑ aki Ni
i

C

∑ bk–
 
 
 

dλk
k

me

∑+ 0=

Gi λkaki
k

me

∑+ 0=

aki Ni
i

C

∑ bk– 0=

Gi
o

RT ⁄iln λkaki
k

me

∑+ + 0=

Pi
o



 10.3   BASIC REACTION-EQUILIBRIUM RELATIONS 455

(10.3.39)

(10.3.40)

Then the atom balances (10.3.37) are

(10.3.41)

(10.3.42)

Let N be the total number of moles present at any time,

(10.3.43)

Then the balances (10.3.41) and (10.3.42) can be expressed in terms of mole fractions,

(10.3.44)

(10.3.45)

The particular forms for (10.3.38) are

(10.3.46)

(10.3.47)

(10.3.48)

As in § 10.3.3, the activities can be written in terms of fugacities,

 (10.3.49)
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(10.3.51)
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Recall the fugacities fi depend on the unknown mole fractions, but the standard state
fugacities are constants whose values are obtained via judicious choices for stan-
dard states (§ 10.4.1). Note that the standard states must be applied consistently to
both fugacities and chemical potentials. Once those choices have been made, the six
equations (10.3.43)–(10.3.45) and (10.3.49)–(10.3.51) can be solved for the three equilib-
rium mole fractions, the total number of moles (relative to the selected basis), and the
two Lagrange multipliers. The calculation will be finished in § 10.4.6.

10.4  PRELIMINARIES TO REACTION-EQUILIBRIUM CALCULATIONS

In this section we discuss standard states commonly chosen for reacting systems
(§ 10.4.1), then we show how values for standard-state properties can be determined
from properties of formation (§ 10.4.2). Lastly we develop computational forms used
in applying the stoichiometric (§ 10.4.3) and nonstoichiometric (§ 10.4.5) approaches.

10.4.1 Common Choices for Standard States

Before a reaction-equilibrium calculation can be performed, we must select an appro-
priate standard state for each species. Moreover, we must clearly distinguish quanti-
ties, such as fugacities and activities, that depend on the final equilibrium state (T, P,
{x}), from those quantities, such as equilibrium constants, that depend only on the
equilibrium temperature T, the standard-state pressures {Po}, and the phase. Typically,
the standard-state pressure and phase are chosen according to whether the real sub-
stance is gas, liquid, or solid at the equilibrium conditions. Those three possibilities
are discussed, in turn, here, and each discussion culminates with a particular expres-
sion for the activity. Those expressions can be used either in the stoichiometric devel-
opment, via (10.3.14), or in the nonstoichiometric development, via (10.3.38). We
emphasize that when we use the stoichiometric approach, the standard states used for
the fugacities must be consistent with those associated with the equilibrium constant.

Standard states for gases. When species i is a gas at the equilibrium conditions, the
standard state is usually taken to be the pure ideal gas at the equilibrium temperature
T and = 1 bar. (Caution: in older literature, the standard pressure was usually
taken as 1 atm = 1.0133 bar.) Then, the standard-state fugacity becomes

(10.4.1)

If we choose FFF #1 for gas-phase fugacities,

(10.4.2)

then the activity for species i takes the form

(10.4.3)
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The activity is dimensionless, and therefore, since the standard-state pressure was
specified in bars, the value for the system pressure P used in (10.4.3) must also be in
bars. Values for the fugacity coefficients ϕi appearing in (10.4.3) would be, as usual,
computed from a volumetric equation of state. The expression (10.4.3) for the activity
can be used both in (10.3.14) of the stoichiometric development and in (10.3.38) of the
nonstoichiometric development.

Standard states for liquids. For a liquid species i, the standard state is usually taken
to be the pure liquid at the equilibrium temperature T and at the pure vapor pressure

 Then the standard-state fugacity becomes

(10.4.4)

where is the fugacity coefficient for the pure saturated vapor at T. 
If we obtain the fugacity of the real liquid species i from FFF #3, then

(10.4.5)

and the corresponding expression for the activity is

(10.4.6)

This has the advantage of making the Poynting factor easy to compute, for it involves
a simple integral over the pure molar volume of the liquid; however, (10.4.6) has the
disadvantage of requiring us to know the value of the activity coefficient at the equi-
librium pressure. 

Alternatively, but with the same choice of standard state, we might obtain the
fugacity of liquid species i from FFF #5; then, instead of (10.4.6) we would have

(10.4.7)

The advantage to this choice is that the activity coefficient is now to be evaluated at
the standard-state pressure ( ), but the disadvantage is that the Poynting factor
requires an integration over the partial molar volume for i in the reaction mixture. 

If the equilibrium temperature T is above the critical temperature of pure i, then the
vapor pressure  does not exist and we seek alternatives to the above choice for the
standard state. Other possibilities include a standard state based on one of the ver-
sions of Henry’s law, discussed in § 10.2. For example, for species i we might choose
the standard state to be the (hypothetical) pure i whose fugacity equals the solute-free
Henry’s constant at T and any convenient pressure  Then the standard-state fugac-
ity would be
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(10.4.8)

where His is the solute-free Henry’s constant and {xsf } represents the set of solute-free
mole fractions (species i would be one of the solutes). The standard-state pressure 
would be any pressure at which a value could be obtained for the Henry’s constant.
The fugacity for the real species i would usually be obtained from FFF #3,

(10.4.9)

and the activity would be given by

(10.4.10)

The activity coefficient in (10.4.10) is to be evaluated at the system pressure, while the
Poynting factor involves the partial molar volume at infinite dilution. Usually, we use
(10.4.10) for some species and either (10.4.6) or (10.4.7) for the others. An expression
exactly analogous to (10.4.10) can also be developed using the reference-solvent
Henry’s constant.

Standard states for solids. For a solid species i, the standard state is usually chosen
to be the pure solid at the equilibrium temperature T and 1 bar. Then the standard-
state fugacity is

(10.4.11)

In writing this, we have ignored the Poynting factor that could be used to correct the
fugacity from the saturation pressure at T to P = 1 bar. We now choose FFF #5 for the
real solid, giving

(10.4.12)

and the corresponding expression for the activity is

(10.4.13)

The upper limit on the integral must be in bars. If all species were solids, then (10.4.13)
could be used for all, but this rarely happens, because most industrial-scale reactions
are carried out in fluid phases with few, if any, solid species present.
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10.4.2 Standard-State Properties from Properties of Formation

In both the stoichiometric and nonstoichiometric approaches to reaction-equilibrium
calculations, we need values for the standard change in the Gibbs energy ∆go. In the
stoichiometric development, ∆go is used in (10.3.14) to obtain values for the equilib-
rium constant K; in the nonstoichiometric development, ∆go is used to obtain values
for the standard-state chemical potentials that appear in (10.3.38). Since g is a state
function, values for ∆go can be measured or computed along any convenient process
path that starts with the desired reactants in their standard states and ends with prod-
ucts in their standard states. Of those many possibilities, the most convenient is to
determine ∆go by combining the Gibbs energies of formation for each species. That
procedure is developed here. However, values for molecular properties of formation
are often available only at a particular temperature To, so we must be able to correct
those values to the reaction temperature T. Such corrections for ∆go require values for
the standard heat of reaction ∆ho and, perhaps, values for the standard isobaric heat
capacities .

Let F be any extensive thermodynamic property, and let f = F/N be its intensive ana-
log. Then for any reaction j,  represents the difference between the value of F for
stoichiometric amounts of reactants and that for stoichiometric amounts of products,
all in their standard states,

(10.4.14)

Here  is the pure-component value of the intensive quantity f at the standard-state
temperature and pressure. A particular example of (10.4.14) appears in (10.3.11). For
reaction equilibria, we are interested in situations for which f = g, h, and cp. We can
consider many ways for obtaining values for the quantities so long as sufficient
data are actually available. But here we consider one way: that in which the are
computed from properties of formation.

Properties of formation. Let aki be the number of atoms of type k contained on one
molecule of species i. Then the property of formation,  is defined as the change in

 that occurs when the molecule is created from its constituent atoms,

(10.4.15)

Here,  is the molar value for f of atom k in the standard state. Putting (10.4.15) into
(10.4.14) gives

(10.4.16)

Recall that index i runs over species, j runs over reactions, and k runs over atoms on a
molecule of species i. The second term on the rhs can be rearranged to
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(10.4.17)

where A is the formula matrix and ννννj is the vector of stoichiometric coefficients for
reaction j. The quantity Aννννj vanishes because it merely expresses conservation of
atoms for a reaction; see (7.4.17). Then (10.4.16) reduces to

(10.4.18)

This states that the standard-state change of F for reaction j is simply given by the sum
of the properties of formation for each molecule i, with each weighted by its stoichio-
metric coefficient. Recall that νij > 0 for products, but νij < 0 for reactants. Properties of
formation are zero when the molecule is an element (e.g., H2, O2, N2, etc.). Otherwise,
values for properties of formation depend, not only on the standard temperature and
pressure, but also on the phase. We first consider corrections for changes in tempera-
ture and then for changes in phase.

Temperature corrections. To correct  from the standard temperature To to the
operating temperature T, we use the integrated form of the Gibbs-Helmholtz equation
from § 3.3.2,

(10.4.19)

Usually, the standard heat capacities are represented empirically by simple polynomi-
als in temperature.

Phase corrections. Occasionally we have a value of a formation property for a sub-
stance in one phase, but need the value for another phase. When the phases are vapor
and liquid and the pressure is low, the following approximations are common.

Let To and  be the standard-state temperature and pressure, and let  be the
pure-i vapor pressure at To. Then the difference between the vapor and liquid enthal-
pies of formation at  gives the latent heat of vaporization, ∆hvap,

(10.4.20)

When the standard-state pressure  and the pure vapor pressure  are both low,
then the liquid enthalpies are essentially the same at both pressures; likewise for the
vapor enthalpies. Then we have this approximation
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(10.4.21)

So if we know the latent heat of vaporization for pure i at To and if we also know the
standard heat of formation for one phase, then we can use (10.4.21) to estimate the
standard heat of formation for the other phase.

To obtain an approximation for the Gibbs energy of formation, we start from the
phase-equilibrium relation, which applies at To and 

(10.4.22)

When  is low, the vapor is an ideal gas and we can write

(10.4.23)

Integrating from  to  we obtain

(10.4.24)

Substituting this into (10.4.22) and neglecting the effect of pressure on the liquid, we
have

(10.4.25)

Therefore, once we know the value of  for one phase, then we can use (10.4.25) (at
low pressures) to estimate its value for the other phase. If species i is a solid phase in
the reacting mixture, we can evaluate the difference between properties of formation
of liquids and solids using the procedure presented in § 10.1.4.

Literature sources. For ideal-gas standard states, properties of formation can be
extracted from spectroscopic experiments via statistical mechanics [7]. In these cases,
the final values obtained for the formation properties are usually accurate. However,
for condensed-phase standard states, properties of formation are usually obtained by
combining values from other kinds of reactions; for example, for organics, properties
of formation may be obtained by combining property changes during combustion
reactions. In these cases, the values for properties of formation may be less accurate
than those obtained for ideal gases.

Values for properties of formation can be found in the following standard refer-
ences. Values of , , and  at 25°C are tabulated in two publications from the
U.S. National Bureau of Standards (now NIST, the National Institute for Standards
and Technology). The original publication was NBS Circular 500 [8], which is updated
in a later series under the title NBS Technical Note 270 [9]. A second set of tables has its
origins in a publication by the American Petroleum Institute, API 44 [10]. The newer
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versions are published by the Thermodynamics Research Center at Texas A & M Uni-
versity and contain  and  at 25°C, along with other related quantities [11].

The tables originally published by Stull et al. [12] have been updated as later edi-
tions of the JANAF (Joint Army-Navy-Air Force) tables [5]. These references provide
values for , , and  as functions of temperature; similar tables are also avail-
able in Landolt-Börnstein [13]. Comparisons of these tables, in terms of content and
notation, can be found in Bett et al. [6] and Poling et al. [14]. Poling et al. also discuss
how errors in  values affect results from equilibrium calculations.

10.4.3 Computational Forms for Stoichiometric Approach

The typical reaction-equilibrium problem is to determine the equilibrium composition
when species are allowed to react under specified conditions. In previous sections we
have addressed various aspects of such problems; now we summarize the computa-
tional forms usually used in solving them. Common forms used for the stoichiometric
method are presented here; those for the nonstoichiometric method are presented in
§ 10.4.5.

In the stoichiometric development we need values for the stoichiometric coeffi-
cients, which we obtain by solving

j = 1, 2, … , R (7.4.17)

The system is composed of C total species and me total elements. In (7.4.17) ννννj is the
vector of stoichiometric coefficients for reaction j and A is the (me x C ) matrix of aki
coefficients, with aki the number of atoms of element k on one molecule of species i.
With values for the stoichiometric coefficients, we can form expressions for the species
mole fractions in terms of an extent ξj for each of the R reactions,

(7.4.22)

Here  is the number of moles of species i initially present, No is the total number of
moles initially present, and σj = Σi νij is the algebraic sum of stoichiometric coefficients
for reaction j.

The equilibrium mole fractions can be obtained by using the equilibrium values for
the extents ξj in (7.4.22). The equilibrium values of the extents are those that provide
the correct value for the equilibrium constant at the reaction T and P, 

(10.3.13)
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Values of Kj for use in (10.3.13) are typically obtained from the standard Gibbs ener-
gies of formation (§ 10.4.2). Relations between the Kj and the ξj

e are determined by the
choice of standard state and the corresponding expressions for the activities. We
present a few representative forms here to show how expressions from previous sec-
tions are combined; but the following, while common, are not the only possibilities.

For gases we would use the standard state from § 10.4.1, with the activities given
by (10.4.3). Then if all species were gases, the expression for the equilibrium constant
(10.3.13) would become

(10.4.26)

Recall that the standard state pressure here is 1 bar for all species, so the reaction pres-
sure P in (10.4.26) must also be in bars. Also recall that Kj does not depend on P; there-
fore, since σj can be positive, negative, or zero, the product on the rhs may increase,
decrease, or remain unchanged when P differs from Po.

For liquids we often use the pure saturated liquid for the standard state, as
described in § 10.4.1; if we then choose FFF #3, so the activities are given by (10.4.6),
and if all species are liquid, then (10.3.13) for the equilibrium constant takes the form

(10.4.27)

where γ i is evaluated at P. If P ≈  then the Poynting factor can be ignored; other-
wise, unless  we assume the liquid-phase molar volume is constant with P so
the integral in the Poynting factor can be easily evaluated. If we prefer to use FFF #5,
then the activities are given by (10.4.7), and instead of (10.4.27), and we obtain

(10.4.28)

where γ i is evaluated at  
The expressions for the equilibrium constants in (10.4.26)–(10.4.28) apply only

when the same standard state has been chosen for all species. When different stan-
dard states are used for different species, K is still given by (10.3.13), with the appro-
priate expression for each activity taken from § 10.4.1. In any event, (10.3.26)–(10.3.28)
illustrate how the compositions occur in the expressions for K. On substituting (7.4.22)
for those mole fractions, we obtain R algebraic equations that can be solved for the
equilibrium values of R extents of reaction. Then with those values for the ξj

e, the
equilibrium mole fractions are obtained from (7.4.22). This procedure is illustrated for
a single reaction in the following example. More elaborate reaction-equilibrium prob-
lems are discussed in Chapter 11.
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10.4.4 Example

How do we use the stoichiometric method to complete the computation started in
§ 10.3.3 for the equilibrium composition from an ammonia synthesis?

The ammonia synthesis is carried out in the gas phase at 25°C, 1 bar, using an initial
feed containing three moles of hydrogen for each mole of nitrogen. The stoichiometry
for the reaction was determined in § 7.4.2. In § 10.3.3 we found the value of the equi-
librium constant to be

(10.3.16)

Since all species are gases, we use (10.4.26) to relate K to mole fractions. Further, at 1
bar the mixture is an ideal gas, so (10.4.26) simplifies to

(10.4.29)

where 1 = nitrogen, 2 = hydrogen, and 3 = ammonia. In § 7.4.2 we found expressions
for these mole fractions in terms of the one extent of reaction:

,   ,  and  (10.4.30)

These apply at every point during the reaction, but putting them into (10.4.29)
restricts us to the final mixture when equilibrium is reached:

(10.4.31)

This is a quadratic for the equilibrium value of the extent ξe; solving analytically,
we find ξe = 1.937 and 2.063. The smaller root is correct; this choice can be justified in
two ways:

(a) When ξ increases from zero as the reaction proceeds, the equilibrium value is
the one encountered first; that is, it is the smallest positive value. 

(b) Using (7.4.23), we can compute the upper bound on ξ , based on the limiting
reactant. Since the reactants are fed in their stoichiometric ratio, both reactants
give the same upper bound; for example, using hydrogen, (7.4.23) gives ξub =
– /ν1 = –3/(–3/2) = 2. Therefore, any roots ξe > 2 are meaningless. 

Using ξe = 1.937 in (10.4.30), the equilibrium mole fractions are found to be

x1 = 0.0153, x2 = 0.0460, and x3 = 0.9387

As expected, the equilibrium mixture contains a significant fraction of product
(ammonia); this is consistent with K > 1.
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10.4.5 Computational Form for Nonstoichiometric Approach

In this subsection we complete the development of the nonstoichiometric method to
obtain a form suitable for computations. For one reaction occurring among C species
we have already obtained

i = 1, 2, … , C (10.3.38)

subject to the constraints (10.3.37), which we now write as

k = 1, 2, … , me (10.4.32)

One molecule of species i contains aki atoms of element k, and the mixture contains a
total of me elements. The quantities λk are the unknown Lagrange multipliers whose
values will be determined. In (10.4.32), the bk are the total number of atoms of element
k, and the mole numbers sum to a total number of moles N,

(10.4.33)

We need a way to obtain values for the standard-state chemical potential appearing
in (10.3.38). Each standard state is a pure species, so the chemical potential reduces to
the pure molar Gibbs energy, and the pure molar property is simply related to the
Gibbs energy of formation by (10.4.15). So we rewrite (10.4.15),

(10.4.34)

Substituting (10.4.34) into (10.3.38) leaves

i = 1, 2, … , C (10.4.35)
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is a dimensionless constant. The result (10.4.35) together with the constraints (10.4.32)
and the material balance (10.4.33) close our problem: the aki, bk, and initial feed ratios
are known, expressions for the activities can be obtained from the possibilities cited in
§ 10.4.1, and values for the properties of formation can be found in standard
tables (see the end of § 10.4.2). Therefore (10.4.32), (10.4.33), and (10.4.35) constitute
(C + me + 1) algebraic equations that can be solved simultaneously for the C equilib-
rium mole fractions, the me Lagrange multipliers, and the equilibrium value of N. The
procedure is illustrated for a single reaction in an example below.

In this nonstoichiometric method, part of the solution is the set of values for the
Lagrange multipliers λk. In most situations these multipliers have little physical sig-
nificance; they merely serve to ensure conservation of atoms, so their values are a nec-
essary but nonphysical by-product of the calculation. When the number of elements
me is less than the number of species C, the C equations (10.4.35) could be combined to
eliminate the me multipliers λ, so their values would not obtained explicitly. However,
if such a combination is done, the result is equivalent to the stoichiometric expression
for the equilibrium constant, and the computational advantages of the nonstoichio-
metric method are lost.

Note that in the nonstoichiometric approach, we do not obtain values for stoichio-
metric coefficients and we have no parameters, such as the extent ξ , that track the
progress of individual reactions. Moreover, the computational forms (10.4.32)–
(10.4.35) contain no quantities that are specific to a particular reaction (e.g., no sub-
scripts j appear). So although the nonstoichiometric equations (10.4.32)–(10.4.35) were
derived with one reaction in mind, they actually apply to situations involving any
number of reactions. In fact, we can use the nonstoichiometric method without know-
ing how many reactions are occurring or even what those reactions might be: we only
need a complete identification of all reactants and products. This constitutes a princi-
pal advantage of the nonstoichiometric development.

10.4.6 Example

How do we use the nonstoichiometric method to complete the calculation of the
equilibrium composition for the problem started in § 10.3.7?

The reaction is ammonia synthesis by a gas-phase reaction at 1 bar, 25°C. The feed
contains three moles of hydrogen for each mole of nitrogen. At 25°C and 1 bar, the
standard Gibbs energy of formation for ideal-gas ammonia is  = – 16.45 kJ/(mol
ammonia formed) [5]. Let subscripts 1 = nitrogen, 2 = hydrogen, and 3 = ammonia.

The equations of constraint for conservation of atoms were found in § 10.3.7 to be

(10.4.37)

(10.4.38)

(10.4.39)

It remains for us to develop a computational form from the presentation in § 10.4.5.
The mixtures are gases, so we choose the standard state for each component to be the
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pure ideal gas at 1 bar and 25°C because this is the state at which we can find values
for the standard-state change in Gibbs energy. Then

(10.4.3)

But at the operating pressure P = 1 bar, the gases are in fact ideal, so ⁄i =  = xi,
and (10.4.35) gives for each species,

(10.4.40)

(10.4.41)

(10.4.42)

The dimensionless multipliers λ* are defined by (10.4.36). For elements, properties of
formation are zero, and we have the value for so (10.4.40)–(10.4.42) reduce to

(10.4.43)

(10.4.44)

(10.4.45)

The equations (10.4.37)–(10.4.39) and (10.4.43)–(10.4.45) constitute six equations
that can be solved for the three equilibrium mole fractions, the total number of moles,
and the two Lagrange multipliers. In general, such equations, which result from the
nonstoichiometric development, are nonlinear and must be solved by trial. Here the
results are found to be

x1 = 0.0154, x2 = 0.0462, and x3 = 0.9384 (10.4.46)

N = 2.064 moles/mol nitrogen fed       (10.4.47)

and (10.4.48)

The mole fractions found here are the same as those found by the stoichiometric
method in § 10.4.4. We can make further contact with § 10.4.4 by noting that the equi-
librium value of N in (10.4.47) is simply related to the extent of reaction found in
§ 10.4.4; the relation is given by (7.4.12), which for one reaction becomes

⁄i
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* 3λ2

*+ + 6.636=

λ1
* 2.087= λ2

* 1.537=
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 (10.4.49)

From § 10.4.4 we have σ = 1 – 1/2 – 3/2 = – 1, and with a feed of No = 4, we use
(10.4.49) to find ξe = (2.064 – 4)/(–1) = 1.936, which is the same as found in § 10.4.4.

Finally note that we could combine the three equations (10.4.43)–(10.4.45) to elimi-
nate the two Lagrange multipliers. But doing so produces the stoichiometric equation
(10.4.31) that relates the equilibrium constant to the mole fractions. In other words, the
stoichiometric and nonstoichiometric developments are merely two different formula-
tions of the same equations, though in particular applications one approach or the
other may be easier to use.

10.5  CHOOSING AN APPROPRIATE FORM IN APPLICATIONS

At this point we have developed several alternatives for setting up computations. We
must select from these alternatives before calculations can be undertaken; we now
discuss the issues that should be considered in making the selection. Careful selection
helps us reach a reliable result from an economical investment of computational
resources. That is, our decisions constitute the classic optimization problem that
weighs convenience against reliability. Such judgements are at the heart of engineer-
ing practice, for if there were no such decisions to be made, then engineers could be
largely replaced by computing machines.

10.5.1 General Considerations

Here we can only begin to address general elements that should be included in reach-
ing a correct decision. More specific elements involve considerations of the behaviors
and limitations of particular models that might apply to the problem. We divide the
general considerations into three parts.

Assess the risks. What use is to be made of the calculated property? Do we need an
exact value (accuracy) or are we only trying to avoid major blunders (reliability)?
What is the impact if the computed property is in error by 1%, 10%, or 100%? How
accurate and reliable are the data that will be used as inputs to the calculation?
Remember, no property is ever measured or computed exactly. This means we must
understand the problem well enough to be able to determine the desired accuracy.

Make reasonable assumptions. By considering the state of the system and the nature
of its components, we can introduce sensible approximations that may vastly simplify
the analysis but do little harm to the accuracy of the calculation. A consideration of
the state would include identification of the phases present (solid, liquid, gas), esti-
mates for temperature and pressure, and rough estimates for the composition. (For
example, is a mixture dominated by one component or are any components present in
very small amounts?). In general, it is helpful to locate known state points on phase
diagrams, or at least to find where a mixture temperature lies relative to the pure-
component melting and critical temperatures. By nature of the components we mean
the kinds of intermolecular forces, such as simple van der Waals interactions, hydro-

ξe N No
–
σ------------------=
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gen bonding, polarity, dimer formation, conformational structures, and coulombic
interactions in electrolytes.

Attention should also be given to sensitivity: how will computational results be
affected by changes in input values, such as state conditions, model parameters, and
model approximations? For example, what-if scenarios can be studied either by exam-
ining derivatives of outputs wrt inputs or by solving the full problem under changes
in the inputs. In highly sensitive situations, small changes in inputs propagate into
large changes in output, and then even “reasonable” assumptions can lead to disaster.
But when the sensitivity is low, so large changes in inputs have little effect on outputs,
then a simple approach may be sufficient to achieve the desired accuracy.

Identify the resources available. What computational methods can be applied and
what parameters and data are needed to implement a particular method? Critical
properties? Heat capacities? Vapor pressures? Parameters for a PvTx equation of
state? Parameters in models for excess properties? When available data are sparse (the
usual situation) or unreliable or conflicting, then set upper and lower bounds on the
property and do a sensitivity analysis (which input data have the largest impact on
the calculated property?). Considerations should also be given to the resources
needed to set up the calculation (pencil and paper, calculator commands, computer
software, original computer codes) and the hardware needed to carry them out (brain,
fingers, calculator, PC, workstation).

10.5.2 Rules of Thumb for Selecting from the FFF

All phase and reaction equilibrium computations require expressions for the fugaci-
ties of all components. The possible expressions are presented in § 6.4 as the five
famous fugacity formulae (FFF). Here are some general guidelines for choosing from
those possibilities.

FFF #1 should be used whenever the volumetric behavior of the substance is reli-
ably correlated by a PvTx equation of state: FFF #1 is always used for gases, but it
should never be used for solids. FFF #1 can be used for liquids, if a reliable equation of
state is available for the liquid phase. However, if all that is wanted is a quick estimate
of liquid properties, FFF #2–5 are generally faster to implement than FFF #1.

At the lowest pressures, FFF #2–5 are equivalent, and their use only requires values
for the standard-state fugacities plus models for activity coefficients. For condensed
phases at low pressures, we typically use either FFF #2 or #3 and ignore the pressure
effects on activity coefficients. When pressure effects are important, then we also need
volumetric data for computing Poynting factors (or their equivalents). For condensed
phases at high pressures, we typically use either FFF #4 or 5; generally we prefer FFF
#5 because making rough estimates of the composition dependence of partial molar
volumes is usually more reliable than roughly estimating the pressure dependence of
activity coefficients. When we have gases dissolved in liquids, we usually use FFF #4.

When using FFF #5, we choose a pure-component standard-state for all condensed
components i (solid and liquid) whose pure critical temperatures Tci are not much
beyond the system temperature T; say, T < 1.2Tci. We choose one of the Henry’s law
standard states for any component i that has xi < 0.01 and T > 1.5Tci. Exceptions to this
might include liquid-solid equilibria or situations in which a PvTx equation of state
has been directly fit near the conditions of interest.
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10.5.3 Selecting an Appropriate Phase-Equilibrium Relation

The choices here are the phi-phi, gamma-phi, and gamma-gamma methods. The phi-
phi method can be used whenever an accurate PvTx equation of state is available for
all phases. This includes various fluid-fluid situations, particularly high-pressure
vapor-liquid, liquid-liquid, and gas-gas equilibria. The method is also being extended
to low-pressure vapor-liquid and liquid-liquid equilibria, as better equations of state
are developed. The gamma-phi method is the traditional method for low-pressure
vapor-liquid and vapor-solid equilibria. The trend seems to be toward using gamma-
phi for simple situations, such as when the liquid phase can be assumed to be nearly
an ideal solution. The gamma-gamma method is used for equilibria among con-
densed phases, including liquid-liquid, liquid-solid, and solid-solid equilibria. 

10.5.4 Selecting an Appropriate Reaction-Equilibrium Relation

Here the choices are between the stoichiometric and the nonstoichiometric develop-
ments. The stoichiometric approach is best suited for small numbers of reactions,
because it involves several distinct steps: determination of values for stoichiometric
coefficients, construction of expressions for each mole fraction in terms of an extent
for each reaction, determination of values for all equilibrium constants. These activi-
ties must be accomplished before the final equations can be written. Further, those
equations tend to be application-specific, so many (but not all) forms of the stoichio-
metric approach are less amenable to a general computer implementation. 

In contrast, the nonstoichiometric approach is generally better for complicated situ-
ations involving many reactions, including those many situations, such as combustion
and biological processes, in which all reactions cannot be explicitly identified. This
method involves many fewer preparatory steps: no stoichiometric coefficients need be
computed, no reactions are identified or balanced, and no equilibrium constants are
evaluated. The principal price paid for this convenience is the larger number of equa-
tions to be solved. But, even though the nonstoichiometric method produces more
equations than the stoichiometric method, the nonstoichiometric development is
more systematic and its general form can often be more readily implemented on a
computer. 
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PROBLEMS

10.1 For each of the following two-phase equilibrium situations, assume you know
T and the composition of one phase. Indicate whether you should use ϕ-ϕ, γ-ϕ,
or γ-γ to solve for the pressure and the composition of the other phase.

(a) solid naphthalene in contact with air

(b) carbon dioxide vapor in contact with champagne

(c) LSE for melting of a zinc-copper alloy

(d) benzene, toluene, and water in LLE

(e) n-propanol and isopropanol in VLE.
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10.2 In Figure 10.2 we show the fugacities computed for ethanol(1) and benzene(2)
in VLE at 370 K and 2.5 bar. According to the models used, an azeotrope occurs
near 367 K and 2.5 bar. For this azeotropic state, make qualitative sketches of
the fugacities analogous to those shown in Figure
10.2. Mark the azeotrope on your plots. You do not have to do any calculations.

10.3 Since neither an ideal gas nor an ideal solution can violate the diffusional stabil-
ity criteria derived in Chapter 8, Tabitha the Untutored maintains that Raoult’s
law must be nonsense. Do you agree? If so, then how do you explain that ideal
gases can exist in VLE with ideal liquid solutions? If you do not agree, then
how do you explain phase separation without instabilities?

10.4 A binary liquid mixture is composed of components 1 and 2. Over the range of
compositions 0 < x1 ≤ 0.05 component 1 obeys Henry’s law. Obtain the expres-
sion for the composition dependence of the fugacity of component 2 over this
same range of compositions.

10.5 Still trying to debunk Raoult’s law, Tabitha the Untutored has noted that
Raoult’s law (10.2.15) gives a straight line for isothermal plots of VLE Px1 data.
Therefore, she says, Raoult’s law asserts this: whenever we find a straight line
for low-pressure VLE Px1 data, then we have found an ideal liquid solution.
Tabitha says this is nonsense because we can find nonideal mixtures that give
such straight lines. For example, here are some data from Findlay and Copp
[15] for mixtures of pyridine(1) and ethanol(2) at 75°C: 

(a) Plot these data as a Pxy diagram and fit a straight line to the Px1 points.

(b) Tabitha says that a pyridine molecule is not much like an ethanol molecule,
so they cannot form ideal liquid solutions (Lewis-Randall standard state),
yet the Px1 curve is essentially straight. Hence, Raoult’s law is nonsense.
Do you agree or disagree? Justify your answer.

10.6 Consider binary mixtures of benzene(1) and toluene(2) in a closed system at
vapor-liquid equilibrium. Expressions for pure-component vapor pressures are
given in Appendix D.

(a) Compute and construct a Px1y1 diagram at 100°C. 

(b) Compute and construct a Tx1y1 diagram at 1 bar. 

(c) Estimate the latent heat of vaporization for pure benzene. 

10.7 Tabitha the Untutored claims the fugacity is the fugacity, no matter what, so it
is legitimate to use FFF #1 for one component in a binary liquid mixture and
use FFF #2 for the other component. Do you agree? If so, justify. If not, what
fundamental thermodynamic relations would be violated?

x1 0 0.2 0.4 0.6 0.8 1.

P (mm Hg) 201.2 299.3 393.6 484.4 573.7 665.3

y1 0 0.530 0.690 0.832 0.930 1.

f1
{ x1( ) f1

v y1( ) f2
{ x1( ) f2

v y1( ), , ,
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10.8 Determine the dew pressure and liquid composition for an equimolar vapor
mixture of ether(1) and acetone(2) at 45°C. At this T the pure vapor pressures
are  = 1.453 bar and  = 0.68 bar. The liquid obeys gE/RT = 0.712 x1x2.

10.9 Consider binary mixtures of benzene(1) and toluene(2) in VLE, with the pure-
component vapor pressures given in Appendix D.

(a) What is the numerical value of F (see § 9.1) and what is its significance?
Parts (b)–(e) are examples of F-problems.

(b) Determine P and y1 when T = 110°C and x1 = 0.4.

(c) Determine P and x1 when T = 95°C and y1 = 0.65.

(d) Determine T and y1 when P = 1.2 bar and x1 = 0.3.

(e) Determine T and x1 when P = 1.5 bar and y1 = 0.7.

(f) What is the numerical value of F ′ (see § 9.1) and what is its significance?
Solve the following F ′-problem: Find x1, y1, and V (the fraction of total
moles in the vapor phase) when T = 100°C, P = 1 bar, and the overall mole
fraction for benzene is z1 = 0.4.

10.10 At 50°C a binary liquid mixture of 1 and 2 obeys gE/RT = 1.5 x1x2. At 50°C the
pure-component vapor pressures are 0.8 bar for component 1 and 0.933 bar for
component 2. Determine whether this mixture exhibits an azeotrope at 50°C.
Clearly state any assumptions made.

10.11 (a) Derive an expression that relates the activity coefficient to the reversible
isothermal-isobaric work needed to extract a small amount of pure 1 from a
Lewis-Randall ideal solution and inject it into a real mixture at T, P, {x}.

(b) Derive the expression that relates the activity coefficient to the reversible
isothermal-isobaric work needed to extract a small amount of pure 1 from a
reference-solvent, Henry’s law ideal solution and inject it into a real mix-
ture at T, P, {x}.

10.12 Find an expression for the amount of reversible isothermal-isobaric work
needed to inject a small amount of pure 1 from a vacuum into a real binary mix-
ture that is essentially pure component 2. That is, find the expression for the
work, and then take the infinite-dilution limit. You may assume the mixture
obeys Henry’s law.

10.13 Assume air is a binary mixture of nitrogen and oxygen. Use the following mod-
els to estimate the fugacities of each component at 25°C and 40 bar. (a) Ideal
gas. (b) Lewis-Randall ideal solution with components obeying the simple vir-
ial equation Z = 1 + BP/RT and values of the second virial coefficients provided
by the Pitzer correlation in Problem 4.22.

10.14 Nitrogen(1) and carbon tetrachloride(2) are in vapor-liquid equilibrium at 25°C
and 1 bar. The liquid has x1 = 5(10–4); a correlation for vapor pressures of pure
CCl4 is given in Appendix D. Estimate the liquid composition when the system
pressure is increased isothermally to 2 bar while vapor-liquid equilibrium is
maintained.

P1
s P2

s

γ1
*

γ1
+
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10.15 For certain ternary mixtures of components 1, 2, and 3, the molar volume obeys

where v1 = 18, v2 = 10, v3 = 12, A12 = 10, A13 = –20, A23 = 15, and B = –20, all in
cc/mole.

(a) Determine the expression for the composition dependence of the partial
molar volume of component 1.

(b) Let component 2 be a reference solvent, r = 2. Obtain the value of  in the
pure reference-solvent limit. Does your answer depend on composition?

(c) Obtain the expression for the composition dependence of the molar vol-
umes for binary mixtures of 1 and 2. Then evaluate the partial molar vol-
ume for 1 at infinite dilution. Compare your result with that found in (b);
what do you conclude?

(d) Rewrite your expression for found in (a) in terms of the solute-free
mole fractions for components 2 and 3. Now evaluate the partial molar vol-
ume for 1 at infinite dilution for solute-free mole fractions fixed at their val-
ues corresponding to x2 = x3 = 0.2. Repeat the evaluation for x2 = 2x3 = 0.2.
On comparing these two results, what do you conclude?

(e) Using expressions from (d), evaluate  for binary mixtures of 1 and 2 and
compare the result with those found in (b) and (c). 

10.16 For the ternary mixture in the example of § 10.2.6, compute the component-1
activity coefficient as a function of x1, using component 3 as the reference
solvent. 

(a) Plot your Henry’s law, reference-solvent, ideal-solution fugacity as f1 vs. x1
and on the same plot show the corresponding fugacity curve for the Lewis-
Randall ideal solution. 

(b) Plot your activity coefficient vs. x1 for the ternary, with x2/x3 = 1. On the
same plot show the corresponding curve for the Lewis-Randall standard-
state activity coefficient γ1. 

10.17 Combine the three equations (10.4.43)–(10.4.45) to eliminate the Lagrange mul-
tipliers and show that the result is (10.4.29) for the equilibrium constant. This
shows that the stoichiometric and nonstoichiometric developments are two for-
mulations of the same equations.

10.18 When the gas-phase reaction

CO  +  2 H2   →   CH3OH

reaches equilibrium at 700 K, the total pressure is found to be 3.1 bar and the
composition of the mixture is y1 = 0.323, y2 = 0.0323, y3 = 0.645, where 1 = CO, 2
= H2, and 3 = CH3OH. If this mixture is isothermally expanded to twice its orig-
inal volume, determine the composition of the new equilibrium mixture.

v x1v1 x2v2 x3v3 A12x1x2 A13x1x3 A23x2x3 Bx1x2x3+ + + + + +=

V1

V1

V1
∞

γ1
+

γ1
+
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10.19 Consider production of ethanol by the gas-phase reaction of ethylene with
steam at 1 bar and 500 K. At 298 K the standard properties of formation are

The pure ideal-gas heat capacities can be represented by

with T in K and following parameter values from Poling et al. [14] 

(a) Is the reaction endothermic or exothermic at 500 K?

(b) Determine the composition of the equilibrium mixture, assuming the stan-
dard heats of formation are constants at the values given above at 298 K.

(c) Repeat the calculation in (a), but use the given heat capacities to account for
the effect of temperature on the heats of formation. 

10.20 (a) Repeat the determination of the equilibrium composition in § 10.3.3 and
§ 10.4.4 for the stoichiometric method applied to ammonia synthesis, but
evaluate the composition at 10 bar, 25°C rather than at 1 bar, 25°C. 

(b) Repeat part (a) but use the nonstoichiometric method of § 10.3.7 and
§ 10.4.6.

10.21 (a) Repeat the calculation in § 10.3.3 and § 10.4.4 but at 200°C, 1 bar rather than
at 25°C, 1 bar. Assume the heat of formation for gaseous ammonia is con-
stant at –46.1 kJ/mol. 

(b) Repeat part (a) but use the nonstoichiometric method.

10.22 (a) Repeat the calculation in § 10.3.3 and § 10.4.4 but at 200°C, 10 bar rather
than at 25°C, 1 bar. You may assume the heat of formation for gaseous
ammonia is constant at –46.1 kJ/mol. 

(b) Compare and discuss your results from Problems 10.20(a), 10.21(a), and
10.22(a). In particular, how do changes in temperature and pressure affect
the equilibrium conversion?

C2H4 H2O C2H5OH

 (kJ/mol) 68.46 –228.6 –168.5

 (kJ/mol) 52.51 –241.8 –235.1

A B(103) C(105) D(108) E(1011)

C2H4 4.221 –8.762 5.795 –6.729 2.511

H2O 4.395 –4.186 1.405 –1.564 0.632

C2H5OH 4.396    0.628 5.546 –7.024 2.685

∆gf
o

∆hf
o

cp R⁄ A BT CT2 DT3 ET4
+ + + +=
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10.23 Ethyl acetate can be made by the esterification of ethanol with acetic acid
according to

HAc  +  EtOH    →     EtAc  +  H2O

Values of (kJ/mol) and (kJ/mol) are as follows: 

(a) At 298 K we could adjust the pressure in the reactor to obtain either a one-
phase liquid mixture or a one-phase gas. Estimate the equilibrium constant
K for both possibilities, and indicate whether the liquid or the gas would
produce a higher equilibrium conversion of EtOH. In deciding whether a
liquid or a gas phase should be used, are there other (nonthermodynamic)
considerations that should be taken into account?

(b) At 355 K and 1.013 bar the four-component reaction mixture exists in
vapor-liquid equilibrium. Using only the values given for above, esti-
mate the value of the liquid-phase equilibrium constant K for the VLE situ-
ation at 355 K.

10.24 Use the stoichiometric method to determine the equilibrium compositions
resulting from gas-phase oxidation of nitric oxide (NO) to nitrogen dioxide
(NO2) performed at 1 bar and (a) 298.15 K, (b) 600 K, and (c) 1000 K. Assume
the initial feed in each case contains one mole of oxygen for each mole of nitric
oxide. The values of standard properties of formation at 25°C are as follows:

10.25 Repeat Problem 10.24 but use the nonstoichiometric method.

10.26 Repeat Problem 10.24 using the stoichiometric method, but evaluate the com-
positions at (a) 298.15 K, 30 bar and (b) 600 K, 30 bar. If necessary, assume the
simple virial equation applies, Z = 1 + BP/RT with values of the second virial
coefficients provided by the Pitzer correlation in Problem 4.22. You may also
assume that the gas-phase mixture forms a Lewis-Randall ideal solution.

10.27 Repeat Problem 10.26 but use the nonstoichiometric method.

EtOH HAc EtAc H2O

Liquid [16] at 298 K –174.2 –389.6 –332.9 –237.3

Gas [16] at 298 K –168.4 –376.9 –327.6 –228.8

Gas [17] at 355 K –155.2 –365.3 –304.8 –226.0

 [14] at 1 atm. 38.56 23.70 31.94 40.66

(kJ/mol) (kJ/mol)

NO (g) 86.55 90.25

NO2 (g) 51.31 33.18

∆g f
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o
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o
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o
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ELEMENTARY COMPUTATIONAL 

PROCEDURES

 

ultiphase systems and chemical reactions pervade the chemical processing
industries. For example, we routinely force the creation of a new phase to

exploit the accompanying change in composition; consequently, phase changes are
used in many separation processes, including distillation, crystallization, and solvent
extraction. In addition, we routinely suppress the creation of a new phase, for exam-
ple, to maintain inventory of liquids by controlling loss due to evaporation and to
meet health and safety standards by controlling evaporation of flammable, hazard-
ous, and toxic substances. Likewise, we often promote chemical reactions to convert
inexpensive raw materials into valuable products. But we also try to prevent other
reactions that convert valuable materials into costly wastes, and we try to prevent
reactions that convert benign substances into hazardous or toxic chemicals. In all such
situations, the design and operation of appropriate processes may hinge upon com-
puting proper solutions to phase-equilibrium problems or reaction-equilibrium prob-
lems or both.

In previous chapters we developed the thermodynamics of phase and reaction
equilibria, and we illustrated certain principles using straightforward computational
procedures. We used only simple procedures so as not to detract from thermodynamic
issues. In this chapter we consider more complex situations and therefore give more
attention to computational techniques. No new thermodynamics is introduced in this
chapter; instead, we try to show how the thermodynamics already developed can be
used in multicomponent phase and reaction-equilibrium situations.

But while we devote more attention to computational issues here, our goals remain
educational: mastery of the material in this chapter will not make you an expert in
computational thermodynamics, though we hope this chapter can serve as a solid
foundation for future study and practice. Of the many computational algorithms that
are available, we have selected a small number of elementary ones that are representa-
tive. Moreover, just as we have found and exploited patterns that help organize ther-
modynamic concepts, so too can we find patterns in computational algorithms. The
algorithms presented in this chapter build on certain fundamental patterns. Recogniz-
ing those patterns should help you understand the material and should help you
appreciate the underlying unity that exists among superficially distinct topics.

M
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ELEMENTARY COMPUTATIONAL PROCEDURES

 

Strategies for attacking phase and reaction equilibrium calculations divide into two
basic types: (a) those that impose the equilibrium conditions through a coupled set of
nonlinear algebraic equations (equality of fugacities for phase equilibria or relations
between fugacities and equilibrium constants for reaction equilibria) and (b) those
that impose the equilibrium conditions by minimizing the appropriate thermody-
namic state function (usually the Gibbs energy at fixed 

 

T

 

 and 

 

P

 

). These two strategies
are thermodynamically equivalent, so the decision as to which to apply can be based
on computational issues, such as convergence, computational resources required, and
ease of computer-program preparation. But here we also have educational goals, and
those goals appear to be best served by concentrating on strategies in class (a). In our
opinion, the computational issues surrounding multivariable optimization are so
technical and subtle that they detract too much from the thermodynamic issues we
hope to illustrate and reinforce. As Acton has remarked [1], “… minimum-seeking
methods are often used when a modicum of thought would disclose more appropri-
ate techniques.” In this chapter we ignore Gibbs-energy minimization.

In § 11.1 we present algorithms based on the strategies developed in Chapter 10—
the phi-phi, gamma-phi, and gamma-gamma methods—to perform multicomponent
vapor-liquid, liquid-liquid, and vapor-liquid-liquid computations. In § 11.2 we pre-
sent a stoichiometric algorithm for solving single-phase, multireaction equilibrium
problems. Before applying an algorithm to such problems, we must identify the num-
ber of independent reactions and assign values to the stoichiometric coefficients of
those reactions. These rather troublesome preliminaries can be automated through a
particular decomposition of the formula matrix 

 

A

 

, as we show in § 11.2. Then in § 11.3
we briefly introduce and illustrate an elementary algorithm for performing coupled
phase and reaction equilibrium calculations.

 

11.1  PHASE-EQUILIBRIUM CALCULATIONS

 

When 

 

P

 

 phases, each composed of 

 

C

 

 components, coexist in unconstrained equilib-
rium, the intensive state is identified by giving values for 

 

F

 

 independent intensive
properties, where the number 

 

F

 

 is provided by the phase rule,

(9.1.14)

So when two phases, 

 

α

 

 and 

 

β

 

, are in equilibrium, the state is identified by values for 

 

C

 

properties; those 

 

C

 

 properties could be the pressure plus (

 

C

 

 – 1) independent mole
fractions {

 

x

 

α

 

} for the 

 

α

 

 phase. But although situations having 

 

P

 

 = 2 require only 

 

C

 

properties to identify the state, we often need to know more to satisfy the needs of a
design or operational problem. For example, in addition to pressure and {

 

x

 

α

 

}, we may
also need to know temperature and the composition of the other phase {

 

x

 

β

 

}. Values
for these additional properties can be computed by solving the equilibrium conditions

 

i = 1, 2, … ,

 

 

 

C

 

(11.1.1)

These are 

 

C

 

 independent equations that can be solved for 

 

C

 

 unknowns. In this section
we present representative algorithms for performing such calculations. 
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From the measurables 

 

T

 

, 

 

P

 

, {

 

x

 

α

 

}, and {

 

x

 

β

 

}, five common phase equilibrium prob-
lems can be contrived, depending on which quantities are known and which are
unknown. For example, the problem introduced in the previous paragraph involves 

 

P

 

and {

 

x

 

α

 

} as known and requires us to solve (11.1.1) for 

 

T

 

 and {

 

x

 

β

 

}. When phase 

 

α

 

 is
liquid and phase 

 

β

 

 is vapor, this problem is called a 

 

bubble-T

 

 calculation, for we are to
compute a point on the bubble curve of an isobaric 

 

Txy

 

 diagram. This along with the
other four common problems are listed in Table 11.1.

In the table the second, third, and fourth problems each result from a permutation
of the known and unknown quantities that occur in the bubble-T calculation. We refer
to these as 

 

F

 

-problems, because each problem is well-posed when values are specified
for 

 

F

 

 independent intensive properties, where the value of 

 

F

 

 is given by the phase
rule (9.1.14). However, the flash problem in Table 11.1 differs from the others in that it
is an 

 

F

 

′

 

-problem; it is well-posed when values are specified for 

 

F

 

′

 

 independent inten-
sive properties, with the value of 

 

F

 

′

 

 given by (9.1.12). Flash calculations pertain to
separations by flash distillation in which a known amount 

 

N

 

 of one-phase fluid, hav-
ing known composition {

 

z

 

}, is fed to a flash chamber. When 

 

T

 

 and 

 

P

 

 of the chamber
are properly set, the feed partially flashes, producing a vapor phase of composition
{

 

x

 

β

 

} in equilibrium with a liquid of composition {

 

x

 

α

 

}. The problem is to determine
these compositions, as well as the fraction of feed that flashes 

 

N

 

β

 

/

 

N

 

. Unlike the other
problems in Table 11.1, the flash problem involves the relative amounts in the phases
and therefore a solution procedure must invoke not only the equilibrium conditions
(11.1.1) but also material balances. 

To solve any of the problems cited in Table 11.1, we start with the equilibrium con-
ditions (11.1.1) and reduce those equations to computational forms using one of the
methods—phi-phi, gamma-phi, or gamma-gamma—presented in Chapter 10. With
five kinds of problems and, in several cases, more than one possible solution strategy,
many computational algorithms can be devised. We do not present all possible algo-
rithms here; instead, we present one typical algorithm for each of the three strategies.

 

Table 11.1

 

Typical classes of problems encountered in
multicomponent two-phase fluid-fluid equilibria

 

a

 

Problem name in 
VLE situations

Knowns
Unknowns to 

find

 

Bubble-T

 

P

 

 and {

 

x

 

α

 

}

 

T

 

 and {

 

x

 

β

 

}

Dew-T

 

P

 

 and {

 

x

 

β

 

}

 

T

 

 and {

 

x

 

α

 

}

Bubble-P

 

T

 

 and {

 

x

 

α

 

}

 

P

 

 and {

 

x

 

β

 

}

Dew-P

 

T

 

 and {

 

x

 

β

 

}

 

P

 

 and {

 

x

 

α

 

}

Flash

 

T

 

, 

 

P

 

, and {z}  {

 

x

 

α

 

}, {

 

x

 

β

 

}, 

 

N

 

β

 

/

 

N

 

a

 

The knowns and unknowns apply to any two-phase fluid-fluid
situation, including liquid-liquid, liquid-vapor, and gas-gas;
however, the names apply only to liquid-vapor equilibria, with
phase 

 

α

 

 = liquid and phase β = vapor. Names taken from Smith
and van Ness [2].
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Problems at the end of the chapter give you opportunities to explore other algorithms.
More technical discussions of these and other algorithms for phase-equilibrium calcu-
lations can be found in the book by Prausnitz et al. [3] and in the papers by Michelsen
[4–6].

11.1.1 Phi-Phi Method Applied to Bubble-T Calculations

To illustrate an implementation of the phi-phi method (§ 10.1.1), let us consider the
bubble-T calculation for vapor-liquid equilibria. Recall the phi-phi method uses FFF
#1 for both liquid and vapor phases, and so, as a prerequisite to the calculation, we
must choose an equation of state that reliably correlates the volumetric behavior of
both phases. Typical candidates include the Peng-Robinson [7] and Redlich-Kwong-
Soave [8] equations. For VLE calculations, the phi-phi equations (10.1.3) can be posed
in terms of K-factors,

i = 1, 2, … , C (11.1.2)

This represents an F problem in which C nonlinear algebraic equations are to be
solved for C unknowns: T and {y}. In general, these equations must be solved by trial,
and the standard method of attack is the Newton-Raphson scheme [9]. However, in
particular problems, we hope to find alternative algorithms, for the Newton-Raphson
method is computationally expensive and slow to converge. 

For the bubble-T calculation in the phi-phi form, a viable alternative to Newton-
Raphson is presented in Figure 11.1. This algorithm is composed of three principal
parts: an initialization, an outer loop that searches for the unknown T, and an inner
loop that searches for the vapor-phase mole fractions {y}. The algorithm can be used
for any number of components, but it is restricted to equilibrium between two phases.
In the special case of a single component, the algorithm is equivalent to the Maxwell
equal-area construction given in (8.2.22). 

Initialization.  In this first segment of the algorithm, we set values for all parameters
appearing in the equation of state and its associated mixing rules. We set the known
values for the pressure and the liquid composition {x}. To test for convergence, we set
a value for the tolerance ε ; it will be applied to sums of computed vapor-phase mole
fractions (Σyi), so values in the range 10–6 ≤ ε ≤ 10–4 are appropriate. The initialization
continues with first guesses for the unknown temperature T and the unknown mole
fractions, but usually with the mole fractions posed in the form of K-factors. In most
trial-and-error searches of this kind, success is heavily influenced by the initial guess,
so some care should be taken in assigning initial values to T and {K}. The best sources
for initial guesses are values obtained from computations at nearby states of the same
system. Lacking those, estimates can be obtained by solving the bubble-T problem,
assuming the system obeys a simple ideality, such as Raoult’s law (ϕ i

v = 1 and ϕ i
{ =

/P). This completes the initialization segment, and we now enter the main portion
of the algorithm. 

Ki
yi
xi
----

ϕi
{ T v{ x{ }, ,( )

ϕi
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------------------------------------= =
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Inner loop.  The search begins by computing the liquid phase and vapor phase
fugacity coefficients. The equations of state used in these problems are explicit in pres-
sure, so the ϕs are determined from (4.4.23), which involves an integration over the
volume. This requires us to compute the molar volumes v{ and vv from the equation
of state. If the equation is cubic in v, then it should be solved analytically using Car-
dan’s method (Appendix C). However, if the equation is fifth order or higher, then it
will have to be solved by trial for v. With the ϕs known, we compute the K-factors
from (11.1.2) and hence get calculated values for the vapor mole fractions {y′}. Typi-

Figure 11.1 Algorithm for using the phi-phi method to solve multicomponent bubble-T prob-
lems in vapor-liquid equilibrium situations [3]

Set EoS
Parameters

Set known P,
all xi, and ε

Initial guesses
for T and all Ki

Compute all
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S =  Σ yi
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vv and all ϕi
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{/ϕi
v and 

all yi′ = xi Ki
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cally, the sum of these {y′} differs from unity and it differs from the sum of the previ-
ous guesses for {y}; therefore, we normalize each element in {y′} according to

(11.1.3)

These normalized vapor-phase mole fractions become the new guesses, which we use
to compute new values for the vapor-phase fugacity coefficients. The normalization
(11.1.3) provides a self-consistent set of mole fractions; in general, it is good practice to
use a self-consistent set of mole fractions when computing any property of a mixture.
This step closes the inner search over the vapor composition.

Outer loop. When the sum S′ stops changing within the inner loop, we test whether
that sum equals unity (conservation of mass). If it does not, we adjust the temperature
and compute new values for the liquid-phase fugacity coefficients. This step closes the
outer search over temperature. In many cases each K-factor responds to a change in
temperature in a sufficiently well-behaved way that T can be adjusted by the simple
secant method: at the end of the kth iteration of the outer loop, the next guess (k + 1)
for T is taken to be

(11.1.4)

where E = (S′ – 1) is the error and each ∆w = wk – wk–1 is a difference in values from the
two previous iterations. However if (11.1.4) leads to instabilities, then a more conser-
vative approach is required, such as bracketing plus bisection [9].

As with all algorithms for solving phase-equilibrium problems, the phi-phi method
in Figure 11.1 is sensitive to the initial guesses made for T and {K}. With poor guesses,
the algorithm tends to find the trivial solution, yi = xi for all components. Also like
most other methods, this algorithm performs poorly near vapor-liquid critical lines.
Otherwise, the algorithm performs reasonably well; for example, for binaries with
judicious initial guesses, it often converges in less than ten iterations over T. 

11.1.2 Example

How do we use the phi-phi method to compute an isobaric Txy diagram for a
binary mixture?

A typical isobaric Txy diagram appears in Figure 9.6. Here we outline how that dia-
gram was computed, using P = 30 bar. The diagram is for an alkane(1)-aromatic(2)
mixture modeled by the Redlich-Kwong equation of state,

(8.2.1)
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Mixing rules used here for a and b are given in (8.4.16) and (8.4.17). Pure-component
critical properties, together with the mixing rules, provide the parameter values listed
in Table 11.2. As a representative point, we take P = 30 bar and x1 = 0.6, for which we
are to compute T and y1 using the bubble-T algorithm in Figure 11.1. 

As the initial guess for the temperature, we might average the pure-component
boiling points,

(11.1.5)

with the pure boiling points at 30 bar computed from the Redlich-Kwong equation:
348 K for component 1 and 517 K for component 2. As initial guesses for the K-factors,
we used K1 = 1.5 and K2 = (1 – x1K1)/(1 – x1) = 0.25. At each iteration, molar volumes
of both phases were computed analytically using Cardan’s method (see Appendix C
or [9]).

With a tolerance of ε = 10–7, the algorithm converged in six iterations to T = 387.68
K and y1 = 0.8869. The sum of the computed vapor-phase mole fractions gave (Σyi –1)
= 7.4(10–9). Results are summarized in Table 11.3. The Tx1 and Ty1 points in Table 11.3
are plotted in Figure 9.6. By repeating this procedure for other x1 values, we generate
the complete Txy diagram shown in Figure 9.6. 

Table 11.2 Values of Redlich-Kwong parameters for a certain alkane(1)-
aromatic(2) mixture, computed using (8.4.18)–(8.4.23)

Tcij Pcij vcij Zcij aij bi

ij (K) (bar) (cc/mol) (cc/mol)2 ×××× bar K0.5 cc/mol

11 369.8 42.5 203. 0.281 18.28(107) 62.68

22 562.1 48.9 259. 0.271 45.26(107) 82.80

12 455.9 45.5 229.9 0.276 28.82(107)

Table 11.3 Results from phi-phi method for an
alkane(1) and aromatic(2) in VLE at 30 bar
with x1 = 0.6; computed using algorithm in
Figure 11.1 with Redlich-Kwong equation

Liquid Vapor

x1  or  y1 0.6 0.8869

v (cc/mol) 122.30 742.54

ϕ1 1.1836 0.8007

ϕ2 0.1486 0.5257

f1 (bar) 21.305 21.305

f2 (bar) 1.783 1.783

T xi Ti
boil

i
∑≈ 416 K=
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11.1.3 Gamma-Phi Method Applied to Bubble-T Calculations

To illustrate the gamma-phi method (§ 10.1.2), we reconsider the bubble-T calculation.
Now we intend to use FFF #1 for the vapor phase and one of FFF #2–5 for the liquid.
In most cases, we use FFF #5 for the liquid-phase fugacity, then the gamma-phi equa-
tions (10.1.4) take the form

(11.1.6)

For the liquid-phase standard state we usually choose the pure liquid at the system
temperature and its vapor pressure ,

(11.1.7)

If data are lacking for partial molar volumes, we might approximate them using the
pure-component molar volumes; then (11.1.6) becomes

(11.1.8)

At low pressures the Poynting factor can be safely neglected. The activity coefficients
are to be extracted from a model for gE. We caution that if the vapor phase has ϕi ≠ 1,
then setting  = 1 introduces an inconsistency, even at low pressures. An equation
like (11.1.8) applies to each component, so we again have an F-problem: the C nonlin-
ear equations (11.1.8) are to be solved for C unknowns.

Those equations can be used to solve any of the problems cited in Table 11.1; for
example, an algorithm for solving the bubble-T problem is presented in Figure 11.2.
The gamma-phi algorithm in Figure 11.2 is structurally analogous to that for the phi-
phi algorithm shown in Figure 11.1. Both algorithms are composed of three parts: an
initialization stage, an outer search for the unknown temperature, and an inner search
for the unknown {y}.

The initialization stage in Figure 11.2 is much like that in Figure 11.1; the principal
difference is that now we initially set all vapor-phase fugacity coefficients to unity
(i.e., we start by assuming the vapor is an ideal gas); this allows us to avoid making
initial guesses for the {y}. However, we must still make an initial guess for the temper-
ature, and the performance of the algorithm will be sensitive to that guess. The same
considerations for initial guesses apply here as apply to phi-phi calculations (§ 11.1.1).

The search for T begins with the evaluation of the pure-liquid vapor pressures and
fugacity coefficients. The temperature dependence of each vapor pressure is invari-
ably represented by some relative of an Antoine equation. Values for fugacity coeffi-
cients are computed from a PvTx equation of state; the same equation should be used
for ϕi and for . Then, with values for the activity coefficients computed from the
model chosen for gE, the liquid-phase fugacity can be computed. 
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The algorithm in Figure 11.2 then calculates at low pressure, neglecting the
Poynting factor that appears in (11.1.8). Including the Poynting factor introduces no
complications, because at this point in the calculation, P and {x} are known at the cur-
rent value of T. The decision to include the Poynting factor should take into account
the accuracy with which the equation of state estimates ϕi: there is no advantage to
including a Poynting factor if doing so improves the liquid fugacity by 1% while the
equation of state provides the vapor fugacity only to within 3%.

  

Figure 11.2 Algorithm for using the gamma-phi method to solve multicomponent bubble-T
problems in vapor-liquid equilibrium situations at low pressures [3]
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The remaining parts of the gamma-phi algorithm in Figure 11.2 parallel those
already discussed in § 11.1.1 for the phi-phi algorithm of Figure 11.1. The low-pressure
algorithm in Figure 11.2 is relatively robust compared to other algorithms discussed
in this section: for most systems with reasonable initial guesses for T, convergence is
usually quick and dependable. In many situations, convergence might also be
attained at high pressures, but the results will be misleading if the models used for gE

and  do not include pressure and composition effects. In critical regions, inconsis-
tencies must arise in the gamma-phi approach, and those inconsistencies will not be
removed by simply changing from one gE model to another or from one equation of
state to another. To obtain consistent results in critical regions, we must use the phi-
phi method with the same equation of state and same mixing rules for both phases.

The gamma-phi method seems to be most problematic when it is applied to high-
pressure systems in which we use one of the dilute-solution standard states for activ-
ity coefficients. In these situations it is not unusual for the activity coefficient (γi* < 1)
to compete with the Poynting factor ( > 1); in such cases, it is better to use FFF #4
rather than FFF #5, so these competing effects are all collected in the activity coeffi-
cient. However, these situations are further aggravated by slow convergence because
the standard-state fugacity (now the Henry’s constant Hi) changes relatively slowly
with temperature; in some systems Hi may even pass through a maximum with T.
This differs from the behavior encountered when a pure-component standard state is
used, for then the standard-state fugacity, such as in (11.1.7), changes quickly with T.

11.1.4 Example

How do we use the bubble-T algorithm in Figure 11.2 to compute an isobaric Txy
diagram for a binary mixture?

Consider binary mixtures of ethanol(1) and benzene(2), for which an isobaric Txy dia-
gram at 2.5 bar is shown in Figure 9.9. There the liquid-phase activity coefficients
were modeled using the Margules equations (5.6.12) and (5.6.13) with parameter val-
ues taken from Appendix E. Pure-component vapor pressures were taken from
Appendix D. To compute a point on the diagram at 2.5 bar, we specify a liquid compo-
sition x1, then apply the bubble-T algorithm to obtain the corresponding values for T
and y1. As a representative point, we choose x1 = 0.2 at P = 2.5 bar, and set the conver-
gence tolerance to ε = 10–5. At 2.5 bar we expect the vapor to be nearly an ideal gas,
but we test that expectation here. 

Assume the vapor is an ideal gas. This means we set all ϕi =  = 1. Then, from an
initial guess of T = 300 K, the algorithm converges in 19 iterations with the final error
in the sum of the vapor-phase mole fractions given by (S – 1) = –0.3(10–5). The final
values were T = 368.4 K and y1 = 0.451, which are plotted on Figure 9.9. To obtain the
complete diagram, we repeat this calculation using other values for x1.

Correct for vapor-phase nonidealities. To account for the effects of nonideal-gas
behavior, we compute fugacity coefficients using the simple virial equation

(11.1.9)
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For a binary, expressions for fugacity coefficients are given in Problem 4.11,

(11.1.10)

where the mixture second virial coefficient B is given by

(11.1.11)

Values for the second virial coefficients of ethanol-benzene mixtures are given in [10];
here we use the following empiricism to represent their temperature dependencies
between 340 and 380 K:

340 ≤ T ≤ 380 K (11.1.12)

Least-squares fits give the values for parameters a and n contained in Table 11.4.
We now repeat the bubble-T calculation for P = 2.5 bar, x1 = 0.2. From an initial

guess of 300 K, the algorithm converges in 16 iterations to T = 368.15 K and y1 = 0.447.
The corresponding values for the fugacity coefficients were ϕ1 = 0.950 and ϕ2 = 0.942;
for the fugacity coefficients of the pure saturated vapors,  = 0.949 and  = 0.956. 

Comparing the results for T and y1 with those found above, we see that using the
ideal-gas law introduces errors of less than 1% in both T and y1. Whether these dis-
crepancies are important depends on the use to be made of the results; for showing
qualitative trends in Txy diagrams, discrepancies of less than 1% are generally insig-
nificant, and so we used the ideal-gas assumption in computing the diagrams shown
in Figure 9.9. But your application may differ. Judgements about nonidealities can be
made by comparing ϕi/  with unity.

These results suggest that the vapor-phase composition is more sensitive to the
ideal-gas assumption than is the temperature. For example, at 10 bar and x1 = 0.5, the
ideal gas produces deviations of 2.7% in y1 and 0.2% in T compared to results from the
virial-equation. This difference in sensitivity is common; and, in fact, the uncertainties
in {y} often grow with increasing pressure more quickly than those in T. 

Table 11.4 Values of the parameters in (11.1.12) for mixtures
of ethanol(1) and benzene(2) at 340 ≤ T ≤ 380 Ka

ij 11 22 12

ln aij 35.4488 21.0651 13.8196

nij 4.8594 2.4190 1.2883

a These apply for T in K and B in cc/mol. Original data from [10].
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11.1.5 Gamma-Gamma Method Applied to LLE Calculations

The gamma-gamma method (§ 10.1.3) is commonly applied to low-pressure, liquid-
liquid equilibrium calculations. Recall that at low pressures, FFF #2–5 are all equiva-
lent, so the gamma-gamma method reduces to (10.1.5). Then if we choose the same
standard state for both liquid phases, (10.1.5) simplifies to

i = 1, 2, … , C (10.1.6)

Since the system contains a total of C components, this represents C nonlinear alge-
braic equations that are to be solved for C unknowns.

But when the same gE-model is used to obtain γ i
α and γ i

β, numerical procedures for
solving (10.1.6) converge erratically, if at all. We therefore seek a procedure that is
more reliable than a direct attack on (10.1.6). For example, note that if the system tem-
perature and pressure are known (as they usually are for LLE situations), then the
problem can be posed as an analogy to isothermal flash calculations. In such an
approach, we take the known quantities to be T, P, and the set of overall system mole
fractions {z}. These last are defined by

(11.1.13)

Then the quantities to be computed would be the mole fractions in each phase, {xα}
and {xβ}, and the fraction of total material in one phase, R = Nβ/N.

Before going further, let us pause to ask whether this problem is well-posed. Since
the relative amount in a phase appears explicitly (R), the number of independent
intensive properties needed to identify the state is not given by the Gibbs phase rule
(9.1.14). Instead, we need

(9.1.12)

Here we have imposed no external constraints, so S = 0, and therefore we must specify
values for (C + 1) properties to close the problem. This requirement is satisfied, for we
know T, P, and (C – 1) independent mole fractions zi; the problem is well-posed. In
fact, we have (2C – 1) unknowns: (C – 1) independent mole fractions xi

α, (C – 1) inde-
pendent mole fractions xi

β, plus R. And we have (2C – 1) independent equations: C
phase-equilibrium relations (10.1.6) plus (C – 1) independent material balances.

The motivation for posing the LLE problem in this way is that it allows us to take
advantage of the Rachford-Rice procedure [11], which is a robust algorithm tradition-
ally applied to isothermal flash calculations. To develop that procedure, we introduce
a distribution coefficient Ci for each component; this quantity is defined by

(11.1.14)
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In general, each Ci depends on the complete equilibrium state of the two-phase sys-
tem (T, P, and compositions); however in many systems, distribution coefficients are
less sensitive to changes of state than are mole fractions. The distribution coefficients
play a role in LLE analogous to that played by K-factors in VLE; they are discussed
further in § 12.1. The gamma-gamma form for the phase-equilibrium equations
(10.1.6) can be expressed in terms of the distribution coefficients as

i = 1, 2, … , C (11.1.15)

For each component i in the liquid-liquid system, we write a material balance

(11.1.16)

where R = Nβ/N. Then we use the definition (11.1.14) to eliminate in favor of xi
α,

(11.1.17)

Solving for xi
α, we obtain

(11.1.18)

We can also use (11.1.14) in (11.1.18) to obtain an expression for 

(11.1.19)

But the mole fractions in each phase must sum to unity, so we define the Rachford-
Rice function F by

(11.1.20)

By summing over the unknown mole fractions, we have reduced the problem from
(2C – 1) equations in (2C – 1) unknowns to a problem of (C + 1) equations in (C + 1)
unknowns. The unknowns are the C distribution coefficients plus the fraction R; the
equations are the C equilibrium relations (11.1.15) plus (11.1.20). Recall that the overall
mole fractions {z} are known, so with guesses for all the Ci, (11.1.20) represents one
equation in the remaining unknown R. The form (11.1.20) is effectively a (C – 1)-order
polynomial in R and is generally solved by trial; in the special case of a binary,
(11.1.20) is linear in R and it can be solved analytically.
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This Rachford-Rice approach offers two principal advantages over other formula-
tions of the LLE problem: (i) Equation (11.1.20) is one equation in the unknown R,
independent of the number of components present. (The corresponding disadvantage
is that we must make initial guesses for all C distribution coefficients.) (ii) Equation
(11.1.20) readily lends itself to a solution by Newton’s method. (See § A.6 in Appendix
A.) In Newton’s method the value of R(k) at the end of the kth iteration is replaced by
the next guess R(k+1) by applying

(11.1.21)

where

(11.1.22)

Since this derivative is always negative, F must be monotone in R for fixed values of
the distribution coefficients {C}. This means that if the Ci were independent of compo-
sition, they would be constants, the curve F(R) would cross F = 0 only at one value of
R, and Newton’s method would always converge. Further, it would converge quickly.

Unfortunately, the distribution coefficients Ci are not constants, and the Rachford-
Rice function F(R) actually represents a family of curves, as in Figure 11.3. At each iter-
ation of the calculation, the Ci values change, moving the search from one curve to
another. Nevertheless, each curve in the family is monotone in R, so the computation
often converges.

A flow diagram for the Rachford-Rice method is shown in Figure 11.4. The algo-
rithm divides into two parts: an initialization stage followed by a single search loop
over R, the fraction of material in one phase. During initialization, we set values for all

Figure 11.3 Schematic of a few members of the family of Rachford-Rice curves F(R) (11.1.20) for
a ternary mixture in LLE. All curves here are for one set of overall mole fractions {z} at the same
T and P; however, each curve is for a different set of values for the distribution coefficients {C}.
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parameters that appear in the models for activity coefficients. We also set the state by
specifying values for T, P, and the overall mole fractions {z}, and we assign a value to
the tolerance ε used to test whether the search for R has converged. The crucial initial-
ization step is providing initial guesses for all distribution coefficients {C}; these initial
guesses determine the success of the method. In most situations we have some rough
idea as to how each component is distributed between two phases. Since we have
defined Ci = xi

β/xi
α, components expected to be predominantly in the β phase should

have while components predominantly in the α phase should have 
Finally, initialization is completed by making a guess for R. Since 0 ≤ R ≤ 1, we usually
guess R = 0.5, unless we have information to the contrary. 

The search for R is straightforward. We first solve the combined material balance-
equilibrium equations (11.1.18) for all mole fractions {xα} in one phase. Then we use
the distribution coefficients to compute the mole fractions {xβ} in the other phase.

Figure 11.4 Rachford-Rice algorithm applied to the gamma-gamma method for solving multi-
component liquid-liquid equilibrium problems
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With the compositions, we solve our selected model equations for all activity coeffi-
cients, and use (11.1.15) to obtain new values for the Ci. Then we can compute the
Rachford-Rice function F from (11.1.20) and test for convergence. If convergence is
lacking, we apply Newton’s method (11.1.21) to get a new guess for R and iterate.

This procedure can fail to converge because, so long as the Ci are changing, each
iteration moves us from one curve to another on the family of F(R) curves shown in
Figure 11.3. Therefore the slope of a curve, as computed by (11.1.22), is not necessarily
the slope of the solution curve. Near the solution this discrepancy is often unimpor-
tant because nearby curves in F(R) usually have similar slopes. But poor initial
guesses will place the search point far from the solution, and curves at such points
may have slopes that differ significantly from those along the true solution curve. 

The Rachford-Rice algorithm can find nonphysical values for R. If the procedure
gives R > 1 (or R < 0), then the system is a single liquid phase, rich in those compo-
nents that dominate the β (or α) phase. However, we caution that solutions having R >
1 and R < 0 may be false roots; that is, there may actually exist two-phase roots (0 < R
< 1) that solve the problem. These can usually be found by changing the initial
guesses made for the distribution coefficients Ci.

In the special case of a binary mixture, we can obtain useful information from the
Rachford-Rice procedure, even if we do not know the overall mole fractions {z}; to do
so, we assume values for the zi. Then, if a two-phase solution is found (0 < R < 1), the
computed values for the compositions, {xα} and {xβ}, will be correct regardless of the
values assumed for {z}. However, the value for R changes with zi. So if we have a
binary and if we need only the compositions of the two liquid phases, and do not
need R, then the Rachford-Rice remains a viable approach. Unfortunately, for two-
phase situations with C ≥ 3, the compositions, as well as R, depend on the zi.

11.1.6 Example

How do we use the Rachford-Rice algorithm to compute a triangular diagram for
liquid-liquid equilibria in a ternary mixture?

Consider mixtures of benzene(1), acetonitrile(2), and water(3) at 1.0133 bar, 333 K.
Binary liquid mixtures of benzene and water are almost completely immiscible, so we
expect the ternary to have a water-rich phase and an organic-rich phase with acetoni-
trile distributed between them. To model the activity coefficients, we choose the NRTL
equation (see Appendix J) and use parameter values from Table J.1 [12].

To compute a point on the liquid-liquid saturation curve at the specified T and P,
we choose an overall composition and apply the Rachford-Rice algorithm. For exam-
ple, consider the overall composition having z1 = 0.3436 and z2 = 0.3092. We set the
convergence tolerance to ε = 10–5 (or 10–6 near the critical point). Then we guess the
fraction of material in the water-rich phase, R = 0.4, and guess the component distri-
bution coefficients: C1 = 7, C2 = 2, and C3 = 0.5. Here we use Ci = xi

β/xi
α, where α indi-

cates the water-rich phase and β indicates the organic-rich phase.
From these initial values, the algorithm in Figure 11.4 converges in 23 iterations to

R = 0.6659 with the phase compositions given in Table 11.5. Note that the guesses for
the distribution coefficients were not particularly close to their final values (C1 = 214,
C2 = 6, C3 = 0.06); nevertheless, the equilibrium mole fractions agree with results com-
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puted by McDonald and Floudas using a Gibbs-energy minimization technique [13].
The compositions in Table 11.5 represent the end points of one tie line, as shown in
Figure 11.5. By repeating the calculation for other values of {z}, we obtain other tie
lines and hence the two-phase line shown in the figure.

11.1.7 Calculation of Vapor-Liquid-Liquid Equilibrium

The methods presented in previous sections can be combined to attack multiphase
equilibrium problems. To illustrate, we combine the gamma-phi method with the
gamma-gamma method to solve three-phase, vapor-liquid-liquid problems. We again
choose to pose these problems as analogies to isothermal flash calculations, as in
§ 11.1.5. Then such problems are well-posed when we have specified values for F ′
independent properties, where F ′ is given by (9.1.12) with S = 0,  

Table 11.5 Results from Rachford-Rice algorithm for two
liquid phases in equilibrium at 333 K and 1.0133 bar

i Species zi xi
αααα xi

ββββ

1 C6H6 0.3436 0.0024 0.5147

2 C2H3N 0.3092 0.0711 0.4286

3 H2O 0.3472 0.9265 0.0566

Figure 11.5 Liquid-liquid equilibria in mixtures of benzene(1), acetonitrile(2), and water(3) at
1.0133 bar and 333 K, computed from the Rachford-Rice algorithm in Figure 11.4 using the
NRTL model for activity coefficients. Filled circle is an estimate of the liquid-liquid critical
point; the estimate lies near x1 = 0.012, x2 = 0.36, x3 = 0.628. Dashed line is the tie line used in the
example to illustrate the computational procedure.

0 0.2 0.4 0.6 0.8 1
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(11.1.23)

For C ≥ 3, this condition is satisfied by specifying values for T, P, and (C – 1) overall
mole fractions {z}, with the zi defined in (11.1.13). However for binaries (C = 2), these
properties do not satisfy (11.1.23), and in fact the procedure presented in this section
fails for binary mixtures in three-phase equilibria. The special case of a binary in
VLLE is addressed in Appendix K.

With values known for (C + 1) properties, we aim to compute values for (3C – 1)
other properties: (C – 1) independent mole fractions {xα} for liquid phase α, (C – 1)
fractions {xβ} for liquid phase β, (C – 1) fractions {y} for the vapor, the fraction of
material L in liquid α, and the fraction of material V in the vapor. To compute these
quantities, we use a double implementation of the Rachford-Rice scheme. That is, we
combine phase-equilibrium and material balance equations to obtain two equations
that can be solved for the fractions L and V.

Those equations are derived by a procedure that parallels the one presented in
§ 11.1.5. We use K-factors to relate each mole fraction in the vapor to that of the same
component in one liquid phase,

i = 1, 2, … , C (11.1.24)

and we use distribution coefficients to relate the mole fractions of each component in
the two liquid phases,

i = 1, 2, … , C (11.1.15)

Let N be the total number of moles of material in the system, let Nα be the number of
moles in phase α, and let N v be the number in the vapor. Then the fractions L and V
are given by L = N α/N and V = N v/N. A material balance on any one component can
be written as

(11.1.25)

Using (11.1.24) to eliminate yi and (11.1.15) to eliminate we have

(11.1.26)

Hence,

(11.1.27)

Now we can combine (11.1.27) with the definition of Ci in (11.1.15) to obtain
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(11.1.28)

and we can combine (11.1.27) with the definition of Ki in (11.1.24) to obtain

(11.1.29)

The denominators in (11.1.27)–(11.1.29) are given by

(11.1.30)

As in the traditional Rachford-Rice approach, our strategy at this point is to reduce
the number of unknowns by summing over the unknown mole fractions. Then we
define two functions, analogous to the Rachford-Rice function in (11.1.20),

(11.1.31)

(11.1.32)

Our problem is to solve (2C + 2) equations for (2C + 2) unknowns. The unknowns are
C K-factors, C distribution coefficients, plus L and V; the equations are the 2C equilib-
rium relations (11.1.15) and (11.1.24) plus the two equations (11.1.31) and (11.1.32).
With guesses for all the Ki and Ci, (11.1.31) and (11.1.32) represent two equations to be
solved for L and V. These are nonlinear algebraic equations, and to preserve the anal-
ogy with the simple Rachford-Rice procedure, we solve the two equations simulta-
neously via the Newton-Raphson method.

Newton-Raphson method. This is a trial-and-error method for solving simultaneous,
nonlinear, algebraic equations. For our VLLE problem we would guess the two
unknowns, L and V, use (11.1.31) and (11.1.32) to calculate values for the Rachford-
Rice functions, F1 and F2, and then test for convergence. If our convergence criteria are
not met at iteration k, we estimate values for the unknown L and V at the next itera-
tion (k + 1) by

(11.1.33)

(11.1.34)

To obtain values for the steps ∆L and ∆V, expand each of F1 and F2 at (k + 1) in a
Taylor series in L and V about their values at k, and truncate after the linear terms,
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(11.1.35)

(11.1.36)

Set each lhs to zero and rearrange. The result is a pair of linear equations that can be
solved for the steps ∆L and ∆V,

(11.1.37)

where F1 and F2 are evaluated at iteration k and the elements in the coefficient matrix
are values of the derivatives at iteration k,

(11.1.38)

(11.1.39)

(11.1.40)

(11.1.41)

Note that the coefficient matrix in (11.1.37) is symmetric. Once we have evaluated the
derivatives (11.1.38)–(11.1.41), we solve (11.1.37) for ∆L and ∆V. This constitutes the
Newton-Raphson method for solving sets of nonlinear algebraic equations [9].

VLLE Algorithm. The algorithm is summarized as a flow diagram in Figure 11.6. It
divides into two parts: an initialization stage, followed by a single loop that searches
for L and V. Note that this algorithm bears a strong analogy to the single Rachford-
Rice scheme presented in Figure 11.4. As in all the algorithms discussed here, the cru-
cial step in initialization is that in which initial guesses are made for all the K-factors
and distribution coefficients. In many cases we have some knowledge as to how most
components will be distributed among the three phases, so at least rough estimates
can be contrived for the Ks and Cs. If such knowledge is lacking, estimates for the Ks
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can be obtained from a two-phase vapor-liquid flash calculation (Problem 11.7), and
estimates for the Cs can be obtained from a two-phase liquid-liquid calculation
(§ 11.1.5). Finally, initial values are guessed for L and V; these are fractions (0 ≤ L ≤ 1)
and (0 ≤ V ≤ 1) with L + V < 1.

The central portion of the algorithm in Figure 11.6 exactly parallels the standard
Rachford-Rice procedure. First, we use (11.1.27)–(11.1.29) to compute the mole frac-
tions for all phases, then we compute all fugacity coefficients and all activity coeffi-
cients. With those quantities we can obtain new estimates for the Cs and Ks from the
phase-equilibrium relations (11.1.15) and (11.1.24). Now we use (11.1.31) and (11.1.32)
to calculate values for the Rachford-Rice functions, F1 and F2, and test for conver-
gence. If our convergence criteria are not met at iteration k, then we use the Newton-
Raphson method to estimate the unknown L and V at the next iteration (k + 1). 

Figure 11.6 Double Rachford-Rice algorithm for using the combined gamma-phi and gamma-
gamma methods to solve multicomponent (C ≥ 3) vapor-liquid-liquid equilibrium problems.
This method fails for binary mixtures (C = 2).
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The Newton-Raphson procedure is notoriously slow to converge; for example, a
ternary mixture may easily require 50 or more iterations. However, as implemented
here, the method appears to be stable when used with reliable initial guesses for the
Cs and Ks. If stability problems are encountered, then we may try to suppress amplifi-
cation of the instabilities by replacing (11.1.33) and (11.1.34) with

(11.1.42)

(11.1.43)

where 0 ≤ ζ ≤ 1. This strategy often works, at the price of slowing convergence even
further; however, slow convergence is better than no convergence at all.

This VLLE algorithm is prone to the same kinds of problems discussed in § 11.1.5
for the two-phase Rachford-Rice procedure: the algorithm is sensitive to the initial
guesses made for the Cs and Ks, and nonphysical results for L and V may be false
roots, or they may indicate that three phases do not form at the given conditions. The
latter interpretation may hinge on the models chosen for the equation of state and for
the activity coefficients. In addition, the absence of three phases can cause the coeffi-
cient matrix in (11.1.37) to become singular.

A principal advantage of this algorithm is that it applies to any number of compo-
nents C ≥ 3, though in every case we solve only the two equations (11.1.31) and
(11.1.32). However, this method fails for binary mixtures. To see why, note that for
binaries in three-phase equilibrium, (11.1.23) requires us to specify values for F ′ = 3
variables. We then have five equations that can be solved for five unknowns. The five
equations are four phase-equilibrium relations (11.1.15) and (11.1.24) plus the one
Rachford-Rice function (11.1.31). In the Rachford-Rice approach, the five unknowns
would be x1

α, x1
β, y1, plus the fractions L and V. However, L and V appear in only one

of our five equations, namely (11.1.31), and no second material balance, independent
of (11.1.31), can be written for a binary mixture. Consequently, even though we set
values for the three quantities (T, P, z1), we have not closed the problem: instead, we
have created an indifferent situation. However, if we can set values for (T, L, z1) or (T, V,
z1), then we can solve our five equations for the remaining variables. But such prob-
lems could not be solved by an algorithm of the Rachford-Rice form.

Alternatively, when we pose an isothermal VLLE problem for binaries and use a
gE-model that is independent of pressure, the VLE and LLE problems decouple. Then
we can apply the Rachford-Rice algorithm to the LLE problem and follow that with a
bubble-P calculation to solve the VLE problem. This is described in Appendix K.

11.1.8 Example

How do we use the double Rachford-Rice method to compute the compositions of
the phases of a ternary mixture in vapor-liquid-liquid equilibrium?

First we consider a mixture that exhibits two-phase liquid-liquid equilibria. In such
mixtures, we can induce a vapor phase by raising the temperature or lowering the
pressure or both. To illustrate, we use the ternary studied in § 11.1.6: benzene(1), ace-

L k 1+( ) L k( ) ζ ∆L+=

V k 1+( ) V k( ) ζ ∆V+=
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tonitrile(2), and water(3). We showed in Figure 11.5 the triangular diagram containing
LLE states for this mixture at 1.0133 bar, 333 K. That diagram was computed using the
NRTL model for activity coefficients; we continue to use the NRTL model here, with
parameters values from Table J.1. If we lower the pressure isothermally, we form a
vapor phase, and since the pressure is low, we assume the vapor is an ideal gas. For
pure vapor pressures, we use the Antoine model in Appendix D.

We consider the state at 0.7792 bar and 333 K, with the same overall mole fractions
used in § 11.1.6: z1 = 0.3436 and z2 = 0.3092. We set the tolerance for convergence to ε =
10–5. Let N α be the total number of moles in the water-rich liquid phase, Nβ the num-
ber in the organic-rich liquid, and N v the number in the vapor; then we define the
ratios L = Nα/N and V = N v/N, where N = (Nα + Nβ + Nv). To start the algorithm in
Figure 11.6, we guess L = 0.6 and V = 0.4; for distribution coefficients, Ci = xi

β/xi
α, we

guess C1 = 7, C2 = 2, C3 = 0.5; and for the K-factors, Ki = yi/xi
α, we start with K1 = 10, K2

= 4, and K3 = 0.4. From these initial values, the algorithm converged in 35 iterations to
L = 0.283 and V = 0.219, with compositions as in Table 11.6. These results agree with
those obtained by McDonald and Floudas [13] using a Gibbs energy minimization
technique.

Note that for three components in three-phase equilibrium, the phase rule (9.1.14)
requires only F = 2 properties to identify the state. So with T and P fixed, any set of
overall compositions {z} that leads to a three-phase situation will produce the same
compositions as given in Table 11.6. However, different sets {z} will produce different
distributions of material (L and V) among the three phases; some sets {z} will produce
only two equilibrium phases, and others will yield only a single phase. When only
one or two phases are found, the compositions will differ from those in Table 11.6. 

11.2  ONE-PHASE REACTION-EQUILIBRIUM CALCULATIONS

To solve reaction equilibrium problems, we must combine material balances with the
criteria for reaction equilibria. Consequently, such problems bear a superficial resem-
blance to isothermal flash calculations, though in the case of reaction equilibria the
material balances are applied to elements, not species. For R independent reactions
involving C species in a single phase at fixed T and P, the criteria for equilibrium were
given in § 7.6.1,

j = 1, 2, … , R (11.2.1)

Table 11.6 Mole fractions from double Rachford-Rice
algorithm for two liquid phases in equilibrium with a
vapor phase at 333 K and 0.7792 bar

i Species xi
αααα xi

ββββ yi

1 C6H6 0.0026 0.4786 0.4784

2 C2H3N 0.0762 0.4541 0.2819

3 H2O 0.9212 0.0674 0.2397

A j νij G i

i

C

∑– 0= =
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where Aj is the affinity for reaction j and νij is the stoichiometric coefficient for species
i in reaction j. In § 10.3 we developed two strategies for solving the problems repre-
sented by (11.2.1); the strategies differ in how the elemental balances are imposed. In
the stoichiometric method we use the elemental balances to obtain the stoichiometric
coefficients νij , and then we solve the R equations (11.2.1) for R extents of reaction ξj.
In the nonstoichiometric method we impose the elemental balances as constraints on the
minimization of G. This allows us to avoid evaluating any stoichiometric coefficients,
but it requires us to solve for Lagrange multipliers as well as for C unknown mole
numbers. In § 10.3 we illustrated both methods using simple situations involving a
single reaction. 

In this section we reformulate the reaction-equilibrium problem to obtain a compu-
tational algorithm that is particularly useful when many components are involved in
multiple reactions; however, we continue to restrict attention to reactions occurring in
a single phase. The reformulated algorithm offers the advantage of the stoichiometric
method in that we only solve R equations for R unknowns, and it offers the advan-
tage of the nonstoichiometric method in that we do not explicitly balance reactions or
explicitly assign values to stoichiometric coefficients. The algorithm is based on a sin-
gular value decomposition of the formula matrix A, as discussed in § 11.2.1. From the
decomposed formula matrix we can extract values for the stoichiometric coefficients,
as in § 11.2.2; then, the equilibrium composition of the reaction mixture can be com-
puted, as in § 11.2.3. Early developments in algorithms for reaction-equilibrium cal-
culations are reviewed in the book by van Zeggeren and Storey [14]. More recent
developments are discussed in a review paper by Seider et al. [15] and in the book by
Smith and Missen [16].

11.2.1 Singular Value Decomposition of the Formula Matrix

Consider a closed reacting system containing C species in me elements with the ele-
mental balances given by

(7.4.2)

Here A is an (me × C) formula matrix, N is a (C × 1) vector of mole numbers, and b is
an (me × 1) vector of constant elemental abundances. (Basics of linear algebra are
reviewed in Appendix B.) The matrix A is known from the chemical formulae of the
species present, and the abundances b are known from the amounts initially loaded
into the reactor. But the mole numbers N are unknown. Moreover, the sets N that sat-
isfy the balances (7.4.2) are not unique: many different combinations of amounts of the
given species (N) can produce the same elemental balances (b). This means that the
formula matrix A is singular. 

The singularity of A can also be deduced in another way. Recall that the rank of A is
related to the number of independent reactions by

(7.4.5)

But A is generally not square (me ≠ C) and, in any case, rank(A) < C (else no reactions
are occurring), so A must be singular.

AN b constants= =

R C rank A( )–=
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In the language of linear algebra, N and b define vector spaces, and the dimension
of a vector space corresponds to the number of linearly independent vectors, called
basis vectors, that are needed to define the space. Then the multiplication in (7.4.2) can
be interpreted as a transformation in which A maps a certain subspace of N into a sub-
space of b. In other words, only certain sets of mole numbers satisfy the elemental bal-
ances (7.4.2), and the possible sets of mole numbers depend on the chemical formulae
for the species present in the system. That subspace of b, which is accessible to some
N, is called the range of A; the dimension of the range equals rank(A). According to
(7.4.2), any basis vectors for the range automatically satisfy the elemental balances.
For example, if we let  represent one particular basis vector for the range, then

(11.2.2)

But for chemical-reaction problems, A is singular; consequently, in addition to the
range, there must be another subspace of N that maps to zero under the transforma-
tion A,

j = 1, 2, … , R (11.2.3)

The sets of mole numbers that satisfy (11.2.3) are sets of stoichiometric coefficients, ννννj ,
and the subspace of N that satisfies (11.2.4) is called the nullspace of A. The dimension
of the nullspace is the number of independent vectors ννννj (basis vectors) that satisfy
(11.2.3); that is, the nullspace has dimension R , which is the number of independent
chemical reactions.

Since each vector ννννj in (11.2.3) represents a set of stoichiometric coefficients and
since stoichiometric coefficients are not unique, any linear combination of the basis
vectors for the nullspace provides a legitimate set of stoichiometric coefficients for one
reaction. Further, since the nullspace transforms to zero under A, any arbitrary linear
combination of basis vectors for the nullspace, added to our particular range-space
basis vector satisfies the elemental balances,

(11.2.4)

The mole numbers in represent a particular solution to the elemental balances
(7.4.2), while the stoichiometric coefficients given by (11.2.3) represent general solu-
tions. We obtain all possible solutions by adding the general solution to a particular
solution, as indicated by (11.2.4). Hence, all sets of mole numbers that satisfy the ele-
mental balances can be obtained from

(11.2.5)

Therefore, to find all possible sets of mole numbers that satisfy the elemental bal-
ances (7.4.2) for a reacting system, we need the basis vectors for both the range and
the nullspace of the formula matrix A. This part of the problem is solved in the
remainder of this section. With all possible N known, we would then search among

N

)

A N b=
)

AN Aνννν j 0= =

N ,

)

A N Aνννν j+ b 0+ b= =

)

N

)

N N νννν j
j

R

∑+=

)
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those N for the particular set that satisfies the reaction-equilibrium criteria (11.2.1).
One algorithm for solving this part of the problem is presented in § 11.2.3.

To start the determination of the basis vectors, first note that, since A is singular, we
do not disturb the elemental balances if we augment A with rows of zeroes below row
me, producing a square matrix A′′′′ of dimension (C × C ). Then, to find the basis vectors
for the range and nullspace, we perform a singular value decomposition of A′′′′. In a
singular value decomposition, A′′′′ is replaced by a product of three matrices [17]

(11.2.6)

Here A′′′′, U, W, and V are each square of dimension (C × C ). In addition, W is a diagonal
matrix, and since A′′′′ is singular, some diagonal elements in W are zero. The number of
zero elements equals the dimension of the nullspace, which for our problem is R , the
number of independent chemical reactions.

Further, for each zero diagonal element wkk, the corresponding column Vk in V is an
orthonormal basis vector for the nullspace. Therefore, any linear combination of the
Vk provides a set of stoichiometric coefficients for one reaction. To simplify subse-
quent notation, we use the basis vectors from V to form a (C × R ) matrix P; each col-
umn in P is one of the basis vectors Vk. Then a set of stoichiometric coefficients can be
obtained by

(11.2.7)

where λλλλj is an (R × 1) vector of arbitrarily selected scale factors (or weights) for reac-
tion j. For each species i in reaction j, (11.2.7) becomes

(11.2.8)

While the number of zero diagonal elements in W provides the dimension of the
nullspace, the number of nonzero elements provides the dimension of the range. Con-
sequently, the number of nonzero elements on the diagonal in W equals rank(A). Fur-
ther, for each nonzero diagonal element wkk, the corresponding column Uk in U is an
orthonormal basis vector for the range. We can find one particular vector in the
range that satisfies the elemental balances by 

(11.2.9)

But U and are orthogonal, so their inverses are merely their transposes, and W is
diagonal, so its inverse is a matrix of diagonal elements (1/wkk). Therefore, (11.2.9)
becomes

(11.2.10)

A′′′′ UWVT=

νννν j Pλλλλ j=

νij pik λkj
k

R

∑=

N

)

N A 1– b UWVT( )
1–

b= =

)

VT

N V diag 1 wkk⁄[ ] UT b=

)
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The elements wkk = 0 correspond to the nullspace. But we only want solutions for the
range, so we remove the nullspace from (11.2.10) by setting (1/wkk) = 0 if wkk = 0. (As
Press et al. remark, It isn’t every day you get to set infinity equal to zero [9].)

To summarize, we perform a singular value decomposition of the augmented for-
mula matrix to obtain the matrices U, W, and V. With these, we use (11.2.10) to obtain a
particular basis vector for the range. From V, we form P and then use (11.2.7) to
obtain all sets of stoichiometric coefficients ννννj. Then we combine and ννννj into (11.2.5)
to determine all sets of mole numbers that satisfy the elemental balances. Therefore, a
singular value decomposition provides the number of independent reactions R , all
sets of R independent stoichiometric coefficients ννννj , and all possible combinations of
mole numbers N that satisfy the elemental balances. A computer program for per-
forming the decomposition is contained in the book by Press et al. [9]; routines for
performing the decomposition are also available in MATLAB and in Mathematica™. 

11.2.2 Example

How can stoichiometric coefficients be obtained from a singular value decomposi-
tion of the formula matrix?

Reconsider the problem posed in § 7.4.3: formation of synthesis gas (CO and H2) by
incomplete combustion of methane in oxygen. The products are CO2, H2O, CO, and
H2. So we have C = 6 species and me = 3 elements. The procedure involves these steps:

(1) Build the (me × C ) formula matrix,

(7.4.31)

(2) Create the augmented matrix A′′′′ by adding rows of zeroes to A below its last row.
The new matrix A′′′′ should be square, of dimension (C × C ) = (6 × 6).

(3) Perform the singular value decomposition on A′′′′. A routine for doing so is listed in
Press et al. [9]. The decomposition yields

(11.2.11)

N

)
N

)

A

CH4 O2 CO2 H2O CO H2

1 0 1 0 1 0
4 0 0 2 0 2
0 2 2 1 1 0

C
H
O






=

            

U

0.197– 0.265–   0 0.944– 0 0
0.966– 0.216–   0 0.141 0 0
0.166– 0.940–   0 0.298 0 0

0 0 1– 0 0 0
0 0   0 0 1 0
0 0   0 0 0 1

=
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(11.2.12)

(11.2.13)

Note that this is V, not its transpose We also caution that, to save space, we display
only three significant figures for the elements in V; in practice, we generally need five
significant figures for reliable results.

(4) The number of independent reactions R is the number of zero elements on the
diagonal in W. Inspecting (11.2.12), we find R = 3.

(5) For the zero elements w33, w55, and w66, the corresponding columns V3, V5, and
V6 in V are basis vectors for the nullspace. With these basis vectors we form a (C × R )
matrix P,

(11.2.14)

(6) If we wanted a vector of stoichiometric coefficients for any one reaction j, we
would now compute

i = 1, … , C;  j = 1, … , R (11.2.15)

using an arbitrarily selected set of values for the scale factors λk. For example, if we
happen to choose = (–2.17945, –0.83166, –2.1350), then (11.2.15) gives

(11.2.16)

W

5.016 0 0 0 0 0
0 3.223 0 0 0 0
0 0 0 0 0 0
0 0 0 1.206 0 0
0 0 0 0 0 0
0 0 0 0 0 0

=

V

0.810– 0.186 0.459 0.315– 0 0
0.066– 0.583– 0.459 0.495 0.249 0.371
0.106– 0.665– 0.115– 0.288– 0.664– 0.093–

0.418– 0.158– 0.344– 0.481 0.166 0.650–

0.072– 0.374– 0.344– 0.535– 0.664– 0.093
0.385– 0.134 0.574– 0.234 0.166– 0.650

=

VT.

P

0.459 0 0
0.459 0.249 0.371
0.115– 0.664– 0.093–

0.344– 0.166 0.650–

0.344– 0.664– 0.093
0.574– 0.166– 0.650

=

νij pik λkj
k

R

∑=

λλλλT

νννν1
T 1 2 1 2 0 0,,,,–,–( )=
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So one of the three independent reactions could be

(11.2.17)

However, we need not solve explicitly for particular sets of stoichiometric coefficients;
instead, we can leave the stoichiometric coefficients implicit, as described in § 11.2.2.
This choice leads to the computational algorithm presented in § 11.2.3.

11.2.3 Implicit Stoichiometric Coefficients

Once the singular value decomposition has been performed on A′′′′, we can obtain a set
of stoichiometric coefficients from (11.2.15), as shown above. This differs from a tradi-
tional balancing of reactions. In a traditional balancing, we do not select values for the
scale factors λ. Instead, we select a value for one stoichiometric coefficient in each
reaction, compute (in effect) the corresponding scale factors, and then use (11.2.15) to
obtain all remaining stoichiometric coefficients ννννj for the reaction j. We refer to this as
an explicit evaluation of stoichiometric coefficients. We prefer this procedure when
performing calculations by hand, for it can ensure that the stoichiometric coefficients
are integers, or at least simple fractions.

However, when doing calculations by computer, there is no advantage to having
simple numbers for the νij , and in fact, in a computer environment, the traditional bal-
ancing procedure is less systematic than is a direct implementation of (11.2.15). There-
fore we merely select values for the scale factors that simplify subsequent
calculations; in most situations, simplifications are achieved by these choices:

for j = k (11.2.18)

for j ≠ k (11.2.19)

These λkj can be used to form an (R × R) identity matrix of scale factors,

(11.2.20)

Then (11.2.15) gives the stoichiometric coefficients as merely the elements of P,

for all i and j (11.2.21)

We refer to (11.2.21) as an implicit evaluation of the stoichiometric coefficients because
we make no explicit choice of a value for any νij ; we merely take the pij values pro-
vided by the decomposition of A′′′′. 

Substituting (11.2.21) into (7.4.13), we obtain an expression for the mole number of
any species i in terms of the R extents of reaction,

CH4 2O2+ CO2 2H2O+↔

λkj 1=

λkj 0=

ΛΛΛΛ I=

νij pij=
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(11.2.22)

where  is the amount of species i present at the start of the reactions. Our problem
now is to find values for the R extents ξj that provide equilibrium values for the C
mole numbers.

11.2.4 Computational Algorithm

In § 10.3 we presented two strategies for solving reaction-equilibrium problems: stoi-
chiometric methods and nonstoichiometric methods. These methods can also be clas-
sified in terms of the linear algebra that surrounds the singular value decomposition
discussed in § 11.2.1. Stoichiometric methods seek solutions by searching over those
combinations of mole numbers that satisfy the stoichiometric constraints Aνννν = 0 ; that
is, they search only in the nullspace of A and therefore stoichiometric methods are
nullspace methods [18]. In contrast, nonstoichiometric methods seek solutions by
searching over those combinations of mole numbers that satisfy the elemental bal-
ances AN = b; that is, such methods search in the range of A and consequently those
are range-space methods [18]. In reaction-equilibrium problems null-space and range-
space methods are thermodynamically equivalent, so the decision as to which to use
can be based on computational efficiency and on the ease with which computer pro-
grams can be prepared.

But at this introductory level, our intent is to emphasize thermodynamic principles,
so we prefer to discuss only elementary methods that can be implemented relatively
easily, even at the price of computational efficiency. For reaction-equilibrium prob-
lems, this criterion is met by stoichiometric methods rather than by nonstoichiometric
methods. Nonstoichiometric algorithms generally involve Gibbs-energy minimiza-
tion with constraints. But considering the variety of (nonthermodynamic) problems
that can arise in multivariate-optimization calculations and the likelihood that those
problems will detract attention from relevant thermodynamic issues, we consider
here only a version of a stoichiometric method. The algorithm presented here is a
modification of the stoichiometric algorithm given in Chapter 4 of Smith and Missen
[16].

For R independent chemical reactions taking place in a single phase at fixed tem-
perature and pressure, the criteria for reaction equilibrium is (11.2.1): the affinities of
all reactions become zero. Using the implicit stoichiometric coefficients from (11.2.21),
we can write (11.2.1) as

j = 1, 2, … , R (11.2.23)

We use (5.4.3) to express the chemical potentials in terms of activities, and then
(11.2.23) can be written as

Ni Ni
o pij ξ j

j

R

∑+=

Ni
o

pij Gi

i

C

∑ 0=
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j = 1, 2, … , R (11.2.24)

Here  is the Gibbs energy of formation for species i in its standard state (§ 10.4.2).
These are R equations that can be solved for the equilibrium values of the R extents of
reaction ξj. As usual, the calculation is done by trial.

A typical trial-and-error procedure is given in Figure 11.7. The procedure divides
into two parts: an initialization stage, followed by a search for the mole numbers via
the unknown extents of reaction. Note that this algorithm is structurally similar to the
phase-equilibrium algorithms presented in § 11.1. For C species participating in R
independent reactions, we have C unknown mole numbers, where C > R . However,
recall the mole numbers are not all independent; rather, they are coupled through the
stoichiometry of the reactions. So the algorithm in Figure 11.7 actually solves for R
independent extents of reaction ξj, from which the mole numbers can be obtained by
applying (11.2.22). 

Figure 11.7 Algorithm for computing equilibrium mole fractions that result from multiple
chemical reactions occurring in a single phase at fixed T and P. SVD means the singular value
decomposition described in § 11.2.1 and 11.2.2.

pij ∆gif
o

i
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∑ RT pij ⁄iln
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Initialization. During the initialization of the algorithm, we first choose appropriate
models for the activity of each species and assign values to any parameters that
appear in those models. Typically, values for the activities are based on one of the FFF,
and in Chapter 10 we have discussed the issues surrounding the selection of one of
those formulae. We then set the fixed temperature and pressure, and we also assign a
value to ε, which is the tolerance used to test for convergence. Next we obtain values
for the Gibbs energies of formation for each species in its standard state; see § 10.4.2.
Then we can perform a singular value decomposition of the augmented formula
matrix A′′′′ to determine the number of independent reactions R and to obtain values
for the stoichiometric coefficients pij.

Finally, we make initial guesses for the equilibrium values of all mole numbers Ni.
Note that these guesses cannot be made arbitrarily, because although the mole num-
bers change during the reaction, they must always conserve the total number of atoms
for each element, 

(11.2.25)

Here the aki are elements in the formula matrix A: each aki represents the number of
atoms of element k on a molecule of species i. The bk are elemental abundances: each
bk is the total number of atoms of element k in the system. From the known initial
amounts of species loaded into the reactor, we can determine each bk; then the guesses
for the final mole numbers must satisfy (11.2.25) for each element k. This completes
the initialization stage of the algorithm.

Trial-and-error search. The search for the equilibrium mole numbers begins by com-
puting the mole fractions xi for each species. Then we use the model equations,
together with appropriate FFF, to obtain values for the activities. With these, we com-
pute the lhs of (11.2.24), which we now write as

j = 1, 2, … , R (11.2.26)

and we test for convergence. If convergence is not attained at iteration k, we obtain
new guesses for the mole numbers via the Newton-Raphson procedure, just as we did
for the VLLE problem in § 11.1.7.

To develop the Newton-Raphson equations, we start with (7.4.15), in which a dif-
ferential change in any mole number Ni is related to all R extents of reaction by

(11.2.27)

Integrating this over a small increment, from iteration k to iteration (k + 1), we have

(11.2.28)

aki Ni
o

i

C

∑ aki Ni
i

C

∑ bk constant= = =

ψ j pij ∆gif
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where ζ is a positive fraction used to control the stability of the algorithm, as in
(11.1.42). To get the steps, ∆ξj, we expand each ψj at iteration (k + 1) in a Taylor series
in the ξs, about the ψj values at iteration k. Truncating after the linear term, we have

(11.2.29)

But from (11.2.27) we have

(11.2.30)

So we can write (11.2.29) as

j = 1, 2, … , R (11.2.31)

where

(11.2.32)

Now we set the lhs of (11.2.31) to zero and rearrange; the result is a set of R linear
equations

(11.2.33)

that can be solved for R increments ∆ξj. Here ΩΩΩΩ is a symmetric (R × R) matrix of ele-
ments Ωj{ given in (11.2.32), ∆∆∆∆ξξξξ is an (R × 1) vector of increments in the extents of reac-
tions, and ψψψψ is an (R × 1) vector of elements defined by (11.2.26). With the increments
∆ξj determined from (11.2.33), new guesses for the mole numbers can be computed
from (11.2.28). This closes the search loop over the mole numbers.

Convergence. In many reaction-equilibrium problems, performance of this Newton-
Raphson procedure is sensitive to the value used for the stability-control parameter ζ
that appears in (11.2.28). We generally expect 0 < ζ ≤ 1. Small values of ζ tend to
improve stability at the expense of slow convergence; inversely, large values of ζ can
speed convergence but they can also promote growth of instabilities. In many prob-
lems, performance of the algorithm can be improved by changing the value of ζ as the
calculation proceeds. 

At the start of a calculation, ζ may have to be small (ζ ≤ 0.2) to suppress amplifica-
tion of large errors associated with the initial guess. But as the calculation proceeds,
the search moves closer to a solution, and the algorithm may tolerate larger values for
ζ. A simple, though crude, way to change ζ is to merely increase ζ at regular intervals
during the calculation; for example, we might start with ζ = 0.1 and increase ζ by a
factor of 1.5 every five iterations during the search. Some experimentation is usually
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needed to find values for the initial ζ and for the scale factor that are optimal for a par-
ticular class of problems; nevertheless, it is not unusual for this simple procedure to
reduce the number of iterations by factors of 3 to 5. Unfortunately, this procedure will
not work for all problems; for example, in some cases, values of ζ > 0.5 produce nega-
tive mole numbers. In these situations, we reduce ζ , perhaps iteratively using factors
of 0.9, until we attain positive mole numbers for use in the next iteration. In short,
manipulation of ζ is something of an art, and for some problems, a bit of finesse may
be required to obtain convergence. Other schemes for changing ζ can be found in the
book by Smith and Missen [16].

11.2.5 Example

How do we compute the equilibrium composition from a reaction carried out in a
single phase at fixed T and P? 

Let us determine the equilibrium composition resulting from the production of syn-
thesis gas (CO + H2) by oxidation of methane at 1500 K, 30 atm. The feed contains two
moles of methane per mole of O2 (from Smith and Missen [16]).

We have C = 6 species (CH4, O2, CO2, H2O, CO, H2) and me = 3 elements (C, H, O).
In § 11.2.2 the formula matrix A for this situation was constructed and the singular
value decomposition performed. That decomposition gave R = 3 independent reac-
tions, with implicit stoichiometric coefficients contained in matrix P of (11.2.14).
Choosing a basis of 1 mole of O2 fed, the elemental abundances are

(11.2.34)

Table 11.7 gives the Gibbs energies of formation for each species in its standard state,
taking the standard states to be ideal gases at 1500 K and 1 atm. At 30 atm, we assume
the species are still ideal gases (since T is high). Then the activities are simply

ideal gas    (11.2.35)

Table 11.7 Standard Gibbs energies of formation [16], initial guesses
for mole numbers, and computed values for equilibrium mole
fractions from production of synthesis gas at 1500 K and 30 atm.

i Species ∆gif
o

(kJ/mol)

1st guess 
for Ni

Final Ni Final xi

1 CH4 74.72 0.4 0.1142 0.0198

2 O2 0 0.1 0. 0.

3 CO2 –396.34 0.1 0.01885 0.0033

4 H2O –164.42 0.1 0.09532 0.0165

5 CO –243.68 1.5 1.8670 0.3235

6 H2 0 3.1 3.6763 0.6370

bT bC bH bO, ,( ) 2 8 2, ,( )= =

⁄i xi P( ) Pi
o⁄=
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where P = 30 atm. and  = 1 atm. The mole number derivatives of the activities,
needed for the quantity Ωj{ in (11.2.32), are

(11.2.36)

where δik = 1 if i = k, but δik = 0 if i ≠ k.
With the initial guesses for the mole numbers Ni given in Table 11.7 and a value of

the stability control parameter ζ = 1, the algorithm converges in 17 iterations to the
mole numbers in Table 11.7. Final values for the affinities were A1/RT = –2.0(10–8),
A2/RT = 1.6(10–8), and A3/RT = 2.1(10–8). Note that the elemental balances AN = b are
satisfied by the initial guesses and by the final values of the mole numbers; 

for C: (11.2.37)

for H: (11.2.38)

for O: (11.2.39)

Also note that although this problem involves three independent reactions, we need
not identify explicitly any three reactions. Particular reactions and their stoichiometric
coefficients remain implicit in the matrix P (11.2.14).

11.3  MULTIPHASE REACTION-EQUILIBRIUM CALCULATIONS

We now briefly introduce the problem of reaction equilibria in multiphase systems. In
such problems, the difficulties that arise are more computational than thermody-
namic, and since this is a book on thermodynamics, we do not delve deeply into the
computational issues. The overriding theme here is that multiphase reaction problems
combine the salient features of phase equilibria and reaction equilibria, and therefore
such problems adhere to the general patterns established earlier in this chapter. We
first consider computational difficulties that can be posed by indifferent situations
(§ 11.3.1), then we present and illustrate one elementary algorithm (§ 11.3.2).

11.3.1 Computational Consequences of Indifferent Situations

In discussing states of multiphase, nonreacting systems in § 9.1, we presented two
ways for identifying an intensive state: F and F ′ specifications. That discussion was
extended to reacting systems in § 10.3.1. For both reacting and nonreacting systems
we found that the difference between F and F ′ is the number of internal constraints:
in an F-specification we implicitly rely on internal constraints to complete an identifi-
cation of state, but in an F ′-specification we explicitly include the consequences of
internal constraints. In multiphase reacting systems, the difference is

(11.3.1)
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where P is the number of phases and R is the number of independent chemical reac-
tions. One way to interpret the distinction between F and F ′ is that an F-specification
can only identify a class of indifferent states, while an F ′-specification may identify a
member of such a class. For reacting systems the distinction between F and F ′
assumes more importance than it does in most phase-equilibrium situations [19, 20].

Indifferent situations can create problems in the trial-and-error procedures rou-
tinely used in calculations for phase and reaction equilibrium. In such calculations,
we may start with an F or F ′ specification that properly closes the problem, but dur-
ing the course of the trial-and-error search, the algorithm may enter an indifferent sit-
uation that couples properties that are otherwise independent. This may occur not
only when azeotropes and critical points are encountered, but also when algorithms
enter metastable and unstable regions of phase diagrams [20]. 

The response of a particular algorithm to indifferent situations may be unpredict-
able; for example, some algorithms may continue to search indefinitely because indif-
ferent situations represent an infinite sequence of roots that are in many ways
equivalent. Other algorithms, more dangerously, may arbitrarily select one member of
the class of indifferent states and return that member as the solution. This response is
not uncommon when a minimization method finds a local minimum (a metastable or
unstable state) rather than the global minimum (the true equilibrium state). The possi-
bilities for encountering indifferent situations increase when reaction-equilibria are
coupled with phase-equilibria. 

When we write algorithms for computing phase and reaction equilibria, we should
try to implement guards that reduce the chances of search routines entering indiffer-
ent situations. When we use those algorithms, we should be aware that indifferent sit-
uations exist, that no guard is likely to protect against all eventualities, and therefore
when a particular solution is found, it should not be accepted blindly.

11.3.2 Computational Algorithms for Multiphase, Multireaction Systems

In a typical problem, multiple reactions are taking place in a multiphase system at
fixed T and P, and we are to compute the equilibrium compositions of all phases. At
this point, such calculations raise no new thermodynamic issues; for example, for R
independent reactions occurring among C species distributed between phases α and
β, the problem is to solve the phase-equilibrium criteria

i = 1, 2, … , C (7.3.12)

together with the reaction-equilibrium criteria,

j = 1, 2, … , R (7.6.3)

These reaction-equilibrium criteria apply to each phase in which reactions are occur-
ring. But we can often simplify a calculation by assuming reactions occur in only one
phase. Such an assumption is legitimate because the affinities in (7.6.3) are merely par-
ticular combinations of fugacities, and the phase-equilibrium criteria (7.3.12) require
the same value of the fugacity for each component in all phases. This means that

fi
α

fi
β

=

A j 0=
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when phases α and β are in equilibrium, a reaction occurring in phase α must have
the same value for the reaction equilibrium constant as it has for phase β, provided
the standard-states used for the two phases are the same.

Coupled phase-reaction equilibrium problems not only raise no new thermody-
namic issues, but they also raise few new computational issues. By building on the
phase and reaction-equilibrium algorithms presented earlier in this chapter, we can
devise an elementary algorithm. Reaction-equilibrium problems typically start with
known values for T, P, and initial mole numbers  in a phase-equilibrium context,
these variables identify an F ′ problem, such as an isothermal flash calculation. There-
fore we can combine the Rachford-Rice method with the reaction-equilibrium calcula-
tion given in § 11.2; an example is provided in Figure 11.8 for a vapor-liquid situation.
This is a traditional way for attacking multiphase-multireaction problems [21, 22];

Figure 11.8 Elementary algorithm for computing equilibrium compositions from multiple reac-
tions occurring in isothermal-isobaric, vapor-liquid situations. This algorithm combines the
Rachford-Rice method for isothermal flash with the reaction-equilibrium method in Figure 11.7.
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other methods have been reviewed by Seider and Widagdo [23]. Recent developments
in computational algorithms include methods that minimize the Gibbs energy with
guaranteed convergence to the global minimum [24, 25]. These are not elementary
methods, and at present convergence is guaranteed only when fugacities are obtained
from certain gE-models (such as the Wilson equation); however, we can expect more
developments in these methods in the future [26].

The algorithm in Figure 11.8 can be extended to liquid-liquid situations by combin-
ing the liquid-liquid form of the Rachford-Rice method (§ 11.1.5) with the reaction
equilibrium algorithm from § 11.2.4. Again we would have only (R + 1) equations to
solve for (R + 1) unknowns, no matter how many species are present. However, since
such algorithms combine the Rachford-Rice and reaction-equilibrium procedures,
they are susceptible to the same convergence problems as encountered in those meth-
ods. These include sensitivity to initial guesses and, in some problems, sensitivity to
the parameter ζ used in (11.2.28) to control the stability of the reaction-equilibrium
calculation. But if computer codes have already been written for the Rachford-Rice
and reaction-equilibrium algorithms, then it is a relatively simple task to combine
them into the algorithm in Figure 11.8. So this algorithm can serve as a first line of
attack on a multiphase-multireaction problem; however, if the algorithm fails, then
more sophisticated approaches will have to be tried [23].

11.3.3 Example

What are the effects of two-phase equilibria on equilibrium compositions obtained
from one or more chemical reactions?

We consider esterification of ethanol with acetic acid to form ethyl acetate and water.
This reaction has been much used for testing algorithms that perform simultaneous
phase and reaction-equilibrium calculations. At ambient pressures, we assume the
reaction occurs in a vapor phase; but depending on the exact values for T and P, the
mixture may exist as one-phase vapor, one-phase liquid, or a two-phase vapor-liquid
system. The feed contains equimolar amounts of ethanol and acetic acid. The problem
is to determine the equilibrium state: the phases present and their compositions at
1.0133 bar and temperatures near 355 K.

Model parameter values. We estimate pure-component vapor pressures from an
Antoine equation,

(11.3.2)

with parameters in Table 11.8 taken from Xiao et al. [22]. For the calculation, we assign
the reaction to the vapor phase; therefore, we choose the standard states to be pure
ideal gases at 1 bar. Values for the standard Gibbs energies of formation at 355 K and
358 K were taken from McDonald and Floudas [25] and are given in Table 11.8.

If a liquid phase appears, it will definitely be nonideal, and we adopt the Wilson
equation (§ 5.6.5) as the model for liquid-phase activity coefficients. Values of the
parameters Λij in the Wilson model were taken from McDonald and Floudas [25], who
in turn abstracted them from Suzuki et al. [27]; the values are given in Table 11.9. We
assume the vapor at 1.0133 bar is an ideal gas, so the activities are merely  

Ps bar( )ln A B
T K( ) C–
-----------------------–=
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(11.3.3)

But carboxylic acids, such as acetic acid, are strongly associating [28], and even in
vapors at low pressures, acetic acid will dimerize, producing a fugacity coefficient
substantially less than unity. For vapor-liquid equilibrium situations, this has been
taken into account in the values of the Wilson parameters fit by Suzuki et al. [27]. But
we return to this issue later in this example.

Phases and compositions at 355 K, 1.0133 bar. For this situation we have C = 4 spe-
cies and me = 3 elements. Using a feed containing 0.5 moles of EtOH and 0.5 moles of
HAc, the elemental abundances for (C, H, O) are = (2, 5, 1.5). The formula matrix is

       (11.3.4)

Table 11.8 Values for Antoine constants in (11.3.2) and standard Gibbs
energies of formation (kJ/mol) at two temperatures [25]

Species A B C
355 K 358 K

EtOH 11.41193 3316.920 60.44 –155.1994 –154.4923

HAc 10.78646 3785.565 39.63 –365.2934 –364.6783

EtAc 9.72377 2852.235 56.15 –304.7794 –303.5610

H2O 11.72410 3841.196 45.14 –226.0446 –225.9061

Table 11.9 Values of parameters Λij in Wilson model at 355 K
[25, 27]

i/j EtOH HAc EtAc H2O

EtOH 1 2.28180 0.77670 0.15347

HAc 0.27558 1 0.61790 0.26838

EtAc 0.55046 0.89277 1 0.12353

H2O 0.92038 1.22642 0.14907 1
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A singular value decomposition of A (§ 11.2.1) identifies one independent reaction,

(11.3.5)

and since σ = Σνi = 0, the total number of moles (N = 0.5 + 0.5 = 1) is conserved
throughout this one reaction.

We set the convergence tolerance ε = 10–7 and the stability-control parameter ζ =
0.9; then, with an initial guess for the final numbers of moles of N = (0.1, 0.1, 0.4, 0.4),
the algorithm in Figure 11.8 converges in 12 iterations. The result is a two-phase
vapor-liquid system with V = 90 mole % of the material in the vapor phase. The com-
puted equilibrium compositions are contained in Table 11.10. The final value of the
affinity was A/RT = 4.3(10–8). A consistency test may be applied by checking whether
the final compositions reproduce the known value of the equilibrium constant. Using
the vapor-phase compositions and assuming an ideal gas, we find

(11.3.6)

which is within 2% of the value (K = 33.72) that we have computed from data in Stull
et al. [29]. The above compositions agree almost exactly with results obtained by
McDonald and Floudas [25]. From these results, the fractional conversion of ethanol is 

(11.3.7)

Phases and compositions at 358 K, 1.0133 bar.  With a slight increase in temperature,
from 355 K to 358 K, the algorithm in Figure 11.8 finds no two-phase equilibrium; the
system is a one-phase gas. Otherwise, with all temperature-independent parameters
the same as in the previous calculation, and with the standard Gibbs energies of for-
mation from Table 11.8, we now find the following equilibrium compositions:

Table 11.10  Equilibrium compositions for esterification
of ethanol (11.3.5) at 355 K and 1.0133 bar; the system is
in vapor-liquid equilibrium with liquid-phase {x}, vapor
phase {y}, and overall composition {z}. V = 90 mol%

i Species xi yi zi

1 EtOH 0.0491 0.0829 0.0795

2 HAc 0.2042 0.0657 0.0795

3 EtAc 0.1174 0.4541 0.4205

4 H2O 0.6294 0.3973 0.4205

EtOH HAc+ EtAc H2O+→

K
y3 y4
y1 y2
------------- 33.12= =

αEtOH
NEtOH

o NEtOH
eq

–

NEtOH
o--------------------------------------------- 0.841= =
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   (11.3.8)

and  
 (11.3.9)

The final value of the affinity was A/RT = 5.7(10–8), and the equilibrium constant
was computed to be

(11.3.10)

which is within 2% of the value (K = 32.36) that we computed from data in Stull et al.
[29]. From these results, the fractional conversion of ethanol is now 84.9%, which dif-
fers only slightly from the conversion found for the two-phase situation in (11.3.7).
This one-phase result at 358 K and the above compositions have been found by sev-
eral workers [12, 13, 25, 30, 31]; however, note that since the mixture is now one-phase
vapor, the liquid-phase activity coefficients are not applied, and therefore these results
do not account for dimerization of acetic acid in the vapor.

Effects of dimerization on results at 358 K, 1.0133 bar. Water-acetic acid solutions in
vapor-liquid equilibria have been studied by Sebastiani and Lacquaniti [32], who give
the following for the equilibrium constant for low-pressure, vapor-phase dimerization
of acetic acid:

(11.3.11)

where log is the base-10 logarithm, yd is the mole fraction of dimer, ya is the mole frac-
tion of monomeric acetic acid, Po is the standard state pressure in bar, and T must be
in K. The constants in this expression are nearly the same as those given by Gmehling
and Onken [33]. At 358 K, (11.3.10) gives

(11.3.12)

so vapor-phase dimerization is not negligible.
Since the algorithms in this chapter use Gibbs energies of formation, rather than

equilibrium constants, we use the value of K in (11.3.11) to compute a Gibbs energy of
formation for the dimer at 358 K. From (10.3.14) we have

(11.3.13)

and from (10.4.18) we can write ∆go in terms of properties of formation,

yEtOH yHAc 0.0753= =

yEtAc yH2O 0.4247= =

K
y3 y4
y1 y2
------------- 31.81= =

Klog
yd

ya
2 P Po⁄( )

------------------------log 3164
T

------------ 7.5433–= =

K 19.71=

Kln
∆go–

RT
------------=
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(11.3.14)

For the dimerization of acetic acid this becomes

(11.3.15)

Combining (11.3.11), (11.3.12), with (11.3.14), and using the value of  for HAc from
Table 11.9, we obtain at 358 K,

(11.3.16)

We have C = 5 species composed of me = 3 elements, and the formula matrix is

(11.3.17)

A singular value decomposition of A (§ 11.2.1) finds two independent reactions: the
esterification (11.3.5) and the dimerization,

(11.3.18)

Now σ = Σνi ≠ 0, so the total number of moles will change during these two reactions.
We still use a feed containing 0.5 moles of EtOH and 0.5 moles of HAc, so the elemen-
tal abundances remain bT = (2, 5, 1.5). 

Dimerization effectively decreases the fugacity coefficient of HAc, because the
mole fraction of monomeric HAc decreases; therefore, we do not expect dimerization
to cause any condensation of the one-phase vapor found in part (2). So we perform
the reaction-equilibrium calculation using the one-phase algorithm in Figure 11.7. We
use the same values for the algorithmic parameters ε and ζ as used in part (1), with an
initial guess for the final numbers of moles of N = {0.1, 0.0333, 0.4, 0.4, 0.0333}. At 358
K, 1.0133 bar, the algorithm converges in 10 iterations to the values in Table 11.11.  

The total amount of material at equilibrium is 0.9642 moles for each mole of feed.
The final values of the affinities were Ae/RT = –2.1(10–8) and Ad/RT = –3.8(10–8),
where subscript e refers to the esterification and subscript d refers to the dimerization.
The computed values for the equilibrium constants are Ke = 31.78 which differs by less
than 2% from the value (32.36) extracted from data in Stull et al. [29], and Kd = 19.69,
which differs by only 0.1% from the value in (11.3.11). (Recall we use Po = 1 bar.)   

The fractional conversion of ethanol is now αEtOH = 0.774. So the effect of acetic
acid dimerization is to decrease the fractional conversion of ethanol by 7.5% from the
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value found by ignoring dimerization. This change is not insignificant. We can con-
template including additional reactions to account for formation of acetic acid -mers
of higher order (see Problem 11.25), but dimer formation dominates at 358 K. 

11.4  SUMMARY

In this chapter we have presented a collection of elementary algorithms for solving
multicomponent phase-equilibrium problems, reaction-equilibrium problems, and
phase-equilibrium problems coupled to reaction-equilibrium problems. The algo-
rithms are particular implementations of the problem-solving strategies introduced in
Chapter 10: phi-phi, gamma-phi, and gamma-gamma methods for phase equilibrium,
plus the stoichiometric method for reaction equilibrium. The algorithms were selected
and presented in ways that are intended to emphasize underlying structural similari-
ties; for example, we were able to base several algorithms on the Rachford-Rice proce-
dure traditionally applied to isothermal flash calculations. 

However, none of these algorithms will serve in all problems situations, for our
goals are primarily educational, not computational. Our intent has been to illustrate
thermodynamic and computational principles that can foster development of sound
engineering judgement. In that light, we enumerate here those issues that should be
addressed in translating any problem statement into a computational procedure.

In setting up and carrying out any engineering computation, we have three funda-
mental issues to resolve before a calculation should be attempted: (1) Is the problem
well-posed? (2) How should the problem be formulated mathematically? (3) What
computational techniques can be applied? These are not three separate issues; rather,
they are coupled. For example, the way a problem is posed influences problem formu-
lation, and problem formulation influences computational technique.

Is the problem well-posed?  This issue concerns whether we have enough informa-
tion to compute the required unknowns. In phase and reaction-equilibrium computa-
tions, this issue is resolved by a proper application of the generalized phase rule; it
might not be properly resolved by a routine application of the Gibbs phase rule. In
particular, we have discussed two kinds of subtleties that are often overlooked.

Table 11.11 Equilibrium compositions for the
esterification of ethanol (11.3.5) at 358 K and
1.0133 bar, including effects of dimerization
of acetic acid (11.3.17); at these conditions, the
system is one-phase vapor. 

i Species Ni yi

1 EtOH 0.11319 0.11739

2 HAc 0.04159 0.04314

3 EtAc 0.38681 0.40117

4 H2O 0.38681 0.40117

5 (HAc)2 0.03580 0.03713
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First, we distinguished between an F and an F ′ identification of state. Less infor-
mation is provided by an F-specification than by an F ′-specification, but in particular
situations one or the other may be more appropriate. For example, in vapor-liquid
equilibrium calculations, an F-specification is sufficient to close a bubble-T problem,
but an F-specification fails to close an isothermal flash problem. Furthermore, most
reaction-equilibrium problems are not closed by F-specifications; they require F ′-
specifications. We have also illustrated that in some situations an F-specification may
be sufficient, but an F ′-specification may lead to a more advantageous problem for-
mulation and solution technique. The principal pitfall is to apply an F-specification to
a problem that demands an F ′-specification, for then the problem is ill-posed.

Second, we raised the specter of indifferent situations. These occur when either the
number or type of knowns does not allow computation of all unknowns. Most trou-
blesome are those situations in which the problem is initially well-posed but during
the computation, variables that were initially independent become coupled. When
such coupling occurs, the behavior of trial-and-error search algorithms may be erratic
or erroneous, so we should not accept results as reliable merely because they were
generated on a computer using a sophisticated algorithm.

How should the problem be formulated mathematically?  In the introduction to
this chapter we noted that a phase or reaction-equilibrium problem can be formulated
in two general ways: (a) as a set of coupled algebraic equations or (b) as a multivari-
able minimization problem. For pedagogical reasons, we have presented only formu-
lations of type (a). In phase-equilibrium calculations the algebraic equations originate
in the phi-phi, gamma-phi, and gamma-gamma methods presented in Chapter 10. In
§ 10.5 we discussed the issues that lead us to choose one of these strategies over the
others. For phase-equilibrium conditions supplemented with material balances, we
choose the Rachford-Rice formulation. 

For reaction-equilibrium computations, we have discussed only stoichiometric
methods, in which the elemental balances are imposed explicitly through R sets of
stoichiometric coefficients. For one-phase systems, these formulations require us to
solve only R algebraic equations for R extents of reaction; therefore, they require us to
identify R independent reactions. Such stoichiometric methods appear to be most
effective when the number of species C is not much greater than the number of ele-
ments (C ≈ me ). Otherwise, when nonstoichiometric methods may be more
computationally efficient [16, 18], though this comment probably depends on the par-
ticular algorithms being compared. 

What computational techniques can be applied?  For sets of nonlinear algebraic
equations, the traditional approach is the Newton-Raphson method. This method
should be familiar to those who regularly perform numerical computations. Like any
trial-and-error procedure, it has advantages and limitations. But note that we have not
hesitated to avoid Newton-Raphson when a clearly better method is available. We
should not be surprised when the Newton-Raphson procedure fails, either for certain
sets of initial guesses or even for all guesses of certain problem formulations. Nor
should we expect that convergence of the Newton-Raphson procedure implies cor-
rectness; the procedure can indiscriminately find nonphysical solutions, false solu-
tions, and indifferent solutions. But the Newton-Raphson algorithm is a fundamental
computational tool, and the development of competent engineers begins with mas-
tery of basic tools, coupled to a strong desire to move beyond the basics.

C me ,»
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PROBLEMS

11.1 Develop an algorithm that applies the phi-phi method, with a volumetric equa-
tion of state, to perform bubble-P calculations for multicomponent mixtures.
Your development should include (a) a flow diagram for the algorithm and (b)
a list of all data you would need before the algorithm could be implemented.
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11.2 Write a computer program that implements the bubble-P algorithm developed
in Problem 11.1. Use the Redlich-Kwong equation with mixing rules from
§ 8.4.4. To compute phase volumes, the cubic is best solved analytically via Car-
dan’s method (Appendix C). 

(a) Use your program to compute the isothermal Pxy diagram for mixtures of
methane and propane at 278 K. Critical properties of the pures are given in
Table 8.1.

(b) In presenting your diagram, include a qualitative description of its main
features and discuss to what extent the behavior of your algorithm differs
in different regions of the diagram.

11.3 Write a computer program that implements the phi-phi method for bubble-T
calculations. Use the Redlich-Kwong equation of state (8.2.1) with mixing rules
given in § 8.4.4. To obtain the volumes of the phases, the cubic is best solved
analytically using Cardan’s method (Appendix C). Apply your program to
binary mixtures of methane(1) and propane(2), whose critical properties are in
Table 8.1. For each of the following states, use your program to determine T, y1,
v{, and vv, where the last two are the molar volumes of the liquid and vapor,
respectively. (a) P = 12.5 bar, x1 = 0.05; (b) P = 30.8 bar, x1 = 0.453; (c) P = 50 bar,
x1 = 0.5; (d) P = 83.2 bar, x1 = 0.6.

11.4 Determine the bubble temperature for an equimolar mixture of diethyl ether(1)
and acetone(2) at 1 bar. The mixture obeys gE/RT = 0.712 x1 x2. Pure-component
vapor pressures are given in Appendix D.

11.5 At 50°C a binary liquid mixture of components 1 and 2 exists in liquid-liquid
equilibrium. The mixture obeys gE/RT = 2.25 x1 x2. Determine the compositions
of the two phases.

11.6 Determine the dew-point pressure for an equimolar vapor composed of etha-
nol(1) and water(2) at 90°C. Pure-component vapor pressures can be estimated
from the correlation in Appendix D. If necessary, assume the activity coeffi-
cients obey the Wilson model, with parameter values in Appendix E.

11.7 (a) Following the derivation given in § 11.1.5, develop the equation, analogous
to (11.1.20), for solving multicomponent isothermal flash problems, which
take the following form: given T, P, and {z}, find {x}, {y}, and V, where V is
the fraction of feed that flashes. Your result should contain K-factors in
place of distribution coefficients. Also obtain the expression for (∂F/∂V).

(b) Prepare a flow diagram, analogous to that appearing in Figure 11.4, for the
Rachford-Rice procedure applied to isothermal flash calculations.

11.8 A liquid mixture of 25 mole % benzene and 75% toluene, initially at 100°C, 1.5
bar, is fed to an isothermal flash chamber. What pressure should be maintained
in the chamber to produce an equimolar vapor product? The pure-component
vapor pressures are given in Appendix D. Clearly state and justify any assump-
tions made.
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11.9 (a) Write a computer program that performs the Rachford-Rice isothermal
flash calculation, as developed in Problem 11.7. Assume the vapor mixtures
are ideal gases and that the liquid mixtures obey the multicomponent ver-
sion of the Porter equation given in § 5.6.4.

(b) Consider a ternary mixture at 50°C, 3 bar, having Porter parameters A12 =
3, A13 = 1.4, and A23 = 0.7. The vapor pressures of the pure components are

 = 2.5 bar,  = 1.5 bar, and  = 2.1 bar. Let V represent the fraction of
the total mixture that is in the vapor phase. Use your program to determine
V and the composition of each phase for mixtures at 50°C, 3 bar, and each
of the following values for the overall mole fraction, 

(i) z1 = 0.2,   z2 = 0.5
(ii) z1 = 0.3,   z2 = 0.4
(iii) z1 = 0.35, z2 = 0.35
(iv) z1 = 0.4,   z2 = 0.3

11.10 The excess Gibbs energy for a certain binary mixture obeys the Porter equation
gE = βx1x2 with the temperature dependence of β given by (T in K)

(a) Construct plots of the change in Gibbs energy on mixing gm/RT vs. x1 for
two isotherms: T = 300 K and T = 330 K. Plot both curves on the same axes.

(b) If the system splits into two liquid phases at either temperature, determine
the compositions of the two phases.

11.11 Consider a binary mixture of components 1 and 2 in LLE at fixed T and P. Show
that the Rachford-Rice function F (11.1.20) is linear in R and can be written in
terms of overall mole fractions zi and distribution coefficients Ci as

11.12 (a) Write a computer program that applies the Rachford-Rice procedure,
developed in § 11.1.5, to multicomponent liquid-liquid equilibrium calcula-
tions. Assume the liquid mixtures obey the multicomponent version of the
Porter equation given in § 5.6.4.

(b) Consider a ternary mixture at 50°C, 3 bar, with Porter parameters A12 = 3,
A13 = 1.4, and A23 = 0.7. Let L represent the fraction of the total mixture that
is in phase α, where phase α is rich in component 1. Use your program to
determine L and the composition of each phase for mixtures at 50°C, 3 bar,
and the following values of the overall mole fraction, 

(i) z1 = 0.2, z2 = 0.5
(ii) z1 = 0.4, z2 = 0.4
(iii) z1 = 0.5, z2 = 0.2

P1
s P2

s P3
s

β RT⁄ 0.002– T2 1.22T 183.6–+=

R
z1 1 C1–( ) z2 1 C2–( )+

1 C1–( ) 1 C2–( )
----------------------------------------------------------=
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11.13 Ten moles of benzene, twenty moles of toluene, and ten moles of water com-
pletely fill a closed vessel. The mixture is brought into vapor-liquid-liquid equi-
librium at 90°C and 1.5 bar. Pure-component vapor pressures are given in
Appendix D.

(a) Estimate the composition of the vapor phase. Clearly state and justify any
assumptions made.

(b) Determine the total number of moles in each of the three phases.

11.14 Consider ternary mixtures of benzene(1), acetonitrile(2), and water(3) at 300 K,
0.10133 bar. The liquid-phase activity coefficients can be modeled by the NRTL
equation (see Appendix J); values of the NRTL parameters at 300 K are con-
tained in Table J.1. Pure-component vapor pressures are in Appendix D.

(a) For overall mole fractions {z} = {0.3436, 0.3092, 0.3472} determine whether
the mixture at this T and P can exist in VLE by using the Rachford-Rice
algorithm (Problem 11.7) to perform an isothermal flash calculation. 

(b) For the same T, P, and overall compositions as in part (a), determine
whether the mixture can exist in LLE by applying the Rachford-Rice LLE
algorithm of Figure 11.4.

(c) How do you explain the results found in (a) and (b)? Can they both be cor-
rect? If not, which is the correct answer?

11.15 At 1.0133 bar, 343.15 K, ternary mixtures of ethanol(1), ethyl acetate(2), and
water(3) exhibit liquid-liquid immiscibility. These mixtures have been modeled
using the NRTL equations (Appendix J) with parameters given in Table J.1.

(a) For overall mole fractions {z} = {0.04, 0.3, 0.66}, use the Rachford-Rice LLE
algorithm in Figure 11.4 to determine the compositions of the two phases
and fraction of the total system that forms the water-rich phase.

(b) Repeat part (1) for {z} = {0.11, 0.4, 0.49}.

(c) Compute the complete triangular diagram for this mixture at 1.0133 bar,
343.15 K.

11.16 (a) Write a computer program that applies the Rachford-Rice procedure,
developed in § 11.1.4, to multicomponent vapor-liquid-liquid equilibrium
calculations. Assume the vapor mixtures are ideal gases and that the liquid
mixtures obey the multicomponent Porter model given in § 5.6.4.

(b) Consider a ternary mixture at 50°C, 3.7 bar, with Porter parameters A12 =
3.5, A13 = 1.4, and A23 = 0.7. The pure vapor pressures are  = 1.5 bar, 
= 2.5 bar, and  = 2.1 bar. Let L represent the fraction of the total that is in
phase α, where phase α is rich in component 1, and let V be the fraction in
the vapor. Use your program to determine L, V, and the composition of
each of the three phases for mixtures at 50°C, 3.7 bar, and the following val-
ues of the overall mole fraction, 

(i) z1 = 0.5, z2 = 0.2
(ii) z1 = 0.3, z2 = 0.4
(iii) z1 = 0.4, z2 = 0.3

P1
s P2

s

P3
s
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11.17 Three moles of benzene, four moles of acetonitrile, and four moles of water are
placed in a closed vessel and brought into VLLE at 333 K, 0.70 bar. Assume the
liquid phases obey the NRTL equations (Appendix J), with parameter values
given in Table J.1. Appendix D contains Antoine parameters for vapor pres-
sures of the pure-components. Use the double Rachford-Rice algorithm of Fig-
ure 11.6 to determine the following:

(a) the total number of moles in each phase,

(b) the number of moles of acetonitrile in each phase,

(c) the mole fraction of acetonitrile in each phase.

11.18 Repeat Problem 11.17 for an initial loading that contains 2.5 moles of benzene,
five moles of acetonitrile, and 3.5 moles of water. What quantities in your
answers here differ from their values in Problem 11.17? In comparing the
results here with those in Problem 11.17, why do the values of some properties
change, while others do not?

11.19 In § 11.1.7 we noted that the double Rachford-Rice algorithm for VLLE does not
apply to binary mixtures. However, in Appendix K we present simple alterna-
tives that usually apply to isothermal VLLE calculations for binary mixtures. To
practice the procedure in Appendix K, consider liquid mixtures of toluene(1)
and water(2), which are almost completely immiscible at ambient conditions.
At 10°C we need the pressure at which this mixture exhibits VLLE, and we
need to know the compositions of the three phases. The pure-component vapor
pressures can be found from the correlation given in Appendix D. Perform the
calculation twice:

(a) Do a hand calculation assuming the liquids are completely immiscible.

(b) Write a computer program that implements the procedure described in
Appendix K. For the liquid-phase activity coefficients, use the NRTL model
(Appendix J) with parameter values from Table J.1. What are the % devia-
tions in the values for P and y1 from (a) and (b)?

11.20 Write a computer program that uses the singular value decomposition proce-
dure in § 11.2 to find the number of independent reactions R and the values of
the stoichiometric coefficients. (A listing of a program for performing the
decomposition is given in Press et al. [9].) You may want to be able to interact
with the program, so you can select values for the stoichiometric coefficients of
some species and then let the program compute values for the remaining coeffi-
cients. Apply your program to the following sets of reactants and products:

(a) Formation of methanol: (CO2, H2, CH3OH, CO, H2O).

(b) Chlorination of methane: (CH4, Cl2, CH3Cl, CH2Cl2, CHCl3, CCl4, HCl).

(c) Combustion of a gas in air: (CH4, C2H6, O2, N2, CO, CO2, NO, H2O).

(d) Formation of ethylene by dehydrogenation of ethane: (C2H6, H2, CH4,
C2H2, C2H4, C3H6, C3H8, C4H8, C6H6).

(e) Formation of diethylsulfide by reacting ethanol with hydrogen and gas-
eous sulfur: (C2H5OH, H2, S2, C2H5SH, (C2H5)2S, H2S, (C2H5)2O, C2H6,
CH3CHO, C2H4, H2O).
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11.21 At ambient conditions, binary liquid mixtures of ethyl acetate(1) and water(2)
are partially miscible. At 343.15 K determine the pressure at which this binary
exhibits three-phase VLLE and find the compositions of the three phases. The
pure-component vapor pressures can be modeled by an Antoine equation with
parameters in Table 11.9. Perform the calculation twice:

(a) Do a hand calculation, assuming the liquids are completely immiscible.

(b) Apply the algorithm described in Appendix K. For the liquid-phase activ-
ity coefficients, use the NRTL equations (Appendix J) with parameter val-
ues in Table J.1. What are the % deviations in the values obtained for P and
y1 from (a) and (b)?

11.22 At 25°C and 1 atm. a certain binary liquid mixture of components 1 and 2 devi-
ates from ideal-solution behavior according to

 

(a) Show whether at any composition, this mixture violates the diffusional sta-
bility criterion and therefore splits into two liquid phases.

(b) If a phase split does occur, determine the compositions of the two phases.

11.23 Write a computer program that implements the algorithm in Figure 11.7 for
computing multireaction equilibria. Test your program by computing the equi-
librium compositions resulting from the production of synthesis gas, as illus-
trated in § 11.2.5. Then use your program to compute the compositions for the
synthesis-gas reactions at the conditions of § 11.2.5, except with the following
modifications:

(a) Take the feed to be 2 moles of methane for every 1.5 moles of O2.

(b) Take the feed to be 3 moles of methane for every mole of O2.

(c) Assume oxygen is supplied as air and that the accompanying nitrogen is
inert; hence, the feed ratios are 2 moles CH4/mole O2 and 4 moles N2/mole
O2. Note that inerts do not change the formula matrix; they merely change
the species activities by changing the mole fractions.

11.24 In some cases, a given set of reactants and products can have more than one
independent set of stoichiometric coefficients. For example, consider formation
of methane from synthesis gas: the reactants are carbon monoxide and hydro-
gen; the products are methane, carbon dioxide, and water.

(a) Balance this reaction by hand. Can you find more than one independent set
of stoichiometric coefficients for reactions involving all five species? How
can you test whether you have found all independent sets?

(b) How do you expect a singular value decomposition of the formula matrix
A to behave for this collection of reactants and products? Perform the
decomposition to test your expectation. Is there any advantage to the
decomposition over the hand balancing done in part (a)?

gE

RT
-------- x1x2 2x1 3x2+( )=
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11.25 Use the one-phase multireaction algorithm in Figure 11.6 to determine the
extent to which formation of tetramers of acetic acid affect the fractional con-
version during esterification of ethanol. That is, repeat the vapor-phase calcula-
tion at 358 K, 1.0133 bar illustrated in the last part of § 11.3.3, but now include
not only dimers but also tetramers. (Spectroscopic evidence suggests that for-
mation of trimers is unfavored [32].) Sebastiani and Lacquaniti give the equilib-
rium constant for formation of tetramers as [32]

(P11.25.1)

where log is the base-10 logarithm, yt is the mole fraction of tetramer, ya is the
mole fraction of monomeric acetic acid, T is in K, and Po = 1 bar. As a basis for
the calculation, use a feed that contains 0.5 moles of ethanol and 0.5 moles of
acetic acid. Compare your results for the equilibrium composition and the frac-
tional conversion of ethanol with those given in the last part of § 11.3.3.

11.26 Consider the following two simultaneous reactions taking place in a gas phase,

The reference state is taken to be 300 K and 0.1 MPa, and at this state the pure
components have the following values for properties of formation.

A reactor is initially loaded with four moles of A and eight moles of B, then the
reaction is allowed to proceed, reaching equilibrium at 300 K and 0.1 MPa. If,
from the equilibrium condition, the temperature is increased isobarically to 350
K, would the equilibrium mole fraction of component C increase, decrease, or
remain constant? Justify your answer.

A B C D

 (K) 4. × 104 –1. × 104 2. × 104 –3. × 104

 (K) 3. × 104 5. × 104 –1. × 104 4. × 104

5 4 4.5 8.5

Klog
yt

ya
4 P Po⁄( )3

---------------------------log 5884
T

------------ 14.8572–= =
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SELECTED APPLICATIONS

 

hen we apply thermodynamics to industrial and research problems, we should
draw fundamental ideas from Parts I and II, devise an appropriate solution

strategy, as in Chapter 10, and combine those with a computational technique, as in
Chapter 11. Such a procedure provides values for measurables that can be used to
interpret novel phenomena, to design new processes, and to improve existing pro-
cesses. The procedure is illustrated in this chapter for several well-developed situa-
tions. They include conventional phase-equilibrium calculations for vapor-liquid,
liquid-liquid, and solid-solid equilibria (§ 12.1); solubility calculations for gases in liq-
uids, solids in liquids, and solutes in near-critical solvents (§ 12.2); independent vari-
ables in steady-flow processes (§ 12.3); heat effects for flash separators, absorbers, and
chemical rectors (§ 12.4); and effects of changes of state on selected properties (§ 12.5).

 

12.1  PHASE EQUILIBRIA

 

When two or more bulk phases are in contact and at equilibrium, the measurables of
interest are usually temperature, pressure, and the compositions of the phases. Of
these measurables, the most important are often the compositions; for example, in the
design and operation of separation processes, we routinely need the composition of a
particular phase, or when the temperature and pressure change, we need to know the
extent to which the compositions also change. When engineering applications involve
fluid-fluid equilibria, we often find that, besides 

 

absolute

 

 compositions, 

 

relative

 

 compo-
sitions can be informative and important. We identify such relative measures as mem-
bers of a class of 

 

engineering quantities

 

: certain variables or combinations of variables
that facilitate thermodynamic analyses of practical problems but whose definitions
invoke no new thermodynamic fundamentals. The engineering quantities considered
in this section include K-factors (§ 12.1.1) and relative volatilities (§ 12.1.2), which are
used in VLE, together with distribution coefficients and selectivities, which are used
in LLE (§ 12.1.3). However, relative compositions are less useful in analyzing solid-
solid equilibria (SSE), so in § 12.1.4 we are content to show how methods from Chap-
ter 10 can be used to correlate SSE data.

W
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12.1.1 K-Factors in Vapor-Liquid Equilibria

 

Consider a multicomponent mixture in vapor-liquid equilibrium; let {

 

x

 

} represent the
set of mole fractions for the liquid and let {

 

y

 

} be the same for the vapor. In a closed
system, the compositions {

 

x

 

} and {

 

y

 

} will change, often drastically, with changes in 

 

T

 

and 

 

P

 

. However, in many systems the ratio 

 

y

 

i

 

/

 

x

 

i

 

, for each component 

 

i

 

, is less sensi-
tive to changes of state than is either 

 

x

 

i

 

 or 

 

y

 

i

 

 by itself. This observation is exploited by
introducing two quantities: the K-factor and the relative volatility (§12.1.2). We have
already encountered the K-factor in the Rachford-Rice method for flash calculations;
see (11.1.24) and Problem 11.7.

For each component 

 

i

 

 in a multicomponent VLE situation, define a K-factor as the
ratio of the vapor-phase mole fraction 

 

y

 

i

 

 to the liquid-phase mole fraction 

 

x

 

i

 

,

(12.1.1)

The K-factor is an intensive measurable property (state function); it may be greater
than unity or less than unity. A mixture has a K-factor for each of its 

 

C

 

 components,
but only (

 

C

 

 – 1) are independent: if we know the composition of one phase together
with values for (

 

C

 

 – 1) K-factors, then the last may be computed by

(12.1.2)

For example, a binary has 

 

K

 

2

 

 = (1 – 

 

x

 

1

 

K

 

1

 

)/(1 – 

 

x

 

1

 

). In general, a K-factor depends on
temperature, pressure, and the mole fractions {

 

x

 

} and {

 

y

 

}, but in many systems, the K-
factors respond weakly and regularly to changes of state.

To illustrate, let us consider a Lewis-Randall ideal solution in equilibrium with an
ideal gas, so the system obeys Raoult’s law (§ 10.2.2),

 

Raoult’s law

 

(12.1.3)

Then each K-factor is merely

 

Raoult’s law

 

(12.1.4)

where  is the vapor pressure of pure 

 

i

 

 at the mixture temperature 

 

T

 

. So in this spe-
cial case, the K-factors are constants when 

 

T

 

 and 

 

P

 

 are fixed; they depend on the phase
compositions implicitly through 

 

T

 

 and 

 

P

 

. Along isotherms, the Raoult’s law K-factor
varies as 1/

 

P

 

; this is illustrated in Figure 12.1. The Henry’s law K-factor also varies as
1/

 

P

 

. Of course, most liquid mixtures are not ideal, so (12.1.4) does not generally apply.
For nonideal solutions, we can identify two general forms for K-factors, depending on
whether the equality of fugacities (10.2.11) is posed in terms of phi-phi or gamma-phi. 
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Phi-phi form.

 

If we choose FFF #1 for both vapor and liquid, then the equality of
fugacities takes the phi-phi form (10.1.3), and the K-factor becomes

(12.1.5)

Values for the fugacity coefficients would, as usual, be obtained from a 

 

PvTx

 

 equation
of state using (4.4.23). In writing (12.1.5) note that in each argument list we have
included the molar volume of the phase; by so doing, we emphasize that values for
those volumes must be computed from the equation of state, even when the pressure
is used to specify the state.

At low pressures the vapor will be ideal, so  

 

≈

 

 1; then, on using (5.5.8) for the liq-
uid fugacity coefficient, neglecting the Poynting factor at low pressures, and taking
the pure-i vapor pressure as the standard-state pressure, (12.1.5) reduces to

(12.1.6)

If the liquid is an ideal solution, then (5.1.3) gives  =  =
 

 

≈

 

 1, and (12.1.6) reduces to the Raoult’s law form (12.1.4). Even when 

 

ϕ

 

i

 

{

 

is independent of composition, but not equal to unity, the K-factors still adhere to the
functional form of Raoult’s law (12.1.4) but the numerical values for the K-factors will
differ from the Raoult’s law values. 

 

Figure 12.1

 

(

 

left

 

) Isothermal plot of K-factors in a binary mixture that obeys Raoult’s law. In
such cases, each 

 

K

 

 varies as 1/

 

P

 

. (

 

right

 

) Same as at left except for a nonideal mixture; the nonlin-
earities in 

 

K

 

1

 

 and 

 

K

 

2

 

 may be caused by nonidealities in the liquid or in the vapor or in both.

Ki
ϕi

{ T v{ x{ }, ,( )

ϕi
v T vv y{ }, ,( )

------------------------------------=

ϕi
v

Ki ϕi
{ T P x{ }, ,( ) ϕi

{ T Pi
s x{ }, ,( )

Pi
s T( )
P

--------------= =

ϕpure i
{ T Pi

s x{ }, ,( ) ϕpure i
{ T Pi

s,( )
ϕpure i

v T Pi
s,( )

0.1

1

10

1 10 100

K
-F

ac
to

rs

P (bar)

K1

K2
K2

K1

x1 = 0

x1 = 0

x1 = 1

x1 = 1



532 SELECTED APPLICATIONS

For binary mixtures, the effect of pressure on a K-factor can be obtained by combin-
ing the pressure derivatives of xi and yi that appear in (9.3.13) and (9.3.14). But for
many systems,  is a weak function of {x} and then along low-pressure isotherms,
(12.1.6) suggests that Ki decreases as 1/P when the pressure is increased. This behav-
ior is shown in Figure 12.1. Each plot in the figure shows (ln Ki) plotted at fixed T
against (ln P), and in each case the curve is linear at low pressures, as required by
(12.1.6). If the mixture has  independent of {x}, then Ki ∝ 1/P and the linear relation
is preserved at all pressures at fixed T, as on the left in Figure 12.1. If the mixture is
weakly nonideal (γi ≠ 1 or ϕi ≠ 1 or both), then the linear relation is disrupted, but only
at high pressures, as on the right in Figure 12.1. 

If the mixture is sufficiently nonideal that an azeotrope forms, then the curves for
K1 and K2 cross; their intersection occurs at K1 = K2 = 1, which identifies the azeotrope.
This possibility is shown on the left in Figure 12.2. Finally, if one component is super-
critical, then the mixture may have a critical point at the fixed T; if this occurs, then
K1(P) and K2(P) are two branches of the same curve. Those branches coincide at K1 =
K2 = 1, which identifies the mixture critical point, as on the right in Figure 12.2.

Effects of temperature are shown in Figure 12.3 for binary mixtures of methane(1)
and propane(2), with K1 and K2 computed from (12.1.5) using the Redlich-Kwong
equation of state, as in § 8.4.4. At the temperatures used in Figure 12.3, methane is
supercritical, so the isotherms appear as on the right in Figure 12.2. At low pressures
both K1 and K2 decrease linearly on this logarithmic plot, again confirming that Ki ∝
1/P along isotherms. At low pressures, K1 = H1/P, while K2 is equal to unity at the
pure propane vapor pressure; at the high-pressure mixture critical points K1 = K2 = 1.

    

Figure 12.2 (left) Isothermal plot of K-factors in a binary mixture that forms an azeotrope. At
this azeotrope the pressure is a maximum and the two curves intersect with K1 = K2 = 1. (right)
Isothermal plot of K-factors in a binary mixture that passes through a mixture critical point. In
these cases, K1 and K2 are two branches of the same curve; the two coincide at the critical point
with K1 = K2 = 1.
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Gamma-phi form. If we choose FFF #1 for the vapor and one of FFF #2–5 for the liq-
uid, then at low pressure the equality of fugacities takes the gamma-phi form (10.1.4),
and the resulting expression for the K-factor (12.1.1) is

(12.1.7)

If we use FFF #5 for the liquid-phase fugacity, take the standard state to be pure satu-
rated liquid i at T, and assume the low-pressure vapor is an ideal gas, then (12.1.7)
becomes 

(12.1.8)

which is equivalent to (12.1.6). This gives Ki ∝ 1/P, as it should along low-pressure
isotherms.

Using the gamma-phi form (12.1.7) with the activity coefficient based on a pure-
component standard state, we can determine the limiting behavior of Ki. In the pure
limit,

fixed T; keep VLE (12.1.9)

Figure 12.3 Effect of temperature on K-factors in binary mixtures. These K-factors were com-
puted from the phi-phi form (12.1.5) using the Redlich-Kwong equation of state applied to
vapor-liquid equilibria in binary mixtures of methane(1) and propane(2). At these temperatures
methane is supercritical and the mixtures exhibit critical points at K1 = K2 = 1. This is an exam-
ple of the class of binaries shown on the right in Figure 12.2.
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Note that this limit is to be taken along a vapor-liquid saturation curve with tempera-
ture held constant. If pure-component i is supercritical at the mixture T, then pure i
does not exist in VLE at T, and the limit in (12.1.9) is undefined. This occurs for super-
critical methane in Figure 12.3.

For the infinite-dilution limit, we choose component i to be a solute, and use the
solute-free, dilute-solution standard state, so  = His. Then we have

fixed T, {xsf}; keep VLE (12.1.10)

This limit is taken along a vapor-liquid saturation curve with fixed T and fixed liquid-
phase solute-free mole fractions {xsf }. Here,  is the vapor-phase fugacity coefficient
at infinite dilution, and we have used (10.2.41) to identify the solute-free Henry’s con-
stant. At low pressures, the fugacity coefficient will be unity, and (12.1.10) will reduce
to the ratio His/P; so along isotherms, we again have Ki ∝ 1/P. In general, a K-factor
changes continuously with xi between the limits given by (12.1.9) and (12.1.10); it will
often, though not always, be monotone in xi. This discussion illustrates that it is some-
times easier to conceptualize property behavior using one formulation (gamma-phi),
although calculations may be better done using another formulation (phi-phi).

12.1.2 Relative Volatilities in Vapor-Liquid Equilibria

For each pair of components i and j in a multicomponent vapor-liquid equilibrium sit-
uation, define a relative volatility αij as the ratio of the two K-factors,

(12.1.11)

The relative volatility is an intensive measurable property (state function). It measures
the ease of separating i from j by distillation. For example, αij can be used to estimate
the minimum number of ideal stages needed for a distillation column. If αij = 1, no
separation is possible by simple distillation. It is also used to estimate residue curves
in multicomponent distillation designs.

In general, the relative volatility depends on (T, P, {x}, {y}), but in some mixtures αij
is only weakly affected by changes of state. For example, in the special case of a
Lewis-Randall ideal solution in equilibrium with an ideal gas, Raoult’s law for the K-
factors (12.1.4) produces

Raoult’s law (12.1.12)

So in this special case, the relative volatility is independent of pressure and the com-
positions of both phases. It may depend on temperature, but often the temperature
dependence is weak. Otherwise, general expressions for αij can be obtained from both
the phi-phi and gamma-phi forms for VLE.
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Phi-phi form. Substituting the phi-phi expression for the K-factors (12.1.5) into the
definition (12.1.12), we obtain

(12.1.13)

As usual, the fugacity coefficients would be evaluated from a PvTx equation of state
using (4.4.23). At low pressures we can substitute the approximation (12.1.6) for the K-
factors; then (12.1.13) simplifies to

low P (12.1.14)

Although this approximation contains no explicit pressure term, it still depends
implicitly on P; for example, if we fix T and change P while maintaining VLE, then the
liquid compositions change and therefore αij changes.

Curves for relative volatilities α12 are shown in Figure 12.4 for the methane(1) +
propane(2) mixtures whose K-factors were shown in Figure 12.3. At low pressures,
each isotherm in Figure 12.4 starts at the vapor pressure of pure propane, and as P
increases, α12 decreases almost linearly, reaching unity at the mixture critical line. The
simple Raoult’s law form for α12 (12.1.12) does not apply to the mixtures in Figure
12.4, even at low pressures, because all the temperatures in the figure are above the
pure methane critical point; so no value of  exists at any of the states shown in the
figure. Note that α12 increases as T is decreased isobarically; that is, at low tempera-
tures and low pressures, the vapor phase is dominated by a relatively large fraction of
methane. 

Figure 12.4 Relative volatilities for vapor-liquid equilibria in binary mixtures of methane(1)
and propane(2), computed from the K-factors appearing in Figure 12.3. For these mixtures, each
isotherm terminates at a mixture critical point, where α12 = 1.
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Gamma-phi form. If we substitute the low-pressure gamma-phi expression for the K-
factors (12.1.7) into the definition of the relative volatility (12.1.12), we obtain

(12.1.15)

The explicit P in the K-factor (12.1.7) cancels from (12.1.15). The liquid-phase activity
coefficients would be obtained from one of FFF #2–5; often, FFF #5 would be used, as
in (12.1.8). If we can substitute the K-factor approximation (12.1.8) into (12.1.15), we
find

(12.1.16)

Equation (12.1.16) is often valid, not only at low pressures, but also at moderate pres-
sures, for in many situations the ratios of ϕs and Poynting factors may be close to
unity, even though individual ϕs and Poynting factors are not. Furthermore, if the liq-
uid is a Lewis-Randall ideal solution, then the activity coefficients are unity and
(12.1.16) reduces to the Raoult’s law form (12.1.12); but generally, the activity coeffi-
cients are not unity and their values must be obtained from a model for gE.

Typical examples of how αij changes with composition are shown in Figure 12.5 for
three binary mixtures: acetone(1) + methanol(2), acetone(1) + chloroform(3), and
methanol(2) + chloroform(3). These αij were computed from the low-pressure form
(12.1.16) using the Margules model (5.6.11); the corresponding activity coefficients for
these three binaries appear in Figure 5.7. All three αij are monotone in the mole frac-

Figure 12.5 Relative volatilities for vapor-liquid equilibria in three binary mixtures: acetone(1)
+ methanol(2), acetone(1) + chloroform(3), and methanol(2) + chloroform(3). All computed at
60°C from the gamma-phi form (12.1.16) using the Margules equations (5.6.12) and (5.6.13) with
parameters from Appendix E. 
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tion (the usual case for binaries) and all three are less than 1 for some compositions,
but greater than 1 for others (often, but not always, the case). When binary mixtures
have αij = 1, the system has the same composition in both phases; this identifies either
a homogeneous azeotrope (§ 9.3.4) or a gas-liquid critical point (§ 9.3.5). But those gE

models that contain no pressure effects cannot predict vapor-liquid critical points; so
in Figure 12.5, those points having αij = 1 all represent azeotropes and the components
could not be separated by a simple distillation. 

Representative behavior for one relative volatility in a ternary mixture is shown in
Figure 12.6. The components for the ternaries used in this figure are the same as those
used for the binaries in the previous figure. Figure 12.6 shows how α13 responds when
the methanol-free mole fraction of acetone x1

sf is changed and the methanol mole frac-
tion x2 is held fixed. These relative volatilities were computed from the low-pressure
form (12.1.16) using the multicomponent version of the Margules equations (5.6.23).
The figure shows that α13 is well-behaved, being roughly linear in x1

sf. Note that
when x2 is large enough, α13  < 1 for all x2; this suggests that extractive distillation
could be used to separate components 1 and 3. Also note that the major effect of meth-
anol(2) is to reduce α13 more when the amount of acetone is small (x1

sf → 1) rather
than when the amount of chloroform is small (x1

sf → 0).

Limiting behaviors. The gamma-phi form (12.1.15) is convenient for determining
limiting behaviors of relative volatilities. In the following we use activity coefficients
in a pure-component standard state. First consider the pure-1 limit of α12 in a multi-
component mixture, taking the limit with T fixed, VLE maintained (so P → ), and
all liquid mole fractions except x1 driven to zero. This limit, applied to (12.1.15), yields

(12.1.17)

Figure 12.6 Relative volatilities α13 for vapor-liquid equilibria in ternary mixtures of acetone(1)
+ methanol(2) + chloroform(3). All computed at 60°C from the gamma-phi form (12.1.16) using
the Margules equations (5.6.23) with parameters from Appendix E. The quantity on the abscissa
is the methanol-free mole fraction for acetone; that is, x1

sf = x1/(x1 + x3).
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The limiting activity coefficient is defined by (10.2.40) and we have used (10.2.47) to
introduce the reference solvent Henry’s constant H21. For a binary at low pressures
the fugacity coefficient is unity, while the reference-solvent and solute-free Henry’s
constants are the same, so (12.1.17) reduces to

binary, low P (12.1.18)

where the activity coefficient is that at infinite dilution of 2 in pure 1.
We may also consider solute-free infinite-dilution limits, taken at fixed T, with fixed

solute-free mole fractions, and VLE preserved. For a multicomponent mixture, this
limit is

fixed T, {xsf} (12.1.19)

Here the component-2 fugacity and activity coefficients depend on the solute-free
mole fractions. However, for a binary x2

sf = 1, γ2 = 1, and at low pressures the fugacity
coefficients are unity, so (12.1.19) reduces to

binary, low P (12.1.20)

where the activity coefficient is that at infinite dilution of 1 in pure 2. Note that
(12.1.20) is a permuted form of (12.1.18). For binaries at low pressures, a plot of rela-
tive volatility vs. mole fraction forms a continuous curve between the limits in
(12.1.18) and (12.1.20); it is nearly always monotone. Therefore, if one limit has α12 < 1
while the other limit has α12 > 1, then α12 = 1 at some intermediate mole fraction; that
is, an azeotrope occurs. So the limiting values of α12 provide a simple test for the exist-
ence of azeotropes in binary mixtures. 

12.1.3 Distribution Coefficients for Liquid-Liquid Equilibria

Consider liquid phases α and β in equilibrium. For each component i, we may define
a distribution coefficient Ci, as the ratio of the equilibrium mole fractions of i in the
two phases,

(12.1.21)

The ratio Ci is an intensive measurable property (state function); it depends on tem-
perature, pressure, and the composition of each phase. We may find Ci > 1 or Ci < 1.
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The distribution coefficient was first introduced in (11.1.14) as an aid in performing
LLE calculations; it is analogous to the K-factor in vapor-liquid equilibrium. Just as for
the K-factor, different forms for Ci can be obtained, depending on whether we choose
the phi-phi, gamma-phi, or gamma-gamma form to represent the equality of fugaci-
ties. However, the gamma-phi approach is little used for LLE, so here we consider
only the phi-phi and gamma-gamma forms for Ci .

Phi-phi form. If the phi-phi form is used (§ 10.1.1), then the definition (12.1.21)
reduces to a ratio of fugacity coefficients

(12.1.22)

and values for the ϕs would be computed from a PvTx equation of state that applies to
each liquid phase. Usually we use the same equation of state for both phases, but at
states well away from any consolute point, different equations might be used.

At low pressures we can insert the approximation (12.1.6) for liquid-phase fugacity
coefficients, obtaining

low P (12.1.23)

where  is any convenient pressure for the standard state. Often the same standard-
state pressure is chosen for both phases  and then (12.1.23) simplifies fur-
ther. But in any event, (12.1.23) shows that at low pressures, the distribution coeffi-
cient is independent of system pressure P.

Gamma-gamma form. If the gamma-gamma form (§ 10.1.3) is used for the equality
of the fugacities, then the distribution coefficient (12.1.21) becomes

(12.1.24)

We would extract an appropriate expression for the activity coefficients from FFF #2–
5. Usually we use the same FFF for the same component in both phases, but this is not
necessary, and we usually choose the same standard-state fugacity for the same com-
ponent in both phases, then (12.1.24) reduces to a simple ratio of activity coefficients,

(12.1.25)

When a pure-component standard state is used for both activity coefficients, then
the pure-component and infinite-dilution limits are straightforward. Taking the pure-
component limit, with T held fixed, (12.1.24) becomes
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(12.1.26)

and if the same standard state is used for component i in both phases, then the rhs of
(12.1.26) reduces to unity. On taking the dilute-solution limit, with T and the solute-
free mole fractions {xsf } fixed, (12.1.24) becomes

fixed {xsf} (12.1.27)

If the same standard state is used for i in both phases, then the rhs of (12.1.27) reduces
to a ratio of infinite-dilution activity coefficients. 

For ternary mixtures, the limits (12.1.27) define a tie line at the edge of a triangular
diagram for two-phase equilibria; see, for example, Figure 9.25. But we note that an
infinite-dilution tie line is not parallel to the edge, for if it were, the infinite-dilution
distribution coefficient would be unity. This means that Ci is discontinuous when the
infinite-dilution limit passes over to the value of Ci for zero concentration.

When one phase (say α) is rich in component i, while the other phase is dilute in i,
then it is often advantageous to select different standard states for component i in the
two phases. Then instead of (12.1.24), we would have

(12.1.28)

In the limit of extreme immiscibility, (12.1.26) applies to phase α while (12.1.27)
applies to phase β, so (12.1.28) becomes

fixed {xsf} (12.1.29)

Sample values for a distribution coefficient are shown in Figure 12.7 for a solute
(component 1) distributed between two completely immiscible solvents (components
2 and 3). We let phase β contain solvent 2 and let phase α contain solvent 3. The curves
were computed from the gamma-gamma form (12.1.25) using Porter’s equation (5.6.4)
for activity coefficients. The figure shows how the distribution of solute changes when
the identity of one solvent (component 2) is changed. This kind of calculation is rou-
tinely done when screening candidate solvents for use in a separation process by sol-
vent extraction. In the calculations for Figure 12.7, the Porter parameter A13 = 1.9
remained unchanged throughout the study, while the value of A12 was changed sys-
tematically, as indicated in the figure. (Recall that in the Porter model, A12 and A13
must be < 2, else additional phase splits will occur.)  
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If solvent 2 had A12 = A13 , then the solute would attain the same mole fraction in
both phases and C1 would be unity for all compositions. Figure 12.7 shows that as A12
is decreased away from A13 = 1.9, C1 increases; that is, the mole fraction of solute
increases in the solvent-2 phase. As a general rule, the larger the disparity in intermo-
lecular forces between solute 1 and each solvent, 2 and 3, the easier it is to extract sol-
ute from one phase into the other. Note that each curve in the figure obeys the pure-
component (12.1.26) and dilute-solution (12.1.27) limits (with the same standard states
used for both phases). Also note that at high concentrations (x1

β > 0.85) both phases
are dominated by solute molecules and no separation occurs. Finally, note that a weak
maximum occurs in C1 when A12 > 1.

For completeness, we mention that in describing liquid-liquid equilibria, some
authors define a selectivity βij to be the ratio of two distribution coefficients,

(12.1.30)

So the selectivity used in liquid-liquid equilibria is analogous to the relative volatility
αij used in vapor-liquid equilibria. In general, βij depends on temperature, pressure,
and the compositions of both liquid phases; however, since both phases are liquids, βij
is often little affected by moderate changes in pressure. At consolute points, the com-
positions are the same in the two phases, so Ci = Cj = 1, and therefore βij = 1. Other-
wise, when values of βij are very different from unity, then it is feasible to separate
components by liquid extraction.  

Figure 12.7 Response of the distribution coefficient C1 to changes in the identity of one solvent
(component 2 = phase β) when a solute (component 1) is distributed between two completely
immiscible solvents (2 and 3). These curves were computed from the gamma-gamma form
(12.1.25) using Porter’s equation for the activity coefficients. For all calculations, the Porter
parameter A13 = 1.9, while the value of A12 was as shown.
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12.1.4 Correlating Solid-Solid Equilibria

Thermodynamically, solid-solid equilibria are isomorphic to liquid-liquid equilibria,
so a thermodynamic description of SSE poses the same problems as does a description
of LLE. Those descriptions usually take the form of Txx diagrams: unless pressure is
very high, P has negligible effects on the properties of solids. Correlations of Txx data
for SSE are based on gamma-gamma expressions for fugacities, and often a simple
Porter or Margules equation is sufficient to correlate available data [2]. In correlating
SSE data, the challenge is usually not in identifying an appropriate model for gE, but
in correlating the temperature dependence of the parameters in the model.

A typical Txx diagram is shown in Figure 12.8, which applies to binary alloys of
nickel + gold. These alloys exhibit a solid-solid UCST near 812°C. The line in the fig-
ure is a correlation of experimental data (points) and was computed via the gamma-
gamma method together with the Rachford-Rice algorithm from § 11.1.5. The activity
coefficients were modeled using the Margules equations (5.6.12) with the parameters
A1 and A2 fit to the data using quadratics in temperature (see Problem 12.9).

12.2  SOLUBILITIES

Solubility is an oft ill-defined term, used rather indiscriminately to refer to small
amounts of a solute of one phase dissolved in a solvent of another phase. Invariably,
the solvent is a liquid or dense fluid, though it may contain any number of compo-
nents, while the solute may be gas, liquid, or solid. Solubility problems are really
phase-equilibrium problems and are attacked using the general strategies presented
in Chapter 10. In this section we describe the three common solubility problems: gas
solubility, which refers to supercritical gases dissolved in liquids (§ 12.2.1); solid solubil-
ity, which refers to solids dissolved in liquids (§ 12.2.2); and solubilities in near-critical

Figure 12.8 Correlation of solid-solid equilibria for binary alloys of nickel + gold. Points are
experimental data from the collection of Hansen [1]. Line was computed via the gamma-
gamma method using the Margules equation with each Margules parameter fit to the data via a
quadratic in temperature.
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systems, which usually involve a liquid or solid dissolved in a near-critical fluid
(§ 12.2.3).

12.2.1 Gases in Liquids

Gas solubility usually refers to the liquid-phase mole fraction xi that occurs in a VLE
situation in which the system temperature T is above the critical temperature of the
pure solute (T > Tci), but below the critical temperature of at least one other compo-
nent (T < Tcj ). An example is CO2 dissolved in a carbonated beverage. These situa-
tions can be described using either a phi-phi or a gamma-phi approach; the gamma-
phi method is the traditional approach.

Phi-phi.  If a reliable PvTx equation of state is available, then we may use the phi-phi
method to compute gas solubilities. Thermodynamically, this is merely phi-phi
applied to VLE and the general approach has been discussed in § 10.1.1 and § 12.1.1.
But in practice, this is a relatively recent development because reliable equations of
states have only recently been devised for supercritical solutes in subcritical solvents.
When the phi-phi method is used, computed solubilities are found to be sensitive to
the temperature dependence of parameters in the equation of state; they are also sen-
sitive to the mixing rules used for those parameters. In particular, when cubic equa-
tions are used, the temperature dependence and mixing rule for the parameter a must
be chosen with care. However, we judge this to be a modeling problem, not a thermo-
dynamic problem.

Gamma-phi. In the gamma-phi approach to gas solubilities, FFF #1 is always used
for the vapor, so the issues center on appropriate expressions for the fugacities of com-
ponents in the liquid phase. Let component 1 be the supercritical solute and 2 be the
subcritical solvent. For liquid fugacities we often use FFF #5 and for the solvent we
would likely choose a pure-component standard state with the standard-state pres-
sure equal to the vapor pressure of the pure liquid ( ). Then FFF #5 becomes

(12.2.1)

At low pressures, the Poynting factor is negligible, and if x2 ≈ 1, then γ2 ≈ 1; otherwise,
the activity coefficient would be obtained from an appropriate model for gE.

We might also select FFF #5 for the solute in the liquid phase. Since we expect solu-
bility problems to have x1 < 0.05, we would choose a Henry’s law standard state, with
the standard-state pressure taken to be the vapor pressure of pure solvent (i.e.,

). Now FFF #5 takes the form

  (12.2.2)
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Usually, neither the activity coefficient nor the Poynting factor in (12.2.2) is negligible;
further, while the Poynting factor is > 1, the activity coefficient γ* is < 1 (see § 10.2.3).
Therefore, these two terms tend to compete in correcting for nonidealities. Such com-
peting effects are illustrated in Figure 12.9 for the fugacities of hydrogen dissolved in
methanol.

We prefer to avoid these competing effects by using FFF #4 rather than FFF #5; then
the effects of all nonidealities combine into a single activity coefficient, which we eval-
uate at the system pressure rather than a standard-state pressure. With this choice, the
solute fugacity takes the form   

(12.2.3)

The value of  may be > 1 or < 1 (Since the points lie above the horizontal
line in Figure 12.9, we have  > 1 in Figure 12.9.), but it is often near unity because it
combines the competing effects that appear in FFF #5. Although use of FFF #4 avoids
the need for values or estimates of partial molar volumes, which appear in FFF #5
(12.2.2), in practice, models for  require values for the solution density [4].

Temperature effects.  To illustrate how a solute mole fraction x1 responds to changes
in temperature, we consider a binary mixture and use gamma-phi along with FFF #4,

(12.2.4)

When T is changed, at fixed P and y1, the response of x1 is dominated by the response
of the Henry’s constant; so, to a good approximation,  

Figure 12.9 For the fugacity of a supercritical solute(1) in a liquid solvent(2), the Poynting fac-
tor (PF) in FFF #5 (12.2.2) tends to compensate for the effects of the activity coefficient. This plot
shows contributions to fugacities of hydrogen(1) in methanol(2) at 294.15 K. Points are the
experimental data of Krichevskii et al. [3]. Horizontal line is for a Henry’s law ideal solution.
Upper line includes only the Poynting factor, while the lower line includes only the activity
coefficient. Adapted from a figure in Campanella et al. [4].
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(12.2.5)

Experimental data for H1(T) are shown in Figure 12.10 for several binary systems. The
observed behavior generally divides into two groups: 

(a) For temperatures near and below the solute critical temperature (T ≤ Tc1), H1 
increases with T. 

(b) But at some T > Tc1, H1 passes through a maximum, and thereafter H1 
decreases with increasing T. 

These observations, combined with (12.2.5), indicate that, when a gas solu-
bility generally increases with T, but when T is near or below Tc1, the solubility
decreases with increasing T:       

(12.2.6)

Note in Figure 12.10 that the behavior of the Henry’s constant H1(T) differs substan-
tially from that of pure-component vapor pressures Ps(T), such as in Figure 9.2. This
has implications for the use of H1(T) or Ps(T) as standard-state fugacities. 

Figure 12.10 Response of the Henry’s constant to changes in temperature for binary mixtures
of a gas solute(1) in a liquid solvent(2). For temperatures well above the critical temperature of
the solute H1 decreases with increasing T. But for temperatures near and below Tc1,
H1 increases with T. Here, each Henry’s constant is evaluated at the vapor pressure of pure sol-
vent, H1(T, P2

s). Adapted from a figure in Cysewski and Prausnitz [5].
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Pressure effects.  The response of gas solubility to a change in pressure can also be
deduced from the gamma-phi form; to do so, we use (12.2.4) to write 

(12.2.7)

At moderate pressures the last two terms on the right are small and we expect the sol-
ubility to increase linearly with pressure: x1 ∝ P. At high pressures the effects of the
fugacity and activity coefficients cannot be neglected from (12.2.7) and the linear
behavior of x1(P) will be disrupted. Figure 12.11 illustrates this behavior for hydrogen
in methanol. In the figure, note that the slopes of the lines are not merely 1/H1, which
would arise from a naïve use of Henry’s law (x1 = y1 P/H1); instead, the straight lines
occur because the nonideal term ϕ1/  in (12.2.4) is also apparently linear in P.

12.2.2 Solids in Liquids

Solid solubility usually refers to the liquid-phase mole fraction xi that occurs in an LSE
situation when the system temperature is below the melting temperature of the pure
solute (T < Tm), but above the melting temperature of at least one other component
(Tmj < T < Tcj ) or when the solution is above its eutectic temperature. An example is
the equilibrium concentration of salt in water, which pertains to our attempts to pre-
vent icing of winter roads. These situations are best described using the gamma-
gamma form,

(12.2.8)

Figure 12.11 Effect of pressure on the solubility of hydrogen(1) in methanol(2). Points are
experimental data from Krichevskii et al. [3]. Lines are least squares fits to the data; so, within
experimental error, these values for the solubility x1 are linear in P. At high temperatures, note
that the straight-line intercept at P = 0 does not occur at x1 = 0.
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with the standard state of solid solute taken to be pure solid at T and that for liquid
solute taken to be pure liquid at T. The solubility can then be expressed in the form

(12.2.9)

To obtain expressions for the standard-state fugacities appearing in (12.2.9), we fol-
low the strategy suggested in § 10.1.4. There we noted that, rather than evaluate the
individual standard state fugacities, it is easier to evaluate the ratio that appears on
the right in (12.2.9). The expression for that ratio is contained in (10.1.10); so, using
(10.1.10) in (12.2.9) yields

(12.2.10)

Here ∆hm is the latent heat of melting for pure i and  is the difference in isobaric
heat capacities for pure liquid i and pure solid i. Common approximations for  are
described in § 10.1.4. Typically, the last term in (12.2.10) is small and can be neglected.

A common use of (12.2.10) is to determine freezing point depressions (∆T = Tm – T)
that occur when small amounts of solute(1) are dissolved in an otherwise pure sol-
vent(2) (e.g., salt in water). In such problems (12.2.10) can be applied only to the sol-
vent(2). Several forms for ∆T can be obtained from (12.2.10), depending on the
particular assumptions made; however, it is usual to assume that the solid is pure, so
x2

s = 1 and γ2
s = 1, and to assume γ2

{ ≈ 1 because the liquid is also nearly pure. Then if
we neglect the last two terms altogether, (12.2.10) reduces to

(12.2.11)

Therefore for a known concentration (x1
{ = 1 – x2

{) of solute dissolved in the liquid,
(12.2.11) can be used to estimate the amount by which the pure-solvent freezing point
decreases (∆T). (In contrast, boiling point elevations are usually determined from the
gamma-phi method, using the Lewis-Randall rule for the solvent and the solute-free
Henry’s law for the solute.) 

Expressions deduced from (12.2.10), such as (12.2.11), can also be used to determine
molecular weights. For example, we could dissolve a known mass of solute in a
known mass of solvent and then measure the freezing-point depression ∆T of the sol-
vent. If the molecular weight of the solvent is known, then using the measured value
of ∆T in (12.2.11) gives the mole fraction of the solute; then, the molecular weight of
the solute can be computed from the known mass. Further discussions of solid solu-
bilities, including descriptions of the effects of nonidealities and dissociation, have
been given by Tsonopoulos [6].
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12.2.3 Near-Critical Systems

Now we consider solubility problems in which the solute is a condensed phase (liquid
or solid), but the pressure is high and the temperature is near or above the critical
temperature of the solvent; in such cases, the solvent is not a liquid but a dense fluid.
These situations are important because the solubility (i.e., the solute mole fraction in
the fluid xi

ƒ) can be much larger than its value at low pressures. The solubility
increases for two reasons: 

(a) The effect of P on the condensed phase fugacity, which is quantified by a 
Poynting factor for the solute; as P increases, this Poynting factor might 
become greater than unity. 

(b) The nonideality of the fluid, which is quantified by the solute fugacity coeffi-
cient ϕi(T, vƒ, {xƒ }); as P increases, this fugacity coefficient can become less 
than unity. 

In addition to an amplification of the solubility, small changes of fluid state in the crit-
ical region can cause drastic changes in the solubility xi

ƒ. Such changes reflect large
changes in the molar volume vƒ because, in the critical region of a pure fluid, (∂v/∂P)
is large.

As a typical example, consider the solubility of a solid in a supercritical fluid. For
the equality of fugacities we choose the gamma-phi form and use FFF #5 for the con-
densed phase; then for solute i we write

(12.2.12)

For the solid-phase standard state we choose the pure solid on its sublimation curve
at the system temperature T;  hence, To simplify (12.2.12) we first
assume the solid phase is essentially pure solute, so xi

s = 1, γ i
s = 1, and the partial

molar volume is the pure-solid molar volume, vi
os. If we also assume the solid is

incompressible, then (12.2.12) reduces to

(12.2.13)

Although the solubility may be enhanced by the increased pressure, the value is still
small; generally xi

ƒ < 0.01. So for a binary, the supercritical fluid is nearly pure solvent,
and the fugacity coefficient in (12.2.13) is approximately its value at infinite dilution.
Then we are left with

(12.2.14)
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At low pressures, the Poynting factor is unity and the fluid phase is essentially an
ideal gas, so (12.2.14) takes the ideal-gas form  and the solubility decreases as
P increases. But at high pressures, the Poynting factor is large, the fluid is no longer
ideal, and the fugacity coefficient is small (< 1). At high P these effects can combine to
make the solubility increase with increasing P. Between these extremes, the fluid
changes from ideal-gas to nonideal-gas behavior, and xi

ƒ passes through a minimum
with pressure.

The approximation (12.2.14) is illustrated in Figure 12.12 for solid methane in
hydrogen. The points in the figure are experimental data, which pass through a mini-
mum as expected. The solid line is the ideal-gas result, decreasing linearly with P on
this logarithmic plot. The dashed line is the ideal-gas result corrected with the Poynt-
ing factor [i.e., ϕi = 1 in (12.2.14)]. The dash-dot line is the complete approximation
(12.2.14), with the fugacity coefficient computed from the simple virial equation,

(12.2.15)

with

(12.2.16)

where methane is component 1 and B12 = – 102 cc/mol is the unlike-interaction, sec-
ond virial coefficient [7]. Figure 12.12 is typical in that the solubility enhancement is
primarily caused by fluid-phase nonidealities, while the condensed-phase Poynting
factor makes only a small contribution to the enhancement. At the highest pressures
in Figure 12.12, agreement between experiment and (12.2.14) can be improved by
including the third virial coefficient (or an empirical equivalent) in the equation of

Figure 12.12 Supercritical enhancement of the solubility of solid methane(1) in fluid hydro-
gen(2) at 76 K. Points are experimental data of Hiza and Herring [8]. Solid line is from the ideal-
gas law; dashed line is the ideal-gas result corrected by a Poynting factor; dash-dot line is the
approximation (12.2.14) with the fugacity coefficient computed from the simple virial equation
via (12.2.16). Figure after Chueh and Prausnitz [7].
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state (12.2.15) [9]. At 76 K, B22 = –12 cc/mol [10], so unlike attractions between solute
and solvent are stronger than those between solvent molecules. As pressure increases,
the effect of this attraction on ϕ1 overcomes the slight tendency of CH4 to volatilize, so
solubility increases. At higher pressures, where the third virial coefficient C becomes
important, this decrease in ϕ with increasing P is reduced, because C is positive while
B is negative.

For liquids in near-critical fluids the analysis is generally more complicated than
the above development for solids because the equilibrium liquid phase is not pure. To
the degree that the solvent dissolves in the liquid, the solubility of the solute can
decrease. But such solutions may be nonideal, and if the corresponding activity coeffi-
cients are greater than unity, then they may partially compensate for the decrease in
solubility. 

Finally, we note that solubilities in near-critical fluids can often be enhanced by
adding other components—so called entrainers or cosolvents. These components have
B13 values that are more negative than B12, further decreasing ϕ i

∞, and thereby pro-
ducing even larger values of x1

ƒ at high pressures.

12.3  INDEPENDENT VARIABLES IN STEADY-FLOW PROCESSES

Many kinds of material and chemical processes are carried out under steady flow con-
ditions, and in analyzing such situations, just as in analyzing any situation, we must
ensure that we have enough data to perform a proper analysis. This requires us to
determine the number of independent variables required to close the problem. The
presentation here builds on material presented in § 3.1, 3.6, 9.1, and 10.3.1.

12.3.1 Thermodynamic Stuff Equations

Analysis of steady-flow situations invoke the thermodynamic stuff equations, which
apply to both equilibrium and nonequilibrium situations. The stuff equations include
material balances, the energy balance, and the entropy balance. Material balances are
essential when the number of inlets to a system differs from the number of outlets,
when stream compositions change, and when chemical reactions occur. The energy
balance expresses the first law for open systems and can be used to determine heat
effects in workfree processes or work effects in adiabatic processes. The entropy bal-
ance expresses the second law for open systems and contains the heat but not the
work. However, the entropy balance can be used in calculations only when we can
quantify the entropy generation term. This can rarely be done in chemical processing
situations, so we usually compute heat effects from just material and energy balances.
After a process is fully evaluated, we may determine the value for the entropy gener-
ated and use it to compare efficiencies of alternative processes.

The differential forms of the stuff equations were given in § 3.6. For a system of C
components, the material balances take the form

i = 1, 2, … , C (12.3.1)dNi dNαi
α
∑ dNβi

β
∑–=
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where the lhs is the change in number of moles of component i accumulated in the
system. Similarly, the energy balance can be written as

(12.3.2)

where the lhs is the change in total internal energy in the system and

(12.3.3)

In these equations, index α runs over all inlets to the system while β runs over all out-
lets. The energy balance (12.3.2) is a special form of (3.6.3) assuming negligible mass
for the boundary and negligible kinetic and potential energy changes across the sys-
tem. Note we have C material balances (12.3.1) but only one energy balance (12.3.2).

In the chemical processing industries, steady-flow systems are common, so the
accumulation terms on the left sides of (12.3.1) and (12.3.2) are normally zero, and the
rate forms of the balance equations can be used. Then the material and energy bal-
ances can be expressed as

i = 1, 2, … , C (12.3.4)

(12.3.5)

These constitute (C + 1) equations that can be solved for (C + 1) unknowns. In particu-
lar situations we may have additional equations available as a result of other con-
straints that apply, such as phase equilibrium. 

12.3.2 Counting Numbers of Independent Variables

In § 3.6.2 we developed general expressions for determining the number of indepen-
dent variables that apply to steady-flow processes involving only one phase and no
reactions. We now extend those results to any number of phases and reactions. As in
§ 3.6.2, we are usually concerned with one of two quantities: either V, the number of
interactions available for changing the state, or Fex, the number of independent vari-
ables required to identify the final extensive state. The following discussion is obvi-
ously related to those in § 9.1 and § 10.3.1, but those presentations did not consider
streams flowing through open systems.

As in § 3.6.2, we select the system to be a control volume that is open to steady-state
energy and mass transfers. The system contains P homogeneous phases in which R
independent chemical reactions are occurring. Material crosses system boundaries via
Np inlet and outlet streams; each stream is a one-phase mixture of C components. For
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steady flow we must have Np ≥ 2. Energy crosses system boundaries via thermal inter-
actions and shaft-work modes; a schematic appears in Figure 12.13.  

Interactions between system and surroundings are unaffected by the content or
behavior of material within system boundaries. Therefore, the number of interactions
available for changing the state, V, is the same number as found in § 3.6.2,

(3.6.12)

The state of each stream can be manipulated through C mole numbers, a thermal
interaction, and a shaft-work mode; hence, the term (C + 2). In addition, energy can
enter or leave the control volume through a thermal interaction and a shaft-work
mode; hence, the 2 on the rhs of (3.6.12). And we might impose external constraints by
blocking Sext interactions. If no external constraints are imposed, then we have the
maximum number of available interactions,

(12.3.6)

But neither the number of phases nor the number of reactions in the control volume
affect the number of material and energy conduits. Recall, this insensitivity of V to
internal constraints also occurs for closed systems: (9.1.1) for V in closed multiphase
systems is the same as (3.1.3) for closed one-phase systems.

To obtain the number of independent variables needed to identify the final state,
Fex, we apply (3.6.14); that is, we subtract from V the number of internal constraints.
Internal constraints include C material balances on the control volume, one energy
balance on the control volume, and (C + 2)(P – 1) phase equilibrium relations. As dis-
cussed in § 10.3.1, chemical reactions introduce no additional constraints because each
new constraint (a reaction equilibrium condition) is accompanied by a new variable
(an extent of reaction). Therefore,

(12.3.7)

Figure 12.13 Schematic of an open system (a control volume) containing P phases in which are
occurring R chemical reactions. The system has a total of Np input and output streams through
which material is flowing at steady state. It also has energy conduits to provide for steady-state
shaft work and steady-state heat transfer.
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and simplifying leaves us with

equilibrium among P phases (12.3.8)

We emphasize that (12.3.8) assumes equilibrium is reached among the P phases. If
equilibrium is not attained, then the phase-equilibrium relations do not contribute to
(12.3.7), and instead of (12.3.8), we have

P phases not in equilibrium (12.3.9)

In either case, if we have values for Fex process variables, then we can apply the con-
straint relations to compute values for the remaining variables contributing to the
total V. In the special case that the control volume contains only a single phase (P = 1),
then (12.3.8) reduces to (12.3.9), which is the same as (3.6.14).

Note that all quantities counted in V, Fex, and Sext are process variables: properties
of streams and energy conduits that cross system boundaries—none are system prop-
erties. For example, the quantities counted in the external constraints Sext are typically
compositions, flow rates, or temperatures imposed on some streams; the absence of
any shaft work applied to the control volume; or the absence of a thermal interaction
between the control volume and its surroundings (adiabatic process). When chemical
reactions occur, all compounds may not be present in all streams; for example, feed
streams may contain only reactants. In such cases Sext is increased by unity for each
compound missing from each stream. 

The number of properties Fex specifies an extensive state. For example, the compo-
sitions of streams might be given by setting values for sets of mole numbers, such as
{N1} for stream 1, {N2} for stream 2, etc. Alternatively, we can satisfy the number
required by Fex by giving an F ′-specification of intensive states plus an extensive
basis. For example, we could set the mole fractions of the streams {z1} and {z2}; set the
relative amounts in streams, N1/N2; and choose a basis, such as N1 = 1 mole.

12.3.3 Example

How many variables must be known to design or analyze an isothermal flash unit?

A binary mixture of components 1 and 2 is to be separated by an isothermal flash, as
shown schematically in Figure 12.14. The chamber has a single feed composed of one-
phase liquid and two product streams: an overhead vapor product and a bottoms liq-
uid product. We choose the system to be the fluid in the flash chamber, so we have C =
2, P = 2, and Np = 3. 

The maximum number of interactions available for changing the state is given by
(12.3.6),

(12.3.10)

These fourteen would be T, P, and mole numbers N1 and N2 for the three streams
(total of twelve), plus any heat and shaft work that cross the boundary (two more).  

Fex Np P–( ) C 2+( ) 3 Sext–+=

Fex Np C 2+( ) C 1–( )– Sext–=

Vmax Np C 2+( ) 2+ 3 2 2+( ) 2+ 14= = =
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However, these fourteen are not all independent, so a smaller number of properties
is sufficient to identify the state. That number is given by (12.3.8) 

 (12.3.11)

We have three external constraints: (1) no shaft work (Ws = 0), (2) isothermal operation
(outlet temperatures are same as temperature in the unit), and (3) isobaric operation
(outlet pressures are same as in the unit). So (12.3.11) gives

(12.3.12)

Therefore, if we have values for four of the 14 variables and use the three external con-
straints, we can apply seven internal constraint relations to compute values for the
remaining seven quantities. The seven internal constraint relations are (a) a material
balance on component 1, (b) a material balance on component 2, (c) an energy balance
on the system, (d) equality of liquid and vapor fugacities for component 1 in the unit,
(e) equality of liquid and vapor fugacities for component 2 in the unit, (f) equality of
liquid and vapor temperatures in the unit, and (g) equality of liquid and vapor pres-
sures in the unit. The last four express chemical, thermal, and mechanical equilibrium
between the vapor and liquid phases in the chamber.

Variations on this basic problem occur; for example, if the feed were a two-phase
fluid, then the specification would require the relative amounts in the two phases. In
some applications, feed and product streams may be split into multiple inlets and out-
lets, changing the value of Np. Further, the problem situation may change depending
on the particular four properties used to satisfy (12.3.12). Many such variations are
possible, but two are common: process analysis and process design.

In a process analysis we are given values for the inputs to a process, and we must
compute values for the process outputs. For example, in a process analysis of our flash
situation, we might know values for properties of the feed stream (Tƒ , Pƒ , z1, Nƒ  ) and
we would need to compute property values for the product streams (x1, y1, Nv, N{)
plus the heat duty Q. To solve this problem, we would solve the phase-equilibrium

Figure 12.14 Schematic of an isothermal flash unit. Note that heat transfer is required to main-
tain constant temperature in the unit.
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relations for x1 and y1, the material balances for Nv and N{, and the energy balance for
the heat duty Q.

In a process design we are given values for the outputs from a process, and we must
compute values for the process inputs. In the flash situation, we might know the prod-
uct properties (x1, y1, Nv, and N{) and we would compute the feed properties (Tƒ , Pƒ ,
z1, and Nƒ  ) plus the heat duty Q. But note that in a process design the equations to be
solved—phase equilibrium plus material and energy balances—are exactly the same
as those to be solved in a process analysis. Moreover, the value of Fex, the number of
variables needed to close each problem, is also the same. Analysis differs from design
only in the identities of knowns and unknowns.

Another type of design problem is optimization, in which we seek to adjust operat-
ing conditions to maximize or minimize an additional variable. For example, we
might seek the feed composition that optimizes energy efficiency, where the efficiency
is measured by the heat duty per mole of feed; that is, we seek to minimize Q/Nƒ.  In
these kinds of problems, additional nonthermodynamic equations and models may
be involved. Nevertheless, although numerical values for computed results could dif-
fer, the thermodynamic description would be unaltered.

12.4  HEAT EFFECTS IN STEADY-FLOW PROCESSES

We now turn to processing situations in which heat effects are of primary importance;
examples include chemical reactors and separators that exploit phase partitioning.
Thermodynamic analysis of these situations invoke the stuff equations; in particular,
steady-state heat effects are computed from (12.3.5). To obtain the partial molar
enthalpies that appear in (12.3.5), we need enthalpies as functions of composition; so
in § 12.4.1 we show how enthalpy-concentration diagrams can be constructed from
volumetric equations of state applied to binary mixtures in phase equilibrium. Then
we apply the energy balance (12.3.5) to multicomponent flash separators (§ 12.4.2),
binary absorbers (§ 12.4.3), and chemical reactors (§ 12.4.4).

12.4.1 Enthalpy-Concentration Diagrams

Before energy balances can be used in the analysis or design of multicomponent flow
processes, we must have data or correlations for mixture enthalpies as functions of
composition. Such correlations can be developed from models for volumetric equa-
tions of state or from models for gE; in the latter case, we would need a form for the
temperature-dependence of the parameters in the gE model. In this section we discuss
how an equation of state can be used to compute an enthalpy-concentration diagram
for a two-phase equilibrium situation; such diagrams contribute to the analysis or
design of distillation columns.

To have a simple example, we consider an alkane(1) + aromatic(2) mixture, mod-
eled by the Redlich-Kwong equation (8.2.1). Certain vapor-liquid phase diagrams for
this mixture were displayed and discussed in § 9.3. Here our objective is to compute
residual enthalpies for vapor and liquid that coexist in equilibrium; in particular, we
want to construct an isothermal plot of hres vs. x and y . (We will call this an hxy dia-
gram, even though it is hres that is actually plotted.) To do so, we set the temperature,
pick a liquid composition x1, and then perform a bubble-P calculation to obtain values
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Figure 12.15 Top:  Isothermal Pxy diagram for a binary mixture of an alkane(1) + an aromatic(2)
at 330 K, computed from the Redlich-Kwong equation of state using the phi-phi method. This
diagram is the same as in Figure 9.5. Bottom: The corresponding isothermal (residual) enthalpy-
concentration diagram for the same mixture as at top, also computed from the Redlich-Kwong
equation using (12.4.1). Note that differences in liquid and vapor hres values at x1 = 0 and at x1 =
1 estimate the pure-component latent heats of vaporization.
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for P and y1. The calculation is done via the phi-phi method (§ 10.1.1) and involves
only a slight modification of the bubble-T logic diagram that appears in Figure 11.1.
With T, P, x1, and y1 known, we can compute hres for each phase. A general expression
for hres can be obtained by using the Redlich-Kwong equation to evaluate the integral
in (4.4.14) for ures; then we use hres = ures – Pvres. The result can be written as

Redlich-Kwong (12.4.1)

The mixing rules used here for a and b are those simple ones given in § 8.4.4. The
molar volumes for each phase were computed from the equation of state at the known
T and P using Cardan’s method to solve the cubic (see Appendix C). 

The resulting diagram is shown in Figure 12.15 for T = 330 K. Also included on the
figure is the corresponding Pxy diagram. The computed hxy diagram shows that val-
ues of hres for saturated liquid are roughly linear in x1; likewise, the saturated vapor
values are linear in y1, except at high pressures when the vapor is rich in the alkane
component. Tie lines connect two equilibrium phases, and the difference in hres values
at the ends of a tie line gives the latent heat of vaporization for a particular equilib-
rium situation. Similarly, the differences in hres at x1 = 0 and x1 = 1 give the latent heats
for the pure components. For these mixtures, more energy must be provided to flash
an aromatic-rich liquid than to flash the same amount of alkane-rich liquid. 

For completeness, we show in Figure 12.16 the residual Gibbs energies for the same
mixtures and states appearing on the hxy diagram in Figure 12.15. These Gibbs ener-
gies were computed from the fugacity coefficients, with the help of (6.2.13), 

Figure 12.16 Isothermal residual Gibbs energies for the alkane(1) + aromatic(2) mixtures used
in Figure 12.15. These curves were computed from the Redlich-Kwong equation of state at 330
K. Tie lines are the same as those on the hxy diagram in Figure 12.15.
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   (12.4.2)

Values for the fugacity coefficients were obtained from the Redlich-Kwong equation
when the phi-phi method was being used to solve the bubble-P problem. Since P is
not constant for the diagram in Figure 12.16 (P must change with x1 if VLE is to be
maintained at fixed T), there is no simple representation for the excess Gibbs energy
gE that corresponds to the diagram.

The tie lines on the gres plot in Figure 12.16 are the same tie lines shown on the hres

plot in Figure 12.15. Note that each pure component has the same value of gres for its
vapor and liquid phases, but the two phases in VLE have different values for gres (that
is, the tie lines are not horizontal). For these mixtures, each liquid has a much more
negative value of gres than does the vapor at the same T and P; that is, compared to the
vapor phases, much more work must be done to convert these liquids into ideal gases
(see § 6.3.2). Note that since  ≈ 22 bar at 330 K, the pure liquid alkane (component
1) is a hypothetical state at the lower pressures of the mixtures at this T; the phi-phi
approach can readily handle this situation, but use of gamma-phi with a gE model
would be awkward.

12.4.2 Flash Separators

In many separation processes, heat effects are important because heat serves as the
“separation agent” [11, 12]; that is, heat transfer to or from the system promotes cre-
ation of a new phase in which the compositions differ from those in the original
phase. Examples include distillation and crystallization. In the analysis and design of
such processes, thermodynamics can identify the direction of diffusion across phase
boundaries, it can give us the equilibrium compositions of phases, and it can provide
the direction and amount of heat to be transferred; but thermodynamics cannot give
us any information about the rates of any of these processes.

In a multicomponent flash process, a single-phase feed is split into a vapor product
and a liquid product, as in Figure 12.14. The three streams generally have different
compositions, and the two product streams may or may not be in equilibrium with
one another. Let the feed have temperature Tƒ , pressure Pƒ , composition {z}, and flow
rate Nƒ . Similarly, let the vapor product have Tv, Pv, {y}, and Nv , and let the liquid
product have T{, P{, {x}, and N{. Then the steady-state material balance (12.3.4) can be
written for each component as

i = 1, 2, … , C (12.4.3)

while the steady-state energy balance (12.3.5) becomes

(12.4.4)

As a basis for the heat analysis, we choose one mole of feed, for then the material
balances (12.4.3) can be expressed in terms of mole fractions. We also introduce V =
Nv /Nƒ , the fraction of feed that flashes; then the material balances (12.4.3) become
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i = 1, 2, … , C (12.4.5)

and the energy balance (12.4.4) becomes

(12.4.6)

or
(12.4.7)

To solve (12.4.5) and (12.4.7), we must choose how the enthalpies will be evaluated.
We may use either residual enthalpies relative to the ideal gas, as in Chapter 4, or
excess enthalpies relative to the ideal solution, as in Chapter 5. For consistency, we
should use the same approach for computing enthalpies as we use to solve the phase-
equilibrium problem:

(a) If we compute product compositions using the phi-phi method, then we 
should use residual enthalpies for both phases.

(b) But if we use a gamma-phi method, then we should use residual enthalpies 
for the vapor and excess enthalpies for the liquid.

First, we discuss the phi-phi approach to enthalpies, then we describe the gamma-phi
method.

Phi-phi method.  In this approach, we compute residual enthalpies for both the liq-
uid and vapor using a volumetric equation of state. A form of the energy balance con-
taining residual enthalpies can be obtained by combining (4.2.4) for the residual
enthalpy, (3.3.22) for the response of hig to a change in T, and the energy balance
(12.4.6); the result is

(12.4.8)

In applying (12.4.8), three important cases arise, depending on the temperatures of the
feed and product streams.

Case 1: Tv = T{ = Tƒƒƒƒ .  When all three streams are at the same temperature, then the
ideal-gas integrals in (12.4.8) vanish, and we are left with terms containing only resid-
ual enthalpies,

(12.4.9)
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This situation typically occurs in isothermal flash processes. Further, when equilibrium
is achieved in an isothermal flash chamber, the product pressures are equal, Pv = P{. 

Case 2: Tv = T{ ≠≠≠≠  Tƒƒƒƒ . In these processes, the two product streams are at the same
temperature (T ≡ Tv = T{), but the feed is at some other temperature. Now we have one
less constraint than we had for isothermal operation, and therefore, we have one more
independent variable than in case 1. In analyzing case-2 situations, we usually know
both Tƒ  and T; then the ideal-gas terms in the energy balance (12.4.8) combine to yield

(12.4.10)

Using the material balance (12.4.5) in the ideal-gas term, (12.4.10) reduces to

(12.4.11)

where the ideal-gas term does not depend on the product compositions,

(12.4.12)

The energy balance (12.4.11) is most often used in analyses of adiabatic flash units
(q = 0); then we have

(12.4.13)

That is, the adiabatic flash problem is isenthalpic. Analyses of adiabatic flash prob-
lems are characterized by the constraint q = 0, which replaces the constraint T = con-
stant of isothermal flash problems. Hence, the value for Fex is the same for both
adiabatic and isothermal flash problems.

The adiabatic energy balance (12.4.13) can be expressed in the form of a lever rule
in enthalpies,

(12.4.14)

This form of the energy balance, together with phase-equilibrium relations and mate-
rial balances, can be applied to adiabatic flash units to obtain the fraction of feed that
flashes V, the compositions of the products {x} and {y}, and the temperature of the
product streams T. 
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Case 3: Tv ≠≠≠≠ T{ ≠≠≠≠ Tƒƒƒƒ .  When the feed and product streams all have different tem-
peratures, then no further simplification of the rhs of the energy balance occurs, and
the full form (12.4.8) must be applied to flash calculations. These situations typically
occur when equilibrium is not attained in the flash chamber. This means an additional
variable must be known to close the problem, usually a temperature of a product.

Gamma-phi method.  Instead of phi-phi, we might choose to solve the VLE problem
for a flash unit using the gamma-phi method. Then the energy balance (12.4.6) should
be written in terms of residual enthalpies for the vapor and excess enthalpies for the
liquid. The vapor product enthalpies would still be obtained from the form used in
(12.4.8), but liquid phase enthalpies would now be computed by

(12.4.15)

Here ∆hvap,i is the latent heat of vaporization of pure i,  is the residual enthalpy of
pure saturated vapor i, and we have neglected any effects of pressure on liquid
enthalpies. Assuming the feed is also one-phase liquid, then the energy balance is

(12.4.16)

This is a general form of the steady-state energy balance for flash calculations
based on the gamma-phi method. Simplifications may occur, depending on the tem-
peratures of the feed and product streams. For example, for an isothermal flash
(12.4.16) reduces to

(12.4.17)

Calculational procedures for using these gamma-phi forms are the same as those for
using phi-phi forms.
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12.4.3 Example

How do we determine the heat effect for a steady-state isothermal flash?

An isothermal flash unit is to separate a mixture of the alkane(1) and aromatic(2) com-
ponents used in preparing the hxy diagram in Figure 12.15. Equimolar saturated liq-
uid is fed to the unit at a steady rate of 2500 mole/min; the unit operates at Tv = T{ ≡ T
= 330 K and Pv = P{ ≡ P = 5 bar. According to § 12.3.3, these four values (z1, Nƒ , T, P)
are sufficient to close the problem.

The flash problem is workfree, has negligible kinetic and potential energy changes,
and is a steady-state process, so the heat effect is given by the energy balance (12.4.7).
In addition, the phase-equilibrium diagrams in Figure 12.15 were determined from
the Redlich-Kwong equation of state using the phi-phi method; therefore, we choose
to solve the energy balance using residual enthalpies, as in (12.4.9). For saturated liq-
uid feed and the same pressure in the two product streams, the energy balance (12.4.9)
becomes

(12.4.18)

Here is the saturation pressure for the liquid feed at T. To obtain the residual
enthalpies of the products, we must obtain values for the product compositions by
solving the phase-equilibrium problem at 330 K and 5 bar. To obtain the fraction of
feed that flashes, we must solve a material balance on the flash unit.

Solutions to the phase-equilibrium problem are contained on the Pxy diagram in
Figure 12.15. At 330 K and 5 bar, that diagram gives x1 = 0.2 and y1 = 0.85. With these
mole fractions we apply a lever rule to obtain the fraction that flashes,

(12.4.19)

Taking the mole fractions x1 = 0.2 and y1 = 0.85 to the hxy diagram in Figure 12.15, we
find the residual enthalpies of the vapor and liquid product streams:

   =  –0.2 and   =  –9.5 (12.4.20)

Similarly, the enthalpy of the feed is obtained from the hxy diagram; for saturated one-
phase liquid at z1 = 0.5, we read

   =  –7.7 (12.4.21)

Substituting all these results into (12.4.18), we find

(12.4.22)
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The positive value means that this amount of heat must be added to the flash unit to
maintain the temperature at 330 K. Since the process is workfree, this is the actual heat
effect, regardless of any irreversibilities.

12.4.4 Binary Absorbers

Distillation is typical of those separation processes in which heat effects are large
because heat transfer is used to create a new phase. But even in separations that do
not use heat in this way, other heat effects, such as heats of mixing, can be significant.
An example is a gas-liquid absorption column in which a gas-phase component is
strongly absorbed into a liquid phase. In such separations, it is not unusual for the liq-
uid to have a large negative value for hE, so if the column is operated isothermally,
then a large amount of heat must be removed, or if the column is operated adiabati-
cally, then the liquid leaves the column at a much higher temperature than it entered.
In isothermal columns, the problem is aggravated because large absorbers are difficult
to cool; in adiabatic columns, the problem is aggravated when high liquid tempera-
tures decrease the gas solubility in the liquid. Consequently, an absorber design that
ignores heat effects tends to underdesign the column [13].

A typical gas-liquid absorber is shown schematically in Figure 12.17. The corre-
sponding form for the steady-state energy balance (12.3.5) is

(12.4.23)

In practice, differences in pressure across absorbers have small effects on stream
enthalpies, compared to the effects of differences in temperature and composition, so
pressure effects are ignored in (12.4.23). If the column is sufficiently tall and operated
isothermally, then the inlet gas and outlet liquid may be assumed to be in equilibrium;
but the energy balance (12.4.23) applies regardless of whether phase equilibrium is
attained. 

Figure 12.17 Schematic diagram for a typical gas-liquid absorption column
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If the column is to be operated isothermally, then the typical problem is to use the
energy balance (12.4.23), together with material balances and phase-equilibrium rela-
tions, to compute Q and the composition {xd} for the liquid leaving the column. If the
column is to be operated adiabatically, then the typical problem is to determine both
the temperature Td and the composition {xd} at the liquid outlet. We illustrate both
problems using absorption of ammonia from air into water; the following problem
was originally analyzed by Sherwood and Pigford [13].  

Problem statement.  Ammonia(1) is to be removed from air(2) by contacting with
water(3) in an absorption column. The column is to be operated adiabatically and at
steady state; it can be represented schematically as in Figure 12.17, with superscripts
a–d denoting the following streams: a ⇒ gas inlet, b ⇒ gas outlet, c ⇒ liquid inlet, and
d ⇒ liquid outlet. The gas phase enters the column at 20°C and has y1

a = 0.416. The
column removes 99 mole % of the ammonia from the gas, and the gas phase leaves the
column at 20°C. Pure water (x3

c = 1) is fed to the column at 20°C.
We must determine the minimum flow rate needed for the water (Nc), as well as

the temperature (Td) and composition {xd} of the liquid leaving the column. We
choose a basis of one mole of air entering (N2

a = 1 mole).

Additional data.  The gas and liquid do not reach equilibrium in the absorber, but the
water flow rate is a minimum when the inlet gas and outlet liquid are in equilibrium.
This means y1

a  and x1
d are related by a K-factor, K1 = y1

a/x1
d. For ammonia distributed

between air and water the K-factor depends on T according to [13]

(12.4.24)

where A = 14.481 and B = 4315.1. If the liquid temperature differs from that of the gas,
then T in (12.4.24) would be the liquid value, because the mole fraction of air in the
gas, y2, is not sensitive to T; y2 ≈ 1 until the liquid approaches its boiling point.

A “heat of solution” qs for N moles of water absorbing one mole of ammonia from
air can be defined by

(12.4.25)

At 20°C and x1 < 0.3, this heat of solution depends on the mole fraction in the liquid
according to [13]

(12.4.26)

Check whether we have a closed problem. We have Np = 4 streams and C = 3 com-
ponents (ammonia, water, and “air”). Since the phases do not reach equilibrium in the
unit, Fex is given by (12.3.9)

(12.4.27)

We have the following external constraints:

K1ln A B
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-------------–=

qs hd T x1
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+( )  kJ/mol NH3=

Fex Np C 2+( ) C 1–( )– Sext– 4 3 1+( ) 1–( )– Sext– 18 Sext–= = =
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(a) Adiabatic and workfree 2

(b) No pressure effect in any stream 4

(c) No ammonia in liquid inlet 1

(d) No air in liquid inlet or outlet 2

(e) No water in gas inlet or outlet 2

(f) Equilibrium between gas in and liquid out 1

So we have Sext = 12, and (12.4.27) gives Fex = 6: we need values for six quantities to
close the problem. Here we have values for six: (1) composition of the gas inlet, y1

a =
0.416; (2) amount of ammonia in the gas outlet, N1

b = 0.01 N1
a; (3) temperatures of

three streams, Ta = Tb = Tc = 20°C; (4) basis of N2
a = 1 mole of air fed to the column.

Material balance on ammonia. A balance on ammonia around the column gives

(12.4.28)

Therefore the amount of ammonia removed from the gas stream is

(12.4.29)

This amount must be absorbed by the liquid, so

(12.4.30)

Dividing this by the total amount of liquid leaving the column, we have

(12.4.31)

This relates the unknown mole fraction x1
d to the unknown liquid feed rate Nc, but we

do not yet know the liquid discharge rate Nd.
However, we can solve for N1

d, because we are given y1
a = 0.416. From the definition

of a mole fraction and our basis of N2
a = 1, we can write

(12.4.32)

We are also given the recovery, N1
b = 0.01N1

a; therefore,

(12.4.33)
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Phase equilibrium. To get the minimum liquid flow rate, we are assuming the inlet
gas stream is in equilibrium with the liquid outlet stream; this means the ammonia
fractions in the two streams are related by a K-factor,

(12.4.34)

where the temperature dependence of K1 is given by (12.4.24). We have the value for
y1

a, but (12.4.34) is still one equation in two unknowns: x1
d and Td. As a second equa-

tion, we write the energy balance.

Energy balance. For our adiabatic column, the steady-state energy balance (12.4.23)
becomes

(12.4.35)

where T = Ta = Tb = Tc = 20°C. The liquid feed is pure water, so hc = h3(T), and with lit-
tle error, we can assume that enthalpies for air-ammonia mixtures are independent of
composition, ha ≈ hb. Then (12.4.35) is

(12.4.36)

Now substitute (12.4.29) for the term in brackets and use (12.4.30) to eliminate Nd, 

(12.4.37)

In the second term, we assume the presence of ammonia has a negligible effect on the
enthalpy of the liquid, so we write that term as

(12.4.38)

Here cp is the heat capacity of liquid water, which is nearly constant over modest tem-
perature changes. The term in the first bracket in (12.4.37) is (approximately) the neg-
ative heat of solution; so, using (12.4.25) and (12.4.38) in (12.4.37), the energy balance
reduces to

(12.4.39)

Dividing through by Nd and using (12.4.31), we have

(12.4.40)
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The phase equilibrium relation (12.4.34) and the energy balance (12.4.40) constitute
two equations that can be solved for the two unknowns: x1

d and Td. We can combine
these two to eliminate Td, leaving a single nonlinear question in one unknown:

(12.4.41)

where x ≡ x1
d, y ≡ y1

a = 0.416, T = 293.15 K, cp = 0.0754 kJ/mol, A and B are given under
(12.4.24). Solving (12.4.41) for x via Newton’s method, we find x ≡ x1

d = 0.0838. Then
(12.4.33) gives the required water feed rate,

(12.4.42)

Finally, we can solve (12.4.40) for the liquid discharge temperature: Td = 62°C. The
increase in water temperature means the process generates heat; since this process is
adiabatic, that heat cannot cross system boundaries, so some of it warms the water.

Compare with isothermal operation. If this column were operated isothermally at
20°C, then (12.4.24) for the K-factor would immediately give the mole fraction for
ammonia in the liquid outlet as x1

d = 0.528 (cf. x1
d = 0.0838 for adiabatic operation).

Then instead of (12.4.42), the minimum water flow rate would be

(12.4.43)

So, for the same rate of ammonia removed from the gas (0.7052 moles per mole of air
in), the differences between isothermal and adiabatic operation include (i) an order of
magnitude smaller flow rate for water in the isothermal column and (ii) a factor of six
larger mole fraction of ammonia at the liquid outlet from the isothermal column. The
42° difference in temperature causes a much greater solubility of ammonia in the liq-
uid from the isothermal column; however, a significant amount of heat must be
removed to keep the temperature constant. This heat can be estimated from (12.4.26),

(12.4.44)

12.4.5 Chemical Reactors

The control of temperature in chemical reactors is important, not only because tem-
perature affects conversion, but also because temperature strongly affects many reac-
tion rates. In most reactor designs, attaining an economically viable reaction rate is
more important than attaining the equilibrium conversion. Many reactions are exo-
thermic, and heat may have to be removed to maintain the desired temperature; but
some are endothermic, and then heat may have to be supplied. In either case, an
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industrial reaction often involves a substantial energy effect, and such an effect
impacts both the design and operation of chemical reactors.

We consider here a steady-flow reactor that is supplied reactants through one inlet
stream and that discharges products through a single outlet stream. In the stoichio-
metric approach, we have R independent reactions occurring among C species.
Because of the reactions, a material balance on each species must now include genera-
tion and consumption terms,

i = 1, 2, … , C (12.4.45)

Here superscript α indicates the inlet and β indicates the outlet. The stoichiometric
coefficients νij are < 0 for reactants (consumption) and > 0 for products (generation).
In (12.4.45) the extent for reaction j can take any legitimate value; here, the ξj are not
limited to their equilibrium values. Note that the number of moles for any component
i is not necessarily conserved.

The corresponding steady-state energy balance can be written as

(12.4.46)

This means the heat effect Q is simply the change in enthalpy across the reactor. How-
ever, we cannot obtain numerical values for the stream enthalpies hα and hβ that
appear in (12.4.46); we can only obtain values for enthalpy differences or values rela-
tive to some reference state. Further, we cannot simply form a difference (hα – hβ) in
(12.4.46) because mole numbers are not necessarily conserved in chemical reactors;
that is, we expect to have Nβ ≠ Nα [see (12.4.45)]. Therefore, we evaluate the enthalpy
difference in (12.4.46) by creating a hypothetical process that connects the reactant
state to the product state. Since heats of reaction are typically tabulated and correlated
for reactions carried out in ideal-gas states at a reference temperature (see Chapter 10),
we use a multistep hypothetical process involving ideal-gas reactions. Many different
process paths can be legitimately constructed for this problem; the choice from among
them is usually dictated by computational convenience and available data.

Our hypothetical process involves the five steps shown schematically in Figure
12.18. Since enthalpy is a state function, ∆H across the entire reactor is given by the
sum of the enthalpy changes across the five stages of our process,

(12.4.47)

We now identify computational forms for each of these five enthalpy changes.

Step 1-2.  In this first step, the reactant mixture at (Tα, Pα, {xα}) is converted into an
ideal-gas mixture at the same state. The enthalpy change is the negative residual
enthalpy for the reactant mixture,

(12.4.48)

Ni
α Ni

β
– νij ξ j

j

R

∑+ 0=

Q Nαhα Tα Pα xα{ }, ,( ) Nβhβ Tβ Pβ xβ{ }, ,( )–+ 0=

Nβhβ Nαhα
– Nα∆h12 Nα∆h23 Nβ Nα

–( )∆h34 Nβ∆h45 Nβ∆h56+ + + +=

Nα∆h12 Nαhres Tα Pα xα{ }, ,( )–=



 12.4   HEAT EFFECTS IN STEADY-FLOW PROCESSES 569

Step 2-3. In the second step, the temperature of the ideal-gas mixture is changed from
Tα to a reference temperature To. The enthalpy change for this step is therefore merely
a sensible heat effect,

(12.4.49)

The value used for To is that at which values for ideal-gas heats of reaction are avail-
able, either from experiment or as computed from heats of formation. (See next step.)

Figure 12.18 Schematic of a hypothetical thermodynamic process for determining heat effects
associated with a chemical reactor. Since ideal-gas enthalpies are independent of pressure, we
do not need to specify pressures for the ideal-gas states (2)–(5).
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Step 3-4. At this point the reactions are allowed to proceed, converting the ideal-gas
reactants into a mixture of ideal-gas products. The enthalpy change is the combined
heats for all R reactions,

(12.4.50)

Often these heats of reaction are computed from heats of formation, as described in
§ 10.4.2, 

(12.4.51)

Step 4-5. Now the temperature of the ideal-gas product is changed from the reference
temperature To to the final product temperature Tβ; so again we have a sensible heat
effect,

(12.4.52)

Step 5-6. Finally, the ideal-gas mixture is converted to a real mixture at the product
state. The corresponding enthalpy change is the residual enthalpy for the product
mixture,

(12.4.53)

By combining (12.4.48)–(12.4.50) and (12.4.52)–(12.4.53) with the energy balance
(12.4.47), we obtain a form of the steady-state energy balance that allows us to com-
pute heat effects for chemical reactors. To obtain numerical values for quantities on
the rhs in (12.4.48)–(12.4.53), we need an equation of state to obtain residual enthal-
pies, along with ideal-gas heat capacities and ideal-gas heats of reaction.

Note that the hypothetical process in Figure 12.18 makes no assumptions about the
phases of the feed or discharge streams. If some species are in condensed phases,
either in the reactant or product streams, the process in the figure still applies because
the residual enthalpies would contain the energy effects associated with any phase
changes that occur in going to and returning from the ideal-gas states. Note also that
the process in Figure 12.18 can include inert components. Inerts merely have νij = 0 for
all reactions j, so the heat effect for an inert is merely the sensible effect that changes
its temperature from that of the reactants Tα to that of the products Tβ. This comment
also applies to unreacted portions of reactants, because they behave as inerts.

The form of the energy balance (12.4.47) is a general one that can be used for any
number of species and reactions; it applies in a number of special cases, including the
following important ones.
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(a) For an isothermal reactor (Tα = Tβ) with feed composition and extents of reac-
tion ξj  known, we can solve the energy balance (12.4.47) to obtain the total 
heat effect Q. This would tell us whether heat must be supplied or removed to 
control the temperature to the desired value. 

(b) For an adiabatic reactor (Q = 0) with a known feed state (Tα, Pα, {xα}) and 
known extents of reaction, we can solve the energy balance for the product 
temperature Tβ. 

(c) However, if equilibrium is attained in an adiabatic reactor, then the calcula-
tion is complicated because we must solve the reaction equilibrium equations 
(Chapter 11) simultaneously with the energy balance (12.4.47) to obtain the 
extents of reaction and the product temperature Tβ.

12.5  RESPONSE OF SELECTED PROPERTIES

Thermodynamics is particularly useful in reducing the amount of experimental data
needed for determining how properties respond to changes of state. Such changes
could be illustrated using many thermodynamic properties; however, we will confine
the discussion here to two important classes of quantities: standard-state fugacities
(§ 12.5.1) and yields from chemical reactions (§ 12.5.2).

12.5.1 Standard-State Fugacities

In § 5.1 we defined a standard state to be a well-defined state of a real or hypothetical
pure substance; therefore, we need only consider how the standard-state fugacity

responds to changes in temperature and pressure. General expressions for the tem-
perature and pressure derivatives of  can be written immediately from (4.3.13) and
(4.3.14) (or see Table 6.2); hence,

(12.5.1)

and

(12.5.2)

The pressure effect in (12.5.1) can arise only when we use FFF #2; in FFF #3–5,  is
always evaluated at the standard-state pressure  Further, on integrating (12.5.1)
over a change of pressure, we obtain the Poynting factor, which appears in FFF #3. So
our emphasis here is on how temperature affects  In § 10.2 we identified two com-
mon classes of standard states: those based on the pure component and those based
on infinitely dilute solutions. We consider those two choices here.

Pure-component standard states. When we take the standard state to be based on a
pure component, then  and the derivatives in (12.5.1) and (12.5.2) become
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(12.5.3)

and

(12.5.4)

Since v/RT > 0,  must always increase with an isothermal increase in pressure, no
matter which pure-component standard state we use.

Turning to the temperature derivative in (12.5.4), we recall that the residual
enthalpy can, in general, be either positive or negative. But for condensed phases it is
invariably negative, and then  must increase with isobaric increases in T. For a liq-
uid mixture at T and P, we usually take the standard state for component i to be pure
saturated liquid i at T (hence, ). Then, if the mixture temperature changes, the
standard state pressure also changes. In such cases, we need, not the isobaric deriva-
tive in (12.5.4), but that along the saturation curve (indicated by a subscript σ),

(12.5.5)

(12.5.6)

(12.5.7)

So in this special case the derivatives in (12.5.4) and (12.5.7) are numerically equal.
At low temperatures (hence low vapor pressures), the saturated vapor is nearly an

ideal gas (  ≈ 1), so our first approximation would be that  for liquids changes
with T in the same way as the vapor pressure,

(12.5.8)

But at high temperatures (hence high vapor pressures), we need both  and  in
(12.5.5). Nevertheless, ln  often remains nearly linear in 1/T, as shown in Figure
12.19 for liquid water. Along a pure saturation curve we find  < 1, so in general, we
expect

(12.5.9)

If the mixture temperature T is above the critical temperature of pure i (T > Tci),
then no vapor pressure exists for i. However, if T is within about 10% of Tci, then we
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can still estimate  To do so, we use the hypothetical pure liquid at T as the standard
state and obtain a value for the standard-state fugacity by extrapolation. This proce-
dure is indicated in Figure 12.19 for states having 0.9 ≤ Tci/T < 1.

Infinite-dilution standard states. When the standard state is based on an infinitely
dilute solution, then the standard-state fugacity is a Henry’s constant. In § 10.2 we
introduced two kinds of Henry’s constants for multicomponent mixtures: the solute-
free form His and the reference-solvent form Hir. For binary mixtures these two are the
same. Here we use His to illustrate the response to changes in T and P; analogous
expressions apply for Hir.

When the solute-free Henry’s constant is used as the standard-state fugacity, the
derivatives in (12.5.1) and (12.5.2) become

(12.5.10)

and

(12.5.11)

Don’t confuse the Henry’s constant, which appears on the lhs of (12.5.10) and
(12.5.11), with the partial molar enthalpy, which appears on the rhs of (12.5.11).

Figure 12.19 Effect of temperature on fugacity of a pure saturated liquid. Vapor-phase nonide-
alities (ϕi

s) lower fi
o from the pure vapor-pressure curve, but the variation of fi

o with 1/T
remains roughly linear. At supercritical temperatures, pure vapor pressures do not exist; never-
theless, for (0.9 < Tci/T < 1), we may choose the hypothetical pure liquid for the standard state
and obtain a value of fi

o by extrapolation. These values were computed for pure water using
data from steam tables [14].
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Integrating (12.5.10) over a change in pressure yields a Poynting factor, which has
already been displayed in (10.2.22) for His and in (10.2.30) for Hir. In those Poynting
factors, may be positive or negative. For gases at temperatures below the solvent
critical point, it is usually positive, and the Henry’s constant increases with an isother-
mal increase in pressure. But as the solvent critical point is approached,  becomes
very large, forcing  to diverge. In these situations, the divergence can be avoided by
using FFF #4. 

The effect of T is complex, because the difference in enthalpies on the rhs of
(12.5.11) can be of either sign. Examples are shown in Figure 12.20, using Henry’s con-
stants from Figure 12.10, but now plotted versus 1/T. The slopes of the lines in Figure
12.20 are given by

(12.5.12)

   
At low temperatures (T < Tc1, where 1 = the gas solute), 1/T is large, and the numera-
tor in (12.5.12) is negative, so the Henry’s constant decreases with increasing 1/T. At
high temperatures  1/T is small, and the numerator is positive, so the
Henry’s constant increases with increasing 1/T. At some intermediate temperature,
generally above the solute critical temperature (Tc1), His passes through a maximum.
Near solvent critical points,  may diverge because of its temperature dependence,
similar to the divergence discussed under (12.5.11).
 

Figure 12.20 Effect of temperature on Henry’s constants for several gases(1) in liquids(2). These
are the same data as plotted in Figure 12.10, but here we plot 1/T on the abscissa to emphasize
that the temperature dependence of a dilute-solution standard-state fugacity differs from that
for a pure-component standard state; cf. this with Figure 12.19.
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Note that the behavior of the standard-state fugacity in an infinite-dilution stan-
dard state differs qualitatively from that in a pure-component standard state (cf. Fig-
ure 12.19 with 12.20). Unlike (12.5.12), in which the rhs changes sign with T, the slope
of the fugacity in the pure-component standard state (Figure 12.19) remains negative
and roughly constant.

12.5.2 Response of Yields from Chemical Reactions

By controlling such operating variables as T, P, and amount of inerts, we can influence
the rate and yield attained in equilibrium chemical reactors. Although thermodynam-
ics cannot address issues of rates, it can indicate how such operating variables might
be manipulated to improve product yields. To keep the following presentation simple,
we consider only a single reaction written in the “forward” direction, so the equilib-
rium constant K > 1. 

The equilibrium constant for one reaction was defined in (10.3.13) as

(12.5.13)

where the νi are stoichiometric coefficients: νi < 0 for reactants and νi > 0 for products.
Here we use FFF #1 for the fugacities along with the gas-phase standard state (  = 1
bar) from § 10.4.1. Then (12.5.13) becomes

(12.5.14)

where , while

 and  (12.5.15)

Rearranging (12.5.14), we have

(12.5.16)

As the reaction proceeds, the extent ξ increases toward its equilibrium value, the
product mole fractions increase, so we expect Kx to increase. Therefore, if we can
manipulate operating variables to increase the equilibrium value of the extent, then
we expect to also increase Kx, which measures conversion of reactants to products.

Pressure effects. For reactions completely carried out in condensed phases, changes
in pressure have negligible effects on yields; that is, for liquids, ϕP in (12.5.14) is
roughly constant unless the pressure change is very large. But for gas-phase reactions,
pressure changes can be important. Recall that the equilibrium constant K does not
depend on the reactor pressure P, so the pressure derivative of (12.5.15) gives
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(12.5.17)

Unless P is very high, the first term dominates the rhs and we have

(12.5.18)

Since P > 0, the response of Kx to a change in pressure is determined by σ ; that is, by
whether the reaction increases or decreases the number of moles. If σ < 0, then the
number of moles decreases during the reaction, and we increase conversion by
increasing P. Inversely, if σ > 0, then the number of moles increases during the reac-
tion, and we increase conversion by decreasing P. If σ = 0, then the number of moles is
conserved by the reaction, and a change in pressure has little effect on conversion.

Temperature effects. At fixed pressure, changes in temperature affect both K and Kϕ,

(12.5.19)

but the equilibrium constant K dominates the response. For example, for ideal gases
the second term on the rhs is identically zero. In addition, K changes with T according
to a Gibbs-Helmholtz equation (10.3.19), so (12.5.19) leads to

(12.5.20)

Therefore, the response to a temperature change depends on the heat of reaction. For
exothermic reactions, ∆ho < 0, so we increase Kx by decreasing T; but for endothermic
reactions, ∆ho > 0, and we increase Kx by increasing T.

However, changes in T affect not only the equilibrium conversion, but also the reac-
tion rate, and at least for elementary reactions, the rate increases with T (the law of
Arrhenius). So in a proper design and operation of many reactors, the effects of tem-
perature on equilibrium conversion must be balanced against the effects on rate. For
example, to achieve economically viable rates, exothermic reactions are often per-
formed at high temperatures, even though this decreases the equilibrium conversion.

Heats of reaction also influence the choice between adiabatic and isothermal reac-
tors. When a reactant mixture of the same composition and temperature is fed to both
an adiabatic reactor and an isothermal reactor, the equilibrium conversion is almost
always less in the adiabatic reactor; this is true for both endothermic and exothermic
reactions. Endothermic reactions performed in adiabatic reactors are accompanied by
a fall in temperature, decreasing conversion. In such situations, we try to improve
both the rate and the conversion by feeding reactants at high temperatures. But if a
high temperature cannot be maintained in an adiabatic reactor, then we should con-
sider adding heat and operating the reactor isothermally.
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Similarly, exothermic reactions performed in an adiabatic reactor are accompanied
by a rise in temperature, decreasing conversion but increasing the rate. In such situa-
tions we seek an economic balance between these competing effects, often by adjust-
ing operating variables so that the heat generated is sufficient to sustain the desired
rate. But if the high temperature reduces product yield too much, then we consider
removing heat and operating isothermally. In some situations, a reaction may gener-
ate heat more quickly than it can be removed, causing localized hot spots to form in
the reactor and leading to catastrophic failure of the reactor vessel.

Effect of inerts.  The first-order effect of adding inerts to a reactor is to decrease the
mole fractions of reactants and products by increasing the total number of moles N.
But during a reaction, N may increase, decrease, or remain constant. So we separate N
from the other terms in the definition of Kx (12.5.15),

(12.5.21)

where

(12.5.22)

Combining (12.5.21) with (12.5.16), we find

(12.5.23)

At fixed T and P, the response to a change in N is given by

(12.5.24)

which is usually dominated by the first term on the rhs,

(12.5.25)

Since N > 0, the response is determined by σ. When σ < 0, the amount of product pro-
duced is decreased by adding inerts. But when σ > 0, the amount of product is
increased by adding inerts. If σ = 0, adding inerts has little effect. 

12.6  SUMMARY

We have used this chapter to illustrate how thermodynamics can contribute to the
analysis and design of selected engineering processes. The applications considered
here included calculations for phase equilibria, solubilities, heat effects in steady-flow
processes, and the response of certain variables to changes of state. 
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Phase-equilibrium calculations were discussed for vapor-liquid equilibria (VLE),
liquid-liquid equilibria (LLE), and solid-solid equilibria (SSE). Results from VLE cal-
culations often take the form of K-factors and relative volatilities, especially when
thermodynamic calculations serve as intermediate steps in computer-aided process-
design programs. In those situations, K-factors are routinely provided to subpro-
grams that size distillation columns and gas-liquid absorbers. Similarly, the distribu-
tion coefficients computed for LLE serve as bases for sizing solvent-extraction
columns; moreover, liquid-liquid distribution coefficients may be helpful in screening
candidate solvents for use in an extraction.

Solubility calculations are merely phase-equilibrium calculations applied to super-
critical gases in liquids, solids in liquids, and solutes in near-critical fluids. The last
application has drawn substantial attention, for near-critical extraction processes are
being applied, not only in the chemical and energy industries, but also in food pro-
cessing, purification of biological products, and clean-up of hazardous wastes.

In the section on heat effects, we emphasized how the steady-state energy balance
can be used to design and analyze flash separators, absorption columns, and chemical
reactors. In each application we developed a general form for the energy balance, and
then we showed how it simplifies when it is applied to adiabatic and isothermal oper-
ations. We also noted that engineering calculations for process design involve the same
quantities and the same equations as those for process analysis. Process design differs
from process analysis only in the identities of the knowns and unknowns. 

Finally, we ended the chapter by discussing how changes of state affect standard-
state fugacities and yields from chemical reactions. These are important issues, but
they also illustrate how thermodynamics can be used to answer such questions. For
example, equilibrium yields from chemical reactions might be improved by changing
temperature, changing pressure, or adding inerts; the considerations are as follows.

(a) For exothermic reactions, decrease T to increase equilibrium yield of product, 
but for endothermic reactions, increase T.

(b) If the total number of moles increases during a reaction, then the yield is 
increased by decreasing P, or by adding inerts, or both.

(c) If the total number of moles decreases during a reaction, then product yield is 
increased by increasing P, or by removing product as it forms, or both.

(d) If the total number of moles remains constant during the reaction, then yield 
is little affected either by changes in P or by addition of inerts.

A principal objective of this chapter has been to illustrate the kinds of problems
that thermodynamics can address and the kinds of industrial situations to which it
can be applied. But more importantly, in this chapter we have tried to show how ther-
modynamics should be applied. For example, our goal has not been merely to show
that the energy balance can be applied to flash separators and chemical reactors, but
rather we have tried to develop a procedure for applying the energy balance, so that
you can use that procedure for any processing equipment—not just separators and
reactors. Henri Poincaré once remarked that, in a logical development, the order in
which elements are placed is much more important than the identities of the elements
themselves [15]. In other words, the examples used here are not nearly so important
as the pattern we followed in developing the examples. To reap full benefit from this
chapter, study the patterns.
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PROBLEMS

12.1 Consider a mixture of subcritical components in VLE. If FFF #1 is used for the
vapor and FFF #4 is used for the liquid, write a completely general expression
for the relative volatility α12 in terms of T, P, {x}, and {y}. List the quantities in
your expression that must be modeled or approximated.
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12.2 At 30°C and 1 bar, a certain binary liquid mixture has the following values for
the activity coefficients at infinite dilution: γ1

∞ = 12.5 and γ2
∞ = 2.5. Do you

expect this mixture to exhibit an azeotrope at 30°C? At this temperature the
pure component vapor pressures are P1

s = 2.3 bar and P2
s = 1.5 bar.

12.3 The activity coefficients at infinite dilution for both components of a binary sys-
tem can be described by the equation

At 350 K the ratio of saturation pressures is 1.3. Do you expect the mixture to
have an azeotrope at 350 K? If so, estimate its composition. If not, give the
bounds on the relative volatility α12 over the entire range of compositions.

12.4 Mixtures of diethyl ether (C4H10O)(1) and ethanol(2) are to be separated into
essentially pure components by a distillation column operating at low pressure.
Estimate the bounds on the relative volatility α12. Assume the liquid mixtures
obey the Margules correlation (5.6.11) with A1 = 0.1665 + 233.74/T(K) and A2 =
0.5908 + 197.55/T(K). Pure-component vapor pressures are in Appendix D.

12.5 (a) Making reasonable assumptions, estimate the mole fraction for oxygen dis-
solved in Lake Huron when the ambient temperature is 20°C.

(b) Early on a summer morning, a dense fog covers Lake Huron and the air
temperature is 17°C. Estimate the mole fraction of water in the air immedi-
ately above the lake.

12.6 Of the three liquid materials, sedentone(1), rasaline(2) and thermolide(3), com-
ponent 1 is miscible in 2 and 3, but components 2 and 3 are partially immisci-
ble. At P = 1 bar the three binaries are quadratic mixtures with 

 and

The parameter values are as follows:  

Determine the distribution coefficient at infinite dilution for component (1) dis-
tributed between the phases rich in (2) and rich in (3). Do the calculation twice:
(a) at T = 300 K, P = 0.1 MPa and (b) at T = 350 K, P = 10.0 MPa. The pure com-
ponent volumes are v1 = 15, v2 = 120, and v3 = 150, all in cm3/mol. 

Binary Aij Bij (K) Cij (cc/mol)

12 –0.1 100. –10.

23 150. 5. 20.

13 –1.0 600. 15.

γ1
∞ln γ2

∞ln 0.9 70 T K( )⁄–= =

gij
E

RT
-------- xi xj Aij

Bij

T K( )
-------------+= vij

E xi xj Cij=
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12.7 Accurately estimate the solubility of hydrogen(1) in benzene(2) at 450 K and
150 bar. The following data may be of some use.

(a) The molar volume of liquid benzene is v2 = 113.6 cm3/mol and its isother-
mal compressibility is κT = 0.66/MPa.

(b) Values of virial coefficients include B11 = 10 cm3/mol, B12 = 13 cm3/mol,
B22 = –535 cm3/mol, C111 = 300 cm6/mol2, and C222 = 30,000 cm6/mol2.

(c) Expressions for excess properties relative to Henry’s law include 

                      and   vE = [172 – 310 P (MPa)]x1
2 cm3/mol.

(d) At infinite dilution, the partial molar volume (in cm3/mol) obeys

(e) At 473 K the Henry’s constant is H1( ) = 1.17 MPa. At 450 K and , the
residual partial molar enthalpy at infinite dilution is

(f) Although they could be computed, assume y1 = 0.09081 and take the vapor
volume to be 256.3 cm3/mol.

(g) Vapor pressures for pure benzene can be obtained from Appendix D. 

12.8 For a solid that does not dissociate in water, estimate the number of moles of
the solid that must be added to 100 liters of water to lower the freezing point to
–3°C. At 0°C the heat of fusion for pure water is about 6 kJ/mol.

12.9 A five kilogram sample composed of an equimolar mixture of nickel and gold
is brought to equilibrium at 350°C.

(a) Use Figure 12.8 to estimate the amount of gold in the nickel-rich solid
phase at 350°C.

(b) Calculate the amount of gold in the nickel-rich phase, assuming the Mar-
gules equations apply. Using T in Kelvin and nickel as component 1, the
Margules parameters obey

12.10 Consider mixtures of ethane(1) in water(2) at 350 K. Show that the vapor mole
fraction of water goes through a minimum when the pressure of the system is
increased at constant temperature. Clearly state and justify all assumptions.
The following data may be helpful (all at 350 K):  = 0.0416 MPa, vpure 2 = 18.5
cm3/mol, while the second virial coefficients take these values, B11 = –129, B12
= –77, and B22 = –560, all in cm3/mol.

gE RT⁄ 1.24x1
2

=

1 V1
∞

⁄ 0.00943 0.0411P MPa( )+=

P2
s P2

s

H1
∞

hig
– 3.227RT=

A1 3.1381 5.1269 10 3–( )T 5.5015 10 6–( )T2
–+=

A2 7.1331 8.9209 10 3–( )T– 2.7109 10 6–( )T2
+=

P2
s
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12.11 Derive (12.2.16), which gives the fugacity coefficient at infinite dilution based
on the simple virial equation (12.2.15).

12.12 Estimate the infinite-dilution distribution coefficient  for naphthalene(1)
distributed between immiscible phases of water(2) and benzene(3) at 300 K.
Assume ∆Cp = 0.6 ∆Sm and that the binaries with naphthalene are described by
the Porter equation. The following data may help; Tm is the melting point and
values of the solubilities are given here in gm/100 gm solvent at 300 K.

12.13 (a) Consider a binary mixture in VLE at an azeotrope. Sketch a schematic hxy
diagram for this system, as in the lower portion of Figure 12.15, and show
the azeotropic tie-line.

(b) If instead of an azeotrope, the mixture had a critical point at x1 = 0.75 and at
the temperature of the diagram, sketch the corresponding isothermal hxy
diagram.

12.14 Lipids are long chain (C12–C30 ) biological hydrocarbons that have a single
functional group, such as a carboxylic acid, ester, or alcohol, at one end of the
chain. Several methods can be considered for separating lipids from the plant
or animal cells in which they are found. Candidate processes include these:

(i) Solvent extraction by mixing with an organic, such as dichloromethane 
or n-propanol, followed by evaporation of the solvent;

(ii) “Supercritical extraction” by contacting with high pressure CO2, fol-
lowed by decreasing the pressure to separate the CO2; and

(iii) Distillation at very low pressures.

As usual, the choice of method depends on separability, which requires phase-
equilibrium information. For each of the above methods (i)–(iii), 

(a) Use material in this chapter to describe the basic phase-equilibrium prob-
lem involved and list the fundamental equation(s) governing the mole frac-
tion of lipid (x1) in the phase external to the cells.

(b) Give FFF and appropriate approximations for evaluating x1.

(c) Indicate which of the quantities in (b) would be readily accessible (found in
handbooks, etc.) and which would have to be obtained from models, with
parameters either estimated or obtained by fitting data.

(d) For the quantities in your answer for (c), give the methods you would use
to predict or correlate data. (For example, if you propose some measure-
ments for obtaining activity coefficients, list the specific quantities to be
measured and how you would obtain the model parameters.)

Species
Tm
(K)

Mol 
wt

Solubility 
in H2O

Solubility 
in C6H6

1 353 128 6.5 0.003 46.

2 273 18 2.6          … 7.0

3 279 78 4.3 0.17        …

C1
∞

∆∆∆∆hm
RT
-----------
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12.15 Twenty moles of saturated liquid ammonia at 1.38 MPa are to be mixed with 80
moles of compressed iso-octane, originally at 1.38 MPa and 328 K. The final
mixture is to be one-phase liquid at 1.38 MPa. Determine the direction and
amount of heat transferred in this process. For data, see Kay and Warzel [16].

12.16 (a) Use the Redlich-Kwong equation with the mixing rules in § 8.4.4 to com-
pute an isothermal hxy diagram for binary mixtures of ethane(1) + pro-
pane(2) in VLE at 290 K.

(b) An isothermal flash unit is fed an equimolar mixture of liquid ethane and
propane. If the unit operates at 18 bar, how much heat must be supplied
(per mole of feed) to keep the temperature at 290 K?

12.17 The Rachford-Rice procedure, described in § 11.1.5 for LLE and in Problem 11.7
for VLE, is an example of a process analysis calculation. Using the equations
from the Rachford-Rice procedure, develop an algorithm that could be used for
the design of an isothermal VL flash process. That is, for given values of the
product compositions {x} and {y} and vapor fraction V, your algorithm should
determine the required feed composition {z}, together with the T and P to be
maintained in the flash chamber.

12.18 Calculate the heat that must be removed from the isothermal reaction of iron
and oxygen to form Fe2O3 at 291 K. The following data are available:

(a) The heat removed when 1 mole of iron is isothermally dissolved in dilute
HCl to give dilute aqueous FeCl3 plus H2 (gas) at 291 K is 47.7 kJ. 

(b) The heat removed when 1 mole of Fe2O3 is dissolved in dilute HCl to give
dilute aqueous 2FeCl3 and H2O is 155.9 kJ.

(c) The standard enthalpy of formation of liquid water at 291 K is –286.14 kJ. 

12.19 How much heat per mole is required for continuous vaporization of the atmo-
spheric azeotrope formed from jaypocus ogreate(1) and wahooic aggravate(2)?
Use all and only these data:

and

where  is in bar, T in K, a1 = 12.710, b1 = –5289 K, a2 = 9.29, and b2 = –4289 K.

12.20 A certain plant produces methanol by reacting H2 with CO. In the process, stoi-
chiometric portions of the reactants are compressed isothermally and revers-
ibly at 400 K from 1 to 30 MPa. The compressor discharges the gas to a well-
insulated catalytic reactor where methanol is formed to the equilibrium extent. 

(a) If the surroundings are at 300 K, determine the amounts and directions of
work and heat transferred during the compression step; use a basis of one
mole of CO fed.

(b) Calculate the outlet temperature of the reactor as a function of the extent of
reaction.

Ignore any pressure drop in the reactor and justify any assumptions about fluid
ideality.

Pi
sln ai bi T⁄+= gE RT⁄ x1 x2 0.5 500 T⁄+( )=

Pi
s
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12.21 The rearrangement reaction A ↔ B occurs in both liquid and gas phases. If
those phases are ideal, then show that computation of the equilibrium K-factor,
KA = yA/xA, requires only the equilibrium constants in the two phases. What if
the phases were nonideal?

12.22 Ethylene glycol(1), (CH2OH)2, can be made from the reaction of carbon monox-
ide(2) with hydrogen(3) if a liquid-phase catalyst is available. One form of reac-
tor could be a downflow column in which liquid glycol, containing the catalyst,
contacts a cocurrent gas stream. The column should be long enough to allow
equilibrium to be reached, with one of the reactant gases depleted. 
(a) To maximize the extent of reaction at a given pressure P >  should CO

or H2 be the limiting reactant? 
(b) Estimate the outlet ratio of CO to H2 in the vapor when the conditions are

0.507 MPa, 350 K.
(c) Would the equilibrium extent decrease or increase if N2 were present in the

gas stream?

12.23 Estimate the maximum amount of ethyl acetate(3) that could be obtained from
an isothermal reactor that is fed 2 moles of ethanol(1) and 2 moles of acetic
acid(2) at 370 K. Pure vapor pressures are given by expressions in Table 11.8.
Properties of formation for pure saturated liquids at 298 K are as follows.

12.24 For a large insulated, countercurrent heat exchanger, estimate the number of
moles of N2 that can be continuously heated from 298 to 353 K by two moles of
NO2 entering at 373 K and leaving at 298 K if
(a) No reaction is assumed.
(b) Equilibrium association always occurs: 2NO2 → N2O4  (Reference states are

ideal gases at 298 K, 0.1013 MPa.).

Species ∆gf
o/RT ∆hf

o/RT

EtOH –67.8 –109

HAc –160. –201

EtAc –131. –189

H2O –95.6 –115

Species ∆gf
o/RT ∆hf

o/RT cp
ig/R

NO2 20.7 13.4 4.5

N2O4 39.5 3.70 9.5

N2 0 0 3.5

P1
s ,
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ou are part of a development group assigned to determine the properties and
phase behavior of certain mixtures that are to be used in a new process for your

company. Your supervisor is relying on the group to provide a quick and thorough
assessment of the proposed process: each day of production delay costs the company
one million dollars.

You begin by asking how the information will be used: Is it for exploratory
research, conceptual design, process development, equipment sizing, troubleshoot-
ing? You next ask what processing steps are involved: reactions, separations, heating,
cooling, pumping, expansions, recycles? And which steps could affect business deci-
sions for commercialization: Are reaction yields limited by rates or by equilibrium
conversions? Are separations hindered by formation of azeotropes or solutropes? If
additional solvents are introduced, how will they be removed, so the product is not
contaminated? Can any solvents be recycled to avoid disposal and waste? Finally, you
ask precisely what properties are being requested. Are they compositions of phases in
equilibrium? Densities and enthalpies of single phase liquids, gases, or solids? Reac-
tion rate constants? In short, you must decide what properties are to be quantified and
then decide how those values will be used: in appropriate hand calculations or in a
process simulator. 

 

� � �

 

At this preliminary stage, you may be tempted to skimp on the quality of property
data, but then you remember that inadequate thermodynamic information can lead to
improper designs and process failures. Material and energy stuff equations have
always been used in the analysis and design of such unit operations as heat exchang-
ers, reactors, separators, and compressors. But in earlier times, values for energies and
enthalpies were obtained from approximate models. Similarly, in staged processes
such as distillation, extraction, and chromatography, equilibrium is assumed at each
stage, so models had to be used to obtain estimates for fugacities. Often those early
models were limited by incomplete knowledge of conditions actually pertaining in
the process, by lack of insight into how properties should be modeled, and by our
inability to solve coupled sets of nonlinear algebraic and differential equations.   

Y
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Furthermore, early models had to be simple because hand calculation was neces-
sarily the mode, but now computer-based “process simulators” readily solve com-
plex, multiparameter equations. Such simulators enable us to generate alternative
“what-if” scenarios to study feasibility and optimization; they also allow us to probe
the smallest details of process facilities and conditions. However, this powerful capa-
bility is limited by the approximations we provide to the simulator and by our inter-
pretations of the output that the simulator provides to us. Casual, uncritical use of
process simulators can obscure the significance of results and lead to process designs
that are physically unrealizable. Therefore, you must give some attention to the accu-
racy with which property values will be needed and to the computational resources
that will be required to achieve the required accuracy.

 

� � �

 

You and your coworkers begin to organize your plan of attack. You conclude that
the process is not far enough along for detailed design; there are still issues about cat-
alyst life and raw materials that are to be solved by others. Those problems could
cause the project to be delayed or canceled. So at this point, feasibility is the most
important concern. That is, in identifying the steps by which raw materials are to be
converted into valuable products, two aspects come crucially into play: 

 

feasibility

 

, in
terms of Nature’s possibilities, and 

 

economic opportunity

 

, in terms of alternatives and
human valuation. Inevitably a new product can be made in many different ways, but
infeasible and uneconomic paths should be eliminated early in a design process, and
thermodynamics can play an invaluable role in this endeavor. 

Now you begin to ask about the conditions and species of the process: What are the
temperatures and pressures relative to the melting and critical values? Are the compo-
sitions nearly pure or very dilute? Are the molecules of the substances likely to associ-
ate with themselves or solvate with others? Are there to be additional solvents and
what are their properties? You also formulate relevant “always true” relations and
you begin to consider appropriate models for nonideal gases and nonideal solutions.
These questions can usually be answered by elementary analysis, shrewd selection of
property formulation, reasonable estimates of property values, and thoughtful evalu-
ation of the results. In this way you should be able to address and prioritize the over-
whelming number of questions that always arise in a new undertaking.

 

� � �

 

For many decades, situations of this kind have been attacked by engineers in the
energy and petrochemical industries. Those decades of experience teach us that such
situations can be successfully resolved by appealing to fundamental thermodynamic
relations among systems, properties, and interactions. But in contemporary society,
even more complex situations are being posed by evolving technologies. For example,
nanoscale systems involve such small numbers of molecules that we cannot ignore the
effects of size distributions or of surface and edge effects. Biomolecular and other
polymeric substances often respond to interactions by changing internal conforma-
tions. Electromagnetic fields are being used to manipulate the structure and dynamics
of many systems. With modern instruments, the richness of Nature is becoming more
obvious, stimulating searches for innovative means of exploiting energy, creating new
materials, and modifying living processes. 
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The systems treated in detail in this text were limited in three ways. First, the sys-
tems were large enough that fluctuations of properties were not noticeable and that
extensive properties were homogeneous to degree unity. Second, the interactions of a
system with its surroundings were limited to the thermal interaction, the 

 

PV

 

 work
mode, and material transfers. Third, formulations for modeling substances and mix-
tures implied that any nonideality of the system, whether relative to the ideal gas or
the ideal solution, could be separated from that ideality, or else it could be accounted
for by interactions among different molecules, rather than by changes in the mole-
cules themselves. 

These assumptions may be inadequate for many engineering situations of contem-
porary interest; however, this does not mean that the thermodynamic laws are invalid
or that the basic methodology must be modified. For example, all of the operations in
Chapter 3 remain valid, but the specifics will need to be adapted to treat complex
cases. In particular, extensions must be made to include the effects of system size,
additional work modes and their variables, and effects of molecular configuration,
especially as density and composition change.

Although contemporary systems and processes may be complex, the techniques
and the content of this book still apply. But to maximize the value of our approach,
you may need to create new definitions, characterize other properties, consider addi-
tional interactions that influence complex systems, implement connections to molecu-
lar theory and statistical mechanics, and derive appropriate relations that are ame-
nable to reliable modeling. In the past such characterizations were commonly done in
terms of macroscopic measurables, but now molecular structure is being used to
describe complex systems, including alternative-energy systems, biochemicals, col-
loids and interfaces, electrolytes, polymers, and exotic materials. 

In this book you have been confronted with fundamental thermodynamics, and
you have seen how that thermodynamics can be used to analyze traditional applica-
tions. Although you may encounter few traditional applications in your future profes-
sional life, the fundamentals still apply, so you should be able to deal successfully
with contemporary applications as they arise. The fundamentals are permanent and
universal, it is only the applications that go in and out of style. 

 

�
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A

 

TOOLS FROM THE CALCULUS

 

lassical thermodynamics makes extensive use of the calculus; in fact, thermo-
dynamics employs calculus so extensively that it is worthwhile to have a sum-

mary of the most important concepts. That summary is provided here. Throughout
this appendix, as in all thermodynamics, we presume that functions such as 

 

f

 

(

 

x

 

) and

 

f

 

(

 

x

 

, 

 

y

 

) satisfy the required conditions of continuity and differentiability.

 

A.1  PARTIAL DERIVATIVES

 

Basic relations among thermodynamic variables are routinely stated in terms of par-
tial derivatives; these relations include the fundamental equations from the first and
second laws, as well as innumerable relations among properties. Here we define the
partial derivative and give a graphical interpretation. Consider a variable 

 

z

 

 that
depends on two independent variables, 

 

x

 

 and 

 

y

 

,

(A.1.1)

At a specified 

 

y

 

-value the derivative of 

 

z

 

 with respect to (wrt) 

 

x

 

, if it exists, is called the

 

partial derivative

 

 of 

 

z

 

 wrt 

 

x

 

; it is defined by

(A.1.2)

where 

 

∆

 

x

 

 represents a change in the value of 

 

x

 

. The subscript on the lhs of (A.1.2) indi-
cates that, during the operation, 

 

y

 

 remains fixed at a particular value. Likewise, we
define the partial derivative of 

 

z

 

 wrt 

 

y

 

, at a fixed value of 

 

x

 

, by

(A.1.3)

z f x y,( )=

x∂
∂z

 
 

y

f x ∆x+ y,( ) f x y,( )–
∆x

------------------------------------------------------
∆x 0→
lim=

y∂
∂z

 
 

x

f x y ∆y+,( ) f x y,( )–
∆y

------------------------------------------------------
∆y 0→
lim=

C
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The quantity 

 

z

 

 = 

 

f

 

(

 

x

 

, 

 

y

 

) can be represented on a plot of 

 

z

 

 vs. 

 

x

 

, with 

 

y

 

 treated as a
parameter. Then the partial derivative of 

 

z

 

 wrt 

 

x

 

, evaluated at 

 

y

 

1

 

, is the slope of the
tangent to the 

 

y

 

1

 

-level curve at any point 

 

x

 

; this is illustrated in Figure A.1. In general
the numerical value of the partial derivative changes when either 

 

x

 

 or 

 

y

 

 changes. Sim-
ilarly, we could plot 

 

z

 

 vs. 

 

y

 

 with 

 

x

 

 treated as a parameter; then the partial derivative of

 

z

 

 wrt 

 

y

 

, evaluated at a particular 

 

x

 

1

 

, is the slope of the tangent to the 

 

x

 

1

 

-level curve at
any point

 

 y

 

. 

 

A.2  TOTAL DIFFERENTIALS

 

General forms for property changes and balance equations are usually posed as total
differentials. Consider a quantity 

 

z

 

 that depends on two independent variables,

(A.1.1)

We would like to know how 

 

z

 

 responds when we change either 

 

x

 

 or 

 

y

 

 or both. We
have already found that the partial derivative (

 

∂

 

z

 

/

 

∂

 

x

 

)

 

y

 

 tells how 

 

z

 

 responds to a
change in 

 

x

 

 at a fixed value of 

 

y

 

; likewise, (

 

∂

 

z

 

/

 

∂

 

y

 

)

 

x

 

 tells how 

 

z

 

 responds to a change in

 

y

 

 at a fixed value of 

 

x

 

. Then, if these partial derivatives are continuous, the total differ-
ential 

 

dz

 

 tells how 

 

z

 

 responds when we simultaneously change both 

 

x

 

 and 

 

y

 

:

(A.2.1)

If 

 

z

 

 depends on more than two independent variables, an additional term is added to
(A.2.1) for each additional variable. The total differential (A.2.1) can be used to form
other partial derivatives; for example, to express how 

 

z

 

 responds to changes in 

 

x with
another quantity w held fixed, we use (A.2.1) to write

Figure A.1   The partial derivative in (A.1.2) can be interpreted as the slope of a y-level curve on
a plot of z vs. x.

z f x y,( )=

dz
x∂

∂z
 
 

y
dx

y∂
∂z

 
 

x
dy+=

z

x

slope of tangent
x∂

∂z
 
 

y x x1=
y y1=

=

y1

y2

y3

x1
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(A.2.2)

Note that w might be a third independent variable or it might be some function of x
and y.

A.3  IMPLICIT FUNCTION THEOREM

Thermodynamic descriptions of systems are often reformulated by exploiting connec-
tions among properties. One reformulation among differential properties can be
obtained by applying the implicit function theorem. Consider some function

(A.3.1)

then there must be some other function F such that

(A.3.2)

that is, y can be considered as an implicit function of x. The total differential of F must
vanish,

(A.3.3)

That is, changes in x and y can occur only in ways that preserve F = 0, which in turn
preserves the original functionality y = f (x). Now, we could also consider

(A.3.4)
so that

(A.3.5)

Then (A.3.3) for dF becomes

(A.3.6)

and we obtain the implicit function theorem,

provided (A.3.7)

x∂
∂z

 
 

w x∂
∂z

 
 

y y∂
∂z

 
 

x x∂
∂y

 
 

w
+=

y f x( )=

F x y,( ) 0=

dF
x∂

∂F
 
 

y
dx

y∂
∂F

 
 

x
dy+ 0= =

y y F x,( )=

dy
F∂

∂y
 
 

x
dF

x∂
∂y

 
 

F
dx+

x∂
∂y

 
 

F
dx= =

dF
x∂

∂F
 
 

y
dx

y∂
∂F

 
 

x x∂
∂y

 
 

F
dx+ 0= =

x∂
∂y

 
 

F

x∂
∂F

 
 

y
–

y∂
∂F

 
 

x

-----------------=
y∂

∂F
 
 

x
0≠
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In thermodynamics the implicit function theorem is usually written in the form of a
triple product rule:

(A.3.8)

Example A.3.1. For the function y = x2 we can write

(A.3.9)

Then

and (A.3.10)

Therefore,

(A.3.11)

which we can verify by explicit differentiation of the original function. �

A.4  EXACT DIFFERENTIAL EQUATIONS

In thermodynamics the concept of state is important because state functions have the
special characteristics of exactness. In this section we show how to test whether a
quantity is exact, hence, whether it is a state function. Consider a differential equation
in two variables, x and y ,

(A.4.1)

This equation is said to be exact, if there exists some function u(x, y) such that

and (A.4.2)

For then the original equation is the total differential of u,

(A.4.3)

and the solution of the differential equation (A.4.1) can immediately be written as

(A.4.4)

x∂
∂y

 
 

F y∂
∂F

 
 

x F∂
∂x

 
 

y
1–=

F x y,( ) x2 y– 0= =

y∂
∂F

 
 

x
1–=

x∂
∂F

 
 

y
2x=

x∂
∂y

 
 

F

x∂
∂F

 
 

y
–

y∂
∂F

 
 

x

-----------------
2x–
1–

--------- 2x= = =

M x y,( )dx N x y,( )dy+ 0=

M
x∂

∂u
 
 

y
= N

y∂
∂u

 
 

x
=

du M x y,( )dx N x y,( )dy+ 0= =

u x y,( ) constant=
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This solution identifies a family of level curves on a plot of y vs. x. If the partial deriv-
atives M and N are continuous, then no two level curves can intersect; i.e., through
every point (x, y) there passes only one level curve. There is, for example, no point (x,
y) where u = 2 and simultaneously u = 3.

Changes in x and y produce

(A.4.5)

So a change in u depends on only the initial and final values of x and y , and it is inde-
pendent of any intermediate x or y-values that might be visited during the change.
The necessary and sufficient condition for exactness is that the second cross-partial
derivatives be equal:

(A.4.6)

If a differential equation contains more than two independent variables, the necessary
and sufficient conditions for exactness are that relations analogous to (A.4.6) must be
satisfied by every pair of independent variables.

Example A.4.1.  The differential equation

(A.4.7)

is exact because

(A.4.8)

and

(A.4.9)

The solution to the differential equation is therefore

(A.4.10)

We may check this solution by forming the total differential and appealing to (A.4.7),

(A.4.11)

So u = xy is indeed a constant; that is, to satisfy (A.4.7), changes in x and y can occur
only in ways that preserve their product,

(A.4.12)

�

∆u u x2 y2,( ) u x1 y1,( )–=

M∂
y∂

-------- 
 

x x∂
∂N

 
 

y
=

ydx xdy+ 0=

M∂
y∂

-------- 
 

x y∂
∂y

 
 

x
1= =

x∂
∂N

 
 

y x∂
∂x

 
 

y
1= =

u x y,( ) xy constant= =

du d xy( ) ydx xdy+ 0= = =

∆u ud∫ u x2 y2,( ) u x1 y1,( )– x2y2 x1y1– 0= = = =
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Example A.4.2.  However, the differential equation

(A.4.13)

is not exact, as it stands, because

(A.4.14)

while

(A.4.15)

But the equation (A.4.13) can be made exact by finding an integrating factor. �

A.5  INTEGRATING FACTORS

Most differential equations are not exact; however, in some cases, a multiplicative fac-
tor (called an integrating factor) can be found that transforms the equation into one that
is exact. In thermodynamics this transformation can sometimes be used to convert
heat or work into state functions.

Consider a linear, first-order ordinary differential equation. All such equations can
be written in the form

(A.5.1)

In the form used in § A.4, this equation would appear as

(A.5.2)

We seek an integrating factor F(x) that makes this equation exact. Applying the factor
we would have

(A.5.3)
or

(A.5.4)

where M = F(x)[y P(x) – Q(x)] and N = F(x). For exactness we must have

(A.4.6)

Using our expressions for M and N, this becomes

ydx xdy– 0=

M∂
y∂

-------- 
 

x y∂
∂y

 
 

x
1= =

x∂
∂N

 
 

y x∂
∂x

 
 

y
– 1–= =

xd
dy yP x( )+ Q x( )=

yP x( ) Q x( )–[ ]dx dy+ 0=

F x( ) yP x( ) Q x( )–[ ]dx F x( )dy+ 0=

M x y,( )dx N x y,( )dy+ 0=

x∂
∂N

 
 

y

M∂
y∂

-------- 
 

x
=
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(A.5.5)

Separating variables,

(A.5.6)

or

(A.5.7)

This identifies the functional form for the integrating factor. In practice the integration
can be done using definite limits or indefinitely with the addition of an integration
constant. If the integration is done indefinitely, then either the integration constant
can be evaluated from a known reference condition or it can be absorbed into other
constants that will appear in the solution to the differential equation.

With the above choice for F(x), our scaled equation (A.5.3) is exact; i.e., it can be
written in the form

(A.5.8)
where

(A.5.9)

and

(A.5.10)

So

(A.5.11)

and the solution to the original differential equation (A.5.1) is

(A.5.12)

Note that integrating factors are not unique. For example, let v be some function of
x and y . If F(x) is an integrating factor that reduces a differential equation to the form

(A.5.13)

then, [ f(v) F(x)] is also an integrating factor, where f(v) can be chosen arbitrarily.

Example A.5.1. Consider the differential equation in Example A.4.2,

(A.5.14)

which is not exact as it stands. Writing it in the form

x∂
∂F

 
 

y
F x( )P x( )=

dF x( )
F x( )

-------------- P x( )dx=

F x( ) P x( ) xd∫[ ]exp=

du x y,( ) Q x( ) F x( ) dx=

x∂
∂u

 
 

y
yP x( ) P x( ) xd∫[ ]exp=

y∂
∂u

 
 

x
P x( ) xd∫[ ]exp=

u x y,( ) y P x( ) xd∫[ ]exp=

y P x( ) xd∫[ ]exp F x( )Q x( ) xd∫ constant= =

dv x y,( ) 0=

ydx xdy– 0=
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(A.5.15)

and comparing with (A.5.1), we identify

and (A.5.16)

Then from (A.5.7), we have

(A.5.17)

So the integrating factor is

(A.5.18)

Applying this to (A.5.14), we find

(A.5.19)

So (A.5.11) leads to

(A.5.20)

and the solution is

(A.5.21)

Further, not only is (1/x) an integrating factor for (A.5.1), but so too is [ f(y/x) (1/x)],
where f is any function. You may wish to verify this claim. �

A.6  LEGENDRE TRANSFORMATIONS

One way for obtaining new relations among thermodynamic variables is by applying
a Legendre transform. Assume we have a curve represented by a set of points, y = f(x),
where the curve is convex for all x; i.e.,

(A.6.1)

Instead of the set of points, we could represent the same data by a set of tangents; we
use s for a tangent to f(x),

(A.6.2)

xd
dy y

x---– 0=

P x( ) 1
x---–= Q x( ) 0=

F x( ) xd
x------∫–exp x 1–ln[ ]exp= =

F x( ) 1
x---

=

y
x--- dx dy– 0=

du d
y
x--- 

  0= =

y
x--- constant=

x2

2

d

d f
0>

s
xd

d f≡
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The Legendre transform connects the point-representation of the data to the tangent-
representation. To construct the transform, note first that we want to replace x with s
as the independent variable. Since f is convex, each value of the slope s is unique. Fur-
ther note that if we introduce a new independent variable, then we must also intro-
duce a new function, call it g(s). The Legendre transformation performs the mapping
from the old function to the new one,

(A.6.3)

To select the form for g(s), we construct on the plot of f(x) vs. x the line y = sx, where
s is the slope of the tangent at some point x1 on y = f (x); see Figure A.2. Since f(x) is
convex, the vertical distance between the line and the curve is a maximum at x1; i.e.,
that distance is single-valued. So we use that distance as the new dependent variable
g(s),

(A.6.4)

This form for g(s) is the Legendre transform commonly used in classical mechanics. 
Note that we could as easily choose to define the new function, call it h(s), by

(A.6.5)

This is the Legendre transform used in thermodynamics. Note that the total differen-
tials dg and dh are simply related,

(A.6.6)

So

(A.6.7)

Figure A.2 Illustration of a Legendre transform from f(x) to g(s), where s is the slope of f(x) at x1
and g(s) is the vertical distance from the point f(x1) to the line sx

f x( ) g s( )→

g s( ) sx f x( )–=

h s( ) f x( ) sx–≡ g s( )–=

dg sdx xds df–+ sdx xds sdx–+ xds dh–= = = =

x
sd

dg
sd

dh–= =

y

x

y = sx

y = f(x)

slope = s

g(s) = sx – f(x)

x1
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That is, in the new space of g vs. s, the slope of the curve is the old independent vari-
able x, while in the new space of h vs. s, the negative slope of the curve is x.

Example A.6.1.  Say we have f(x) = exp[x], and we want to form a Legendre trans-
form. Using (A.6.2), we define

(A.6.8)

So
(A.6.9)

and therefore from (A.6.4) the Legendre transform is

(A.6.10)
�
Example A.6.2. Newton’s method as a Legendre transform.  When we must solve a
nonlinear algebraic equation of the form

(A.6.11)

we often apply Newton’s method: (a) guess a value for x, call it xold, (b) test whether
f(xold) is tolerably close to zero, (c) if it is not, evaluate the slope at xold,

(A.6.12)

and (d) obtain a new guess, xnew. The new guess is formed by constructing the
straight line through (xold, f ) that has slope f ′ and extrapolating that line to f = 0,

(A.6.13)

If we rewrite this as

(A.6.14)

then we see that Newton’s prescription has the structure of a Legendre transform.
That is, we can interpret Newton’s method as a transformation from the space (xold, f )
to the space (xnew, 1/f ′).

Provided the slope f ′ is nonzero and finite, then it is clear from the transform that at
the roots (where f = 0), the values of xold coincide with those of xnew: the roots occur at
fixed points of the Legendre transform. So in Newton’s method, the original problem,
“find values of x that make f = 0” is replaced with the equivalent problem, “find val-
ues of x that are invariant under a Legendre transformation.”

Newton’s method is most reliable when f is monotone in x; that is, when the slope
f ′ is nonzero and has the same sign for all values of x. In such cases the Legendre
transform produces a unique xnew for each xold. Conversely, when the transformation
is not unique, because f(x) has an extremum or worse because f(x) is oscillatory, then
Newton’s method is susceptible to convergence problems. �

s
xd

d f
x[ ]exp= =

x sln=

h s( ) f x( ) sx– s 1 sln–( )= =

f x( ) 0=

f ′
xd

d f

xold

=

xnew xold
f
f ′
-----–=

xnew xold f
fd

dx
–=
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A.7  EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

Many extensive thermodynamic properties are homogeneous in the mole numbers.
This fact can be exploited through Euler’s theorem to immediately integrate total dif-
ferentials of such extensive properties. A function f(x, y) is said to be homogeneous of
order n if

(A.7.1)

where λ is an arbitrary constant scale factor. Then Euler’s theorem states that for such
a function, if its partial derivatives exist,

(A.7.2)

We can prove this by differentiating (A.7.1) wrt λ and setting λ = 1, since λ is arbitrary.

A.8  GIBBS-DUHEM EQUATION

In the thermodynamic description of multicomponent systems, a principal relation is
the Gibbs-Duhem equation. Astarita [1] has shown that the Gibbs-Duhem equation is
not merely a thermodynamic relation; it is a general repercussion of the properties of
homogeneous functions. Consider a multivariant function, such as

(A.8.1)

such that F is homogeneous of degree one in the Ni and homogeneous of degree zero
in the Yi. In thermodynamics, the Ni could be mole numbers, and {Y} could represent
temperature and pressure. Since F is homogeneous, if all the Ni are changed by the
same factor λ ≠ 1 (while keeping all the Yi fixed), then F changes by that same factor,

(A.8.2)

The change in F can be expressed as

(A.8.3)

We now seek another expression for ∆F. Note that we can write ∆F as

(A.8.4)

where

(A.8.5)

and the  (the partial molar properties) are defined by

f λx λy,( ) λn f x y,( )=

x
x∂

∂ f
 
 

y
y

y∂
∂ f

 
 

x
+ nf x y,( )=

F F N{ } Y{ },( )=

F λN{ } Y{ },( ) λF N{ } Y{ },( )=

∆F λF N{ } Y{ },( ) F N{ } Y{ },( )– λ 1–( )F N{ } Y{ },( )= =

∆F Fd
F N{ }( )

F λN{ }( )

∫=

dF Fi dNi

i

∑=

Fi
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(A.8.6)

Substituting (A.8.5) into (A.8.4), we have

(A.8.7)

Reverse the order of summation and integration, and note that the  are homoge-
neous of degree zero in the Ni. Then we can write

(A.8.8)

Equating (A.8.3) with (A.8.8) leaves

(A.8.9)

which is the fundamental relation between an extensive property and its partial molar
derivatives. The total differential of F can now be written as

(A.8.10)

Comparing (A.8.5) with (A.8.10), we obtain the Gibbs-Duhem equation

fixed {Y} (A.8.11)

When the {Y} change, (A.8.11) becomes

(A.8.12)

Reverse the order of summations on the rhs and take the Ni inside the derivative,

(A.8.13)

This can be written as the generalized form of the Gibbs-Duhem equation,

(A.8.14)

Fi Ni∂
∂F

 
 
 
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∑ dNiNi

λNi
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∆F Fi

i

∑ dNiNi

λNi

∫ Fi

i

∑ λ 1–( )Ni= =

F Fi

i

∑ Ni=

dF Fi dNi

i

∑ Ni d Fi
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∑+=
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i

∑ 0=

Ni d Fi

i

∑ Ni Yj∂
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 

N{ } Yk j≠,
j

∑ dYj
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-------- Ni Fi
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 
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dYj
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∑ Yj∂
∂F

 
 
 

N{ } Yk j≠,
dYj
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Ni d Fi
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∑ Yj∂
∂F

 
 
 

N{ } Yk j≠,
dYj

j
∑– 0=
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A.9  MEAN VALUE THEOREM

Changes in thermodynamic properties are computed by performing integrations; in
some situations, the integration amounts to the evaluation of the mean for a continu-
ous function. This mean is defined by the mean value theorem. If f(x) is piecewise con-
tinuous on [a, b], then there is some value of f, designate it by fm, such that

(A.9.1)

The quantity fm is called the mean value of f on the interval [a, b].
This theorem simply says that the area under the curve f (x) on the interval [a, b] is

identically the area of some rectangle of height h and width w:

(A.9.2)

If the area is known, then this is one equation containing two unknowns, h and w.
Therefore, we can choose one arbitrarily. Let’s choose the width w to be the length of
the interval in x, as in Figure A.3,

for b > a (A.9.3)

So (A.9.2) can be written

(A.9.4)

Then combining (A.9.4) with (A.9.1) identifies the height h as the mean value fm .  

Figure A.3 The mean-value theorem for integrals states that the area under the curve f(x) from
a to b is equal to the area of a rectangle of width w = (b – a) and height fm. This requires that the
two shaded areas be equal. The height fm is called the mean value of f(x) on the interval [a, b]. 

fm
1

b a–
----------- f x( ) xd

a

b

∫=

hw f x( ) xd
a

b

∫=

w b a– b a–= =

h b a–[ ] f x( ) xd
a

b

∫=

f(x)

xa b

fm h



 A.10   TAYLOR SERIES 603

A.10  TAYLOR SERIES

Many approximations used in modeling thermodynamic properties are based on the
Taylor series. Examples are the virial expansions for the equation of state and the
Redlich-Kister expansion of the excess Gibbs energy. Let f(x) and all its derivatives be
continuous and single-valued on [a, b]. Then the Taylor series provides an approxima-
tion to f(b) if we know f at a nearby point x = a and if we can evaluate derivatives of f
at x = a, 

(A.10.1)

The first-order approximation represents a straight line through f(a); this linear
extrapolation is used in Newton’s method, discussed in Example A.6.2. The second-
order approximation represents a parabola through f(a), and in general the nth-order
approximation represents an nth-order polynomial through f(a).

For a function that depends on two variables, f(x, y), we may (under the same
restrictions as above) perform a double Taylor expansion about a known point f(a, c).
For a ≤ x ≤ b and c ≤ y ≤ e, the double expansion is

(A.10.2)

A.11  LEIBNIZ RULE FOR DIFFERENTIATING INTEGRALS

Evaluation of some thermodynamic derivatives may require us to differentiate defi-
nite integrals. The general prescription for so doing was given by Leibniz. The prob-
lem is to find the general expression for dF/dx, when F(x) is given by

(A.11.1)

In the notation of (A.11.1), the definition of the derivative in (A.1.3) appears as

(A.11.2)

Substituting (A.11.1) into (A.11.2), we have

f b( ) f a( ) b a–( )
xd

d f
 
 

a

… b a–( )n

n!
-------------------

xn

n

d

d f

 
 
 

a

+ + +=

f b e,( ) f a c,( ) b a–( )
x∂

∂ f
 
 

y a c,
e c–( )

y∂
∂ f

 
 

x a c,
+ +=

+  b a–( )2

2!
------------------

x2

2

∂

∂ f

 
 
 

y a c,

2 b a–( ) e c–( )
2!

-----------------------------------
∂2 f

∂x∂y
------------- 

 
a c,

e c–( )2

2!
------------------

y2

2

∂

∂ f

 
 
 

x a c,

…+ + +

F x( ) f x z,( ) zd
a x( )

b x( )

∫=

xd
dF F x ∆x+( ) F x( )–

∆x
------------------------------------------

∆x 0→
lim=
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(A.11.3)

We divide the first integral into three parts,

(A.11.4)

The second and fourth terms can be combined to give

(A.11.5)

The first two integrals can each be simplified with the help of the mean value theo-
rem: let f(x, b) be the mean of the first integrand and f(x, a) be the mean of the second.
The third integral can be simplified by interchanging the limit with the integral and
applying the definition of a derivative. Hence, we are left with

(A.11.6)

Using the definition of the derivative for the first two terms, we obtain

(A.11.7)

This is the Leibniz rule for differentiating definite integrals. In those special cases in
which one or both limits (a and b) are constants, independent of x, then (A.11.7) sim-
plifies accordingly.

A.12  L’HOSPITAL’S RULE

Often we need to determine limiting values of thermodynamic properties. But some-
times, those limits appear indeterminate because the property is a ratio and both the

xd
dF 1

∆x
-------

∆x 0→
lim f x ∆x+ z,( ) zd

a x ∆x+( )

b x ∆x+( )

∫ f x z,( ) zd
a x( )

b x( )

∫–=

xd
dF 1

∆x
-------

∆x 0→
lim f x ∆x+ z,( ) zd

b x( )

b x ∆x+( )

∫ f x ∆x+ z,( ) zd
a x( )

b x( )

∫+=

f x ∆x+ z,( ) zd
a x( )

a x ∆x+( )

∫– f x z,( ) zd
a x( )

b x( )

∫–

xd
dF 1

∆x
-------

∆x 0→
lim f x ∆x+ z,( ) zd

b x( )

b x ∆x+( )

∫ f x ∆x+ z,( ) zd
a x( )

a x ∆x+( )

∫–=

+   f x ∆x+ z,( ) f x z,( )–[ ] zd
a x( )

b x( )

∫

xd
dF f x b,( ) 1

∆x
-------

∆x 0→
lim b x ∆x+( ) b x( )–[ ]=

f x a,( ) 1
∆x
-------

∆x 0→
lim a x ∆x+( ) a x( )–[ ]–

x∂
∂ f

 
 

z
zd

a x( )

b x( )

∫+

xd
dF f x b,( ) db x( )

dx
-------------- f x a,( ) da x( )

dx
--------------–

x∂
∂ f

 
 

z
zd

a x( )

b x( )

∫+=
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numerator f(x) and the denominator g(x) either vanish or diverge as x reaches its lim-
iting value. Such limits can still be obtained by applying l’Hospital’s rule.

Consider two functions f(x) and g(x) that both vanish when x = xo; that is, f(xo) = 0
and g(xo) = 0. We want to evaluate the ratio of these two functions in the limit as x
approaches xo,

(A.12.1)

When x is near xo, f and g can be reliably approximated by their Taylor expansions,

(A.12.2)

and

(A.12.3)

We have f (xo) = g(xo) = 0; further, the higher-order terms in each expansion vanish
more rapidly than the linear term, as x approaches xo. Therefore, we obtain l’Hospi-
tal’s rule,

(A.12.4)

This states that if f and g both reach zero simultaneously, then the limit is determined
by the rates at which f and g each approach zero.

If two other functions u(x) and v(x) each diverge as x approaches xo, then to obtain
the limiting value of their ratio, we apply l’Hospital’s rule to the inverse ratio of their
inverses,

(A.12.5)
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B
ELEMENTS OF LINEAR ALGEBRA

inear algebra provides a notation for concisely representing linear algebraic equa-
tions and it provides a set of operations by which those equations can be solved.

Linear equations arise in many common situations, such as taking inventories by
material balances. As a particular example, consider a closed system initially loaded
with N total moles of three liquid components: 1, 2, and 3. That initial mixture had
mole fractions z1, z2, and z3. When equilibrium is attained, the system is found to have
divided into three phases: α, β, and γ. The mole fractions for phase α are {wi}, those in
phase β are {xi}, and those in phase γ are {yi}. These mole fractions are related to the
original overall mole fractions zi by material balances:

(B.0.1)

(B.0.2)

(B.0.3)

Here Nα, Nβ, and Nγ are the total amounts in each phase. A typical problem is to use
known values of the mole fractions and the overall amount N to solve (B.0.1)–(B.0.3)
for the values of Nα, Nβ, and Nγ. For three equations in three unknowns, a primitive
calculational procedure may be adequate, but for more—say 20 equations in 20
unknowns—we seek a systematic calculational procedure that can be implemented
on a computer. In what follows, we first develop the notation, then we introduce oper-
ations for solving a system of equations like that in (B.0.1)–(B.0.3).

B.1  MATRICES

A matrix A is a two-dimensional array of elements aij arranged in a particular order.
In general, the array has m rows (i = 1, 2, … , m) and n columns ( j = 1, 2, … , n), with
the elements ordered as follows:  

w1Nα x1Nβ y1Nγ
+ + z1N=

w2Nα x2Nβ y2Nγ
+ + z2N=

Nα Nβ Nγ
+ + N=

L
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(B.1.1)

For any element aij, the first subscript i indicates the row, while the second subscript j
indicates the column. The dimension of A is identified by the total number of its rows
and columns; that is, a general matrix A has dimension (m × n). If the number of rows
is the same as the number of columns (m = n), then the matrix is square, and n is said to
be the order of the square matrix. A matrix having more than one row and one column
will be indicated by an upper-case, bold face, sans serif character, such as A. 

If an array has only one column (m × 1) or one row (1 × n), then it is a vector. We will
use an unembellished, bold face, lower case character to represent a column vector,

(B.1.2)

An object that has only one row and one column (1 × 1) is a scalar.
Elements of a matrix A having i = j lie on the diagonal of A; they are called the diag-

onal elements of A. Those having i ≠ j are off-diagonal elements, as shown in Figure B.1.
Elements having i > j lie below the diagonal in the lower triangular part of A, while
those having i < j lie above the diagonal in the upper triangular part of A. If all elements
above the diagonal are zero, the matrix is lower triangular; if all elements below the
diagonal are zero, it is upper triangular. A square matrix whose off-diagonal elements
are all zero is said to be a diagonal matrix.

 

Figure B.1   The diagonal of any matrix A is composed of elements aii; elements above the diag-
onal lie in the upper triangular part of A, while those below are in the lower triangular part.

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

… … … … …

… … … … …

am1 am2 am3 … amn

=

x

x1

x2

…

xm

=

A

a11 a12 a13

a21 a22 a23

a31 a32 a33

=

diagonal

upper

lower triangular part

triangular
part
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B.2  SPECIAL MATRICES

A matrix whose elements are all zero is called a zero matrix 0; it can have any dimen-
sion, for example, 

and (B.2.1)

If the diagonal elements of a diagonal matrix are all unity, then the matrix is an identity
matrix I; it can have any order, for example,

and (B.2.2)

Any square matrix whose off-diagonal elements all satisfy aji = aij is symmetric; for
example, the identity matrix is symmetric, as are these:

and (B.2.3)

Any square matrix whose off-diagonal elements all satisfy aji = – aij is skew-symmetric;
examples include

and (B.2.4)

Every matrix A has a transpose AT obtained by interchanging the rows and col-
umns in A. So the transpose of A has

for all i and all j (B.2.5)

For example, if

then (B.2.6)

Therefore, if A is of dimension (m × n), then AT is of dimension (n × m). If A is symmet-
ric, then A = AT. The transpose of a column vector is a row vector; so, if

0 0  0
0  0

= 0
0 0 0
0 0 0
0 0 0

=

I 1 0
0 1

= I
1 0 0
0 1 0
0 0 1

=

1 2
2 5

2 1 3
1 1 4
3 4 6

1 2–

2 5

2 1 3–

1– 1 4
3 4– 6

aji in AT aij in A=

A 2 1
3 4

= AT 2 3
1 4

=
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then (B.2.7)

B.3  OPERATIONS

Two matrices A and B are equal only if they have the same dimensions and only if
each element in A is the same as the corresponding element in B. That is, to have

(B.3.1)
we must have

for all i and all j (B.3.2)

B.3.1 Addition

Matrix addition is defined only for matrices that have the same dimension: if A and B
both have dimension (m × n), then their sum is also an (m × n) matrix given by

(B.3.3)

Similarly, if A and B have dimension (m × n), then their difference is another (m × n)
matrix, given by

(B.3.4)

The addition of A to itself λ times is the same as multiplying A by a scalar λ; in such
cases, every element in A is multiplied by λ,

(B.3.5)

x 1

2
= xT 1 2=

A B=

aij bij=

A B+

a11 b11+( ) a12 b12+( ) … …

a21 b21+( ) a22 b22+( ) … …

… … … …

am1 bm1+( ) … … amn bmn+( )

=

A B–

a11 b11–( ) a12 b12–( ) … …

a21 b21–( ) a22 b22–( ) … …

… … … …

am1 bm1–( ) … … amn bmn–( )

=

λA

λa11 λa12 λa13 … λa1n

λa21 λa22 λa23 … λa2n

… … … … …

… … … … …

λam1 λam2 λam3 … λamn

=
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B.3.2 Vector Multiplication

The inner or dot product of two vectors is defined only between a row vector xT and a
column vector y, and only when the number of columns in xT is the same as the num-
ber of rows in y. The dot product is a scalar given by

(B.3.6)

The dot product of a vector with itself gives the sum of the squares of its elements,

(B.3.7)

Because of the restriction on the dimensions of the two multipliers, the dot product
does not commute; that is,

(B.3.8)

so, on the lhs of (B.3.6), we distinguish the premultiplier xT from the postmultiplier y.

B.3.3 Matrix Multiplication

Multiplication of matrices A and B is defined only when the number of columns in the
premultiplier A is the same as the number of rows in the postmultiplier B. For exam-
ple, if A has dimension (m × n) and B has dimension (n × p), then their product C is an
(m × p) matrix,

(B.3.9)

In the product matrix C, each element cij is the dot product of the ith row in A with the
jth column in B,

for all i and all j (B.3.10)

For example, let A and B be the following matrices,

xT y x1 … xm

y1

…
ym

xi yi
i

m

∑= =

xT x xi
2

i

m

∑=

xT y yxT≠

A

m n×( )

B

n p×( )

C

m p×( )
=        

cij aik bkj
k

n

∑=
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and (B.3.11)

Then their product, AB = C, is a (2 × 2) matrix given by

(B.3.12)

Note that matrix multiplication does not commute; that is, in general,

(B.3.13)

In fact, it often happens that even when the operation AB is defined, the operation BA
may not be defined; this is especially true for nonsquare matrices. Also note that any
matrix multiplied by the zero matrix yields another zero matrix,

(B.3.14)

and multiplying any matrix by the identity matrix merely reproduces the original
matrix,

(B.3.15)

Finally, note that it is possible for the product of two nonzero matrices to yield the
zero matrix; for example,

(B.3.16)

Consequently, division by matrices is not defined.

B.3.4 Matrix Multiplied by a Vector

At this point we have discussed multiplying vectors by vectors and matrices by matri-
ces; we can also multiply matrices by vectors. An (m × n) matrix A can be multiplied
by a vector in two situations: (i) It can be postmultiplied by an (n × 1) column vector,
A x, and (ii) it can be premultiplied by a (1 × m) row vector, yTA. One use of matrix-
vector multiplication is to economically represent sets of linear algebraic equations.
For example, the three material balance equations given in (B.0.1)–(B.0.3) can be
expressed simply as

(B.3.17)

where A is a (3 × 3) coefficient matrix,

A 1 2 3
4 5 6

= B
7 10
8 11
9 12

=

C 1 7( ) 2 8( ) 3 9( )+ +[ ] 1 10( ) 2 11( ) 3 12( )+ +[ ]
4 7( ) 5 8( ) 6 9( )+ +[ ] 4 10( ) 5 11( ) 6 12( )+ +[ ]

50 68
112 167

= =

AB BA≠

0B B0 0= =

AI IA A= =

1 2–

2– 4
2 2
1 1

0 0
0 0

=

Ax b=
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(B.3.18)

x is a (3 × 1) vector of amounts in each phase, and b is a (3 × 1) vector of total amounts
in the system,

and (B.3.19)

B.4  DETERMINANTS

Every square matrix A of any order n has associated with it a scalar, represented by
|A|, called the determinant of A. The value of |A| is defined in terms of the elements
of A by

(B.4.1)

The coefficient e takes one of three values,  

(B.4.2)

A permutation results from an exchange of any two indices in the sequence (k1 k2 …
kn). If the number of exchanges needed to restore the sequence to the natural order (1,
2, … , n) is even, then the original sequence is an even permutation; otherwise, it is an
odd permutation. For a square matrix of order n, the sum in (B.4.1) contains n! terms.

The determinant of a (2 × 2) matrix

(B.4.3)

is given by

A

w1 x1 y1

w2 x2 y2

1 1 1

=

x
N α

Nβ

N γ

= b

Nz1

Nz2

N

=

A … ek1k2…kn
a1k1

a2k2
…ankn

kn

n

∑
k2

n

∑
k1

n

∑=

ek1k2…kn

0    if any two subscripts are the same                      

1    if k1 k2 … kn, , ,( ) is an even permutation of 1, 2, … , n 

1–     if k1 k2 … kn, , ,( ) is an odd permutation of 1, 2, … , n








=

A
a11 a12

a21 a22

=
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(B.4.4)

The determinant of a (3 × 3) matrix

(B.4.5)

is given by

(B.4.6)

Note that the determinant of the transpose is the same as the determinant of the origi-
nal matrix,

(B.4.7)

Determinants are not usually evaluated from the definition (B.4.1); instead, their
values may be obtained by Laplace’s expansion or by reduction to triangular form.
We do not review those methods here, except to note that the determinant of a trian-
gular matrix is merely the product of its diagonal elements. For example, if A is lower
triangular,

(B.4.8)

Then

(B.4.9)

And if B is upper triangular,

(B.4.10)

Then
(B.4.11)

Algorithms and computer programs for reducing any square matrix to triangular
form (LU decomposition) are contained in the book by Press et al. [1].

A a11a22 a12a21–=

B

b11 b12 b13

b21 b22 b23

b31 b32 b33

=

B b11b22b33 b12b23b31 b13b32b21 b31b22b13– b21b12b33– b11b23b32–+ +=

AT A=

A

a11 0 0

a21 a22 0

a31 a32 a33

=

A a11 a22 a33=

B

b11 b12 b13

0 b22 b23

0 0 b33

=

B b11 b22 b33=
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Determinants enjoy many special characteristics; for example, the value of a deter-
minant is invariant under several kinds of operations applied to any of its rows or
columns. We do not review those many attributes here, except to note the following
important one: If two rows (or columns) of a square matrix are the same, or if one row
(or column) is a scalar multiple of any other row (or column), then the value of the
determinant is zero. You may want to test this using some simple (2 × 2) matrices.

B.5  LINEAR INDEPENDENCE

Consider two equations that are linear in two unknowns; for example,

(B.5.1)

(B.5.2)

If we plot each of these equations in the two-dimensional space of the unknowns, we
obtain a straight line from each. In general, the intersection of those straight lines rep-
resents the solution to the equations. However, for the two equations given above, the
straight lines are parallel: they do not intersect and therefore no unique solutions exist
for x and y. Such equations are said to be linearly dependent. On writing (B.5.1) and
(B.5.2) in matrix form, we have

(B.5.3)

Note that the elements in the second row of the coefficient matrix are a scalar multiple
of those in the first row; consequently, the determinant of the coefficient matrix is zero,

(B.5.4)

Extending these observations to any number of equations and unknowns, we have
the following: For any set of n linear equations in n unknowns, if the determinant of
the coefficient matrix is zero, then the equations are not all linearly independent and
the equations have no unique solution. Any square matrix A having |A| = 0 is said to
be singular. Inversely, if the coefficient matrix is nonsingular, so |A| ≠ 0, then the equa-
tions are linearly independent and a unique solution exists.

Recall that for any (n × n) matrix, n is called the order of the matrix. For any (m × n)
rectangular matrix A, the rank of A is defined to be the order of the largest nonsingu-
lar square matrix that can be formed from A by crossing out entire rows or columns or
both. This means that the rank can be no larger than the smaller of m and n

(B.5.5)

If A is square and of order n, then (B.5.5) becomes

2x 3y+ 7=

4x 6y+ 10=

2 3
4 6

x
y

7
10

=

2 3
4 6

2 6( ) 3 4( )– 0= =

0 rank A( ) min m n,[ ]≤ ≤
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square matrix (B.5.6)

and if A is square and nonsingular, then its rank is the same as its order, 

square nonsingular matrix (B.5.7)

The above statements regarding linear independence and the existence of solutions
can now be restated in terms of the rank of the coefficient matrix: For a set of n linear
equations in n unknowns, a unique solution exists only if the rank of the coefficient
matrix A is the same as the order of A; that is, a unique solution exists only if (B.5.7) is
satisfied.

B.6  SOLVING SYSTEMS OF LINEAR EQUATIONS

Any system of n linear equations in n unknowns can be represented in matrix form as

(B.6.1)

and we have found that unique solutions exist for the unknowns x, provided A is non-
singular. 

B.6.1 Matrix Inverse

One way to find solutions to (B.6.1) is as follows: Imagine that we could find another
(n × n) matrix A–1 such that

(B.6.2)

Then we could solve (B.6.1) by premultiplying both sides by A–1,

(B.6.3)
Then

(B.6.4)
Hence

(B.6.5)

The matrix A–1 is the inverse of A; it exists and is unique, so long as A is nonsingular.
One way to obtain the inverse A–1 from a known (square) matrix A is as follows.

For each element aij of A, define the ij-minor |Mij| to be the determinant of the matrix
remaining when we cross out the ith row and the jth column of A. Now attach a sign to
each minor according to the rule

(B.6.6)

0 rank A( ) n≤ ≤

rank A( ) n=

Ax b=

A 1– A AA 1– I= =

A 1– Ax A 1– b=

Ix A 1– b=

x A 1– b=

cij 1–( )i j+ Mij=
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Each signed minor cij is called a cofactor, and each is an element in an (n × n) matrix of
cofactors C. Then the inverse of A can be obtained by

(B.6.7)

The inverse of a product of matrices is the product of their inverses in reverse
order,

(B.6.8)

The inverse of a diagonal matrix is merely another diagonal matrix in which each
diagonal element is the inverse of the corresponding diagonal element in the original
matrix; for example,

(B.6.9)

If one (or more) diagonal elements in a diagonal matrix is zero, then the matrix is sin-
gular and no inverse exists. Finally, if the inverse of a matrix A equals its transpose AT

then A is said to be orthogonal.

B.6.2 Cramer’s Rule

To illustrate the use of an inverse for solving systems of linear equations, consider two
equations in two unknowns,

(B.6.10)

The minors of the coefficient matrix are |M11| = a22, |M12| = a21, |M21| = a12, and
|M22| = a11. So the matrix of cofactors is

(B.6.11)

and its transpose is

(B.6.12)

Then the vector of unknowns can be found by

A 1– CT

A
---------=

ABC( ) 1– C 1– B 1– A 1–
=

a11 0

0 a22

1–
1 a11⁄ 0

0 1 a22⁄
=

a11 a12

a21 a22

x1

x2

b1

b2

=

C
a22 a21–

a12– a11

=

CT a22 a12–

a21– a11

=
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(B.6.13)

So

(B.6.14)

Hence,

 (B.6.15)

and

(B.6.16)

where |A| for a 2 × 2 is given by (B.4.4). These last two equations are known as
Cramer’s rule; it extends to any number of linear equations and unknowns. But note
that if the original coefficient matrix A is singular, then |A| = 0, the equations are lin-
early dependent, and no solutions exist for x1 and x2.

We can now indicate the solution to the three-phase material balance problem
(B.0.1)–(B.0.3). On applying Cramer’s rule to the matrix form (B.3.17) for the three
material balances, we find an expression for the amount in phase α, relative to the
total amount in the system,

(B.6.17)

Analogous results are obtained for Nβ/N and Nγ/N. The result (B.6.17) is a form of the
tie-triangle rule for three components in three-phase equilibrium (see § H.2).

Cramer’s rule is usually sufficient for solving two equations in two unknowns or
three equations in three unknowns. However, for larger sets of equations, other solu-
tion procedures are preferred, such as Gauss-Jordan reduction and the Gauss-Seidel
method. But in most cases, the best method is LU decomposition, in which the coeffi-

x CT b
A

----------
1
A

--------
a22 a12–

a21– a11

b1

b2

= =

x 1
A

--------
a22 b1 a12 b2–( )

a21 b1– a11 b2+( )
=

x1

a22 b1 a12 b2–( )
A

----------------------------------------

b1 a12

b2 a22

A
----------------------------= =

x2

a21 b1– a11 b2+( )
A

---------------------------------------------

a11 b1

a21 b2

A
----------------------------= =

Nα

N
--------

z1 x1 y1

z2 x2 y2

1 1 1

w1 x1 y1

w2 x2 y2

1 1 1

--------------------------------------------------
x2 z1 y1–( ) y2 x1 z1–( ) z2 y1 x1–( )+ +

x2 w1 y1–( ) y2 x1 w1–( ) w2 y1 x1–( )+ +
-----------------------------------------------------------------------------------------------------= =
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cient matrix A is decomposed into a product of a lower triangular matrix L and an
upper triangular matrix U. The procedure is contained in the book by Press et al. [1].

B.7  QUADRATIC FORMS

Consider a nonlinear equation of the form

(B.7.1)

Such equations can be written in matrix form like this,

(B.7.2)

or

(B.7.3)

where A is square and symmetric (a21 = a12). The scalar xTAx is called a quadratic form.
If A is not symmetric (a21 ≠ a12), (B.7.3) represents no loss of generality, because any
square matrix can be written as the sum of symmetric and skew-symmetric parts. For
example,

(B.7.4)

But the skew-symmetric part always obeys

(B.7.5)

So we have

(B.7.6)

where (A + AT) is always symmetric.
If a quadratic form p = xTAx has p > 0 for all x ≠ 0, then the quadratic form is said to

be positive definite; if it has p ≥ 0 for all x ≠ 0, then it is positive semidefinite. Similarly, if p
= xTAx has p < 0 for all x ≠ 0, then the quadratic form is said to be negative definite; if it
has p ≤ 0 for all x ≠ 0, then it is negative semidefinite. 

One way to determine the definiteness of a quadratic form is to determine the signs
of its principal minors. In any square matrix A, the principal minors are the determi-
nants |Mi| formed from the first i rows and i columns of A. For example, for the 2 × 2
matrix in (B.7.2),

a11 x2 2a12 x y a22 y2
+ + 0=

x y
a11 a12

a21 a22

x
y

0=

xT A x 0=

A
1
2
--- A A+ T( ) 1

2
--- A AT–( )+=

xT A AT–( ) x 0=

xT A x
1
2
--- xT A A+ T( ) x=
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(B.7.7)

and

(B.7.8)

A square matrix of order n has n principal minors. Then, a quadratic form is positive
definite if all its principal minors are positive,

for all i (B.7.9)

and it is positive semidefinite if all its principal minors are positive or zero,

for all i (B.7.10)

Similarly, a quadratic form xTAx is negative definite if all its odd-order principal
minors are positive,

i = 1, 3, 5, etc. (B.7.11)

and all its even-order principal minors are negative,

i = 2, 4, 6, etc. (B.7.12)

A quadratic form is negative semidefinite if all its odd-order principal minors are pos-
itive or zero and all its even-order principal minors are negative or zero.
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M1 a11=

M2
a11 a12

a21 a22

=

Mi 0>

Mi 0≥

Mi 0>

Mi 0<



C
SOLUTIONS TO CUBIC EQUATIONS

t was at the University of Bologna during the Italian Renaissance that Scipione del
Ferro (1465–1526) first discovered how to solve any depressed cubic equation for its

real roots. A depressed cubic lacks a quadratic term,

(C.0.1)

In 1535 the procedure was discovered independently by Niccolo Fontana (1497–1557),
a.k.a. Tartaglia (the “Stammerer”). In keeping with the practice of the times, both Scip-
ione and Tartaglia kept the solution secret, for men have always understood that
doors may open to those who know what remains hidden to others. But eventually
Tartaglia succumbed to relentless cajoling and revealed the solution to Gerolamo Car-
dano [in English, Jerome Cardan (1501–1576)]. Thereafter, Cardan discovered how to
depress any cubic and then he could find the real roots of them all; he even had some
appreciation for the existence of imaginary roots. Continuing along similar lines, Car-
dan’s pupil Ludovico Ferrari (1522–1565) found a way to reduce the general quartic to
a cubic and thereby he was able to solve any quartic equation for its real roots.

Such are the bare outlines of a remarkable story of discovery—an outline stripped
of the personalities involved and therefore missing the tragicomical blend of bluster,
chicanery, and brilliance that makes the story unique. In 1545 Cardan published the
cubic’s analytic solution in his book, Artis magnae sive de regulis algebraicis liber unus,
which is now usually known as Ars Magna. But Cardan’s was a complex personality
and his character so far from endearing that he has been unevenly treated by histori-
ans of mathematics (compare [1] and [2]). For example, as the first published solution
to the cubic, some cite De Aequationum Recognitione et Emendatione, by François Viète
(1540–1603). But this was not published until 1615—seventy years after the Ars Magna
appeared and twelve years after Viète’s death—and it is not clear whether Viète’s is an
independent discovery, or whether he is reciting Cardan’s method in a more conge-
nial notation, or whether that portion of the manuscript was inserted after Viète’s
death. Cardan’s story is sympathetically told by Dunham [1]; excerpts from the Ars
Magna, with additional commentary, are contained in the book edited by Struik [3].

ax3 cx d+ + 0=

I



 SOLUTIONS TO CUBIC EQUATIONS 621

Here is Cardan’s method for obtaining the real roots to any cubic having real coeffi-
cients. First write your cubic in the form

(C.0.2)
and then compute

(C.0.3)

and

(C.0.4)

If (p2 – q3) > 0, then the cubic has only one real root,

(C.0.5)

where sgn(p) = p/|p| and

(C.0.6)

But if (p2 – q3) ≤ 0, then the cubic has three real roots,

(C.0.7)

  (C.0.8)

(C.0.9)

where

(C.0.10)
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D
VAPOR PRESSURES OF SELECTED FLUIDS

apor pressures of most pure fluids can be adequately correlated by the Antoine
equation (8.2.31). The following table provides values of the Antoine parameters

for a few fluids. These apply for the vapor pressure Ps in bar and temperature T in
Kelvin [1].

LITERATURE CITED

[1] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids,
3rd ed., McGraw-Hill, New York, 1977.

Fluid Formula A B C

Acetone C3H6O 10.031 2940.5 35.93

Acetonitrile C2H3N 9.667 2945.5 49.15

Benzene C6H6 9.281 2788.5 52.36

Carbon tetrachloride CCl4 9.254 2808.2 46.0

Chloroform CHCl3 9.353 2696.8 46.16

Ethanol C2H5OH 12.292 3804.0 41.68

Diethyl ether C4H10O 9.463 2511.3 41.95

Methanol CH3OH 11.967 3626.6 34.29

Methyl acetate C3H6O2 9.509 2601.9 56.15

Toluene C6H5CH3 9.394 3096.5 53.67

Water H2O 11.683 3816.4 46.13

V



E
PARAMETERS IN MODELS FOR G EXCESS

he following tables provide values for parameters in models for the excess Gibbs
energy of selected binary liquid mixtures. Table E.1 contains values for the Porter

equation (§ 5.6.2), Table E.2 for the Margules equation (§ 5.6.3), and Table E.3 for Wil-
son’s equation (§ 5.6.5).
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Table E.1 Selected binary liquid mixtures in which the excess Gibbs energy
approximately obeys Porter’s equation (5.6.1)

Component 1 Component 2 T(°C) A Ref.

Acetone Ethyl ether 35–56 0.741 [1]

 Methanol 56–64 0.560 [1]

  Benzene 56–80 0.405 [1]

Benzene  Cyclohexane 80 0.335 [2]

2-Butanone  n-Hexane 50 1.280 [3]

60 1.220

70 1.166

Carbon tetrachloride Chloroforma 25 0.172 [4]

40 0.154

55 0.138

Carbon tetrachloride Cyclohexaneb 30 0.108 [5]

40 0.101

50 0.094

60 0.088

70 0.083

Ethanol Ethyl acetate 72–78 0.896 [1]

 Toluene 77–110 1.757 [1]

Ethylbenzene o-Xylene 136–144 0.0081 [6]

 m-Xylene 136–139 0.0083 [6]

 p-Xylene 136–138 0.0071 [6]

Methanol Ethyl acetate 62–77 1.16 [1]

 Methyl acetate 57–64 1.064 [1]

  Trichloroethylene 65–87 1.946 [1]

 2-Propanol 65–82 –0.0754 [7]

a A  =  –0.2034 + 111.86/T(K)
b A  =  –1.7056 + 141.45/T(K) + 0.2357 lnT(K)
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Table E.2 Selected binary liquid mixtures in which the excess Gibbs energy
approximately obeys the Margules equation (5.6.11)a 

Component 1 Component 2 T(°C) A1 A2

Acetone Benzene 57.7–76.5 0.316 0.461

Carbon tetrachloride 56.–70.8 0.764 0.918

Chloroform 57.5–64.4 –0.561 –0.840

Methanol 55.3–64.6 0.579 0.618

Benzene Carbon tetrachloride 76.6–79.9 0.0855 0.121

Chloroform 62.–79.2 –0.167 –0.236

Methanol 58.–78.6 1.710 2.293

n-Hexane 68.6–77.9 0.516 0.365

2-Butanone Chloroform 62.9–79.7 –0.686 –0.85

Ethanol Benzene 67.9–76.9 1.472 1.836

Cyclohexane 65.–74 1.726 2.473

n-Hexane 58.1–78.3 1.940 2.705

Toluene 77.–110.6 1.571 1.648

Methanol Chloroform 53.5–63. 0.832 1.736

n-Octane Ethylbenzene 125.7–136.2 0.201 0.188

1-Propanol Benzene 77.–97.2 1.336 1.596

Ethylbenzene 97.–118.9 1.330 1.239

n-Hexane 66.2–89.6 1.867 1.536

Ethyl acetate 78.–96. 0.519 0.641

2-Propanol Acetone 56.8–79.8 0.514 0.632

Benzene 71.8–82.4 1.269 1.520

Ethyl acetate 75.9–80.3 0.517 0.476

Toluene Phenol 110.5–172.7 1.034 0.714

a All mixtures here are at 760 mm Hg. Values of parameters taken from a larger collec-
tion given in [8].
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Table E.3 Selected binary liquid mixtures in which the excess Gibbs energy can
be approximately represented by Wilson equations (5.6.24) and (5.6.30)a

Component 1 Component 2
ρ1 

(mol/l)
ρ2

(mol/l)
∆λ12

(kJ/mol)
∆λ21

(kJ/mol)

Acetone Chloroform 13.50 12.40 0.486 –2.120

Ethanol 17.04 0.730 1.060

Methanol 24.55 –0.479 2.281

Water 55.34 1.441 6.201

Benzene Ethanol 11.18 17.04 1.115 5.290

Methanol 24.55 0.475 7.753

1-Propanol 13.31 1.494 4.269

2-Butanone Chloroform 11.09 12.40 –0.954 –1.048

Ethanol Cyclohexane 17.04 9.20 8.041 1.520

n-Heptane 6.78 7.980 1.935

Toluene 9.36 5.317 0.973

Water 55.34 1.754 3.812

Methanol Chloroform 24.55 12.40 7.087 –1.514

Water 55.34 0.347 2.178

n-Octane Ethylbenzene 6.11 8.13 –0.722 1.391

Phenol 12.03 3.524 6.755

1-Propanol n-Heptane 6.78 6.180 1.105

Water 55.34 3.793 5.843

Toluene Phenol 9.36 12.03 0.138 3.283

a All mixtures here are at 760 mm Hg. Values of parameters taken from a larger collection 
given in [8].



F
A STABILITY CONDITION FOR BINARIES

n this appendix we prove that a stable, one-phase, binary mixture must have values
for component fugacities that are less than the corresponding pure-component val-

ues; that is, we prove that a stable, one-phase, binary mixture must have

(F.0.1)

where either component can be labeled 1. We start with the one-phase stability crite-
rion for mixtures (8.3.14), written in terms of the chemical potential, 

not unstable (8.3.14)

This can be written in terms of the fugacity as

not unstable (F.0.2)

We apply this to two situations. 

Situation 1. If (F.0.2) is satisfied for all x1 between 0 and 1, then f1 increases monoton-
ically from 0 at x1 = 0 to fpure 1 at x1 = 1. The mixture remains a stable single phase at
all compositions, and at every x1 (F.0.1) is obeyed.

Situation 2. If the condition (F.0.2) is violated over some range of x1, then the mixture
is not stable over some compositions and it may split into two phases α and β. The
curve for f1(x1) either oscillates or it separates into distinct branches. The phase equi-
librium conditions require

f1 T P x{ }, ,( ) fpure 1 T P,( )<

G11 N1∂
∂G1
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 
 

TPN2

0>≡
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∂x1
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(F.0.3)

Further, each of these phases is stable, so they each satisfy the stability requirement
(F.0.2).

Let β designate the phase that is rich in component 1. We presume pure 1 is a stable
phase, so by continuity, mixtures from to x1 = 1 are stable single phases, and
because of (F.0.2) their fugacities must be less than fpure1. Therefore they approach
fpure 1 from below; hence,

(F.0.4)

In fact, the mixture at has the smallest fugacity of any stable, one-phase mixture
that is rich in component 1.

Combining (F.0.3) with (F.0.4), the component-2 rich phase must obey

(F.0.5)

We also assume pure 2 is a stable phase, so again by continuity, mixtures from x1 = 0 to
must be stable single phases, and by (F.0.2) their fugacities must increase mono-

tonically from 0 to   In fact, the mixture at has the largest fugacity of any stable,
one-phase mixture that is rich in component 2. Hence,

(F.0.6)

If only the two phases, α and β, form as a result of the phase split, then one-phase mix-
tures at compositions between and can only be metastable or unstable. There-
fore, all stable one-phase mixtures are bounded by [0, ] or by [ , 1], so they all are
described by (F.0.6). Hence at the given T and P, all stable one-phase mixtures must
satisfy (F.0.1). QED

If a third phase γ forms (such as in VLLE), then the above argument still holds; we
just must be careful to identify phase α as that richest in component 2 and phase β as
the one richest in component 1. Then the third phase has some composition between

and but it must have the same values for fugacities as phases α and β; so, anal-
ogous to (F.0.6) we would have

(F.0.7)

Therefore all stable one-phase mixtures still obey (F.0.1).
Mixtures having f1 > fpure 1 are either metastable (they satisfy (F.0.2)) or unstable

(they violate (F.0.2)). We caution that while stable one-phase mixtures must obey
(F.0.1), the converse is not true: mixtures satisfying (F.0.1) are not necessarily stable.
They could be stable, unstable, or metastable. 

f1
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G
NOTATION IN VARIATIONAL CALCULUS

ariational calculus is concerned with finding extrema; for example, what is the
shortest distance between two points on the surface of a parabolic cylinder? In

ordinary, garden-variety calculus, we deal with functions, which are objects whose val-
ues depend on the values of numerical quantities. But in the variational calculus, the
focus of attention is on functionals, which are objects whose values depend on func-
tions. For example, we may interpret the entropy as a functional because its value
depends on other thermodynamic functions, such as temperature, pressure, and com-
position. Since the functionals differ from functions, we sometimes find it convenient
to use a notation for operators on functionals that differs somewhat from the notation
for operators on functions. For our purposes, the most important notational distinc-
tion occurs for differential operators.

Let f be a functional that depends on C functions xi, i = 1, 2, … , C. When f is at a sta-
tionary point (a maximum or minimum), the functions {x} have values {xo}. The vari-
ation of any xi about its stationary value can be represented by

(G.0.1)

where δx is read as the “variation of x.” In our situations, the stationary point may be
an equilibrium state of a system and the variations might be caused by natural fluctu-
ations. When the {x} all fluctuate, we are interested in the total response of the func-
tional f, 

(G.0.2)

where ∆ f represents the total response. Natural fluctuations about equilibrium states
are small, so the total response can be estimated by a Taylor expansion about the sta-
tionary point:

(G.0.3)

xi xio δxi+=

∆f f x{ }( ) f xo{ }( )–=

∆f δf δ2 f …+ +=

V
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Then the first-order variation of f merely means the total differential, evaluated at
the stationary point,

(G.0.4)

Similarly, the second-order variation of f is given by

(G.0.5)

Since the quantities f of interest to us form exact differentials, the second-order varia-
tion in (G.0.5) is invariant under an exchange of the indices i and j. We need not pro-
ceed further into the variational calculus here because in this book we use the
variations δf and δ2f merely as a notational convenience; relations (G.0.4) and (G.0.5)
define the notation we use.
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H
TRIANGULAR DIAGRAMS

he phase behavior of a ternary mixture is conventionally presented on an equilat-
eral triangular diagram, such as in Figure H.1. Any point on the diagram repre-

sents a ternary mixture of a particular composition. The compositions are usually
given in mole fractions, but weight fractions can also be used. We first review the
basic principles of triangular diagrams (§ H.1), then we give the tie-triangle rule for
three components in a three-phase equilibrium situation (§ H.2).

H.1  BASIC FEATURES OF TRIANGULAR DIAGRAMS

On a triangular diagram, the vertices represent pure components; in Figure H.1 we
have called the pure components A, B, and C. Then each edge of the triangle repre-
sents all binary mixtures formed by two of the three components; for example, the
edge AC represents all mixtures of components A and C. A particular point on an
edge divides the edge into two segments, and the lengths of those segments are sim-
ply related to the composition of the binary represented by the point. For example, in
Figure H.1 the point v on edge AC represents the binary mixture that has mole frac-
tions xA =  vC/AC and xC =  vA/AC .

Any point on the interior of the triangle, such as point P in Figure H.1, represents a
ternary mixture. To obtain the composition of the mixture at P, drop perpendiculars
aP, bP, and cP to each of the three edges. In an equilateral triangle the lengths of these
perpendiculars always sum to the altitude of the triangle, hA,

(H.1.1)

This geometric statement is equivalent to a material balance on the mixture, and
therefore it is true regardless of the identities of the components or their intermolecu-
lar forces. In fact, the mole fractions of the mixture represented by P are given by the
ratios xA = aP/hA , xB = bP/hA, and xC = cP/hA. Since the mole fractions must always
sum to unity, the composition is determined by giving values for any two indepen-

aP bP cP+ + hA=

T



632 TRIANGULAR DIAGRAMS

dent mole fractions; that is, to locate any point, such as P, we need values for only two
of its three perpendiculars.

The symmetry of equilateral triangles imposes invariants on certain lines that rep-
resent particular classes of ternary mixtures. We identify two such invariant classes
here. One set of invariants is composed of lines that are parallel to an edge. Since
every point on such a line is the same perpendicular distance from the edge, every
mixture on that line has the same fraction in the component represented by the oppo-
site vertex. For example, the line uv in Figure H.1 is parallel to edge AB, and therefore
every mixture on uv has the same value for the C-component mole fraction: xC = cP/
hA. 

A second set of invariants contains lines that pass through a vertex. On such a line,
every point has the two perpendiculars to adjacent edges in the same ratio, and there-
fore every mixture on the line has the same relative amounts in those two compo-
nents. For example, the line PC in Figure H.1 passes through vertex C, and therefore
every mixture on PC has the same ratio of mole fractions for components A and B. This
means that, if we designate component C as the “solute”, then all along line PC the
solute-free mole fractions for components A and B are both constants, xA

sf = constant
and xB

sf = constant.

H.2  TIE-TRIANGLE RULE

When ternary mixtures exhibit three-phase equilibria, a tie-triangle rule can be used
to obtain the relative amounts in the three phases. This is analogous to the lever rule
for binaries in two-phase equilibria. Consider a ternary mixture of components 1, 2,
and 3 in three-phase equilibrium at the overall composition represented by a point P,
as in Figure H.2. In the figure, the tie-triangle ABC bounds the three-phase region, the

Figure H.1   Standard equilateral triangle for representing ternary mixtures

A

B C

b

c

a hu

v

P
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shaded areas are two-phase regions, and the areas α, β, γ are each single phases. To
obtain the fraction in each phase, draw a straight line from each vertex (A, B, C) of the
tie triangle, through P, and extend each line to intersect the opposite side (at points a,
b, c). Then the fraction of material in each phase is given by a ratio of line segments, 

(H.2.1)

(H.2.2)

(H.2.3)

This tie-triangle rule is a consequence of material balances on the system (see (B.6.17)
in Appendix B) and therefore it applies to any three-phase equilibrium situation
involving ternary mixtures.

Figure H.2 For a ternary mixture of components 1, 2, and 3 in three-phase equilibrium, the rel-
ative amounts in the three phases can be obtained from the tie-triangle rule (H.2.1)–(H.2.3)
applied to an isothermal-isobaric triangular diagram, such as this. Here, α, β, and γ are the three
phases. Point P represents the overall composition of the three-phase system. The three-phase
equilibrium region is bounded by the tie-triangle ABC; shaded regions are two-phase situa-
tions, and the areas α, β, and γ are single phase situations.
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------= =

R γ
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------= =
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I
LAGRANGE MULTIPLIERS

he problem addressed in this appendix is how to optimize a function when con-
straints apply. Optimize means find an extremum—a maximum or a minimum.

When there are no constraints, we generally optimize by taking derivatives and set-
ting them equal to zero. The function to be differentiated is called the objective function.
But constraints couple variables that would otherwise have been independent, pre-
venting our taking simple derivatives. The method of Lagrange multipliers provides a
way to circumvent this problem; essentially, this is done by introducing additional
degrees of freedom, one for each constraint. Rather than develop the theory for this
approach, we illustrate its use by a simple example.

Our problem is to maximize the area of a rectangle under the constraint that the
perimeter must be 100. Let A be the area, with b and h the lengths of two sides, so 

(I.0.1)

In this problem b and h are coupled through the constraint,

(I.0.2)

This is called an equality constraint; it is formally written as

(I.0.3)

The constraint establishes a relation between b and h, so we cannot, for example,
take the derivative of A wrt b while holding h fixed. Instead, we create a new objective
function F from the original one (I.0.1) and the constraint (I.0.3). This new function is
defined by

(I.0.4)

A bh=

2b 2h+ 100=

2b 2h 100–+ 0=

F bh λ 2b 2h 100–+( )+=

T
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where λ is the Lagrange multiplier. Note that when we satisfy the constraint, then (I.0.4)
reduces to F = bh = A. The presence of the second term in F enforces the constraint, so
we can treat b and h as independent when taking derivatives of F; however, the multi-
plier λ is a new unknown that usually must be found to solve the problem.

Forming the derivatives, we have

(I.0.5)

(I.0.6)

(I.0.7)

Note (I.0.7): the derivative wrt the multiplier always recovers the constraint. These are
three algebraic equations that can be solved for the three unknowns: b, h, and λ. It is
clear from (I.0.5) and (I.0.6) that the sides of the rectangle must be equal; that is, to sat-
isfy the constraint, the rectangle must be a square. Then from (I.0.7), we find

(I.0.8)

Of all rectangles having perimeter = 100, that having the largest area is the square of
side = 25.

When several equality constraints are to be applied, we introduce one multiplier
for each. But in general, we should not introduce more constraints than there are ini-
tially independent variables. Doing so creates an over-constrained problem that usu-
ally has no solution. In some problems the Lagrange multiplier has a physical
significance, but none appears to apply to the λ in the simple problem above.

�

b∂
∂F

 
 

hλ
h 2λ+ 0= =

h∂
∂F

 
 

bλ
b 2λ+ 0= =

λ∂
∂F

 
 

bh
2b 2h 100–+ 0= =

b h 25= =



J
NRTL MODEL

he introductory discussion of models for liquid-phase activity coefficients, pre-
sented in Chapter 5, included a description of the Wilson equation, which is

appropriate for many nonelectrolyte mixtures that exhibit large deviations from ideal-
ity. However, the Wilson model cannot correlate liquid-liquid equilibrium data, and
therefore it cannot be used in LLE and VLLE calculations. To overcome this deficiency,
Renon and Prausnitz [1] devised the NRTL model for gE (NonRandom, Two-Liquid). 

This model is similar to the Wilson model, but for binaries the Wilson equations
involve only two adjustable parameters, while the NRTL equations involve three. For
binary mixtures of components 1 and 2, the NRTL equation for gE takes this form:

(J.0.1)

where

and (J.0.2)

The three adjustable parameters are α, ∆g12, and ∆g21 (note that ∆g21 ≠ ∆g12). The
quantities ∆gij have some characteristics in common with the Wilson parameters ∆λij:
they are independent of composition and, usually, they are assumed to be either con-
stants or linear in temperature. The value of the parameter α usually lies between 0.2
and 0.5. For many mixtures, the model is not particularly sensitive to α, so if a value
cannot be found, arbitrarily setting α (say to 0.3) often proves satisfactory.

For binary mixtures, (J.0.1) leads to the these expressions for activity coefficients:

(J.0.3)

and

gE

RT
-------- x1x2

τ21 G21

x1 x2G21+
---------------------------

τ12 G12

x1G12 x2+
---------------------------+ 

 =

τij

∆gij

RT
----------= Gij ατij–( )exp=

γ1ln x2
2 τ21G21Ω21 τ12 Ω12+( )=

T
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(J.0.4)

where

(J.0.5)

For multicomponent mixtures, the NRTL equations generalize to

(J.0.6)

(J.0.7)

where

(J.0.8)

(J.0.9)

(J.0.10)

(J.0.11)

Here C is the number of components, and note we have

 αji = αij (J.0.12)

but
τji ≠ τij because ∆gji ≠ ∆gij (J.0.13)

For a binary mixture, (J.0.6) reduces to (J.0.1) while (J.0.7) reduces to (J.0.3) and (J.0.4).
Like the Wilson equations, one advantage to the NRTL model is that all adjustable
parameters are binary parameters, so no multicomponent data are needed to obtain
their values. Parameter values for a few selected binaries are given in Table J.1.

γ2ln x1
2 τ21Ω21 τ12 G12 Ω12+( )=

Ωij

Gij

xiGij x j+( )2
------------------------------≡

gE

RT
--------

xiLi

Mi
---------

i

C

∑=

γ iln
Li

Mi
-------

xj Gij

Mj
------------- τij

L j

Mj
-------– 

 

j

C

∑+=

Li xkτkiGki
k

C

∑=

Mi xk Gki
k

C

∑=

Gij αij τij–( )exp=

τij ∆gij RT⁄=

τij 0=






for  i j≠
for   i j=
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Table J.1 Values of NRTL parameters for selected binary liquid mixtures

Component 
1

Component 
2

T
(K)

∆∆∆∆gggg12
(cal/mol)

∆∆∆∆gggg21
(cal/mol)

αααα12 = αααα21 Ref.

Acetonitrile Water 300 415.38 1016.28 0.20202 [2]

Water 333 363.57 1262.4 0.3565 [2]

Benzene Acetonitrile 300 693.61 92.47 0.67094 [2]

Acetonitrile 333 998.2 65.74 0.88577 [2]

Water 300 3892.44 3952.2 0.23906 [2]

Water 333 3883.2 3849.57 0.24698 [2]

Ethanol Ethyl acetate 343 –480.377 1148.848 0.1 [3]

Water 343 –53.732 1166.524 0.3 [3]

Ethyl acetate Water 343 611.817 1869.890 0.3 [3]

Toluene Water 283 2101.4 3265.0 0.2 [4]



K
SIMPLE ALGORITHMS FOR BINARY VLLE

n § 11.1.7 we noted that the double Rachford-Rice algorithm for VLLE does not
apply to binary mixtures. Here we develop simple alternatives that often can be

used for isothermal VLLE calculations of binary mixtures. 
The problem is this: we have a binary of components 1 and 2 in VLLE at a known

temperature. We are to find the pressure and the compositions of the three phases. We
have four unknowns, but we also have four independent phase-equilibrium relations:

i = 1, 2 (K.0.1)

i = 1, 2 (K.0.2)

where superscripts α and β indicate liquid phases and superscript v indicates the
vapor. We choose the gamma-phi method for the VLE problem (K.0.1) and the
gamma-gamma method for the LLE problem (K.0.2). Then our four equations become

i = 1, 2 (K.0.3)

i = 1, 2 (K.0.4)

Here we consider low to moderate pressures, so we ignore the Poynting factor that
would otherwise appear in (K.0.3). In general, the four equations (K.0.3)–(K.0.4) must
be solved simultaneously. 

Pressure independent γ-model.  But many γ-models contain no pressure depen-
dence, and if we use such a model, then our four equations decouple: that is, we can
solve the LLE problem separately from the VLE problem. In such cases, our strategy is
to first solve the LLE problem (K.0.4) by applying the Rachford-Rice LLE algorithm in
Figure 11.4. For that calculation, any overall composition z1 can be used, so long as it

fi
α

fi
v

=

fi
α

fi
β

=

xi
α γ i

α ϕi
s Pi

s yi ϕi P=

xi
α γ i

α xi
β γ i

β
=

I
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provides two-phase roots. This gives the liquid-phase mole fractions. Then with T and
x1

α known, we can solve the VLE problem (K.0.3), which now is merely a bubble-P cal-
culation for y1 and P. 

Ideal-gas vapor phase.  In the special case that the pressure is low enough for the
vapor to be an ideal gas, the bubble-P calculation can be done analytically. Setting ϕi =
1 and ϕi

s = 1, the sum of the two equations in (K.0.3) gives the pressure,

(K.0.5)

then

(K.0.6)

Completely immiscible liquids.  In the very special case that we know that the com-
ponents are (essentially) immiscible as liquids, then the low-pressure problem simpli-
fies further. For example, say phase α is essentially pure component 1, so

(K.0.7)

and then phase β must be essentially pure component 2, so

(K.0.8)

Now the two equations in (K.0.3) become

(K.0.9)

and

(K.0.10)

Their sum gives the total pressure,

(K.0.11)

and with P known, the vapor-phase composition can be obtained from either (K.0.9)
or (K.0.10).

�

P x1
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α P1
s x2

α γ2
α P2
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+=

y1 x1
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α P1
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α 1≈
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NOTATION

 

In the following lists, parentheses hold equation numbers, table numbers, figure num-
bers, or problem numbers where the symbol is defined or first introduced.

 

ROMAN LOWER CASE

 

a

 

Helmholtz energy, intensive (3.7.19)

 

a

 

Parameter in cubic equation of state (4.5.54)

 

a

 

ki

 

Number of atoms of element 

 

k

 

 on a molecule of species 

 

i

 

 (7.4.1)

 

⁄

 

i

 

Activity of component 

 

i

 

 (5.4.2)

 

b

 

Parameter in cubic equation of state (4.5.54)

 

b

 

k

 

Total number of atoms of element 

 

k

 

 (7.4.1)

 

c

 

p

 

Isobaric heat capacity, intensive (Table 3.2)

 

c

 

v

 

Isometric heat capacity, intensive (Table 3.2)

 

e

 

Total energy, intensive (2.4.7)

 

f

 

Generic property, intensive (3.4.2)

 

g

 

Gravitational acceleration (1.2.1)

 

g

 

Gibbs energy, intensive (3.2.24)

 

h

 

Enthalpy, intensive (2.4.15)

 

k

 

Boltzmann constant [Problem 1.5 and (2.3.6)]

 

k

 

ij

 

Binary interaction parameter in equation of state (4.5.80)

 

m

 

Mass of object or system (1.2.1)

 

m

 

e

 

Number of elements (7.4.1)

 

q

 

Heat, intensive (P2.17.1)

 

s

 

Entropy, intensive (2.4.21)

 

t

 

Time (Problem 1.15)

 

u

 

Internal energy, intensive (2.2.11)

 

v

 

Volume, intensive (1.2.4)

 

v

 

j

 

Rate for reaction 

 

j

 

 (7.4.50)

 

w

 

Sonic velocity (P3.15.1)

 

w

 

Work, intensive (P2.10.1)
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x

 

Horizontal distance (2.1.1)

 

x

 

i

 

Mole fraction of component 

 

i

 

 

 

(1.2.7)

 

y

 

i

 

Mole fraction of component 

 

i

 

 in vapor phase (§ 9.3.1)

 

z

 

Vertical distance (1.2.1)

 

z

 

i

 

Overall mole fraction for component 

 

i

 

 (11.1.13)

 

ROMAN UPPER CASE 

 

A

 

Area (2.1.9)

 

A

 

Helmholtz energy, extensive (3.2.11)

 

A

 

Formula matrix (7.4.2)

 

A, B, C

 

Parameters in models (§ 5.6.1)

 

B

 

Second virial coefficient (4.5.9)

 

B

 

′

 

Pressure second virial coefficient (4.5.21)

 

C

 

Third virial coefficient (4.5.10)

 

C

 

i

 

Generic conceptual property (Table 3.1)

 

C

 

i

 

Distribution coefficient for component 

 

i

 

 (11.1.14)

 

C

 

p

 

Isobaric heat capacity, extensive (3.3.8)

 

C

 

v

 

Isometric heat capacity, extensive (3.3.7)

 

C

 

′

 

Pressure third virial coefficient (4.5.22)

 

E

 

Total energy [(2.1.8) and (2.2.9)]

 

F

 

Generic thermodynamic property, extensive (3.3.1)

 

F

 

Force (2.1.1)

 

F

 

Rachford-Rice function (11.1.20)

 

G

 

Gibbs energy, extensive (3.2.13)

 

H

 

Enthalpy, extensive (2.4.1)

 

H

 

Henry’s constant (10.2.20), (10.2.27)

 

K

 

i

 

K-factor for component 

 

i

 

 (11.1.2), (12.1.1)

 

K

 

j

 

Equilibrium constant for reaction 

 

j

 

 (10.3.13)

 

L

 

Fraction of feed in liquid product (Problem 9.4)

 

M

 

i

 

Generic measurable property (Table 3.1)

 

N

 

Total number of moles (1.2.4)

 

N

 

A

 

Avogadro’s number [Problem 1.5 and under (2.3.6)]

 

N

 

i

 

Number of moles of component 

 

i

 

 (1.2.7)

 

N

 

p

 

Number of mass ports to and from a system (3.6.11)

 

P

 

Absolute pressure (1.2.2)

 

Q

 

Heat, extensive (2.2.1)

 

R

 

Gas constant (Problem 1.5 and Problem 3.2)

 

R

 

Fraction of material in one of two liquid phases [below (11.1.13)]

 

S

 

Entropy, extensive (2.3.5)

 

T

 

Absolute temperature (2.3.6)

 

U

 

Internal energy, extensive (2.1.27)

 

U, W, V

 

Matrices in singular value decomposition (11.2.6)

 

V

 

Volume, extensive (1.2.5)

 

V

 

Fraction of material in vapor phase (Problem 9.4)

 

W

 

Work, extensive (2.1.1)

 

Z

 

Compressibility factor (4.3.1)
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ROMAN SCRIPT 

 

A

 

j

 

Affinity for reaction 

 

j

 

 (7.4.41)

 

C

 

Number of components (3.1.2); number of species (7.4.1)

 

F

 

Dissipative components of driving forces (1.3.4)

 

F

 

Number of independent properties for intensive state (3.1.8)

 

F

 

ex

 

Number of independent properties for extensive state (3.1.6)

 

F

 

′

 

Number of independent properties (9.1.11)

 

f

 

i

 

Fugacity of component 

 

i

 

 

 

(4.3.8)

 

N

 

Number of molecules (2.2.11)

 

P

 

Pressure to overcome dissipative forces (2.1.11)

 

P

 

Number of phases (9.1.5)

 

R

 

Number of independent chemical reactions (7.4.5)

 

S

 

Number of internal constraints (3.1.6)
Sext Number of external constraints (3.1.3)
V Number of orthogonal interactions (3.1.3)
Vmax Maximum number of interactions (3.1.1)

GREEK LOWER CASE

α Volume expansivity (3.3.6)
αij Relative volatility (12.1.11)
β Reciprocal thermal energy, β = 1/RT (4.5.45)
β Dimensionless group in equation of state (8.2.12)
βij Selectivity (12.1.30)
γ Ratio of heat capacities (P3.23.1)
γ i Activity coefficient for component i (5.4.5)
γv Thermal pressure coefficient (3.3.5)
δ Differential driving force (1.3.3)
δ Small amount of path function (2.2.5)
δ Variational operator (G.0.4)
δ12 Combination of second virial coefficients (5.3.8)
∆λij Parameters in Wilson model (5.6.30)
ε Tolerance in trial-and-error searches (§ 11.1.1)
ζ Convergence parameter in trial-and-error searches (11.1.42)
η Packing fraction (4.5.2)
κs Adiabatic compressibility (3.3.26)
κT Isothermal compressibility (3.3.25)
λ Integrating factor (2.3.3)
λk Lagrange multiplier (10.3.33)
ν Velocity [(2.1.5) and (2.3.6)]
νij Stoichiometric coefficient for species i in reaction j (7.4.10)
ννννj Vector of stoichiometric coefficients for reaction j (7.4.17)
ξj Extent of reaction j (7.4.12)
π Dummy integration variable corresponding to pressure (4.4.2)
ρ Density, mass (Table 3.2) or molar (4.5.8)
σ Diameter of hard sphere (4.5.2)
σj Algebraic sum of stoichiometric coefficients in reaction j (7.4.21)
τ Dummy integration variable for temperature (10.1.10)
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υ Number of degrees of freedom (4.1.3)
ϕi Fugacity coefficient of component i (4.3.18)
ϕi Apparent volume fraction for component i (P5.12.3)
ψ Dummy integration variable for intensive volume (4.4.13)
ω Acentric factor (P4.22.2)

GREEK UPPER CASE

∆ Delta operator: ∆x = x2 – x1 (1.2.3)
∆ Net total driving force (1.3.1)
Λij Parameters in Wilson model (5.6.24)
Ψ Dummy integration variable for extensive volume (4.4.17)
Ω Term in Wilson model for activity coefficients (5.6.27)

SUBSCRIPTS AND SUPERSCRIPTS; ROMAN

Az Azeotrope (9.3.21)
acc Accumulation (7.5.1)
ad Adiabatic (2.1.27)
B Boyle (4.5.12)
b Boundary (2.2.10)
b Boiling (Problem 1.10)
c Configurational (2.2.13)
c Critical (Problem 1.10)
con Consumption (7.5.1)
dev Deviation (4.0.1)
dif Diffusion (7.5.6)
E Excess property (5.2.1)
ext External to a system (1.3.1)
f Formation property (10.4.15)
ƒ Property of feed stream (Figure 12.14)
gen Generated [(2.3.8) and (7.5.1)]
hs Hard sphere (4.5.14)
I Interface (7.2.1)
i Index over components (3.4.2)
ig Ideal gas (4.1.2)
irr Irreversible (2.1.16)
is Ideal solution (5.1.1)
j Index over reactions (7.4.6)
k Kinetic [(2.1.7) and (2.2.11)]
k Index over phases or system parts (7.1.2)
{ Liquid (8.2.18)
m Change of property on mixing (3.7.38)
m Melting (Problem 1.10)
mix Mixture property (3.7.37)
o Standard state property (5.1.3)
o Initial value (7.4.6)
p Potential [(2.1.4) and (2.2.11)]
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R Reduced by critical property (P4.31.1)
ref Reference (4.0.1)
res Residual (4.2.1)
rev Reversible (2.1.14)
rxn Reaction (7.5.2)
s Saturation [Problem 6.5 and (8.2.18)]
s Solid (10.1.7)
sf Solute free (10.2.19)
sh Shaft [under (2.4.2)]
sp Spinodal (8.2.17)
sub Sublimation [below (9.2.1)]
sur Surroundings (7.1.3)
T Transpose of a matrix or a vector (B.2.5)
t Total (3.7.9)
ub Upper bound (7.4.23)
v Vapor (8.2.18)
vap Vaporization (8.2.23)
wf Workfree (2.2.7)

SUBSCRIPTS AND SUPERSCRIPTS; GREEK AND OTHER SYMBOLS

α Feed stream (3.6.2); bulk phase (7.2.4)
β Discharge stream (3.6.2); bulk phase (7.2.4)
σ Saturation (9.2.1)
® Reference-state property (4.3.12)
∞ Infinite dilution (5.4.14)
+ Referred to reference-solvent standard state (10.2.32)
∗ Referred to solute-free standard state (10.2.24)

ABBREVIATIONS

cc Cubic centimeter, cm3 (7.1.45)
EoS Equation of state (Figure 4.7)
FFF Famous fugacity formulae (6.4.1)
GGE Gas-gas equilibrium (§ 9.5.2)
LCEP Lower critical end point (Figure 9.21)
LCST Lower critical solution temperature (§ 9.3.6)
lhs Left-hand side [under (2.3.8)]
LLE Liquid-liquid equilibrium (start of § 9.3)
LSE Liquid-solid equilibrium (Figure 9.27 and Table 9.2)
NRTL Nonrandom, two-liquid model (Appendix J)
rhs Right-hand side [under (2.2.2)]
UCEP Upper critical end point (Figure 9.21)
UCST Upper critical solution temperature (§ 9.3.6)
VLE Vapor-liquid equilibrium [below (8.2.10)]
VLLE Vapor-liquid-liquid equilibrium (start of § 9.3)
wrt With respect to [above (3.2.22)]
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see

 

 Entropy balance
material, 

 

see

 

 Material balance
reactions, 286–87, 290, 500, 505

Bifurcations, 326, 344–47
Binary mixtures, 

 

see

 

 Mixtures, binary
Biological processes, 7, 8, 89, 288, 300, 470, 578, 582
Boiling point elevation, 547
Boundary, 11, 23, 36, 45, 51–60, 99, 240, 258

energy of, 57–58, 258
kinds of, 12, 20

Boyle temperature, 156
Brownian motion, 12–13
Bubble curve, 376–78, 380, 384–85, 394, 411
Bubble-T calculations, 479–87
Bulk modulus, 86

Calculations, 468–70
feasibility, 60–64, 267, 587
phase equilibrium, 421–28, 478–99
reaction equilibrium, 

 

see

 

 Reaction equilibrium
Canonical variables, 75–76
Cardan’s method, 621
Carnahan-Starling equation, 153–54, 168
Cat, domestic, 13
Change, 20

driving force for, 21–23, 279–84, 303, 305–06, 327
rate of, 305
reversible, 

 

see

 

 Reversible change
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Chemical potential, 15, 78–79, 94, 140–41, 210, 230, 
275–76, 281–85, 298, 304, 337, 349, 447, 454, 459
derivatives of, 94–95, 236
excess, 191, 199, 203–04, 209, 235, 243
physical interpretation, 107–09, 239
residual, 134, 136–37, 142, 144, 149–51, 235

Chemical reaction yield, 286, 575–77
Chemical reactor analysis, 567–71 
Clapeyron’s equation, 331–32, 334–35, 372–73, 383
Classes

of binary phase diagrams, 399–402
of derivatives, 5–6, 81
of mixture stability behavior, 312, 344–47

Clausius-Clapeyron equation, 332–33, 387
Closed solubility loop, 390, 393
Closed system, 20, 24, 44, 50, 58, 74–77, 105, 107
Combined laws, 257, 259–61, 263–65, 267, 269–70, 

272–77, 279–82, 296, 301, 303–05
Combining rules, 173–74, 247, 249, 350
Compressibility 

adiabatic, 82, 86, 320
factor, 137–39, 154–55, 165, 169, 171, 198, 248, 

329, 332
isothermal, 73, 82, 86, 116, 319, 325, 338

Conceptuals, 6, 19, 43, 49, 55, 69–70, 76–77, 79–81, 
120–21, 140–41, 174, 184, 201, 202, 231, 239, 296
from measurables, 96–98, 112–13, 146–52, 198

Conjugate, 11, 15–16, 76 
Conservative force, 16, 21–22, 36
Constraints, 12, 63, 102, 260–02, 370, 552

effect on states, 229–30
external, 71–73, 101, 103, 229–30, 358, 367, 444, 

554, 564
internal, 72–73, 99, 102–04, 368, 405, 444, 511

Control volume, 101, 551–53
Cooling curves, 397
Coupled

diffusion, 276, 277, 302
reactions, 299, 302, 303

Covolume, 165, 182
Cramer’s rule, 616–17
Criteria

phase equilibrium, 279–84, 327, 368
reaction equilibrium, 303–05
stability, 315, 318–19, 338, 358, 627

Critical 
end point, 399–402, 412
line, mechanical, 343, 358, 423
line, mixture, 341–44, 382, 399–402, 423, 532–35
opalescence, 325, 342
point, liquid-liquid, 355–56, 493
point, mixture, 342, 377–79, 381, 383, 388, 404, 

409, 410
point, pure VLE, 15, 72, 83, 86, 156, 170, 324–28, 

332–33, 372, 382, 410
solution temperature, 389–90; 

 

see also

 

 UCST 

 

and

 

 
LCST

Cubic equations, 164–68, 199, 248, 320–23, 328, 339, 
344, 422–23, 481, 543, 557, 620

Derivatives, classes of, 5–6, 81
Design, 70, 310, 554–55, 578, 586–87
Determinants, 317, 337–38, 612
Deviation, 120, 228, 231–34; 

 

see also

 

 Difference mea-
sures 

 

and

 

 Ratio measures
from ideal gas, 133–45, 159–60, 174
from ideal solution, 184, 189–208, 213–15, 218

Dew curve, 376–78, 380, 382, 384, 394
Dew-T calculations, 479
Diagrams

binary 

 

PT

 

, 382, 345, 347
classes of binary, 399–402
extrema on, 383–85, 388, 394
isobaric 

 

Txy

 

, 380–81, 383–86, 388, 391, 411
isothermal 

 

Pxy

 

, 375–76, 383–86, 388, 393, 523

 

PT 

 

(pure), 82, 331, 334, 369, 372–73

 

Pv (

 

pure), 22, 321, 324–28, 334–35, 341, 369, 372
superposition of, 396, 398, 412
triangular, 405–09, 492, 631

 

Txx

 

, 355–56, 389, 398, 411, 426, 542
with a conceptual, 373–75

Difference measure, 120–21, 133–37, 142, 174, 189–
94, 208, 231–34

Differential
driving force, 21–23, 47, 53
exact, 17, 38, 45, 48–49, 63, 87, 112, 206, 231, 593
process, 21, 44, 74, 270
stability, 320, 326, 340, 343, 347, 356–58
total, 58, 76, 81, 96–97, 112, 297, 349, 454, 591

Diffusion  
adiabatic workfree, 276–77
coupled, 276, 277, 302
isothermal-isobaric, 274–76
multicomponent, 276

Diffusional 
equilibrium, 281–85, 304
stability, 336–38, 340, 342, 344, 353–57, 379, 410, 

422
Dilute-solution 

limit, 203–04, 214–15, 218, 434–36, 540
standard states, 439, 442, 443, 486, 534, 574

Dimerization, 216, 515–19
Disorder, 131–33
Dissipative

force, 16, 21–23, 37–38, 41, 51–53, 63, 279
pressure, 36–37

Distillation, 256, 404, 477, 555, 563, 586
extractive, 388, 537
flash, 479, 558
reactive, 296
simple, 387, 534, 537, 578

Distribution 
coefficient, 488–92, 494–96, 538–41, 578
of molecular velocities, 47, 50

Driving force, 21–23, 279–84, 303, 305–06, 327
Duhem’s Theorem, 71, 367, 444
Dynamic 

equilibrium, 284, 312, 315
stability, 312–14, 315
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Elemental abundance, 287, 500, 508, 510, 515
Energy balance, 57–59, 99–100, 106–07, 193, 240, 

270–71, 551, 560–63, 571
steady-state, 59, 551, 558, 566

Enthalpy, 55, 58–59, 76, 85, 96–97, 266, 331, 373, 568
-concentration diagram, 555–57, 562
derivatives of, 83, 88
excess, 193, 197, 219, 561
ideal gas, 122, 126, 128
ideal solution, 187
partial molar, 95, 97, 126, 186, 277
residual, 148, 162, 559–61, 572

Entropy, 16, 49–53, 85, 97–98, 230, 260–64, 267, 277
and disorder, 131–33
and stability, 315–19, 336–38, 357
balance, 59–60, 62–63, 100–01, 104–06, 239, 241, 

270–71, 550
derivatives of, 83, 87–88
excess, 190, 197–98, 200, 242
generated, 51–53, 63, 271, 279–81, 298, 305, 550
ideal gas, 122, 126–28, 137
ideal solution, 187–88, 200
of mixing, 129, 187–89, 190, 196, 390
residual, 134–35, 137, 148, 150, 162–63, 198, 200

Equal-area construction, 330–31, 480
Equation of state, 72–75; 

 

see also

 

 Models
combining rules, 173, 247, 249, 350
conceptuals from, 96, 112, 146–52, 194–200
cubic, 

 

see

 

 Cubic equations
hard sphere, 153, 169
ideal gas, 31, 121, 125
latent heats of vaporization from, 331
mixing rules, 173–74, 211, 221, 247–49, 350
parameters in, 170–74
pressure-explicit, 96, 123
stability and, 321–23, 338–39, 344–53
vapor pressures from, 329–31
virial, 

 

see

 

 Virial equation of state
volume-explicit, 96, 123

Equilibrium
diffusional, 281–85, 304
dynamic, 284, 312, 315
local, 314
mechanical, 280–81, 284, 304, 327
phase, 

 

see

 

 Phase equilibrium
reaction, 303–05
state, 16–17, 21–23, 47, 72, 229–30, 261, 306
thermal, 279–80
thermodynamic, 283–84

Equilibrium constant, 448, 449, 462–64, 513, 516, 
575–77
effect of temperature on, 450–52, 576

Euler’s theorem, 79, 600
Eutectic, 395–98, 411, 428, 546
Exact differential, 17, 38, 45, 48–49, 63, 87, 112, 206, 

231, 593
Excess 

Gibbs energy models, 211–19, 247, 636
properties, 189–94, 220, 231–34

Extensive 
property, 18–19, 79–80, 89–90, 124, 188, 296, 459
state, 70–73, 101–02, 367–68, 444–46, 551–53

Extent of reaction, 295, 297, 300, 444, 462
definition, 289
equilibrium value of, 291, 447, 449, 462–64, 468
upper bound on, 291, 293

External 
constraints, 

 

see

 

 Constraints, external
energy, 35, 43, 45–46, 57–58
heat transferred, 51, 53, 258
pressure, 36, 39, 229

Extractive distillation, 388, 537
Extrema on diagrams, 383–85, 388, 394

Fairy godmother, 229
Famous Fugacity Formulae, 

 

see

 

 FFF
Feasibility, 60–64, 267, 587
FFF, 243–47, 322, 351, 421, 423–27, 430–32, 437, 449, 

456–58, 469, 484, 533, 543–44, 571
First law, 41–46, 57–59; 

 

see also

 

 Energy balance
Flash calculations, 479, 523, 558

adiabatic, 560
isothermal, 488, 523, 559–60

Flow work, 57, 77
Fluctuations, 312–19, 325, 336, 342, 588
Force 

conservative, 16, 21–22, 36
dissipative, 16, 21–23, 37–38, 41, 51–53, 63, 279
driving, 21–23, 279–84, 303, 305–06, 327
generalized, 15, 27
intermolecular, 14–15, 121, 124, 140, 143, 185, 

192, 204, 220–21, 240–42, 385, 389, 402, 432
intramolecular, 14, 47

Formation properties, 459–62, 465–67, 510, 514–15
Formula matrix, 

 

see

 

 Matrix, formula
Freezing point depression, 547
Friction, 23, 38–42, 117
Fugacity, 174, 220, 344

definition, 140, 202, 447
derivatives of, 141–42, 236, 378, 386, 410
famous formulae for, 

 

see

 

 FFF
ideal gas, 140, 425
ideal solution, 186
mixture critical point and, 386, 410
phase-equilibrium and, 275–76, 284, 327, 374, 

421–23, 427, 512
phase stability and, 347–50, 352–53, 383–84
standard state, 185, 201–02, 428–37, 441–43, 456

Fugacity coefficient, 174, 232, 235
activity coefficients from, 208–11
definition, 142
derivatives of, 144, 236
from equations of state, 149, 151–52
from Redlich–Kwong, 182, 323, 351, 404
from virial equation, 179, 487
ideal solution, 185
physical interpretation of, 241

Functionals, 629
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Fundamental equations, 74–80, 91
Fusion curve, 373; 

 

see also

 

 melting line

Gamma
-gamma method, 426–28, 470, 488–493
methods, standard states for, 428–37
-phi method, 424–25, 432, 470, 484–86

Gas-gas equilibrium, 399, 400, 402, 422, 470
General conservation principle, 25
Generalized 

coordinates, 11, 15–16
difference measure, 231
forces, 15, 27
phase rule, 369, 445, 519
ratio measure, 234
stuff equations, 98–101

Gibbs-Duhem equation, 93–95, 142, 144, 191–92, 
206, 211, 237, 378, 600
generalized form, 601

Gibbs energy, 77, 107, 141, 229–30, 349
change on mixing, 111, 129, 188, 207, 240, 342–43, 

345–47
change on reaction, 296; 

 

see also

 

 affinity
definition, 76
derivatives of, 83–85, 87, 94
equilibrium and, 266, 275, 282, 285, 304, 311, 314, 

321, 328, 335, 358
excess, 191, 200, 204, 212, 242, 247–48, 353
of formation, 460–61, 507, 517
partial molar, 79; 

 

see

 

 chemical potential
residual, 137, 200, 241, 557
standard state, 186, 448, 459, 465

Gibbs-Helmholtz equation, 84–86, 95, 141, 144, 191, 
236, 428, 450, 460, 576

Gibbs phase rule, 73, 369, 376, 386, 392, 445, 488

Hard-sphere fluid, 152, 164–65, 168–69
equation of state, 153, 169
residual properties, 154
second virial coefficient, 157

Heat, 33, 47
bath or reservoir, 20, 39, 229
caloric theory of, 43
capacities, 82–83, 87, 96–99, 115, 117, 122, 128, 

177, 230, 261, 319–20, 451, 460, 547
definition, 44
dissipation, 16, 52
duty, 102–03, 554–55, 567
exchanger, 102–03, 117, 181, 584
external, 46, 51, 53, 59, 99, 104
of formation, 460–61
of melting, 332, 334, 373, 428, 547
of mixing, 193
of reaction, 450–52, 567–70, 576
of vaporization, 

 

see

 

 Latent heat
reversible, 48–50, 55, 74, 105, 241–42
sign convention for, 44, 51, 53, 258
transfer, 261–63, 267, 273, 278, 280, 305–06
workfree, 45, 105, 272, 279, 560–62, 567

Helmholtz energy, 77, 107, 125, 229, 241, 361, 365
chemical potential and, 136
definition, 76
derivatives of, 83–84, 88
equilibrium and, 264–65
physical interpretation of, 77
residual, 136–37

Henry’s constant, 434–37, 458, 486, 543–45, 573–74
Henry’s law ideal solution     

reference-solvent, 436–37, 438, 443, 538, 573
solute-free, 433–36, 438, 442, 458, 534, 547

Heterogeneous
azeotropes, 388, 391–93, 395, 402, 411
systems, 257, 259–63, 268–69, 367–68

Homogeneous 
azeotropes, 384–86, 387–88, 392–3, 400, 411, 537
functions, 18–19, 79, 90, 112, 588, 600
phases, 70–74, 89, 99, 175, 231, 257, 259–60, 268, 

367–68, 421, 551
Hypothetical 

path or process, 33, 240, 242, 287, 568–70
state or substance, 17, 185, 188, 201, 203, 231, 234, 

236, 311, 429, 435–36, 457, 558, 571, 573

Ideal gas, 19, 31, 121, 143, 220, 240, 326, 456, 486, 
510, 549, 568–70, 640
fugacity of, 140, 425
mixing of, 131–33
mixtures, 124–33, 140, 186, 188, 189, 207, 240, 430
partial molar properties, 125–27
properties of, 122, 126, 143

Ideal solution, 185, 192, 204, 232, 242, 429, 530
Henry’s law, 433–36, 436–37, 441,–43, 469, 544
Lewis-Randall, 

 

see

 

 Lewis-Randall ideal solution 
partial molar properties of, 186
properties of, 187, 207
standard states for, 185–86, 428, 430, 433, 436

Immiscibility
complete, 396, 540–41, 640
gases, 400
liquids, 392–93, 402, 406, 492, 540
solids, 393–94, 398

Implicit function theorem, 112, 592
Inaccessible states, 48–50
Incompressible substance, 86
Independent 

reactions, 286, 288, 292, 296, 447, 478, 500, 504

 

TPN

 

, 96–97, 123, 133, 146, 158, 161, 195

 

TVN

 

, 97–98, 123, 135, 149, 154, 162, 198
variables, 49, 72–74, 75–77, 89, 94, 101–04, 113, 

229, 340, 367–69, 371, 478, 550–55
Indifferent states, 370–71, 445, 498, 511–12, 520
Inerts, 570, 577
Infinite-dilution 

limit, 203–04, 214–15, 218, 434–36, 540
standard–state, 

 

see

 

 Dilute-solution
Instability criteria, 357–58
Insulated system, 12, 20, 60, 61, 102, 261
Integrating factor, 48–49, 63, 66, 84, 112, 595
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Intensive 
property, 18, 49, 75, 79, 89, 124, 134–35, 189, 257
state, 70–71, 73, 270, 329, 367–69, 421, 445–46, 

478, 488, 511
Interaction, 11, 17, 45, 51, 72–73, 229

coordinate, 11
molecular, 121, 124, 138, 160, 192, 216, 468
nonthermal, 11, 15, 25–26
orthogonal, 11, 71, 101–03, 229, 367, 444, 551
parameter, binary, 174, 249
thermal, 11–12, 15–16, 43, 45, 58, 71

Intermolecular forces, 

 

see

 

 Force, intermolecular
Internal energy, 16, 43–47, 57, 75, 77, 83, 88, 551

definition, 43
derivatives of, 75, 83, 88
equilibrium and, 266, 268
excess, 198
from measurables, 97–98
of ideal gas, 122, 126, 128
of ideal solution, 187–88
residual, 150, 154, 162

Intramolecular forces, 14, 47
Irreversible 

process, 22–23, 27, 33, 36–40, 47, 49–53, 75, 78, 
259–60, 264–66, 303

transfers, limits on, 272, 277
Isobaric 

heat capacity, 82–83, 319, 459, 547
-isothermal process, 

 

see

 

 Isothermal-isobaric
process, 20, 55, 82–83, 85, 97, 108, 129, 267, 273–

76, 279, 380
residual properties, 133–34, 136–37, 147–49, 161, 

169, 195, 200

 

Txy

 

 diagrams, 380–81, 383–86, 388, 391, 411
Isochoric process, 20, 164–65
Isolated system, 12, 21, 72, 258, 260–63, 315, 336, 357
Isometric 

heat capacity, 82–83, 319, 338
process, 20, 130, 132, 263, 268
residual properties, 135–37, 149–51, 162, 198

Isomorphism, 112, 411
Isothermal

absorber, 563, 567
compressibility, 73, 82, 86, 319, 325, 338
flash, 445, 488, 519–20, 523, 553, 560–62
-isobaric process, 94–95, 107, 111, 128, 129, 131, 

207, 239, 241, 267, 274–76, 282, 284, 304
process, 20, 77, 87–88, 106–07, 123, 140, 239, 240, 

274, 278

 

Pxy

 

 diagrams, 375–76, 383–86, 388, 393, 523
reactor, 571, 576–77

Joule 
expansion, 68
experiments, 43, 65
-Thomson expansion, 117, 182

K-factor, 480–83, 489, 494–96, 530–36, 564
Kinetic energy, 35, 46, 50, 57, 121–22, 280

Lagrange multiplier, 453–56, 465–68, 500, 634
Latent heat 

of melting, 334, 373, 396–97, 428, 547
of sublimation, 334, 373
of vaporization, 331–33, 373, 460–61, 556, 561

LCEP, 399–02
LCST, 389–90, 393, 401–03, 411
LeChatelier’s principle, 17
Legendre transform, 75–76, 84, 85, 112, 116, 137, 

146–48, 150, 162, 169, 186, 193, 264, 274, 349, 597
Leibniz Rule, 331, 362, 603
Lever rule, 361, 372, 377, 380, 397, 405, 560, 562
Lewis-Randall 

ideal solution, 186–90, 192–94, 203, 231, 235, 242, 
440, 432–33, 435, 439, 530, 534, 536

rule, 186, 201, 203, 243, 430, 547
standard state, 186, 201, 203–05, 424, 439, 442

L’Hospital’s rule, 604–05
Limiting reactant, 291, 464, 584
Limits

dilute solution, 203–04, 214–15, 218, 434–36, 540
on irreversible transfers, 272, 277
pure-component, 203, 206, 213, 426, 539

Line
critical, 

 

see

 

 Critical line
of incipient mechanical instability, 341–42
tie, 

 

see

 

 Tie line
Linear 

algebra, 317, 501, 506, 606
equations, 496, 509, 614

Liquid, superheated, 314
Liquid-liquid 

critical point, 342, 363–64
equilibrium, 

 

see

 

 LLE   
Liquid-solid equilibrium, 

 

see

 

 LSE
Liquidus, 394–8, 411
Liver, human, 299
LLE, 353–55, 389–94, 398–400, 406–08, 411, 578

calculations, 426, 488–93, 498, 539
Local equilibrium, 314
Locus of azeotropes, 386–87, 391
Loop

closed solubility, 390, 393
van der Waals, 328–29, 331, 345, 375

Lost work, 37–38, 52–53, 278–79
Lower critical 

end point, 399–02
solution temperature, 

 

see

 

 LCST
LSE, 394–98, 408, 411, 426, 546

Macroscopic things, 8, 10–12
Margules equations, 205, 215–17, 384–85, 424–25, 

486, 536–37, 542, 625
Material balance, 25, 56, 99, 270, 479, 489, 494, 550, 

554, 606
lever rules, 361, 372, 377
reacting systems and, 296, 300–01, 445, 499, 568
steady-state, 25, 56, 103–05, 551, 558, 562, 565

Matrices, 606
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Matrix
formula, 287–88, 290, 292, 294, 296, 460, 503, 508, 

510, 515, 518
singular, 498, 500–03, 614
singular value decomposition of, 500–04, 507, 

510, 516, 518
Maxwell    

equal-area construction, 329–30, 480
relations, 87–88, 112, 127, 132, 190

Mean value theorem, 329, 331, 602
Measurables, 19, 52, 69–70, 80–81, 82–83, 86–88, 96, 

113, 120, 146, 174–75, 191, 243, 318, 320, 338, 371
Mechanical 

critical line, 345, 423
critical point, 343, 422
equilibrium, 280–81, 284, 304, 327
interaction, 15
reservoir, 20, 265
stability, 319, 321, 324, 335, 338, 340–41, 343, 357–

58, 410
work, 34–36, 42, 55, 74, 305–06

Melting line, 332, 334–35, 373, 390, 394, 427; 

 

see also

 

 
fusion

Metastable states
descriptions of, 280–83, 306, 312–14, 410, 512
fluid mixture, 341–43, 345–48, 353–56, 422, 628
pure fluid, 321, 323–24, 326–28, 335, 374
solid, 334
test for, 320, 357–58     

Miscibility gap, 390–92, 395, 402–03, 411
Mixing 

change of property on, 111, 129, 187–90, 207, 
231–32, 342, 388

ideal entropy of, 129, 188–90, 196, 390
ideal gases, 131–33
rules, 173–74, 211, 221, 247–49, 350

Mixtures
binary, 94, 142, 206–07, 276, 336, 338, 341–50, 371, 

375–405, 423, 425–27, 434–35, 437, 439, 482, 
486, 494, 498, 531–38, 545, 548, 553, 555, 639
gas, 129, 144–45, 246
liquid, 92, 192–94, 204–05, 212–15, 217–19, 

353–57
solid, 542

hard sphere, 154
ideal-gas, 124–33, 140, 186, 188, 189, 207, 240, 430
multicomponent, 

 

see

 

 Multicomponent mixtures
quadratic, 214
stability of, 336–43, 358
ternary, 216, 405–09, 441–43, 490, 492–93, 498–99, 

537, 540, 631
Modeling, 2, 6–8, 133, 211, 220, 228, 230, 248, 425
Models

hard sphere, 152–53, 168–69
ideal gas, 

 

see

 

 Ideal gas
Margules, 

 

see

 

 Margules equations
Modified Redlich-Kwong, 168–72
NRTL, 525–527, 636
Porter, 213–14, 216–17, 353–57, 426–27, 441, 624

Models (

 

continued

 

)
Redlich-Kwong, 

 

see

 

 Redlich-Kwong equation
van der Waals, 164–66, 170–72, 374–75, 399
van Laar, 363
virial equations, 154–64, 196, 199, 246, 486, 549
Wilson, 217–19, 386, 514, 626

Mole fractions 
during reactions, 291, 293, 295
solute-free, 434, 442, 632

Molecular 
structure, 13–15, 122, 390, 588
theory, 3, 6–8, 12, 25, 46–47, 50
weight determination, 547

Multicomponent mixtures, 157, 216–17, 219, 275–77, 
282, 429, 434, 437, 479, 537   

Near-critical systems, 325, 342, 548–50
Negative 

azeotropes, 385, 387, 392
definite, 317, 337, 618–9
pressure, 326

Neutral equilibrium, 312–14
Newton-Raphson method, 480, 495–98, 508–09, 520
Newton’s method, 490, 492, 567, 599
Nonstoichiometric method, 453–56, 459, 465–68, 

470, 500, 506, 520
NRTL model, 525–27, 636
Nullspace, 501–04, 506
Number

of interactions, 71, 73, 101, 367, 444, 551
of properties, 72–73, 102–04, 367–69, 405, 444–45, 

552–53

Observability, 310, 320, 341
Observable state, 310–12, 314, 320–22, 341, 356
Opalescence, critical, 325, 342
Open system, 12, 24, 51, 56–58, 77, 88, 99–102, 104–

07, 269–79, 300–02, 304, 336, 550–53

Packing fraction, 152–54, 165, 169
Parameters in cubic equations, 170–74
Partial 

derivatives, 590–91
molar properties, 89–94, 125–28, 186–87, 600

Peritectic, 395–96, 411–12
Phase 

diagram classification, 399
rule, generalized, 369, 445, 519
rule, Gibbs, 73, 369, 376, 386, 392, 445, 488
stability of mixtures, 336–43, 358
stability of pure fluids, 315–23, 358

Phase equilibrium, 370
binary, 375–93, 399–405, 558
calculations, 174, 256, 269, 421–26, 431–33, 478–

99, 542–46, 548–550
criteria for, 279–84, 327, 368
pure substance, 327, 335, 371–75
solids in, 334, 393–98, 426–28, 546–47
ternary, 405–10, 492–93
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Phi-phi method, 421–23, 470, 480–83, 531, 533–35, 
539, 543, 555, 558, 559–61

Pitzer correlation, 181
Polymers, 7, 8, 12, 32, 89, 220, 224, 281, 386, 402, 429, 

587–88
Porter equation, 

 

see

 

 Models, Porter
Positive azeotrope, 384–87, 392
Potential energy, 14, 16, 35, 46, 57, 121–22, 313
Poynting factor, 210, 244–46, 430, 434, 437, 457–58, 

463, 484–86, 543–44, 548–49, 571, 574
Pressure

additive, 125
derivatives of, 18, 82, 151
dissipative, 36–37
external, 36, 39, 229
negative, 326
vapor, 

 

see

 

 Vapor pressure
Pressure effects, 236

on fugacity, 209–11, 236, 244–45, 469
on gas solubility, 546
on Henry’s constants, 434, 437, 574
on ratio measures, 236
on standard–state fugacity, 571
on yield from reaction, 575–76

Process 
adiabatic, 

 

see

 

 Adiabatic process
analysis, 

 

see

 

 Analysis
biological, 7, 8, 89, 288, 300, 470, 578, 582
design, 70, 310, 554–55, 578, 586–87
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Redlich-Kwong equation of state, 167–68, 320, 482

compressibility factor from, 171–72
fugacities from, 344, 423
fugacity coefficient from, 182, 323, 351
K-factors from, 532–33
mixing rules for, 248–49, 350
mixture critical line from, 404–05, 423
modified, 168–69
parameters in, 170–71

 

PT

 

 diagram from, 382, 423

 

Pv

 

 diagram from, 324, 327–28

 

Pxy

 

 diagram from, 376–77
residual properties from, 182, 556–57
spinodal from, 326
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Solvation, 276, 403, 587
Sonic velocity, 86, 116
Spinodal

mixture, 341–43, 355–57, 388
pure, 326–28, 374

Stability 
differential, 320, 326, 340, 343, 347, 356–58
diffusional, 

 

see

 

 Diffusional stability
from equation of state, 321–23, 338–39, 344–53
from model for excess Gibbs energy, 353–56
mechanical, 

 

see

 

 Mechanical stability
of mixtures, 336–43, 358
of pure fluids, 315–23, 358
thermal, 318, 321

Standard
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critical (pures), 30, 170–71, 324–25, 327–28, 333
critical solution, 389–90
physical interpretation of, 50
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on equilibrium constants, 450–52, 576
on gas solubility, 544–45
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equilibrium, 279–80
interaction, 11–12, 15–16, 43, 45, 58, 71
pressure coefficient, 81–82, 86–88, 98, 150, 162
stability, 318, 321

Tie line
for binaries, 344, 356–57, 376–77, 380, 386, 393, 

423–25, 427, 557–58
for pure fluids, 328, 371, 375
for ternaries, 405–09, 493, 540

Tie-triangle rule, 405, 617, 632–33
Transfers, limits on, 272, 277
Triangular diagrams, 405–09, 492, 631
Triple 

point, 118, 332–33, 334–35, 370, 372
product rule, 86–87, 112, 381, 383, 392, 593

UCEP, 399–01
UCST, 389–90, 392, 394, 398, 400–03, 411, 542
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relation to intermolecular forces, 160
state dependence, 155–56, 158

Virial equation of state
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pressure, 158
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pure-fluid, 323, 327–31
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definition, 34
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sign convention for, 34
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Yield from chemical reactions, 286, 575–77
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